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Abstract

We discuss the implications of nonlinearity in competitive models of opti-
mal endogenous growth. Departing from a simple representative agent setup with
convex risk premium and investment adjustment costs, we define an open economy
dynamic optimization problem and show that the optimal control solution is given
by an autonomous nonlinear vector field in 2 with multiple equilibria and no opti-
mal stable solutions. We give a thorough analytical and numerical analysis of this
system qualitative dynamics and show the existence of local singularities, such as
fold (saddle-node), Hopf and Fold-Hopf bifurcations of equilibria. Finally, we dis-
cuss the policy implications of global nonlinear phenomena. We focus on dynamic
scenarios arising in the vicinity of Fold-Hopf bifurcations and demonstrate the ex-
istence of global dynamic phenomena arising from the complex organization of the
invariant manifolds of this system. We then consider this setup in a non-cooperative
differential game environment, where asymmetric players choose open loop no feed-
back strategies and dynamics are coupled by an aggregate risk premium mechanism.
When only convex risk premium is considered, we show that these games have a
specific state-separability property, where players have optimal, but naive, beliefs
about the evolution of the state of the game. We argue that the existence of opti-
mal beliefs in this fashion, provides a unique framework to study the implications
of the self-confirming equilibrium (SCE) hypothesis in a dynamic game setup. We
propose to answer the following question. Are players able to concur on a SCE,
where their expectations are self-fulfilling? To evaluate this hypothesis we consider
a simple conjecture. If beliefs bound the state-space of the game asymptotically
and strategies are Lipschitz continuous, then it is possible to describe SCE solutions
and evaluate the qualitative properties of equilibrium. If strategies are not smooth,
which is likely in environments where belief-based solutions require players to learn
a SCE, then asymptotic dynamics can be evaluated numerically as a Hidden Markov
Model (HMM). We discuss this topic for a class of games where players lack the
relevant information to pursue their optimal strategies and have to base their deci-
sions on subjective beliefs. We set up one of the games proposed as a multi-objective
optimization problem under uncertainty and evaluate its asymptotic solution as a
multi-criteria HMM. We show that under a simple linear learning regime there is con-
vergence to a SCE and portray strong emergence phenomena as a result of persistent
uncertainty.
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Chapter 1

Introduction

When Thorstein Veblen coined the term evolutionary economics, in the late nine-
teenth century, he was questioning why economics was not an evolutionary science.
Although Veblen was a strong supporter of an economic paradigm in line with Dar-
win’s natural selection ideas, he could not have predicted that his radical interroga-
tion was the starting point of one of the most controversial and long disputes on the
foundations of economic theory. In very broad terms, the initial dispute between the
neoclassicaﬂ and evolutionary schools of thought can be condensed in the following
fashion. On one side, there was the neoclassical paradigm of rational choice decision
and market clearing equilibrium and, at the other end of the spectrum, the concept of
creative destruction fuelled by innovation and out of equilibrium markets in perpet-
ual evolution, defended by Joseph Schumpeter and other evolutionary theorists. This
debate was interrupted by the Great Depression, and the rise of Keynesian theories,
which emphasized the stabilizing role of fiscal and monetary policy, as opposed to the
Laissez Faire policy approach suggested by neoclassical theories. As Keynesian ideas
gradually emerged as the main opposing force to neoclassical economicsEL evolution-
ary thinking, with some notable exceptions, faded from the economic mainstream
and remained in the shadows during the post-war period. This was the result of
an increasing orthodoxy in economic theory, which focused the analysis of economic
phenomena on mathematical approaches. It is during this period that the neoclassi-
cal steady-state dogma was established, as the main dynamic paradigm in economic

theory, first by Robert Sollow on exogenous economic growth, and later, in what

!The term neoclassical economics is also coined by Thorstein Veblen. See |Colander| [2000] for a
discussion on this topic.

IColander [2000] argues that the term, neoclassical economics, should be replaced by modern
orthodox economics. Collander and other historians suggest a period of gradual evolution in neo-
classical theory, during the 40’s and the 50’s, which led to a convergence towards a new modern
orthodox paradigm.



become known as optimal growth theory, following the articles by Cass and Koop-
mans on the original intertemporal optimization problem of Ramseyﬂ This state of
affairs lasted until the beginning of the 80’s, when Richard Nelson and Sidney Win-
telﬁ recovered the concept of out of equilibrium economic dynamics, following the
mathematical developments on nonlinear dynamics and bifurcation theory. What
become known as the steady change paradigm was the start of a new systems ap-
proach to economic dynamics. This new paradigm played an important role in the
development of the new broad field of complexity economics, where other heterodox
schools of thought converged. The recent financial crisis has helped to establish these
inter-disciplinary approaches by putting further pressure on mainstream economics
and policy, dominated until now by Keynesian and Neoclassical ideas. For better
or worse, a reform process is now in place to replace the old dominant order by a
new one. Still, a question remains. What should be salvaged from the old system of
values, following the wreckage provoked by the financial sector excessesﬂ?

This thesis proposes to evaluate this issue in a nonlinear optimal growth
context. We ask the following question. Are orthodox approaches to economic mod-
elling compatible with the modern notion of evolutionary phenomena, as defined by
complex systems theory? Our departure point is endogenous optimal growth theory,
introduced at the end of the eighties by Paul Romer and Robert Lucas. This is not
an innocent choice. Endogenous growth models have shown some promise in this
respeciﬂ Our initial focus is on nonlinear phenomena arising in a low dimensional
dynamic environment. We then extend this framework to a non-cooperative differ-
ential game setup with incomplete information. Our focus is now on emergence phe-
nomena and co-evolutionary dynamics driven by player’s belief based decisions. The
approach proposed has its roots in modern mathematical literature. It is framed by
Smale’s eighth mathematical challeng{], introducing dynamics in economics, where

Stephen Smale stresses the need for a rigorous mathematical revaluation of the neo-

3Franck Ramsey solved the original problem of optimal savings and capital accumulation in
1928, using the calculus of variations. David Cass and Tjalling Koopmans confirmed Ramsey’s
results in the 60’s, using optimal control methods, and provided several extensions to the original
solution.

“See [Nelson and Winter| [1982].

®Hyman Minsky proposed in the 60’s and the 70’s theories about debt accumulation that explain
the recent events in financial markets and credit institutions. The collapse of credit bubbles in this
fashion is known as a Minsky moment. Among the wide spectrum of modern economic approaches,
the forthcoming Minsky moment was correctly predicted by economists focused on balance sheet
analysis. These practitioners forecast a long and painful balance sheet recession driven by house-
holds, firms and government deleveraging, after years of excess debt accumulation.

5The most famous example is the seminal proposal by [Aghion and Howitt [1992] on endogenous
growth through creative destruction.

"The full list of mathematical problems for the new century is found in [Smale| [1998].



classical general equilibrium problem in a dynamic context. Although Smale limits
the challenge to this well known economics problem, we are of the opinion his call
should be considered in a broad sense. The optimal growth setups we now start
describing are small steps in this direction. As Smale so eloquently put it, “The fol-
lowing problem is not one of pure mathematics, but lies on the interface of economics
and mathematics”.

Our first proposal deals with an economy populated by representative agents
seeking to maximize consumption utility by taking optimal consumption and in-
vestment decisions. Agents face convex risk premium on bonds and investment
adjustment costs in their budget constraint and accumulate productive capital lin-
early. This economic setup is correctly described by an aggregate intertemporal
maximization problem, where the budget constraint describes the national account
identity for an open economy. The optimal solution to the dynamic optimization
problem is given by a nonlinear three-dimensional autonomous dynamical system.
This framework is an optimal candidate to test evolutionary economic ideas in an
modern orthodox decision setup. The low dimensional dynamics approach to eco-
nomic phenomena is an old tradition in evolutionary economics. Early proposals on
the coexistence of cycles and growth by Michal Kalecky, Nicholas Kaldor and Richard
Goodwin, for example, modelled economies as two-dimensional vector fields. Our
proposal goes a step further to deliver a system with multiple equilibria and several
bifurcation phenomena, such as the fold-hopf bifurcation. This result is of particu-
lar interest. First, fold-hopf bifurcations have the potential to unleash a cascade of
complex nonlinear phenomena. Second, to our knowledge, this proposal is the first
in the field of economic growth applications to show the existence of this bifurca-
tion. The fold-hopf bifurcation and associated nonlinear global phenomena has been
gaining attention in several fields of applied mathematics. This is not yet the case
in economic dynamics literature, despite the potential of this bifurcation scenario to
explain empirically observed macroeconomic phenomena, such as structural change
dynamics, as a result of complex global dynamics. We focus our analysis on this
and other global meaningful conjectures, and give a thorough description of local
dynamics and the global organization of the phase space for this economy. We also
portray the existence of nonlinear phenomena arising from the complex organization
of the system’s invariant manifolds, and discuss the challenges posed to policy in
this environment.

In chapters three and four, we extend this initial framework and consider now
four competitive economies, populated by a discrete set of asymmetric players with

incomplete information. We model these economies as open loop non-cooperative



differential games, where decisions are coupled by risk premium dynamics, and play-
ers follow no feedback strategies. We consider that this last assumption is justified
for games populated by a large set of agents. As in the previous proposal, this
economic problem can be interpreted as a growing open economy. However, it is
also reasonable to interpret this setup as a simple competitive portfolio game, where
agents accumulate productive assets and decide if they want to leverage their wealth
and accumulate debt, or diversify their portfolios and invest in financial assets. Each
of the chapters describes two different economies. First, we consider games with in-
stitutionally determined individual risk premium. Then we introduce another non-
linearity and consider that individual risk premium evolves according to the players’
financial balances. This setup has one major advantage. It allows for the defini-
tion of a general solution as an initial value problem. In we consider
that agents do not face investment adjustment costs. The games described in this
chapter are consistent with the existence of particular case of the state-separability
property for open loop differential games. Optimal control conditions impose the
existence of optimal asymmetric beliefs regarding the evolution of the state of the
game. We argue that optimal solutions under these conditions, have to be consistent
with the existence of a self-confirming equilibrium(SCE), following the proposal by
Drew Fudenberg and David Levine. We then show that this problem can be solved
by a two-step approach. First, if beliefs bound the state-space of the game asymp-
totically, then it is possible to evaluate the conditions for the existence of optimal
SCE solution. Second, if the value and gradient of beliefs is known in the asymptotic
state-space boundary and strategies are Lipschitz continuous, local dynamics can be
evaluated qualitatively in the vicinity of the SCE. Otherwise, we can set up the
asymptotic problem as a static multi-objective optimization problem under uncer-
tainty and evaluate geometrically the existence of a SCE. In the first game discussed,
we show that the existence of an optimal solution requires the assumption of less(or
more) asymmetries among players. We then show that a numerical qualitative eval-
uation of SCE solutions is possible, when players commit to a unique investment
strategy. Self-confirming solutions are locally stable for a wide range of parameter
values. We then evaluate qualitatively state-separable solutions in the vicinity of
SCE and give evidence of weak emergence phenomena. This approach is no longer
possible when an additional nonlinearity is considered on the evolution of individual
risk premium. Although beliefs bound the state-space of the game asymptotically,
optimal solutions now require that players learn a SCE. We set up the asymptotic
solution of this game as a static multi-objective expected maximization problem, and

portray solutions consistent with SCE geometrically, for a range of feasible values of



the state of the game. Further insight in this game’s asymptotic solution requires the
use of evolutionary optimization methods. We discuss the use of stochastic processes
for this purpose in the final chapter.

In we reintroduce investment adjustment costs. Game’s solutions
are no longer consistent with the state-separability property, but reveal an interesting
feature. To be able to pursue their optimal strategies, players require information
about the state of the game. However, this information is not available to them.
Players face a paradox. When choosing their strategies, agents disregarded crucial
information that was necessary to pursue their optimal objectives. We assume that
under these circumstances, players have to rely on subjective beliefs. We follow the
same approach as previously, and again consider that these games are well posed,
if beliefs bound the state-space of the game asymptotically. Optimal solutions are
again defined as SCE solutions. For the game with institutionally determined indi-
vidual risk premium, we show that a full description of strategic dynamics is possible,
when naive beliefs consistent with smooth strategic dynamics are considered. How-
ever, qualitative analysis now shows that this solution is not locally stable for a wide
range of parameter values. We argue that this is a reasonable outcome. Optimal
self-confirming solutions impose real negative returns on foreign/financial assets and
a positive premium on debt. Under uncertainty, players rather follow non-optimal
strategies than trust in their naive beliefs. In the second game discussed in this chap-
ter, beliefs impose asymptotic solutions consistent with infinitely many equilibria.
Individual state outcomes are now a function of investment decisions. This relation
is described by a hyperbola. However, the state-space of this game is still bounded
by transversality conditions. Numerical simulations suggest that feasible solutions
are defined only on the right hand side of the hyperbola. This is an interesting result.
The relation between investment decisions and asset allocation, when a risk free asset
is available, was first suggested by Robert Merton, on the efficient portfolio frontielﬂ
Our result can be interpreted, in our opinion, as an extension of Merton’s theoretical
framework, as productive capital in this setup is consistent with the definition of a
risk free asset. To evaluate asymptotic game outcomes, we set this game as a multi-
objective expected maximization problem constrained by a bounded set of feasible
investment strategies. The static version of this game is now described by a complex
geometric problem. To tackle this issue, we propose to evaluate game outcomes as
a Hidden Markov Model (HMM). The use of stochastic methods to evaluate multi-

objective optimization problems under uncertainty is an inter-disciplinary approach

8This relation was originally introduced by Harry Markowitz for a portfolio choice model with
risky assets. It is commonly known as the “Markowitz Bullet”.



that links concepts of evolutionary optimization, machine learning and game theory.
This approach has two main advantages. It takes into account the co-evolutionary
nature of our problem and allows the introduction of other decision criteria. On
the other hand, it introduces a degree of subjectivity on possible game outcomes.
Solutions will depend on how the incomplete information Markov learning process is
designed. To balance these features, we propose to focus on the role of uncertainty,
and assume that players have homogeneous beliefs about the evolution of the state
of the game. When uncertainty is a linear function of the forecasting errors, we show
that the Markov process reaches an absorbing state consistent with the definition of
SCE. However, when uncertainty is persistent, there is evidence of strong emergence
phenomena, and the system exhibits out of equilibrium dynamics driven by the de-
cisions of a minority of players. This outcome is a consequence of decision under
uncertainty. Subjectivity leads to unintended consequences, which drives strategic
interactions among players and fuels a complex co-evolutionary process.

We finish this introduction with some comments regarding the organization
of the thesis document. To limit the size of the document and still be able to give a
detailed and accurate account, capable of reaching a broad scientific audience, on the
inter-disciplinary topics discussed, we organize this thesis in the following fashion.
In we put a greater emphasis on the model description and its features,
and give a detailed survey of the relevant economic literature. In this chapter, our
focus is on the implications of local bifurcation and global dynamic phenomena and
its interpretation in an economic context. We relax the model description in the
remaining chapters to focus the discussion on the game solutions and their interpre-
tation. In these chapters, our first aim was the introduction of differential games
as a potential framework to model competitive growing economies. We give a brief
overview on the mathematical literature relevant to the class of games discussed and
on the recent developments of this approach in the field of macroeconomic dynamics.
Since both these chapters originated from a single project, the reader might find that
some of the introductory discussion in resembles that of We
decided to keep it this way, to maintain the coherence of the presentation and avoid
misinterpretations, since the games proposed have subtle, but important differences.
In the second game discussed in we describe optimal game solutions as
outcomes of a complex geometric problem. Although an evaluation of possible game
outcomes requires the use of sophisticated optimization techniques, we decided to
leave this discussion to In this chapter, we introduce the application of
stochastic processes to analyse the asymptotic outcomes of differential games. As

mentioned previously, this is a novel inter-disciplinary research field. We provide a



brief review on the growing literature of evolutionary multi-objective optimization
and some examples of the use of these methods in modern economic applications.
Finally, given that all the setups discussed are extensions of the framework proposed
in the method to obtain the solution to the optimal control problems
and its definition as an initial value problem, is similar for all models. We limit this
presentation to the minimum necessary, but provide a description of the main results
for each optimal control problem. This is necessary because these results are crucial

to the derivation of sufficient conditions for the existence of optimal solutions.



Chapter 2

Nonlinear Phenomena in a
Growing Economy with Convex

Adjustment costs

2.1 Introduction

The aim of this chapter is to discuss the implications of global nonlinear phenomena
for long run economic policy definition. We start from the hypothesis that in order
to get further insight on long run macroeconomic phenomena, we have to extend
our knowledge on nonlinear economic dynamics and the underlying global scenarios.
Our approach is based on the following argument. The focus on local dynamics of
economic systems leads to a short run policy focus. Therefore, in order to improve
the effectiveness of policy in longer horizons, we have to improve our knowledge
of environments where global stability conditions no longer apply. To demonstrate
this hypothesis, we propose a model of endogenous optimal growth based on simple
and well known economic assumptions. Endogenous growth theory was introduced
by the seminal proposals of Romer| [1986], Romer| [1990], [Uzawa| [1965] and |Lucas
[1988]. We depart from a deterministic intertemporal optimization framework, fol-
lowing the optimal growth neoclassical framework of |[Ramsey| [1928], Cass| [1965] and
Koopmans| [1965], and set up this model as an open economy populated with N rep-
resentative agents, assuming neoclassical market clearing micro foundations. Our
framework is closely related to Romer| [1986] proposal, as the growth engine of this
economy is also driven by linear productive capital growth. Agents solve an optimal
control consumption/investment problem in continuous time, following the seminal

proposals of Merton| [1970]. Although the investor problem has its roots on the field



of financial mathematics, it is widely used for modeling open economies, given that
on aggregate, the national income identity can be matched by the individual budget
constraintsﬂ We assume that agents in our economy face two nonlinear mechanisms,
defined by convex risk premium on bonds and investment adjustment costs, follow-
ing the well established proposals of Bardhan||1967] and Hayashi [1982], respectively.
The paper by [Eicher et al| [2008] is a recent example of an economic growth setup
closely related to ours that assumes the existence of these two nonlinearities. Our
main objective is to evaluate the conditions for existence of global optimal growth
dynamics. We follow a straightforward technical analysis of our problem, based on
local qualitative analysis, to show the existence of nonlinear phenomena, such as
Hopf, fold (saddle-node) and fold-hopf bifurcations, consistent with economic feasi-
ble scenarios. A thorough numerical exploration of the parameter space does not
reveal the existence of local stable solutions, following the Routh-Hurwitz stability
criterion. Given this result, we focus our analysis on the definition of scenarios
consistent with the existence of asymptotic optimal dynamic stable solutions. This
is a reasonable objective for policy in a complex dynamic setup, where stable long
run dynamics depend on the interaction of multiple equilibrium solutions. In or-
der to define scenarios consistent with this criterion, we discuss several conjectures
consistent with local bifurcation phenomena and the complex organization of this
economy phase-space. The existence of fold-hopf bifurcations suggests the existence
of solutions driven by heteroclinic and homoclinic orbits. Both these scenarios have
economic interpretation and are meaningful for policy purposes, as they have the
required dynamic properties to reproduce empirical evidence observed in economic
aggregates, more concretely flights out of long run equilibrium and flights leading
to a new equilibrium. We relate these conjectures to the hypothesis of endogenous
structural change, since this phenomena can be produced by small changes of the
model parameters. We then extend global analysis of this system and discuss the
conditions for the existence of natural frontiers of the economic space, in the form of
separatrix planes arising from the dynamics in the vicinity of the non-meaningful set
of steady-states. This analysis suggests that the study of non feasible solutions in
nonlinear economic models may provide meaningful insight for policy, in particular
for economies facing dire institutional conditionsg?]

Our proposal departs from Richard Goodwin’s main paradigm. Goodwin

considered that the extreme phenomena observed in economic data could only be

!Turnovsky| [2002| provides a interesting mathematical discussion in continuous time modeling
for open economy macrodynamic setups.

2By non feasible steady states, we refer to solutions of dynamic economic models that are not
consistent with physical economic constraints.



explained by nonlinearity. Goodwin’s seminal proposals, such as the nonlinear accel-
erator model, |Goodwin |1951|E|, are still the main benchmarks of evolutionary eco-
nomic dynamics theory. Unfortunately, Goodwin’s innovative proposal was largely
dismissed in mainstream macroeconomic theory, on the grounds that the model’s
main nonlinear mechanism, a forced oscillator, had no justification in economic the-
oryﬁ In order to avoid this criticism, we model our economy as an endogenous
optimal growth model based on mainstream neoclassical assumptions and focus our
analysis on the interpretation and evaluation of global dynamic phenomena. The
discussion on global dynamic phenomena in theoretical growth economics has roots
in mainstream literature that date back to the seventies decade. The focus then
was on the definition of sufficient conditions guaranteeing global asymptotic stabil-
ity. The papers by Brock and Scheinkman [1976|, |Cass and Shell| [1976], Rockafellar
[1976] and Nishimura [1981] remain some of the main proposals on this topic. Re-
cent literature on global dynamic economics has focused on the existence of history
dependence in nonlinear models of optimal growth with multiple equilibria. A thor-
ough discussion on the mathematics central to many economic applications, along
with a careful literature review on this topic can be found in |Deissenberg et al.| [2004].

Although there is no absolute and universal approach to economic phenom-
ena, radical thinking has been consistently deterred in economic research due to the
established orthodox approaches. Change comes slowly in economics and usually
involves a long process of reform. In many cases this particular process of evolution
led to the dismissal of many interesting ideas. When some of these ideas are able to
establish themselves in academia, it does not mean that they are taken in consider-
ation in the development of economic policy agenda. To justify this argument, we
put forward two examples of this process that are related to the broad topic of evo-
lutionary economic dynamics. In a recent book, Kirman |2010]E|, provides evidence
that the orthodox view on the Marshallian demand curve, as a microeconomics law,

has been incorrectly extrapolatedﬂ from aggregate market dataﬂ These polemics on

3The nonlinear accelerator model suggested the persistence of business cycles and periodic dy-
namics consistent with the long wave hypothesis. This conjecture was first put forward by the
Russian economist Nicolai Kondratiev, in [Kondratiev| [1925]. For a discussion on the theoretical
implications of Kondratiev proposal see |Lougal [1999].

4There is an economic argument that interprets the countercyclical role of government spending
as a source of forced oscillations in the economy. For a detailed discussion on this topic see |[Chian
[2007].

°Chapter 3- Fish Markets: An Example of the Emergence of Aggregate Coordination

A formal proof on the impossibility of deriving aggregate demand in markets with heteregeneous
agents is given by |Sonnenschein| [1973]. A further mathematical discussion on the topic of market
demand and excess demand functions can be found in |Shafer and Sonnenschein| [1993].

"Using qualitative and quantitative data on the Marseille fish market, Kirman develops a simple
adaptive evolutionary model that can reasonably replicate aggregate market dynamics. The author
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the evolutionary nature of economic phenomena have older roots in economic philos-
ophy. Already in the nineteenth century, Veblen [1898| questions why economics is
not an evolutionary science? Some decades later, the famous dispute between John
Maynard Keynes and Franck Ramsey on the nature of probability in economic phe-
nomena, paved the way for the introduction of the role of subjectivity in economic
theoryﬂ These initial discussions led to the development of game theory by John von
Neumann and Oskar Morgenstern, which later influenced systems approach to social
sciences and is presently one of the main paradigms in modern evolutionary theory.
The concept of heterogeneous strategic behaviour under subjectivity, for example,
is now a crucial paradigm in the field of financial economics. In two seminal pa-
pers, [Brock and Hommes| [1997] and Brock and Hommes [1998]|, show that adaptive
evolutionary behaviour can arise in rational decision systems, where agents have het-
erogeneous beliefs (fundamentalists vs. chartists). The authors show the existence of
homoclinic bifurcations and chaotic dynamics, arising as a consequence of adaptive
beliefs. This hypothesis is considered a plausible justification for the existence of
extreme events in financial markets, in particular exchange rate marketeﬂ

Our proposal draws from this last example and proposes to evaluate the im-
plications of global dynamics in an endogenous growth framework with neoclassical
assumptions. As previously described, the dynamics of this economy are determined
by an autonomous nonlinear dynamical system in continuous time. According to
Mackay| [2008], complex systems research should focus on high dimensional dynamic
phenomena arising in systems with many interdependent components. We agree

with this interpretation, in the sense that nonlinear low dimensional dynamics does

not involve many interdependent components. In|chapter 3|and [chapter 4] we extend

this framework to a differential game environment consistent with the modern notion
of a complex system. However, we believe that the exploration of global dynamic
scenarios that are consistent with optimal control solutions, and the interpretation
of such outcomes in growth models, still lie on the field of complex problems. This
is particularly true for growth models with dynamics described by vector fields in
3. In nonlinear dynamics literature one can find several applications that illustrate

the complex challenges posed by such systems. An example of a system with similar

shows that the demand law holds on the aggregate. However, this aggregate behaviour arises from
the interaction of heterogeneous agents that do not always have a demand curve with a negative
slope.

8Keynes argued that in the future it would be possible to define economic phenomena in an
objective probabilistic fashion, following the developments on theoretical physics in the first decades
of the past century. On the other hand, Ramsey believed that there exists a degree of subjectivity
driving economic decisions and any probabilistic approach to economic phenomena would have to
take into account this feature.

9A detailed discussion on this topic can be found in [Hommes and Wagener| [2008].
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characteristics to the one proposed in this chapter is the Rabinovitch-Fabrikant sys-
tem, following the proposal by [Rabinovich and Fabrikant| [1979]. |Danca and Chen
[2004] perform an extensive analysis of this vector field in %2 and show that the
global analysis of systems with quadratic and cubic terms is not straightforward.
The authors also show that classical numerical integration methods are not reliable
in this context.

We argue that in nonlinear setups, it is crucial for policy definition to have
a global perspective of the dynamics of a system. We thus propose to evaluate sev-
eral global conjectures and the role of non feasible fixed points in a dynamic policy
context. This argument is reinforced by the absence of stable economic meaningful
solutions. In this environment, asymptotic stable solutions are only possible when
we consider the existence of complex dynamics driven by the interaction of multiple
equilibria. This outcome suggests a trade-off between stability and complexity in
our system. Further, the existence of solutions undergoing fold-hopf bifurcations
suggests that several complex global dynamic conjectures with dramatic policy im-
plications are possible. |Chen| [2005] argues that this trade-off has to be considered, if
we wish to study economic systems in a complex framework. The author also argues
that the empirical evidence regarding endogenous structural change and nonlinear
dynamics can only be tackled by evolutionary theory. The hypothesis of chronic
macroeconomic instability has its roots in economics literature. |Minsky| [1992| put
forward the financial instability hypothesis and suggested that business cycles are
driven by financial decisions. Minsky’s financial instability proposal is rooted in
the Schumpeterian evolutionary hypothesis, which attributed an important role to
financial intermediation as a driver of the long run cycle. In a recent book, Reinhart
and Rogoff [2009] show that financial crisis and instability are a common feature in
macroeconomic history. Unfortunately, Minsky was never able to translate his idea
into a consistent mathematical dynamic setuﬂ The endogenous structural change
hypothesis is supported by empirical data on real macroeconomic aggregates.
shows evidence of structural change for US and UK log (GDP) quarterly
data. What the modern growth literature has been unable to explain, are the mech-

anisms leading to structural change, depicted by the shifts in intercept and slope

"9Keen| [2011] suggests that Minsky’s failure to devise such setup was linked to the use of the
multiplier-accelerator model as a setup for his proposal. The financial instability hypothesis has
recently be regaining a renewed attention following the events surrounding the recent financial
crisis. Recent discussions propose a reinterpretation of Minsky’s original hypothesis closer to the
evolutionary long cycle hypothesis. [Palley| [2011] discusses the hypothesis of financial instability as
a super-cycle. [Keen|[2011] follows the same lines and proposes a redefinition of the original setup
based on the |Goodwin| [1967] nonlinear setup.
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E[ The reason for this shortfall on literature is, in our opinion, related to the sys-
tematic approach based on linear and quasi-linear dynamic optimization problemﬂ
We firmly believe that the introduction of further nonlinearities in growth models
may shed some light on the dynamics of structural change, which can be linked
to the existence of global economic dynamic phenomena. The outcomes portrayed
in for example, can be related to existence of heteroclinic and homo-

clinic dynamics, leading to permanent and temporary structural change phenomena,
respectivelyE
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Figure 2.1: Evidence of trend dynamics and structural change on log (GDP) data.
We organize our presentation in the following fashion. We start with a de-

scription of the necessary and sufficient conditions for the existence of optimal so-
lutions in the general optimal control problem. In we introduce the

1The data fitting model used in here is based in the well known methodology developed by
Vogelsang and Perron| [1998|, [Bai and Perron| [1998] and Bai and Perron| [2003| for estimation of
multiple structural change events in data, following the structural change hypothesis by [Perron
[1989]. This method is based on a consistent error minimizing estimator. We use the simple
Additive-Outlier (A-O) Crash/Change specification on this data and define models with 1 to 4
statistically significant structural changes and estimate Crash models for unemployment data at
estimated break dates. The final specifications are chosen using a ranking method based on several
data fitting statistical indicators. Similar outcomes are observed on additional estimations using
data from seventeen OECD economies.

121 earlier versions of this project, we show that when only one nonlinearity is considered, the
dynamic properties of these economies are consistent with the properties of linear systems.

13We consider evidence of homoclinic phenomena when the sum of changes in the series slope,
portraying the long run growth rate, is statistically insignificant, and evidence of heteroclinic phe-
nomena when aggregate changes are statistically significant. For the UK case we estimate two
breaks, 1980:4 and 1990:4, and aggregate change in intercept and slope equal to —0.158927 and
0.002192, respectively. For the US case we estimate two breaks, 1978:2 and 1983:4, and aggregate
change in intercept and slope equal to —0.01222375 and —0.000117, respectively.
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representative agent setup and the intertemporal maximization problem. In
we show how the solution to the optimal control problem can be derived

via an autonomous dynamical system, and derive sufficient conditions for the exis-

tence of optimal growing solutions. In [section 2.5| and [section 2.6 we put forward
the main conditions describing local dynamics and local bifurcations. In

we discuss the role of non feasible solutions and their implications for policy in a

complex dynamic setup. Finally, in [section 2.8] we introduce our main global dy-
namic conjectures, discuss their economic interpretation, and their implications for

policy definition in a nonlinear environment.

2.2 Necessary and Sufficient Conditions for the General

Optimal Control Problem

In this section we give a general overview on necessary and sufficient conditions for
the existence of optimal solutions in intertemporal maximization problems. For this
purpose, we shall follow very closely Drazen| |[2007] notes on continuous time opti-
mization and replicate here the main results for the general and discounted optimal
control problems in both finite and infinite time. The reason for this presentation
is twofold. First, Drazen [2007] notes follow closely the Arrow and Kurtz| [1970]
derivation of sufficient conditions for concave optimization problems with capital
accumulation discussed in this thesis. Second, the general results discussed in this

section allow us to simplify greatly the discussion presented in this chapter and more

concretely in [chapter 3| and |chapter 4, To be coherent with |Drazen| [2007] notes, we

replicate the author notation throughout this section, even though some of the no-

tation collides with the notation used in this chapter. To avoid confusions regarding

the notation used in this chapter and [chapter 3| and [chapter 4] we do not refer to

the specific mathematical results described in the next paragraphs but only to the
main results defined in this section.

The general mathematical intertemporal maximization problem in finite time,
T < oo, with a vector of s state variables, x (t), and a vector of n controls, z (¢), can
be stated formally as follows:

T
z(%éf)g(oo - Ulx(t),z(t)]dt+ S [x(T)]
subject to i (£) = Gi [x (£),2 (8)], i = 1,..., s (2.1)
and x (0) = xgq,

where S [x (T")] represents the scrap value of the state variables at 7. To derive the
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Hamiltonian let V' (xg) denote the solution to problem ([2.1]). Following the Bellman’s
Principle of Optimality, we can consider a small time interval [to,to+] and rewrite

the objective function as

to+h
V(x(to)to)= /t Ulx(t),z(t),t]dt+V (x(to+ h),to + h)} (2.2)

MAX
z(t):tg<t<tg+h =10

where x (t9 + h) is determined by the choice of controls and the state equations.
Assume that U [x(t),z(t)] is continuous in all its arguments and that the z ()

functions are continuous functions of time. Thus for small h continuity assumptions

imply

Ulx(t),z(t),t] ~Ulx(tyg),z(to) ,to], fortg <t < ty+ h. (2.3)

Now assuming that V' (x (¢o) ,to) is differentiable, we take a first order Taylor series

expansion of V' around x (o) and obtain

V(X(t0+h),t0+h) ZV(X(tQ),to)

5 2.4
+ Z Vi, (x (o) s o) - [xi (to + h) — i (to)] + Vih, 24
=1

where V. and V; are the partial derivatives of V' with respect to x; and ¢, evaluated
at (x(to),to). Now we define
IV (x,t)
=V, = —27 2.5
i z; oz, (2.5)
where ¢; is the marginal contribution of the state variable x; to the value of the

optimal plan, which are usually referred as the co-state variables. A first order

Taylor expansion of z; (tg + h) around z; (to) yields

z; (to + h) = x; (to) + [(to + h) — to] &5 (to) + O (2) &

(2.6)
=7 (to + h) —x; (t[)) ~ hG; [X (to) N/ (to)} .
Combining , , and , we can rewrite as
V (x(to) , to) ~ hMéél)X {U [x (to) 2z (to) . to] + >_ 4:Gi [x (to) .z (to)]} .
z'o i=1 .

+V (x(to) ,to) + Vih.
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Cancelling V' (x (to) , to) in both sides and diving by h we obtain

-Vi=MAXH=H", (2.8)
where H is defined by
H(x,z,q,t) =U (x,2,t) + Z ¢:G; [x,2]. (2.9)
i=1

The function H (x,z,q,t) is called the Hamiltonian and is a partial differential
equation whose solution is a value function V (-).

