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Abstract

The Restricted Euler equations, taken from the Vieillefosse model for the

velocity gradient tensor, are re-investigated using data from direct numerical

simulations of an intense event, rather than using data from forced simulations

of homogeneous, isotropic turbulence. The goal is to develop ideas for exten-

sions to turbulence models based on the RE equations that can handle these

intense events. With this goal in mind, the new numerical data is compared

against the evolution of the RE equations towards a finite time limit and its

predictions on how ratios of the RE moments converge. The analysis starts by

looking at distributions of the invariants in the R-Q phase space. From this,

the analysis then compares the Vieillefosse equations to the full equations and

notes that there is a significant change in behaviour around t = 0.5. It is

suggested that this is associated with a change in flow topology due to the

reconnection of vortex tubes in the flow field. To build a higher-order model,

more terms from the full RE equations should be used, which is investigated

by looking at the co-evolution of the second invariant Q and the third-order

moments, Rω and RS.
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Chapter 1

Introduction

1.1 Production Mechanisms of Intense Events

A popular question in fluid dynamics is what is turbulence? Turbulence in the

modern world is generally used to describe periods of rapidly changing con-

ditions such as those experienced in the financial markets. However to date

we do not have a full and complete description of what turbulence is, we can

describe a turbulent flow but we can not rigorously define what turbulence is.

As you walk in the wind, you will leave a turbulent wake in your shadow, the

motions of clouds are governed by the mixing flow within their boundaries.

Turbulence is an essential part of life on earth, which possibly goes some way

to explaining why no rigorous formulation has been derived.

What we intend to discuss in this thesis are the key components of turbulence

within the inertial range. In order to do this we will be examining the role of

the velocity gradient tensor numerically using Robert Kerr’s pseudospectral

code. The study of the pressure term and specifically the pressure Hessian

has far reaching real world applications, particularly in the study of Aeroa-

coustics. Lighthill showed that the source term for the generation of sound in

the Lighthill equations’ is the second order partial derivative of the pressure,

which creates a quadrupole source term for aerodynamic sound [1]. We would

like to develop a method of simplifying the study of turbulent flows through

the investigation of the key invariants of the velocity field, their growth and

the effect of the pressure Hessian. To achieve this we will be considering the
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following topics:

• Chapter 2: Background and Motivation

We will look at the production mechanisms of intense events within a

developing turbulent flow. To do this we need to look at what others

have done to address the issue of closing the incompressible Navier Stokes

equations (NSE). We start by reviewing the work on the Restricted Euler

(RE) equations as published by Vieillefosse [2], and conclude the liter-

ature review through the consideration of the relatively recent work by

Chevillard & Meneveau [3] where they use the Cauchy Green Tensor to

provide a closure for the pressure and viscous terms of the Navier Stokes

Equations.

• Chapter 3: Direct Numerical Simulation

Following on from the literature review we consider how DNS is used to

generate a turbulent flow, and briefly describe the methods used within

Robert M. Kerr’s pseudospectral code summarising the potential pit falls

of DNS.

• Chapter 4: Computational Method

Here we will discuss the simulations used for the later analysis and

present the three-dimensional energy spectra of each simulation. We

then look at ways of visualising the flow using the VisIt visualisation

package and the VTK file format.

• Chapter 5: Validation

The Vieillefosse RE equations are examined, after which we briefly re-

view the work of Ashurst et al [4] and Kerr [5]. The focus shifts to the

behaviour of the individual moments within the R-Q plane.

• Chapter 6: The pressure Hessian

The pressure Hessian P is the second order tensor comprised of the

second order partial derivatives of the pressure. We discuss the possible

method of calculating the pressure Hessian and explain how it can be

decomposed into a local and non local component through the solution

of the Poisson equation for P in terms of the velocity gradient tensor A.
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We plot the trajectories of the isotropic and full equations, and compare

this with previous work.

• Chapter 7: 3D Phase Space

The 3D phase space (Q,Rω, RS) was introduced by Lüthi [6], here we

look at the comparisons that can be drawn by considering the trajecto-

ries of the Vieillefosse and full equations in the 3D phase space before

suggesting how the current RE equations can be improved. In essence

this reaffirms the results of Chapter 6.

• Chapter 8: Conclusions and Further Work

Finally we reflect on what has been observed and consider possible ex-

tensions and applications of this study.
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Chapter 2

Background and Motivation

2.1 Introduction

Scientists worldwide have been trying to unlock the secrets of Turbulence for

hundreds of years, starting with Archimedes (287 BC-212 BC) up until the

relatively recent derivation of the Navier-Stokes equations in 1845 [7]. Since

then slowly but surely we are uncovering new turbulent phenomena. The ad-

vancement of massively parallel supercomputers; and increased competition

and collaboration between researchers in the field, will hopefully one day lead

to a definition of turbulence.

This thesis will consider the development of intense structures within a devel-

oping turbulent flow, we will begin our journey with the work of Vieillefosse [8]

who suggested a simplified model of the Euler equation. We will then follow

the contributions of other researchers until we arrive at the current under-

standing of turbulence.

The fundamental problem with any research into fluid flow, is the inability

to measure a flow without causing an effect within the flow. There are many

methods in the Computational Fluid Dynamics toolbox that allow the identi-

fication of structures and relationships that would be difficult to observe and

measure accurately experimentally. The more sophisticated CFD methods are

expensive, they require extensive computational resources and time to inter-

pret the results. When modelling the Navier Stokes or Euler equations, a
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closed set of equations is required in order to generate results. Further re-

search into turbulence requires that these models are improved. We initially

restrict our interest to the Vieillefosse closure and the early pioneers of numer-

ical turbulence research.

The interaction of the various velocity derivatives is a key topic throughout

this thesis. A greater understanding of velocity derivatives, particularly with

regard to the development and dissipation of turbulent structures has the po-

tential to create advances in fields such as Aeroacoustics.

In 1982 Vieillefosse published work on a closure for the Navier Stokes equa-

tions, this work observed a divergence of the vorticity in finite time for the

inviscid equations [8]. An understanding of the energy transfer between the

small and the large scales of turbulence is key to developing a comprehensive

understanding of turbulence in general.

2.2 Euler Equations

The Euler equations for an incompressible homogeneous fluid are:

∂u

∂t
+ u · ∇u = −1

ρ
∇p, with ∇ · u = 0, (2.1)

where u is the velocity, u·∇u represents the advection of the velocity through-

out the flow, p is the pressure and ρ is the fluid density. The incompressibility

condition ∇ · u = 0 works to preserve the fluid volume.

2.3 The Navier Stokes Equations

The Navier Stokes Equations for an incompressible flow are:

∂u

∂t
+ u · (∇u) = −1

ρ
∇p+ ν∇2u, (2.2)
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along with the incompressibility condition:

∇ · u = 0. (2.3)

Here the variables are defined as in the Euler equation, there is the extra con-

sideration of the viscosity ν.

Considering the incompressible Navier Stokes equations at high Reynolds num-

ber, one can assume that for short times the viscosity in the Navier Stokes

equations can be neglected, and the fluid velocity will satisfy the Euler equa-

tions. At high Reynolds numbers the energy is distributed within a range of

scales, the inertial range. This distribution is not affected by viscosity to a

first approximation.

2.3.1 Strain

The strain rate tensor S is defined as:

S = Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.4)

The evolution of the strain can be determined as follows:

DS

Dt
= −SS − 1

4
ω ⊗ ω + 1

4
I|ω|2 − P , (2.5)

where P = Pij =
∂P

∂xi∂xj
is the pressure Hessian. Please also note that ⊗ is

the dyadic product.

2.3.2 Vorticity Equations

The vorticity highlights where vortex stretching originates from. Taking the

curl of the Euler equation (2.1) and applying the following identity:

[(ω · ∇)u]i = ωjui,j = 1
2
(ui,j + uj,i)ωj = Sijωj = (Sω)i, (2.6)

the inviscid vorticity form of the Euler equation is obtained, note that ∇ ×
∇u = 0 and ∇×∇p = 0:
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Dω

Dt
= Sω, (2.7)

where
D

Dt
= ∂t + u · ∇ is the material time derivative.

Alternatively, if one was to take the curl of the Navier-Stokes equation (2.2)

the three-dimensional vorticity evolution equation can be obtained. If one ap-

plies the incompressibility condition to the following vector identity:

∇× (u · ∇u) = u · ∇(∇× u)− (∇× u) · ∇u+ (∇ · u)(∇× u). (2.8)

Applying the incompressibility condition ∇ · u = 0 and noting that the curl

of the pressure gradient is zero, ∇×∇p = 0, equation (2.2) becomes:

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω. (2.9)

Or, in terms of the material derivative:

Dω

Dt
= ω · ∇u+ ν∇2ω, (2.10)

this is the vorticity equation, note that unlike the equation for the strain

evolution, equation (2.5) the vorticity equation does not involve a contribution

from the pressure.

2.4 Vieillefosse

Vieillefosse [8] wanted to understand the interactions within a flow, he refor-

mulated the Euler equation into more manageable terms, the Restricted Euler

(RE) model. Vieillefosse’s particular interest was how the strain and vorticity

affected the transfer and dissipation of energy between the large and small

scales of fluid motion.

Taking the gradient of the Euler equation and omitting the contribution of

pressure term, the gradients of the vorticity and stress as detailed in [2], define

a system of 8 first-order ordinary differential equations. The derived quantities
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provide a measure of the flow characteristics:

d

dt
ωi = 1

2
ωjuji. (2.11)

Vieillefosse defines uij as the fluid shear:

uij =

(
∂ivj + ∂jvi −

2

3
δij∂lvl

)
, (2.12)

and its derivative:

d

dt
uij = −1

2

(
uikukj − 1

3
δijuklulk

)
− 1

2

(
ωiωj − 1

3
δijω

2
k

)
. (2.13)

The incompressibility condition u11 + u22 + u33 = 0 is satisfied identically at

all times.

The eight equations are reduced into equations for five primary velocity mo-

ments. These equations are investigated by considering linear combinations of

the velocity moments. A divergence in finite time is observed, and determined

to be dependent on the initial flow configuration. Vieillefosse arrived at similar

results to those before him [9], [10], [11].

The eigenvalues of the strain and velocity gradients diverge following an in-

verse time scale power law dependence t−1, and thus it would appear that the

Enstrophy diverges as the square of the inverse time scale t−2. We will discuss

this possible power law dependence in Chapter 5.

2.5 Mathematical Preliminaries

In a dynamical system the scalars and vectors describe the magnitude and

direction of motion. In two dimensions this is the minimum requirement to

visualise the flow field. In three-dimensional space you need the magnitude,

direction and orientation of the quantities in order to fully consider their evo-

lution. This requires a brief discussion of tensors. A first order tensor is

equivalent to a vector in that it captures magnitude and direction at a given
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instant, however the interaction of first order tensors, (the velocity derivatives)

is described by nine components. These are represented by second order ten-

sors, which are typically represented as a 3 × 3 matrix in Euclidean space,

A3×3εE3. Second order tensors are associative but not commutative.

We will focus on the evolution of invariant quantities within the flow. The

velocity moments and the invariant moments of the pressure Hessian are of

particular interest. Considering the rotational invariants of a system is useful

as they are independent of a co-ordinate basis. The eigenvalues and eigenvec-

tors are calculated as (A− λI)x = 0, where A is a tensor of order 2, λ is the

eigenvalue, I is the 3×3 identity matrix and x is the eigenvector. The system

has three eigenvectors and by considering the determinant we may introduce

the Cayley Hamilton Theorem.

2.5.1 Cayley-Hamilton Theorem

It is well known that any second order tensor S is a solution of its characteristic

polynomial. The characteristic polynomial is defined as:

c(λ) = det(S − λI) = λ3 − I1(S)λ2 + I2(S)λ− I3(S). (2.14)

So, by replacing λ by the tensor S:

c(S) = S3 − I1(S)S2 + I2(S)S − I3(S)I = 0, (2.15)

where λ is the eigenvalue, and I is the 3 × 3 identity matrix. The Ii(S) are

the first, second and third invariants of S and can be defined as:

I1(S) = tr(S),

I2(S) = 1
2

{
(trS)2 − tr(S2)

}
,

I3(S) = det(S).

(2.16)

Let the Strain Tensor S have ordered eigenvalues:

s1 ≤ s2 ≤ s3. (2.17)

9



The trace of S is then obtained through the use of the incompressibility con-

dition:

I1(S) = tr(S) = s1 + s2 + s3 = 0. (2.18)

From this we can look at the second invariant and note that this contains the

sum of the cross acting terms only:

I2(S) = 1
2

{
(trS)2 − tr(S2)

}
(2.19)

= 1
2

(
(
∑

si)
2 − (

∑
s2
i )
)

(2.20)

=
∑
i 6=j

sisj. (2.21)

Finally, the third invariant is simply the determinant, which is the product of

the eigenvalues:

I3 = s1s2s3. (2.22)

It is noteworthy to define:

S2 = trS2 = s2
1 + s2

2 + s2
3. (2.23)

2.6 Moments

The development of the 5 invariants of the Velocity gradient tensor is of inter-

est. Considering the isotropic assumption the invariants are:

S2, ω2, Rω RS , and I4. (2.24)

These velocity moments are the Enstrophy, strain, Enstrophy production,

strain production and the fourth order tensor I4. I4 is one of the fourth-

order rotationally invariant derivative correlations in isotropic turbulence [12].

The Enstrophy is the square of the vorticity (ω), ω2 = |ω|2, and the growth of

Enstrophy is given by Rω = ωiSijωj this is obtained when you take material

derivative of the Enstrophy. The dissipation is the square of the strain, and

can be found as S2 = SijSji = S2
1 + S2

2 + S2
3 , with the corresponding dissipa-

tion production term being given by RS = SijSjkSki = S3
1 + S3

2 + S3
3 . Finally,

Siggia’s I4 = (ωiSij)
2 [12]. The Vieillefosse equations evolve in the absence of
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pressure according to:

d

dt
S2 = −2RS −

1

2
Rω, (2.25)

d

dt
ω2 = 2Rω, (2.26)

d

dt
RS =

3

4
I4 +

1

4
S2Q, (2.27)

d

dt
Rω = I4 −

2

3
ω2Q, (2.28)

d

dt
I4 = −4

3
QRω. (2.29)

These equations reduce to a pair of ordinary differential equations expressed

in terms of Q and R which are derived in equation (2.67). Q and R are defined

in terms of the second and third order moments respectively:

Q = −1
2
S2 + 1

4
ω2, (2.30)

and

R = −1
3
RS − 1

4
Rω. (2.31)

The balance of equations (2.30) and (2.31) is given by the discriminant D:

D =
27

4
R2 +Q3. (2.32)

Considering D = 0:
27

4
R2 +Q3 = 0, (2.33)

rearranging gives:

R =

(
− 4

27
Q3

)1
2

, (2.34)

this family of curves is plotted in figure 2.1.

2.7 Alternative Consideration

In 2002 Gibbon [13] decided to approach the Euler equations in terms of

quaternions, as an alternative tool in the study of vorticity along Lagrangian
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trajectories. A quaternion is a vector scalar component defined as:

q = [a, r] = aI − r · σ. (2.35)

Where I is the 2x2 unit matrix and for those familiar with quantum physics;

σi are the Pauli spin matrices. Quaternions are not commutative but their as-

sociativity can be shown. The vorticity becomes a pure quaternion by setting

a = 0 in equation (2.35), r = ω.

