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Abstract

We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is
signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise
increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive
models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address
this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for
causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down
attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise
analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the
posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there
is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to
pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to
the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the
importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes
involved in a biased activation theory of selective attention.
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Introduction

In the past decade, Granger causality (GC) has emerged as a

widely used method for causal inferences, and has been applied to

biological time series obtained from many different types of

investigation, for example, to the fMRI blood-oxygen level

dependent (BOLD) signals to detect effective connectivity between

brain areas and thus to shed light on how the brain works [1–4].

The basic idea of GC can be traced back to Wiener [5], who

conceived the notion that if the prediction of one time series can

be improved by incorporating the past history of a second one,

then the second time series has a causal influence on the first.

Granger later formulated this idea in the context of linear

autoregressive (AR) models [6]. GC is completely data-driven and

based on time precedence. The interactions discovered by GC

may be unidirectional or reciprocal. GC is easy to implement,

relies on a small set of straightforward assumptions, and does not

need any knowledge about how the data are generated. Therefore,

it can be applied directly to almost any time series data [7].

However, over-simplification of the model may result in an

incorrect use or interpretation of GC and even spurious causal

inferences in some situations [8–10]. Care is therefore needed in

the use of GC.

One possible over-simplification in some scenarios is that the

covariance matrix of the noise, conditional on the past history of

the time series and the noise process, is assumed to be time

invariant. For example, spike trains of neurons are typically close

to Poisson processes in their timing, and the variance thus

increases linearly with the signal [11,12]. Similar conditionally

heteroskedastic data have been observed in many physiological

recordings, such as the data collected from patients with epilepsy

and Parkinson’s disease [13]. Therefore, it is natural to conjecture

that changes in the volatility of one time series may have an impact

on the mean activity or volatility of another time series, which

indicates that causal influences may be evident in the second order

statistics. Clearly, these causal relationships cannot be captured by
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classical GC based on a simple AR model, which does not deal

with time series data with changing volatility (variance). Moreover,

although it has been widely observed and investigated that the

signal-dependent noise plays important roles in neuronal activities

[14–16], it is still unclear whether this property carries through to

fMRI BOLD signals, after the neuronal signals are delayed and

smoothed by the haemodynamic response function.

In this paper, we provide empirical evidence that the variance of

the noise in the fMRI BOLD time series increases linearly with the

square of the signal in a number of cortical areas, such as the

insular taste, orbitofrontal, and lateral prefrontal cortical areas. In

this context we present a Granger causal model with signal-

dependent noise to detect GC in both the mean and variance of

data with time varying volatility. We also propose a likelihood

ratio test to infer GC with signal-dependent noise accurately and

efficiently. We show, by simulation studies, that this novel method

substantially outperforms classical GC when signal-dependent

noise is present.

The new method is evaluated with an fMRI investigation [17]

to identify the source of the top-down selective attentional control

that differentially biases brain systems involved in affective vs

sensory analysis [17–19]. Instructions to pay attention to and later

rate the pleasantness of a taste increased the activations to taste

stimuli measured with fMRI in the orbitofrontal and pregenual

cingulate cortices [17], where the subjective pleasantness of taste is

represented [20–24], but not the primary taste cortex in the

anterior insula [17], where the subjective intensity and identity of

taste are represented [20–22,24–26]. Instructions to pay attention

to and later rate the intensity of a taste increased the activations to

taste in the insular taste cortex but not in the orbitofrontal and

pregenual cingulate cortices [17]. Our new method reveals how

the effective top-down connectivity changes when attention is paid

to the pleasantness vs the intensity of a taste, and helps in the

interpretation of the source of the signals that implement top-down

attention.

Materials and Methods

Granger causality with signal-dependent noise
Classical Granger causality. We start with a brief review of

classical GC. Consider the following zero-mean vector autore-

gressive model (VAR) of order p:

xt~
Xp

j~1

Ax,jxt{jzEEx,t, t~1,2, � � � , ð1Þ

where xt is a dx-dimensional column random vector,

Ax,j , j~1, � � � , p are fixed dx|dx coefficient matrices, and EEx,t is

a dx-dimensional independent identically distributed (i.i.d) white

noise or innovation process, with a positive definite and time

invariant covariance matrix Sx. We require that this VAR(p)

process is stable, that is,

det I{Ax,1z{ � � �{Ax,pzp
� �

=0, DzDƒ1, ð2Þ

where det(:) is the determinant of a matrix, I is an identity matrix,

and z is a complex variable. This stability condition implies that

the VAR(p) process is weakly stationary, i.e., its first and second

order moments exist and are time invariant [27].

Now, assume xt and yt admit a jointly stable VAR represen-

tation. xt can thus be modeled as

xt~
Xp

j~1

Axx,jxt{jz
Xp

j~1

Axy,jyt{jzEExy,t, t~1,2, � � � , ð3Þ

where yt is a dy-dimensional column random vector, and EExy,t is a

white noise process with a covariance matrix Sxy.

Classical GC depends on temporal precedence and predictabil-

ity. The idea is that a cause cannot come after the effect. Thus, if

yt affects xt, including the past information of yt should improve

the predictions of xt. More formally, if the prediction error of xt is

reduced when the past information of yt is taken into account,

then yt has a causal influence on xt in the sense of Granger.

Formulating the idea in the context of a VAR model, the causal

influence from yt to xt in the time domain can be quantified as

[28,29]

F y?x~log
det(Sx)

det(Sxy)

� �
: ð4Þ

F y?xw0 indicates a causal influence from yt to xt, and F y?x~0

otherwise. Note that model (1) is a restricted version of model (3),

and that yt does not cause xt if and only if Axy,j:0 for all

j~1, � � � , p [27].

When the white noise is Gaussian distributed, it has been shown

that the GC measure in Eq. (4) is equivalent to the likelihood ratio

test statistic [30]

Ry?x~
L bhhrestrictedDfxtgT

t~1

� �
L bhhfullDfxtgT

t~1,fytg
T
t~1

� � , ð5Þ

where L bhhrestrictedDfxtgT
t~1

� �
:Pr fxtgT

t~1Dbhhrestricted

� �
is the likeli-

hood function, i.e., the probability of the observed time series

fxtgT
t~1, given the maximum likelihood estimate of the parametersbhhrestricted of the restricted model (1). L bhhfullDfxtgT

t~1,fytg
T
t~1

� �
:

Pr fxtgT
t~1Dbhhfull,fytg

T
t~1

� �
is interpreted similarly under the full

model (3). Therefore, a likelihood ratio test can be used for causal

inference:

Author Summary

We show that in cortical areas such as the insular,
orbitofrontal, and lateral prefrontal cortex, the variation
of the blood-oxygen level dependent (BOLD) time series
across trials measured with functional magnetic resonance
imaging (fMRI) increases with the magnitude of the signal.
We describe a new method of measuring causal effects
with Granger causality that takes into account this signal-
dependent noise. We show in a functional neuroimaging
investigation with the new method that there is a causal
influence from the anterior lateral prefrontal cortex that
during attention to the pleasantness of taste stimuli
increases the response of the orbitofrontal cortex to the
taste; and there is a causal influence from the posterior
lateral prefrontal cortex to the insular taste cortex during
attention to the intensity of taste stimuli. This shows how
part of the circuitry involved in the effects of selective
attention on the pleasantness and intensity of stimuli
operates in the brain.