To determine the optimal dynamic paths using the Hamiltonian in , we
start by the definition of the necessary conditions for the existence of an optimal
policy, described by z*, which must satisfy:

OH

:ai%fork:].,...,n. (2]‘0)

H,,
The co-state optimal path is obtained after differentiating the Hamiltonian evaluated
at z*, H* = z*, H (x,z",q), with respect to each of the x;, holding all other x and

q constant to obtain
n *
0z

H:, :Hxi+Zsz% = H,,, (2.11)
k=1 v

where the last equality follows from the Envelope Theorem. Similarly,
Hy = Hg, (2.12)
as the Hamiltonian is linear in each ¢; it is simple to evaluate that

H: = Gi[x,2"] = &:. (2.13)

The optimal path for g; is obtained by taking the total derivative of (2.5 with respect

to time to obtain

0%V (x)

= — 2.14
E?xiaxj ( )

S
gi = E Via;@5 + Ve where Voo
j=1

To obtain V,, first note that H* is a function of x, q and ¢, but each of the ¢; are in
turn functions of x and ¢ via (2.5). To determine V,; differentiate ([2.8]) with respect
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to x;, holding everything constant to obtain

S
~Viu =Hi + Y Hy Via,. (2.15)
j=1

Substituting (2.11)), (2.12) and (2.13) into (2.15]), and then the resulting equation
into (2.14)), one derives

oOH
V,,=—H, =22 2.16
it ; oz, (2.16)

where the control z is chosen to maximize H. We are now able to put forward a

definition for the Pontryagin Mazimum Principle.

Let z*(t) be a choice of instruments that mazimize
ft o U x(t),z(t)] dt subject to the conditions i; (t) = G;[x (t),z(t)]
and x (0) = xg. Then there exist auziliary variables, ¢; (t), such that,
for each period t, z* (t) maximizes H (x,z,q,t), for an interior solu-
tion, 2 az =0, where H (x,2,q,t) = U (x,2,t) + Y_:_; ¢:Gi [x,2] and
the functions q; (t) satisfy the differential equations ¢; = — O oyqly-

ox;
ated at z (t) = z* (t).

The equations for the co-state and state variables define 2s first order dif-
ferential equations. To bound solutions we require an equal number of boundary
conditions. Initial values of the state variables provide s boundary conditions. Now
assume that at 7', x has no scrap value, that is S [x] = 0 for any non negative values
of x;, then z; (T)) = 0. Otherwise one has

ov (x(T),T) _ 0S [x (T)]
8332- (T) 61‘1 (T)

-V (x(T),T) = S[x(T)] so that ¢; (T") = (2.17)
following the equality described at . Condition provides the remaining s
boundary conditions to our solution. These conditions are known as the transver-
sality conditions.

With infinite horizon, the dynamics of the system are given by the same con-
ditions but transversality conditions are different. The description above of finite
horizon transversality conditions was based on the assumption that the state vari-
ables are always non-negative. Arrow and Kurtz [1970|, consider some finite 7" and
approximate this requirement by a scrap value function that imposes large penalties

on negative values of x;. An example of such scrap function could be
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S[x (7)) =>_ Pimin (x; (T),0), (2.18)
=1

where the vector of penalties, P;, is composed of very large numbers. Now recall
that: (i) when z; < 0, we have S (x) = P,x; and 85(*) = P;; (ii) when z; > 0, we
have S (x) = 0 and 83().()

T
Zs
and 0 < %}cix) < P;. It follows that for P; sufficiently large, the terminal value of

= 0; and finally (iii) when x; = 0, we have S (x) = 0

x; would never be negative for all i, z; (') > 0. Combining these results one may
write: () 2; () > 0 = 5 < P = 0; and (i) 2; (1) = 0 = LX) < p > 0.
Using the result in (2.17)), one can write these conditions as: (i) ¢; (7') > 0; and (ii)

qi (T)x; (T) =0. As T'— oo these last two conditions become

lim ¢; (T) >0 and Thm qi (T) x; (T), (2.19)
— 00

T—o0

which correspond to the infinite horizon transversality conditions.
We now consider the case with discounting, where the future outcomes are
discounted by a factor that is a function of time. Let « (t) represent the discount

factor. The objective function can now be written as

/t T UK,z (1) dt (2.20)

=0

and the Hamiltonian now comes

a(t)H (x(t),2(t),q(t) = a(t)

Ux(t),z(t)+ ) ai(t)Gilx(t),z(0)]|. (2.21)
i=1

With discounting we shall now refer to H as the current value, or undiscounted,

Hamiltonian, which is generally given by
S
H (x,z,q) =U (x,2z) + Zini [x,z], (2.22)
i=1

and identical to (2.9). The necessary conditions for an optimum, analogous to (2.14]),

are now given by

dlo(t)g (1) _ da(t)H
dt T O (223)

. o0H
6 () =p () a(t) = 5=, wherep(t) = 0 (2.24)

Note that a policy z (¢) that maximizes H for every period ¢ also maximizes « (t) H
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for every period of t. Thus with discounting, the definition of the Pontryagin Maxi-

mum Principle just requires some small modifications:

Let z*(t) be a choice of instruments that mazimize

[Zoa@)Ux(t),z(t)] dt subject to the conditions

%; (t) = Gi[x(t),z (t)] andx (0) = xq. Then there exist auxiliary vari-

ables, q; (t), such that, for each period t, z* (t) mazimizes H (x,z,q,1),
OH

for an interior solution, 9 = 0, where H (x,z,q) = U (x,2z) +

Yoi 1 4Gi[x,2] is the current value hamiltonian and the functions
qi (t) satisfy the differential equations ¢; = p (t) q; — gTH evaluated at

z (t) = z* (t), where p (t) = & (t) /o (t)>.

With discounting the infinite horizon transversality conditions are now given by the
corresponding asymptotic conditions, following the result in (2.19)),

jliigoa ()¢ (T) >0 and TILH;O(I (t)qi (T)z; (T). (2.25)

The conditions derived in this section are necessary conditions for an op-
timum. These conditions are sufficient if H* (x,q) = H (x,z*,q) is concave in x
given q. In other words the Hamiltonian Hessian matrix composed by the second
order partial derivatives of x;, evaluated at the optimal policy z*, H;ixj, has to be
a semi-definite negative matrix. Sufficiency follows from the transversality condi-
tions described in (2.25). See Arrow and Kurtz [1970] for this original proof. A
description of this proof, which follows the notation used in this section, can also
be found in the notes by |Drazen| [2007]. We discard this presentation because the
problems we deal in this thesis assume the existence of two state variables, where
one can be positive. In this set of control problems, it is not straightforward to
check that the first transversality condition and the concavity of the Hamiltonian
in the states, are fulfilled. However, for problems where the objective function is
continuous differentiable and strictly concave, it is sufficient to check if solutions ful-
fil the second Arrow and Kurtz [1970] transversality condition asymptotically. This
relaxation proves useful when dealing with applied optimal control problems with
several state variables and a concave objective. For a discussion of this result in
the general optimal control problem see |Acemoglul [2009] chapter 7, section 5. For
a discussion of this approach on applied optimal control problems similar to the
ones discussed in this thesis see the books on economic growth by Turnovsky| [1999]
and Barro and Sala-i-Martin [2004]. Finally, the proof required for the existence of

uniqueness of solutions to the general optimal control problem is a difficult proof
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that requires knowledge of sophisticated mathematical techniques, such as measure
theoretic notions, and imposes several constraints on the problem. |Acemoglul [2009],
in chapter 7 section 6 of his book, provides an accessible sketch of this proof and
describes the conditions for the existence and uniqueness of solutions for the general

optimal control problem discussed in the beginning of this section.

2.3 The representative agent economy

We consider an open competitive economy populated by N representative agents
(identical individuals) that live infinitely for ¢ € [0, T], where T' = co. Households in-
vest in domestic and foreign capital in exchange for returns on these assets, purchase
goods for consumption, and save by accumulating domestic and foreign assets. We
further consider that agents can resort to debt accumulation to finance investment
in domestic assets and/or consumption. Households may also undertake tempo-
rary disinvestment decisions on domestic capital to improve their financial balances.
The representative agent seeks to maximize an intertemporal utility consumption
function, U (c¢), and discounts future consumption exponentially at a constant rate
p € RT. To achieve this objective, agents solve an infinite horizon consumption,
c(t) € RT, and investment, i (¢) € R, dynamic optimization problem a la Merton,
taking into account the evolution of their budget constraint, b (¢) € R, and their do-
mestic capital accumulation, k (t) € R*. The objective of each agent is to maximize

the flow of discounted consumption outcomes,
T
Ulc) = / w (e (£)) ePdt, with u (c () = ¢ ()7 (2.26)
0

where v defines the intertemporal substitution elasticity in consumption, measuring
the willingness to substitute consumption between different periods. A smaller ~
means that the household is more willing to substitute consumption over time. We
impose the usual constraint on the intertemporal substitution parameter, 0 < v < 1,
such that «’ (¢ (t)) > 0. This specification for utility belongs to the family of constant
relative risk aversion (CRRA) utility functions and is widely used in optimization
setups, where savings behaviour is crucial, such as economic growth problems. This
setup also guarantees the concavity of the utility function, uv” (¢ (¢)) < 0. This is a
necessary condition to obtain optimal solutions to our dynamic optimization problem

as an initial value problem [[]

1 We follow closely the seminal results of [Arrow and Kurtz| [1970], Chapter 2- Methods of opti-
mization over time, which guarantee the Pontryagin first order conditions are sufficient for deter-
mining an optimum solution in infinite horizon dynamic optimization problems with constant dis-
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Following Barro and Sala-i-Martin| [2004], setups with infinitely lived house-
holds have the following interpretation. Each household contains more than one
adult, defining the current generation population. In making plans, these adults
take account of the welfare and resources of their prospective descendants. We
model this intergenerational interaction by imagining that the current generation
maximizes utility and incorporates a budget constraint over an infinite horizon. That
is, although individuals have finite lives, we consider an immortal extended family.

This economy has NV identical firms, owned by each household and producing
an homogeneous good, y (t) € R, that requires just capital inputs, k (). We assume
this simplification for mathematical reasons, nevertheless, the domestic capital stock
can be considered as a broad measure of available capital in the economy used in the
production of goods. The technology level of firms is identical and given exogenously
by parameter A. We do not consider the possibility of technological progress in this
economy. The flow of output produced by each firm, at a given period, is given by a
AK production function, expressed by equation , following the simple Romer
[1986] endogenous growth framework with marginal and average product constant
at the level A € R,

y(t) = Ak (t). (2.27)

As usual in open economy frameworks, we assume that agents and firms
have full access to international capital markets. Households can accumulate foreign
debt/assets, b(t), for which they pay/receive an exogenous interest, expressed in
terms of the real international interest rate, r, plus a risk premium defined by the
evolution of their real financial balances ratio, b (t) /k (t). We assume that foreign
debt payments, b(t) > 0, and returns on foreign assets, b(t) < 0, follow a convex
specification, = (t), where, = (t);)(t) >0 and = (t);)l(t) > 0, for b(t) > 0. This specifi-
cation follows closely the original proposal by Bardhan |1967|El Interest payments
are defined by

[1]

(t) =rb(t) (1 + ZZE?)) : (2.28)

where parameter d € R stands for the exogenous institutional risk premium, result-
ing from international capital markets sentiments on the quality of the debt bonds

issued by the economy. This assumption is justified by bias arising from historical

count, provided that the objective function is concave and the transversality conditions are fulfilled.
Turnovsky| [1995], chapter 3- Intertemporal optimization, discusses the definition of transversality
conditions for two sector models, such as ours.

15Stiglitz and Weiss [1981] have shown that even in cases of individual borrowing, because of
informational asymmetries or problems associated with moral hazard, risk premium or credit con-
straints, or both, are known to exist.
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and psychological perceptions. We assume that macroeconomic factors are priced in
the risk premium valuation through the net foreign assets to domestic capital ratio.
A higher value of d means that holding the country debt bonds yields a higher risk for
international investors, but investment by nationals on foreign assets pays a greater
premium. A smaller value of d means that holding the country debt bonds yields a
small risk for international investors, but investment by nationals on foreign assets
pays a smaller premium. This setup can be interpreted in terms of the degree of de-
velopment and international financial integration of a given economy. International
investors’ sentiment towards a mature economy is less severe, as a consequence of the
higher degree of international trade and financial integration. This phenomenon can
be explained by historical, political and economic factors, which bias international
investors sentiments towards successful economies, while disregarding real economic
information. It can also result from information costs, which deter international
investors from acquiring relevant information on the state of a specific economy and
increases investors reliance on individual or collective market beliefs. A smaller d
represents also a smaller premium for residents investing in foreign assets. This can
be interpreted as a result of the higher degree of international financial integration
in mature economies. Residents of developed economies require smaller premiums
on their foreign investments due to smaller transaction and information costs of in-
vesting abroad, arising from financial innovation in developed economies banking
systems. Therefore, d can be ultimately interpreted as a measure of the degree of
openness and maturity of an economy. We also consider the hypothesis of an econ-
omy facing negative institutional risk premium, d < 0. We consider that strong
market sentiment may drive institutional risk premium to be negative, when cer-
tain institutional macroeconomic scenarios arising from international liquidity bias,
strong domestic bias towards home assets and specific international institutional
frameworks are fulfilled for a given economy. We provide a detailed discussion on
this matter in the context of existence of investment adjustment costs and detail
four possible dynamic setups with a relevant economic interpretation.

Agents take investment decisions on domestic assets and face convex invest-
ment adjustment costs on these decisions, given by function 2 (t), following the

famous [Hayashi [1982| proposal:

Q@) =i(t) (1 + ;%) . (2.29)

In a closed economy framework convex investment adjustment costs are usu-

ally interpreted in the context of installation costs. In an open economy framework,
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the installation cost parameter, h € R, has the following interpretation: if (i) h < 0,
institutional conditions impose bias on investment in domestic assets, if (ii) h > 0,
institutional conditions impose bias on investment in foreign assets. This mecha-
nism is linked to the previous discussion on the degree of openness and maturity of
an economy. Empirical evidence suggests the predominance of bias towards invest-
ment in domestic assets. This is known as the equity home bias puzzle. Evidence
on this phenomena was first brought forward by |[French and Poterba [1991]. Since
mature developed economies offer smaller costs on investment in international as-
sets, following our assumption on the higher degree of sophistication of its financial
sector industry, we can assume that these economies face institutional conditions
that promote smaller bias towards investment internationalization. The opposite is
expected in less developed economies, where institutional conditions impose higher
costs on investment in foreign assets. On the other hand, it is widely known that
economies facing dire financial conditions, due to severe balance of payment imbal-
ances leading to currency crises, increase the incentives for households to substitute
domestic assets by foreign assets. Capital flights in this fashion are a consequence of
domestic asset devaluation arising from currency value collapse and the consequent
inflationary dynamics, which drive down the value of domestic assets against foreign
assets. Although we don’t consider currency in our model, we can consider that such
extreme situations impose extraordinary institutional conditions, which lead to bias
on investment in foreign assets.

We conclude the presentation of our economy with the definition of domestic
and net foreign capital dynamics. Agents receive capital returns, 7, € ®%, on domes-
tic assets equal to the marginal productivity of firms, following the usual neoclassical
assumption on market clearing conditions for perfectly competitive domestic capi-
tal markets. The marginal returns on domestic capital are given by the exogenous
technology rate of firms,

Iy (1)

rE = m = A. (2.30)

We can now write the intertemporal budget constraint for the representative agent, in

terms of foreign debt/assets accumulation. This constraint is given by the following

differential equation,

b(t)=c(t)+i(t) (1 + Z;((?)) +7b(t) <1 + ;ZZ((?)) — ke (1) . (2.31)

Firms accumulate capital following agents’ investment decisions and face a

depreciation rate of their capital stock equal to § € R, following the usual linear
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differential specification for capital dynamics,

E(t)=i(t)— k(). (2.32)

In our setup, we assume that agents can have temporary disinvestment decisions,
in order to improve their foreign net assets balances or increase their consumption
levels. In the long run, we assume that the following asymptotic condition is fulfilled:
lim inf it > 0. (2.33)

B k()

We can now put forward the dynamic optimization problem faced by the
aggregate economy. The problem we propose to analyse is an aggregate version of
the original problem, which yields an identical solution to the solutions obtained
from the aggregate representative agent and central planner dynamic optimization
problems. Recall that aggregation in a representative agent framework is given by
assuming X; (t) = Nx; (t), where ¢ € {1,...,4}, and X (¢), x; (t) correspond to each
of our aggregate and individual variables, consumption, ¢ (t), net foreign assets, b (t),
domestic capital, k (t), and investment, i (¢), respectively. The representative agent
problem is defined in the following fashion. First we solve the dynamic optimization
problem by maximizing subject to (2.31]) and (2.32)). The aggregate dynam-
ics of this economy are then obtained after substituting in first order conditions
the market clearing condition and aggregating variables, following the rule
x; (t) = X;(t) /N. The central planner problem, on the other hand, is obtained
by substituting first market clearing conditions and aggregating variables in ,
and , and then solving the respective intertemporal maximization prob-

lem. We propose to analyse an aggregate version of this problem, which is given by

the maximization of the aggregate objective function given in (2.34]), below, subject
to the central planner aggregate state conditions. This option is justified because
this intertemporal optimization problem represents a simplified version of both the
representative agent and central planner problems. Although the optimality condi-
tion for aggregate consumption still depends on the size of the economy, when we
solve the representative agent or central planner problem, this parameter disappears
when we define the Keynes-Ramsey consumption equations that are obtained from
first order conditions. It is easy to observe that the central planner state conditions

do not depend on N. Therefore, we can simplify the dynamic optimization problem
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of this economy by assuming the following general aggregate representation, EI,

MAX e PO (1) dt
C(),1(t) Jo

subject to the solution of:
By =C®)+1#) (1+555) +rB@®) (1+423) - nk (1);

K (t)=1(t)— 6K (t);

given some initial conditions, B (0) and K (0), and satisfying the transversality con-

ditions (A.8) and (A.9) defined in appendix guaranteeing that solutions

to (2.34]) do not grow too fast.
We finish this section with a discussion on the economic interpretation of dif-

ferent institutional parameter scenarios that arise when investment adjustment costs
and risk premium are considered together in a growth model of an open economy.
Four dynamic scenarios with relevant economic interpretation can be considered,
when we take into account the interactions between these two institutional param-
eters. As discussed in the previous paragraphs, the expected scenario, according
to economic theory, is given by an economy facing positive risk premium and bias
towards domestic assets, d > 0 and h < 0. However, there are empirical and the-
oretical grounds to assume that an economy may benefit from both negative risk
premium and bias towards home assets, d < 0 and h < 0. We consider two institu-
tional frameworks that may produce macroeconomic outcomes consistent with this
specific scenario: (i) Flight to liquidity driven by reserve currency status; and (ii)
Excess liquidity arising from international capital flows. The first scenario arises in
economies with currencies that function as strategic reserve assets in international
capital markets. Historically, this status has been held by the UK pound during the
gold standard period and afterwards by the US dollar following the second world war
and the Bretton Woods agreement. For historical, economic and geostrategic rea-
sons, these two economies benefited from international financial bias, which resulted
in higher demand and increased liquidity in both foreign exchange and sovereign
bond markets. Longstaff| [2004] provides evidence that during liquidity flights aris-
ing from international financial crisis, investors are willing to pay a premium to hold
US bonds. This strong liquidity effect may lead to negative risk premium scenarios.

According to Ludvigson and Ngj [2009] sovereign bond markets are strongly driven

16This dynamic problem yields the same solution as the central planner and representative agent
problems and, therefore, represents a slight simplification of the economic growth problem de-
scribed in the previous paragraphs. This result can be easily confirmed following our definitions
in We discard the demonstration of this result in order to contain our already long
presentation.
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by market sentiment, which leads to an acyclical behavior of risk premium. The
authors give evidence of acyclical and negative risk premium dynamics in the US
sovereign bond market and attribute this behaviour to investor decisions driven by
market sentiments and macroeconomic factors. The authors link this outcome to
theories that sustain that investors demand compensation for increased risks during
economic downturns, which drives risk premium higher, and relax these demands
during expansions, where risks are considered to be smaller. Other currencies have
also benefited from reserve currency status and have been accepted by international
investors as substitutes to the US dollar in recent decades. Besides the UK pound,
we can include in this set of currencies the Deutsche Mark, now replaced by the
Euro, the Japanese Yen and the Swiss Franc. The Japanese case is of special in-
terest to our discussion, since it is linked to a strong home bias on domestic assets
and a liquidity trap environment driven by historically low interest rates. |Goyal
and McKinnon [2003| provides empirical evidence on Japan’s consistent negative
risk premium on sovereign bonds and links this outcome to the strong home bias
on domestic assets effect mixed with the low interest rates environment in a con-
text of an ineffective monetary policy. The common economic factors shared by the
above mentioned economies are long run growth, export capacity, credit worthiness
and creditor protection, strong property rights and historical low to moderate infla-
tion. The second scenario arises in economies that benefit from strong international
liquidity flows, which were driven by international low interest rates and resulted
in a distortion of domestic bond markets, due to lower perceived default risk and
improved creditworthiness. |Agenor| [1998| provides an insightful theoretical discus-
sion on this issue and maintains that this was the main cause driving the boom
and bust of Asian economies during the nineties. The European periphery countries
experienced the same environment with the introduction of the Euro and the pe-
riod of low interest rates that followed. Again excess liquidity drove risk premium
to low, and most likely negative levels, due to a perceived increased creditworthi-
ness and lower default risk. This effect was a result of market perceptions about
European institutional developments, which fuelled the belief that exchange rate
risk between EU nations had vanished. During several years, European periphery
countries yields on sovereign bonds were historically low and even negative, when
compared to benchmark German sovereign bonds. This link was broken in the af-
termath of the 2008 financial crisis, and since then economic factors have dominated
international investors’ decisions and bond market outcomes, leading to a return to
positive spreads relative to German bonds. Finally, some open economies benefit

from the status of commodity currencies, due to their strategic importance for world
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commodity markets. In recent decades the Canadian, Australian and New Zealand
dollar, as well as the Norwegian Krone have benefited from this specific status. These
economies usually experience excess liquidity driven by international financial flows
during strong expansion periods. Rising demand for strategic commodities in world
markets, leads to a rising demand on commodity currency assets, which results in
currency appreciation and increased liquidity in domestic bond markets. Excess
liquidity of foreign reserves may lead to severe distortions on risk premium in the
absence of appropriate institutions. In recent decades, several commodity exporting
economies followed the Norwegian institutional framework and constituted sovereign
wealth funds, with the objective of investing commodity based revenues in foreign
assets, to avoid distortions in domestic markets arising from excess foreign reserve
liquidity.

We conclude this discussion on institutional scenarios with a description of
macroeconomic nightmare scenarios arising in economies facing positive risk pre-
mium and bias towards foreign assets, d, h > 0. Recall that we discussed previously
that scenarios consistent with h > 0, can be related to balance of payment crisis
and expectations of currency crisis and debt default scenarios. In this critical en-
vironment, international investors price in this risk assuming strong probability of
losses and demand a higher premium to hold the stressed economy sovereign bonds.
Before the default scenario becomes inevitable, countries seek to lower the premium
demanded for their bonds by guaranteeing debt roll over through bilateral agree-
ments. This is usually arranged through IMF intervention and the implementation
of structural adjustment programs. Loans are guaranteed by IMF stockholders and
the soundness of the institutional arrangement is monitored by IMF economists.
This institutional arrangement seeks to roll over debt repayments, until market risk
premium on domestic bonds returns to affordable levels and there is no longer bias
towards foreign assets. This institutional arrangement seeks to avoid macroeconomic
nightmare scenarios, by guaranteeing a temporary debt subsidy at a negative real
premium, for an economy facing bias towards foreign assets, d < 0 and h > 0. In
recent years IMF interventions have come under severe criticism because of its con-
sistent inability to achieve the desired goals and leaving economies worst off. Some
authors suggest that institutionally imposed negative risk premiums scenarios cre-
ates moral hazard incentives for both the creditor and debtor. These authors argue
that such arrangements promote the delay of economic adjustment by the debtor and
reduce negotiation willingness of creditors. This non-cooperative situation delays the
achievement of a permanent solution to the unsustainable debt problem and usually
results in higher costs for both debtors and creditors. Miller and Zhang| [2000| and
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Corsetti et al. [2006] discuss this problem in detail and propose a standstill solution,
or debt repayment freeze, during the economic adjustment program period, with
the purpose of reducing the moral hazard consequences of negative imposed insti-
tutional risk premium. Since our model cannot predict such outcomes, it is of far
more importance in this context to understand how international investors systemat-
ically fail to forecast unsustainable debt dynamics and price in the increasing risk on
demanded premium, before the situation becomes irreversible. We believe that [Lud-
vigson and Ng [2009] hypothesis of strong market sentiment driving acyclical risk
premium dynamics is a consistent explanation of this phenomenon. During good
times investors fail to scrutinize correctly real risk premium and allow economies to
accumulate excessive debt. The negative risk valuation of an economy debt dynamics
functions as an incentive to continue to accumulate excessive debt, because it allows
for short run economic and political gains. As soon as the situation deteriorates,
investors penalize this behaviour and demand higher risk premium on the country
bonds. Rising risk premium leads to devaluation and increased inflation expecta-
tions by domestic investors, who eventually bias their investments towards foreign
assets. At this point IMF interventions provide temporary liquidity through debt
subsidies and again guarantee negative risk premium, but now in an environment
with bias towards foreign assets. Whatever the outcome of the adjustment program,
sustainable long run growth dynamics are only achieved when bias towards domestic
assets is restored. At this point investors will still be vigilant of a country’s debt
dynamics and demand a positive risk premium on bonds. Market sentiment now
penalizes this economy. Eventually international investors’” memory fades and this
risk premium cycle can potentially restart. Although our proposal does not account
for risk premium dynamics, we propose to study this phenomena assuming all these

four scenarios separately.

2.4 Stationary dynamics for the aggregate economy

To derive the relevant dynamical system describing the optimal solution to ,
we first derive in of the appendix the Pontryagin necessary first order
conditions, which are given in to . These conditions are sufficient if
they fulfil admissibility conditions, given in , and transversality conditions,
and (A.9), following the seminal result by [Arrow and Kurtz [1970]. We start

the derivation of this optimal control problem by taking the time derivatives of the
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optimality conditions, given by (A.2)) and (A.3]). We obtain the following expressions:

At)=—v(y=1)C@E)>C{); (2.35)
Q) = —A(t) (1 + gg;) _ };?((;))f(t) + WK@. (2.36)

We then substitute these expressions and the optimality conditions, in the
co-state conditions (A.6) and (A.7)), and obtain the two possible Keynes-Ramsey
optimal consumption rules for this econom Cp (t) and Cx (t) arising from

consumption driven either by net foreign assets accumulation or domestic capital

accumulation,
Loy C) B (1)
CB(t)—ﬁ <p—r—rdK(t)> , (2.37)
: B C (t) hI(t)K(t) hi(t) Rl (t)
CK(t)—(7_1)<1+M((g> K (1) K(t)+<1+K(t)>(p+5)

(2.38)
_rdB(t)?  hI(t)?
2K (t)* 2K (t)°

— 7L

Optimal investment decisions in this economy are given by imposing Cp (t) =
Cx (t). After some fair amount of calculus and the substitution of the state con-
dition for capital accumulation, , we obtain the differential equation driving

investment activitieﬂ

; 1(t)? rdB(t rdB(t K(t rdB(t)?
1(t) = 53¢ + (“L K(t())) I{t)+ <7” + S+ 8- Tk) B - 52 (239)

"By Keynes-Ramsey consumption rules, we mean the intertemporal dynamic consumption de-
cisions that are obtained for this control variable in an optimal control problem with a constant
intertemporal discount rate. In macroeconomics literature these dynamic equations are known by
Keynes-Ramsey consumption rules, following the work by the two famous Cambridge scholars, that
related intertemporal consumption decisions with the discounted value of expected future incomes
and optimal savings for capital accumulation. It is our opinion that in open economy optimization
problems with two state variables, this rule is not unique, since state defined income accumulation
can vary in its source. Therefore it is reasonable to impose two possible consumption paths that
satisfy the optimal investment condition. In this model, optimal investment decisions impose an
indifference rule on the intertemporal marginal adjustment between different assets, in order to
allow for distinct capital accumulation decisions. This mechanism has the following interpretation,
investors will always choose to accumulate assets that adjust faster to optimum outcomes rather
than invest in assets that yield longer adjustment rates. In economics jargon the co-state variables
represent the shadow price (or marginal value) of a specific asset.

18To obtain the second Keynes-Ramsey consumption rule, Ck (t), it is convenient to start by
substituting the optimality condition for consumption, , and its time derivative, , in the
optimality condition for investment, , and in its time derivative, .

19We would like to stress that this result is independent of our interpretation of indifference
between optimal consumption strategies. The same condition defining investment dynamics is
obtained when substituting directly while deriving .
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This economy is thus defined by the dynamical system given by the differential

equations of the controls in consumption and investment, (2.37)) and (2.39)), and the

state conditions for net foreign financial assets and domestic capital accumulation,
defined by (A.6) and (A.7). We define a stationary dynamical system by taking
advantage of the scaled invariance of the dynamics, and redefine the variables, X; (),

in terms of domestic capital units:

X (t)
K (1)

Loy i) Xi(8) K (1)
= Z; (t) =K (t) — K (t) K (t), (2.40)

Zi(t) =

where i reduces to i € {1,2,4} and Z; (t) defines scaled consumption, net foreign
assets and investment, respectively. Following this rule, we redefine the system in

terms of the scaled controls and scaled state equations:

p—r(1+dZ2(t))+(5—Z4(t))(’7—1)>
v—1

Z1(t) = Zy (1) ( ; (2.41)

Z(t) =22 () 1+ 0] + 2 (0) [r+ 20 15— 2, ()] + 2 (W) - (242)

Za(t) = 20 4 (r 4 rdZy (1) + 6) Zy (1) — D00 | StrardZO=n (9 43

Since the system is now independent of domestic capital dynamics, which
only depends endogenously on investment outcomes, we have reduced the dynamics
of this economy to three dimension@ Domestic capital is given by the following
expression,

K (t) = K (0) efo(Za(s)=0)ds (2.44)

following the result in . We now introduce the notion of acceptable solu-
tions to the system given by , and . We assume that such so-
lutions can be described as an ergodic invariant se@ with a well defined invari-
ant probability measure, whose expectation operator we denote by (), such that
limy oot 1 fg Z; (t) — (Z;). Following this definition, we can redefine domestic cap-
ital dynamics in the long run by taking the asymptotic limit of expression .

29Recall that Z3 (t) = 1, so scaled domestic capital dynamics scales out of the system. To avoid
confusion with the scaled variable notation, we decided to maintain the original indexes throughout
this chapter.

21By invariant set we refer to solutions of the scaled dynamical system that can be defined as
distributions obtained from bounded trajectories of lim;_, o Z; (t) in the phase plane. We follow the
definition of an invariant set composed by asymptotic limit sets of points given in|Guckenheimer and
Holmes||1983]. Let ¢¢ be a flow such that the « limit set of z for ¢ is the set of accumulation points
of ¢¢ (z),t = —oo. The w limit set of = for ¢ is the set of accumulation points of ¢, (z),t — oo.
The a and w limits of x are its asymptotic limit sets.
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We obtain
lim ¢t~ log K (t) = (Z4) — 6. (2.45)
t—00

Following our definition of solutions given by invariant sets, we can now define
the constraint on scaled investment activities that imposes the existence of long run
growth dynamics, lim;_,~, K (t) = 0o, exponentially, (Z4) > §. In order to guarantee
the existence of an optimum solution arising from the Pontryagin maximum con-
ditions, we need to check under which circumstances the transversality conditions
are fulfilled. For that purpose we rearrange expressions and in terms of
scaled variables and substitute the co-state variables from the optimality conditions
and . The transversality conditions are now given by:

Jim —y (21 () K ()™ Za (8) K (t) e = 0; (2.46)
Jlim ~ (Zy (8) K NP A+ hZy (1)K (t) e Pt =0. (2.47)

Recall that we defined domestic capital dynamics, K (¢) in (2.44)), as a func-
tion of scaled investment dynamics, Z4 (t). Assuming that we only accept solutions
for the dynamical system defined in to , given by invariant sets, following
the result in , we can rearrange the transversality conditions given in
and in a intuitive fashion by taking the scaled limit of the logarithm of
and , and solving the transversality constraints as an asymptotic inequality@

The transversality conditions are now given by:

lim ¢~ log [—7 (Z))7H K (0)Y (Zy) e[ﬁ—l)<<Z4>—5>+<Z4>—5—Pﬂ < 0; (2.48)
— 00

lim ¢~ log [’y (27K (0)Y (14 R (Z4)) e[ﬁ—l)(<Z4>—5>+<Z4>—5—Pﬂ <0. (2.49)
—00

From or it is straightforward to obtain the transversality constraint
for the existence of an optimal solution as a function of the invariant probability
measure describing scaled investment trajectories. Transversality conditions impose
the following asymptotic condition limsup, .. Z4 (t) < § + p/7. Given the long
run growth restriction, , requiring that the following asymptotic condition is
fulfilled, lim inf; o, Z4 (t) > J, the optimal growth constraint for the problem defined

in ([2.34) is the interval,
§ < (Zy) <5+ g. (2.50)

2ZRecall that a dynamic process that scales exponentially, w (t) ~ €%, can be defined asymp-

totically in the following fashion, lim; et ™ 'logw (t) = . If ¢p > 0 = w(t) — oco. If
P <0=w(t) — 0.
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The constraint on scaled investment dynamics defined in , guarantees that
stationary solutions to the system described by to fulfilling this con-
straint are optimal growing solutions to the dynamic optimization problem defined
in . The intuition for this outcome is straightforward. As the initial value solu-
tion is defined in terms of capital units, stationary solutions to the dynamical system
consistent with , guarantee that the evolution of both controls and state vari-
ables are consistent with the growth rate of capital defined in , which depends
solely on scaled investment dynamics. Thus a constraint on investment trajectories

is sufficient to bound solutions and guarantee that these are optimal.

