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Abstract. In infrastructure asset management, maintenance strategies in terms of cost 

modelling is normally adopted to achieve two broad strategic objectives: to ensure that 

sufficient funding is available to maintain the portfolio of assets; and to ensure that a 

minimum cost is achieved while maintaining safety. The data and information required for 

carrying out cost modelling are often not sufficient in quantity and quality. Even if the data is 

available, the uncertainty associated with the data and the assessment of the assets’ condition 

remain a challenge to be dealt with. We report in this paper that cost modelling can be carried 

out at the initial stage instead of delaying it due to data insufficiency. Subjective experts’ 

knowledge is elicited and utilised together with some information which is gathered only for 

a small sample of assets. Linear Bayes methods is adopted to combine the sample data with 

the subjective experts’ knowledge to estimate unknown model parameters of the cost model. 

We use a case study from the rail industry to demonstrate the methods proposed in this paper. 

The assets are metal girders on bridges from a rail company. The optimal maintenance 

strategy is obtained via simulation based on estimated model parameters. 

Keywords: maintenance, infrastructure asset, cost modelling, Bayes linear estimator, 

elicitation, metal girder 

1. Introduction  

Infrastructure assets are important in maintaining the good quality of life in the society and 

efficiency in the economy. To preserve and extend the service life of long-life infrastructure 

assets are vital, but maintaining these assets requires significant funding. For the 

infrastructure companies, including rail companies, choosing an asset maintenance strategy 

will impact the businesses’ performance and investment planning. 
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For the case study of a rail company considered in this paper, it is estimated that billions of 

pounds are required to maintain its bridges and structures asset portfolio over the next 50 

years. In order to maintain a large number of assets within the bridges and structures portfolio 

as economically and efficiently as possible, the company needs to optimise the maintenance 

strategy for its assets. Cost models can help to identify the optimal maintenance strategy for 

the assets, and have attracted a great deal of attentions from infrastructure industries [1], 

including rail industry [2], water and environment [3], bridges [4], building and civil 

infrastructure[5, 6]. Of course, maintaining safety is of utmost importance for these assets, 

but it is also crucial to maintain these assets in a cost-effective way with a good healthy 

working order. The consequence of any disruption of a normal service is severe. The cost of 

maintaining these long-life assets is huge, but cost models, when properly developed, can 

help to identify the optimal maintenance strategy with the least cost, so the benefit of 

applying cost models is substantial.  

Although there are general interests from the industries on optimising maintenance strategies 

through cost modelling, the development and application have not advanced much over the 

years. There remain many challenges to overcome, as demonstrated in Skinner et al[2]. 

Among the challenges in rail industry, the key challenges include: 

 Defining the size and configuration of the asset. The asset should be analysed and any 

sub-asset hierarchy down to a maintainable item (MI) should be specified. Such MI is 

the base unit for planning and executing the required maintenance. For example, a 

single span bridge constructed of concrete deck with masonry jack arches on metal 

girders with masonry end supports is defined with five MI’s, each with its own 

degradation rate, cost and intervention cycles. 

 Lack of history data in defining asset relationships. The timing of different 

interventions is required for optimising maintenance strategy, together with the capital 

and operational expenditure costs for the range of interventions. Ideally, these 

information should be based on the assets’ history failure and maintenance data. 

Failure data is very rarely available, but maintenance data should normally be 

available from asset management information systems. However for organisations in 

a low maturity level of asset management, e.g. in our case study, although there are 

sufficient history maintenance records available, it is not stored electronically and it 
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will take many man hours to obtain the required information from all these paper 

records.  

 Dealing with uncertainty. Even if the current conditions of all the assets were known, 

it would not be possible to predict future investment costs with certainty.  

