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Abstract

The solar wind provides a unique natural “laboratory” in which plasma tur-
bulence may be investigated in-situ. Turbulence is statistically reproducible. Thus,
in this thesis we investigate plasma turbulence in the solar wind through the statisti-
cal study of magnetic field observations. In particular, we investigate single-satellite
time-series of the magnetic field.

We discuss hydrodynamic turbulence, and make parallels between hydrody-
namic and magnetohydrodynamic turbulence. In hydrodynamic turbulence a unique
scaling relation may be determined from dimensional analysis. Importantly, one may
not derive a unique scaling relation for magnetohydrodynamic turbulence from di-
mensional analysis. Therefore, comparison of observations and turbulence models
are key to determining the underlying physics for specific plasma parameters.

The inertial range is a range of scales over which energy cascades from large
to small temporal-spatial scales. This thesis will predominantly be focused on the
anisotropy and scaling of the inertial range within the solar wind. We investigate
how sampling a solenoid field, i.e. ∇ · B = 0, with a single satellite produces
an apparent nonaxisymmetry with respect to the background magnetic field. We
also investigate how time-series discontinuities produced by non-turbulent structures
alter the statistical analysis of various anisotropy measures. We will find that the
commonly held picture of the solar wind, that specific temporal-spatial scales have a
distinct physical origin, is an over simplified model. We will show that non-turbulent
structures must be removed from the observations in order to analysis the statistics
of the turbulence accurately. The work in this thesis helps to constrain theories
of plasma turbulence where there is a background magnetic field with a greater
magnitude than the root-mean-square magnitude of the turbulent fluctuations.
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Chapter 1

Introduction

1.1 Introduction to Turbulence

Turbulence is a ubiquitous phenomenon in fluids. The study of turbulence has a

long history in the hydrodynamic context, due to the abundance of hydrodynamic

turbulence present on Earth, such as in the atmosphere, rivers and oceans. However,

the study of electromagnetically conducting fluids is a relatively new area of research

(e.g. see Alfvén [1942]; Kadomstev [1965] and references within). Consequently, the

subject of plasma turbulence is not itself separate from hydrodynamic turbulence,

as it calls upon the previous findings, knowledge and statistical measures albeit with

differing governing equations. However, contrary to hydrodynamic turbulence, there

is no requirement for universality in the equations of plasma turbulence.

We choose to start this thesis with a brief introduction to hydrodynamic

history and theory. We will present the governing equations of hydrodynamics,

highlight the significance of the dimensionless Reynolds number and show how the

nonlinear effects manifest in Fourier space. We will then define what is meant by ho-

mogeneous, isotropic and stationary. We will introduce Taylor’s Hypothesis, which is

of crucial importance for most experimental investigations of turbulence, and then

introduce the most famous hydrodynamic turbulence theory, that of Kolmogorov

1941. This will be followed by an introduction to magnetohydrodynamic (MHD)

turbulence with the presentation of the governing equations of momentum and in-

duction. We will present the Elsässer variables, which allow two variables to describe

the coupled equations of velocity and magnetic field fluctuations. We will present

the seminal MHD theories of Iroshnikov-Kraichnan and Goldriech-Sridhar, and note

additional models of interest to the solar wind environment. For completeness we

will conclude the introduction with a brief discussion of numerical simulations of

1



turbulence.

1.2 Hydrodynamic Turbulence

1.2.1 Hydrodynamic Background

We begin with the Navier-Stokes equation (Navier (1822), Stoke (1845)) of fluid dy-

namics. The Navier-Stokes equation builds on the previous work of Newton (1687),

Bernoulli (1738) and Euler (1757). The Euler equations are derived by fulfilling the

criteria of conserving mass, momentum and energy between fluid elements. This is

equivalent to the Navier-Stokes equation in the absence of viscosity and heat trans-

fer. The Navier-Stokes equation and incompressibility condition are presented under

the conditions of a homogeneous, Newtonian, incompressible fluid without gravity

or centrifugal force and for velocities smaller than the sound speed of the medium.

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∇2v (1.1)

∇ · v = 0 (1.2)

where ρ is the density, v is the velocity, p is the pressure and µ is the dynamic

viscosity. The left-hand-side of equation (1.1) is the inertia per volume and the

right-hand-side is the divergence of stress.

In 1883 Osborne Reynolds published a paper on the transition to turbulence

[Reynolds, 1883]. In order to understand the method and result of Reynolds it

is necessary to conduct a dimensional analysis of equation (1.1), specifically the

convective term (v · ∇)v , which is the source of the nonlinear interactions, and the

viscous term µ
ρ∇

2v. This leads to

Rv =
[(v · ∇)v]

[µρ∇2v]
=

V 2/L

νV/L2
=
V L

ν
(1.3)

where V is a characteristic velocity, L is a characteristic length-scale, ν is the kine-

matic viscosity and Rv is the kinetic Reynolds number.

It is not possible to know what result a specific Reynolds number will have

on a hydrodynamic flow from equation (1.1) alone. A simple attempt to understand

critical values for the onset of turbulence from theory is to estimate the time-scale

for perpendicular fluctuations to cross from one side of a pipe to the other as, τ⊥ ∼
D/v⊥ and the diffusion time-scale τν ∼ D2/ν. Therefore, if τν/τ⊥ ∼ v⊥D/ν > 1

perpendicular fluctuations are able to cover the cross-section of a pipe of diameter

2



Figure 1.1: Schematic representation of flow in a tube that is laminar or turbulent.
The blue velocity profile is for a laminar profile. The red velocity profile is for
a turbulent profile. The vertical dot-dash line represents the average of the flow
profiles for both the turbulent and laminar case. These profiles represent the fully-
developed case, such that the profile does not change with time or distance along
the tube.

D without being dissipated [Lesieur, 1997].

Reynolds was able to determine experimentally the values of equation (1.3)

that lead to turbulence by systematically varying the flow speed of fluid and altering

the diameter of tubes. He found that a hydrodynamic flow will remain laminar for

Rv < 2000, there is a transition to turbulence in the region of 2000 ≤ Rv ≤ 4000 and

turbulence will result for Rv > 4000. The universality of the Reynolds number for

the onset of turbulence has been central to nautical, aeronautical and automotive

design and development, as it allows models of various aspect ratios to behave like

the final product with respect to turbulence.

Interestingly, it is not only the apparent flow behavior that changes when the

flow becomes turbulent, as seen by injecting dye into a tube, but the fully developed

cross-sectional flow profile in a tube is fundamentally changed. A laminar flow (i.e.

Rv < 2000) has a well defined parabolic cross-sectional profile known as a Hagen-

Poiseuille flow. This is defined as v(r) = vc[1− ( rR)2], where vc is the velocity at the

center of a tube, r is the distance from the center of the tube and R is the Radius of

a tube [Sutera and Skalak, 1993]. Conversely, when Rv > 4000 the cross-sectional

profile is characterized by strong gradients at the boundaries and approximately

flat for the majority of the tube cross-section, such that vm,t − vav,t < vm,l − vav,l,
where subscript av, m, l and t denote average, maximum, laminar and turbulent

respectively. A schematic of this is shown in Fig. 1.1.

3



1.2.2 Fourier Transform of Navier-Stokes Equation

It is generally useful in the context of homogeneous turbulence to consider Fourier-

space instead of configuration space. Here we will show the Fourier transform of the

Navier-Stokes equation under the incompressibility condition. The linear terms of

equation (1.1) are simple to Fourier transform. The nonlinear term requires slightly

more care and yields important information regarding the nonlinear interactions.

The nonlinear term, (v · ∇)v, is a product operation in configuration space. Thus,

in Fourier space the nonlinear term is a convolution, which we express by summing

repeated indices using Einstein convention, such that F((v · ∇)v) = F(vj
∂vi
∂xj

) =

F(
∂vjvi
∂xj

) = ikj
∫
p+q=k ṽi(p, t)ṽj(q, t)dp, where q = k−p and F denotes the Fourier

transform operator. It is clear from this transform that interactions occur between

triads of wave vectors. In the literature (e.g. see Diamond et al. [2010] and references

within) the nonlinear interactions are separated into two different classes; a) local

interactions where all three wave vectors are of approximately the same magnitude

b) nonlocal interactions where there is a large difference in the magnitude of two

wave vectors with respect to the remaining wave vector. Throughout the thesis we

will only consider the case of local interactions.

For completeness we present the full Fourier transform in the plane perpen-

dicular to the wave vector k for the incompressible Navier-Stokes equation. We

note that due to the incompressibility condition, F(∇ · v(x, t)) = k · ṽ(k, t) = 0.

Therefore, nonlinear interactions occur only in the perpendicular plane with respect

to the wave vector. Thus we use the perpendicular projection operator, defined

Πij(k) = (δij − kikj
k2

), to describe the Fourier transformed Navier-Stokes equation

with nonlinear interactions(
∂

∂t
+ νk2

)
ũi(k, t) = ikmΠij(k)

∫
p+q=k

ṽj(p, t)ṽm(q, t)dp (1.4)

1.3 Statistical Definitions

Turbulent systems contain many degrees of freedom, such that three-dimensional

turbulence may be shown to contain approximately R
9/4
v degrees of freedom [Lesieur,

1997; Batchelor, 1953]. As highlighted in Section 1.2.1, for turbulence to exist Rv

must exceed O(103), so the degrees of freedom must exceed O(107). Thus, given

observations at time t it is not possible to predict the observations at t+ τ , due to

the many degrees of freedom.

The mathematical description defines a sample space and allows the velocity,

v(x, t), to be a random function within this space. Under such a treatment one con-
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ducts an experiment , which corresponds to studying a point in sample space (e.g.

a hot-wire observation of wind velocity). One then repeats N times and considers

ensemble averages preformed over independent realizations. Using ergodic theory

as N → ∞ the system mean quantities are determined. Therefore, the study of

turbulence lends itself to statistical study over many independent ensembles to un-

derstand the probabilistic nature of the system. Here we introduce and explain some

of the statistical language required and the practical concept of Taylor’s hypothesis.

1.3.1 Homogeneous

An important concept for the theory of turbulence is homogeneity, i.e. the mean

quantities built with a set of n points in coordinate space are invariant under any

spatial translation of the set. Such that

〈uα,1(x1, t1)...uα.n(xn, t1)〉 = 〈uα,1(x1 + y, t1)...uα.n(xn + y, t1)〉. (1.5)

This implies that the second-order correlation tensor is given as

Uij(r, t1, t2) = Uji(−r, t1, t2) = 〈ui(x1, t1)uj(x1 + r, t2)〉. (1.6)

1.3.2 Isotropic

Mean quantities built with a set of n points in coordinate space are invariant under

any number of simultaneous rotations. Is should be noted that the condition of

isotropy is a stricter condition than that of the homogeneous criteria, as any trans-

lation my be decomposed by two simultaneous rotations [Lesieur, 1997]. A random

function that is isotropic leads to the condition that the spatial average is zero, such

that 〈v(x, t)〉 = 0. Therefore, the first nontrivial correlation is the second-order

correlation tensor if isotropy is assumed, such as far from a boundary or interface

in hydrodynamic turbulence.

1.3.3 Stationary

Stationary is a temporal analogue to the spatial homogeneous condition, such that

the mean quantities for n points in coordinate space are invariant under any tem-

poral translation of the set. Such that

〈uα,1(x1, t1)...uα.n(x1, tn)〉 = 〈uα,1(x1, t1 + τ)...uα.n(x1, tn + τ)〉. (1.7)
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The condition shown in equation 1.7 is referred to as “strong” stationarity. Strong

stationarity applies only if equation 1.7 is true for all moments. Usually in the

context of signal analysis only the first and second moments are required to be

stationary, this is referred to as “weak” stationarity (e.g. see [Paschmann and Daly,

1998; Ghil et al., 2002] and references within). The stationary condition implies

that the mean kinetic energy per unit mass is independent of time. In reality such

a condition may only be realized if there is a constant forcing to balance the effect

of dissipation from the Navier-Stokes equation. The stationary condition is the

fundamental difference between turbulence that is modeled as freely-decaying or

forced.

1.3.4 Taylor’s Hypothesis

In 1938 G. I. Taylor published a paper that would have widespread experimen-

tal/observational use. Originally formulated in the context of hydrodynamic turbu-

lence, where generally it is possible to transform to the reference frame of the flow

without affecting the properties of the turbulent fluctuations, it was hypothesized

that observations recorded at a fixed point in space, as a time-series, may be con-

sidered as measuring the spatial pattern of turbulence without temporal evolution

[Taylor, 1938]. This is known as the ”frozen-in” condition. This has clear applica-

tion in the context of wind tunnels, where the mean flow velocity is much greater

than the root-mean-square fluctuations of the flow.

1.3.5 Kolmogorov 1941 theory (K41)

Here we will concern ourselves only with the predicted energy spectrum of the iner-

tial range, leaving such features as intermittency to Chapter 2. Consider isotropic

turbulence that is stationary, such that there is a large-scale forcing and a small-

scale dissipation. Assume that the separation between the forcing-scale, ki, and the

dissipation-scale, kd, is large. Therefore, the Reynolds number is large, not only

to induce turbulence but to extend the inertial range of nonlinear energy cascade

(the relation R
9/4
v ∼ (ki/kd)

3 [Lesieur, 1997] for isotropic turbulence requires that a

greater inertial range results from a larger Reynolds number). As the turbulence is

stationary the input energy at the forcing-scale is equal to the output energy at the

dissipative scale.

The original Kolmogorov theory of isotropic turbulence is constructed under

the assumption of stationarity, such that the energy flux through nonlinear interac-

tions is independent of k and equal to the viscous dissipation rate, ε. Another key
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assumption is that of a local cascade introduced by Richardson [1926]. This con-

dition means that in order for energy to move from ki → kd it must be transfered

through all intermediate k. Therefore, providing the intermediate k are completely

free of forcing and/or dissipative effects they may be considered indistinctive/self-

similar as they are independent of the particular details of the forcing or dissipative

physics.

With the previous a priori assumptions it is possible to predict the energy

spectrum as a function of k ( or as a function of k due to the isotropic condi-

tion). One needs to solve E(k) ∼ εαkβ, where α and β are exponents that must

lead to the correct physical dimensions for kinetic energy spectrum. The energy

per wavenumber, E(k), has the dimensions of [L]3[T ]−2. The dissipation rate, ε,

is the energy per second, with dimensions of [L]2[T ]−3. Therefore, the equation

[L]2α−β[T ]−3α = [L]3[T ]−2, must be solved for α and β. The unique solution is that,

α = 2/3 and β = −5/3. Thus, we arrive at the result of the Kolmogorov 1941

theory, that the energy spectrum as a function of wavenumber in the inertial range

of isotropic stationary turbulence goes as

E(k) = Ckε
2/3k−5/3, (1.8)

where Ck is called the Kolmogorov constant, which must be found experimentally

and has a typical value of 1.7 ± 0.2 [Bohr et al., 1998]. Note that this relation for

E(k) may also be found by considering the nonlinear time from the triple-velocity

correlation function, as done by Oboukhov [1941].

1.4 Magnetohydrodynamic (MHD) Turbulence

A plasma is an ionized gas, such that a simple plasma has a composition of equal

numbers of electrons and ions. In order to describe the system completely the

position and velocity of all particles must be known and evolved in time. However,

analogous to hydrodynamic, it is possible to construct macroscopic quantities, such

as temperature, density, average velocity and pressure, which allows the large-scale

plasma dynamics to be evolved. The simplest of such fluid-like representations is

that of magnetohydrodynamics, which is a one-fluid model applicable at scales larger

than the characteristic scales of the particle dynamics within the plasma.

Characteristic plasma scales are the Debye-length, the ion-cyclotron fre-

quency and the effective Hall length. The Debye length is related to a sphere of

influence, where charge interactions between individual particles are important. The

Debye length may be written as, lD =
√
ε0kBT/ne2, where ε0 is the permittivity
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of free-space, kB is the Boltzmann constant, T is the temperature, n is the number

density and e is the electron charge. The ion-cyclotron frequency is the inverse

time required for an ion to complete one gyration around the magnetic field. The

ion-cyclotron frequency may be written as ωi,c = qiB/mi, where qi is the charge

of the ion, B is the magnetic field magnitude and mi is the mass of the gyrating

ion. By substituting the ion mass for the electron mass it is possible to see that

the electrons gyrate at a much faster rate than the ions, such that if one wants

to consider a one-fluid model it is necessary to only consider temporal scales much

longer than the ion-cyclotron frequency.

The generalized Ohm’s law in the absence of the electron inertia term may

be written as

E = −(v ×B) +
j

σ
+

1

ene
(j×B)− 1

ene
∇pe, (1.9)

where E is the electric field, v is the bulk velocity, B is the magnetic field, j is the

electric current density, σ is the electrical conductivity, e is the electron charge, ne

is the electron number density and pe is the electron pressure. The individual terms

on the RHS of equation 1.9 are called the Induction, Ohmic, Hall and Battery term

respectively. The Hall term is negligible when the length-scale, L, is large enough

that the ions perform many gyro-rotations per Alfvén transit time, such that L �
vA/ωc,i, where vA is the Alfvén velocity. In Goossens [2003] it is demonstrated that

for parameters comparable to those found in the solar wind the relative importance

of the Ohmic, Hall and Battery term as a fraction of the Inertial term at large scales

(L = 106 m) is 10−12, 0.1, 10−2 respectively.

This implies a minimum length-scale for which the MHD model is applica-

ble. The smallest-scale considered must be greater than vA/ωc,i. There is no upper

length-scale or temporal-scale for the MHD model, as the conditions for validity

becoming increasingly well satisfied as L → ∞ and T → ∞ [Krall and Trivel-

piece, 1973; Goossens, 2003]. Note that formally the MHD model assumes a nearly

Maxwellian distribution function for ions and electrons due to collisions. Therefore,

the MHD model requires that the collisional time-scale is much less than the global

time-scales of the system. However, if a collisionless plasma is incompressible then

the magnetic field may preform the role of collisions, such that the MHD model may

be used.

We may now write the fluid equations for a conducting medium. The conti-

nuity (mass conservation) and incompressible equations (∇·v = 0) of hydrodynamics

are unchanged for MHD. Under the condition of incompressibility (∇ · v = 0) the
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MHD momentum, induction and solenoid equations are as follows

∂V

∂t
+ (V · ∇)V − (B · ∇)B = −∇P + ν∇2V (1.10)

∂B

∂t
+ (V · ∇)B− (B · ∇)V = η∇2B (1.11)

∇ ·B = 0 (1.12)

where P = 1
ρ(p+∇B2/(2µρ)), B is the magnetic field and η is the magnetic magnetic

diffusivity.

It can be seen from equation (1.10) and equation (1.11) that the magnetic

field and velocity are coupled. A more informative way of expressing these equations

is to rewrite them using a coupled variable, know as the Elsässer variable, such that

z± = v ± b, where the magnetic field is expressed in units of Alfvén velocity,

VA = B/
√
µ0ρ0. Elsässer variables are the eigenfunctions of noninteracting and

counter-propagating Alfvén waves that satisfy the incompressible MHD equations

[Elsässer, 1950]. The incompressible MHD equations may be rewritten in terms of

Elsässer variables by using V = V0+v and B = B0+b, where the bulk velocity and

background magnetic field are denoted V0, B0 and the fluctuations of the velocity

and magnetic field are denoted v, b respectively. With substitution for V and B

and subtraction ( addition) of equation (1.11) from (to) equation (1.10) the MHD

equations in terms of Elsässer variables may be written as

∂z±

∂t
∓ (B0 · ∇) z± +

(
z∓ · ∇

)
z± = −∇P +

1

2

(
ξ−∇2z∓ + ξ+∇2z±

)
(1.13)

where ξ± = ν ± η. The second term on the LHS of equation (1.13) implies that

there is no coordinate system that may be constructed to remove the dynamics of

the background field, B0.

1.4.1 Iroshnikov-Kraichnan Theory (IK)

Here we present a derivation for the inertial range spectrum of MHD turbulence

under the assumption of isotropy, which was first presented by Iroshnikov [1963]

and Kraichnan [1965]. We consider the nonlinear part of equation 1.13. The first

observation is that for a cascade to take place oppositely traveling Elsässer vari-

ables are required. We have assumed that the plasma is incompressible. Therefore,

the envisaged scenario is of counter-propagating Alfvén waves, z±, interacting to

form an inertial range. We now consider the characteristic time-scale for nonlinear
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interactions (
∂z±

∂t

)
nonlinear

=
(
z∓ · ∇

)
z± (1.14)

By using dimensional analysis and the condition of local interactions, we can esti-

mate a time-scale of interaction as, τ ∼ [zk]−1, where z is in units of velocity and

may be written as z =
√

(v20 + b20), where b0 and v0 are the root-mean-square of

the magnetic field and velocity fluctuations, in units of velocity, such that b0 may

be expressed in terms of the Alfvén velocity if desired. Therefore, if one considers

the case of a strong background magnetic field the time-scale of interaction may be

expressed as, τ ∼ [b0k]−1.

Now we conduct the full dimensional analysis, as was done in Section 1.3.5.

We use the following quantities; the energy dissipation rate ε = [L]2[T ]−3, propaga-

tion velocity b0 = [L][T ]−1, wavenumber k = [L]−1 and the energy per wavenumber

E(k) = [L]3[T ]−2. We use the starting point that ε ∼ bα0k
βE(k)γ . Therefore, we

have the two equations to solve, α − β + 3γ = 2 and 2γ + α = 3. Under the phe-

nomenology that α = 1, i.e. there is one externally applied characteristic velocity

[Iroshnikov, 1963; Kraichnan, 1965], one finds a solution for the energy spectra,

E(k) = CIk(εb0)
1/2k−3/2, (1.15)

where CIK is a constant to be found experimentally.

Iroshnikov [1963] and Kraichnan [1965] reasoned that if one uses the viral

theorem the magnetic and kinetic energy for Alfvén waves is expected to be equal.

Thus, if there is a negligible magnetic field to kinetic energy in the scales larger

than the inertial range the characteristic time-scale is that of velocity fluctuations,

τ ∼ [vkk]−1. Thus, by removing the background magnetic field and forcing the

system with kinetic energy at scales larger than the inertial range returns the K41

cascade [Iroshnikov, 1963; Kraichnan, 1965]. This has been found in simulations (e.g.

see Biskamp [2003]; Müller and Grappin [2005] and references within). Therefore, it

may be seen that the addition of a background magnetic field reduces the strength

of the nonlinear cascade from large-scales to dissipation scales.

1.4.2 Goldreich-Sridhar Theory (GS)

Goldreich and Sridhar [1995] presented the first anisotropic theory for the inertial-

range of MHD turbulence. As highlighted in section 1.4.1 there are two principal

time-scales that may be considered for MHD turbulence. The linear time-scale

proportional to the magnetic field strength, corresponding to the Alfvén wave period,
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and the nonlinear time-scales proportional to the intensity of velocity/magnetic field

nonlinear interactions. Their key assumption was to consider the case where the

nonlinear and linear time-scale are equal, a criteria known as “critical balance”. It is

assumed that the nonlinear cascade is purely two-dimensional in the perpendicular

plane and has the characteristics of three-dimensional hydrodynamic turbulence,

such that the energy spectra in the perpendicular plane is proportional to k
−5/3
⊥ .

We will present a dimensional analysis that returns the key result that k‖ ∼ k
2/3
⊥ .

We will then state the reduced one-dimensional energy spectra for the perpendicular

and parallel wave vectors predicted by the GS model.