2.5 Steady states, linearized dynamics and local stability

conditions

We now turn our attention to the study of steady states and local qualitative dy-
namics. The dynamical system described by (2.41)), (2.42)) and (2.43)) has two sets of
steady states with specific economic meaning. We define the complete set of steady
states as Z — {Z * A **}, where the first set of steady states, A *, is obtained by

setting Z7 = 0. This set of steady states violates the non zero constraint for con-

sumption. We shall refer to this set as non feasible steady states throughout this
chapter. The second set of steady states, Z **, is obtained assuming Z7* # 0 and is
consistent with an economic meaningful solution when Zj* > 0.

The first set of steady states is given by the intersection of two quadratic
curves defined by the system, Z, (¢) A Z4 (t) = 0. The derivation of Z* appears to
require the solution of a fourth order equation. It can be solved using a numerical
polynomial solver routine. In we provide the detailed description of
an efficient and accurate algorithm to perform this computationlﬁ. Alternatively,
one can note that the two quadratics, (Z;, Z;) happen to have the same center,
(Z30, 750) = (1 Y h(rd+6+1)(1—hrd) ™, (rd+ 6 +7) (1 — hrd)_1>. Assuming
the transformation 23 = Z3 — Z3 ; and zj = Zj — Z} ,, the system, Zo()NZy(t) =0

reduces to:

h

5 @)+ 5 (D) - e - Ca=0; (2.51)
rd *\2 (ZZ)Q * %
~3h (z5)° — 5 +rdzyzy — Cy =0 (2.52)

23We put forward this algorithm because it provides an efficient and accurate method to com-
pute the intersection of two conic sections and because the numerical computations described in

are still based on this methodology.
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where C and Cy are given by the following parameter expressions:

(2.54)

Z1o rd _, r+rdZy,+06—rk
> ) Tapot h '
Multiplying (2.52) by h, the solution to 2z in terms of is zj obtained after adding
expressions (2.51) and (2.52)),

Ci=Ziy (r +rdZ3o+ 6 —

L —(CQ+hC4)i
27 1—rdh zy

Substituting back (2.55)) in (2.52), solutions to z; are given by the resulting bi-

quadratic equation

(2.55)

(Tdh - 1)2 *\4 *\2 rd
— (z1)" 4+ (rdCs 4+ Cy) (rdh — 1) (2])" + o (Co 4+ hCy) =0, (2.56)
whence,
— (rdCy + Cy) + /rdh=1 (rdh — 1) C? + (1 — rdh) C%
zz;—J ( )& VBT CdR - DG A-rd G

rdh — 1

In the case of the economic feasible steady states, Z**, the solution can be
obtained analytically by solving the quadratic equation given by Zy (t) = 0, after
substituting by the solution of Z; (t) = 0 A Zi* # 0. This operation yields the

following quadratic equation for Z;*,

o — —r — - *k
{— (Mi -7+t %} (Z5*) + [p—i— 5y + 1 1)(phr$6(7 ) th] Z

2
+p+ 6y — 7("_”25:(}_1)) —rp = 0.

(2.58)

The solution to (2.58)), defining the economic feasible steady state for Z;* is thus
given by

,<p+5v+%::5(7—1>>,%—1>

2
- ('thd) =27+l

)k
Zy7" =

(2.59)

\/<p+57+—(%1)([)2:36(%1)) _L;l>2_4 [(‘ L —7+%> (—7@4@(‘371»2 +p+5v—rk) H

—1)2
_%_27_’_1

Scaled consumption and net financial asset equilibrium expressions can be computed
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in terms of Z;* solutions. These conditions are given in (2.60]) and (2.61)), below:

Z5 — _ gzl 2.60
Kk Kk h Kk *x Kk Kk
21" == Z7 (14 5217 ) = (r+rdZ3" + 6 = 217) 257, (2.61)

We continue the analytical discussion of our dynamical system with the defi-
nition of general Jacobian matrix for this system, evaluated in the vicinity of a given

fixed point, Z; € Z. The general Jacobian is defined by

p—r(l—i—de +(5—Z4)(’y—1) d 5 =
71 T4 B
J= 1 r+rdZe+ 06— 74 L+ hZy — 7y . (2.62)
0 rdZy — " (Zy—1) —Zy+r+1dZy+6

The generalized characteristic equation, det (J — AI) = 0, for this Jacobian matrix,

using the simplifications, Jo o = J3 3 and J39 = Ja 3rd/h, comes to

2
(Ji1—A) (Jo2 — A + del;fJQ’3 — rd(f’g) (Jig—A) = (Jo2—A) Ji2 =0, (2.63)

where A is the eigenvalue solution to and [ the identity matrix. The remaining
simplifications can be assumed for each set of fixed points: (i) Ji2,.J1,3 = 0, for the
set of fixed points given by Z*, and (i) J13 =0 and Jy 2 = Jygrd/ (v — 1), for the
set of fixed points given by Z** In we provide a general description
of linearized dynamics and define hyperbolicity conditions in the vicinity of each
specific set of steady states for this system.

To put forward sufficient conditions guaranteeing local stability of economic
feasible solutions, ZZ**, we resort to the Routh-Hurwitz Criterion, following the sem-
inal paper by |Hurwitz| [1964]. The Routh-Hurwitz Criterion guarantees that all
solutions to a polynomial of degree n have a negative real part. The advantage
of following this approach is that it allows us to impose local stability conditions
without having to compute the eigenvalues of . To determine the signs of the
solutions of a cubic polynomial, we start by defining generically as,

ap (M) + ay (A*)? + agA*™ + a3 = 0. (2.64)
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The Hurwitz matrices for a cubic polynomial are generically given by:

az ag aj . (2.65)

ay agp 0
ai a0] ng
0 0 as

Hy = [ao) , H1 = [a1], Ha2 = [
as a

The Routh-Hurwitz Criterion guarantees that solutions of the polynomial
defined in (2.64) have a negative real part, Re (A**) < 0, if the determinants of
the Hurwitz matrices are positive, |Hyl|,|H1|,|Hz2|,|Hs| > 0. Given this definition,

sufficient conditions for local stability are given by:

|Ho| =ap=1>0;
|Hi| = a1 = =2J5% > 0= J3% < 0;

|Hy| = arag — a3 = (2.66)
kok T ok kok 2 T kk 2 kk ok kok
=2Jy)5 (%Jm — (133)" + 5 (J33) ) +rdJis (%Jm - ﬁJm) > 0;
|Hs| = a3 | Hy| > 0 = ag = —rdJ75 (355 — 54753) > 0.

We now focus on the evaluation of local qualitative dynamics in the con-
text of a broad parameter space. We start with the definition of an algorithm for
the exploration of a parameter space defined by a vector of parameters, i, for a
given parameter space with j parameters, where each p; domain is described as a

min max

bounded set of real numbers, pu; € R A p; = [[Lj 1 A robust algorithm
that maps all possible outcomes is given by a grid search of the complete param-
eter space, such that the grid search has a small enough step size. According to
the linearization theorem, local qualitative dynamics are robust to small parameter
changes in hyperbolic autonomous dynamical systems. Following this definition, the
size of the individual parameter domain can be described as the discrete sum of all
its partitions, Y P _| fim.j, where m is the index of each equal partition, gy, ;, of the

original parameter domain, p; = [M’Jm” pyr

]. Assuming that we choose a large
enough number of partitions, p, such that each partition of the individual parameter
space is small enough and therefore robust under the linearization theorem. Then
the maximum number of parameter combinations, [] ; > Mm,j, corresponds to the
iterations required to perform a grid search on the entire parameter space, . Now,
for example, if we consider that a grid search with a step size equal to 1072 is con-
sistent with the previous definition, the total parameter space to explore assuming
0,7, 0,71, € [0 1] and d,h € [—10 10], requires a grid search procedure that per-

forms 4-10'6 iterations, in order to cover all possible parameter combinations. Given
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that this is not a feasible computational task, we propose to explore this vast param-
eter space assuming a stochastic variation of the grid search procedure described.
Instead of grid searching each possible combination, we propose to draw parameter
combinations stochastically, assuming a uniform distribution of the parameter space,
0,7, 0,1, ~ U (0,1) and d,h ~ U (—10,10). If we draw large enough samples of
uniformly random distributed numbers for a given parameter space, then the total
parameter space covered by the samples will asymptotically approach the original
parameter space. Therefore, we can define an accurate probability measure of a given
event, by computing the sample averages of parameter combinations consistent with
these events.

The first conclusion drawn from the application of the stochastic search rou-
tine, for the parameter space defined in the previous paragraph, is the absence of
local stable solutions. Several sample@ of size 10 were computed and not a single
outcome satisfied both the optimal growth condition and the Routh-Hurwitz crite-
m’on@ The qualitative dynamic outcomes of stable steady-states solutions in the
saddle point sense, consistent with the optimal growth constraint on long run scaled
investment dynamics , can be characterizedm in terms of the risk premium pa-
rameter: (i) if d > 0, there are only saddle solutions with stable dimension equal to
one and these correspond to the positive root of ; and (ii) if d < 0, we can have
saddle solutions with stable dimension equal to two for the positive root of .
This last outcome is more likely to occur when there is a small bias towards home
assets. Further, when d < 0, there are parameter combinations where the negative
root of is a saddle solution of stable dimension equal to one consistent with
(2.50). These two saddle solutions may coexist for specific institutional scenarios.
We discuss this result further in In the next sections, we provide several
examples of the application of this stochastic method and, when convenient, portray

some of the sample results obtained.

24We compute samples using a C routine compiled with the GSL scientific library.

25This result is confirmed by numerical computation of eigenvalues.

26To determine the qualitative dynamics of the fixed points we assumed that: (i) saddles
with stable dimension equal to one are consistent with [[°_, Re (A7*) < 0 and max (Re (A}*)) -
min (Re (Aj*)) < 0, (ii) saddles with stable dimension equal to two are consistent with
[T, Re(A;*) > 0 and max (Re (A}*)) - min (Re (A}*)) < 0, and (iii) divergent solutions are con-
sistent with [[°_, Re (A}*) > 0 and max (Re (A}*)) - min (Re (A}*)) > 0.
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2.6 Local singularities: Saddle-node, Hopf and Fold-Hopf

bifurcations

We now turn our attention to the description of bifurcations arising from the set of
economic feasible fixed points. We start by describing the conditions required for the
existence of saddle-node bifurcations also known as folds. A saddle-node bifurcation
is a co-dimension one singularity that imposes dramatic qualitative changes in the
system behaviour. It occurs when two fixed points collide and disappear. This
bifurcation is associated with dramatic dynamic phenomena, such as hysteresis or
catastrophe. In the vicinity of this bifurcation, small parameter perturbations may
provoke changes in the phase-space organization and give rise to path dependence
and global nonlinear phenomena, such as heteroclinic and homoclinic orbits. A
recent example of this bifurcation in a continuous time model of endogenous growth
is found in Chen and Guol| [2008|. Saddle-node bifurcations arise in regions where
an equilibrium is at a branching point, one of the eigenvalues is equal to zero and
the remaining eigenvalues are real. Following our steady state formulae for economic
feasible outcomes, given in to , an optimal candidate for a saddle-node
bifurcation is the parameter constraint that guarantees the square root term in
is equal to zero. For convenience, we choose to vary r;. At the branching point of

Z}*, the bifurcation parameter, r;*, is equal to,

n( ooyt D s (1)) y=1)? - e
Pt = G o =) +p oy — L 0GTL) (2.67)

2(y=1)2
~ a2

Recall that equilibrium for Z;* is now given by:

e = (o oy CRlepia) a1

—1)2

In we describe sufficient conditions for the existence of a saddle-
node bifurcation. First, we recall a necessary condition that has to be fulfilled
at the critical equilibrium point, det (J**) = 0 = A}* = 0. This condition is
described in and . In , we confirm that this condition is met
at the branching point, defined in , which confirms the result in . To
guarantee that the remaining condition for the existence of a saddle-node bifurcation
is fulfilled, we solve the characteristic polynomial, , in the vicinity of ,
and obtain the remaining eigenvalues, A5* and A%*, defined in . This condition
is given in . Substituting with the Jacobian terms, and rearranging,
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the existence of a saddle-node bifurcation requires that: (i) when d > 0 we have
Z () > hir+rdZs* (ri*) + 6 — Z3* (r;;*)]2; and (ii) when d < 0 we have 0 <
Zy (ri*) < h(r +rdZs* [r5*) + 6 — Z5* (r59)])? and h > 0.

To confirm the existence of saddle-node bifurcations for this economy, we
performed a numerical evaluation of possible outcomes, assuming that growth and
optimality conditions are fulfilled for solutions in the feasible economic space. We
computed samples following the stochastic sampling method discussed in the previ-
ous sectionlﬂ. The outcomes obtained suggest that saddle-node bifurcations are a
common outcome for a broad range of parameter combinations and are more likely
to occur in institutional scenarios where there is bias toward home assets, h < 0, and
positive risk premium, d > 0. Numerical results suggest that when d > 0, we have
h >0 and A5*AZ* < 0. When d < 0, numerical results suggest that A5*, A3* > 0.

We continue the discussion on local bifurcations with a description of ana-
lytical conditions for the existence of general and attracting Hopf bifurcations. The
attracting Hopf bifurcation is usually related to the existence of limit cycles that can
be observed physically. The existence of Hopf bifurcations in models of endogenous
growth implies the coexistence of optimal growth and cycles. This literature has
established itself in growth theory during the last two decades, in what has been
established as optimal growth and cycle models. Some recent papers on this subject
that follow the same base modeling assumptions of our proposal are the proposals
by [Slobodyan| [2007], [Nishimura and Shigokal [2006] and Wirl [2002]. Examples of
earlier literature on this subject can be found in the papers by Lordon| [1995|, Greiner
and Semmler| [1996], |Greiner| [1996], Drugeon| [1998], Benhabib and Nishimura [1998|
and |Asada et al.|[1998].

General Hopf bifurcations require that the following set of eigenvalue con-
ditions is fulfilled: (i) Re ( ;*3) = 0; (ii) Im ( ;*3) # 0. The existence of an at-
tracting Hopf bifurcation requires additionally that Tr (J**) < 0 = Re (A}*) < 0.
For reasons of convenience, we define these conditions using the Hurwitz Deter-
minants described in . Following [Liu| |[1994], an attracting Hopf bifur-
cation for vector fields in %3, occurs if the following generic conditions are ful-
filled: (1) |Ho (u7), [Hy ()] > 0 (ii) [Ho ()] = 0; (iii) ag > 0; and (iv)
O|Ha ()| /Ou # 0. Where, u is the bifurcation parameter and p** is the bifurca-
tion parameter at the Hopf equilibrium point, which is obtained from the solution
of the second condition. The last condition guarantees that the eigenvalues cross the

imaginary axis with non-zero speed. A general Hopf bifurcation does not require

2"The results were obtained from a sample with 10° random draws of uniform distributed num-
bers, p,v,6,7 ~ U (0,1) and d,h ~ U (—10,10). We restricted the outcomes of this sample to
solutions where 0 < r;* < 1.

38



that |Hy (p**)] > 0 is fulfilled. Given this set of general conditions, the existence of
attracting Hopf bifurcations in our economy, requires that the following conditions
are fulfilled:

iy (h55 - s 055) > 0

2785 (24 J75 = (J55)° + 3 (953)°) + vt (B35 — 550 055) =00 (269)

To test the coexistence of optimal growth and cycles, we explore numerically
solutions consistent with Z;* > 0, and , assuming r; as bifurcation pa-
rameter. For this purpose, we adapted our routine, to explore a bifurcation interval,
0 < r; < 1, for a given stochastic combination of parameter@ As expected, the
modified stochastic search routine was not able to detect the existence of parameter
combinations consistent with optimal growth dynamics undergoing attracting Hopf
bifurcationﬁ. Given this outcome, we focused our efforts on the detection of general
Hopf bifurcations. The samples obtained show that only the positive root of Z;* is
consistent with the existence of general Hopf bifurcations. This bifurcation scenario
is more likely to occur when d, h < 0, but may also occur when d < 0 and h > 0.
Finally, our results show that 0 < A]* < 1 and in most of the cases small.

We finish this section with the description of necessary conditions required
for the existence of a codimension two fold-hopf bifurcation in this Systenm This
bifurcation is born from the merging of the two previously discussed instabilities.
When the saddle-node and Hopf bifurcation curves are tangential in the parameter
space a fold-hopf bifurcation is born. This singularity is characterized in vector
fields in ®3 by: (i) det (J**) = 0 = Af* = 0; (ii) Tr (J**) = 0 = Re (A3%) = 0;
and (ii) Im ( ;*3) # 0. The presence of this bifurcation shows that there is a path

28We explore supercritical Hopf bifurcations by varying parameter 7, along the interval 0 <
rr < 1, assuming a step size iteration of magnitude 10~2. The outcomes discussed in this section
were obtained from a sample with 107 random draws, assuming that the remaining parameters are
uniformly distributed as in previous experiments, p,v,d,r,~ U (0,1) and d,h ~ U (—10,10). In
this experiment we consider that the supercritical Hopf bifurcation point is given by the average
value of the crossing interval, when there is a change in sign consistent with . Steady state
outcomes take into account this adjustment.

29The easiest path to detect a supercritical Hopf bifurcation in hyperbolic autonomous dynamical
systems is to continue equilibrium from a spiral attractor. The numerical results described in
suggest that this is not a likely outcome. The results obtained in this section confirm
our conclusions regarding steady-state stability.

30This bifurcation is also called Gavrilov-Guckenheimer, saddle-node Hopf, zero Hopf and zero
pair bifurcation. A detailed technical discussion of this bifurcation scenario can be found in |Guck-
enheimer and Holmes| [1983] and [Kuznetsov| [1998], chapter 7 section 4 and chapter 8 section 5,
respectively.
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towards complex dynamics in this system. Fold-Hopf points are associated with
several nonlinear phenomena. The influence of this bifurcation is not limited to
parameter regimes in its close vicinity, it stretches far beyond the specific bifurcation
point and may give rise to a cascade of complex dynamic transitions, including the
local birth of chaos. In this framework, policy analysis has to take into account the
increased complexity of possible model outcomes.

Although the unfolding of a fold-hopf bifurcation scenario is not fully known
and in some sense impossible to describe in all detail, four transition scenarios can
be considered for flows in ®3. The first two scenarios imply subcritical transitions
and no torus formation. The unfolding of the most simple of these scenarios may
not be associated with global nonlinear phenomena, but at least one limit cycle is
known to exis@. The remaining scenarios may arise with subcritical and super-
critical transitions and give rise to torus bifurcations and complex global dynamics.
These transitions may create saddle node bifurcations of periodic orbits on the invari-
ant torus, torus breakdown and chaos, heteroclinic orbits on a sphere (heteroclinic
cycles), bursting and Sil'nikov bifurcations leading to chaos. A formal definition of
the exact unfolding scenarios for this system requires the computation of the normal
form coefficients using numerical continuation software.

This bifurcation scenario has been gaining a greater attention in other fields
of applied mathematicﬂ This has not been the case in the field of economic dynam-
ics. We were only able to find one article where this topic is discussed in economic
literature. Brito [1999] proves the existence of fold-hopf bifurcations generally for op-
timal control problems with one control and three state variables, that have solutions
given by flows in R3.

We finish this discussion with a description of the sufficient conditions for
the existence of the fold-hopf bifurcation. The easiest path to obtain these con-
ditions is to continue equilibrium from the saddle-node bifurcation point. A nec-
essary condition for the existence of a fold-hopf bifurcation is given by setting
I35 (i), J5% () = 0, following the saddle-node condition (A.39). We have a fold-
hopf bifurcation, given in terms of parameters 7;* and p**, when condition (A.45)
is fulfilled, and provided that there is negative risk premium, d < 0, following the
eigenvalue solution in (A.44). If d > 0 we have a neutral saddle with A7* = 0 and
> A3 = 0. The second parameter constraint, p*, is given in . Again we re-

31See [Kuznetsov| [1998] page 339.

32Crommelin et al. |2004] discusses heteroclinic cycles driving atmospheric regimes, Hilker and
Malchow/| [2006] portrays strange periodic attractors in population dynamics, and Izhikevich| [2001]
shows bursting in neurocience dynamic systems in the vicinity of fold-hopf bifurcations.
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sort to our stochastic routine to map the the parameter space for this bifurcation@
Below in we portray the sampling outcomes obtained for meaningful op-
timal economic solutions consistent with fold-hopf bifurcations of equilibrium. The
graphics below portray the parameter frequencies, depicted as heat maps for specific
parameter combinations, consistent with computed fold-hopf bifurcations of equilib-
rium. This sample shows that fold-hopf bifurcations are more likely to occur when
there is negative risk premium and bias towards home assets. We may also have
scenarios, where h > 0 and d < 0, but d takes a small negative value. The vast
majority of fold-hopf points occur when h < 0 and small. To get further insight
in the possible transitions arising from the fold-hopf point, we perturbed each of
the system parameters, i, by Au = £0.05, for the entire computed sample. For
transitions where both solutions are consistent with Z;* > 0 and (2.50), we may
have saddle-repellor and saddle-saddle scenarios. The first scenario suggests that
unfoldings are simple for this case and relevant nonlinear phenomena is not a likely
outcome. However, the saddle-saddle unfolding scenario may lead to complex dy-
namic phenomena, as a result of the complex organization of the saddle’s invariant
manifolds. The existence of a general Hopf bifurcations in the vicinity of these
transitions, as previously discussed, may also play a role on the complexity of both
unfolding scenarios. Still, the absence of attracting Hopf bifurcations in the vicinity
of the unfolding, limits the range of nonlinear phenomena that may arise in this
system. In we discuss with more detail some of the complex dynamics
that may arise from this bifurcation, and put forward some conjectures and examples

with meaningful economic interpretation.

(a) Density p, v (b) Density r, 7% (¢) Density d, h (d) Histogram 6

Figure 2.2: Parameter density distributions for Fold-Hopf bifurcation

33The parameter distributions for the fold-hopf bifurcation were computed numerically for a
sample with 10° random draws, assuming parameters distributed uniformly, v, 8,7 ~ U (0,1), h ~
U (—10,10) and d ~ U (—10,0). We considered fold-hopf co-dimension two outcomes consistent

with 0 < r*, p™* < 1, Z7* (ri*, p**) > 0 and (2.50).
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2.7 Economic space boundary dynamics

The existence of non feasible steady states in economic models has not shared the
same amount of attention in literature, when compared to its economic counterparts.
From a mathematical modeling point of view, the unjustified existence of these fixed
points is sufficient ground to question the quality of a proposal. Since many economic
models share this specific feature, we link the absence of a consistent discussion on
this topic, to the lack of explanatory power of linear and quasi-linear proposals. In
this section, we discuss the role of non feasible fixed points in a economic setting and
derive policy rules that guarantee that orbits starting within the economic space, stay
in this region. This concept is crucial, since it solves the modeling issue described,
and introduces a novel policy objective. In we describe this mechanism
schematically. Flows in the vicinity of the nullcline plane, Z; (t) = 0 for Z; (t) = 0,
are locally repelling for Z; (t) > 0, when the growth rate of scaled consumption,
Z (t), is positive in the vicinity of this separatrix plane. Economic recovery can
be achieved by an endogenous dynamic mechanism if the necessary institutional

framework is in place.

Non feasible .
economic regi Z.(1)
gion

where Z,(1)<0 _,"’

Feasible
economic region

where Z,(t)>0

i M Unstable 2 dim surface for tht =0

Figure 2.3: Separatrix planes for feasible economic regions

The mechanism described in has the following mathematical in-
terpretation. Any trajectory, A (t), which starts or is in the vicinity of the region
described by Z; (t) = 0A Z; (t) > 0, will stay in the space described by Z; (t) > 0, if
the following invariant condition is fulfilled, Z; (t) = Zy (t) f (Z1 (t), Zo (t) , Z4 (t)) >
0 = f(Z1(t),Z2(t),Zs(t)) > 0. This condition guarantees that the invariant
plane, Z; (t) = 0 when Z; (t) = 0, is locally repelling. Since the scaled consumption
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equation for this economy, (2.41)), is already in the functional form of the invariant
condition, a sufficient condition for the scenario described in is given by:

p—r(L+dZy (1) + (6 —Zs(t)) (v —1)
v—1

> 0. (2.70)

However, the invariant condition given in , does not add much to our
knowledge of the system. It just guarantees that trajectories starting in the economic
space will stay there. In order to have a greater insight on the dynamics in the
vicinity of this plane, we have to consider the qualitative dynamic properties of the
nullcline surface dominating this region. For presentation purposes, we shall assume
for now that a necessary condition for the existence of a repelling frontier, requires
that the local dynamics of Z;‘ , have all at least an unstable dimension equal to two.
Since in we are able to derive the general expressions in , for the
eigenvalues describing local dynamics in the vicinity of ZZ* . It is straightforward
to define a set of rules that guarantee this outcome is fulfilled. Two scenarios can
be considered, when we take into account the interaction between the institutional
parameters, d and h. When a country faces an institutional framework consistent
with dh < 0, the boundary has a unstable dimension equal at least to two when
J30 >0,

r4rdZy > Z; — 9. (2.71)

This rule has two possible interpretations, when we to take into account the
net financial status of an economy towards the rest of the world. In economies fac-
ing contraction and accumulation of foreign debt, Z, (t) > 0, the growth rate of
debt should be bigger than the growth rate of domestic capital. This rule allows for
growth of domestic assets, as long as it occurs at a smaller rate than the interest
growth on foreign bonds. If a country faces negative risk premium it might impose
disinvestment on domestic assets. Recall that condition only guarantees that
local dynamics in this plane have an unstable dimension equal to two. To guarantee
that solutions are repelled in all dimensions, the growth rate of consumption has also
to be positive in the vicinity of the economic frontier, Ji; > 0, following the result in
. Since in the long run both foreign debt and domestic capital have to follow a
balanced growth path, two hypothesis can be considered, in order to guarantee that
the gap between growth paths does not widen in the long run. The first solution
implies a contraction of the consumption growth rate and of the domestic capital
accumulation rate, in order to reduce the level of debt. This hypothesis implies
reduced investment and slower growth dynamics. The second hypothesis involves

offsetting domestic capital returns to allow for investment and consumption growth
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to catch up with the faster debt growth rate. This scenario is consistent with chal-
lenges posed to economies with current balance deficits and facing contraction due
to excess debt service. In economies facing contraction and accumulation of foreign
assets, Za (t) < 0, the growth rate of investments abroad might impose disinvestment
in domestic assets. In broader terms, this rule implies that policy has to guarantee
that the rate of growth of revenues on foreign asset from domestic investment abroad,
cannot be used exclusively on domestic capital accumulation. These foreign capital
influxes have to finance domestic consumption. When an economy faces positive risk
premium it might impose disinvestment on domestic capital. This rule provides an
indirect instrument guaranteeing that foreign based capital revenues are used in do-
mestic consumption activities during contractions. In the long run, growth stability
has to achieved by an increased growth rate of consumption and domestic capital.
This scenario is consistent with challenges posed to economies with current balance
surplus facing contractions due to reduced world demand for their goods and ser-
vices. In economies facing an institutional framework consistent with, dh > 0, two

policy rules have to be considered:
d
T30 > 0N T3y > T35/ %; (2.72)

d
T50 <OA T3, < Jg‘,g\/% — i, >0, (2.73)

The rule described in has the same interpretation as the rule de-
scribed in . Local dynamics in the boundary surface are only repelling when
Ji1,J35 > 0 holds. The interpretation for creditor and debtor economies given in
the previous paragraph, still holds for this case. When the constraint, J3, > 0, does
not hold, the only policy solution available is to guarantee that the growth rate of
consumption is always positive, as described in . This is a last resort option.
The policy-maker has to guarantee consumption growth in the event of severe insti-
tutional environment, d, h > 0, as observed in economies facing balance of payment
crisis leading to exchange rate crisis. In such cases, only direct intervention to curb
consumption dynamics guarantees that local dynamics in the vicinity of Zl* have at
least two unstable dimensions. In this scenario, it is not guaranteed that trajectories
are repelled in all dimensions near the economic frontier, as non feasible fixed points
have at least one stable dimension.

We finish this section with the sampling results obtained for local dynamics
satisfying the rules described in (2.71)) to (2.73)). In[Figure 2.4} below, we portray the
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parameter distributions consistent with these rules. @ A quick inspection shows
that the existence of local dynamics with an unstable dimension equal to two is
more likely to occur when h,d > 0. It is also a likely outcome for institutional
scenarios described by d < 0 and h > 0. In we related these institutional
scenarios with economies facing dire economic conditions. In our opinion, this result
has the following interpretation. This nonlinear setup is capable of capturing the
existence of a dynamic mechanism that avoids ever declining economic trajectories
for countries facing severe institutional and financial conditions. Economies with

favourable institutional frameworks do not require the existence of this dynamic
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mechanism.

Figure 2.4: Parameter distributions for co-dimension two repelling frontier regions

When we consider the sample described in and assume that
Re (A’f’zyg) > 0, is fulfilled for all Zi*, two patterns arise. First, local repelling
dynamics in the economic boundary are only consistent with d < 0 and A > 0. In
we related this institutional scenario to foreign interventions guaran-
teeing a temporary negative risk premium environment, for countries facing capital
flights due to dire domestic financial conditions. The results in seem
to support foreign policy interventions that guarantee a temporary debt subsidy to
distressed nations. Second, sampling results suggest that returns on domestic assets
have to be smaller than the international interest rate, r, < r. We conclude that
a dynamic recovery path may exist for countries facing productivity problems, as
long as they are able to access foreign capital at a sustainable level. Finally, recall
that this set of rules only guarantees that flows are repelled when they approach the
economic frontier. Convergence to a balanced growth regime depends on additional
factors. If these are not met, there is a risk that boundary interactions result in

explosive debt dynamics and create an unsustainable economic environment.

34The results portrayed in this section were obtained from a sample with 10° random draws of
uniform distributed parameter, p,v,d, 7,7 ~ U (0,1), d,h ~ U (—10,10). The numerical compu-
tation of steady-states followed the definitions given in Only computed steady-states
consistent with a maximum absolute error smaller than 10~° were considered.
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(a) Density p, v (b) Density r, 7% (c) Density d, h (d) Prob. ¢

Figure 2.5: Parameter density distributions for repelling frontier regions

2.8 Global dynamics: Conjectures, examples and policy

implications

We conclude this presentation with a discussion on the global dynamicﬂ of this
system. We start with a description of the phase-space organization for Z; (t) >
0. In the previous section, we discussed the local dynamics of the nullcline plane
Zy (t) = 0 for Z; (t) = 0. When Z; (t) > 0, the Z; (t) = 0 nullcline defines another
plane that intersects the boundary plane given by Z (t) = 0. The intersection of
these planes is given by the line described by the steady-state expression .
The remaining nullclines are described by two quadrics. In we classify
geometrically these quadratic surfaces and show that the phase space organization
depends on institutional scenarios for h and d combinations. At hrd = 1 the phase-
space simplifies dramatically. For the remaining cases we distinguish between six
relevant scenarios. The main phase space scenarios and the corresponding vector
fields are portrayed in below, assuming reasonable numerical values for
the model parameters.

The scenarios depicted in portray the challenge posed to the policy-
maker in a nonlinear environment. Different institutional setups impose drastic
changes in the phase space organization. Further, the absence of local stable solu-
tions, implies that the existence of asymptotic orbital stable solutions, for a given
institutional scenario, requires the existence of an attractive se@ Alternatively,
we can assume that the policy-maker challenge is a boundary value problem, more
specifically a Turnpike control problem, where the policy-maker role is to impose
discontinuous jumps in the control variable, in order to guarantee that the distance

travelled from the initial point to the terminal value is maximizes the policy objec-

35A detailed mathematical introduction to the topic of global dynamics for flows in R3 can be
found in Wiggins| [1988| and Wiggins| [2003).

36By attractive set we refer to the broad definition of an attractor, where flows starting in the
neighbourhood of the attractive set, called the attractor basin, asymptotically evolve towards an
invariant closed subset of the phase space. This invariant set is the attractive set.
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(e) h,d < OAhrd < OARrd > 1 (f) h,d > OAhrd < OAhrd > 1

Figure 2.6: Phase space organization for different institutional scenarios

tive over time. Turnpike theory has its roots in modern growth theory. For optimal
growth models, McKenzie [1976] frames the policy problenﬂ as one of finding the

fastest route to the desired solution, when the departure point is far from the fi-

nal long run solutior@ In our setup, the Turnpike problem reduces to a problem
of placing orbits on the stable manifold of a saddle solution that fulfils max (Z7*)
and (2.50). Initial values for the two controls variables, Z; (0) and Z4 (0), can be
chosen for this purpose. Discontinuous jumps of the control variables for ¢ > 0 can
also be considered. However, several issues arise with this approach in a nonlinear
environment with multiple equilibria. First, it is unlikely that the stable manifolds
of optimal saddle solutions can be computed exactly. This is particularly true when
d > 0, since feasible solutions have a stable dimension equal to one. A realistic
option is to shoot trajectories towards the boundary saddle value solution and take
into account system dynamics in the vicinity of the saddle stable manifold. This is

a technically feasible task but of difficult application for nonlinear vector fields in

3"For some recent developments and open problems in Turnpike theory and optimal growth see

MeKensid 1955

°If the origin is in the vicinity of the final solution and the Turnpike far away, then the best
policy option may not involve the Turnpike.
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3. The literature on this subject suggests orbital control at a value loss along the
stable eigenvector (or eigenplane) obtained from linearisation of equilibrium in the
vicinity of the saddle solution. In discounted problems the quality of this method
worsens as the turnpike distance increases. This is a result of the value loss bound-
aries widening as t — co. Second, in the event of a small parameter perturbation
for t > 0 and Z; (t) = Z;}*, the Turnpike solution may no longer be the best and/or
an optimal boundary solution to the control problem. In this context, a Turnpike
control policy: (i) imposes a discontinuous jump towards the stable manifold of the
new best optimal saddle solution, and we have a Turnpike heteroclinic connection
of equilibria; or (ii) the parameter perturbation leads to the disappearance of opti-
mal saddle solutions and the sole policy option available relies on the existence of a
Turnpike path towards an attractor solution asymptotically consistent with .
Thus, Turnpike control in this context may impose global nonlinear phenomena, in
the form of heteroclinic connections, and saddle path global solutions only exist for
a given parameter set and may be not robust to perturbations of the model parame-
ters. This second hypothesis stresses the need to evaluate the existence of attractive
sets driven by global interactions in nonlinear multi-equilibria growth models. As
flows bounded by hyperbolic compact sets are likely to arise in the vicinity of phase
space singularities, the analysis of bifurcations is crucial to understand the specific
nonlinear global phenomena that may arise in this system. We conclude that the
existence of a Turnpike control policy is not sufficient to guarantee the existence
of optimal solution path’s for a given constrained parameter set. In such context,
the study of both local and global nonlinear phenomena is required to increase the
policy options available to the policy-maker.

