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Summary

Cellular response to a changing chemical environment is mediated by a complex system of interactions
involving molecules such as genes, proteins and metabolites. In particular, genetic and epigenetic varia-
tion ensure that cellular response is often highly specific to individual cell types, or to different patients
in the clinical setting. Conceptually, cellular systems may be characterised as networks of interacting
components together with biochemical parameters specifying rates of reaction. Taken together, the net-
work and parameters form a predictive model of cellular dynamics which may be used to simulate the
effect of hypothetical drug regimens.

In practice, however, both network topology and reaction rates remain partially or entirely unknown,
depending on individual genetic variation and environmental conditions. Prediction under parameter
uncertainty is a classical statistical problem. Yet, doubly uncertain prediction, where both parameters
and the underlying network topology are unknown, leads to highly non-trivial probability distributions
which currently require gross simplifying assumptions to analyse. Recent advances in molecular assay
technology now permit high-throughput data-driven studies of cellular dynamics. This thesis sought to
develop novel statistical methods in this context, focussing primarily on the problems of (i) elucidating
biochemical network topology from assay data and (ii) prediction of dynamical response to therapy when
both network and parameters are uncertain.
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Notation

This thesis assumes knowledge of standard mathematical and statistical notation. Application-specific
notation aims to follow the conventions listed below. When convenient, these may be explicitly overlooked
in order to simplify presentation.

N0 non-negative integers
R` non-negative reals
J “ t1, . . . , Ju index set of individuals, possibly biological samples
P “ t1, . . . , P u index set of state variables
Xp chemical species associated with index p P P
X ˚p phosphorylated form of species Xp
G chemical reaction graph
N directed network
N discrete state vector in NP0
X continuous state vector in RP`
θ parameter vector
S, P,E substrate, product, enzyme respectively
Ep set of kinases acting on species Xp
Ip,E set of inhibitors for kinase E P Ep
K Michaelis-Menten parameter
FX natural filtration of the stochastic process X
N Gaussian density / space of directed networks (depending on context)
KK statistical independence
Dpvq diagonal matrix with diagonal entries v
y data, possibly corrupted by measurement noise
I indicator function
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Introduction

The last two decades have seen rapid advances in biotechnology, enabling increasingly precise quan-
titative measurement of molecular species in biological samples. In the 1990s the introduction of the
DNA microarray facilitated the simultaneous and rapid quantification of RNA abundance for multiple
genes (Fig. 1). Comparison of these gene expression data across multiple biological samples offered an
unbiased approach to screen for genes which are statistically implicated (differentially expressed) in a
biological context of interest, relative to control samples. Microarray technology revolutionised funda-
mental biological research by providing a mechanism by which to constrain experimental design, reducing
the number of candidate genes for experimental investigation (e.g. knock-out or knock-down) [Crowther,
2002]. Translational research was also transformed, with gene expression data forming the basis for
several signatures which are predictive of response to therapy [van ’t Veer et al., 2002]. Subsequent years
saw the continued emergence of high-throughput biotechnologies, including array-comparative genomic
hybridization (A-CGH), chromatin immunoprecipitation (ChIP) -on-chip DNA-binding assays, single-
nucleotide polymorphism (SNP) arrays, high-throughput drug screening, protein microarrays and next
generation sequencing. The increasing ease and decreasing cost of obtaining large amounts of data on a
biological system have led to an emphasis on integrative, systems level analysis. This paradigm is central
to the field of oncology, where it has become apparent that cancer is an emergent disease resulting from
interplay between the functional effects of genetic or epigenetic mutations [Weinberg, 2007].

Multivariate biological data present significant challenges for modelling, computation and statistical
interpretation. The need to analyse large biological datasets has sparked much interest in multivariate
and high-dimensional statistics [Bühlmann and van de Geer, 2011]. The visual representation of interplay
in a multivariate system which is afforded by a graph or network has proven extremely popular. A
(standard) biological network consists of a set of nodes, representing molecular species such as genes,
proteins or metabolites, and a set of edges which describe interactions or interplay between the nodes.
Often attention is restricted to one particular form of molecular species (e.g. genes) and one form of
interaction (e.g. transcriptional regulation). The type of molecular species which form the set of nodes
and the biological mechanism which is encoded by the edges will lend its name to the network, so that
we speak of gene regulatory networks, protein signalling networks or metabolic interaction networks, for
example. Experimentalists have elucidated network topology for important biological processes, but the
inherently combinatorial nature of networks provides a fundamental barrier to elucidating large amounts
of topology on an edge-by-edge basis. The automatic characterisation of biological networks from high-
throughput data obtained in a context of interest, such as a tissue type or a disease state, has become a
prominent research goal in systems biology.

Cancer is a prevalent disease, with more than 1 in 3 people in the UK developing some form of
cancer during their lifetime. Due in part to an ageing population, cancer incidence rates in Great Britain
have risen by 22% in males and by 42% in females since the mid-1970s. Worldwide in 2008, there were
estimated to be around 7.6 million cancer-related deaths and 12.7 million new cases. Intensive research
on an international scale has led to advances in cancer therapeutics, such that cancer survival rates in
the UK have doubled in the last 40 years. (All statistics taken from Cancer Research UK [2013] on
17/04/2013.)

One of the biggest scientific achievements of the last decade was the development of targeted anti-
cancer drugs, which have demonstrated potential to revolutionise clinical treatment of the disease [Sud-
hakar, 2009]. For example Imatinib (Novartis Pharma AG [2006] trade name Glivec) has rendered a
subset of otherwise terminal leukaemia into a manageable chronic condition by targeting a tyrosine ki-
nase enzyme, known as BCR-ABL, which exists only in cancer cells and not in healthy cells [Moen et
al., 2007]. (Only a small minority of patients will acquire resistance to Imatinib [Mauro, 2006]). Re-
cently more drugs than ever are entering into clinical trials, yet the rate at which drugs are approved
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Figure 1: The first reported use of miniaturized microarrays for gene expression profiling appeared in
Schena et al. [1995]. In total 45 genes were measured in Arabidopsis. Two years later Lashkari et al.
[1997] reported an assay of 2,479 genes in the yeast S. Cerevisiae. Modern microarrays can contain up
to 47,000 genes (e.g. Affymetrix GeneChip Human Genome U133 Plus 2.0). [Figure reproduced with
permission from Schena et al. [1995].]

xi



has dropped to an all time low [Silverman, 2012]. Experimental evidence suggests that many patients
become resistant to therapy via activation of secondary survival pathways which were not targeted by the
original treatment [Lee et al., 2012]. Effective inhibition of these secondary pathways would be expected
to have a significant benefit for patients [Wetterskog et al., 2013]. The shift from mono-therapeutics
to poly-therapeutics necessitated by the complex, multivariate nature of cancer has, in part, driven the
move towards systems biology.

A systems-level understanding of biological signalling processes introduces major experimental, trans-
lational and theoretical challenges. For example in oncology, prior to treatment it is currently extremely
difficult to predict which pathways will require targeting in order to achieve maximum efficacy. It is
practically infeasible to assess all possible combinations of drugs in the laboratory using cultured cancer
cells. Indeed, whilst the number of available drugs is now large, the number of pairs of drugs is consid-
erably bigger. Moreover, each pair of drugs might be applied in a different sequential order, at different
doses, at different times, for longer or shorter treatment durations etc. In principle these difficulties
could be averted with access to an accurate computational model of cellular signalling dynamics, since
then hypothetical drug regimens could be rapidly explored in silico [Hopkins, 2008]. However this raises
several theoretical challenges and there is currently a methodological void for systems-level inference and
prediction in cellular signalling systems.

Cellular signalling systems have been modelled in a variety of ways, including discrete logic models
[Bender et al., 2010], discrete time Markov processes such as dynamic Bayesian networks (DBNs) [Hill
et al., 2012a], Markov jump processes [Paulsson, 2005; Wilkinson, 2006], Gaussian processes [Honkela et
al., 2010], structural equation models (SEMs) [Liu et al., 2008], ordinary differential equations (ODEs)
[Chen et al., 2009; Schoeberl et al., 2002] and stochastic differential equations (SDEs) [Finkenstädt et
al., 2013]. Almost all models of cellular signalling are rooted in network representations, either explicitly
as in DBNs and SEMs, or implicitly as in ODEs and SDEs [Sokol and Hansen, 2013]. Relating these
models to data is often challenging. In this setting there are two main problems; (i) inference of model
parameters, such as reaction rates, and (ii) uncovering a network structure which adequately describes
interplay in the biological system under study. Classically, much effort has been directed at the first
problem of estimating kinetic parameters, such as reaction rates, from noisy experimental data on the
molecular species. The second problem, which is commonly referred to as network inference, has received
relatively less theoretical attention. In many biological contexts the edge structure of the network may be
uncertain (e.g. due to genetic or epigenetic alterations in disease states). Then, an important biological
goal is to perform network inference in a context-specific manner [Ideker and Krogan, 2012], that is, using
data acquired in the biological context of interest. The ability to accurately estimate context-specific
network topology has potential to greatly accelerate progress within systems biology, pharmacology and
related disciplines [Csermely et al., 2013]. For example, protein signalling network structure has been
shown determine the response of cells to certain therapeutic interventions [Lee et al., 2012]. Advances
in high-throughput data acquisition have led to much interest in such data-driven characterization of
biological networks.

This thesis aims to contribute advances in the data-driven estimation of biological networks. Focussing
primarily on inference for protein signalling networks, the novel contributions of this thesis can be
summarised as follows:

• Chapter 2, From Biological Dynamics to Network Inference:

– Motivated by tractable approximations of complex stochastic dynamical systems, a connection
is drawn between several existing network inference algorithms in terms of a unified statisti-
cal model. This framework makes explicit the assumptions underlying each approach, with
particular emphasis on time series data obtained at uneven sampling intervals.

– A comprehensive empirical investigation assessed 32 different network inference algorithms
from this unified family using both simulated and real datasets where the data-generating
networks were known by design.

– Our results highlight critical issues regarding the treatment of uneven sampling intervals,
which are shown to significantly effect the algorithms’ performance.

– One statistical formulation is shown to perform favourably in most data generating regimes;
this is taken as a basis for subsequent methodological development in Chapter 3.

• Chapter 3, Network Inference and Prediction Using Chemical Kinetics:
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– A novel statistical framework is presented which integrates non-linear chemical kinetics into
inference for protein signalling networks.

– For time course data, Monte Carlo computation of model selection criteria is leveraged to
compute Bayes factors for non-linear dynamical systems defined on a network. Inference over
networks is facilitated by Bayesian model averaging.

– Empirical investigations demonstrate improved network reconstruction on both simulated and
real datasets in comparison to approaches rooted in linear dynamical formulations.

– The methodology is demonstrated to be able to predict the effect of held-out interventions,
both in silico and in vitro. In particular the methodology facilitates prediction of cellular
response in the challenging setting where neither the chemical reaction network, nor the
corresponding parameters are known a priori.

• Chapter 4, Joint Estimation of Multiple Networks from Time Course Data:

– It is often the case that data are collected on multiple individuals j P J which may differ
with respect to interplay between variables. For example, in biology, different cell lines may
possess differing protein signalling networks. A hierarchical Bayesian framework is proposed
for joint inference in this setting.

– Unlike previous proposals, which were computationally prohibitive, an efficient, exact Bayesian
algorithm is proposed for reporting posterior marginal inclusion probabilities in the hierarchi-
cal setting.

– A comprehensive study of joint estimation is undertaken, demonstrating how joint models
may yield improved network inference results both in silico and in vitro, using data obtained
from a panel of breast cancer cell lines.

This thesis is organised as follows: Chapter 1 introduces key concepts in biology, experimentation,
chemistry and statistics. Chapter 2 formally defines the network inference problem and describes poten-
tial pitfalls using a wide range of examples. Chapter 3 presents recent work on network inference and
dynamical prediction rooted in non-linear models of chemical kinetics. In Chapter 4 we present efficient
computational techniques for joint inference of multiple networks. Finally Chapter 5 contains a concise
summary and discussion of open statistical challenges in bio-molecular signalling systems.
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Chapter 1

Background Material

Scientific investigation of complex systems increasingly requires a broad tool-kit of analytic, computa-
tional and experimental techniques. This thesis assumes a background in both mathematics and statis-
tics; in particular we will make use of differential equations, dynamical systems, stochastic processes,
Bayesian statistics and Markov chain Monte Carlo. To a lesser extent we assume a basic understanding
of cellular biology, including gene regulation and protein synthesis. In this Chapter we build on these
bases in order to familiarise the reader with concepts necessary to follow the remainder. In particular
we will discuss protein signalling mediated by phosphorylation, aberrant protein signalling in cancer,
emerging experimental platforms, mathematical formalisms for chemistry, graphical models in statistics
and a theory of inferred causation.

1.1 Biological Background

In this Section we introduce the fundamental biochemical process of protein signalling mediated by
phosphorylation, discuss aberrant signalling in genetic diseases such as cancer, and describe some modern
approaches to therapy which exploit the biochemistry of phosphorylation. Throughout we explicate these
concepts in the context of well characterised signalling pathways in mammalian cells.

1.1.1 The (Not So) Central Dogma

Cellular response to a changing environment is mediated by a complex system of interactions involving
molecules such as genes, proteins and metabolites. The central dogma of molecular biology provides a
powerful constraint on the form of these interactions by specifying that certain information transferral
processes are generally uni-directional [Crick, 1970]. In the language of graphical models, the central
dogma postulates a set of conditional independences, as can be seen in Fig. 1.1. Specifically, the central
dogma implies that (i) DNA may be transcribed into RNA but generally not vice versa (ii) RNA may be
translated into protein molecules but generally not vice versa and (iii) proteins may regulate transcription
of RNA by binding to promoter regions (such proteins are known as transcription factors).

Since Crick’s description of the central dogma in 1970 it has become increasingly clear that many
molecular interactions operate outside this paradigm; for example the post-translational modification of
proteins (see Sec. 1.1.2) was not explicitly covered by the central dogma. This thesis focuses primarily on
such interactions between protein molecules. However it is important to appreciate that these interactions
are embedded in wider cellular signalling processes and are not generally causally sufficient (see Sec.
1.4.2).

1.1.2 Protein Signalling

Cell signalling is part of a complex system of communication that coordinates basic cellular activities. In
brief, the role of cellular signalling is to receive both internal signals and external signals from the cellular
membrane, to correctly process these signals and initiate a transcriptional response by modulating gene
expression. The new gene expression profile may initiate other cellular processes e.g. cell division or
apoptosis. Here we describe the chemical mechanisms underpinning the processes of signalling. In
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Figure 1.1: Central dogma of molecular biology, reproduced from the original paper of Crick [1970].

particular we focus on a particular form of chemical change, known as protein phosphorylation, which
plays an important role in aberrant protein signalling in cancer (see Sec. 1.1.3).

Definition 1 (Phosphorylation). Phosphorylation is the addition of a phosphate (PO3´
4 ) group from a

high energy donor molecule, such as ATP, to a specific protein substrate, usually on the serine, threonine,
or tyrosine amino acid (or residue). When there is no ambiguity regarding the residue, the phosphorylated
protein is simply referred to as a phosphoprotein.

Phosphorylation is an example of a post-translational modification (others being methylation, ubiq-
uitylation, cleaving etc.). Post-translational modifications may alter a protein’s function or activity
through a conformational change, for example enzyme phosphorylation may modulate catalytic activity
by exposing/blocking the active domain. Phosphorylation is reversible and many residues on a protein
may be phosphorylated (the p53 protein contains more than 18 different phosphorylation sites).

Definition 2 (Kinase and phosphatase). Enzymes which catalyse phosphorylation are known as kinases,
whilst enzymes which catalyse dephosphorylation are known as phosphatases.

Both kinases and phosphatases are typically highly specific, thereby exerting very precise control over
cellular function. In many cases phosphorylation induces an activation of functionality, though this is not
true in general, with counter examples including the retinoblastoma protein Rb which becomes inactive
when phosphorylated. Often kinases and phosphatases are themselves phosphorylated proteins, so that
an interconnected network of protein phosphorylation operates. Certain sub-networks have received
much attention from the biological community - these well studied systems are typically referred to as
“pathways”. Below we present a detailed example of a protein signalling pathway.

Example 1 (Mitogen activated protein kinase (MAPK) pathway). Receptor tyrosine kinases (RTKs)
such as the epidermal growth factor receptor (EGFR) are specifically activated by extracellular ligands
(Fig. 1.2). For example, binding of epidermal growth factor (EGF) to EGFR activates the intracellular
kinase activity of this RTK. Subsequently, docking proteins such as GRB2 and SOS bind to the activated
EGFR and activate members of the Ras subfamily via phosphorylation (most notably H-Ras and K-Ras).
At this point a cascade of phosphorylation occurs from Ras to Raf to MEK to MAPK, where at each
step the parent acts as a kinase to phosphorylate and activate the child. RAF and MAPK are both
serine/threonine-selective protein kinases, whereas MEK is a tyrosine/threonine kinase. This cascade
leads into the cell nucleus, where one effect of MAPK activation is to regulate the activities of several
transcription factors, including ribosomal protein S6. By altering the levels and activities of transcription
factors, MAPK is able to modulate transcription of genes that are important for the cellular function
and can lead to diverse phenotypes such as differentiation, proliferation and apoptosis.
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Figure 1.2: Schematic description of well-characterised signalling pathways in mammalian cells. Trans-
membrane receptors (grey) such as receptor tyrosine kinases (RTKs) receive an external chemical sig-
nal and transmit this through to the nucleus (purple) via a sequence of chemical reactions known as
“signalling”, involving kinases such as MAPK and Akt. [“Overview of signal transduction pathways.”
ăhttp://en.wikipedia.org/wiki/File:Signal transduction pathways.pngą, accessed Feb. 2013.]
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Figure 1.3: Hallmarks of Cancer. These 10 characteristics are believed to be necessary conditions for
cancer to occur; hence each represents a unique opportunity for targeted anti-cancer therapies. [Figure
adapted from Hanahan and Weinberg [2011].]

1.1.3 Protein Signalling and Cancer

Multiple studies have demonstrated the remarkable genomic heterogeneity of cancer [The 1000 Genomes
Project Consortium, 2010; The Cancer Genome Atlas Network, 2012]. Nevertheless there are a collection
of concepts which provide justification for a unified theory of cancer. In particular Hanahan and Weinberg
[2011] defined ten “hallmarks” which represent necessary criteria for a disease to manifest as cancer in
the clinical setting (Fig. 1.3). Several of these hallmarks, such as sustained proliferative signalling,
evading growth suppressors and resisting cell death, may be facilitated by aberrant protein signalling,
including signalling mediated by phosphorylation [Lee et al., 2012; Moen et al., 2007]. Thus protein
phosphorylation plays a leading role in oncogenesis.

In the context of cancer, there are three classes of gene which have become paradigmatic [Vogelstein
and Kinzler, 2004].

Definition 3 (Oncogene, tumour-suppressor and stability genes). Proto-oncogenes, when mutated, be-
come constitutively active ( oncogenes) or active under conditions in which the wild-type gene is not.
Tumour-suppressor genes are targeted in the opposite way by genetic alterations; mutations reduce the
activity of the gene product, leading to tumour development. Stability genes (or caretaker genes) keep
genetic alterations to a minimum; thus when they are inactivated, mutations in other genes occur at a
higher rate, including mutations in proto-oncogenes and tumour-suppressor genes.

Example 2 (MAPK pathway). Uncontrolled growth is a prerequisite for the development of all cancers
[Hanahan and Weinberg, 2011]. In many cancers, a defect in the MAPK pathway leads to that uncon-
trolled growth. For example, the proto-oncogene BRAF (whose role in MAPK signalling is becoming
increasingly understood [Xu et al., 2010]) is known to be causally implicated in melanoma [Flaherty et
al., 2010], with approximately 80% of cases involving a BRAF mutation.

Example 3 (Akt pathway). A key hallmark of cancer is resistance to cell death. In “wild type” cells,
programmed cell death ( apoptosis) is induced by either extracellular signals (inc. toxins, hormones,
growth factors etc.) or intrinsic signals (inc. DNA damage). Apoptosis is an important defence against
abnormal cellular behaviour and is disabled in cancer states. Akt (Fig. 1.2) is a key inhibitor of apoptosis
which must be phosphorylated in order to be active. Phosphorylation of Akt is in turn regulated by PI3K; a
protein frequently constitutively active in breast cancer (see Example 4 or Korkola et al. [2013]). Through
over activation, PI3K provides a route for cancer cells to evade apoptosis.

Example 4 (Intrinsic sub-typing in breast cancer). Breast cancer is classically stratified according to a
handful of genetic and histological markers. A genome-wide expression profile is used to cluster cancers
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into basal, luminal or claudin-low subgroups, whilst histological staining is used to explore the expression of
human epidermal growth factor receptor 2 (HER2), oestrogen receptor (ER) and progesterone receptor
(PR) [Sotiriou and Pusztai, 2009]. In total there are five “intrinsic” subtypes of breast cancer; luminal
A, luminal B, HER2-enriched, basal-like and claudin-low [Eroles et al., 2012], though this classification
is disputed [Curtis et al., 2012]. In addition, genetic markers are used to further stratify biological
samples. For example PIK3CA is a proto-oncogene which is mutated in 33% of breast cancer patients
[Cizkova it et al., 2012]. Mutation renders its protein product PI3K constitutively active, meaning that
it is no longer under the influence of receptor tyrosine kinases (RTKs; Fig. 1.2). HER2, another well
known proto-oncogene, is amplified in approximately 30% of breast cancers. A frequently mutated tumour
suppressor in many cancers is the TP53 gene [The Cancer Genome Atlas Network, 2012]. BRCA1 and
BRCA2 are stability genes which assist in DNA repair pathways. Certain germ-line mutations in BRCA
genes, common in certain population groups including Ashkenazi Jews, associate with an increased breast
cancer risk. For example, women with an abnormal BRCA1 or BRCA2 gene have up to a 60% risk of
developing breast cancer by age 90 [Breastcancer.org, 2012].

1.1.4 Targeted Cancer Therapies

Molecular cancer therapies may broadly be divided into targeted and untargeted therapies. A targeted
therapy is a type of medication which blocks the growth of cancer cells by specifically interfering with
molecules needed for carcinogenesis and tumour growth. In contrast, an untargeted therapy interferes
with all rapidly dividing cells (e.g. traditional chemotherapy). In practice, patients are often treated
with a combination of both targeted and untargeted therapies [Carlson et al., 2009].

Each of the hallmarks of cancer (Fig. 1.3) defines, in principle, a set of targets for therapeutic inter-
vention. In this thesis we are primarily concerned with interventions which tackle sustained proliferative
signalling and evasion of apoptosis; in particular interventions which tackle aberrant protein phosphory-
lation in the MAPK and Akt pathways (Examples 2,3). In this context there are two main molecular
weapons; small molecule inhibitors and monoclonal antibodies.

Definition 4 (Small molecules). Small molecules are molecules with a low molecular weight (ă 800
Daltons) which enables them to rapidly diffuse across cell membranes in order to reach intracellular sites
of action. In pharmacology, small molecules may bind to a protein and act as an effector, thereby altering
the protein’s activity or function.

Example 5 (Small molecule kinase inhibitors). A protein kinase inhibitor is a type of small molecule
inhibitor that specifically blocks the action of one or more protein kinases. Protein kinase inhibitors can
be subdivided or characterised by the targets of the kinase whose activity is inhibited; most kinases act
on both serine and threonine amino acids, the tyrosine kinases act on tyrosine, and a number (dual-
specificity kinases) act on all three. Fig. 1.4 displays the 3D structure of EGFR inhibitor erlotinib, a
reversible tyrosine kinase inhibitor.

Definition 5 (Monoclonal antibodies). An antibody is produced by the immune system in order to iden-
tify and potentially neutralise foreign objects such as bacteria and viruses. Antibodies act by specifically
binding to a target protein or cell type, thereby either tagging the target for attack by other parts of the
immune system, or neutralising the target directly. Antibodies may be produced in large quantities in
vitro for use in pharmacology. Monoclonal antibodies are antibodies derived from identical immune cells
derived from a common ancestor.

Example 6 (Monoclonal antibodies in cancer). It is possible to design antibodies specific to almost
any cell surface target. Tumour cells can display cell surface receptors that are absent or present in
smaller quantities on the surfaces of healthy cells; often these are responsible for activating cellular
signal transduction pathways that cause the unregulated growth and division of the tumour cell. Thus
antibodies can be used to destroy malignant tumour cells and prevent tumour growth by blocking specific
cell receptors. Examples include HER2, a constitutively active cell surface receptor that is produced at
abnormally high levels on the surface of approximately 30% of breast cancer tumour cells. The monoclonal
antibody Trastuzumab has been clinically approved to block the HER2 receptor in HER2 positive breast
cancer patients [McKeage and Perry, 2002].

Example 7 (MAPK pathway). Many compounds have been designed to specifically inhibit biochemical
interactions within the MAPK pathway. The first drug licensed to act on this pathway was Sorafenib,
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Figure 1.4: The 3D structure of EGFR inhibitor Erlotinib, a reversible tyrosine kinase inhibitor (source:
www.rcsb.org; 1M17.pdb). Here the inhibitor (purple) binds to the epidermal growth factor receptor
(EGFR; blue) in the ATP binding site, preventing catalytic activity.

an inhibitor of the Raf kinase. Now dozens of treatments for molecular players in this pathway are
under clinical investigation [Roberts and Der, 2007]. For example, Fig. 1.4 shows how Erlotinib, a small
molecule inhibitor of EGFR, can reduce catalytic activity by blocking the ATP binding site.

Example 8 (Small molecule inhibitors in breast cancer). Over-expression of HER2, ER or PR trans-
membrane receptor proteins generally indicates that breast cancer cells are dependent on signalling down-
stream of these receptors; in this case a natural strategy is to inhibit these receptors [Carlson et al., 2009].
For example, the small molecule inhibitor Lapatinib is used in combination therapy for HER2 positive
breast cancer [Korkola et al., 2013]. Lapatinib belongs to a family of tyrosine kinase inhibitors, each of
which specifically targets proteins involved in phosphorylation. Other family members involved in clinical
trials to treat breast cancer include Gefitinib [ClinicalTrials.gov, 2013a], Cabozantinib [ClinicalTrials.gov,
2013b] and Neratinib [ClinicalTrials.gov, 2013c].

1.2 Experimental Background

1.2.1 Cancer Cell Lines

There exist several experimental systems for the study of cancer, including real patients, mouse models
[Frese and Tuveson, 2007], ex vivo tissue samples [Burdall et al., 2003], cell lines [Neve et al., 2006], ex
cellulo assays [Hsieh et al., 1997] and virtual screening [Shoichet, 2004]. This thesis restricts attention
to cell line models of cancer, in particular cell lines derived from breast cancer patients. The use of cell
lines offers a number of advantages over alternative model systems, in addition to several disadvantages.
We discuss both below:

• Strengths:

– Cost. Initial purchase of cell lines will typically cost in the region of £500 - £1,000 [ATCC,
2013]. Once acquired, cells may be cloned in unlimited quantity.

– Speed. Human fibroblast cells, for example, take approximately 24 hours to divide, facilitating
rapid experimentation. In contrast, mouse models require several months per generation, and
often several generations of selective breeding to obtain a desired genetic profile.

– Convenience. Basic laboratory equipment is sufficient to handle and maintain cell culture.

– Variety. Due to the rapidly expanding catalogue of cell lines, it is possible to construct (or
purchase) panels of lines which exhibits a relatively high degree of genetic heterogeneity.

– Robustness. Cell lines are easily replaced from frozen stocks, providing a secure back-up
against e.g. power failure or contamination.
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– Regulation. Laboratory use of primary tissue culture requires patient approval [Burdall et al.,
2003], whereas cell lines may be used without the permission of the patient donor.

– Reproducibility. Cell lines (also mouse models) are standardised, with (in principle) identical
cell cultures available to researchers globally. This level of reproducibility is not possible in
patient studies, for example.

• Weaknesses:

– Model misspecification. Cell lines (asim. ex cellulo assays and virtual screening) are far re-
moved from the relevant in vivo setting. In particular, (i) cell cultures typically occupy only
two spatial dimensions (although 3D is arriving, e.g. [Hsiao et al., 2012; Souza et al., 2010])
(ii) the media in which cells are grown may differ from the relevant tumour micro-environment
[Arya et al., 2012] (iii) cell lines are, by definition, immortalised; thus cell lines have been se-
lected for a genetic profile which is amenable to immortalisation (iv) the experimental set-up is
idealised, so that otherwise challenging clinical aspects such as drug delivery or immunological
response to therapy are ignored.

– Lineage. Many established breast cancer cell lines were not derived from primary breast tu-
mours, but from tumour metastases. In particular, cell line catalogues tend to over-represent
the more aggressive, metastatic, late-stage tumours, rather than the primary lesion. Since
most drug therapies are directed against the primary tumour [Burdall et al., 2003], this con-
tributes to the problem of model misspecification.

– Contamination. Cell line cross-contamination can be a problem for scientists working with
cultured cells; indeed, studies suggest up to 15-20% of cells used in experiments have been
misidentified or contaminated with another cell line [Cabrera et al., 2006]. In particular the
HeLa cell line (the first cell line to be developed in 1952, from a glandular cancer of the cervix)
was notorious as a cross-contaminant [Nelson-Rees et al., 1981]. More recently, of 252 new
cell lines deposited at the German Cell Line Bank, 18% were found to be cross-contaminated
[Masters, 2000]. This has led to a drive to define standardised procedures for verification of
cell line identity [Masters, 2001].

– Mutation. Cell lines are prone to genotypic and phenotypic drift during their continual culture.
This is particularly common in older and more frequently used cell lines. Sub-populations may
arise and cause phenotypic changes over time by the selection of specific, more rapidly growing
clones within a population. It has been demonstrated that MCF-7 cells (the most commonly
used breast cancer cell line) show markedly different karyotypes (number and appearance of
chromosomes in the nucleus) between different UK laboratories [Bahia et al., 2002; Osborne
et al., 1987]

– Growth. Maintaining cells in culture is non-trivial, with precise control required over temper-
ature, CO2 levels, the growth medium and the plating density. Common pitfalls in this area
include nutrient depletion, accumulation of dead cells, contact inhibition (where over-crowding
induces the inhibition of signalling processes) and cellular differentiation.

Cell lines have been widely used to investigate aberrant signalling processes in cancer. These studies
have included identification of bio-markers which are predictive of drug response [Heiser et al., 2011;
Korkola et al., 2013], structure learning of signalling networks [Bender et al., 2010; Hill et al., 2012a] and
the identification of optimal drug combinations [Iadevaia et al., 2010; Nelander et al., 2008]. Coordinated
efforts to obtain data over hundreds of cancer cell lines [Barretina et al., 2012] provide an excellent
resource for such scientific enquiry.

1.2.2 Proteomics

Once an experimental system is available, it becomes necessary to accurately quantify the molecular
profiles displayed by a phenotype of interest. For cell lines, there exist several platforms which can
be used for analysis of protein phosphorylation, including Western blot [Burnette, 1981], enzyme-linked
immunosorbent assay (ELISA; Engvall and Perlmann [1971]), mass spectrometry [Choudhary and Mann,
2010; Harsha and Pandey, 2010; Nita-Lazar et al., 2008], flow cytometry [Herzenberg et al., 2002; Perez
and Nolan, 2002], live cell imaging [Baker, 2010], reverse phase protein arrays (RPPA; Paweletz et al.
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[2001]) and Luminex [Du et al., 2008]. An excellent review of these methods can be found in Hill [2012a].
This thesis restricts attention to RPPA, which we discuss in detail below.

RPPA, first introduced in Paweletz et al. [2001], is an experimental platform for the quantitative
measurement of (phospho)protein abundance in biological samples. The reverse phase format operates
in three stages (Fig. 1.5(a)): Firstly, an individual test sample (e.g. a cell lysate) is immobilised in an
individual array spot. Secondly, the slide is incubated with a primary antibody that binds specifically
to the protein of interest. Finally, this antibody is detected using a labelled secondary antibody (as in
ELISA and Western blot) and subsequent signal amplification.

The above description is deliberately simplified and in practice experimental designs will be more
complex. A protein microarray slide contains many spots which are grouped into batches, with these
batches arranged in a grid (Fig. 1.5(b)), allowing for multiple samples to be immobilised and tested
simultaneously. Probing multiple arrays (spotted with the same lysate) with different antibodies provides
the effect of generating a multiplex readout. In practice, however, bandwidth is reduced since an entire
batch must be allocated to testing of a single biological sample, due to the need to obtain dilution series
(discussed below), in addition to technical replicates. Full details of RPPA protocol can be found in
[Hennessy et al., 2010; Tibes et al., 2006].

Protein concentrations and levels of phosphorylation can vary greatly, so accurate measurement over
a wide dynamic range is required. The dynamic range of measurements is extended by diluting each
sample several times (at a known dilution ratio) and spotting onto the array at each dilution step.
Hence, if the protein concentration in the original undiluted sample is near saturation, it can still be
detected in the diluted samples. Fig. 1.5(b) displays batches containing eight-step dilutions in duplicate.
Dilution series also aid the accurate quantification of protein concentrations by increasing the effective
statistical sample size. Quantification is usually carried out using response curves which relate observed
signal intensities to protein concentrations. The fact that a single antibody is used for the whole slide
motivates the use of a single response curve for all samples on the slide. For the RPPA data used in this
thesis, a logistic model was used for the response curve (R package SuperCurve [Hu et al., 2007]).