We start by stating the perpendicular time-scale, τ⊥ ∼ [v⊥k⊥]−1, and the

parallel time-scale, τ‖ ∼ [vAk‖]
−1. The next step is to equate the two time-scales,

which corresponds to the distance that the perpendicular plane must be advected

in the parallel direction before a loss of correlation, vAk‖ ∼ v⊥k⊥. We note that

the fluctuations in the perpendicular plane are exactly the same as those in three-

dimensional hydrodynamic turbulence, such that v⊥ ∼ k
−1/3
⊥ . Therefore, one arrives

at the relation that k‖ ∼ k
2/3
⊥ . For dimensional consistency this may be written as

k‖ ∼ k
2/3
⊥ k

1/3
0 , where k0 is the inverse length scale at the beginning of the inertial

range. Isotropy is assumed between k⊥ and k‖ at the beginning (lowest wavenumber)

of the inertial range.

Goldreich and Sridhar [1995] wrote the three-dimensional energy spectrum

as

E(k⊥, k‖) = CGS
v2A

k
10/3
⊥ L1/3

g

(
k‖L

1/3

k
2/3
⊥

)
, (1.16)

where CGS is a dimensionless constant, L is a the energy containing length-scale,

such that g(α) is a dimensionless quantity, g(α) is some function that has the prop-

erty
∫
g(α)dα = 1. By integrating the three-dimensional energy spectrum one can

obtain the one-dimensional energy spectrum for either k‖ or k⊥ (e.g. See Tessein

et al. [2009]), which scale as E(k⊥) ∼ k−5/3⊥ and E(k‖) ∼ k−2‖ . It may be noted that

the GS theory is in contradiction to the IK theory.

1.4.3 Other MHD Turbulence theories

The IK and GS MHD turbulence theories represent pioneering models for the

isotropic and anisotropic case respectively. However, there are many more theo-

ries of MHD turbulence that are noteworthy and of particular interest to the solar

wind. These may be separated into strong and weak turbulence models, as well as

balanced and imbalanced. The term “strong” or “weak” refers to the whether there

is a resonant condition that limits the volume of interacting wave vectors, such that
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for strong turbulence no resonance criteria is needed. For more information on the

distinction between strong and weak MHD turbulence see Kadomstev [1965]; Galtier

et al. [2000]; Gogoberidze et al. [2009].The term “balanced” or “imbalanced” refers

to whether there is an equal amount of energy in the cascade for both Elsässer vari-

ables, z±. More information on imbalanced MHD turbulence theories can be found

in Lithwick et al. [2007]; Beresnyak and Lazarian [2008]; Chandran [2008]; Perez

and Boldyrev [2009].

Strong balanced theories, in addition to IK and GS, include; Boldyrev [2005]

suggested that the turbulent eddies are three-dimensionally anisotropic with a E(k⊥) ∼
k
−(5+α)/(3+α)
⊥ where α = 0 for K41 and α = 1 for IK, Gogoberidze [2007] suggested

that MHD turbulence may be capable of displaying both K41 and IK spectra due to

the presence of both local and nonlocal interactions, Grappin et al. [2012] proposed

a “quasi-isotropic” cascade, such that the k‖ and k⊥ spectral exponents are equal

but the power is not equal in both directions.

1.5 Introduction to the Solar Wind

The Sun is a typical G2 main-sequence star. Therefore, the study of the Sun and

solar wind is likely to be of relevance to other solar-type systems [Cassinelli, 1979].

Observations of sunspots, which are areas of enhanced magnetic field, have been

conducted since as early as approximately 165 B.C. However, it is the routine mea-

surements from 1750 to the present day that illustrate the variable nature of the Sun

[Stephenson, 1990]. The observations of sunspots have revealed several characteris-

tic time-scales associated with the Sun. These are the solar rotation, which has a

period of approximately 28 days (the corresponding frequency may clearly be seen in

the radial component of in-situ magnetic field measurements), and the “solar cycle”,

which from the sun-spots record may be seen as a prominent oscillation of approx-

imately 11 years. The 11 year cycle can be seen in Fig. 1.2, which on the bottom

panel shows the daily sunspot area per day averaged over a 28 day period against

time. The top panel of this figure shows the characteristic movement of sunspots

from large latitudes to the equator as the solar cycle progresses to completion.

The Sun is not limited to variations on the temporal-scales of days and years

and spatial-scale of Sun-spots. The outer regions of the Sun display spatial-temporal

variation on all scales, such as; the granulation and supergranulation pattern of

convective cells on the photosphere, regions of open and closed magnetic field that

demonstrate structure across a broad range of observational scales and event-like

phenomena, such as micro-flares, flares and coronal mass ejections. A demonstra-
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Figure 1.2: Sunspot History. Top panel: Sunspot density as a function of latitude.
Bottom panel: Day sunspot percentage averaged over a solar rotation period.Plot
courtesy of NASA online resources. NASA [2013a]

tion of the large range of structural scales observed on the solar surface is presented

in Fig. 1.3, which is an adaptation from Borovsky [2008]. All of these constitute the

constantly evolving spatial-temporal magnetic field produced at the Sun, which is

carried into the interstellar medium by the expansion of the corona, known as the so-

lar wind. The high degree of spatial variability can be seen at different wavelengths,

corresponding to emission at different altitudes, in Fig. 1.4.

Generally, the coronal magnetic field depends upon the stage at which the

Sun is at within the 11 year cycle. At Solar minimum there is a tendency for

the global magnetic field to be well characterized by a dipolar field. The dipolar

magnetic field produces coronal holes (regions of open magnetic field lines observed

as dark regions due to the low density of particles) over the large latitudes of both

the poles. The equatorial plane is usually a complex ensemble of open and closed

magnetic field regions. However, this complex region expands to cover increasing

latitudes of the Sun as the solar cycle moves from minimum to maximum, filling the

coronal holes.

The hot corona of the Sun cannot be in thermal equilibrium with the sur-

rounding interstellar medium, as it is a hot plasma with a density much greater than

the interstellar medium. Therefore, there must be a flow of material from the solar
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Figure 1.3: This is an adaptation of figure 11 from Borovsky [2008]. The probability
density vs. scale in Mm of structures on the solar surface are displayed by collating
the studies of Simon and Leighton [1964]; Roudier and Muller [1986]; Title et al.
[1989]; Haganaar et al. [1997]; Srikanth et al. [2000]; Shine et al. [2000]

Figure 1.4: The Sun. Left: Magnetogram produced by Zeeman splitting displays
the ”magnetic carpet” of the photosphere, where white and black represent inward
and outward magnetic field. Middle and Right: observation at 171 and 304 Å. Plot
courtesy of NASA online resources. NASA [2013b].
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surface to a point where the pressure of the solar particle flow equals the pressure

of the interstellar medium [Goossens, 2003]. This flow of material is called the solar

wind. The velocity of such a solar wind was not obvious, however Parker predicted

a wind speed of a few hundreds of km/s at the Earth’s orbit by using a stationary

equilibrium condition [Parker, 1958]. Parker also predicted an Archimedean spiral

for the marcoscale magnetic field in the interplanetary medium due to the solar

rotation. By 1962 extended in-situ measurements had confirmed that the solar

wind was continuous [Goossens, 2003]. The Solar wind has been found to vary from

300−800 km/s, where a flow below 400 km/s is refereed to as slow and a flow speed

above 500 km/s is said to be fast. Slow wind seems to originate from closed field

regions, whilst fast wind comes from coronal holes. In addition to the flow velocity

of the wind, slow solar wind is characterized by larger particle number densities and

larger ratios of O6+/O7+ than fast solar wind (e.g. see Perri and Balogh [2010]

and references within). The mechanism for solar wind acceleration is still unknown

for fast wind. Fast wind is generally used for solar wind turbulence studies due to

the increasingly well realized Taylor’s hypothesis and the generally less structured

composition, often referred to as “clean” solar wind.

1.6 Scaling in the Solar Wind

The first in-situ measurements of the solar wind that suggested turbulence were

analyzed by Coleman [1968]. In this paper Coleman analyzed the velocity and

magnetic field measurements of the Mariner 2 satellite across a frequency range

of approximately 32 days to 75 seconds in the ecliptic plane at approximately 1

A.U. The noise of in the power spectral density of the magnetic field exists for

approximately f > 4 × 10−3 Hz, corresponding to approximately 4 minutes. It

was determined that turbulent magnetic field perturbations occur at frequencies

above f ∼ 10−4 Hz, whereas below f ∼ 10−5 Hz the magnetic spectra are primarily

due to changes in the background field intensity, resulting in a peak of intensity at

approximately one cycle per 27 days. It was also concluded that the main cause of

power in the range f ∼ 2×10−5 → 2.3×10−3 Hz is due to the change in direction of

the magnetic field, not magnitude. Coleman tentatively estimated an inertial-range

scaling of approximately f−1.2.

The next influential work to study the solar wind was conducted by Belcher

and Davis [1971], where two key results where found. Firstly, there is a large corre-

lation between the velocity and magnetic field fluctuations, such that Alfvén waves

are suspected to be the dominant component of the interplanetary medium, with the
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strongest Alfvénic correlation found in fast solar wind. Secondly, it was generally

found that no more than 20% of the fluctuation energy is parallel to the background

field direction, with a slight anisotropy in the perpendicular plane. Belcher and

Davis [1971] found that the magnetic field power spectral density scales as f−α

where 1.5 < α < 2.2 in the time-scale range of approximately 107 minutes to 25

seconds.

Since the first in-situ measurements of the solar wind the instrument cadence

and accuracy has improved, such that now a full range of temporal scales from the

solar rotation period to 1/450 seconds may be recorded using a combination of

magnetometers and search-coils (e.g. for the CLUSTER mission see Balogh et al.

[1997] and Cornilleau-Wehrlin et al. [1997]). The in-situ data has lead to a piece-

wise power-law classification of the observed energy spectrum into three distinct

ranges [Tu and Marsch, 1995; Bruno and Carbone, 2005]. The low frequency range

is characterized by f−1 and has been attributed to structures, a remnant of the

magnetic carpet or the energy containing/injection scale analogous to hydrodynamic

turbulence [Coleman, 1968; Matthaeus and Goldstein, 1982; Tu and Marsch, 1995;

Horbury et al., 1996; Goldstein, 2001]. Typically at approximately 1 AU there is a

transition between 10−4 < f < 10−3 Hz to a f−α scaling range, where 1 < α < 2

[Tessein et al., 2009]. This range is known as the “inertial” range and is thought

to be where a turbulence cascade begins. There is another transition that occurs

approximately at the scales where MHD theory breaks down, such that around the

ion-gyro scale a f−β scaling range exists, where 2 < β < 4. This range is known

as the “kinetic” range. In this thesis we will mainly discuss scales above the ion-

gyro scale, this is in part because the validity of Taylor’s hypothesis is debatable

within the kinetic range, since Kinetic Alfvén Waves (KAW) and Whistler waves

are thought to play a significant rule in this area (e.g. see Howes [2009]; Gary and

Smith [2009]; Salem et al. [2012] and references within). Unlike the Alfvén wave

both the KAW and whistler wave are dispersive, with a dispersion relation that

may be crudely approximated as ω2 ∼ k2‖v
2
A(1 + k2⊥ρ

2
i ), where ω is the frequency,

k⊥,‖ are the wavenumber parallel and perpendicular to the background magnetic

field, vA is the Alfvén velocity and ρi is the ion gyro-scale [Hasegawa, 1976; Lysak

and Lotko, 1996]. One can see that the group/phase velocity may increase as k⊥ρi

increases, which corresponds to the kinetic range. Therefore, Taylor’s hypothesis

may be invalidated for these scales as the group/phase speed may not be much less

than the solar wind advection velocity.

The three distinct scaling regions of the power spectral density are displayed

in Fig. 1.5. The two panels correspond to observations at different distances from
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Figure 1.5: Power spectra of Bz at 0.3 and 0.98 AU. Left panel: All three sections
of the “classic” spectrum can be seen. Right panel: Uncertainty and variability of
the spectral exponent are clear . Figure from Denskat et al. [1983]

the Sun, such that the left and right panel correspond to 0.3 and 0.98 AU respec-

tively. The left panel displays the f−1, inertial and kinetic ranges. The right panel

displays two estimates for the inertial range spectral exponent, which highlights the

uncertainty within estimating the spectral exponent from observations.

1.6.1 The “Inertial” range

The early measurements of Coleman [1968] suggested that the spectra of magnetic

field fluctuations may be due to turbulence and Belcher and Davis [1971] concluded

that the main contribution to the solar wind was from correlated velocity and mag-

netic field perturbation reminiscent of Alfén waves. Thus, there where two interpre-
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tations, one of dominant wave or turbulence phenomenology.

Throughout the 1970’s the wave description was widely accepted. However,

in the 1980’s a statistical approach using MHD invariants seemed to be consis-

tent with the predictions of incompressible homogeneous MHD turbulence theory

(See [Tu and Marsch, 1995] and references within). Helios observations where used

to study the radial evolution of plasma fluctuations, in an attempt to understand

whether the turbulence actively evolves during its advection through the interplan-

etary medium or is the remnant of solar activity. There is a tendency for the outer-

scale of f−1 to move to lower frequencies as the radial distance increases, as seen in

Fig. 1.5. This was interpreted by Tu et al. [1984] as evidence of an active nonlinear

cascade within the solar wind. This interpretation is complicated by rapid expan-

sion effects, which may not allow a turbulence cascade to develop in-situ, and so the

observations shown in Fig. 1.5 may be due to expansion, not a cascade process (See

Goldstein and Roberts [1999] and references within). However, if the interpretation

of a developing in-situ cascade is correct the study by Wicks et al. [2010] imply that

the nonlinear cascade of the solar wind is fully developed by approximately 1 AU,

as the inertial range length does not increase significantly between 1 to 3 AU.

1.6.2 Structures

The picture of incompressible homogeneous MHD turbulence is not sufficient to

explain the observations. There is a need for non-turbulent magnetic structures (e.g.

see Tu and Marsch [1995]; Bruno and Carbone [2005]; Borovsky [2008]). However,

the introduction of additional magnetic structures may invalidate the condition of

homogeneity on some scales [Tu and Marsch, 1995]. This is not surprising when one

considers the highly textured source of the solar wind.

The structure of the interplanetary magnetic field is governed by the Parker

spiral on the large scale, with bundles of filamentary tubes of various sizes on the

medium scale ( See [Ness et al., 1966] and references within), to quote Ness et al.

[1966]: “The general picture that emerges from these data is that the interplanetary

field is composed of a large number of separate filamentary tubes that originate at

the sun”. The filamentary structures known as stream tubes or flux tubes have

been studied as well as the waiting-time between discontinuities, which may be

hypothesized to correspond to the “walls” between respective filaments (e.g. see

Mariani et al. [1973]; Thieme et al. [1990]; Tu and Marsch [1995]; Bruno and Carbone

[2005]; Borovsky [2008] and references within).

It has been shown by Matthaeus et al. [1986] that a time-series of the solar

wind tends to time-stationary on scales of order 2−10 hrs. Therefore, the solar wind
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may be considered homogeneous with respect to structure at a scale considerably

larger than the inertial range of turbulent fluctuations, which typically exist on

temporal scales of up to 30 minutes. In addition to filamentary structures there

are also Coronal Mass Ejections (CMEs), Co-rotating streams and planetary wakes

that affect the local structure of the interplanetary medium.

1.7 Numerical Simulation

For completeness, we briefly consider direct numerical simulations (DNS) of turbu-

lence where the magneto/hydrodynamic equations are evolved in space and time.

Therefore, numerical simulations provide a tool for investigating turbulence, where

the initial conditions and measurable quantities are known at all points of the do-

main. Part of the attraction of numerical simulations is the wealth of data that may

be produced and analyzed in both space and time, such that Taylor’s hypothesis

need not be evoked. However, due to the computational cost, numerical simulations

are limited to relatively low Reynolds numbers, domain sizes, temporal evolution

and simple geometry. Generally, these limitations result in an inertial range that

is too short to display power-law scaling. For information on numerical simulations

of turbulence see Rogallo and Moin [1984]; Moin and Mahesh [1998]; Knaepen and

Moteau [2008]; Biskamp [2003] and references within.

In this thesis we will mainly analyze in-situ data from the solar wind. How-

ever, there will also be an examination of simulation data generated with the pseudo-

spectral method, where the linear terms are progressed in physical space and the

nonlinear terms are evolved in Fourier space, for reasons of computational efficiency

(e.g. see Canuto et al. [1991, 2007] and references within). Full details of the specific

simulations we will use can be found in Müller and Grappin [2005].
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Chapter 2

Methodology

Turbulence is a statistically reproducible phenomena, thus methods for quantifying

turbulence in the solar wind depend on the statistical properties of the observational

time-series. In this chapter we briefly detail the statistical methods used in turbu-

lence studies and this thesis. We begin by explaining the correlation tensor and

the power spectral density, which are important in determining the energy per unit

scale or frequency respectively. The power spectral density is commonly calculated

via two methods, that of the Fourier and the wavelet transform. The similarities

of these two methods will be covered. Then we will describe the methods used to

quantify the probability distribution and intermittency of fluctuations. Finally, we

explain anisotropy analysis. Due to the magnetic field that imposes ordering upon

the plasma there are two different types of anisotropy. That of the fluctuations with

respect to the background magnetic field, known as variance anisotropy, and that

of wave vector anisotropy, which may be estimated via Taylor’s hypothesis by the

angle between the sampling direction and the background magnetic field.

2.1 Fluctuations

The term “fluctuation” is used frequently to refer to deviations from the equilib-

rium/mean of a field. Throughout this thesis there are two distinct uses of the

term fluctuation, ∆S(t) and δS(t, τ), which are related. Let S(t) be the time-

series of a field. One may calculate a fluctuation that is centered on time, t, as

δS(t, τ) = S(t)− S(t+ τ). Therefore, the fluctuation δS(t, τ) is centered at time, t,

and dependent on the temporal-scale, τ , and so localized in frequency.

To define ∆S(t) let the time-series S(t) be written as, S(t) = S0(t) + ∆S(t),

where S0(t) is the mean value defined over some temporal-scale much greater than
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the fluctuating scales of interest and ∆S(t) is the deviation from S0(t) at time, t,

such that

∆S(t) =
∑
τ

δS(t, τ). (2.1)

Note that ∆S(t) contains all frequencies less than S0(t). Whereas, δS(t, τ) is a

bandpass filter, and so contains a narrow range of frequencies.

In analytical/theoretical treatments of turbulence it is assumed that the fluc-

tuations are that described by ∆S(t). Therefore, if we relate this notation to that

in the previous Chapter the fluctuations of the magnetic field, b, and velocity, v,

may be seen to be ∆S(t), whilst the bulk flow, V0, and background magnetic field,

B0, are S0(t). We use ∆S(t) and δS(t, τ) when discussing observations and lower

case symbol (e.g. v, b) when discussing theory.

2.2 Correlation Tensor

The correlation between fluctuation components is central to the study of tur-

bulence, especially in determining the transfer of energy and the dissipation rate

[Batchelor, 1953; Lesieur, 1997]. The correlations may not be determined directly

from the Navier-Stokes equation due to the closure problem (e.g. see Lesieur [1997]).

Empirically the simplest non-trivial correlation is the second-order correlation ten-

sor. The most general form of the second-order correlation tensor is the two-point

two-time correlation tensor, which for the velocity may be defined as

Rvij(r, t) = 〈vi(x, t)vj(x + r, t+ τ)〉 (2.2)

where Rij(r, t) is the correlation tensor, 〈...〉 denotes a time averaged ensemble, r is

a spatial scale of separation, τ is a temporal scale of separation, v is the fluctuating

velocity about a background value as defined in Section 1.4.

We consider the case where the measurements are made at a fixed-point in

space, such that the correlation tensor is only a function of time. One must conse-

quently evoke Taylor’s hypothesis, such that we may estimate the spatial correlation

by the substitution r = V τ êr. The turbulence is assumed to be statistically homo-

geneous, such that the correlation tensor is an even positive function of r. Thus,

the estimated two-point one-time correlation tensor may be expressed in terms of a

time-lag, τ , as

Rvij(V τ êV ) = 〈vi(x)vj(x + τV êV )〉 (2.3)

The two-point one-time correlation tensor of Rij is a 3 × 3 tensor that is
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necessary and sufficient to determine the energy per unit mass associated between

arbitrary components of a fluctuating field, such as the velocity, magnetic field or

Elsässer variables [Batchelor, 1953; Lesieur, 1997]. By using the Wiener-Krintchine

theorem one may Fourier transform the elements of the correlation tensor to power

spectral density elements, such that Pij(f) = 1
2π

∫
Rij(τ

′) exp(−i2πfτ ′)dτ ′, where

Pij is the power spectral density tensor and frequency corresponds to f = 1/τ .

The study of anisotropy between various elements of the power spectral density

tensor is termed “variance anisotropy” and is discussed in Section 2.5.1, whilst

a study of the summed diagonal elements of the power spectral density tensor is

termed “power anisotropy” and is discussed in section 2.5.2. One may note that

an explicit collection of fluctuations and time-averaging is not necessary, as the

correlation between two stationary processes may be written as a convolution, such

that Rij(τ) = vi(t)∗v?j (t), where ? is the complex conjugate and ∗ is the convolution

operator. The correlation is sometimes normalized, such that −1 ≤ Rij ≤ 1. This is

achieved by dividing the correlation by the standard deviation of both signals, such

that RNORMij (τ) = (vi(t) ∗ v?j (t))/(σiσj), where σi,j = 〈|vi,j |2〉 ( e.g. see Davidson

[2004] and references within).

2.3 Power Spectral Density (PSD)

As mentioned in the previous section, the PSD is the Fourier transform of the two-

point correlation, and so is important in describing the relation of second-order

nonlinear interactions. The PSD is a measure of the energy per unit frequency

contained within a time-series or signal, u(t), that is usually assumed to be produced

by a slowly varying or stationary process. The PSD is an even positive function. If

one has Fourier or Wavelet coefficients, denoted as ũ(f). Then the PSD is

P (f) ∼ |ũ(f)|2 (2.4)

such that, |ũ(f)|2 = ũ(f)ũ?(f), where ũ?(f) is the complex conjugate of ũ(f). A

key consequence of using |ũ(f)|2, is that the original phase information may not be

reconstructed from the PSD. Two common methods for constructing the PSD are

via Fourier transform or wavelet transform [Paschmann and Daly, 1998]. Therefore

we will present both the Fourier and wavelet transform to highlight the similarity

of both approaches.
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2.3.1 Fourier Coefficients

Under the condition that a time-series, u(t), has a finite number of discontinuities

and that
∫ +∞
−∞ u(t)dt exists it is possible to conduct a Fourier transform. The kernel

of the Fourier transform is, g(t) = cos(2πfnt)−i sin(2πfnt), which may be expressed

as g(t) = exp(−i2πfnt). A finite and piece-wise signal may be written as,

u(t) =

∞∑
n=−∞

ũ[n] exp (−2πifnt) , (2.5)

where fn = n/T is the periodic oscillation frequency, T is the temporal length of

the signal and ũ[n] is the Fourier coefficient for the n-th frequency.

One may write the complex Fourier coefficients as,

ũ(fn) =
1

T

∫ t0+T

t0

u(t) exp

(
2πint

T

)
dt, (2.6)

where t0 is the beginning of the temporal window [Paschmann and Daly, 1998].

For a discretely sampled signal of N points the periodic frequencies are fn =

n/T . The uncertainty in frequency may be written as ∆f = fs/N , where fs is

the sampling frequency. Thus, as the sampling frequency tends to zero the discrete

and continuous Fourier transform coincide, such that the uncertainty in frequency

is proportional to the temporal length of the signal, T . Spectral leakage may occur

when the discretely sampled signal is not periodic [Paschmann and Daly, 1998]..