To demonstrate our arguments, we start by considering two conjectures. We
evaluate the conditions for the existence of heteroclinic and homoclinic dynamics
consistent with the definition of attractive sets. In this setup, heteroclinic orbit@
correspond to flows connecting long run growth regimes, while homoclinic orbitﬂ
can be linked to temporary structural change dynamics. Recall that in
we introduced the concept of endogenous structural change, as a valid hypothesis

to explain the structural breaks observed in macroeconomic data, and portrayed

39 An orbit, A (t), is said to be heteroclinic if it connects two fixed points, Z;* and Z;*, such
that: (i) A(t) — Z;™ as t — +oo, and (ii) A (t) — Z;* as t — —oco. Where Z;™ is a stable
feasible solution that fulfils .

0 An orbit, A (t), is said to be homoclinic if A (t) — Z3* as t — Fc0. Where Z;* is a economic
meaningful equilibrium of our system that fulfils . Homoclinic orbits are characterized by
having a infinite period but finite length. In layman’s terms, this means that diverging flight
trajectories eventually converge to the stable manifold of the saddle equilibrium, where they will
stay longer and longer, before starting another flight. The invariant set describing homoclinic flows
can thus be asymptotically approximated to Z;*.
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this empirical phenomena in for US and UK log (GDP) time series. We
related this hypothesis to the existence of heteroclinic and homoclinic phenomena.
However, heteroclinic and homoclinic orbits are not usually consistent with the strict
definition of structurally stable solutionﬂlﬂ. In general terms, the strict structural
stability criterion imposes that the qualitative features of a system are robust un-
der C' small perturbations. In layman terms, structural stability implies that the
qualitative properties of a system reaming unchanged with small parameter pertur-
bationﬂ This criterion imposes severe limitations to the study of nonlinear global
phenomena, since solutions defined by attractive sets may be asymptotically, but not
structurally, stable under small perturbations. As |Guckenheimer and Holmes| [1983]
puts it: “This principle was embodied in a stability dogma, in which structurally
unstable systems were regarded as somehow suspect. This dogma stated that, due to
measurement uncertainties, etc., a model of a physical system was valuable only if its
qualitative properties did not change with perturbations.”. The authors suggest that
the constraints imposed by the structural stability paradigm@ may not be relevant
in all settings, and in some setups, it might be more reasonable to consider a stabil-

ity definition that takes into account the complexity of global nonlinear phenomena.

418tructural stability is a fundamental concept of dynamic systems theory. It was introduced by
the russian mathematicians Aleksandr Andronov and Lev Pontryagin. A formal proof of Andronov-
Pontryagin structural stability criterion exists only for vector fields in ®2. The proof is given by
Peixoto| [1959a] and [Peixoto| [1959b).

*>The existence of homoclinic and heteroclinic solutions consistent with the definition of struc-
tural stability has been identified in the mathematical literature for vector fields in ®* and higher
dimensions. These recent results in dynamical systems theory show the limitations of evaluating
the structural stability of solutions, based on the strict assumptions of the Andronov-Pontryagin
criterion, for higher order systems. For example, Guckenheimer and Holmes| [1988] give evidence of
the existence of structurally stable heteroclinic cycles in vector fields in R°.

“3There are many extensions of the strict mathematical definition of structural stability in ap-
plied nonlinear science. It is common to find proposals that define structural stability following
the Andronov-Pontryagin strict criterion, but take into account model specificities and theoreti-
cal implications of different structural stability definitions, to provide a consistent measure of the
structural stability of a given system. Some examples of this approach can be found in economic
literature. [Fuchs| [1975] discusses the implications for economics of the notion of structural stabil-
ity. [Anderlini and Canning| [2001] propose bounded rationality as a criterion of structural stability
in dynamic games with fully rational players. |[Zhang| |[2002] emphasizes the need for a structural
dynamic approach in economics and discusses possible implications of complexity theory for the
study of economic processes.

44The structural stability dogma also played a role on the development of economic theory. The
neoclassical critic on the evolutionary economic paradigm has been based on the grounds that
evolutionary economic models are inherently structurally unstable. In a recent article, [Veneziani
and Mohun| [2006], reviews the neoclassical critic of Goodwin’s growth cycle model and evolu-
tionary dynamics approach. The author suggests that the neoclassical dismissal of evolutionary
dynamic proposals on these grounds, is not in accordance with the modern mathematical concept
of structural stability. In a recent working paper, Matteo| [2009] reviews early discussions on struc-
tural stability and economic dynamics by Morishima and discusses its implications for neoclassical
growth theory, following Solow’s seminal proposal on economic growth.
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“Thus the stability dogma might be reformulated to state that the only properties of a
dynamical system which are physically relevant are those which are preserved under
perturbations of the system. The definition of physical relevance will clearly depend

upon the specific problem.”.

Taking into account this broader definition, we argue
that a reasonable criterion for relevant solutions is, asymptotic orbital stability under
small perturbations consistent with optimal growth dynamics. Even if these pertur-
bations lead to qualitative changes and transitions between attractors. In a policy
framework our argument has the following interpretation. The policy-maker should
acknowledge the complexity of interactions driving the short run economic process
and decisions should be restricted to policies that promote a long run stable growth
environment. Even if this laissez faire approach results in the economy undergoing
structural changes in the short run.

A conjecture consistent with the above criterion is the heteroclinic cycle sce-
nario. This hypothesis has an interesting economic interpretation and introduces
novel challenges to macroeconomic policy definition. In our setup, the interaction
between saddles, with different stable dimensions, may be consistent with the ex-
istence of heteroclinic cycles. In we referred how the unfolding of a
fold-hopf bifurcation might be consistent with this phenomena@ Heterocilinic cy-
cles in this context arise from homoclinic bifurcations and are preceded by chaotic
parameter regimes. Long run growth dynamics driven by heteroclinic cycles are
characterized by long lasting fast growing regimes that undergo increasing, and then
decreasing periods of volatility, before a crisis event drives the economy abruptly to
the slow growth regime of the past. Evolutionary growth theories suggest that severe
crisis, or the downturn of the long wave cycle, is preceded by fast growth regimes
with low volatility. In a recent article on the Great Moderation, the 2007-2008 finan-
cial crisis and the resulting strong economic contraction, |Bean| [2010] suggests that:
“The longer the low volatility period lasts, the more reasonable it is to assume that it
1s permanent. But as tail events are necessarily rarely observed, there is always going
to be a danger of underestimating risks”. According to the author, the forecasting
problem faced by the decision maker is exacerbated by the lack of information that is
required to learn the higher moments of economic distributions. In other words, the
complexity of nonlinear phenomena poses dramatic challenges to the management of
macroeconomic risks and the lack of knowledge about the true dynamics driving the

economic process may produce policies with dire consequences for long run growth.

4>The interaction of the stable and unstable dimensions of the two saddles creates a compact
set with a sphere geometry, which results in dense orbits connecting the two equilibrium. See
Crommelin et al|[2004] for a clear geometric description and discussion of this phenomena in the
vicinity of fold-hopf bifurcations.
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As heteroclinic cycle scenarios have the potential to unleash a similar cascade of dy-
namic events, we propose to evaluate this conjecture and its implications throughout
this chapter. We start by evaluating the feasibility of this conjecture in our setup
by considering a conservative scenario, where Z;* and Z;* both fulfil and
Z7* > 0. This conjecture requires the co-existence of economic meaningful multi-
ple saddle equilibrium solutions with different stable dimensions that are consistent
with optimal growth constraints. Below, in we portray the parameter

distributions consistent with this conjecturd™]
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Figure 2.7: Parameter density distributions for saddle-saddle optimal scenarios

Saddle-saddle interactions are more likely to occur when h,d < 0, but may
also occur when A > 0, d < 0, for small values of h and d. We conclude that
meaningful heteroclinic cycle scenarios are only likely to occur in the vicinity of
fold-hopf bifurcations, following the results portrayed in

The second conjecture proposed, is related to the structural change phenom-
ena observed in for US log (GDP) data. In this example, the estimation
procedure computed two breaks for the second quarter of 1978 and the last quarter
of 1983. The difference between the estimated slope shifts is approximately zero. We
extrapolate that a temporary medium run crisis led the economy out of its long run
growth path, into a diverging and then converging flight, which eventually rested
in the initial long run growth equilibrium. This dynamic event is consistent with
the mathematical definition of a homoclinic orbit. In this scenario, an economy will
stay long periods in the vicinity of long run equilibrium, but will undergo crisis or
hysteria for short periods of time. Homoclinic phenomena has been gaining atten-
tion in recent growth literature. [Benhabib et al|[2008] and Mattana et al.| [2009],
for example, evaluate homoclinic bifurcations in continuous time endogenous growth
models. However, homoclinic orbits are most likely not robust to small perturba-
tions of the model parameters.. To overcome this issue, we focus on a conjecture

consistent with the existence of Sil’nikov homoclinic phenomena. We had already

46The results were obtained using our stochastic sampling method, from a sample with 10° ran-
dom draws, assuming parameters distributed uniformly, p,~,d, 7,7 ~ U (0,1), d, h ~ U (—10, 10).
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mentioned in that this scenario may occur in the vicinity of fold-hopf bi-
furcations. The original Sil’nikov scenario is a basic criteria for system complexity,
where strange attractors are born from transitions from a homoclinic bifurcation [7]
The Sil’nikov bifurcation can be described in the following fashion. If the leading
eigenvalue condition is fulfilled in the vicinity of a saddle focus homoclinic bifur-
cation, then trajectories diverge faster along the one dimensional outset than the
convergent trajectories along the two dimensional inset. In the vicinity of this pa-
rameter region there is a transition where orbits generated by the system become
increasingly more complex homoclinic loops and by definition represent dense so-
lutions to the Systenﬂ We evaluate under what conditions saddle focus solutions

fulfil the leading eigenvalue condition. The parameter distributions consistent with

. . . . . 10
this conjecture are given below in [Figure 2.8

(a) Density p, v (b) Density r, 7% (c) Density d,h (d) Prob. §

Figure 2.8: Parameter density distributions for Si’nikov saddle focus scenario

As in the previous example, sample results suggest that this scenario is more
likely to occur in the vicinity of fold-hopf bifurcations, when d < h < 0, and may
also occur when d < 0 and h > 0. A closer look at the h, d density plots in
and reveals a pattern consistent with the joint distribution described in
for the fold-hopf sample. To confirm the existence of Sil’nikov homoclinic

scenarios, the application of numerical continuation methods and the simulation of

“TOther Sil’nikov scenarios can be considered for this system. [Piscitellia and Sportelli| [2004]
demonstrate the existence of inverted Sil’nikov homoclinic phenomena in a nonlinear continuous
version of the inventory cycle model. This scenario involves divergence in the two dimensional outset
and convergence in the one dimensional inset of a saddle focus solution. The leading eigenvalue
condition is given by |[A}*| < Re (A3%). This bifurcation scenario was originally proposed by [Tresser
[1984]. The coexistence of saddle focus solutions of different stable dimensions also suggests the
possibility of multi-circuit Sil’nikov homoclinic dynamics, following the proposal by |Gaspard|[1983].
See [Piscitellia and Sportelli| [2004] for a demonstration of this phenomenon in an economic setup.

48Qufficient conditions for the existence of saddle focus homoclinic bifurcations require non-
degeneracy, inclination and orbit properties to be fulfilled. The leading eigenvalue condition is
given by, AT* > |Re (AS:},) ! A recent survey and detailed mathematical discussion on this topic
can be found in [Homburg and Sandstede|[2010].

4“The results portrayed follow the same specifications of the previous example. We check for
saddle focus solutions consistent with , by computing first the discriminant of J**, T', and
then checking if necessary conditions, I' < 0, Re (A’z‘fg) < 0and AT* > |Re (A;fg) |7 are fulfilled.
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orbits using normal forms, is required. The computed fold-hopf bifurcation sample
provides an interesting starting point. However, one word of advice, performing such
task is comparable to searching for a needle in the haystack. Fold-hopf points may
undergo transitions consistent with this scenario, but other transitions are possible.
Given the amount of bifurcation points computed and the vast parameter space, the
choice of an optimal candidate for numerical bifurcation analysis is not an obvious
decision.

Recall that in the beginning of this section, we referred to the implications
of considering Turnpike control solutions in a multiple equilibria setup, when small
parameter perturbations are considered. In we portrayed the param-
eter samples describing the co-existence of optimal saddle solutions. To test the
hypothesis of heteroclinic connections of equilibria arising from Turnpike control
dynamics, we evaluated the saddle-saddle sample and checked for qualitative and
quantitative changes induced by small parameter perturbations. be-
low, portrays the results obtained. For simplicity reasons, we now assume that
Zy* and Z;* are the initial saddle solutions and Z;* > Z;*, while Z;* (Ap) and
Zy* (Ap), are the resulting steady-states assuming a parameter perturbation equal
to Ap = £0.01. The first figure portrays the quantitative sensitivity of Z}* and
Z;* to parameter perturbations as a percentage of the total perturbations. We con-
sidered three cases of interest: (i) on the left we have Z7 (Au) > Z77% (Ap) > 0
and & < Z3% (Ap), 275 (Ap) < 6+ p/v; (i) on the center we have Z7% (Au) >
27 (Ap), Z7%3 (Ap) > 0 and 0 < Z75 (Ap) < 6+ p/vy, while Z7, (Ap) < 0 and/or
Z3% (Ap) does not fulfil (2.50); and (iii) on the right Z;% (Ap), Z1y (Ap) < 0and/or
2y (Ap) . Z7, (Ap) does not fulfil ([2-50). We then focused on the first two cases and
checked their qualitative outcomes. The bottom figure describes the results obtained.
From left to right, the four cases of interest are described by: (i) Z77, (Ap) > Z{7, and
Z1%y (Ap) is a saddle with one stable dimension; (ii) Z773 (Au) < Z77, and Z77, (Ap)
is a saddle with one stable dimension; (iii) Z7% (Ap) > Z77 and Z77, (Ap) is a saddle
with two stable dimensions; and (iv) Z77 (Au) < Z77 and Z77 (Ap) is a saddle with
two stable dimensions.

The results portrayed in show that there are parameter regimes
where complex outcomes may also arise from Turnpike control dynamics. If Turnpike
dynamics are not able to impose heteroclinic connection paths of equilibria, then a
small parameter perturbation may throw the economy into a low growth regime, or
worst, into a non-optimal growth regime. Moreover, there are parameter regimes,
where small perturbations lead to a phase-space organization, where orbits on the

stable manifold of a saddle are no longer consistent with the notion of optimal growth
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dynamics. In this specific case, optimal dynamics may only be feasible in the vicinity
of attractors arising from the complex organization of the invariant manifolds. This
result stresses the importance of analysing global dynamics in economic systems. To
illustrate this argument, we finish this discussion with an example of a parameter
regime consistent with complex global phenomena. For this purpose, we consider a
non orthodox parameter set, in the vicinity of a fold-hopf point, where d < 0 and
h > 0. The simulated orbit is portrayed below, in the left picture of which
is labelled as optimal dynamics, given that the central moment of the distribution
described by limit cycle flow fulfils the optimal growth constraint defined in m
For this combination of parameters, there is only a feasible, but non optimal, steady-
state solution. We conclude that in this phase space region, orbits are driven by the
complex organization of the feasible and boundary fixed points manifolds. This
solution is not structurally stable. When a small perturbation is imposed, Ay =
0.0001, trajectories are attracted to another region of the phase space. This dramatic
transition is portrayed by the center pictures of [Figure 2.10] which we labelled as
initial transition and full transition, respectively. The last figure, labelled asymptotic

dynamics, portrays the asymptotic behaviour of the transition flow.

N

(a) Optimal dynamics  (b) Initial transition (c) Full transition (d) Asympt. dynamics

Figure 2.10: Optimal dynamics and transition of a structurally unstable solution

The asymptotic behaviour of this flow is characterized by small amplitude
limit cycle dynamics. This behaviour suggests that both repelling and attracting
forces are at work in this region, as the observed oscillations are greater than expected
error amplitudes produced by the numerical integrator at this error tolerance. We are
not able to confirm if this orbit fulfils asymptotically, since (Z4) = 0.1502 ~
5 + p/v = 0.1502. This attractive set is robust to a wide range of perturbations,

50We integrate all the orbits using a Runge-Kutta of the 8% — 7t" order and set the relative
and absolute error tolerance to 107°. This orbit is obtained for the parameter set: p = 0.099704,
v = 0.731579, § = 0.013929, r = 0.892695, r, = 0.747145, d = —0.542038, h = 0.506959, given
initial conditions: Z; (0) = 0.000007, Z- (0) = 1.921564, Z4 (0) = 0.150233, where (Z4) = 0.133 <
§ + p/v = 0.1502, consistent with (2.50). The fold-hopf point is: p = 0.099704, v = 0.731479,
0 = 0.013929, r = 0.893695, 7, = 0.947145, d = —0.441038, h = 0.6812.
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but sensitive to the sign of the parameter variation. For example, another transition
to a different attractor occurs for small perturbations of d or h, if Ad,Ah < 0.
We portray this dynamic transition in our next example. Given that numerical
integration routines are not able to correctly capture system dynamics near complex
singularities, we cannot rule out the possibility of further nonlinear phenomena, such
as bursting, which is known to arise in the vicinity of fold-hopf bifurcations. The
time series describing the variables transition from the initial flow, portrayed in the
picture labelled full transition in are given below in

=

(s 1 ar 3 3 4 4F

(a) Z1 (1) (b) Z2 (1) (€) Za(t)

Figure 2.11: Scaled dynamics during transition

The dynamics portrayed in show an over-indebted economy un-
dergoing structural change, where initial investment dynamics are extremely volatile
and domestic capital growth rates alternate between expansion and contraction pe-
riods. This behaviour is a result of the initial high level of debt. Investment expan-
sions depend on foreign capital flows, which further increases the debt load until it
becomes unsustainable and investment has to contract. As the economy accumu-
lates productive capital, investment volatility decreases and the economy settles in
a long run regime with small amplitude cycles. The structural change occurring in
this economy is portrayed by the dynamics of consumption. Consumption volatility
increases during the transition period, before decreasing and settling in the small
amplitude long run cycle growth regime.

Finally, we evaluated the basin of attraction for this attractor and confirmed
that it holds for a broad range of Zs (0) and Z4 (0) values. However, it is sensitive
to small perturbations of Z; (0). We had already mentioned that the behaviour of
this attractor is sensitive to the sign of parameter perturbations and that orbits may
converge to another attractive set. We demonstrate this transition by imposing a
small variation on initial consumption, AZ; (0) = 0.0001. The dynamics of this
transition are portrayed below in The two figures on the left portray

the phase space transition and asymptotic dynamics, respectively. The two figures

o6



on the right show the time series obtained for this transition.
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Figure 2.12: Transition to second attractor due to sensitivity in initial conditions

Although the convergence process is somewhat similar for both attractive
sets. The slightly different departure point sends the economy to a region with a
lower consumption level, as investment volatility decreases. Asymptotic dynamics
for this case are consistent with (2.50)), (Zs) = 0.1495 < § 4+ p/y = 0.1502. The
phenomena portrayed by these two transitions, illustrates the challenges faced by
policy-makers in economies facing dire institutional and financial conditions. We
describe this challenge in the following fashion. There is a path towards expansion
and stronger long run growth dynamics. However, the probability of the economy
converging to this growth regime is low. If the ideal conditions are not met, it is
more likely that the economy spirals down to the low growth regime. Finally, we
cannot exclude further nonlinear phenomena arising from this transition, for the
same reasons described previously. Asymptotic dynamics, portrayed in
are now consistent with small amplitude quasi-periodic motion. It is also possible
that these two attractive sets correspond to a sole attractor, or flows cycle between
the two attracting regions. A more in depth analysis of this phase space region is

required to be able to shed some light in these hypotheses.
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Figure 2.13: Asymptotic scaled dynamics

2.9 Conclusions and further research

In this chapter we proposed a simple endogenous growth model, where asymptotic
orbital stable solutions are only feasible for attractive sets arising from global in-
teractions of multiple equilibria. We also described how the assumption of dynamic
solutions defined in a Turnpike control setting is not sufficient to accommodate the
complexities that may arise from this setup. We show that these outcomes are the
natural consequence of considering multiple nonlinear mechanisms. This conclusion
has several implications for policy in a dynamic setting. First, the analysis of lo-
cal bifurcations in multiple equilibria setups, is crucial for the definition of policy
rules in nonlinear environments. Second, the evaluation of global conjectures allows
for a broader perspective of the challenges faced by a particular economy. Using a
stochastic sampling method, we were able to map effectively the parameter space
describing the institutional conditions for the existence of specific local phenomena
and relevant global conjectures. We emphasize two main results from this analysis.
When economies face a positive risk premium, the existence of optimal growth out-
comes is limited to a saddle solution with only one stable dimension. This result
suggests, as expected, that risk premium on sovereign debt plays a crucial role on the
long run financial stability of an economy. This outcome could also be interpreted
in another fashion. The capacity of the policy-maker to impose financial repression
policies, consistent with real negative interest rates, is crucial to guarantee a stable
financial and long run growth environment. In a recent working paper, Reinhart
and Sbrancia [2011] suggests an important role of financial repression and moder-
ate inflation policies on the post war deleveraging period and subsequent decades
of financial stability in developed western economies. [Drelichman and Voth [2008|

gives historical evidence on this phenomenon and suggests that the British Empire
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capacity to overspend its rivals during the eighteenth century expansion period was
linked to financial repression policies. The author compares this result with the de-
cline of the Spanish Empire during the sixteenth century, which resulted in a series
of defaults on Spanish sovereign debt. Our analysis of the phase space boundaries
suggests that in the event of capital flights, due to severe economic conditions, poli-
cies capable of maintaining a negative risk premium, such as bilateral debt subsidies,
are crucial for the existence of a dynamic recovery path. This result is in accordance
with both economic theory and the modern policy paradigm. However, our model
suggests that negative risk premium is only a necessary condition for recovery. The
existence of a recovery consistent with convergence to a long run growth path re-
quires that further institutional conditions are met. Finally, sampling results suggest
that asymptotic orbitally stable solutions driven by complex global dynamics, and
consistent with the definition of an attractor, are only likely to occur for institutional
scenarios in the vicinity of fold-hopf bifurcations. This result has several implications
for policy, as the unfolding of fold-hopf bifurcations has the potential to unleash a
cascade of complex global dynamic events, and the full bifurcation scenario is still
not fully understood. We give an example of the complex outcomes that may arise
in this system, for an economy facing dire financial and institutional conditions, and
describe the challenges posed to policy in this environment. To shed some light on
this and other possible complex nonlinear phenomena, a thorough analysis based on
modern numerical bifurcation analysis techniques is still required.

Finally, it is possible to scale this system and reduce the parameter space
by assuming a translation to the center of the quadratic nullclines. The analysis
of the resulting reduced system might provide important clues about the global
organization of the phase space. We are aware of this hypothesis but leave this

exercise to a future discussion.
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Chapter 3

Optimal Beliefs and
Self-Confirming Equilibrium for a
Class of Games with Economic

Applications

3.1 Introduction

In this chapter we introduce a conjecture regarding the existence of a class of open
loop nonlinear multi-player general sum differential games with optimal subjective
beliefs. Our framework departs from the hypothesis first put forward by [Dockner
et al. [1985], describing the conditions for the existence of qualitative and explicit so-
lutions in a class of two person general sum differential games with state-separability
properties. Dockner et al.| [1985] suggested that under some conditions it might be
possible to solve qualitatively differential games that have state-separability proper-
ties, if optimal control conditions are consistent with non interacting dynamics with
respect to state and controls. According to |Dockner et al.| [1985|, “differential games
that possess these properties will be termed state-separable games, since the deter-
mination of Nash optimal controls can be done separately from the determination
of the state variables”. The literature on differential games with state-separability
properties is a vast growing field in economics literature. Research in this field is not
limited to Dockner et al.|[1985] results. |(Caputo| [1997], for example, discusses further
state-separability properties, for a class of discounted infinite horizon optimal control
models similar to the one discussed in this chapter. The papers by |Ling and Ca-

puto [2011] and Bacchiega et al. [2010] are recent examples of the literature dealing
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with |Caputo| [1997] state-separability hypothesis and its applications in economics
theory. We extend Dockner et al.| [1985] definitions on differential games with the
state-separability property, and propose a setup, where player controls depend on be-
liefs about the state of the game that are derived from optimality conditions. In the
specific class of games discussed in this chapter, optimal control conditions impose
individual beliefs that guarantee that controls are independent from the evolution
of the state of the game. Optimal game solutions in this setup have to be consistent
with individual state-separable solutions, therefore consistent with the broad defini-
tion by Dockner et al.| [L985] on state-separable differential games. In this context,
it is our opinion that the optimal solution to the game has to be consistent with
a Self-Confirming Equilibrium (SCE) that satisfies the state-separability property
of the optimal individual solution. The notion of strategic SCE in non-cooperative
incomplete information games was first proposed by Fudenberg and Levine| [1993a]
for repeated games where players observe their opponents actionsﬂ According to [Fu-
denberg and Levine| [1993a] the existence of stable belief based solutions in games,
implies that player decisions under uncertainty are rational and equilibrium is self-
fulfilling for a given history of observed information sets about the state of the nature.
SCE is a thus a weak notion of equilibrium for games where players settle in an out-
come of nature that is not contradicted by eVideDC(ﬂ Fudenberg and Levine, [1993al
describe generally the SCE concept for repeated incomplete information games in

the following fashion:

“The concept of self-confirming equilibrium is motivated by the idea
that noncooperative equilibria should be interpreted as the outcome of
a learning process, in which players revise their beliefs using their
observations of previous play. Suppose that each time the game is
played, the players observe the actions observed by their opponents,
but that players do not observe the actions their opponents would have
played at the information sets that were not reached along the path
of play. Then, if a self-confirming equilibrium occurs repeatedly, no

player ever observes play that contradicts his beliefs, so the equilibrium

!The original concept was introduced in the working paper by [Fudenberg and Kreps| [1988]. See
also the paper by Fudenberg and Levine| [1993b]| on steady-state learning and Nash equilibrium.
A broad overview on the topic of learning in incomplete information non-cooperative games can
be found in the book by [Fudenberg and Levine| [1998|. Recently, [Battigalli and Siniscalchi| [2003]
proposed an extension of the SCE notion to signalling games. Finally, Kamada|[2010| proposes a
definition for strongly consistent SCE.

2The original proposal on SCE deals with solutions to extensive form games, where players have
incomplete information and subjective beliefs. See [Fudenberg and Kreps| [1995] for a discussion on
this topic and on the topic of learning in extensive form games.
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is “self-confirming” in the weak sense of not being inconsistent with the

evidence.”

Following the seminal work by economist Thomas Sargent on the causes of
American inflation, the topic of SCE has been gaining ground in the broader field
of macroeconomic dynamics literature as an interesting hypothesis for evaluating
macroeconomic policy models. A detailed account of the macroeconomic dynamics
literature relating inflationary periods to large deviations from SCE can be found
in Sargent| [1999]. Our definition of SCE follows closely the economic dynamics ap-
proach and defines equilibrium in a dynamic game setup as an asymptotic property of
the system. According to |Hansen and Sargent| [2001], Fudenberg and Levine, [1993a]
and Sargent| [1999], “..advocate the concept of self-confirming equilibrium partly be-
cause it is the natural limit point of a set of adaptive learning schemes”. Further,
Hansen and Sargent| [2001] goes on and describes “..the concept of SCE, a type of
rational expectations that seems natural for macroeconomics.”. In a recent discussion
on this topic, Cho and Sargent| [2008| define SCE has a rational expectation equilib-
rium outcome. However, the authors stress that a rational expectation equilibrium
does not necessarily correspond to a SCE. More recently, there has been an increas-
ing interest on the properties of SCE to model economic phenomena. [Fershtman
and Pakes| [2009|, for example, propose the adoption of SCE, given that it is “..an
equilibrium notion for dynamic games with asymmetric information which does not
require a specification for players’ beliefs about their opponents’ types. This enables
us to determine equilibrium conditions which, at least in principle, are testable and
can be computed using a simple reinforcement learning algorithm.”. |[Fudenberg and
Levine, [2009] relates the concept of SCE with the macroeconomics paradigm known
as the Lucas C’m’tiqueﬂ, which states that economic policy is ineffective when policy
forecasts rely on past aggregate data and not on microeconomic fundamentals, such

as individual preferences and beliefs.

In the setups proposed in [chapter 3| and [chapter 4] only SCE solutions can

qualify as optimal solutions asymptotically. The class of games discussed extends
the concept of SCE to differential games where agents only have information about
their own pay-offs. This information hypothesis was initially forwarded in |[Fudenberg
and Levine [1993a]. The authors speculate that in this class of incomplete informa-
tion games the key feature is to determine how much information the individual
pay-offs convey. It is our opinion that the class of games we propose provides a

unique framework to study the existence and stability of SCE solutions in nonlinear

3Following the famous proposal by [Lucas [1976].
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multi-player dynamic games. Our intuition on this matter is straightforward. Non-
cooperative differential gamesﬁ as defined in the seminal paper of [Isaacs| [1954], are
a natural generalization of optimal control theory. Therefore, open loop no feedback
differential games with the state-separability property, as defined by [Dockner et al.
[1985], have optimal solutions given by the set of independent individual solutions.
These solutions are defined independently from the state evolution of the game, by
each player optimal control dynamics. On the other hand, state-separability in our
class of games arises from an optimum belief condition regarding the evolution of
the state of the game. In this framework, we consider that the optimal solution to
this class of differential games has to be simultaneously consistent with self-fulfilling
beliefs and with the optimal solution to the individual state-separable problem. In
we extend this framework to a class of games where agents have subjective
beliefs about the evolution of state of the game and optimal asymptotic solutions
are also described by a SCE. In the last game proposed, we demonstrate that [Fuden-
berg and Levine| [1993a] information conjecture, regarding the existence of a SCE in
games where agents only observe their individual pay-offs, is a crucial hypothesis for
the description of asymptotic dynamics in this class of open loop differential games.
In this setup, we propose to evaluate asymptotic game dynamics as the limiting
outcome of an adaptive learning scheme between interacting learning agents that
extrapolate past moments of nature from available pay-off information. We show
that a statistical analysis of different learning schemes and decision criteria which
mimics game dynamics in the equilibrium frontier, can be performed as a stochas-
tic repeated game, where players are chosen randomly and their actions performed
sequentially.

The initial motivation for this proposal departs from the recent focus on the
study of nonlinear economies as multi-player games. In economics literature this
topic is framed by the seminal proposal of (Grandmont| [1998], on the stability anal-
ysis of equilibrium in large socio-economic systems. In this paper, the author puts
forward an extensive discussion on the vast implications and mathematical challenges
of undertaking stability analysis in large systems with decentralized decision dynam-
ics under incomplete information. As in |Grandmont| [1998| proposal, we discuss in
this chapter and the next “how adaptive learning may or may not lead to stability
and convergence to self-fulfilling expectations in large socioeconomic systems where
no agent, or collection of agents, can act to manipulate macroeconomic outcomes”.

In this chapter, as previously referred, our focus is on the conditions for the ex-

“The book by [Bagsar and Olsder| [1995] provides a modern detailed overview on the topic of
dynamic non-cooperative game theory.
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istence of SCE solutions when agents have optimal beliefs. We show that under
some simplifying assumptions it is possible to determine and evaluate qualitatively
the dynamics of a self-fulfilling equilibrium asymptotically. In the next chapter, we
introduce the concept of subjective belief based SCE solutions for a class of differ-
ential games. We use this setup to evaluate Grandmont’s main hypothesis, which
states that if adaptive learning agents seeking convergence to a SCE are influenced
by the nearby dynamics and rather uncertain, then a self-fulfilling equilibrium will
not be stable. Grandmont defined this phenomenon as the uncertainty principle. In
we show that when agents are able to reduce the uncertainty about future
outcomes there is convergence to a SCE. On the other hand, when an environment
with persistent uncertainty is considered, agents are no longer able to concur on a
self-fulfilling equilibrium, thus confirming Grandmont’s main hypothesis.

To demonstrate our state-separability conjecture for differential games where
optimality conditions impose beliefs consistent with non interacting dynamics be-
tween player’s controls and the state of the game evolution, we propose two differen-
tial games that are set up as growing economies driven by agents’ financial strategic
decisions. The two games proposed are extensions of the general intertemporal max-
imization setup discussed in We now consider an endogenous growth en-
vironment populated by a discrete set of asymmetric players that take consumption
and investment decisions under incomplete information. In this chapter we assume
that players continue to face risk premium but there is no investment adjustment
costs. We reintroduce investment bias in the games discussed in Linear
productive capital dynamics continue to be the growth engine of the economy. The
papers by |Clemhout and Wan| [1995], Vencatachellum| [1998], Bethamann| [2008] and
Hori and Shibata [2010] are some examples of the literature dealing with growing
economies defined as multi-player non-cooperative dynamic games. However, given
that our specific setup departs from a well known theoretical financial framework,
which has its roots in the Merton|[1970] intertemporal consumption-investment prob-
lem, one can interpret our specific proposals as a simplified version of multi-player
non-cooperative portfolio game&ﬂ One may also interpret these models as a foreign
exchange game, where agents invest in domestic risk-free deposits, and may leverage
their domestic investments by selling bonds to foreign investors, or invest part of

their capital in foreign deposits and face exchange rate risk.