The Euler equations are reformulated using the following variables:

α = ω̂ · (Sω̂), where ω̂ =
ω

|ω|
, and χ = ω̂ × Sω̂. (2.36)

α and χ represent the vortex stretching and rotation rates respectively. The

evolution of these quantities is derived as follows:

D

Dt
|ω̂| = ω̂ × χ, (2.37)

Dα

Dt
= −α2 + χ2 − αp, (2.38)

Dχ

Dt
= −2αχ− χp, (2.39)

χp = ω̂ × Pω̂, (2.40)

αp = ω̂ · (Pω̂). (2.41)

Reformulating the equations in this manner provides a convenient framework

to explore the Lagrangian evolution of vorticity. The growth of the normalised

vortex stretching
Dα

Dt
is of particular interest.

2.8 The Restricted Euler Model

The velocity gradient tensor (VGT) is a second order tensor containing all of

the spatial first order velocity derivatives defined as:

Aij =
∂ui
∂xj

= ui,j. (2.42)
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The velocity gradient tensor can be decomposed into its symmetric and anti

symmetric components. Defining the decomposition as follows A = S + Ω,

the strain tensor is the symmetric part:

S = 1
2
(Aij + Aji), (2.43)

and the vorticity tensor Ω is the antisymmetric part:

Ω = 1
2
(Aij − Aji). (2.44)

Decomposing the VGT into the symmetric and antisymmetric parts, the strain

and vorticity starts the discussion of two different interconnected aspects of

fluid motion.

Consider the incompressible Euler equation (2.1) in component form where

u is the velocity field and p is the pressure field.

∂

∂xj

(
∂ui
∂t

+ uk
∂ui
∂xk

)
= − ∂p

∂xi∂xj
, (2.45)

then:
∂

∂t

∂ui
∂xj

+
∂uk
∂xj

∂ui
∂xk

+ uk
∂

∂xk

∂ui
∂xj

= − ∂p

∂xi∂xj
, (2.46)

rewritten in terms of A:

∂

∂t
Aij + AikAkj + uk

∂

∂xk
Aij = − ∂p

∂xi∂xj
. (2.47)

The incompressibility condition can also be rewritten in terms of the VGT,

where summing over repeated indices is assumed:

Aii = 0. (2.48)

The material derivative applied to equation (2.47) yields:

D

Dt
Aij = −AikAkj −

∂p

∂xi∂xj
. (2.49)
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Equation (2.49) can not solved without solving the pressure Hessian or finding

a suitable assumption for the behaviour of the pressure Hessian. A suitable

assumption that allows the equation to be integrated numerically is called a

closure.

2.9 Ashurst

The next milestone in understanding the role of velocity gradients in turbulent

flow was achieved in the 1980’s with the introduction of the C Shaped CRAY-1

Supercomputer. The CRAY-1 was capable of 80 million floating point opera-

tions per second (80 MFLOPs) today the latest iPhone runs at approximately

120 MFLOPs. The CRAY-1 was twice as fast as its predecessor the CDC

7600 and it was far more reliable. Robert M Kerr was fortunate enough to

obtain access to this machine allowing him to produce his 1985 paper [14] and

subsequently the joint work with Ashurst et al [4] published in 1987.

Robert Kerr used 70 hours of computational time on the CRAY-1S super-

computer to produce a 1283 dataset at Rλ = 83 of three eddy turnover times.

The 1985 paper discusses higher order derivative correlations, in particular

the skewness (Sk) and kurtosis. Kerr suggests that turbulence is characterised

by extended vortex tubes and strong alignment between vorticity and rate of

strain.

The alignment of the vorticity and strain was first studied numerically by

Siggia [15] and Kerr [14]. However it wasn’t until Kerr [5] and Ashurst et al

[4] that the distribution of the alignment of vorticity and strain was studied

numerically. Using a 1283 DNS simulation of isotropic flow with a homoge-

neous shear flow, the distribution of the alignment between the strain and

vorticity was observed [4].

The primary results are for the ordered strain eigenvalues s1 ≤ s2 ≤ s3.

The incompressibility condition implies that
∑
i

si = 0. So when s2 < 0, s2

and s1 are compressive. The most common alignment of the strain in intense

regions is approximately s1 : s2 : s3 = −4 : 1 : 3. This represents an element
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being pulled in two directions and crushed in the third. β is defined to be the

normalised middle eigenvalue, with limits ±1 and is calculated as:

β =

√
6s2

|S|
, |S| =

√
s2

1 + s2
2 + s2

3. (2.50)

Regions of active and passive flow are studied using the probability density

function for β. This study shows that the peak of the probability density

function for β occurs when β = 0.5.

Tennekkes previously estimated the volume of vortex tubes to be the inverse

of the Taylor Reynolds number [16]. Ashurst et al [4] observe that the tube

diameter is of the same order as the kurtosis factor, this suggests a larger vol-

ume of vortex tubes than had previously been observed. In the active regions

β is generally positive. They observe that the intermediate strain eigenvector,

corresponding to the eigenvalue s2 is aligned with the vorticity stretched along

that eigenvalue. This can be quantified by taking absolute value of the dot

product with the intermediate eigenvalue.

2.10 Cantwell

Cantwell [38] extends the analytical approach of Vieillefosse [2] to the incom-

pressible Navier Stokes equation:

∂

∂t
Aij + AkjAik + uk

∂

∂xk
Aij = − ∂p

∂xi∂xj
+ ν

∂2Aij
∂xk∂xk

. (2.51)

Taking the trace Aii = 0 of equation (2.51), the pressure can be understood

in terms of the VGT:

AkjAjk = − ∂p

∂xj∂xj
. (2.52)

The contribution of the trace/isotropic component from A2 and the pressure

term needs to be removed. This is achieved through the use of use Kronecker

delta:
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δij =

{
1 if i = j

0 Otherwise
(2.53)

Hence, using (2.53) in (2.52) one obtains:

AikAkj
δij
3

= − ∂p

∂xi∂xj

δij
3
, (2.54)

subtracting (2.54) from the velocity gradient form of the Navier Stokes equa-

tion (2.51) one arrives at the full restricted Euler equation:

∂

∂t
Aij + AikAkj − (AkmAmk)

δij
3

+ uk
∂

∂xk
Aij = Hij + ν

∂2Aij
∂xk∂xk

, (2.55)

where:

Hij = −
(

∂p

∂xi∂xj
− ∂p

∂xk∂xk

δij
3

)
, (2.56)

finally,
D

Dt
Aij + AikAkj − (AkmAmk)

δij
3

= Hij + ν
∂2Aij
∂xk∂xk

. (2.57)

In order to solve equation (2.57) a suitable closure for the pressure and viscous

terms must be chosen. Remember also that the term A2 contains the non local

part of the pressure Hessian. Hij contains the viscous diffusion of the velocity

gradients and the cross derivatives of the pressure field.

Cantwell’s intent was to explore the secrets of the sub scale region. In this

region the velocity gradients dominate the flow, his work focuses on the con-

dition that Hij = 0. Referencing Chong Perry and Cantwell (1990) [17] he

applies the nomenclature for the second and third invariants of the Cayley

Hamilton equation as suitable quantities to determine the flow topology.

Before we consider the derivation of R and Q for the RE model, the Pois-

son equation for the pressure shows that the pressure Hessian is related to

the square of the velocity gradient tensor as observed in equation (2.52). The

equation for the VGT evolution (2.57) indirectly includes the anisotropic part

of the pressure Hessian when Hij = 0. The effect this has on the flow is

undetermined at this point, although it is something we hope to explore.
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2.11 Deriving the RQ equations

The nomenclature of (P,Q,R) used to identify the first, second and third in-

variants of a 3D flow field was introduced by Chong, Perry and Cantwell 1990

[17] where they undertake a general classification of three-dimensional flow

fields.

Applying Cayley Hamilton to A, denoting the eigenvalues as λi we have:

λ3 + Pλ2 +Qλ+R = 0. (2.58)

Following on from Chong et al [17], the first P , second Q and third R invari-

ants of the velocity gradient tensor are defined as:.

P = Aii = 0,

Q = −1
2
AijAji = −1

2
S2 + 1

4
ω2,

R = −1
3
AimAmkAki = −1

3
RS −

1
4
Rω.

(2.59)

The first invariant is never referred to as P , for one it would cause confusion

with the pressure and in real terms it is the incompressibility condition. The

aim is to understand the development of structures within a turbulent flow.

How can the evolution equations for the second and third invariants of the

VGT be obtained?

Post multiplying equation (2.57) by Aij:

d

dt
(AinAnj) + 2AinAnkAkj −

2

3
(AkmAmk)Aij = AinHnj +HinAnj, (2.60)

taking the trace:

d

dt
(−2Q)− 6R− 2

3
(AkmAmk)Aii︸ ︷︷ ︸

=0

= 2AinHni, (2.61)

tidying up:
d

dt
Q = −3R− AinHni. (2.62)
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Similarly, R can be found:

d

dt
(AiqAqnAnj) + 3AiqAqnAnkAkj − (AmnAnm)AiqAqj = (2.63)

AinAnkHkj + AinHnkAkj +HinAnkAkj,

applying Cayley Hamilton to reduce the fourth-order product:

d

dt
(AiqAqnAnj) + 3(−PAinAnk −QAik −Rδik)Akj (2.64)

−(AmnAnm)AiqAqj = AinAnkHkj + AinHnkAkj +HinAnkAkj,

taking the trace and using equation (2.59):

d

dt
(−3R)− 3QAikAki − (−2Q)AiqAqi = (2.65)

3AinAnkHki,

tidying up gives:
d

dt
R =

2

3
Q2 − AinAnkHki. (2.66)

Applying the assumption Hij = 0; separation of variables is used to obtain an

equation that represents the path a particle dependant of course on the initial

condition. If we plot this for a variety of initial conditions a family of curves

is obtained. This is achieved as follows:

d

dt
Q = −3R, (2.67)

d

dt
R =

2

3
Q2, (2.68)

dR =
2

3
Q2dt and dQ = −3Rdt, (2.69)∫

RdR =

∫
−2

9
Q2dQ =⇒ R2 = − 4

27
Q3 + C. (2.70)

(2.71)

Hence,

R2 +
4

27
Q3 = C. (2.72)
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Cantwell also observes the alignment result of Ashurst et al [4], through the

discussion of the VGT A evolution. Further analysis is required of the inter-

action between the various invariant moments of H . Cantwell is responsible

for the nomenclature of R-Q dynamics by his use of Q and R for the second

and third invariants applied to this problem. Now we will see that this system

of equations has been studied extensively by many research groups [3], [18],

[19] and [20]. Our focus lies with the behaviour of the pressure Hessian but

this will be discussed in Chapter 6.
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Figure 2.1: Trajectories of the second(Q) and third(R) invariants of the ve-

locity gradient tensor A.

2.12 Closure problem

The objective is to obtain a model that is to good approximation the Navier

Stokes equations without resulting to a full calculation method such as direct

numerical simulation. We have considered the early attempts to solve the re-

stricted Euler equations numerically, with a simple isotropic closure for the

pressure Hessian.
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When we discuss particles, we typically think of the Eulerian representation,

where a particle is expressed in terms of Cartesian co-ordinates. Hence the

position x of particle A at time t is considered. Whereas the Lagrangian rep-

resentation considers the material property of a particle as it moves through

the fluid.

The initial reference configuration B ⊂ R3 where X ∈ B is the reference

position of a particle. Then the deformed/spatial representation B′ ⊂ R3

where x ∈ B′ is the deformed position . This allows the deformation map φ

to be defined:

φ : B → B′ (2.73)

Figure 2.2: An illustration of the deformation map between the initial config-

uration and deformed configuration of a material body.

The displacement of the particle from its starting location to final position

can be defined as:

u(X) = φ(X)−X (2.74)

From which the deformation gradient F (X) follows:

F (X) = ∇φ(X) =
∂φ(X)

∂Xi

ei (2.75)
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Here ei represents the co-ordinate frame. This allows the Cauchy Green tensor

C and its inverse C−1 to be defined as:

C = FFT (2.76)

C−1 = F−TF−1 (2.77)

The Cauchy Green Tensor(CGT) contains information about the stretching of

the material only, whereas the deformation gradient contains mixed informa-

tion on the nature of the rotations and stretches.

Figure 2.3: This figure taken from A first course in continuum mechanics

[21] which illustrates the role and action of the Cauchy Green Tensor on the

reference and deformed configurations.

Starting from Vieillefosse [8]; Girimanji and Pope [20] discuss whether a suit-

able model can be derived in a Lagrangian frame of reference that would give

results comparable to direct numerical simulation. In 1989 they were moti-

vated by limitations and cost of computational resource.

They ran a 1283 simulation to compare their new model against. Their idea

was to normalise the components of the Navier-Stokes Equation to develop a

diffusion model for the normalised velocity gradient tensor, whilst retaining

the full nonlinear term and only modelling the anisotropic pressure and vis-

cous terms. The diffusion of the normalised velocity gradient tensor A∗ can
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be shown to be a stochastic differential equation:

dAij = Aij(t+ dt)− Aij(t) (2.78)

= [−Nij +Mij]dt+DijkldWkl (2.79)

Here M and D represent the drift and diffusion terms respectively, N is the non-

linear term and W is a Wiener process. The authors’ ensure that the velocity

gradient tensor still satisfies the kinematic constraints and the log normality

of the pseudo-dissipation. They obtain a complex full model and two simpli-

fied models T1 and T2. The pseudo-dissipation is defined as φ = ν
∂ui
∂xj

∂ui
∂xj

and physically it represents energy transfer between the turbulent scales. For

brevity, T2 is:

dhij =

[
−
(
Nij − hij

hlmNlm

φ∗

)
− hij

(
7

2
â2 +

lnφ∗
2τ

)]
dt+DijkldWkl (2.80)

Where h is the normalised velocity gradient tensor and â2 is the time rate

variance. This model considers the action of the nonlinear term including the

pseudo dissipation, the second term acts to preserve the log normality of the

pseudo dissipation. The diffusion term is a model of the relationship between

the time rate variance â2 and pseudo dissipation fluctuating in time due to

the action of the Wiener process. This model contains a small number of

quantities that must be determined computationally and as such this provides

a distinct advantage when resources and computational power are at a high

premium.

Girimanji and Pope compare the three models to the full turbulence simu-

lation (FTS) to form a conclusion on the suitability and fit of a diffusion

model for the velocity gradient tensor. Their results indicate that the model is

reasonably successful, there is good correlation between the single time statis-

tics of the scalar invariants. This method appears to show good promise for

the development of other Lagrangian models for the evolution of the velocity

gradient tensor.
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Pumir, Shairman and Chertkov [19], look at the problem from another per-

spective. The previous attempts at explaining the understanding the local flow

geometry and its evolution have all been from a somewhat classical view. The

authors consider a tetrad. The tetrad is a 4 point model based on a coarse

grained velocity gradient tensor defined over a region B, with characteristic

length scale R (i.e. the large energy containing eddies of size R).