It is therefore acknowledged that a statistical estimation of costs is needed. Detailed 

information would be gathered by investigating only a small sample of assets. However, it 

would be wrong to treat those as the only source of information. Although the company might 

not know the detailed status of all its assets, a large amount of general and local knowledge 

and expertise is inevitable acquired in routine data collection practices. Such information does 

not come in the form of statistical data, in the classical sense of random variables with 

identifiable sampling distributions, but is a rich source of information. The information in the 

form of expert knowledge proves to be useful in asset management when the history data is 

not available. Wang and Zhang [7] utilised expert knowledge to predict asset’s residual life 

when the history data is lacking in both quantity and quality. Because of the subjective 

element of expert opinions, the elicitation and the use of expert knowledge should be done 

carefully. O’Hagan [8] considered the practical elicitation of expert beliefs through two 

contrasting examples, Garthwaite and O’Hagan [9] reported an experimental study of 

quantifying expert opinion in the UK water industry, and Wang [10] commented on expert 

elicitation for reliability system design.  

 

O’Hagan et al [11] have adopted the background knowledge of experts when making asset 

management plans. Some sample data are collected and linear Bayes methods are used to 

combine the sample data with the experts’ knowledge to estimate the costs of the 

interventions for each asset, and also the timings of the various interventions. However these 

two kinds of uncertain quantities were dealt with separately, and there was no attempt of 

combining the uncertainties of costs and timings to predict capital investment. 

This paper shall address the problematic issues associated with data and uncertainty when 

carrying out the cost model. The contributions are: 

 First, we deal with the lack of available history data issue by investigating only a 

small sample of assets with detailed information, and then use structured elicitation 
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techniques to extract experts’ knowledge of general and local knowledge and 

expertise based on their experience gained from routine data collection practices.  

 Second, unlike previous applications, we treat both intervention timing and costs as 

uncertain. We then adopt linear Bayes methods to combine the sample data with the 

experts’ knowledge, to make estimates that use all available information. 

 Third, we build asset cost model based on these estimates, identify the optimal 

maintenance strategy and estimate the penalty of delaying maintenance when funding 

is not sufficient.   

The rest of the paper is organised as follows: Section 2 introduces the methodology. Section 

2.1 describes and formulates the problem, and defines different maintenance scenarios and 

strategies. The asset cost model is based on the distribution of both intervention cost and time 

duration of a MI in each condition, which is described in Section 2.2. Section 2.3 briefly 

introduces the Bayesian linear estimator, which is adopted to estimate the parameters of 

intervention cost and time duration of each condition for the cost model. The prior 

distribution is assumed to be lognormal and is described in Section 2.4. The elicitation 

process is explained in Section 2.5. Section 3 gives a brief description of the case problem. 

The intervention cost and time duration estimation is explained in Section 4. The elicited data 

from the expert knowledge is presented in Section 4.1. In Section 4.2, the posterior estimates 

and posterior distribution of intervention cost and time duration are obtained through 

Bayesian linear estimator. The results of the cost model are given for various maintenance 

strategies through simulation in Section 5, and the penalty of delaying maintenance is 

estimated. Section 6 presents the modelling validation. Finally a conclusion is made in 

Section 7 based on the analysis with the recommended optimal maintenance strategy.  

2. Methodology  

2.1 Problem formulation 

Infrastructure assets are classified down to MIs, and for each MI, standard interventions are 

carried out on regular intervals depending on its conditions. The conditions are usually 

defined as 1 to 5 from good to bad. Condition 5 is normally a safety critical state, one should 

never see this on the file as any items would have all been intervened before it reaches this 

critical condition.  There are different maintenance scenarios for each standard intervention 
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of a MI, e.g. allowing the item to drop to condition 2 then bring it back to condition 1, or 

letting the item to deteriorate to condition 4 then bring it back to condition 2, and etc. If we 

define     as the maintenance scenario, where j=1, 2, 3, 4 is the condition that the MI is in 

before it is maintained, and i=1, 2, 3 is the condition after maintenance. Table 1 includes a 

full list of possible maintenance scenarios.  