We briefly summarise the strengths and weaknesses of the RPPA platform in relation to alternative
technologies:

• Strengths:

– Reproducibility. Careful analysis of technical error by Hennessy et al. [2010] concluded that
each of (i) between-batch, (ii) between-slide and (iii) between-run error variances were “low”
compared to signal.

– High throughput. Multiple slides can be used to probe for multiple (phospho)proteins; tens
or hundreds of proteins are often measured in the same experiment, providing an advantage
over low-bandwidth techniques such as flow cytometry and live cell imaging.

– Sensitivity. RPPA is highly sensitive, requiring small amounts of sample to enable detection
of analytes; only 103 cells are required for an RPPA experiment, compared with 108 for mass
spectrometry and 105 for Western blotting [Ramaswamy et al., 2005].

– Applicable. Denatured lysates (proteins which have lost their three-dimensional conformation)
may be assayed, allowing antibodies to bind that previously would not have been able to do
so, providing an advantage over tissue microarrays.

• Weaknesses:

– Antibody availability. The main limitation of RPPAs is the availability of sufficiently specific
primary and secondary antibodies. Specificity is crucial for RPPA, since the signal from a spot
could be due to cross-reactivity from unspecific binding and it is not possible to determine if
this is the case from the data themselves. Therefore antibodies have to be carefully validated
by Western blotting prior to their use in RPPA assays [Hennessy et al., 2010]. The number of
available validated antibodies is continuously growing, with around 150 available at the time
of writing [M. D. Anderson RPPA Core Facility, 2013]. Antibodies must be designed to detect
particular phosphoforms of a given protein. It is currently the case that many phosohoforms
do not have a corresponding (validated) antibody, restricting the scope of RPPA analysis at
present.
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(a)

(b)

Figure 1.5: (a) Reverse phase protein arrays operate in three stages. Firstly, an individual test sample
(e.g. a cell lysate) is immobilised in an individual array spot. Secondly, the slide is incubated with
a primary antibody that binds specifically to the protein of interest. Finally, this antibody is detected
using a labelled secondary antibody (as in ELISA and Western blot) and subsequent signal amplification.
(b) A typical reverse-phase protein array with 40 samples shown as the 40 batches on the slide. Each
batch represents one individual sample with 16 spots, which are the results of duplicates of eight-step
dilutions. [(a) Reproduced from Stoevesandt et al. [2009]. (b) Reproduced from Telesca et al. [2011].]
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– Aggregate data. Unlike flow cytometry and live cell imaging, RPPA provides no quantification
of single-cell variation, since many (ě 103) cell lysates are required to generate a read-out.
Moreover, the population over which measurements are obtained contains cells which may not
be synchronised with respect to signalling processes. Experimental protocol (Section B.6.1)
partially synchronises cells by starvation followed by simultaneous stimulation, however the
extent to which this strategy succeeds is unclear. Consequently, only population-average
expression data is obtainable, which may compromise causal inference due to Simpsons’-type
confounding.

– Batch effects. RPPA data are susceptible to batch effects; in particular, batch effects relating
to a single slide are possible, so that a good experimental design will involve slide-slide control
mechanisms.

– Relative quantification. Protein expression is quantified in relative terms between samples. It
is therefore not possible to estimate absolute concentrations.

– Destructive sampling. Time course data is necessarily non-longitudinal due to the destructive
observation process, leading to increased variability between temporally neighbouring samples.

– Low frequency. Due to manual preparation of the biological samples, it is difficult to achieve
high temporal resolution using RPPA. For instance the time course data analysed in Chapter
3 have maximum time resolution of 30 minutes, although it is practically possible to sample
up to 5 minute intervals. Compared to certain phosphorylation mechanisms, which can last
mere seconds, this resolution may preclude identification of rapid signalling events.

The application of RPPA within cancer biology has recently been reviewed by Hill [2012a] and is
reproduced below:

RPPAs have been used to investigate cancer cell signalling, both in cancer cell lines
[Hill et al., 2012a; Tibes et al., 2006] and in primary tumour samples [Malinowsky et al.,
2012; Sheehan et al., 2005]. These studies include the profiling and comparison of active
signalling pathways in different contexts; for example, between primary and metastatic tu-
mours [Quintás-Cardama et al., 2012; Sheehan et al., 2005; Telesca et al., 2011] or between
cancer subtypes [Boyd et al., 2008; Gujral et al., 2012; York et al., 2012], the identification
of signalling bio-markers that are predictive of response to certain anticancer agents [Boyd
et al., 2008], the identification of optimal drug combinations [Iadevaia et al., 2010; Lavezzari
et al., 2012] and structure learning of signalling networks [Bender et al., 2010; Pierobon et
al., 2012]. For further studies see, for example, [Hu et al., 2007; Spurrier et al., 2008; Zhang
and Pelech, 2012] and references therein. RPPAs have promising utility in the development
of personalised therapies [Pierobon et al., 2012]; using RPPAs to investigate and compare
signalling profiles in patient tumour cells and normal cells and to monitor changes in phos-
phorylation through time, both pre- and post-treatment [Lavezzari et al., 2012], could provide
information that guides the discovery and application of targeted therapies. Indeed, RPPAs
have recently been involved in several clinical trials (e.g. Beasley et al. [2012]; Davies et al.
[2012]; Mueller et al. [2010]).

1.3 Chemical Background

In this Section we formalise the idea of a system of chemical reactions, describe convenient approximations
to the dynamics as the volume of the system increases and briefly survey the state-of-the-art statistical
approaches to inference for such systems

1.3.1 Continuous Time Markov Processes

Let Niptq P N0 denote the number of molecules of protein species Xi, i P P “ t1, . . . , P u, present at time
t P R`. Then Nptq “ rN1ptq . . . NP ptqs is assumed to characterise the state of the system at time t.
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Figure 1.6: Chemical reaction graph G for the MAPK signalling pathway; reproduced from Schoeberl et
al. [2002]. [Reaction rates vi are shown in green and reactants are shown in black. Hyphens are used to
indicate chemical complexes and arrows indicate the reaction topology.]

Definition 6 (Chemical reaction graph). A chemical reaction graph is a system of v chemical reactions
R1, . . . ,Rv with rate constants k1, . . . , kv and reaction coefficients pij , qij P N0:

R1 : p11X1 ` p12X2 ` ¨ ¨ ¨ ` p1PXP k1
ÝÑ q11X1 ` q12X2 ` ¨ ¨ ¨ ` q1PXP

R2 : p21X1 ` p22X2 ` ¨ ¨ ¨ ` p2PXP k2
ÝÑ q21X1 ` q22X2 ` ¨ ¨ ¨ ` q2PXP

...

Rv : pv1X1 ` pv2X2 ` ¨ ¨ ¨ ` pvPXP kv
ÝÑ qv1X1 ` qv2X2 ` ¨ ¨ ¨ ` qvPXP

Here the reaction coefficients pij , qij are non-negative integers, since only entire molecules may react.
Collecting together reaction coefficients produces matrices P ,Q P NvˆP0 whose transposed difference
S “ pQ´ P qT P NPˆv0 is known as the stoichiometry matrix. The ith column si of S is then the state
change vector for reaction Ri, quantifying the net change in protein quantities as a result of reaction
Ri occurring. Fig. 1.6, reproduced from Schoeberl et al. [2002], contains a chemical reaction graph
representation for the MAPK pathway. Note that the use of “graph” here is non-standard, motivated
by a graphical representation of kinase-substrate reactions which we will exploit in Chapter 3.

Definition 7 (Continuous time Markov process). The continuous time stochastic process Nptq is Markov
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if for all n,n1 P NP0 there exists qn,n1 P R` such that

PpNpt` δtq “ n1|Nptq “ nq “ qn,n1δt` opδtq. (1.1)

The qn,n1 are known as transition rates.

Definition 8 (Mass action kinetics). Under (stochastic) mass action kinetics the state vector N is a
continuous time Markov process with transition rates given by

qn,n1 “
ÿ

i

Itn´ n1 “ siuhipnq (1.2)

where

hipNq “ ki
ź

j

ˆ

Ni
pij

˙

(1.3)

is the hazard of reaction Ri occurring.

Mass action kinetics assumes a well-mixed chemical population and sufficiently large numbers of
reactants; these assumptions must be carefully assessed in real biological systems [Sayikli and Bagci,
2011]. Such dynamics are easily simulated using, for instance, the Gillespie algorithm [Wilkinson, 2006].
Using modern parallel processing technology, forward simulation is possible at computational complexity
Opt logpP qq where t is the duration of the simulation and P is the number of biochemical species [Li and
Petzold, 2008].

1.3.2 Chemical Langevin Equation

Inference for continuous time Markov processes from discrete, noisy data is extremely challenging [Wilkin-
son, 2006]. One popular solution is to approximate the discrete variables Ni by continuous variables ΩXi

where Ω is the volume of the system and Xi is the density or concentration of Xi. Two well known ap-
proximations of this form are the chemical Langevin equation (CLE) and the linear noise approximation
(LNA); we derive both in the following Sections.

Theorem 1 (Chemical Langevin equation). The continuous time Markov process Nptq can be approxi-
mated by ΩXptq where X P RP` satisfies the stochastic differential equation

dX “
ÿ

i

hipXqsidt`
1
?

Ω

ÿ

i

b

hipXqsidBi. (1.4)

where hipXq “ limΩÑ8Ω´1hiprΩXsq.

Sketch Proof : Consider a time interval I “ rt, t` δtq where δt is sufficiently small that hazards hipNpsqq
are approximately constant for s P I. Then the number Ri of reactions Ri which occur during the
interval may be modelled using a Poisson random variable Ri «„ Popλiq with mean λi “ hipNptqqδt.
The diffusion approximation proceeds by using instead a Gaussian Ri «„ Nipλi, λiq whose mean and
variance are chosen to match those of the Poisson distribution. Thus we obtain

Npt` δtq ´Nptq «„
ÿ

i

NiphipNptqqδt, hipNptqqδtqsi (1.5)

“
ÿ

i

hipNptqqsiδt`
ÿ

i

a

hipNptqqsiNip0, δtq. (1.6)

Close to the thermodynamic limit (Ω´1hipNq « hipXq) we may rewrite Eqn. 1.6 as

Xpt` δtq ´Xptq «„
ÿ

i

hipXptqqsiδt`
1
?

Ω

ÿ

i

b

hipXptqqsiNip0, δtq. (1.7)

Taking δtÑ 0 we then arrive at the chemical Langevin equation (CLE).
The Gaussian approximation to a Poisson density relies on the parameters λi “ hiδt being sufficiently

large. However the initial assumption of constant hazard rate over the interval I required that the width
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δt of the interval is small. Thus it is not clear a priori whether such a regime exists. However it has
been proven that the CLE is a good approximation to the stochastic dynamics whenever the system is
sufficiently close to the thermodynamic limit (Section 1.3.4) [Gillespie, 2009; Wallace et al., 2012]. l

The CLE relaxes the assumption of discrete state space whilst preserving important behavioural
features of the original continuous time Markov process, including conserved quantities such as total
molecular concentrations. However the quality of the CLE approximation may deteriorate in situations
where low concentrations are encountered, in which case the CLE underestimates the effect of stochastic
fluctuations. Inference using the CLE has been studied by [Golightly and Wilkinson, 2011] who exploit
efficient particle MCMC sampling strategies.

1.3.3 Linear Noise Approximation

Inference for SDEs remains challenging despite several recent advances in this area (e.g. Kalogeropoulos
et al. [2010]; Papaspiliopoulos et al. [2012] and references therein), since in general the likelihood function
is unavailable in closed form [Wilkinson, 2006]. An attractive approach is to develop a closed form
approximation to the CLE; the LNA which we describe below is one well known example.

Noting that the CLE (Eqn. 1.4) differs to the macroscopic rate equation (Eqn. 1.12) by a term of
order 1{

?
Ω, we take the ansatz Xptq « µptq ` ξptq{

?
Ω where µ is the deterministic solution to the

macroscopic rate equation.

Theorem 2 (Linear noise approximation [van Kampen, 1976]). The solution Xptq of the CLE may be
approximated by µptq ` ξptq{

?
Ω where µ is the deterministic solution to the macroscopic rate equation

dµ

dt
“
ÿ

i

hipµqsi, µp0q “ x0. (1.8)

and ξ satisfies the SDE

dξ “
ÿ

i

Dµhipξqsidt`
ÿ

i

b

hipµqsidBi, ξp0q “ 0 (1.9)

where Dµhipξq “ dhipµq{dµ ¨ ξ denotes the directional derivative of hi, evaluated at µ, in the direction
ξ.

Sketch Proof : Using a linear expansion of the hazards hipµptq ` ξptq{
?

Ωq about µptq results in

hi

ˆ

µptq `
ξptq
?

Ω

˙

“ hipµptqq `
1
?

Ω

ÿ

j

fijptqξjptq `O
ˆ

1

Ω

˙

(1.10)

where fij “ dhipµq{dµj . Upon substitution of our ansatz Xptq « µptq ` ξptq{
?

Ω into the CLE (Eqn.
1.4) and using Eqn. 1.10 we obtain, up to Op1{

?
Ωq, Eqn. 1.9. l

The law of X under the LNA is encoded in the solution to Eqn. 1.9. Recently Wallace et al. [2012]
described how to solve Eqn. 1.9 exactly; specifically, ξptq „ N p0,Σptqq is Gaussian in distribution where
covariance matrix Σ satisfies the following system of linear ODEs

dΣ

dt
“ SfΣ` pSfΣqT ` SdiagphpµqqST (1.11)

subject to the initial condition Σp0q “ 0, where diagphq represents the diagonal matrix with diagonal
equal to h. Thus we may augment the macroscopic rate equation (Eqn. 1.8) with the covariance
equations (Eqn. 1.11) and jointly solve the system in order to obtain an exact distribution for the LNA
of Xptq.

The LNA has recently received attention from the statistical and applied mathematics communities:
Komorowski et al. [2011] proposed using the LNA to approximate the Fisher information matrix for
stochastic chemical kinetics, thereby investigating sensitivity, robustness and identifiability of chemical
systems. Mugler et al. [2011] reverse-engineered biochemical networks which process signals according
to some given functional form; here the LNA is employed to obtain a tractable statistical framework.
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In a similar way Finkenstädt et al. [2013]; Komorowski et al. [2009] used the LNA to uncover the rate
parameters governing the expression of a single gene. Furthermore the theory has been extended in
several directions: Pahlajani et al. [2011] investigated extensions to the LNA for cases where reaction
rates induce separable time scales, overcoming potential stiffness of the associated ODEs. Challenger
et al. [2012] introduced spatial heterogeneity by extending the LNA to compartmentalised models of
chemical interaction. Stathopoulos and Girolami [2012] demonstrated how to exploit manifold MCMC
techniques for efficient inference under the LNA.

1.3.4 Thermodynamic Limit

In situations where the volume Ω of the system is large, concentrations of molecular species are not too
low, and the system is approximately well mixed, it may be desirable to model the process Xptq as fully
deterministic. The thermodynamic limit allows molecular quantities Ni and the system volume Ω to
approach infinity together in such a way that concentrations Xi “ Ni{Ω remain constant. In this limit
the concentrations may be shown to satisfy the continuous solution of the macroscopic rate equation

dX

dt
“

ÿ

i

hipXqsi, Xp0q “ x0. (1.12)

Mass action kinetics do not permit analytic solution, meaning that exact inference is typically facilitated
using forward-simulation (“likelihood free”) approaches, e.g. [Chen et al., 2009; Toni et al., 2009].
Nevertheless such simulation-intensive approaches do not lend themselves to rapid, interactive inference.

In cellular biology the topology of chemical reaction graphs may be highly structured with an emphasis
on motifs which confer certain dynamical properties such as stability, feedback, or switch-like behaviour
[Alon, 2007]. For several such motifs there exist a number of well-studied analytic approximations to the
dynamics which may assist in modelling efforts. Below we describe some examples from enzyme kinetics
which are central to this thesis.

Example 9 (Michaelis-Menten kinetics). Michaelis-Menten kinetics is an approximation to mass actions
kinetics which describes the conversion of a substrate XS into a product XP under the catalytic activity of
an enzyme XE [Michaelis and Menten, 1913]. Specifically we seek to approximate the dynamics arising
from the chemical reaction motif

XS ` XE
k1
é
k´1

XEXS k2
Ñ XE ` XP (1.13)

where standard shorthand notation encodes a system of v “ 3 chemical reactions; see Def. 6. Under
mass action kinetics (below) the dynamical system corresponding to Eqn. 1.13 does not permit closed
form solution:

dXS

dt
“ ´k1XEXS ` k´1XES (1.14)

dXE

dt
“ ´k1XEXS ` pk´1 ` k2qXES (1.15)

dXES

dt
“ k1XEXS ´ pk´1 ` k2qXES (1.16)

dXP

dt
“ k2XES (1.17)

Michaelis-Menten kinetics state that the rate of production of P is given approximately by

dXP

dt
«
V XE0

XS

XS `K
(1.18)

where XE0
denotes the total concentration of enzyme (including molecules involved in the complex XES),

V is the maximal reaction rate and K is a Michaelis-Menten parameter.

Eqn. 1.18 is an attractive alternative to the system of Eqns. 1.14-1.17 since only two parameters are
required to characterise the dynamics. Moreover unlike mass action kinetics (Eqns. 1.14-1.17), Michaelis-
Menten kinetics confer an analytic solution expressed in terms of the Lambert W function [Schnell and
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Mendoza, 1997]

XP ptq « XS0
KW

ˆ

XS0

KM
exp

ˆ

´V t`XS0

KM

˙˙

, (1.19)

although Eqn. 1.19 is itself rarely used due to a large computational burden associated with evaluation
of the W function.

Example 10 (Derivation of Michaelis-Menten kinetics). The Michaelis-Menten approximation (Eqn.
1.18) may be obtained from mass action kinetics (Eqn. 1.13) under two alternative assumptions:

1. Equilibrium assumption: When the substrate is in instantaneous chemical equilibrium with the
complex, i.e. dXS{dt « 0, it follows from Eqn. 1.15 that k1XSXE “ k´1XES and hence XE “

k´1XES{pk1XSq. Substituting this into the conservation equation XE ` XSE “ XE0 we obtain
XES “ XE0

XS{pXS `Kdq where Kd “ k´1{k1.

2. Quasi-steady-state assumption: When the concentration of the intermediate complex does not
change on the time-scale of product formation, i.e. dXES{dt « 0, it follows from Eqn. 1.15
that k1XEXS “ pk´1 ` k2qXES and hence XE “ pk´1 ` k2qXES{pk1XSq. Substituting this into
the equation for conservation of enzyme XE `XES “ XE0 we obtain XES “ XE0XS{pXS `Kmq

where Km “ pk´1 ` k2q{k1.

Since the rate of product formation is proportional to XES, the Michaelis-Menten equation (Eqn. 1.18)
follows from either assumption. The equilibrium assumption is satisfied when k2 ăă k´1, whereas the
quasi-steady-state assumption is satisfied when XE0

ăă XS0
` Km. There has been much work to

understand the applicability and limitations of the Michaelis-Menten approximation and we refer the
reader to Sanft et al. [2011].

In applications the Michaelis-Menten approximation has been used to describe, amongst other pro-
cesses, the behaviour of gene regulation by transcription factors [Cantone et al., 2009] and the kinetics
of protein phosphorylation networks [Xu et al., 2010]. The formulation easily extends to include mul-
tiple enzymes, multiple substrates, substrate and product inhibition, linear, hyperbolic and parabolic
inhibitors of enzyme activity and co-operative binding of substrate. Chapter 4 of Leskovac [2003] de-
scribes automatic algorithms that facilitate the construction of appropriate rate equations from mass
action descriptions. In Chapter 3 we exploit Michaelis-Menten kinetics with linear inhibition to facilitate
inference of protein signalling networks from time course data on protein phosphorylation processes.
Linear inhibition is given particular attention in Chapter 5 of Leskovac [2003].

Example 11 (Goldbeter-Koshland kinetics). The Goldbeter-Koshland formula [Goldbeter and Koshland,
1981] describes the concentration of a chemical species subject to enzymes with opposite effects:

XS ` XE
k1
é
k´1

XES k2
Ñ XE ` XP (1.20)

XP ` XE1
k11
é
k1
´1

XE1P
k12
Ñ XE1 ` XS (1.21)

where, for example, XS and XP may represent unphosphorylated and phosphorylated forms of a protein,
XE a kinase and XE1 a phosphatase. By equating two Michaelis-Menten approximations via dXP {dt “ 0
we obtain

V XEXS

XS `K
´
V 1XE1XP

XP `K 1
“ 0 (1.22)

Goldbeter and Koshland manipulated Eqn. 1.22 to obtain the formula

XP “ XS0

˜

1´
2v1J

B `
a

B2 ´ 4pv ´ v1qv1J

¸

(1.23)

where XS0
“ XS `XP is the total amount of the chemical species, v “ V XE, v1 “ V 1XE1 , J “ K{XS0

,
J 1 “ K 1{XS0

and B “ v ´ v1 ` J 1v ` Jv1. In their original paper, Goldbeter and Koshland showed that
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this solution can be exquisitely sensitive to the parameters J and J 1; so called ultra-sensitivity. Oates
et al. [2012] exploited Goldbeter-Koshland kinetics to facilitate inference of protein signalling networks
from equilibrium data on protein phosphorylation processes.

1.4 Statistical Background

In this Section we introduce the concept of a causal graphical model, which will be the central object
of interest in this thesis. For completeness, we provide a short introduction to causal theory and make
explicit the causal assumptions underlying this work. We then expound these ideas in the context of
protein signalling and motivate the statistical challenge of causal network inference in this setting.

1.4.1 Graphical Models

A graphical model is a collection X of random variables accompanied by a graph G describing a fac-
torisation of the joint density pXpxq. There are many types of graphical model, including Bayesian
networks, maximal ancestral graphs [Richardson and Spirtes, 2002], Gaussian graphical models [Wain-
wright and Jordan, 2008], factor graphs [Kschischang et al., 2001] and chain event graphs (Smith and
Anderson [2008]; see also references therein). Graphical models have become increasingly popular in sys-
tems biology due to their ability to succinctly describe many interactions within a complex, multivariate
stochastic process. For this thesis we restrict attention to Bayesian networks.

A directed acyclic graph (DAG) G comprises of a set P of vertices and a set E Ă P ˆ P of directed
edges, such that G contains no directed cycles. We write Gp Ă P for the parents of vertex p P P
according to G, so that formally the graph G factorises as G “ G1 ˆ ¨ ¨ ¨ ˆGP where P “ t1, . . . , P u.
Definition 9. A multivariate random variable X “ pX1, . . . , XP q is said to be a Bayesian network with
respect to G if its joint density factorises as

pXpxq “
ź

pPP
pXp|XGp

pxpq (1.24)

and such that no proper sub-graph of G satisfies Eqn. 1.24 [Pearl, 2009, p. 15].

Here we have used the notation that XGp contains only the components of X which correspond to
the parents Gp of variable p. Note that Bayesian networks do not necessarily imply a causal structure
among the variables, since any random variable X “ pX1, X2q where X1 and X2 are not independent is
necessarily a Bayesian network with respect to both the graph X1 Ñ X2 and the graph X2 Ñ X1 (see
the next Section).

Efficient inference in general (discrete) Bayesian networks relies on the belief propagation algorithm
[Pearl, 1982] and related extensions [Kschischang et al., 2001]. In Chapter 4 we exploit belief propagation
for efficient inference over a hierarchical system of DBNs.

Bayesian networks have been widely used to model biological processes at steady state, including gene
regulation [Maathuis et al., 2010] and protein signalling [Sachs et al., 2005]. However the framework is
(naively) limited by the requirement that no directed cycles are permitted; in particular this restricts
their utility in protein signalling systems, where feedback control mechanisms are crucial [Avraham and
Yarden, 2011]. One solution is to model the temporal evolution of the system using Bayesian networks,
thereby allowing for feedback regulation under a temporal constraint (arrows can only point forward in
time).

Example 12 (Dynamic Bayesian networks). In a dynamic Bayesian network (DBN) the random vari-
able Xptq has an explicit (discrete) time index t P N0. This thesis restricts attention to DBNs which
additionally satisfy the first order Markov assumption Xptq KK tXpt ´ τq : τ ě 2u|Xpt ´ 1q. These
conditional independence relationships are sufficient to guarantee Xptq is a Bayesian network with re-
spect to some time-slice graph (Fig. 1.7(a)). We further restrict attention to feed forward DBNs, where
Xpptq KK Xqptq|Xpt´1q for all p ‰ q; in other words there are no within-time-slice edges. The conditional
independence relations underlying feed forward DBNs are conveniently summarised as a (static) network
G with exactly P vertices (Fig. 1.7(b)); note that this latter network need not be acyclic.

For the remainder of this thesis we use DBN to refer only to “first order Markov, feed forward”
DBNs, though this terminology is non-standard. DBNs have emerged as popular tools for the analysis
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X1pt´ 1q

X2pt´ 1q

X3pt´ 1q

X4pt´ 1q

X1ptq

X2ptq

X3ptq

X4ptq

(a) DBN representation.

X1 X2

X3 X4

(b) “static” representation.

Figure 1.7: Dynamic Bayesian networks (DBNs). (a) A “time-slice” dynamic Bayesian network (DBN)
is a bipartite graph with vertices corresponding to variables at successive time points. (b) The corre-
sponding “static” representation with exactly one vertex for each variable.

of multivariate time course data due to (i) the fact that no acyclicity assumption is required on the
(static) network, (ii) the full network topology is identifiable from observational data (see Ex. 13), (iii)
computational tractability results from a factorization of the likelihood function over variables p P P,
and (iv) in special cases there exist closed form expression for Bayes factors [Hill et al., 2012a].

1.4.2 Causal Inference

Variable selection approaches have been widely studied within the statistical literature where they typi-
cally serve two related yet distinct goals; (i) improvement of prediction performance (e.g. in regression
or classification); (ii) selection of variables which actually drive the response in a control-theoretic sense.
The distinction between variable selection problems (i) and (ii) mirrors the general distinction between
regression and causal inference, as discussed extensively by Pearl [2009] and others. Problem (i) is clas-
sical and has been studied extensively. However problem (ii) is attracting increasing attention since
in many settings the results of variable selection are used to prioritise interventional experiments. For
instance in biological applications the selected variables may be subjected to knock-down or knock-out
treatments. In this thesis we are principally concerned with problem (ii).

In this Section we formalise a theory of inferred causality and briefly discuss some statistical techniques
for estimating causal variables from data. In particular we define a causal Bayesian network which
reconciles Definition 12 with a causal calculus. We restrict attention to DAGs G and random variables
X. For convenience below we use X to denote both the random variable and its law.

Assumption 1 (Causal sufficiency). The set of measured variables X includes all of the common causes
of pairs pXp, Xqq. i.e. there are no unobserved confounders.

The remainder of this thesis will assume causal sufficiency; in Chapter 3 this is at the level of the
chemical reaction graph G and in Chapter 4 this is at the level of the biological network N (see Section
1.4.4 for a discussion of this distinction). For protein signalling both assumptions are difficult to justify
on anything but pragmatic grounds, since we typically can only ever access a small fraction of the
relevant molecular species. Moreover, as discussed in Section 1.1.1, protein signalling is itself embedded
in wider signalling processes such as genetic regulation. However, since biological networks NpGq are
coarse summaries of chemical reaction graphs G, a causal sufficiency assumption on the latter is weaker.
An extended discussion of this point is reserved for Section 1.4.4 but recent work on latent variables
including Colombo et al. [2012] and Chandrasekaran et al. [2012] may help to relax the causal sufficiency
assumption.

We now proceed to establish sufficient conditions for the identification of causation from data. For
some of the definitions below it will be convenient to refer to a variable Xi simply by its index i.

Definition 10. A path is a sequence of consecutive edges (of any directionality) [Pearl, 2009, p. 12].

Definition 11. A path ρ in G is d-separated by a set A of vertices if and only if either (i) ρ contains
a chain i Ñ m Ñ j or fork i Ð m Ñ j such that m P A, or (ii) ρ contains a collider i Ñ m Ð j such
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that m R A and no descendant of m is in A. A set A is said to d-separate sets B and C if and only if
A d-separates all paths from vertices in B to vertices in C [Pearl, 2009, p. 16].

Definition 12 (Markov). X is Markov with respect to G if XB KK XC |XA whenever A d-separates B
and C in G, for all disjoint sets A,B,C [Pearl, 2009, p. 16].

Note that Def. 12 is sometimes referred to as the “global” Markov property. In this Chapter we use the
conditional independence notation KK due to Dawid [1980].

Definition 13 (Faithful). X is faithful to G if A d-separates B and C in G whenever XB KKXC |XA,
for all disjoint sets A,B,C [Pearl, 2009, p. 48].

Note that Def. 13 is sometimes referred to as “stability”, “DAG-isomorphism” or “perfect-mapness”.

Definition 14 (Causal graph). The causal graph G for a set of random variables X is constructed by
drawing directed arrows from nodes to their direct effects.

Def. 14 is deliberately imprecise, since the philosophical foundations of causality are beyond the
scope of this thesis. The reader is invited to refer to Section 2.3 of Pearl [2009], which formulates a
pragmatic definition of “direct effects” via Occam’s Razor.

Assumption 2. The causal graph G for the random variables X satisfies (i) X is Markov with respect
to G, and (ii) X is faithful to G.

An intuitive approach to causal inference, based on Assumption 2, is to identify all graphs G for
which data support the Markov and faithfulness conditions. However these two conditions together are
insufficient, in general, to determine a unique graph structure. For example the graphs X1 Ñ X2 and
X2 Ñ X1 both satisfy the Markov and faithfulness conditions for any random variable X “ pX1, X2q

where X1 and X2 are not independent. This is an example of non-identifiability known as observational
equivalence.

Definition 15 (Observational equivalence). Two graphs are observationally equivalent if every proba-
bility distribution X which is Markov with respect to one of the graphs is also Markov with respect to the
other [Pearl, 2009, p. 19].

Theorem 3. Two graphs are observationally equivalent if and only if they have the same skeletons and the
same sets of v-structures [Pearl, 2009, p. 19]. (The skeleton of a graph is the undirected graph obtained
by removing all arrowheads. A v-structure is two converging arrows whose tails are not connected by an
arrow.)

Recent research has asked under what conditions is it possible to obtain a unique causal graph: Peters
et al. [2011] proposed to replace the faithfulness assumption by an assumption of an identifiable model
class. Hauser and Bühlmann [2012] proposed a refined partition of the space of DAGs by considering
identifiability under intervention. Peters and Bühlmann [2012] proved that Gaussian structural equation
models are uniquely identifiable under an assumption of equal error variances. This thesis focusses
primarily on DBNs, which benefit from a uniqueness result:

Example 13. For a DBN G, if G1 is observationally equivalent to G then we must have G “ G1.

Proof. Recall that this thesis restricts attention only to feed forward DBNs. Thus given the skeleton of
G we can add all of the arrowheads by requiring that arrows point forward in time. Thus if G and G1

have the same skeletons, they must be the same directed graph.

In settings where it is not possible to uniquely identify the causal graph from observational data, one
approach is to actively manipulate the data-generating process:

Definition 16 (Intervention). An intervention on a subset A of variables has the effect of fixing these
variables to a (known) constant value xA. The resulting probability density is written pXpx|dopXA “

xAqq [Pearl, 2009, Sec. 3.2].

It is possible to define more general interventions which change the nature of the probabilistic depen-
dence (e.g. Eaton and Murphy [2007]), but we do not explore these ideas in this thesis. Moreover, we
restrict attention to a particular class of causal graphical models known as causal Bayesian networks:
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Definition 17 (Causal Bayesian network Pearl [2009] p. 23). A Bayesian network X with respect to G
is causal if, for any intervention dopXA “ xAq the following factorisation holds:

pXpx|dopXA “ xAqq “
ź

pRA

pXp|XGp
pxpq (1.25)

Example 14 (Causal DBN). A DBN X is causal with respect to G if, for any intervention dopXApt´
1q “ xAq the following factorisation holds:

pXptqpxptq|dopXApt´ 1q “ xAqq “
ź

pRA

pXpptq|XGp pt´1qpxpptqq (1.26)

The do operator tells us how, according to the DAG G, the data-generating distribution will change
under intervention. In particular this allows us in Chapters 3 and 4 to integrate both observational
and interventional data into inference using a unified statistical framework consistent with a theory of
causation. The use of interventional data may help to practically discriminate between candidate causal
DAGs which are observationally equivalent [Hauser and Bühlmann, 2012].

There exist a number of generic techniques for identifying causal Bayesian networks (up to observa-
tional equivalence) from data, including the PC algorithm [Spirtes et al., 2000], the Fast Causal Inference
(FCI) algorithm [Spirtes et al., 2000; Zhang, 2008] and the Really Fast Causal Inference (RFCI) algorithm
[Colombo et al., 2012]. It may also be desired to estimate the causal effect of an unseen intervention
[Pearl, 2009], which may be achieved using the Interventional-calculus when the DAG is Absent (IDA)
algorithm [Maathuis et al., 2010]. Each of these algorithms are based on repeated tests of conditional
independence. This has two main advantages; (i) each algorithm is provably consistent, and (ii) each
algorithm is generic, not depending on any particular parametric formulation. However this approach
to inference may be sub-optimal when model-specific information is available, for example when the
data-generating system is a DBN [Hill et al., 2012b].

