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Summary

This thesis presents the research on two different tasks in computer vision: edge detec-

tion and image segmentation (including texture segmentation and motion field segmenta-

tion). The central issue of this thesis is the uncertainty of the joint space-frequency image

analysis, which motivates the design of the adaptive multiscale/multiresolution schemes

for edge detection and image segmentation. Edge detectors capture most of the local

features in an image, including the object boundaries and the details of surface textures.

Apart from these edge features, the region properties of surface textures and motion fields

are also important for segmenting an image into disjoint regions. The major theoretical

achievements of this thesis are twofold. First, a scale parameter for the local processing of

an image (e.g. edge detection) is proposed. The corresponding edge behaviour in the scale

space, referred to as Bounded Diffusion, is the basis of a multiscale edge detector where the

scale is adjusted adaptively according to the local noise level. Second, an adaptive mul-

tiresolution clustering scheme is proposed for texture segmentation (referred to as Texture

Focusing) and motion field segmentation. In this scheme, the central regions of homo-

geneous textures (motion fields) are analysed using coarse resolutions so as to achieve a

better estimation of the textural content (optical flow), and the border region of a texture

(motion field) is analysed using fine resolutions so as to achieve a better estimation of the

boundary between textures (moving objects). Both of the above two achievements are the

logical consequences of the uncertainty principle. Four algorithms, including a roof edge

detector, a multiscale step edge detector, a texture segmentation scheme and a motion

field segmentation scheme are proposed to address various aspects of edge detection and

image segmentation. These algorithms have been implemented and extensively evaluated.

xvi



Chapter 1

Introduction

In recent years, digital images have been used extensively in medical, industrial and

telecommunication applications due to the rapid progress of digital techniques. Various im-

age modality, including charge-coupled devices for light and thermal imaging, laser range

imaging, Synthetic Aperture Radar imaging (SAR), as well as various medical imaging

modalities such as the Magnetic Resonance imaging (MRI), the Computed Tomography

(CT) and the Positron Emission Tomography (PET), have been developed to generate

2-D and 3-D images using signals with lower dimensions [18]. At the same time, various

image processing techniques have been investigated to extract useful information from

digital images, which normally contain some physical defects such as noise or blurring.

The research discipline of image processing includes computed imaging, filtering, restora-

tion and coding, etc. The discipline of computer vision, which is closely related to image

processing, emerged in the 70s. Computer vision starts with the physiological and psy-

chophysical investigations of the human (mammalian) visual systems, and then constructs

artificial visual systems using sensors together with various computing algorithms [67].

The basic principle behind computer vision is that the visual process is a computational

process, therefore a systematic investigation in vision can result in a series of algorithms
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which build up an artificial visual system. Tasks of computer vision include structure from

motion, shape from shading, object tracking, etc. [40].

Although image processing groups and computer vision groups have slightly different

emphases and attitudes toward research (the former tend to devise generic approaches,

whereas the later are more interested in the interpretation of physical scenes from images),

their close relationship cross fertilises each other. For example, segmentation and feature

extraction are normally the starting points of both fields. In addition, the adaptivity in

scale is generally the key component for an efficient computer vision or image processing

algorithm.

Computer vision is an inverse process because the physical scene is reconstructed

through images [6]. Since the physical information of a scene is incomplete in the im-

age, assumptions have to be made during the reconstruction stage to estimate the missing

information. An inverse problem is ill-posed in the presence of noise, violating the three

requirements of well-posedness: (1) a solution exists, (2) the solution is unique, and (3)

the solution depends continuously on the input data (see Section 3.2). Regularisation is a

procedure for formulating a well-posed task by employing assumptions which guarantee a

unique and stable solution to the task (see Section 3.2). It has been pointed out that reg-

ularisation has a close relationship with the concept of scale [94]. This close relationship

leads to the Bounded Diffusion theory presented in Chapter 4, which is one of the central

issues addressed in this thesis.

In the early 80's, Marr proposed a hierarchy of tasks which lead to the ultimate goal of

computer vision. In this hierarchy, the high level information (Le. symbolic descriptions of

the physical scene) is derived from the middle level (e.g. 2~D surface maps, object shapes

or movements) and the low level (i.e. primal sketches) information [67]. Marr's systematic

approach toward vision became a standard paradigm, where tasks in different levels are
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tackled separately. In this thesis the tasks of edge detection and image segmentation

using textures and motion fields are investigated. These tasks are low-level tasks, which

determine the performance of the subsequent high-level tasks.

1.1 Edge Detection

Identifying and locating object boundaries in an image is an essential task in low-level

computer vision because an object boundary provides an initial description of the scene.

Object boundaries manifest themselves as significant discontinuities between image grey-

levels of adjacent pixels, thus, the detection of these discontinuities (referred to as edges)

attracts enormous attention from computer vision groups. A step edge corresponds to an

abrupt change in grey-level (Le. a discontinuity), whereas a roof edge corresponds to the

first order discontinuity in the image gradients. Marr uses edges to illustrate the concept

of primal sketches [66], therefore the performance of the higher level computer vision relies

on the accurate detection of edges. Physiological evidences also show that the recognition

of edges plays an important role in mammalian vision. For example, Hubel and Wiesel

have shown that mammalian cortex contains a population of feature detectors which is

tuned to edges and bars of various width and orientation [66J.

The role of an edge detector is to locate the discontinuities in image grey levels accu-

rately in the presence of noise. This is a dilemma because a small degree of smoothing

is preferable for locating the edges, whereas a large degree of smoothing is required for

suppressing noise. This dilemma is commonly acknowledged as the uncertainty principle

(see Section 1.4) because a large operator kernel provides a large degree of smoothing,

which inevitably reduces the resolution of the edge maps (e.g. [105]). Contrary to this

common belief, Chapter 4 demonstrates a new concept of scale for local image processing
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tasks such as edge detection. This new concept is referred to as the Bounded Diffusion

theory, where the adjustment of the regularisation effect according to the noise levels does

not increase the size of the operator kernel.

1.2 Texture Segmentation

Image segmentation is the process by which an image is partitioned into disjoint regions,

each of which has a homogeneous region property such as a texture or a motion field.

It is an intermediate process toward a high-level interpretation of a scene. Although

object boundaries manifest themselves as edges, edge detection alone cannot serve as a

complete image segmentation scheme. The reason being that edge detectors capture both

boundaries and surface textures of an object. In addition, a procedure of edge linking is

required after edge detection to compose a parametric contour (i.e. a chain of boundary

locations) to complete the segmentation process (see Section 2.3). The difficulties of

image segmentation is normally under-estimated because our natural aptitude to interpret

a visual scene is excellent and spontaneous [105]. There are two approaches to tackle

the problem of image segmentation: to consider region properties such as textures or

colours; and to use information from multiple frames such as stereos or motion fields to

recognise occlusion. In this thesis, texture segmentation and motion field segmentation

are investigated.

Texture segmentation partitions an image according to the pattern of variations of the

image grey levels. In texture segmentation, the boundary of a region with homogeneous

texture has to be accurately located, while the texture content within the boundary is used

to determine the homogeneity. The former requires a small operator kernel to achieve high

spatial resolution, while the latter requires a large kernel to achieve high feature resolution.
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This is a dilemma occurring in the joint space-frequency analysis, Le. the uncertainty

principle (see Section 1.4), which indicates that a good texture segmentation can only be

achieved using an adaptive multiscale (multiresolution) approach.

1.3 Motion Field Segmentation

The optical flow constraint equation (OFC) proposed by Horn and Schunck [43] is com-

monly used to derive the motion field from image sequences. OFC assumes that the image

grey level of a moving point is stationary with respect to time, thus

dS(x,y,t) oS(x,y,t)dx oS(x,y,t)dy oS(x,y,t)
dt = ox dt + ay dt + at = 0, (1.1)

where S(x, y, t) is the grey-level at an image pixel (x, y) at time t; and u = ~~ and v = *
represent the two orthogonal components of the velocity of the image pixel.

Deriving the optical flow from OFC's is an ill-posed task because the two variables of

u and v are determined using a single constraint equation. This is commonly known as

the aperture problem. In addition, OFC is derived under the assumption that S(x, y, t) is

continuous, thus errors of the optical flow will be introduced at positions with grey-level

discontinuities usually caused by the occlusion of objects. The above two problems can

be solved to a certain extent by the regularisation technique. For example, the multi-

point approach assumes the optical flow of adjacent image pixels are identical (i.e. the

regularisation), thus a smoothed but unique optical flow field is determined under this

assumption. This approach still suffers from the dilemma of uncertainty because the

solutions of OFC's tend to be erroneous due to the ill-conditioness (Section 6.1) when

a small window (i.e. high spatial resolution) is used. If a large window is used (i.e.

low spatial resolution), then the optical flow is an averaged value within the window,

which is less likely to be influenced by noise but is more likely to contain several objects,
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each of which corresponds to a distinct motion field in the image. Thus, an adaptive

multiresolution scheme is required to circumvent the uncertainty.

1.4 Uncertainty, Scale and Multiresolution

As indicated in the previous three sections, researches on edge detection, texture seg-

mentation and motion field segmentation all involve (by their nature or by a common

misunderstanding among researchers) the uncertainty of the joint space-frequency anal-

ysis. In this section, the uncertainty principle is examined in detail. Let h( x) denote

the operator kernel (a real function with unit L2 norm) of the analysis, and H(w) be

the Fourier Transform of h(x). Assume h(x) -+ 0 when x -+ ±oo. The spatial resolu-

tion 6x and the feature resolution 6w in the time-frequency plane (also referred to as a

spectrogram [84]) are defined as the variances of h(x) and H(w) respectively [20,98]:

6w2 [: w2IH(w)12dw

[: Ih'(xW dx.

Thus,

6x2 6 w2 [: x2Ih(x)12 dx x [: Ih'(x)12 dx

> If:Xh(X)h'(X)dXI

2
(Schwarz inequality) (1.2)

Since

f: xh(x)h'(x)dx
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equation (1.2) becomes

(1.3)

The above formula imposes a lower bound on the time-frequency product, which shows

that high resolutions in both the spatial domain and the frequency domain cannot be

achieved simultaneously in the joint space-frequency analysis. The equality of ( 1.3) is

reached (Le. the uncertainty of the time-frequency product is minimised) when the two

functions involved in the Schwarz inequality of (1.2) are proportional to each other, Le.

[20, 98]

h'(x)
xh(x) = constant,

where the solution of hex) is a Gaussian.

The issue of uncertainty, scale and resolution is the central issue of this thesis. It

has also been discussed in scale-space filtering methods (e.g. [59, 108]), wavelet meth-

ods (e.g. [64, 84]), diffusion methods (e.g. [79, 102, 103]), as well as various multi-

scalefmultiresolution techniques (e.g. [5, 62, 63, 110]). The underlying objectives of these

theories are similar, which are the decomposition of an image into different spatial fre-

quency channels (scales) so as to facilitate the joint space-frequency or space-scale analysis.

Generally, a scale is defined as the standard deviation of the Gaussian pre-filter a (e.g.

[5,62]), a continuous parameter, which indicates the degree of smoothing of an image.

The standard deviation a of the Gaussian is proportional to the spatial resolution b.x.

In the literature, the spatial extent of the block-shaped window in the quad-tree image

structure is also referred to as the resolution, which is a dyadic series. In this thesis the

terminology of the scale is used in continuous situations, whereas the resolution is used to

indicate the block size of the quad-tree.

Since a scale reflects the degree of smoothing, it is adjusted in accordance with the
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noise level. If an image is noise-free, then the inner scale (Le. the smallest scale which is

determined by the granularity of the image) always provides the most complete information

of an image. Otherwise, an adequate scale is required to suppress noise. An accurate

modelling of the noise level is thus essential for the indication of the scale. This will be

discussed in Section 4.3.1.

1.5 Organisation of the Thesis

This thesis tackles three computer vision tasks of edge detection, texture segmentation and

motion field segmentation. In this thesis, uncertainty, scale and adaptivity are the central

concepts which are closely linked together. Due to the local nature of edges (see Section

1.1), Bounded Diffusion is proposed to provide a local scale factor for edge detection,

where the spatial extent of the operator kernel is independent of the scale. Texture seg-

mentation and motion field segmentation are susceptible to uncertainty, thus an adaptive

multiresolution clustering method is devised to circumvent the uncertainty.

The organisation of the thesis is as follows: Chapter 2 reviews the important edge

detectors to illustrate an evolution of concepts for edge detection. Chapter 3 presents the

theories of regularisation and well-posedness, as well as a design of a roof edge detector.

In Chapter 4, a local scale factor of a is proposed as the basis for a multiscale edge

detector, where the scale is adjusted adaptively according to the local noise level. Chapter

5 presents a multiscale texture segmentation scheme, referred to as Texture Focusing,

where the regional resolutions are adaptively determined according to the boundary of the

texture. In Chapter 6, Texture Focusing is incorporated with the optical flow multi-point

method to achieve the motion field segmentation. Finally, Chapter 7 concludes this thesis.
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Chapter 2

Edge Detection

2.1 Finite Difference Edge Detector

A digital image is a two-dimensional (2-D) array of grey levels, which correspond to the

sampled light intensities in light images, or the depth values in range images. Normally the

grey levels are indicated by a third coordinate which is perpendicular to the 2-D image

plane. Therefore, the digital image g(Xi' Yi) is viewed as the sampled data from a 3-D

continuous surface f(x, y), where x and yare spatial coordinates, and Xi and Yi are the

grid points of x and y.

As defined in Section 1.1, a step edge corresponds to an abrupt change in grey level,

whereas a roof edge corresponds to the discontinuities in image gradients. The abrupt

change occurs in grey-level g(Xi' Yi) when the underlying surface f(x, y) is very steep. A

step edge is thus defined as the set of pixels (x, y) where the gradient of f(x, y) exceeds a

certain threshold value:

of (x, y) Bf(x, y) h h Id
ox + By ~ t res 0 •

In a sampled image, the derivatives of 8fh:,y) and 8f~,Y) are approximated using the finite
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difference method, Le.

(2.1)

Alternatively, they can be determined by convolving a weighting mask (also known as a

window or an operator kernel) with the image. These masks are square matrices, e.g.

-1 -k -1

a/(x, y)
ax ~ g(Xj, yd * 0 0 0

1 k 1

-1 0 1

a/(x,y)
ay ~ g(Xj, Yi) * -k 0 k

-1 0 1

where * denotes convolution; k is a positive constant. Compared with the finite difference

method of equation (2.1), these weighting masks introduce a smoothing effect along the

orientation which is perpendicular to the derivative so as to suppress noise. Different value

of k have been proposed heuristically. For example, k = 2 in the Sobel operator and k = 1

in the Prewitt operator [30J. Masks with different sizes are also proposed for different

degrees of smoothing. However, these approaches are incapable of calibrating the size of

the masks according to the noise level so as to avoid excessive bluring.

2.2 Laplacian of Gaussian Operator

The finite difference approach which thresholds the image gradient produces thick edges in

the edge map. This is because more than one pixel adjacent to the grey-level discontinuity

qualify as edge pixels due to their large gradients. To produce one-pixel wide edge sketches,

the pixels which are the local maximum of the gradient are thus defined as edges. These
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pixels correspond to the zero values of the second order derivative along the gradient in

the underlying surface I, i.e.

where n is the coordinate along the gradient [94]. Normally the above process is simplified

to detecting the zero-crossings of the Laplacian of the image, i.e. \j2 I, as an edge.

The detection of an edge using the Laplacian operator or the finite difference operator is

an ill-posed task because the inherent differentiation enhances the high-frequency compo-

nents of the image including noise. The results are thus highly noise-sensitive. A rigorous

definition of well-posedness is presented in Section 3.2. The method of regularisation con-

verts an ill-posed task into well-posed. Torre and Poggio showed that regularisation can

be achieved by convolving the data with a cubic-spline filter, which has a shape similar to

a Gaussian [94].

Marr and Hildreth [66] proposed the Laplacian of Gaussian operator (LoG), an isotropic

operator, for edge detection. The idea is to convolve an image with a Gaussian smoothing

pre-filter G( a, x, y) for the regularisation, and then calculate the Laplacian of the smoothed

image to produce an edge-enhanced image EE(Xi' Yi) (a band-passed image), i.e.

where a is the standard deviation of the Gaussian. The LoG operator \j2G(a, X, y) is

which is also known as the "Mexican hat" operator due to its shape [66]. Note that the

2-D Gaussian can be decomposed to two I-D Gaussians, i.e.

1 _($2+112) 1 _,..2 1 .;;:5-
G(a,x'Y)=-2 2e 2(12 = rn-- e2ci1"x rn-- e2(1 =G(a,x,O)xG(a,O,y).

tta V 27ra V 27ra
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Similarly

{)2 {)2
({)X2 + {)y2) [G(a,x,O) X G(a,O,y))
{)2 {)2
£) 2G(a,x,O)xG(a,O,y)+G(a,x,O)x ll2G(a,O,y).
ux uy

This shows that the 2-D convolution of an image with \j2G(a, x, y) can be simplified as

four 1-D convolutions. The LoG operator can also be approximated by the Difference of

Gaussian (DoG) kernel [66], which is the basic principle of the Laplacian pyramid [13].

Figure 2.1 shows the image of "Trevor" and the edge-enhanced image obtained from

the convolution of "Trevor" with the LoG kernel. In Marr and Hildreth's approach, the

edge map is further derived using the set of pixels with zero values in the edge-enhanced

image.

(a) (b)

Figure 2.1: (a) The image of "Trevor"; (b) The edge-enhanced image produced by the

LoG filter.

The value of a in the Gaussian pre-filtering corresponds to the degree of smoothing.

When a is small, all the tiny edges with small gradients are extracted. This is why the

LoG edge detector also incorporates a thresholding process on the gradient to separate

salient edges from tiny edges [36]. Another way to deal with the tiny edges is to introduce
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a large amount of blurring by increasing the value of (1, which however causes the edges to

be displaced from its original positions (see Chapter 4). Marr and Hildreth have discussed

the edge behaviour under various value of (1 [66]. This concept is further developed by

Witkin as the scale-space theory [108].