Granger Causality with Signal-Dependent Noise
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ry?x~{2

logL bhhrestrictedjfxtgT
t~1

� �
{logL bhhfulljfxtgT

t~1,fytg
T
t~1

� �h i
:
ð6Þ

The test statistic ry?x is approximately chi-squared distributed, with

degrees of freedom dffull{dfrestricted, where dffull and dfrestricted are

the number of free parameters of the full model (3) and the restricted

model (1), respectively.

The signal-dependent noise model. To relax the assump-

tion of a time invariant covariance matrix in the AR model, Engle

invented the first changing volatility model — the autoregressive

conditional heteroskedasticity (ARCH) model [31], which was

then extended to generalized ARCH (GARCH) models [32,33] as

well as multivariate cases [34–36]. Assume rt is a d-dimensional

zero mean, serially uncorrelated process, which may be the

residual process of some dynamic model and can be represented as

rt~S
1=2
tDt{1EEt, ð7Þ

where EEt is a d-dimensional i.i.d white noise process, StDt{1 is the

conditional covariance matrix of rt, given Vt{1~frt{1, rt{2, � � �g,
and S

1=2
tDt{1 is the symmetric positive definite square root of StDt{1.

Then a multivariate ARCH process of order q takes the form

vech Stjt{1

� �
~

c0zC1vech rt{1rt{1

� �
z � � �zCqvech rt{qrt{q

� �
,

ð8Þ

where vech(:) denotes the half-vectorization operator which stacks

the columns of a square matrix from the diagonal downwards in a

vector, c0 is a 1
2

d(dz1)-dimensional column vector of constants

and Cj , j~1, � � � , q are 1
2

d(dz1)| 1
2

d(dz1) coefficient matrices.

It can be seen that even for a bivariate series with a low order, this

general model has a fairly large number of parameters. Therefore,

more restricted models were proposed. For example, Bollerslev et

al. considered diagonal ARCH processes where all the Cj matrices

are diagonal [35]. To guarantee the positive definiteness of the

conditional covariance matrix StDt{1, Baba, Engle, Kraft and

Kroner investigated the following variant of a multivariate ARCH

model, known as the BEKK model [37,38]

StDt{1~C0zC1 rt{1rt{1C1z � � �zzCq rt{qrt{qCq, ð9Þ

where is the matrix transpose, C0~C0 C0 is positive definite,

and all Cj , j~1, � � � , q are d|d matrices. In contrast to the

diagonal model, the BEKK model produces interactions between

second order moments and can generate rich volatility dynamics.

We now present a Granger causal model with signal-dependent

noise [13]. Consider the following multivariate model with time

varying volatility, in particular, signal-dependent noise:

xt~
Pp

j~1 Ax,jxt{jzrx,t, rx,t~S
1=2
x,tDt{1EEx,t,

Sx,tDt{1~Cx Cxz
PPq

j~1 Bx,jxt{jxt{jBx,j ,
ð10Þ

where xt is a dx-dimensional column random vector, ex,t is a dx-

dimensional Gaussian distributed white noise process with zero

mean and unit variance, p and q are the model orders,

Ax,j , j~1, � � � , p, Bx,j , j~1, � � � , q and Cx are coefficient matri-

ces. The volatility model is a modification of the BEKK model

[38] in which the conditional covariance matrix Sx,tDt{1 does not

regress on the residual process rx,t but only depends on the past

history of the process xt before time t. Hence, the covariance

(second order statistics) of the noise process is coupled to the mean

(first order statistics). This form also guarantees the positive

definiteness of Sx,tDt{1. Clearly, when Bx,j:0 for all j, the

conditional covariance is time invariant and the model reduces to

the AR model. In the light of these points, we term our model (10)

the AR-BEKK model.

We now summarize our use of the terms ‘signal’ and ‘noise’ in

the reminder of the paper for the model and in the empirical

analysis of the fMRI data. We assume that the observed time series

xt is a realization from the following general process:

xt~f (U t{1)zs1=2(U t{1)Et, ð11Þ

where U t~fxt, xt{1, � � �g, Et is an i.i.d white noise process, f (:)
and s(:) can be any continuous functions, s(:) is nonnegative. We

define f (U t{1) to be the ‘signal’, and s1=2(U t{1)Et to be the

‘noise’. The variance of the noise is s(U t{1)~var xtDU t{1)~ð
var(xt{f (U t{1)Þ. Given the past history of the time series, the

signal is a deterministic process while the noise is what cannot be

predicted and produces the variation across realizations. Empir-

ically, since f (U t{1)~E(xtDU t{1), the signal is estimated by

projecting xt onto the subspace spanned by U t{1. The noise is

estimated by the residual of the projection. In the Results section,

we investigate different subspaces spanned by U t{1 to provide

empirical evidence for the signal-dependent noise in fMRI BOLD

time series. In the model, we specify particular forms of the

functions f (:) and s(:). In particular, according to model (10), we

assume f (U t{1) is a linear function of xt{1, i.e., f (U t{1)~axt{1,

and we assume s(U t{1) is a quadratic function of xt{1, i.e.,

s(U t{1)~c2zb2x2
t{1. Therefore, in the model, the signal is

estimated by axt{1 and the variance of the noise is estimated by

c2zb2x2
t{1. In the Results section, we show the concordance of

the definitions of ‘signal’ and ‘noise’ in the model and in the

empirical data analysis, that is, in spite of the simplified forms of

f (:) and s(:), our model captures a large portion of the variance in

the empirical signal and noise. We note that classical Granger

causality assumes that the variance of the noise as just defined is

constant across the time course of the process (e.g., the time course

of an fMRI trial), and that Granger causality with signal-

dependent noise allows causality to be calculated more powerfully

if the variance of the noise within a trial is not constant.

Granger causality with signal-dependent noise. To

define the causal relationship between xt and another dy-

dimensional time series yt, consider the following joint AR-BEKK

model:

zt~
Xp

j~1

Ajzt{jzrt, ð12Þ

where zt~ xt ,yt

� �
, rt~ rxy,t,ryx,t

� �
, rxy,t~S

1=2
xy,tDt{1EExy,t,

ryx,t~S
1=2
yx,tDt{1EEyx,t, EExy,t and EEyx,t are dx-dimensional and dy-

dimensional independent Gaussian distributed white noise pro-

cesses with zero mean and unit variance respectively, and

Sxy,tDt{1~CxyCxyz
Pq

j~1 Bxy,jzt{jzt{jBxy,j ,

Syx,tDt{1~CyxCyxz
Pq

j~1 Byx,jzt{jzt{jByx,j :
ð13Þ

Here, Aj , j~1, � � � , p, Bxy,j , Byx,j , j~1, � � � , q and Cxy, Cyx are

Granger Causality with Signal-Dependent Noise
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all coefficient matrices. The causal influence from yt to xt can be

defined as [13]

F y?x~log
det Cx Cx

� �
det CxyCxy

� �
2
4

3
5: ð14Þ

F y?xw0 if yt has a causal effect on xt, and F y?x~0 otherwise. It

can been seen that yt can help improve the prediction of xt by

impacting on either its mean activity through the coefficients in Aj ,

or its variance through the coefficients in Bxy,j . These two cases

correspond to causality in the mean and variance respectively.

When the noise in xt is not signal-dependent, i.e., Bxy,j:0 and

Byx,j:0 for all j, the model reduces to a VAR model and the

definition of causality coincides with classical GC in the time

domain (See Eq. (4)).