Causal Bayesian networks have been used to analyse biological signalling processes: Sachs et al.
[2005] inferred a causal Bayesian network using flow cytometry measurements of phosphorylated protein
concentrations in single cells. [Maathuis et al., 2010] used causal Bayesian networks to predict (from
observational data) the causal effects of gene deletion in yeast, validating their findings on 267 mutant
strains.

1.4.3 Causality in Protein Signalling

In atypical situations, such as ectopic over-expression of protein species, there is potential for molecules
to interact which would not normally interact in any meaningful way. This may be due to simply
an abundance of a reactant leading to an increase in product formation an expansion of the spatial
territory of species in the cell. Alternatively, a mutation may lead to constitutive activation of a protein
species, rendering it independent of its canonical regulatory architecture. Thus in protein signalling,
data collected from multiple individuals j P J may differ with respect to interplay between variables,
such that corresponding causal graphs Gj may be individual-specific. Interplay in protein signalling
networks can depend on the genetic and epigenetic state of the individuals, such that even for a well-
defined system, such as signalling downstream of a certain receptor class, details may differ between even
closely related samples [Ideker and Krogan, 2012]. Even when belonging to the same lineage, samples
differ with respect to signalling network connections [Lee and Tzou, 2009]. Continuing reduction in the
unit cost of biochemical assays has led to an increase in experimental designs that include panels of
potentially heterogeneous individuals [Barretina et al., 2012; Cao et al., 2011; Maher, 2012; The Cancer
Genome Atlas Network, 2012]. In such settings, given individual specific data yj , scientific interest often
focuses on the individual-specific networks Gj and their similarities and differences. The data-driven
characterisation of context-specific protein signalling networks is an active area of both statistical and
experimental research.

In brief, this thesis aims to use model-based techniques to elucidate causal Bayesian networks from
RPPA measurement of phosphorylated protein concentrations. It this Section we make this problem
precise and discuss the principal challenges.

Definition 18 (Biological network). A biological network N has chemical species Xi as vertices, with an
edge Xi Ñ Xj denoting that species Xi is a reactant in at least one chemical reaction Rk which produces
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Xj as a product.

Example 15 (Phosphorylation network). A phosphorylation network is a particular type of biological
network known as a protein signalling network in which vertices are phosphoproteins X ˚i and edges X ˚i Ñ
X ˚j denote that X ˚i is an enzyme catalysing the conversion of unphosphorylated Xj to phosphorylated
X ˚j . Fig. 1.2 displays a phosphorylation network uncovered by extensive biochemistry. (Note that a
handful of interactions in Fig. 1.2 refer to more general protein-protein interaction and not specifically
to phosphorylation.)

In biological settings, the problem of identifying biological networks from data is often referred to as
network inference. This thesis pursues an approximate description of protein signalling networks, which
need not be acyclic, in terms of (static) causal DBNs (Fig. 1.7(b) and Ex. 14, see also Voortman et al.
[2010]). In this way biological network inference may be cast, modulo approximations, as inference for
causal Bayesian networks.

As discussed in Section 1.4.2 there exist several generic algorithms for identification of causal Bayesian
networks from data. In this thesis we sought to exploit domain-specific knowledge in order to achieve
improved estimation in the context of protein phosphorylation networks. Before proceeding, we make
explicit the link between fine grain chemical reaction graphs and coarse grain protein signalling networks.

1.4.4 Causal Graphs and Biological Networks

An important technical point for causal inference in biological signalling systems is that the level of de-
scription which we seek is often substantially coarser than the relevant level for the dynamics. For exam-
ple, in Chapter 3 we define a protein signalling network on six species t4EBP1,Akt,EGFR,GSK3ab,MEK,S6u,
yet none of these species are thought to directly interact, in the sense of forming a biochemical complex
(except possibly Akt and GSK3ab). Regulation of Akt by EGFR, for instance, (typically) occurs indi-
rectly via phosphatidylinositol-3-kinases (Fig. 1.2). The missing variable issue for biological networks is
arguably more severe than in, say, economics or epidemiology. Indeed, the variables which are quantifi-
able on a single assay may represent only a small fraction of the minimal causally sufficient state vector.
Moreover it is often the case that little specific insight is available into the nature of the missing variables
or their relationship to observations.

In this thesis we use G to denote a fine scale representation of multivariate systems, whereas N
will be reserved for coarse scale representations. To be concrete, in Chapter 3 we use G to denote
chemical reaction graphs and N to denote phosphorylation networks. In this setting G differs from N by
containing, in addition to phosphorylated protein species, unphosphorylated protein species and enzyme-
substrate complexes. Fig. 1.6 displays the chemical reaction graph G for MAPK phosphorylation;
compare this with the coarse biological network of Fig. 1.2, where MAPK phosphorylation is represented
by a sub-network of only 9 vertices and 8 edges. Thus the biological network representation N “ NpGq
is a coarse summary of the underlying chemical reaction graph G.

Coarse representations of biological processes may assist with issues of identifiability. It is known that
stoichiometries S defining the molecular-level kinetics are in general non-identifiable from observational
data in the thermodynamic limit. Indeed, the algebraic structure of the set of reaction R1, . . . ,Rv is in
general non-identifiable; moreover even for fixed reactions R1, . . . ,Rv the corresponding rates k1, . . . , kv
are in general unidentifiable [Craciun and Pantea, 2008]. However, mainstream descriptions of biological
networks, e.g. protein signalling networks (Definition 18), are coarser summaries of the underlying
dynamics. Such networks are useful because they are closely tied to validation experiments in which
interventions (e.g. RNA interference or inhibitors) target network vertices. For example, inference of
an edge in a gene regulatory network corresponds to the qualitative prediction that intervention on
the parent will influence the child (via transcription factor activity [Maathuis et al., 2010]). It remains
unclear to what extent such coarse biological network structure can be usefully identified from various
kinds of data.

1.4.5 Network Inference

Network inference approaches are now widely used in biological applications to probe regulatory rela-
tionships between molecular components such as genes or proteins. Many specific methods have been
proposed, in the statistical literature as well as in bioinformatics and bioengineering, with some popular
approaches reviewed in Bansal et al. [2007]; Bonneau [2008]; Hecker et al. [2009]; Lee and Tzou [2009];
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Markowetz and Spang [2007]. Graphical models play a prominent role in this literature, as does vari-
able selection. A distinction is often made between statistical and “mechanistic” approaches [Ideker and
Krogan, 2012]. The former is usually used to refer to “black box” models that are built on conventional
regression formulations and variants thereof, while the latter usually refers to “white box” models that
are explicitly rooted in chemical kinetics, e.g. systems of coupled ordinary differential equations (ODEs).
Of course this distinction is somewhat artificial, since it is possible in principle to carry out formal statis-
tical network inference based on mechanistic models (e.g. systems of ODEs). In practice, however, the
construction of a “grey box” algorithm which benefits from both the efficiency of statistical approaches
and the interpretability of mechanistic approaches remains challenging [Xu et al., 2010].

Many network inference schemes are based on formulations that are closely related in terms of the
underlying statistical model. For example, vector autoregressive (VAR) models (including Granger
causality-related approaches as special cases; Bolstad et al. [2011]; Morrissey et al. [2010]; Opgen-Rhein
and Strimmer [2007]; Zou and Feng [2009]), linear dynamic Bayesian networks [Hill et al., 2012a; Kim
et al., 2003], and certain ODE-based approaches [Bansal and di Bernardo, 2007; Li and Petzold, 2008;
Nam et al., 2007] are intimately related, being based on linear regression, but with potentially differing
approaches to variable selection. In recent years, several empirical comparisons of competing network
inference schemes have emerged, including Altay and Emmert-Streib [2010]; Bansal et al. [2007]; Hache
et al. [2009]; Smith et al. [2001]; Werhli et al. [2006]. Assessment methodology has received attention,
including attempts to automate the generation of large scale biological network models for automatic
benchmarking of performance [Marbach et al., 2009; Van den Bulcke et al., 2006]. In particular the Dia-
logue for Reverse Engineering Assessments and Methods (DREAM) challenges [Marbach et al., 2012; Prill
et al., 2010] have provided an opportunity for objective empirical assessment of competing approaches.
At the same time developments in synthetic biology have led to the availability of gold standard data
from hand-crafted biological systems, such that the underlying network is known by design [Camacho
and Collins, 2009; Cantone et al., 2009; Minty et al., 2009].

1.5 Discussion

In this Chapter we have introduced the biological problem of inference for protein signalling networks,
surveyed the stochastic chemical kinetic literature and introduced key concepts from graphical models
and causality. The remainder of this thesis seeks to combine these ideas within a Bayesian framework
for model-based inference of protein signalling networks mediated by phosphorylation. Specifically;
in Chapter 2 we explore existing approaches to inference in this setting; Chapter 3 proposes a novel
methodology for network inference which is rooted in non-linear chemical kinetics; Chapter 4 extends
these ideas to account for variation between biological samples and finally Chapter 5 suggests directions
for further research.
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Chapter 2

From Biological Dynamics to
Network Inference

In the previous Chapter we introduced the statistical problem of network inference and explored its
significance within the wider scientific context of biological signalling processes. As discussed in Section
1.4.5, many methods have been proposed for inference of biological networks. However the connections
and differences between their statistical formulations have received less attention. In this Chapter,
we show how a broad class of statistical network inference methods, including a number of existing
approaches, can be described in terms of variable selection for the linear model. This reveals some
subtle but important differences between the methods, including the treatment of time intervals in
discretely observed data. In developing a general formulation, we also explore the relationship between
single-cell stochastic dynamics and network inference on averages over cells. This clarifies the link
between biochemical networks as they operate at the cellular level and network inference as carried out
on data that are averages over populations of cells. We present empirical results, comparing thirty-
two network inference methods that are instances of the general formulation we describe, using two
published dynamical models. Our investigation sheds light on the applicability and limitations of network
inference and provides guidance for practitioners and suggestions for experimental design. Since aspects
of biological dynamics may not be identifiable at steady-state, time-varying data is usually preferred,
and this is the setting we focus on here.

2.1 Introduction

Network inference methods can be viewed as generating hypotheses about cell biology. Yet the link
between biochemical networks at the cellular level and network inference as applied to bulk or aggregate
data (i.e. data that are averages over large numbers of cells) from assays such as microarrays remains
unclear. In applications to noisy time-varying data there is uncertainty in the predictor variables of
the same order of magnitude as uncertainty in the responses, yet often only the latter is explicitly
accounted for. Moreover, the treatment of time intervals in discretely observed data remains unclear,
with contradictory approaches appearing in the literature. Most high-throughput assays, including array
based technologies (e.g. gene expression or protein arrays), as well as single-cell approaches (e.g. FACS-
based) involve destructive sampling, i.e. cells are destroyed to obtain the molecular measurements. The
impact of the resulting non-longitudinality upon inference does not appear to have been investigated.

The contributions of this Chapter as follows:

1. First, we explore the connection between biological networks at the cellular level and the discrete
time linear statistical models that are widely used for inference. Starting from a description of
stochastic dynamics at the single-cell level we describe a general statistical approach rooted in the
linear model. This makes explicit the assumptions that underlie a broad class of network inference
approaches. This also clarifies the relationship between “statistical” and “mechanistic” approaches
to biological networks.

2. Second, we explore how a number of published network inference algorithms can be recovered as
special cases of the model we arrive at. This sheds light on the differences between them, including
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how different assumptions lead to quite different treatments of the time step.

3. Third, we present an empirical study comparing 32 different approaches that are special cases
of the general model we describe. To do so, we simulate stochastic dynamics at the single-cell
level from known networks, under global perturbation of two published dynamical models. In
many applications the data y arise from global perturbation of the cellular system, for example by
varying culture conditions or stimuli. The extent to which networks can be characterized using
global perturbations remains poorly understood, since it is likely that such data expose only a
subspace of the phase space associated with cellular dynamics. Our investigation enables a clear
assessment of the network inference methods in terms of estimation bias and consistency, since the
true data-generating network is known. Furthermore, the simulation accounts for both averaging
over cells, non-longitudinality due to destructive sampling and the fact that only a subspace of
the dynamical phase space is explored. Using this approach, we investigate a number of data
regimes, including both even and uneven sampling intervals, longitudinal and non-longitudinal data
and the large sample, low noise limit. We find that the net effect of predictor uncertainty, non-
longitudinality and limited exploration of the dynamical phase space is such that certain network
estimators fail to converge to the data-generating network even in the limits of large datasets and
low noise. However, we point to a simple formulation which might represent a default choice,
delivering promising performance in a number of regimes. This formulation forms the basis for
subsequent work in Chapter 3.

4. A key implication of our analysis is that uneven time steps may pose inferential problems, even when
using models that apparently handle the sampling intervals explicitly. We therefore investigate
this case by carrying out network inference on unevenly sampled data using a variety of statistical
models. We find that the ability to reconstruct the data-generating network is much reduced in
all cases, with some approaches faring better than others. Since biological data are often unevenly
resolved in time, this observation has important implications for experimental design.

Note that this Chapter focusses exclusively on inference procedures rooted in discrete time. Whilst
several statistical approaches now exist to facilitate efficient inference in continuous time descriptions
of dynamical systems (e.g. Campbell and Steele [2012]; Dattner and Klaassen [2013]; Dondelinger et
al. [2013]; Girolami and Calderhead [2011]), it remains the case that network inference algorithms are
almost exclusively rooted in poorly understood discrete time formulations.

The remainder of this Chapter is organized as follows. We begin in Section 2.2 with a description of
stochastic dynamics in single cells and show how a series of assumptions allow us to arrive at a statistical
framework rooted in the linear model. Section 2.3 contains an empirical comparison of several inference
schemes, addressing questions of performance and consistency in a number of data-generating regimes.
In Section 2.4 we discuss our results and point to several specific areas for future work.

2.2 Methods

The cellular dynamics that underlie network inference are subject to stochastic effects [Elowitz et al.,
2002; Kou et al., 2005; McAdams and Arkin, 1997; Paulsson, 2005; Swain et al., 2002]. We therefore
begin our description of the data-generating process at the level of single cells before discussing the
relationship to aggregate data of the kind acquired in high-throughput biochemical assays. We then
develop a general statistical approach, rooted in the linear model, for data from such a system observed
discretely in time. We discuss inference and show how a number of existing approaches can be recovered
as special cases of the general model we describe. Our exposition clarifies a number of technical but
important distinctions between published methodologies, which until now have received little attention.

2.2.1 Data-Generating Process

2.2.1.1 Stochastic Dynamics in Single Cells

Let X “ pX1, . . . , XP q P RP` denote a state vector describing the abundance of molecular quantities of
interest. The components of the state vector (e.g. mRNA, protein or metabolite levels) are identified
with the vertices of a network N that describes the biological network of interest. In this Chapter the
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expression levels Xptq of a single cell at time t P R` are modelled as continuous random variables that
we assume satisfy a time-homogeneous stochastic delay differential equation (SDDE)

dX “ fpFXqdt` gpFXqdB (2.1)

where f ,g are drift and diffusion functions respectively, FXptq “ tXpsq : s ď tu is the natural filtration
(the history of the state vector X) and B denotes a standard Brownian motion. One well known example
is the CLE, as defined in Section 1.4. Note that this Chapter does not consider finite state space models;
this is thought to be reasonable for the biological systems considered here, but in general the stochasticity
due to low copy number will need to be encoded into inference (see Section 1.3.1 and Paulsson [2005]).
Note also that this Chapter does not consider chemical reaction graphs G, only the coarser biological
networks N . We do not restrict attention to phosphorylation networks, but biological networks in
general. This set-up most closely matches the approach of published network inference algorithms,
whose behaviour are the subject of this Chapter. The edge structure E of the biological network N is
defined by the drift function f , such that pi, jq P E ðñ fjpXq depends on Xi. Recent work by Sokol
and Hansen [2013] formalises these ideas using a causal interpretation of stochastic differential equations.
Also related are the frameworks of Dash [2003]; Iwasaki and Simon [1994].

We further assume that the functions f ,g are sufficiently regular and depend only on recent history
FXprt´τ, tsq. For example in the context of gene regulation τ might be the time required for one cycle of
transcription, translation and binding of a transcription factor to its target site; the characteristic time
scale for gene regulation. This is a finite memory requirement and can be considered a generalization of
the Markov property. Equivalently, this property codifies causal sufficiency for SDDEs. It is common
practice to take τ “ 0, in which case the process defined by Eqn. 2.1 is Markovian. This stochastic
dynamical system with phase space tpfpFXq,Xq : X P RP`u forms the basis of the following exposition.

2.2.1.2 Aggregate Data

A variety of experimental techniques, including notably microarrays and related assays, capture average
expression levels XpKq :“

řK
k“1 Xk{K over cells, where Xk denotes the expression levels in cell k. We do

not consider effects due to inter-cellular signalling, which are typically assumed to be negligible. Aver-
aging sacrifices the finite memory property (a generalization of the fact that the sum of two independent
Markov processes is not itself Markovian). However it is usually possible to construct a finite memory
approximation of the form

dXpKq “ f pKqpFXpKqqdt` gpKqpFXpKqqdB
pKq (2.2)

using a so-called system size expansion [van Kampen, 2007]. (The CLE is a specific example of a system
size expansion.) Approximations of this kind derive from a coarsening of the underlying state space,
assuming that the new state vector XpKq is causally sufficient. The statistical models discussed in this
Chapter rely upon coarsening assumptions in order to control the dimensionality of state space.

Using the mild regularity conditions upon cellular stochasticity g the strong law of large numbers
gives that in the large sample limit the sample average X8 :“ limKÑ8XpKq “ EpXq equals the expected
state of a single cell (almost surely). We note that the relationship between the single-cell dynamics as
it appears in Eqn. 2.1 and this deterministic limit may be complicated, since in general EpfpFXqq ‰

fpFEpXqq. However for linear f , say for simplicity f ” fpXq “ AX, we have

dXpKq “
1

K

K
ÿ

k“1

dXk “
1

K

K
ÿ

k“1

`

fpFXkqdt` gpFXkqdBk
˘

(2.3)

“
1

K

K
ÿ

k“1

AXkdt`
1

K

K
ÿ

k“1

gpFXkqdBk

“ A

˜

1

K

K
ÿ

k“1

Xk

¸

dt`RpKq

“ AXpKqdt`RpKq “ fpFXpKqqdt`RpKq

where RpKq :“
ř

k gpFXkqdBk{K Ñ 0 almost surely as K Ñ 8 and so dX8{dt “ fpFX8q. In other
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words, the average over large numbers of cells shares the same drift function as the single cell, so that
inference based on averaged data applies directly to single cell dynamics. Otherwise this may not hold.
This has implications when using non-linear forms, such as Michaelis-Menten or Hill kinetics, to describe
the behaviour of a large sample average; these non-linear functions are derived from single cell biochem-
istry and may not apply equally to the large sample average X8. The error entailed by commuting drift
and expectation may be assessed using the multivariate Feynman-Kac formula [Øksendal, 1998].

In practice the observation process may be complex and indirect, for example measurements of gene
expression may be relative to a housekeeping gene, assumed to maintain constant expression over the
course of the experiment. Moreover the details of the error structure will depend crucially on the
technology used to obtain the data. To limit scope, this Chapter assumes the averaged expression levels
X8ptq are observed at discrete times t “ tj (0 ď j ď n) with additive zero-mean measurement error
as Yptjq “ X8ptjq `wj , where the wj are independent, identically distributed uncorrelated Gaussian
random variables.

2.2.2 Discrete Time Models

Network inference is usually carried out using coarse-grained models (Eqn. 2.2) that are simpler and
more amenable to inference than the process described by Eqn. 2.1. Here, informed by the foregoing
treatment of cellular dynamics, we develop a simple network inference model for data observed discretely
in time. We clarify the assumptions of the statistical model, and show how several published approaches
can be recovered as special cases.

2.2.2.1 Approximate Discrete Time Likelihood

Network inference entails statistical comparison of networks N P N , where N denotes the space of
candidate networks. The space N may be large (naively, there are 2PˆP possible networks on P vertices),
although biological knowledge may provide constraints. Network comparisons require computation of
a model selection score for each network that is considered, which in turn entails use of the likelihood
(e.g. maximization of information criteria, or integration over the likelihood in the Bayesian setting).
Therefore, exploration over large model spaces is often only feasible given a closed-form expression for
the likelihood (or preferably for the model score itself).

However the likelihood for a SDDE model (Eqn. 2.2) is not generally available in closed form.
There has been recent research into computationally efficient approximate likelihoods for fully observed,
noiseless diffusions [Hurn et al., 2007], but it remains the case that the simplest (though least accurate)
closed-form approximate likelihood is based on the Euler-Maruyama discretisation scheme for stochastic
differential equations (SDEs), which in the more general SDDE case may be written as (henceforth
dropping the superscript K)

Xptjq « Xptj´1q `∆jfpFXptj´1qq ` gpFXptj´1qq∆Bj (2.4)

where ∆Bj „ N p0,∆jIq and ∆j “ tj ´ tj´1 is the sampling time interval. Incorporating measurement
error into this Riemann-Itô likelihood [Fuchs, 2013] requires an integral over the hidden states X which
would destroy the closed-form approximation. Therefore the observed (non-longitudinal) data y are
directly substituted for the latent states X, yielding the (triply) approximate likelihood

ppy|θ, Nq «

n
ź

j“1

N pyptjq;µptjq,Σptjqq (2.5)

where f , g are the drift and diffusion functions associated with the network N , whose parameters
are denoted by θ. Here µptjq “ yptj´1q ` ∆jfpFyptj´1qq, Σptjq “ ∆jgpFyptj´1qqgpFyptj´1qq

1, and
N p‚;µ,Σq denotes a Gaussian density with mean µ and covariance Σ. Implicit here is that the functions
f ,g depend on Fy only through time lags which coincide with the measurement times tj´1.

Thus an approximate likelihood may be obtained from a state-space approximation to the original
SDDE model (Eqn. 2.2). Despite reported weaknesses with the Riemann-Itô likelihood [Fuchs, 2013;
Hurn et al., 2007] and the poorly characterized error incurred by plugging in non-longitudinal obser-
vations, this form of approximate likelihood is widely used to facilitate network inference (Eqn. 2.5
corresponds to a Gaussian DBN for the observations y, as described in Example 12, generalized to al-
low dependence on history). This is due both to the possibility of parameter orthogonality, allowing
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inference to be performed for each network node separately, and the possibility of conjugacy, leading to
a closed-form marginal likelihood ppy|Nq “

ş

ppy|θ, Nqppθ|Nqdθ. (Note that in the remainder of this
thesis, for brevity, we use notation which does not distinguish random variables from their arguments.)

2.2.2.2 Linear Dynamics

Kinetic models have been described for many cellular processes [Cantone et al., 2009; Schoeberl et
al., 2002; Swat et al., 2004; Wilkinson, 2009]. However, statistical inference for these often non-linear
models may be challenging [Bonneau, 2008; Wilkinson, 2006, 2009; Xu et al., 2010]. Moreover, there is no
guarantee that conclusions drawn from cellular averages will apply to single cells, because as noted above
the deterministic behaviour seen in averages may not coincide with the single cell drift. However, linear
dynamics satisfy EpfpFXqq “ fpFEpXqq exactly, so that conclusions drawn from averages apply directly
to single cells. For notational simplicity consider the Markovian τ “ 0 regime. A Taylor approximation
of the cellular drift f about the origin gives

fpXq « fp0q ` Df |x“0 X (2.6)

where Df is the Jacobian matrix of f . The constant term can be omitted (fp0q “ 0), since absent any
molecules there can be no change in expression levels. Then, the Jacobian Df captures the dynamics
approximately under a linear model. Furthermore, the absence of an edge in the network N implies a
zero entry in the Jacobian, that is pi, jq R E ñ pDfqji “ 0. Conversely, however, obtaining the Jacobean
at x “ 0 does not imply complete knowledge of the edge sparsity structure E. We note that the general
SDDE case is similar but with additional differentiation required for the additional dependencies of f .
Henceforth we write equations for the simpler Markovian model, although they hold more generally.

One may ask whether the restriction to linear drift functions allows the computational difficulties
associated with inference for continuous time models to be avoided, since in the Markovian (τ “ 0)
case both the SDE (Eqn. 2.1) and limiting ordinary differential equation (ODE) have exact closed form
solutions. In the ODE case, for example, Xptq “ exppAtqX0 and under Gaussian measurement error
the likelihood has a closed form as products of terms N pyptjq; exppAtjqX0,Mq where the parameters
θ “ pA,X0,Mq include the model parameters A, initial state vector X0 and the measurement error
covariance M. Unfortunately evaluation of the matrix exponential is computationally demanding and
inference for the entries of A must be performed jointly since in general exppAq does not factorize usefully.
It therefore remains the case that inference for continuous time models is computationally burdensome,
even when the models are linear.

2.2.2.3 The Dynamical System as a Regression Model

The Jacobian Df with entries pDfqi,j “ Bfi{Bxj |x“0 is now the object of inference. We can identify the
Jacobian with the unknown parameters in a linear regression problem by modelling the expression of
variable p using

»

—

–

9X1pt1q . . . 9XP pt1q
...

...
9X1ptnq . . . 9XP ptnq

fi

ffi

fl

«

»

—

–

X1pt0q . . . XP pt0q
...

...
X1ptn´1q . . . XP ptn´1q

fi

ffi

fl

»

—

–

pDfq1,1 . . . pDfqP,1
...

...
pDfq1,P . . . pDfqP,P

fi

ffi

fl

(2.7)

where the gradients 9Xpptjq are approximated by finite differences, in this case pXpptjq ´Xpptj´1qq{∆j .
More generally for processes with memory the matrix may be augmented with columns corresponding
to lagged state vectors and the vector pDfqp,‚ augmented with the corresponding derivatives of the drift
function f with respect to these lagged states. To avoid confusion we write A for Df when discussing
parameters, since the drift f is unknown. Similarly, design matrices will be denoted by B to suppress
the dependence on the random variables X. So the columns of Eqn. 2.7 may be written compactly as

9Xp « BA1p,‚. (2.8)

Inference for the parameters Ap,‚ may be performed independently for each variable p. Whilst Eqn. 2.8
is fundamental for inference, one can equivalently consider the dynamically intuitive expression given by
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the rows of Eqn. 2.7:

9Xptjq « AB1j,‚. (2.9)

An interesting issue arises from the dual interpretation of the regression model as a dynamical system
(Eqn. 2.9), because there are natural restrictions on A to avoid the solution tending to infinity. For
instance if the sampling interval ∆ is constant then we require Rpλq ď 0 for each eigenvalue λ of A`∆I.
The inference schemes which we discuss do not account for this, because the condition forces a non-trivial
coupling between rows Ap,‚, jeopardizing parameter orthogonality.

Finally, the generative model is specified by substituting noisy, non-longitudinal observables Y for
latent variables X into Eqn. 2.9 and stating the dependence of the approximation error on the sampling
interval ∆j . Under a further approximation of uncorrelated Gaussian error we arrive at a model

9Yptjq „ N pA 9B1j,‚, hp∆jqDpσ2
1 , . . . , σ

2
P qq (2.10)

where h : R` Ñ R` is a variance function that must be specified and Dpvq represents the diagonal
matrix with diagonal v. The justification for assuming uncorrelated measurement error over a given
time interval ∆ must be made on a context-specific basis. In general this assumption cannot hold for
all ∆, unless the data-generating process itself induces uncorrelated trajectories. As a consequence, care
must be taken when working with unevenly sampled data, or data obtained at regular time intervals for
which the assumption of uncorrelated errors does not hold. We return to this point in Section 2.4.

There are a number of ways in which this regression is non-standard. For example, the substitution
of observations for latent variables is clearly unsatisfactory because the linear regression framework does
not explicitly allow for uncertainty in the predictor variables B. It is unclear whether this introduces
bias or leads to an overestimate of the significance of results. Moreover, it is unclear how to choose the
variance function h, since the Euler-Maruyama approximation (Eqn. 2.4) is only valid for small sampling

intervals ∆j , but in this regime the responses 9Yptjq are dominated by measurement error, such that the
data may carry little information. These issues are investigated empirically in Sections 2.3 and 2.4 below.

2.2.3 A Unifying Framework

Eqn. 2.10 describes a class of models with specific instances characterized by choice of design matrix B
and variance function h. Since any such model corresponds to the linear regression Eqn. 2.7, the task
of determining the edge structure of the network, or equivalently the location of non-zero entries in the
Jacobian A, can be cast as a variable selection problem.

A number of specific network inference schemes can now be recovered by fixing the design matrix
and variance function and coupling the resulting model with a variable selection technique. A selection
of published network inference schemes that can viewed in this way is presented in Table 2.1. One might
see these schemes classed as VAR models [Bolstad et al., 2011; Morrissey et al., 2010; Opgen-Rhein
and Strimmer, 2007; Zou and Feng, 2009], DBNs [Hill et al., 2012a; Kim et al., 2003], or ODE-based
approaches [Bansal and di Bernardo, 2007; Li and Petzold, 2008; Nam et al., 2007], although as we have
demonstrated this classification disguises their shared foundation in the linear model.

As shown in Table 2.1, the variance functions h, and therefore sampling intervals ∆j , are not treated
in a consistent way in the literature. In the special case of even sampling times ∆j “ ∆, a model is
characterized only by its design matrix. If the standard design matrix is used then the entire family of
models

Yptjq ´Yptj´1q

∆
„ N pAYptj´1q, hp∆qDpσ2

1 , . . . , σ
2
P qq (2.11)

reduces to a linear VAR(1) model

Yptjq „ N pĀYptj´1q,Dpσ̄2
1 , . . . , σ̄

2
P qq (2.12)

where Ā “ ∆A` I and σ̄2
p “ ∆2hp∆qσ2

p. More generally the VARpqq model is prevalent in the literature
(see Table 2.1), yet it does not explicitly handle uneven sampling intervals. This is a potentially important
issue since uneven sampling is commonplace in global perturbation experiments, with high frequency
sampling used to capture short term cellular response and low frequency sampling to capture the approach
to equilibrium. We discuss the importance of modelling using a variance function and whether a natural
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Design matrix B Variance Variable selection Example
function
hp∆q9

Standard ∆´2 Ridge regression Bansal and di Bernardo
[2007] “TSNIB”

Standard with lagged predictors H Group LASSO Bolstad et al. [2011]
Quadratic H Conjugate Bayesian Hill et al. [2012a]

with network prior
Standard H Information criteria Kim et al. [2003],
Non-linear (Hill) basis functions 1 AIC with backstepping Li and Petzold [2008]
Standard 1 Conditional independence

tests
Li et al. [2011] “DELDBN”

Standard H Semi-conjugate Bayesian Morrissey et al. [2010]
Standard ∆´2 SVD and pseudoinverse Nam et al. [2007]

“LEARNe”
Standard H Multi-stage analytic Opgen-Rhein and Strim-

mer [2007]
shrinkage approach

Standard and non-linear with H Granger causality Zou and Feng [2009]
lagged predictors

Table 2.1: A non-exhaustive list of network inference schemes rooted in the linear model. The exam-
ples from literature demonstrate the statistical features indicated, but may differ in some aspects of
implementation. The symbol H denotes the VARpqq model which lacks a variance function.

choice for such a function exists in Section 2.4 below. Section 2.3 explores whether inference may be
improved through the use of either non-linear basis functions or lagged predictors to capture respectively
non-linearity and memory in the underlying drift function.

2.2.4 Inference

An appealing feature of the discrete time model is that parameters corresponding to different variables are
orthogonal in the sense that the likelihood ppy|θ, Nq factorises over pAp,‚, σpq for p P P. As a consequence
network inference over N may be decomposed into P independent variable selection problems. For
definiteness we focus on just two approaches to variable selection, the Bayesian marginal likelihood and
AIC, both of which have been applied in this context previously (Table 2.1). We note that many other
approaches are available, including notably the Bayesian Information Criterion (BIC), and can be applied
here in analogy to what follows. Below we assume the response vector 9yph

´1{2 and the columns of the
design matrix Bh´1{2 are standardized to have zero mean and unit variance, but for clarity subsume
this into unaltered notation.

2.2.4.1 Bayesian Variable Selection

For simplicity, the variance function is initially taken to be constant (h “ 1). We set up a Bayesian
linear model conditional on a network N using Zellner’s g-prior [Zellner, 1986], that is with priors
Ap,‚|σ

2
p „ N p0, σ2

pnpBp
1Bpq

´1q and ppσ2
pq91{σ2

p where Bp is the design matrix B with non-predictors
removed according to N . We note that while the g-prior is a common choice, alternatives may offer some
advantages [Deltell et al., 2012; Friedman et al., 2000].

Let mp be the number of predictors for variable p in the network N . Integrating the likelihood
(induced by Eqn. 2.10) against the prior for pAp,‚, σ

2
pq produces the following closed-form marginal

likelihood

ppy|Nq 9
ź

p

ˆ

1

1` n

˙mp{2 „

9y1p 9yp ´

ˆ

n

1` n

˙

9̂y1p 9̂yp

´n{2

(2.13)

where 9̂yp “ BppBp
1Bpq

´1Bp
1
9yp. These formulae extend to arbitrary variance functions h by substituting

B ÞÑ Bh1{2, 9y ÞÑ 9yh1{2. Network inference may now be carried out by Bayesian model averaging, using
the posterior probability of a directed edge from variable i to variable j:

Pppi, jq|yq “

ř

N ppy|NqppNqItpi, jq P Nu
ř

N ppy|NqppNq
. (2.14)

29



In experiments below we take a network prior which, for each variable p, is uniform over the number of
predictors mp up to a maximum permissible in-degree dmax, that is ppNq9

ś

p

ˆ

P
mp

˙´1 I tmp ď dmaxu,

but note that richer subjective network priors are available in the literature [Mukherjee and Speed, 2008].
Finally, a network estimator N̂ is obtained by thresholding posterior edge probabilities: pi, jq P N̂ ô

Pppi, jq|yq ą ε. For small maximum in-degree dmax, exact inference by enumeration of variable subsets
may be possible. Otherwise, Markov chain Monte Carlo (MCMC) methods can be used to explore an
effectively smaller model space [Ellis and Wong, 2008; Friedman and Koller, 2003]. In the experiments
below we use exact inference by enumeration.