2.2.1 Uncertainty and Gaussian

Canny employed the numerical optimisation method to design an optimised 1-D kernel for

an edge detector [16]. Three criteria, i.e, the suppression of noise, the localisation of edges,

and one single response to an edge, are chosen for the optimisation. The result showed

that the optimised kernels for step and roof edges are approximated by the first and the

second order derivatives of a Gaussian respectively. Canny's first two criteria correspond

to the uncertainty which occurs in edge detection, Le. a large degree of smoothing is

required to suppress noise, whereas a small degree of smoothing is preferable for locating

the edges accurately. Thus Canny's numerical result confirms the theoretical prediction

of the uncertainty principle that the Gaussian is the optimum kernel (see Section 1.4).

Canny also suggested the use of the ~G( (1, n) operator instead of the LoG operator

for edge detection, where n is the coordinate along the gradient. This agrees with the

natural definition of an edge, i.e. f,&., which is also accepted by Torre and Poggio [94],

Haralick (see Section 2.3), and the MRCBS proposed in Chapter 4.

The fact that the optimised 1-D roof edge detector is the second order derivative of the

Gaussian suggests that the Laplacian kernel, the sum of two 1-D second order derivatives

in the orthogonal directions of an image, is a candidate for roof edge detection. In Chapter

3 the second order derivatives are used to indicate the presence of roof edges, where the

Gaussian smoothing is achieved by a regularised fitting process.
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2.3 Surface Fitting Edge Detector

Reconstructing the physical scene from digital images is the objective of computer vision.

Under this premise, an intuitive procedure is to fit the sampled grey levels with a continu-

ous surface. Haralick proposed the facet-model based edge detector [39], which comprises

two steps. First, a set of 2-D Chebychev orthogonal polynomials are employed to fit a

window of image pixels g. The reconstructed underlying surface j, referred to as a facet,

is a linear combination of these Chebychev polynomials, where a series of coefficients c

determine the weights of the polynomial. These coefficients are determined by the least-

square fitting, which minimises a well-posed quadratic energy function E = II Ac - 9 112,

where II . II denotes the 12-norm, and matrix A maps the coefficients from c space to g

space. Hence, the minimum of E occurs when c = (AT A)-l AT9 [90], which indicates that

c is continuously dependent on g. The least-square fitting provides a smoothing effect

similar to the result of the Gaussian pre-filtering.

Second, the gradient of the facet j and the second derivative along the gradient ori-

entation (Le. fnt) are determined. If a zero-crossing occurs on ~ at a pixel, and the

gradient of the pixel is larger than a threshold, then this pixel is classified as an edge pixel.

Figure 2.2(b) shows the edge map produced by the Haralick edge detector.

Apart from the Haralick operator which classifies edge pixels according to the deriva-

tives of the local facet, Nalwa and Binford argued that an edge is a piecewise curve com-

posed of short, linear edge elements referred to as edgels, each of which is characterised

by a position and a direction [75]. The 1-0 surface (i.e. the surface where the grey-level

is constant in one spatial direction) is thus used to match the local surface of an edgel.

The hyperbolic tangent function (tanh) is chosen as the 1-0 surface because it is similar

in shape to a step edge. This method is summarised as follows:
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(a) (b)

Figure 2.2: (a) The image of "Trevor"; (b) The edge map produced by the Haralick edge

detector (the threshold is 4).

1. A I-D plane is used to least-square-fit a window of image pixels;

2. Determine the gradient orientation of the fitted plane;

3. A third-order I-D polynomial is used to least-square-fit the same pixels to refine the

estimation of the gradient;

4. A I-D tanh function is used to least-square-fit the same window;

5. A quadratic polynomial is used to least-square-fit the image pixels along the orien-

tation determined at step 3;

6. Compare the error of the least-square-fitting in steps 4 and 5. If the error in 4 is

greater than in 5, then an edgel is determined. The I-D tanh function is thus used

to determine the orientation and the magnitude of the edgel.

Nalwa and Binford argued that their edgel detector is more useful than edge detectors

because the result produced by an edgel detector is more suitable for the subsequent

linking process.
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2.4 Active Contour Model

The active contour scheme is devised to extract a contour directly from the image grey

levels [50]. This scheme minimises the functional E:

where the contour is represented parametrically by v(s) = (x(s),y(s)), with arc length

parameter s E [0,1]. Eintern is the internal energy due to the elastic deformation and

the bending of the contour. Eimage corresponds to the target feature such as a step edge

or a roof edge. The external constant term Econllt is defined as the distance between the

contour and a given spatial position. This is to facilitate the man-machine interaction.

The solution v(s) is determined by minimising E. For example, the energy functional of a

roof-edge contour is:

E = j(a(s)lvs(sW + ,8(s)lvss(sW)ds + Lg(v(s))
If

where a( s) and (3(s) are weightings; v,,( s) and v"s( s) are, respectively, the first and the

second order derivatives of the contours v( 8). g( v( 8)) denotes the grey level along v( 8).

A few nodes, referred to as snaxels, have to be specified in the active contour scheme

to provide an initial condition. This is because the contours are composed of curves

(e.g. B-Splines) interpolated between the snaxels. The number of snaxels thus reflects

the resolution of the contour. However, these snaxels have to be specified individually,

which is a very tedious work. Therefore, Schnabel extended the active contour model to

a multi scale contour extraction scheme of shape focusing [87], which starts from an image

blurred by Gaussian with a coarse scale (i.e. a large value of IT) where fewer snaxels are

required. A rough contour is thus obtained by the active contour scheme. This contour

serves as the initial condition for the following steps in the finer scales where more snaxels
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are inserted automatically. Thus, a contour with a complex shape is gradually extracted

as the scale decreases.

2.5 Discussion

This chapter reviews the advantages and drawbacks of the finite difference operators, the

Laplacian of Gaussian operator, the Haralick's facet model, the tanh l-D surface fitting

approach, as well as the active contour model for edge detection. The use of the finite

difference operators for edge detection is intuitive but ill-posed, thus it fails on noisy

images. The Laplacian of Gaussian operator, which combines the Gaussian pre-filter and

the Laplacian differentiator, is well-posed. However, the isotropic Laplacian of \/2 is an

approximation of the true edge differentiator of ~ [94]. The Haralick operator comprises

the facet model (for a local surface fitting) and the ~ differentiator. Nalwa and Binford

proposed a complex approach which is based on the l-D tanh surface fitting. The local

surface around an edge is fitted and therefore, the parameters of the edgels are available

for the subsequent edge linking process. The active contour scheme, which is based on

the minimisation of a regularisation functional, produces a contour directly from the grey

level image according to the required features (e.g. step or roof edges). However, a few

snaxels have to be specified to serve as the initial condition.

Both the Haralick scheme and the LoG scheme are well-posed edge detectors. Even

though the theoretical analysis shows that the ~ differentiator (as in the Haralick scheme)

is preferable to \/2 (as in the LoG scheme), the experimental results show that the per-

formance of the LoG operator is comparable with the Haralick operator [36]. The Har-

alick scheme, where the Gaussian pre-filter is not used, lacks a systematic approach to

the adjustment of the degree of smoothing, which is achieved by the least-square fitting.
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In contrast, the standard deviation of the Gaussian provides a scale parameter for the

scale-space theory [108] as well as various multiresolution schemes such as the Laplacian

pyramid [13]. Gaussian filtering also facilitates the multiscale active contour method [87].

A detailed discussion on multiscale edge detection will be presented in Chapter 4.
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Chapter 3

Roof Edge Detection and

Regularisation

3.1 Roof Edge Detection

A roof edge is an important feature in various applications. For example, it is argued that

human facial expressions in images are better depicted by roof edges than by step edges

[78]. The extraction of roof edges from digital terrain models plays an important role in

lithology, structural geology and geo-morphology [83]. Roof edges are also important in

the analysis of aero-magnetic images [44] and the segmentation of range images [41, 77].

A roof edge is generally defined as a discontinuity in the first order derivative of a I-D

grey-level profile f [77, 54]. This definition is adopted in this thesis. However, in certain

instances a sign change in the first order derivatives on the two sides of the discontinuity is

also required [38], i.e. f'(to+) X f'(to-) ::;0, where the discontinuity occurs at the position

to' Thus, a roof edge is a local maximum or a local minimum of a grey-level profile, which

are referred to as a ridge or a valley, respectively, in the literature [38, 44, 83]. Figure 3.1

illustrates an example of a roof edge occurring at the origin of the I-D coordinate along
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the principle orientation (the principle orientation is defined in Section 3.4.1).

6

Spatial coordinate (pixel) Coordinate on Principal orientation

Figure 3.1: An example of a roof edge.

Various schemes for detecting roof edges (or ridges and valleys) have been proposed.

Pearson and Robinson proposed a valley detector, which uses a set of criteria to examine

the relative grey levels of a group of neighbouring pixels [78]. These criteria determine the

local extremum of the second order derivative of the underlying grey-level profile, which

indicates the occurrence of a roof edge. Unfortunately, this scheme requires three thresh-

olds to be given heuristically. Furthermore, it is an ill-posed task due to the embedded

differentiation process (see Section 3.2).

The Haralick schemes of step [39] and roof [38] edge detection employ the process of

least-square optimisation. A set of Chebychev orthogonal polynomials is used in these

schemes to reconstruct the underlying grey-level surface of the image. Step edges and

roof edges are then determined according to the corresponding criteria. Least-square

optimisation methods minimise a well-posed quadratic energy function, where the solution

is obtained by linear algebra [90]. Note that a regularisation formula can be transformed

into a quadratic equation (see Section 3.3).
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Recently, Chen and Yang proposed a step edge detector based on the Regularised Cubic

B-Spline (RCBS) fitting [17]. However, this scheme has two limitations which degrade its

performance. First, the Prewitt edge detector, an ill-posed operator, is used to indicate

the local gradient, along which the subsequent fitting is applied. The accuracy of this

scheme is thus limited. Second, the grey-levels along the gradient, which are required for

the fitting, do not coincide with the grid pixels of the image (Figure 3.2(a». Interpolation

is thus required, which increases the computation time. This chapter presents a roof edge

detector, derived from Chen and Yang's step edge detector, which overcomes the above

two limitations. The proposed roof edge detector employs the 1-D RCBS fitting on the

horizontal and the vertical orientations of a window of image pixels to generate two I-D

signals (see Figure 3.2(b», which provides sufficient information of the 2-D facet to enable

edge detection.

Grid Pixel
Vertical

o

Orientation
of the

Equal-Weighted

RCBS

r-GridPixel

v- 0 0

Centre of the Mask

Centre of the Mask Filling

o Averaging

o 0 0 0

Orientation of the Filting
K Horizontal RCBS Filling

(a) (b)

Figure 3.2: (a) The mask of the Chen/Yang edge detector, where the orientation of the

fitting is determined by the Prewitt operator. (b) The mask of the proposed roof edge

detector.
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3.2 Well-posedness and Regularisation

Hadamard defined a well-posed task to have the properties of existence, uniqueness and

continuity [6J, where

existence: for each datum 9 in a given class of functions G, there exists a solution x in

a prescribed class X;

uniqueness: the solution x is unique in X;

continuity: when the error on the data 9 tends to zero, the induced error on the solution

x also tends to zero.

As indicated in Chapter 1, the tasks of computer vision are inverse processes in the

sense that the 3-D physical scene is reconstructed from digital images. The information

contained in an image is insufficient to produce a unique and stable solution which repre-

sents the physical scene, unless an adequate physical knowledge is used to constrain the

solution space. The incorporation of constraints is referred to as the regularisation process.

For example, due to the process of differentiation in edge detection, a small perturbation

of 9 (e.g. noise) induces an unpredictable change of the edge location x. Thus, it is an

ill-posed process which violates the criterion of continuity. From the point of signal pro-

cessing, the process of differentiation corresponds to a high-pass filtering, which enhances

the noisy components of the signal. Hence, the task is ill-posed and the solution of x is

numerically unstable.

Tikhonov's theory of regularisation provides a method to convert an ill-posed process

into a well-posed process [93J. The principle of Tikhonov's regularisation is to employ

adequate constraints in the process [6, 92J. A typical ill-posed task, which corresponds to

image restoration or the curve/surface fitting in edge detection, is to find a function f(·)

22



from the data g(.) such that f(-) ~ g(.). Tikhonov's format includes an additional term

which comprises a suitable norm II . II as well as a stabilising function Q, Le.

E =11 f(·) - g(.) 112 +a II Qf(·) 112, (3.1)

where a determines the degree of regularisation and E is the energy. Thus f(·) is deter-

mined such that E is minimised.

L2 norm is generally chosen as II . II and d2 / dx2 as Q for the sake of simplicity [94], Le.

(1- D)

(2 - D)

In this way, the space of the solution for a regularised functional is constrained by sup-

pressing the second order derivative of f(·), Le. a smoothness constraint. The physical

justification is that the noise-free image is band-limited by the optics, therefore, all its

derivatives of the underlying surface should exist and be bounded [94].

Toore and Poggio argued that the determination of f(·) via the Tikhonov regularisation

is equivalent to convolving the digitised image g(.) with a a cubic spline filter, which is

very similar in shape to a Gaussian filter [94]. On the other hand, the role of Gaussian

smoothing can be replaced by a regularised fitting. This is the basic concept of Bounded

Diffusion, which will be discussed in Chapter 4.

3.3 Regularised Cubic B-Spline Fitting

The Regularised Cubic B-Spline (RCBS) fitting, which employs the principle of the regu-

larisation theory [6,92], is used to reconstruct the grey-level profile f(x) from a discrete

array of data g(Xj) in a well-posed way, i.e.

E = ~)f(xj) - g(Xj))2 + a J(dYx~X))2dX,
J

(3.2)
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where a is a positive number and Xj are the sampled pixels of a spatial coordinate x.

The variational approach is commonly used to solve the functionals [92]. However, tech-

niques such as curve fitting can transform a functional problem into the minimisation of

a quadratic energy equation, where the solution is easily determined by linear algebra.

Among various curves available for the fitting, a spline under a certain premise has a least

value of the second order derivative according to the Holladay theorem [1]:

Holladay Theorem

Let 6. : a = Xl < X2 < ..... < XM = b, and a set of real numbers {g(xk)}(k =

1,2, ..... ,M) be given. Then among all the functions f(x) with a continuous second deriva-

tive on [a.b], and such that f(xk) = 9(Xk), the spline function S6(X) with junction points

at Xk and with S'b,(a) = S'b,(b) = 0 minimise the intergal

Here the spline function S6(x) is defined to be composed of cubic polynomials in each

sub-interval Xk-l ~ X ~ Xk (k = 2,3, ..... ,M), and satisfies S~(Xk+) = S~(Xk-) as well

as S'b,(Xk+) = S'b,(Xk-), (k : 2,3, .... ,M-I).

Since the sampling rate of a digital image is fixed, the interval [Xk-l, Xk] is equidistant.

Hence a spline S6(Xk) is a linear combination of a third-order basis function provided

that the derivatives of the basis function are zero at the boundary points. This concept

motivates the RCBS fitting [17, 56], which uses the cubic B-spline n (Figure 3.3) as the

basic elements of the fitting:

o 2 ~ Ixi

n = -lxI3/6 + IxI2 - 21xI + 4/3 1 < [z] < 2

Ix13/2 - IxI2 + 2/3 [z] ~ 1
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Figure 3.3: From top to bottom: cubic B-spline and its first, second and third order

derivatives.

By shifting the basis function over the interval [I,M],

ej(x) = Q(x - i) i E Z.

The solution f( x) in equation (3.2) is then represented as the linear combination of the

basis functions:
M+l

f(x) = L cjej(x),
j=O

(3.3)

where c, is the coefficient of the basis function ej.

In this way, the regularised functional in equation (3.2) becomes a quadratic energy

equation:

M M+l M M+l d2.( .)
" " 2 "( " e, xJ 2E = L) L..J Cjej(Xj) - g(Xj)) + a L...J !- Cj dx2 ),
J=l ,=0 J=l 1=0

(3.4)

The first term of the above equation is the summation of the square of the differences

between f(xj) and g(Xj), while the second term determines the summation of the second

order derivatives in X i : Minimising E represents the reduction in the differences as well
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as the second order derivatives at the positions of xj, and a is used to adjust the relative

importance between the two terms. Given g(Xj) and a, Ci is then determined. The

solution f( x) and its derivatives can then be easily obtained by multiplying e, with the

corresponding derivatives of ei:

M+l
f(n)(x) = I:cie~n)(X),

;=0

where f(n)(x) and e~n)(x) represent the nth order derivatives of f(x) and ei(x), respectively.

3.3.1 Quadratic Energy Equation

Define

c= A=

g(xt)

G=

where A, A2 and G are known, and C is the unknown variable. In this way, equation

(3.4) can be represented as

Define
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Since the row vectors of [A A2] are independent of each other, the matrix P is positive

definite as long as a > O. Therefore,

This is a standard quadratic energy equation and the graph is a paraboloid in the (M+2)

dimensional hyperspace. The minimum of E occurs at C = p-1AG [90].

3.3.2 Ill-Conditioness

A quadratic energy equation is well-posed. However, it can be ill-conditioned, which

means that a small perturbation in the input signals results in a large variation of the

output. When a -+ 0, P -+ AAT, which is a singular matrix because the rank of A is M,

and the dimension of the matrix AA T is M+2 by M+2 such that det{AA T) = O. The

singularity of AAT causes the computation of C, which requires the inverse of P, to be

ill-conditioned. Since there is no clear boundary between ill-conditions and well-conditions

[6], the MATLAB software is used to simulate the fitting with a decreasing value of a. The

results (Figure 3.4) show that when a equals to 10-7,10-1°,10-13, satisfactory fittings are

achieved. However, when a is further decreased to 10-16,10-19 as well as 0, the results

of the fitting are unsatisfactory, i.e. the results do not represent roof edges. Similarly,

a -+ 00 causes the computation to be ill-conditioned. Values of a in the range 10-7 to 20

showed similar results to Figure 3.4{a).