Table 1 Maintenance scenarios 

Scenario Condition evolution  Notes  

    C1-C2-C1-C2 Back to condition 1 when found in condition 2  

    C1-C2-C3-C1-C2-C3 Back to condition 1 when found in condition 3 

    C1-C2-C3-C2-C3 Back to condition 2 when found in condition 3 

    C1-C2-C3-C4-C1-C2-C3-C4 Back to condition 1 when found in condition 4 

    C1-C2-C3-C4-C2-C3-C4 Back to condition 2 when found in condition 4 

    C1-C2-C3-C4-C3-C4 Back to condition 3 when found in condition 4 

   

Based on the different maintenance scenarios, there can be six maintenance strategies. We 

use     to denote the various strategies, which means to carry out the standard intervention 

when the condition is equal to or above j, and bring the MI back to the start of condition i. 

Where        , it is possible that the MI has deteriorated to a condition which is worse than 

j at the inspection time. 

Strategy 1: Carry out the standard intervention when condition is equal to or above 2, and 

bring the item back to the start of condition 1. This strategy includes the maintenance 

scenarios    ,    , and    , we use        to denote this strategy. 

Strategy 2: Carry out the standard intervention only when condition is equal to or above 3, 

and bring the item back to the start of condition 1. This strategy includes the maintenance 

scenarios    , and    , we use        to denote this strategy. 

Strategy 3: Carry out the standard intervention only when condition is equal to or above 3, 

and bring the item back to the start of condition 2. This strategy includes the maintenance 

scenarios     and    , we use        to denote this strategy. 

Strategy 4: Carry out the standard intervention only when condition is equal to or above 4, 

and bring the item back to the start of condition 1. This strategy only includes the 

maintenance scenario    , we use     to denote this strategy. 
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Strategy 5: Carry out the standard intervention only when condition is equal to or above 4, 

and bring the item back to the start of condition 2. This strategy only includes the 

maintenance scenario    , we use     to denote this strategy. 

Strategy 6: Carry out the standard intervention only when condition is equal to or above 4, 

and bring the item back to the start of condition 3. This strategy only includes the 

maintenance scenario  , we use     to denote this strategy. 

Due to the availability of funding for asset maintenance, any of these strategies could have 

been adopted. But the question is what is the optimal maintenance strategy and how often 

should the item be inspected?  We are hoping that the cost modelling will provide a means to 

answering these questions. We define the duration for a MI to stay in condition j as   , and 

   
    is the pdf of the time duration in condition j.      is the time duration from the start of 

condition i to the end of condition j. We use     
    to denote the pdf of the time duration 

from the start of condition i to the end of condition j, which is the convolution of    
    

     
    for j>i. For i=j, we have    

    which is the pdf of the time duration in condition 

j.      is the cost of intervention for bringing the item back to the start of condition i when it is 

in condition j for    . We define T as the inspection interval, Cs as the cost of inspection, 

and    as the cost of the item in condition 5, which can be a high penalty cost.  

Let     denote the condition at inspection time   . For strategy    , the probability that a MI 

deteriorates to condition j or above at epoch [       ] is 

       {                       }.                                     (1)                            

If we know    
    and     

   , the probability that a MI deteriorates to condition j at epoch 

[       ] becomes 

   ∫         
   

  

      
(     

      )   .                                            (2) 

Similarly, the probability that a MI deteriorates to condition j+1 at epoch [       ] can be 

written as  

     ∫ ∫         
   

    

 
   

   
  

      
(       

        )    .            (3) 

And the probability that a MI deteriorates to condition 4 at epoch [       ] can also be 

written as  

   ∫ ∫         
   

    

 
    

   
  

      
(     

        )    .               (4) 

The probability that a MI deteriorates to the safety critical condition 5 at epoch [       ] is 

   ∫         
   

  

      
(      

      )   ,                                     (5) 
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when this happens, a high penalty cost will incur. 

 

2.2 The cost model 

Once we have the distributions of the intervention cost and the time duration of each 

condition, we can produce the maintenance cost model.  The optimal inspection interval can 

be identified, as well as the least unit time cost under different maintenance strategies. An 

intervention cycle is defined as the time interval between two interventions. Expected 

intervention cycle cost and the expected intervention cycle length can be formulated for each 

strategy shown above. 