Posterior marginals Pppi, jq|yq close to unity indicate that the corresponding edge is very likely present
in the data-generating network, modulo the assumptions of the statistical model. In general, interpreta-
tion of the network estimator N̂ is necessarily context-specific and in some cases may be difficult. For
instance, in settings where variables in the dynamical system are highly correlated, the statistical phe-
nomenon of multicollinearity, whereby posterior mass is shared between correlated predictor variables,
requires a joint interpretation of the posterior marginals. For applications where posterior marginals are
themselves covariates, e.g. classification or regression, such problems may be minor.

2.2.4.2 Variable Selection by Corrected AIC

Again, consider a constant variance function (h “ 1); rescaling as described above recovers the general

case. The usual maximum likelihood estimates Âp,‚ “ pBp
1Bpq

´1Bp
1
9yp and σ̂2

p “
1
n

ř

jp 9ypptjq´ 9̂ypptjqq
2

induce closed forms Cpσ̂
´n
p for the maximized factors of the likelihood function, where Cp is a constant

not depending on the choice of predictors. Corrected AIC scores [Burnham and Anderson, 2002] for each
variable p are then

AICcpp,Nq “ n logpσ̂2
pq ` 2mp `

2mppmp ` 1q

n´mp ´ 1
. (2.15)

Again we consider all models with maximum permissible in-degree dmax. Lowest scoring models are
chosen for each variable in turn, inducing a network estimator N̂ .

2.3 Results

In this Section, we present empirical results investigating the performance of a number of network
inference schemes that are special cases of the general formulation described by Eqn. 2.10. Objective
assessment of network inference is challenging [Prill et al., 2010], since for most biological applications
the true data-generating network is unknown. We therefore exploit two published dynamical models of
biological processes, namely Cantone et al. [2009] and Swat et al. [2004], described in detail in Appendix
A.1. The first is a synthetic gene regulatory network built in the yeast Saccharomyces cerevisiae. This five
gene network and associated delay differential equations (DDEs) has received attention in computational
biology [Camacho and Collins, 2009; Minty et al., 2009], and has been shown to agree with gold-standard
data (at least under an EpfpFXqq « fpFEpXqq assumption). Cantone et al. consider two experimental
conditions; “switch-on” and “switch-off”. Here the switch-on parameter values were used to generate
data. The Swat model is a gene-protein network governing the G1/S transition in mammalian cells. The
model has a nine dimensional state vector and, unlike Cantone, is Markovian. We note that this model
has not been directly verified in the manner of Cantone but is based on a theoretical understanding
of cell cycle dynamics. There is undoubtedly bias from this essentially arbitrary choice of dynamical
systems but a comprehensive sampling of the (vast) space of possible networks and dynamics is beyond
the scope of this thesis.

2.3.1 Experimental Procedure

2.3.1.1 Simulation

We consider global perturbation data by initializing the dynamical systems from out of equilibrium
conditions. This is a common setting for network inference approaches, but the limitations of inference
from such data remain unclear. For each dynamical system f , trajectories Xk of single cell expression
levels were obtained as solutions to the SDDE Eqn. 2.1 with drift f and uncorrelated diffusion gpXq “
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σcellDpXq (representing multiplicative cellular noise). Trajectories were obtained by numerically solving
SDDEs with heterogeneous initial conditions using the Euler-Maruyama discretisation scheme (Eqn.
2.4). Whilst the dynamical systems f are guaranteed to produce non-negative trajectories, the same
need not be true of the corresponding SDDE. To mitigate this issue, the Euler-Maruyama scheme was
modified to reflect integration steps in the Xp “ 0 axes where necessary, in order to preserve positivity.

To mimic destructive sampling and consequent non-longitudinality, solutions were regenerated at each
time point. We are interested in data that are averages over a large number N of single-cell trajectories.
However, the computational cost of solving N ˆ n SDDEs to produce each data set is prohibitive.
Therefore, only a smaller number N˚ ăă N of cells were simulated and a larger sample N then obtained
by bootstrapping, i.e. re-sampling from the N˚ trajectories uniformly with replacement. In practice N˚

was taken sufficiently large such that a negligible change in experimental outcome results from further
increase in N˚. Initial conditions for single cell trajectories varied with standard deviation σcell. Finally,
uncorrelated Gaussian noise of magnitude σmeas was added to simulate a measurement process with
additive error. (Whilst this may result in negative data values, the regression models considered here
do not rely on positivity.) In the experiments presented below, N “ 10, 000, N˚ “ 30 and n “ 20 time
points are taken within the dynamically interesting range (0-280 minutes for Cantone and 0-100 minutes
for Swat). Measurement error and cellular noise are set to give signal-to-noise ratios xXy {σmeas « 10,
xXy {σcell « 10 (here xXy represents the average expression levels of the variables X over all generated
trajectories).

Fig. 2.1 shows typical datasets for the two dynamical systems. Whilst the data-generating procedure
described above only captures a handful of the features of real experimental data, it is substantially richer
than the majority of simulation studies which currently appear in the relevant literature. It is therefore
interesting to assess existing statistical procedures in this context, where several modelling assumptions
are likely to be violated.

2.3.1.2 Inference Schemes

The inference schemes which were assessed consisted of combinations from the following set of specifica-
tions:

Variable Selection { Bayesian, AICc }
Design matrix { Standard, Quadratic }
Lagged predictors { No, Yes }
Variance function hp∆q9∆´α α “ { 0, 1, 2 , H }

For the design matrix “quadratic” refers to the augmentation of the predictor set by the pairwise products
of predictors, the simplest non-linear basis functions. For the variance function the symbol H is used to
denote the VARpqq model, which formally lacks a variance function. “Lagged predictors = Yes” indicates
augmentation of the predictor set with lagged observations (a lag of « 28 mins is used for Cantone and
« 10 mins for Swat). There are heuristic justifications for each of the candidate variance functions. For
example the function with α “ 2 appears for small ∆j when an exact Euler approximation and additive
measurement error are assumed [Bansal and di Bernardo, 2007], whereas α “ 1 is reminiscent of the
Euler-Maruyama discretisation Eqn. 2.4.

2.3.1.3 Empirical Assessment

The performance of each inference scheme is quantified by the area under the receiver operating charac-
teristic (ROC) curve (AUR), averaged over 20 datasets [Fawcett, 2005]. This metric, equivalent to the
probability that a randomly chosen true edge is preferred by the inference scheme to a randomly chosen
false edge, summarizes, across a range of thresholds, the ability to select edges in the true data-generating
graph. Results presented below use a computationally favourable in-degree restriction dmax “ 2. In order
to check robustness to dmax experiments were repeated using dmax “ 3, with no substantial changes in
observed outcome (Fig. 2.3(b)).

2.3.2 Empirical Results

2.3.2.1 Even Sampling Interval

Fig. 2.2(a) displays box-plots over AUR scores for the Cantone dynamical system under even sampling
intervals. Note that under even sampling, for an otherwise identical scheme, changing variance function
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(a) Data generated from Cantone et al. [2009]
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(b) Data generated from Swat et al. [2004]

Figure 2.1: Two published dynamical models of cellular processes were used to generate datasets. Single
cell trajectories were generated from an SDDE model (Eqn. 2.1) and averaged under measurement noise
and non-longitudinality due to destructive sampling. (a) Data generated from (a model due to) Cantone
et al. [2009], describing a synthetic network built in yeast. (b) Data generated from Swat et al. [2004],
a theory-driven model of the G1/S transition in mammalian cells.

does not affect the model, leading to identical AUR scores for schemes which differ only in variance
function. (An exception to this is the VAR model, since the parameters A carry a subtly different
meaning, which under a Bayesian formulation leads to a translation of the prior distribution and in the
information criteria case changes the definition of the predictor set.)

Despite the presence of non-linearities and memory in the cellular drift f , neither the use of quadratic
basis functions nor the inclusion of lagged predictors appear to improve performance in terms of AUR.
In order to verify that quadratic predictors are sufficiently non-linear and that lagged predictors are
sufficiently delayed, we repeated the investigation using both cubic predictors and using a delay twice as
long. Results (Figs. 2.2(c), 2.2(d)) demonstrate that no improvement to the AUR scores is achieved in
this way.

Corresponding results for the Swat model are shown in Fig. 2.2(b). Here we find that none of
the methods performs well. Note that these results are specific to the choice of experimental sampling
interval ∆; in particular if data were generated using a different interval ∆1 ‰ ∆ then the statistical
models place different assumptions on the data-generating process, which could lead to the selection of
different edges in the network estimator N̂ . This point is discussed further in Section 2.4.1.

We also performed inference using biochemical data from the experimental system reported in Can-
tone et al. [2009] (specifically the switch-on dataset). AUR scores obtained using this data (Fig. 2.3(a))
were in close agreement with those obtained using synthetic data (Fig. 2.2(a)), suggesting that the
results of the simulations may be relevant to real world studies.

2.3.2.2 Uneven Sampling Intervals

Many biological time-course experiments are carried out with uneven sampling intervals. We therefore
repeated the analysis above with sampling times of 0, 1, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90, 105, 120,
140, 160, 180, 210, 240 and 280 minutes. Fig. 2.3(c) displays the AUR scores so obtained. We find that
all the methods perform worse in the uneven sampling regime, with no method performing significantly
better than random. Corresponding results for the Swat model are shown in Fig. 2.3(d). Again, here
we find that none of the methods performs well.

2.3.2.3 Consistency

Fig. 2.4(a) displays AUR scores for Cantone for a large number of evenly sampled time points (n “ 100),
and the limiting case of zero measurement noise and zero cellular heterogeneity (σmeas “ 0, σcell “ 0,
even sampling intervals). Consistency (in the sense of asymptotic convergence of the network estimate
to the data-generating network) may be unattainable due to non-identifiability resulting from limited
exploration of the dynamical phase space. However, as we have seen, network inference can nonetheless
be informative. From Fig. 2.4(a) we see that the Bayesian schemes using linear predictors approach
AUR equal to unity, and in this sense show empirical consistency with respect to network inference.
However, some of the other methods do not converge to the correct graph even in this limit.
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Figure 2.2: An empirical comparison of network inference schemes. Simulated experiments based on
the published dynamical systems of Cantone et al. [2009]; Swat et al. [2004] allow benchmarking of
performance in terms of area under ROC curves (AUR; higher scores correspond to better network
inference performance). (a) AUR for Cantone et al, even sampling times. (b) AUR for Swat et al, even
sampling times. (c) AUR for Cantone et al, even sampling times, with cubic predictors. (d) AUR for
Cantone et al, even sampling times, with a delay of double duration.
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Figure 2.3: An empirical comparison of network inference schemes. Experiments based on the published
dynamical systems of Cantone et al. [2009]; Swat et al. [2004] allow benchmarking of performance in terms
of area under ROC curves (AUR; higher scores correspond to better network inference performance). (a)
AUR for Cantone et al, even sampling times, based on in vivo data. (b) AUR for Cantone et al, even
sampling times, using dmax “ 3. (c) AUR for Cantone et al, uneven sampling times. (d) AUR for Swat
et al, uneven sampling times.
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Figure 2.4: An empirical comparison of network inference schemes. Simulated experiments based on
the published dynamical systems of Cantone et al. [2009]; Swat et al. [2004] allow benchmarking of
performance in terms of area under ROC curves (AUR; higher scores correspond to better network
inference performance). (a) AUR for Cantone et al, even sampling times. (b) AUR for Swat et al, even
sampling times. (c) AUR for Cantone et al, uneven sampling times. (d) AUR for Swat et al, uneven
sampling times.
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Figure 2.5: An empirical comparison of network inference schemes. Simulated experiments based on
the published dynamical systems of Cantone et al. [2009]; Swat et al. [2004] allow benchmarking of
performance in terms of area under ROC curves (AUR; higher scores correspond to better network
inference performance). (a) AUR for Cantone et al, even sampling times, single cell data. (b) AUR
for Swat et al, even sampling times, single cell data. (c) AUR for Cantone et al, even sampling times,
inhibition data. (d) AUR for Swat et al, even sampling times, inhibition data.
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Figure 2.6: Variance functions used in literature provide partial approximation to the “true” functional
form for Cantone et al. [2009]. For small time steps a power law ∆´α provides a good approximation,
but for larger time steps a constant variance function may be more appropriate. In practice the precise
form of htrue will be unknown.

2.4 Discussion

The analyses presented here were aimed at better understanding statistical network inference for bio-
logical applications. We showed how a broad class of approaches, including VAR models, linear DBNs
and certain ODE-based approaches, are related to stochastic dynamics at the cellular level. We discuss
a number of these aspects below and close with some views on future perspectives for network inference,
including a statistical basis for more advanced work in Chapter 3.

2.4.1 Statistical Models for Longitudinal Data

In this Chapter we focussed on the popular approach of using DBNs to model time-varying dynamics.
We found that uneven sampling intervals posed problems, even for methods that explicitly accounted
for variation in the sampling interval. Further insight may be gained from uncertainty propagation
analysis of the approximations indicated in Section 2.2.2: Assuming the true large sample process obeys
dX8{dt “ FpX8q, we have that under an observation process with independent additive Gaussian

measurement error Yptq „ N pX8ptq,Mq an expansion for the variance Vp 9Y ´ FpYqq over a time
interval ∆ is given by

M∆´2 ` pI∆´1 `DFqMpI∆´1 `DFq1 ` . . . (2.16)

(see Section A.2.1 for details). Recall that the model family in Eqn. 2.10 approximates this variance
by hp∆qDpσ2

1 , . . . , σ
2
P q where hp∆q “ ∆´α. From this perspective it is clear that each variance function

we considered captures only partial variation due to ∆. It is therefore not surprising that performance
suffers in the uneven sampling regime, which requires the variance function to apply equally to large ∆
as to small ∆. Moreover, a natural choice of variance function driven by Eqn. 2.16 is not possible, since
this would require knowledge of the unknown process F. The implication for experimental design is that
absent specific reasons for uneven sampling, it may be preferable to collect data at regular intervals.

Fig. 2.6 displays an approximation to the true variance function for the Cantone model (see Section
A.2.3). Observe that for small sampling intervals ∆ the true variance is best captured by a functional
approximation of the form hp∆q9∆´α with α “ 1, 2, whereas for intervals larger than 10 mins (which are
more common in practice) the flat approximation hp∆q91 correctly captures the asymptotic behaviour.
In applications where high frequency sampling is infeasible the flat variance function might be a sensible
choice. To understand whether difficulties pertaining to sampling intervals disappear in the large sample
limit, we repeated the empirical consistency analysis under uneven sampling (Figs. 2.4(c), 2.4(d)).
Interestingly, we found that none of the methods appeared to be empirically consistent, and that the
choice of variance function is influential. However, unevenly sampled data are common in biology and it
may be the case that in some settings, the existence of multiple time scales (e.g. signalling, transcription,
accumulating epigenetic alterations) mean that unevenly sampled data are nonetheless useful. Our
findings suggest that care should be taken in the uneven sampling regime.
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We focussed attention on DBNs together with regression models due to their prevalence in the
bioinformatics literature (Table 2.1). Yet the use of DBNs together with regression models is problematic
in several respects: (i) It is not clear how to enforce dynamic invariants; (ii) additional conditions
required for probabilistically bounding the trajectories (i.e. RpA `∆Iq ă 0) can lead to intractability

of the likelihood; (iii) if the incremental covariance Covp 9Y ptjq ´ A 9B1j,‚q is defined to be diagonal on
a characteristic time scale ∆ then, unless A is a diagonal drift matrix, the incremental covariance
will be non-diagonal on a time scale ∆1 ‰ ∆. Problem (iii) is particularly concerning, since for data
which are unevenly sampled in time, the uncorrelated statistical models considered here do not capture
the ∆-dependent covariance of the data-generating process. Moreover, even in the favourable case of
even sampling, inference requires the major assumption that data were generated on a time scale such
that the incremental distribution is uncorrelated. In practice, this means a change in the experimental
sampling time interval ∆ can lead to the inclusion of different edges in the network estimator N̂ , even
in the favourable limit of large data. There exist alternative statistical methodologies which do not
suffer from problems (i-iii); these include Continuous Time Bayesian Networks [Nodelman et al., 2002]
and Multiregression Dynamic Models [Queen and Smith, 1993]. It would be interesting to investigate
whether these alternative approaches offer gains in the uneven sampling regime considered above.

2.4.2 Interventional Data

The Cantone data are favourable in the sense that trajectories show interesting time-varying behaviour
under global perturbation, exploring a large proportion of the dynamical phase space. However such
behaviour is dependent on the specific dynamical system and is not displayed by the Swat model, which
has a much larger phase space, being a nine-dimensional dynamical system. This may help explain the
poor performance of all the methods on this latter model using global perturbation data and perhaps
reinforces the intuitive notion that dynamics that are favourable (in this informal sense) facilitate network
inference. In some cases, perturbation data are available in which individual variables are inhibited (e.g.
by RNA interference, gene knock-outs or inhibitor treatments). Such data have the potential to explore
much more of the dynamical phase space, including regions which cannot be accessed without direct
inhibition of specific molecular components. This is an important consideration because the statistical
estimators described in Section 2.2.4 take the form

Â “ xDfpFXqyX (2.17)

where the average is over the region in state space visited during the experiments. Clearly if this region
is only a small subspace of phase space then the estimate Eqn. 2.17 will be poor compared to one based
on the entire phase space.

To investigate the added value of interventional treatments for network inference, we repeated both
the Cantone and Swat analyses with an ensemble of datasets obtained by inhibiting each variable in
turn; this gave 5 and 9 datasets for Cantone and Swat respectively. Whilst no improvement to the
Cantone AUR scores was observed (Fig. 2.5(c)), there was improved performance for Swat (Fig. 2.5(d)).
This suggests that global perturbations are insufficient to explore the Swat dynamical phase space, and
supports the intuitive notion that intervention experiments may be essential for inference regarding
larger dynamical systems. Nevertheless AUR scores remain far from unity. This may be because the
Swat drift function contains complex interaction terms which single interventions alone fail to elucidate.
An important problem in experimental design will be to estimate how much (possibly combinatorial)
intervention is required to achieve a certain level of network inference performance. Theoretical work
including Hauser and Bühlmann [2012] quantifies the extent to which interventions are necessary to
distinguish between competing causal models; we focussed on the practical challenge of constructing
statistical estimators for this purpose.

We considered precise artificial intervention of single components in silico. However, biological in-
terventions may be imprecise and imperfect. For example, RNA interference achieves only incomplete
silencing of the target and small-molecule inhibitors (Section 1.1.4) may have off-target effects. Moreover,
at present such interventions are not instantaneous nor truly exogenous. This means that in many cases
the system itself may be changed by the intervention, rendering resulting predictions inaccurate for the
native system of interest. There remains a need for novel statistical methodology capable of analysing
time-course data under biological interventions. Existing literature in causal inference [Pearl, 2009] and
related work in graphical models [Eaton and Murphy, 2007] are relevant, but in biological applications
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it may also be important to consider the mechanism of action of specific interventions.

2.4.3 Non-linear Models

We focused on linear statistical models. Clearly, linear models are inadequate in many cases. For example
Rogers et al. [2007] demonstrate the benefit of a non-linear model based on Michaelis-Menten chemical
kinetics for inference of transcription factor activity. In Chapter 3 we attempt to integrate non-linear
models of enzyme kinetics into inference for protein phosphorylation networks. Alternatively Äijö and
Lähdesmäki [2009] consider the use of a non-parametric Gaussian process (GP) interaction term in the
regression, which is naturally more flexible than linear regression using finitely many basis functions. This
may help to overcome the linearity restriction, but introduces additional degrees of freedom, including
the GP covariance function and associated hyper-parameters. Whilst a thorough comparison of such
approaches was beyond the scope of this thesis, the potential utility of non-parametric interaction terms
is worthy of investigation. In this study we observed that neither the use of predictor products nor lagged
predictors led to improved performance; this may reflect non-trivial coupling between cellular dynamics
and the observed data.

2.4.4 Single-Cell Data

In the future it may become possible to obtain high-throughput measurements for single cell expression
levels Xk non-destructively (e.g. by live cell imaging), producing truly longitudinal datasets. It is
interesting to consider how such data may impact upon the performance of regression-based network
inference. Under independent additive Gaussian measurement error Yptq „ N pXkptq,Mq uncertainty

propagation for the single cell variance Vp 9Y ´ fq over a time interval ∆, in analogy with Eqn. 2.16, is
given by

M∆´2 ` pI∆´1 `DFqMpI∆´1 `DFq1 `∆´1gg1 ` . . . (2.18)

(see Section A.2.2). Thus a (single) longitudinal single cell dataset contains less information about the
drift f than aggregate data (Eqn. 2.16) due to cellular stochasticity g. However, multiple longitudinal
datasets may jointly contain more information than a single aggregate dataset. To empirically test the
utility of such data, we carried out network inference using 10 such longitudinal single-cell datasets on
both the Cantone and Swat models, observed at even intervals with the same magnitude of measurement
error as aggregate data. Results (Figs. 2.5(a), 2.5(b)) show a small improvement to the mean AUR scores,
but reduction by a factor of about two in the variance of these scores (compared with the corresponding
non-longitudinal data), implying that the network estimators may be converging to an incorrect network.
Bias may occur when the cellular drift f is not well approximated by a linear function, as is the case
for the Swat model. Consider the idealized scenario where f ” fpXq is Markovian and it is possible to
observe longitudinal, single cell expression levels. Under these apparently favourable circumstances even
estimators obtained after a thorough exploration of state space may not offer good approximations. As
a toy example consider the cellular drift

f : r0, πs2 Ñ R, fpXq “

ˆ

sinpX2q

sinpX1q

˙

(2.19)

which is not well approximated by a linear function over the state space r0, πs2. In this case averaging
leads to cancellation

xDfpXqyXPr0,πs2 “

Bˆ

0 cospX2q

cospX1q 0

˙F

XPr0,πs2
“

ˆ

0 0
0 0

˙

(2.20)

so that no interactions are inferred. Under such circumstances network inference is no longer possible
using the näıve linear regression approach. This suggests that network inference rooted in non-linear
models may be needed to fully exploit longitudinal single-cell data in the future. A related line of work
addresses heterogeneity of the drift function in time by coupling DBNs with change point processes
[Dondelinger et al., 2012; Grzegorczyk and Husmeier, 2011; Kolar et al., 2009; Lèbre et al., , 2010]. A
promising direction would be piecewise linear regression modelling for network inference applications,
where the heterogeneity appears in the spatial domain.
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2.4.5 Future Perspectives

We found that a simple linear model could approximately recover network structure from globally per-
turbed time-course data from the Cantone system. It is encouraging that inference based only on
associations between variables, none of which were explicitly intervened upon, can in some cases be effec-
tive. Interventional designs should further enhance prospects for network inference. On the other hand,
theoretical arguments, and the results we showed from the Swat system, emphasize that in some cases
network structure may not be identifiable, even at the coarse level required for qualitative biological pre-
diction. On balance, we believe that network inference can be useful in generating biological hypotheses
and guiding further experiment. However, the concerns we raise motivate a need for caution in statistical
analysis and interpretation of results. At the present time, we do not believe network inference should
be treated as a routine analysis in bioinformatics applications, but rather as an open research area that
may, in future, yield standard experimental and statistical protocols.

Some specific recommendations that arise from the results presented here are:

• A default model. Our results suggest that a reasonable default choice of model for typical appli-
cations uses the standard design matrix with no lagged predictors and a flat variance function,
corresponding to the linear model

9Yptjq „ N pAYptj´1q,Dpσ2
1 , . . . , σ

2
P qq. (2.21)

Coupled with the Bayesian variable selection scheme outlined in Section 2.2.4.1, this simple model
produced empirically consistent network estimators for Cantone using evenly sampled global per-
turbation data. In Chapter 3 this model forms the basis for more sophisticated network inference
procedures.

• Diagnostics and validation. Network inference as described in Section 2.2.1 does not enjoy general
theoretical guarantees and the ability to successfully elucidate network structure depends on details
of the specific system under study. Therefore careful empirical validation on a case-by-case basis is
essential. This should include statistical assessment of model fit, robustness and predictive ability
and where possible systematic validation using independent interventional data (though this may
itself be challenging).

• Experimental design. We suggest sampling evenly in time as a default choice. Interventional designs
may be helpful to effectively explore larger dynamical phase spaces. However, to control the burden
of experimentally exploring multiple time points, molecular species, interventions, culture condi-
tions and biological samples, adaptive designs that prune experiments based on informativeness for
the specific biological setting may be helpful (e.g. [Xu et al., 2010]).

In conclusion, linear statistical models for networks are closely related to models of cellular dynamics
and can shed light on patterns of biochemical regulation. However, biological network inference remains
profoundly challenging, and in some cases may not be possible even in principle. Nevertheless, studies
aimed at elucidating networks from high-throughput data are now commonplace and play a prominent
role in biology. For this reason there remains an urgent need in this application area for both (i) im-
proved methodology and (ii) theoretical and empirical investigation of existing approaches. For (i) main
challenges include resolving the problem of the dependence of statistical estimators upon a particular
choice of time scale, accounting for measurement errors present in the predictor variables, addressing in-
terpretation under the possibility of multicollinearity, and addressing the possibility of latent variables in
this context. For (ii) main challenges include establishing mathematical conditions for consistency of the
Bayes factors, establishing finite-sample properties for network estimators, and improving the realism of
simulation benchmarking approaches. Furthermore, there remain many open questions in experimental
design and analysis of designed experiments in this setting.
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Chapter 3

Network Inference and Dynamical
Prediction Using Chemical Kinetics

In Chapter 2 we saw that statistical estimation of networks is usually based on linear (or discrete)
formulations. However biological networks N represent structural summaries of dynamical systems which
are generally non-linear. In this Chapter we present methodology for network inference that is rooted
in non-linear chemical kinetics. This is done by considering a dynamical system based on a chemical
reaction graph G that summarises chemical reactions and associated parameters. Inference regarding
G is carried out within a Bayesian framework that accounts for both model complexity and fit-to-data.
Prediction of dynamical behaviour is achieved by averaging over both reaction graphs and associated
parameters, allowing prediction even when the reaction graph itself is unknown or uncertain. We show
results on data simulated from a recent mechanistic model of MAPK signalling and on phosphoproteomic
data from cancer cell lines. Our results demonstrate that the use of non-linear kinetics within statistical
network modelling can yield gains in estimation of biological networks as well as dynamical prediction.

3.1 Introduction

Statistical network models are typically rooted in linear or discrete descriptions of biological dynamics (see
Chapter 2). The statistical and computational tractability of such formulations facilitates exploration of
large spaces of networks. On the other hand, when the network topology is known, non-linear ordinary
differential equations (ODEs) are widely used to model dynamics Chen et al. [2009]; Kholodenko [2006];
Leskovac [2003]; Steijaert et al. [2010]. The intermediate case where non-linear ODEs are employed to
select between network models has received less attention.

For causal inference, linear formulations remain unsatisfactory for several reasons: (1) Variates may be
highly correlated, often due to underlying dynamics. Flexibility inherent in the linear approach requires
that modifications are made to the linear model in order to exclude non-causal but highly correlated
variates [Cho and Fryzlewicz, 2012]. (2) Symmetry of the linear equivalence in general limits identification
of underlying causal relationships [Pearl, 2009; Peters et al., 2011]. (3) When the data generating model
is non-linear, the linear model may produce inefficient or inconsistent estimation, attributing causal
status to artefacts resulting from model misspecification [Heagerty and Kurland, 2001; Lv and Liu,
2010]. Indeed, we saw in Chapter 2 that such bias can prevent recovery of the correct network even in
favourable asymptotic limits of large sample size and low noise.

Biochemical processes underlying biological networks are often highly non-linear and, in many set-
tings, non-linear dynamical models of relevant biochemical processes are available (see Chapter 2). Where
such models are available, it is natural to ask whether they may be exploited to facilitate network in-
ference, since an appropriate non-linear formulation may have enhanced power to exclude non-causal
variates. Note that due to the added complexity of non-linear formulations, it is not a priori obvious
that they must outperform simpler models, under practical conditions of sample size and measurement
noise. As we show below, such information can be valuable in guiding exploration of network topologies.

Kinetic formulations have been widely studied in the systems biology literature and, as discussed
in Chapter 2, recently there has been much interest in statistical inference for such systems [e.g. Chen
et al., 2009; Xu et al., 2010]. Our work is in a similar vein, but focuses on network inference per se.
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While biochemical assays have become cheaper, it remains the case that experimental designs must
often negotiate a trade off between more conditions (e.g. perturbations, biological samples, technical
replicates) and temporal resolution. Methodologies which can exploit knowledge concerning relevant
dynamical systems in the steady-state setting are therefore potentially valuable.

Here, we propose an approach that uses non-linear dynamical models to carry out both network
inference and dynamical prediction. We proceed by considering a dynamical system fG that depends on
a chemical reaction graph G, characterising reactions in the system Craciun and Pantea [2008]. Letting

Xptq P RP` denote a state vector describing system configuration at time t, we have 9Xptq “ fGpXptq,θq,
where θ collects together all unknown parameters, such as rates of reaction. Given time-course data y
consisting of noisy measurements of X, we carry out inference within a Bayesian framework to obtain a
posterior distribution over reaction graphs G,

ppG|yq 9 ppGqppy|Gq “ ppGq

ż

ppy|θ, Gqppθ|Gqdθ (3.1)

where the marginal likelihood ppy|Gq captures how well the chemical reaction graph G describes data y,
taking into account model complexity. Recall that from Chapter 1 that a biological network N ” NpGq
is a coarse summary of the reaction graph G in which each species appears as a single node and directed
edges indicate that the parent is involved in chemical reaction(s) which have the child as product. In
contrast to linear or discrete approaches based on biochemical networks N , our likelihood ppy|θ, Gq
depends on (richer) reaction graphs G with corresponding dynamical models fG. Importantly, we do
not assume detailed knowledge of the dynamical system, but only the broad class to which dynamics
and associated equilibria may belong. Indeed, the approach we describe does not require any kinetic
parameters to be known a priori, nor knowledge of the reaction topology, and is in that sense directly
comparable with conventional network inference methods. Its potential advantage stems from then rich
yet constrained nature of the class of functional relationships that are considered. As recently discussed in
Peters et al. [2011], non-linear functional forms can aid in identification of underlying causal relationships.
Indeed non-linear formulations are able to confer asymmetries between nodes which may be sufficient to
enable orientation of all edges [Peters et al., 2011]. As a consequence, our proposal can in principle aid
in causal network inference. We demonstrate empirically below that our approach outperforms linear
methods with respect to causal network inference. Further, in contrast to linear models, in our approach
the mechanistic roles of individual variables are respected. This facilitates analysis of interventional data
and enhances scientific interpretability. Since prediction of dynamical behaviour (e.g. trajectories under
intervention) in general depends on the reaction graph, in settings where the graph itself is unknown or
uncertain, our methodology can aid in prediction. Empirical results in this Chapter demonstrate the use
of our methods for dynamical prediction in this setting.

In a recent paper, [Xu et al., 2010] demonstrated that statistical model selection based on four hand-
crafted non-linear ODE models could be used to elucidate signalling mechanism. The work we present
differs from [Xu et al., 2010] in motivation and approach in that we carry out general network inference
(over correspondingly large model spaces) and use automatically-generated rather than hand-crafted
biochemical models.

The approach we propose is general and can be used in many settings where kinetic formulations
are available to describe the dynamics, including gene regulation, metabolism and protein signalling.
For definiteness we focus on protein signalling networks mediated by phosphorylation. As discussed
in Section 1.1.3, protein phosphorylation is central to diverse biological processes and plays a key role
in disease states including cancer [Weinberg, 2007]. Phosphorylation kinetics have been widely studied
[Kholodenko, 2006]; here we employ ODEs based on Michaelis-Menten functionals (see Chapter 1, Section
1.3.4).

The remainder of the Chapter is organized as follows. First, we introduce the model and associated
statistical formulation. Second, we discuss statistical inference and prediction using these models. Third,
we show empirical results, comparing our proposal to existing approaches. We carry out in silico assess-
ment using a mechanistic model of MAPK signalling [Xu et al., 2010], under a range of data-generating
regimes, and apply the method to phosphoproteomic time course data from human cancer cell lines.
Finally, we discuss our findings, including directions for further work.
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Figure 3.1: Chemical Model Averaging (CheMA). Chemical reaction graphs G summarize interplay that
is described quantitatively by a kinetic model fG. Candidate graphs G are scored against observed time
course data y in a Bayesian framework. Averaging over the space of reaction graphs G facilitates both
network inference and dynamical prediction. A biological network N gives a coarse summary of the
system; marginal posterior probabilities of edges in N quantify evidence in favour of causal relationships.
Prediction of dynamic response to hypothetical drug regimens may be carried out even when the true
reaction graph is unknown.

3.2 Methods

In this Section we describe the proposed methodology in the specific context of protein phosphorylation
networks (Fig. 3.1). We begin by constraining chemical reaction graphs G to reflect known biochemistry
in this setting and consider associated ODE models. We then discuss statistical inference and prediction.