Spectral leakage is a term used to define power measured away from the central-

frequency of the kernel, g(t).

A window-function that reduces spectral-leakage has the general character-

istics of a temporal function that is a minimum at windows edges and maximum at

the center. The spectral-leakage of four different window functions from top-left to

bottom-right using a rectangular, triangular, Hanning and Gaussian window for a

test signal composed a cosine with a frequency of f = fs/4, where fs is the sampling

frequency, and a window width of 128 points for all window functions is displayed

in Fig. 2.1. A technique commonly used for estimating the PSD that makes use of

overlapping subintervals and a window-function to reduce uncertainty is the Welch

spectral method [Paschmann and Daly, 1998].

2.3.2 Wavelet Coefficients

A wavelet is a transformation kernel that makes the desired compromise between

temporal and frequency resolution, where the uncertainty principle of ∆f∆t ≥ 1
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Figure 2.1: Spectral leakage for four different window functions for a test signal that
contains a sinusoidal function centered at f = fs/4. The window function is 128
points in length for all windows. The total area in all plots is normalized to unity.
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applies. A Gaussian wave packet is the only form that allows optimization in both

frequency and time, as it’s the only form for which ∆f∆t = 1 [Landau and Lifshitz,

1977]. Due to the time locality property, wavelets are better suited than conventional

Fourier methods to study time variable signals and anisotropy of the solar wind due

to the high variability of the background magnetic field direction. We shall mainly

use the wavelet method throughout the thesis, as the background magnetic field of

the solar wind varies over a large range of scales, such that a priori selection of

window size using the Fourier Welch method is untenable.

Generally a wavelet may be described by a translation and scale parameter,

such that

ψa,t′(t) =
1√
a
ψ

(
t− t′

a

)
, (2.7)

where a is positive and defines the scale and t′ is a real number that defines the

temporal shift. Let us consider the Morlet wavelet, where the mother wavelet may

be described as

M(t) = exp
(
−t2/2

)
exp (−iω0t) , (2.8)

where ω0 is a free parameter to be chosen that defines the number of oscillations

that are contained within the Gaussian wave-packet. Convention places the number

of oscillations within a Gaussian wave-packet as 5 ≤ ω0 ≤ 2π [Paschmann and Daly,

1998]. The daughter wavelets are the family of wavelets that may be created by

re-scaling the mother wavelet, and so may be used to measure lower frequencies in

a time-series or signal. The scale parameter may be written in terms of frequency

as, f = 1/a. Therefore the daughter wavelet of the Morlet may be written as

Mf,t′(t) =
√
f exp

(
−2πif(t− t′)

)
· exp

(
−f2(t− t′)2

2

)
. (2.9)

We may now compare the wavelet transform to that of the Fourier transform.

The Fourier transform of equation 2.6 may be written as, ũ(fn) =
∫
u(t)g(t)dt. We

replace the Fourier transform kernel of g(t) = exp(−i2πfnt) with the wavelet kernel

of Mf,t′(t), such that

ũ(fn, t
′) =

√
f

∫ +∞

−∞
exp

(
−f2(t− t′)2

2

)
u(t) exp

(
−2πif(t− t′)

)
dt. (2.10)

It is possible to see that the wavelet coefficients are equivalent to the Fourier co-

efficients localized in time with a window-function to reduce spectral leakage in a

similar way the Welch method [Paschmann and Daly, 1998].

We present a schematic to demonstrate how the temporal-frequency domain
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Figure 2.2: An example of temporal, Fourier and wavelet coverage of the temporal-
frequency domain is shown in panel a, b and c respectively. The temporal window
of the time-series is T and the frequency band is ∆f . Each box in the temporal-
frequency domain (T∆f) have equal area.

is tiled by the Fourier and wavelet transform in Fig. 2.2. The temporal, Fourier

and wavelet coverage of the temporal-frequency domain is shown in panel a, b and c

respectively. In all panels the total area of each box (T∆f) is the same, however how

the domain is covered is different. One can see that for the Fourier representation

the domain is covered in identical boxes, therefore T →∞ where ∆f → 0. However,

in the wavelet method the temporal scale is increased as the frequency decreases,

thus ∆f ∼ f .

Using the assumption that the signal or time-series is time-stationary one

creates a PSD estimate by selecting wavelet coefficients that overlap by no more

than 50% and conduct a time-average, such that 〈|ũ(f, τ)|2〉τ = |ũ(f)|2. Normaliza-

tion for the wavelet PSD is, P (f) = 2∆t|ũ(f)|2, where ∆t is the sampling cadence.

The wavelet method of constructing a PSD via ensemble average allows increasingly

accurate estimates as the ensemble tends to infinity. Due to the uncertainty prin-

ciple, as the frequency decreases the ensemble size for a given finite data interval

decreases. Thus, the higher frequencies are more accurately estimated than the

lower frequencies for a given interval.

2.4 Probability Distributions

2.4.1 Generalized Structure Functions (GSF)

The generalized structure function (GSF) is a method for quantifying the scaling of

moments of a probability distribution function (PDF). Let δ(r) be the fluctuation of

some turbulent quantity over a spatial separation of r, e.g. δ(r) = f(x)− f(x + r),

where f may be velocity, magnetic field or Elsässer variable. In many turbulence
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studies it is not possible to have a full array of probes that are capable of calcu-

lating the spatial fluctuations. Therefore, Taylor hypothesis is evoked, such that

the fluctuations are defined from a time-series recorded at a singe spatial point as a

function of time-lag as, δ(τ) [Frisch, 1995]

The moments of the temporal ensemble of fluctuations may be defined as

〈δm(τ)〉t, where 〈...〉t denotes a temporal average and m is the moment of the prob-

ability ensemble to be determined. In the context of turbulence the second and

third-order moments are of great interest as they constitute direct measurements

of the energy density and dissipation rate respectively [Frisch, 1995]. According

to Kolmogorov’s four-fifths law the dissipation rate is exactly related to the third-

order of the parallel structure function with respect to the flow velocity, such that

〈(δv‖(r, l))3〉 = −4
5εl [Kolmogorov, 1991]. Thus, an exact measurement of the third-

order structure function is fundamental in determining whether turbulence is present

and the dissipation rate. However, odd moments have a large degree of uncertainty

due to extreme values and finite-ensemble size. Therefore, the GSF is defined as

〈|δ(τ)|m〉t. Thus, for a self-similar/fractal process Sm(τ) = 〈|δ(τ)|m〉t ∼ τ ζ(m), for

all m [Frisch, 1995]. Note it is not possible to exactly determine the dissipation rate

of the third-order moment with the GSF formalism.

To find ζ(m) one measures the gradient of log10(Sm) against log10(τ). Thus, a

plot of ζ(m) against m displays the form of ζ(m). A linear fit, ζ = hm, characterizes

a self-similar/fractal process, where the gradient is the value of h known as the Hurst

exponent. Ideally, the accurate determination of ζ(m) over a large range of m is

desired to create a good estimate of h or determine whether the process is indeed

fractal, as opposed to another model, such as bi-fractal [Frisch, 1995]. However,

there are strong data limitations on the maximum degree of moments that may be

calculated, such that rarely is it possible to accurately investigate m ≥ 6 (e.g. see

Dudok de Wit and Krasnosel’skikh [1996]; Horbury and Balogh [1997] and references

within).

A recent publication [Guadagnini et al., 2012] has shown that calculating

ζ(m) may not be sufficient to determine whether a process is multi-fractal, however

a fractal detection does confirm a fractal process. The issue is that a self-similar

process that exists only over a finite range of scales may display spurious multi-

fractal scaling. It may also be shown that where a finite scaling range does not alter

the fractal nature of a time-series it may introduce a systematic uncertainty in the

estimate of H (e.g. see Kiyani et al. [2006, 2009] and references within). We show

the PSD for a Brownian (H = 0.5) time-series of 106 data points that has been

calculated via the Welch method in the top panels of Fig. 2.3. The top-left panel
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Figure 2.3: Uncertainty in estimating the Hurst exponent, H, with a fractal time-
series that has been filtered to have a finite scaling range. Top panels: display the
same Brownian time-series PSD, where the left panel comes from the raw time-series
with scaling on all scales of the time-series and the right panel comes from a filtering
the time-series in Fourier space, such that there is a scaling range of approximately
two decades. Bottom-left panel: Structure function for m = [0, 2, 4, 6, 8, 10] in dark
blue, green, red, light blue, magenta and black respectively. Solid and dashed lines
correspond to the raw and filtered time-series respectively. Bottom-right: ζ(m) for
the raw and filtered case, measured between the vertical dot-dashed black lines in
the bottom-left panel, are shown in red and blue respectively. The correct scaling
is H = 0.5 for these time-series, where H is to be determined from the gradient of
the solid lines in the bottom-right panel.
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shows the PSD where scaling is present for all scales within the time-series, the

top-right panel shows the PSD for the same data filtered in Fourier space to contain

only a limited scaling range of two decades, which is a similar length of scaling range

observed in the inertial range of the solar wind. The bottom-left panel shows the

structure function, Sm, for the moments m = [0, 2, 4, 6, 8, 10] in dark blue, green,

red, light blue, magenta and black respectively. The solid lines and the dashed lines

display the full scaling case and finite scaling case respectively. The bottom-right

panel displays ζ(m) in red and blue for the full scaling case and finite scaling case

respectively. It can be seen a systematic uncertainty of ±0.05 may be expected from

a finite scaling range of similar length to the solar wind inertial range when using

an interval of 106 data points.

2.4.2 Intermittency

In the context of turbulence it is important to determine the probability and joint

probability distribution of fluctuations. The probability and joint probability func-

tion must be known in order to close the linearized Navier-Stokes equation. A math-

ematically convenient “dummy” PDF is the Gaussian PDF. However, a Gaussian

PDF is not sufficient to describe a turbulent field, such as the velocity and magnetic

field fluctuations, as all the odd moments are equal to zero, and so there would be

no energy cascade, which is described by the third-moment. An example of a closure

which is based on the Gaussian distribution but does not prohibit an energy cascade

is the Eddy Damped Quasi-Normal Markovian (EDQNM) assumption, where it is

assumed that the fourth-moment of the PDF may be described by a product of

second-order moments, such that for the velocity fluctuations 〈vvvv〉 = 〈vv〉〈vv〉.
The EDQNM formalization is a self-similar/fractal phenomenology [Lesieur, 1997].

In three-dimensional hydrodynamic turbulence vortex tubes are created and

stretched. As the vortex tubes are stretched the cross-sectional area is decreased and

the mean vorticity increases across a cross-section of the tube. These thin structures

are limited to a few Kolmogorov dissipation scales in width and are extended to

a length of order the integration scale. The increased gradients associated with

these structures are the source of increased dissipation of kinetic energy and are

surrounded by comparatively low dissipation flow (Lesieur [1997]). Therefore, there

are localized areas of strong dissipation, which leads to a phenomenology known as

intermittency or internal intermittency.

In the original K41 and IK formalism the energy dissipation rate, ε, is a

constant. However, due to the filamentary structure the original ε is replaced by ε̃l =

〈ε〉 = 1/Vl
∫
Vl
ε(x)dx, such that there is a spatial average dissipation rate with local
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fluctuations of the dissipation rate. The spatial-temporal fluctuations of dissipation

rate lead to ε̃l/ε ∼ (l/l0)
α(l), where l is the spatial-scale under investigation, l0

is the integral scales and α(l) is some scaling function. This phenomenology is

called intermittency. The topology of such a phenomenology is not obvious, however

direct numerical simulations of three-dimensional isotropic turbulence shows that

the thin tubes of high vorticity are unequally distributed throughout space (See

Lesieur [1997] and references within), i.e. the dissipation is not a fractal/self-similar

distribution in space. Thus, pdfs of the velocity increments have fat tails that

scale as exp(−|x|), instead of the Gaussian expectation of exp(−x2) [Lesieur, 1997].

Multi-fractal scaling has also been shown observationally to exist in the solar wind

and in MHD simulations (e.g. see Burlaga [1991]; Tu and Marsch [1995]; Bruno and

Carbone [2005]; Martin et al. [2012]; Plunian et al. [2013]; Wan et al. [2012] and

references within).

It is hypothesized that current-sheets are responsible for the observed inter-

mittency for MHD turbulence in an analogous way to vortex tubes in hydrodynamic

turbulence. For MHD turbulence the scaling relation of the Elsässer fields, such that

z± = v ± b, are the key quantity of interest, specifically as the dissipation may be

estimated by as, ε∓ = 〈z±|z∓|2〉. However, the scaling of the velocity and magnetic

field fluctuations has attracted attention separately. The goal of intermittency stud-

ies is to predict the observed non-self-similar nature by phenomenological models.

For example the Kolmogorov-Oboukhov-Yaglom model of “self-similar breakdown

of turbulent eddies” (also know as the log-normal model), Novikov-Stewart model

equivalent to the β model where an inertial range eddy only contains turbulence in

a fraction, β, of its volume, p-model and She-Leveque model (See [She and Leveque,

1994; Politano and Pouquet, 1995; Frisch, 1995; Lesieur, 1997; Biskamp, 2003] and

references within).

The standard way that intermittency is quantified is to measure the scaling

relation of fluctuation distribution. The moments are defined as, Smi = 〈|δBi(t, τ)|m〉t
∼ τ ζ(m), where i is the component, m is the moment and 〈...〉 indicates an ensemble

average over t. Self-similar scaling as assumed in Kolmogorov (1941) and IK theory

may been seen if and only if ζ(m) = hm, such that there is a linear relation in with

respect to ζ that passes through the origin.

2.5 Anisotropy

The background magnetic field direction and magnitude is an important quantity

that governs the temporal evolution of the Elsässer variables, as highlighted in
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equation 1.13. This is contrary to the Navier-Stokes equation, where the background

flow may be removed by a transform. Therefore, in studies of MHD turbulence there

is a natural coordinate system in which to study the fluctuations.

Due to the important role of the background magnetic field on the dynamics

of the system it is crucial to determine what the physically relevant background

magnetic field is. This is a controversial topic within the MHD turbulence commu-

nity, and will be covered in detail in Chapter 4 of the thesis. It is sufficient at this

stage to assume one may produce a reliable estimate of the background magnetic

field from in-situ observation. Studies of anisotropy with respect to the background

magnetic field may be broken into two definitions, that of “Variance” and of “Trace”

anisotropy.

2.5.1 Variance Anisotropy

Variance anisotropy is the study of the components of fluctuations with respect to

the background magnetic field. If we define the background magnetic field as, B0 =

B0êz, it is possible to decompose the fluctuations, δB, into parallel fluctuations,

δB‖ = δB · êz, and perpendicular fluctuations, δB⊥ = δB× êz. It is possible to use

the solar wind flow velocity, which is equivalent to the in-situ sampling direction,

to decompose the perpendicular direction, such that êx = êz × êv, where êv is the

unit vector of the solar wind flow, and êy = êz × êx completes the orthogonal set.

One can then perform the standard statistical tests of intermittency, correlation,

PSD ,etc on the distributions of δB‖, δB⊥,x and δB⊥,y. The decomposition of a

fluctuation into this coordinate system may be seen in Fig. 2.4, where φ is the angle

from the êx unit vector and θ is the angle between the solar wind velocity and the

background magnetic field.

The seminal study of variance anisotropy was conducted by Belcher and

Davis [1971]. They found that the average power anisotropy in the solar wind is

5:4:1 in the coordinate system of ex, ey, ez. Throughout the inertial range other

authors, such as Belcher and Solodyna [1975]; Chang and Nishida [1973]; Burlaga

and Turner [1976]; Marsch and Tu [1990]; Klein et al. [1991], found similar results.

A method closely related to variance anisotropy is that of minimum variance.

Sonnerup and Cahill [1967] introduced minimum variance analysis to determine the

normal vector to discontinuities in the magnetosphere. For the minimum variance

method one determines the matrix, Sij = 〈BiBj〉 − 〈Bi〉〈Bj〉, where i and j are

components of the magnetic field. This matrix is then diagonalized to find the three

eigenvectors that correspond to minimum, medium and maximal variance, denoted

as e1, e2, e3 with eigenvalues λ1, λ2, λ3. It was shown by Sonnerup and Cahill [1967]
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Figure 2.4: The local coordinate system. The background magnetic field, B, is red
and the solar wind velocity, V, is blue. The angle from the background magnetic
field is θ and the angle from ê⊥,x is φ. Three orthogonal fluctuations in the direction
of the local coordinate unit vectors are shown as δB‖,z, δB⊥,x and δB⊥,y.

that the direction of e1 corresponds to the normal of a discontinuity and in the

solar wind e1 shows good agreement with the direction of the background magnetic

field. In the solar wind it is usually found that λ3 > λ2 � λ1, which demonstrates

anisotropy in correlation length parallel and perpendicular the background magnetic

field. Minimum variance has also been used as a scale-dependent process in the

kinetic scales [Perri et al., 2009]. The variance anisotropy will be investigated in

detail in Chapter 3.

2.5.2 Trace Anisotropy

The trace of the magnetic field or velocity fluctuations represents the energy density

[Batchelor, 1953] and is defined as P T = ΣiPii, where Pii are the diagonal compo-

nents of the PSD tensor. This has been used extensively in an attempt to measure

the reduced one-dimensional energy spectra of the solar wind for k⊥ and k‖, where

perpendicular and parallel are taken with respect to the background magnetic field

direction (e.g. see Horbury et al. [2008]; Podesta [2009]; Tessein et al. [2009]; Wicks

et al. [2010]; Forman et al. [2011]; Li et al. [2011] and references within).

Sampling the solar wind at-a-point with a satellite evoking Taylor’s hypoth-

esis does not allow one to isolate a unique k. Instead a reduced one-dimensional

spectral density, P̃ij(f, θ), may be determined. Evoking Taylor’s hypothesis re-

sults in measuring the spectral density, Pij(k), integrated over the plane defined

by k · Vsw = 2πf in k space, where Vsw is the solar wind velocity. Therefore,
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the observed reduced one-dimensional spectral density is defined as P̃ij(f, θ) =∫
d3kPij(k)δ(2πf − k · Vsw), where θ is the angle between the background mag-

netic field and solar wind flow velocity. For clarity we expand the delta function to,

δ(2πf/VSW − k⊥ sin θ− k‖ cos θ). Thus, if one collects data where θ = 0 or θ = π/2

the results are dependent only on k‖ of k⊥, regardless of any assumptions about the

ratio of k‖:k⊥.

The trace anisotropy has two aspects of interest; the spectral exponents

and the relative power of P T⊥ and P T‖ (e.g. see Chen et al. [2010] and references

within). The interest is due to the predictions of theories, especially that of Goldre-

ich and Sridhar [1995] where the spectral exponents and power at a specific scale

are anisotropic. The trace anisotropy has been found to depend strongly on the

method used to calculate the background magnetic field, with regard to spectral

anisotropy (e.g. see Tessein et al. [2009]; Wicks et al. [2010] and references within).

However, the power is always found to anisotropic. The topic of trace anisotropy

and the importance of accurately calculating the background magnetic field will be

considered in detail in Chapter 4.
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Chapter 3

Nonaxisymmetric Observations

Test Turbulence Theories

3.1 Nonaxisymmetric Variance Anisotropy

The presence of a background magnetic field, B0, introduces a preferred coordinate

system. The preferred coordinate system can be seen by the presence the term

(B0 · ∇)z± in equation 1.13. Therefore, an anisotropy between the perpendicular

and parallel direction with respect to the background magnetic field may be ex-

pected. Belcher and Davis [1971] were the first to observe that the variance power is

nonaxisymmetric, that is, the variance power is not homogeneous within the perpen-

dicular plane with respect to the background magnetic field. Such nonaxisymmetry

is unexpected, as it implies there is another natural coordinate system, in addition

to that set by the background magnetic field direction, that influences the dynamics

of the turbulence.

In this chapter we use in-situ data from three satellites to investigate the

nonaxisymmetric power distribution within the perpendicular plane with respect

to the background magnetic field. It is found that the preferred direction within

the perpendicular plane is the macroscopic velocity of the solar wind, and so the

direction of sampling. We model the turbulent dynamics under the hypothesis of

axisymmetry and find that in-situ sampling at-a-point is responsible for the observed

nonaxisymmetry. We demonstrate that the observed nonaxisymmetry may be used

as a tool to discriminate between models of turbulence.
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3.2 Data Sets

In this section we will analyze two intervals [January 20, 2007, 1200-1315 UT and

January 30, 2007, 0000-0100 UT] of fast quiet solar wind observed by CLUSTER

spacecraft 4 whilst the magnetic field instruments FGM (cadence of 67 Hz) and

STAFF-SC (cadence of 450 Hz) where both instruments are operating in burst

mode, providing high-resolution data capable of observing both the inertial and

kinetic scales simultaneously. To create a single time-series from the two instruments

we use a similar procedure as Chen et al. [2010]; Alexandrova et al. [2004]. First

the two time-series are placed on the same sample basis by linearly interpolating

the FGM signal to the same times as the STAFF-SC time-series. A discrete wavelet

transform is applied to all three geometric components for both instrument time-

series. A times-series that contains only frequencies approximately greater than

0.9 Hz is generated from the STAFF-SC data, whilst a time-series containing only

frequencies approximately less than 0.9 Hz is created from the FGM data. The two

time-series are then added together to create a single time-series that contains the

lowest frequency from the FGM data and highest frequency from the STAFF-SC

data.

The raw x component from FGM and STAFF-SC are shown in blue and

red respectively for the January 30th interval in panel (a) of Fig. 3.1. One can

see that the two signals are in approximate agreement at 1 Hz, however the FGM

signal above and the STAFF-SC signal below 1 Hz are contaminated with noise,

hence the selected merging frequency of the two data sets. Panel (b) shows the

FGM signal after linear interpolation and the wavelet transform in blue and the

STAFF-SC signal after the wavelet transform in red. Panel (c) shows the resulting

PSD when the two signals have been merged. Panel (d) displays the estimated

noise to signal percentage (NSP) by comparing the PSD obtained in the lobes of

the magnetosphere [30 June, 2007, 15:00-15:20 UT] and the PSD obtained for the

solar wind intervals. It is assumed that the lobes of the magnetosphere signal are

dominated by instrument noise, and so provide a good proxy for the actually noise

floor of the instruments. The x and z components of the magnetic field are displayed

in black and red respectively. It can be seen that in the recorded reference frame of

the measurements the z component is cleaner than the x component. This is due

to the spin of the satellite, which is orientated in the x-y plane. One can see a clear

peak at approximately 0.25 Hz in the x component, which corresponds exactly to

the spin-tone of the satellite.

In addition to the CLUSTER data we also consider magnetometer data from
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Figure 3.1: Panel a) PSD of the x component for the FGM and STAFF-SC instru-
ments in blue and red respectively. Panel b) The interpolated and filtered PSD
of the x component for the FGM and STAFF-SC instruments in blue and red re-
spectively. Panel c) The combined PSD for the x component for the FGM and
STAFF-SC instruments. Panel d) The estimated noise to signal percentage as a
function of frequency for the x and z component in black and red respectively.
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STEREO-A [February 15-17, 2008] and Ulysses [day 91 - 146, 1995] in fast solar

wind. The STEREO-A interval is recorded at a cadence of 8 Hz. However, the

noise-floor for the magnetometer is realized at approximately 1 Hz, such that only

the inertial range scales are accessible. The STEREO-A satellite does not spin and

so provides analysis of an interval that is not affected by satellite spin.