Aab =

∫
B
dr∂avb(r) (2.81)

Aab = (ξ−1)ai v
b
i −

δab
3
tr(ξ−1v) (2.82)

How does this tetrahedron shaped fluid parcel develop and are any constraints

applied to the flow? Their idea is based on the fact that the velocity field

can be decomposed into a rapidly changing component modelled as Gaussian

noise plus a slower component controlled by the interactions of eddies. They

are attempting to decompose the velocity field so that the random motion and

quantitative process can be studied separately:

vai = ξbiAab︸ ︷︷ ︸
I

+ uai︸︷︷︸
II

(2.83)

A set of equations analogous to the standard evolution of the velocity gradient

tensor are obtained [19].

d

dt
Aab + A2

ab − ΠabtrA
2
ab︸ ︷︷ ︸

III

= ηab (2.84)

d

dt
ξai − ξbiAab = uai (2.85)

Πab =
kai k

b
i

trkk
(2.86)

Where ξ is the matrix of triad vectors, K = ξ−1 and η is a random matrix,

Note that Πab is a measure of the tetrad anisotropy.

In equation (2.84), you can see that the local component of the pressure

field is ΠtrA2. Finally, the LHS of equation (2.84) is analogous to equation
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(2.49), where ηab introduces random forcing and the modelled contribution of

the self-stretching term. Thus the tetrad evolution is fully defined [19]. The

results of Vieillefosse can be recovered when Π = 1
3
. This paper is successful, it

provided a new method of closing the Navier Stokes equation, with reasonable

correlation to the results of DNS and experimentalists.

Yi and Meneveau [18] use the Cauchy Green tensor to describe the evolu-

tion of the deformation tensor. This is another method of investigating the

physics of small scale turbulence.

The authors observe how spheres are deformed by compression and stretching

to form ellipsoids, and as such the evolution is extremely similar to that of the

velocity gradient tensor for short times. Their study provides an analytical

solution.
DFij
Dt

= Fikakj, (2.87)

where akj is the local component of the VGT. Here the focus is on how the

material elements deform from spheres to ellipsoids, straight from the defini-

tion of F .

The mapping from a spatial representation to a material frame is provided

by:

|δX|2 = δxC−1δxT (2.88)

The use of the CGT to facilitate an investigation into the dynamics of small

scale turbulence is new. Meneveau continued this work with Chevillard [3],

where they produced a new stochastic model based on this work.

Their intent was to create a framework from which the statistical and geo-

metric structure of turbulence can be investigated more thoroughly. They

assume that the Lagrangian pressure Hessian is isotropic given that the flow

has developed sufficiently to justify loss of information from previous times.

∂2p

∂xi∂xj
=

∂

∂xi

(
∂p

∂xj

)
=

∂

∂xi

[(
∂Xn

∂xj

)
∂p

∂Xn

]
≈ ∂Xm

∂xi

∂Xn

∂xj

∂2p

∂Xm∂Xn

(2.89)
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Applying the inverse Cauchy Green tensor:

∂2p

∂xi∂xj
= 1

3
C−1
ij Pkk (2.90)

The compression and stretching of the Eulerian pressure Hessian is considered

through the use of the inverse Cauchy Green tensor. The authors suggest this

is a reinterpretation of the tetrad model. Although similar to other models,

by capturing the effect of recent deformations the results should be closer to

the true Hessian.
∂2p

∂xi∂xj
= −

C−1
ij

C−1
qq

AnmAmn. (2.91)

Through the consideration of the time scale, they arrive at:

ν
∂2Aij
∂Xi∂Xj

=
−1

T

C−1
mm

3
Aij. (2.92)

Finally, by using (2.91) and (2.92) they obtain the following stochastic dif-

ferential equations where dW is a Gaussian forcing term.

dA =

(
−A2 +

Tr(A2)

Tr(C−1
Γ )

C−1
Γ −

Tr(C−1
Γ )

3
A

)
dt+ dW, (2.93)

where CΓ = eΓAeΓAT

is the stationary Cauchy Green Tensor, and I think

that Γ is the Kolmogorov time scale [3].

The authors solve the above equation numerically, providing comparison with

previously published results such as the log normality of the pseudo dissipa-

tion, the classic RQ teardrop and the alignment of the intermediate eigenvalue

of the strain tensor with the vorticity. Chevillard, Meneveau, Biferale and

Toschi [22] look to extend this model with particular focus on the terms re-

quired to close the equation.

In summary, we have considered the work of many authors and their con-

tribution to understanding small scale turbulence and the associated events

created through the interaction of various invariants. What has yet to be seen

is a thorough investigation of the true pressure Hessian, in particular its effect
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on the dynamics and development of the Navier Stokes equation.
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Chapter 3

Turbulence Simulations

3.1 Introduction

Direct Numerical Simulations (DNS) for the solution of the Navier Stokes

equations is discussed. The study of turbulent flow is dominated by three

species of computational model. The popular choices despite various concep-

tual difficulties in their implementation are Large Eddy Simulation (LES) and

Reynolds Averaged Navier Stokes (RANS). LES is generally used for complex

unstructured grids with irregular geometries whereas RANS is popular in mo-

tor sport. The simplicity afforded by the implementation of Direct Numerical

Simulation(DNS) is overshadowed by the significant computational cost when

simulating a flow even when studying simple geometries. DNS does not require

a turbulent closure model and is of higher order accuracy than other main-

stream methods. There are other types of CFD methods for non-turbulent

problems these will not be discussed here.

3.2 Turbulence Preliminaries

When discussing turbulence several quantities are frequently discussed and are

mentioned here for completeness. The Reynolds number Re was derived by

Osbourne Reynolds in 1893. It was derived by the non dimensionalisation of

the Navier Stokes equation.

Re =
uL

ν
(3.1)
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Where: u is the velocity magnitude, L is a length scale and finally ν is the

kinematic viscosity. The Reynolds number can be interpreted as the ratio be-

tween the inertial and viscous forces within the fluid. The common example

when introducing Reynolds number is the consideration of the flow around a

cylinder, and the turbulent flow achieved when the critical Reynolds number

is exceeded.

Turbulent structures are continually undergoing fluid deformations at a variety

of length scales. The size of the large scale eddies is called the integral scale L

and the scale of velocity fluctuations is characterised by the Kolmogorov scale

η, defined by the viscosity ν and the energy dissipation ε:

η =

(
ν3

ε

) 1
4

. (3.2)

The Kolmogorov scale is the characteristic size of the smallest dissipative ed-

dies. The range of scales between the Kolmogorov scale and integral scale is

called the inertial subrange: η � r � L. There is another commonly used

length scale, the Taylor microscale λ:

λ2 =
u2〈
∂u1

∂x1

〉2 . (3.3)

This length scale lies within the inertial subrange η << λ << L. Direct

Numerical Simulations frequently refer to Taylor Reynolds Number Rλ, as a

measure of the interaction between large and small scales.

3.3 Direct Numerical Simulation

Direct Numerical Simulation (DNS) is a turbulence research tool capable of

being utilised as a numerical experiment where the scientist has precise control

over the initial conditions; this is not possible in an wind tunnel experiment.

This allows insight into the turbulent flows dependence on the initial condition

as well as access to the entire flow field in a way completely unobtainable by any

physical experiment. However as with any form of numerical calculation you
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must ensure that the method is suitable for the intended application as wrong

choices can be very expensive in terms of physical time and computational

resources. The main areas of concern for a DNS experiment are accuracy,

storage requirements and the post computational analysis of the generated

data which may need to be done alongside the calculation. DNS is attractive

as you simply march the Navier Stokes equations (NSE) forward in time with

a suitable time stepping regime such as third order Runge-Kutta from the

initial condition.

A brief look at the origins of DNS

The birth of DNS was at National Centre for Atmospheric Research(NCAR)

in 1972. The first calculation was performed on a 323 mesh with Rλ = 35

by Orszag and Patterson [23] in the same year. Where the Taylor-Reynolds

number is defined as: Rλ =
uλ

ν
. Rogallo [24] extended the work of Orszag

and Patterson to homogeneous turbulence whilst at NASA Ames. If we com-

pare the Orszag and Patterson 323 computation to today’s largest simulation

by Kaneda at 40963 [25], the latter has 40963

323 = (27)3 = 221 times more data

points at each realisation. As computing resources became more mainstream

more calculations were done on homogeneous isotropic turbulence with peri-

odic boundary conditions such as Siggia 643 (1981) [12], Kerr 1283 (1985) [14],

Jimenez et al 5123 (1993) [26], and finally Kaneda 40963 (2004) [25].

3.4 Navier Stokes DNS

DNS can be defined simply as a computational method for calculating the

solution to the complete Navier Stokes Equations in which all the length and

time scales, including the smallest energy containing eddies are fully recovered

without any turbulence closure model.

The home of DNS is still within the problem upon which it was created as a

research tool. The current application of DNS in turbulence research has been

in the realisation of the Navier Stokes equations solved for a finite Reynolds

number up to a mesh size of 40963 on the Earth simulator, Japan. No one at
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the time of writing has successfully run a 81923 simulation.

In a CFD toolbox you have the ’black box’ commercial CFD packages, these

are not freely available in academia, user computational models with various

turbulent closure models and DNS. To reach cutting-edge Reynolds numbers

only spectral methods can give high accuracy over large domains, commer-

cial codes predominantly use finite difference, finite volume or finite element

methods with no or little adaptivity and as such researchers use spectral or

pseudo-spectral DNS.

To ensure the DNS is resolved the mesh spacing must be of the order of the

Kolmogorov scale O(η) where η =

(
ν3

ε

)1/4

that is, ∆x ∼ η and only then

will it be capable of resolving the smallest dynamically important scales of

turbulence. However as η → 0, ReL → ∞ hence the spatial resolution must

be increased; ∆x→ η in order to resolve the smallest eddies.

Numerical discretization of the Navier-Stokes equations leads to the introduc-

tion of numerical errors. However, these errors can be predicted and controlled

to provide reliable trustworthy results. The advantage over other models is

avoiding the need for a turbulence closure model hence, removing any possi-

ble error introduced by forcing the flow at some arbitrary length scale or the

appearance of non-physical effects propagating throughout the flow.

3D DNS calculations are typically computed in a cube, a simple set up is

where the cube is periodic in all directions. As this periodic box grows, the

number of variables at any given time grows by 23 for a factor of 2 refinement

in each direction. The analysis and storage of large simulations is becoming

increasingly difficult primarily due to the shear volume of data outputted by

a DNS code. For example a 20483 simulation requires approximately 2TB of

physical disk space. This is too much data to try and process on a standard

desktop. This makes the analysis awkward; to cope with large volumes of data

researchers take the regions of interest within the flow and analyse these.

30



Currently high Reynolds number DNS simulations are not feasible, we would

need a high resolution, 81963 or greater and currently this would only be

achieved on a simple mesh. Typically, when a high Reynolds number simu-

lation is required one would use RANS as is the case in formula one. Other

intermediate methods can be configured to produce meaningful results; such

as Large Eddy Simulations (LES) and Detached Eddy Simulations (DES).

3.4.1 CFL

The CFL condition was introduced in 1928 by Courant, Friedrich’s and Levy.

The condition is applied to ensure numerical convergence of hyperbolic partial

differential equations. The dimensionless condition
u ·∆t

∆x
< C considers the

ratio of the scalar product between the velocity u, and the time step ∆t to

the grid spacing ∆x. The primary use of the CFL condition is in explicit

time-marching schemes with a variable time step.

3.4.2 Velocity-Vorticity form of NSE

The velocity-vorticity form of the NSE is defined as:

∂u(x, t)

∂t
= u(x, t)× ω(x, t)−∇π(x, t) + ν∇2u(x, t), (3.4)

where∇π contains the non linear term, and is obtained by taking the advection

term to the left hand side, grouping it with the pressure and using the following

vector identity ∇(u · u) = 2u · ∇u+ 2u× ω.

π(x, t) = p(x, t) +
1

2
(u(x, t))2 . (3.5)

However, this equation is more useful in Fourier space. Calculating equation

(3.4) in Fourier space simplifies the calculation and storage requirements of

the simulation. To impose reality in physical space we must have: v̂(−k, t) =

v̂∗(k, t), here * represents the complex conjugate andˆthe Fourier transform.

This approach halves the storage requirement as we only need to consider

the positive contributions, due to symmetry. Furthermore the derivatives can

be calculated exactly by multiplying by the wavenumber, whereas in physical
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space we would need to use a discrete method to calculate the derivative.

However the primary reason we take the Velocity-Vorticty form of the Navier

Stokes equation over the original equation is that the advection term is difficult

to compute in Fourier Space as it requires the computation of a convolution.

To overcome this we use Fourier transforms.

3.5 Fourier Transformation

The analytic Fourier transform and its inverse for a complex periodic function

with period 2π are defined as:

û(k) =

∫ 2π

0

u(x)e−ik·xdx (3.6)

u(x) =
1

(2π)3

∫ ∞
−∞

û(k)eik·xdk (3.7)

Taking equation (3.4) and applying the Fourier transform, we find that the

time derivative and Laplacian are trivial to transform, however the cross prod-

uct is not.

∂û(k, t)

∂t
= ̂(u× ω)(k, t)− kπ̂(k, t)− νk2û(k, t) (3.8)

Taking the divergence of (3.4) and then applying the Fourier transform:

̂∇ · (u× ω)(k, t) = k · kπ̂(k, t), (3.9)

k · û× ω(k, t) = k2π̂(k, t), (3.10)

π̂(k, t) =
k · û× ω(k, t)

k2 , (3.11)

hence the Fourier transformed result is:

∂û(k, t)

∂t
= α̂(k, t)− νk2û(k, t) (3.12)

Where:

α̂(k, t) = û× ω(k, t)− k

(
k · û× ω(k, t)

)
k2 (3.13)
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So now we have (3.12) as the equation we integrate in the numerical model.

3.6 Pseudo-spectral Method

The approach taken here, is referred to as a pseudo-spectral method. The

primary difference between this approach and spectral methods is the compu-

tational cost of the method. For instance if we compute a 1D Fourier transform

completely in Fourier space we would need to undertake N complex addition

and N complex multiplications, this gives a cost of N2, scaling this to three-

dimensions gives a cost of N6. In real terms, if we have a finite element scheme

we only need N3 operations, so something that takes 10 hours to run would

take 100 hours in a full spectral scheme. However computation of derivatives

in spectral space is exact, and this offers significant improvement in accuracy

but the increased accuracy of a spectral solver must be offset against the in-

creased computational time cost.

The compromise is the pseudo-spectral method. We know that the linear

parts are computed easily and relatively cheaply in Fourier space whereas

they are time consuming and costly in physical space, the nonlinear term is

particularly expensive to compute in Fourier space as it requires O(N3) wave

number operations,and a further O(N3) sums at each wavenumber. The total

cost of calculating the non linear term is O(N6). This is a significant number

of computations, in physical space however, one only needs to multiply the

velocity with the velocity gradient. The compromise is to compute the linear

terms in Fourier space and nonlinear terms in physical space with the help

of a fast Fourier transform (FFT). The FFT costs N logeN as opposed to

the N2 operations required in the 1D case; scaling this to 3D we require only

(N logeN)3 operations compared to N6 previously required.

As such the pseudo-spectral method requires less computational time than

a full spectral method with a greater level of accuracy when compared to a

discrete method.
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Chapter 4

Visualisation

4.1 Computational Data

Three 5123 data sets were generated using Robert M. Kerr’s pseudo-spectral

DNS code using periodic boundary conditions. The FORTRAN code is paral-

lelised using MPI. Whilst at the University of Warwick I was fortunate enough

to have access to Francesca, a 960 core high bandwidth, low latency Linux clus-

ter with 1.92 TB RAM. For the primary simulations we requested 16 cores and

16GB of RAM, for the graphics output we saved the data at every eighth mesh

point so that graphics could be produced on a desktop computer.