3.2.1 Reaction Graphs for Protein Phosphorylation

We consider proteins X1, . . . ,XP . Each Xi can be phosphorylated to X ˚i ; the set of phosphorylated
proteins is X ˚. Phosphorylation reactions Xi Ñ X ˚i are catalysed by enzymes X ˚E : E P Ei; the subscript
indicates that each protein may have a specific set of enzymes (enzymes catalysing phosphorylation
are known as kinases, we use both terms interchangeably). We consider the case in which the kinases
themselves are phosphorylated proteins (if phosphorylation of Xi is not driven by an enzyme in X ˚, we
set Ei “ H). For simplicity we do not consider multiple phosphorylation sites, other post-translational
modifications such as ubiquitinylation, nor spatial effects. The ability of enzyme XE : E P Ei to catalyse
phosphorylation of Xi may be inhibited by phosphoproteins XI : I P Ii,E Ă X ˚; the double subscript
indicates that inhibition is specific to both substrate Xi and enzyme E (see below). The chemical reaction
graph G provides a visual representation of the sets Ei and Ii,E ; Fig. 3.1 contains an illustrative example
(top left). A biological network NpGq is formed by drawing exactly P vertices and edges pi, jq indicating
that X ˚i is either an enzyme catalysing phosphorylation of Xj , or an inhibitor of such an enzyme. That
is, pi, jq P N ðñ i P Ej _DE ¨ i P Ij,E . For the example shown in Fig. 3.1, the corresponding biological
network N is the directed graph AÑ C Ð B.

3.2.2 Phosphorylation Kinetics

The chemical reaction graph G can be decomposed into local reaction graphs Gi describing enzymes
(and their inhibitors) for phosphorylation of protein Xi. For simplicity of exposition, in what follows we
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Figure 3.2: Statistical models of enzyme kinetics. (a) An example of a chemical reaction graph for
protein phosphorylation. (b) A statistical formulation (graphical model) for phosphorylation of species
Xi is characterised by specifying the index set of kinases (E P Ei) and their inhibitors (I P Ii,E).
[Bounding boxes are used to indicate multiplicity of variables, shaded nodes are observed with noise.]

consider inference concerning Gi; thus Xi plays the role of the substrate. We write Xi, X
˚
i P R` for the

concentrations of protein species Xi,X ˚i respectively.

We use kinetic models fG based on Michaelis-Menten functionals [Kholodenko, 2006; Leskovac, 2003;
Steijaert et al., 2010]. The rate of phosphorylation due to kinase E is given by VEX

˚
EX

h
i {pX

h
i `Kh

Eq,
which acknowledges variation of kinase concentration X˚E and permits kinase-specific response profiles,
parametrised by KE and h, with rate constant VE . In subsequent experiments the Hill coefficient h is
taken equal to 1 (non-cooperative binding). We entertain competitive inhibition, where substrate and
inhibitor I compete for the same binding site on the enzyme (X ˚EX ˚I é X ˚E é X ˚EXi Ñ X ˚E ` X ˚i ).
When multiple inhibitors (X ˚I ,X ˚J ) are present, they are assumed to act exclusively, competing for the
same binding site on the enzyme (X ˚EX ˚I é X ˚E é X ˚EX ˚J ), corresponding mathematically to a rescaling
of the Michaelis-Menten parameter KE ÞÑ KEp1 `

ř

IPIS,E
X˚I {KIq. We do not model phosphatase

specificity; in particular, dephosphorylation is assumed to occur at a rate V0X
˚
i {pX

˚
i `K0q, depending

on a Michaelis-Menten parameter K0 and taking a maximal value V0. Combining these assumptions
produces a kinetic model for phosphorylation of substrate Xi, given by

fG,ipX,θiq “ ´
V0X

˚
i

X˚i `K0
`

ÿ

EPES

VEX
˚
EXi

Xi `KE

´

1`
ř

IPIS,E

X˚I
KI

¯ (3.2)

where state vector X collects together concentrations X1, . . . , XP , X
˚
1 , . . . , X

˚
P , parameter vector θi

contains the maximum rates V and Michaelis-Menten constants K, and the (local) graph Gi specifies
the sets Ei and Ii,E (Fig. 3.2(a)). Further information on the construction of Eqn. 3.2 can be found
in Chapters 2-4 of Leskovac [2003]; see also Section 1.3.4. The complete dynamical system fG is given
by taking, for each species i P P, a model akin to Eqn. (3.2). In this way we are able to automate the
generation of parametric ODE models for the system.

3.2.3 Statistical Formulation

Data y comprise observations yiptjq and y˚i ptjq proportional to the concentrations Xi, X
˚
i of unphos-

phorylated and phosphorylated forms, respectively, of species Xi,X ˚i at discrete times tj , 0 ď j ď n.
Data are scale-normalized to give unit mean for each protein. Observables are related to dynamics via
an Euler approximation ziptjq “ py

˚
i ptjq ´ y˚i ptj´1qq{ptj ´ tj´1q. Below we describe inference regarding

the local reaction graph Gi for a single species Xi; iterating over i P P permits inference concerning the
complete reaction graph G. The ODE model fG,i (Eqn. (3.2)) is formulated as a statistical model by
constructing, conditional upon (unknown) Michaelis-Menten parameters K, a design matrix DpKq with
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rows
«

´
y˚i

y˚i `K0
, . . . ,

y˚Eyi

yi `KE

´

1`
ř

IPIi,E

y˚I
KI

¯ , . . .

l jh n

EPEi

ff

, (3.3)

and then interpreting Eqn. (3.2) statistically as

z “ DpKqV ` ε, ε „ N p0, σ2Iq (3.4)

where z “ rzipt1q, . . . , ziptnqs
T . Here N denotes a normal distribution with uncorrelated covariance σ2I

and, as above, V is the vector of maximum reaction rates (Fig. 3.2(b)). Note that Eqn. 3.4 follows the
recommended statistical formulation (Eqn. 2.21) from Chapter 2 up to the specific form of the predictor
variables.

3.2.4 Bayesian Inference

In the Bayesian setting, prior distributions over parameters are needed to complete the model specifica-
tion. We use truncated normal priors NT pµ,Σq with parameters µ,Σ inherited from the untruncated
distribution. Truncation ensures non-negativity of parameters, whilst normality facilitates partial conju-
gacy (below); additional information on truncated normals is provided in Section B.1. In order to elicit
hyper-parameters µ,Σ, we follow [Xu et al., 2010] and assume all processes occur on observable time and
concentration scales, that is µV ,µK „ 1 where 1 “ p1, . . . , 1q reflects that the data y are standardised a
priori. For Michaelis-Menten parameter covariance ΣK we assume independence of the components Ki,
so that ppK|Giq “ NT pK;µK , νIq. For maximum reaction rate covariance ΣV we take a unit informa-
tion formulation of the truncated g-prior, so that ppV |K, σ,Giq “ NT pV ;µV , nσ

2pD1Dq´1q [Zellner,
1986] and for the noise parameter we use a Jeffreys prior ppσ|Giq91{σ. These latter choices render the
formulation partially conjugate, with the conditional density ppV , σ|K, Gi,yq given in closed form as

ppV , σ|K, Gi,yq “ NT pV ;µ,ΣqIGpσ; a, bq, (3.5)

where µ “ 1{pn ` 1q ` n{pn ` 1q ˆ pD1Dq´1D1z, Σ “ σ2n{pn ` 1q ˆ pD1Dq´1, a “ pn ´ 1q{2,
b “ p1{2qp11D1D1{n` z1z´ n{pn` 1q ˆ z1DpD1Dq´1D1zq and IGp‚; a, bq is an inverse gamma density
with shape and scale parameters a, b respectively.

3.2.5 Marginal Likelihood

Write θ “ pV ,K, σq for the vector of parameters associated with inference for variable i. (In what follows
we suppress dependence of parameters on the variable i.) Partial conjugacy of the above formulation
permits an efficient Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) sampling scheme for
the parameter posterior distribution ppθ|Gi,yq. The conditional density ppV , σ|K, Gi,yq is given in
closed form as in Eqn. 3.5 above, while a Metropolis-Hastings acceptance step allows sampling from the
remaining conditional ppK|V , σ,Gi,yq. To estimate marginal likelihoods from sampler output we use
the method of [Chib and Jeliazkov, 2001], evaluating the identity

ppy|Giq “
ppy|θ, Giqppθ|Giq

ppθ|y, Giq
(3.6)

at θ “ θ˚ using a Monte Carlo estimate of the posterior ordinate ppθ˚|y, Giq. The point θ˚ is usually
taken to be the posterior mode [Chib and Jeliazkov, 2001], however we found that in this application
the posterior mean provided lower variance estimation, since in practice the mode is difficult to obtain.
Below we describe the sampling scheme in detail:

3.2.5.1 Marginal likelihood from the Metropolis-within-Gibbs sampler

Partition the parameter vector θ “ pθ1,θ2q where θ1 “K, θ2 “ pV , σq. As noted above, the conditional
posterior density ppθ2|θ1,yq is available in closed form, making it natural to implement a Gibbs sampler.
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However the remaining conditional ppθ1|θ2,yq is not available analytically and a Metropolis-Hastings
step must be used to facilitate sampling from this distribution [Roberts and Rosenthal, 2006].

Denote a Metropolis-Hastings proposal as qpθ1,θ
1
1|θ2q so that the acceptance probability is

αpθ1,θ
1
1|θ2,yq “ min

"

1,
ppy|θ11,θ2qppθ

1
1,θ2q

ppy|θ1,θ2qppθ1,θ2q

qpθ11,θ1|θ2,yq

qpθ1,θ11|θ2,yq

*

. (3.7)

In practice the proposal density is taken to be NT pθ1, λIq where λ is chosen to deliver an average
acceptance probability of 23.4% [Roberts et al., 1997]. The Metropolis-within-Gibbs scheme with I
iterations is summarized in Algorithm 1.

Algorithm 1 A Metropolis-within-Gibbs scheme for sampling from the parameter posterior.

θp0q “ pθ
p0q
1 ,θ

p0q
2 q Ð initial guess

for i “ 1 to M do
θ11 „ qpθ

pi´1q
1 ,θ11|θ

pi´1q
2 ,yq

r „ U r0, 1s

if r ă αpθ
pi´1q
1 ,θ11|θ

pi´1q
2 ,yq then

θ
piq
1 Ð θ11

else
θ
piq
1 Ð θ

pi´1q
1

end if
θ
piq
2 „ ppθ2|θ

piq
1 ,yq

end for

Following Chib and Jeliazkov [2001] we construct the identity

ppyq “
ppy|θ1,θ2qppθ1,θ2q

ppθ2|θ1,yqppθ1|yq
(3.8)

and seek an estimator p̂pθ1|yq of the posterior ordinate ppθ1|yq. Then an estimate for the marginal
likelihood will be

p̂pyq “
ppy|θ˚1 ,θ

˚
2 qppθ

˚
1 ,θ

˚
2 q

ppθ˚2 |θ
˚
1 ,yqp̂pθ

˚
1 |yq

, (3.9)

for some choice of θ˚. For minimizing estimator variance, Chib and Jeliazkov [2001] propose to take
θ˚ to be the maximum a posteriori (MAP) estimate (or more conveniently the MAP estimator derived
from the MCMC sample). In this application we found better performance to be achieved by taking θ˚

to be the arithmetic mean estimator; however in general the arithmetic mean may be unsuitable due to
multi-modality or skew in the multidimensional likelihood.

An estimator is constructed based on the identity

ppθ˚1 |yq “
Eppθ1,θ2|yqrαpθ1,θ

˚
1 |θ2,yqqpθ1,θ

˚
1 |θ2,yqs

Eppθ2|θ˚1 ,yqqpθ˚1 ,θ1|θ2,yqrαpθ
˚
1 ,θ1|θ2,yqs

. (3.10)

Estimation of the numerator is directly facilitated by the MCMC output, whereas estimation of the
denominator requires an additional Monte Carlo integration, summarized in Algorithm 2. In practice
the length J of this additional run is taken to be equal to the length M of the full run. For further
details see Chib and Jeliazkov [2001]. The methodology, due to Chib and Jeliazkov [2001], has been
demonstrated to perform well against state-of-the-art methods for estimation of marginal likelihood
Friel and Wyse [2012].

3.2.5.2 Convergence diagnostics

We used standard diagnostics to assess convergence of the MCMC sampler, including both within-run
and between-run diagnostics, using parallel runs from dispersed initial conditions [Cowles and Carlin,
1996]. In general the Metropolis-within-Gibbs sampler provided satisfactory convergence to stationary
distributions. An example of within-run convergence for the cancer cell line data is shown in Figure 3.3.

46



Algorithm 2 Computation of the Chib denominator.

for j “ 1 to J do

θ
pjq
2 „ ppθ2|θ

˚
1 ,yq

θ
pjq
1 „ qpθ˚1 ,θ1|θ

pjq
2 ,yq

end for
p̂pθ˚1 |yq Ð

1
J

řJ
j“1 αpθ

˚
1 ,θ

pjq
1 |θ

pjq
2 ,yq
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Figure 3.3: Within-run MCMC convergence diagnostics; cancer cell line data, typical trace plots.

3.2.6 Interventional Data

Interventions play a key role in experiments aimed at uncovering causal relationships [Hauser and
Bühlmann, 2012; Pearl, 2009]. In interventional experiments, data are obtained under treatments that
externally influence species in the chemical reaction graph G. Inhibitors of protein phosphorylation
are now increasingly available; such inhibitors typically bind to the kinase domain of their target, pre-
venting enzymatic activity (see Section 1.1.4). We consider such inhibitors in biological experiments
below. Within our framework, we model inhibition by setting to zero those terms in the design matrix
D corresponding to the inhibited enzyme X ˚E in the treated samples (this corresponds to perfect certain
interventions in the terminology of [Eaton and Murphy, 2007]). This removes the causal influence of X ˚E
for the inhibited samples in a way consistent with the candidate reaction graph.

3.2.7 Model Averaging

Following the recommendation of Chapter 2, evidence for a causal influence (either kinase or kinase
inhibiting activity) of protein i on protein j is summarized by the marginal posterior probability of a
directed edge pi, jq in the biological network N . This is obtained analogously to Eqn. 2.14 by averaging
over all possible local chemical reaction graphs Gj , as

pppi, jq P N |yq “

ř

Gj :iPGj
ppy|GjqppGjq

ř

Gj
ppy|GjqppGjq

. (3.11)

We refer to posterior probabilities computed in this way as Chemical Model Averaging (CheMA). Fol-
lowing work in structural inference for graphical models [Ellis and Wong, 2008; Friedman et al., 2000] we
bound graph in-degree; in particular, we bound |Ei| ď d1

max and |Ii,E | ď d2
max. This allows explicit com-

putation of Eqn. 3.11. In the same vein, model averaging is used to compute posterior mean predictive
values (see Section B.5).

In all experiments we used a weakly-informative network prior ppGq. In high dimensions, Bayesian
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variable selection requires multiplicity correction in order to avoid degeneracy [Scott and Berger, 2010].
Such correction is required to control the false discovery rate and is distinct from the penalty on model
complexity provided by the marginal likelihood. In this Chapter, multiplicity correction is achieved with
a prior probability distribution over reaction graphs G. In this context a uniform prior over reaction
graphs G is inappropriate since as the number P of proteins increases, the prior weight on graphs with
bounded parent set sizes |Gi| ď C vanishes super-exponentially quickly. Biological evidence in favour of
restricted in-degree suggests using a prior which is better behaved in this limit. In the context of Bayesian
variable selection, Scott and Berger [2010] and others argue for the use of a prior which is uniform over
the number of predictors. Taking the above as heuristics, we used a non-informative network prior
which is uniform over the number of kinases, and for a given kinase, uniform over the number of kinase
inhibitors:

ppGq “
P
ź

i“1

ˆ

P

|Ei|

˙´1
ź

EPEi

ˆ

P

|Ii,E |

˙´1

(3.12)

Under Eqn. 3.12 the prior weight on graphs G with bounded parent sets decreases slowly, at a rate
1{P . Network priors which incorporate specific biological knowledge are also available in the literature
[Mukherjee and Speed, 2008].

Since inference in our approach decomposes over proteins i P P and for a given protein, over local
models Gi, the computations were parallelised.

3.2.8 Prior Sensitivity and Reproducibility

We established suitable values for (i) the hyper-parameters µV , µK and ν, (ii) maximum in-degree
constraints d1

max, d
2
max, and (iii) the number of Monte-Carlo iterations required for convergence. The

suitability of (iv) the unit information g-prior, and (v) the Euler derivative approximation, are beyond
the scope of this thesis. Below we describe how these values were elicited:

To investigate hyper-parameter sensitivity, we considered a fixed simulation regime (specifically we
use the in silico model of MAPK signalling described in the following Section, with data-generating
parameters n “ 100 and σ “ 0.1). For this regime we varied each of the three hyper-parameters one at a
time with the other two held at the values µV “ µK “ 1, ν “ 0.5. We are not directly concerned with
identification of dynamical parameters, rather we investigated whether network inference performance
(quantified by AUPR and AUROC) was highly dependent on the precise values used for these hyper-
parameters. Results are shown in Fig. 3.4. Both performance measures appear stable to changes in the
hyper-parameters.

In addition to the hyper-parameters considered above, we also considered the influence of the maxi-
mum in-degree constraints c1, c2. Due to computational considerations, we did not carry out exhaustive
exploration of hyper-parameter values on full networks. Instead, we constructed a smaller toy model,
and explored sensitivity more fully using that model. The following model was used

X „ NT p110ˆ1, I10ˆ10q (3.13)

Z1|X „ N
`

fG,1pX,θ1q, σ
2I
˘

(3.14)

where we took

fG,1pX,θ1q “ ´
V0X

˚
1

X˚1 `K0
`
V2X

˚
2X1

X1 `K1
`

V3X
˚
3X1

X1 `K3p1`X
˚
4 {K4q

(3.15)

corresponding to two kinases X˚2 and X˚3 , the second of which is inhibited by X˚4 . All parameter values θ1

were taken to be unity, in line with the observability hypothesis (see Section 3.2.4). For all experiments
using the toy model we used M “ 10, 000 MCMC iterations (this was sufficient for convergence of
posterior edge probabilities).

We first considered µV and µK , along with the variance ν2 of Michaelis-Menten parameters K.
Fixing c1 “ 2, c2 “ 0 we computed posterior edge probabilities (PEPs) whilst varying these hyper-
parameters (Figs. 3.5(a-c)). In general we found that PEPs are stable, suggesting that results reported
are not highly sensitive to the precise values used.

To investigate sensitivity to the in-degree constraint, we compared results obtained on the toy model
using pc1 “ 2, c2 “ 0q with pc1 “ 2, c2 “ 1q and pc1 “ 3, c2 “ 0q (with ν “ 0.5 in all cases). Results
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Figure 3.4: Sensitivity to hyper-parameter specification. Network inference performance (quantified by
AUPR and AUROC) for various hyper-parameter values. [Here we present results over 5 independent
datasets generated with n “ 100, σ “ 0.1. The 3 hyper-parameters were varied one at a time, with the
remaining 2 hyper-parameters being set equal to the values used in Chapter 3, namely µV “ µK “ 1,
ν “ 0.5.]

are shown in Fig. 3.5(b), comparing PEPs obtained under the three pc1, c2q regimes; we find good
agreement between the three regimes, suggesting that the restriction is not highly influential in this
setting. Results using c1 “ 3 suggest that models allowing 3 kinases to jointly influence a substrate are
not needed in situations where the true number of kinases is ď 2 (arguably a reasonable assumption for
this thesis). Results for c1 “ 2, c2 “ 1 showed that the inhibitor X˚4 was difficult or impossible to identify
from data (Fig. 3.5(b)). This suggests that time course data obtained experimentally may not contain
enough information to identify such “second order” inhibitory effects, in line with previous reports that
Michaelis-Menten parameters Ki (and hence inhibitory interactions) are only “weakly identifiable” from
time course data Calderhead and Girolami [2011]. Note that in subsequent experiments we set c2 “ 0,
implying that inhibitory effects are not considered.

3.3 Results

3.3.1 In Silico MAPK Pathway

Data were generated from a mechanistic model of the MAPK signalling pathway due to Xu et al. [Xu
et al., 2010]. The model is specified by a system of 25 ODEs of Michaelis-Menten type (described in
Section B.2) and is outlined in Fig. 3.6. This archetypal protein signalling system provides an ideal test
bed, since the causal graph is known and the model has been validated against experimental data [Xu
et al., 2010]. We considered performance under several regimes of sample size n and intrinsic noise σ
(details of the simulation set-up appear in Section B.2.2).

For the estimation problem, we compared our approach to existing network inference methods which
are compatible with time course data: (i) `1-penalized regression (“LASSO”) , (ii) Time Series Network
Identification (“TSNI” [Bansal et al., 2006]; this is based on `2-penalized regression), (iii) dynamic
Bayesian networks (“DBN” [Hill et al., 2012a]); (iv) time-varying DBNs (“TVDBN” [Dondelinger et
al., 2010]) and (v) non-parametric (Gaussian process) regression with model averaging (“GP” [Äijö and
Lähdesmäki, 2009]). Approaches (i-iii) are based on linear difference equations, (iv) relaxes the linear
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Figure 3.5: Sensitivity to hyper-parameter specification, toy model. (a) prior variance VarpKq “ ν2, (b)
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mentary Materials. In model 1, activation of ERK
proceeds through Ras (16, 17), and the model in-
cludes the possibility that Ras activates both Raf-1
and B-Raf (18). In model 2, two branches of ERK
activation occur through Ras and Rap1 (8, 13).
Models 3 and 4 correspond to models 1 and 2,
but include EGFR desensitization, which may crit-
ically regulate ERK activity (19).

By assessing the informativeness of measure-
ments of different species in the pathway, we
found that ERK activity provided the most in-
formative data with an eigenvalue of 0.2127,
which was 0.57 times greater than the next best
data set (MEK, with an eigenvalue of 0.1216)
(see Materials and Methods and Supplementary
Materials, section 1). Therefore, we measured
the kinetics of ERK activation in PC12 cells un-
der 11 distinct conditions and perturbations,
which represented a total of 168 experimental
measurements (Fig. 2B and Supplementary
Materials, section 2). Each time point and each
replicate is considered a separate measurement.
To perturb the pathway, we used drugs affecting
the activity of the cAMP signaling system, which
has multiple points of crosstalk with the EGF-
stimulated ERK activation pathway (Fig. 2A and
fig. S1). We targeted protein kinase activated by
cAMP (PKA) with the cAMP analog 6-Benz-
cAMP, EPAC with the cAMP analog 8pMeOPT-
2-O-cAMP, and phosphodiesterase 3 (PDE3)
with cilostamide, which we determined was the
most active PDE in PC12 cells (fig. S2D). We
simulated model dynamics using ordinary differ-
ential equations (ODEs; Supplementary Materials,
section 3) with the following simplifications: (i)
The manipulation of the abundance of cAMP by
different means is considered as perturbations
that are not part of the topology models. (ii) Ci-
lostamide was modeled as a direct “activator” of
both EPAC and PKA because it increases cAMP
by inhibiting PDE3 (20). (iii) The activation pro-
cesses from receptor to adaptors to effector proteins
were defined as EGFR→GRB2→SOS→Ras and
EGFR→CRK→C3G→Rap1 pathways (16).

To rank the four alternative hypotheses, we
computed the posterior probability of every mod-
el given the experimental data (Fig. 2, C and D;
and Supplementary Materials, section 4) to ob-
tain the Bayes factors. The resulting Bayes fac-
tors are the ratio of likelihoods that a given
model is consistent with observed experimental
data, and hence can be used for model ranking.
The Bayes factor is a summary of the evidence
provided by the data in favor of one scientific
hypothesis, represented by a mathematical mod-
el, in comparison to another. Posterior odds for
preferring one model to another can be obtained
by multiplying the Bayes factor by the prior
odds. Thus, we can base our ranking on probabil-
ity distributions, which give us exact information
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Fig. 2. BIBm evaluation of the EGF-
mediated ERK activation and crosstalk
with the cAMP signaling system. (A) Sche-
matic representation of the topology of the
four plausible pathway models (hypothe-
ses) and the cAMP-mediated input. Black
arrows represent stimulatory inputs and
dashed lines represent inhibitory inputs.
(B) Experimental ERK activation data ob-
served in response to perturbations of the
cAMP signaling system. (C) Prediction of
models matched to the experimental data.
The depicted graph demonstrates the pre-

dictions made with model 2, but all models were matched to the data similarly (see figs. S13 to S16).
(D) BIBm analysis based on these data selected the dual-path structure of model 2 as the signifi-
cantly most plausible one.
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Figure 3.6: Model of the MAPK signalling pathway, reproduced from [Xu et al., 2010].
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Figure 3.7: Average area under the (a) PR and (b) ROC curves (AUPR,AUROC; with respect to the
true causal graph). [Network inference methods: (i) LASSO, `1-penalized regression, (ii) TSNI, `2-
penalized regression, (iii) DBN, dynamic Bayesian networks, (iv) TVDBN, time-varying DBNs, (v) GP,
non-parametric regression, (vi) CheMA, the proposed approach. For each panel we averaged performance
scores over 5 independent datasets. Sub-plots correspond to particular sample size n and noise level σ.]
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assumption in a piecewise fashion, whereas (v) is a semi-parametric variable selection technique. We
note that since TSNI cannot deal with multiple time courses we adapted it for use in this setting.
Implementation details for all methods may be found in Section B.3.

To systematically assess estimation of network structure we computed the average area under the
precision-recall (AUPR) and receiver operating characteristic (AUROC) curves. Fig. 3.7(a) shows mean
AUPR for all approaches, for 20 regimes of sample size n and noise σ. Our approach performs consistently
well in all regimes, and outperforms (i-v) substantially at the larger sample sizes. It is interesting to note
that the linear and piecewise linear DBNs (iii-iv) perform better at moderate sample sizes compared to
higher sample sizes, possibly due to inconsistency arising from model mis-specification. AUROC results
(Fig. 3.7(b)) showed a broadly similar pattern, but with CheMA offering gains only at larger sample
sizes.

To investigate dynamical prediction in the setting where neither causal graph nor parameters are
known, we generated data from an unseen intervention and assessed ability to predict the resulting
dynamics (details of the simulation are included in Section B.5). The quality of a predicted trajectory
was measured by the mean squared error (MSE) relative to the (held out) data points. To fix a length
scale, both true and predicted trajectories were normalized by maximum protein expression in the test
data. The network inference approaches (i-v) above have not yet been adapted for prediction in this
setting. We therefore compared our chemical kinetic approach with the analogous linear formulation,
which replaces Eqn. [3.2] by fG,ipX,θiq “ β0 `

ř

EPEi
βEX

˚
E (see Section B.5.4 for details), along with

the “benchmark” estimator which presumes protein concentrations do not change with time. Fig. 3.8(a)
displays predictions for the effect of EPAC inhibition on the system. Here the chemical kinetic approach
provides qualitatively correct prediction, whereas the linear approach rapidly diverges to infinity. This
was likely due to error in the estimated eigenvalues being exaggerated geometrically at later times. We
therefore focused only on short term prediction, specifically the first 25% of the time course, for which
linear models may yet prove useful. Over all simulation regimes and experiments, we found that our
approach produced significantly lower MSE than both the linear and benchmark models (MSECheMA “

0.061, MSELin. “ 2.55, MSEBench. “ 0.199). Furthermore CheMA consistently produced lowest MSE at
all fixed values of n and σ (Fig. 3.9; p ă 0.001 binomial test).

3.3.2 In Vitro Signalling

Next, we considered experimental data obtained using reverse-phase protein arrays (see Section 1.2.2)
from 15 human breast cancer cell lines, of which 10 were of HER2+ subtype [Neve et al., 2006]. These
data comprised observations for key phosphoproteins EGFR, Akt, MEK, GSK3ab, S6, 4EBP1 and
their unphosphoryated counterparts. Data were acquired under pretreatment with inhibitors Lapatinib
(“EGFRi”; an EGFR/HER2 inhibitor), GSK690693 (“Akti”; an Akt inhibitor) and without inhibition
(DMSO) at 0.5,1,2,4 and 8 hours following serum stimulation, giving a total of n “ 15 observations of
each species in each cell line (see Section B.6.1 for full experimental protocol).

At present, inferred network topologies for the cell lines cannot be rigorously assessed since the true
line-specific networks are not known. Inferred topologies partially concord with known signalling (Fig.
B.3(b)), but the latter is based mainly on studies using wild type cells and may not reflect networks
in genetically perturbed cancer lines. Therefore, for an unbiased test, we considered the problem of
prediction of trajectories under an unseen intervention. We investigated whether the CheMA approach
was able to outperform prediction based on “literature” signalling topology, focusing on the challenging
regime where no prior topological information is made available to CheMA.

Training on DMSO and EGFRi (or AKTi) data, we assessed ability to predict the full dynamic
response to Akt (or EGFR) inhibition. In this way, each held-out test set contained trajectories under
a completely unseen intervention. Fig. 3.10 displays typical predictions for response to EGFRi. By
considering all 15 cell lines, giving 30 held-out datasets, we found that in 19 out of 30 prediction problems
our approach outperformed the literature predictor (Fig. 3.11). As for the simulated data, the linear
model was not well-behaved for prediction and is not shown in Fig. 3.11. In the Akti test, of the
10 HER2+ cell lines 9 were better predicted by CheMA compared to literature prediction (p “ 0.01,
binomial test; MSECheMA “ 0.064 vs MSELit. “ 0.274). Conversely 4 out of 5 HER2- lines were better
predicted by literature (MSELit. “ 0.145 vs MSECheMA “ 0.240), suggesting that signalling network
topology in HER2+ lines may differ to the literature topology. This is a non-trivial finding, since a
priori it is far from clear whether the training data, which involved only P “ 6 species and n “ 10 data
points, contain sufficient information to predict the effect of an unseen intervention, even approximately.
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Figure 3.8: Predicting dynamical response to a novel intervention: Predicting the effect of EPAC inhibi-
tion under the data generating model of [Xu et al., 2010]. [CheMA (solid) regions correspond to standard
deviation of the posterior predictive distribution. Linear (dashed) replaces the non-linear chemical ki-
netic models with simple linear models. Benchmark (dotted) simply uses the initial data point as an
estimate for all later data points. The true, test data are displayed as crosses. Here n “ 100, σ “ 0.1.]

Figure 3.9: Assessment of predictive performance over varying sample size n and noise level σ; average
normalized mean square error. [Shaded regions display standard error, computed over 15 independent
datasets.]
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However, in two of the failure cases (HCC 1569, HCC 1954; EGFRi test) CheMA produced extremely
poor predictions (MSECheMA ą 1), likely due to the extremely small training sample size.
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Figure 3.10: True and predicted in vitro trajectories for cell line HCC 70. [CheMA predictions (solid)
with 1ˆ σ confidence region (pink) and predictions based on the literature signalling topology (dashed)
with 1ˆ σ confidence region (gray).]

3.4 Discussion

We proposed an approach which integrates non-linear kinetics into network inference and dynamical
prediction. Empirical results on simulated data demonstrated that the approach is capable of recovering
causal network structure from time-course data and predicting the effect of unseen interventions. Whilst
we restricted our investigation to protein signalling, the approach we propose is general and could be
applied in other settings where automatic generation of kinetic equations is possible. In particular,
extension to gene regulation is straightforward and indeed a Michaelis-Menten formulation could also be
used in that setting [Hurley et al., 2011].

At present dynamical predictions in systems biology require a known causal graph: a system of ODEs
is usually specified conditional on such a graph and used for prediction [Nelander et al., 2008]. However
in many settings, including in disease biology, the causal graph cannot be assumed known. Then, the
classical, known-graph approach cannot be used to predict dynamics. In contrast, our approach permits
prediction of dynamical behaviour even when the reaction graph itself is unknown or uncertain. Unlike
linear formulations [Maathuis et al., 2010], our use of chemical kinetic models provides interpretable
predictions. For example the dynamic behaviour of phosphoprotein concentrations obtained under our
methodology are physically plausible (i.e. smooth, bounded and non-negative).

Network inference is naturally facilitated by interventional experiments, however adequate modelling
of the effects of intervention is important to ameliorate statistical confounding [Eaton and Murphy, 2007;
Hauser and Bühlmann, 2012; Pearl, 2009]. Within a chemical kinetic framework such factors may be
naturally accounted for; for instance a perfect intervention simply corresponds to removal of the targeted
species from the chemical model.

An important application in cancer is to predict the effect on signalling of a novel intervention, such
as a drug treatment. In our approach this can be done without having to assume a single (potentially
incorrect) reaction graph, for instance taken from literature or estimated from data [Nelander et al., 2008].
Furthermore, by averaging predictions over reaction graphs, our approach should provide robustness in
(typical) situations where it is unreasonable to expect to identify G precisely [Pearl, 2009].

Our approach differs from linear models, including conventional continuous (static or dynamic)
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Figure 3.11: Predicting dynamical response to a novel intervention: Assessing prediction over a panel
of 15 breast cancer cell lines. [Training data were time series under treatment with a single inhibitor;
test data represented a second, held-out inhibitor. Normalized mean squared error was averaged over all
protein species and all time points.]
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Figure 3.12: (Marginal) parameter posterior distributions for increasing sample size n. [For the Zellner
g-prior, the n “ 3 case is the closest well-defined analogue to a prior which we can plot.]