Stability conditions. To guarantee the stability of the AR-

BEKK model, we provide the stability condition for a simple first-

order model, i.e., p~q~1 in Eq. (12). This is the model that we

usually use for fMRI data analysis considering the poor temporal

resolution of BOLD signals, and the relatively fast signal

transmission between groups of neurons [2,4,39,40]. In the

remainder of this paper, both in simulations and real data

analysis, we focus on this first-order model unless otherwise

specified. We also assume that EExy,t and EEyx,t are uncorrelated. The

stability of the model involves both the first and second order

stability conditions, i.e., the unconditional mean and covariance of

zt exist and are time invariant. For the first order stability

condition, it follows from the theory of the AR model that all the

eigenvalues of A1 have modulus less than 1. For the second order

stability, note that

cov(ztDU t{1)~cov(rtDU t{1)~diag Sxy,tDt{1,Syx,tDt{1

� 	
, ð15Þ

and

cov(ztDU t{1)~E(ztzt DU t{1){E(ztDU t{1)E(zt DU t{1), ð16Þ

where U t{1~(zt{1,zt{2, � � � ). Therefore,

E(ztzt jU t{1) ~

A1zt{1zt{1A1 zdiagfCxyCxyzBxy,1zt{1zt{1Bxy,1,

CyxCyxzByx,1zt{1zt{1Byx,1

o
:

ð17Þ

Taking the expectation on both sides yields

E(ztzt ) ~

A1E zt{1zt{1

� �
A1 zdiagfCxyCxyzBxy,1E zt{1zt{1

� �
Bxy,1,

CyxCyxzByx,1E zt{1zt{1

� �
Byx,1

	
:

ð18Þ

This can be transformed into the following equation using the

vectorization operator, which stacks the columns of a square

matrix into a column vector:

vec E(ztzt )

 �

~

A16A1vec E zt{1zt{1

� �
 �
zvec diag CxyCxy,CyxCyx

n oh i
z diag Bxy,1,Byx,1

n o
6diag Bxy,1,Byx,1

n oh i
:T:vec E zt{1zt{1

� �
 �
:~ eAAzeBB� �

vec E zt{1zt{1

� �
 �
zeCC ,

where 6 is the Kronecker product,

T~
I

0

� �
6

I

0

� �
z

0

I

� �
6

0

I

� �
:

Therefore, it is required that all the eigenvalues of eAAzeBB have

modulus less than 1.

Model estimation. Using Bayes’ theorem, the joint density

function of r1, � � � ,rT is

f (r1, � � � ,rT )~f (r1)f (r2Dr1) � � � f (rT DrT{1, � � � ,r1): ð19Þ

Thus, the conditional distribution of rt given U t{1 is Gaussian and

if the ut are observed quantities, the log-likelihood function of the

AR-BEKK model described by Eq. (12), for a sample u1, � � � ,uT is

given by

logL hfulljfxtgT
t~1,fytg

T
t~1

� �
~

XT

t~1

logLt hfulljfxtgT
t~1,fytg

T
t~1

� �
,

ð20Þ

where hfull is a vector of all unknown parameters of the model (12)

and

logLt hfullDfxtgT
t~1,fytg

T
t~1

� �
~{

dxzdy
2

log 2p{ 1
2

logDSxy,tDt{1D{ 1
2

ut S{1
xy,tDt{1ut,

ð21Þ

where the required initial values for specifying StDt{1 are assumed

to be available. The likelihood function may be maximized with

respect to the parameters hfull by using numerical methods.

Specifically, the initial values of A1 are given by the least square

estimates of zt~A1zt{1zrt, assuming a simple AR model, and

Bxy,1,Byx,1 and Cxy,Cyx are then initialized to diagonal matrices

whose l-th element on the diagonal is the least square estimate of

r2
xy,t

h i
l
~ C2

xy

h i
ll
z B2

xy,1

h i
ll

z2
t{1


 �
l
, ð22Þ

and

r2
yx,t

h i
l
~ C2

yx

h i
ll
z B2

yx,1

h i
ll

z2
t{1


 �
l
, ð23Þ

using the residuals rt from the AR fitting. The constrained

maximum likelihood estimation of the model parameters can be

obtained by solving the optimization problem

bhhfull~argmaxhfull

XT

t~1

logLt(hfull), ð24Þ

Granger Causality with Signal-Dependent Noise
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while satisfying the first and second order stability conditions

derived above. We use Matlab function fmincon with the interior-

point algorithm to tackle this restricted optimization problem.

(Note that sometimes fmincon with the interior-point algorithm

may fail to converge to a reasonable solution. In this case, we use

the active-set algorithm as an alternative.) The parameters of the

restricted model (10) can be estimated similarly.

Causal inferences. The nonparametric bootstrap method

for causal inferences used in [13] is time-consuming. Here we

develop an analog of the likelihood ratio test for classical GC (See

Eq. (6)) to improve computational efficiency. Similarly, the

likelihood ratio test statistic takes the form

ry?x~{2 logLL bhhrestrictedjfxtgT
t~1

� �
{logLL bhhfulljfxtgT

t~1,fytg
T
t~1

� �h i
~{2

PPT
t~1 logLLt

bhhrestrictedjfxtgT
t~1

� �
{logLLt

bhhfulljfxtgT
t~1,fytg

T
t~1

� �h i
:

ð25Þ

The test statistic approximately follows a chi-squared distribution,

and the degrees of freedom are 2dxdy. Therefore, a parametric

chi-squared test can be carried out to test the significance of the

causal influence. This likelihood ratio test also has a connection to

the transfer entropy between time series [30]. However, since the

residual process in the AR-BEKK model is not a Gaussian white

noise, the likelihood ratio test is not equivalent to the measure

defined in Eq. (14).

To test the difference between the causalities in the opposite

directions between brain areas, note that the difference of the two

causality measures is rdiff~
1
2

ry?x{
1
2

rx?y, where ry?x and rx?y

are two chi-squared distributed random variables with the same

degrees of freedom. Therefore, the distribution function of rdiff is

Tm(x)~
1

2m
ffiffiffi
p
p

C mz 1
2

� � xmKm(x), ð26Þ

where Km is a modified Bessel function, C(:) is a Gamma function,

and m~dxdy{
1
2

[41]. A table for the two-sided one and five

percent quantile of this distribution can be found in [41]. For

example, in the investigation of a pair of univariate time series, i.e.,

dx~dy~1, a difference measure of 4.61 implies a p-value of 0.01.

Simulation studies
Methodology assessment. We illustrate the Granger causal

model with signal-dependent noise and the likelihood ratio test by

a simulation study. Consider the following first-order AR-BEKK

model for two univariate time series xt and yt:

xt

yt

� �
~

0:1 0

0 0:1
ffiffiffi
2
p

� �
xt{1

yt{1

� �
z

rxy,t

ryx,t

� �
,

rxy,t

ryx,t

� �
~

S
1=2
xy,tDt{1EExy,t

S
1=2
yx,tDt{1EEyx,t

2
4

3
5,

S
1=2
xy,tDt{1 ~ 1z½q1, (1{q1)q3�½xt{1, yt{1�½xt{1, yt{1� ½q1, (1{q1)q3� ,

S
1=2
yx,tDt{1 ~ 1z½(1{q2)q4, q2�½xt{1, yt{1�½xt{1, yt{1� ½(1{q2)q4, q2� ,

where q1 and q2 are random numbers uniformly distributed in

½0, 1�, and q2 and q4 are random numbers with the probability of

0.6 to be 0 and 0.4 to be 1. It is clear that there is a causal

influence from yt to xt if and only if (1{q1)q3=0, and from xt to

yt if and only if (1{q2)q4=0.