The three sets of data are named A, B and C. From these data sets we will

perform our analysis. There are modest differences between A and B, run A

was the benchmark simulation and run B was run at a lower viscosity than

A but with the same initial condition to produce a higher Reynolds number

flow. Finally C, was run by swapping the initial modes of the first initial con-

dition used in A and B to produce a different initial condition. Note that the

pseudospectral method truncates a third of the wavenumbers in each direction.

The calculations were completed on a [0, 2π]3 computational domain with pe-

riod boundary conditions in each direction with 512× 512× 512 mesh points.

The key points of interest about each simulation are summarised table 4.1.
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Simulation
Variable A B C

Grid Resolution 5123 5123 5123

L 2π 2π 2π
ν 0.0125 0.003125 0.0125
Rλ 110 380 115
η 0.0242 0.0107 0.0245
λ 0.499 0.411 0.514

kmax 45 141 46

Table 4.1: This is a table of key quantities taken from calculations A, B and
C.

4.1.1 Energy Spectra

Energy spectra provide a useful comparison between numerical isotropic ho-

mogeneous turbulence and turbulence theory. We concern ourselves with the

inertial sub range, within this range one would expect to see a k−5/3 regime.

This is observed for the later times in figures 4.1, 4.2 and 4.3. The k−5/3

regime stems from Kolmogorov’s first universality assumption, which states

that at very high, but not infinite Reynold’s numbers, all the small-scale sta-

tistical properties are uniquely and universally determined by the integral scale

l, the mean energy dissipation rate ε and the viscosity ν [27]. The Kolmogorov

scale is the size of the smallest resolved scale in a turbulent flow defined as:

η =

(
ν3

ε

) 1
4

. (4.1)

The energy spectrum of the inertial subrange is defined as:

E(k) = αε2/3k−5/3. (4.2)

In runs A and B a smooth initial condition is studied, the initial energies are:

E(k, 0) = 0 k ≥ 4, E(k, 0) = C k < 4 (4.3)

This is the same initial condition as used in Herring and Kerr [28]. To gen-

erate Run C the odd and even modes were swapped to give the same initial
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energy spectrum as run A as seen in figure 4.3. The viscosities were set at

ν = 0.0125, 0.003125, 0.0125 for runs A, B and C respectively.

Figures 4.1, 4.2 and 4.3, show the normalised three dimensional kinetic en-

ergy spectrum across the simulation time span. All three simulations exhibit

the behaviour expected for a well resolved simulation, they have an exponen-

tially decaying tail and at the high wave numbers there is no or negligible turn

up. At intermediate wavenumbers all tend towards a k−5/3 energy spectrum

at late times, with dataset B, the larger Reynolds number case, overshooting

the -5/3 expectation more than the others.

Figure 4.1: Three-dimensional kinetic energy spectra for simulation A, nor-
malised by the Kolmogorov microscale and multiplied by k5/3, Rλ = 256 at
t = 0.

4.2 Energy Transfer

From equation (3.12) an equation for the kinetic energy transfer can be derived.

Grouping the linear terms to the LHS and the non linear terms to RHS. We

obtain the kinetic energy transfer function T (k, t), this contains all the non
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Figure 4.2: Three-dimensional kinetic energy spectra for simulation B, nor-
malised by the Kolmogorov microscale and multiplied by k5/3, Rλ = 1018 at
t = 0.

Figure 4.3: Three-dimensional kinetic energy spectra for simulation C, nor-
malised by the Kolmogorov microscale and multiplied by k5/3, Rλ = 256 at
t = 0.

linear terms and their associated interaction:(
∂

∂t
+ 2νk2

)
E(k, t) = T (k, t). (4.4)
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The derivation of equation (4.2) can be found in [29]. This equation is

analogous to the physical space Karman-Howarth equation. T (k, t) is a

useful function, it allows the flow of energy through the wave numbers to be

visualised. At low wavenumbers T (k, t) < 0, and at high wavenumbers

T (k, t) > 0, it can be shown that large-scale energy is removed and passed

down to the small scales, so that the integral

∫ ∞
0

T (k, t)dk = 0, this shows

that the nonlinear term conserves energy as it is transferred across scales,

leading to the energy balance equation:

d

dt

∫ ∞
0

E(k, t)dk + 2ν

∫ ∞
0

k2E(k, t)dk = 0. (4.5)

In figure 4.4 we observe the expected behaviour by comparing the energy

transfer spectra of calculations A, B and C for all times. For intermediate times

transfer moves through spectrum towards high wavenumbers in a coherent

manner, with the negative part extracting energy from the low wavenumbers

and the positive part at the high wavenumbers accepting this energy before it

is dissipated by viscosity.

4.2.1 Global Time Evolution Diagnostics

This subsection shows the time evolution of the dissipation, skewness, maxima

of vorticity, Kolmogorov scale and Taylor microscale Reynolds number.

The pseudo-spectral code uses a third order Runge-Kutta method for time

advancement, the variable step size is obtained through the use of the CFL

condition set to 1.5. The CFL condition requires that the ratio of velocity and

time step to the mesh size remains constant. This is illustrated in figure 4.10

showing that as the Kolmogorov scale η decreases, the variable time step ∆t

does as well.
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Figure 4.4: Transfer function of three dimensional turbulence as calculated
for calculation A(top), B(middle) and C(bottom) over t=0.1 to t=0.9 in 0.1
increments.
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4.2.2 Maximum of Vorticity

Figure 4.5: The time dependence of maximum vorticity ||ω||∞ growth for

simulations A, B and C.

In figure 4.5 the time dependence of maximum vorticity has been plotted. The

maximum vorticity ||ω||∞ is the L∞ norm of the vorticity:

||ω||∞ = max{|ω1|, |ω2|, ..., |ωn|}. (4.6)

Here we observe steady growth in the region T < 0.4 before an abrupt increase

in the growth of ||ω||∞ until the first peak at t ≈ 0.5 for simulation B. This is

consistent with what was observed by Holm and Kerr [30].

4.2.3 Dissipation

The dissipation ε for homogeneous turbulence can be defined in terms of the

strain tensor S and the viscosity ν, ε = ν

∫
SijSijdV . We already know that

the energy is transferred between the scales from figure 4.4, how would one

expect the dissipation to behave?

In a typical cascade the large scale motions transfer energy to the small scales,

leading to a significant growth in the dissipation. Eventually the dissipation

saturates. The dissipation growth is illustrated in figure 4.6
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Figure 4.6: The dissipation growth for simulations A, B and C.

Simulations A and C exhibit very similar rates of change with both simu-

lations appearing to reach the same saturation level around the same time.

This is reassuring, however we needed to run simulation B slightly longer as it

has not quite reached its peak at t = 1.0, however the curve does level out and

is as expected. Similar growth in energy dissipation is seen for a Taylor-Green

vortex at multiple Reynolds numbers in [27].

Skewness

A quantity we have yet to discuss is the velocity derivative skewness Sk. The

Skewness is defined as:

Sk(t) =

〈(
∂u

∂x

)3
〉〈(

∂u

∂x

)2
〉−3/2

. (4.7)

The Skewness factor for fully developed turbulence has been found to be 0.5,

shown experimentally in [31] and numerically using DNS by Kerr [14]. Further

to these works Q. Jian [32] examined the asymptotic limit of equation (4.7)

with Rλ dependence showing that as Rλ → ∞, S = 0.515. With these three

results in mind; it is reassuring observe this behaviour in figure 4.7. Kerr [28]

notes that as Sk → 0.5, the enstrophy continues to grow and the dissipation
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Figure 4.7: The Skewness factor evolution is plotted for simulations A, B and
C. The expected behaviour of Sk → 0.5 is observed once the turbulence is fully
developed [31] and [14].

increases to its saturation level and it is during this time that the vortex tubes

start to appear.

4.2.4 Reynolds Number

In figure 4.8, the evolution of the Taylor Reynolds number is plotted. The

Taylor Reynolds number Reλ =
uλ

ν
, drops off as t→ Tmax, the reason for this,

is the growth of the dissipation ε(t) < ε(Tmax). It is well known that λ2 =

15νu2ε−1. Since λ is dependent on the inverse dissipation, as the dissipation

increases one would expect to see a drop in λ for fixed ν and u. The velocity

field u is increasing but the rate of velocity growth is insufficient to counteract

ε−1 hence the reduction in Reλ as the flow develops.

4.3 Flow Visualisation

The following graphics are produced using the VisIt Visualisation Tool, this

is an open source visualisation package developed by Lawrence Livermore Na-

tional Laboratory. This is a very powerful visualisation tool, provided you

have your data in a readable format. The format chosen was the visualisa-
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Figure 4.8: The evolution of the Taylor Reynolds number Reλ for simulations
A, B and C across all times.

tion toolkit (VTK) format, this legacy format is very simple to use, and was

achievable with only minor output amendments to the pseudo-spectral code.

We needed to output a header and data file from the graphics output routine

and then we generate any scalar, vector or tensor to be read in to VisIt. Ad-

ditionally, the VTK format chosen has the option of a rectilinear grid, this

fits the method in which the data is saved perfectly. The data is saved plane

by plane along the vertical axis. The next step was to write some code that

quickly pulls together the various components so that I can visualise the ve-

locity and vorticity fields or indeed any other surface of interest.

The evolution of the five turbulence invariants and their associated interaction

is of interest. We will consider the velocity field and then discuss the isosur-

faces of vorticity and strain including their interaction before considering the

evolution of the third order moments, the enstrophy and dissipation produc-

tion.

The motivation behind visualising the fluid flow is the identification of areas of

intense activity and their evolution. The development of significant events and

subsequent dissipation within the flow field can be observed. These structures

are called Coherent Structures and are defined as follows: ’A coherent struc-

ture is a connected, large-scale turbulent fluid mass with a phase-correlated
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Figure 4.9: This is the Vector field of simulation B at t=0.3, here we considered
a 5000 point subset of the entire flow field, the velocities range from 12.85(red)
to 0 (blue). The vectors are scaled by magnitude. On its own the velocity field
does not provide any noteworthy features of the flow other than the scale of
velocities contained within the flow.

Figure 4.10: The ratio between the spatial and temporal discretization should
be in approximate balance to reduce the likely hood of numerical artefact’s
populating the flow. The reduction in the Kolmogorov microscale η is plotted
(left) and the reduction time stepping ∆t is plotted (right)
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vorticity over its spatial extent’ [33].

Figure 4.9 shows that velocity is not a strong indicator of coherent struc-

tures, but it does provide an overview of regions that are possibly connected.

Note that in a periodic boundary condition there are no boundaries.

Whilst the velocity field is not best suited for this type of analysis, we can

pose the questions: what quantities could possibly provide additional insight

into turbulent flow? The strain and vorticity are obvious contenders for fur-

ther investigation. Since they are simply the symmetric and antisymmetric

components of the velocity gradient tensor and as such the dynamics of three-

dimensional turbulence are governed by their interaction. One example of

vorticity strain interaction is the preferred alignment of the vorticity with the

intermediate strain eigenvalue as discussed in [4] and [14]. Hence the structures

one would expect to observe include tubes, sheets, vortex rings and perhaps

structures typically found in shear and channel flows such as hairpin vortices

[34].

Figure 4.11 shows regions of low vorticity that are locally connected by isosur-

faces, with intense vorticity regions within them. To obtain more detail figure

4.12 overlays a velocity field on top of single contours of the vorticity and strain.

Another possible method of visualising these surfaces would be to take a slice

through the vorticity isosurfaces and consider a single plane of isosurfaces

and the relationship between the velocity field and the isosurfaces as shown

in figure 4.13. Again if we slice through the domain of isosurfaces and select

a couple of planes we can overlay the vorticity streamlines as seen in figure 4.14.

In figure 4.13 there is a cross section of the vorticity isosurfaces with the

velocity field overlaid, taken from simulation B, at t = 0.9 . At this instant

there is significant motion in the upper left quadrant with regions of maximum

velocity and vorticity. We have seen that the vorticity isosurfaces show clear

twisting and interaction within local regions of the flow, and that these regions

are linked to other regions of major change within the velocity field. Can we
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learn anything from the distribution of strain isosurfaces for the same flow?

The surfaces of the vorticity are ’tube’ like, whereas in figure 4.15 the regions

of intense strains are a lot more localised and ’pancake’ like which suggests a

sheet formation at the lower values of strain.

The interaction between the vorticity and strain is interesting, we see that

the vorticity is largely expressed as tube like structures whereas the strain is

starting to look more sheet like. Something that would be interesting to con-

sider is whether within a larger simulation, especially with the resources now

generally available to researchers whether the development, motion, evolution

and final dissipation of these interactions can be probed further. The cur-

rent understanding suggests that as a turbulent cascade forms, the dominant

structures are a result of the dominance of strain within the flow, leading to

the formation of vortex sheets with strong shears. Eventually vortex tubes

form from these sheets that after t = 0.5 dominate the flow. This would be

an interesting area of further study.

The third order moments Rω and RS and their interaction are now of in-

terest. Consider figure 4.16 there are regions of significant interaction between

the two moments, highlighted by slicing through one of the planes. Tsinober

makes a valid point in [35], where he explores the role Rω has on opposing

the production of dissipation, and it was mentioned in Tsinober et al [36],

[37] ”that the production of strain/dissipation occurs only because of the term

−sijsjkski, since < −RS >=
3

4
< Rω > and < sij

(
∂2p

∂xi∂xj

)
>= 0”. Although

not entirely clear from figure 4.16, Tsinober’s observations appear true, in the

regions where enstrophy production exists the structure of the dissipation pro-

duction appears less dominant.

4.4 Summary

In this chapter we compared the calculations to what has been done before,

and observed the explicit behaviour that is expected namely:
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Figure 4.11: This figure considers the isosurfaces of vorticity from simulation
B at t=0.8, Rλ = 380. The vorticity is conditioned on regions of low (green
|ω| ≈ 50), medium (light blue |ω| ≈ 135) and high (blue |ω| ≈ 370) vorticity
with the lower isosurfaces partially transparent to see the interior flow.

• We observed a region of k−
5
3 ,for the decay of the energy spectra for all

simulations.

• The Energy spectra has shown that all simulations are well resolved.

• The expectation that
∫∞

0
T (k, t)dk = 0, is shown in Figure 4.4.

• The tendency for lim
t→∞

Sk = 0.5, is observed in all simulations.

• The Taylor microscale Rλ, collapses as the energy transfer moves the

energy into the small scales.
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Figure 4.12: A slice through the isosurfaces of vorticity from simulation B,
Rλ = 380 at t = 0.8. The vorticity is conditioned on regions of low(black
|ω| ≈ 20), medium (blue |ω| ≈ 20) and high (pale blue |ω| ≈ 130) vorticity
with the regions of high vorticity held within the intermediate structures. For
clarity the velocity field have been overlaid with values ranging from 15 (red)
to 0 (blue).

• Checked that the balance between the spatial and temporal discretization

is as expected.

• Considered the visualisation of the velocity field, and how we can make

use of visualisations to discuss expected behaviour within the flow.

• Looked at the isosurfaces of vorticity and strain and their interaction.

• We also looked at whether anything could be obtained from considering

the interaction between the third order moments.