Bayesian networks, since the underlying non-linear models are not structurally symmetric. Peters et al.
[2011] recently filled an important theoretical gap, demonstrating that within an identifiable functional
model class (IFMOC) it is possible to consistently estimate causal relationships. This is an important
step in thinking about causal inference using non-linear models and emphasises the limitations that arise
from symmetry inherent in the the linear-additive-Gaussian model. However, in order to formally show
that a given functional class constitutes an IFMOC, the theory at present requires strong assumptions,
including noise-free observation, that do not hold in the systems we considered here. We demonstrated
that basing the likelihood on a relevant non-linear dynamical system can lead to improved performance
in both network inference and dynamical prediction, under practical conditions of sample size and noise.
In this sense, our contribution complements the theoretical results of Peters et al. [2011].

At the lowest sample sizes, the chemical kinetic approach did not outperform linear methods in terms
of AUROC, possibly due to the increased dimensionality of the statistical model. In order to better
understand this small sample behaviour, we looked to see whether our approach was able to recover
kinetic parameter values θ “ tV ,Ku in the case where the true graph G was known. Fig. 3.12 displays
posterior probability distributions over parameters θ for the toy model of Eqn. 3.15 (assuming known
true graph G, else the parameters are not well defined) for varying sample size n. Results show that,
whilst maximum reaction rates V0, V2, V3 could be estimated from data, Michaelis-Menten parameters
K0,K1,K2,K3,K4 were much more difficult to infer, consistent with the weak identifiability reported
by [Calderhead and Girolami, 2011]. Estimation for the noise parameter σ demonstrated bias toward
lower values. In general, inference at the smaller sample size was much less successful. Nevertheless
whilst individual parameters were not estimated precisely, the non-linear projection fGpX,θq was often
identified from data.

Two ongoing challenges in Bayesian computation relevant to our work include inference of model
parameters and computation of marginal likelihoods for model selection. The first has been tackled from
many directions, including approximate Bayesian computation [Toni et al., 2012], Gaussian processes
[Calderhead et al., 2009], MCMC [Wilkinson, 2006], particle filtering [Quach et al., 2007], synthetic
likelihoods [Wood, 2010] and tempering approaches [Campbell and Steele, 2012]. The second question
is a comparatively under-developed area of statistical research, with candidate approaches including
variational approximations [Rue et al., 2009] and MCMC [Vyshemirsky and Girolami, 2008]. Here, we
combined an MCMC scheme due to [Chib and Jeliazkov, 2001] with an Euler derivative approximation,
although alternative approaches may offer advantages [Calderhead and Girolami, 2009]. The computa-
tional burden of our approach is higher than many methods, leading to greater run-times (see Section
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B.3.6). By way of demonstration, inference for a 27 node network required over 12 hours computational
time. In contrast, linear (or discrete) models offer improved scalability to high-dimensional systems by
permitting closed form expression of model selection criteria. Thus, the approach proposed here can
complement existing methodologies but is not at present applicable to high-dimensional problems with
hundreds or thousands of nodes.

There are several directions in which this work can be extended. The statistical model proposed
here does not explicitly distinguish between process and observation. An interesting direction for further
research would be to integrate an explicit observational distribution. The automatic generation of kinetic
equations clearly limits the extent to which in-depth knowledge about particular biochemical processes
and dynamics may be incorporated. More generally, the simple form of kinetics used here will likely
be sub-optimal in general, especially when the assumptions of the Michaelis-Menten approximation are
violated [Leskovac, 2003]. We considered only the case in which the target of interventions is known.
For interventions whose targets are unknown, the framework we propose could in principle be adapted
to ask whether any of the observed nodes are likely targets, complementing via a non-linear model the
work of [Bansal et al., 2006].

3.5 Addendum: Steady-State Data

This Chapter focussed on inference using time course data, yet many excellent datasets are available
which describe steady state protein expression levels. The Michaelis-Menten equations which formed the
basis for CheMA exhibit unique equilibria, given by the Goldbeter-Koshland and related equations (Ex.
11). It is therefore natural to root a second version of CheMA in the Goldbeter-Koshland equations,
suitable for the analysis of data obtained at steady state. Oates et al. [2012] described this application
of CheMA to steady state data.

In the general case, the equilibrium probability distribution can be unfaithful to the equilibrium
graph so that the do-calculus [Pearl, 2009] may not apply. Dash [2003] formulated a criterion, known as
equilibration-manipulation commutability (EMC), which characterises causal faithfulness at equilibrium.
Put simply, for causal reasoning based on the equilibrium graph to be valid, the equilibrate and the do
operators must commute. The Goldbeter-Koshland solution of the Michaelis-Menten equations provide
a unique equilibrium solution and hence it is possible to construct well defined structural equations for
the equilibrium distribution.

Unlike DBNs, causal graphs defined on static data do not benefit from an identifiability result (see
Ex. 13). However arguments similar to Aliferis et al. [2010]; Peters et al. [2011], described in Oates and
Mukherjee [2012b] provide heuristic justification for identifiability in non-linear data-generating regimes.
The approach of Oates et al. [2012], which relates the equilibrium solution of ODE models to structural
equation models, has recently been formalised [Joris Mooij, personal correspondence]. Some of these
causal aspects of the construction are discussed in Oates and Mukherjee [2012b].

The findings of Oates et al. [2012], on both simulated and real data, demonstrated that protein
signalling network topology may be estimated more successfully under the CheMA approach than by
conventional linear formulations, mirroring the conclusions of this Chapter. Further, we saw that appar-
ently similar linear formulations can return very different recommendations for which variables ought to
be included in the model, mirroring the findings of Chapter 2. Factors including model misspecification
and missing variables may limit structural identifiability in general (see Chapter 2). Indeed, these studies
we found that both CheMA and linear approaches performed poorly on proteomic data derived from
luminal breast cancer cell lines at steady state. These findings reaffirm that the results of structural
inference should be interpreted with caution and treated as hypotheses to be tested experimentally.
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Chapter 4

Joint Estimation of Multiple
Networks from Time Course Data

At this point we have highlighted many of the challenges associated with network inference and proposed
a methodology, rooted in non-linear models of cellular chemistry, to alleviate some of these difficulties.
However we have so far restricted attention to inference of single networks; in applications it is frequently
the case that data are collected from multiple individuals whose networks may differ but are likely to
share many features. In this Chapter we present a hierarchical Bayesian formulation for joint estimation
of such networks. The formulation is general and can be applied to a number of specific graphical models,
including those discussed in previous Chapters. Our methodology is accompanied by a computationally
efficient, deterministic algorithm for exact inference. We show also how ancillary information, such as
individual-specific genomic characteristics, can be incorporated into joint estimation. Application of
the proposed method to simulated data demonstrates that joint estimation can improve ability to infer
individual networks as well as differences between them. A real data study of protein signalling in breast
cancer cell lines supports these conclusions. Finally, we describe approximations which are still more
computationally efficient than the exact algorithm and demonstrate good empirical performance.

4.1 Introduction

In many applications, data are collected on multiple units (or individuals, we use both terms inter-
changeably) j P J that may differ with respect to interplay between variables, such that corresponding
networks N j may be individual-specific. For example, in biology, units may correspond to different
patients or cell lines and the networks themselves to gene regulatory or protein signalling networks.
Interplay in such networks can depend on the genetic and epigenetic state of the individuals, such that
even for a well-defined system, such as signalling downstream of a certain receptor class, or a sub-part
of the transcriptional program, details may differ between even closely related samples [Csermely et al.,
2013; Ideker and Krogan, 2012]. For example, in yeast signalling, edges in the well-understood mitogen-
activated protein kinase (MAPK) pathway can change depending on context [Zalatan et al., 2012], whilst
genetic networks have been shown to rewire following exposure to DNA-damaging agents [Bandyopad-
hyay et al., 2010]. Furthermore, continuing reduction in the unit cost of biochemical assays has led to an
increase in experimental designs that include panels of potentially heterogeneous individuals [Barretina
et al., 2012; Cao et al., 2011; Maher, 2012; The Cancer Genome Atlas Network, 2012]. In such settings,
given individual-specific data yj , there is scientific interest in individual-specific networks N j and their
similarities and differences.

Our work is motivated by questions concerning biological networks in cancer. Multiple studies have
demonstrated the remarkable genomic heterogeneity of cancer [The 1000 Genomes Project Consortium,
2010; The Cancer Genome Atlas Network, 2012]. At the same time, the question of how such het-
erogeneity is manifested in terms of signalling or gene regulatory networks remains poorly understood.
Recently, statistical approaches have been used to estimate cancer signalling networks from proteomic
data [Bender et al., 2010; Hill et al., 2012a; Oates et al., 2012]. Many open questions in cancer concern
differences or similarities in such networks between different samples. This motivates studies in which
data are obtained from multiple individuals (patient samples or cell lines). We discuss an example of
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such an experimental design below. However, the case of multiple related individuals poses two key
challenges for network inference:

• Efficiency. For related individuals whose networks are likely to have similarities, individual-level
estimation (i.e. N̂ j “ N̂pyjq) may be inefficient, since there is no sharing of information between
individuals. Even in the favourable case of consistent network estimators that are well-behaved as
the individual-specific sample size nj grows large (e.g. Kalisch and Bühlmann [2007]), in practice
small-to-moderate nj ’s and the inherently high-dimensional nature of network inference render
estimation challenging.

• Data aggregation. Aggregating data from multiple individuals and then performing network in-
ference offers a way to obtain larger sample sizes. However, in settings where data from individuals
are inhomogeneous (in the sense that the networks N j may differ between individuals), infer-
ences regarding network structure cannot in general be obtained from aggregated data (Simpson’s
paradox) and testing whether data aggregation is appropriate may be challenging [Pearl, 1998].
Estimating group structure using multivariate mixture models and related clustering approaches
offers an alternative [Zhou et al., 2009; Mukherjee and Hill, 2011; Rodŕıguez et al., 2011; Vu et al.,
2012; Hill and Mukherjee, 2013], but remains challenging in the network setting.

In this Chapter we present a Bayesian approach to joint estimation of networks. Following Danaher
et al. [2012], Penfold et al. [2012] and others (we discuss related work below), we focus on the case of
networks N j that are exchangeable in the sense that inference is invariant to permutation of individuals
j P J . However, in general, the individual j’s could have more complex, hierarchical relationships,
for example with j’s belonging to groups and sub-groups. We do not address estimation of networks
with general hierarchical relationships, nor estimation of the hierarchy itself. The exchangeable case
we consider corresponds to the simplest possible hierarchy in which each individual is dependent on a
single latent graph (see Fig. 4.2). We note however that in settings where groups can be treated as
approximately homogeneous, our approach can be trivially extended to give group-level estimates, by
using j to index groups rather than individuals, with all data for group j modelled as dependent on
graph N j .

Following Werhli and Husmeier [2008] and others, we model data on all individuals tyj : j P J u
within a joint Bayesian framework. Regularisation of individual networks is achieved by introducing a
latent network N to couple inference across all individuals. We report posterior marginal inclusion prob-
abilities for every possible edge in each individual network N j plus the latent network N . This provides
a confidence measure for the inferred network topologies and may offer robustness in settings where
posterior mass is not highly concentrated on a single model [Claassen and Heskes, 2012]. The high-level
formulation we propose is general and could be applied to a wide range of graphical model formulations.
That is, essentially any graphical model of interest could be embedded within our formulation to enable
joint estimation. We present a detailed development for the time-course setting, focusing on directed
graphical models called dynamic Bayesian networks (DBNs). These are directed acyclic graphs (DAGs)
with explicit time-indices [Murphy, 2002].

The main contributions of this paper are:

• Bayesian computation. For the time-course setting, we put forward an efficient and deterministic
algorithm. This is done by exploiting modularity of the DBN likelihood [Hill et al., 2012a], analytic
marginalization over continuous parameters, imposing a sparsity restriction on network topology
and finally performing belief propagation on a graph whose vertices are themselves graphs (Fig.
4.2). In moderate-dimensional settings this allows exact joint estimation to be carried out in
seconds to minutes (we discuss computational complexity below). To the best of our knowledge
this is the first Bayesian approach for joint estimation that is sufficiently efficient to be suitable for
interactive use.

• Empirical investigation. The availability of an efficient Bayesian algorithm enables, for the
first time, a comprehensive empirical study of the statistical properties of joint estimators in the
exchangeable network setting, including a wide range of simulation regimes and a study of protein
signalling in a panel of breast cancer cell lines. We formulate joint estimators based on classical
(non-joint) DBNs, including a recent variant suitable for interventional data [Spencer and Mukher-
jee, 2012]. We find that joint estimation outperforms the corresponding individual-level estimators.
We also highlight a number of computationally favourable approximations to fully joint inference
which perform well under a wide range of conditions.
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Joint estimation of graphical models has recently been discussed in the penalised likelihood literature,
with contributions including Chiquet et al. [2011]; Danaher et al. [2012]; Guo et al. [2011]; Hara and
Washio [2012]; Mohan et al. [2013]; Yang et al. [2012]. These studies focus on the same exchangeable
setting we consider here but differ from our work in that they use L1 penalties, such as the fused graphical
LASSO, to couple together inference of undirected Gaussian graphical models (GGMs). As such, the
penalised likelihood methods are much more scalable to truly high dimensions.

Penalised methods derive computational efficiency from convexity of the objective function. How-
ever, for integration of diverse ancillary information the convexity requirement may become restrictive.
In many applications ancillary information are available; for example, in gene regulation, the biological
literature provides general information concerning gene-gene interplay, whilst patient-specific character-
istics (e.g. genetic features) might also be available. In a breast cancer cell line panel we consider below,
in addition to the time-course data (for each cell line) that is used to estimate networks, the mutational
status of relevant genes is available for each of the cell lines. We discuss how ancillary information may
be incorporated at both the “global” (all samples together) and “local” (individual) levels within our
approach, with a demonstration in the cancer signalling example.

Further related work includes Werhli and Husmeier [2008], who propose a Bayesian approach to
network inference based on multiple, steady-state datasets where in each dataset only a subset of the
(shared) underlying network is identifiable. Dondelinger et al. [2012] extend the information sharing
scheme from Werhli and Husmeier [2008] in the context of inference for time-varying networks. Hoff
[2009] considers covariance estimation from a heterogeneous population, treating individual covariance
matrices as samples from a matrix-valued probability distribution. Network priors have been discussed
in the literature, including Imoto et al. [2003]; Mukherjee and Speed [2008]; Wei and Pan [2012]. Our
work differs from these efforts by focusing on joint estimation; as we describe below, this leads to a
different model structure and prior specification.

A recent paper by Penfold et al. [2012] considers Bayesian joint estimation for time-course data. Our
work is in the same vein but differs in several respects. First, for the time-course setting, the exact algo-
rithm we propose offers massive computational gains in comparison to the approach proposed by Penfold
et al. [2012]. As we discuss in detail below the methodology of Penfold et al. [2012] is prohibitively com-
putationally expensive for the applications we consider here. Second, the computational efficiency of our
approach allows us to present a much more extensive study of joint estimation, using both simulated and
real data, than has hitherto been possible. This adds to our understanding of the performance of hier-
archical Bayesian formulations for joint estimation. Third, we allow for prior information regarding the
network structure and ancillary information including individual-specific characteristics. Network priors
and ancillary information can usefully constrain inference, not least in biological settings. For example
in the cancer signalling example we consider below, much is known concerning relevant biochemistry
(Fig. 4.1) and individual-specific information pertaining to e.g. mutation status and receptor expression
is often available (nowadays also in the clinical setting).

The remainder of the Chapter is organized as follows. In Section 4.2 we lay out a hierarchical Bayesian
formulation and in Section 4.3 we discuss computationally efficient joint inference. Empirical results are
presented in Section 4.4, using both simulated (Section 4.4.2) and real (Section 4.4.3) breast cancer
datasets. Finally we close with a discussion of our findings in Section 4.5.

4.2 Joint Network Inference

We carry out joint network inference using the hierarchical model shown in Fig. 4.2 that includes a
prior network (N0) as well as a latent network (N); each individual network (N j ; we use superscript
notation when referring to a particular individual) is conceptually viewed as a variation upon the latter.
Individual data yj are then conditional upon individual networks. Estimates of the individual networks
N j are regularized by shrinkage towards the common latent network N which in turn may be constrained
by an informative network prior. Since the latent network is itself estimated, this allows for adaptive
regularization.

4.2.1 Hierarchical Model

Consider the space N of (directed) networks (not necessarily acyclic) on the vertex set P “ t1, . . . , P u. A
network N P N decomposes over parent sets as N “ N1ˆ¨ ¨ ¨ˆNP where Np Ď P are the network parents
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Figure 4.1: Epidermal growth factor receptor (EGFR) pathway for mammalian cells, characterized by ex-
tensive biochemistry. [Here edges represent high-level summaries of often complex molecular interactions
that may involve latent chemical species.]

of p P P. Write Np for the set of possible parent sets for variable p, such that formally N “ N1ˆ¨ ¨ ¨ˆNP .
Write J “ t1, . . . , Ju for the set of individuals in the population.

As shown in Fig. 4.2, each individual network N j is conditional on a latent network N which in turn
depends on a prior network N0 (Section 4.2.2). As in any graphical model, data yj is conditional on
network N j and parameters θj ; Aj denotes any ancillary information available on individual j. In this
Section we describe our general model and network priors, while in Section 4.3 we discuss the special
case of inference for time-course data, giving full details of the likelihood for that case. The model is
specified by

ppN |N0, ηq 9 exp
`

´ηdpN,N0q
˘

(4.1)

ppN1, . . . , NJ |N,λ, A1, . . . , AJq 9 exp

˜

´
ÿ

jPJ
λjdjpN j , N ;Ajq

¸

(4.2)

where the functionals dj , d : N ˆN Ñ R and hyper-parameters η, λ1, . . . , λJ must be specified (Section
4.2.2). This formulation is borrowed from statistical mechanics, where dj , d may be interpreted as energy
terms, η, λ1, . . . , λJ as inverse temperature parameters and Eqns. 4.1,4.2 as Boltzmann (or Gibbs)
distributions. Taken together with a suitable graphical model likelihood ppyj |N j ,θjq, we obtain the
data-generating model. JNI performs inference jointly over pN,N1, . . . , NJq, with information sharing
occurring via the latent network N . The use of a latent network follows Guo et al. [2011]; Imoto et al,
[2006]; Penfold et al. [2012]; Werhli and Husmeier [2008]. In some biological settings, it may be natural
to think of the latent network as describing a “wild type” network however such an interpretation is not
required. We refer to this general formulation as joint network inference (JNI).

4.2.2 Network Prior

Specifying a network prior (Eqn. 4.1) requires a penalty functional d : N ˆN Ñ R and a prior network
N0 P N , with the former capturing how close a candidate network N P N is to the latter [Imoto et

61



N j

Y j

λj

θjNN0 Aj

η

φj

j P J

Figure 4.2: Joint network inference (JNI): A hierarchical model for analysis of multivariate data from
a heterogeneous population. [Shaded nodes are unobserved. N0 “ prior network, N “ latent network,
N j “ individual j’s network, θj “ parameters for individual j, Y j “ observables for individual j, Aj “
ancillary information available on individual j, η, λj “ inverse temperature hyper-parameters, φj “
parameters defining a prior on θj .]

al., 2003; Mukherjee and Speed, 2008]. We discuss choice of N0 below. Given N0, a simple choice
of penalty function d is the structural Hamming distance dpN,N0q “ SHDpN,N0q :“

ř

pPP |Np∆N
0
p |.

Here A∆B denotes the symmetric difference of sets A and B and |A| denotes cardinality of the set
A. The hyper-parameter η controls the strength of the prior network N0 (Eqn. 4.1). For brevity we
follow Penfold et al. [2012] by restricting attention to SHD priors, however our formulation is general
(see below) and compatible with other penalty functionals. For their work on joint estimation of inverse
covariance matrices, Danaher et al. [2012]; Yang et al. [2012] employed the fused graphical LASSO
(FGL) penalty, which may be interpreted as a real-valued extension of SHD (strictly speaking, there is no
analogue of the latent network N here; FGL directly penalizes the difference between individual networks
N j , Nk). Another interesting extension due to Werhli and Husmeier [2008] distinguishes N0zN (“false
prior positives”) and NzN0 (“false prior negatives”) by allocating a separate inverse temperature hyper-
parameter for each case. Alternatively, one could employ a binomial prior as described in Dondelinger
et al. [2012], which provides the same distinction, but allows for the hyper-parameters of the binomial
to be integrated out.

Conditional on a latent network N , individual networks N j are regularized in a similar way, as
djpN j , Nq “ SHDpN j , Nq. In their work on combining multiple data sources, Werhli and Husmeier
[2008] allow the λj to vary over individuals (data sources) j P J , with λj reflecting the quality of dataset
j. Likewise Penfold et al. [2012] learn the λj on an individual by individual basis. However, in both
studies, hyper-parameter elicitation is non-trivial (see Section 4.2.4). To further limit scope, we consider
only the special case where λ1 “ λ2 “ ¨ ¨ ¨ “ λJ :“ λ.

When ancillary information Aj is available regarding a specific individual network N j , it is desirable
to augment the prior specification in such a way as to condition upon Aj . In general such modification
will be application specific. In Section 4.4.3.1 below we discuss the use of ancillary genetic and histological
information in the context of protein signalling in breast cancer.

Although we focus on SHD priors, the inference procedures presented in this Chapter apply to the
more general class of modular priors, which may be written in the form

dpN,N0q “
ÿ

pPP
dppNp, N

0
p q, djpN j , N ;Ajq “

ÿ

pPP
djppN

j
p , Np;A

jq (4.3)

for some functionals dp, d
j
p : NpˆNp Ñ R. Modularity here refers to a factorization over variables p P P,

implying that only local information is available a priori. The SHD priors are clearly modular.

4.2.3 Two Special Cases: INI and ANI

Up to inclusion of ancillary information, prior strength is fully determined, in this simplified setting, by
the parameter pair pλ, ηq. Taking η Ñ8 requires that the latent network N is (almost surely) identical
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to the prior network N0; in the limit this corresponds to treating network inference for each individual
separately, i.e. the estimator N̂ j “ N̂pyjq. We call this approach independent network inference (INI).
Conversely, taking λÑ8 requires that (almost surely) individual networks N j do not deviate from the
latent network N ; this corresponds to assuming individuals have identical (unknown) network structure,
but allowing parameter values θj to vary between individuals, possibly becoming equal to zero. We call
this approach aggregated network inference (ANI). Taking λ, η Ñ 8 together corresponds to using only
the prior. A further, cruder, approach would be to simply combine all data in order to estimate a single
network and parameter set, an approach which Werhli and Husmeier [2008] call monolithic. We compare
these approaches empirically in Section 4.4.

4.2.4 Network Prior Elicitation

Elicitation of hyper-parameters for network priors is an important and non-trivial issue. Hyper-parameters
can be set using the data, but this poses a number of challenges, as reported in Dondelinger et al. [2012];
Penfold et al. [2012]; Werhli and Husmeier [2008]. In the context of sequential hierarchical network
priors, Dondelinger et al. [2012] observed that when there is limited data available, hyper-parameters
inferred from the data may be biased towards imposing too much agreement with the prior. Penfold et
al. [2012] used an improper hyper-prior over the individual inverse temperature parameters λj , reporting
that for most individuals posterior marginals did not differ greatly from the prior (possibly due to un-
informative data). Similarly Werhli and Husmeier [2008] assigned improper flat prior distributions over
the hyper-parameters, reporting that estimation was rather difficult. Due to such weak identifiability of
hyper-parameters, we chose instead to specify the hyper-parameters λ, η in a subjective manner.

For subjective elicitation of network hyper-parameters, interpretable criteria are important. We
present three criteria below which, for the special case of SHD which we consider, are simple to implement
and can be used for expert elicitation. These heuristics seek to relate the hyper-parameters to more
directly interpretable measures of the similarity and difference which they induce between prior, latent
and individual networks.

Firstly, we note the following formula for the probability of maintaining edge status (present/absent)
between the latent network N and an individual network N j :

hλ :“ ppi R N j
p∆Npq “

e´λˆ0

e´λˆ0 ` e´λˆ1
“

1

1` e´λ
. (4.4)

This probability provides an interpretable way to consider the influence of λ. For example a prior
confidence of hλ « 0.73 that a given edge status in N is preserved in a particular individual N j translates
into a hyper-parameter λ « 1 (see Fig. 4.3). An analogous equation relates η and hη :“ ppi R Np∆N

0
p q,

allowing prior strength to be set in terms of the probability that an edge status in the prior network N0

is maintained in the latent network N .
A second, related approach is to consider the expected total SHD between an individual network N j

and the latent network N :

EpSHDpN j , Nqq “ P 2p1´ hλq (4.5)

This can be interpreted as the average number of edge changes needed to obtain N j from N . An
analogous equation holds for η and hη.

Thirdly, in certain applications, the latent network N may not have a direct scientific interpretation,
in which case the criteria presented above may be unintuitive. Then, hyper-parameters could be elicited
by consideration of (a) similarity between individual networks N j , Nk, and (b) concordance of individual
networks N j with the prior network N0. Specifically, we suggest the following two-step procedure: (a)
exploit the fact that (for an uniform prior on N) we have s1 :“ ppi R N j

p∆Nk
p q “ 1´ 2hλ ` 2h2

λ, which

facilitates selection of hλ via the formula hλ “ p1`
?

2s1 ´ 1q{2. (b) elicit hη using the observation that
s2 :“ ppi R N j

p∆N0
p q “ 1´hλ´hη`2hλhη, so that hη “ ps2`hλ´1q{p2hλ´1q. This two-step procedure

uniquely determines a pair phη, hλq P r0.5, 1q
2 and hence unique hyper-parameters pη, λq P r0,8q2. One

drawback of this approach is that λ is selected under an assumption of a uniform prior on N ; that is,
η “ 0. The quality of this procedure will therefore depend on the actual informativeness η of the prior
network N0 on N selected in step (b). This approach to hyper-parameter selection has an analogous
interpretation using expected total SHD.

The above heuristics may be useful in setting hyper-parameters in practice; we illustrate the use of
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Figure 4.3: An heuristic for selecting hyper-parameter λ in the SHD prior. Here hλ is the probability of
a given edge changing status (present/absent) between the latent network N and an individual network
N j .

these procedures in empirical examples below. However, these heuristics are certainly no panacea and
should be accompanied by checks of sensitivity to hyper-parameters, as we report below.

4.3 Joint Network Inference for Time-Course Data

The JNI model and network priors, as described above, are general. To apply the JNI framework in
a particular context requires an appropriate likelihood at the individual level, that is, to specify the
distribution ppyj |N j ,θjq of data yj conditional on a network N j and parameters θj . In this Section we
focus on time-course data, using DBNs to provide the likelihood.

4.3.1 Dynamic Bayesian Network Formulation

A DBN is a graphical model based on a DAG whose vertices have explicit time indices; see Murphy
[2002] for details. Here, following Hill et al. [2012a] and others, we use stationary DBNs and permit
only edges forwards in time (recall Ex. 12 in Chapter 1). Further assuming a modular network prior,
structural inference for DBNs can be carried out efficiently, as described in detail in Hill et al. [2012a]. A
novel contribution of this thesis is to extend these results to allow for efficient and exact joint estimation.
In order to simplify notation, we define a data-dependent functional

PpXq “ ppXp1qq
m
ź

i“2

ppXpiq|ypi´ 1qq (4.6)

which implicitly conditions upon observed history. Let yjpptq denote the observed value of variable p in
individual j at time t. The above notation allows us to conveniently summarize the product

ppyjpp1q|N
j
p qppy

j
pp2q|yp1q, N

j
p q . . . ppy

j
ppmq|ypm´ 1q, N j

p q. (4.7)

as Ppyjp|N
j
p q. Thus, we have that, for DBNs, the full likelihood also satisfies modularity:

ppy|N1, . . . , NJq “
ź

jPJ

ź

pPP
Ppyjp|N

j
p q (4.8)

In other words, the parent sets N j
p (p P P, j P J ) are mutually orthogonal in the Fisher sense, so that

inference for each may be performed separately.

For this Chapter, the local Bayesian score Ppyjp|N
j
p q corresponds to the marginal likelihood for

a linear autoregressive formulation described below, however we note that JNI is indifferent to how
marginal likelihoods are obtained; in particular JNI is compatible with the CheMA approach of Chapter
3 (we return to this point in Chapter 5).
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4.3.1.1 Linear Autoregressive Likelihood

We follow Aliferis et al. [2010]; Hill et al. [2012a]; Penfold et al. [2012] in formulating inference in DBNs as
a regression problem. We entertain models for the response yjpptq as predicted by covariates yjpt´1q. In

many cases multiple time series will be available. In this case the data vector yjp contains the concatenated
time series. The DBN formulation gives rise to the following linear regression likelihood

yjp “X0α`X
j

Nj
p
β ` ε (4.9)

where ε „ N p0nˆ1, σ
2Inˆnq. The matrix X0 “ r1tt“1u 1ttą1usnˆ2 contains a term for the initial time

point in each experiment. The elements of Xj

Nj
p

corresponding to initial observations yjpp1q are simply

set to zero. Parameters θjp “ tα,β, σu are specific to model N j
p , variable p and cell line j. In the simplest

case the model-specific component Xj

Nj
p

of the design matrix consists of the raw predictors yj
Nj

p
pt ´ 1q

where yjA denotes the elements of the vector yjpt ´ 1q belonging to the set A, though more complex
basis functions may be used. This Chapter restricts attention to this simple formulation of likelihood,
however in principle our discussion applies to arbitrary likelihood functions, including those described in
Chapters 2 and 3.

Experiment 1 2
Time Point 1 2 3 4 1 2 3 4
Protein 1 0.5377 0.8622 -0.4336 2.7694 0.7254 -0.2050 1.4090 -1.2075
Protein 2 1.8339 0.3188 0.3426 -1.3499 -0.0631 -0.1241 1.4172 0.7172
Protein 3 -2.2588 -1.3077 3.5784 3.0349 0.7147 1.4897 0.6715 1.6302

Table 4.1: An example dataset for a single individual j, consisting of 3 variables, 2 time courses, each
with 4 time points.

Example: We illustrate the linear autoregressive likelihood with a concrete example. Consider the
datasets in Table 4.1, which is for a fixed individual j. For the particular model N j

1 “ t2, 3u, i.e. the
network parents of protein 1 are precisely proteins 2 and 3, the statistical model in Eqn. 4.9 translates
as
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(4.10)

where the ei „ N p0, σ2q are IID.

4.3.1.2 Modelling Interventions

Following Eaton and Murphy [2007]; Spencer and Mukherjee [2012] we model interventional data by
modification to the DAG in line with a causal calculus [Pearl, 2009]. We mention briefly some of the key
ideas and refer the interested reader to the references for full details. A perfect intervention corresponds
to 100% removal of the target’s activity with 100% specificity. In the context of protein phosphorylation,
kinases may be intervened upon using agents such as monoclonal antibodies, small molecule inhibitors or
even si-RNA [Lu et al., 2011]. We make the simplifying assumptions that these interventions are perfect,
and use the perfect out fixed effects (POFE) approach recommended by Spencer and Mukherjee [2012].
We refer the reader to Spencer and Mukherjee [2012] for an extended discussion of POFE. This changes
the DAG structure to model the intervention and also estimates a fixed effect parameter to model the
change under intervention in the log-transformed data.

Example: Assume that the protein data in Table 4.1 are already log-transformed. Then under the
POFE approach, the information that experiment 2 was carried out in the presence of an inhibitor of
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the activity of protein 3 would be incorporated into the statistical model of Eqn. 4.10 as follows:
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4.3.1.3 Exact Marginal Likelihood

We employed a Jeffreys prior ppα, σ|N j
p , φ

jq91{σ for σ ą 0 over the common parameters. Prior to infer-
ence, the non-interventional components of the design matrix were orthogonalized using the transforma-
tion pXj

Nj
p
qik ÞÑ

ř

lpIn´P0qilpX
j

Nj
p
qlk, where P0 “X0pX

T
0 X0q

´1XT
0 [Deltell et al., 2012]. We then as-

sumed a g-prior for regression coefficients [Zellner, 1986], given by β|α, σ,N j
p , φ

j „ N p0bˆ1, φ
jσ2pXT

Nj
p
XNj

p
q´1q

where b “ dimpβq. Using these priors for the DBNs with intervention as outlined above, the marginal
likelihood can be obtained in closed-form:

Ppyjp|N
j
p , φ

jq9
1

pφj ` 1qb{2

ˆ

yjTp

ˆ

Inˆn ´ P0 ´
φj

φj ` 1
PNj

p

˙

yjp

˙´
n´a

2

(4.12)

where PNj
p
“ XNj

p
pXT

Nj
p
XNj

p
q´1XT

Nj
p
, a “ dimpαq and b “ dimpβq. Empirical investigations have

previously demonstrated good results for network inference based on the above marginal likelihood [Hill
et al., 2012a; Spencer and Mukherjee, 2012].

4.3.1.4 Elicitation of the Zellner Parameter

We employed a marginal likelihood Ppyjp|N
j
p , φ

jq based on Bayesian linear regression using Zellner’s g-

prior [Zellner, 1986] as described above. The hyper-parameter g “ φj , which is related to the weight of
the parameter prior ppβ|α, σq relative to the data yjp, was selected using the conditional empirical Bayes
procedure of George and Foster [2000], corresponding to

ĝpN j
p q “ arg maxgPpy

j
p|N

j
p , gq. (4.13)

In order to retain computational efficiency, we evaluated the argument over a finite set of eight candidate
g values corresponding to prior weight of 0,10,20,30,40,50% and p100{nq% (the unit information prior).
Alternative strategies for setting of the g hyper-parameter are discussed in Deltell et al. [2012]; Liang et
al. [2008].