We generated 100 models with different qi, i~1, � � � , 4, and for

each model we generated time series of 1000 points with 2

replicates. We then fitted both the classical Granger causal model

and the signal-dependent noise model to the data. Using different

p-value thresholds, the performance of the two models was

compared by the ROC (Receiver Operating Characteristic) curve

[42].

An illustration of how signal-dependent noise may arise

in BOLD activations. In the Results section below, we provide

empirical evidence for the presence of signal-dependent noise in

fMRI BOLD time series. In order to illustrate how signal-

dependent noise may arise in BOLD activations from the

underlying neuronal firing, we performed the following simula-

tions. These simulations were on a simple model developed for the

purposes of illustration. The concept is to investigate how the close

to Poisson firing of neuronal spikes of neurons in the cortex for a

given mean firing rate [11,12] might be reflected in a signal

produced by feeding the spiking neuronal activity into a widely

used generative biophysical model describing the hemodynamic

response [43]. This hemodynamic model links neuronal activity to

blood flow and incorporates the well established Balloon model

[44,45]. For the Poisson spiking, the variance of the spike counts in

a time window increases linearly with (and is equal to) the mean

spike count.

We simulated spike trains of neurons following Poisson

processes with mean firing rates of 5 Hz, 40 Hz and 80 Hz

respectively for 1 second. The spike trains were then fed into the

following biophysical model describing the hemodynamic response

induced by the neuronal activity [43]:

ds
dt

~z{ks{c(f {1)

df
dt

~s

t dv
dt

~f {v1=a

t dq
dt

~ f
r 1{(1{r)1=f
h i

{qv1=a{1

8>>>>><
>>>>>:

ð27Þ

where z is the input spike trains; s is the vasodilatory signal; f is the

cerebral blood inflow (CBF); v is the cerebral blood volume (CBV);

q is the deoxyhemoglobin (dHb) content; 1=k is time constant of

signal decay; 1=c is the time constant of the feedback auto-

regulatory mechanism; t is the mean transit time in the post-

capillary venous compartment; a is the Grubb’s parameter and r
is the resting net oxygen extraction fraction by the capillary bed.

Finally, the observed BOLD time series is a nonlinear function of

the CBV and dHb content:

xt~V0 k1(1{q)zk2(1{q=v)zk3(1{v)½ �zzt, ð28Þ

where zt is the observation noise, V0&0:02 is the resting blood

volume fraction, k1&7r, k2&2, k3&2r{0:2 for 1.5-T scanners.

All biophysical parameters were set to their typical values

(k~0:65; c~0:41; t~0:98; a~0:32; r~0:34) [46]. For each of

these firing rates, the simulation was repeated 100 times,

producing 100 simulated trials of the fMRI BOLD time series

with temporal resolution 1 ms for a total of 25 seconds. We

downsampled the time series to a sampling rate of 1 Hz to reflect

the temporal resolution of real BOLD signals. We then empirically

estimated the signal and noise as defined above. In particular, we

investigated different subspaces spanned by U t{1, including (1)

linear bases with different time lags; (2) second-order polynomial

bases with different time lags; and (3) sixth-order Fourier bases

with different time lags, to ensure that the observed signal-

dependent noise phenomenon does not depend on the selection of

(25)
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the projection space. Any non-random relationship between the

empirically estimated signal E(xtDU t{1) and the empirically

estimated variance of the noise var(xtDU t{1) indicates the

presence of signal-dependent noise. In particular, we tested if

there exists a significant correlation between E(xtDU t{1)½ �2 and

var(xtDU t{1).

fMRI experiment
The fMRI dataset is the same as that obtained and used in

previous investigations [17,47,48]. We describe key imaging

acquisition, preprocessing and psychophysiological interaction

(PPI) analyses for completeness. We refer the readers to previous

publications for the full details.

Participants and ethics statement. Twelve healthy volun-

teers (6 male and 6 female, age range 21{35) participated in the

study. Ethical approval (Central Oxford Research Ethics Com-

mittee) and written informed consent from all subjects were

obtained before the experiment. The subjects had not eaten for

three hours before the investigation.

Experimental design. We used the identical taste stimulus,

0:1 M monosodium glutamate (MSG) with 0:005 M inosine

monophosphate (see [49]), referred to throughout this paper for

brevity as monosodium glutamate, in two different types of trial. A

trial started 5 seconds before the taste delivery with the visual

attentional instruction either ‘‘Remember and Rate Pleasantness’’

or ‘‘Remember and Rate Intensity’’, which was shown until the

end of the taste period. The 0:75 ml taste stimulus was delivered at

t~5 s. The taste period was from t~5 s until t~14 s, and in this

period a red cross was also present indicating that swallowing

should not occur. The differences between the activations in this

period were a measure of the effects of the top-down selective

attention instructions while the taste was being delivered. (We note

that in order to utilize top-down attention, one needs to hold the

object of attention in mind, in this case pleasantness or intensity.

This requires a short-term memory. Short-term memory is thus a

sine qua non of selective attention [50,51], and it is the source of

this top-down bias from a short-term memory system in which we

are interested in this investigation.) After the end of the taste

period, the visual instruction and red cross were turned off, and a

green cross was shown cueing the subject to swallow. After 2 s a

tasteless rinse was delivered with a red cross, and the rinse period

was from t~16 s until t~23 s, when the green cross appeared to

cue a swallow. After this the rating of pleasantness or intensity was

made using button-press operated visual analog, rating scales

ranging continuously from z2 (very pleasant) to {2 (very

unpleasant) for pleasantness, and 4 (intense) to 0 (very weak) for

intensity as described previously [52]. These two trial types were

interspersed in random permuted sequence with other trials that

were part of a different investigation, and each was presented 9
times. As different trial types were being run in the scanner at the

same time, and included different stimuli, and no instructions were

given about the number of stimuli being used, or that the stimuli

were the same on the ‘‘Remember and Rate Intensity’’ and

‘‘Remember and Rate Pleasantness’’ trials, the participants simply

had to concentrate on following the instructions about what aspect

of the taste stimulus, intensity or pleasantness, had to be rated on

that trial. The protocol and design are described in [17], and have

been used successfully in previous studies to investigate taste

cortical areas [22,53–55].

fMRI data acquisition. Images were acquired with a 3:0-T

VARIAN/SIEMENS whole-body scanner at the Centre for

Functional Magnetic Resonance Imaging at Oxford (FMRIB),

where 27 T2� weighted EPI coronal slices with in-plane resolution

of 3|3 mm and between plane spacing of 4 mm were acquired

every 2 seconds (TR~2 s). We used the techniques that we have

developed over a number of years [49,53], and as described in

detail by [56] we carefully selected the imaging parameters in

order to minimize susceptibility and distortion artefact in the

orbitofrontal cortex. The relevant factors include imaging in the

coronal plane, minimizing voxel size in the plane of the imaging,

as high a gradient switching frequency as possible (960 Hz), a short

echo time of 28 ms, and local shimming for the inferior frontal

area. The matrix size was 64|64 and the field of view was

192|192 mm. Continuous coverage was obtained from z62 (A/

P) to {46 (A/P). A whole brain T2� weighted EPI volume of the

above dimensions, and an anatomical T1 volume with coronal

plane slice thickness 3 mm and in-plane resolution of 1|1 mm
were also acquired.