The intervention cycle cost under strategy     is 
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The intervention cycle length is  
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The expected cost per unit time for Strategy     is 
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The optimal strategy is  
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2.3 Bayesian linear estimator 

The Bayes linear estimator (BLE) is adopted to estimate the parameters of intervention cost 

and time duration of each condition for the cost model given in Equations 6-9. 

Suppose we have two random vectors X and Y, the BLE of X after observing Y=y is 

                           (      )                            (10) 

and its dispersion matrix is given by 

                                                               (11) 

           is the prior mean of X, and       is the posterior estimate of X,     is a 

posterior analogue of the prior variance matrix       . The intuitive meaning of Equations 

10 and 11 is to update the initial estimate of E(X) by considering the difference between the 

newly observed Y and its mean with the covariance matrix. The BLE analysis requires first- 

and second-order moments, i.e.    ,         and         . If the joint distribution of X and 

Y is multivariate normal, then       is exactly the posterior mean of X and       is the 

posterior variance. O’Hagan et al. [11] interprets the BLE and its dispersion as 

approximations to posterior mean and variance when the distribution of X and Y is not far 

from normal.  

2.4 Prior 

First we need to obtain the prior distributions of intervention cost and time duration of each 

condition. Since both quantities are usually positively skew distributed, the prior distribution 

is assumed lognormal for both intervention cost and time duration of each condition,  

 .                                      (12) 

For x > 0, where μ and σ are the mean and standard deviation of x which follows a natural 

logarithm. The mean and standard deviation of the prior distribution are generally well 
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understood by the engineers in the form of prior estimates and its deviations. Their judgement 

is often based much more on data than on personal judgement. 

2.5  Elicitation of expert knowledge 

The elicitation process is mainly informed judgement, and because of its subjective nature it 

is important that it is done carefully. For prior expectations of intervention cost and time 

duration of each condition we ask the experts for an estimate M which is the mean of X, then 

we ask for the upper and lower limits, U and L of X. The limits are chosen to be the one-third 

limits, such that X has a third of chance lying within the limits. Our experiences prove that 

the one third limits are easily understood by the engineers. Since both quantities are 

positively skewed and assumed lognormal distributed, U-M will be larger than M-L, if the 

ratios U/M and M/L are roughly equal, we can calculate the mean and standard deviation, 

which involves the exponential and natural logarithm function. Define 

       
{  (

 

 
)}

 

   
  ,                                                           (13) 

where    is the interquantile range for the standard normal distribution,    equals 0.8416 for 

33% to 67% quantile.  

Then  

mean of     ,                                                               (14) 

and standard deviation of     √    .                                                    (15) 

Variances and covariance are elicited by using a variance components approach. Both 

intervention cost and time duration of each condition are stratified by condition and the 

variance components were elicited for each stratum separately. Strictly, there are three 

variance components in such cases. They are the variability of the grand mean, the variability 

of stratum means around the grand mean and the variability of individual values around their 

respective stratum means.  

When sample studies become available, Bayesian linear estimator can be used to create 

posterior distributions to refine the prior model using the actual input data from the sample 

studies.  



10 

 

3 Case problem  

In order to maintain the large number of MIs within the bridges and structures portfolio as 

economically and efficiently as possible, cost models are developed and applied to its top 

assets in a rail company. In this paper, we use one MI on the bridges – the girders, as an 

example to illustrate the cost model. To maintain safety, the metal girders on bridges are 

painted at regular interval depending on its condition, conditions are classified as 1 to 5 based 

on the extent and severity of the defect, such as peeling, rusty or corrosion. Condition 1 is 

defined as less than 1% area of peeling with no rusty, condition 2 as 1-5% of peeling and no 

rusty, condition 3 as 5-15% of peeling and possibly some rusty, and condition 4 as 15-30% of 

peeling normally with rusty and possibly some corrosion. If there are more than 30% area of 

defect including peeling, rusty and corrosion, the girder is in condition 5 which is a safety 