In the RCBS fitting, the number of coefficients (M+2) exceeds the number of grid

pixels (M) to be fitted. As a result Chen and Yang [17] proposed the exact mapping (EM)
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Figure 3.4: The fitted curve (solid line) on a roof edge (dashed line) using the RCBS fitting

with various regularisation factors a. From top to bottom: a=1O-7, 10-1°, 10-13, 10-16,

10-19, and O.
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method which changes equation ( 3.3) to:

M

f(x) = LCiei(X)
i=1

Therefore, only M cubic B-splines are used instead of M+2 as in equation (3). However,

the use of EM will not result in an optimum fit, because the RCBS fitting is regularised

and therefore, is well-posed. The solution of a well-posed problem is guaranteed to exist, is

unique, and is continuously dependent on the input data (see Section 3.2). Ifthe boundary

cubic B-splines (i.e. eo(x) and eM+1(x)) is removed from the fitting procedure as suggested

in [17], then the accuracy of the fitted curve degrades as illustrated in Figure 3.5. In this

thesis the RCBS fitting with M+2 cubic B-splines is used.

'1 : : : : : I I~~lnnnZJ
0123" 5' 0 1 2 3 " I •......-(pIX", ..."'-(-,

(a) (b)

Figure 3.5: Top of (a): the fitted curve (solid line) of a straight line (dashed line) using

the RCBS fitting; Top of (b): the fitted curve (solid line) of a step edge (dashed line) using

the RCBS fitting; Bottom of (a) and (b): the fitted curve obtained by the exact mapping

(EM) method. Here a=O.1.

3.3.3 Theorem of Linear Fitting

The regularised fitting is a linear process in the sense that the fitted curve is proportional

to the sampled value according to the following linear fitting theorem:
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Theorem 1 Linear Fitting Theorem

Consider the regularised fitting

the solution f of the functional E(f,g) is linearly dependent on the image grey-level g.

Proof:

Given go.

Let fo be the candidate solution of 90 which minimises E, i.e. E(Jo,90) is minimised.

then

for 9m = a X go + b, ( a, b E R)

there exists fm = a X fo + b, such that

is also minimised.

3.4 The Design of a Roof Edge Detector

A roof edge is defined as a discontinuity in the first order derivative of a 1-D grey-level

profile 9 [54], which is fitted by a continuous function f. Thus, the location of a roof edge

corresponds to the extremum in the second order derivative f", and the zero-crossing in the

third order derivative flff. The zero-crossings of 1'" can accurately indicate the position

of edges, but they are very sensitive to high-frequency signals such as noise. Thus, a

threshold in f" is introduced to make the criteria more robust against noise. As a result

the criteria for a roof edge are:
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• f" ~ threshold;

• zero-crossing occurs in I"'.

Since an image is a 2-D signal, the above 1-D criteria cannot be used directly. There

are two approaches to solve this problem: (1) augment the 1-D criteria to 2-D; and (2) use

a 1-D signal in an appropriate orientation to represent the 2-D image. The latter approach

is used in this design to simplify the computation.

3.4.1 Principal Cross Section

The grey level of a 2-D image describes a 3-D surface. To use a 1-D signal I (a grey-

level profile) to represent this 3-D surface for roof edge detection, a cross-sectional plane

is required on which f is the projection of the 3-D surface. This cross-sectional plane,

referred to as the principal cross section, is perpendicular both to the 2-D image and

the isophote curves (i.e. the curves which connect pixels of the same grey level). The

orientation of the principal cross section is thus referred to as the principal orientation

(see Figure 3.1).

Let S(x, y) be the 3-D grey-level surface, where x and yare spatial coordinates. Let

x be the principal orientation, and iJ be the orientation of the isophote curve, then ~~ =

f# = O. Given an arbitrary direction t inclined at an angle () to the direction of x, then

x = tcos() and iJ = tsinB.

Therefore,

dS
dt

as as.ax x cos() + ay x smB

asax x cost), (3.5)
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and

(3.6)

Denote

, as
Jp = ox'

" 02S
JP = OX2'

and

, dSJ() = Tt, t" _ d2S
J() - dt2•

Therefore, equations (3.5) and (3.6) become

f~(x, Y) = fp(x, y) X cosO,

J~'(x, y) = fp(x, y) X cos20. (3.7)

These relationships infer that f along the principal orientation (fJ = 0) has the maximum

first and second order derivatives. Note that these relationships are obtained under the

assumption that the isophote curves are parallel to the roof edges. Although this is not

always true, the assumption generally approximates the real cases.

3.4.2 Horizontal-Vertical Decomposition

To obtain the derivatives along the principal orientation (Le. fp(x, y) and Jp(x, y)), a 2-D

image is decomposed into two I-D signals which are perpendicular to each other, e.g. the

horizontal and the vertical components of the signal. The derivatives along the principal

orientation are then determined from the derivatives of these signals. Given a cross section

with an angle (fJ + 900), equation (3.7) becomes
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Therefore,

Uo(x, y»2 + UO+90o(X, y»2 U;'(X, y»2COS2() + U;'(X, y»2sin2()

= U;'(x, y»2, (3.8)

fo'(x, y) + fO~90o(x, y) = fp(x, y)cos2() + fp(x, y)sin2() = fp(x, y). (3.9)

Equation (3.8) and (3.9) show that f;'(x,y) and fp(x,y) can be obtained from the

derivatives along any two perpendicular orientations. Note the two formulae in equation

(3.8) and ( 3.9) are identical to the definition of the gradient and the Laplacian respectively,

where I;'(x, y) corresponds to the gradient, and Ip(x, y) corresponds to the Laplacian.

To simplify the computation, the two perpendicular orientations are chosen to be the

horizontal and the vertical orientations so that the grey levels on the sampled image can

be directly used for the regularised fitting.

3.4.3 The Algorithm

In the proposed roof edge detector, the RCBS fitting is applied along the horizontal and

the vertical orientations to reconstruct two continuous grey-level profiles (Figure 3.2(b ».
The derivatives of the fitted curve f along these two orientations are then obtained as

described in Section 3.3. Since the basis function, the cubic B-spline, is a third order

piecewise polynomial, the third order derivative of the fitted curve f is not continuous at

the grid pixels (see Figure 3.3).

The criteria for detecting a roof edge (Section 3.4) are then applied along the principal

orientation. The first criterion requires lp, determined using equation (3.9), to be greater

than a threshold. The second criterion requires a zero-crossing in /"', i.e. fP'(to+) X

/p'(to-) < O. To simplify the application of these criteria, the third order derivatives are
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examined along the horizontal and the vertical orientations. If a sign change occurs along

either of the two orientations, the second criterion is satisfied. The first criterion is then

used to detect the roof edge.

The magnitude of ftp is used as an indication of roof edges in the proposed scheme,

where ftp is determined from two regularised 1-D signals, and equals approximately to the

Laplacian of Gaussian \j2G(U, X, y) * S. The difference between ftp and \j2G(U, X, y) * S

is the shape of the kernel, Le. a cross kernel (Figure 3.2(b)) is used to compute f'f" while

a square kernel is used to compute \j2G(u, X, y) * S.

The pseudo codes of the proposed roof edge detector are:

begin

Input (Image(x, y), a, threshold);

Assign n = the size (in pixels) of the image;

For (x = 1,2, ....n)(y = 1,2, ....n) do

begin

Apply the RCBS fitting along the horizontal orientation;

Determine fhorizonta/(x, y), fh~rizonta/(x-, y), and fh~rizonta/(x+, y);

Apply RCBS fitting along the vertical orientation;

Determine f~~rtica/(x, y), f~~rtica/(x, y-), and f::rtica/(x, y+);

If U;:;rizonta/(x-, y) X f;:;rizontal(x+, y) < 0)

or U~~rtical(x, y-) X f::rtical(x, y+) < 0)

then

begin

f'f,(x, y) = If;:orizontal(x, y) + f~/ertica/(x, y)1

If ftp(x, y) > threshold

then Set EdgeMap(x, y)=Edge;
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else Set EdgeMap(x, y)=Not an Edge;

end

end

Output (EdgeMap( x, y));

end

3.5 Performance Evaluations

The values of the regularisation factor Cl! and the threshold are required for the proposed

roof edge detector. The value of Cl! determines the degree of smoothing, therefore, a large

value of Cl! should be used when the image is noisy. Conversely, if the image is noise-free,

a small value of Cl! should be used so as to preserve the image details. The value of the

threshold reflects the size of an edge, which is defined as the difference of the slopes at

the two sides of the roof edge [54J. The larger the edges to be detected, the larger the

threshold.

Several synthetic images are used to test the proposed roof edge detector. These

synthetic images contain a roof edge of a "ring" shape so that the performance of the

edge detector in all orientations can be measured. The advantage of using synthetic

images is that the true edge positions are known and therefore, quantitative evaluations

are possible. The measurements of performance is the False-Correct Ratio (FCR) [17],

which is determined by first classifying the pixels in the edge map to be true-positive, true-

approximate, true-missing, neutral-extra, and false-positive; and regarding the number of

falsely-detected pixels as the sum of true-missing (ntm) and false-positive pixels (nfp),

and the number of correctly-detected pixels as the sum of the true-positive (ntp), true-

approximate (nta), and neutral-extra (nne) pixels. FCR is the ratio of the number of
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falsely-detected pixels to the number of correctly-detected pixels, i.e.

Fe R = number of falsely-detected pixels
number of correctly-detected pixels

ntrn-l-nfp
ntp-l-nta-l-nne

The lower the value of FeR, the better is the performance of the operator. If the value of

FeR is greater than 1, the operator is considered to have failed, because the number of

falsely-detected pixels exceeds the number of correctly-detected pixels. Here the param-

eters which generate an edge map with the least value of FeR are considered optimum

parameters.

In test 1, a synthetic image which contains a roof edge with a slope of 20 at both

sides of the edge, i.e. the size of the edge is 40, is used to represent a typical roof edge

(Figure 3.6(a)). The image is contaminated with zero-mean Gaussian noise of various

standard deviation (NSD), and the FeR's of the edge maps produced by the proposed

roof edge detector are determined. In the noise-free case, the edge map has a FeR of

o (i.e. the edge map is perfect in the context of FeR) when the regularisation factor is

0.1 and the threshold is 10. The threshold is then set to 10 for all the noise levels since

the regularisation factor alone should reflect the noise level. The optimum regularisation

factors and their corresponding FeR's are then measured under various NSD's. The results

(Figure 3.7) show that the optimum regularisation factor increases as the NSD increases.

The corresponding optimum edge maps are shown in Figure 3.6.

In test 2, noise-free images are used and the size of the roof edge is decreased gradually

so as to determine the effect of the threshold on the performance of the edge detector.

The result is shown in Figure 3.8. As the size of the roof edge decreases, the optimum

thresholds become smaller. The perfect edge map (i.e. FeR=O) cannot be produced when

the size is reduced to 10. This is because as the size is reduced, the edge and non-edge
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Figure 3.6: The optimum edge maps produced when the test image (edge size=40) is

contaminated with noise of various standard deviations (NSD's). (a) The test image. (b)

The ideal edge map. (c) NSD=O. (d) NSD=5. (e) NSD=10. (f) NSD=15. (g) NSD=20.
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Figure 3.7: Top: The optimum regularisation factors obtained when the test image is con-

taminated with noise of various standard deviations (NSD's). Bottom: the corresponding

FeR's when the optimum regularisation factors are used. In this test, the size of the roof

edge and the threshold are 40 and 10 respectively.
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points become more and more similar, and hence more and more difficult to distinguish.

Figure 3.9 shows the corresponding optimum edge maps.

6r-----.-----~----~----~~----~--__.
5.5
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Size of the Roof Edge

35 40

0.1

15 20 25 30
Size of the Roof Edge

35 40~o

Figure 3.8: Top: The optimum thresholds obtained in noise-free images with roof edges

of various sizes. Bottom: The corresponding FeR's. In this test, the regularisation factor

et is 0.1.

In test 3, a real image of "Trevor" (Figure 3.10(a» is used as a test image, and the

corresponding roof edge map generated by the proposed scheme is shown in Figure 3.10(b).

Figure 3.10( c) shows the step edge map produced by the Haralick step edge detector [39]

for comparison. It shows that the features on the step edge map and the roof edge maps

are different. For example, the step edge map shows the wrinkles on the shirt, while the

roof edge map shows the stripes on the shirt. The pattern on the tie appears to be better

detected using the proposed detector than the Haralick step edge detector.
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Figure 3.9: The optimum edge maps obtained for noise-free roof edges of various sizes:

(a) The ideal edge map; (b) Edge size=10; (c) Edge size=20; (d) Edge size=30; (e) Edge

size=40.
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(b) (c)

Figure 3.10: (a) The "Trevor" image. (b) The edge map of "Trevor" produced by the

proposed roof edge detector (a=O.lj threshold=6). (c) The edge map of "Trevor" produced

by the Haralick step edge detection scheme with the threshold of 4.
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3.6 Summary

In this chapter, the concept of regularisation is examined. This concept relates to both the

numerical stability (Le. the well-posedness of the task) and the scale (Section 3.2). Section

3.3.1 shows the use of Cubic B-spline fitting transforms a functional of regularisation into

a quadratic energy function. A roof edge detector is devised which does not rely on the

Prewitt edge detector as in the Chen/Yang step edge detector [17]. The roof edge detector

is much simpler than the Chen/Yang step edge detector, because the proposed Horizontal-

Vertical decomposition enables a 2-D image to be analysed on a 1-D basis. The Regularised

Cubic B-Spline fitting is also modified to achieve a better fitting (Section 3.3.2). Although

the RCBS fitting is well-posed, the regularisation factor a should be carefully chosen to

make the computation well-conditioned (Section 3.3.2).
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Chapter 4

Bounded Diffusion

4.1 Multiscale Edge Detection

The multiscale aspect of edge detection was first examined by Rosenfeld and Thurston

[85]. They analysed the edge responses using the box-shaped kernels with various sizes,

and observed that some edge points are not detected when a large kernel (i.e. low spa-

tial resolution) is applied. Marr and Hildreth proposed the Laplacian of Gaussian edge

detector, in which a Gaussian pre-filter is applied to regularise the ill- posed task of edge

detection and to suppress noise (see Section 2.2). They observed that when an image is

convolved with a Gaussian kernel of various standard deviation (1, different edge maps,

defined as the zero-crossings of the Laplacian, are produced. A small (1 results in an edge

map with more details than one which is obtained using a large (1, but there are also more

noise-induced responses [66]. Marr and Hildreth suggested that the zero-crossings which

exist over several scales should be considered as physically significant [66]. These edges

are referred to as salient edges.

Witkin proposed the scale-space filtering, which shows the evolutionary behaviour of

an edge under different scales [108]. A scale space is spanned by the spatial coordinate and
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a scale coordinate, where the scale is the standard deviation a of the Gaussian pre-filter.

In a scale space, the zero-crossings of the second order derivative of a signal produce traces

which reflect the relationship between the scale and the step edges. Witkin pointed out

the "well-behavedness" of the a scale space, Le. when the scale is varied from coarse to

fine, new local extrema are created while existing ones remain [108]. Babaud et al. [3]

proved that for a I-D signal, this property only holds when the signal is convolved with

a I-D Gaussian. Yuille and Poggio [109] further confirmed that this property also holds

when an image is convolved with a 2-D Gaussian, and proved that it can be applied to all

level-crossing contours. Koenderink [53] proved that the Gaussian is the Green's function

of the diffusion equation, i.e. in the 1-D case

where a represents the scale, x is the spatial coordinate and 1/1 is the signal. Hence, the

theory of scale space motivates the study on the diffusive aspects of an image.

Based on the evolutionary behaviour in the scale space, a few multiscale edge detection

schemes have been proposed. The essence of these schemes is to locate edges as accurately

as possible while suppressing noise. Bergholm proposed the Edge Focusing scheme [5]

which first obtains an edge map from a coarse scale, and then consecutively decreases the

scale to recover the true positions of edges. Lu and Jain [63] proposed the scheme for

"reasoning about edges in scale space" (RESS), which involves a large amount of decision

making to classify edges according to their behaviour in the scale space.

The scale defined in the Edge Focusing and RESS schemes are basically the standard

deviation (o ) of the Gaussian pre-filter. Since a relates to the shape and the range of the

filter's impulse response, the value of the scale affects not only the smoothing effect on the

signal, but also the kernel size. When a large a is required to suppress noise, the resultant
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kernel size is large. However, an edge is a local feature. A large kernel includes irrelevant

information into the edge detection and therefore, the detected locations of edges deviate

from their true positions. This is why in both Bergholm's, and Lu and Jain's approaches,

extra computations are required to recover the true positions of edges. The Q scale space

is proposed in Section 4.2 to cope with this problem. In the Q scale space, the size of

the operator kernel is independent of the value of Q, which corresponds to the degree of

smoothing.

The value of a scale corresponds to the noise level of the image [16]. The higher the

noise level, the stronger the smoothing effect should be. Hence, the noise level determines

the lower bound of the scale, beyond which the estimated locations of edges are no longer

accurate because the noise is not sufficiently suppressed. The Edge Focusing scheme

employs a series of scale (0' = 4.2, 3.85, 3.5,3.2,2.8,2.5,2.1, 1.75, 1.4,1.0,0.7) which is

heuristically chosen [5]. Therefore, if an image is very noisy, the edge locations recovered

in the finest scale are not accurate. This is referred to as an "over-focused" phenomenon in

[5]. In some images, the noise level varies from one region to another, thus the scale needs

to be adjusted adaptively. This adaptivity is referred to as the "variable blurring" in [5].

To prevent over-focusing and to enable variable blurring in edge detection, a multiscale

edge detector is proposed in Section 4.3 where the finest scale is adaptively adjusted

according to the local noise level.