fMRI data preprocessing. The imaging data were analyzed

using SPM5 (Statistical Parametric Mapping, Wellcome Trust

Centre for Neuroimaging, London. http://www.fil.ion.ucl.ac.uk/

spm/). Preprocessing of the data used SPM5 realignment, reslicing

with sinc interpolation, normalization to the Montreal Neurolog-

ical Institute (MNI) coordinate system [57], and spatial smoothing

with a 6 mm full width at half maximum (FWHM) isotropic

Gaussian kernel. Time series non-sphericity at each voxel was

estimated and corrected for [58], and a high-pass filter with a cut-

off period of 128 seconds was applied.

fMRI data analysis. To investigate task dependent activa-

tions of brain areas during the taste period, a Finite Impulse

Response (FIR) analysis was performed as implemented in SPM,

in order to make no assumption about the time course based on

the temporal filtering property of the haemodynamic response

function [59,60]. The a priori defined areas of interest (ROI) for

which we reported results [17] included brain areas where

activations to taste stimuli have been found in previous studies

including the medial and lateral orbitofrontal cortex, the

pregenual part of the cingulate cortex, and the taste and oral

somatosensory parts of the insular cortex [22,49,53–55,61,62]; and

areas of the lateral prefrontal cortex where activations related to

task set, attentional instructions, and remembering rules that guide

task performance have been found, including specifically parts of

the middle and inferior frontal gyrus [63–70]. A contrast of trials

where attention was being paid to taste pleasantness with trials

where attention was to intensity revealed significant effects in the

orbitofrontal cortex [26, 14, 220]. The reverse contrast of trials

where attention was to intensity vs trials where attention was to

pleasantness revealed significant effects in the right anterior insular

taste cortex [42, 18, 214] [17].

We then performed PPI analyses [71,72], using the above two

brain areas as seed regions, to investigate task-dependent functional

connectivity of these areas with other brain areas, that might

provide the source of the top-down modulation [47]. We identified

an anterior lateral prefrontal cortex (AntLPFC) region at

Y~53 mm in which the correlation with activity in the orbito-

frontal cortex (OFC) seed region was greater when attention was to

pleasantness than to intensity [47]. Conversely, in a more posterior

region of lateral prefrontal cortex (PostLPFC) at Y~34 mm the

correlation with activity in the anterior insula (AntINS) seed region

was greater when attention was to intensity than to pleasantness

[47]. The locations of the seed regions and the identified foci in

AntLPFC and PostLPFC are shown in Figure 1.

Empirical analysis of BOLD signals. An empirical analysis

was performed to provide evidence on whether there is signal-

dependent noise in fMRI BOLD time series. Again, we empirically

estimated the signal and noise by projecting the current state of the

observed fMRI BOLD time series onto a subspace spanned by its

past history. We investigated subspaces spanned by different sets of
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basis functions including (1) linear bases with different time lags; (2)

second-order polynomial bases with different time lags; and (3)

sixth-order Fourier bases with different time lags, to ensure that

the observed signal-dependent noise phenomenon does not

depend on the selection of the projection space. Any non-random

relationship between the estimated signal E(xtDU t{1) and the

estimated variance of the noise var(xtDU t{1) indicates the

presence of signal-dependent noise. In particular, we tested if

there exists a significant correlation between E(xtDU t{1)½ �2 and

var(xtDU t{1). We also investigated the correlation between the

empirically estimated signal, E(xtDU t{1)½ �2, and the model
estimate of the signal, âaxt{1; and the correlation between the
empirically estimated variance of the noise, var(xtDU t{1), and the

variance of the noise estimated by the model, ĉc2zb̂b2x2
t{1, where

âa, b̂b and ĉc are estimates of the model parameters, to test whether

there is good concordance between the model and the empirical

data analysis with respect to the signal and noise.

Granger causal analysis of fMRI BOLD signals. The PPI

analyses described above do not show the directionality of the

influences, as they are based on correlations, and for that reason

we applied Granger causal analysis to each pair of the four brain

areas (OFC, AntINS, AntLPFC and PostLPFC) [48]. We

extracted the mean BOLD signals from 33 voxels within a sphere

of radius 2 voxels centered at the seed voxels in OFC and AntINS,

and the peak voxels identified with the largest PPI effect in

AntLPFC and PostLPFC, for Granger causal analysis. For each of

the two experimental conditions (attention to intensity vs attention

to pleasantness), the time series for a single subject consisted of 9
trials, each with 18 BOLD signal data points (2 s apart), starting

on each trial at the onset of the instruction to pay attention to the

pleasantness or to the intensity of the taste. Each trial was denoised

by wavelet using a Matlab routine, mswden, with the Daubechies

2 (db2) wavelet, and threshold options sqtwolog (universal

threshold at sqrt½2 log(:)�) and sln (rescaling using a single

estimation of level noise, based on first level coefficients). Each trial

was also detrended and centered to zero mean before causal

analyses. For each experimental condition and each pair of the

four brain areas, we pooled data from all subjects (12|9 trials) to

fit the signal-dependent noise model, i.e., we treated the 108 trials

as repeated realizations from a common underlying model. We

detected unidirectional causal influences as well as significant

difference of the causalities in opposite directions [2] to identify the

dominant causal influences in a particular direction [48]. We also

applied classical GC to the same data set as a comparison.

Results

Simulation results
Figure 2 shows a comparison of performance for the classical

Granger causal model and the Granger causal model with

signal-dependent noise by ROC (receiver operating characteristic)

Figure 1. Results of the PPI analysis. A. The seed areas for the PPI analysis in the orbitofrontal cortex (1) [26, 14, 220], and insular taste cortex (2)
[42, 18, 214]. B. The region of the anterior lateral prefrontal cortex (AntLPFC) [240, 54, 14] identified by PPI analysis as correlated with the
orbitofrontal cortex seed area when attention was to pleasantness (pv0:029). C. The region of the posterior lateral prefrontal cortex [238, 34, 14]
identified by PPI analysis as correlated with the insular taste cortex seed area when attention was to intensity (pv0:049). The full details of the PPI
analysis are provided in [47].
doi:10.1371/journal.pcbi.1003265.g001
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analysis. Clearly, classical GC cannot capture the causal influences

well in the presence of signal-dependent noise, while the signal-

dependent noise Granger causal model substantially outperforms

the classical GC model, and shows a good sensitivity and specificity.

Figure 3A shows the mean BOLD signals calculated across the trials

for the three firing rates before downsampling. As expected, higher

firing rates evoked larger mean modelled haemodynamic responses.

However, the variability of the modelled BOLD response was

considerable, as illustrated for the mean firing rate of 40 Hz in

Figure 3A for 10 randomly selected trials. Figure 3B shows the relation

between the empirically estimated variance of the noise and the

squared empirically estimated signal at different time points within a

trial, using the projection space spanned by the second-order

polynomial basis, i.e., spanfxt{1,x2
t{1,xt{2,x2

t{2g. This shows that

the variance of the noise at any point in the time course of a trial is

approximately linearly related to the square of the signal. We obtained

consistent results using different projection spaces. Consistent results

with those just described can also be obtained with a simpler model in

which the spike trains are convolved with the canonical haemodynamic

response function to generate the BOLD signal, as described previously

[73,74]. This simple generative model of BOLD signals thus confirms

that Poisson spike trains could produce fMRI BOLD time series in

which the variance of the noise across the time course of a trial would

be linearly related to the squared signal. We show below that this is also

exactly what was found empirically in the fMRI data.