critical condition. A metal girder could move from condition 4 to condition 5 within a year in 

which case the rule suggests intervening any items identified as in condition 4 before the end 

of the year to maintain safety. There are generally two types of painting, general painting and 

vulnerable painting, both can happen at any time before a girder reaches condition 5. But in 

reality, general painting only happens when the item reaches condition 3 or 4. In this case, the 

whole girder will be cleaned and repainted. Generally the girder will be brought back to the 

start of condition 1 with no defect after general painting. The cost of general painting is 

associated with the size of the item. Vulnerable painting is to paint those vulnerable areas 

only. After the painting the girder can be in any one condition of conditions 1 to 3, and the 

cost of vulnerable painting is affected by both the size and the vulnerable area of the item.  

There are six maintenance scenarios for painting as demonstrated in Table 1. 

4 Time duration and cost estimation  

4.1 Expert knowledge elicitation 

The durations for a girder to stay in different conditions are elicited, and Table 2 shows all 

the values elicited for the durations. In the first row of Table 2 we see that the supposed 

expected duration for a girder to deteriorate from condition 1 to condition 2 is 5 years, with 

overall standard deviation of 6 years, which is made up by the overall mean standard 

deviation, stratum mean standard deviation and individual standard deviation. 
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Table 2 Elicited data for duration 

Stratum Duration Expectation 

 

Overall 

mean 

standard 

deviation 

Stratum 

mean 

standard 

deviation 

Individual 

standard 

deviation 

Overall 

standard 

deviation 

Condition 1    5 3.87 2.46 3.87 6.00 

Condition 2    3 2.32 2.32 3.19 4.58 

Condition 3    2 1.55 1.58 1.11 2.46 

Condition 4    1 0.77 0.55 0.35 1.01 

 

The engineers believe that, after general painting, the girder stays in condition 1 for 5 years 

on average. For those fall in condition 4, it should be painted within one year to be brought 

back to a better condition. Prior estimates of conditions were based on recent inspections and 

may draw on records of any recent intervention.   

The elicitation of cost is more complicated as we have mentioned in Section 3 that there are 

two types of painting and six different maintenance scenarios. These result in six intervention 

costs, one for each scenario. These costs might be correlated but cannot be directly 

calculated. Each of the six intervention costs needs to be elicited. Both general and vulnerable 

painting costs are made of equipment cost, material cost, labour cost, and possibly possession 

cost. Since painting is a standard intervention, we assume it can be well planned ahead. Any 

possession costs could be avoided, and we are not going to consider this cost here. Equipment 

cost is usually not linked with the size of the item, but the type of the painting. This cost is 

higher for general painting than vulnerable painting. Material cost and labour cost are 

affected by the area needs to be painted, more so for vulnerable painting than general 

painting.   

The painting cost can be defined as  

        √  ,                                                              (16) 

where s is the size of the painted area, u is equipment cost, v is unit material cost, and w is 

unit labour cost. u, v, and w are assumed to follow lognormal distributions, and are different 

for general and vulnerable painting. Instead of eliciting the six intervention costs, we could 

elicit u, v, and w with two stratum: general painting and vulnerable painting. The various 

intervention costs can then be calculated based on these values. The benefit of eliciting u, v 
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and w doesn’t only reduce the number of quantities for elicitation, it also simplifies the 

elicitation process as the correlations among the original six intervention costs are more 

complicated to handle. The elicited expectations and standard deviations of costs are shown 

in Table 3. Again the variation of the costs is elicited using the variance component approach, 

and the overall standard deviation is made of overall systematic error, stratum error and 

random error. 