From these observations we can say that the simulations are of suffi-

cient resolution, and sufficient correlation has been drawn with previous
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Figure 4.13: Here we have taken a slice through the volume of vorticity iso-
surfaces at t=0.9 from simulation B (left), here the vorticity is conditioned on
regions of low (green |ω| ≈ 50), medium (light blue |ω| ≈ 135) and high(blue
|ω| ≈ 370) vorticity. The velocity field was then overlaid using a single colour
- red (right)

experimental work with expected behaviour seen. We are going to use

this data to perform an analysis on the velocity gradient tensor to discuss

the velocity moments in a pre-turbulent state.
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Figure 4.14: The left image shows the vorticity streamlines at t=0.6 from sim-
ulation B, the vorticity ranges from 332.5(red) to 0(blue). The right image is
a slice through the vorticity isosurfaces with the vorticity streamlines overlaid,
in this subsection the vorticty magnitude(red) ranges from 207 to 0 and the
streamlines range from 102(red) to 0(blue).

Figure 4.15: The left image shows the isosurfaces of the strain at t=0.4, the
strain is divided into three regions orange, yellow and pale yellow with mid-
values 47.67, 31.79 and 15.91 respectively. The right image looks at the inter-
action between vorticity(blue) and the strain(orange). The vorticity has been
divided into three regions with midpoints 174.5 (blue), 116.4(light blue) and
58.26 (pale blue), similarly the strain has regions 52.11(red), 34.76(orange)
and 17.41(yellow).
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Figure 4.16: This is a representation of the isosurfaces of the enstrophy (blue)
and dissipation (red) production terms.
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Chapter 5

Validation

Whilst the Restricted Euler (RE) model has been a useful tool for dis-

cussing the evolution of certain moments of the velocity gradient tensor,

its main defect is that it neglects the effects of the full pressure Hessian.

The current goal is to investigate the effect the full pressure Hessian has

on the R-Q phase space taken from a developing turbulent flow field

by comparing how the true velocity moments develop and interact with

each other in the RE model predictions. To do this, we begin by in-

tegrating the Vieillefosse equations (2.29), then move on to discuss the

DNS calculations.

5.1 RE Validation One

How would you choose initial conditions for the set of RE ordinary dif-

ferential equations that would be relevant to the direct numerical sim-

ulation? By scaling the RE it can be seen that all the terms, taken so

that their dimensional units are 1/time, should go as (Tc− t)−1 for some

critical time Tc. This has already been found by [4] and [38], so the

question that needs to be answered before the full Hessian analysis is

done is how rapidly the individual terms of the RE relax to that state.

Therefore, one wants an initial condition that is far from the predicted

final state as possible.
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The first question considered is how rapidly the full R and Q terms

relax to zero. This is expected because, due to the periodic boundary

conditions, the averages of R and Q over a true flow should be zero, even

if at individual points they are not. Therefore, one wants to see how an

initial condition with R 6= 0 and Q 6= 0 relaxes. Figure 5.1 confirms as

t→ Tc that R = Q = 0, that is RS = −(4/3)Rω and S2 = 0.5ω2.

5.2 RE Validation Two

With this test passed, it is important to see how other RE terms, or

combinations of terms, relax. Some of these combinations do not re-

lax immediately to the asymptotic state. This is important because it

could provide a partial explanation for their non-asymptotic values in

real flows. The four frames in Figure 5.2 look at some of these terms, or

combinations.

Notice how in the upper two frames in Figure 5.2, the ratio at which

the second and third order moments approach zero is remarkably close.

The normalised moments behave as expected, with the normalised triple

strain and normalised vortex stretching both approaching zero with a

zero net effect as would be expected for R as shown in the lower left

frame. If we take this further and consider the ratio minus the ex-

pected limit we should get two plots that approach zero in the finite

time limit in the lower right frame. This is consistent with the discrimi-

nant D = 27
4
R2 +Q3 = 0.

5.3 Probability Distributions

In Kerr 1985 [14] it is noticed that there is an alignment between the

vorticity and strain, however it was not until two years later when this

alignment was refined to discuss the particular behaviour of intermediate
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Figure 5.1: Confirming the constraint that R and Q should be zero over the
entire flow. Other moments are included for completeness.

eigenvalue. Typically denoted by s2 this middle eigenvalue from the

ordered set s1 < s2 < s3 can be normalised as follows:

β =
√

6
s2

|S|
, |S| = s2

1 + s2
2 + s2

3 (5.1)

There is preferred alignment between the vorticity and the intermediate

eigenvalue when it is shown that the ratio of the strain eigenvalues is

3:1:-4 [4]. The normalised triple strain correlation is defined as [39]:

S3
N =
√

6
RS

|S|3
. (5.2)

This can be expressed in terms of β:

S3
N = −1

2
β(3− β2). (5.3)

In figures 5.3 and 5.4 the probability distribution functions of the triple

strain correlation and β are plotted for the full domain and the region
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Figure 5.2: In all cases the x axis is time. Upper left: close-up of Figure
5.1 showing the linear approach to zero of these inverses. α−1 = ω2/Rω,
(−RS/3)−1/3, (−Rω/4)−1/3, (S2)−1/2 and (ω2)−1/2. Upper right: Normalised
components: α−1

N = ω2/Rω, β and S3
N using equation (5.3). Lower left: ratio

between the two second ω2/S2 and two third order moments, −Rω/RS respec-
tively. As expected, the second order moments approach 2 as the singular
time is reached and the third order moments approach 4

3
. Lower right: The

ratio between the moments is considered again and this time we include a term
analogous to Q, (2− ω2/S2). The behaviour seen is exactly as expected with
the two ratios (−ω2/S2 + 2, −Rω/RS − 4/3) and the new term (2− ω2/S2)1.5

approaching zero in the singular limit.
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Figure 5.3: Typical probability distributions of the normalised triple strain
S3
N in the full domain and conditioned on the region of maximum vorticity,

provided by R M Kerr.

of maximum vorticity. The peak in the β distribution is noted at 0.5 in

figure 5.5, with the inset image showing S3
N as calculated in terms of β.

5.4 R-Q Phase Space

When discussing the R-Q phase space the typical expectation is that

the classic teardrop can be reproduced, this is shown in figure 5.6. The

development of the flow up until the singularity is of particular interest,

and the goal would be to explore whether the distribution of particular

velocity moments can help explain the local flow characteristics. We

know that RS and Rω approach zero as we approach the singular time,

this is an unphysical effect of the Vieillefosse model as this behaviour is

not observed within a turbulent flow.

5.4.1 Conditioned Distributions

The R-Q plane has been studied extensively over the last few years,

with focus on providing a more sophisticated closure that has a sig-

nificant computational benefit over full DNS and other CFD methods.

Historically, the most common method of illustrating distributions in

numerical simulation was to use probability density functions, however
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Figure 5.4: This is the probability distribution of both β and SN , the inter-
section is of interest as it allows us to consider the balance between the third
order moments Rω and RS, provided by R M Kerr.

Figure 5.5: Typical probability distributions of the normalised β including β
conditioned on the region of maximum vorticity, provided by R M Kerr.

the R-Q plane’s prominent tear drop is best discussed through the use

of Jackson Pollock style scatter plots. Scatter plots have been produced

that highlight the regions of low to high intensity for each moment of

interest in figures 5.7 to 5.12. Frames on the left and right show where

in the R-Q plane different limits are located, with the central figure

combining them.
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Figure 5.6: The typical R-Q teardrop characterised by R and Q, without
breaking down the terms, from t = 0.5 from simulation A

Enstrophy

Figure 5.7 shows the R-Q plane with the regions of various levels of

enstrophy production at three intervals, long after the peaks in the ve-

locity derivative skewness in figure 4.7 and during the period when the

flow is relaxing to statistics characteristic of fully-developed turbulence.

What we see is that the region of maximum vorticity is somewhat di-

minished when compared to the earlier times, and most of the points as-

sociated with the tear drop, with a short tail on the R = (−(4/27)Q3)1/2

asymptote, associated with low to intermediate values of the enstrophy

production (blue and light blue).

Dissipation

Figure 5.8 shows the R-Q plane with the regions of various levels of

dissipation. In the early stages the maximum dissipation acts throughout

the flow with even proportion above and below the line Q = 0, however

as the flow becomes increasingly more established the dissipation seeks

to act along the Vieillefosse discriminant line.
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Enstrophy Production

Figure 5.9 considers the enstrophy production. Here we see that the

regions of intermediate enstrophy production align themselves along the

asymptote with the region of maximum production remaining in the

upper right hand quadrant. This is hardly surprising as we have already

seen the preference of vorticity to sit within the same region.

Dissipation Production

Figure 5.10 shows the distribution of the dissipation production within

the R-Q plane. The regions of intense negative strains are prominent

along the asymptote with the bulk of the zero values around the centre

with no real preferred reference. This behaviour is seen through the

development of the turbulence.

I4

The rotational invariant I4 = (ωS)2 as seen in figure 5.12 sites primarily

around the central flow field, however if we were to consider the upper

half of the ranges it appears that as the flow develops the regions of upper

intensity sit on the edges of the tear drop rotating round from regions

of high dissipation to maximum vorticity. Which is not infeasible as the

dissipation initially dominates the flow, whilst the vorticity grows and

as such we may expect to see the observed behaviour of I4.

α

Figure 5.11, and the earlier times show no real change in the regions of

vortex stretching, with the region of maximum vortex stretching being

within the region of high dissipation.
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5.5 Summary

Here we have considered how quickly the RE terms reach the critical time

through direct integration, before discussing how the other terms relax to

that state. We found that the behaviour we observed was as expected [4]

and [38]. Finally, we considered the effects of the Vieillefosse equations

and their subsequent evolution using DNS. We want to investigate the

role the pressure Hessian has on a developing turbulent flow and whether

any new conclusions can be drawn from its study, leading us to Chapter

6.

60



Figure 5.7: RQ sampled by ω2 in the intervals; [0.4,0.425] (top), [0.5,0.525]

(middle), [0.6,0.625] (bottom).
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Figure 5.8: RQ sampled by S2 in the intervals; [0.4,0.425] (top), [0.5,0.525]

(middle), [0.6,0.625] (bottom).
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Figure 5.9: RQ sampled by Rω in the intervals; [0.4,0.425] (top), [0.5,0.525]

(middle), [0.6,0.625] (bottom).
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Figure 5.10: RQ sampled by RS in the intervals; [0.4,0.425] (top), [0.5,0.525]

(middle), [0.6,0.625] (bottom).
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Figure 5.11: RQ sampled by α in the intervals; [0.4,0.425] (top), [0.5,0.525]

(middle), [0.6,0.625] (bottom).
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Figure 5.12: RQ sampled by I4 in the intervals; [0.4,0.425] (top), [0.5,0.525]

(middle), [0.6,0.625] (bottom).
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Chapter 6

Pressure Hessian

This chapter will focus on separating the local and non-local components

of the pressure Hessian and their effects upon the surrounding fluid.

The pressure Hessian is the set of second order partial derivatives of the

pressure field denoted as:

[P ]ij =
∂2p

∂xi∂xj
. (6.1)

The local terms of P are defined by the Restricted Euler terms (6.14),

which are dependent solely upon local properties such as the vorticity,

strain and other quantities formed from the velocity derivatives. The

full pressure field, and its derivatives, are a non-local solution of a

Poisson type equation with a quadratic source term formed from velocity

derivatives.

∆p = −∇ · (u · ∇u). (6.2)

For our purposes, the non-local terms will be the differences between the

full Poisson solution and the RE solution.

The RE model has been studied in part because it might form the basis

of finding a suitable closure for the pressure and viscous terms in the

Navier-Stokes equations, as discussed in Chapter 2. Most of these stud-

ies have looked at modifying the isotropic assumption with extra terms,

both deterministic and stochastic, while neglecting to discuss the valid-
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ity of the isotropic assumption for the pressure Hessian in general.

Equation (6.2) is solved through the application of the Biot Savart

Law. Ohkitani [40] shows that if the velocity u is written as the curl of

a vector potential B, u = ∇ × B. Then the solution to an equation of

the form ∇2B = ω is given by:

B(x) =
1

4π

∫
G(y)ω(y)d3y. (6.3)

Here G(y) is a smooth function. In order to solve equation (6.2) the

Laplacian operator needs to be applied to the pressure Hessian.

[P ]ij = − ∂2

∂yi∂yj
∆−1tr(A2) = −∇∇∆−1tr(A2) (6.4)

Where, A is the velocity gradient tensor. Application of the Biot Savart

law leads us to a solution for the pressure Hessian:

P = − 1

4π

∫
G(y)tr(A2)d3y. (6.5)

Where:

y = x− x′, and G(y) =
∂2

∂yi∂yj

1

|y|
. (6.6)

Without solving the integral it is obvious that when x→ x
′
the integral is

undefined, as the denominator will be zero. However when i = j we have

the isotropic pressure Hessian and using the method of Cauchy principal

value integrals (PV
∫

= lim
R→0

∫
B(x)≥R

) an equation for the pressure Hessian

is be derived that considers the local and non local effects.

P = −tr(A2)
δij
3

+ PV

∫
K(y)tr(A2)d3y. (6.7)

where:

K(y) =
|y|2δij − 3yiyj

4π|y|5
. (6.8)

The first term on the RHS is the isotropic part of the pressure Hessian

and is a local effect of the flow. The second term considers the action
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over the entire flow field and such is a non local effect.

6.1 Calculating p and P

The current pseudo-spectral code solves the velocity-vorticity form of the

Navier Stokes equation as discussed in Chapter 3. In this formulation

the pressure head π is used, not the pressure p, which are related by

π(x, t) = p(x, t) + 1
2
u2(x, t). To obtain the pressure field and its first

and second order derivatives we must calculate
1

2
u2, and then subtract

it from π, we then find the pressure derivatives which are stored in the

following order: p,z ; p,zz ; p,zy ; p,y ; p,yy ; p,yz ; p,x ; p,xx ; p,xz and p,xy.

6.2 Discussion

A major consideration in large-eddy simulations is deciding upon a pres-

sure closure. The Restricted Euler equations offer an alternative ap-

proach to existing methods. In a pseudo-spectral code you can roll the

pressure into the non linear term in Fourier space fairly neatly, however

it is not quite this straightforward when considering alternative mod-

els. Chevillard and Meneveau [3] introduce the concept of an inverse

Cauchy Green tensor as a method of closing the pressure Hessian which

is analogous to work of Chertkov et al [19]. Furthermore Gotoh et al [41]

show that the pressure term is key to understanding the scaling of the

velocity structure functions and Ohkitani [42] explains that if we have a

finite-time blow up of the vorticity; then equation (6.9) and the theorem

of Beale Kato Majda [43] can be applied to show that there will be a

blow up of the pressure field also.

D2ω

Dt2
= −Pω. (6.9)

The aim is to understand the role and action of the pressure Hessian.

We have discussed how the pressure can be calculated through the strain

and vorticity and whilst we are primarily interested in the behaviour of
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these quantities; the development and effect of the pressure Hessian is of

great interest. Taking the trace of the pressure Hessian equation (6.1),

we obtain a Poisson equation in terms of the velocity gradient tensor.