The Ulysses interval is recorded at a cadence of 1 Hz. In this interval Ulysses

moved from a heliographic latitude of 21◦ to 58◦ and a radial distance of 1.36 to

1.58 AU. This interval is of fast solar wind with an average flow speed of 756 km/s

and average Alfvén speed ' 56 km/s. Due to the Ulysses orbit, which leaves the

ecliptic plane, long uninterrupted intervals of data in fast solar wind streams may

be observed.

3.3 Source of Nonaxisymmetry

3.3.1 The Local Coordinate System

We will work in the local coordinate system, where the principal axis is the direction

of the background magnetic field, which orders the dynamics of the system. In order

to make progress it is necessary to define a working definition for the background

field, and so we use a scale-dependent local background magnetic field. The local

background magnetic field is defined as êB(t, f) = B(t,f)

|B(t,f)| , where B(t, f) is the scale-

dependent local average conducted with a Gaussian function due to the optimized

characteristics in both temporal and frequency space.

The frequency spectrum of the local magnetic field may be seen for a specific

scale on a test time-series in Fig. 3.2. The test signal is displayed in blue and

has a flat spectrum of f0. The specific scale of interest is shown by the vertical

black dashed line, which is the centre of the wavelet spectral response, shown in

red. The Gaussian average over which the local background field is defined for two

different standard deviations are shown in magenta and black. The Gaussian window

described by the Morlet envelope function is shown in magenta, whilst the Gaussian

window used throughout this thesis is shown in black. The standard deviation of

the Gaussian window used in this thesis is less than that of the Morlet envelope

function, hence the presence of slightly more intermediate frequencies within the

local background magnetic field estimate.

The local background field may be viewed as the sum of two components; a)

the sum of spatial-temporal turbulent fluctuations on scales greater than the scale of

interest b) an externally applied large-scale background field, which may in principle

be zero. For turbulence within the solar wind, the Parker spiral may be seen as the
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Figure 3.2: Demonstration of the frequency response for the local background mag-
netic field and fluctuations at a specific scale, indicated by the vertical dashed black
line. The test signal is produced by a pseudo-random number at a cadence of 1 Hz
to produce f0 power spectral density, shown in blue. The frequency response for
the Morlet wavelet centred on approximately 0.09 Hz is shown in red. The local
background field produced by using the Gaussian wave packet for the Morlet wavelet
and the prescribed Gaussian used to determine the local background field in this
thesis are shown in magenta and black respectively.
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large-scale externally applied magnetic field. Thus, the local background field is

the background magnetic field actually experienced by an Alfvén wave on a specific

spatial-temporal scale.

In the local coordinate system we use the velocity unit vector as a reference

to decompose the perpendicular plane. In principle one would chose to use a scale-

dependent velocity unit vector in conjunction with the magnetic field scale, however

this is not possible due to the cadence of the velocity measurement. Thus, we

use the unit vector that results from averaging over the entire interval. The solar

wind velocity is dominated by the expansion, hence the velocity unit vector may

be approximated by the radial direction, which is the unit vector directed from

the Sun to the satellite. We define the perpendicular unit vectors as ê⊥,x(t, f) =

êB(t, f) × V

|V| and ê⊥,y(t, f) = êB(t, f) × ê⊥,x. This local coordinate system may

be seen in Fig. 2.4, where the angle from the background magnetic field is defined

as θ and the angle from ê⊥,x is defined a φ.

We decompose fluctuations into the local coordinate system to produce a

PSD estimate for the three components. This is shown in the main panel of Fig.

3.3, where blue, red and black correspond to the power in the direction of ê⊥,x,

ê⊥,y and ê‖,z respectively. Error-bars are not displayed as they are typically less

than the line widths used. The insert of Fig. 3.3 shows the power ratio for the two

components of the perpendicular plane in the local coordinate system.

It can be seen from Fig. 3.3 that there is a nonuniform distribution of power

within the perpendicular plane, which increases as the scale decreases. This anal-

ysis implies that the fluctuations in the perpendicular plane are not statistically

axisymmetric with respect to the direction of the local background magnetic field.

However, Fig. 3.3 is insufficient to demonstrate that the bulk flow direction is or-

dering the turbulence, as the bulk flow direction was chosen ad hoc to decompose

the perpendicular plane. To conclusively demonstrate whether the bulk flow is im-

portant for the observed nonaxisymmetry we produce a power map as a function of

θ and φ, which are angles within the local coordinate system, and statistically mea-

sure the alignment between the local coordinate system and the minimum variance

coordinate system, which requires no a priori direction.

3.3.2 Power Distribution

We map the variance power as a function of frequency to investigate the variance

anisotropy. We map the variance power within the local coordinate system, such

that we bin power according to constant solid angle on the surface of a sphere

of constant frequency/wavelet scale. We us 18 bins of θ covering 0◦ − 180◦ with
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Figure 3.3: Main panel: The PSD for the three components of the local coordinate
system, where êz, êx, êy are shown in black, blue and red respectively. The vertical
black dashed lines correspond to the frequencies used in section 3.3.3. The vertical
red dot-dashed lines correspond to the frequencies used in section 3.3.2. Insert: The
ratio Py/Px highlights the degree of observed nonaxisymmetry.
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Figure 3.4: Power map displaying the power as a function of equal solid angle within
the local coordinate system. The colour displays power in arbitrary units, where the
difference between blue and red is approximately a factor of ten. The panels display
different scales; a) 0.21 Hz (τ = 4.8 s) b) 0.79 Hz (τ = 1.3 s) c) 2.94 Hz (τ = 0.34
s) d) 11 Hz (τ = 0.09 s).

an inverse cosine distribution and 36 bins of φ covering 0◦ − 360◦ with a linear

distribution. Thus the fluctuation power is separated into 648 bins per frequency,

P (f, θ, φ) = 2∆t|ũ(f, θ, φ)|2. Due to the number of bins there are strong limitations

on accuracy and scale of producing such power maps. Thus, we limit our largest

time-scale to approximately 4.8 s for a 75 minute interval.

We present power maps for the January 20th interval recorded by CLUSTER

in Fig. 3.4. The scales that are shown are; a) 0.21 Hz (τ = 4.8 s) b) 0.79 Hz (τ = 1.3

s) c) 2.94 Hz (τ = 0.34 s) d) 11 Hz (τ = 0.09 s). The colour scale is numerically

different for all panels, however the difference between red and blue is a factor of

10 in all panels. One can see that the power is predominantly perpendicular to

the background magnetic field direction. In addition, there is a strong difference in

power between the two perpendicular directions, with a preference on the direction

that is perpendicular to both the background magnetic field and the solar wind flow

velocity. The observed preference appears to increase as the scale decreases, however

from the power maps it is not possible to determine whether this is due to higher

accuracy at the smaller scales or is a consequence of physics.

41



Figure 3.5: A diagram that displays how the coordinate system xyz undergoes the
Euler rotations “ZXZ” to x′′y′′z′. The first rotation, φ1, is about the z axis, the
second rotation, θ, is about the x′ axis and the third rotation, φ2 is about the z′

axis.

3.3.3 Minimum Variance Coordinate System

Minimum variance analysis (MVA) was described in Chapter 2. The key to MVA is

that is produces an orthogonal coordinate system that is independent of the any a

priori coordinate system. Thus, we chose to calculate the MVA coordinate system

to find the principle axis of the fluctuations on a given scale. Then we will use

Euler rotations to calculate the statistical correlation between the intrinsic axis of

the fluctuations and the local coordinate system.

Euler’s rotation theorem is that any rotation may be described completely

by a maximum of three angles. The order of rotations is important, but not unique.

Here we use the “ZXZ” sequence. The first rotation, φ1, is performed with respect

to the background magnetic field axis (Z), the second rotation, θ, is preformed with

respect to the ê⊥,x axis (X) and the third rotation, φ2, is performed with respect

to the Z axis again. The Euler angles are shown in Fig. 3.5, where the initial

coordinate system is xyz and the final coordinate system is x”y”z’ (NB: z’ = z”).

For the MVA and local coordinate system to be identical all angles (i.e. θ, φ1, φ2)

must be zero.

By using this the above definition for the Euler angles it is possible to directly

compare the results obtained with respect to θ with previous studies that have

predominantly concentrated on the correlation between the background magnetic
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field direction and the direction of minimum variance (e.g. see Perri et al. [2009]

and references within). The angles φ1,2 allow for one to quantify the dependence

of the nonaxisymmetric observations upon the macroscopic direction of the flow

velocity.

First we display the statistical results for θ as a function of scale. This can

be seen in Fig. 3.6. The probability distribution for θ is shown for four different

scales and bin size has been selected by the inverse cosine function to conserve solid

angle. The smallest time-scale shown is 0.009 s (∼ 100 Hz), shown in black, and

corresponds a ensemble average of four data points. The smallest scale is dominated

by instrument noise (e.g. instrument sensitivity and measurement discretization),

and as such provides an excellent test to show whether our method is correct, as

well as displaying any bias that may exist in the data. It can be seen that the noise

provides a distribution that is approximately uniform, with a value of one with our

normalization, which is the expectation for an isotropic random variable, such as

instrument noise. The other scales that are displayed are that of 0.282 s, 2.25 s and

36.0 s in red, magenta and blue respectively. It can be seen that as the scale increases

the correlation between the local coordinate system and the direction of minimum

variance increases, as the distribution tends to θ = 0. This is in general agreement

with previous studies of the inertial range scales, however there is a contradiction

with the results of [Perri et al., 2009], who claim that as the time-scale tends to

τ = 0.009 s the distribution becomes predominantly perpendicular. It is likely that

the authors of [Perri et al., 2009] have not accounted for the solid angle effect, and

so use a linear distribution of θ bin size instead of the inverse cosine distribution of

bin size used here. The use of a linear distribution of bin size leads to a greater solid

angle bin size as θ → 90◦. Therefore, there is a greater probability for the minimum

variance direction being analyzed as perpendicular to the background magnetic field

direction if the underlying distribution is uniform across θ when an inverse cosine

function is not used for the bin size to correct for solid angle effects.

We have shown that our method is normalized correctly and returns the

standard result for θ. Now we extend the analysis to the generalized case by con-

sidering the distribution of the φ1,2, which are necessary to uniquely describe the

alignment of the two coordinate systems. The bin sizes are a linear function of angle

for φ1,2. Recall that for a perfect agreement between the two coordinate systems

it is necessary that the both φ1,2 = 0. In panels (a) and (c) of Fig. 3.7 the same

time-scales are shown as for the θ case, such that 0.009 s (111 Hz), 0.282 s ( 3.54

Hz), 2.25 s ( 0.44 Hz) and 36.0 s ( 0.028 Hz) are displayed in black, red, magenta

and blue respectively. In panels (b) and (d) we display the fraction of counts in
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Figure 3.6: Alignment between the minimum variance and local background mag-
netic field direction, measured by θ. The bins are inverse cosine distributed to con-
serve solid angle. The smallest scale, 0.009 s is dominated by noise and displayed
in black. The other scales shown are that of 0.282 s, 2.25 s and 36.0 s displayed in
red, magenta and blue respectively.
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Figure 3.7: Left hand panels: Alignment between the maximal variance and maximal
power for the local coordinate system. The bins are linearly distributed. The
smallest temporal scale, 0.009 s, is dominated by noise and displayed in black. The
other temporal scales shown are that of 0.282 s, 2.25 s and 36.0 s displayed in red,
magenta and blue respectively. Right hand panels: Ratio of counts in the range
0◦ → 10◦/80◦ → 90◦ to quantify the degree of alignment.

45



the range 0◦ − 10◦ divided by the counts in the range 80◦ − 90◦. We use this mea-

sure to quantify the degree of agreement between the two coordinates systems as

the angular distribution is a smooth function. A value larger than one shows an

increasing strong alignment, less than one shows increasing anti-alignment and a

value of one shows no agreement between the to coordinate systems. Interestingly,

the best alignment between the direction of maximum variance and ê⊥,x is achieved

in the kinetic scales, as seen in the power maps of section 3.3.2 and PSD of section

3.3.1.

We have established that the power measured in-situ is not axisymmetric

about the background magnetic field. The distribution is a smooth function of φ

that oscillates, with a maximum power that corresponds to alignment to ±ê⊥,x. The

observed nonaxisymmetric power is unlikely to be directly due to plasma physics,

as this would imply that the velocity can not be removed via a Galilean transfor-

mation and the influence of the macroscopic flow affects the kinetic scale dynamics.

Therefore, the most likely interpretation is that the observed nonaxisymmetry is due

to in-situ sampling at-a-point via Taylor’s hypothesis. We begin by constructing

a simple model by superposition of waves and then sample a MHD simulation to

replicate a satellite sampling via Taylor’s hypothesis. Finally, we will analytically

model the nonaxisymmetric observations, which be able to explain why the observed

nonaxisymmetry is greater in the kinetic range.

3.4 Two-Dimensional Model

3.4.1 Linear Model

Our model data must fulfill the solenoid criteria, such that∇·B = 0. This is achieved

by summing a series of transverse plane wave, such that the wave vector, k, is

always perpendicular to the fluctuations. We limit ourselves to the two-dimensional

case, such that wave vectors lie in the x-y plane, and sum the waves such that

the distribution is axisymmetric about the background magnetic field direction,

B0êz. The orientation is k ⊥ B0, δB ⊥ k and δB ⊥ B0, such that the linear model

represents noninteracting Alfvén-type waves with k perpendicular to the background

field direction. This orientation is shown in Fig. 3.8, where a wave vector is shown

in blue and a set of fluctuations are shown in red for the case θ = ξ = 0.
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Figure 3.8: Diagram of the coordinate system necessary for the generalised super-
position model of transverse wave. The wave vector, k is shown in blue. The
fluctuations, δB, are shown in red. φ is the angle between the wave vector, k, and
êx. θ is the angle between the wave vector, k, and the x-y plane. ξ is the polar-
ization of the fluctuations with respect to the x-y plane, where ξ = 0 and ξ = π/2
correspond to δB parallel and normal to the x-y plane respectively.

The general equations of the individual components are:

Bx = kα[sin(θ) sin(ξ) cos(φ)− sin(φ) cos(ξ)] cos(k · r + ψ)

By = kα[sin(θ) sin(ξ) sin(φ)− cos(φ) cos(ξ)] cos(k · r + ψ)

Bz = kα[cos(θ) sin(ξ)] cos(k · r + ψ).

For our model we use θ = ξ = 0 and sum over kj and φi. Thus, the equations

for the individual components after superposition are:

Bx = Σi,j k
−h
j sin(φi) cos(kj [x cos(φi) + y sin(φi)] + ψ)

By = Σi,j k
−h
j cos(φi) cos(kj [x cos(φi) + y sin(φi)] + ψ),

where a Σi,j denotes a sum over φ and wavenumber respectively, h corresponds to

the Hurst exponent and prescribes a scaling exponent to simulate an inertial range

in the PSD, x and y correspond to the spatial domain and ψ is a random phase

generated for every iteration, such that −π ≤ ψ < π. Note that for our chosen

geometry the only difference between Bx and By is highlighted in red text.
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Figure 3.9: An example of the output for the linear model composed of 160 different
frequencies spread equally on a logarithmic scale from 10−4 to 1 Hz, with each
frequency composed of 900 different φ, with a distribution φ = [0 : 0.4 : 359.6]. The
red and blue colours refer to positive and negative values respectively. Bx and By
are shown in the left and right panels respectively.

Here we present the Bx and By components of the random field generated

by the linear model over a domain of 5122 in Fig. 3.9. The Bz component is not

displayed, as it is an arbitrary constant value under the conditions set above. The

left and right panels of Fig. 3.9 show the magnetic field components Bx and By,

where red and blue correspond to positive and negative values respectively. It can

be seen that the model magnetic field of Bx varies more rapidly in the y direction

than the x direction and vise versa for By.

To quantify the difference in power we sample both Bx and By in the same

direction to model a satellite sampling our model data under Taylor’s hypothesis. We

use the local coordinate system, such that the direction of sampling is taken to be êx

and êx completes the orthogonal set in the x-y plane as described in section 3.3.1.

The time-series constructed from the linear model are composed of 160 different

frequencies spread equally on a logarithmic scale from 10−4 to 1 Hz, with each

frequency composed of 900 different φ, with a distribution φ = [0 : 0.4 : 359.6]. We

then calculate the PSD in the local coordinate, such that Py and Px are calculated

in the direction of sampling and the direction perpendicular perpendicular to both

the background field and sampling respectively. The power ratio, Py/Px, is shown in

Fig. 3.10 for different values of h. The power ratio has been calculated by averaging

over 10 model runs, where three different values of h = [1/4, 1/3, 1/2] are shown in

blue, red and black respectively. The error-bars display the spread of analyzing our
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Figure 3.10: The nonaxisymmetry observed in the local coordinate system for the
linear superposition model are displayed with errorbars. The solid lines correspond
to the Hurst exponent used in the model. Three different exponent are shown,
h = [1/4, 1/3, 1/2], displayed in blue, red and black respectively.

linear model over ten separate constructions. The error-bars estimates display three

standard error defined as, ε = 3σ/
√
N , where σ is the standard deviation across N

runs. The solid lines show the spectral density exponent that corresponds to the

value of h.

It can be seen that for scales larger than approximately one decade of “iner-

tial” range Py/Px is approximately equal to the value of the spectral exponent. It

can also be seen the uncertainty increases rapidly as a function scale after approxi-

mately three decades of scaling. The increase in uncertainty must be attributed to

the sensitivity of the analysis method for finite date length, as the linear model is

self-similar on all scales displayed in Fig. 3.10.
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3.4.2 MHD Direct numerical simulation

We consider two MHD simulations; Case I is that of a globally isotropic freely de-

caying turbulence, Case II is that of a forced turbulence simulation with a strong

externally applied magnetic field B0, such that δBrms/B0 ∼ 0.2. The forced tur-

bulence has a constant background magnetic field direction, such that it is possible

to consistently sample approximately perpendicular to the local background mag-

netic field. Details of the simulations used are given in Müller and Grappin [2005].

An example of a snapshot of Bx for the forced simulation is shown in Fig. 3.11,

where red and blue correspond to large magnitude positive and negative values of

the magnetic field respectively.

Simulation I, which concerns globally isotropic freely decaying turbulence, is

in initialized as smooth fields with random phases. There is an equipartition between

the kinetic and magnetic field energy, with the fluctuation amplitudes distributed

according to exp(−k2/(2k20)), where k0 = 4. Simulation II, which concerns forced

turbulence, is initialized with an equipartition between the kinetic and magnetic field

energy. The forcing maintains the ratio of fluctuations to background magnetic field

strength, such that δBrms/B0 ∼ 0.2. The forcing is implemented by freezing modes

where k ≤ 2.

We sample snapshots in time of the simulations of MHD turbulence. A

snapshot in time enforces that there is no temporal evolution of the simulation

whilst a sample path is created, and so a time-series generated from a sampling line

through the simulation snapshot emulates a single satellite observing the magnetic

field in-situ via Taylor’s hypothesis. The simulation undergoes equidistant sampling,

which defines the constant pseudo-macroscopic flow velocity V.

3.4.3 Analytical Interpretation

A complete understanding of the nonaxisymmetric observations of the solar wind

magnetic field fluctuations must reproduce the observations, such that the observed

nonaxisymmetry is stronger in the kinetic range than the inertial range. This result

is well reproduced by the linear superposition model. We formulate the linear su-

perposition model in Fourier space to explain how the spectral exponent is related

to the observed nonaxisymmetry. As with the superposition model, we consider the

two-dimensional geometry, therefore Vsw ⊥ B0. We fix the coordinate system, such

that the solar wind velocity, Vsw, and background magnetic field, B0, are directed

along the y and z respectively. Thus, the magnetic fluctuations δB associated with

the waves are in the x-y plane. If the Fourier amplitudes of the fluctuations are

50



Figure 3.11: A snapshot of the Bx component produced by the MHD simulation.
The positive and negative values are shown in red and blue respectively.
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δB(k) then under Taylor’s hypothesis the energy density Py(ω) and Px(ω) observed

for the components parallel and perpendicular to Vsw are given by

Py,x(ω) =
1

8π

∫
d3k|δBy,x(k)|2δ(ω − k ·Vsw), (3.1)

where ω = 2πf . We assume one may integrate over k‖ to obtain

Py(ω) =

∫
d2k⊥E2D(k⊥)δ(ω − kyVsw) cos2 φ, (3.2)

Px(ω) =

∫
d2k⊥E2D(k⊥)δ(ω − kyVsw) sin2 φ, (3.3)

where E2D(k⊥) is two dimensional spectrum of fluctuations and φ is the angle

between k⊥ and Vsw ×B0. Expressions (3.2) and (3.3) generally integrate to give

Px(ω) 6= Py(ω). In particular, for axisymmetric fluctuations E2D(k⊥) = E2D(k⊥) =

Ck−γ−1⊥ , where γ corresponds to a one-dimensional spectrum, Eqs. (3.2-3.3) yield

Py(ω) = C
ω2

V 2
sw

∫ (
ω2

V 2
sw

+ k2x

)−(γ+3)/2

dkx, (3.4)

Px(ω) = C

∫
k2x

(
ω2

V 2
sw

+ k2x

)−(γ+3)/2

dkx. (3.5)

This can be integrated in terms of Beta functions and manipulated for γ > 1.

Therefore, we obtain

Py(ω)/Px(ω) = 1/γ. (3.6)

Thus, the ratio Py(ω)/Px(ω) is a function of the spectral exponent as shown in the

linear superposition model and observed in solar wind.

3.4.4 Results of 2D model

We plot the power ratios for MHD simulation, satellite observations and expected

ratio of Py/Px in Fig. 3.12. We plot the estimated ratio, Py/Px, of the CLUSTER

interval [Jan 20, 2007, 12:00-13:15 UT] and STEREO-A interval with 99% statistical

uncertainty in blue and green respectively. We estimate the spectral exponent to

be γ = 1.5± 0.1 for both inertial ranges. We plot the expected value of Py/Px with

this range of γ in the left-hand gray box. The right-hand gray box corresponds to

the estimated range for the spectral exponent within the kinetic range displayed,

approximately 2-11 Hz, as γ = 2.76 ± 0.5. The red dashed and black solid lines
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Figure 3.12: Nonaxisymmetric ratio for the CLUSTER and STEREO-A observa-
tions are shown in blue and green respectively. The freely decaying and forced MHD
simulations are shown with cross-hatched and hatch areas. The expected value for
the observed nonaxisymmetry from the observed γ, IK-like and K41-like scaling are
shown by the gray areas, dashed red line and solid black line respectively.

correspond to a spectral exponent in the inertial range of γ = 3/2 and γ = 5/3

respectively. The cross-hatched and hatch area shown the values obtained from the

freely decaying and forced MHD simulations respectively.

For the CLUSTER interval the kinetic scales have an approximately constant

ratio. However the transition scales, approximately 0.1-1 Hz, are highly variable

with a clear peak that corresponds to the spin-tone of the CLUSTER satellite. The

scales between 0.001 to 0.1 Hz show a value that slowly tends to the expected value

(left-hand gray box) as the scale increases. Compared to the STEREO-A interval,

which is approximately constant and within the expected region for the spectral

exponent. We tentatively speculate that the CLUSTER results are contaminated

for scales within the range of approximately 0.05 to 1 Hz by a combination of the

spin-tone and data merging process from the two instruments and suggest that if a

significantly longer interval were available we would see increasing agreement with
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the predictions from our model.