Bergholm claimed that noise and unnecessary edge details are both eliminated in the

Edge Focusing scheme by the thresholding in the coarsest scale. In the successive stages

(at finer scales), the Canny operator [16], but without the thresholding process, is used to

detect edges [5]. However, in a very noisy image, some noise responses are not eliminated

in the coarsest scale, and they develop into noise clusters (see Section 4.4 and Figure

4.14{c), 4.17(c)). This is because there is no thresholding process in the successive scales
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to suppress noise. Note that the criterion of an edge being the zero-crossings of the second

order derivative is susceptible to noise, thus it is normally accompanied by the criterion

of a large gradient (see Sections 2.2 and 2.3). To prevent noise clusters in edge detection,

a series of thresholds should be used in every scale in a multiscale scheme.

A multiscale edge detector with a fixed-size kernel is proposed to address the above

three issues. The scale is adjusted adaptively according to the local noise level. A series of

thresholds are used in every scale, which controls the amount of details to be preserved in

the edge map. The proposed multi scale edge detector is still based upon the Regularised

Cubic B-Spline (RCBS) fitting described in Section 3.3, where a set of cubic B-splines

(Figure 3.3) is used to approximate the underlying I-D grey-level profile. A regularisation

term, controlled by a factor o, is introduced to suppress the effect of noise:

(4.1)

where g( x j) denotes the grey level at the spatial coordinate x j. The fitted curve f( x) is

determined by minimising the functional E. The proposed edge detector is thus referred

to as the Multiscale edge detector based on Regularised Cubic B-Spline fitting (MRCBS).

In equation (4.1), Cl! reflects the degree of smoothing, which is determined by the value

of (J' in Gaussian pre-filtering methods. Also, both the Gaussian pre-filtering and the

regularised fitting convert the ill-posed nature of edge detection to well-posed [94]. As the

kernel size is independent of o , the image is diffused within a small range, Le. a bounded

diffusion. Therefore Cl! could be interpreted as a scale, where the terminology of scale is

used in a more generalised manner, Le. the scale is a parameter which controls the degree

of smoothing.
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4.2 Bounded Diffusion in a Scale Space

4.2.1 Uncertainty and Bounded Diffusion

A signal contains both global and local information, where a scale such as (7 normally

reflects the spatial extent of the operator kernel. The essence of a multiscale analysis is to

interpret a signal using the operator kernel with varous spatial extents. As indicated in

equation (1.3), the spatial resolution of 6.x and the frequency resolution of 6w in a joint

space-frequency (space-scale) analysis are constrained by the uncertainty principle [20].

This can be illustrated by two simple examples. The Fourier transform (FT) of a Dirac

function (b( x)) is 1 for all frequency w. Similarily, the FT of a function that approximates

an edge:

edge(x) = {
1 when x> 0,

-1 when x < 0;

is 2/ jw, where j is the unit imaginary number.

These two examples illustrate that the energy of a local feature in an image, e.g. a

delta function or a step edge, spreads out over the entire frequency spectrum. This is

also illustrated by the scale-space theory, which shows that an edge is scale (i.e. the

frequency band) invariant [108]. On the other hand, although a single frequency function,

e.g. sine x), is well localised in the frequency domain, it cannot be defined using a small

number of pixels. Therefore, if an accurate frequency is required as in the analysis of

textures, then the signal has to be analysed in a large interval in order to achieve a high

resolution in the frequency domain. Conversely, if a feature has to be spatially localised,
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then a small kernel with a fixed size is preferable in order to maintain the same spatial

resolution.

Since an edge is defined as the union of the discontinuities (Le. the local information)

in the grey-level profile [54], the locations of the edge pixels are of primal concern. There-

fore, a small and fixed-size operator kernel is preferred, which implies that the normal

interpretation of a scale as (1 is inadequate for edge detection. This is why the a scale

space is proposed in Section 4.2.2 such that an image is diffused within a fixed-size kernel.

A scale of a controls the degree of smoothing, but does not affect the size of the kernel.

In this way, any irrelevant information is excluded from the smoothing process for noisy

images.

4.2.2 a scale space

In this section, the diffusive/ convergent behaviour of a signal which is regularised by the

RCBS fitting is illustrated in the a scale space. The horizontal axis of this space is the

spatial coordinate and the vertical axis is the scale in logarithm form. The logarithm form

is used in order to visualise the evolutionary behaviour of an edge, depicted by dots, over

a wide range of a. To generate the a scale space, three edge models: the isolated edge

model, the pulse edge model, and the staircase edge model as in [110] are used (see Figure

4.1). An isolated edge model represents a single edge within an operator kernel. The pulse

edge model and the staircase edge model are used to show the interaction between two

edges which occur in an operator kernel. The size of the kernel is set to be 13, and the

edge contrast in these models is set to 100.

The a scale space of the isolated edge model is shown in Figure 4.2( a). The central

line is the true edge response, and the others are spurious responses, which are caused by

the subtle oscillations of the fitted curve. Figure 4.2(a) shows that the edge response of
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Figure 4.1: The edge models considered for the analysis in the Cl! scale space. Top: the

isolated edge model. Middle: the pulse edge model. Bottom: the staircase edge model.

an isolated edge does not deviate from its true position as Cl! varies. This is similar to the

a scale space [62, 108]. Also, when the scale is varied from fine to coarse, the spurious

responses drift away.

Figure 4.2(b) is the Cl! scale space of the pulse edge model when the distance between

the two edges is 3 pixels. It shows that the pair of true edge responses (which are between

spatial coordinates ±2 and which exist in all scales) converge to the true positions as

Cl! ---4 0, and they move away from each other as Cl! increases. This phenomenon agrees

with Witkin's localisation assumption [108], which suggests the use of the coarse-to-fine

paradigm in the design of a multiscale scheme. As Cl! increases, the spurious responses

outside the true edges drift away while those inside merge with each other. Figure 4.2(c)

is the Cl! scale space of the staircase edge model. A phantom edge (the central line ) exists

between the true edges, and the true edges merge with the phantom edge at large value

of CI!. When the two sides of the staircase edge have different contrast (left contrast of

50; right contrast of 100), the corresponding Cl! scale space is shown in Figure 4.2(d). In
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this case the phantom edge merges with the weaker edge. For a detailed discussion about

-a 0 , -, 0 ,
SpalIliCOOl'!lnlIe(pix1lll SpMIaIt.OOIdIMllf\lII",

(a) (b)
re' ,,'
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(c) (d)

phantom edges, see [19].

Figure 4.2: The a scale space of: (a) the isolated edg mod 1; (b) the puls edge model;

(c) the staircase edge model; (d) the staircase edge model with a left contrast of 50 and a

right contrast of 100.

Figure 4.3 shows that for the pulse edge model and the staircase edge model, the

oscillations of the fitted curves result in zero-crossings in the second order derivatives of

the fitted curves. These oscillations are subtle compared to the contrast of the edge. Note

that the RCBS fitting is a linear process (see Section 3.3.3) and thus the amplitude of the

oscillation is proportional to the contrast of the edge. Therefore, the spurious responses

can be eliminated by the thresholding of the first order derivative of the fitted curve, which
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is an essential process in edge detection (see Section 4.3 and [16, 94]).
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Figure 4.3: Top of (a): the fitted curve of a pulse edge model with a=O.OOl; Top of (b):

the fitted curve of a staircase edge model with a=O.OOl; Bottom of (a),(b): The second

derivative of the fitted curve.

The a scale space indicates that the coarse-to-fine paradigm is suitable for an a-based

algorithm such that the detected edges will converge to their true positions. In addition,

the deviations of edges from their true positions are caused by the interaction between

edges which coexist in an operator kernel. Since the probability of two edges occurring in

a small and fixed-size kernel is lower than in a varying-size kernel, a is more suitable than

0' to be used as a scale in edge detection.

4.3 The Design of MRCBS

An edge is the union of discontinuities in the grey level of an image. In a regularised

(smoothed) 2-D image f, an edge is defined as the union of pixels which correspond to the

zero-crossings of the second order derivative along the orientation of the local gradient,

and which is larger than some threshold [16, 94]' i.e.

• Gradient > threshold;
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• A zero-crossing of ~;

where n is the spatial coordinate along the orientation of the gradient. The value of the

threshold determines the amount of edges to be preserved in the resultant edge map. In

MRCBS, the RCBS fitting is applied along the horizontal and the vertical orientations of

the image so as to reconstruct the continuous grey-level profiles (Figure 4.4(a)). The first

and the second order derivatives along both orientations are measured (see Section 3.3)

so as to determine the local gradient.

Vcnica( _r-GridPbcl

i- 0 0

Centre nf the Muk.

RCBS Orientation
of Ihc

Equal. Wei,hted
Fitting

Avcl1lBin.

K
Horizontal RCBS Fittiol Oricnllllilln or the Filling

(a) (b)

Figure 4.4: (a) The operator kernel of MRCBS employed in every scale. (b) The operator

kernel of MRCBS which is employed only in the finest scale. The orientation of the fitting

is along the orientation of the gradient. The equal-weighted averaging is used to achieve

anisotropic diffusion.

Based on the coarse-to-fine paradigm [5, 108J, a is consecutively decreased in MRCBS

until the lower bound of the scale is reached. The lower bound is determined by measuring

the Energy of the High-Frequency component, which is defined in Section 4.3.1. For each

scale, a threshold for the local gradient is adjusted in accordance with the scale, which

is discussed in Section 4.3.2. In summary, the coarsest scale and a threshold are initially

used. If the local gradient is greater than the threshold, and the scale is greater than the

lower bound, a finer scale is then used so as to locate the edge with a better accuracy.
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In the finest scale, the RCBS fitting is applied along the orientation of the gradient to

measure~. The zero-crossings of ~ are classified as edges. Figure 4.5 shows a schematic

diagram of MRCBS.

Decrease scale
Horizontal Fitting

and
Vertical Fitting

RCBS fitting along n
with anisotropic diffusion

~ __ no__ NONEDGE

EDGE

Figure 4.5: The schematic diagram of MRCBS.

4.3.1 Adaptivity in Scale

An index of the noise level is required to determine the lower bound of the scale. In the

literature, several methods which adaptively adjust the regularisation factor a according

to the image property have been proposed for image restoration [49, 68]. These methods
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propose various models which induce a to converge iteratively to an appropriate value.

All of these models assume a to be a monotonically increasing function of the noise level.

However, different models result in different values of a for the same image.

It is commonly known that a low-pass filtering is suitable for suppressing noise because

noise contains more high-frequency components than physical edges. For the same reason,

a measurement of the high-frequency components of a signal indicates the local noise level.

In the RCBS fitting, the following regularised functional is minimised:

E =11 f(·)-g(·) 112 +a II 1"(-) 112,

where II . II denotes the [2 norm, f(·) denotes the fitted curve, and g(.) denotes the original

image data. The first part of this functional II f(·) - g(.) 112 is the residual energy of the

fitting. The second part II f"(·) 112 represents the Energy of the High Frequency component

(EHF), which provides an index of the noise level. To illustrate the relationship between

noise level, a and EHF, a series of tests is conducted. The EHF's of a 1-D step edge with

a contrast of 100 (the top plot of Figure 4.1) and contaminated by the Gaussian Noise of

various Standard Deviations (NSD's) are measured. The ReBS fitting is used to regularise

the noisy images. Each EHF is the average value of 10000 different noisy edges with the

same noise level. The results (Figure 4.6) show that EHF is a function of NSD and a,

with a inversely related to EHF. Also, a noisy edge has a higher EHF than a less noisy

edge. Therefore, if the scale is consecutively decreased as in the coarse-to-fine paradigm,

and a Threshold of EHF, referred to as TEHF, is used to terminate the decrement of the

scale, then a noisy edge will cause the decrement of a to stop at a higher value. In this

way, the value of a is adjusted automatically according to the local noise level, i.e. this is

equivalent to variable blurring.

Applying TEHF is equivalent to cross-sectioning the surface in Figure 4.6 perpendicular
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Figure 4.6: The relationship between the noise level (NSD), the scale of Q and the EHF

when the edge contrast is 100.

to the EHF -axis and in parallel to the NSD-scale plane. Although the scale (Q) is a

monotonically increasing function of the noise level (NSD), using a different value of TEHF

results in a different relationship between them. To calibrate the NSD-Q relationship

by adjusting TEHF, an ideal step edge with a contrast of 100 (top plot of Figure 4.1),

and contaminated by the Gaussian noise with NSD of 10, is assumed to be commonly

encountered in real images. The RCBS fitting is applied to this signal with Q ranging

from 0.5 to 4.5, with an increment of 0.5. For each Q, 10000 different noisy edges with

NSD of 10 are fitted, and the edge is considered to be correctly localised if a zero-crossing

of the second order derivative of the fitted curve occurs within ±0.1 pixels of the edge.

The number of correct localisations, a function of Q, reaches its maximum when Q = 3.5

(Figure 4.7). To terminate the decrement of Q at a value of 3.5 when NSD=10, a TEHF

which is the average of the EHF's when Q = 3.5 and 4.0, and NSD=10, Le. 326.05 and

289.99, is chosen. In this way, when Q = 4.0, the scale is decreased because EHF<TEHFj

when Q = 3.5, the decrement of the scale is terminated because EHF>TEHF. Hence

TEHF is set to be 308 and therefore, the NSD-Q relationship as in Figure 4.8 is obtained,
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in which Cl! = 3.5 when NSD= 10.
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Figure 4.7: The numbers of correct localisations when the RCBS fitting at various scales

is applied to 10000 different noisy edges. The contrast of the edge is 100 and the NSD is

10.
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Figure 4.8: The relationship between Cl! and NSD when TEHF is 308.
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For a 2-D image, the RCBS fitting is applied along both the horizontal and the vertical

orientations of the sampled image, thus the 2-D EHF is defined as follows:

EH F(2-D) =11 Jhorizonta/(-) 112 + II J~~rtica/(·) 112 .

Therefore, the decrement of the scale terminates when

EH F(2-D) > T EH F(2-D),

where the value of TEHF(2-D) is twice as large as that of TEHF, Le. 616.

4.3.2 Scale-Threshold Consistency

As indicated in Section 4.1, a thresholding process in every scale is necessary for a mul-

tiscale scheme to prevent noise clusters. However, the slope of a regularised edge, the

variable to be thresholded, varies with the different degree of smoothing (e.g. a and et).

Figure 4.9 shows an ideal step edge and the curves fitted by the RCBS fitting with various

et: the higher the scale, the smaller is the slope. The thresholds, which distinguish the

preserved and the eliminated edges, should have the same thresholding capability in all

scales, Le. if an edge with a small contrast is to be eliminated, then it should be eliminated

in any scale by the corresponding threshold. This is the concept of scale-threshold con-

sistency, which determines the relationship between a scale and a threshold. Hence, when

the threshold for the slope in the coarsest scale is given, the corresponding thresholds in

other scales with the same thresholding capability are also determined according to the

scale-threshold relationship.

A series of measurements is conducted on an ideal step edge with a contrast of 100 so

as to determine the relationship between the scale and the threshold. The RCBS fitting

is applied with et ranging from 0.5 to 4.5. For each scale, the first order derivative (Le.

the slope) of the fitted curve at the position of the edge is measured. Also, the ratios of
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Figure 4.9: The ideal step edge and its fitted curves using the RCBS fitting with various

scales. Solid line: a step edge; dotted line: a = 1; dashdot line: a = 3; dashed line: a = 5.

the slopes at various scales to the slope in the coarsest scale is calculated and shown in

Table 4.1. Although these ratios are measured on an edge with a contrast of 100, they can

be used for edges of all contrasts. This is because a regularised fitting is a linear process

(see Section 3.3.3) which results in the ratios to be independent of the contrast. In this

way, the threshold with the same thresholding capability at a given scale is determined by

the product of the ratio associated with that scale and the threshold used in the coarsest

scale.

4.3.3 Anisotropic Diffusion

Whitaker [102, 103], and Perona and Malik [79] proposed the anisotropic diffusion. Its

basic concept is that the degree of smoothing along the orientation of the edge and across

the edge should be different, with a strong smoothing along the orientation of the edge to

suppress noise, and a weak smoothing across the edge so as to minimise blurring of the

edge.

This concept is employed in the design of MRCBS so as to locate the edge as accurately
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Table 4.1: Slopes of the fitting at various scales, and the ratios of these slopes with the

slope at the coarsest scale.

Scale (a) 5.0 4.5 4.0 3.5 3.0

Slope 21.991 22.545 23.172 23.892 24.734

Ratio 1.0000 1.0252 1.0537 1.0864 1.1247

Scale (a) 2.5 2.0 1.5 1.0 0.5

Slope 25.744 27.001 28.660 31.088 35.492

Ratio 1.1706 1.2278 1.3033 1.4136 1.6139

as possible. In the finest scale, before the RCBS fitting is applied along the orientation

of the gradient (Le. across the edge), an equal-weighted averaging (Le. the Gaussian

smoothing with U -t 00) is applied perpendicular to the orientation of the fitting. Figure

4.4(b) shows the operator kernel in the finest scale, which is also used in [17]. Since a

strong smoothing is imposed along the orientation of the edge, it eliminates noise without

blurring the edge.