∇2p = −AijAji. (6.10)

6.2.1 Isotropy and Pressure Decomposition

Reviewing equation (6.7), the first term is the Vieillefosse term repre-

senting the isotropic component of the pressure Hessian which works to

preserve the volume of the fluid element against the deformation gradi-

ent. The second term is the non local component, frequently referred

to as the deviatoric component of the pressure Hessian. Chevillard [3]

suggested that equation (6.10) is all that is required to show non locality

of the pressure field. He states that it is the unrestricted growth of the

self stretching term −A2; due to the absence of the pressure and viscous

terms that leads to the finite time singularity as discussed in Chapter 5.

However in order to fully understand non local effects, and in partic-

ular how they relate to regions of development and destruction within

the flow field more work must be undertaken. Nomura and Post [44]

propose that previously we have looked at the pressure Hessian in the

wrong way. They suggest we think of the pressure Hessian as the quan-

tity that describes the non local interaction of the vorticity and strain.

The pressure Hessian is composed of an isotropic and deviatoric term.

The isotropic term of the pressure Hessian [P ]ii is simply the trace of

the pressure Hessian so as to satisfy the incompressibility condition. The

anisotropic part is what is left; that is the set of mixed partial derivatives

of the pressure Hessian minus the isotropic part. The pressure Hessian

is then the sum of these two quantities:

Pij = Pkk
δij
3
−Hij. (6.11)

70



It then follows that the anisotropic or deviatoric pressure Hessian is

defined as:

Hij = −Pij + Pkk
δij
3
. (6.12)

6.2.2 Evolution Equation Derivation

The vorticity evolution equation is given as:

Dω

Dt
= Sω. (6.13)

As equation (6.13) contains no component of the pressure Hessian, we

cannot directly consider the effect the pressure Hessian has on vortex

stretching, however the evolution of strain introduces the pressure Hes-

sian into Q (2.30):

dS

dt
= −SS − 1

4
ω ⊗ ω +

1

4
I|ω|2 − P . (6.14)

and finally the dissipation can be easily found from above:

1

2

dS2

dt
= −SSS − 1

4
ωSω − SP . (6.15)

Now if consider the strain dissipation RS , noting that S4 = 1
2
(S2)2:

dS3

dt
=

dS

dt
S2 + S

dS

dt
S + S2dS

dt
, (6.16)

= 3S2dS

dt
, (6.17)

= −3S4 − 3

4
I4 +

3

4
S2ω2 − 3SPS, (6.18)

= −3

4
I4 + 3S2

(
−1

2
S2 +

1

4
ω2

)
︸ ︷︷ ︸

=Q

−3SPS. (6.19)

We arrive at the following

dRS
dt

= −3

4
I4 + 3S2Q− 3SPS. (6.20)
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Moving on to the enstrophy production term, using equations (6.13) and

(6.14)

dRω

dt
= ω

dS

dt
ω + 2ωS

dω

dt
, (6.21)

= −I4 − ωPω + 2I4, (6.22)

= I4 − ωPω. (6.23)

Finally, by using equations (6.13) and (6.14) again, and the equation for

the second invariant Q:

Q = −1

2
S2 +

1

4
ω2. (6.24)

dQ

dt
= −1

2

dS
¯

2

dt
+

1

4

dω2

dt
,

= RS +
3

4
Rω + SP ,

= −3R + SP . (6.25)

It is noteworthy to mention that δijSij = 0 is analogous to the incom-

pressibility equation. So by using equation (6.12) we arrive at the fol-

lowing equations for the velocity gradient invariants, the enstrophy has

not been forgotten it simply does not have a component of the pressure:

dRS
dt

= −3

4
I4 + S2Q+ 3SHS, (6.26)

dRω

dt
= I4 −

2

3
ω2Q+ ωHω, (6.27)

dQ

dt
= −3R− SH . (6.28)

6.3 Conditional Mean Trajectories

The analysis of the R-Q joint distribution functions so far has been kine-

matic and has established the consistency between this data set and ear-

lier work relating the invariants to the geometry of the small scales. We
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now want to introduce similar dynamical R-Q analysis similar to Ooi et

al [45] who examined the Lagrangian dynamics of the invariants of the

velocity gradient tensor using conditional mean trajectories or CMTs.

To generate CMTs one collects the statistics of the Lagrangian motion

on a refined mesh in the R-Q space. As we are interested in the second

Q and third R invariant of the velocity gradient tensor, their CMT’s can

be defined as follows:

Q̇ (Q,R) =

〈
dQ

dt
Q = Q0, R = R0

〉
,

=
1

NRQ

Q̄+
∆Q

2∑
Q̄−

∆Q
2

R̄+
∆R
2∑

R̄−∆R
2

dQ

dt
(Q,R) . (6.29)

Ṙ (Q,R) =

〈
dQ

dt
Q = Q0, R = R0

〉
,

=
1

NRQ

Q̄+
∆Q

2∑
Q̄−

∆Q
2

R̄+
∆R
2∑

R̄−∆R
2

dR

dt
(Q,R) . (6.30)

where (Q0, R0) = (0, 0) is the central mesh point, NRQ is the number of

points, is a small deviation from Q. The refined mesh is centred around

this point ±∆Q

2
and the mean values of the two evolution equations are

determined. In Chapter 7 this approach is extended to three variables.

Two methods have been used before to graphically represent these re-

sults, streamlines in R-Q space and vectors on the grid points in the R-Q

space. In this work only the vectors will be shown. The direction and

magnitude of the vectors represents the velocity and Lagrangian path.

Figure 6.1 considers the R-Q space RE trajectories of Lagrangian points

for Run A at t = 0.5, with flow converging along both sides of the Vieille-

fosse asymptote as observed in [46]. The family of curves for
dQ

dt
and

dR

dt
here are in the left images of figures 6.2 through to 6.5 are consistent
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with the results of [45]. How do these model curves compare with the

effects of the full pressure Hessian? This has previously been considered

twice [47] and [48], but only for forced flows. The right images of Figures

6.2 through to 6.5 show that this well-defined phase space flow breaks

down with a distinct change in the central flow field, before relaxing to

the restricted Euler prediction.

To understand the R-Q trajectories for all times, it is best to start with

the final times shown for all the datasets, t = 0.6. For the full pressure

Hessians these are the last row in figure 6.6 for B and C and figure 6.5 for

A. What should be observed is that all of them are similar. That is, all

the full pressure Hessian trajectories look like the RE trajectory in 6.5,

with trajectories eventually pointing along the Vieillefosse discriminant

(6.31) in the lower right.

R =

(
−4

27
Q3

)1/2

(6.31)

This shows that for all the datasets, the trajectories have similar final

states, even if they did not get there at the same rate. This could be

called the fully developed vortex tube regime because in all cases, the

spectra form a k−5/3 at least briefly and the vorticity field is becoming

dominated by vortex tubes.

Now, let us start at the early time of t = 0.3, which is representative

of everything before then for all the cases. Trajectories using the full

pressure Hessian are in the first row in figure 6.6 for datasets B and C

and figure 6.2 for dataset A. There is some tendency for the trajecto-

ries to flow clockwise in the upper half Q > 0 plane as in all of the RE

trajectories for all times in figures 6.2 to 6.5, and the last times for the

full Hessian. However, along the Vieillefosse discriminant (6.31), the full

Hessian trajectories cross it directly and for 0 > Q > −100 tend to flow

back around the point R = Q = 0.
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One could call the evolution up to t = 0.3 the sheet-like region, sug-

gesting that the strong deviation from the RE prediction is because the

structures are as far as possible from the vortex tube configurations that

are associated with RE type statistics.

For the next time shown, t = 0.4 figures 6.3 and 6.6 (row 2, right)

for datasets A and C respectively, an ill-defined line forms that approx-

imately follows the Vieillefosse discriminant. At the higher Reynolds

number, dataset B; figure 6.6 (row 2 left), two features should be noted.

First, something closer to the RE trajectories are forming along the dis-

criminant in the lower right quadrant. Second, nearer R = Q = 0 the

trajectories are clearly circulating about R = Q = 0 over a larger regime.

The tendency towards the RE trajectories continues at t = 0.5, again

more strongly for the higher Reynolds number in dataset B where the

full Hessian trajectories nearly match the RE trajectory for dataset B in

figure 6.6 (row 3, left). While datasets A and C figures 6.4 and 6.6 (row

3, right) at lower Reynolds number, have caught up to the situation that

existed at t = 0.4 for dataset B. That is, in the lower right quadrant

trajectories tend to follow the Vieillefosse discriminant while circulating

around R = Q = 0 for 0 < Q < −100.

Finally, at t = 0.6 for all cases, the trajectories in figures 6.5 and 6.6

(row 4) are similar those in the RE figure 2.1 provided in Chapter 2.

6.4 Underlying Physics

Lagrangian paths are an example of a topological feature in turbulent

flow. The Vieillefosse model’s assumption is that the evolution of the

second and third invariants along these paths is consistent with the as-

sumption that the pressure Hessian is isotropic, these trajectories are
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Figure 6.1: A typical restricted Euler (RE) trajectory for reference for all the
following figures showing trajectories of points in the R-Q phase space. In
this figure the vectors show the strength and direction of the Lagrangian RE
time derivatives (6.14) of Lagrangian points in physical space for dataset A
at time t = 0.5, essentially the same data as used for scatter plots in figures
5.7b, 5.8b, 5.9b, 5.10b, and 5.12b and is included in Figure 6.2. In RE, the
dominant path of trajectories is clock-wise about (R,Q) = (0, 0) for Q > 0,
converging on the Vieillefosse discriminant (6.31) in the lower right quadrant.

Figure 6.2: R-Q trajectories of Lagrangian points of the second and third
invariants of the velocity gradient tensor within the interval t = [0.0, 0.3],
from dataset A a) left image is where we have neglected the effects of the
deviatoric pressure Hessian, and b) the right image is the full flow.
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Figure 6.3: R-Q trajectories of Lagrangian points of the second and third
invariants of the velocity gradient tensor within the interval t = [0.3, 0.4],
from dataset A a) left image is where we have neglected the effects of the
deviatoric pressure Hessian, and b) the right image is the full flow.

Figure 6.4: R-Q trajectories of Lagrangian points of the second and third
invariants of the velocity gradient tensor within the interval t = [0.4, 0.5],
from dataset A a) left image is where we have neglected the effects of the
deviatoric pressure Hessian, and b) the right image is the full flow..

Figure 6.5: R-Q trajectories of Lagrangian points of the second and third
invariants of the velocity gradient tensor within the interval t = [0.5, 0.7],
from dataset A a) left image is where we have neglected the effects of the
deviatoric pressure Hessian, and b) the right image is the full flow.
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Figure 6.6: The left images are taken from dataset B and the right images are
taken from dataset C. (Top) t=0.3, (Second) t=0.4, (third) t=0.5 and (last)
t=0.6.
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Figure 6.7: Three-dimensional topologies in the R-Q plane, taken from [47]

illustrated by the left image of figures 6.2 to 6.5. The topologies in the

R-Q plane are illustrated in figure 6.4. This evolution moves between

quadrants in the R-Q diagram in a manner that would be consistent

with how vortex sheets could be transformed into vortex tubes by slowly

rolling up. This has been observed in many turbulent calculations with

initial conditions similar to those used here going as far back as [49],

even if the details of any such transition were not fully understood until

[30].

In the viscous Navier-Stokes equations fluid parcels do not necessar-

ily follow Lagrangian paths, this is a phenomena of the inviscid Euler

equations. In the Navier-Stokes equations, fluid parcels diverge from

Lagrangian paths, which has been demonstrated numerically using the

potential vorticity of a passive scalar [50] and through Weber-Clebsch

variables where the Lagrangian map is shown to be non-invertible [51].

Numerical simulations show fluid parcels diverging from Lagrangian paths
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when there is a vortex reconnection. Vortex reconnection is another ex-

ample of breaking a topological invariant besides the divergence of fluid

parcel motion from the Lagrangian paths. Several properties are well

known a) The reconnection of coherent structures is a by product of the

viscosity and b) Topological changes occur when the dissipation domi-

nates the coherent structures. Recent numerical work [52] and [30] gave

an example of how reconnection events can induce a rapid change in

topology that creates vortex tubes from vortex sheets, a change that is

faster than the traditional view that vortex tubes are formed from vortex

sheets rolling up. Following Holm and Kerr [30] the general development

of structures obeys the following sequence:

– Collision of blobs of vorticity,

– Around t = 0.3 vortex sheets dominate the flow, with the intensity

of their growth determined by the Reynolds number.

– Between t = 0.3− 0.5, is a transitional period, between sheets and

tubes.

∗ Somewhere during this span there is vortex reconnection, which

might be related to the L-infinity norm of vorticity (‖ω‖∞)

forming a singularity in the inviscid limit.

– Between t = 0.4− 0.7. Formation of vortex tubes and strong dissi-

pation.

– Finally for t > 0.9 after about one eddy turnover time, a k−5/3

spectral regime forms and small-scale vortex tubes dominate.

This process is consistent with the observation here, the most rapid

changes in the R-Q statistics are up to t = 0.5 and could be because the

R-Q have evolved from their original state due to a global change in the

topology of the fluid flow.

The helicity and the kinetic energy are quadratic invariants conserved

80



by the Euler equation, The helicity is defined as:

H =

∫
h(x)dV =

∫
u · ωdV. (6.32)

Here V represents the fluid volume and h(x) is the local helicity density.

The helicity density is measure of the vortical topology, how vortices are

linked in a turbulent flow [53]. One would expect to see changes in the

helicity if these links are broken.

Transitional growth events exhibited in a developing turbulent flow, gen-

erated from a smooth initial condition are discussed in Holm and Kerr

[52] where particular emphasis is given to the helicity and the role it has

in establishing the energy cascade. Further analysis [30] concluded that

the critical changes in the helicity were during the phase 0.4 < t < 0.5

when vortex reconnection is dominant.

This period 0.4 < t < 0.5 corresponds to where we have no observed

strong changes in the trajectories in the R-Q plane, suggesting that re-

connection is recycling trajectories. That is, rather than asymptotically

approaching the Vieillefosse discriminant, under the action of the full

pressure Hessian, during reconnection many of the trajectories return to

the source quadrant.

One conclusion then could be that it is the RE model, representing

the effects of stretched vortex tubes, that dominate the subgrid pres-

sure dynamics and models based upon this model could be appropriate.

However, the RE dynamical behaviour is not consistent with the events

during reconnection periods, which should be modelled differently. Now

that a reconnection period has been identified, how should the flow be

modelled during these periods? In Chapter 7 we find changes in the

distribution of higher-order Vieillefosse moments that could potentially

be used to quantify these effects.

In figure 6.8 an interaction region between the strain and vorticity is
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Figure 6.8: Here the interaction region between the strain and vorticity is
realised from simulation A at time t = 0.5. Here The top image is a visuali-
sation of the total vorticity and strain interaction within the periodic domain,
the middle image is the subset of the same domain containing the interaction
region. The final image is a refined view with varying levels of opacity for
both the strain and vorticity. The vorticity magnitude is divided into three
regions; blue |ω| ≈ 152, light blue |ω| ≈ 102, pale blue |ω| ≈ 152. Similarly
the strain magnitude is divided into three coloured sections, brown |S| ≈ 47,
red |S| ≈ 31, orange |S| ≈ 16. Please note that the ribs are a resolution effect
in the graphic caused by only sampling every other point.
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found from simulation A at time t = 0.5. The top image looks at the

entire flow field conditioned on the magnitude of strain and vorticity

within a periodic domain. The central image is a close up of one of the

regions of greatest interaction between the strain and vorticity at this

time, with the last image a zoomed in view.