The main difference between the two MHD simulations, with respect to our

analysis, is the geometry of Vsw relative to B0. As in the forced simulation a

strong externally applied magnetic field serves to restrict the geometry to quasi-

perpendicular sampling, i.e. θ = 90◦ ± 15◦. It may be seen from the results of the

two distinct MHD simulations that the observed nonaxisymmetry is strongest when

the sampling direction is perpendicular to the background magnetic field.

There is an observed nonaxisymmetric variance power distribution in the

inertial range, which becomes stronger in the kinetic range. We have binned the

variance power as a function of solid angle on the surface of a sphere of constant

scale and conducted Euler rotations to compare the alignment of the local coor-

dinate system with that of the minimum variance coordinate system. It has been

found that the nonaxisymmetric distribution always has a preferential direction,

such that the direction ê⊥,x(t, f) = êB(t, f)× V

|V| contains the dominant power. We

have shown that this effect can be simulated with a simple superposition of trans-

verse waves, such that ∇ ·B = 0. We also find agreement with MHD simulations,

where the reduced effect seen in the freely decaying simulation suggests that a the

maximum power difference is observed when the geometry is restricted to sampling

in the plane perpendicular to the background magnetic field, which is not possible

in the freely decaying model due to the constant spatial/temporal evolution of the

background magnetic field that results from the average of the root-mean-square

of the fluctuations. Thus, our two dimensional model is capable of both predicting

the level of observed nonaxisymmetry and can account for the observed increase in

the difference between the two perpendicular directions in the kinetic range, as a

consequence of the spectral exponent magnitude. We now consider how these obser-

vational results may be extended to the three-dimensional case and used as a tool

to distinguish between models of turbulence.

3.5 Extension to Three-Dimensions

In this section we will see that it is possible to use the observed nonaxisymmtric

variance power as a direct test for theories of turbulence. In order to discriminate

between theories explicit information of the θ dependence is necessary. We consider

two models of turbulence, that of Goldreich and Sridhar [1995] and a heuristic model

known as “Slab + 2D” (S2D hereafter).

The S2D model assumes that the turbulent fluctuations are a linear com-

bination of two components: a “slab” component that contains only wave vectors
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Figure 3.13: Schematic showing the main difference between the GS and S2D model
of turbulence. Left panel: The S2D model is composed of two linearly independent
components shown in red and blue. Right panel: The GS model is composed of one

component that is a function of k‖ ∼ k
2/3
⊥ .

aligned to the background magnetic field and a “2D” element with wave vectors

confined to the perpendicular plane with respect to the background magnetic field,

which have been considered in the previous section. This model is supported by

the so-called “Maltese cross” pattern seen in the magnetic field correlation function

[Matthaeus et al., 1990] and is mathematically convenient in studies of cosmic ray

scattering (e.g. see Shalchi [2009] and references within). A schematic of the differ-

ence between the S2D and Goldreich and Sridhar [1995] wave vectors is shown in

Fig. 3.13. It is clear from Fig. 3.13 the two components of the S2D model are inde-

pendent, with the slab and 2D components displayed in blue and red respectively.

The scaling relation of k‖ ∼ k
2/3
⊥ is displayed by one function in the GS model.

We begin by stating the three-dimensional form of equation 3.1, which may

be expressed as

P̃ij(f, θ) =

∫
d3kPij(k)δ(2πf − k ·Vsw). (3.7)

where P̃ij(f, θ) is the observed spectral tensor, Pij(k) is the actual spectral tensor

as a function of wave vector and θ is the angle between the solar wind velocity and

the background magnetic field direction. Therefore, it is possible to express the

axisymmetry as

R(θ, f) =
P̃xx(f, θ)

P̃yy(f, θ)
(3.8)

We now calculate R(θ, f) for the GS and S2D models, such that a comparison with
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observations may be made.

3.5.1 GS Nonaxisymmetry

We will assume that for the GS model all parallel components of the spectral tensor

vanish so that Pzi(k) ≡ 0, consistent with other studies Bieber et al. [1996]. The

perpendicular components for the GS model are related to the power tensor in the

following manner:

PGSij (k) =
E(k)

4πk2⊥
Πij , (3.9)

where Πij = δij − k⊥ik⊥j/k2⊥ and from Ref. Goldreich and Sridhar [1995]:

E(k) = CK
ε2/3L1/3

k
10/3
⊥

g

(
k‖L

1/3

k
2/3
⊥

)
. (3.10)

Here CK is the Kolmogorov constant, L is the characteristic injection scale, ε is the

energy dissipation rate and g is a positive symmetric function related to the scaling

between k‖ and k⊥, where g(0) = 1 and
∫∞
0 g(z)dz = 1 [Goldreich and Sridhar, 1995].

The theoretical prediction of the GS model is determined by numerical integration

of Eqs. (3.7), (3.9) and (3.10) substituted into Eq. (3.8). The result is not sensitive

to the functional form of the scaling function g. We use the exponential function,

such that g = exp(−L1/3|k‖|/k
2/3
⊥ ).

We use the balanced MHD turbulence formalism of critical balance. However,

turbulence in the fast solar wind is known to be imbalanced, such that the energy

associated with z+ is greater than that of z− [Bruno and Carbone, 2005]. An

imbalanced extension to the GS model [Lithwick et al., 2007] predicts the same

spectral exponents of both dominant and subdominant waves and the same scaling

relation as the balanced GS model. Thus, given isotropy of the turbulence at the

injection scale L, imbalance of the turbulence does not affect the ratio defined by

equation (3.8).

3.5.2 S2D Nonaxisymmetry

We follow the prescription of Bieber et al. [1996]. However, we specify distinct

spectral exponents qs and q2D for the slab and 2D components, such that they agree

with observations (e.g. see Horbury et al. [2008]; Wicks et al. [2010] and references

within). As R(θ, f) is sensitive to the perpendicular spectral exponent we consider

only variation in q2D and use a constant value of qs = 2 throughout for simplicity.
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In this case the ratio RS2(θ, f) predicted by the S2D model is

RS2(θ, f) =
Ac

(
2πfL

Vsw cos θ

)1−qs
+ q2D

(
2πfL

Vsw sin θ

)1−q2D
Ac

(
2πfL

Vsw cos θ

)1−qs
+
(

2πfL
Vsw sin θ

)1−q2D , (3.11)

where L is the injection scale (we assume that both components have the same

injection scale) and Ac is a constant that characterizes the energy ratio of slab and

2D components. Since qs 6= q2D the relative power of the components is f dependent,

as is the ratio RS2(θ, f). Observations Bieber et al. [1996] give a 1 : 4 energy ratio

between slab and 2D components and we will fix this at the injection scale L, which

fixes the constant Ac ≈ 0.5.

We plot the theoretical predictions for both the GS and S2D model in Figure

3.14, for θ = [5◦, 85◦]. The ratio R is plotted using normalized frequency F =

2πfL/Vsw and we show two different cuts through the surface R(θ, F ); for F = 36

(upper plot) and F = 3 (lower plot) in the left panels and for θ = 25◦ (upper

plot) and θ = 45◦ (lower plot) in the right panels. The S2D model is indicated

by red symbols on the plot, with circles for Kolmogorov q2D = 5/3 and diamonds

for Iroshnikov-Kraichnan q2D = 3/2. The GS model prediction is indicated by the

black squares. For completeness, we use the data to obtain q2D = 1.59, this gives

an S2D model result shown by the solid red line.

For underlying turbulence that is axisymmetric, with E(k⊥) ∼ k−γ⊥⊥ the

observed R(θ, f) → γ⊥ for θ → 90◦ for all of these curves, as seen in section

the two-dimensional case considered earlier. It can be seen in the left panels of

Figure 3.14 that the predicted R(θ, f) for the GS and S2D models are distinct for

intermediate values of θ in the transition R(θ = 0◦ → 90◦, f). The GS model form

is concave, whereas the S2D model is strongly convex. This provides a strong test

against observations provided the statistical variability is smaller than the difference

between the predicted curves. Importantly, the model predictions are maximally

distinct for intermediate angles (i.e. θ ∼ 20◦−40◦) and as we shall see, this is where

the observations tend to be more statistically significant as there more samples.

3.5.3 Observations

We use the continuous wavelet transform (CWT) with a Morlet wavelet to resolve

vector fluctuations δB(t, f) in time t and frequency f . The scale dependent local

field is calculated via the convolution of a Gaussian window as outlined in previously.

We use the Ulysses interval described in section 3.2, as it is possible to use 55 days

of continuous fast wind. We verified that the systematic change of radial distance of
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Figure 3.14: Left panels - θ dependence of the ratio R(θ, F ) at two normalised fre-
quencies: F = 36 (upper plot) and F = 3 (lower plot). Right panels – frequency
dependence of the ratio R(θ, F ) at θ = 25◦ (upper plot) and θ = 45◦ (lower plot).
Observations are shown by blue stars, S2D model is in red with circles for Kol-
mogorov and diamonds for Iroshnikov-Kraichnan perpendicular scaling. A solid red
line indicates the S2D model with the perpendicular scaling exponent from the data
of q2D = 1.59. All S2D models shown here use qs = 2. The GS model is shown
by black rectangles. Middle panels - Number of samples to form R, where white
= 1800 and black = 36 - this varies significantly with both frequency and angle.
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Figure 3.15: The surface R(θ, f) is shown in colour. The black solid lines indicate
the cuts of R(θ, f) shown in Figure 3.14. The dashed line shows the start of the
inertial range, F = 1. The dash-dot lines show contours of subinterval sample size.
The colour bar shows the ratio R(θ, f) = P̃xx(θ, f)/P̃xx(θ, f)

the satellite from 1.36 to 1.58 AU is not significant for our analysis. A long interval

is necessary to obtain good statistical coverage across the sampling domain F, θ.

In practice, the polar wind seen by Ulysses is stable and within 3◦ of the radial

direction over the entire interval under study, so we replace V̂ by the radial unit

vector eR here, which corresponds to the coordinate system used by Belcher and

Davis [1971].

For comparison between the models and the observations the data is normal-

ized to F = 1 at the beginning of the inertial range, corresponding to a time-scale

of 25 minutes. The ratio defined by equation (3.8) and a measure of the statistical

variability for four specific cases of θ and F are indicated in Figure 3.14 by the blue

stars.

The full surface R(θ, f) for our interval is shown in Figure 3.15. This shows
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how the nonaxisymmetry between the perpendicular directions depends on the sam-

pling domain. The surface is constructed by subdividing the entire interval into 1 day

subintervals. P̃xx(t, f)/P̃yy(t, f) is binned according to θ for each of these subinter-

val. As the distribution in each bin has a form close to log-normal the best measure

of the subinterval average, R, is the geometric mean Bieber et al. [1996]. In Figure

3.15 the contours indicate the number of samples in each R, thus the contours may

be interpreted as confidence contours. Each bin of the surface R(θ, f) has 55 real-

isations of R. These realisations are used to calculate the statistical variability of

the distribution R(θ, f) by calculating the median and interquartile range of the 55

values of R. Figure 3.15 shows the median value for each bin and the stars in Figure

3.14 show the median value with statistical variability estimated to 99% certainty

indicated by the error-bars.

The observations are reasonably matched by the two component heuristic

model of S2D. We can also see that the GS model of turbulence fails to account for

the observations. In the context of the S2D phenomenology the failing of the GS

model is the lack of a significant k‖ component, which has the physical motivation of

propagating Alfvén waves. The method conducted here, where R(F, θ) is analyzed,

highlights the strong 2D nature of the GS model.

For completeness it is possible to suggest two possible reasons for the lower

than expected observed nonaxisymmetry in the kinetic range. One possible reason is

an increase in compressibility, which corresponds to ξ > 0 in the formalization of the

linear superposition model of section 3.4.1. Another possible reason is a dominant

2D wave vector geometry. A dominant 2D geometry produces a rapid reduction

in the observed nonaxisymmetry as θ → 0, as seen for the GS model in the left

panels of Fig. 3.14. The CLUSTER interval analyzed in Fig. 3.3 contains θ =

90◦ ± 30◦. Therefore, the observed nonaxisymmetry in the kinetic range is likely to

require a mixture of θ, φ, ξ to describe the observations completely within the linear

model. This is a recommended extension for one interested in extending this analysis

to the kinetic range, providing physical meaning is given to such combinations of

θ, φ, ξ, however it is not clear a priori whether a unique solution is possible with the

available number of free parameters.

3.6 Conclusions

In this chapter we have investigated the observed nonaxisymmetric power distribu-

tion in the perpendicular plane with respect to the local background magnetic field.

The magnitude of nonaxisymmetry increases when observed in the kinetic range
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compared to the inertial range. We conducted minimum variance analysis with Eu-

ler rotations to show conclusively that the bulk flow of the solar wind is correlated

to the nonaxisymmetry. At first this may appear to imply that the fluctuations are

ordered with respect to the bulk solar wind flow, and so the fluctuations are not

frame invariant.

We constructed a simple linear model, composed by the superposition of

transverse waves that represent Alfvén waves, and we used Taylor’s hypothesis to

sample two MHD direct numerical simulations. We also analytically modeled an

axisymmetric energy distribution sampled via Taylor’s hypothesis. It was found that

an axisymmetric energy distribution sampled via Talyor’s hypothesis is sufficient to

reproduce the level of nonaxisymmetry observed in the solar wind. Importantly

a direct relation between the magnitude of the nonaxisymmetry and the spectral

exponent was found, which may explain the increased magnitude of the observed

nonaxisymmetry in the kinetic range compared to the inertial range.

Finally, we extended the two-dimensional concept to three-dimensions in an

attempt to investigate the wave vector anisotropy. We compared two models that

are commonly used in the solar wind literature, that of Goldreich and Sridhar [1995]

and “Slab+ 2D” [Bieber et al., 1996]. We found that the “Slab + 2D” model was

able to reproduce the observations. However, the Goldreich and Sridhar [1995]

model is unable to recover the observations, due to the strongly two-dimensional

characteristics of the model. This work has demonstrated that the power spectral

density alone is insufficient for testing models of turbulence and has provided another

tool for discriminating between theories from observations.
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Chapter 4

Discontinuities in the solar wind

The solar wind is thought to be a mixture of turbulence and structures, as suggested

in Chapter 1. A key property of turbulence is the absence of a characteristic tempo-

ral/spatial scale within the inertial range. Therefore, for every spatial scale, k, there

is an associated time-scales of evolution, τk. The time-scale is often referred to as the

eddy turn-over time, such that τk ∼ k−2/3 for K41 turbulence. The implication is

that there is a finite amount of time required for a turbulence vector field to change

direction, such that the gradient of change is constrained to du/dk ∼ k2/3 for K41

turbulence. Thus, an observed gradient greater than that expected by a specific

turbulence theory may characterize a structure/discontinuity. In a system that may

be described by ideal MHD there are different structures/discontinuities that may

be supported, such as; contact discontinuities, tangential discontinuities, rotational

discontinuities, shocks and pressure balance structures (e.g. see Kivelson and Russell

[1995] and references within). Borovsky [2008] demonstrated that strong gradients

in the magnetic field measurements coincide with a change in plasma properties

such as flow velocity, density, pressure, temperature, etc. The aim of this chapter

is to extract information relating to the turbulence, whilst excluding the time-series

discontinuities. This will be done by analyzing in-situ observations of the solar wind

prior and post application of a method to identify and remove the discontinuities.

To begin we demonstrate the characteristic features of a discontinuity/structure

from observations. We plot the magnetic field observations for satellites 1 and 3 from

the CLUSTER mission during the January 30th 2007 interval used in section 3.1.

We have merged the FGM and STAFF-SC instruments to produce a time-series with

a cadence of 450 Hz as in Chapter 3. The magnetic field from satellite 1 and 3 are

shown by dotted and solid lines in Fig. 4.1, where the x, y and z component of the

magnetic field are displayed in blue, green and red respectively. The vertical dashed
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Figure 4.1: Magnetic field observations from satellite 1 and 3 of the CLUSTER
mission during January 30th 2007 displayed with dotted and solid lines respectively.
The x, y, z components are shown in blue, green and red respectively. The vertical
dashed black line highlights a potential non-turbulent structure identified “by eye”.
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lines highlight the large gradients associated with a magnetic structure. Satellite

1 is ahead of satellite 3 by approximately 10000 km and the solar wind velocity is

approximately 650 km/s, thus there is a delay of approximately 16 s between the

two satellites due to advection.

The black vertical dashed lines are separated by 3 s, which corresponds

approximately to inertial/kinetic transition scale. Thus, the black vertical dashed

lines correspond to the smallest possible scale of the MHD turbulence. One can see

the z component of satellite 1 undergoes a rapid change, which is advected by the

solar wind flow and repeated in satellite 3. The highlighted feature is a candidate

for a non-turbulent discontinuity due to the large gradient and stability of such a

feature in the time-series.

In principle, it is possible to separate the population of fluctuations due to

turbulence from those due to some other process. Methods developed to identify

discontinuities include using: a minimum variance approach (Neugebauer et al.

[1984]; Lepping and Behannon [1986]), identification of relatively large and fast

changes in the plasma parameters/field direction (Tsurutani and Smith [1979]), the

scaling of relatively large and fast changes in the field direction (Li [2008]) or a change

in angle over a threshold value of the velocity and magnetic field direction at some

pre-chosen scale (Borovsky [2008, 2010]; Zhdankin et al. [2012]) . However, these

methods by construction introduce a characteristic scale and this is problematic in

the study of scale-free phenomenology, such as turbulence. Any method to remove

structures that is not also scale-free will impart a preferential scale on the remaining

data and subsequent analysis.

The outline for the sections of this chapter is as follows; Section 4.2) Our

new method for detecting discontinuities will be explained and we demonstrate a

proof of concept for our method, Section 4.2.1) the background magnetic field will

be discussed in detail as it is central to understanding this chapter, Section 4.3) our

method is calibrated for the Ulysses data interval under investigation, Section 4.4)

we introduce a surrogate dataset to demonstrate the effect of a discontinuous back-

ground magnetic field upon the PSD estimates. We determine a minimum estimate

for the ratio of background field magnitude to root-mean-square fluctuations, which

is important as a check on our method, Section 4.5) The results with/without discon-

tinuities present in the analysis are presented for variance, power and intermitteny

anisotropy.
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4.1 Observations

We consider an extended interval of high latitude magnetic field observations recorded

in-situ by Ulysses. We used an interval [day 91-146, 1995] of fast solar wind recorded

at a heliographic latitude of 21◦ to 58◦ and a radial distance of 1.36 to 1.58 AU dur-

ing solar minimum. The Ulysses interval has an average solar wind of 756 km/s

and is recorded at a cadence of 1 s. To correct for data gaps and inhomogeneous

sampling the data is linearly interpolated to a cadence of 2 s. Then for any period

of missing data that lasts longer than 10 s the resulting region of interpolated data

will be excluded from subsequent analysis.

4.2 Method Overview

We begin by introducing the null hypothesis we will be using to identify discon-

tinuities within the in-situ observations. Our null hypothesis is that there exists

a large-scale background magnetic field, where large refers to a spatial/temporal

scale significantly larger than the inertial scales. The background magnetic field

has a greater magnitude than the root-mean-square of the turbulent fluctuations.

The background magnetic field is homogeneous or at least changes on a significantly

longer time-scale than the turbulent fluctuations. Thus, we envisage a background

magnetic field described by the predicted Parker spiral.

We separate the magnetic field observations into a slowly varying background

field, B0, and fluctuations, ∆B, such that the magnetic field may be expressed as

B = B0 + ∆B, as in Chapter 2. Therefore, we write the magnitude at every time as

B2 =
(
B0 + ∆B‖

)2
+∆B2

⊥, where ∆B⊥,‖ are the turbulent fluctuations at a specific

time in the perpendicular and parallel direction with respect to the background

magnetic field. Taylor expansion leads to |B| = B0

[
1 + ∆B‖/B0 +O

(
∆B2

⊥/2B
2
0

)]
.

We consider two points separated by a time-scale, τ , such that

δ|B|(τ) ≡ |Bt| − |Bt+τ | ∼ B0,t + ∆B‖,t −B0,t+τ −∆B‖,t+τ . (4.1)

Note, δB‖(t, τ) = ∆B‖,t −∆B‖,t+τ , where all quantities are distributions and only

the measured fluctuation, δB‖(τ), is explicitly a function of τ .

Providing there is no discontinuity within the time-scale τ , such that within

the inertial range scales B0,t = B0,t+τ , one arrives at the relation δ|B| ∼ δB‖. Under

the null hypothesis this relation is always true. Therefore, we set our geometric

condition as, |δ|B (t, τ) | − δB‖ (t, τ) | < T (τ), where T (τ) is a scale-dependent

threshold to be found from the data that accounts for the approximations used to
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Figure 4.2: Schematic of two distinct background magnetic fields joined to produce
a rapid time-series discontinuity. The magnetic field of B1 and B2, shown in blue
and red respectively, have a domain sufficiently large to develop turbulence, i.e.
S1,2 � L. The discontinuity is highlighted by the vertical dot-dashed black line.
Sample paths (a) and (b) do not cross the discontinuity, whereas sample path (c)
does.

arrive at δ|B| ∼ δB‖.
Our method is calculated scale-by-scale, such that it is expected that we will

use a local background magnetic field and wavelet decomposition, as in Chapter

3. The rational for our choice of background magnetic field estimate is discussed

in Section 4.2.1. Therefore, we express our criteria in Fourier space, |δ|B (t, f) | −
δB‖ (t, f) | < T̃ (f). Thus our criteria for a discontinuity free time index at a specific

frequency is:

|δ|B (t, f) | − δB‖ (t, f) | < T̃ (f) = T0f
−β, (4.2)

which is assessed independently for all scales/frequencies and at every time index.

Here β represents how the threshold changes with scale/frequency and T0 is a con-

stant. We will determine both β and T0 from the data. Finding β and T0 will be cov-

ered in Section 4.3. Importantly, the threshold T0f
−β is scale/frequency-dependent.

It is not a constant threshold for all scales/frequencies, which corresponds to the

case where β = 0. We will refer to a case as filtered where the fluctuations from

times were the criteria of equation 4.2 is not realized are removed.

In order to visualize the scenario and how our method is able to detect
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discontinuities within the time-series, we display a schematic of the situation in

Fig. 4.2. In our schematic B1 and B2, shown in blue and red respectively, denote

two distinct large-scale background magnetic fields, such that S1,2 � L, where L

is the largest scale of the turbulent fluctuations. There is a discontinuity between

S1 and S2 comparable to the ion gyro-scale. Thus, our schematic has qualitative

similarities with the observations shown in Fig. 4.1. Using our method it is expected

that the time-series from the dotted yellow sample paths (a) and (b) will pass our

threshold, whereas the time-series from the yellow dashed sample path (c) will fail

our threshold in the region of the discontinuity. The region containing reject data

will increase with scale, as it is important to exclude any fluctuations that span

the discontinuity, and so contain information about the discontinuity. Note also the

local background magnetic field is not defined within a discontinuity.

Finally, as a proof of concept we measure the “discontinuity detection quan-

tity”, |δ|B| − δB‖|, as a function of time for three separate temporal-scales. In Fig.

4.3 we display the observations of satellite 1 for the same discontinuity as shown in

Fig. 4.1. The observations are shown in magenta and the vertical black dashed lines

mark the discontinuity as measured “by eye” in Fig. 4.1. Three temporal scales of

approximately 3.5, 9.8, 27.3 s are displayed in blue, green and red respectively. The

vertical dot-dashed lines correspond to the temporal uncertainty due to the Morlet

wavelet, which is approximately ±8τ/5.

One can see that the prescribed detection quantity, |δ|B| − δB‖|, increases

in the vicinity of a discontinuity and that the value increases as the scale increases.