Table 3 Elicited data for costs 

Quantity Stratum Expectation 

 

Overall 

mean 

standard 

deviation 

Stratum 

mean 

standard 

deviation 

Individual 

standard 

deviation 

Overall 

standard 

deviation 

Equipment 

cost 

General painting 500  278 246 278 464 

Vulnerable painting 300 167 116 116 236 

Material 

unit cost 

General painting 25 9.63 5.81 9.63 14.80 

Vulnerable painting 100 38.50 38.50 55.64 77.85 

Labour 

unit cost 

General painting 30 23.22 11.55 11.55 28.39 

Vulnerable painting 100 77.41 49.14 55.64 107.25 

 

Figure 1 shows the prior duration distribution for one item if that item is allowed to 

deteriorate to condition 4. It takes longer for the item to deteriorate from condition 1 to 2 than 

from 2 to 3 and 3 to 4. For the safety concern, the engineers are not worried when an item is 

in condition 1. It is only when it is in condition 2 and approaching condition 3, the engineers 

will pay attention to the item and intervene in a good time to prevent the item from 

deteriorating into a worse condition. Wang and Zhang [12] have introduced methods in 

identifying early signs of defect. However if we take cost into account, it maybe that 

maintaining the item at condition 1 is the most cost effective strategy. 
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Figure 1 Prior deterioration duration distribution 

4.2 Posterior 

A sample of bridges from different conditions has been studied. Information about the size, 

condition, maintenance history of the metal girders is collected. Bayesian linear estimator is 

used to create posterior distributions to refine the prior model using the actual input data from 

the sample studies. The posterior means and standard deviations for the time duration are 

given in Table 4. 

Table 4 Posterior means and standard deviations for time duration 

Stratum Time duration Mean Standard 

deviations 

Condition 1    5.86 3.95 

Condition 2    3.53 2.93 

Condition 3    2.39 1.82 

Condition 4    1.23 0.92 
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The studies revealed that the time durations in all conditions are longer than the engineers’ 

prior estimates. The updated intervention costs are given in Table 5, which are also bigger 

than the engineers’ prior estimates, and more variable.  

Table 5 Posterior means and standard deviations for costs 

Quantity Stratum Expectation 

 

Overall 

standard 

deviation 

Equipment 

cost 

General painting 568 664  

Vulnerable painting 387  369  

Material 

unit cost 

General painting 28  19.98  

Vulnerable painting 108  91  

Labour 

unit cost 

General painting 38  34.12  

Vulnerable painting 127  103  

 

The painting cost is defined in Equation (16), and we assume 

        ̅     
  ,                                                                        (17) 

        ̅     
  ,                                                                        (18) 

        ̅     
  ,                                                                     (19) 

then we have  

      ( ̅   ̅         ̅  
 

 
         

     
     

 ),                              (20) 

and we can calculate the various intervention costs if we know the area needs to be painted. 

The results are given for a 100 meter girder according to various intervention scenarios in 

Table 6. 

  



15 

 

Table 6 Posterior means and standard deviations of costs for painting a 100 meter girder according to 

various intervention scenarios 

Scenario Cost Expectation Overall standard deviation 

        931  538  

        1869  1210  

        1740  1107  

        3748  2903  

        3298 2424 

        2808  1998 

 

5 Cost model simulation results  

Now we have the distributions of intervention cost and time duration of each condition, we 

can produce the maintenance cost model. However, in this case study we did not use the 

analytical procedure given in Equations 6-9  to calculate the expected cost per unit time for 

each strategy. Instead we use simulation as a way to approximate Equation 8 for the company 

since Equations 6 and 7 are difficult for the engineers to understand. The analytical procedure 

also requires longer computation time and bigger computation power because of the 

convolutions and integrations involved. There are a large number of items within the 

company, and the computation work is huge, so simulation is a practical solution instead of 

the analytical procedure. 