SWe refer to Merton’s thesis in the context of the authors earlier proposals on optimal control
and economics dynamics that later influenced the modelling of open economies. Modern portfolio
theory is based on the authors seminal articles, [Merton/|[1969], Merton| [1971] and Merton| [1973a],
which later led to the development of the famous Merton-Black-Scholes model, following |Black and
Scholes| [1973] and Merton| [1973b].
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In both of the games proposed, we consider that players’ decisions are cou-
pled by the evolution of aggregate risk premium. The foreign bond market measures
aggregate risk premium as the ratio of net aggregate financial assets to domestic
capital. Optimal beliefs in this context are a condition imposed by first order Pon-
tryagin maximum conditions. This outcomes guarantees the state-separability of
the game in a perverse fashion. In the one hand, the existence of optimal solutions
to these games must be consistent with individual optimal belief solution, given by
the solution to the state-separable problem. On the other hand, optimal beliefs are
only consistent with the true state of the game, when agents concur on a solution
that fits their individual beliefs. Given these two contradictory results, we propose
to answer the following relevant questions in this chapter. Are players with optimal
naive beliefs able to converge to a SCE, where their expectations are self-fulfilling?
If game dynamics allow the existence of a SCE, what is the qualitative nature of
this solution? Is it a stable equilibrium? Is there history dependence resulting from
multiple SCE solutions, thus making game solutions a conjectural SCEH? The an-
swer to the first question is yes, but it will depend on the degree of asymmetry
among players and/or the degree of nonlinearity considered. In the former case,
it is possible to evaluate qualitatively the dynamics in the vicinity of a SCE, but
existence and stability of solutions involves considering a smaller or higher degree
of asymmetry among players. In the latter case, players are required to learn SCE.
We can confirm the existence of optimal solutions by geometrically defining SCE
solutions as intersections between feasible conjectural solutions and actual outcomes
in a bounded interval. However, dynamics in the vicinity of SCE solutions now de-
pend on the gradients of the individual learning functions, which are correlated and
depend on higher order moments. In the likely scenario that learning dynamics lead
to non smooth strategic dynamics, then it is not possible to use standard qualitative
techniques to evaluate SCE. Both these issues are discussed in detail in |Grandmont
[1998]. Finally, when multiple SCE solutions and learning dynamics coexist, then
it is not possible to describe game dynamics in a well defined mathematical fash-
ion. However, the individual player dynamics defined by the state-separate solution,
provide some insight on what are the most likely outcomes.

To demonstrate our main hypotheses, we depart from a simple conjecture re-
garding the solution and analysis of dynamic games under incomplete information.
We argue that if beliefs are consistent with the existence of asymptotic equilibrium

solutions, then it is possible to evaluate strategic equilibrium outcomes. If the belief

5See [Wellman et al.| [1998] on the implications and characterization of conjectural equilibrium
solutions in the field of multi-agent learning.
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function is known and open loop Nash Controls fulfil Lipchitz continuity conditions,
then it is possible to obtain a full qualitative description of the game dynamics and
the stability of SCE can be evaluated at least locally. Equilibrium in this class of
games can be fully described as a Cauchy boundary value problem, under this set of
conditions, as long as we have knowledge of the value and gradient of the belief func-
tion, evaluated in the vicinity of the asymptotic equilibrium region. We portray this
hypothesis in the game proposed in In this game player beliefs impose a
unique equilibrium and under some simplifying assumptions it is possible to define a
set of Nash strategic controls that are Lipchitz continuous. The existence of a SCE
solution requires the existence of constraints on individual parameter distributions.
If agents’ strategies are a result of both beliefs and learning, then, in the likely case
that player control’s are no longer consistent with Lipchitz continuity, asymptotic
game dynamics can always be evaluated numerically as a Hidden Markov Model
(HMM)|Z| of a static version of the game asymptotic SCE solution. A static version
of the game should describe the most faithfully possible the game asymptotic solu-
tion as a multi-objective optimization problem under uncertainty. We discuss this
hypothesis in the game proposed in In this setup, optimality conditions
impose multiple belief equilibria and require that players learn the true state of the
game, in order to pursue their optimal investment strategies.

We organize our presentation in the following fashion. In [3.2] we put forward
the general framework for a class of exponentially discounted differential games with
concave pay-offs, and introduce our main conjecture regarding the existence of state-
separable games with optimal beliefs. We then put forward the general conditions
for the existence of an optimal SCE solution for this class of games. In [3.3] and [3.4]
we demonstrate our main conjecture and evaluate the implications of our hypothe-
ses in two non-cooperative consumption/investment differential games, where agents
seek to maximize consumption utility, choosing open loop consumption and invest-
ment strategies. In both games, players accumulate productive assets linearly and
may choose to invest in bonds or leverage their productive asset portfolio. Player
dynamics are coupled by risk premium dynamics, which is driven by the aggregate
ratio of net financial assets to productive capital. In the first example, discussed in
[3:3] we consider that players face an asymmetric institutional market risk premium
measure and model this asymmetry as an individual model parameter. We show
that the existence of an asymptotic SCE solution is not consistent with the exis-
tence of asymmetries in institutional risk premium valuations or, on the other hand,

other parameter asymmetries have to be considered to define a SCE solution. In this

"A HMM is a Markov decision process where agents lack information about the state evolution.
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section, we assume the existence of a perfect capital market with an efficient regu-
lator, which guarantees that institutional risk premium is defined optimally. Given
some further simplifications, we are able to perform an extended numerical quali-
tative analysis of SCE solutions for a wide range of institutional scenarios. In the
second example, we drop the institutional risk premium assumption and consider
that individual risk premium market valuations are now a function of the players’
individual ratio of net assets to productive capital. We show that a SCE solution
in this framework is only possible when complex learning dynamics are considered.
The complexity of this solution is a direct outcome of considering additional non-
linearities in our initial setup. We propose a static version of this game and discuss
the implementation of a Markov switching regime model under incomplete informa-
tion to evaluate learning outcomes. Given the Bayesian nature of this problem, we
discard the numerical evaluation of the game asymptotic dynamics on the ground
that the computational costs of implementing a HMM are not justified in this spe-
cific environment. We discuss the HMM approach with detail in for the
game proposed in In this chapter we focus our analysis on a geometrical
description of conditions guaranteeing the existence of SCE solutions, and evaluate
the robustness of these outcomes for a reasonable range of state outcomes. We finish
this discussion with a description of likely outcomes in the vicinity of SCE solutions
for two distinct institutional scenarios, based on the qualitative analysis results of

the solution to the individual fully state-separable problem.

3.2 General setup

In this section, we define the general setup for the class of differential games we
wish to consider, and put forward the main conjectures for the existence of solutions
driven by optimal beliefs. Consider the following general N-Player non-cooperative
differential gameﬂ faced by player i € N:

T
MAX ﬂz (t) v (’U,Z (t)) dt
ui(t) Jo

subject to the solution of: (3.1)
i (t) = gi (wi (1), X (1)) ;
ZT; (0) = $i70.

where:

8This specific class of games is contained in the broad general framework for exponentially
discounted differential games with concave utility discussed in [Dragone et al.| [2008].
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N ={1,...,n}- Discrete set of players;

Bi (t)- Discount function for player i;

o u;(t) = {ull, e ,uf} € R*- Finite dimensional vector of player i controls;
o 7;(u;(t)) € RE"_ Instantaneous pay-off for player i, where k' < k;

o x;(t) = {xll, e ,xz"} € RY-Finite dimensional vector of player i states;

e z;(0) = {xll, . ,m;"} € RY- Finite dimensional vector of initial conditions on

player ¢ states

o X (t)=[z1(t),..., 2z, (t)] € R~ Finite dimensional vector of state variables,

where w' < w.

We consider solutions to consistent with players choosing open loop no
feedback strategies, n(t) = {X (0)},Vt € [0 T, where 7 (¢) is the information set
available to players at period t. Players seek to maximize a concave pay-off function,
;i (u; (t)). Pay-offs in this class of games are discounted at an individual constant
exponential rate, 3; (t) = e ?i’, where p; is player i discount rate. These conditions
lead to solutions that can be defined as initial value problems, given by Pontrya-
gin first order conditions. In this framework, Pontryagin maximum conditions are
sufficient for the existence of an optimal solution to , provided that transver-
sality conditions, following |Arrow and Kurtz| [1970], are fulﬁlledﬂ thus guaranteeing
that z; (t) does not grow too fast. We propose the following conjecture regarding the
existence and form of Nash open loop controls for games belonging to the class of dif-
ferential games described generally in , which are consistent with the existence
state-separable solutions when players have optimal beliefs. We start by assuming
the following hypothesis regarding player ¢ optimal strategies. We consider games
described generally by , where player ¢ optimal Nash controls, obtained from

first order Pontryagin conditions, can be defined generally in the following fashion,

i () = fi (i (1), X (8)). (3.2)

Following the conjecture in (3.2]), we consider that a game has solutions con-

sistent with the existence of individual optimal subjective beliefs, X (();)t (t), if optimal-

ity conditions also impose the existence of an unique belief function, X é;)t (t) = v; (t).

°For this class of control problems, |[Arrow and Kurtz| [1970] have shown that first or-
der conditions are sufficient, provided that transversality conditions, defined generally by
lims—y o0 € P (t)z; (t) = 0, are fulfilled. T’ (t) are the co-state variables of the optimal con-
trol problem defined in , describing the marginal adjustment of the players control to the
individual state evolution, when no feedback strategies are considered.
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We further assume that this belief function is consistent with a game with the state-
separability property. Recall first that Dockner et al. [1985] defined state-separability
for a class of differential games where players choose their strategies given the evo-
lution of the state of the game, X (¢), in the following fashion: (i) Open loop Nash
controls are described generally as ; (t) = v; (@ (t) ,t), where @& € R¥*" is a vector
of player controls; (ii) which is consistent with the existence of a Nash equilibrium
N-tupple defined generally by @* = {uf,...,u5}, where @* € R*". In the setup
described in players choose the controls given the evolution of their individual
state variable, &; (f). We propose that a necessary condition for the existence of
state-separable solutions for this class of games requires that optimality conditions
impose the existence of beliefs that are at most a function of the player controls
and individual state variableﬂ Optimal beliefs for this class of games can thus be
generally defined in the following fashion:

X3 (1) = v (ui (), 2 (£)). (3.3)

The assumption forwarded in is crucial to our proposal. Our first intu-
ition is that if the existence of optimal beliefs is consistent with a differential game
with the state-separability property, then optimal solutions to have to be con-
sistent with solutions to the individual state-separable solution, that is obtained by
substituting in , and in the state condition of the general game defined in
(3.1). The optimal control solution to is thus defined by individual solutions

to the state-separable system, after considering the optimal belief condition defined

in(33):

i (t) = fi (ui (t) ,vi (8)); (3.4)

i () = gi (i (1) i (1)) - (3-5)

On the other hand, differential game theory does not allow us to tamper with
the state condition of the game. The intuition on this matter is straightforward. The
state condition of a dynamic game defines the evolution of the state of the game,
so, even if players have optimal beliefs, the game evolution takes into account the

true state outcomes and not the ones resulting from belief based decisions. Thus,

10This assumption is rather general. In the game discussed in optimal beliefs are a function
of game parameters, while in optimal beliefs are a function of the evolution of the player state
variables. However, we maintain this general assumption throughout this section, because this
specific conjecture is consistent with [Dockner et al.| [1985] state-separability definition.
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by definition, the solution to the game defined in should be given by a system,
where players follow strategies that are in accordance with their optimal beliefs, as
defined in , but where the game evolution, X (t), is defined by the original state
condition of the game described in . The game solution to is thus correctly
defined generally by the following system:

i (t) = fi(ui (), 0i (1)) ; (3.6)

B2 () = s (us (), X (£)). (3.7)

Before describing the necessary conditions for the existence of an optimal
solution for the differential game described in with optimal controls and be-
liefs defined by and , respectively, it is convenient to introduce a general
definition for SCE. To put forward a broad definition for SCE in a dynamic setup,
we follow closely the general definition given in [Sargent| [2008] for SCE, as a limit-
ing behaviour of adaptive multi agent learning schemes. The general definition that
we put forward in this section is broad enough to accommodate the game analysis
undertaken in this chapter, where we focus on the description of necessary condi-
tions for the existence of SCE, consistent with optimal beliefs and a state separable
solution to . In we extend this definition for games with subjective
beliefs and describe SCE as an outcome arising from a process of adaptive learning
in a complex co-evolutionary environment, where players use inference methods to
determine the true state of the game. Let p denote a probability density and x™
a history of the state of nature, x (7),x (7 —1),...,x(0), driven by players deci-
sions. Partition x™ = [y”,u”], where u” is a vector of decisions taken by agents and
y7 a vector of all other variables. Let p (y®°,u*°|a) be a joint density describing
the true data generating process conditional on a parameter vector a € €2, and
p (y*°,u*>|0) an approximating model, where 6 € @y is a parameter vector describ-
ing agents subjective density. A decision maker chooses a history dependent plan

assuming a sequence h of functions

u"=h(x"0), >0 (3.8)

to maximize a Pareto criterion that can be expressed as expected utility under density

p (x>°]0), where the decision maker as preferences ordered by

/ U (5%, u%) p (v, u]0) d (y°, u) (3.9)
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This gives rise to the sequence of decisions u (h|@)>. A SCE is thus a parameter
vector @ for the approximating model that satisfies the following data-matching

conditions

p(yoo,u(h\é)oolé) :p(yoo,u(hlé)oom) . (3.10)

We can now put forward the conditions for the existence of optimal solutions
to this class of differential games. To show that only SCE solutions qualify as optimal
solutions for this class of games, it is convenient to start by describing the necessary
conditions for the existence of equilibrium solutions in each of the proposed systems,
— and —, separately. Recall that the existence of optimal beliefs,
following , imposes optimal solutions described by the state-separable system
given generally in and . Therefore optimal solutions to have to be
consistent with the existence of equilibrium solutions to this system. Assuming that
the asymptotic condition for individual optimal beliefs is fulfilled for the set of n
players,

lim X (1) = X,

opt? (311)

given a set of player asymmetries and initial conditions. Where X O(;)t describes the set
of optimal equilibrium beliefs. Then an optimal solution to , has to be consistent
with the existence of an equilibrium solution for —, X é;)t guarantees that the
asymptotic condition, f; (u; (t),v; (t)),gi (ui (t),v; (t)) = 0ast — oo, is fulfilled. On
the other hand, we require the existence of equilibrium solutions for the game defined
in and . Assuming that the result in is consistent with the existence

of an unique equilibrium solution, X, for the true state of the game,

lim X (¢) = X, (3.12)

=00

such that and are consistent with the existence of an equilibrium so-
lution for ([B.4)-(3.5), and fi (u; (t),v; (t)), i (u; (t), X (t)) = 0 as t — oo, is also
fulfilled. Then the game defined in with dynamics described by the system
—, has solutions consistent with the existence of optimal beliefs. Our intu-
ition from here on is straightforward. If and bound the state-space of
the systems, — and —, in equilibrium, then we argue that a game
solution is optimal, when it coincides with the optimal control solution to the state-
separable problem. This implies assuming the existence of SCE solutions, following

the general definition in (3.10), where players optimal beliefs are self-fulfilling,
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X8, (8) = X (£)] =0, as t — oc. (3.13)

In layman terms, we mean that solutions to the system defined in and ,
are only consistent with the optimality condition defined in , if they are also
solutions to the optimal control solution defined in and . Thus only SCE
solutions qualify as optimal solutions to the class of games with optimal beliefs
defined in .

Following the result in , we argue that we can evaluate qualitatively
SCE solutions, if the belief function ensures that the players’ strategic Nash dy-
namic controls, u; (t) = f; (t), as defined generally by , are Lipschitz continuous

in X?

opt () and continuous in ¢. This is a crucial assumption, following the Cauchy-

Lipschitz theorem, to guarantee the existence and uniqueness of solutions to first
order differential equations given a set of initial conditions. For games fulfilling
this property, SCE outcomes can be at least qualitatively evaluated using standard
analysis techniques for hyperbolic dynamical systems. Our intuition goes as follows.
SCE solutions to incomplete information differential games can always be evaluated
qualitatively, if asymptotic dynamics can be described as a Cauchy boundary prob-
lem and strategies are smooth when the individual beliefs of player i are taken into
account. In games where players follow smooth strategies, described as initial value
solutions, we require knowledge of the value and gradient of the belief function in
the game asymptotic frontier, in order to be able to perform qualitative analysis
of self-fulfilling solutions. If strategies are not smooth, which is likely to occur in
games where players have to learn a SCE, but asymptotic solutions are still consis-
tent with a game with a bounded state-space, then asymptotic dynamics can always
be evaluated numerically as a HMM. In such scenarios, the qualitative analysis of the
game asymptotic outcomes is limited to statistical analysis of different hypotheses
for the learning process driving players decisions. This approach is computationally
costly and analysis of equilibrium is limited in scope. The main difficulty faced when
simulating and sampling a stochastic Markov process under uncertainty is related
to the computational cost of performing inference in a large scale. To overcome
this issue, we suggest that SCE solutions can be revealed geometrically and some
considerations about game dynamics can be obtained through qualitative analysis of
the state-separable solution. Recall that given the result in , state-separable
dynamics are always consistent with a well defined Cauchy boundary problem, if
— has an equilibrium solution.

In the next two sections, we illustrate the two hypotheses discussed above

in two nonlinear multi-player consumption/investment differential games. In the
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first example, we show that SCE solutions can be obtained by imposing parameter
constraints and that under simple assumptions, it is possible to describe fully the
qualitative dynamics in equilibrium. In the second example, we show that the ex-
istence of SCE solutions is only achievable if we consider the existence of complex

learning dynamics.

3.3 A consumption and investment game with coupled

institutional risk premium

To demonstrate these conjectures, we consider two nonlinear extensions of the gen-
eral investor problem and set it up as a non-cooperative differential game under
incomplete information. In this section, we consider an economy populated by a
discrete set of players, N = {1,...,n}, that seeks to maximize their intertemporal
pay-offs, given by a consumption utility function, U; (C;), subject to the evolution
of individual net financial assets, B;(t) € R, describing the budget constraint of
each player, and productive capital accumulation, K; (t) € R*, where i € N. In
order to pursue this objective, agents choose open loop, 1 (t) = {X (0)}, no feed-
back consumption, C; (t) € R and investment strategies, [; (t) € R", and discount
future consumption exponentially at a constant rate p; € ", in a game of infinite
duration, Vt € [0,T] and T = oco. Player decisions are coupled by a risk premium
mechanism that depends on the overall evolution of the state of the game, defined
by X (t) ={B(t), K (t)}, where B (t) = > ,cn Bi (t) and K (t) = Y ,c y K; (t). The

objective of each player is to maximize the flow of discounted consumption pay-offs,
T
Ui (CZ) == / Uy (Cz (t)) e_ptdt, with (% (CZ (t)) == Cl (t)% s (314)
0

where ~; is again the intertemporal substitution elasticity between consumption in
any two periods, measuring the willingness to substitute consumption between dif-
ferent periods. We impose the usual constraint on the intertemporal substitution
parameter, 0 < 7; < 1, such that u}(C; (¢t)) > 0, and the concavity of the util-
ity function is guaranteed, u/ (C;(t)) < 0. This is a necessary condition to define
optimal solutions to our open loop differential game as an initial value problem.
Each player faces a budget constraint describing the evolution of net financial
assets, B; (t). We again consider that players are bond buyers when B; (t) < 0 and
bond sellers when B; (t) > 0. Each player uses their financial resources to finance
consumption and investment activities, and to repay interest on their outstanding

bonds or reinvest in financial assets. Players have revenues arising from productive
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capital investments, r K; (t), where 7, € R is the marginal revenue of investment
in productive capital, and receive interest payments on holdings of financial assets, if
they are bond investors. Interest payments follow a convex specification defined by,
rB; (t)[1 +d;B(t) /K (t)], where r € R stands as usual for the real market interest
rate and d; € R is an institutional measure of risk premium, resulting from capital
markets’ sentiments on the quality of the bonds issued by a specific player. A higher
value of d; means that holding player i debt bonds yields a higher risk for other
investors, but investment by player ¢ in financial assets pays a greater premium. A
smaller value of d; means that holding player ¢ debt bonds yields a smaller risk for
investors but investment by player ¢ in financial assets pays a smaller premium. Such
outcomes are reinforced if agents’ financial situations match the aggregate financial
situation of the economy. However, bond contract holders are rewarded with smaller
interest premiums when the aggregate economy is a net seller of bond contracts,
and agents selling debt contracts benefit from smaller interest premiums when the
aggregate economy is a net buyer of bonds. Finally, players accumulate productive
capital exponentially following their strategic investment decisions, K; (t) = I; (t) —
0K (t), and productive capital accumulation is subject to depreciation, which is
defined by the common capital depreciation rate, § € 7. We assume that players
playing open loop strategies do not commit to a common investment strategy, but
their decisions will be such that they always fulfil growth, lim inf;_, o I; (t) K; (t)*1 >
6, and optimality conditions.

Following the description of the decision problem faced by each member of
this economy, the non-cooperative game faced by player ¢ € N, is defined by the

following dynamic optimization problem:

MAX e PO (t) dt

Ci(t),1:(t) Jo

s.ubject to the solution of: (3.15)
Bi(t) = Ci(0)+ L () +7B: (1) (1+ di gl ) = muki (8):

K (t) = I; (t) — 6K (t);

satisfying the transversality conditions, and , guaranteeing that solutions
to do not grow too fast.

Due to its simplicity, the framework proposed in can have different
interpretations. These interpretations depend on the economic context we choose

to COHSideIE. This game can be interpreted as an economy populated by investors

1The simplicity of these proposals have both advantages and drawbacks. The main advantages of
the simplified framework proposed in this section and the next is, in our opinion, its mathematical
tractability and the flexibility it allows in terms of economic interpretation. On the other hand, the
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that seek to finance their intertemporal consumption, given the returns of their
portfolios. Investors may finance consumption by investing their initial capital in a
portfolio composed of a risk-free asset and a risky asset that is linked to other play-
ers investment decisions and market institutional conditions. This type of investor
chooses to diversify their portfolios to finance present and future consumption. Oth-
erwise, investors may choose to hold only risk-free assets in their portfolio and finance
their investment and consumption decisions through the accumulation of financial
debt. In this particular case, investors use risk-free asset returns to roll on existing
debt contracts. Present and future accumulation of risk-free assets guarantee the
sustainability of their leveraged position. Another interesting interpretation is given
by an economy populated by exchange rate speculators that can deposit their cap-
ital domestically and borrow capital from abroad, or invest in foreign currency and
face exchange risk in foreign currency deposits. Throughout the remainder of this

chapter and the next, we shall follow a twofold approach regarding the interpreta-

tion of solutions to the games discussed in [section 3.3] [section 3.4] [section 4.3 and
[section 4.4] When convenient, we shall consider that these setups define growing

economies populated by agents that invest in productive/domestic assets and choose

to be either net borrowers or net lenders. However, the alternative interpretation as
a portfolio investor game is also reasonable and provides interesting insight on some
of the results arising from these specific proposals.

Following this introduction, we now focus on the the solution to the open loop
case, described by the Pontryagin maximum conditions given in We start by
deriving the optimal Keynes-Ramsey consumption strategies. We follow the same
procedure described in for the general problem discussed in
The first optimal consumption strategy is defined in the following fashion. We start

by taking the time derivative from the optimality condition in consumption given by

(B.2), which is given by,

ANi(t)=—(—DyuCi ()" 2C ) <= M) = (n—1)C ) Ci(t). (3.16)

Substituting (3.16)) and (B.2]), in the co-state condition (B.4]), we obtain the optimal

extreme simplicity of these proposals does not take into account the diversity and complexity of real
economic phenomena. Moreover, these setups are loosely related to neoclassical economic theory,
but they do not not take into account all theoretical assumptions usually required in mainstream
economics. We consider that this trade-off eventually arises when one considers nonlinear economies
in a differential game framework. The economic modeller must take into account this natural trade-
off, and seek a reasonable balance between the mathematical tractability of the proposed problem,
and its economic interpretation, in the context of related theoretical fundamentals.
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Keynes-Ramsey consumption open loop strategy, describing optimal consumption

strategies driven by net financial assets accumulation:

Ci (t) = piz_(t)l <pi - Tr— ’l“dz[B;Ett))> . (3.17)

In order to obtain the second Keynes-Ramsey consumption strategy, we follow the

same procedure as above. First we take the time derivative of the optimality condi-
tion for investment decisions, given by equation (B.3]). We obtain:

Gi(t) ==X (t) =G (t) =X (vi —1)Ci ()1 Ci (1) (3.18)

Substituting (3.18) and (B.2)), after considering the result in (B.3]), in the co-state
condition describing the shadow price of productive capital, (B.5|), the second optimal

consumption strategyE is given by:
Ci (t)

Ci (t) = P (pi +6—1). (3.19)

Now we need to impose the optimal accumulation rule that guarantees indif-

ference between consumption strategieﬂ for player i. Setting (3.17)) equal to (3.19)),
and substituting the capital accumulation equation, (B.7), we obtain the following

result defined in terms of the aggregate net financial balances ratio, B (t) /K (t),

B(t) _7’+(5—7“k
K(t)_ T’di '

(3.20)

Given that in an open loop setup, agents do not have information on the
evolution of the state of the system, this outcome can be interpreted as an individual
belief regarding the true outcome of aggregate market risk premium. In the absence
of information on the evolution of the state of the system, players base their decisions
on individual beliefs. Since beliefs depend on d;, we shall have asymmetric beliefs
arising from asymmetries on market determined institutional risk premium. We
deal with this feature of the game later on and focus now on the description of
asymptotic conditions guaranteeing the existence of SCE solutions consistent with
(3.20). The open loop solution to this game is defined by consumption, ,
net financial assets, , and productive capital dynamics, , assuming the

12Condition defines optimal consumption paths assuming income arising from the accu-
mulation of productive capital while condition defines consumption financed by financial net
assets accumulation.

13We would like to stress that this result is independent of our interpretation of indifference
between optimal consumption strategies. The same condition defining optimal beliefs is obtained

when substituting directly (3.17) while deriving (3.20)).
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existence of optimal beliefs, as defined by , in . This system defines a
solution described by a set of non-stationary variables. It is necessary to define a
scaling rule consistent with the existence of stationary dynamics. We follow the same
procedure described in [chapter 2] and define a stationary dynamical system by taking
advantage of the scaled invariance of the dynamics. We redefine the variables, now
described by X, ; (t), again in terms of domestic capital units:

Xoni (1) X () Ki (2)

>4 0=F0 T Ko ke O

Xom,i ()
K; (t)

Zm,i (t) =

where m € {1,2,4} and X,,; (t) defines consumption, C;(t), net foreign assets,
B; (t), investment, I; (t), and Z,,; (t) each corresponding scaled variable for each
player i € N, respectively. Following the rule given in (3.21)) the stationary solution

to (3.15)) comes out as:

pi+ 06—k — (Z4i(t) —6) (vi—1);
vi—1

Zyi () = Z14 () : (3.22)

Z.gﬂ' (t) = Zl,i (t) + Z47i (t) + ZQJ' (t) [T’ + rd; Zs (t) — Z47i (t) + 5] — Tk; (3.23)
where:
K; (1) = K; (0) el @it)=0s o f¢ (1) = 37 K (0) eho (Fri()-0)ds, (3.24)

iEN

Doien 2o (t) K (t)
ZieN K; (t)

The proposed solution to (3.15]) does not provide any information regarding

Zy (t) =

(3.25)

scaled investment strategies. We solve this issue by assuming that in the long run
agents commit to linear strategies on investment per unit of capital that are consis-
tent with the existence of equilibrium, lim; o Zy; (1) = 24,1- = limy oo Zl,i (t) =0.

These strategies are optimal if they solve the stationary differential system, given

in (3.22)) and (3.23), and the solution is consistent with the tranversality conditions
given in (B.8) and . If such strategies are asymptotically consistent with play-
ers’ optimal beliefs, Zg’i (t), following condition ((3.20]), we consider that equilibrium

is a SCE, when lim;_, Zg’i (t) = Zy. We start by defining scaled investment strat-
egy equilibrium, and assume these strategies guarantee asymptotic convergence to

a feasible scaled consumption strategic equilibrium, Z; (t) > 0,V¢t € T. Setting
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Z1; (t) = 0 we obtain:

Following (3.26)), long run capital dynamics can be defined in the following fashion:

lim ¢t tlog K; (t) = Z4; — 6 > 0. (3.27)

t—o00

Given (3.26)), we can redefine consumption dynamics as a function of scaled invest-

ment strategies:

Z; (t) = Z1,(0) eJo (Za,i=Za,i(s))ds (3.28)

Given the result in , we know that it is optimal for agents to undergo
transitions that improve their initial scaled consumption strategies, such that in
equilibrium 7, > 7y (O)E . This result is sufficient to study the qualitative dy-
namics of this game SCE, when we assume that is a globally stable solution
to Zy,; (t) dynamics. We can now derive the conditions for the existence of game
outcomes consistent with an asymptotic optimal SCE. We start by defining aggre-
gate state dynamics, as given in , asymptotically. First, we assume that there
is an unique equilibrium solution for individual state dynamics, 2271-, obtained by
solving Z.gﬂ; = 0. The long run outcome of Z, is given by the asymptotic limit of
, following the result in for productive capital dynamics in the long run.

Aggregate risk premium in the long run is thus given by:

Yjer 22,K; (0)
ZjeL K; (0) ’

where player j € L corresponds to the subset of players that have scaled investment

lim Z (t) = Z = (3.29)

strategies consistent with 24,3' = max (2472‘)El This result has a straightforward in-
terpretation. Aggregate risk premium dynamics are driven by the game investment
leaders in the long run. The long run risk premium condition given in defines
a relative measure that takes into account the financial situation of the ensemble of
leaders in this economy and weights it against their initial productive capital endow-
ments. In the long run, market forces price aggregate risk premium following the
financial outcomes of the players choosing more aggressive, and therefore riskier in-

vestment strategies. Leverage based aggressive investment strategies raise the game

4if Z4,i (t) = Z4,i,Vt € T then Zl,i (t) = Zl,i (0) VteT.
15The asymptotic limit of a sum ratio of equal exponential terms with different coefficients is
given by the sum ratio of the coefficients of the fastest growing exponential terms.
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bond premium, while aggressive investment strategies from players with a diversi-
fied portfolio lower the game bond premium. This long run market risk premium
measure can be justified by the existence of information costs that deter investors
from acquiring relevant information. Under these circumstances it is a reasonable
decision to price aggregate risk based on a sample of aggressive investors and their
portfolio decisions. Recall now that we assumed that the existence of a SCE requires
optimal beliefs, , to be fulfilled at least asymptotically. Substituting in
(3.20) and solving in terms of d;, we obtain the condition guaranteeing beliefs are

consistent with a SCE asymptotically:

T+(5—Tk
rZy

The existence of a SCE solution is not consistent with asymmetric individual

d; = (3.30)

institutional risk premium measures. This game is only consistent with the existence
of a SCE if the asymmetry assumption regarding individual institutional risk pre-
mium measures is droppedm and we consider that d; is endogenously determined as
a function of Zo. We can interpret this measure in the context of a market regulator
with perfect information about the state of the game, which sets institutional risk
premium in accordance with the economy aggregate outcomes. Following this result
we can define the equilibrium solution, ZQJ;, by setting Z‘Q’i = 0, and substituting
the asymptotic condition for optimal beliefs, . Individual state dynamics in

the long run are given by:
7= "k — Zl,i - 24,1'
2,i = = = .
r4rdiZy — Zy; + 0
The individual and aggregate state outcomes given in (3.31)) and (3.29)) are not unique

solutions for investment leaders. To solve this issue we substitute the constraint for

SCE, (3.30)), in (3.31]), and obtain:

T — "k — Zl,z‘ - Z4,i
2,0 = = -
2r + 20 —r — 24

(3.31)

(3.32)

The result in (3.32) confirms that a unique SCE exists in this game, when
individual institutional risk premium valuations are the same for all players. This
solution is optimal if Z; > 0 and the transversality constraints are fulfilled. In order

to define conditions for transversality in this differential game, we follow the same
procedure described in [section 2.4} First, it is convenient to redefine (B.8) and

60ne could also consider that SCE with asymmetric risk premium requires the existence of
asymmetric productive capital returns. We do not explore this hypothesis because it is of no
particular relevance to the qualitative description of equilibrium.
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in terms of the scaled variables. Substituting the co-state variables by the optimality
conditions, (B.2) and (B.3)), and imposing the scaling rule, (3.21)), the transversality

conditions come out as:

lim (—y;Z1; (t) K; ()77 Za (t) K; () e Pit = 0; (3.33)

t—o00

(YiZv,i (8) K; (4)" VK, (t) e Pt = 0. (3.34)

lim

t—00
These expressions can be rearranged by taking the scaled limit of the logarithm
of and and solving the transversality constraints as an asymptotic
inequality. The constraints (3.33)) and (3.34]) are now given by:

Jim ¢~ log [(—%ZLZ- (1) K; (8)) Zo, (1) Ki (1) e*ﬂ <0; (3.35)
Jim ¢~ log [(%-ZU () K (1)) K (1) e—mt} <. (3.36)

From or it is straightforward to obtain the transversality constraint
for the existence of an optimal solution as a function of long run scaled investment
decisions. Assuming that capital dynamics grows asymptotically at a constant rate,
following the result in , and that the scaled variables are consistent with bal-
anced long run growth dynamics lim o Zmi (t) = Zm.i, where Z1;, Zy; € R and
2271' € R, the final condition for existence of asymptotic optimal open loop investment

strategies guaranteeing long run productive capital growth is given by:

6 < 24,1' <+ & (3.37)

i

Having described the conditions for the existence of SCE solutions consistent
with player’s optimal beliefs, for the non-cooperative game given in , we now
focus on the qualitative description of this solution. We base our approach on a weak
argument for asymptotic stability. This argument is based on the results described in
to , which guarantee that a self-fulfilling equilibrium is always achieved
asymptotically and independent of other players decisions, when institutional risk
premium is unique and a function of the state of game. Since in the long run there are
no longer transitions driven by Zi ; (t) and Z3 (t) dynamics, when we assume Zy ; (t)
dynamics always converges to the equilibrium defined in , we can evaluate
qualitatively the local stability of the SCE strategies by testing the stability of the
system describing scaled net assets dynamics, {2271 t),..., Zom (t)} We start by

defining the n by n Jacobian matrix describing individual state dynamics in the
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vicinity of SCE,

822,1(15) 822,1(15) 8Z2Yl(t)
az.zyl(t) BZ.M(t) 822,7L(t)
8Z272(t) 8Z2,2(t) . (9Z2yz(t)
J = 0Z3,1(t)  0Z2,2(t) 0Z2,n (1) (3.38)
0Zan(t)  0Zom(t)  0Zan(t)
L aZQ,l(t) aZQ,Q(t) 8Z21"(t) . 22 i(t)ZZQZ‘

where the partial derivatives of this Jacobian are given generally by the following

expressions:
8227; (t) K (t)
——L =r—Zy; i | Z Zoi(t) =————1; .
07t "4 (t) + 6+ rd; | Za (t) + Zay (t) S K (D (3.39)
0Zs; (t) Ky (1) . .
— 2 = pd;i Zy i (1) — Aw,i € N. 3.40
72w (1) rd; Za; (t) S KO wFE iAW, ( )

To evaluate these derivatives in equilibrium, we have to distinguish between in-
vestment and non investment leaders. If players i,w € N are investment leaders,
i,w € L, then (3.39)) and (3.40) evaluated in equilibrium come out as,

622i (t) = = > Ki (O) .

et N =r—Zyi+0+rdi |Zo+ Zyj=—"""=|,1 €L, 3.41

0Za, (t) S0, > jer Kj (0) (341
0Za (t) > Ky (0) ,
PR A DA :T‘d,LZ Ji,ﬂ]#l/\welh 342
622,11} (t) Zi(t)=Z; ? Zjel Kj (0) ( )

If players i,w € N are not investment leaders, i,w ¢ L, then (3.40)) vanishes and
(3.39) reduces to,

0Zs; (1)

8Z27i (t) T 45+ 0+7r 2 (3 3)

Zi(t):ZZ‘
The local stability of SCE solutions for the game defined in (3.15]) can be easily
evaluated numerically. If all the eigenvalue solutions of (3.38) have a negative real

part, then we can state that SCE solutions are at least locally weakly asymptotically
stable. A robust argument for local asymptotic stability would have to take into

account transitions to equilibrium arising from Z4; (¢) decisions and Z3 (t) non-
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autonomous dynamic transitiong '}

To demonstrate our conjecture, we require a final assumption. In this sec-
tion, we analyse the qualitative dynamics assuming that players commit to initial
investment equilibrium strategies, Zy; (t) = Zs; = Z1,(t) = Z1,(0),Vt € T. This
simplifying hypothesis has the advantage of not requiring any assumption regarding
individual investment transitions to equilibrium, thus reducing greatly the burden
required to perform a vast qualitative analysis. It allows for a systematic evaluation
of the local stability of SCE solutions for large populations, given different proba-
bilistic assumptions regarding initial conditions and parameter distributions. This
assumption has the following economic interpretation. Players choose beliefs such
that their consumption outcome relative to their wealth, measured by productive
assets accumulation, is stable throughout the duration of the game. This result is
in accordance with the Life Cycle hypothesis for intertemporal consumption@ In
the end of this section, we evaluate the dynamics of this game assuming two dif-
ferent hypotheses for the initial consumption endowments. We shall consider that
Z1,i(0) is given by random outcomes distributed according to Z;,(0) ~ U (0,1)
and Z;;(0) ~ exp(1). In these experiments, we consider the existence of a ro-
bust population, with initial productive/riskless asset endowments randomly given
by an exponential distribution, K; (0) ~ exp (1). By robust population, we mean a
discrete set of n = 1000 agents with uniform randomly drawn individual character-
istics, pi,vi ~ U (0,1), such that Z,; outcomes, defined by , fulfil the optimal
growth constraint, , for the range institutional scenarios, 7 € [0.05 0.25] and
r € [0.030.25], where 6 = 0.03. For simplification reasons, we consider that the
state of the game is driven by a fixed pool of investors, which is defined by a fixed
share of the population. We set this share at 30%, and consider that the aggregate
risk faced by investors, , is obtained from the share of aggressive players with
higher rates of investment per unit of capital. This assumption is consistent with
risk setting in real markets. The LIBOR spread for example, is defined by a similar

institutional mechanism, where only the average interest rate on credit transactions

171f we consider that the fixed point defined by Z; ; = 0 is always a repelling solution, following
the discussion on Z4; (t) dynamics, then we can assume that SCE is a globally stable solution if it
fulfils the Routh-Hurwitz Stability Criterion. If we additionally assume that Z4; (t) dynamics are
Lipschitz continuous, then it is possible to give a full description of this game dynamics.