Thus, the discontinuity detection quantity behaves as we would anticipate from the

above discussion. The observations are consistent with the method expectations.

The next step is to determine the correct threshold for the data. This will be covered

in Section 4.2.1. However, we will first discuss the definition of the background

field, which is fundamental to the method and understanding the detection method

introduced in this chapter.

4.2.1 Background Magnetic Field

Currently there are two methods used to determine the background magnetic field.

These are referred to as the “global” and “local” background magnetic field. How-

ever, the background magnetic field is not a trivial quantity, as we will see the

method used to determine the background magnetic field may fundamentally affect

the results.

The global background magnetic field is defined on a temporal scale suf-

ficiently large, such that the “weak” stationarity criteria is achieved. Weak sta-
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Figure 4.3: Behaviour of the “discontinuity detection quantity”, |δ|B| − δB‖|. Ob-
servations from satellite 1 (same as shown in Fig. 4.1) are shown in magenta, where
the vertical dashed black lines highlight the same discontinuity identified “by eye”.
The quantity |δ|B|−δB‖| is shown as a function of time for 3.5, 9.8 and 27.3 seconds
in blue, green and red respectively. The temporal uncertainty for each time-scale is
shown by vertical dot-dashed lines.

68



tionarity implies that one may subtract the background magnetic field from the

observations to produce the fluctuations, such that B(t) − 〈B〉T = ∆B, and that

the fluctuation distribution is time-stationary for the first and second moment. Un-

der this formalization the background magnetic field for any individual analysis is

defined at one temporal-scale, T , for which weak stationarity is realized. Typi-

cally T is of the order of hours/days. This method assumes that the background

magnetic field is homogeneous superposed with a random process (Tu and Marsch

[1995]), such that there are no discontinuities within the averaging period used to

calculate the background field (Bavassano et al. [1982]). The global background field

estimate requires carefully chosen start and finish points for the averaging interval.

Matthaeus et al. [1986] showed that if the end points of the interval are shifted

across a sector boundary (a sector boundary is essentially a strong discontinuity

within a time-series) the analysis will undergo unacceptable changes. There is also

concern that averaging over long periods in order to produce a good statistical con-

vergence of the background field estimate may cause cancellation of structure that

will misrepresent the resulting analysis (Tu and Marsch [1995]).

The local background magnetic field is calculated for all points in the time-

series and all temporal/frequency scales of interest. The rationale for the intro-

duction of the local background field is that the fluctuations of the magnetic field

are influenced by the magnetic field that results from all scales greater than that

of the fluctuation scale/frequency of interest. The background magnetic field felt

by the fluctuations is the volume average br(s) = 1/Vr
∫
Vr

B(s)ds, however the

estimated background field using Taylor hypothesis is bτ (t) = 1/T
∫
T B(t)dt. If

the background field is inhomogeneous these two quantities are generally not equal.

However, there may be temporal/spatial scales where the background field can be

considered homogeneous, i.e. regions between structures/discontinuities. Thus, the

local background field may be used to estimate the physical background field if es-

timates are not made in the vicinity of structures/discontinuities of the physical

background field.

The local and global background magnetic fields coincide at approximately

the temporal-scale, T . However, for scales of increasing frequency there are signif-

icant differences. For temporal-scales smaller than T the local background mag-

netic field method increases the observed anisotropy, compared to the global back-

ground field. Interestingly, if a surrogate dataset set is produced by randomizing the

phase the enhancement of anisotropy is removed (Matthaeus et al. [2012]), imply-

ing that phase coherent structures, which includes time-series discontinuities, affect

anisotropy estimates when using the local background field estimate.
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Thus, the considerations investigated for the global background magnetic

field, such as cancellation of structure and averaging end-points, are important for

the local magnetic field. The potential differences for the local field estimate are;

a) it is conducted over a smaller sample ensemble, and so may be more sensitive to

discontinuities b) there is an introduction of scale-dependent structure cancellation

under the operation of averaging, such that uncertainty of the background magnetic

field becomes dependent upon the temporal-scale under investigation.

Therefore, the question as to which method to use for our method needs

to be addressed. Consider magnetic field observations of the form, B = B0 +

∆B, as defined above. We conduct an average at a specific temporal scale, such

that b(t, τ) = 〈B0〉τ + 〈δB〉τ , where b(t, τ) is the local background magnetic field

estimate. We assume the distribution of ∆B values is approximately symmetric.

Thus, the mean of the fluctuations tends to zero as the ensemble increases in size,

so if the background field is homogeneous then the estimated background field,

b, tends to the background field, B0. However, if the background field, B0, is

inhomogeneous, containing strong deviations in direction, a greater ensemble size

does not increase the accuracy of b.

We have produced a surrogate background magnetic field that is inhomoge-

neous, in that there are sudden discontinuities present. The purpose of the surrogate

time-series is to demonstrate the uncertainty that arises in estimating the back-

ground magnetic field with the two existing method (i.e. the “local” and “global”

temporal average) in the presence of time-series discontinuities. Details of the surro-

gate dataset will be covered in detail in section 4.4. The time-series is generated at

a cadence of 0.25 Hz, such that the discontinuity profile does not require modeling.

The top panel of Fig. 4.4 displays a single component of the surrogate time-series in

blue. Only part of the generated interval and a single component are shown for clar-

ity. We consider a global background field averaged over the entire interval, which

corresponds to approximately 5 days in green and the local background magnetic

field at temporal-scales of approximately 2:46, 9:36 and 33:15 minute:seconds in

red, black and magenta respectively. The bottom panel shows the angle in degrees

between the constructed background field and the estimated background field.

The local background field becomes a less accurate estimate of the actual

background field as the temporal scale increases. One can see that any window

over which the background magnetic field is calculated by an averaging operation

contains a significant deviation from the true background magnetic field, B0, for

all times if the window contains more than on discontinuity. Thus, concerns of

structure cancellation by an averaging operation are valid and are not unique to
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Figure 4.4: Top panel: One component of a surrogate dataset that represents a
discontinuous background magnetic field is shown in blue. Bottom panel: The
angle between the estimated background field and actual background field, cos−1(b ·
B0), for different estimates. Both panels: The local background estimate method
used at 2:46, 9:36, 33:25 minutes:seconds are displayed in red, black and magenta
respectively. The global background field, where G ∼ 5 days, is shown in green.
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either method.

For our method we choose to use the local background magnetic field esti-

mate. Our method uses equation 4.2 to compare two independent estimates of δB‖,

i.e. δ|B| and b ·δB. For times where the two estimates are significantly different the

local background magnetic field is poorly defined due to a discontinuity/structure.

The data around times were discontinuities are detected by the above criteria are

removed from subsequent analysis. Therefore, for the first time, we will be able to

accurately estimate the background magnetic field for all data analyzed. Thus, we

may determine the anisotropy of the turbulence within the solar wind.

4.3 Quantifying β and T0

Now that we have established the method that will be used to determine the back-

ground magnetic field estimate it is possible to find both β and T0 from the data.

It is suggested from equation 4.1 that the power of the parallel component with

respect to the background field, P‖, and the modulus of the magnetic field fluctu-

ations, P|B|, are approximately equal in the absence of discontinuities. Therefore,

we systematically vary the values of T0 and β with the aim to achieve the lowest

root-mean-square-deviation (rmsd) between P|B| and P‖. The lowest rmsd is found

by removing fluctuations from the δB‖ population according to equation 4.2 and

leaving the δ|B| population unchanged. We chose to remove fluctuations from the

δB‖ population because δB‖ is explicitly dependent upon the background magnetic

field estimate. Therefore, we assume that the effect of discontinuities on the mag-

netic field magnitude for inertial range scales is marginal, which is consistent with

the findings of Coleman [1968].

Here we estimate the values of T0 and β by calculating the rmsd across 9

logarithmically spaced frequencies within the inertial range, which correspond to

approximately 1→ 10 minutes. We explore the variable space of equation (4.2) for

T0 = 10[−2.75,−0.25] and β = [0.25, 0.95]. Hereon, for clarity we will refer to the value

of T0 by the logarithmic power only. A map displaying log10(rmsd) is shown in Fig.

4.5. A unique solution for minimising the rmsd of P|B| and P‖ can be seen towards

the centre of the figure. The bottom left of the figure shows a dark triangle as these

values of T0 and β remove the δB‖ fluctuation population entirely for the larges

temporal-scale. Thus, there is no data to construct P‖ at the largest temporal-scale

of approximately 10 minutes, and so the rmsd may not be calculated due to an

uneven number of points to compare between P‖ and P|B|.

In this chapter we consider four different combinations of [β, T0]. We will
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use the raw data, which may be expressed as [0.95,−0.25] and the optimum case,

which for this data set is found to be [0.63,−1.51]. For the other two cases either T0

or β remain at the optimum value and the other is varied, such that the two cases

have approximately the same degree of rmsd, i.e. they are on a contour of constant

rmsd. These values of [β, T0] are [0.71,−1.51] and [0.63,−1.70]. All four cases have

been highlighted by a specific colour and letter on Fig. 4.5 that will be used to refer

to the cases throughout the paper. These are I, II, III, IV displayed in black, blue,

magenta and red respectively.

A novel and distinctive feature of our method is that the threshold changes

with wavelet scale as specified by the exponent β. Therefore, it is important to check

that the range of β values found by conducting a rmsd test are reasonable. We may

estimate the value of β that would be expected if the first two central moments of the

δ|B| and δB‖ populations may be approximated to be Gaussian. First we estimate

how the standard deviation of the δ|B| and δB‖ populations scale with frequency.

This may be estimated from the spectral exponent of these two quantities (See

Section 4.5 for the spectral exponents). We estimate the spectral exponents to be

γ|B| = 1.4 and γ‖ = 1.8 for the δ|B| and δB‖ populations respectively. Therefore, the

standard deviation of the probability distributions scale as σ2|B| ∼ 0.4 and σ2‖ ∼ 0.8.

The standard deviation of Z = δ|B| − δB‖ is
√

(σ2|B| + σ2‖), as it is the convolution

of two Gaussian distributed probabilities. However, the threshold used depends on

P(|Z|). The standard deviation of this probability distribution may be expressed

as
√

(σ2|B| + σ2‖)(1− (2/π)). If we assume that the σ2‖,|B| are known to an accuracy

of ±0.1 then we may expect the optimum range to be β = 0.60→ 0.71. Comparing

this estimated range of β with the optimum range displayed in Fig. 4.5 we can see

reasonable agreement.

4.4 Criterion Check

4.4.1 Surrogate Data

The solar wind contains the signature of many distinct physical processes. The goal

is to remove only those fluctuations that are not due to the underlying turbulence in

the inertial range. Coherent structures such as shocks and flux tube boundaries will

produce a rapid temporal variation (discontinuity) in the background field as seen

by a satellite in-situ. It is these features that our method will remove. Therefore, we

construct a surrogate dataset that represents a discontinuous background magnetic

field.

Our surrogate dataset for the fast solar wind as seen by Ulysses contains a
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Figure 4.5: Intensity map in the range of 1 to 10 minutes of the root-mean-square-
deviation between the power of the modulus of the magnetic field and the parallel
component of the fluctuations with respect to the local background field under varies
values of filtering defined by equation 4.2. The dark area corresponding to small
β and T0 contains no value as the largest time-scale point has been removed for
the parallel component due to the threshold. The raw (I), optimum filtered (II),
under-filtered (III) and over-filtered (IV) cases are show in black, blue, magenta
and red with values of [β, log10(T0)] of [0.95,−0.25], [0.63,−1.51], [0.71,−1.51] and
[0.63,−1.70] respectively.
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waiting-time distribution and preserves the angular probability distribution for the

magnetic field vector. The surrogate dataset is composed of uncorrelated fluctua-

tions to represent a set of uncorrelated discontinuities. The PSD of the surrogate

dataset may be interpreted as a “noise floor” for all scales of the PSD, below which

ensembles will be dominated by fluctuations related to temporal discontinuities of

the background magnetic field direction. We will show this surrogate time series

may be used to estimate the free parameters in equation (4.2) that determine the

threshold for our method, although less precise than the rmsd method previously

used. We will also use it to demonstrate the effect of discontinuities on statistical

estimates.

There has been considerable work on the waiting-time distribution of dis-

continuities. There is a range of reported waiting time distributions, such as ex-

ponential (Burlaga [1969]), power-law (Bruno and Carbone [2005]) and lognormal

(Vasquez et al. [2007]). We will demonstrate the effect of using an exponential and

stretched-exponential waiting-time distribution on the observed PSD. The exponen-

tial waiting-time has the advantage that there is only one free parameter, that of

the waiting-time mean. The stretched-exponential waiting time is considered here

as it is possible to approximate the exponential, power-law and lognormal with a

stretched exponential distribution depending on the scales used to determine the

distribution.

Conventionally a surrogate dataset set would be made by preserving the

Fourier amplitudes and randomising the phases (Schreiber and Schmitz [2000]).

The use of such surrogate dataset methods suggests the importance of phase cor-

relations on anisotropy measures (e.g. Matthaeus et al. [2012]). Here, our data,

which is designed to reproduce the non-turbulent discontinuities, is constructed as

a Markovian jump process, where the angular state space of the original data is

preserved.

The Ulysses data is in RTN coordinates, where R is the radial direction from

the Sun to the spacecraft, T is the direction perpendicular to the axis of rotation

of the Sun and perpendicular to R. N competes the orthogonal set and is directed

perpendicular to the ecliptic plane. Thus, the magnetic field data is in the form

Bt = [BR(t), BT (t), BN (t)]. From this coordinate system we project to a spherical

coordinate system, Bt = [|B|t, θt, φt], such that θ is the angle in the RT plane and

taken w.r.t R, and φ is the angle from the RT plane. In this coordinate system we

define the joint probability density Pθ,φ, which is the probability of a jump pointing

in a certain direction of θ-φ-space.

The waiting time between jumps, TW , is drawn from a probability distri-
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bution. The exponential distribution is described as TW ∼ λ exp(t/λ), whilst the

stretched-exponential distribution is described by TW (t|λ, b) = b
λ( tλ)b−1 exp(−( tλ)b),

where the 1/λ is the jump rate and b is a stretching factor. Both distributions are

discretized and we allow only values that are greater than 20 s.

The value of our surrogate dataset at a specific time index, Xt, is constant

within each waiting time, after which a jump occurs by selecting Bj from the ob-

servations, where j is a randomly selected index of the observations. The index,

j, effectively randomises the correlation between successive discontinuities. Our

surrogate may be written as

Xt =


[M0, θ (x′1) , φ (x′1)], if t = 0

Xt−1, if t > 0 and t− s < TW

[M0, θ
(
x′j

)
, φ
(
x′j

)
], if t > 0 and t− s = TW

(4.3)

where t is the time of the surrogate dataset, s is the time of the latest jump in

the time-series, θ
(
x′j

)
and φ

(
x′j

)
are subsets from the same time index of the

observations. M0 is the constant magnitude of the vector, chosen such that there is

agreement between the PSD of the observations and the surrogate date in the range

τ = 1− 7 days when the surrogate has been projected back to RTN coordinates.

We display the PSD for the R-component of the observations and surrogate

time-series with two different waiting-time distributions. Using the Welsh spectral

estimate method we demonstrate the larger scales in Fig. 4.6 and smaller scales in

Fig. 4.7. The spread in the PSD at high frequencies may be used as a proxy for

the uncertainty across all scales. The Ulysses observations are displayed in blue,

whilst the exponential and stretched-exponential waiting-distributions are shown in

red and black respectively. For the exponential case there are two distinct behaviors

with a rapid transition. This is shown by the small scale spectral index of f−2,

indicative of discontinuities, and a large scale spectral index of f−0, indicative of

uncorrelated fluctuations.

The two scaling behaviours can be understood by examining the behaviour

of the mean, variance and correlation function of the surrogate dataset. It can be

shown that all three of these quantities, which are important for weak time sta-

tionarity, tend to the stationary solution at a rate ∼ exp(−τ/λ) for the exponential

waiting-time distribution (Gardiner [2003]; Jacobs [2010]). Therefore, the PSD is

dominated by the apparent non-time-stationary nature of small ensembles until τ

is approximately 1 − 2λ, then there is a transition from f−2 to f0 determined by

the waiting-time distribution. Above approximately 5− 10λ the ensembles become
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Figure 4.6: PSD for the Ulysses in blue. The surrogate dataset for a discontinu-
ous background magnetic field where the waiting-time follows an exponential and
stretched exponential distribution are shown in red and black.
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Figure 4.7: PSD for Ulysses data is shown in blue. The surrogate dataset for a dis-
continuous background magnetic field where the waiting-time follows an exponential
and stretched exponential distribution are shown in red and black. Unlike Fig. 4.6
the Welch method is conducted with a smaller window to increase the accuracy of
the PSD estimate within the inertial range scales.
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approximately time stationary. The stretched exponential waiting-time distribution

must show the same small and large scale behaviour. Importantly, like the obser-

vations the stretched exponential distribution is able to demonstrate a piece-wise

transition region that resembles f−1.

Therefore, we find three distinct regions of the PSD of our surrogate dataset,

shown in Fig. 4.12, and so the PSD we would observe if the solar wind fluctuations

were entirely discontinuities with an exponential or stretched-exponential waiting

time distribution. In order to construct a time-series the waiting-time distributions

are discreteized by rounding to the nearest integer. We chose to enforce a minimum

jump time of 10 ∆t and the time-series is constructed at a cadence of ∆t = 2 s for

both the exponential and stretched exponential distributions. For the exponential

and stretched-exponential waiting-time distributions the average time between dis-

continuities is 20 and 13 minutes respectively. This is achieved by using a λ = 20

minutes for the exponential case and λ = 75 s, b = 0.4 for the stretched-exponential

case. It should be noted that the solar wind has been observed to become weakly

time stationary on times of 5-10 λ [Matthaeus and Goldstein, 1982] and temporal

scales greater than 1 hour. This result is consistent with both waiting-time distri-

butions used here.

The difference between the surrogate and Ulysses PSD in this range shows the

power that arises from correlated fluctuations, such as turbulence. This highlights

the importance of removing time-series discontinuities from further statistical mea-

sures that have the sole intention of understanding turbulence and the importance

of understanding the waiting-time distribution between discontinuities.

4.4.2 Comparison with previous methods

A previously used measure to characterise discontinuities is the change of angle be-

tween two magnetic field vectors in the time-series separated by a time-scale, τ ,

such that ∆θ (τ) = cos−1
(

B(t)·B(t+τ)
|B(t)||B(t+τ)|

)
. This measure has been used previously

in the detection of discontinuities (e.g. Borovsky [2008]; Li [2008]; Borovsky [2010];

Zhdankin et al. [2012]). It is anticipated that for small τ small values of ∆θ will con-

tain predominantly turbulent fluctuations, whereas the large ∆θ will be populated

exclusively by discontinuities. We will therefore use our surrogate dataset to find

the distribution of discontinuities in this ∆θ mapping for all scales of interest, and

then use this distribution to separate fluctuations affected by discontinuities from

the underlying turbulent distribution. The ∆θ mapping of our surrogate time-series

will provide another estimate of the values of T0 and β that can be used.

In order to estimate a valid range of values for both T0 and β the probability
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in the solar wind and the surrogate jump process with exponential waiting-time
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distribution function of ∆θ, P(∆θ), for different values of τ must be constructed

from the raw Ulysses interval and surrogate time series. For this section we consider

the exponential waiting-time surrogate time-series as there is only one free param-

eter, which is the outer-scale of the inertial range. In Fig. 4.8 the distribution of

P(∆θ) for the raw Ulysses interval and surrogate time-series can be seen in blue

and red respectively. For sufficiently large τ , such that the τ > 3λ, the raw Ulysses

interval and the surrogate time series coincide for all ∆θ, agreement is also seen

when ∆θ > 100◦ for all τ . The agreement between the surrogate time-series and the

raw Ulysses interval demonstrates that these observations may be solely attributed

to discontinuities at large τ or large ∆θ. Previous studies have suggested that a

cut-off ∆θ for turbulence fluctuations is: ∆θ = 45◦, 50◦, 120◦ by Borovsky [2008]; Li

[2008]; Veltri and Mangeney [1999] respectively.

We have demonstrated that jumps where ∆θ > 100◦ is primarily due to

discontinuities for all τ shown. Therefore, in order to estimate valid values for T0

and β we slowly lower the value T̃ (f) independently for each frequency and calculate

P(∆θ) from all times where the difference in equation 4.2 is less than or equal to

T̃ (f). P(∆θ) is binned across 36 bins, each of 5◦ width. We collect the largest value

of T̃ (f) at each frequency that results in no data falling into each ∆θ bin greater

than 100◦, such that for each frequency there may be as many as 16 different values

of T̃ (f). The spread of data in max(T̃ ) for each frequency may be interpreted

as the threshold required to avoid discontinuities, where discontinuities are purely

characterised as a change in the magnetic field vector direction, as in other studies,

such as Borovsky [2008]; Li [2008].

The scatter is shown in Fig. 4.9 where the 16 bins in the range 100◦ < ∆θ <

180◦ are plotted for each frequency. Frequency is plotted along the x-axis against the

maximum value of T̃ (f) observed that keep each bin empty along the y-axis . The

blue diamonds are the scatter of the raw Ulysses observations. There is a large spread

and the ability to find a unique value for T0 and β is not possible from this scatter.

However it is possible to see that our optimal values of T0 and β lie within this

spread, specifically the optimum parameters lie towards the bottom of this scatter,

which is expected if P(∆θ) is limited to the smaller range of 100◦ < ∆θ < 180◦ for

the turbulent population. The large spread in max(T̃ ) for each frequency highlights

the difficultly in using a method that relies on a fixed value of ∆θ to discriminate

between turbulence and discontinuities. One may see that using a method that

depends on a fixed ∆θ requires a priori selection of scale. However, there is no

preferential scale within the inertial range, so a priori selection is not possible.

To compare our estimate with pre-existing estimates of P(∆θ) we show
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Figure 4.9: Scatter of the largest threshold value which results in the observed P(∆θ)
empty for values of ∆θ > 100◦ in steps ∆θ = 5◦ for the Ulysses observations, shown
as blue diamonds. The solid lines refer to the level of filtering where the colours
are the same as in Fig. 4.5, such that black, blue, red and magenta lines corre-
spond to [β, log10(T0)] of [0.95,−0.25], [0.63,−1.51], [0.63,−1.70] and [0.71,−1.51]
respectively.

82



0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

∆θ

P
(∆

θ
)

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

∆θ

~exp(−∆ θ/9.3) ~exp(−∆ θ/25.9)

Figure 4.10: The estimated probability distribution for the change in magnetic
field at a time-lag of 128s, P(∆θ, τ = 128s), where lack, blue, red and magenta
lines correspond to filtering with equation 4.2 with [β, log10(T0)] of [0.95,−0.25],
[0.63,−1.51], [0.63,−1.70] and [0.71,−1.51] respectively. Left panel: The remaining
population after filtering, i.e. the population due to turbulence. The solid green line
shows a possible fit to the tail of the turbulent population. Right panel: The raw ∆θ
population minus the discontinuity filtered ∆θ population, i.e. the ∆θ population
due to discontinuities. The solid green line shows a possible fit to the tail of the
discontinuity population.
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Figure 4.11: “The pdfs for the angular shifts in magnetic field with ∆x = 8 and
several background magnetic fields (where brms = 1.3). Each pdf has a region where
it takes the form of exp(−∆θ/θ∗), where θ∗ depends on B0” after Zhdankin et al.
[2012]. ∆x = 8 is the grid point separation within the simulation.

the estimated P(∆θ) for the turbulence and the discontinuities at the time-scale

τ = 128s for our method using the four cases of T0 and β displayed in Fig. 4.5.