6.5 Summary

The significance of the pressure Hessian’s role within the NSE has been

explained, with particular emphasis on the isotropic, or Vieillefosse, as-

sumption. The effect of the pressure can be felt both locally through the

square of the velocity stress tensor A2 and through the Poisson equation.

The anisotropic component is due to the solution of the Cauchy principal

value integral over the entire flow field.

The focus on the isotropic assumption and its comparison to the full

equations has shown that while the RE equations are a good starting

point for allowing numerical and analytical investigations of the flow

field, they do not capture all features of the flow. When considering the

trajectories of R and Q, it is noted that for Q < 0 there is a marked dif-

ference in the flow trajectories before and during a reconnection event.

Evidence is presented that this is related to the change in the global

topology of the flow due to a reconnection. Recently, Lüthi [6] has ex-

tended the R-Q phase space into three dimensions, with what we have

just seen can we gain anything by considering the evolution of these

quantities in three-dimensional space? This leads us to Chapter 7.

83



Chapter 7

3D Phase Space

Up to now we have been almost exclusively concerned with the events in

2D Phase space, now whilst this has allowed us to gain further insight in

to the formation and reconnection of structures in 3D turbulence it only

provides a snap shot of the underlying events and the processes lead-

ing to their generation and dissipation within the flow field. Ideally, we

would see a model of turbulence that contains the four key turbulence

invariants, and possibly Siggia’s I4. A 5D model should have the nec-

essary sophistication to predict the flow characteristics, however we are

looking for a way to reliably probe the turbulent processes. The recent

work by Lüthi introduced in his Ph.D. Thesis [6] and later applied to a

direct numerical simulation [54] provides the methodology in which the

familiar R-Q phase space can be extended through the decomposition of

R, and it is this that I would like to discuss here.

The question Lüthi asked was how can we present the evolution of the

enstrophy, dissipation and their production terms in three dimensional

space? Starting from the R-Q phase space where we consider the linear

combination of terms, it is only a natural progression to consider the de-

composition of R, and a change in basis to represent the evolution of the

(Q,RS, Rω) space. The primary benefit of moving to three-dimensional

space is the ability to look for and visualise structures within the flow

field, with the opinion that the R-Q model is too restricted neglecting
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the effect the pressure has on the flow.

In 2002 [6] Lüthi undertook a three-dimensional particle tracking ve-

locimetry experiment in the search of new underlying mechanisms of the

turbulent flow, and obtains good results for tracking the velocities, and

proceeds to expand the R-Q phase space to the (Q,RS, Rω) probability

orbital. In 2009 Lüthi et al [54] published a paper on the expansion of

the R-Q phase space, with the analysis applied to a data set from John

Hopkins University. The conclusions drawn from this further study were

that there exists a strong cyclic evolution, this behaviour we have seen

in the R-Q phase space by considering the full evolution equations. Ad-

ditionally, they claim that the pressure Hessian enhanced the growth of

stretching in regions of high strain. With the overall conclusion that the

evolution of the three dimension model provides a clearer evolution of

the associated quantities in direct comparison to the R-Q phase space.

It is known that the pressure Hessian affects the flow characteristics, but

very little work has been done to try and understand this phenomena as

discussed in Chapter 6.

7.1 Decomposing R

Anyone who studies turbulence cannot underestimate the importance of

the enstrophy, dissipation and the associated production terms. It is the

interplay between these quantities that had not been investigated until

Lüthi [6]. If we take a moment to consider the convection of a vortex

line throughout 3D turbulence, and how the velocity field is generated,

then it follows that the velocity field is partly generated by the vorticity

it is convecting.

In 1938 Taylor proposed that 3D turbulence exists due to vortex stretch-

ing, specifically that the ensemble average of the vortex stretching is pos-

itive < Rω >> 0. This result is a consequence of the negative velocity
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derivative skewness Sk measured by hot wire probes as far back as the

1950’s. If you consider the evolution of vortex stretching and enstrophy

production it is clear that they are formed from the various moments of

interaction between the strain and vorticity.

In areas of high strain rate, the dissipation production term RS, is domi-

nant over Rω, more so than dominance exerted by enstrophy production

term over the dissipation production term observed in regions of max-

imal vorticity. The transfer of energy between scales and the eventual

saturation of dissipation are all associated with the self amplification of

the rate of strain production and vortex compression rather than with

vortex stretching. Ashurst et al [4] comments that for enstrophy pro-

duction the intermediate strain eigenvalue must be positive, however the

regions of largest dissipation also fall under this condition, highlighting

the importance of considering their individual dynamics.

Because closures generally fail to deal with the pressure Hessian accu-

rately or completely neglect the effect of the Hessian. The use of third

order moments Rω and RS provides a tool for understanding the inter-

actions.

7.1.1 Distribution

Understanding the differences in the dynamical behaviour between the

inclusion and neglect of the pressure Hessian is what will be studied here.

Does any relationship exist between the individual moments before we

consider the evolution in (Q,RS, Rω) space?

The comparison between the distribution of the restricted Euler model

and the inclusion of the pressure Hessian for the three primary moments

(Q,RS, Rω) is seen in figures 7.1, 7.2 and 7.3. The distribution when the

Hessian is considered is slightly broader than the restricted Euler model

in all three instances. Looking at these figures further, specifically fig-

ures 7.2 and 7.3 the quantities
dRω

dt
and

dRs

dt
appear to be positively
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skewed, whilst
dQ

dt
is centred around zero. These plots show that includ-

ing the pressure Hessian does produce a different distribution to that of

the Restricted Euler equations.

7.2 (Q,RS, Rω) Evolution

7.2.1 Q Evolution

Figure 7.4 shows the relationship between the restricted and full evolu-

tion equations for Q, conditioned on regions of vorticity for simulation

B. There is a linear correlation between the isotropic assumption and

the full pressure Hessian at t = 0.3 (top image in figure 7.4). At t = 0.4

there is a marked change in behaviour, the region of maximum vorticity

is very centralised and the tails of the distribution are more rounded

with a growth of the number of points in the central band. Similar

behaviour is observed in simulation C as seen in figure 7.5. In both

cases the slope of the graph looks to be greater than 1. This suggests

that the growth of restricted model is less than that of the full equations.

The correlation coefficient r is a measure of the degree of correlation

between two quantities, if r = 1 we would have a perfect linear relation-

ship between the two quantities. We define r as follows:

r =
Sxy√
SxxSyy

(7.1)
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Figure 7.1: Comparison of
dQ

dt
|Hessian against

dQ

dt
|Restricted.

Figure 7.2: Comparison of
dRω
dt
|Hessian against

dRω
dt
|Restricted.
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Where Sxx,Syy and Sxy are the sums of squares defined as follows:

Sxx =
n∑
i=1

x2
i − nx̄2, (7.2)

Syy =
n∑
i=1

y2
i − nȳ2, (7.3)

Sxy =
n∑
i=1

xiyi − nx̄ȳ. (7.4)

(7.5)

Where:

x̄ =
1

n

n∑
i=1

xi. (7.6)

Table 7.1 compares the values of r for figures 7.4 and 7.5. There is a

good degree of correlation between
dQ

dt
|Hessian and

dQ

dt
|Restricted for runs

B and C. In fact the values of r for both simulations is sufficient to con-

firm that
dQ

dt
|Hessian and

dQ

dt
|Restricted move together.

Statistically, we want to know what range of values r could possibly

take. This is achieved by calculating the 95% two sided confidence in-

terval for r using the Fisher Z transformation zr = tanh−1 r. The Fisher

transform is used to test the correlation coefficient r when it is non zero

as in this case; zr can then be approximated by a normal distribution so

that a confidence interval around r can be found. We will assume that

the correlation coefficients approximately follow a normal distribution

with mean zo and variance
1

n− 3
, note that n is the number of points in

the sample. Hence:

zr ≈ N

(
zo,

(
1√
n− 3

)2
)

(7.7)

Here zo is the population correlation coefficient, using the inverse nor-

mal distribution tables φ for ±2.5%, φ(±0.025) = ±1.96. The interval
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is calculated as: tanh zo = tanh

(
zr ±

1.96√
n− 3

)
. zr and the two-sided

95% confidence intervals for simulations B and C are listed in table 7.1.

The high value of r > 0.75 suggests that we have a reasonable linear

fit in figures 7.4 and 7.5. Assuming a standard linear regression of the

form yi = βxi + ci where ci is the intercept with the y axis, and β is

a measure of the slope. Then using maximum likelihood estimation we

can find the standard deviation of the linear regression denoted σ̂. It

can then be shown that the variance of β is equal to var(β) =
σ̂2

Sxx
.

Applying this to 7.4 we assume that:

dQ

dt
|Hessian = βQ

dQ

dt
|Restricted + c (7.8)

where βQ is the gradient of the slope in figure 7.4 and c is the intersection

with the vertical axis. This is of particular interest as the gradient quan-

tifies the relationship between
dQ

dt
|Hessian and

dQ

dt
|Restricted. The gradient

is calculated as follows βQ =
Sxy
Sxx

. Lets initially assume that βQ = 1,

that is the growth of
dQ

dt
|Hessian and

dQ

dt
|Restricted is equal. Then we can

make an initial H0 and alternative hypotheses H1:

H0 : β = 1, The growth of
dQ

dt
|Restricted =

dQ

dt
|Hessian .

H1 : β 6= 1, The growth of
dQ

dt
|Restricted 6=

dQ

dt
|Hessian.

These hypotheses can be tested using a two sided 95% confidence in-

terval: βQ − tn−2

√
σ̂2

Sxx
, βQ + tn−2

√
σ̂2

Sxx

 . (7.9)

Where t is the t-distribution, n is the number of points in the sample

and σ̂2 =
1

n− 2

(
Syy −

S2
xy

Sxx

)
, the maximum likelihood estimate of the

standard deviation. The values of βQ and the confidence interval are
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tabulated in table 7.2. Here we can see that H0 can be rejected since

βQ is greater than 1 in all cases. The rate of change in simulation B is

not as consistent as in simulation C, it drops off from 1.4 at time t = 0.3

to a low of 1.12 at time t = 0.5 before increasing at time t = 0.6 to

1.5. Whereas in simulation C, βQ fluctuates between 1.3 and 1.4. This

suggests that there is possibly an underlying process driving the growth

in
dQ

dt
|Hessian that is missing from

dQ

dt
|Restricted.

What we are observing here is that
dQ

dt
|Restricted broadly follows

dQ

dt
|Hessian

but the growth of
dQ

dt
|Hessian is approximately 1.3 times that of

dQ

dt
|Restricted.

Can we improve on
dQ

dt
|Restricted? The observed growth is linear; so one

could choose to modify
dQ

dt
|Restricted by placing it as the explanatory vari-

able in a linear regression model. Looking at table 7.2 one could assume

β′Q = 1.34 (Here β′Q is used to distinguish from βQ calculated earlier),

we will call this Trial 1.

Let
dQ

dt
|Hessian and

dQ

dt
|Restricted represent the mean of the Hessian and

Restricted equations respectively. c can then be found:

c =
dQ

dt
|Hessian − β

dQ

dt
|Restricted = −13.74 (7.10)

Leading us to:

dQ

dt
|Trial1 = 1.34

dQ

dt
|Restricted − 13.74. (7.11)

We now expect that β′Q ≈ 1, however there is still a large variation from

the target β = 1 as seen in table 7.3.

Trial 2, lets assume the values grow according to:

dQ

dt
|Trial2 = β′′Q(t)

dQ

dt
|Restricted. (7.12)
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Here c has been omitted as it only acts to translate the distribution

vertically, and let β′′Q be the β for Trial 2. It is clear that β′′Q changes

with time. Let β′′Q(t) = (1.4, 1.3, 1.2, 1.5) for the following values of

t = (0.3, 0.4, 0.5, 0.6). Then looking at table 7.3 one achieves a closer

approximation to the growth of
dQ

dt
|Hessian using equation (7.12).

The current observations suggest that perhaps an analytical model could

be used for β(t) in a statistical linear regression model to improve on the

current Restricted Euler equation for the evolution of Q. Figure 7.10

shows a comparison between βQ for runs B and C. Here we see we have

an almost analytic initial growth phase, with B peaking earlier than C

before evolving to the more usual picture of turbulent growth. The mid-

dle and bottom images of Figure 7.10 have an polynomial of order 6 fitted

to the βQ data for runs B and C respectively. The missing components

of the pressure Hessian in
dQ

dt
|Restricted act to increase the rate of growth

and as such the restricted model underestimates the growth of
dQ

dt
.

The following model is suggested, it scales the value of
dQ

dt
(t)|Restricted so

that it represents
dQ

dt
(t)|Hessian. We will refer to this model as

dQ

dt
|Scaled:

dQ

dt
|Scaled = β(t)

dQ

dt
(t)|Restricted (7.13)

Where β(t) = 2500t6− 7600t5 + 800t4− 3600t3 + 64t2− 2.1t+ 1.1. Run-

ning this scaled model based on the statistical analysis we completed

earlier we see that we still have a variation in the rate of growth between

the scaled model
dQ

dt
|Scaled and

dQ

dt
|Hessian but the degree of variation

has been reduced, table 7.4. Plotting time t = 0.5 in figure 7.11 it is

apparent that βQ works to increase the growth of
dQ

dt
(t)|Restricted whilst

retaining the same degree of correlation between the modelled values

and the full equations. Considering t = 0.6 in figure 7.12 we observe the

same behaviour, although β 6= 1 the variation from 1 is less than that

experienced previously.
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7.2.2 Rω Evolution

The change in behaviour of Rω can be seen for simulations B and C in

figures 7.6 and 7.7 respectively. Between t = 0.3 and t = 0.4 the linear

relationship is significantly reduced with a shift in the angle between the

two quantities which is more pronounced in the region where
dRω

dt
|Hessian

and
dRω

dt
|Resticted are both positive. As the quantities evolve there is a

clear preference for the Hessian case to have
dRω

dt
|Hessian > 0. Moreover,

when
dRω

dt
|Restricted < 0 we typically have

dRω

dt
|Hessian ≈ 0. This stepped

change around 0 raises many questions, and in order to look at this I de-

cided to split the domain into two regions based on the restricted model.

For
dRω

dt
|Restricted < 0 and

dRω

dt
|Restricted > 0 we can define r− and r+

respectively, where:

r− =
Sxy|xi,yi<0√

Sxx|xi,yi<0Syy|xi,yi<0

(7.14)

r+ =
Sxy|xi,yi≥0√

Sxx|xi,yi≥0Syy|xi,yi≥0

(7.15)

(7.16)

Considering the positive quadrant in figures 7.6 and 7.7 there appears

to be reasonable correlation between the two values. The values of r,

r+ and r− are tabulated in table 7.5. The overall correlation r shows no

consistency between the times, the degree of correlation in the region of
dRω

dt
|Restricted < 0 is very low, in fact for Run C there is no correlation.

However the region
dRω

dt
|Restricted > 0 does show a good degree of corre-

lation between the times as detailed in table 7.5.