4.3.4 The Algorithm

The pseudo codes of MRCBS are:

begin

Input (Image( x, y), threshold( coarsest scale));

Determine threshold( a )=threshold( coarsest scale) X ratio.of.slopel a);

Assign n = the size (in pixels) of the image;

For (x = 1,2, ....n)(y = 1,2, ....n) do

begin
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Assign a = the coarsest scale;

Do

Apply the RCBS fitting along the horizontal orientation;

Determine fhorizontal (z , y);

Apply the RCBS fitting along the vertical orientation;

Determine f~ertical ( z , y);

Determine Gradient == (I' (x y))2 + (f' (x y))2.horizontal' vertical"

If Gradient < threshold( a) then sro P;

Determine EHF(2-D) == II f~orizontal(x, y) 112 + II f~/ertical(x, y) 112;

Assign a to a finer scale;

While (NON STOP and EHF(2-D)<TEHF(2-D) and a > 0)

Apply the RCBS fitting along the orientation of the Gradient;

Determine B;
If (NON STOP and B= 0)

then Set EdgeMap(x, y)=EDGE;

else Set EdgeMap(x, y)=NON EDGE;

end

Output (EdgeMap(x, y));

end

4.3.5 MRCBS and Edge Focusing

In this section, the underlying principles of two multiscale schemes, MRCBS and the Edge

Focusing scheme, are compared. MRCBS uses the regularisation factor a of the RCBS

fitting as the scale, while the Edge Focusing scheme uses the standard deviation a of the

Gaussian pre-filter. The Gaussian pre-filter is commonly used in image processing and
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computer vision because psychophysical evidences suggest that the Gaussian pre-filtering

simulates the visual process of mammals (e.g. [66]). In addition, the Gaussian kernel

minimises the uncertainty of the space-frequency product 6.x 6. w (see Section 1.4) of

a signal [66, 94]. Using the method of computational optimisation, Canny showed that

the Gaussian approximates the pre-filter of the optimum I-D step edge detector, where

the optimisation is achieved by the suppression of noise and the localisation of edges

(see Section 2.2.1). Torre and Poggio showed that the regularisation can be achieved by

convolving the data with a cubic-spline filter, which is similar in shape to a Gaussian [94].

Linderberg [59] and Babaud et al. [3] have proved that the Gaussian kernel is the only

kernel which does not introduce ripples in the smoothed images or cause spurious edge

responses. Note that the RCBS fitting introduces ripples, which is shown as the spurious

responses in the a scale space (see Section 4.2). However, as the scale is increased, the

spurious responses either drift away or merge with each other. No new responses are

introduced. This shows that the a scale space has the "well-behavedness" as in the a

scale space.

In the Edge Focusing scheme, a coarse scale is initially used to extract significant fea-

tures. Insignificant edges and noise are either smoothed out or eliminated by a threshold.

The er scale space is used to determine the amount of deviation of an edge in a scale,

and hence a series of scale (i.e. a = 4.2, 3.85, 3.5, 3.2, 2.8, 2.5, 2.1, 1.75, 1.4, 1.0,0.7) is

heuristically chosen to ensure that the edge deviation between two successive scales are

less than a pixel. By a consecutive decrement of the scale, true edge positions can be

gradually traced. In the coarsest scale, a threshold is used to classify pixels with large

gradients as edges. In the successive steps (at finer scales), no threshold is used, and the

zero-crossings of ~ are classified as edges [5].

MRCBS is more efficient and effective than the Edge Focusing scheme for the following
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reasons:

1. A fixed-size operator kernel is used to reduce the edge deviation in large scales, while

retaining the ability for strong smoothing;

2. The lower bound of the scale is determined by the local EHF of the image, hence

the requirement of variable blurring [5] is achieved;

3. A series of thresholds with the same thresholding capability is used in every scale to

prevent noise clusters, which exist in the edge maps produced by the Edge Focusing

scheme;

4. The zero-crossings of ~ are only examined in the finest scale;

5. Anisotropic diffusion is employed to impose different degrees of smoothing along the

orientation of the edge and across the edge.

The differences between the Edge Focusing scheme and MRCBS are summarised in Table

4.2.

4.4 Performance Evaluations

The objective of the performance evaluations is to compare the noise-immunity and the

edge-localisation of four edge detection schemes: MRCBS, the Haralick scheme [39], the

Chen/Yang edge detector [17], and the Edge Focusing scheme [5]. All of these schemes

adopt the natural definition of an edge [94]. The Haralick scheme, the Edge Focusing

scheme and MRCBS has a variable parameter (threshold), which reflects the amount of

edge details to be preserved. The Chen/Yang edge detector has two variable parameters:

the scale and the threshold.
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Table 4.2: Edge Focusing vs. MRCBS

Edge Focusing MRCBS

(J Scale Space et Scale Space

Varied Kernel Size Fixed Kernel Size

One Threshold Consistent Thresholds

Lower Bound of Scale = 0.7 Lower Bound Determined by EHF

Non-Variable Blurring Variable Blurring

82f . . d i 11 al~ IS examme m a se es fn{ is examined in the finest scale

Isotropic Diffusion Anisotropic Diffusion

Several synthetic images, which contain edges of all orientations, are used as test im-

ages. One of the measurements of performance is the False-Correct Ratio (FCR) as in

Section 3.5. However, FCR alone is insufficient to indicate the accuracy on edge local-

isation for a detailed comparison between edge detectors. This is because the neutral-

extra and true-approximate pixels, which allow errors of one-pixel magnitude, are also

considered as correctly-detected pixels. To reveal the accuracy of edge localisation, the

Approximate-True Ratio (ATR) is proposed:

AT R = number of neutral-extra pixels + number of true-approximate pixels
number of true-positive pixels

ATR is used when the FeR's of two edge maps are similar. The lower the value of ATR,

the more accurate is the edge map. If the value of FCR exceeds 1, then ATR is meaningless

because the precision of the edge map should only be considered when most of the edges

are correctly detected.

In the first test, a synthetic image which contains edges of all orientations and with

a contrast of 100 (Figure 4.l0(a)) is used. The Gaussian noise with various NSD's are
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added to this image, and the FCR's and the ATR's of the edge maps produced by the

four schemes are computed. Figure 4.11 shows the FCR's and the ATR's of the Haralick

scheme, the Edge Focusing scheme and MRCBS using various thresholds. It shows that

the performance of the Haralick scheme depends heavily on the value of the threshold when

the image is noisy, and it fails in some cases when the FCR exceeds 1 (Figure 4.11(a)).

The performance of the Edge Focusing scheme and MRCBS are less dependent on the

threshold (Figure 4.11(b) and (c)). Since the Chen/Yang edge detector has two variable

parameters, its performance has to be measured using various scales and thresholds. The

results (Figure 4.12) show that the Chen/Yang edge detector has the optimum performance

when the scale is 1. However, the performance in this scale depends on the value of the

threshold when the image is noisy.

(a) (b)

Figure 4.10: (a) The synthetic image used in the first test; (b) The ideal edge map.

The optimum FCR's and ATR's of the four schemes in Figure 4.11 and 4.12 are shown

together in Figure 4.13, to facilitate the comparison of their performances under various

NSD's. MRCBS has the best performance because it has the lowest FCR's at all NSD's.

The Edge Focusing scheme is less capable in dealing with noise than the Chen/Yang edge

detector and MRCBS when the NSD is greater than 15. The optimum performance of

the Haralick scheme is similar to MRCBS and the Edge Focusing scheme when the NSD
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: (a) (b) and (c): The FCR's of the edge maps which are produced by the

Haralick scheme, the Edge Focusing scheme and MRCBS in test 1 respectively. (d) (e)

and (f): The ATR's associated with (a), (b) and (c) respectively.

is low, but it degrades when the noise level increases. Note that the performance of the

Haralick scheme depends on the value of the threshold. If another threshold is used, the

performance is worse. Compared to the Edge Focusing scheme and the Haralick scheme,

the Chen/Yang edge detector is less sensitive to noise. To visualise the performances of the

four schemes, the optimum edge maps produced by the Haralick scheme, the Chen/Yang

edge detector, the Edge Focusing scheme and MRCBS when NSD=25 are shown in Figure

4.14(a)-(d) respectively. Note that the Edge Focusing scheme produces noise clusters and

zig-zag edge contours (Figure 4.14(c)) which degrade its performance.

An image which is contaminated by the Gaussian noise with NSD ranging from 0 (on

the left) to 25 (on the right) is used in the second test. This image (Figure 4.15(a)) is used

to examine the capability of variable blurring [5] of the four schemes. The performances

of the four schemes using various thresholds are shown in Figure 4.16. Here the scale
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.12: The FCR's and ATR's of the edge maps which are produced by the

Chen/Yang edge detector in test 1 using various scales and thresholds. (a) a = 1; (b)

a = 2; (c) a = 3; (d) a = 4; (e) a = 5; (f)-(j) are the corresponding ATR's of (a)-(e)

respectively.
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Figure 4.13: The optimum FCR's and the corresponding ATR's of the edge maps produced

by four different schemes in test 1 under various NSD's. MRCBS: solid line; the Edge

Focusing scheme: dashed line; the Chen/Yang edge detector: dashdot line; the Haralick

scheme: dotted line.

of the Chen/Yang edge detector is chosen to be 1, because this scale leads to its best

performance in the first test. Figure 4.16 shows that MRCBS performs better than all

the other three schemes. The performance of the Haralick scheme depends on the value

of the threshold. The edge maps produced by the Haralick scheme, the Chen/Yang edge

detector, the Edge Focusing scheme and MRCBS using the threshold of 7 are shown in

Figure 4.17(a)-(d) respectively. (a) shows the inability of the Haralick scheme in dealing

with noise. On the right half of (c), the noise clusters and the zig-zag edge contours show

the "over-focused" phenomenon, which can be alleviated by variable blurring. The noise

clusters can also be prevented if the thresholds with the same thresholding capability are

applied in every scale. This is why MRCBS produces a better edge map (d) than the Edge

Focusing scheme.

In the third test, an image of "Trevor" (Figure 4.18(a)) is used to visualise the per-

formances of the four schemes on a real image. The main features to be observed are
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(a)

(c)

(b)

(d)

Figure 4.14: (a)-( d) The optimum edge maps of the first test produced by the Haralick

scheme (FCR=2.05, ATR=O.62), the Chen/Yang edge detector (FCR=O.15, ATR=O.31),

the Edge Focusing scheme (FCR=O.60, ATR=O.88) and MRCBS (FCR=O.05, ATR=0.43)

respectively. These edge maps are obtained when the NSD of the test image is 25.

(a) (b)

Figure 4.15: (a) The test image 2 contaminated by Gaussian noise with NSD ranging from

o (on the left) to 25 (on the right}; (b) The ideal edge map.
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Figure 4.16: The FCR's and their corresponding ATR's of the edge maps produced by

four different schemes in test 2 using various thresholds. MRCBS: solid line; the Edge

Focusing scheme: dashed line; the Chen/Yang edge detector: dashdot line; the Haralick

scheme: dotted line.

the face, the tie, the wrinkles on the shirt, and the contours of the clothes. A series of

thresholds is used, and the best edge maps of the Haralick scheme, the Chen/Yang edge

detector, and MRCBS are shown in Figure 4.18(b), (c) and (d) respectively. All of these

schemes perform satisfactory on the face and in preserving the wrinkles on the clothes.

MRCBS and the Chen/Yang edge detector perform better than the Haralick scheme on

the pattern of the tie. However, a large amount of trial-and-error has to be performed for

the Chen/Yang edge detector before the right scale and threshold are determined. Figure

4.18(e), (f), and (g) are three of the images in the focusing process of the Edge Focusing

scheme. The threshold is 2 and the scales are a = 4.2, 1.4 and 0.7 respectively. Even

though the contours of the clothes are well preserved, the wrinkles are eliminated due to

the use of a large kernel with a strong degree of smoothing in the coarsest scale. In the final

edge map (g) the "over-focused" edges are zig-zag, which distorts the facial expression.

In comparison, (f) has a better facial expression than (g). When the threshold is further
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(a)

(c)

(b)

(d)

Figure 4.17: (a)-( d) The edge maps of the second test produced by the Haralick scheme

(FCR=O.86, ATR=O.32), the Chen/Yang edge detector (FCR=O.14, ATR=O.13), the Edge

Focusing scheme (FCR=O.07, ATR=O.24) and MRCBS (FCR=O.02, ATR=O.31) res pee-

tively. The threshold is 7.
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reduced to 1, which is a very small threshold, the details such as the wrinkles are still

not detected. Instead, some other clusters of edges adjacent to the contour of the clothes

appear (h), which further degrades the edge map. This shows that the Edge Focusing

scheme preserves significant contours [5] such as the boundary of Trevor. All the other

details are eliminated. In this regard, MRCBS is more flexible because the threshold is

used to control the amount of edges to be preserved. If only the significant contours are

to be preserved, then the threshold is increased to 5 and the result is shown in (i).

4.5 Summary

The major achievements of MRCBS are threefold. First, the regularisation factor of a is

interpreted as a scale because an edge is a local feature. The size of the operator kernel

in the a scale space is thus fixed, and irrelevant informations are precluded from the

smoothing process. Second, the EHF is used to determine the lower bound of the scale,

which enables MRCBS to adjust the finest scale adaptively according to the local noise

level. Third, a series of thresholds with the same thresholding capability are used in their

corresponding scales, which prevents noise clusters. In addition, the design of MRCBS

employs the concept of anisotropic diffusion, which introduces strong smoothing along the

orientation of the edge to eliminate noise. Less smoothing is imposed across the edge to

minimise blurring of the edge.

Due to the above three reasons, MRCBS performs better than the Edge Focusing

scheme, the Chen/Yang edge detector and the Haralick scheme. The Chen/Yang edge

detector has two variable parameters (Le. the scale and the threshold) to be determined,

and MRCBS provides a means to determine the scale adaptively according to the local

noise level, while the variable parameter of the threshold is used for the adjustment to
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Figure 4.18: (a) The real image of "Trevor". (b), (c) and (d): The optimum edge maps

produced by the Haralick scheme (threshold efi), the Chen/Yang edge detector (a=O.l,

threshold=4) and MRCBS (threshold=2) respectively. (e), (f) and (g) Three of the edge

maps in the focusing process of the Edge Focusing scheme, where (G) is the final edge

map. The threshold is 2 and the scales are a = 4.2, 1.4 and 0.7 respectively. (h) The final

edge map (a = 0.7) produced by the Edge Focusing scheme using a threshold of 1. (i)

The edge map produced by MRCBS using a threshold of 5.

71



satisfy different requirements. The performance of the Haralick scheme is sensitive to the

value of the threshold. This sensitivity can be reduced in multiscale approaches such as the

Edge Focusing scheme and MRCBS, which are thus more robust against noise of various

levels. Since the Edge Focusing scheme starts with a strong smoothing caused by the

large operator kernel, it only preserves significant edges. In comparison, MRCBS is more

flexible because edge maps with various degrees of details are produced according to the

value of the initial threshold. In addition, MRCBS has the capability of variable blurring.

The use of thresholds with the same thresholding capability prevents noise clusters. The

experimental results show the superiority of MRCBS over the other three schemes.
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Chapter 5

Texture Focusing

5.1 Statistical Texture Segmentation

Texture segmentation is a basic aptitude of human vision in distinguishing an object from

the background using the surface texture of the object. It is thus an important issue in

computer vision. A natural texture is tessellated by primitives known as texels [47] or

textons [48] in a certain structure. This has resulted in several structural-based texture

analysers where symbolic descriptions are used to represent the pattern of the tessellation

of these primitives [99]. In addition to these structural-based methods, schemes such as

the co-occurrence matrices [37] which are based on statistical decision rules have also been

investigated.

Bouman et al. define texture segmentation as the process which divides an image into

regions with distinct statistical distributions of the image grey levels [11, 12]. This defi-

nition is adopted in this thesis, where a textural feature is defined as the set of statistics

which represents the textural contents of a block of image pixels. The textural feature

space, a Cartesian space where each coordinate represents a statistic of the textural con-

tent, is the basis of the segmentation.
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5.2 Uncertainty, Multiresolution and Adaptivity

An adequate texture segmentation scheme needs to employ all the local, global and con-

textual information of the image. The reasons being: (1) the boundary between differ-

ent textures has to be located accurately; (2) the textural content is estimated within

a (global) spatial extent which corresponds to a block of pixels; and (3) neighbouring

blocks are likely to contain the same texture [95]. According to the uncertainty principle

of the joint space-frequency analysis (see Section 1.4), high resolutions in both the spatial

domain (correspond to a small window) and the feature space (correspond to a narrow

frequency bandwidth) cannot be achieved in a single process. A large spatial extent im-

proves the estimation of the textural content at the expense of the spatial resolution of the

segmentation map. For example, Figure 5.1(a) contains two textures, and the boundary

between the two textures are shown in Figure 5.1(b). The variances of Figure 5.1(a) are

measured using block-shaped windows of different sizes. The values of the variances are

shown as the grey-level in Figure 5.1( c) with size = 7 X 7 and Figure 5.1( d) with size =

25 X 25. In Figure 5.1( c), edges which depict the details of texels are enhanced. This is

similar to the edge map in Figure 5.1(e) produced by the Laplacian of Gaussian (LoG)

edge detector (see Section 2.2). Both Figure 5.1(c) and Figure 5.1(e) fail to locate the

boundary between the two textures. Conversely, two textures are roughly separated in

Figure 5.1(d) at the expense of the spatial resolution. This test illustrates two points:

first, the spatial resolution, which corresponds to the unit block size, influences the result

of the segmentation significantly; and second, a single-scale local operator such as LoG

is inadequate for texture segmentation. This is because no significant local features exist

at the boundary of the texture (see Figure 5.1(f)). The above observations justify that

texture segmentation is a multiresolution task where both global and local information
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are important. Note that if a statistic is computed using a window which is smaller than

a texel, it will only represent a portion of this texel and give a misleading estimation of

the texture. More precisely, the resolution of the segmentation map are upper-limited by

the size of the largest texel.

A few multiresolution schemes have been introduced in recent years (e.g. [15, 97]).

Chang and Kuo use the tree-structured wavelet transform to analyse images with various

textures in various channels [15]. These channels are adaptively chosen according to the

energy distribution of the texture in the scalogram of the image. Wilson et al. proposed

the Multiresolution Fourier Transform (MFT) which uses different resolutions to represent

the different portions of an image. Each block in this representation satisfies a pre-defined

hypothesis (e.g. the existence of a linear feature) [106]. The tree-structured wavelet

transform and MFT are two examples of adaptive image processing, where the adaptivity

of the tree-structured wavelet transform lies in the feature domain, and that of MFT lies

in the spatial domain. MFT has been implemented for edge detection [106] and curve

extraction [14]. However, the implementation of MFT for texture segmentation is still in

progress [55].