¥ The Life Cycle consumption hypothesis was forwarded by Brumberg and Modigliani| [1954] and
Friedman| |1957]. This theory suggests that individuals make saving and consumption decisions,
in order to maintain a stable consumption pattern throughout their lives. Evidence suggests that
the Life Cycle hypothesis is not consistent with saving and consumption patterns observed in older
members of the population. Older generations show patterns of precautionary saving that can
be explained by: (i) intergenerational altruism; (ii) increased caution in spending; and (iii) poor
retirement planning based on optimistic assumptions about life expectancy.
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faced by a pool of the large financial institutions is considered.

Given the set of assumptions described in the previous paragraph, we start
the discussion on the qualitative dynamic outcomes of this game with the analy-
sis of a population, where initial consumption decisions are distributed following
Z1,;(0) ~ U(0,1). In below, we portray, in the picture on the left,
the numerical qualitative outcomes for the a given range of institutional scenarios,
rr € [0.050.25] and r € [0.03 0.25]. These results were obtained by numerically
computing the eigenvalues of the Jacobian defined in (3.38)), in the vicinity of SCE
solutions described by conditions ({3.26) to . As previously discussed, we de-
fined a robust population by randomly drawing individuals asymmetric parameters
p; and ;. The population characteristics are depicted by the density plot on the
right. In this setup, robust populations are characterized by patient investors with a
low intertemporal elasticity. The stability diagram is dominated by stable solutions,
all eigenvalues have negative real parts, and unstable solutions{ﬂ all eigenvalues
have positive real parts. This diagram suggests that a stable SCE solution requires
institutional scenarios ordered in the following fashion, rp < 7. There is also a
transition region, described in yellow, that is consistent with saddle type solutions
for this game. In this region we have eigenvalues with positive and negative real
parts. Bifurcations of equilibria can also arise as a result of a degenerate Jacobian,
det (J) = (FEI In the vicinity of these singularities, higher-dimensional nonlinear

phenomena may occur.
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(a) Stability diagram (b) Distribution of preferences

Figure 3.1: Stability diagram and distribution of preferences for Z; ; (0) ~ U (0,1)

9By unstable solutions we mean that the SCE is a completely unstable solution, which implies
that the SCE solution is time-reverse stable.

20Tn these simulations we only evaluate the real part of the two leading eigenvalues, min {Re (A)}
and max {Re (A)}, where A stands for the set of eigenvalues solving the characteristic polynomial

of (3.38) in the vicinity of SCE.
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To better understand the qualitative results portrayed in[Figure 3.1} it is con-
venient to illustrate the distributions for the endogenous variables, Z5 and d, defined
in expressions and , respectively. In we observe that stability
requires that the investment leaders are bond sellers, Zo > 0, and institutional risk
premium, d, is positive but small. On the other hand, when leaders diversify their
portfolios, Z, < 0, and the regulator sets risk premium at a small but negative rate,
SCE solutions are unstable. The critical transition region is characterized by leaders
accumulating vast amounts of financial /foreign assets or vast amounts of debt. The

regulator in this region sets risk premium close to zero.

0.1
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H0.05
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(a) Z» outcomes (b) d outcomes

Figure 3.2: Game and institutional risk premium outcomes for Z; ; (0) ~ U (0, 1)

We then evaluated the qualitative dynamics of this solution with the analy-
sis of a game where initial consumption decisions are now distributed according to
Z1,(0) ~ exp (1). We followed the same procedure as in the previous experiment
and start by determining robust populations for the same range of institutional sce-

narios. Finally, we computed numerically the eigenvalues of (3.38)) in the vicinity of

the corresponding SCE solutions. The results portrayed in [Figure 3.3 and [Figure 3.4]
do not show any major difference from the results discussed above in and
This outcome suggests that scaled consumption values do not seem to

interfere much with the qualitative dynamics of this game. To have a better insight

in this matter, we have to consider sampling results larger for populations sets, as-
suming different distribution hypotheses for initial consumption and the population

share of investment leader<?1]

2!Our numerical simulations suggest that there are no significant differences between these two
hypotheses for games with a share population of leaders ranging from 10% to 90%. Given the
constraints imposed for the existence of robust populations, it is likely that this result holds for a
broad range of scaled consumption values in large populations.
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(a) Stability diagram (b) Distribution of preferences

Figure 3.3: Stability diagram and distribution of preferences for Z; ; (0) ~ exp (1)
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Figure 3.4: Game and institutional risk premium outcomes for Z; ; (0) ~ exp (1)

We finish this presentation with a discussion on the qualitative dynamics
of the state-separable problem in the vicinity of SCE solutions. The solution and
qualitative analysis of the state-separable system, assuming Zy; (t) = Z4;,Vt € T,
is given in The condition describing qualitative dynamics in the vicinity of
equilibrium is given generally by . Rearranging this expression, we obtain a
condition for stability in terms of the marginal revenue on domestic capital for the
state-separable game in the vicinity of the SCE solution,

TR > 2r(i— 1) +4— pi .
Vi — 2 ¥i — 2

Following , we can evaluate numerically the individual qualitative dy-

namics obtained from the state-separable solution described in [B.2.1] in the vicinity

of the game SCE solutions for the two population scenarios described previously. In

(3.44)
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this analysis, we portray the percentage of players with state-separable attracting
dynamics in the vicinity of the SCE. These results are given in below,
for each hypothesis of initial consumption decisions, Zi; (0), considered previously.
Given that consumption does not play a role in the state-separable solution, the
differences observed are related only to player asymmetries. A quick glance at the

figures below, shows that the game stable and unstable regions, portrayed in

[ure 3.1] and [Figure 3.3 coincide with regions, where state-separable dynamics are

consistent with 100% of players having attracting or repelling solutions, respectively.
The parameter range describing the saddle region for the game SCE solution is now
characterized in the state-separable system, by a region where only a share of the
population has qualitative dynamics consistent with an attracting solution. We can
draw a simple conclusion from this outcome. If we consider the game solution has a
sum of its individual parts, we might be tempted to consider that this region is not
consistent with stable SCE solutions, as a percentage of players does not agree with
this SCE. However, the game solution suggests the existence of a saddle equilibrium
and bifurcation phenomena. Thus we conclude that there are institutional regimes,
where game dynamics in the vicinity of a SCE cannot be described by just the sum
of its individual parts, as defined by the state-separable outcomes, and weak emer-
gence phenomena might occur in this economy, as a result of aggregate interactions

consistent with higher-dimensional nonlinear phenomena.

= 01§ £ 015

(a) 21, (0) ~U(0,1) (b) Z1,: (0) ~ exp (1)

Figure 3.5: Percentage of players with stable dynamics

In this section, we showed that when beliefs are unique, strategies are Lipshitz
continuous and the game solution is bounded asymptotically, it is possible to perform
a qualitative analysis of SCE solutions. This setup allowed us to show that weak
emergence phenomena may arise for some parameter regions. In the next section, we

show that the introduction of further nonlinearities leads to solutions where a SCE is
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only achievable when learning dynamics are considered. We show that feasible SCE
solutions can be identified geometrically and some conjectures about possible game
outcomes can be put forward, based on the qualitative analysis of the state-separable

problem.

3.4 A consumption and investment game with coupled

endogenous risk premium

The second game we propose is largely based on the setup discussed in the previ-
ous section with a simple exception. We now drop the institutional risk premium
hypothesis and consider that individual risk premium depends on the ratio of net
financial assets to productive capital. Interest payments/revenues are now given
by rB; (t)[1 4 (B; (t) /K; (t)) (B (t) /K (t))]. In this setup, institutional conditions
driving risk premium no longer depend on market driven beliefs, but on information
regarding the player financial balances. The inclusion of an additional nonlinearity
in the risk premium mechanism allows for the introduction of several novel features
in this economy. Bond buyers are now rewarded when the aggregate economy is
a net buyer of bond contracts, and penalized when the economy is a net issuer of
bonds. Bond issuers benefit from smaller interest premiums, when the aggregate
economy is net buyer of bonds and are penalized if the aggregate economy is a net
issuer of bonds. Given this very brief introduction, the non-cooperative differential

game faced by player i is given by the following dynamic optimization problem:

MAX / h e PC; (1) dt

Ci(t).L:(t) Jo

subject to the solution of: (3.45)
Bi(t) = Ci () + L (1) + rBi (t) (14 2B 29 ) — rii (1)

K (t) = I (t) = 6K, (¢);

~

satisfying the transversality conditions, and , guaranteeing that solu-
tions to do not grow too fast. The optimal Keynes-Ramsey consumption
strategies for , following the procedure described in , and given the maxi-
mum conditions in are now defined by:

C; (t) = gz_(t)l <pi —r— 27“75; (t;? ®) ) ; (3.46)
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Lo Cit) [ _TB(t)Bi(t)z .,
Ci(t) = o (pz—i-(S KOK (0 k) . (3.47)

The optimality condition for indifference in capital accumulation is obtained
by setting equal to (3.47). Following the discussion in we solve this
equality in terms of the aggregate coupled risk premium mechanism, B (t) /K (t).
The optimal belief for this game is,

B(t) ey 2B (Bi(t) -
O ’“)[Km <K@-<t> 2)] | (3.48)

Substituting the optimal belief, (3.48)), in the optimal consumption strategy, (3.46}),
and then scaling(3.46)) and (B.16)), following the rule given in (3.21]), we obtain the

stationary dynamical system defining the general open loop dynamic solution for the

non-cooperative game given in (3.45)), in terms of player i dynamics:

. I 2r (r+0 — i)
Z1(t) = P T a6 —2)

vi—1 (vi =1 (Zai(®) =0)|;  (3.49)

Z'Qﬂ' (t) =71, (t) + Zyi (t) + Zo; (t) [7’ +rZo (t) ) (t) — Zui (t) + (5] — Tk; (3.50)

where capital dynamics, K; (t), and state dynamics, Zs (t), are given by and
. Again, there is no information regarding investment strategies. We start by
defining the equilibrium condition for state dynamics, lim;_,o Z2; (t) = Z2;, assum-
ing the existence of an asymptotic equilibrium solution for investment strategies,
limy o0 Zai (t) = Z4,, consistent with Zl,i (t) = 0, and the growth and transver-
sality condition defined in . Assuming solutions are consistent with a feasible
economic outcome, Z; (t) > 0,Vt € T, the individual state equilibrium solution is

given by:

_ 2 o —
lim ZQJ‘ (t) = ZQVZ' = ! (Tf—l_ Tk)
100 pi =1~ (Za;i —96) (vi — 1)

Following these assumptions on the long run dynamics of Zs; (t) and Zy; (t)

+2. (3.51)

and the result in (3.51)), aggregate state dynamics is again defined asymptotically by
(3.29), following the discussion in This set of assumptions is again sufficient to
define the conditions for the existence of SCE solutions consistent with the player’s

optimal beliefs. We start by redefining player beliefs asymptotically as a function of
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the scaled variables. Optimal beliefs, Zg’i (), in the long run are now given by:

lim Zg’i (t) = ZS’Z = (’I” + 6 — Tk) [TZQJ' (227,‘ — 2)]_1 .

t—o00

Rearranging (3.52) and solving in terms of Zs;, we obtain:

(3.52)

_ 5 — 1
lim Zo; (t) = Zo; = 1+ \/ 14 0Tk (ZS’Z> . (3.53)
T

t—00

Recall now that the existence of a SCE requires that Zo = Zg’i is fulfilled.
From the result in , and following the equilibrium condition for individual state
dynamics, , it becomes clear that agents have to pursue scaled investment
strategies that involve learning dynamics and are consistent with the existence of
a self confirming equilibrium asymptotically, lim;_,oc Z4; {E [Z2 ()]} — 2472- (Zg)lﬂ
This feature of the game becomes clear when we substitute in , and
obtain the asymptotic condition for scaled investment strategies that fulfils the op-
timal belief condition and the existence of a SCE. Investment strategies have to be

consistent with

_ - 2 (r + 6 —
lim Zy; (t) = Zs; =6+ pi—n r{r+ k)

t—00 v — 1 (’Yi _ 1) <_1 + /14 r+6—r} Z21>
\V r

where we already assumed Z, = Zg’i. This solution is an asymptotic optimal solu-
tion to (3.45|) if tranversality conditions, given by (B.18)) and (B.19)), are fulfilled.
Following the discussion in the previous section and the results described in (3.33)) to

. (3.54)

, transversality and growth conditions impose that long run scaled investment
strategies are consistent with . We can finish the description of this game equi-
librium with the definition of scaled consumption strategies, Z; ;. We define long run
scaled consumption strategies by setting Z’Qd = 0 and assuming that a SCE solution,

as defined in (3.52)) to (3.54)), is achieved:

Zl,i =TE — 2471' — 2271' (7" + 742272'22 — 2471' + 5) . (355)

From (3.55) it is obvious that that the best strategy for player i consists in
the maximization of the expected value of scaled consumption strategies, FE (Zl,i)»

given some learning process driving scaled investment strategies to a feasible SCE.

22For reasons of simplicity, we considered that the learning process takes only into account the
expected value of Zs (t). Given the specific nature of this learning process it might be reasonable
to consider other decision criteria that takes into account the uncertainty faced by players.
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A static version of this game, describing the individual asymptotic outcomes, given
the equilibrium solution defined in (3.51)) to (3.55)), is given by the following multi-

objective maximization problem under uncertainty:

MAX E (1))
Za;

Subject to the solution of: (3.56)

ZQJ‘ =2r ('I“ + 6 — Tk) [pi —-r— (Z47i [E (Zé)] — (5) (")/Z‘ — 1)] + 2,
such that Z,, [E (Zé)] fulfils (3.37)), where F (Zé) is the individual expectation
about the evolution of the asymptotic state of the game, Z. The players objective,
E (ZLZ-), is defined by:

E (Zl,i) =T — 2471‘ [E (Zé)] — ZQ’Z‘ (7“ + TZQ’Z‘E (Z%) — 2471‘ [E (Zé)] + 5), (3.57)

and the N-tuple of strategies, 11;, for player i are given by the set of feasible invest-

ment strategic actions, following the result in (3.54)):

\ 7

'5+pi—r_ 2r (r+0 — k) )
ml (vi —1) <—1 — \/1 + @E (Z%)_1>
1, — . 3.58
pi—r 2r(r+9 —rg) ( )
0+ —1
T R ==

The asymptotic dynamics of this game can thus be examined as a HMM, more
concretely by a Markov switching regime model that mimics the co-evolutionary
learning process faced by players. Recall that in this setup players have to learn
a SCE, otherwise solutions are not optimal. Since in an open loop setup, agents
have no information about the evolution of the state of the game, it is not clear how
players can learn a SCE if their decisions can only rely on their individual beliefs.
We suggest that players are able to learn the past moments of the evolution of the
state of the game by simple extrapolation. Starting with an initial guess, F [Zé],
players are able to determine the last outcome of Z5, by measuring their individual
forecasting errors. At any given moment of the game, the agent observed forecast

error, €;, is given by:

90



Zv;— E[Zv;] = 21 [Zag, Za, Z2) — Z13 [E (Z43) , E (Za;) . E (Z3)] = € (3.59)
To extrapolate the past moments of Zy, we just have to substitute expressions ZLZ‘
and £ [Zl,i] by the equivalent steady-state expressions, following the result in (3.55)),

and after rearranging we obtain:

= . Z4J—E(Z4,i)+22,i (T‘—Z471‘—5)—E(ZQ’¢) [T+TE(ZQ,Z)E(Zé)—E(ZAl’Z)'i—(;:I"Fez

Zy = - (3.60)

The result in (3.60) guarantees that players have access to a distribution of
past moments of the evolution of the state of the game. Given the Bayesian nature
of this decision process, portrayed by the existence of individual optimal beliefs, we
suggest that learning has to take into account these beliefs as a form of individual
bias. We argue that any inference process considered should be a Bayesian inference
process that takes into account the existence of a posterior distribution of the past
moments of the game, the evolution of players forecast errors and the players optimal
beliefs, as a prior assumption on future outcomes. This hypothesis has its roots
in modern economic reasoning. [Morris [1995], for example, puts forward a strong
argument regarding the importance of considering individual priors as opposed to

the common prior assumption usually found in orthodox economics literature.

“Perhaps the most compelling argument against the common prior
assumption is the following reductio argument. If individuals had
common prior beliefs then it would be impossible for them to pub-
licly disagree with each other about anything, even if they started out
with asymmetric information. Since such public ’agreeing to disagree’
among apparently rational individuals seems to be common, in eco-
nomic environments as elsewhere, an assumption which rules it out is

surely going to fail to explain important features of the world.”

We do not put forward any specific proposal regarding learning dynamics in
this game and discard the numerical evaluation of SCE solutions has a HMM solu-
tion to . The reasons for this decision are the following. First, the evaluation
of learning outcomes as to rely on the numerical simulation and sampling of out-
comes for the proposed HMM, following the Markov Chain Monte Carlo method. We
already referred that this method is computationally costly. Second, given the un-

certain nature of this decision process, it is not clear how a robust population can be
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defined in such a way that player strategies are in accordance with , and more
important that player consumption outcomes are economically feasible, ZLZ- > 0.
Recall that in a co-evolutionary learning framework, such as this one, as players
learn and choose their best strategies, they change the environment faced by other
players in a dramatic fashion. Later in this section, we show that this phenomena is
likely to occur in this setup, even when a robust population is considered. Finally,
following |Grandmont| [1998], the local stability in complex multi-agent environments
with adaptive learning dynamics depends on the degree of confidence that an agent
has regarding the local stability of the system. Grandmont|[1998| defined this prop-
erty as the uncertainty principle faced by learning agents in complex environments.
In other words, equilibrium may not be stable when complex learning strategies are
considered. Since the evaluation of SCE solutions has to rely on complex learning
strategies, and these are decided a prior: by the modeller, the qualitative dynamics
of this system will be always a function of the specific co-evolutionary process con-
sidered. We acknowledge that the best approach to this game asymptotic solution,
should be based on the evaluation of as a HMM. By discarding this approach,
we cannot guarantee that a SCE solution is achievable and we cannot put forward
any results regarding the stability of solutions. To overcome this issue and still pro-
vide some intuition on possible solutions to the problem defined in , we propose
a method to evaluate the existence and economic feasibility of SCE solutions, based
on geometrical evaluation of conjectural solutions when players commit to an initial
investment strategy. We discuss the implications of feasible solutions based on the
analysis of the state-separable system described in [B.2.2]

The method we propose to evaluate the existence of SCE solutions to the
problem defined in , relies in a straightforward geometrical approach that can
be easily applied. To determine the existence of consistent SCE solutions, we start by
evaluating the actual outcomes obtained, when players share a common conjecture
about the state of the game. Finally a SCE solution, consistent with the general
definition in , is defined by the intersection of the curve describing the actual
observable outcomes, given a common conjectural expectation on Z, and the 45
degree line that crosses the origin. We exemplify our approach schematically in
below.

To exemplify our method, we start by testing institutional scenarios that
are consistent with the existence of a robust population of n = 1000 player@ in
a reasonable interval of common conjectural outcomes of the state of the game,
Zy C [-2.501 2.501], where at least one of the strategies defined in is con-

23 Again we consider the same conditions described in the previous section.
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Figure 3.6: Conjectural and actual SCE solutions.

sistent with Z;; > qﬂ Numerical simulations suggest that institutional scenarios
consistent with the existence of a robust population require that, rp ~ r + 0 and
ry #r+ @ We evaluate two scenarios for 7, assuming r = 0.05 and § = 0.03
fixed. The results for the first scenario, r, = 0.07999, are described below in
Robust populations are again described by a set of patient agents, but now
consumption elasticities are evenly distributed. The figure in the center shows that
there is a unique SCE solution in this institutional scenario. However, the figure on
the right, describing the worst player actual scaled consumption outcome, suggests
that strategic interactions in this framework might not be consistent with feasible
economic solutions for the entire set of agents in this economyP?} The reason be-
hind this dramatic outcome can be explained by wrong conjectures regarding the
actual outcome of the game. The figure in the center shows that when player’s con-
jectures are consistent with Zg < 0, these conjectures are systematically flawed, as
actual outcomes are consistent with Z > 0. This result suggests that the numerical
simulation of this institutional scenario as a HMM, might not be consistent with
the economic constraints imposed by our model. Finally, the qualitative analysis of
the state-separable solution, given in suggests that individual solutions, when
rr < 7+ J, may be either stable or unstable. The description of qualitative equilib-

rium solutions for the state-separable problem is provided in[subsection B.2.2| These

results suggest that the stability of solutions in this institutional scenario depends

24When both strategies are consistent with Z1; > 0, we consider that players choose the strategy
that yields the best consumption outcome.

25Recall that rp — § can be interpreted as the net marginal revenue of domestic capital. This
result suggests that feasible solutions can only be considered for economies where the net marginal
revenue of domestic assets is close to the international interest rate.

260Qur numerical results suggest that this is a common outcome among the population.
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on the relation between individual strategic investment outcomes and the individual
state outcomes. Given that this outcomes depend endogenously on the the state of
the game, it is unlikely that the state-separable stability condition is fulfilled for the
overall set of players. Further, as we showed in the previous section, the game quali-
tative dynamics in the vicinity of a SCE, cannot be fully explained by the individual
dynamics of the state-separable problem. Given that co-evolutionary strategic in-
teractions, arising from learning dynamics, play a role on the possible outcomes of
this game. It is reasonable to assume the existence of emergence phenomena for this

institutional setup.
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Figure 3.7: Robust population distributions and SCE outcomes for r; = 0.07999.

We finish this presentation with a discussion of an institutional scenario con-
sistent with r, > r + 6. We now consider r, = 0.0801. The results for this sce-
nario, depicted below in [Figure 3.8 suggest that the feasibility problems arising
from wrong conjectures about aggregate risk premium outcomes are no longer an
issue. The computed population shares the same broad characteristics described in
the previous example. However, we no longer have a unique SCE solution. Our
numerical routine detects three distinct SCE solution@. The first consequence of
this result is that if players are able to learn and concur in a specific SCE solution,
the final outcome is always conjectural. [Hu and Wellman| [1996], for example, show
that solutions to competitive multi-agent models with learning dynamics are highly
sensitive to initial conditions. Another hypothesis is that players do not concur on
an unique solution and wonder between different equilibrium. This conjecture is

suggested by the qualitative analysis of the state-separable solution. As discussed

in the end of [subsection B.2.2] institutional scenarios where r, > r + §, are always

consistent with saddle solutions for the individual problem. Again, we stress that

we can only speculate about the possible outcomes that may arise when complex

2"The repetition of intersection dots is a consequence of our computational procedure. This
routine controls for intersections to the left and to the right of the 45 degree line. Although we
considered very small error tolerances, we were not able to eliminate this problem fully.
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learning strategies are considered. However, this final example suggests that the
analysis of this game should be constrained to institutional scenarios consistent with
rr > r+ d, where SCE solutions are of a conjectural nature and players’ conjectures
robust to strategic interactions under uncertainty. An alternative approach would
be the analyses of the open loop feedback Nash solution to the games of leaders
and followers. An example of this approach for a class of multi-player general sum
differential games with leaders and followers is given in Bacchiega et al. [2010]. If
there are feedback Nash equilibrium solutions consistent with a SCE, then we can
evaluate under what conditions is the Dynamic Programming problem consistent
with an optimal solution to . However, given the coupled nature of the state of
this game, it is unlikely that an analytical solution to the uncoupled leader/follower

open loop feedback game can be derived.
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Figure 3.8: Robust population distributions and SCE outcomes for r; = 0.0801.

3.5 Conclusions and further research

In this chapter, we proposed the existence of optimal beliefs for a class of differ-
ential games consistent with a specific state-separability property and related the
existence of optimal solutions with the concept of SCE in a non-cooperative incom-
plete information game setup. In the first example discussed, we showed that a
SCE outcome is feasible, when asymmetries between players are either limited or
else further asymmetries are considered. |Grandmont| [1998] had already suggested
this relation as crucial for the existence and stability of self-fulfilling outcomes in
large socio economic systems. We also showed that a qualitative analysis of equi-
librium is feasible using standard dynamical system techniques and portrayed the
existence of weak emergence phenomena, by comparing the game outcomes with the
individual solution obtained from the analysis of the state-separable system. In the

second example discussed, we showed that the introduction of further nonlinearities
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has dramatic implications. In this setup, we have to consider that agents are able to
coordinate asymptotically their belief based decisions and learn a SCE. We suggested
two possible paths to evaluate SCE solutions, based on a static version of the game
equilibrium solution. First, we proposed that the asymptotic outcomes of this game
can be evaluated as a multi-objective maximization problem. We then proposed a
simple geometric approach to determine the existence of solutions consistent with a
SCE and test the robustness of individual decisions under uncertainty. This approach
allows for a description of feasible optimal solutions and a discussion of possible out-
comes based on the analysis of the state-separable solution. Despite its simplicity,
this approach allowed us to determine that only institutional scenarios where the net
marginal revenue of domestic capital is slightly greater than the international inter-
est rate, are robust for a co-evolving environment with strategic interactions. This
result paves the way for a future evaluation of this game as a HMM, where different
hypotheses regarding complex learning dynamics can be tested, with the objective
of determining under what conditions a SCE solution can be achieved. We discuss
this methodology in the next chapter for games where players have subjective beliefs
about the state of the game. An alternative approach would be the evaluation of
open loop feedback Nash solutions to (3.45]) consistent with a SCE for the uncoupled
games of leaders and followers. This is an interesting option to explore in the future
that may provide some insight on the qualitative dynamics in the vicinity of SCE

equilibria.
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Chapter 4

Subjective Beliefs and Unintended
Consequences for a Class of Games

with Economic Applications

4.1 Introduction

In this chapter we discuss the implications of introducing further nonlinearities in the
incomplete information non-cooperative differential game setup discussed in
Our specific proposal departs from a conjecture regarding the existence of
optimal solutions to a class of exponentially discounted games that lack the state-
separability property. In this framework, players lack the relevant information to
pursue their optimal strategies and have to base their decisions on subjective be-
liefsE]. We argue that solutions to this class of games are optimal if decisions based
on subjective beliefs are consistent with the existence of a stable SCE.

We propose to answer the following question. Are players able to concur on
a SCE, where their expectations are self-fulfilling and their beliefs are subjective?
To frame this conjecture, we describe in a general setup for the class
of non-cooperative differential games discussed in which have solutions

1This outcome can be linked to the paradox of relevance. The paradox of relevance states that
either by ignorance or choice, individuals lack the relevant information to pursue their actions. In
a dynamic game context the relevance paradox can be described in the following fashion. When
deciding their strategies, players seek only the information that they perceive as relevant. However,
this information might not be sufficient to allow players to pursue their optimal strategies. This
problem can arise because players cannot access the relevant information, because they did not
consider important information as crucial or cost effective. When this phenomenon dominates the
decision making process, the player is trapped in a paradox. When decision makers are not aware
of essential information to pursue their decisions in the best possible way, then strategic choices
will lead to unintended consequences. Such consequences can be either positive or negative.
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consistent with coupled open loop strategies, defined as an initial value problerrﬂ
Solutions in this class of games are optimal if player beliefs converge asymptotically
to a SCE. To demonstrate the validity and implications of this conjecture, we now

consider the existence of individual investment adjustment costs in the differential

games discussed in [section 3.3 and [section 3.4]

To demonstrate our main hypotheses, we extend the conjectures discussed in
regarding the existence and qualitative analysis of solutions for dynamic
games under incomplete information. In the game proposed in we show
that a full qualitative analysis is possible when we consider that players have naive
beliefs consistent with the existence of an asymptotic SCE solution. In this game,
player beliefs impose a unique equilibrium. The existence of a SCE solution requires
the existence of constraints on individual parameter distributions. Given a simplified
hypothesis for the evolution of beliefs, assuming state independent control dynamics,
we are able to give a full description of strategic dynamics and a qualitative analysis
of state-space dynamics in the vicinity of the SCE solution, following the same
procedure discussed in Numerical results suggest that SCE are not
consistent with local stability. In the second game proposed, we show that the
game solution can only be described as a multi-objective optimization problem under
uncertainty. We evaluate this solution numerically as a multi-criteria HMM, and
show that under a linear learning regime, players converge to a SCE. We also show
the existence of unintended consequences and strong emergence phenomena, as a
result of persistent uncertainty.

When beliefs are no longer consistent with the existence of an unique solu-
tion, standard dynamical systems techniques cannot be applied. However, if beliefs
guarantee that the state-space of the game is bounded asymptotically, then long run
strategic dynamics, as shown previously, can be described as a multi-objective opti-
mization problem under uncertainty. We portray this hypothesis in In
this section, we show that the game solution is defined by an individual equilibrium
region in 2, bounded by growth and transversality conditions. This is a complex
geometric problem that may or may not have solutions consistent with a SCE. To
check the existence of a SCE in this framework, we propose that this optimization

problem can be evaluated numerically as a HMM, where players learn a SCE in

2This option of analysing a specific class of games and discuss specific applications as a long
tradition in differential game theory. In a review of the first 25 years of economic applications in
differential games, following the pioneering work of Isaacs |[1954], |(Clemhout and Wan|[1979] already
suggests that the analysis of general sum multi-player differential games is limited to the study of
specific applications. As the authors put it: “A frontal assault can be promising only when a general
theory of partial differential equations becomes available. So far, progress is made by solving special
classes of differential games...”.
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a co-evolving environment. This approach has several drawbacks. First, in incom-
plete information learning environments, it is unlikely that players will follow smooth
strategies. As a consequence, the introduction of learning dynamics most probably
does not allow for a rigorous mathematical description of the game dynamics and
equilibrium solution. Bagar and Olsder] [1995] describe this crucial dilemma in the

following fashion.