4.3.2 Computationally Efficient Joint Estimation

Previous studies have used MCMC to generate samples from the posterior distribution over networks
[Penfold et al., 2012; Werhli and Husmeier, 2008]. However, ensuring mixing has proven to be extremely
challenging for joint estimation, with both studies reporting extremely slow convergence. Advances in
MCMC and parallel computing may in the future ameliorate these issues [Lee et al., 2010], but at present
it remains the case that fast, interactive joint estimation is currently challenging or prohibitively demand-
ing using MCMC. We therefore propose an exact approach, using an in-degree restriction coupled with
prior modularity and a sum-product-type (“propagation”) algorithm, to facilitate efficient estimation.
For example, the DREAM4 problem (P “ 10 variables, J “ 5 individuals) considered by Penfold et al.
[2012] was reported to require “several hours per node” for MCMC convergence; our approach solves the
entire problem in « 3 seconds. Our approach therefore complements MCMC-based inference, allowing
fast, interactive investigation in moderate-dimensional settings.

Specifically, we use exact model averaging to marginalize over networks and report posterior marginal
inclusion probabilities. We begin by computing and caching the local scores Ppyjp|N

j
p q for all parent sets

N j
p P Np, all variables p P P and all individuals j P J ; these could be obtained using essentially any
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suitable likelihood. The posterior marginal probability for an edge pi, pq belonging to the latent network
G is computed as Eqns. 4.14-4.19, where Eqn. 4.19 uses Lemma 1 in Appendix C.1 to interchange
operators. This final step has important consequences for algorithmic complexity (see Section 4.3.3) and
is a main advantage of these “propagation” algorithms [Pearl, 1982]. Note that, whilst this derivation can
made without the explicit marginalization of Eqn. 4.15, the approach is quite general and may be used
analogously to facilitate estimation of individual networks N j (Eqns. 4.20-4.25) where again Lemma 1
justifies the exchange of operators.
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4.3.3 Computational Complexity

Following Hill et al. [2012a] we reduced the space of parent sets Np using an in-degree restriction of
the form |N j

p | ď dmax for all N j
p P Np, p P P, j P J . Thus the cardinality of the space of parent

sets M “ |Np| “ OpP dmaxq is polynomial in P , where it was previously exponential. This reduces
summation over an exponential number of terms to a more manageable sum over polynomially many
terms. Moreover, in the protein signalling example to follow, bounded in-degree is a reasonable biological
assumption. Sensitivity to choice of dmax is discussed in Section 4.4.1.

Caching of selected probabilities is used to avoid redundant recalculation. Below we provide pseudo-
code for computation of posterior marginal inclusion probabilities for edges in individual networks N j :

for all p P P do

Phase I:

Compute and cache [@p P P] [@j P J ] [@Np P Np]
Ppyjp|Npq “

ř

Nj
pPNp

Ppyjp|N
j
p qppN

j
p |Npq [OpMq]

Phase II:

Compute and cache [@p P P] [@j P J ] [@N j
p P Np]

ppN j
p |yp, N

0
p q9

ř

NpPNp
ppNp|N

0
p qPpy

j
p|N

j
p qppN

j
p |Npq

ś

kPJ ztjuPpy
j
p|Npq [OpMJq]

Phase III:

Compute and cache [@p P P] [@j P J ] [@i P P]

ppi P N j
p |y, N

0q “
ř

Nj
pPNp

1iPNj
p
ppN j

p |y, N
0
p q [OpMq]

end for

Computational complexity of each operation is shown in parentheses. Pseudo-code for inference of the
latent network N proceeds analogously.

The above pseudo-code consists of three phases of computation. Storage costs are dominated by
Phases I and II, which each requiring the caching of OpPJMq real numbers. (Computational complexity
of calculating marginal likelihoods Ppyjp|G

j
pq will scale with sample size n; scaling exponents shown

here assume Opnq “ Op1q.) Phase II dominates computational effort, with total (serial) algorithmic
complexity OpPJ2M2q. However, within-phase computation is embarrassingly parallel in the sense that
all calculations are independent (indicated by square parentheses notation in the pseudo-code).

4.4 Results

We tested our joint estimation procedure on both simulated and real proteomic time-course data. We
compare our approach to the special cases of (i) inferring each network separately (INI); (ii) allowing
parameters (but not networks) to change between individuals (ANI); (iii) the naive approach of aggre-
gating all data (monolithic) and (iv) simple temporal correlations (absolute Pearson coefficient). For
a fair comparison, all methods, with the exception of (iv), were implemented so as to take account of
the interventional nature of the data. We note that it is not possible to directly compare our results
with Danaher et al. [2012]; Guo et al. [2011]; Yang et al. [2012] since these methods do not apply to
time-course data. The method of Penfold et al. [2012] applies to time-course data, but the computa-
tional demands of the approach precluded application in this setting. Specifically, in the simulated data
example we report below, over 3000 rounds of inference were performed in total, on problems larger than
DREAM4 (P “ 10, J “ 5). Using the approach of Penfold et al. [2012], these experiments would have
required more than 10 years’ computational time; in contrast our approach required less than 24 hours
serial computation on a standard laptop.

4.4.1 Performance Metrics

The proposed methodology addresses three questions, some or all of which may be of scientific interest
depending on application; (i) estimation of the latent network N , (ii) estimation of individual networks
N1, . . . , NJ , and (iii) estimation of differences between individual networks. We quantify performance
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Figure 4.4: Insensitivity to the in-degree restriction. [Here we plot posterior edge probabilities obtained
using in-degree restrictions dmax “ 3 and dmax “ 4.]

for tasks (i) and (ii) using the area under the receiver operating characteristic (ROC) curve (AUR).
This metric, equivalent to the probability that a randomly chosen true edge is preferred by the inference
scheme to a randomly chosen false edge, summarizes, across a range of thresholds, the ability to select
edges in the data-generating network. AUR may be computed relative to the true latent network N , or
relative to the true individual networks N j , quantifying performance on tasks (i) and (ii) respectively.
Both sets of results are presented below, in the latter case averaging AUR over all individual networks.
For (iii), in order to assess ability to estimate individual heterogeneity, we computed AUR scores based
on the statistics F jip “ |ppi P N

j
p |y, N

0q ´ ppi P Np|y, N
0q| which should be close to one if i P N j

p∆Np,

otherwise F jip should be close to zero.
It is easy to show that inference for the latent network, under only the prior, attains mean AUR equal

to hη. Similarly, prior inference for the individual networks attains mean AUR equal to 1´hη´hλ`2hηhλ.
This provides a baseline for the proposed methodology at tasks (i) and (ii) and allows performance to
be decomposed into AUR due to prior knowledge and AUR contributed through inference. Using a
systematic variation of data-generating parameters, we defined 15 distinct data generating regimes. For
all 15 regimes we considered 50 independent datasets; standard errors accompany average AUR scores.
Results presented below use a computationally favourable in-degree restriction dmax “ 3. Note that when
the maximum in-degree of any of the true networks exceeds the computational restriction dmax, estimator
consistency will not be guaranteed. In order to check robustness to dmax, a subset of experiments were
repeated using dmax “ 4, with close agreement observed (see Fig. 4.4).

4.4.2 Simulation Study

4.4.2.1 Data Generation

A latent network N on P vertices was drawn from the Erdös distribution with edge density ρ{P . (This
Chapter restricts attention to Erdös random networks, but numerous other network models could be
used; in particular there is evidence that certain bio-molecular networks are well described by a scale
free network model.) In order to simulate heterogeneity, the individual networks N j were obtained
from N by maintaining the status (present/absent) of each edge independently with probability hλ. A
parameter βjip for each parent i P N j

p was independently drawn from the mixture normal distribution

0.5N p´1, 0.12q ` 0.5N p1, 0.12q (the mixture distribution ensures that parameters are not vanishingly
small, so that the structural inference problem is well-defined). Collecting together parameters produces
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matrices βj , corresponding to networks N j via i P N j
p if and only if βjip ‰ 0. We also generate, for each

individual j, intercept parameters αj „ N p0P , IPˆP q representing baseline expression levels. Initial
conditions were sampled as yjp1q „ N p0P , IPˆP q. Data were then generated from the autoregressive
model yjptq “ αj`yjpt´1qβj`εt, where εt „ N p0P , σ2IPˆP q are independent for t “ 2, . . . , n. In this
way E such time courses were obtained; that is, from E distinct initial conditions, so the total number of
data for individual j is nj “ En. In order to avoid issues of blow-up and to generate plausible datasets,
the matrices βj were normalized by their spectral radii prior to data generation.

In order to investigate the effect of using a prior network N0, we do not simply want to set N0 equal
to the latent network N , since in practice this network is unknown. We therefore generated a prior
network N0 by correctly specifying each potential edge as either present or absent with probability hη.
In this way we mimic partial prior knowledge of the networks under study.

4.4.2.2 Alternative Data Generating Mechanisms

We augmented the above data-generating scheme to mimic interventional experiments. In this case, for
each time course, a randomly chosen variable is marked as the target of an interventional treatment.
Data are then generated according to the augmented likelihood described in Section 4.3.1.2 (fixed effects
were taken to be zero). Furthermore, in order to investigate the impact of model misspecification, we also
considered time series data generated from a computational model of protein signalling, based on non-
linear ODEs [Xu et al., 2010]. In order to extend this model, which is for a single cell type, to simulate
a heterogeneous population, we randomly selected three protein species per individual and deleted their
outgoing edges in the data-generating network.

4.4.2.3 Latent Network

Firstly we investigated ability to recover the latent network N . Initially all estimators are assigned
approximately optimal hyper-parameter values η “ 1, λ “ 4 (for Xu et al. [2010], λ “ 3) based on
the heuristic of Eqn. 4.4; prior misspecification is investigated later in Section 4.4.2.6. We found little
difference in the ability of JNI and ANI to recover the latent network structure across a wide range
of regimes (Table 4.3). Since ANI enjoys favourable computational complexity, this estimator may be
preferred for this task in practice. However, both approaches clearly outperformed monolithic inference,
which was no better than inference based on the prior alone, demonstrating the importance of accounting
for variation in parameter values. Correlations barely outperformed random sampling.

In practice, one could also estimate N using independent network inference (INI), via the ad hoc
estimator ppi P Np|y, N

0q « 1
J

ř

jPJ ppi P N j
p |y

j , N0q which performs an unweighted average of J
independent network inferences. However we found that INI offered no advantage over JNI and ANI,
performing worse than both in 14 out of 15 regimes. We obtained qualitatively similar results for both
alternative data-generating schemes (Tables 4.5,4.8).

4.4.2.4 Individual Networks

Secondly we investigated the ability to recover individual networks N j . At this task, JNI outperformed
INI in all 15 regimes (Table 4.2). This demonstrates a substantial increase in statistical power resulting
from the hierarchical Bayesian approach. JNI also outperformed monolithic estimation and inference
using temporal correlations in all 15 regimes, with the latter demonstrating substantial bias.

One may try to improve upon INI by firstly estimating the latent network N , and then taking this
estimate as a prior network N0 within a second round of INI. Informed by Section 4.4.2.3, we consider
the approach whereby N is first estimated using ANI, referring to this two-step procedure as empirical
network inference (ENI). We found that the performance of ENI consistently matched that of JNI over
a wide range of regimes. Since ENI avoids all joint computation, this may provide a practical estimator
of individual networks in higher dimensional settings. Similar results were observed using the alternative
data-generating schemes, although JNI slightly outperformed ENI on the Xu et al. [2010] datasets (Tables
4.6,4.9).

4.4.2.5 Feature Detection

Thirdly, we assessed ability to pinpoint sources of variation within the population. Interest is often
directed toward individual-specific heterogeneity, or features. Informally, writing N j “ N ` δj , features
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Figure 4.5: AUR as a function of hyper-parameters η, λ. Performance is insensitive to moderate variation
in hyper-parameters. [Here we present AUR for inference of the latent network N when the data-
generating hyper-parameters are λ “ η “ 1, but the result is typical for the other estimation problems
and other data-generating regimes. A smooth interpolation is used to aid visualization.]

correspond to δj . JNI regularizes between individuals; it therefore ought to eliminate spurious differences,
leaving only features which are strongly supported by data. Equivalently, since JNI offers improved
estimation of the latent network N , the features δj “ N j ´N ought also to be better estimated.

Feature detection may also be performed using INI or ENI, comparing an latent network estimator
(see ad hoc estimator in Section 4.4.2.3) with individual networks. The performance of JNI was compared
to the performance of INI and ENI (Table 4.4). We found that, whilst feature detection is much more
challenging that previous tasks, JNI mostly outperformed both INI and ENI, with exceptions occurring
whenever the underlying dataset was highly informative (in which case INI was often superior). This sug-
gests that coherence of the JNI analysis aids in suppressing spurious features in the small sample setting.
Alternative data-generating schemes produced qualitatively similar results, although JNI outperformed
ENI on the Xu et al. [2010] datasets (Tables 4.7,4.10).

4.4.2.6 Robustness to Hyper-Parameter Misspecification

For the above investigation we used Eqn. 4.4 to elicit hyper-parameters λ, η. This was possible because
the data-generating parameters hλ, hη were known by design; however in general this will not be the
case. It is therefore important that estimator performance does not deteriorate heavily when alternative
hyper-parameter values are employed. By fixing phλ, hηq in the data generating process, we are able
to investigate the robustness of JNI estimator to hyper-parameter misspecification. In particular, when
finite values are ascribed to data-generating parameters phη, hλq, ANI and INI may be interpreted as
inference using misspecified prior distributions (see Section 4.2.3).

Fig. 4.5 displays how performance of the JNI estimator for latent networks depends on the choice
of hyper-parameters λ, η P r0,8q. Data were generated using hλ “ hη “ 0.73, corresponding to op-
timal hyper-parameters λ “ η “ 1. Inference was then performed using a range of misspecified prior
distributions, with performance quantified by AUR. We notice that AUR remains close to that obtained
for optimal λ, η over a fairly large interval, so that performance is not exquisitely dependent on prior
elicitation.
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Figure 4.6: Investigating robustness to outliers and batch effects. [Here the autoregressive model, de-
scribed in Chapter 4, was used to generate data. Mean AUR over 50 iterations and associated standard
error are reported. “JNI” “ joint network inference, “ANI” “ aggregate data but control for parameter
confounding, “INI” “ average J independent network inferences, “ENI” “ two-step estimation procedure
described in Chapter 4, “Naive DBN” “ as JNI but without integrating interventions, “Monolithic” “
aggregate data without controlling for parameter confounding, “Correl.” “ estimation using the absolute
Pearson temporal correlation coefficient.]

4.4.2.7 Robustness to Outliers and Batch Effects

The biological datasets which motivate this study often contain outliers. At the same time, experimental
design may lead to platform-specific batch effects. In order to probe estimator robustness, we gener-
ated data as previously described, with the addition of outliers and certain batch effects. Specifically,
Gaussian noise from the contamination model 0.95N p0, 0.12q`0.05N p0, 102q was added to all data prior
to inference. At the same time, one individual’s data were replaced entirely by Gaussian white noise
to simulate a batch effect that could arise if preparation of a specific biological sample was incorrect.
The relative decrease in performance at feature detection is reported in Fig. 4.6. We found that JNI
remained the optimal estimator for all three estimation problems, in spite of these heavy violations to
the modelling assumptions. However, the actual decrease in performance was more pronounced for JNI
than for INI, suggesting that decoupled estimation (INI) may confer robustness to batch effects which
affect single individuals.

4.4.3 Breast Cancer Data

In this Section we consider experimental data derived from human breast cancer cell lines. We focus
on protein signalling networks, for which a substantial proportion of wild type network topology has
been characterized by extensive biochemistry (EGFR pathway; Fig. 4.1). In this setting it is known
that certain genetic aberrations which influence the network structure are relatively common across
populations [Bachman et al., 2004; Davies et al., 2002]. Moreover, network heterogeneity is unlikely to be
uniform across cell lines, since these genomic aberrations do not occur independently. This investigation
serves three purposes: Firstly, the EGFR pathway allows us to validate a subset of the conclusions drawn
from the simulation study, and thereby gain some confidence as to the applicability of those results to
real data. Secondly, this study allows us to investigate the use of JNI in a realistic setting where ancillary
information is available, in the form of mutational status and histological profiling. Finally, the tools
developed in this Chapter allow us to shed light on the signalling heterogeneity across a panel of breast
cancer cell lines.

Data were obtained using reverse-phase protein arrays [Hennessy et al., 2010] from J “ 6 breast cancer
cell lines (AU565, BT474, HCC1954, MDAMB231, SKBR3 and SUM225CWN; experimental protocol is

81



described in brief in Section B.6.1). Data comprised observations for the P “ 17 proteins shown in Fig.
4.1 (see also Table C.1). Specifically, y contains the logarithms of the measured concentrations. Data
were acquired under treatment with an EGFR/HER2 inhibitor Lapatinib (“EGFRi”), an Akt inhibitor
(“Akti”), EGFRi and Akti in combination, and without inhibition (“DMSO”) at 0.5,1,2 and 4 hours
following Serum stimulation, giving a total of nj “ 16 observations of each variable in each individual
cell line.

4.4.3.1 Ancillary Information

In the context of cancer cell lines, ancillary information is available in the form of genetic aberrations
(mutation statuses) and histological profiling, which may be integrated into a Bayesian prior. For in-
stance, a loss-of-function mutation in the kinase domain of a protein corresponds to zero prior probability
on edges emanating from that protein, since the protein is no longer functionally active as a kinase. Fur-
ther, if the mutation also affects the ability of a protein to be phosphorylated, then incoming edges may
also be assigned zero prior probability. As a second example, cell lines with ectopic expression of the
receptor HER2 are known to depend heavily upon EGFR signalling. In this case the network prior would
not penalize edges emanating from the EGFR receptor family. For our panel of breast cancer cell lines
there is ancillary information available from published sources [Neve et al., 2006] and on-line databases
[Forbes et al., 2011]. This data is reproduced in Table C.2. For our investigation we encoded ancillary
information into a network prior following the general principles outlined in this paragraph. Full details
are provided in Section C.3; we refer to these estimators as “JNI + A” etc.

For the EGFR pathway, extensive biochemistry on “wild type” cell lines (mainly fibroblasts) has
produced a well-validated network representation N0 (Fig. 4.1). However, individual breast cancer cell
lines have received (comparatively) far less attention. It is therefore generally true that most of our
prior knowledge on cell lines derives directly from assumed similarity with N0. Whilst cancer signalling
may differ with respect to wild type signalling, we expect the differences to be small in number. In
light of these observations, we used our elicitation criteria from Section 4.2.4 to select hyper-parameters
λ “ 4, η “ 5, corresponding variously to hλ “ ppi R N j

p∆Npq “ 0.982, hη “ ppi R Np∆N
0
p q “ 0.993,

EpSHDpN j , Nqq “ 5.2, EpSHDpN,N0qq “ 2.0, s1 “ ppi R N j
p∆Nk

p q “ 0.965, s2 “ ppi R N j
p∆N0

p q “ 0.976,

EpSHDpN j , Nkqq “ 10.1 and EpSHDpN j , N0qq “ 6.9.

4.4.3.2 Validation of Estimators

In order to test estimator performance using real data, we firstly investigated inference for the latent
network N , benchmarking estimates against the wild type network from literature (Fig. 4.1). For an
unbiased assessment we used an empty prior network N0. Inferred networks are displayed in Fig. 4.7(a).
Results demonstrated good recovery of the literature network, with JNI attaining the highest AUR
(0.66, p ă 0.01, Fig. 4.7(b)). As in the simulation study, JNI outperformed INI, with ANI representing a
good approximation to JNI. Interestingly, posterior inclusion probabilities for INI were consistently low,
indicating that statistical power is sacrificed in independent inference. Inference was performed with and
without using the ancillary data. We found that, for JNI and ANI, estimation improved as a result of
including the ancillary data, demonstrating the potential strength of Bayesian estimation in this setting.
Conversely, inclusion of ancillary data did not improve the performance of INI.

4.4.3.3 Inference for Cell Lines

We investigated inference for cell line specific networks (Fig. 4.8), taking the prior network N0 from
literature (Fig. 4.1). In order to assess correctness of the inferred heterogeneity, we exploited the fact
that cell lines AU565 and SKBR3 derive from the same patient. We would therefore expect these two cell
lines to be most similar at the network level. Reassuringly, under JNI and ENI, these cell line specific
networks are the most similar, maximizing the Spearman correlation coefficient between corresponding
posterior marginal inclusion probabilities over all 6C2 “ 15 possible pairs of cell lines. Both INI and
correlation statistics fail to identify these two lines as the most similar.

A thorough assessment of the accuracy of these individual networks will require additional interven-
tional experiments. However, Fig. 4.9 demonstrates that corresponding posterior edge probabilities are
convincingly regularized under JNI and ENI compared with INI and correlation statistics; this is likely
a necessary condition for successful network inference in this setting.
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(a) JNI + A: AUR =
0.66292, p = 0.0052

(b) ANI + A: AUR =
0.66275, p = 0.0053

(c) INI + A: AUR = 0.619,
p = 0.0318

(d) JNI: AUR = 0.62002, p
= 0.0308

(e) ANI: AUR = 0.62291, p
= 0.0282

(f) INI: AUR = 0.62053, p =
0.0302

(g) Monolithic: AUR =
0.50085, p = 0.4955

(h) Correl.: AUR = 0.54426,
p = 0.2471
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Figure 4.7: Breast cancer data; inference for the canonical EGFR pathway. [An empty prior N0 was used.
The literature network from Fig. 4.1 forms a benchmark for estimator assessment. For (a), the layout of
vertices is congruent to Fig. 4.1, which may be used as a key. p-values were calculated by permutation test
based on the AUR statistic, with 10,000 samples used to obtain an empirical null distribution. “JNI” “
joint network inference, “ANI” “ aggregate data but control for parameter confounding, “INI” “ average
J independent network inferences, “Monolithic” “ aggregate data without controlling for parameter
confounding, “Correl.” “ estimation using the absolute Pearson temporal correlation coefficient. “+A”
indicates that ancillary information was integrated into inference.]
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(a) AU 565 (b) BT 474 (c) HCC 1954

(d) MDA MB 231 (e) SKBR 3 (f) SUM 225CWN

0 0.2 0.4 0.6 0.8 1

Posterior Probability

Figure 4.8: Breast cancer data; cell line specific networks inferred by JNI, using ancillary data. [Edge
width and colour are proportional to posterior marginal inclusion probabilities. The layout of vertices is
congruent to Fig. 4.1, which may be used as a key.]

4.5 Discussion

There are three distinct, though related, structure learning problems which may be addressed in the
context of an heterogeneous population of individuals:

1. Recovering a shared or “wild type” network from the heterogeneous data.

2. Recovering networks for specific individuals.

3. Pinpointing network variation within the population.

Each problem may be of independent scientific interest and the joint approaches investigated here address
all three problems simultaneously within a coherent framework. We considered simulated data, with and
without model misspecification, as well as real data obtained from cancer cell lines. For all three problems
we demonstrated that a joint analysis performs at least as well as independent or aggregate analyses.

Our analysis, based on exact Bayesian model averaging and a sum-product type (“propagation”)
algorithm, was massively faster then the sampling-based schemes of Penfold et al. [2012]; Werhli and
Husmeier [2008]. Moreover, our estimators are deterministic, so that difficulties pertaining to MCMC
convergence were avoided. Indeed, attaining convergence on joint models of this kind appears to be
challenging [Werhli and Husmeier, 2008]. The proposed methodology is scalable, with an embarrass-
ingly parallel algorithm provided in Section 4.3.3. Furthermore, we described approximations to a joint
analysis which enjoy further reduced computational complexity whilst providing almost equal estimator
performance across a wide range of data-generating regimes.

Whilst we considered the simplest form of regularization, based on prior modularity, there is potential
to integrate richer knowledge into inference. One possibility would be hierarchical regularization that
allows entire pathways to be either active or inactive. However, in this setting it would be important to
revisit hyper-parameter elicitation; the procedures which we have described are specific to SHD priors.
In particular we restricted the joint model to have equal inverse temperatures λ1 “ ¨ ¨ ¨ “ λJ :“ λ.
Relaxing this assumption may improve robustness to batch effects which target single individuals, since
then weak informativeness (λj « 0) may be learned from data. It would also be interesting to distinguish
between NzN j (“loss of function”) and N jzN (“gain of function”) features. However, as we have seen,
hyper-parameter elicitation in these hierarchical models requires a degree of care. In this work we did not
explore information sharing through parameter values θj , yet this may yield more powerful estimators
of network structure in settings where individuals’ parameters θj ,θk are not independent.
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Figure 4.9: Two breast cancer cell lines from the same patient. Joint inference (JNI) and approximate
joint inference (ENI) improve the Spearman correlation coefficient (“rho”) between posterior marginal
inclusion probabilities for AU565 and SKBR3 compared to independent inference (INI) and inference
based on absolute Pearson temporal correlation coefficients (Correl). [“+A” refers to the integration of
ancillary information into inference, as described in the Main Text.]
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The JNI model could be formulated as a penalized (log-)likelihood

logpppy|N1, . . . , NJqq ´
ÿ

jPJ
λjdjpN j , Nq ´ ηdpN,N0;Ajq. (4.26)

The frequentist approaches described by Danaher et al. [2012]; Guo et al. [2011]; Mohan et al. [2013];
Yang et al. [2012] enjoy favourable computational complexity (esp. Danaher et al. [2012] who provide
an example with P “ 22, 283 variables and J “ 187 individuals). However, in small to moderate
dimensional settings, the Bayesian methods proposed here are complementary in several respects: (i)
Bayesian approaches provide a confidence measure for inferred topology, dealing with non-identifiable and
multi-modal problems; (ii) no convexity assumptions are required on the form of the penalty functions
d, dj in the Bayesian setting, which may assist with integration of ancillary information; (iii) the above
penalized likelihood methods do not apply directly to time course data (but could be extended to do so).

These experiments employed a promising formulation of likelihood under intervention due to Spencer
and Mukherjee [2012]. There are a number of interesting extensions which may be considered in future
work: (i) In high dimensions, Bayesian variable selection requires multiplicity correction in order to
avoid degeneracy [Scott and Berger, 2010]. Such correction is required to control the false discovery
rate and is independent to the penalty on model complexity provided by the marginal likelihood. In
this moderate-dimensional work, in order to simplify the presentation, we did not employ a multiplicity
correction; this should be an avenue for future development. (ii) Inference was based upon a local score
borrowed from Bayesian linear regression. We chose to employ the g-prior due to Zellner [1986], where
following George and Foster [2000] we used (conditional) empirical Bayes to select the g hyper-parameter.
Others have suggested setting g “ n [unit information prior; Smith et al., 2001], whilst Deltell et al.
[2012] and Liang et al. [2008] propose prior distributions over g with attractive theoretical properties.
Our empirical investigation suggested that the choice of hyper-parameter elicitation is influential, but a
thorough comparison of linear model specifications is beyond the scope of this thesis. (iii) As discussed
in Chapter 2, linear autoregressive formulations may be inadequate in realistic settings; in particular,
samples which are obtained unevenly in time can be problematic. Recent advances which incorporate
mechanistic detail into the likelihood, such as those in Chapter 3 may prove advantageous. Since the
JNI approach decouples the marginal likelihood and model averaging computations, it may be applied
directly to the output of more sophisticated models. (iv) In the case of linear models, Barbieri and Berger
[2004] showed that the median probability model (i.e. model averaging) provides superior predictive
performance over the maximum a posteriori (MAP) model in the Bayesian setting. However we are
unaware of an analogous result for causal inference.

Techniques for modelling heterogeneous data are clearly widely applicable. The methodology pre-
sented here may be applicable in other disciplines. For example, our approach is suited to meta-analyses
of network analyses [Weile et al., 2012], integration of multiple data sources [Kato et al., 2005; Wei and
Pan, 2012; Werhli and Husmeier, 2008] or data arising from context dependent networks [Baumbach et
al., 2009]. The ideas discussed here share many connections with time-heterogeneous DBNs which, for
brevity, we did not discuss in this thesis [Dondelinger et al., 2010, 2012; Grzegorczyk and Husmeier,
2011; Song et al., 2009].

4.6 Addendum: Structured Populations

This Chapter focussed on unstructured populations of individuals; in particular our model was exchange-
able in the sense that each individual was treated equally within the joint likelihood. However in many
applications individuals will not satisfy such an exchangeability assumption. For example the cancer cell
line panel considered in this Chapter may be better described by firstly stratifying cell lines according to
cancer subtype and then constructing a JNI model within each subtype. Here the population as a whole
will not be exchangeable, since cell lines within the same subtype are more closely related than cell lines
in different subtypes (the population is structured). For brevity we did not discuss structured popula-
tions in this thesis. Oates et al. [2013c] extends the JNI framework to encompass populations admitting
a (known) tree structure. In this more general setting, efficient computation is once again facilitated by
belief propagation. However hyper-parameter elicitation requires greater care since each branch of the
tree, in principle, requires its own inverse temperature hyper-parameter. Oates et al. [2013c] circum-
vent hyper-parameter elicitation by introducing a novel, non-parametric regularisation between adjacent
networks in the tree. The reader is referred to Oates et al. [2013c] for full details.
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Chapter 5

Outlook

In this thesis we have discussed some statistical challenges in the area of cellular signalling systems,
proposed specific solutions and explicated the methodology in the context of emerging high-throughput
phosphoproteomic data obtained from reverse phase protein arrays (RPPAs). In particular we focussed
on the data-driven characterisation of context-specific biological networks. It is worth stressing that,
despite enjoying a recent surge in popularity, research into network inference remains underdeveloped
and care should be taken when drawing scientific conclusions from such analyses.

This thesis contributed three novel Chapters to the emerging literature.

• In Chapter 2 we surveyed the existing statistical literature for approaches to network inference from
time course data, exploring the connection between simplified statistical models and complex data-
generating processes at the single-cell level. We highlighted issues surrounding the effectiveness of
such inference procedures on realistic data and proposed a specification of the linear model which
could served as a default for subsequent work.

• Chapter 3 extended this statistical specification to integrate non-linear chemical kinetics into net-
work inference. We found that such models (i) facilitate improved reconstruction of biological
network topology in silico and (ii) have the potential to boost predictive power in situations where
it is not possible to reliably extract network topology from literature. Using RPPA data obtained
on breast cancer cell lines we validated (ii), finding that response of HER2+ cell lines to small
molecule inhibitors EGFRi and Akti were better predicted by the proposed CheMA approach than
by fitting a model derived from literature to data.

• Chapter 4 generalised the modelling approach to integrate multiple data obtained from a heteroge-
neous population. Here we found that a hierarchical model was able to increase statistical efficiency
in recovering network structure across the population at little additional computational cost (in
moderate dimensional settings). Using RPPA data, we found that the proposed JNI approach
successfully regularised networks across a panel of breast cancer cell lines and demonstrated ability
to recover “wild type” signalling topology from a heterogeneous biological sample.

A technical commentary was reserved for the relevant Chapters, but below we provide a high level
summary of the many opportunities for further statistical research in this field:

• Modelling. This thesis restricted attention to Gaussian DBNs and ODE models of cellular chem-
istry. Yet it is known that cellular dynamics are frequently non-Gaussian [Paulsson, 2005] and
are not well described by the well-mixed assumption of mass action chemistry [Ando et al., 2010;
Konopka et al., 2006]. More general continuous time Markov processes, with spatial effects being
explicitly modelled, offers one solution. However inference for such systems is extremely challeng-
ing, with even direct simulation requiring sophisticated computational techniques [Vigelius et al.,
2010].

• Observational. Statistical inference for “real world” continuous time stochastic processes is nec-
essarily based on data obtained discretely in time, typically with measurement noise. Moreover,
the microscopic molecular systems arising in cell biology often necessitate indirect approaches to
experimental data collection, involving aggregation of possibly asynchronous cell populations in
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order to generate sufficient biological material, or destructive sampling, where “time course” data
are in reality non-longitudinal. For many experimental platforms it is possible to simultaneously
measure the abundance of many (P ąą 1) species, yet the total number n of measurements is often
limited due to cost and/or labour, leading to a paucity of data (P ą n). All of these difficulties
suggest avenues for the development of novel statistical methodologies.

• Emerging biotechnologies. We considered data derived from RPPA, a relatively new high-throughput
technology [Hennessy et al., 2010]. Several other experimental platforms are emerging and it will
be important to investigate adequate statistical representations for the resulting data. For instance
RNA-seq data contain integer counts of the number of each RNA in a biological sample; the discrete
nature of this data call for novel statistical analyses.

• Causal reasoning and latent variables. We focused on the simplest possible case of fully observed,
low-dimensional systems. There is a rich literature in high-dimensional variable selection and re-
lated graphical models [Bühlmann and van de Geer, 2011; Friedman et al., 2008; Hans et al.,
2007; Maathuis et al., 2010; Meinshausen and Bühlmann, 2006] which applies equally to the re-
gression models described here. Many of the issues raised in this thesis remain relevant in the
high-dimensional setting. Indeed, in practice even high-dimensional observations are likely to be
incomplete, since it is not currently possible to measure all relevant chemical species. Therefore,
inferred relationships between variables may be indirect. This may be acceptable for the purpose
of predicting the outcome of biochemical interventions (e.g. inhibiting gene or protein nodes), but
requires greater care in experimental design in order to ensure causal sufficiency (Section 1.4.2).
Latent variable approaches are available [Beal et al., 2005], but model selection can be challenging
and remains an open area of research [Colombo et al., 2012; Gao et al., 2008; Knowles and Ghahra-
mani, 2011]. Further work is required to better understand these issues in the context of inference
for biological networks.