A few attempts have also been made on the application of the Markov Random Fields

(MRF) for texture segmentation (e.g. [2]). Geman and Geman [33] demonstrate the re-

lationship between the Markov random field and the Gibb's distribution, and employ a

stochastic relaxation method of simulated annealing [52] to optimise the posterior dis-

tribution for restoring images. Following the above approach, Muzzolini et al. employ

the simulated annealing in a multiresolution framework for texture segmentation [71, 74].

A quad-tree structure is used to represent an image, where the level of the quad-tree

corresponds to the image resolution. The simulated annealing is used to determine the
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(a)

(d)

(b) (c)

(f) The luminance profile along the central line of (a).

(e) (f)

Figure 5.1: (a) An image with two textures- nuts and straw. (b) The boundary between

the two textures. The variances of (a) using windows: (c) of size = 7 (pixels) and (d) size

= 25 (pixels). (e) The edge map of (a) produced by the Laplacian of Gaussian scheme.
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increment or decrement of the resolution of a randomly chosen leaf node in the quad-tree

(i.e. the split and merge process [71]). If a leaf node contains several features, then this

node is likely to be split; if the four leaf nodes associated with the same parent node have

the same feature, then they are likely to be merged as one node. The likelihood of split

or merge is determined by the Metropolis probability (see Section 5.3.4). At the start of

the segmentation, classes of different regions are randomly altered and the resolution is

continuously adjusted. When the posterior distribution is gradually increased through an

iterative process, the randomness is reduced until the computation is terminated.

Muzzolini et al. use the merge process to address the contextual information, Le.

grouping nodes of the same parent into one region if their textural contents are similar.

However, the quad-tree structure inhibits the contextual information to be used efficiently

because it precludes the possibility for the merging of adjacent nodes which are associated

with different parents even though they have the same textural content. There is no

reason to believe that the spatial distribution of natural textures is confined by the logical

parent-children relationship of a quad-tree.

In the following sections of this chapter, a multiresolu tion texture segmentation scheme,

referred to as Texture Focusing, is proposed. This scheme is computationally simpler than

the various MRF-related methods, and achieves high resolutions in both the spatial and

featural domains using a multiresolution process. The quad-tree is used without the merge

process so as to avoid the rigorous constraint between nodes of the quad-tree. A split-and-

fix process is also introduced, which employs the contextual information as an indication

for the adequate resolution in each region of the segmentation map. In addition, texture

focusing possesses both the merits of adaptivity of MFT and tree structured wavelet

transform in the spatial and feat ural domains respectively.

77



5.3 The Design of Texture Focusing

5.3.1 Texture Characterisation

When the image resolution is fixed, the task of texture segmentation is a labelling task

because each block of pixels is labelled according to its textural content. A labelling

task comprises two stages: to determine a set of characteristic measures as a feature,

and to partition the feature space [31]. Due to the diversity of natural textures, the

selection of a feature for texture segmentation is a difficult task, and there seems to be

no textural features which can characterise all known textures. Tamura et al. conducted

a series of psychophysical tests on the human vision to determine an adequate textural

feature [91]. They propose six basic elements of textures including coarseness, contrast,

directionality, line-likeness, regularity and roughness [91]. Francos et al. propose a texture

model which comprises three components: the purely-indeterministic field, the harmonic

field and the generalised evanescent field [29]. In the segmentation scheme proposed by

Muzzolini et al. [74], samples of the image are used to characterise the texture. A textural

feature is thus determined and used for the segmentation. Similarly, the unsupervised

texture segmentation scheme proposed by Hofmann et al. comprises the modelling and

the optimisation stages [42], where the modelling stage corresponds to the process of

texture characterisation.

The number of dimensions of a textural feature space is a trade-off between the ability

to discriminate similar textures and the computation cost [72]. The more textures to be

distinguished, the more dimensions are required. For the sake of simplicity, each of the

statistics of mean, standard deviation and quasi skewness of a block of image pixels serves

as a dimension of the Cartesian textural feature space. These statistics are defined as

follows:
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Thus, a textural feature == {mean, standard deviation, quasi skewness }, which is a vector

in the 3-D textural feature space.

5.3.2 Spatio-Featural Mutual Focusing

In addition to the complexity in characterising a natural texture, Andrey and Tarroux

point out a dilemma which exists in the second stage of texture segmentation, that the

value of the textural feature, which is required to partition the feature space, cannot be

accurately determined until the image has been adequately segmented [2]. If the size of

the texel is known and used as the window size for the analysis, then various clustering

methods can be used to group blocks with the same texture into one region, and hence

solve the above dilemma. However, the size of the texel is very difficult to estimate.

Furthermore, these clustering methods involve either an iterative process or a parameter

to be given heuristically. For example, the starting point in the cluster-seeking algorithm,

the maximin distance ratio in the maximin-distance algorithm, and the number of clusters

(i.e. the value of K) in the K-means algorithm have to be given heuristically [95]. To cope

with the situations when the size of the texel is unknown, a quad-tree image structure is

employed in the multiresolution clustering process of Texture Focusing. In addition, the

root of the quad-tree, which corresponds to the entire image, is a natural starting point

for texture segmentation.
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The coarse-to-fine process is commonly adopted by various multiresolution schemes.

For example, the edge focusing algorithm traces the locations of salient edges from a coarse

spatial resolution to its finest resolution (see Chapter 4 and [5]). In texture segmentation,

the locations of boundaries between textures also need to be focused, which justifies the use

of the coarse-to-fine process for spatial focusing. At the same time, the textural content

also needs to be accurately determined for the segmentation. However, the resolution of the

feature space is low in the fine spatial resolution as indicated by the uncertainty principle.

The estimated feature is thus unreliable. This is why the feature focusing is introduced in

conjunction with the spatial focusing to construct the spatio-featural mutual focusing in

the coarse-to-fine multiresolution clustering scheme. The basic idea is that a good spatial

estimation of the boundary results in a good estimation of the textural feature, and vice

versa. The coarse-to-fine process increases the spatial estimation of the boundary as the

level of the quad-tree increases. At each level, featural focusing re-estimates the texture

content according to the segmented regions of the current level, which is spatially more

accurate than those of the previous level.

To begin with, the textural feature (Le. {mean, standard deviation, quasi skewness})

of the entire image (Le. the root of the quad-tree) is computed and serves as the cluster

centre for the segmentation at the next level. Also, the class of the root node is propagated

temporarily to its children nodes. The textural feature of each node at the next level is

then computed. If the textural feature of a node is in the vicinity of the cluster centre of

its temporary class, then the temporary class is assigned as the class of the current node,

thus preserving the global information. (The vicinity of a class centre is determined by

the Linear Temperature-Varying Probability which will be introduced in Section 5.3.4.)

Otherwise, the scheme searches for another cluster centre in the feature space which is

the closest to the feature of the current node. If the feature of the current node is not
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in the vicinity of any class centre, then a new cluster centre is created using the feature

of the current node. Note the number of classes (textures) is flexible which reflects the

number of textures detected at each level. Thus, a dynamic chain is designed to store the

information of the classes (e.g. the cluster center) for the flexibility of the scheme (see

Section 5.3.5).

The image is roughly segmented by the labelling of nodes into different classes (tex-

tures). The resolution of the roughly segmented image is determined by the block size of

the node. All the cluster centres are re-computed according to the current segmentation

map (Le. feature focusing). Since the current segmentation map is more accurate than

the map at the previous level, the cluster centres, determined on large regions, are better

estimated. If all the nodes originally belonging to a class are re-assigned to other classes,

then this class is eliminated from the dynamic chain. This whole process is repeated at the

next levels until the upper bound of the resolution is reached. In this way, the boundary

is focused to its best resolution and the textural content within this boundary becomes

most accurately determined, i.e. both the global and the local information are effectively

used.

5.3.3 Split and Fix

In texture focusing, the block size decreases as the level of the quad-tree increases. Al-

though the cluster centres are determined on large regions, the estimation of the textural

content of each node becomes less and less accurate as the level increases. In addition, the

upper bound of the resolution, which corresponds to the size of the texel, is very difficult

to determine. The split-and-fix paradigm, which results in an adaptive multiresolution

representation of an image similar to MFT, is proposed for solving the above problems.

The 'split' represents a coarse-to-fine process. In this multiresolution representation, the
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central areas of homogeneous textures are analysed using larger blocks, while the borders

of textures are analysed in the sub-texel resolutions so as to achieve better estimation of

the boundary (see Figure 5.2(a)). The feature space corresponding to the multiresolution

representation is shown in Figure 5.2(b), where the radius of the circle represents the

block size of a region. The central area of a homogeneous texture determines an initial

cluster centre in the feature space. The sub-texel segmentation is assumed to be credible

if the cluster centre has already been accurately determined using the central area of a

• ...• • •• • •••• • •

• •
0

0
0 •o 0

0

~o
0 QOo 0

0 0
0

(a) (b)

homogeneous texture.

Figure 5.2: (a) A multiresolution representation of an image. The two textures are depicted

as grey and white. The central regions of homogeneous textures are represented using large

windows, whereas the border regions of textures are represented using small windows. (b)

The feature space of (a), where large circle represent the texture feature of a large region

in (a).

The contextual information is used in the 'fix' process to determine the adequate reso-

lutions for different regions in an image. In the image context, the features of neighbouring

blocks are similar to that of the central block [95]. To use the contextual information, the
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adjacent 8,5 and 3 blocks are defined respectively as the neighbouring blocks of a block in

the central, the border and the corner area of an image (Figure 5.3). At each level, every

node of the quad-tree and its neighbours are classified using cluster centres in the textural

feature space. If the class of a node is identical to some of the neighbouring nodes, then

this node is assumed to be situated within a homogeneous texture region, and the class

of this node is likely to be fixed, i.e. the class is likely to be assigned to all its children

nodes without an estimation on the textural feature in the higher resolutions. The above

procedure, referred to as the 'fix' process, is used to preserve a credible estimation of the

textural content from the coarser resolution. If there are more neighbouring nodes with

the same class, then it is more likely that the node will be fixed. The likelihood is de-

termined by the Linear Temperature-Varying Probability introduced in the Section 5.3.4.

Different regions are fixed at different levels of the quad-tree, thus resulting in a mul-

tiresolution segmentation map. As the level increases, the central area of a homogeneous

textural region is fixed first to provide a good estimation of the cluster centre. The border

areas are fixed at a later stage to provide a boundary with a higher spatial resolution.

The split-and-fix process is repeated until the pixel level is reached, thus resulting in a

sub-texel segmentation.

5.3.4 Linear Temperature-Varying Probability

The simulated annealing is commonly used to achieve the global optimisation of a complex

task where the state space is too large to be examined thoroughly [52]. In simulated

annealing, the Metropolis probability plays an essential role in determining the probability

of a change of state P(change), i.e.

P(change) = { 1
AU

e-""T

if 6. U :S OJ
(5.1)

else,
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Neighbouring blocks

enlral block

(a)

Neighbouring blocks

Comer block

Border block Neighbouring blocks

(b) (c)

Figure 5.3: The neighbouring blocks of a block in the (a) central area, (b) border area,

(c) corner area of an image.

where T is the temperature and I::,.U is the increment in the optimisation function caused

by a random change of state. If I::,.U ~ 0, P( change) = 1, the state is changed to reduce

the optimisation function. Otherwise, P( change) is an exponential function of I::,.U and

T. The principle behind the simulated annealing is that the global parameter T controls

the probability of change so that it decreases continuously. In the early stage of the

computation, the state is easily adjusted to search for the global minimum. Thereafter,

the probability of change is reduced. As T -+ 0, e"* -+ 0, and the state is assumed to

have converged to the global minimum.

The concept of using a global parameter to control the probability of change is useful

in providing the adaptivity in texture focusing, where the probability of a change in the

state is adjusted in different stages of the process. The complex computation caused by

the exponential in the Metropolis probability motivates a simpler probability function,

referred to as the Linear Temperature-Varying Probability (LTVP), which uses the first
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two terms of the Maclaurin series of e- Do;' ,Le. 1- £:.i!. Therefore, equation ( 5.1)becomes:

LTV P( change) = 0 if tJ. U ~ Tj

1 if tJ. U ~ OJ

1 - £:.i! else.

The comparison in the use of the Metropolis probability and LTVP is illustrated in

Figure 5.4. Texture focusing is designed as a non-optimisation scheme (an optimisa-

tion scheme must have an explicitly defined energy function), therefore LTVP is used to

determine the probability of assigning a class to a node during the 'split' process (Le.

LTV P( assign)) as well as the probability of fixing a central block during the 'fix' process

(i.e. LTV P(Jix)). LTVP is a linear function of tJ.U which starts from the change of

a state (LTV P( change) = 1) to the retainment of a state (LTV P( change) = 0) within

a range of tJ.U determined by T. This linear range is referred to as a margin and an

increment in the implementation of LTV P( assign) and LTV P(fix) respectively. Both

probabilities represent the retainment of a state rather than the change of a state as in

the simulated annealing. Therefore, T needs to be increased to reduce the probability of

change. In the quad-tree coarse-to-fine algorithm, the level of the quad-tree L is a natural

choice of T, Le. T == L, where LE Z and L = 0 denotes the root of the quad-tree.

In the 'split' process, the assignment of a class to a node is determined by the Eu-

clidean distance dist between the class centre and the textural feature of the node in the

textural feature space. If the textural feature of a node is identical to the class centre,

then LTV P( assign) = 1. If the distance between them is greater than a margin, then

LTV P( assign) = o. Otherwise, LTV P( assign) decreases linearly from 1 to 0 (Figure

5.5(a)). According to LTVP, a margin is proportional to the global parameter L, Le.

margin = (basis_margin) x L.
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Figure 5.4: Upper Left: The P( change) determined by the Metropolis probability when

T=3; Lower Left: LTV P(change) when T=3; Upper Right: The P(change) determined

by the Metropolis probability when T=l; Lower Right: LTVP(change) when T=l.

The basis.mar qin is determined by the product of a parameter marqin.r atio (which is

determined in the experiment) with the length of the feature vector of the root node, j .e.

basis.rnarqui = (margin_ratio) X II!eature(root)ll.