Empirical evidence for signal-dependent noise in BOLD
signals

Figure 4 shows the empirically estimated variance of the noise in

the fMRI BOLD time series obtained in this investigation as a

function of the squared empirically estimated signal at each time

point within a trial, using the projection space spanned by the

second-order polynomial basis, i.e., spanfxt{1, x2
t{1, xt{2,

x2
t{2g. Significant correlations are observed for both experimental

conditions by pooling data from the four brain regions (attention

to intensity, C~0:56, p~4:17|10{6, attention to pleasant,

C~0:42, p~7:75|10{4), which clearly indicates the presence of

signal-dependent noise in the fMRI BOLD time series. In

particular, the results shown in Figure 4 show that the variance

of the noise in BOLD time series is approximately linearly related

to the squared signal. A similar effect was also found for each brain

region when analyzed separately. The results were consistent using

different projection spaces. In particular, we observed significant

correlations when the project space was spanned by (1) linear bases

up to 9 time lags; (2) second-order polynomial bases up to 6 time

lags; and (3) sixth-order Fourier bases up to 2 time lags. These

results provide strong evidence for the presence of signal-

dependent noise in fMRI BOLD time series. Moreover, when

fitting our signal-dependent noise model to the real data, we

observed excellent concordance and significant correlation

between the empirically estimated signal, E(xtDU t{1)½ �2, and the

model estimate of the signal, âaxt{1 (attention to intensity,

C~0:35, p~4:00|10{3, attention to pleasantness, C~0:78,

p~2:88|10{14), and between the empirically estimated variance

of the noise, var(xtDU t{1), and the variance of the noise estimated

by the model, ĉc2zb̂b2x2
t{1 (attention to intensity, C~0:56,

p~1:17|10{6, attention to pleasantness, C~0:67, p~1:90|

10{9). The results were also consistent using different projection

spaces. This indicates that the AR-BEKK model is a good

Figure 2. Comparison by simulations of the performance of the classical Granger causal analysis and the Granger causality with
signal-dependent noise analysis by ROC (receiver operating characteristic) analysis. The sensitivity of the methods is plotted against
1{specificity for different p-value thresholds. The sensitivity is defined as the proportion of actual causal influences that are correctly identified. The
specificity measures the proportion of non-causal influences that are correctly identified. By setting different p-value thresholds for causality, each
method gives different sensitivity and specificity. Therefore, the best model is expected to have its performance ROC curve go through the upper left
corner, while a random classification algorithm has its performance curve as a diagonal line. The signal-dependent noise model outperforms the
classical Granger causal model substantially and consistently.
doi:10.1371/journal.pcbi.1003265.g002
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description of the data and captures a large portion of the variance

in the empirical signal and noise.

fMRI data investigation
Table 1 shows the causal influences between the four brain areas

(OFC, AntINS, AntLPFC, PostLPFC) detected by the Granger

causality with signal-dependent noise analysis. First, we consider

attention to intensity. There are significant (top-down) causal

influences from both the AntLPFC and PostLPFC to the insular

taste cortex (AntINS). Second, we consider attention to pleasantness.

There are significant (top-down) causal influences from both the

AntLPFC and PostLPFC to the OFC, and a significant effect from

the OFC to the antLPFC. There is also a (top-down) effect of the

PostLPFC on the taste insula (AntINS). Very interestingly too, during

attention to pleasantness, there is increased effective connectivity

from the insular taste cortex to the OFC, suggesting that information

is routed especially to the OFC during attention to pleasantness.

For comparison, Table 2 shows the causal influences between

the four brain areas detected by the classical Granger causal

model. Only one effective connectivity influence (PostLPFC to

Figure 3. An illustrative model of signal-dependent noise in BOLD signals. A. The mean BOLD signals for the different time points within a
trial (calculated across the trials) for three firing rates, with mean rates of 5, 40 and 80 spikes/sec. 10 randomly selected trials of the BOLD signals with
the input firing rate of 40 Hz are also shown (gray). B. The empirically estimated variance of the noise in the simulated BOLD time series plotted
against the squared empirically estimated signal using the projection space spanned by the second-order polynomial basis, with the input firing rate
of 40 Hz. The relation is approximately linear.
doi:10.1371/journal.pcbi.1003265.g003
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AntLPFC, when paying attention to intensity) was identified as

significant. The greater power of the signal-dependent noise model

can be clearly observed.

Table 3 shows the difference of the causalities in opposite

directions by the Granger causality with signal-dependent noise

analysis. In the pleasantness condition, consistent with the

hypothesis that the lateral prefrontal cortex is the source of the

top-down modulation of activations in the OFC, there are

significantly stronger effects from both the AntLPFC and the

PostLPFC to the OFC than vice versa. It is also of interest that in

the pleasantness condition, a significantly stronger forward

influence was detected from the antINS to the OFC. Only one

significant difference was detected for the intensity condition, that

is the effect from the PostLPFC to AntINS is greater than in the

reverse direction. This is consistent with the hypothesis that the

major top-down effect on the taste insula during attention to

intensity is from the PostLPFC. The bi-directional interaction in

the pleasantness condition between the AntLPFC and OFC

(Table 1) may be interpreted in the context that there is a

significant difference of the causality with AntLPFC to OFC

greater than OFC to AntLPFC, thus indicating a stronger

influence of AntLPFC on OFC than vice versa (Table 3).

These analyses provide evidence for the effective connectivities

in the attention to intensity and pleasantness conditions that are

summarized in Figure 5.

Discussion

In this paper, we for the first time provide empirical evidence for

signal-dependent noise in fMRI BOLD signals in several cortical

areas, such as the insular, orbitofrontal, and lateral prefrontal

cortical areas. We then developed a Granger causal model with

signal-dependent noise that can appropriately model BOLD signals

and detect causal influences in both mean and variance. By

simulation studies, we showed that our Granger causality with

signal-dependent noise analysis substantially outperforms classical

Granger causal analysis, when signal-dependent noise is present in

the time series. We applied our Granger causal model with signal-

dependent noise to the data from an fMRI study to investigate the

source of the top-down attentional influences on taste processing

when attention was to the intensity vs the pleasantness of the taste.

We found a top-down effect from the PostLPFC to the insular taste

cortex during attention to intensity but not to pleasantness; and a

top-down effect from the AntLPFC and PostLPFC to the OFC

during attention to pleasantness but not to intensity. In addition,

there was stronger forward effective connectivity from the insular

taste cortex to the OFC during attention to pleasantness than during

attention to intensity.

Assessment of the measurement of Granger causality
taking into account signal-dependent noise

Conditionally heteroskedastic data often show volatility cluster-

ing and outliers. In particular, the unconditional distribution of the

data is leptokurtic, which means that it has more mass around zero

and in the tails than the normal distribution and, hence, it can

produce occasional outliers [27]. Therefore, models with time

varying volatility can better capture the nature of the data, and it is

expected that more reliable causal inferences can be made.