Monte Carlo simulation has been carried out to calculate the expected cost per unit time, 

which helps to find the optimal strategy. The simulation has been run 100,000 times for each 

strategy. The inspection cost is assumed to be trivial £100, but the penalty cost is huge and 

given as £100000. The simulation algorithm for Strategy 1 is shown in Figure 2, and the 

results are presented in Table 7.  
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Figure 2 Simulation algorithm 
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𝐸𝐼𝐿  𝐸𝐼𝐿  𝑇 

False 

𝐸𝐼𝐶  𝐸𝐼𝐶  𝐶𝑠  𝐶   

𝐸𝐼𝐿  𝐸𝐼𝐿  𝑇 

True 

𝐸𝐼𝐶  𝐸𝐼𝐶  𝐶𝑠  𝐶   

𝐸𝐼𝐿  𝐸𝐼𝐿  𝑇 

True 

𝐸𝐼𝐶  𝐸𝐼𝐶  𝐶𝑠  𝐶   

𝐸𝐼𝐿  𝐸𝐼𝐿  𝑇 

True 

𝐸𝐼𝐶  𝐸𝐼𝐶  𝐶𝑠 

𝐸𝐼𝐿  𝐸𝐼𝐿  𝑇 

True 

n=n+1 

T=T+1 
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Table 7 Simulation results 

Strategy 1 2 3 

 

4 

 

5 

 

6 

Optimal 

inspection 

interval 

22 

months 
8 months 7 months 

 

3 months 

 

2 months 

 

2 months 

Expected unit 

time cost (sd) 

£252 

(£181) 

£393 

(£241) 

£870 

(£723) 

 

£812 

(£740) 

 

£1336 

(£950) 

 

£2365 

(£2566) 

 

It is clear that Strategy 1 has the smallest expected unit time cost, so it seems that maintaining 

the item in a good condition is the most cost effective strategy. The optimal inspection 

interval is about 22 months for Strategy 1 but not sensitive, as shown in Figure 5, the average 

unit time cost around the area of the optimal interval varies a little with low uncertainties. For 

other strategies, this area is much smaller and the unit time cost is higher and much more 

uncertain. The cost curves of other strategies are given in Figures 4-8. 

 

Figure 3 Unit time cost for different inspection intervals for Strategy 1 

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800
Strategy 1: Cs=100, Cf=100,000

Inspection interval (months)

U
n
it
 t

im
e
 c

o
s
t

 

 

Average

Upper quartile

Lower quartile



18 

 

 

Figure 4 Unit time cost for different inspection intervals for Strategy 2 

 

Figure 5 Unit time cost for different inspection intervals for Strategy 3 
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Figure 6 Unit time cost for different inspection intervals for Strategy 4 

 

Figure 7 Unit time cost for different inspection intervals for Strategy 5 
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Figure 8 Unit time cost for different inspection intervals for Strategy 6 

If the current funding is not sufficient to maintain the item according to the most cost 

efficient strategy, the natural thing to do will be to delay the painting until further funding 

becomes available. If the decision was to follow Strategy 6, which is to delay the painting 

until the item reaches condition 4, and then only carry out the minimum repair, the expected 

unit time cost will be about nine times of the optimal Strategy 1. Due to the uncertainties of 

intervention cost and time duration of each condition, the cost model estimates are uncertain. 

This uncertainty can be reduced once more information is collected where linear Bayes 

methods can be useful in incorporating new information to update the estimates. 

6 Validation  

The items can be classified into different groups according to their location and environment.  

The inspection cost and penalty cost differ as well. Items with easy access will need less 
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inspection cost, busy and important lines will result in high penalty costs. Rural location 

requires higher inspection cost, but probably less penalty involved. 

Table 8 Items’ grouping according to their location and environment 

   =10000   =100000   =1000000 

  =£100 Easy access, low 

importance 

Easy access, 

medium importance 

Easy access, high 

importance 

  =£150 Medium access, low 

importance 

Medium access, 

medium importance 

Medium access, high 

importance 

  =£200 Difficult access, low 

importance 

Difficult access, 

medium importance 

Difficult access, 

high importance 

The simulations have been run for items from different groups to calculate the expected 

cost per unit time. The results are given in Table 9. Strategy 1 still remains optimal for 

items from all groups, which gives the least expected unit time cost with the smallest 

uncertainty, and requires least frequent inspection compared to the other strategies. The 

results for Strategy 1 with various inspection and penalty costs are plotted in Figures 9 

and 10. For all strategies, when the penalty increases, the optimal inspection interval 

decreases; and when the inspection cost increases, the optimal inspection interval 

increases in general.  