“Hence, a relaxation of the Lipschitz-continuity condition on the per-
missible strategies could make an optimal control problem quite ill-
defined. In such a problem, the single player may be satisfied with
smooth (but sub-optimal) strategies. In differential games, however,
it is unlikely that players are willing to restrict themselves to smooth
strategies voluntarily. If one player would restrict his strategy to be
Lipschitz, the other player(s) may be able to exploit this. ... In con-
clusion, non-Lipschitz strategies cannot easily be put into a rigorous
mathematical framework. On the other hand, in many games, we do

not want the strategy spaces to comprise only smooth mappmgs.’ﬁ

Further, player strategies in an uncertain learning environment are not in
accordance with the notion of dynamic consistency. This is a result of decision mak-
ing in an uncertain environment, where player belief based decisions for some future
period might not be optimal when that future period arrives. SCE outcomes in this
context are subgame imperfect equilibrium solutions since they violate the Bellman
Principle of optimality. It is well known fact that in incomplete information envi-
ronments backward induction cannot be applied to non singleton information sets.
This co-evolutionary phenomenon is later on illustrated by the HMM setup proposed
to analyse the hypersurface resulting from the equilibrium solution obtained from
first order maximum conditions. In this context, even if for a given set of param-
eters and learning strategies a SCE is unique and achievable solution, the dynamic
decision paths followed by players, given the same set of initial conditions, are most
likely different for each simulation. In our setup, this phenomenon is exacerbated
because the equilibrium hypersurface is evaluated as a repeated equilibrium game,
where players are chosen randomly and their moves depend on individual subjective
beliefs and learning strategies. Second, as a consequence of the methodology pro-
posed, a consistent evaluation of the asymptotic game dynamics as a HMM requires
the sampling and statistical analysis of numerical solutions, assuming different hy-
potheses. As we referred in the analysis of solutions using this method

3Part II, chapter 5, section 5.3.
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poses several limitations. It is a computationally expensive method and its outcomes
are a result of subjective modelling decisions regarding players’ learning dynamics.
On the other hand, given that the existence of optimal solutions requires players to
learn a SCE, all learning mechanisms considered have to fulfil this specific Bayesian
Incentive, and solutions can be ordered according to the Bayesian Efficiency SCE
criterion for optimality. This approach merges concepts from the fields of evolution-

ary multi-objective optimization, machine learning and game theory. We discuss this

topic in detail in [subsection 4.4.1] when describing the specific HMM proposed. In

[subsection 4.4.2] and [subsection 4.4.3] we evaluate this game assuming two different

learning mechanisms and portray the existence of strong emergence phenomena. In
the first example, we show that agents are able to self-organize in an asymptoti-
cally robust SCE. In the second example, we show that belief-based decisions result
in a stationary co-evolutionary dynamic process driven by permanent strategic in-
teractions. The SCE attractor is now described by an invariant set that can only
be evaluated statistically. We consider this outcome as a natural consequence of
decision under subjective beliefs in nonlinear co-evolving environments. Individual
belief-based decisions lead to unintended consequences that effectively change the
environment faced by others, and as a consequence, their beliefs. This feedback loop
drives the complex dynamics observed. Although this solution does not represent an
optimal solution to the game proposed, we believe that this result provides a crucial
link between the social sciences and decision theory paradigm of unintended con-

sequencesﬁ and the mathematics and statistics paradigm of subjective probabilityﬂ

“The law of unintended consequences was a concept introduced by the sociologist Robert K.
Merton, in his seminal essay Merton| [1936]. In very broad terms, Robert K. Merton defined
the possible causes of the unintended consequences of purposive social action as ignorance, error,
conventions and self or institutional interest. The author defines the process of social evolution
as a consequence of social decision making based on subjective assumptions. Subjective decisions
play a crucial role on the development of the complex inter-relations which organize society, and
inevitably lead to individual, collective or institutional decisions with unintended consequences. The
author describes this process in the following fashion.“The empirical observation is incontestable:
activities oriented toward certain values release processes which so react as to change the very
scale of values which precipitated them. This process may in part be due to the fact that when a
system of basic values enjoins certain specific actions, adherents are not concerned with the objective
consequences of these actions but only with the subjective satisfaction of duty well performed. Or,
action in accordance with a dominant set of values tends to be focused upon that particular value-
area. But with the complex interaction which constitutes society, action ramifies, its consequences
are not restricted to the specific area in which they were initially intended to center, they occur
in interrelated fields explicitly ignored at the time of action. Yet it is because these fields are in
fact interrelated that the further consequences in adjacent areas tend to react upon the fundamental
value-system.”.

®The paradigm of subjectivity, as a key concept in modern probability theory, is framed by the
proposals of Henri Poincaré, Frank Ramsey and Bruno De Finneti. Although this discussion has
older roots in philosophy and scientific thought, these three famous authors are fundamental for the
development of key modern concepts in probability theory. For example, the formal definition of
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When considered in a nonlinear co-evolutionary context, these two forces reveal, in
our opinion, the evolutionary nature of decentralized competitive economic dynam-
ics. The paradigm of subjectivity, as the driver of social and economic decisions,
is a crucial concept to understand how unintended consequences arise and lead to

complex evolutionary dynamics in a non-cooperative differential game framework.

4.2 General setup

Consider again the general N-Player non-cooperative differential game framework
discussed in and described by . We now assume the following con-
jecture regarding the existence of state-dependent optimal open loop strategies, for
the game given in . The conjecture is that player 7 optimal control solutions to
are defined generally in the following fashion,

i (t) = fi(ui (t), X (1)) (4.1)

When optimality conditions impose strategic solutions that are consistent
with , we have to acknowledge that players lack the relevant information to
achieve their optimal goals. To pursue their optimal strategies in this environment,
players require full knowledge of the state of the game, n;, = {X (¢)}, but when
choosing the relevant information to pursue their strategies, either by ignorance or
choice, players’ knowledge about the state of the game is incomplete. As players
lack crucial information to pursue their goals, they have to rely on subjective be-

liefs. In a open loop setup, we shall consider that belief dynamics are defined by a

the general Bayes theorem, was first introduced by Pierre-Simon Laplace. This is usually referred
to as the inductive reasoning theorem. However, it is Henry Poincaré that later forwarded a crucial
justification for the introduction of the inverse probability reasoning concept in the field of calculus
of probability, when he introduced the doctrine of conventionalism, and subjective probability
theory. The crucial modern hypothesis of subjectivity can be attributed to Bruno De Finetti main
paradigm. Probability as a measure of an event departing from an objective perspective simply
does not exist. Therefore, all probabilities are subjective. De Finetti argues that there is always
an inherent degree of uncertainty driving one’s beliefs about a given phenomenon. Ramsey is one
of the first proponents of subjective probability, but describes this paradigm in terms of the degree
of confidence or specific beliefs, one might have regarding the probability of an event. This concept
is closer to Poincaré’s doctrine of conventionalism, since it allows for conventions to be determined
and improved, assuming methods that increase the degree of confidence regarding the probability
of a specific phenomenon. According to Poincaré, this could be achieved by proving the validity of
conventions empirically. However, as Ramsey put it, the degree of confidence that one may have
regarding the probability of a given phenomenon is also impaired by subjectivity. Therefore, there
is always a degree of belief regarding any given probability measure!Gower| [1997| gives a detailed
review, survey and discussion on this topic. The author focus the discussion on Poincaré’s vision and
provides a detailed review of Poincaré’s proposals on conventions and subjectivity, which include
date back to his work on non euclidean geometry and dynamical systems. Regarding Ramsey and
De Finetti, their main contributions are found in [Ramsey| [1926] and |de Finetti [1937], respectively.
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function, Xéi), that depends on the information available to the player. We char-
acterize beliefs as naive if there is no incentive to learn the true state of the game.
Given that in the setup defined by , players only have information about the
evolution of their individual state and their strategies, we define subjective beliefs
in the following fashion: (i) player beliefs are independent of other player decisions,
Xb(i) (t) = v; (u; (t)); (ii) player decisions are coupled but beliefs depend solely on
individual outcomes observed, X (i)( t) = v; (u; (t),x; (t)); and finally (iii) players
can extrapolate past moments of the state of the game from individual outcomes,
XISZ) (t) = v; (ui (t),z; (t), X (t — At) ﬁ Following this set of assumptions, the prob-
lem faced by player ¢ under subjective beliefs, is generally defined by the following

dynamical system:
i (1) = fi (s (0, X7 (1)) ; (4.2)

i () = gi (ui (), X (). (4.3)

To evaluate the game defined in general by (4.2) and (4.3)), we require the
existence of solutions consistent with asymptotic convergence to a equilibrium solu-
tion. A necessary condition for the existence of subjective belief solutions to (3.1)),

is that the following set of conditions is fulfilled,

lim X7 (¢) = X9 A lim X = XA f (u “) i (@, X) =0, (44)
t—00

where Xéi), X and %;, define an unique equilibrium solution that bounds the state-
space of the game asymptotically. Solutions to (4.2]) and (4.3]) are optimal solutions
to (3.1)), if the transversality conditions are fulfilled for a equilibrium satisfying (4.4)),

and beliefs match the true state outcomes in the long run,

X7 (1) = X (1) - 0 and f; (@, X) ,: (7, X) =0 as t > o00.  (45)

Condition (4.5 implies that optimal open loop solutions to (3.1]), given con-
trol solutions defined by (4.1), and strategic decisions driven by beliefs, following
(4.2), require the existence of a SCE solution. Given that the game solution does

51n [subsection 4.4.1| we show that this is a valid hypothesis. In this environment players observe
forecasting errors and use their available information to extrapolate past outcomes of the state of
the game.

102



not provide any information regarding the evolution of beliefs, a qualitative evalua-
tion of the SCE using standard methods requires specific assumptions about belief
dynamics. If the belief function guarantees that a SCE is achieved asymptotically
and is smooth, then it is possible to perform a full qualitative analysis of the
game defined in . In the next section, we portray this hypothesis assuming a
naive specification for the evolution of beliefs, in a game where conditions impose
a unique equilibrium solution. In beliefs are no longer consistent with
a unique solution, but equilibrium, growth and transversality conditions bound the
state-space of the game asymptotically. In this framework, the existence of a SCE
can only be evaluated as a learning outcome in a co-evolutionary environment. Be-
liefs are no longer consistent with the existence of smooth strategies. We evaluate
the existence of SCE solutions numerically, as a HMM, for two different learning
mechanisms. To undertake this analysis, we propose to evaluate the asymptotic
dynamics of the game equilibrium region. The equilibrium region is obtained as pre-
viously described. First we impose the existence of equilibrium solutions for beliefs
and the state of the game. Then we solve the dynamical system obtained from first
order condition for equilibrium, such that condition is fulfilled. In the setup
we propose, the equilibrium region is described by a bounded nullcline hypersurface
when players have finite beliefs about the true state of the game. We propose that
dynamics in this region can be analysed as a HMM, where agents seek to learn the
true state of the game and SCE is a limiting outcome of an adaptive learning scheme.
This approach seeks to mimic the co-evolutionary nature of the game by setting the
asymptotic solution as a stochastic repeated game, where agents decisions are taken
under uncertainty and players moves are sequential and random, as opposed to the
simultaneous strategic environment defined by first order conditions. Applying the
Monte Carlo method and simulating equilibrium dynamics as a Markov game, a
statistical description of the differential game solution can be obtained through sam-
pling, following the Law of Large Numbers. It is thus convenient to extend the general
SCE definition, described in to accommodate the existence of adaptive
learning dynamics, as proposed in [Sargent| [2008|. Suppose that each player begins
with an initial estimate (0) at 7 = 0 and uses the following recursive learning

algorithm,

O(r+1)-Ela"]=e [é (T)} , (4.6)

where E [a7] is an average of past observed moments of the true state of the game,
which can be extrapolated from players observed pay-offs. e [9 (T):| ~ e[0,®] an

error distribution with a zero mean and second moment determined as a function of
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the last forecast, ® [9 (7')} . Then a adaptive learning outcome is a SCE when player
forecasts converge,
0(r)—0, (4.7)

6 (’r)] — 0, such that future

= 0, when deviations from

and a limiting outcome when uncertainty vanishes, ®

forecasts are no longer taken under uncertainty, ® [9

SCE are no longer observed.

4.3 A consumption and investment game with invest-

ment bias and coupled institutional risk premium

To demonstrate these conjectures, we consider two extensions of the non-cooperative
differential games under incomplete information proposed in In this sec-
tion we extend the game framework described in and assume that players
now face convex investment costs in their budget constraint. In this non-cooperative
differential game framework, investment costs are again defined by the convex mech-
anism described in [chapter 2| I; (¢) (14 h;I; (t) /K; (t)), where parameter h; € R
has the following interpretation in a game environment: if (i) h; < 0, institutional
conditions and/or individual characteristics impose bias on investment in produc-
tive/domestic assets, if (ii) h; > 0, institutional conditions and/or individual char-
acteristics impose bias on investment in financial /foreign assets.

Following this brief description of the decision problem faced by each member
of this economy, the non-cooperative game faced by player ¢ € N, is defined by the

following dynamic optimization problem:

MAX e POy (1) dt
Ci(6),1:() Jo

subject to the solution of: (4.8)
Bi (t) = C; (t) + I; (1) (1 + hi [?i(ft))) +rB; (1) (1 + di%) — K (1)

K;(t)=1;(t) — 0K; (t);

satisfying the transversality conditions, and , guaranteeing that solutions
to do not grow too fast.

We now put forward the solution to the open loop case, following the nec-
essary and sufficient first order maximum conditions given in [C.I.1] We start by

deriving the optimal Keynes-Ramsey consumption strategies. The first Keynes-
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Ramsey consumption strategy is obtained as usual by taking the time derivative of
(C.2) and substituting both these expressions in the co-state condition (C.4]). After

some manipulations we obtain,

C; (t) = Ci_(t)l (p —r—rd; B((tt))> . (4.9)

To obtain the second Keynes-Ramsey consumption strategy, we first have to

take the time derivative of the optimality condition on investment decisions (C.3)).

We obtain the following differential equation,

6 () = = (1) <1 1 2h; ;{%) — X (6) 20 [I{((Z)) + X (1) 2h; [I{((tt)) ; g;

Substituting (4.10) and optimality conditions ((C.2]) and (C.3)) in the co-state condi-
tion defined in (C.5)), where A (¢) is again given by the time derivative of (C.2)), we

obtain the second Keynes-Ramsey consumption strategy:

(4.10)

Ci(t) = 7(’:”_(15)1 (1 + 2h; ;{’f&)

(01 +6><

—Tp — 2h

Now we need to impose the optimal accumulation rule that guarantees indifference
between consumption strategies for player i. Setting (4.9) equal to (4.11]), and substi-
tuting the capital accumulation equation, (C.7)), this rule defines strategic investment

decision&ﬂ which are given by,

I (t) = ;;étgt) + <r +7“d¢IB;((?)> I (t) + ( +rd; B ((2 +o—r > K;h(f) (4.12)

The optimal open loop solution to the game defined in (4.8)) is thus given by

consumption, (4.9), investment, (4.12]), net financial assets, (C.5)), and productive
capital dynamics, ((C.6). This system defines a solution described by a set of non-

stationary variables. Following the rule given in (3.21]), we scale our variables in terms

of domestic capital units and obtain the stationary dynamical system describing the

7 As discussed in this result is independent of our interpretation of indifference between
optimal consumption strategies. The same condition defining strategic investment dynamics is
obtained when substituting directly (4.9 while deriving (4.11]).
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general dynamic solution for the non-cooperative game given in (4.8)), in terms of

player ¢ dynamics,

pi— 1 —rdiZs(t) = (v = 1) (Z4; (t) — 0)

Zi (8) = Z1,4 (8) po— : (4.13)
Z‘27Z’ (t) = Z47i (t) [1 + hiZ4,i (t)] + ZQJ' (t) [T‘ + rd; Zs (t) — Z47i (t) + 5] (4 14)
+21, (t) — Tk, -
2
20 () = =25 g vz () 0] Zag (1) 4 TR O

where K; (t), K (t) and Z3 (t) are again given by and (3.25).

Since players follow open loop strategies, we have to assume that individual
solutions to this game can only be correctly described by strategic decisions based
on subjective beliefs about the state of the game. Following the general discussion
in and the assumption in , we define individual beliefs about the
evolution of Zs (t) as Zg’i (t). The intuition is straightforward. When choosing their
strategies, players discard the use of relevant information about the state of the
economy. To pursue these strategies, players have to base their decisions on beliefs.
Beliefs can be of a static, dynamic and/or stochastic nature, as long as they are
consistent with the existence of a strategic equilibrium that bounds the state-space
of this game asymptotically. We now consider that individual strategic dynamics
are given by (4.16]) and (4.17)), below, instead of (4.13)) and (4.15]), respectively. The
individual state dynamics continue to be defined by , while strategic dynamics

for player ¢ are now given by:

. = rd 20 (1) — (v — 1) (Zai (t) — 6

Z1; (t) = Z1,i (1) [pz 2 (>7 _(712 ) (Z4i (t) =9) ; (4.16)
. Zyi (1)? ; d; Z5" () + 6 —
Zu; (t):—4’2()+ [+ rdiZb? (8) + 8 Zus (8) + 22}3” ko (ar)

We now focus on the description of asymptotic solutions to this game. Fol-

lowing the conjecture on the existence of solutions to this class of games, defined
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by condition , beliefs have to be consistent with the existence of an asymptotic
strategic equilibrium solution. In this specific setup, the evolution of beliefs has to
be consistent with limy_,. Zg’i (t) = Z_gb’i A Zl,i (Z_gb’l) = 0. Setting Z.l,i (t) =0,
the existence of individual equilibrium beliefs consistent with feasible asymptotic

consumption outcomes, ZM € RT, requires that

pi—1—(vi— 1) (Za; - 6)
T’di ’

is fulfilled. Condition (4.18)) defines a unique belief solution about the long run evo-

lution of the state of the game that depends on individual investment decisions and

. bi o\ Fbi
lim 2y (1) = 23" = (4.18)

parameter asymmetries. This result has both advantages and disadvantages. If we
consider that belief dynamics are given by a Lipschitz continuous function, consistent
with limy_ s Zg’i (t) = Zg’i, then, given some simplifying assumptions, it is possible
to perform qualitative analysis using standard dynamical systems techniques. On
the other hand, the existence of an asymptotic SCE solution, as defined by ,
consistent with an optimal solution to , requires that we impose further con-
straints on this game solution, such that the existence of a unique solution fulfilling
limy_yo0 Zo (t) = Zg’l, e Zg’n is guaranteed. This set of conditions requires that in-
dividual parameter asymmetries are distributed in a unique fashion. To demonstrate
this result, it is convenient to define first the remaining necessary conditions for the
existence of equilibrium solution consistent with a bounded state-space for this game
dynamic solution. We start by defining scaled investment equilibrium, Z4,%’- Setting
Z4; (t) = 0 and substituting Z>" by the result in ([.18)), we obtain:

- i- )R
lim Z4i(t) = Z47; =
t—oo ’ 1 — 2,

(4.19)

L =2y

Now, it is convenient to redefine domestic/productive capital accumulation in
the long run, as a function of long run investment decisions. Taking the asymptotic
limit of expression , long run productive capital dynamics can be expressed as
a function of (4.19). Following the result in K; (t) when t — oo is again
given by .

Recall now that strategic consumption dynamics are defined endogenously

by Zs;(t) and Zg’i (t) dynamic transitions to equilibrium. Specific assumptions
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regarding belief dynamics have to be taken into account in this context. We discuss
this topic with further detail later in this section and focus now on the definition
of state equilibrium. State dynamics are defined asymptotically in the same fashion
as in [section 3.3| First, we assume that there is a unique equilibrium solution for
individual state dynamics, ng obtained from solving Z'277; = 0. We then assume
that aggregate state dynamics, Zs, is given by the asymptotic limit of , given
the result in for asymptotic productive capital dynamics. In the long run
the state of the game, limy_, Z2 (t) = Zy, is again defined by (3.29), following the
discussion in on aggregate risk premium driven by the game investment
leaders. Again we shall consider that player j € L corresponds to the subset of
players that have scaled investment strategies consistent with Z47j = max (Z4J)~
Following this last definition, we define individual state equilibrium, Zs;, as the

solution to Zigvi (t) = 0. Individual state dynamics in the long run are given by:

- i — Z1,i — Zag (1 + hiZyy)
lim Zo (t) = Za; = i R ’
el 2’Z<) 2 T+TdiZQ—Z47Z‘+5

lim , (4.20)
where we assume that lim; o Z1; <Z472- (t), Zg’i (t)) = 7, is a unique asymptotic
outcome arising from belief and investment transitions to equilibrium. The result in
confirms that the existence of a unique equilibrium solution for Zs ; () requires
the existence of a SCE, guaranteeing the existence of a unique solution to (3.29).
To guarantee the existence of a SCE, we have to impose a specific distribution for
the individual institutional risk premium parameter, d;, such that limy_,. Z5 (t) =
Zg’l, ... Zg’n, is fulfilled. This constraint can be considered, because 2471- does not
depend on d;, following the result in . Substituting Zg’i by Z3 in ,
and then solving in terms of d;, we obtain the parameter condition guaranteeing
beliefs are consistent with a unique SCE asymptotically. Individual risk premium
distributions consistent with a SCE are now defined by:

pi =1 — (vi— 1) (Zsi — 9)

d; = — . 4.21
TZQ ( )

From the result in (4.21)), it is straightforward to confirm that (4.20) no

longer depends on Zy outcomes. Since investment equilibrium in the long run is

not a function of d;, institutional risk premium can be determined as a function of

(4.19) and (4.20)). The result in (4.21)) can be interpreted as the optimal price of risk

in a market with perfect information about the optimal state of the game, which
sets individual institutional risk premium in accordance with the economy aggregate

outcomes, player specific preferences and long run investment decisions. We are now
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able to define the final set of conditions for the existence of a SCE to (4.8)). Before
putting forward this set of conditions, it is convenient to determine under what
conditions are the transversality constraints fulfilled, in order to guarantee that an
optimal SCE solution, arising from the Pontryagin maximum conditions, exists. For
that purpose we rearrange expressions and in terms of scaled variables
and substitute the co-state variables by the optimality conditions, and .

The transversality conditions are now given by:

N~ (Z1,3 () Ki (D)7 Zo () Ki () e = 0; (4.22)
tli)r& Yi (Zl,i (t) Kz (t))%_l (1 + 2hiZ4,z' (t)) Kz (t) e_pit =0. (423)

Again recall that we defined long run capital dynamics in (3.27) as a function of
Zy,i. Assuming that we only accept equilibrium solutions for the dynamical system
defined by (4.14)), (4.16) and (4.17)), following the results in (4.18]), (4.19)), (4.20)) and

(4.21)), we can rearrange the transversality conditions given in (4.22) and (4.23) as an
asymptotic inequality. Conditions (4.22]) and (4.23]) are now given by the following

inequalities:

lim +™log [—%21771& (0) Zzﬂ-e[(%—ﬂ(Z4¢—5)+Z4,i—5—pi}t} <0; (4.24)
—00 )

Jim t~!log [%Z;;‘lKi (0)% (14 2h; Zsy) e[(%'*l)(24»176)+Z4r5*m]t} <0. (4.25)
—00 ’

From (4.24)) or (4.25) the growth and transversality constraint for the existence of
an optimal solution for the problem defined in (4.8)) is again given by:

§< Zy<o+ 2 (4.26)
Vi

We now focus on the description of strategic dynamics, assuming that beliefs

do not depend on the state evolution. To simplify our approach, we assume that
beliefs are a function of investment strategies, Zg’i (t) = Si (Za; (t)), and fulfil the
equilibrium condition defined in , such that .5; (2472-) = Zg’i. This naive hy-
pothesis regarding players’ beliefs has both advantages and disadvantages. The main
advantage is that it allows for a great deal of simplification and a full description of
strategic dynamics. This approach paves the way for a full qualitative analysis of
this game in the vicinity of a SCE. However, this analysis is based on a weak asymp-
totic argument. We can only guarantee the validity of qualitative outcomes when we
assume that Z5 (t) non-autonomous transitions, arising from Z, ; (t) dynamics, stay

in the vicinity of the SCE solution. We start by redefining consumption dynamics.
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Given the general hypothesis on the evolution of beliefs, we can redefine Z; ; (t) as

a function of Zy ; (¢):

Z1i (8) = Z13 (0) eo (5i(Z0i)=5:(Zua(s))ds, (4.27)

Now recall that the existence of a SCE solution, requires the existence of
a stable equilibrium for Zy; (t). Substituting Z5" (t) by S; (Za, (t)) in [{.17), the

general condition for stability of Zy; (t) solutions can be defined as,

pi + 67 rd;S, (Z4;)

4 _ _
4= Yi —rdiS; (Zai)  2hi [vi — rdiS; (Za;)]

(4.28)

The result in (4.28) has several implications. When we consider S, (Z4; (t)) =0, the
stability condition reduces to 2471 > 0 + p; /7. This result is not consistent with the
constraint required for the existence of an optimal solution. Beliefs cannot be static

in this setup. We consider then a simple hypothesis and define belief dynamics as,

pi —r —(vi —1) (Z4; (t) = 6)
rd;

Following (4.29), player consumption dynamics reduce to Z1; (t) = Zi,(0),Vt €

T. This assumption can also be interpreted in terms of the Life Cycle hypothesis

for intertemporal consumption, following the description in Given the

uncertainty regarding state outcomes, players rather choose consumption profiles

bi
Zz (t) =

. (4.29)

that are not distorted by investment transitions to equilibrium. Substituting (4.29)
in (4.17) we can redefine investment decisions as,

. b c
Zi (t) = Zgi (1)* + 524,1- (t) + - (4.30)

where a = 1/2 — 75, b= pi 4+ 07 — (i — 1) (2h;) "' and ¢ = (p; + 6 — ) (2hs)
Equation defines a Ricatti equation that has an explicit solution. Before de-
scribing the solution to the above differential equation, it is convenient to investigate
the properties of its coefficients, given the optimality and stability constraints defined
in (4.26)) and. First, recall that stable optimal solutions to require that
6 < Zy; < —b(2a)"' < 6+p;/vi. This condition implies that sign (b) # sign (a), for
solutions consistent with Z;; > 0. Second, feasible solutions to , 2472- € Rt
require that b?> > 4ac. Given these definitions, the solution to , is given by
, below, following the solution to the general Ricatti equation described in

Investment strategic dynamics are defined explicitly as,
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Vb2 —4ac 2a 2aZy ;(0)+b
vV b2_4actanh{ 50 [t—f— s arctanh (_ﬁ) }-i—b
Zu (t) = — = . (431)

We now conclude the description of the conditions for the existence of a SCE
solution to (4.8]), with the definition of equilibrium for Zy; (¢). Substituting (4.21))
and Zl,i = 71, (0) in (4.20), Zgyi is given by the following expression,

_ T — 213 (0) — Zy; (1 + hiZy,
2277; _ k 1,@( ) _4,2 ( i 4,z) . (4.32)
pi =i (Zai — 9)

Having described the conditions for the existence of SCE solutions consistent

with a stable strategic equilibrium, for the non-cooperative game given in . We
now focus on the qualitative description of this solution. We base our approach on
the weak argument for asymptotic stability discussed in This argument
is based on the results described in (4.18) to , which guarantee that a SCE
is always achieved asymptotically and independent of other players decisions, when
institutional risk premium is defined by a unique distribution that depends on the
asymptotic outcome of the state of the game. Since in the long run there are no
longer transitions driven by Z;; () and Z3 (t) dynamics, when we assume Zy; (t)
dynamics always converges to the equilibrium defined in , we can evaluate
qualitatively the local stability of the SCE strategies by testing the stability of the
system describing scaled net assets dynamics, {Z'271 t)s..., Zom (t)} The n by
n Jacobian matrix describing individual state dynamics in the vicinity of a SCE
is again given by and its partial derivatives defined by conditions (3.39) to
(13.43)).

The local stability of SCE solutions for the game defined in can be easily
evaluated numerically. If all the eigenvalue solutions of have negative real
part, then we can state that SCE solutions are at least locally weakly asymptotically
stable. A robust argument for local asymptotic stability would have to take into
account transitions to equilibrium arising from Z4; (t) decisions and Z3 (t) non-
autonomous dynamics. The result in (4.31)) can be used to test the robustness of
qualitative numerical results. We discard this analysis in this chapter and focus on
the evaluation of . To evaluate the dynamics in the vicinity of equilibrium
for this game, we again assume that initial consumption and productive/riskless
asset endowments are given by random outcomes distributed according to Z; ; (0) ~
U (0,1) and K; (0) ~ exp (1), respectively. To test the qualitative dynamics in the

vicinity of a SCE, we again have to consider the existence of a robust population.
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By robust population, we now mean a discrete set of n = 1000 agents with uniform
randomly drawn individual characteristics, p;,v; ~ U (0,1) and h; ~ U (—10,10),
such that Z4,i outcomes, defined by , fulfil the optimal growth constraint,
(4.26)), for the range institutional scenarios, rj, € [0.01 0.25] and r € [0.03 0.5], where
0= 0.0B@ For simplification reasons, we again consider that the state of the game is
driven by a fixed pool of investors, which is defined by a fixed share of the population,
following the discussion in We set this share at 30%, and consider that
the aggregate risk faced by investors, , is again obtained from the share of
aggressive players with higher rates of investment per unit of capital.

In below, we portray the parameter distributions describing the
computed robust population. In this setup, robust populations are characterized by
a large set of impatient investors with high intertemporal elasticity and bias towards
domestic/productive assets. This distribution of characteristics is consistent with
the existence of an unique stable equilibrium for Zy;, given by the positive root of
. Further numerical analyses, assuming different hypothesis, suggests that the
distributions portrayed, provide a good picture of a robust population, given the set

of conditions required for the existence of stable strategic solutions and a SCE.
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Figure 4.1: Robust population distributions.

below, portrays the qualitative results for the computed SCE
solution, the sample density of Z» and the mean and standard deviation for d;
distribution. The stability diagram shows that SCE solutions are repelling for all
the range of institutional scenarios considered. Our numerical analysis suggests
the existence of saddle solutions, when different scenarios are considered. However,
these solutions have very few stable dimensions. This outcome is robust to different
distributions of Z;; (0) and K; (0), and also to different hypothesis regarding the

8Given that there are two possible solutions to Z4,i, following , the routine tests the
robustness of each solution. When both equilibrium are robust, eigenvalue solutions to are
computed by choosing randomly one of the solutions. Our extensive numerical analysis suggests
that for this random set of parameters only one of the roots of is consistent with .
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share size of the population of leaders. We conclude that the optimal SCE solution
proposed, based on the naive evolution of beliefs following (4.29)), is inherently an

unstableﬂ game solution for (4.8)).
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Figure 4.2: Stability diagram and risk premium distributions.

We attribute this dramatic result to the existence of SCE solutions that im-
pose a negative institutional risk premium on the majority of players. This outcome
implies that investors in financial assets get a negative real yield on their investment,
since the game premium is always negativ@ Moreover, leveraged players do not
benefit from this arrangement either, since this setup imposes a positive premium
on their debt. This SCE arrangement does not benefit any type of investor. In our
opinion, this result is a consequence of players’ belief rigidity and rationality. An
optimal unique SCE solution to can only be imposed when we consider the
existence of a credit market with complete information that is able to price indi-
vidual risk optimally by taking into account player’s asymmetries. This is a result
of players’ belief rigidity. However, players do not concur on this solution, because
they believe they will be better off pursuing other objectives, even though only the
SCE solution described is consistent with an optimal solution. For agents facing
uncertainty, this decision can be considered as a rational one. Finally, other hy-
potheses regarding the evolution of beliefs could be considered, such as naive beliefs
that at least allow for consumption transitions. Given that our numerical results
suggest that SCE solutions are unstable for a wide range of consumption distribu-
tions, a qualitative analysis based on the two step approach proposed would not be
able to take into account the impact of this transitions on the stability of a SCE.
Therefore, we conclude that the existence of stable SCE solutions for requires

9In these simulations we again evaluate the real part of the two leading eigenvalues, min {Re (A)}
and max {Re (A)}, where A stands for the set of eigenvalues solving the characteristic polynomial
of in the vicinity of SCE. By unstable solutions we again mean that the SCE is a completely
unstable solution, which implies that the SCE solution is time-reverse stable.

10Tt is possible that some bond investors get a negative nominal yield, which means that they
pay interest on their investments.
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that we take into account the role of the controls and beliefs gradients evaluated in
the vicinity of a SCE. An interesting exercise would involve the description of the
class of smooth belief functions that is consistent with the existence of stable SCE
institutional scenarios. Alternatively, we could drop all naive assumptions regarding
the evolution of beliefs and evaluate the existence of learning mechanisms consis-
tent a SCE. We discuss this approach in the next section for a game where players’
risk premium dynamics are given by the evolution of his state conditions, following
the proposal in This outcome illustrates the implications of introducing
further nonlinearities in competitive economic setups, when we take into account
the results obtained for the game described in [section 3.3 The inclusion of further
nonlinearities not only introduces belief subjectivity in this class of games, but also
is not consistent with the existence of stable optimal SCE solutions for games where

players have simple naive beliefs.