Comparing to the earlier approaches of causal inferences in data

with time varying volatility [75–78], including [13], the model

presented in this paper that takes into account signal-dependent

noise provides an accurate, efficient and unified method to detect

causality in both the mean and variance. The model has a

corresponding frequency domain representation [13], which may

Figure 4. Empirical evidence for signal-dependent noise in BOLD signals. For each of the four brain areas and each subject, the empirically
estimated variance of noise in the observed fMRI BOLD time series is plotted against the squared empirically estimated signal for each time point
within a trial using the projection space spanned by the second-order polynomial basis. U t is defined in the text, and reflects the past history of times
eries xt. Significant correlations are observed for both experimental conditions (attention to intensity, C~0:56, p~4:17|10{6 , and attention to
pleasantness, C~0:42, p~7:75|10{4).
doi:10.1371/journal.pcbi.1003265.g004
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further shed light on frequency-specific interactions. The model

described here applies when the variance of the noise is

proportional to the square of the signal, which is what we

observed from real fMRI BOLD time series, but could in principle

be extended to deal with other cases. There are alternative

measures of Granger-type causality such as partial directed

coherence (PDC) [79], relative power contribution (RPC) [80]

and directed transfer function (DTF) [81] that do not explicitly use

the noise covariance function to define causality but are based on

the transfer function or model coefficients. However, because they

are typically formulated under the simple AR model, all these

methods are unable to capture causal influences in the second

order statistics such as signal-dependent noise.

It is not easy to tease apart ‘signal’ and ‘noise’ from an observed

time series. In this paper, we define ‘signal’ as the part of the

observations that can be well predicted from the past history of the

time series, and ‘noise’ as what is completely unpredictable and

produces the variation across realizations. We therefore empirically

estimate the signal by projecting the current state of the time series

onto the subspace spanned by its past history. In practice, if the

projection space is not constructed appropriately, part of the signal

that does not lie in the projection space may migrate to the residual

process and produce artificial signal-dependent noise phenomena.

In this case, expanding the projection space, i.e., using a more

complex model to describe the mean activity of the time series, may

mitigate the issues of signal-dependent noise. However, if the

variance of the noise is indeed dependent on the signal, simply

increasing the complexity of the model in the mean structure will

not remove this dependence. In the present paper, we investigated a

number of projection spaces, spanned by linear or nonlinear basis

functions with different time lags, and always observed signal-

dependent noise. Therefore, there is strong evidence for the

presence of signal-dependent noise in fMRI BOLD time series. In

particular, the variance of the noise is approximately linearly related

to the square of the signal. When constructing our signal-dependent

noise model, we made use of this relationship and specified a linear

Table 1. Causality results by Granger causality with signal-dependent noise analysis.

Intensity

OFC AntINS AntLPFC PostLPFC

OFC – 4.51 (0.10) 0.96 (0.62) 0.68 (0.71)

AntINS 2.15 (0.34) – 28.57 (v10{4) 13.59 (1:1|10{3)

AntLPFC 0.89 (0.64) 28.44 (v10{4) – 5.17 (0.08)

PostLPFC 0.62 (0.73) 29.62 (v10{4) 4.22 (0.12) –

Pleasantness

OFC AntINS AntLPFC PostLPFC

OFC – 16.92 (2|10{4) 44.94 (v10{4) 7.12 (0.03)

AntINS 94.79 (v10{4) – 2.09 (0.35) 17.56 (2|10{4)

AntLPFC 95.08 (v10{4) 6.72 (0.035) – 6.93 (0.03)*

PostLPFC 89.16 (v10{4) 22.81 (v10{4) 5.70 (0.06) –

The causal influence is from row to column. The causality is given for each direction, and the corresponding p-value is presented in brackets. If the uncorrected p-value is

less than 10{4 (surviving Bonferroni correction), the causal influence is identified as significant and indicated in bold in the table. (*: The active-set algorithm was used.)
doi:10.1371/journal.pcbi.1003265.t001

Table 2. Causality results by classical Granger causal analysis.

Intensity

OFC AntINS AntLPFC PostLPFC

OFC – 0.0039 (0.0061) 0.0006 (0.30) 0.0001 (0.62)

AntINS 0.0015 (0.09) – 0.0002 (0.56) 0.0003 (0.42)

AntLPFC 0.0000 (0.99) 0.0056 (0.0009) – 0.0043 (0.0041)

PostLPFC 0.0003 (0.43) 0.0122 (v10{4) 0.0013 (0.12) –

Pleasantness

OFC AntINS AntLPFC PostLPFC

OFC – 0.0000 (0.99) 0.0001 (0.71) 0.0000 (0.98)

AntINS 0.0001 (0.74) – 0.0023 (0.03) 0.0018 (0.06)

AntLPFC 0.0000 (0.99) 0.0002 (0.51) – 0.0059 (0.0007)

PostLPFC 0.0008 (0.22) 0.0034 (0.0099) 0.0002 (0.59) –

The causal influence is from row to column. The causality is given for each direction and the corresponding p-value is presented in brackets. If the uncorrected p-value is

less than 10{4 (surviving Bonferroni correction), the causal influence is identified as significant and indicated in bold in the table.
doi:10.1371/journal.pcbi.1003265.t002
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function to describe the mean activity of the observations, and a

quadratic function for the variance of the noise. Although the model

appears to be simple, we have shown that it captures a large portion

of the variance in the signal and noise in the empirical BOLD time

series. Future studies will be of interest to provide more evidence on

signal-dependent noise in different brain areas and different data

sets, to further examine the relationship between the variance of the

noise and the signal, and to develop more complex models, e.g.,

using nonlinear functions or kernels, accordingly.

Although we only applied our model to fMRI time series, it is

clear that the model can be applied to very many types of data that

might exhibit signal-dependent noise, including neurophysiologi-

cal data such as single or multi-neuron recordings, magnetoen-

cephalography, local field potentials, and beyond neuroscience

also to any possibly causal system where there are time series of

data from two or many sources. Indeed, the significance of

detecting causality from data with time varying volatility might be

partly demonstrated in the 2003 Nobel Prize in Economics shared

by Granger, who set up the foundation of Granger causal analysis

[6], and Engle, who invented the first changing volatility model

[31].

Although our initial implementation of the signal-dependent

noise model appears to be successful, due to the highly nonlinear

form of the log-likelihood function and optimization problem, fast

and robust optimization algorithms deserve future investigation.

Also, although a low-order low-dimensional AR-BEKK model is a

relatively parsimonious representation of the conditional covari-

ance structure of a process, the number of parameters still grows

quickly with the dimension of the underlying system. This impedes

the application of the model to a modest number of time series.

Future studies are needed to find more restricted models that

ensure uniqueness of the parameterization, guarantee the positive

definiteness of the conditional covariance, while at the same time

still produce rich dynamics.

In spite of the wide and successful applications in neurophys-

iological data, there is still an ongoing debate on applying GC to

fMRI data [10,82–87]. Inferring causality from fMRI time series

— an indirect measure of neuronal activities – imposes many more

challenges than direct electrophysiological recordings. Granger

causal models use the observed fMRI data as a surrogate for the

underlying neuronal activity, which is a potential flaw of the

method and the main controversy against the application of GC to

fMRI data, since the BOLD signal is a blurred and delayed

representation of the original neuronal signal, and it is now widely

recognized that there is intra- and inter-subject variability of

haemodynamic responses [88–91]. However, there have been a

series of numerical and theoretical works showing that GC is quite

robust to the difference in haemodynamic delays [92–94].