Specifically this allows direct comparison to figure 1 of Borovsky [2010] and an esti-

mated comparison to P(∆θ) found from MHD simulations by Zhdankin et al. [2012]

for various background field strengths relative to the turbulent fluctuations. The

figure from Zhdankin et al. [2012] is shown in Fig. 4.11.

The raw population of P(∆θ) is shown in black for both panels of Fig. 4.10.

The three filtered cases are displayed in both panels of Fig. 4.10. in the colours

used in Fig. 4.5, such that black, blue, red and magenta correspond to the β and T0

values of [0.95,−0.25] (raw), [0.63,−1.51] (optimal), [0.63,−1.7] and [0.71,−1.51]

respectively. For the filtered cases the estimated turbulent population is displayed

in the left panel, while the raw population minus the estimated turbulent population

is displayed in the right panel, which corresponds to an estimate of P(∆θ) for the
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discontinuous population.

The estimated turbulent population predominantly occupies an area of the

plot corresponding to ∆θ < 100, however it is not possible to characterise the found

turbulent population by a rigid ∆θ cut-off value. We have fitted both the turbulent

and discontinuity population with a power-law in the tails and find remarkable

agreement with that suggested in Borovsky [2010].

There are two possible interpretations; i) the raw P(∆θ) is composed of two

populations, that of turbulence and discontinuities, or ii) the raw P(∆θ) is purely

due to turbulence. As part of the argument that P(∆θ) is purely due to turbulence

we compare our result to that of Zhdankin et al. [2012], which is displayed in Fig.

4.11. It is apparent the functional form of the raw P(∆θ) and those found from

simulations of varying background field strength compared to the root-mean-square

fluctuation strength, δBrms, that it may be possible that the raw P(∆θ) is due to

a solely turbulent case where B0 < δBrms, such that δBrms ∼ 5B0. However, if we

compare the values of P(∆θ) for our raw case and the case of a weak background field

as shown in Fig. 4.11 we find that there is no agreement. Specifically the small ∆θ

probability, which is most accurately known, is under represented by approximately

an order of ten in the weak background field MHD simulations compared to the

observations. However, if we compare our filtered P(∆θ) to those found by Zhdankin

et al. [2012] there is a good agreement for the case where B0 ∼ 1 − 5δBrms. This

implies that P(∆θ) is not solely due to turbulence. Agreement with Borovsky

[2010] demonstrates the power of our method, as only magnetic field measurements

have been used to discriminate between turbulence and discontinuities, implying

that discontinuities may be accurately detected at the temporal resolution of the

magnetic field measurements, which is often greater than other plasma parameters.

4.4.3 Estimating the background magnetic field magnitude relative

to the turbulent fluctuations

We now use the surrogate time-series in conjunction with the observations to esti-

mate the ratio B0/δBrms. We chose to use the surrogate time-series in conjunction

with the observations because using solely the observations may be misleading, as

background field discontinuities may be misinterpreted as random fluctuations with

a large magnitude.

Our starting point is to use our surrogate time-series that solely consists of

jumps and superpose a fractal Brownian motion (fBm) that is projected purely per-

pendicular with respect to the background field direction and limited in frequency

extent. Limiting the frequency extent of the fBm produces a bound time-series,
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Figure 4.12: Ulysses observations are displayed in black. The surrogate dataset
with exponential waiting-time distribution is shown in red. The magnitude, M0, has
been normalized to minimize the difference between the surrogate and observation
for τ ∼ 20 minutes to 1 day, whilst preserving agreement between the two data at
τ ∼ 1− 7 days within uncertainty.
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such that the fluctuations remain within a small range of values about zero. Here

we will use the exponential waiting-time surrogate time-series and we reduce the

magnitude, M0, from that shown in Figs. 4.6-4.7, such that the magnitude of the

background magnetic field discontinuities are reduced from the value that best fits

the observations to the lowest magnitude that allows agreement with the observa-

tions within uncertainty, shown in Fig. 4.12. We choose to use the exponential

waiting-distribution to minimise free parameters and reduce the magnitude such

that we may find the lowest reasonable ratio of B0/δBrms within the framework of

a discontinuous background magnetic field and turbulence population. Minimizing

the background magnetic field also has the effect of reducing the dominance of the

background field PSD in the region of τ ∼ 20 min→ 1 day. We will use a selection of

δBrms strengths, such that B0 = [1, 3, 5]δBrms and we use an IK-like scaling for the

fBm, such that the spectral exponent of the fBm time-series is γs = −1.5. We shall

then compare the power spectral density and P(∆θ) to estimate the actual value of

B0/δB for our interval and compare this to the results Zhdankin et al. [2012] and

the estimated ratio directly from the observations.

The power spectral density of the R component of the solar wind and our

surrogate time-series may be seen in Fig. 4.13. The observations, background field

jump process with exponential waiting-time and the superposed time-series with

B0/δBrms = 1, 3, 5 are displayed in black, red, magenta, blue and green respectively.

The best agreement between our surrogate time-series and the observations can be

seen to coincide with the case where B0/δBrms = 3.

An estimate of P(∆θ) for the observations, the superposed time-series with

B0/δBrms = 1, 3, 5 and the turbulence population found from the observations are

displayed in black, magenta, blue, green and red in Fig. 4.14. Again we find a

good match between the observations and the superposed surrogate time-series with

B0/δBrms = 3. Therefore, we conclude that the observations may be modeled as

a mixture of a discontinuous background field and turbulence where B0 ' 3δBrms

This fulfills the criteria that δ|B| ∼ δB‖
The differences between the surrogate dataset and observations for P(∆θ) is

informative. For small ∆θ differences are most likely due to modeling the probability

distribution for the fluctuations of the plasma as a fBm, which is a very simplified

model for turbulent fluctuations. The difference between the observations and the

surrogate dataset in the region 40◦ < ∆θ < 80◦ highlights that the background

field discontinuities do not occur randomly, but there is a non-trivial correlation

between discontinuities. Such a correlation could be consistent with the suggestion

of flux tubes dominating solar wind structure (e.g. see Ness et al. [1966]; Bruno and
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Figure 4.13: The PSD for inertial-range scales of the R component from observa-
tions and the surrogate dataset, which models observations as a background field
described by jump process with exponential waiting-time superposed with a range of
fluctuations described by a fractal Brownian probability distribution consistent with
IK scaling to a frequency of approximately 3.7× 10−4 (τ = 60 minutes). Displayed
are the raw observations, just the background jumps process and superposed ratios
of B0/δb = 5, 3, 1 as black, red, green, blue and magenta respectively.

Carbone [2005]; Borovsky [2008] and references within).

4.4.4 MHD turbulence simulations

We use snapshots of two distinct fully developed incompressible MHD turbulence

simulations as possible models for the inertial range fluctuations due to turbulence.

The MHD simulations will serve to confirm that the geometric considerations used

in equation 4.1 are valid in for plasma turbulence. We will also attempt to find

the temporal-scales for which the threshold may be taken to be valid, i.e. for what

temporal-scales is equation 4.1 valid. The two simulations we used are: Case I is

a 10242 × 256 forced turbulence simulation with a well defined background field of
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Figure 4.15: The top panels display the variance anisotropy of the MHD simulations.
the perpendicular, parallel and modulus power are shown in blue, red and black
respectively. Left panel: The forced simulation with B0 ∼ 5δbrms. Right panel:
The decaying simulation with B0 = 0. Bottom panel: Dispays a proxy for the
compressibility estimate used in the solar wind for the two simulations, such that
blue and red correspond to the forced and decaying simulations respectively.

B0 ∼ 5δBrms. Case II is globally isotropic freely decaying turbulence on a grid

of 5123. Therefore Case II does not have a background field, B0, but there is an

effective local background field, b(r, f), created by the fluctuations themselves which

is constantly evolving. The inertial range of both cases may be approximated by

k ∼ [8− 30]. These simulations are identical to those used in Chapter 3, such that

details may be found in Müller and Grappin [2005].

For each of the simulations we calculate the power spectral density of the

fluctuations, δB(t, f) with respect to the local background field estimate, b(t, f). We

estimate the power of the perpendicular and parallel components with respect to the

local background field estimate and the modulus of the fluctuations. We have plotted

the perpendicular component power, P⊥, (blue) and parallel component power, P‖,
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(red) for both simulations with the power of the modulus of the fluctuations, P|B|,

(black) in the top panels of Fig. 4.15. The top left panel displays case I corrected

by k3/2 and the top right panel displays case II corrected by k5/3. The bottom

panel displays the ratio of the P‖/P⊥ as a function of scale for case I (blue) and

case II (red). In the solar wind this may be used as a proxy for the compressibility

estimate (e.g. TenBarge et al. [2012]; Kiyani et al. [2013]). The errorbars display

three standard errors for all values plotted.

It can be seen that Case I (top-left panel) has an agreement between P‖

and P|B|, whereas Case II shows a disagreement between P‖ and P|B|. One could

have anticipated that Case I would display agreement between P‖ and P|B|, as the

strong background magnetic field enforces B0 > ∆B, which is a key condition used

in deriving equation 4.1. However, Case II does not have an externally applied

background field, so B0 � ∆B, thus agreement between P‖ and P|B| is not found.

Importantly, one can see that providing δBrms > B0 the criteria, P‖ ∼ P|B| is true

for all temporal/spatial scales.

Generally for turbulence E(k) ∼ kγ , where γ < 0. Therefore, the largest

scale of the inertial range dominates the δBrms. Thus, the simulations confirm

the criteria for our method of detecting discontinuities is either true/untrue for all

scales within the inertial range. This provides a valuable condition for determining

whether discontinuities are present and significant, as these simulations by definition

provides information on how the system behaves in the absence of discontinuities.

The bottom panel displays P‖/P⊥, which is a proxy for a measure of com-

pressibility used in the solar wind (e.g. see TenBarge et al. [2012] and references

within). Similar behaviour is shown for both simulation cases, that the compress-

ibility estimate is not a function of scale within the inertial range. In principle this

could be used as a condition to determine whether discontinuities are present in the

solar wind by comparison with observations. However, in reality both a quantitative

value and a trend are required. A quantitative estimate is not possible from these

MHD simulations as there are “pseudo-Alfvén” waves present, which increases the

perceived level of compressibility for this estimate. Importantly, the pseudo-Alfvén

waves behave as a passive scalar, in that they are not able to influence the Alfvén

wave turbulent cascade. Therefore, it is reasonable to conclude that the compress-

ibility estimate of P‖/P⊥ should remain approximately constant if the observations

are due solely to MHD turbulence.

All fluctuations and structures contained within the simulations are a re-

sult of simulating turbulence. Therefore, the results presented in this section are

presented as is, i.e. there has been no filtering of the time-series cuts from the
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simulations. Thus, the observations from the simulations offer a comparison for the

discontinuity filtered solar wind data, and so, simple characteristics that should be

recaptured if the discontinuities are completely removed from the observations.

4.5 Results

In the previous sections we presented a new scale-free method for detecting disconti-

nuities in a time series of solar wind observations based on geometric considerations

for the case where B0 > δBrms. We have also shown that our method is applica-

ble to the solar wind, as we estimate B0 ∼ 3δBrms as a lower limit by using our

surrogate dataset, previous works and observations. We have analyzed the variance

of the modulus and parallel component with respect to the background magnetic

field for the MHD simulations for two cases; i) B0 > δBrms and ii) B0 � δBrms.

We found that when B0 > δBrms the expectation P‖ ∼ P|B| (See equation 4.1) is

realized for all temporal-scales of the turbulence. We shall now investigate how the

discontinuities affect the results of conventional analysis carried out with regards to

anisotropy, including variance anisotropy, trace anisotropy and intermittency.

4.5.1 Variance Anisotropy

The variance anisotropy is a measure of how the fluctuation power is orientated

with respect to the background magnetic field. In order to obtain the variance

anisotropy the background field needs to be estimated accurately, as any deviation

will influence the result when decomposing δB(t, f) into components parallel and

perpendicular to b(t, f), to produce P‖, P⊥ estimates. We examine the effect of

discontinuities on the estimated variance anisotropy by using equation 4.2 with T0

and β from section 4.2. Alongside, we demonstrate the effect of discontinuities with

a model time-series. The model time-series is constructed by using the surrogate

time-series that consists solely of discontinuities with an exponential waiting-time

and a superposed fBm time-series projected to be perpendicular for all times of the

time-series. The perpendicular fluctuations have a strength B0 = 3δBrms and have

IK-like scaling, i.e. a spectral exponent of −3/2. The fluctuations exist over a broad

range of scales corresponding to approximately 1s → 60 min. This is the optimum

model used in Section 4.4.1.

The perpendicular and parallel components of the variance anisotropy are

plotted in the left and right panels of Fig. 4.16 respectively. The colours are

the same as used for the parameters identified as I-IV in Fig. 4.5, such that

[β, T0] =[0.95,−0.25], [0.63,−1.51], [0.63,−1.70], [0.71,−1.51] are displayed in black,
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Figure 4.16: The variance anisotropy of the Ulysses interval, where P⊥ and P‖ are
displayed in the left and right panel respectively. The variance anisotropy using
the global background field, local background field and the three levels of filtering
in green, black(I), magenta(III), blue(II) and red(IV) respectively, where Roman
numerals correspond to Fig. 4.5. The left and right panels display the perpendicular
and parallel components respectively.
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blue, red and magenta respectively. The results of using a global mean field averaged

over the entire time-series has been has also been added in green.

We find that discontinuities have an effect on both components. Both com-

ponents display a greater spectral exponent within the inertial range scales when dis-

continuities are present. The greatest change in spectral exponent is found between

the raw and filtered local background magnetic field for the parallel component,

which is approximately ∆γ‖ ∼ 0.4. There is also a large change between the filtered

case and the global background magnetic field for the parallel component, although

the spectral exponent is similar. Significantly, signs of Kolmogorov-like scaling are

removed when the local background magnetic field is filtered to remove discontinu-

ities. Therefore, we will find that discontinuities have a significant influence upon

the conclusions drawn from variance anisotropy analysis.

In an attempt to understand whether this is a reasonable result we will show

how equation 4.1 suggests that the discontinuities do introduce additional scaling

for the parallel component. We will also use the model data that contains only

discontinuities and fluctuations that scale as γ⊥ ∼ −3/2.

Consider a time-series with a discontinuity between t → t + τ , such that

B0,1 and B0,2 are separate sides of the discontinuity. Allow the local estimated

background field to be bt and bt+τ . Averaging across a discontinuity will result

in bt − bt+τ < B0,t − B0,t+τ . Therefore, rearranging equation 4.1, δB‖ ∼ δ|B| −
(bt − bt+τ ) > δ|B| − (B0,t − B0,t+τ ). As δ|B| does not depend on the averaging

scheme it is expected that the parallel component will be greater in the presence of

discontinuities. As the scale increases bt − bt+τ reduces, until the limit where the

whole time-series is averaged, such that bt = bt+τ . This produces a scale dependent

growth in the parallel component, and so produces artificial scaling.

We now consider our model time-series. The variance anisotropy is pre-

sented in Fig. 4.17, where the parallel, perpendicular and modulus power are shown

in blue, red and black. The compressibility proxy estimate is displayed in green

in Fig. 4.19. The similarity between the results of the model variance and that

of the raw observation are remarkable. The variance PSD of the surrogate time-

series may be compared to Fig. 4.18, whilst Fig. 4.19 allows comparison between

the compressibility estimate for the surrogate time-series and with the observations

where various method of calculating the background magnetic field are used. For

the surrogate time-series the spectral index of the parallel component displays the

greatest value within the inertial range, with a value of γ‖ ∼ −1.8, the perpendicular

spectral exponent is γ⊥ ∼ −5/3 and the spectral exponent of the modulus of the

fluctuations of γ|B| ∼ −1.4.
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Figure 4.17: The variance anisotropy for the model data with B0 ∼ 3δbrms. The
variance anisotropy of the perpendicular, parallel and modulus power are in blue,
red and black respectively. Power-law fits have been added with dashed black lines
where appropriate for comparison with solar wind data.
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Figure 4.18: The variance anisotropy of the Ulysses data, where the perpendicular
(P⊥), parallel (P‖) and modulus (P|B|) are displayed in blue, red and black re-
spectively. The dashed black lines correspond to power-law fits to each component
within the inertial range scales, such that the perpendicular, parallel and modulus
are fit with f−1.6, f−1.8 and f−1.4 respectively.
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shown in green.
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The compressibility estimates shown in Fig. 4.19, P‖/P⊥, are displayed with

one standard error. The optimum case for our discontinuity filtering method, such

that β and T0 are chosen to minimize the rmsd between P‖ and P|B|, is shown in

blue. In magenta P|B|/P⊥ for the raw data is displayed, which may be considered

as a pre-filtering estimate of P‖/P⊥, where P|B| is used as a proxy for P‖. The

uncertainty in P|B|/P⊥ is reduced compared to the filtered P‖/P⊥ estimate, as the

ensemble of P|B|/P⊥ is greater than that of P‖/P⊥ after the discontinuities have

been filtered. The raw and surrogate P‖/P⊥ are shown in red and green, whilst the

P‖/P⊥ estimate produced by using the global background field estimate is shown in

black.

It can be seen that the values and functional form are similar between the

model time-series and the raw local field method. The similarities found between

the model data and the raw local background field estimate method suggest that

the local field estimate introduces additional scaling due to the presence of discon-

tinuities. Our model appears to be a reasonable approximation to the scaling of the

solar wind where we use the following parameters; B0 ∼ 3δBrms, γ⊥ ∼ −3/2, WT ∼
exponential and λ = 20 minutes. In our model no parallel fluctuations are explicitly

included, however the perpendicular fluctuations do not conserve the magnitude of

the field. Therefore, there are fluctuations in the modulus of the model time-series,

which must also be interpreted as parallel fluctuations.

4.5.2 Trace Anisotropy

Consider the energy spectral density tensor sampled at-a-point via Taylor’s hypoth-

esis. The resulting one-dimensional spectral density observed will be P̃ij(f, θ) =∫
d3kPij(k)δ(2πf − k · Vsw), where Pij(k) is the energy spectral tensor, VSW is

the solar wind velocity and k · VSW = 2πf is the plane in k-space that is inte-

grated over when using Taylor hypothesis to construct P̃ij(f, θ). We consider the

delta function that defines the integration plane, which we expand for clarity to

δ(2πf/Vsw − k⊥ sin θ − k‖ cos θ). Clearly, if θ = 0◦ or θ = 90◦ only k‖ or k⊥ are

sampled respectively. Therefore the trace, P Tθ = ΣiPii, of the magnetic field is used

to estimate the reduced one-dimensional k-spectra of turbulence theories in the solar

wind [Horbury et al., 2008; Podesta, 2009; Tessein et al., 2009; Wicks et al., 2010;

Chen et al., 2010; Li et al., 2011], such as Goldreich and Sridhar [1995].

Previous results (e.g. see Horbury et al. [2008]; Podesta [2009]; Wicks et al.

[2010]; Chen et al. [2010] and references within) have been interpreted as consistent

with Goldreich and Sridhar [1995], in that the spectral exponent of the trace power

was found to depend on the sampling direction with respect to the local background
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Figure 4.20: Trace anisotropy under discontinuity filtering
The trace PSD, where P T⊥ contains the greatest and P T‖ the least power in all
panels. The raw and optimum filtered case are shown in left-top and left-bottom
panels respectively. The under-filtered and over-filtered cases are shown in right-
top and right-bottom panels respectively. The vertical dash-dot lines display the
frequency limits used for the power-law fits in the inertial range.
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magnetic field estimate. When the sampling direction is parallel (P T‖ ) to the local

magnetic field, θBV = 0◦−10◦, the measured trace power PSD has a steeper spectral

index than the perpendicular case (P T⊥ ), where θBV = 80◦ − 90◦. Typically the

difference in spectral index is 1/3. As P T‖,⊥ corresponds to a direct measurements of

the one-dimensional reduced spectra of k‖,⊥ the observed spectral index difference

suggests Goldreich and Sridhar [1995] phenomenology in the solar wind.

The trace power for both the raw and filtered data is shown in Fig. 4.20 for

the Ulysses interval. All the panels display a different level of filtering according

to Fig. 4.5, with the greatest power in P T⊥ and the smallest power in P T‖ for all

panels and all scales. The top -left, to-right, bottom-left and bottom-right panels

display the raw case, β greater than optimal, optimal and T0 lower than optimal

respectively.

Within the inertial range it can be seen that the removal of discontinuities

from the observations produce a spectrally isotropic trace power, i.e. there is no

dependence upon θVB. Our result is consistent with IK phenomenology, simulations

by Grappin and Müller [2010] and previous observations by Li et al. [2011]. Thus,

the discontinuities alone can be shown to be responsible for the raw observations

displaying spectral exponents consistent with GS phenomenology, i.e. the trace

spectral exponents depend on θBV, such that they scale as P T⊥ ∼ −5/3 and P T‖ ∼
−2.

4.5.3 Intermittency

We plot the perpendicular and parallel ζ(m) scaling in the left and right panels

of Fig. 4.21 respectively. The global background field, raw local background field,

optimum filtering, the over filtered and under filtered cases can be seen in green,

black, blue, red and magenta respectively. In the right panel, the dashed black line

shows the raw scaling of the modulus of the magnetic field. The ζ(m) was calculated

at τ = 1→ 10 minutes and the error bars signify a 95% confidence interval estimated

by separating the observations into 10 equally sized ensembles.

The parallel component of the distribution is most affected by the presence

of discontinuities within the time-series. Where both the raw local and global back-

ground field overestimate the magnitude of the higher moments. The optimum

filtering reproduces all moments of the modulus population displayed here within

uncertainty. The perpendicular component shows little change, regardless of the

method used.

The parallel distribution may be sensitive to discontinuities for the following

reasons; 1) for a particular scale the perpendicular distribution is more extended to
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Figure 4.21: ζ(m) plots of the intermittency for δB⊥ and δB‖ are shown in the left
and right panels respectively. The global background field, raw local background
field, optimum filtered, under-filtered and over-filtered cases are displayed in green,
black, blue, magenta and red respectively.

larger magnitudes than the parallel distribution, this is known from section 4.5.1.

where it was estimated that approximately 95% of the power resides in the per-

pendicular component 2) the local background magnetic field is poorly estimated in

the vicinity of a discontinuity. Therefore, if we consider a perpendicular fluctuation

misinterpreted as a parallel fluctuation, then the fluctuation may exist in the poorly

sampled wings of the parallel distribution, shown in red for the schematic of Fig.

4.22. However, if the converse is considered a parallel fluctuation will lie in the well

sampled core of the perpendicular distribution, shown in blue in Fig. 4.22. Thus, a

poorly defined background field has a greater effect when a perpendicular fluctua-

tion is interpreted as a parallel fluctuation than vice versa. Importantly, neither of

the parallel or perpendicular component from our intermittency analysis is best fit

by a linear relation that passes through the origin. Thus, the internal intermittency

(intermittency due to turbulence and not time-series discontinuities) is still present

after filtering.

4.6 Conclusion

This chapter is focused on the concept of the local background magnetic field and

discontinuities, which are both controversial topics in the field of solar wind analysis.

We have demonstrated not only that non-turbulent discontinuities exist within the
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Figure 4.22: Schematic representation of the δB‖ and δB⊥ fluctuation distribu-
tions at a specific scale. A single fluctuation within the parallel and perpendicular
distributions are shown by a small vertical bar in blue and red respectively. The
blue (red) arrow shows a parallel (perpendicular) fluctuation being misinterpreted
as a perpendicular (parallel) fluctuation due to discontinuities in the background
magnetic field estimate.

observations, but that these features have a significant effect upon the conventional

methods for determining the background magnetic field, specifically discontinuities

result in anomalous scaling in the trace, variance and intermittency scaling.