Table 9 Simulation results of various penalty and inspection costs 

 

Penalty 

cost (£) 

Inspection 

cost (£) 
Strategy  

1  

Strategy  

2 

Strategy 

 3 

Strategy 

 4 

Strategy  

5 

Strategy 

6  

10,000 

100 
24 months 

£248 

17 months 

£327 

21 months 

£704 

10 months 

£562 

7 months 

£938 

6 months 

£1876 

200 
31 months 

£279 

20 months 

£387 

22 months 

£755 

13 months 

£666 

11 months 

£1077 

8 months 

£2039 

100,000 

100 
22 months 

£252 

8 months 

£393 

7 months 

£870 

3 months 

£812 

2 months 

£1336 

2 months 

£2365 

200 
23 months 

£306 

11 months 

£473 

8 months 

£989 

3 months 

£1216 

3 months 

£1592 

2 months 

£2974 

1,000,000 

100 
15 months 

£279 

7 months 

£416 

4 months 

£1043 

2 months 

£1032 

1 month 

£1930 

2 months 

£2720 

200 
15 months 

£360 

6 months 

£642 

6 months 

£1110 

2 months 

£1646 

1 months 

£2060 

2 months 

£3430 
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Figure 9 Results for Strategy 1 with various penalty costs and low inspection cost 

 

Figure 10 Results for Strategy 1 with various penalty costs and high inspection cost 
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than that expected. And the results from the posterior estimates are less uncertain compared 
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collected by using linear Bayes methods in incorporating new information to update the 

estimates. The comparison of results for Strategy 1 with various inspection and penalty costs 

are also shown in Figures 11-13. 

Table 10 Simulation results using Prior and Posterior estimates for Strategy 1 

 

Penalty 

cost (£) 

Inspection 

cost (£) 

Optimal inspection interval Expected unit time cost (sd) 

Prior 

estimates 

Posterior 

estimates  
Prior estimates 

Posterior 

estimates  

10000 

100 17 months 24 months £475 (£479) £248 (£183) 

200 22 months 31 months £522 (£514) £279 (£194) 

100000 
100 6 months 22 months £629 (£541) £252 (£181) 

200  9 months 23 months £690 (£664) £306 (£287) 

1000000 

100 5 months 15 months £675 (£553) £279 (£180) 

200 5 months 15 months £913(£553) £360 (£182) 

 

 

Figure 11 Comparison between prior and posterior results for Strategy 1 with low inspection 

cost and low penalty cost 
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Figure 12 Comparison between prior and posterior results for Strategy 1 with low inspection 

cost and medium penalty cost 

 

Figure 13 Comparison between prior and posterior results for Strategy 1 with high inspection 

cost and high penalty cost 
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experts’ knowledge, and only utilising a sample of assets. Bayesian linear estimator has been 

very useful in combining the expert opinion and the sample data to estimate the parameters of 

intervention cost and time duration of each condition, which are important for the cost model. 

Even when the maintenance information systems can provide detailed information needed for 

cost modelling, Bayesian methods are still useful in updating the estimates when new 

information becomes available. The simulation results show that the cost model can identify 

the optimal inspection interval, and the optimal maintenance strategy with the least unit time 

cost. If the current funding is insufficient to cover the optimal maintenance plan, cost models 

can estimate the future cost of recovering the degraded asset condition. For the case study, 

the cost models developed for its top assets are currently implemented in this rail company. It 

proved to be very useful in assisting their strategy making, the results are updated regularly 

whenever new information comes in using Bayesian methods. 

 

Due to practical limitations in this case study, simulation has been used to calculate the 

expected cost instead of the analytical procedure. In future work, the analytical approach will 

be used to calculate the results and compared to that of the simulation. The discount rate for 

the expected cost in the future will also be taken into account. In this paper, only one type of 

items with one type of intervention is studied. Further work will be carried out to study the 

optimal maintenance strategy when there are multiple items involved and each potentially 

with more than one type of interventions. 
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