Moreover, as in [4], we calculated the cross-correlation function

for each pair of time series used in our Granger causal analysis,

and most of the cross-correlation peaks appeared at zero lag,

indicating that differences in the regional haemodynamic

responses may not be a significant factor in this study. We

therefore feel that the application of Granger type causal

inferences in the analysis of this particular fMRI data set is

justified. However, given the complexity of the brain, much work

Table 3. Difference of the causalities in opposite directions
by the Granger causality with signal-dependent noise analysis.

Direction Intensity Pleasantness

PostLPFCRAntLPFC – AntLPFCRPostLPFC 20.48 20.614*

PostLPFCRAntINS – AntINSRPostLPFC 8.02 2.62

PostLPFCROFC – OFCRPostLPFC 20.03 41.03

AntLPFCRAntINS – AntINSRAntLPFC 20.06 2.32

AntLPFCROFC – OFCRAntLPFC 20.03 25.07

AntINSROFC – OFCRAntINS 21.18 38.93

Differences with a p-value smaller than 0.01 (a difference measure greater than
4.61) are indicated in bold. (*: We used the active-set algorithm for this
particular link.)
doi:10.1371/journal.pcbi.1003265.t003

Figure 5. Neural circuits revealed by Granger causality with signal-dependent noise. A. Attention to taste intensity. B. Attention to taste
pleasantness. Larger arrows represent a stronger influence. The values of significant likelihood ratio test statistics are indicated.
doi:10.1371/journal.pcbi.1003265.g005
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remains to do to provide reliable and accurate causal analyses for

neuroscience.

Neural interpretation
The interpretation of the effective connectivity revealed with

our signal-dependent noise model is that during attention to

pleasantness, the AntLPFC and PostLPFC regions identified by

PPI analysis exert a top-down control of the responsiveness of

the OFC to its taste-related inputs, and indeed to how strongly

information is routed to the OFC from its preceding area, the

AntINS taste cortex. In contrast, during attention to intensity,

the PostLPFC identified by PPI analysis exerts a top-down

control of the responsiveness of the insular taste cortex to its

taste-related inputs. This interpretation is strengthened by the

findings with our componential Granger causal analysis [48],

which provides evidence that the top-down effects depend on

Figure 6. A Biased activation theory of selective attention. The short-term memory systems that provide the source of the top-down
activations may be separate (as shown), or could be a single network with different attractor states for the different selective attention conditions.
The top-down short-term memory systems hold what is being paid attention to active by continuing firing in an attractor state, and bias separately
either cortical processing system 1, or cortical processing system 2. This weak top-down bias interacts with the bottom up input to the cortical stream
and produces an increase of activity that can be supralinear [98]. Thus the selective activation of separate cortical processing streams can occur. In the
example, stream 1 might process the affective value of a stimulus with the areas involved including the anterior lateral prefrontal cortex with a top-
down influence on the orbitofrontal cortex, and stream 2 might process the intensity and physical properties of the stimulus with the areas involved
including the posterior lateral prefrontal cortex with a top-down influence on the insular taste cortex. The outputs of these separate processing
streams then must enter a competition system, which could be for example a cortical attractor decision-making network that makes choices between
the two streams, with the choice biased by the activations in the separate streams [19].
doi:10.1371/journal.pcbi.1003265.g006
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the level of activity in the areas on which there is a top-down

effect.

The way that we think of top-down biased competition as

operating normally in, for example, visual selective attention [95]

is that within an area, e.g. a cortical region, some neurons receive

a weak top-down input that increases their response to the bottom-

up stimuli [95], potentially supra-linearly if the bottom-up stimuli

are weak [50,51,63]. The enhanced firing of the biased neurons

then, via the local inhibitory neurons, inhibits the other neurons in

the local area from responding to the bottom-up stimuli. This is a

local mechanism, in that the inhibition in the neocortex is

primarily local, being implemented by cortical inhibitory neurons

that typically have inputs and outputs over no more than a few

mm [50,51,96]. This model of biased competition is illustrated in

[47]. That locally implemented biased competition situation may

not apply in the present case, where we have facilitation of

processing in a whole cortical area (e.g. orbitofrontal cortex) or

even cortical processing stream (e.g. the linked orbitofrontal and

pregenual cingulate cortex [47]) in which the activity of taste

neurons may reflect pleasantness and not intensity. So the

attentional effect might more accurately be described in the

present case as biased activation, without local competition being

part of the effect. This biased activation theory and model of

attention, illustrated in Figure 6, is a rather different way to

implement attention in the brain than biased competition, and

each mechanism may apply in different cases, or both mechanisms

in some cases [19,47,97].
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Functional magnetic resonance tomography correlates of taste perception in the

human primary taste cortex. Neuroscience 127: 347–353.
62. Nitschke JB, Dixon G, Sarinopoulos I, Short SJ, Cohen JD, et al. (2006) Altering

expectancy dampens neural response to aversive taste in primary taste cortex.

Nature Neuroscience 9: 435–442.
63. Deco G, Rolls E (2005) Attention, short-term memory, and action selection: a

unifying theory. Progress in Neurobiology 76: 236–256.
64. Sakai K, Passingham RE (2006) Prefrontal set activity predicts rule-specific

neural processing during subsequent cognitive performance. The Journal of

Neuroscience 26: 1211–1218.
65. Sakai K, Passingham RE (2002) Prefrontal interactions reflect future task

operations. Nature Neuroscience 6: 75–81.
66. Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to detect

taste in a tasteless solution: modulation of early gustatory cortex by attention to
taste. Chemical Senses 32: 569–581.

67. Beck DM, Kastner S (2009) Top-down and bottom-up mechanisms in biasing

competition in the human brain. Vision Research 49: 1154–1165.
68. Rossi AF, Pessoa L, Desimone R, Ungerleider LG (2009) The prefrontal cortex

and the executive control of attention. Experimental Brain Research 192: 489–
497.

69. Kouneiher F, Charron S, Koechlin E (2009) Motivation and cognitive control in

the human prefrontal cortex. Nature Neuroscience 12: 939–945.

70. Bengtsson SL, Haynes JD, Sakai K, Buckley MJ, Passingham RE (2009) The
representation of abstract task rules in the human prefrontal cortex. Cerebral

Cortex 19: 1929–1936.

71. Friston KJ, Buechel C, Fink GR, Morris J, Rolls ET, et al. (1997)

Psychophysiological and modulatory interactions in neuroimaging. NeuroImage

6: 218–229.

72. Gitelman DR, Penny WD, Ashburner J, Friston KJ (2003) Modeling regional

and psychophysiologic interactions in fMRI: the importance of hemodynamic
deconvolution. NeuroImage 19: 200–207.

73. Rolls ET, Grabenhorst F, Deco G (2010) Choice, difficulty, and confidence in
the brain. NeuroImage 53: 694–706.

74. Rolls ET, Grabenhorst F, Deco G (2010) Decision-making, errors, and
confidence in the brain. Journal of Neurophysiology 104: 2359–2374.

75. Cheung YW, Ng LK (1996) A causality-in-variance test and its application to

financial market prices. Journal of Econometrics 72: 33–48.

76. Hong YM (2001) A test for volatility spillover with application to exchange rates.

Journal of Econometrics 103: 183–224.

77. Pantelidis T, Pittis N (2004) Testing for Granger causality in variance in the

presence of causality in mean. Economics Letters 85: 201–207.

78. Hafner CM, Herwartz H (2008) Testing for causality in variance using

multivariate GARCH models. Annales d’Economie et de Statistique 89: 215–
241.
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