0.2

~~~-7-~~'--;;-5--':--~-7~
margin
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Figure 5.5: (a) LTVP(assign) at various levels. L=l: solid line; L=2: dashed line; L=3:

dash dot line. (b) LTV P(Jix) at various levels. L=3: solid line; L=6: dashed line; L=10:

dashdot line.

The 'fix' process starts from level 3 of the quad-tree because there are insufficient
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nodes lying in the central area of the image rather than at the border or the corner

area at level 0, 1 and 2. Let nnb denote the number of neighbouring blocks, Le. 8, 5

or 3; no denote the number of neighbouring blocks which have the same class as the

central block; and totaUevel denote the number of the levels in the quad-tree, which is

determined by l092(w) where w is the width (in pixels) of the image. If the classes of

all of the neighbouring blocks are identical to the central block (Le. no = nnb), then

LTV P(f ix) = 1. If nnb - no is greater than the linear range of LTVP (referred to as an

increment), then LTV P(fix) = O. The linear range increment is proportional to L - 2,

Le.

nnb
increment=(L-2)X( lJ I) 2'tota eve -

L - 2 is chosen instead of L because the 'fix' process starts from level 3. When L =

totaUevel, increment = nnb. Therefore, LTV P(Jix) is determined by the following

equation:

{
0

LTVP(Jix) =
no-nnbtincrement

increment

if (no + increment) ~ nnb;

else.

An example of LTV P(Jix) when totaLJevel=10 and nnb=8 is illustrated in Figure 5.5(b).

5.3.5 The Algorithm

In summary, texture focusing is a multiresolution texture segmentation scheme which

alleviates the uncertainty inherent in the task by focusing both the spatial boundaries

and the estimation of the textural content. The split-and-fix process, which employs the

contextual information of an image, is incorporated in texture focusing to result in a

multiresolution structure of the segmentation map. The LTV P is used to determine the

probabilities of the assignment of a class to a node (LTV P(assign)), and the fixing of

a node (LTVP(Jix)). A random number (0 ~ random.no x: 1) is thus compared with
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LTVP(assign) or LTVP(Jix) to decide the execution/suspension of an assignment or

a fixing process. In the implementation, two quad-trees are used respectively to contain

the textural feature (denoted as feature (L, node)) and the class (denoted as class (L,

node)) of each node. A dynamic chain is also used to contain the class information (e.g.

cluster _centres) of all the classes. The data structures and pseudo codes are as follows:

Definitions of data structures

quad-tree: feature (L, node)={mean, standard deviation, quasi skewness};

J* the textural feature of a node at level L */

quad-tree: class (L, node)={ class.pointer, fixed};

J* the class of a node at level L */

dynam ic chain: class.table (cl ass .poi nter )= {cluster.centre, class_number};

/* a table of cluster centres and their corresponding number of nodes which belong

to the class */

Pseudo Codes

begin

Input (Image, mar qiti.ratioy;

Assign w = the width (in pixels) of the image;

Assign totaUevel = /og2 (w);

Determine feature (0, root);

Assign basie.mar qin = marqin.ratio X Ilfeature (0, root)ll;

Assign margin = basis.sruirqin;

For L= 1 to totaLlevel do /* coarse to fine */
begin

/* split */
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Propagate all the class (L-l, parent) to their children nodes' class (L, children);

For every node at level L do

begin

If (class (L, node) f:. fixed)

begin

Determine pi = feature (L, node), p2 = class.table (class (L, node));

Determine dist = distance (p l,p2);

Determine LTV P( assign) using dist and margin;

If (random_no ~ LTV P( assign))

begin / * search for a new class */

For every class in the clasa.table do

Determine dist = distance (cluster .centre, feature (L, node));

Determine the closest-class such that dist is minimised;

Determine LTV P( assign) using dist of the closest-class and margin;

If irandon.no :$ LTVP(assign))

Assign class (L,node) = closest-class;

else

Create new.class = { feature (L, node), 1 };

Append new.class to class .table;

Assign class (L, node) = new.class;

end

end

end

Assign margin = margin + basis.marqin;

/* fix */

89



If(L>2)

begin

Determine increment=(L-2) x (totalJ~~ei)-2 ;

For every node at level L do

begin

/* use contextual information */

Determine no = nnb x P(class (neighbour) = class (the central node));

Determine LTV P(fix) using increment and no;

If (random_no ~ LTVP(Jix))

class (L,node)=fixed; 1* update un-fixed pixels to fixed */
end

end

For every class in the class .table do

begin

If (class_number=O)

Eliminate the current class from the class .table;

/* feature focusing */

else

Determine cluster.centre using {feature (L, node) I class (L, node) = cur-

rent class };

end

end

Produce Segmentation Map according to class (totallevel, node);

Output (Segmentation Map)

end
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5.4 Performance Evaluations

Three experiments on images with two natural textures are designed to evaluate the per-

formance of the proposed texture focusing scheme. The spatial location of the boundary

between the two textures of each image is known precisely to enable a quantitative eval-

uation of the performance. In addition, a performance measurement, referred to as the

percentage of the correct segmentation (PCS), is defined as follow:

{
0

PCS=
NODCJN IDC X 100

ijODC = IDC;

else,

where w is the width (in pixels) of the image; ODC and IDe represent the Class with

Dominant (largest) number of pixels Outside and Inside the boundary, respectively. NODC

is the Numbers of pixels outside the boundary which is also classified as ODe. Similarly,

NIDe is the Numbers of pixels inside the boundary which is also classified as IDe. The

range of PCS is from 0 to 100, the higher the PCS the better the segmentation. The pes

of a perfect segmentation map is 100.

The first experiment is designed to examine the performance of texture focusing us-

ing different values of marqin.ratio, the only parameter in the scheme. The test image

(Figure 5.6(a)) is composed of two textures of metal and straw, and the boundary be-

tween the two textures is a circle with a radius of 80 pixels (Figure 5.6(b)). The size

of the image is 256x256 pixels (Le. w=256). The PCS's of the segmentation map using

various marqin.ratios are shown in Table 5.1 and Figure 5.7. Some of the segmentation

maps are shown in Figure 5.6(c)-(f), where regions with different textures are visualised

using different grey levels. When the marqin.ratio is between 0.23 to 0.40, the PCS's

of the segmentation results are greater than 95, thus showing that the performance of

texture focusing is insensitive to a wide range of marqin.ratios. When the marqin.ratio
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is too small, each region is sub-divided into several regions (Figure 5.6( c)). This is be-

cause the scheme picks up the variation in the illumination from one area of the image to

another. The influence of the variation in luminance will be further investigated in the

third experiment. When the marqin.r atio is too large (Le. 2:: 0.41), the scheme is unable

to distinguish the difference between the two textures, and thus results in the PCS of 0

(Figure 5.6(f)).

(a) (b) (c)

(d) (e) (f)

Figure 5.6: (a) An image with two textures- metal and straw. (b) The boundary be-

tween the two textures. The segmentation map of (a) using a : (c) margin_ratio of 0.17

(PCS=48); (d) mas qiti.ratio = 0.32 (PCS=96); (e) marqin.r atio = 0.37 (PCS=97); and

(f) marqiti.ratio = 0.45 (PCS=O).

The second experiment is designed to show the intermediate states of the segmentation

(Figure 5.8) and the fixing process (Figure 5.9) at each level. Figure 5.6(a) is used again

as the test image, and the marqin.ratio is 0.37 because it results in the highest PCS

92



Table 5.1: pes's of segmentation maps of Figure 6{a) using various marqin.ratios.

marqin.ratios pes's marqm.ratios pes's mar qin.ratios pes's I
0.15 42 0.16 57 0.17 48

0.18 45 0.19 82 0.20 81

0.21 91 0.22 93 0.23 95

0.24 96 0.25 96 0.26 97

0.27 96 0.28 97 0.29 97

0.30 97 0.31 97 0.32 96

0.33 96 0.34 96 0.35 96

0.36 96 0.37 97 0.38 96

0.39 96 0,40 95 0,41 0

0.42 0 0,43 0 0,44 0
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Figure 5.7: The percentages of the correct segmentation (peS's) of the segmentation

results of Figure 5.6{a) using various marqin.ratios,
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(97) in the first experiment. At level 1, the four nodes have similar textural features and

are thus assigned to the same class (Figure 5.8(a)). Since the image is divided into two

regions at level 2, the scheme begins to focus the estimation of the textural features using

the rough segmentation. The pes's and the percentage of the fixed area at each level are

shown in Table 5.2. The pes increases rapidly from 0 to 90 as the level increases to level

3, and then increases up to 97 at levels 6, 7 and 8. The pes does not increase any further

after level 6 because the resolutions at the higher levels are smaller than a texel. For

example, each pixel is classified individually at level 8, and a pixel contains only the grey

level information which is not sufficient for the estimation of texture contents. However,

the finer resolutions result in smoother boundaries in the segmentation maps.

Table 5.2: pes's and the percentage of the fixed region at various levels.

Level pes's percentage of fixed region

1 0 0.0

2 81 0.0

3 90 48.4

4 93 73.8

5 95 88.4

6 97 95.2

7 97 98.3

8 97 99.4

Figure 5.9 shows the intermediate fixed regions at different levels. The fixed region

is represented by grey while the un-fixed by black. The 'fix' process starts from level

3, and the fixed regions grow as the level increases. The central area of a homogeneous
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.8: The intermediate segmentation maps of Figure 5.6(a) at different levels using

a mar qiti.ratio of 0.37. From (a)-(h): level 1-8.
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(a) (b)

(c) (d) (e)
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Figure 5.9: The intermediate fixed regions (shown as grey) at different levels using a

marqin.r atio of 0.37. From (a)-(h): level 1-8.
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texture region if fixed in the earlier stage (i.e. coarser resolutions). The estimations of

the textural contents in the border areas are prone to inaccuracy if coarse resolutions are

used. Therefore, these areas are fixed at the finer resolutions to locate the boundary with

greater accuracy.

In the third experiment, a 256x256 image which is composed of two different metals

is used as the test image (Figure 5.10(a)) where the radius of the boundary is 90 pixels.

The texture outside the boundary contains a variation in luminance, i.e. the luminance

at the lower right corner are brighter than at the upper left corner. The variation of

the luminance is caused by the tiny variation of nature light during the imaging process.

According to the texture model proposed by Francos et.al. [29], the variations in luminance

are the generalis ad evanescent components which can be detected by a I-D filter tuned to

a certain orientation. Since texture focusing does not consider orientation information, the

variation in luminance is not interpreted correctly and thus degrades the performance. The

PCS's of the segmentation, shown in Table 5.3 and Figure 11, are roughly separated into

four ranges: margin..ratio s 0.18 (PCS < 50); 0.19 s marqin.raiio ~ 0.30 (peS ~ 65);

0.31 s marqin.ratio ~ 0.37 (pes> 90) and marqin.ratio ~ 0.38 (PCS=O). In the first

range, the image is divided into several regions (Figure 5.1O(b)). Note that the border of

the two textures is classified as one region because it is the transient area where the textural

feature is different from both textures. In the second range, texture focusing segments the

region outside the boundary into two classes due to the variations in luminance (see Figure

5.10(c) and (d)). Comparing Figure 5.7 with Figure 5.11, most of the marqin.ratios in

this range result in a satisfactory segmentation in the first experiment. In the third range,

the PCS's reach as high as 93 (Figure 5.10(e) and (f)). In the final range, texture focusing

cannot distinguish the two textures in the image, and the segmentation maps are identical

to Figure 5.6(f). This experiment shows that the variations in luminance degrades the
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performance of texture focusing. However, if the marqin.r aiios is chosen properly, a good

segmentation can still be achieved.

(a) (b) (c)

(d) (e) (f)

Figure 5.10: (a) An image with textures of two different metals. The segmentation map of

(a) using a: (b) marqin.ratio of 0.17 (PCS=39); (c) mar qiti.r atio = 0.20 (PCS=59); (d)

mar qin.ratio = 0.27 (PCS=69); (e) mar qin.ratio = 0.31 (PCS=93); and (f) mar qin.s atio

= 0.35 (PCS=93).

5.5 Summary

This chapter presents texture focusing, an efficient multiresolution image segmentation

scheme which is computationally modest. Texture focusing comprises the concepts of the

spatio-featural mutual focusing and the split-and-fix process. The spatio-featural mutual

focusing achieves high resolutions in both the spatial and the featural domains for texture

segmentation. The split-and-fix process employs the contextual information to indicate the
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Table 5.3: pes's of segmentation maps of Figure 5.10{a) using various margin..ratios.

marqin.ratios pes's margin..ratios pes's margin..ratios pes's

0.15 33 0.16 33 0.17 39

0.18 41 0.19 59 0.20 59

0.21 56 0.22 63 0.23 63

0.24 64 0.25 67 0.26 69

0.27 69 0.28 66 0.29 66

0.30 70 0.31 93 0.32 93

0.33 93 0.34 93 0.35 93

0.36 92 0.37 91 0.38 0

0.39 0 0.40 0 0.41 0

0.42 0 0.43 0 0.44 0
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Figure 5.11: The percentages of the correct segmentation (peS's) of the segmentation

results of Figure 5.10{a) using various marqin.ratios.
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adequate resolution in every region of the segmentation map. LTVP, a concept motivated

by the Metropolis probability of the simulated annealing, is also employed in texture

focusing to adjust the probability of a change of state according to the image resolution.

Texture focusing results in a multiresolution segmentation map, where the central regions

of homogeneous textures are represented using coarse resolutions so as to achieve a better

estimation of the textural content, and the border region of a texture is represented using

fine resolutions so as to achieve a better estimation of the boundary between textures.

A measurement of pes is proposed for the quantitative evaluation of the performance

of texture focusing, where a higher pes indicates a better segmentation. The experimental.
results show that a segmentation with pes higher than 90 can be obtained using a wide

range of marqin.ratios. The highest pes obtained is 97. The variations in luminance

of the textural image influences the performance. However, a proper selection of the

marqin.ratio results in a satisfactory segmentation map.
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Chapter 6

Motion Field Segmentation

6.1 Uncertainty, Ill-posedness and Ill-conditioness

The tracking of moving objects through a sequence of images is one of the important

tasks in computer vision. It is a real-time task in which motion is an important cue for

the detection of targets. Meyer and Bouthemy argue that the process of object tracking

should comprise two stages: the detection of a moving target; and the pursuit of the

target [69]. The first stage aims to detect the moving objects from the background using

an optical flow, a dense motion field extracted from an image sequence (see Section 1.3).

A parametric motion model of the target is then derived which serves as the basis for the

second stage of the tracking. There are other methods which depend on pre-defined object

models (e.g. [8]) or certain image features (e.g. [88]). The Meyer and Bouthemy's approach

is adopted in this thesis because it requires the least amount of a priori information.

As indicated by equation (1.1), the optical flow constraint equation (OFC) is derived

under the assumption that the image grey-level of a moving point is stationary with

respect to time. It is an ill-posed task to derive the motion field (a field of 2-D velocity

vectors) directly from OFC's, because two variables of u and v are determined using
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a single constraint equation, Le. the aperture problem. To be more precise, only the

velocity component perpendicular to the isophote curve of the image is determined in

OFC's (see [4] and Section 6.3.1). In addition, the coefficients of OFC (Le. three partial

derivatives of ~;, ~~ and ~~) are very sensitive to noise. Furthermore, OFC is derived

under the assumption that S(x, y, t) is continuous, which will fail at discontinuities in real

images. Three approaches have been proposed to overcome the above three limitations:

the multi-constraint approach, the regularisation approach and the multi-point approach

[26]. The multi-constraint methods involve a global smoothing stage to suppress noise

[26]. The regularisation approach, which smooths the motion field, normally involves the

calculus of variations or the labelling of Markov random fields (MRF) using the maximum a

posteriori (MAP) method. For example, Meyer and Bouthemy [69] employ the MRF-MAP

method proposed by Bouthemy and Francois [10] as their first stage of tracking. Both

the calculus of variations and the MRF-MAP method are computationally expensive, thus

their implementation for real-time tracking is unrealistic.

The multi-point approach assumes that the optical flow of adjacent image pixels are

almost identical. Thus, the OFC's of pixels within an operator window are used to de-

rive an over-determined set of equations, where the solution (obtained by the least-square

method) represents the group velocity of these pixels. Note that a window which spans

across object boundaries causes an erroneous estimation of the velocity due to the discon-

tinuity in the motion field. Nesi et al. thus propose a complex method which estimates

the velocity (u, v) from the intersection points of the OFC's in the u - v solution plane

[76]. However, the ill-conditioned nature of the over-determined sets of OFC's makes these

intersection points unreliable [51]. The ill-conditioness means a small perturbation in the

input signal results in a large variation of the output (see Section 3.3.2). For example,

Figure 6.1(a) shows two OFC's 0.2u + 0.25v - 1 = 0 and 0.19u + 0.26v - 1 = 0, which
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intersect at the position (2.2222,2.2222) of the u - v plane. If ~~ is slightly perturbed

(due to noise) as in Figure 6.1(b) (0.2u + 0.25v - 1.03 = 0 and 0.19u + 0.26v - 0.97 = 0),

then the intersection changes significantly to (5.6222, -0.3778). Thus, the estimation by

intersection is not reliable.
v

(a) (b)

Figure 6.1: (a) Two OFC's (0.2u + 0.25v - 1 = 0 and 0.19u + 0.26v - 1 = 0) in the u - v

plane. (b) The OFC's with a slightly perturbed coefficients (0.2u + 0.25v - 1.03 = 0 and

0.19u + 0.26v - 0.97 = 0).

All the above methods are single-resolution methods. However, the size of the window

influences the estimation of the motion field. OFC's of a small window (i.e. high spatial

resolution) tend to result in an erroneous solution due to the ill-conditioness. If a large

window is used (i.e. low spatial resolution), then the estimated optical flow is an averaged

value within the window, which is less likely to be influenced by noise but is more likely to

contain multiple objects. This is the uncertainty problem which can be circumvented by

the use of multiresolution approaches (see Sections 1.4 and 5.2). In addition, the use of the

OFC's of the image pixels of the same physical object achieves a better estimation of the

motion field. However, a dilemma emerges that object boundaries are not known until the

motion field has been adequately estimated. This is the dilemma of segmentation which
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also occurs in the task of texture segmentation (see Section 5.3.2). The multiresolution

clustering method of Texture Focusing proposed in Chapter 5 has already solved the above

two dilemmas. It is therefore extended to achieve the motion field segmentation.

6.2 The Design of a Motion Field Segmentation Scheme

6.2.1 Optical Flow Pyramid

The proposed motion field segmentation scheme is based on the multi-point method and

the multi resolution clustering method of Texture Focusing. This is an attempt to gener-

alise the multi resolution clustering method as an image segmentation framework. In the

proposed method, an optical flow pyramid is generated, which is used by the subsequent

multiresolution clustering process in producing a segmentation map. First, the spatial

Gaussian filtering with various standard deviations ((J) is applied on two temporally ad-

jacent frames to construct two Gaussian pyramids [13J. This is to reduce noise as well as

the temporal aliasing caused by large movements of objects [4]. Note that the Gaussian

pyramid is a quad-tree image structure which provides a natural over-determined set of

OFC's, Le. the OFC's of the four children nodes determine the group velocity of the image

pixels associated with the parent node (Figure 6.2). Second, the Gaussian pyramids of

the current frame SL(X, y, t) and the previous frame SL(X, y, t - 1) are used to determine

the coefficients of the OFC of each node, Le. the three derivatives, via the finite difference

method (see Section 2.1):

aSLTt = SL(X,y,t) - SL(x,y,t- 1),

aSL = SL(X + 1, y, t) - SL(X - 1, y, t)
ax 2 x unndoui.sizei,

aSL SL(X, y + 1, t) - SL(X, y - 1, t)
ay = 2 x uiindoui.sizei,
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where L indicates the level of the quad-tree, and uiindoui.sizei, is the width of the block-

shaped window at level L of the quad-tree.

Figure 6.2: The parent-children relationship in a quad-tree: a unit for an over-determined

set of OFC's

Third, the velocity (u, v) of a node in the optical flow pyramid is determined using

the set of OFC's of its children nodes. The solution of the OFC's are achieved via the

least-square method. Define il == (u, v), and denote A and b as the coefficient matrx and