We began by demonstrating a non-turbulent time-series discontinuity by us-

ing two satellites separated by a comparatively short distance in the solar wind.

We then proposed a criterion to detect and remove the discontinuities for the ob-

servational time-series, which is only valid under the condition that the magnitude

of the background magnetic field is greater than the turbulent fluctuations and the

background magnetic field varies slowly on a spatial/temporal scale compared to

the turbulence. In principle any contradictory criteria may be used to detect back-

ground magnetic field discontinuities, providing the fluctuations and background

magnetic field are independently calculated, e.g. another criterion for detecting dis-

continuities might be to find times where |B|2 6= |B0|2 + 2(B0 · δB) + |δB|2, where

B0 is the background magnetic field and δB is a magnetic fluctuation.

We discussed the background magnetic field estimate calculated via both the

global average method and the local background magnetic field calculated over fre-

quency specific windows. We demonstrated the uncertainty of the actual background

magnetic field direction for both methods. It was shown that the global background
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magnetic field has a consistently large uncertainty when the background magnetic

field is structured. However, the local background magnetic field has an uncertainty

that is dependent on the temporal-scale, and so becomes an increasingly poor esti-

mate of the actual background field as the temporal-scale is increased.

We found the free parameters of our discontinuity filtering criteria for these

Ulysses observations and tested our criteria. We constructed a surrogate dataset

that represents a time-series that is solely composed of discontinuities with a specific

waiting-time between jumps. We also estimated a lower bound for the magnitude

of the fluctuations with respect to the background magnetic field. A lower estimate

of B0 ∼ 3δB was found, which is sufficient for our discontinuity filtering criteria.

We used our new method for detecting and removing discontinuities from the

observations to reanalysis the variance, trace and intermittency anisotropy within

the solar wind. We found that the parallel component of both the trace and variance

estimate was most affected by discontinuities, as the parallel component has less

power than the perpendicular component and comparable power to that of the

discontinuities within the time-series. Our results do not support the Goldreich and

Sridhar [1995] model within the solar wind and highlight the care that must be taken

when defining the background magnetic field within the structured medium of the

solar wind. Importantly, our criterion does not remove the internal intermittency,

and so does not remove the turbulence, and structures associated with it, from the

subsequent analysis.
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Chapter 5

Inertial Range Turbulence at

Small Scales

In this chapter we investigate the trace anisotropy of the smallest temporal/spatial

scales of the inertial range. These scales are particularly interesting because the

MHD model is progressively less satisfied as the temporal/spatial scale of interest

tends towards the ion inertial/gyro scale. Thus, in the last decade of the inertial

range the MHD model may no longer be valid.

The primary reason that the MHD model becomes invalid as one approaches

the ion inertial/gyro scale is that the gyration of the ions about the background

magnetic field may no longer be neglected. However, at the ion inertial/gyro scale

the electron gyration scale is small, as me/mi = 1836, so the electron gyration may

be neglected. As a result the single-fluid model of MHD is no longer sufficient to

describe the two fluids of the ions and electrons.

The difference in velocity between the ions and the electron produces a cur-

rent, j = −nee(ve−vi), where ne is the number density, e is the electron charge, ve

is the electron velocity and vi is the ion velocity [Goossens, 2003]. The current pro-

duced by the difference in ion and electron velocity leads to the Hall term of Ohm’s

law becoming increasingly significant as the spatial scale decreases (See Chapter 1

for the general Ohm’s law). Therefore, Hall-MHD is an extension of MHD that

attempts to include finite gyration effects, such that the induction equation may be

written as ∂B/∂t = ∇× (v ×B− (j×B)/ene).

However, the solar wind is a weakly collisional plasma, so a fluid approach

may be invalid. Howes [2009] demonstrated the limitations of Hall MHD by com-

paring the damping rates and dispersion relation of the linear eigenfrequencies with

that calculated using a Vlasov-Maxwell kinetic theory. It was found that for the
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a weakly collisional plasma with plasma βi = 1 the Hall MHD model is unable to

capture the k‖ Alfvén branch of the dispersion relation.

In this chapter we investigate the trace power, which gives the reduced one-

dimensional energy spectral estimate for E(k‖) and E(k⊥) in the solar wind at

the small scales of the inertial range, such that kinetic and/or Hall effects become

important.

We find that after filtering for discontinuities in the observations the E(k‖)

spectrum displays an additional small scale behaviour that is consistent with Alfvén

wave dispersion and/or dissipation, whereas the E(k⊥) spectrum displays constant

scaling for all scales of the inertial range. Both results for E(k‖) and E(k⊥) are

consistent with the findings of Howes [2009] when one considers the k‖ and k⊥

Alfvén branch obtained using Vlasov-Maxwell kinetic theory. This is the first clear

detection of damping and/or dispersion for the k‖ Alfvén branch at the small-scales

of solar wind inertial range.

5.1 Data Sets

To investigate the smaller scales of the inertial range we use magnetometer data

from STEREO-A. The magnetometer is over sampled at a cadence of 8 Hz, with

noise dominating the signal at frequencies greater than 1 Hz. The advantages of

using a STEREO satellite is the high magnetometer sampling frequency, the ability

to observe large uninterrupted intervals and there is no spin-tone created from the

satellite.

We select the five longest intervals of stable fast solar wind streams recorded

by STEREO-A during 2008. The intervals are recorded during the following periods;

January 18-22, February 13-17, March 12-18, June 18-21 and August 12-15, which

from hereon will be referred to as interval I, II, III, IV and V respectively. We also

consider a super ensemble composed of all the intervals, which is referred to as VI.

Throughout this chapter we will display only interval I, II, III and VI, which are

representative of all intervals.

In this chapter we will be investigating the trace anisotropy, and so the

nonaxisymmetry found in Chapter 3 does not contribute to the spectral scaling of

the trace anisotropy [Wicks et al., 2012]. We chose to investigate the small scales of

the inertail range, such that we do not consider scales smaller than the ion cyclotron

scale. Therefore, the group and/or phase speed of the k‖ fast magnetoacoustic

branch and the k⊥ Alfvén branch that map to the Whistler and Kinetic Alfvén

Wave (KAW) is still small compared to the solar wind flow. Therefore, for the
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spatial-temporal scale of investigation all chosen intervals fulfill Taylor’s hypothesis,

such that |VSW | � |Vp,g|, where |Vsw| and |Vp,g| are the magnitudes of the solar

wind and the max[phase,group] velocity of the waves present [Tu and Marsch, 1995].

5.2 Method

In this chapter we will use the method described in chapter 4 for removing discon-

tinuities. We define a scale-by-scale threshold as; |δ|B (t, f) | − δB‖(t, f)| < T0f
−β,

where t is the time index, f is the frequency of interest, δ|B (t, f) | is the fluctua-

tion of the modulus of the magnetic field, δB‖(t, f) is the parallel fluctuation with

respect to the background magnetic field, T0 and β are constants to be found from

the interval. A discontinuity is detected for all times where the inequality is not

satisfied. Using this method allows for an accurate estimate of the local background

field across all scales used.

In this chapter we investigate the trace anisotropy using Taylor’s hypothesis,

such that the resulting one-dimensional spectral density observed will be P̃ij(f, θ) =∫
d3kPij(k)δ(2πf−k·Vsw), where Pij(k) is the energy spectral tensor and k·VSW =

2πf is the plane in k-space that is integrated over when using Taylor hypothesis

to construct P̃ij(f, θ). Using θ = 0◦ − 10◦ and θ = 80◦ − 90◦ we estimate the

trace, P Tθ = ΣiP̃ii, for the parallel and perpendicular wave vector respectively.

Thus the estimated energy spectrum for the perpendicular and parallel wave vectors

normalized to the ion gyro-scale, ρi, may be written, E(k⊥ρi) = ΣiP̃ii(f/fc,i, 80◦ −
90◦) and E(k‖ρi) = ΣiP̃ii(f/fc,i, 0

◦ − 10◦), where fc,i is the gyro-frequency of the

ions as defined in Chapter 1.

We begin by demonstrating that there is a need to remove the influence of

discontinuities at the small scales of the inertial range by plotting the PSD for the

perpendicular and parallel variance with respect to the background magnetic field

and the variance of the modulus of the magnetic field. These quantities are plotted

in blue, red and black of Fig. 5.1 respectively. The solid and dashed lines correspond

to mean of 10 subintervals and the uncertainty to a level of 90%.

One can see that the variance of the parallel component with respect to the

background magnetic field displays scaling close to f−1.8 for temporal-scale greater

than the gyro-frequency of the ions, fc,i = 0.4± 0.05 Hz. However, the variance of

the modulus of the magnetic field displays scaling close to f−1.4. Similar scaling was

observed in the Ulysses interval and surrogate time-series displayed in the previous

chapter. One may see that the variance of the modulus of the magnetic field and

the parallel component with respect to the background field become distinct at
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Figure 5.1: Variance anisotropy for interval III. The PSD for the variance of the
perpendicular and parallel components with respect to the local background mag-
netic field and the modulus of the magnetic field are displayed in blue, red and black
respectively. The solid and dashed lines display the mean across 10 subinterval and
the spread to 90% certainty respectively. The black dot-dashed lines demonstrate
specific scaling relations to be compared with the variance of the perpendicular and
parallel components with respect to the local background magnetic field and the
modulus of the magnetic field.
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approximately half a decade of temporal scale less than the gyro-frequency, to a

certainty of 90%. The significance to examining the variance of the small temporal-

scales of the inertial range is two fold; i) one can see that for these temporal-

scales there is a disagreement between P‖ and P|B|, and so discontinuities must be

considered, ii) it emerges from the variance analysis that there is no characteristic

scale for which discontinuities emerge in temporal-scales of the inertial range, so

no a priori assumption should be made regarding which temporal-scales should be

filtered for discontinuities. Therefore, we apply our discontinuity filtering method

from Chapter 4 to all temporal-scales of this investigation.

5.3 Results

In this section we will present the analysis of intervals I, II, III, and VI prior and

post removal of discontinuities. We will present the trace anisotropy analysis prior

to the removal of discontinuities to demonstrate that these intervals are “standard”

fast solar wind intervals, in that the results are compatible with previous findings

of Horbury et al. [2008]; Podesta [2009]; Wicks et al. [2010]; Chen et al. [2010].

These previous results, which do not filter for discontinuities, are interpreted as be-

ing in agreement with Goldreich and Sridhar [1995]. Then we will display the trace

anisotropy that is found after discontinuities have been removed. Once discontinu-

ities are excluded from the trace anisotropy analysis one can see that the additional

scaling due to discontinuities serves to hide the small-scale anisotropy that results

from kinetic effects, particularly in the k‖ direction.

We begin by displaying the trace anisotropy prior to any filtering designed to

remove discontinuities from the observational time-series. The trace anisotropy for

intervals I, II, III, VI are shown in the top-left, top-right, bottom-left and bottom-

right panels of Fig. 5.2 respectively. The estimated E(k‖ρi) and E(k⊥ρi) are pre-

sented in blue and red respectively. The solid and dashed lines demonstrate the

average and 99% confidence level, calculated by separating the ensemble of E(k‖ρi)

and E(k⊥ρi) data into 10 subintervals. Both E(k‖ρi) and E(k⊥ρi) in Fig. 5.2 have

been multiplied by f5/3 respectively, such that Kolmogorov-like scaling may be seen

as a horizontal line. E(k⊥ρi) has been adjusted vertically so that approximate

agreement may be seen with E(k‖ρi) at the largest scales.

One can see that the PSD for E(k⊥ρi) is approximately horizontal, and so

approximately displays the “standard” Kolmogorov-like scaling. The scaling for

E(k‖ρi) is steeper than that of E(k⊥ρi). Typically the reported observations are

close to E(k‖ρi) ∼ k−2‖ . Therefore, we plot the power spectral density estimate for
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Figure 5.2: Compensated trace anisotropy prior to discontinuity filtering for in-
tervals I, II, III and VI are displayed in the top-left, top-right, bottom-left and
bottom-right panels. The estimated E(k‖ρi) and E(k⊥ρi) are presented in blue
and red respectively. The solid and dashed lines demonstrate the average and 99%
confidence level. The x-axis is in units of kρi, where k is k‖ and k⊥ for the blue

and red cases respectively. The PSD has been compensated by f5/3 to highlight
Kolmogorov-like scaling.
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Figure 5.3: The estimated E(k‖ρi) prior to discontinuity filtering for intervals I,
II, III and VI are displayed in the top-left, top-right, bottom-left and bottom-right
panels. The solid and dashed lines demonstrate the average and 99% certainty. The
PSD has been compensated by f2.

E(k‖ρi) multiplying by f2 in Fig. 5.3, where the solid and dashed lines demonstrate

the average and 99% confidence level. One can see that the established result for

E(k⊥, k‖) scaling that is consistent with Goldreich and Sridhar [1995] is recovered.

We now consider the case where the time-series discontinuities have been re-

moved via the method described in chapter 4. The values of [β, T0] found for inter-

vals I, II, III, IV, V and VI are [0.64, 0.1931], [0.62, 0.1931], [0.61, 0.24], [0.60, 0.1931],

[0.64, 0.1931], [0.70, 0.1905] respectively. The filtered trace anisotropy for intervals I,

II, III, VI are shown in the top-left, top-right, bottom-left and bottom-right panels

of Fig. 5.4 respectively. The PSD estimates for E(k‖ρi) and E(k⊥ρi) are shown in

blue and red respectively. Where the solid and dashed lines demonstrate the average

and 99% certainty, calculated by separating the ensemble of E(k‖ρi) and E(k⊥ρi)

data into 10 subintervals. The vertical axis has been compensated by multiplying

the PSD by f3/2
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Figure 5.4: Compensated PSD of the trace anisotropy post discontinuity filtering
for intervals I, II, III and VI are displayed in the top-left, top-right, bottom-left
and bottom-right panels. The estimated E(k‖ρi) and E(k⊥ρi) are presented in blue
and red respectively. The solid and dashed lines demonstrate the average and 99%
certainty. The x-axis is in units of kρi, where k is k‖ and k⊥ for the blue and red

cases respectively. The PSD has been compensated by f3/2 to highlight IK-like
scaling.
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Figure 5.5: Compensated PSD of the estimated E(k‖ρi) post discontinuity filtering
for intervals I, II, III and VI are displayed in the top-left, top-right, bottom-left and
bottom-right panels. The solid and dashed lines demonstrate the average and 99%
certainty. The x-axis is in units of k‖ρi. The PSD has been compensated by f2.

It can be seen that for the largest-scales shown, which corresponds approxi-

mately to scales greater than kρi ∼ 0.1, the estimated PSD for E(k‖ρi) and E(k⊥ρi)

returns scaling consistent with that found from the Ulysses interval in chapter 4,

that of E(k⊥ρi, k‖ρi) ∼ k−3/2. However, one can see that there is approximately a

decade of steeper scaling in the range kρi ∼ 0.1− 1 for E(k‖ρi). As in Fig. 5.3 we

plot E(k‖ρi) multiplied by f2. This may be seen in Fig. 5.5. One can see that the

scaling for E(k‖ρi) between kρi ∼ 0.1− 1 may be approximated by E(k‖) ∼ k−2.

5.3.1 Discussion

By comparing Fig . 5.3 and Fig. 5.5, one can see that the region of interest is

kρi ∼ 0.1 − 1. It is also important to understand why the power-law slope of

E(k‖ρi) is affected and E(k⊥ρi) is unaffected in this region, as can be seen in Fig.
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5.4. However, it is not possible to use MHD theory in this region. Therefore, we refer

to two plots from Howes [2009] in order to understand the physics in this region.

The plots we refer to from Howes [2009] demonstrates the limitations of Hall

MHD in a weakly collisional plasma, where Fig. 5.6 - 5.7 display the dispersion

relation and dissipation rate for the linear eigenfrequencies of a weakly collisional

plasma with βi = 1 for k‖ρi and k⊥ρi respectively. The dispersion relation and dis-

sipation rate for k‖ρi and k⊥ρi are shown in the top and bottom panels respectively.

In the top panel the dispersion relation using Hall MHD and Vlasov-Maxwell kinetic

theory are shown with dashed and dotted lines, where A’, F’, S’ and A, F, S denote

the Alfvén, fast and slow branch for both models respectively. The bottom panel

displays the damping rate from Vlasov-Maxwell kinetic theory.

One can see that the k‖ Alfvén branch undergoes both dispersion and dis-

sipation in the range k‖di ∼ 0.1 − 1, note that di is the ion inertial length and

is related to gyro-radii by di = ρi/
√
βi, thus the two quantities are equivalent for

βi = 1. This is not the case for the k⊥ Alfvén branch, which continues past the

gyro-scale to become the kinetic Alfvén wave. We compare the behaviour of the

Alfvén branch from Vlasov-Maxwell kinetic theory with the observations displayed

in Fig. 5.4. One can see that E(k⊥ρi) is unchanged with a spectral index close

to 3/2 until close to the ion gyro-scale, whereas E(k‖ρi) demonstrates a dramatic

change in the region k‖ρi ∼ 0.1− 1, where the spectral index changes from 3/2 to 2.

In the “collisionless” solar wind plasma it is hypothesized that the turbulent

cascade is dominated by the interaction of Alfvén waves. As we can see from Fig.

5.6 the Alfvén waves are increasingly damped in the k‖ direction, but not the k⊥

direction. Therefore, it is reasonable to assume that the nonlinear Alfvén cascade

with k‖ will be increasingly damped in this region, whilst the cascade with k⊥ will

not be damped significantly. In principle this last decade of the inertial range may

be able to fulfill a critical balance condition similar to Goldreich and Sridhar [1995],

such that the turbulence becomes increasingly two-dimensional. If this were the

case one would expect to observe E(k‖) ∼ k−2‖ . However, as the perpendicular

cascade is non-unique, we observe E(k⊥) ∼ k
−(5+α)/(3+α)
⊥ , where α = 1 would fit

the observations here [Boldyrev, 2005].

This analysis suggests that discontinuities have affected conclusions drawn

from observations in two ways; 1) with discontinuities present the trace anisotropy

seems to support Goldreich and Sridhar [1995] across all scales of the inertial range,

which is not seen when the discontinuities are removed. 2) with discontinuities

present the interesting physics relating to E(k‖) in the range k‖di ∼ 0.1 − 1 is

hidden, this region is a clear site of increased dispersion and/or dissipation once
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Figure 5.6: “Top: Normalized real frequency ω/Ω vs. parallel wavenumber k‖di
for the Hall-MHD (dashed) fast (F’), Alfvén (A’), and slow (S’) modes and for the
kinetic theory (dotted) fast (F), Alfvén (A) and slow (S) modes for the parameters
β0 = 1, Ti/Te = 1, and k⊥di = 10−2. Inset is an expanded view of the boxed region.
Bottom: Normalized damping rate γ/ω vs. parallel wavenumber k‖di for the same
three low-frequency modes from kinetic theory (solid)” after Howes [2009]
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Figure 5.7: “Top: Normalized real frequency ω/Ω vs. perpendicular wavenumber
k⊥di for the Hall-MHD (dashed) fast (F’), Alfvén (A’), and slow (S’) modes and
for the kinetic theory (dotted) fast (F), Alfvén (A) and slow (S) modes for the pa-
rameters β0 = 1, Ti/Te = 1, and k‖di = 10−2. Inset is an expanded view of the
boxed region. Bottom: Normalized damping rate γ/ω vs. perpendicular wavenum-
ber k⊥di for the same three low-frequency modes from kinetic theory (solid)” after
Howes [2009]
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discontinuities have been removed from the analysis.
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Chapter 6

Conclusion of Thesis

In this thesis we have investigated the inertial range within the solar wind. We

have found that the observed difference in variance power for the two perpendicular

directions with respect to the background magnetic field is due primarily to sampling

a solenoid field at-a-point with Taylor’s hypothesis. This observed nonaxisymmetry

may be used as a tool to distinguish between the theories of turbulence within the

solar wind.

We have designed a criteria that is able to find non-turbulent discontinuities

within the observational time-series. The discontinuities are then removed from

subsequent analysis, mainly because the background magnetic field is not defined

within a discontinuity. The removal of time-series discontinuities was shown to alter

our understanding of standard turbulence analysis methods, such as the variance,

trace and intermittency anisotropy with respect to the background magnetic field.

Finally we investigated the smallest temporal-spatial scales of the inertial

range within the solar wind. We found that in the last decade of the inertial range

the scaling of the k‖ branch dramatically changed. We suggested that discontinuities

have made this region undistinct in previous solar wind studies. We compared the

k‖ and k⊥ observations to that predicted by kinetic theory in Howes [2009]. It

was found that there was good agreement, and so, the observations are likely to

correspond to dissipation and/or dispersion of the k‖ Alfvén branch.

The commonly held picture of the solar wind is that there are three distinct

scaling ranges, that of the f−1, inertial and kinetic range of the PSD. Each of

these ranges are regarded to have their own unique physical process, which may

be investigated by a careful selection of spatial-temporal scales. This picture is

demonstrated by Goldstein et al. [1995] in Fig. 6.1. We have found that this model

for the solar wind is oversimplified, such that the correct selection of spatial-temporal
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Figure 6.1: After figure 1 of Goldstein et al. [1995]. A schematic of the observed
power spectrum of magnetic field fluctuations is shown, split into the three key areas
of “Energy-containing scale”, “Inertial range” and “Dissipation range”.

scale alone is not sufficient to investigate turbulence within the inertial range.

A schematic of our interpretation of the solar wind as a function of spatial-

temporal scale is displayed in Fig. 6.2. In our interpretation the solar wind is an

inhomogeneous and structured medium on the large spatial-temporal scale, which

is displayed in blue. We have found that the effect of structures ranges from the

transition thickness of the structures to the largest spatial-temporal scales. It is

also the waiting-time distribution between structures that is responsible for the f−1

scaling range observed. At the smallest scales of the inertial range the ion kinetics

become significant, such that the k‖ Alfvén branch becomes damped and dispersive.

Therefore, the kinetic range may be argued to begin within the last decade of the

inertial range. The scales at which the ion kinetics become important are shown in

red. Between the two areas dominated by structures and kinetic effect is the inertial

range, which is shown in yellow.

We have found that in order to investigate the turbulence within the in-

ertial range one must also consider the effect of structures, for which there is an

increasing power contribution to the PSD as the spatial-temporal scale increases.

Importantly, once discontinuities are taken into account we have found no support

for the Goldreich and Sridhar [1995] model in the solar wind.

The work within this thesis has been limited to the in-situ magnetic field

measurements of the solar wind and the main implication of this work is that struc-
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Figure 6.2: A schematic of the solar wind power spectral density for the magnetic
field fluctuations. The observed power spectral density is shown by the dot-dashed
line. However, the dominant physical process that contribute to the observed power
spectral density are shown underneath, where the influence of structures, turbulence
and kinetic physics are represented in blue, yellow and red respectively.
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tures/discontinuities must be considered within solar wind analysis. Therefore, there

are three clear directions of future study from this work; i) The development of other

independent methods of detecting and removing discontinuities from the analysis,

ii) investigate other fields within the solar wind (E.g Electric field, velocity, flux,

Elsässer variables) and determine whether these quantities are susceptible to dis-

continuities within the solar wind, iii) revisit previous studies/surveys and determine

if discontinuities within the observations were significant.
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