Linear regression is applied to fit the model by setting the negative val-

ues equal to zero and the positive values to βRω

dRω

dt
|Restricted then letting

βRω = (1.02, 0.66, 0.73, 0.7) the growth of the restricted Euler model can

be aligned with the full model as seen in table 7.7. Plotting β+
Rω

for
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all times as seen in Figure 7.13, it is observed that the growth of
dRω

dt
is overestimated initially, before underestimating the growth of the full

equations at later times. If we fit the data to an analytic curve we arrive

at the following model:

dRω

dt
|Scaled =


0, if

dRω

dt
≤ 0

βRω(t)dRω

dt
|Restricted, if

dRω

dt
> 0.

(7.17)

Where βRω(t) = 1.8t2 − 2.3t+ 1.3.

7.2.3 RS Evolution

The third component
dRs

dt
as seen in figures 7.6 and 7.7 at t = 0.3

again appears to initially have a linear relationship however past t=0.4

the behaviour changes significantly, and it appears that
dRs

dt
|Hessian and

dRs

dt
|Restricted are decorrelated. As such no amendment to the model is

suggested.

7.3 Pressure Hessian

In Chapter 6 the notion of a conditional mean trajectory was introduced,

following on from the work of Ooi et al [45]. In three-dimensional space

the original equations are reformulated in terms of the (Q,RS, Rω) space.

ṘS
(
Q,Rω,RS

)
=

〈
dRS
dt

Q,Rω, RS

〉
, (7.18)

=
1

N

Q+∑
Q−

R+
ω∑

R−ω

R+
S∑

R−S

dRS
dt

(Q,Rω,Rω) (7.19)
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Figure 7.3: Comparison of
dRS
dt
|Hessian against

dRS
dt
|Restricted.

Simulation Time r zr Confidence Interval

B 0.3 0.9167 1.5681 (0.9161,0.9173)
C 0.3 0.8783 1.3684 (0.8775,0.8792)
B 0.4 0.7695 1.0192 (0.7680,0.7711)
C 0.4 0.8133 1.1368 (0.8120,0.8146)
B 0.5 0.8548 1.2738 (0.8538,0.8559)
C 0.5 0.8078 1.1208 (0.8065,0.8092)
B 0.6 0.9377 1.7184 (0.9372,0.9381)
C 0.6 0.9013 1.4792 (0.9006,0.9020)

Table 7.1: This table compares the values of r, zr and the 95% confidence
interval for r at key times for runs B and C.

Time Simulation βQ Confidence Interval Accept/Reject H0

0.3 B 1.3793 (1.3770,1.3816) Reject
0.3 C 1.4308 (1.4278,1.4337) Reject
0.4 B 1.2981 (1.2940,1.3023) Reject
0.4 C 1.3101 (1.3065,1.3137) Reject
0.5 B 1.1220 (1.1194,1.1246) Reject
0.5 C 1.3678 (1.3639,1.3716) Reject
0.6 B 1.5137 (1.5116,1.5116) Reject
0.6 C 1.3915 (1.3889,1.3940) Reject

Table 7.2: The values of βQ, 95% Confidence Interval and Hypothesis Test
result for figures 7.4 and 7.5
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Figure 7.4: The above images compare the relationship between the isotropic
assumption for the pressure Hessian and the full pressure Hessian in the evolu-
tion equation for the second invariant Q from Simulation B from t=0.3 (top)
until t=0.6 (bottom).
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Figure 7.5: The above images compare the relationship between the isotropic
assumption for the pressure Hessian and the full pressure Hessian in the evolu-
tion equation for the second invariant Q from Simulation C from t=0.3 (top)
until t=0.6 (bottom).
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Figure 7.6: The above images compare the relationship between the isotropic
assumption for the pressure Hessian and the full pressure Hessian in the evo-
lution equation for Rω from Simulation B from t=0.3 (top) until t=0.6 (bot-
tom).
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Figure 7.7: The above images compare the relationship between the isotropic
assumption for the pressure Hessian and the full pressure Hessian in the evo-
lution equation for Rω from Simulation C from t=0.3 (top) until t=0.6 (bot-
tom).

99



Figure 7.8: The above images compare the relationship between the isotropic
assumption for the pressure Hessian and the full pressure Hessian in the evo-
lution equation for RS from Simulation B from t=0.3 (top) until t=0.6 (bot-
tom).
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Figure 7.9: The above images compare the relationship between the isotropic
assumption for the pressure Hessian and the full pressure Hessian in the evo-
lution equation for RS from Simulation C from t=0.3 (top) until t=0.6 (bot-
tom).
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Simulation Time r βQ β′Q β′′Q

B 0.3 0.9167 1.3793 1.0294 0.9852
B 0.4 0.7695 1.2981 0.9688 0.9986
B 0.5 0.8548 1.1220 0.8373 0.9350
B 0.6 0.9377 1.5137 1.1297 1.0092

Table 7.3: This table compares the values of r, βQ, β′Q and β′′Q for run B.

Simulation Time βScaledQ βQ

B 0.3 0.9847 1.3793
B 0.4 1.1103 1.2981
B 0.5 0.9508 1.1220
B 0.6 1.1570 1.5137

Table 7.4: A comparison between βQ and βScaledQ for run B.

Simulation Time r r− r+

B 0.3 0.4664 0.2688 0.8328
C 0.3 0.5915 0.0491 0.8632
B 0.4 0.1688 -0.0839 0.7691
C 0.4 0.2898 0.0248 0.8361
B 0.5 -0.4614 -0.5839 0.6642
C 0.5 0.0410 -0.1891 0.8287
B 0.6 0.2659 0.1971 0.8807
C 0.6 0.0537 0.0071 0.7919

Table 7.5: Correlation coefficients for runs B and C for Rω at key times. r
is the standard correlation coefficient, r− is the correlation coefficient in the

region
dRω

dt
|Restricted < 0 and r+ is the correlation coefficient in the region

dRω

dt
|Restricted ≥ 0.
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Figure 7.10: (top) A comparision between run B and run C is made for the
value of βQ. (middle) A 6th order polynominal is fitted to βQ for run B.
(bottom) A 6th order polynominal is fitted to βQ for run C.

103



Figure 7.11: The top plot is Run B at t = 0.5, here we compare
dQ

dt
(t)|Restricted

and
dQ

dt
(t)|Hessian (top) against

dQ

dt
(t)|Hessian and

dQ

dt
(t)|Scaled (bottom) ob-

serving a reduction in the slope of the distribution, that it
dQ

dt
(t)|Scaled closer

to
dQ

dt
(t)|Hessian.

Simulation Time βScaledRω
βRω

B 0.3 1.0848 1.0244
B 0.4 1.0162 0.6621
B 0.5 1.1820 0.7253
B 0.6 1.2362 0.7046

Table 7.6: A comparison between βRω and βScaledRω
for run B.
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Figure 7.12: The top plot is Run B at t = 0.6, here we compare
dQ

dt
(t)|Restricted

and
dQ

dt
(t)|Hessian (top) against

dQ

dt
(t)|Hessian and

dQ

dt
(t)|Scaled (bottom) ob-

serving a reduction in the slope of the distribution bringing
dQ

dt
(t)|Scaled closer

to
dQ

dt
(t)|Hessian.

Simulation Time r+ β+
Rω

β′+Rω

B 0.3 0.8328 1.0244 1.0043
B 0.4 0.7691 0.6621 1.0031
B 0.5 0.6642 0.7253 0.9936
B 0.6 0.8807 0.7046 1.0066

Table 7.7: This table compares the values of r, β+
Rω

, β′+Rω
for run B.
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Figure 7.13: (top) A comparision between run B and run C is made for the
value of βR+

ω
. (middle) A quadratic is fitted to βR+

ω
for run B. (bottom) A

quadratic is fitted to βR+
ω

for run C.
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Where N is the number of points in the ijkth centred bin. Q
±

= Q±∆Q

2
represents the upper and lower limit of the bin respectively where Q is

the mean and ∆Q is the bin width.

We have concluded that there are differences in the behaviour between

the Hessian and restricted equations as illustrated in the comparison

above and by the change in R-Q behaviour as previously discussed. If

we consider the early times, as in figure 7.14 we see a similar picture to

earlier observations in the R-Q phase space.

The Vieillefosse trajectories appear to be integrable,whereas the Hes-

sian plot looks significantly more turbulent, the purpose of these plots

is to reaffirm the differences seen in Chapter 6, between the Vieillefosse

equations and the full equations.

7.4 Summary

The set of equations

(
dQ

dt
,
dRω
dt

,
dRS
dt

)
|Restricted provide an approxi-

mation to

(
dQ

dt
,
dRω
dt

,
dRS
dt

)
|Hessian. However we have shown that the

approximation can be improved for
dQ

dt
and

dRω
dt

and as such the cor-

relation between the RE and full equations can be improved. However

further work on a suitable model is needed. If the variation in βQ and

βRω could be approximated by another RE invariant or combination of

invariants for the developing flow then this new model would be a closer

match and would be suitable for use where a closure for the pressure is

required. Therefore any new model would require Q, Rω and RS as its

foundation. The difference between the Hessian and Restricted evolu-

tion equations could possibly be expressed in terms of the five velocity

moments (ω, S2, I4, Rω,RS) or perhaps a combination of variables

may prove more successful at explaining the difference. The solution

will probably be most easily found by considering the variables driving
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Figure 7.14: The above compares the Vieillefosse and Full equation trajectories
at t=0.3 for dataset B. Here the paths appear to be much more regimented
in the Vieillefosse assumption, with the full equations showing the swirling
interactions we would expect from a developing flow.
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the growth through the various development stages as described [30]. In

chapter 8 we reflect on the work discussed within this thesis and provide

a definition of an ”Intense Event”.
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Chapter 8

Conclusions

The Vieillefosse model was revisited to investigate the difference between

the local and non local effects of the pressure for a developing turbulent

flow. Rather than doing this analysis on a forced, homogeneous, isotropic

data set, the calculations start from smooth initial conditions that de-

velop intense events characterised by large increases in the maximum

vorticity and enstrophy. The goal was to understand how the usual

statistics develop as well as lay the ground-work for an improved under-

standing of intermittent features.

The Hessian analysis began by comparing how the velocity moments

develop and interact with each other. The classic tear-drop shape of the

R-Q phase space was reproduced in figure 5.6. To provide a context for

the later analysis, consideration was given to the velocity moments con-

ditioned on regions of low to high intensity in figures 5.7 to 5.12. It was

observed that the region of maximum vorticity at t = 0.6 is somewhat

diminished when compared to t = 0.3 and the majority of the points on

the Vieillefosse discriminant relate to regions of low vorticity whereas the

regions of maximum dissipation predominantly act along the Vieillefosse

discriminant.

Next the RE equations were compared to the pressure Hessian equa-

tions using conditional mean trajectories (CMTs). Starting at the early
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time of t = 0.3, for all datasets, figures 6.3 (right) and 6.6 (top row)

there is some tendency for the trajectories using the full Hessian to flow

clockwise in the upper half Q > 0 plane as in the RE model, whilst

along the Vieillefosse discriminant, the full Hessian trajectories cross it

directly and tend to flow back around and be attracted to R = Q = 0.

This strong deviation from the RE prediction could be because the struc-

tures are as far as possible from the vortex tube configurations that are

associated with RE type statistics.

The tendency towards the RE trajectories continues at t = 0.4 − 0.5

for dataset A, figure 6.4 (right) and t = 0.5 dataset C, figure 6.6 (third

row, right). In the lower right quadrant, the trajectories now clearly

flow along the Vieillefosse discriminant, whilst within a distinct region

with 0 < Q < 2000 the trajectories circulate with a slight attraction to

(R,Q) = (0, 1000) and about R = Q = 0, the trajectories flow smoothly

about this centre into the Vieillefosse discriminant. By t = 0.6 the full

Hessain trajectories are almost indistinguishable from the RE trajecto-

ries.

The trends towards RE are faster for the higher Reynolds number in

dataset B. In the lower right quadrant, the trajectories start to flow along

the Vieillefosse discriminant at t = 0.4 as they begin to flow around the

point (R,Q) = (0, 500) with a slight attraction into that point in figure

6.6 (second row left). For t = 0.5 and t = 0.6, the full Hessain trajecto-

ries are close to the RE trajectories expectations. Thus, the trajectories

for all the data sets in figures 6.5 and 6.6 (row 4) are similar those for

the RE model given in figure 2.1 in Chapter 2. This analysis suggests

that during the development phase there is a marked difference in the

flow trajectories before and after a reconnection event.

111



8.1 Evidence for a Model

Consideration is then given to the work of Lüthi [54], where the tra-

ditional R-Q phase space is extended into three-dimensions. Here we

compared the evolution equations for

(
dQ

dt
,
dRω
dt

,
dRS
dt

)
|Restricted and(

dQ

dt
,
dRω
dt

,
dRS
dt

)
|Hessian. It was observed that the Restricted equa-

tions have narrower probability distributions to the full Hessian equa-

tions, figures 7.1 to 7.3.

However it was shown that the RE prediction can be improved for
dQ

dt

and
dRω
dt

by using them as an explanatory variable in a linear regression

model. However further work on a suitable model is needed, as the un-

derlying fluctuation between the two species needs to be modelled. That

is, if the variation in βQ and βRω could be approximated by another RE

invariant or combination of invariants for the developing flow then this

new model would be a closer match and would be suitable for use where

a closure for the pressure is required. Therefore any new model would

require Q, Rω and RS as its foundation. The difference between the

Hessian and Restricted evolution equations could possibly be expressed

in terms of the five velocity moments (ω, S2, I4, Rω,RS) or perhaps

a combination of variables may prove more successful at explaining the

difference.

8.2 Role of the Intense Events

What is the role of the intense events? And what defines intense events?

Is it just the reconnection, or should we be including the dynamics be-

fore and after the actual reconnection? For calculations that start from

a smooth initial condition, intense events are usually characterised by

large increases in the maximum vorticity or enstrophy. However asso-

ciating these large increases with an event is difficult as the time over
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Figure 8.1: The global helicity, H for calculation A.

which the maximum vorticity or enstrophy grows is significantly longer

than the time taken for a reconnection, defined in symmetric situations

by changes in the circulation [55]. Therefore, in an asymmetric flow, if

the reconnection event is due to a change in the topology, what measure

can be used to identify this? Holm and Kerr [30] use the global helicity

H, looking at the period 0.3 ≤ t ≤ 0.5 in figure 8.1 you can see that

there is a increase in the helicity during this period which coincides with

the recycling of trajectories, figure 6.4 in Chapter 6.

In summary, the traditional quantities continue to grow long after the

reconnection event has finished, as such an ”Intense Event” is an event

that causes a topological change identified by a peak in the global helic-

ity. In a private communication R M Kerr has results that suggest that

the best definition of an intense event in time is the global enstrophy

production, stating that reconnection is only complete when this peaks,

both globally and locally. As such the dynamics during periods of in-

tense events are different to those experienced outside of these periods.

An interesting topic of future work would be the consideration of how

the flow can be modelled during these periods.
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8.3 Further Work

Aside from the theoretical application of this study if provided with the

opportunity I would like to consider the role of the pressure Hessian in

the Lighthill equations. The Lighthill equations [1] describe how sound

is produced aerodynamically.

There is renewed interest in the study of Aeroacoustics with many organ-

isations looking on methods of reducing aircraft noise. The motivation

for further study in this field would be uncovering structures that pro-

duce sound aerodynamically. The work on ’Recombination of vortex

filaments and its role in aerodynamic noise’ [56] would be a suitable

starting point for continued study.
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