coefficient vector of the over-determined set of OFC's, Le. Ail = b. The solution of il is

obtained by the minimisation of the least-square error E (Le. the sum of the square error):

E = (Ail- bf(Ail- b). (6.1)

The minimum of E occurs when

If det [AT A] ~ 0, then a unique solution of ilis determined as {AT A)-l ATb. If det [AT A] ~

0, then a unique solution is still achieved which however is susceptible to noise due to the

ill-conditioness. Otherwise, a is undetermined when det [AT A] = 0. Define

where p and ij are 4 X 1 vectors. Thus



- det( [ : 1 [p q l) = 0

==> det [~ : 1 = °
qp qq

==> 1IP112111]112 = 1IP112111]112 COS
2

(),

where II· II denotes the 12 norm, and (J is the angle between p and ij. The solutions of the

above equation are either p = 0, ij = ° or (J = 0, which are the direct consequences of the

aperture problem. If p = 0, then U is undetermined. If ij = 0, then v is undetermined. If

(J = 0, then vectors p and ij have the same orientation, thus the solution of il is a line on

the U - v plane, which is composed of a determined vector u~ and a undetermined vector

Ut (see Figure 6.3), where u~( Uo, vo) is determined by the following equation:

In the motion field segmentation scheme, the undetermined vector Ut is assumed to be

a zero vector because the velocity component along the isophote orientation cannot be

detected using the OFC's (i.e. the aperture problem).

Figure 6.3: The U - v plane with a determined vector u~ and a undetermined vector Ut
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6.2.2 Multiresolution clustering

As presented in Section 5.3, the multiresolution clustering method is a coarse-to-fine pro-

cess operating on a quad-tree. In motion field segmentation, a moving object is assumed

to generate a homogeneous motion field in the image, thus the pixels with similar value

of u and v are clustered together, Le. the u - v solution plane corresponds to the fea-

ture space of the clustering. The multiresolution clustering comprises the spatio-featural

mutual focusing and the split-and-fix process. The basic idea behind the spatio-featural

mutual focusing is that a good spatial estimation of the object boundary results in a good

estimation of the motion field, and vice versa. Thus, they are useful in improving the esti-

mation of each other in a multiresolution process. The coarse-to-fine process is employed

to locate the object boundaries with increasing resolutions. Feature focusing is employed

in conjunction with the spatial focusing to indicate an accurate cluster centre (i.e. u and

v) in the feature space.

The least-square error of each node is a by-product (determined according to equation

( 6.1)) in the construction of the optical flow pyramid. These errors are used to indicate

an adequate resolution for each region. If an error of a node is smaller than a pre-defined

threshold (referred to as the fix.threshold), then the motion field within the window is

assumed to be reasonably homogeneous, thus the spatial resolution of this node is not

increased any further. This is referred to as the split-and-fix process, where the adequate

resolutions in all the regions of the segmentation map are indicated by the homogeneity

of the motion field. This results in a multiresolution segmentation map, where the central

region of homogeneous motion fields are represented using coarse resolutions so as to

achieve a better estimation of it (in the sense of well-conditioness), and the border regions

are represented using fine resolutions so as to achieve a better estimation of the boundaries
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between the homogeneous motion fields (see Figure 6.4).

Figure 6.4: A multiresolution representation of an image. The two motion fields are

depicted as grey and white. The central regions of homogeneous motion fields are rep-

resented using large windows, while the border regions of textures are represented using

small windows.

6.2.3 The Algorithm

In the implementation, two quad-trees are used respectively to store the optical flow

pyramid (denoted as feature (L, node)) and the class (denoted as class (L, node)) in a

multiresolution data structure. A dynamic chain is used to store the class information

(e.g. cluster .ceiitresv of all the classes. The data structures and pseudo codes are as

follows:

Definitions of data structures

quad-tree: feature (L, node)={ u, v, error};

r the optical flow and the least-square error of a node at level L */

quad-tree: class (L, node)={class_pointer, fixed};

/* the class of a node at level L */
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dynamic chain: class.fable iclass.pointer )={ cluster.centre, class.numbers;

/* a table of cluster centres and their corresponding number of nodes which belong

to the class */

Pseudo Codes

begin

Input (Image, basis.marqin, fix_threshold);

Assign w = the width (in pixels) of the image;

Assign total.leoel = log2 (w);

Assign margin = basis.snarqin;

Construct level 3 of the Gaussian pyramids (S3(X, y, t) and S3(X, y, t - 1»;

Determine feature (2, node) using S3(X, y, t) and S3(X, y, t - 1);

Create new.class = { the average of feature (2, node), 16 };

Append new.class to class.table;

For every node at level 2 do

Determine p I = feature (2, node), p2 = clasa.tableiclass (L, node»;

Determine dist = distance (p l, p2);

Determine LTV P( assign) using dist and margin;

If (random_no ~ LTV P( assign»

begin

Create new.class = { feature (L, node), 1 };

Append new.class to class.table;

Assign class (L, node) = new.class;

end

For L=3 to (totaL/evel - 1) do
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begin

/* split */

Propagate all the class (L-1,parent) to their children nodes' class (L, children);

For every node at level L do

begin

Construct SL+1(X, y, t) and SL+l(X, y, t - 1);

Determine feature (L, node) using SL+1(X,y,t) and SL+1(x,y,t-l);

If (class (L, node)::I fixed)

begin

Determine pl = feature (L, node), p2 = class.table (class (L, node));

Determine dist = distance [pl , p2);

Determine LTV P( assign) using dist and margin;

If (random.no s; LTV P( assign))

begin 1* search for a new class */
For every class in the class.table do

Determine dist = distance (cluster_centre, feature (L, node));

Determine the closest-class such that dist is minimised;

If L=totaUevel - 2 or totaUevel - 1

Assign class (L,node) = closest-class;

else

begin

Determine LTV P( assign) using dist of the closest-class and margin;

If (randon_no ~ LTV P( assign))

Assign class (L,node) = closest.class;

else
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Create new.class = { feature (L, node), 1 };

Append new .class to class.table;

Assign class (L, node) = new .class;

end

end

end

end

Assign margin = margin + basis.marqin;

/* fix */

For every node at level L do

begin

If error of feature (L, node) ::S fix..threshold

class (L,node)=fixed; r update un-fixed pixels to fixed */
end

For every class in the class .table do

begin

If (class_number=O)

Eliminate the current class from the class.table:

/* feature focusing */

else

Determine cluster.centre using {feature (L, node) I class (L, node) = cur-

rent class };

end

end

Produce Segmentation Map according to class (totalJevel, node);

Output (Segmentation Map)
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end

6.2.4 Comparison of Texture and Motion Field Segmentation

The proposed motion field segmentation scheme is different from the Texture Focusing

scheme in the following aspects:

1. In the motion field segmentation scheme, the Gaussian pyramid is employed to reduce

the temporal-aliasing and noise. In Texture Focusing, the Gaussian pyramid is not

used.

2. In the motion field segmentation scheme, the size of the window is a trade-off between

well-conditioness and the spatial resolution. In Texture Focusing, the size of the

window is a trade-off between the spatial and feature resolutions.

3. In the motion field segmentation scheme, the feature space corresponds to the 2-D

u - v solution plane. In Texture Focusing, the 3-D feature space corresponds to the

statistics of the texture content.

4. In the motion field segmentation scheme, the least-square error is used to determine

the fixing of a node. In Texture Focusing, the contextual information is used to

determine the fixing of a node.

5. The motion field segmentation scheme starts from the Level 2 of the quad-tree,

where the average of the optical flows determined at Level 2 is used as the first

cluster centre. In Texture Focusing, the textural feature of the root node of the

quad-tree is used as the first cluster centre.

6. In the motion field segmentation scheme, the mechanism to create a new class is

switched off at the last two levels. In Texture Focusing, this mechanism remains
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active at all levels.

6.3 Performance Evaluations

Two synthetic images with 256x256 pixels (Figures 6.5(a) and (b)) are designed as two

temporally adjacent frames for the evaluation of the proposed motion field segmentation

scheme. The u direction is defined as the vertical downward direction and the v direction

is the horizontal rightward direction. The luminance of the background in the two frames

varies linearly, where the isophote lines (the vertical lines) are shifted four pixels to the

right (v = 4 pixels/frame). This is to simulate a pan of the camera to the left. Two

circular disks, each of a radius of 50 pixels, are used to simulate two moving objects with

different velocities. The upper-right disk moves 2 pixels downward (u = 2 pixels/frame)

and 2 pixels to the left (v = -2 pixels/frame). The lower-left disk moves 2 pixels upward

(u = -2 pixels/frame) and 2 pixels to the left (v = -2 pixels/frame). These movements

are chosen to cause a temporal aliasing situation (Le. the velocity of the motion is greater

than 1 pixel/frame [4]).

(a) (b)

Figure 6.5: (a) An image frame in a sequence of synthetic images and (b) its previous

frame.

Figure 6.6 shows the segmentation result produced by the proposed scheme using the
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parameters of basis.stuirqiti = 0.2 pixel/frame and [ix.ihreshold = 1. There are 33

optical flows (Le. the cluster centres in the feature space) detected in this image, where

different optical flows are shown as different grey levels in the segmentation map. Table

6.1 shows the actual velocities Uactual, the estimated velocities Uestimated, the error ratios

and the numbers of pixels of three major regions with distinct group velocities, which

correspond to the two disks and the background. The error ratio is defined as

IIUactual - Uestimatedll

IIUactualll

Both of the two disks are classified as homogeneous motion fields, and the estimated

velocities approximates the actual velocity (error ratio ~ 9 X 10-4). The number of pixels

of these two regions are 7272 and 7276 respectively, which approximately corresponds to

circles with a radius of 48 pixles. The estimated circle is smaller than the actual radius of

50 pixels. This is because the assumption of S(x, y, t) being continuous is violated in the

border regions of the disks (see Section 6.1) where a complex motion field is generated.

The majority of the background is classified as a homogeneous motion field where the

estimated velocity approximates the actual velocity (error ratio ~ 10-4).

Figure 6.6: The segmentation map of the motion field (basis_margin = 0.2 pixel/frame

and [ie.ihreshotd = 1).
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Table 6.1: The actual velocities, the estimated velocities, the error ratios and the numbers

of pixels of the three major motion fields in Figure 6.5.

Actual velocity Estimated velocity Error ratio No. pixels

(pixel/frame) (pixel/frame)

Background u 0.0 -0.000090 1.5 X 104 31076

v 4.0 3.999393

Upper-right u 2.0 2.000460 9.7 X 104 7272

Disk v -2.0 -1.997283

Lower-left u -2.0 -1.998474 8.9 x 104 7276

Disk v -2.0 -1.996765

There are 19912 pixels (Le. 30.38 per cent of the image) which are not classified as the

three major classes. Most of these mis-classified regions lie on the border of the disks due

to the discontinuity of the grey levels and the motion field. The result of the segmentation

is less satisfactory where the boundary of the motion fields need to be accurately detected,

however, it provides a quick estimation of the moving objects with their distinct velocities

when the camera is moving, which is a basic requirement of the first stage of object

tracking.

There are still difficulties for the implementation of the motion field segmentation

scheme on real images. This is because the assumption that a moving object corresponds

to a homogeneous optical flow field is not necessarily true in real images (see Section 6.2.2).
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6.4 Summary

The motion field segmentation scheme proposed in this chapter is an attempt to generalise

the multi resolution clustering method as an image segmentation framework. The motion

field segmentation using the OFC's is chosen to test the applicability of the multi resolution

clustering method on difficult tasks. The result of the scheme detects distinct moving

objects with their velocities, thus fulfilling the basic requirement of the first stage of

object tracking.
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Chapter 7

Conclusions

7.1 Achievements in this Thesis

This thesis presents the investigations of two different tasks in the discipline of computer

vision: edge detection (Chapters 2-4) and image segmentation, which includes texture seg-

mentation (Chapter 5) and motion field segmentation (Chapter 6). These investigations

result in a general observation that the uncertainty principle is a natural limitation in im-

age analyses, thus adaptive multiscale/multiresolution methods are required to circumvent

the uncertainty.

Chapter 2 presents a review of edge detectors to illustrate the important concepts

for edge detection, particularly in the comparison between the isotropic differentiator of

\72 and the directional differentiator of ~. Even though the theoretical analysis shows

that the :~2differentiator (as in the Haralick scheme) is preferable to \72 (as in the LoG

scheme), the standard deviation of Gaussian in the LoG scheme provides a natural scale

parameter for the development of the scale-space theory [108].

Chapter 3 examines the concept of regularisation, which is an important technique

for formulating a well-posed task. Section 3.3.1 shows that the Cubic B-spline fitting
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transforms a regularisation formula into a quadratic energy function. The ill-conditioness

of the Regularised Cubic B-Spline fitting is also examined in Section 3.3.2, where the

Regularised Cubic B-Spline fitting is modified to achieve a better fitting. A roof edge

detector is also presented which employs this modified Regularised Cubic B-Spline fitting.

The Bounded Diffusion theory, a logical consequence of the uncertainty principle, is

presented in Section 4.2.1. The a scale space shows the diffusive/convergent edge be-

haviour of Bounded Diffusion (Section 4.2.2). The multiscale edge detector of MRCBS is

based on the Bounded Diffusion, where the size of the operator kernel is fixed to preclude

the irrelevant information from the smoothing process. In addition, the finest scale is

adaptively adjusted according to the local noise level. Furthermore, a series of thresholds

with the same thresholding capability is used in the corresponding scales to prevent noise

clusters. A thorough evaluation of the performance of four edge detectors, i.e. MRCBS,

the Edge Focusing scheme, the Chen/Yang edge detector and the Haralick scheme (Section

4.4) shows the superiority of MRCBS over the other three schemes.

An adaptive multiresolution clustering scheme of Texture Focusing is presented in

Chapter 5. Texture focusing comprises the concepts of the spatio-featural mutual focusing

and the split-and-fix process. The spatio-featural mutual focusing achieves high resolutions

in both the spatial and the featural domains for texture segmentation. The split-and-fix

process employs the contextual information to indicate the adequate resolution in every

region of the segmentation map. Texture focusing results in a multiresolution segmentation

map, where the central regions of homogeneous textures are represented using coarse

resolutions so as to achieve a better estimation of the textural content, and the border

regions of textures are represented using fine resolutions so as to achieve a better estimation

of the boundary between textures.

The success of Texture Focusing in the task of texture segmentation motivates the
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use of the multiresolution clustering method together with the multi-point optical flow

method to tackle the problem of motion field segmentation. This is an attempt to study

the potential of the multi resolution clustering method as a generalised image segmentation

framework. However, the performance of the segmentation via the optical flow constraint

equations (OFC's) is highly constrained by the aperture problem (Section 6.1) and there-

fore, subsequent investigation is required to improve the performance of this scheme to

achieve an accurate motion field segmentation.

There are two major theoretical achievements in this thesis: the Cl scale space for a

multiscale edge detector, and the multiresolution clustering method for texture segmen-

tation and motion field segmentation. Both of these two achievements are derived from a

general observation of the uncertainty principle. The Cl scale space is proposed because an

edge is a local property, thus the local scale factor of Cl controls the degree of smoothing

according to the local noise level. On the contrary, textures and motion fields are regional

properties, thus a multiresolution representation of the image (see Figure 5.2) is proposed

so that the regional property is estimated using large windows, whereas the location of

the boundaries is estimated using small windows.

7.2 Toward a Generalised Theory of Adaptivity

Wilson and Spann argued that image processing algorithms can be categorised as two

groups: those derived heuristically and those derived rigorously within the framework

of signal processing theory [105]. The former are either difficult to be extended to new

applications or difficult to be compared objectively with each other. The latter tend

to employ assumptions which are inadequate for real images [105]. In this regard, they

advocate the research on a generalised theory which provides a solid theoretical background
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for the unification of image processing algorithms [105].

The research presented in this thesis is a response to the above advocacy. Since a

generalised theory is meaningless unless it is based on the observation of real situations,

two low-level computer vision tasks of edge detection and image segmentation are selected

as the subjects of the investigation. During the investigation, the importance of the

uncertainty principle emerges, which is a candidate as the central issue of a generalised

theory. An adequate understanding of the uncertainty distinguishes the difference between

the local processing of edge detection and the regional processing of image segmentation.

A multiresolution scheme such as Texure Focusing makes the most of the spatial-feat ural

information by using different resolutions in different portions of an image.

Adaptivity is the common feature for both the multi scale edge detector and the mul-

tiresolution clustering scheme presented in this thesis. These two schemes embody a

common mechanism, which comprises a coarse-to-fine procedure with a decrement of the

scale, and a measure (Le. EHF for multiscale edge detection, the contextual information

for Texture Focusing and the least-square error for the motion field segmentation) indi-

cates an adequate scale/resolution for each region of the image. This common mechanism

fully exploits the adaptivity in a multiscale/rnultiresolution scheme, and thus provides a

solution for the uncertainty inherent in the image analysis.

Therefore, this thesis starts from the general observation of the uncertainty, and finishes

with the general solution of the adaptivity which provides a prototype of a generalised

theory for image analysis. However, this is still far from a form of a rigorous theory

derived by mathematics. First, there are unsolved problems when the multiresolution

clustering scheme is extended for the motion field segmentation. Second, most of the

algorithms are heuristically derived. The investigation on a generalised theory is thus still

in progress, which is the long term goal of this research.
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Appendix A

List of Puhlications

A.1 Journal papers

• Kung-Hao Liang, Tardi Tjahjadi, Yeo-Hong Yang, "Roof Edge Detection using Reg-

ularized Cubic B-Spline Fitting," Pattern Recognition, vo1.30( 5), pp.719-728, 1997.

• Kung-Hac Liang, Tardi Tjahjadi, and Yee-Hong Yang, "Bounded Diffusion for Multi-

scale Edge Detection using Regularized Cubic B-Spline Fitting," submitted to IEEE

Transactions on System, Man and Cybernetics, in September 1996, awaiting review.

• Kung-Hac Liang, Tardi Tjahjadi, and Yee-Hong Yang, "Texture Focusing: A Mul-

tiresolution Approach for Segmentation," submitted to Pattern Recognition in May

1997, awaiting review.

A.2 Conference papers

• Kung-Hac Liang, Tardi Tjahjadi, Yee-Hong Yang, "A Regularized Multiscale Edge

Detection Scheme using Cubic B-Spline," in Proc. UK Symposium on Applications

of Time-Frequency and Time-Scale Methods (TFTS'95), IEEE Signal Processing
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Chapter (UKRI Section), Coventry, UK, pp.58-65, 1995.

• Kung-Hao Liang, Tardi Tjahjadi and Yee-Hong Yang, "Multiscale Texture Segmen-

tation based on Image Spectrum," in Proc. IEEE Nordic Signal Processing Sympo-

sium (NORSIG'96), Helsinki, Finland, pp. 239-242, 1996.

• Kung-Hao Liang and Tardi Tjahjadi, "Spatio- Temporal Filtering for Moving Ob-

jects Tracking," in Proc. 2nd IEEE UK Symposium on the Applications of Time-

Frequency and Time-Scale Methods (TFTS'97), Coventry, U.K., pp. 53-56, 1997.
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Appendix B

The codes of the roof edge

detector and for the computation

of FCR/ATR.
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Appendix C

The codes of MRCBS, the

Haralick edge detector, Edge

Focusing and the Chen/Yang

edge detector.
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