• Causal reasoning and interventions. There now exist a number of graphical formulations for causal
reasoning, including Bayesian networks [Pearl, 2009], structural equation models [Peters, 2012]
and chain event graphs [Smith and Anderson, 2008]. Each methodology is able to facilitate the
principled analysis of data obtained under intervention, or to predict the effect of an intervention
from observational data. Physical limitations mean that an idealised “step function” representation
of interventions, such as receptor stimulation or administration of an inhibitor, is far from reality.
In the latter case, treatment with a small molecule inhibitor of Akt kinase activity, for example,
requires several hours to diffuse through out the cellular population. As a consequence, during
pretreatment the cellular population has several hours to adjust to the new environment by altering
gene expression profiles. Accounting for such non-local interventions and (real-valued) experimental
data is potentially challenging, since intervention may change, in principle, the empirical form of
any conditional distribution in the system. Here JNI and related approaches may prove useful,
allowing for modest changes in global structural to result from intervention.

• Statistical model selection. It is well known that the high-dimensional regime, where the number
P of predictors is allowed to grow with the number n of samples, poses challenges to classical
statistical methodology, which focusses on consistent estimation as n Ñ 8 with P fixed. Recent
developments in high-dimensional statistics have led to the development of consistent estimators
under restrictions of sparsity [Meinshausen and Bühlmann, 2006]. These procedures have been
extended to settings where variables are highly correlated, such as Gaussian graphical models [Loh
and Wainwright, 2012], and in settings where latent variables may be present [Colombo et al., 2012].
However such techniques do not integrate specific knowledge about the data-generating system; in
this respect these estimators may be sub-optimal against model-based inference. More generally,
consistent estimation is currently far removed from the reality of inference in systems biology, with
enormous model misspecification and often highly multi-modal likelihood surfaces which must be
explored.

• Bayesian computation. The likelihood resulting from mechanistic models of cellular dynamics is
typically intractable, in the sense that the normalising constant is not easily computed. This would
preclude model selection using information criteria or Bayes factors, so it is an important problem
to estimate the normalising constant for a given model. Unfortunately such estimation is extremely
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challenging [Vyshemirsky and Girolami, 2008], though increasingly sophisticated approaches are
being developed to address this bottleneck [Calderhead and Girolami, 2009].

• Data integration. It is typically the case that ancillary data are available on the biological samples
under investigation. For example, in the case of breast cancer cell lines, data are routinely collected
on gene expression profiles and expression of receptor proteins (Example 4). It has been shown
that such data are highly predictive [Heiser et al., 2011] of cellular dynamics, yet it is far from clear
how to optimally exploit such data in inference. More generally, sample heterogeneity presents
a challenge to statistical efficiency, since although cell lines from the same lineage share more
commonalities than cell lines from different lineages, within diseases such as breast cancer there
remains remarkable heterogeneity.

• Application. Whilst network inference offers much promise for our understanding of complex multi-
variate systems, it remains the case that estimation from real data is extremely challenging. Initial
applications of network inference have focussed on exploiting the inferred network in order to con-
strain experimental design, and in this sense are scientifically valid. A smaller number of papers
have drawn conclusions directly from the results of network inference algorithms. Chapter 2 of this
thesis attempts to demonstrate significant shortcomings with the latter strategy. An important
area for research will be to undertake a systematic analysis of network inference algorithms on
large corpora of validation data, following e.g. [Maathuis et al., 2010; Marbach et al., 2012; Prill
et al., 2010].

• Translation. Whilst inference for biological systems is still an emerging research field, it may
soon become important to consider issues surrounding the clinical translation of these statistical
techniques. At the time of writing, there appears to be much potential for network analyses
to contribute to research in oncology; if network heterogeneity proves to explain some of the
heterogeneity observed in cancer, there will be important translational questions to address in
the clinical application of network inference techniques. For example, if patient-specific signalling
network topology is demonstrated to be predictive of response to a particular therapy, then an
important question becomes how to achieve adequate network reconstruction in minimal time with
minimal experimental and computational cost. At the moment this prospect seems several years
away, but theoretical progress on understanding the properties of statistical network estimators
could be achieved as of present.

• Immediate extensions. The work performed in this thesis has some immediate extensions: (i) The
CheMA and JNI algorithms could easily be adapted to perform inference and prediction in other
biological networks. In particular, CheMA easily extends to facilitate inference and prediction in
gene regulation, where Michaelis-Menten formulations are widely used to model dynamics [Kholo-
denko, 2006]. (ii) We rooted JNI in a linear formulation of likelihood which allowed for rapid,
interactive exploration of data. However JNI may apply directly to more sophisticated formula-
tions of likelihood, including CheMA. Thus an immediate extension of this work could be to explore
inference for protein signalling networks under a hierarchical model rooted in non-linear chemical
kinetics.

Clearly there remain major challenges for statistical applications in cellular biology. At present,
the extent to which multivariate statistical techniques will contribute in this field is unclear. Yet within
oncology, there is reason to believe a systems approach to cellular dynamics will be essential to understand
the complex multivariate properties of the disease. The fundamental limitations on experimental drug
screens discussed in the Introduction, which result from combinatoric arguments, preclude a brute-force
experimental approach to fundamental biological discovery. Coupled with the rapid emergence of large
multivariate datasets, it seems likely that multivariate statistical tools will be essential both in the
short-to-medium term and further into the future.
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Appendix A

Supplemental Material for Chapter 2

A.1 Dynamical Systems

A.1.1 Model 1: Cantone et al.

x1 “ rCbf1s, x2 “ rGal4s, x3 “ rSwi5s, x4 “ rGal80s, x5 “ rAsh1s

dx1

dt
“ α1 ` v1

¨

˚

˚

˝

xh1
3 pt´ τq

pkh1
1 ` xh1

3 pt´ τqq

ˆ

1`
x
h2
5

k
h2
2

˙

˛

‹

‹

‚

´ d1x1

dx2

dt
“ α2 ` v2

˜

xh3
1

kh3
3 ` xh3

1

¸

´ d2x2

dx3

dt
“ α3 ` v3

¨

˝

xh4
2

kh4
4 ` xh4

2 p1`
x4
4

γ4 q

˛

‚´ d3x3

dx4

dt
“ α4 ` v4

˜

xh5
3

kh5
5 ` xh5

3

¸

´ d4x4

dx5

dt
“ α5 ` v5

˜

xh6
3

kh6
6 ` xh6

3

¸

´ d5x5

Parameter values were taken from the “switch-on” experimental conditions; see Cantone et al. [2009].

A.1.2 Model 2: Swat et al.

x1 “ rpRBs, x2 “ rE2F1s, x3 “ rCycDis, x4 “ rCycDas, x5 “ rAP ´ 1s

x6 “ rpRBps, x7 “ rpRBpps, x8 “ rCycEis, x9 “ rCycEas
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dx1

dt
“ k1

x2

km1 ` x2

J11

J11 ` x1

J61

J61 ` x6
´ k16x1x4 ` k61x6 ´ φ1x1

dx2

dt
“ kp ` k2

a2 ` x2
2

k2
m2 ` x

2
2

J12

J12 ` x1

J62

J62 ` x6
´ φ2x2

dx3

dt
“ k3x5 ` k23x2

J13

J13 ` x1

J63

J63 ` x6
` k43x4 ´ k34x3

x4

km4 ` x4
´ φ3x3

dx4

dt
“ k34x3

x4

km4 ` x4
´ k43x4 ´ φ4x4

dx5

dt
“ Fm ` k25x2

J15

J15 ` x1

J65

J65 ` x6
´ φ5x5

dx6

dt
“ k16x1x4 ´ k61x6 ´ k67x6x9 ` k76x7 ´ φ6x6

dx7

dt
“ k67x6x9 ´ k76x7 ´ φ7x7

dx8

dt
“ k28x2

J18

J18 ` x6

J68

J68 ` x7
` k98x9 ´ k89x8

x9

km9` x9
´ φ8x8

dx9

dt
“ k89x8

x9

km9 ` x9
´ k98x9 ´ φ9x9

Parameter values were taken as in Swat et al. [2004].

A.2 Derivations

A.2.1 Deriving a Model in the Large Sample Limit

Suppose the true large sample process obeys dX8{dt “ FpX8q. Then a Taylor expansion of X8 about
t gives (dropping the superscript 8)

Xpt`∆q “ Xptq `∆FpXptqq ` . . . (A.1)

so that when we account for measurement error Y “ X`w we have

Ypt`∆q ´wpt`∆q “ Yptq ´wptq `∆FpYptq ´wptqq ` . . . . (A.2)

A Taylor expansion of F about Yptq and a rearrangement gives

Ypt`∆q ´Yptq

∆
´ FpYptqq “

wpt`∆q

∆
´

„

I

∆
` pDFqpYptqq



wptq ` . . . (A.3)

so that the variance

V
ˆ

Ypt`∆q ´Yptq

∆
´ FpYptqq

˙

“
M

∆2
`

ˆ

I

∆
`DF

˙

M

ˆ

I

∆
`DF

˙1

` . . . . (A.4)

A.2.2 Deriving a Model for Longitudinal Single Cell Measurements

An Euler-Maruyama approximation for single cell expression X gives

Xpt`∆q “ Xptq `∆fpXptqq ` gpXptqq∆B` . . . (A.5)

so that when we account for measurement error Y “ X`w we have

Ypt`∆q ´wpt`∆q “ Yptq ´wptq `∆fpYptq ´wptqq ` gpYptq ´wptqq∆B` . . . . (A.6)
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Taking a diffusion gpXq “ σDpXq, a Taylor expansion of f about Yptq and a rearrangement gives

Ypt`∆q ´Yptq

∆
´ fpYptqq (A.7)

“
wpt`∆q

∆
´

“

I
∆ ` pDfqpYptqq

‰

wptq ` σrDpYptqq ´Dpwptqqs∆B` . . .

so that

V
ˆ

Ypt`∆q ´Yptq

∆
´ fpYptqq

˙

“
M

∆2
`

„

I

∆
`Df



M

„

I

∆
`Df

1

`
gg1

∆
` . . . . (A.8)

Notice that this variance is larger than the corresponding variance in Eqn. A.4, showing that a single
cell data set contains less information than the corresponding dataset for an averaged process.

A.2.3 Approximating htrue for Cantone

From Eqn. A.4 a natural choice of variance function htrue is

htruep∆qDpσ2
1 , . . . , σ

2
P q « M∆´2 ` pI∆´1 `DFqMpI∆´1 `DFq1 (A.9)

where the large sample process obeys dX8{dt “ F. This can be made precise under a given matrix
norm:

htruep∆q «

›

›M∆´2 ` pI∆´1 `DFqMpI∆´1 `DFq1
›

›

}Dpσ2
1 , . . . , σ

2
P q}

(A.10)

Under the (strong) assumption that F ” FpX8q we have that DF|x8“0 “ Df |xk“0 since X8 “ 0 if
and only if almost all the Xk “ 0. So it suffices to find the Jacobian of the single cell drift f .

We seek an approximation to htrue for Cantone et al, so for simplicity ignore the delay term in the
regulation of Cbf1 by Swi5. Then

Df |x“0 “

»

—

—

—

—

–

´d1 0 v1{k1 0 0
v2{k3 ´d2 0 0 0

0 0 ´d3 0 0
0 0 vk{k5 ´d4 0
0 0 v5{k6 0 ´d5

fi

ffi

ffi

ffi

ffi

fl

. (A.11)

Substituting Eqn. A.11 for DF in Eqn. A.10 provides an approximation to htrue.
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Appendix B

Supplemental Material for Chapter 3

B.1 Truncated Gaussian Distributions

We used truncated normal distributions as priors for kinetics parameters, as described in Chapter 3.
Here, we define truncated normal distributions and discuss how we sampled from them.

B.1.1 Definition

A random variable Y P Rn has a truncated multivariate normal distribution with parameters µ and Σ
(taken from the untruncated distribution), denoted Y „ NT pµ,Σq, if Y has probability density function

pY pyq9 exp

ˆ

´
py ´ µqTΣ´1py ´ µq

2

˙

Ipy ě 0q. (B.1)

The notation y ě 0 is taken to mean that yi ě 0 for all i “ 1, . . . , n. The density pY is related to the
standard normal probability density φ via pY pyq “ C´1φpyqIpy ě 0q, so evaluation of pY requires

C “

ż

yě0

φpy;µ,Σqdy “

ż

zď0

φpz;´µ,Σqdz :“ Φp0;´µ,Σq, (B.2)

where Φ is the normal cumulative distribution function.

B.1.2 Sampling

In general, sampling efficiently from truncated multivariate normal distributions is challenging. For
example a rejection sampler based on an unconditioned normal density becomes inefficient when the
measure of the target density’s support is small. One approach is to construct a Gibbs sampler based
on Eqn. B.1 (see Rodriguez-Yam et al. [2002, 2004]) but this is considerable effort for obtaining random
samples for our purposes. However if the target distribution is non-degenerate (i.e. Σ is positive definite)
then there exists a bijective mapping onto a product of standard truncated normal densities, which we
exploit for sampling. Specifically, if Y „ N pµ,Σq then we can write Y “ µ`AZ where Z „ N p0, Iq
where I is the identity matrix and A arises from the Cholesky decomposition Σ “ AAT . Positive
definiteness ensures that the Cholesky decomposition exists and is unique. Moreover A is invertible,
being lower triangular with strictly positive diagonal entries. Since Y ě 0 if and only if Z ě ´A´1µ, we
have the basis for efficient sampling (Algorithm 3). In the case that the target distribution approximates
a point mass (this arises from conditioning on a rare event in the tails of a normal distribution), the
algorithm uses numerical regularization.

B.2 ODE model of MAPK signalling for simulation

B.2.1 Dynamical system

The in silico model used for our investigation was published by Xu et al. [2010], with the ODE formulation
9X “ fGpX;θq reproduced in Fig. B.1. Parameter values θ were chosen an in order to ensure signalling
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Algorithm 3 Efficient sampling from the (non-degenerate) truncated multivariate normal Y „

NT pµ,Σq, with numerical regularization. Here U is the uniform distribution, p is the dimension of
Y and ε is taken to be machine precision.

AÐ CholeskypΣq
bÐ ´A´1µ
for i “ 1 to p do
u „ U rΦpbiq, 1s
if u ą 1´ ε then
zi Ð bi

else
zi Ð Φ´1puq

end if
end for
y Ð µ`Az

was identifiable in principle from the dynamics.

B.2.2 Simulation regimes

In order to accurately assess the impact of sample size upon performance, it is important that the amount
of information in the simulated data increases with n. Given that the informative range of the dynamics
is determined by the choice of parameters (approximately 0 ď t ď 20), adding noise to deterministic data
will not satisfy the above requirement, since additional data will merely replicate existing information.
We therefore introduced intrinsic stochasticity into the data generating process, interpreting the Xu et
al. model as the drift in a stochastic differential equation:

Xp0q “ x0 (B.3)

dX “ fGpX,θqdt` σdB (B.4)

where σ controls the magnitude of the stochastic fluctuations. Initial state x0 was drawn from the
truncated standard normal distribution.

To generate time courses, we simulated solutions Xptq of this SDE for times 0 ď t ď 20 and then
selected rn{4s evenly spaced samples; four such time courses constituted a dataset. Data regimes
were characterized by total observation sample size n P t25, 50, 100, 200u and noise magnitude σ P

t0, 0.05, 0.1, 0.15, 0.2u. A time course with 100 evenly spaced samples is shown in Fig. B.2. Simulated
datasets differ in both the initial state x0 and the realization of the Brownian motion B.

B.2.3 Details of assessment

Of the 25 state variables, 3 denote drug compounds; these were not considered for the purpose of
network inference. The remaining 22 variables denote the active and inactive forms of 11 signalling
proteins; Raf1, EGFR, SOS, Ras, Rap1, PKA, MEK, ERK, EPAC, BRaf and C3G. Network inference
was therefore performed for these 11 proteins, in each of the experimental regimes, using each available
method. Disregarding self-edges made a total of p210q10 « 1029 possible networks.

B.3 Implementation

All of the methods used in Chapter 3 have a number of user-set parameters or configurations. We used
default configurations for each method, as described below. Experiments involving LASSO, DBN and
TVDBN (below) were carried out by Frank Dondelinger at the Netherlands Cancer Institute, Amsterdam.

B.3.1 LASSO

We used the R package glmnet Friedman et al. [2000] to train an l1-regularised linear model (known as
LASSO, for Least Absolute Shrinkage and Selection Operator) on the input data. The optimal setting
of the regularisation parameter λ was determined for each dataset separately using cross-validation. For
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Model 2 

  

Figure B.1: In silico ODE model of the EGFR/ERK signalling pathway due to Xu et al. [2010].
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Figure B.2: Typical simulated time course from the ODE model of Xu et al. [2010]. [Initial conditions
were drawn from a truncated standard Gaussian; four such time courses constitute a dataset. Here
100 evenly spaced samples are shown with intrinsic noise of magnitude σ “ 0.05. Species expression is
normalized to unit maximum to improve presentation.]

each node i in the network, we learn a regression model for observations Y ˚i ptq with respect to the
remaining nodes Y ˚j pt ´ 1q (j ‰ i) at time t ´ 1. LASSO automatically sets the regression coefficients
of some nodes to zero. We used the absolute values of the regression coefficients to give an indication
of the strength of each edge in the network. We used the default settings of the glmnet, and the input
data for each regression were standardised to mean 0 and variance 1.

B.3.2 TSNI

Time Series Network Inference (TSNI) Bansal and di Bernardo [2007] was run according to the recom-
mended settings provided at http://dibernardo.tigem.it/wiki/index.php/Time_Series_Network_
Identification_TSNI-integral. Since TSNI only accepts single time series, the resulting weighted
adjacency matrices corresponding to separate time courses were subsequently averaged to obtain a single
network estimate.

B.3.3 DBN

To learn dynamic Bayesian networks (DBNs) from the data, we used the model described in Hill et
al. [2012a], which also corresponds to the model in Dondelinger et al. [2010] when one imposes the
restriction of not allowing change-points. For obtaining the results in this Chapter, we therefore used
the R software package EDISON that implements the model in Dondelinger et al. [2010] and samples
from it via reversible-jump MCMC. We fixed the change-point settings so that no change-points would
be inferred during the network inference. The sampled networks were evaluated based on the marginal
posterior probability of each edge. We used the default settings of the software package, except for the
maximum number of iterations, which was set to 1e6. The data was standardised to mean 0 and variance
1. Note that alternative implementations of linear DBNs may enjoy computational advantages Hill et
al. [2012a].

B.3.4 TVDBN

For inferring time-varying DBNs, we again used the R software package EDISON that implements the
model in Dondelinger et al. [2010]. In this case, change-points were allowed to be inferred during the
reversible-jump MCMC, which potentially allows for modelling non-linear effects. The sampled networks
were evaluated based on the marginal posterior probability of each edge. We used the default settings of
the software package, except for the maximum number of iterations, which was set to 1e6. The data was
standardised to mean 0 and variance 1. We also used information sharing with a soft coupling of nodes,
as described in Dondelinger et al. [2010], to regularise the number of changes at each change-point.
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Method: CheMA LASSO TSNI DBN TVDBN GP
Time (secs): 2ˆ 104 1 1 4ˆ 103 4ˆ 103 3ˆ 102

Table B.1: Computational times (approximate) for inference of the Xu et al. network. [Implementational
details for the various methods are contained in Section B.3. Note that certain methods may enjoy more
favourable computational implementations, e.g. Hill et al. [2012a] for linear DBNs.]

B.3.5 GP

GP [Äijö and Lähdesmäki, 2009] was run in MATLAB R2012b using code generously supplied by Tarmo
Äijö. On noise-free data (σ “ 0) this code could encounter numerical loss of positive-definiteness so,
when required, covariance matrices were regularized using Tikhonov regularization prior to Cholesky
decomposition. GP was then run using the following settings; optimization iterations = 50, no delay
terms, zero order model = used, maximum in-degree = 2, prior covariance = 0.01ˆ I, prior mean = 0.

B.3.6 Computational times

Table B.1 contains the approximate computational time requirements of the competing methodologies.
It may be seen that the chemical kinetic approach is considerably more demanding compared with
competing approaches, requiring at least 5 times more computation. Note that these time requirements
are empirical and implementation-dependent; a formal time complexity analysis of the algorithms is
beyond the scope of this Chapter.

For illustration of computation for larger networks, we ran CheMA using data obtained on breast
cancer cell line AU565 (see Section B.6.1) based on 27 phosphoproteins (network not shown, since
its interpretation and assessment is beyond the scope of this thesis). This required over 12 hours of
computational time. This illustrates that in principle CheMA could be used for larger networks. However,
there were fewer samples (n “ 24) than protein species in the dataset, and only 2 targeted interventions,
so caution would need to be exercised in interpreting the results.

B.4 In silico results

B.5 Prediction of signalling response

For the prediction problem we are given training data y and an initial condition x0, from which the goal
is to predict the entire time course xptq. Below we describe how these data were generated and how
training data were used. The quality of a prediction was assessed by mean square error (MSE) with
respect to the test data. All protein species were normalized by their maximum value in the training
data y. The network inference algorithms used in Section B.4 have not been modified for prediction; we
therefore considered simple stationary and linear benchmark predictors (described in Chapter 3).

B.5.1 Data generation

Training data D were generated as described in Section B.2. For test data, one randomly chosen protein
Xi was selected as the target of an intervention. One time course xptq was generated under this inter-
vention by forcing terms X˚i corresponding to the target(s) of intervention to equal zero in the drift fG
of Eqn. B.4.

B.5.2 Stationary benchmark

The benchmark mean square error was computed by predicting xptq “ x0 for all t.

B.5.3 CheMA

Our approach returns samples from the joint posterior distribution ppG,θ|Dq over reaction graphs G
and parameters θ. In order to facilitate prediction of xptq, we perform model-averaging as described in
Algorithm 4. For the experiments reported in Chapter 3 we used I “ 1, 000 samples to construct an
averaged prediction. Note that, since we do not model genetic variation, prediction is conditional upon
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the noisy measurements of unphosphorylated protein expression in x; linear interpolation of noisy data
is used to approximate unphosphorylated protein concentrations at any given time.

Algorithm 4 CheMA prediction

for i “ 1 to I do
Gpiq „ ppG|Dq
θpiq „ ppθ|Gpiq,Dq
Numerically solve the ODE 9X “ fGpiqpX,θpiqq from the initial condition Xp0q “ x0. Denote the
solution by Xpiq.

end for
Predict xptq « 1

I

řI
i“1X

piqptq.

B.5.4 Linear kinetics

For an unbiased assessment of the importance of non-linearity in inference, the same approach to predic-
tion was employed based on the linear model fG,ipX,θq “ β0,i `

ř

EPEi
βE,iX

˚
E where, following Hill et

al. [2012a], the parameters βi and σi for a given target i are assigned (untruncated) Zellner prior distri-
butions with zero mean. Models G involving kinase inhibition were excluded from inference (inhibitory
effects are accommodated by allowing coefficients to become negative). We believe this to be the closest
(reasonable) linear approximation to the chemical kinetic framework described above.

B.6 In vitro results

B.6.1 Experimental Data

This thesis exploits experimental data derived from breast cancer cell lines; in particular we consider
time course RPPA data on protein phosphorylation. Below we reproduce the experimental protocol as
described by collaborators (Gray Lab, Knight Cancer Center, OHSU, Portland, OR, USA).

B.6.1.1 RPPA Data

Time course data on 15 breast cancer cell lines were obtained. For selected species, total protein and/or
phosphoprotein levels were obtained. Cells were plated into 10 cm2 dishes at a density of 1 ´ 2 ˆ 106

cells. After 24 hours, cells were treated with 250 nM Lapatinib or 250 nM AKTi (GSK690693). For
treatment with both inhibitors, 250 nM of Lapatinib and 250 nM of AKTi were used. DMSO served
as a control. Cells were grown in full serum and harvested in RPPA lysis buffer at 30 min, 1h, 2h,
4h, 8h, 24h, 48h, and 72h post-treatment. Cell lysates were quantitated, diluted, arrayed, and probed
as described previously Tibes et al. [2006]. Imaging and quantitation of signal intensity was done as
described previously Tibes et al. [2006]. Data will be made available as Korkola et al. [2013].

B.6.2 In Vitro results

From literature we obtained a canonical protein signalling network (Fig. B.3(a)). Many of the networks
inferred by CheMA shared topology with the literature network (Fig. B.3(b)). However it is not possible
to validate inferred line-specific topology without extensive biochemistry. We therefore focused on the
predictive power of CheMA, comparing this to the predictive power afforded by the literature network
coupled with kinetic equations as described in Chapter 3. RPPA experimental protocol is described in
Section B.6.1. Pre-treatment allowed for protein phosphorylation levels to respond to kinase inhibition
treatment. In this way, the initial time point contains considerable information concerning the effect of
treatment. The particular protein species analyzed were 4EBP1(pT37), AKT(pS473), EGFR(pY1173),
GSK3ab(pS21), MEK1/2(pS217), S6(pS240).
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Figure B.3: (a) Protein signalling network derived from literature. (b) Inferred topology for cell line HCC
70. [Edge weights correspond to posterior probabilities. Only the most probable edges are displayed.]
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Appendix C

Supplemental Material for Chapter 4

C.1 Propagation and the Sum-Product Lemma

Efficient inference in Bayesian networks relies on the belief propagation algorithm [Pearl, 1982] and related
extensions [Kschischang et al., 2001]. The sum-product lemma, which forms the basis for several exact
inference procedures in graphical models, can be expressed in its most basic form as follows:

Lemma 1 (The sum-product lemma). For a finite set of functionals fi : Xi Ñ R on finite domains Xi
indexed by 1 ď i ď I we have

ÿ

x1PX1,...,xIPXI

I
ź

i“1

fipxiq “
I
ź

i“1

ÿ

xiPXi

fipxiq. (C.1)

The proof is straight forward (induction on I) and can be found in e.g. Kschischang et al. [2001].

The sum-product lemma is typically used to reduce algorithmic complexity, replacing the Op|X1| ˆ

¨ ¨ ¨ ˆ |XI | ˆ Iq expression on the left hand side by the Op|X1| ` ¨ ¨ ¨ ` |XI |q expression on the right hand
side.

C.2 Additional Simulation Protocol

The ODE model of ERK signalling proposed by Xu et al. [2010] is based on a 25-dimensional state
vector x and 56 parameters p1, . . . , p56 (reproduced here for convenience in Fig. B.1). The ODEs define
a protein signalling network via i P Np if and only if variable i appears on the right hand side of the
ODE describing the rate of change of variable p. Network heterogeneity was simulated as described in
Chapter 4. In order to simulate parameter heterogeneity between individuals, we independently sampled
parameters pji „ N p0, 1{4q and then made sure these were positive by taking the absolute value pji ÞÑ |pji |.
Initial conditions for each time course experiment were independently sampled as px0qi „ Up0, 1q.

C.3 RPPA Data and Ancillary Information

The RPPA data described previously (Sec. B.6.1) was analysed. Specifically, Chapter 4 considered the
phosphoforms listed in Table C.1.

In this Section we briefly describe how ancillary data were accounted for during analysis. Histological
data on cell lines were obtained from previously published literature [Neve et al., 2006]. Mutational status
of known cancer genes were extracted from the Catalogue Of Somatic Mutations In Cancer (COSMIC)
database [Forbes et al., 2011]. Additional background on signalling processes may be found in Section
1.1.2.

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many external stimuli.
Our data contain three RTKs, namely EGFR, HER2 (both from the ErbB family) and IRS1. Upon ligand
binding, EGFR forms homo- or hetero-dimers with ErbB family members, resulting in phosphorylation
and activation of intracellular kinase domains. Similarly, ligand binding of IRS1 leads to phosphorylation
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Protein Phosphoform
4EBP1 T37
AKT S473
BAD S112
c-Myc T58
EGFR Y1173
ELK1 S383

ER ´

FOXO3a S318
GSK3ab S21
HER2 ´

IRS1 S307
MAPK T202
MEK12 S217

p38 T180
p53 ´

PR ´

S6 S240

Table C.1: RPPA data; measured proteins. [“´” denotes total protein. For example, phosphoform
“S473” denotes phosphorylation on serine residue 473.]

and activation. Once activated, RTKs are able to initiate a cascade of phosphorylation events culminating
in a ligand-specific cellular response. HER2 is frequently over expressed in breast cancer (“HER2`”),
leading to a HER2 dependence which renders the ErbB signalling pathway an attractive therapeutic
target. In our data 5 out of 6 cell lines were HER2` (Table C.2). We employed a network prior over
N j |N which did not penalize edges emanating from either of the ErbB family members EGFR or HER2,
for HER2` cell lines.

PI3Ks are key intra-cellular components mediating RTK signalling. Class IA PI3Ks are heterodimers,
composed of a catalytic subunit (p110) and an adaptor/regulatory subunit (p85), such that the PI3Ks are
activated by RTKs’ interaction with p85. There are three variants of the p110 catalytic subunit (p110α,
p110β, p110δ), expressed by genes PIK3CA, PIK3CB and PIK3CD respectively. PIK3CA is located in
the chromosome 3q26, a region that is frequently amplified in several human cancers [Velculescu et al.,
2004], including breast cancers [Bachman et al., 2004]. The resulting gain-of-function for this PI3K can
lead to constitutive activation of the entire PI3K/Akt pathway [Samuels et al., 2004]. In our data 2 out
of 6 cell lines harbor activating mutations in the PIK3CA gene. The network prior for N j |N did not
permit edges entering Akt in PIK3CA mutant lines, reflecting the fact that Akt is no longer regulated
at the receptor level.

Our panel also contained BRAF, KRAS and TP53 mutations which may affect the kinase activity of
their protein products to a lesser extent (Table C.2). However, since this would alter the parameter prior
ppθj |N jq, we chose not to integrate this ancillary information in this Chapter (though this may merit
further research). The remaining mutations were considered not to impact heavily upon the interaction
between observed species.

101



C
el

l
L

in
e

B
a
/
L

u
H

E
R

2
E

R
P

R
G

en
e

A
.A

.
M

u
t.

In
fo

.

A
U

5
6
5

L
`

-
-

C
D

H
1

H
1
0
4
7
R

K
in

a
se

d
o
m

a
in

T
P

5
3

R
1
7
5
H

D
N

A
b
in

d
in

g
d
o
m

a
in

;
n
o

eff
ec

t
[P

et
it

je
a
n
et

a
l.

,
2
0
0
7
]

B
T

4
7
4

L
`

+
+

P
IK

3
C

A
K

1
1
1
N

p
8
5
-b

in
d
in

g
d
o
m

a
in

T
P

5
3

E
2
8
5
K

D
N

A
b
in

d
in

g
d
o
m

a
in

;
n
o

eff
ec

t
[P

et
it

je
a
n
et

a
l.

,
2
0
0
7
]

H
C

C
1
9
5
4

B
`

-
-

P
IK

3
C

A
H

1
0
4
7
R

K
in

a
se

d
o
m

a
in

T
P

5
3

Y
1
6
3
C

D
N

A
b
in

d
in

g
d
o
m

a
in

;
n
o

eff
ec

t
[P

et
it

je
a
n
et

a
l.

,
2
0
0
7
]

M
D

A
M

B
2
3
1

B
´

-
-

B
R

A
F

G
4
6
4
V

G
-l

o
o
p

d
o
m

a
in

;
d
o
u
b
le

k
in

a
se

a
ct

iv
it

y
[D

av
ie

s
et

a
l.

,
2
0
0
2
]

C
D

K
N

2
A

g
en

e
d
el

et
io

n
C

D
K

N
2
a
(p

1
4
)

g
en

e
d
el

et
io

n
K

R
A

S
G

1
3
D

In
cr

ea
se

k
in

a
se

a
ct

iv
it

y
[H

o
ll
es

te
ll
e
et

a
l.

,
2
0
0
7
]

N
F

2
E

2
3
1
*

T
P

5
3

R
2
8
0
K

D
N

A
b
in

d
in

g
d
o
m

a
in

;
n
o

eff
ec

t
[P

et
it

je
a
n
et

a
l.

,
2
0
0
7
]

S
K

B
R

3
L

`
-

-
S
U

M
2
2
5
C

W
N

B
`

-
-

T
ab

le
C

.2
:

B
re

as
t

ca
n

ce
r

ce
ll

li
n

es
;

an
ci

ll
ar

y
in

fo
rm

at
io

n
.

[“
`
{
´

”
in

d
ic

a
te

s
re

ce
p

to
r

ov
er

/
u

n
d

er
ex

p
re

ss
io

n
;

“
B

/
L

”
in

d
ic

a
te

s
b

a
sa

l/
lu

m
in

a
l

g
en

e
ex

p
re

ss
io

n
p

ro
fi

le
;

“A
.A

.
m

u
ta

ti
on

”
gi

v
es

th
e

p
re

ci
se

lo
ca

ti
on

of
m

u
ta

te
d

a
m

in
o

a
ci

d
s;

“
D

o
m

a
in

”
in

d
ic

a
te

s
lo

ca
l

p
ro

te
in

st
ru

ct
u

re
.

D
a
ta

so
u

rc
ed

fr
o
m

F
o
rb

es
et

a
l.

[2
0
1
1
];

N
ev

e
et

a
l.

[2
00

6]
.]

102



Bibliography
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