4.4 A consumption and investment game with invest-

ment bias and coupled endogenous risk premium

To introduce strategic interactions in our framework, we propose an extension to the
game discussed in the previous section. We now drop the institutional risk premium
hypothesis and consider that individual risk premium depends on the ratio of net
financial assets to productive capital. Interest payments/revenues are now given by
rB; (t) [1+ (B; (t) /K; (1)) (B (t) /K (t))], following the proposal in (3.4). Given this
brief introduction, the non-cooperative differential game faced by player i is now

given by the following dynamic optimization problem:

MAX e POy (1) dt
Ci(1).Li(t) Jo

subject to the solution of: (4.33)
Bi(t) = Ci (t) + I (t) (1 +hy }gi((tt))) +7B; (1) (1 o %) — K (1) 5
Ki(t) = 1; (t) = 6K, (1) ;

=

satisfying the transversality conditions, (C.18]) and (C.19), guaranteeing that solu-
tions to (4.33) do not grow too fast. The optimal Keynes-Ramsey consumption

strategies for (4.33)), following the procedure described in [section 4.3 and given the

maximum conditions in [C.1.2] are now defined by:

Ci (t) = 210 <pi —r— 27”}3{1 Ei; B((tt))> ; (4.34)




G (1) = S0 (1 + 2hil"(t)>_1

v —1 Ki(t) ) o
I L) K B (1)? B (1) (4.35)
k= 2hi gy 2hige s "K (02K (1)

We obtain the optimal rule that guarantees indifference between consumption strate-
gies for player i, by imposing equality between consumption strategies, (4.34) and
(4.35), and substituting by the capital accumulation equation (C.17)). Again, this

rule is given by the dynamics of strategic investment decisions,

L) g BIOBMN, T B;(t)’ B(t)
b0 =i+ (T2 o) B0~ 3 o 7 ) )
Bi (t) B(t) K; (1)
+<r+2rKi(t)(t)+6_rk> T

Following the scaling rule given in (3.21]), we obtain the stationary dynamical
system defining the general solution for the non-cooperative game given in (4.33), in

terms of player ¢ dynamics:

pPi —T — 27“2271' (t) Z2 (t) — (’}/7; — 1) (Z4,i (t) — 6)

Z1; (t) = Z1, (1) — ; (4.37)
Zoi(t) = Z1i (t) + Zai (t) [1 + hiZy; (1)]
(4.38)
+Z2,i (t) [T‘ + 'I"ZQ’i (t) 79 (t) — Z47i (t) + 6] — Tk;
o D (t)° . . T2
Z471 (t) = —72 + [’I” + 2’!”Z2,z (t) 7o (t) =+ (5] Z4,Z (t) — oh, 2271 (t) 7y (t)
t (4.39)

+r+2rZy; (t) Za (t) + 0 — 1) o

where productive capital dynamics, K; (t), and aggregate state dynamics, Zs (t), are

given by (3.24) and (3.25)), respectively. A quick glance at the strategic controls of
player i, defined by (4.37) and (4.39)), shows that players lack the relevant information
to pursue their optimal strategies. We follow the same set of assumptions regarding

the existence of feasible strategic solutions based on beliefs, given in [section 4.3]
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This involves assuming the existence of individual beliefs, Zg’i (t), as previously.
Substituting Zg’i (t) in and ([£.39), we obtain the belief-based controls for
player . The dynamical solution to (4.33)) is now given by the evolution of individual
state dynamics, , while strategic dynamics are defined by:

Z1i(t) = Z1, ()

[pi — 7 =225, (1) Z5" (8) = (3 — 1) (Zai (1) — 5)] P (4.40)
vi—1 | |

 Zaa (1)°
2

Zoi (0 25" () + |r+ 202 (1) 23" (8) + 0 — 7

Z44(t) = n [7“ 2T (8) 22 (1) + 5} Zy: (1)

1
2h;

., (4.41)

2h;

Following the discussion in we have to guarantee that the dynamic
solution to is consistent with the existence of belief solutions that bound the
state-space of the game asymptotically. First, we check under what conditions beliefs
are consistent with the existence of asymptotic strategic equilibrium. This assump-
tion requires that the set of conditions, lim; . Zg’i (t) = Zg’i A Zl,z’ (t), Z'47i (t) =0,
is fulfilled. From (4.40) and (4.41) we obtain:

pi_T_(’Yi_l)(ZAL,i_é)'

Zg’z - = )
2TZ27Z'

(4.42)

z2. = _
ghi_ 2= (r+0) Zas — (r+0 — ) (2hs) ! (4.43)
2 27‘2271‘24’@' — T (th)_l 22271 + T (hi)_l Z2,i ' .

From the results in (4.42)) and (4.43]) we will show that belief solutions con-

sistent with strategic equilibrium are no longer unique, but given by a continuous

curve of equilibrium solutions. This result has dramatic implications. However, as
we demonstrate later on, it has a straightforward interpretation in the context of a
portfolio game. To justify our claim we start by eliminating Zg’i from and
. After rearranging we obtain,

1 o (=1 5 5 1 _
== Zi; 2924 i—1)(0— i Zai
(2 7) 4,z+< 1 ) 2,i 44, + [(’Y )<5 2hi> +p +5] 4,

r—pi—(n—18\ ,  vid+pi—rk
Zaji
+( 4h; 200 o,

(4.44)
= 0.
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Equilibrium condition describes a quadratic curve relating individual invest-
ment decisions and financial outcomes. It defines an asymptotic frontier solution,
where player beliefs are always fulfilled. This frontier is always defined by a hyper-
bol since [(v; — 1) / (4hs)]*> > 0. The frontier defined in is defined by the
right hand side of a hyperbola for feasible values of investment strategies, 2471- e Rt
We show this result numerically later on. First, it is convenient to rearrange (4.44))
as an equilibrium solution for Zs; in terms of 247,-. Rearranging we obtain,

P (3 =) (2471')2 + [(’Yi —-1) (5 - ﬁ) + pi + 5} Zy;
a ' (Yi—1)Zyi+r—pi—(vi—1)6 (4.45)
) o N1
_4hi (715 + Pi Tk) (2hz)

(Vi = 1) Zai+r—pi—(vi—1)8

In this setup, beliefs provide only information about the game asymptotic
frontier. We do not have any information about the value of beliefs in equilibrium.
Under these circumstances, the definition of naive assumptions regarding the evolu-
tion of beliefs is no longer an option. The analysis of equilibrium and the evaluation
of SCE solutions in this framework is a complex geometric problem. We propose
to analyse this solution as a stochastic decision process under uncertainty. To il-
lustrate our approach, we start by defining equilibrium for consumption strategies,

Zl,i. Setting Zg,i = 0 and solving for Zl,i, we obtain,

Zl,i =T — 2471‘ (1 + hiZ4’i) - ZQJ' (T‘ + TZQ’iZQ - 2471' + 5) , (4.46)

where Z, is again defined by the investment leaders’ actions, following the result
in (3.29). From , it is clear that Zl,i outcomes depend solely on investment
decisions, given the result in . Since the state of the game, Z5 is also a func-
tion of 24,1' outcomes, we have to check under what conditions 2472‘ is bounded, to
bound the state-space of the game asymptotically. In we showed that
investment decisions are bounded by growth and transversality conditions. The in-
terval defined in is again a necessary condition for the existence of optimal
solutions to the game defined in . However, as solutions might not be unique,
it is convenient to redefine the notion of acceptable solutions to the system given by

(4.38), (4.40) and (4.41), following the definitions given in We assume

" This outcome can be related to|[Merton| [1972] proposal on the efficient portfolio frontier, which
has been one of the main workhorses of modern financial and portfolio decision theory. The effi-
cient portfolio theory suggests that the relationship between the expected value and the standard
deviation of a given portfolio is correctly described by the right hand side of an hyperbola.
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now, that solutions can be described as an ergodic invariant set with a well defined
invariant probability measure, whose expectation operator we denote by (), such
that limy_oo t~! fg Zmi (t) = (Zm,). 1f this invariant set is unique, (Zpi) = Zm.i,
then solutions are consistent with a SCE when players concur in a unique outcome
for Zy. Following this definition, we can redefine K; () in the long run, by taking
the asymptotic limit of . Long run productive/domestic capital dynamics are
defined by

Jim tlog K; (t) — (Z4;) — 6. (4.47)

Following the result in , the constraint on scaled investment activities
that imposes the existence of long run dynamics consistent with exponential growth,
limy 00 K (1) — 00, is given by (Z4;) > d. To obtain the transversality constraint,
we follow the same procedure described in , given in to ,
but taking into account solutions described by the invariant probability measure of
a ergodic invariant set, (Z,,;), with well defined lower and upper bounds given by
liminf; oo t 7! fg Zp,i (t) > min (Zmﬂ;) and lim sup;_, . t~1 fg Zpm,i (t) < max (Zmyi),
respectively. The growth and transversality constraint is now given in terms of the

invariant probability measure for investment decisions,

0 < (Zy;) <d+ %, where min (Zs;) > § and max (Z4;) <8+ ’yﬁ (4.48)
i i

The solution to , assuming the existence of subjective beliefs, is given

by an asymptotic frontier bounded by growth and transversality conditions. It is
no longer possible to evaluate this game using qualitative dynamical methods, since
equilibrium for any given period t is now a function of individual subjective beliefs
and players investment decisions. It is possible to provide a geometric description of
the possible individual game outcomes and put forward some conjectures regarding
feasible solution scenarios, if we assume that individual beliefs, Zg’i, follow a distri-
bution with a finite second moment. To portray this feature, we compute the equilib-
rium outcomes for a feasible set of investment strategies, as defined in , given a
set of parameters values, {r,ry,J, p;,vi,h;} = {0.02,0.1,0.03,0.05,0.3, —0.01}, and
assuming a random sample for state outcomes, Zy ~ N (o, 1), where a ~ N (0,0.1)
is also a random number. Results are given in below. The picture on
the left portrays individual state outcomes, 2271' (2471-), for a given bounded vector of
optimal investment strategies described by the growth and transversality constraint
in . Individual state outcomes are given by the right hand side of the hy-
perbola describing equilibrium condition (4.44). The picture on the right portrays
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the expected values and standard deviations for consumption outcomes for the same
range of individual optimal investment decisions, obtained from a Z5 sample with

one thousand random draws.

Individual state outcomes and optimalinvestment decisions Expected consumption outcomes with random states

@ Wean (with stondard desiations]

(a) Individual state outcomes (b) Expected consumption under a random state

Figure 4.3: Individual state and consumption outcomes assuming a random state

portrays the indecision faced by players in an environment with
incomplete information. The sampled distribution of scaled consumption outcomes
suggests that this player may be undecided between following conservative or ag-
gressive investment strategies, when seeking to maximize his expected long run con-
sumption pay-off. The explanation for this result is straightforward. Equilibrium
condition defines a 4** order polynomial for Zl,i in terms of 24715 that depends
on state outcomes, Z», which are a result of other players investment decisions and
initial capital endowments, following the result in . Given different parame-
ter combinations and assuming normally distributed state outcomes, Z ~ N (a, 1),
with o € [—2...2], numerical results for different values of o suggest that we may
have one global maximum, interior or on the edges, or two local maxima, most likely
on the edges. The geometric definition of a maximum for player i depends on his
beliefs about the state of the game, which in turn depends on other players’ beliefs.
Further, if we consider that players beliefs evolve, as they try to learn state outcomes,
their actions lead to changes in the environment faced by other players. Under these
circumstances a geometric approach is not an option. Game asymptotic solutions
are, in our opinion, best described as a multi-objective optimization problem, where
the existence of multiple decision criteria in a co-evolutionary framework is taken
into account. We are interested in evaluating two possible game outcomes. If game
dynamics, given a set of rules describing an adaptive learning and multi-criteria

decision scheme, are consistent with strategic coordination, leading to an unique
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asymptotic equilibrium solution, as defined in and , then we argue that
this solution is consistent with a SCE . The outcome of this portfolio game between
asymmetric investors has thus stable solutions consistent with the return to the dollar
property@. Given the existence of strategic interactions and uncertainty driving the
evolution of consumption outcomes, it is also likely that under certain conditions this
property is not fulfilled and game solutions can only be described statistically when
the asymptotic dynamics are consistent with an ergodic distribution. In this specific
case we can argue that players have a positive probability of returning to the dollar
for every reachable state of the game but do not settle in any of the visited states.
To test these hypotheses, we propose to evaluate the game asymptotic solution as
a stochastic repeated game, where agents seek to learn a SCE and maximize their
equilibrium consumption outcomes under uncertainty. The choice of a stochastic
game setup to investigate asymptotic dynamics in nonlinear differential games has
several advantages. First, this is a setup that mimics the co-evolutionary nature of
the original game and allows the introduction of both adaptive learning and multiple
criteria decision in a coherent mathematical fashion. Second, a continuous time ver-
sion of the asymptotic solution can be simulated as a HMM. This implies that player
moves are chosen randomly and strategies are determined sequentially, as opposed to
the simultaneous play arising in differential games. As previously discussed, equilib-
rium dynamics can be simulated as a continuous time Markov game and a statistical
description of outcomes can be obtained through sampling, following the Markov
Chain Monte Carlo method. This is a particularly interesting approach computa-
tionally since one our main objectives is to investigate limiting outcomes described
by a SCE. For adaptive schemes that are not consistent with a SCE when ¢t — oo,
HMM setups may impose undesirable limits to the number of sampling trials, range
and population size, thus limiting the quality of samples and our knowledge of the

solution long run dynamics.

4.4.1 Asymptotic dynamics under uncertainty

Following the discussion in the previous section, we now focus on the description of a
stochastic continuous time game for the equilibrium solution of the non-cooperative
game defined in (4.33)), as a multi criteria Markov decision process with incomplete

information, which we define here generally as a multi-objective maximization ex-

12This definition was introduced in the famous paper by |Georgescu-Roegen [1951], to describe
the robustness of equilibrium in many agent systems with decentralized strategic decisions. The
author coined this expression to describe the asymptotic dynamics on the production-possibility
frontier, which he characterized in some cases as lacking the return to the dollar property or of
being of the saddle type.
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pectation problem. Given the individual asymptotic equilibrium solution defined by
equations (4.45)) to (4.48)), player i’s objective in the asymptotic equilibrium frontier

is to

MAX E [Z1;] (4.49)
Za;

subject to and . In this framework, players seek to maximize the ex-
pected consumption outcomes under uncertainty, E [Zl,i] = Zu [ZQJ‘ (2471‘) ,Zé],
describing player ¢ asymptotic pay-off function as defined by equilibrium condition
(4.46)), given a choice of optimal ZM strategic actions in a finite interval fulfilling
constraint , describing player ¢ optimal strategic space. Player ¢ pursues this
objective assuming individual beliefs about state outcomes, Z, describing player
i finite set of belief states. We shall assume that Zi is a set defined by the first
two moments of a belief distribution, Sf’, with a finite second moment, such that
Zi ~ Sll? (E (Sf%t) ,CI)?), where SfaSt C S is the player i set of available past in-
formation about the set of states of the game, S, and ®; € R a function of player ¢
observed forecast errors, €;, which fulfils ®; = 0 for £ (Z%) = Zy = ¢; = 0, following
the general conditions described in and for the existence of SCE solutions
in an adaptive learning scheme.

To evaluate the decision problem defined in , we propose to model it as
a Markov process under incomplete information. For that purpose we shall consider
a multi-criteria decision process, where players co-evolve in a stochastic learning
environment. The application of stochastic processes to evaluate multi-objective
optimization problems, is an inter-disciplinary approach that merges concepts of
evolutionary optimization, machine learning and non-cooperative game theory. This
approach focuses on the development of evolutionary algorithms capable of evaluat-
ing outcomes in complex interacting environmentﬂ. In a review on modern evolu-

tionary multi-objective optimization methods, Zitzler et al|[2003] summarizes this

13This approach is gaining ground in economics literature. In a recent review on these topics,
Castillo and Coello| [2007] discuss the potential applications of these inter-disciplinary methods
in the fields of economic and finance. This approach are already widely used in modern portfo-
lio optimization theory. [Steuer et al.| [2008| gives an overview of the inter-disciplinary aspects of
multi-criteria portfolio optimization. The author suggests that the inclusion of further decision cri-
teria, can improve existing models of expected portfolio maximization under uncertainty. |Hens and
Schenk-Hoppe| [2005] shows that mean-variance portfolio strategies in incomplete markets are not
evolutionary stable, whereas diversified portfolio strategies consistent with the CAPM rule are evo-
lutionary stable. [Elliott et al.|[2010] proposes a regime switching HMM for mean-variance portfolio
selection and provides a recent survey on the application of stochastic processes in finance. Finally,
Ahmed and Hegazi [2006] provides a discussion on three inter-disciplinary aspects of portfolio opti-
mization: (i) multi-objective optimization; (ii) dynamical re-balancing; and (iii) evolutionary game
theory.
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approach in the following fashion. “The term evolutionary algorithm (EA) stands
for a class of stochastic optimization methods that simulate the process of natural
evolution.”

We now focus on the description of the specific HMM setup. First, we define
the strategic decision space for player i, as a one dimensional lattice with reflective
boundary conditions. Player ’s strategic space is defined by a discrete bounded set,
A; € R7%, where min (A;) > §, max (A;)) < 0 + p;/v: and 0; = #A;. Given a small
number ’(E the set, A;, describing player i strategic decision space can be defined

as,

Ai—{5+v,5+2v,...,5+pi—v}. (4.50)
Vi

Given an investment strategy value, 2471- € A;, player i’s feasible set of strategic

actions, AZM, is defined by: (i) {AZZ’@., AZY AZL} ={-v,0,v},if 0+v < Zy; <

5+ piv; t—w s (il) {AZEJ,AZL = {0,0}, if Zy; = 6+ v; (iii) {AZ@,AZ&.} -
{~v,0}, if Z4; = 6 + piy; ' — v. [Figure 4.4 below, portrays the evolution of player

1 investment strategies, for a given Z4,i e A,

77”

f\f\/g\/_\/‘\/_\

dtv ZyiV Zy; Zyitv d+pjlyi-v

G b S

Figure 4.4: Player investment transitions in a lattice

where 6; € RT are player 7 transition rates between reachable Z4,i states. Transition
rates fulfil the usual probability transition rules for a stochastic matrix describing
a Markov chain over the finite state-space of strategies: (i) 0 < #; < 1; and (ii)
07 + 6 + 07 = 1. The total probability of decreasing, maintaining or increasing
investment is given by, P (AZy) = n 'Y, nv0;, P(AZ]) = ntY .y 6) and
P (AZZ) =n! Y ieN 01*, respectively. By setting strategic actions in this fashion,
we seek that the HMM proposed is able to capture the co-evolutionary nature of
decision under uncertainty suggested by our framework. Players follow investment

paths and adjust these as the environment changes, instead of radically changing

MFor simulation purposes, we assume v = 1073,
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their investment strategies with every state innovation. This option is consistent
with investment strategies in financial markets, where radical trading decisions might
trigger market movements that lead to important portfolio losses. It also guarantees
that an absorbing state, ) ;. 19? =n= P (AZE) = 1, consistent with a SCE
solution, as defined in , exists.

As mentioned previously, we shall assume that individual transition rates,
0;, are computed following a simple multi-criteria decision process that takes into
account the uncertainty faced by players, given the available information about the
state of the game. In the absence of information, modern machine learning theory
suggests the use of variational methods for inference and forecasting purposeﬁ. A
popular approach to inference in HMM environments, is the Ezpectation Mazximiza-
tion(EM) algorithm, which requires some knowledge about the evolution of the state
of the system. We discard the use of sophisticated machine learning methods, be-
cause of efficiency problems arising when performing inference in a large scale. To

overcome this issue, we propose the use of simple Bayesian learning mechanisms. In

[subsection 4.4.1] we demonstrate the effectiveness of this approach to describe game

outcomes consistent with the existence of SCE solutions. Bayesian inference meth-
ods require information about the evolution of the state of the game. In this setup,
players can extrapolate relevant information by monitoring their forecast errors. The

forecasting error, €;, observed by player i, is generally given by,

)

Zvi—EZ1;) = 213 (243, Z2i, 22| — 21 (243, Z2i, E (Zé)] = €. (4.51)

Substituting Z;; and E [ZM], by the equivalent steady-state expression, following

(4.46)), we obtain,
Zy (1) = E[Zy(7)] + _aln) (4.52)
TZ%@ (1)’

where 7 describes the time period of the continuous time HMM]] Finally, following
(4.52), we define player i forecast rule, as a simple error correcting mechanism based

on the last inferred outcome, Zs (7), of the state of the game:

5For an introduction to this topic see [Bishop| [2006], chapter 10, or [Barber| [2012], chapter 21.

16 As we are describing the asymptotic dynamics of the game defined in , we shall use this
notation when referring to asymptotic time. In a continuous time Markov process, time evolution is
defined as a random distributed exponential variable, following AT ~ exp (n), where E[A7] = n™!,
defines the average waiting time for player i.

123



Bzt An] =B[Zim)] + 2 S B[ZirtAn) = Z(r).  (453)
T2y, (1)

The result given in defines the simplest inference rule available to play-
erﬂ in this incomplete information setup. This result has several advantages. It
allows for a simplification of the expected value computation process, thus greatly
reducing the computational time required for the simulation of the HMM, and conse-
quently, the cost of introducing other decision criteria. The existence of information
about past moments of the game paves the way for the introduction and evaluation
of different reinforcement learning mechanisms. The SCE optimality condition can
then be used to rank these mechanisms according to their performance.@. We pro-
pose that players’ beliefs about the evolution of the state of the game have to be
consistent with Bayesian learning in a competitive environment, in order to preserve
the co-evolutionary nature of this decision process. This assumption involves intro-
ducing as decision criteria, an individual measure of uncertainty, which we defined
initially as the second moment of a belief distribution with finite variance, ®;. In
this specific application, we assume for simplicity that ®; evolves according to some
linear function of the observed forecasting errors, ®; (¢; (7)). Following this set of
assumptions and the result in , we assume that individual beliefs, Z;, about

future values of Zy are normally distributed,

Z5 (1 + A1) ~ N (Za (1), ®7) if T >0,
N (4.54)
Zy (T + A1) ~ N (0,1) ifr=0.
We are now able to describe the computation of individual transition rates.

At a given period, 7, the players objective is to take investment decisions that are

'"The result in shows that players can learn the past moments of Z>. If expectations were
driven solely by beliefs, then the learning rule would be a belief-based decision. See [Feltovich|[2000]
for a discussion on this topic.

18T economic theory the reinforcement learning assumption has the following interpretation. It
justifies how equilibrium may or may not arise when agents have bounded rationality. The consistent
expectations equilibrium (CEE) hypothesis by |[Hommes and Sorger| [1998|, for example, suggests
that linear forecasting decisions, based on past available information, represent simple rational
adaptive learning rules for nonlinear incomplete information environments, that are consistent with
the existence of self-fulfilling belief solutions As the authors put it, “..agents form expectations
about future variables in such a way that their beliefs are consistent with the observed realizations in
a linear statistical sense. In other words, it is supposed that agents act like econometricians using
linear statistical techniques and, in doing so, they do not make systematic forecasting errors...”. An
application of this hypothesis in a nonlinear dynamic optimization setup can be found in |[Hommes
and Rosser| [2001]. For a thorough review on the topic of multi-agent reinforcement learning see
Tuyls and Nowé| [2005].
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consistent with the long run maximization of their expected outcomes under uncer-
tainty. At a given Z;; € A;, players decide what is the best action to undertake
given the full range of achievable investment decisions to the left and right of 2472-,
which are defined by the following discrete sets, AiL = {5+v, s Zai— v} and

= {24,1‘ +u,. 0+ pifvi — v}, respectively. To evaluate the best path to fol-
low, players compute the maximum expected consumption values, given , for
all the range of their feasible strategic space, E, iar [ZLZ- (Ai, Zy (7'))], and deter-
mine the following quantities, ZL T — max {ET+AT [Zl,i (AiL, Zy (7'))] }, Zflimax =

max {ET+AT [Zl,z (AR )]} and Z =F.iar [Zli (Z4i, Zy (1 ))] The best ex-
pected achievable outcome is defined generally by Zp%" = max {ZlL R Zlc:i, Z1L7 ;max},

while the remaining outcomes are defined as Z; "st1 and zZy 7562 Finally, each agent
determines the following quantities, taking into account the uncertainty regarding
the best achievable outcomd™}

@Zuorst 1 Zf}fmt )1 (Z2 (1) + (I)i) _ Z%:EiSt (22 (r) — (I)i)
if
ZETL (2, (1) + @) > 2Vt (Z (7) — @) (4.55)
@EUOTSt’l =0 otherwise.
@Zuorst ,2 Z;U;)TSt )2 (Z2 (1) + (I)i) _ Zi):aist (Z2 (1) — (I)i)
if
ZY (Zy (1) + @) > 205t (22 (1) — @5) (4.56)
@Euomm =0 otherwise.
@?Est = Z%ist (Z2 (7—) + Q)Z) Zbest (Z (7_) _ (I)»L) . (457)

Finally, transition rates are given by a weighted average of all achievable outcomes

that are greater than the lower confidence bound of Z{’eft expected outcomes,

ebest @best (@best + @worst 1 + @worst 2)
0;1)07“515,1 _ Q;uorst,l <®gest + Q?OT“J + @;uorstQ)*l . (458)

worst,2 _ ~worst,2 best worst,1 worst,2\
0L = o (@i +ourstl | g )

To describe the mechanics driving this decision process, we resort to the ex-
ample portrayed in[Figure 4.3] In this setup, the best expected outcome for agent i, is

YWhere Z1'{"*"! (Z2 (1) £ ®;), 21" (Z2 (1) £ @;) and 25" (Z2 (1) £ ®;), describe Z{;"*,
Zlcjl- and Zf;m”, evaluated at Z» (1) & ®;.
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in one of the extremes of A;. It is not clear which one of the two extremes has the best
expected value. However, by evaluating the landscape in this fashion, we know that
the transition rates for a player with an interior strategy, d+v < ZM < 0+pivy; 1w,
are ranked according to, 0 < 9? <0, 0? and 0, ~ 0i+ . This ordering of rates is,
in our opinion, a reasonable weighting of the uncertainty faced by player i. This
process allows players to re-evaluate their investment priorities in a co-evolutionary
environment, where one player’s decision may lead to drastic changes in the land-
scape. To illustrate the HMM described in this section, we simulate it numerically as
a Markov chain. Our main objective is to show the crucial role played by uncertainty.
As in this framework, players’ expected outcomes are homogeneous, uncertainty is
the only distinctive criteria driving player decision@ This feature of the HMM
allows us to focus on the dramatic consequences of uncertainty in the quality of so-
lutions that may arise from . Our approach is purely illustrative. The simple
metric proposed serves mainly the purpose of avoiding the computational costs of
performing large scale inference and paves the way for a future statistical analyses
of this HMM outcomes based on the Markov Chain Monte Carlo method. A more
thorough analysis will involve assuming a more realistic decision criteria based on
a consistent probability measure, which takes into account the heterogeneity and
evolutionary nature of the individual inference process. In the next two sections,
we demonstrate the framework proposed for two different hypothesis describing the
evolution of individual uncertainty. In these simulations, we consider an institu-
tional framework defined by {r,d, r;} = {0.05,0.03,0.11}. Each experiment draws a
distinct robust populationEL with initial investment positions distributed randomly
following, Zs; (1 = 0) ~ Ug (A;).

20The inclusion of individual memory, is a natural extension in this HMM. It allows the limited in-
troduction of heterogeneity about expected state outcomes, without adding further complications to
this setup. The general Bayesian forecast rule in an environment with individual memory, following

the set of conditions described, would be given by Z& (7 + A7) ~ N (22 (1), @i (& (7‘))2) , V1 >0,

where Z, (1), is the sample mean of player i observed posterior distribution up to period 7, and
b, (& (T))Q, is a function of the estimated sample variance given a prior belief that depends on the
evolution of player ¢ past forecast errors, & (7).

2By robust population, we mean a discrete set of n = 1000 agents with randomly drawn dis-
tributed individual characteristics, p;,v; ~ U (0,1) and h; ~ U (=10, 10), that are consistent with
0+ pi/vi <1, #A; > 10 and Zl,i > O,VZM € A;, given a reasonable range of state outcomes,
—1.5 < Z> < 1.5. Following the definitions in [section 4.3 K; (0) is again given by random draws of
an exponential distribution, K; (0) ~ exp (1), and the evolution of the state of the game is driven
by a 30% population share of aggressive investors.
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4.4.2 Self-confirming equilibrium

Before putting forward the results of this experiment, it is convenient to frame the
definition of SCE, given in , with the literature on evolutionary multi-objective
optimization. In this field, the analysis of solutions relies on the definition of a
Pareto Dominance criterion@ or Pareto Efficiency frontier, to develop efficient algo-
rithms and order feasible solutions. A strategy is Pareto Dominant, if it lies in the
Pareto Efficient frontier. This approach cannot be extended to decision problems
under uncertainty. In incomplete information environments, solutions are by defini-
tion conjectural equilibria outcomeﬂ since equilibrium is a result of co-evolution
under uncertainty. In evolutionary multi-objective optimization environments with
uncertainty, a common approach is to order solutions in terms of some Bayesian
Efficiency criterion. This involves considering a consistent Bayesian learning in-
centive. A reasonable definition of Bayesian Efficiency for the problem defined in
, is given by the SCE condition. To be able to order solutions to , con-
sistent with this notion of Bayesian Efficiency, we have to introduce an incentive

compatible rule in the Bayesian learning mechanism of our HMM. Recall that in

[subsection 4.4.1] we mentioned that a SCE requires the existence of an absorbing
state, > ;o 09 = n. Following our definition in (4.54), a SCE is achieved for this
HMM if lim;—0o®; (€(7)) = 0 = E [Z} (7 + AT)] = Z2(7),Vi € N. To include a

valid Bayesian Incentive in this setup, we shall consider that when e; (7) = 0, agents

no longer forecast future outcomes under uncertainty, ®; (0) = 0. We demonstrate
the existence of SCE solutions for the HMM proposed, assuming that uncertainty de-
pends linearly on the last observed forecasting error. In this experiment, ®; evolves
in the following fashior@,

®; (7 4+ AT) = 108|¢; (1) |. (4.59)

We start this presentation with the parameter distributions describing a ran-
dom robust population. These are portrayed below, by the histograms of p;, v; and
h;. In this institutional setup, robust populations are characterized by a group of pa-

tient players with a high rate intertemporal substitution of consumption, where the

22See [Gajda et al][2010] for a formal definition of Pareto Dominance and a mathematical dis-
cussion on multi-objective optimization problems.

23We consider that SCE solutions are a particular stronger case of conjectural equilibrium solu-
tions. See [Wellman et al|[1998] for a discussion on this topic in a continuous time pure exchange
economy model. In economics literature a popular extension of this topic is the conjectural vari-
ations approach. [[taya and Shimomural [2001] provides a thorough discussion on this method for
multi-player public goods games.

24The constant 10% in is used to portray the robustness of this linear learning rule in
guaranteeing convergence to a SCE for this HMM.
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vast majority of players is biased towards investment in productive/riskless assets.

T e O e L =
(a) Distribution of p; (b) Distribution of ; (c) Distribution of h;

Figure 4.5: Robust population distributions.

The next figure portrays the HMM convergence to a SCE. The dynamics
Z5 (1), on the right, describe an initial fast transition to the equilibrium region, fol-
lowed by overshooting phenomenon arising before players concur on a SCE solution.
In the figure on the left, we observe that uncertainty about investment decisions
decreases during the initial convergence moment and suddenly increases before set-
tling in the SCE solution. This behaviour during transitions is, in our opinion, linked
to dynamics of learning under uncertainty. In a first phase, there is a clear trend
driving strategies towards a region where agents outcomes are close to optimum.
At this point, higher aggregate outcomes are achievable, but they come at the ex-
pense of increased uncertainty among players. This eventually leads to a review of
the long run strategies by an increasing share of the population. The reason for
this phenomenon is straightforward. There is a set of players that is now worst
off. As the co-evolution process develops, players eventually concur on a equilibrium
that best fits their individual interests. This self-organization process materializes

in conjectural SCE solution when uncertainty vanishes completely from the system.
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Figure 4.6: Total probability, game and consumption dynamics.
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describes the asymptotic outcomes for the mean absolute fore-
cast errors, aggregate state and investment dynamics. The figure on the left shows
that the learning rule described in is comnsistent with the existence of opti-
mal solutions to (4.33), as the result lim;_.®; (¢ (7)) = 0 guarantees that is
fulfilled. Additional simulations suggest that this specific setup is always consistent

with convergence to a SCE solution.
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Figure 4.7: Asymptotic mean absolute forecast errors and aggregate dynamics.

We conclude this discussion with an analysis of the effects of player asym-
metries and portfolio decisions on consumption outcomes. These results are given
below in . The figure on the left shows that there is a linear/logarithmic
relation between player patience and his consumption outcomes. This result is con-
sistent with the fundamental law of growth theory, which states that agents with
higher savings rate (smaller discount rates), are able to sustain higher consumption
profiles in the futurﬂ A similar relation is observed when players portfolios are
compared against consumption outcomes. In the figure in the right, we observe that
leveraged players have the smallest share of consumption to productive assets. These
results suggest that players with diversified portfolios and higher propensity to save
will perform better in this economy. The remaining figures portray the relation be-
tween intertemporal substitution of consumption and investment bias on the final
consumption outcomes. The joint density plots show that the majority of players
with higher +; and higher h; have lower consumption profiles. However, there is no

clear pattern arising in these two cases.

25This result holds for growing economies, where savings finance profitable investments in the
present that increase capital in the future.
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(a) Density (Zlyi,pi) (b) Density (Zlyi,'yi) (c¢) Density (Zlyi,hl (d) Den51ty 21 ,,Zgz

Figure 4.8: Joint densities of final outcomes versus player asymmetries.

4.4.3 Unintended consequences

To portray game dynamics consistent with strategic interactions and unintended
consequences driven by subjective beliefs as a possible outcome to , we now
assume that agents have homogeneous beliefs about uncertainty, except when no
forecast errors are observed. In this setup, uncertainty is no longer a linear function
of € (1), but given by a Heaviside step function. This specification allows us to
show that above some threshold, uncertainty plays a crucial role on the quality of
solutions. It also also guarantees the existence of a Bayesian Incentive mechanism
that is compatible with the existence of an absorbing state for this HMM. This
simplification has the sole purpose of showing the co-evolutionary nature of solutions
to . Solutions in this setup are not unique and asymptotic dynamics are better
defined as invariant sets. Although these solutions no longer fulfil the Bayesian
Efficiency criterion and, therefore, are non-optimal, numerical results suggest that
consumption outcomes are quasi-optimal in the long run, when compared to the

previous example. Uncertainty is now defined as

1 if |e; ()| >0
O, (14 AT) = . (4.60)
0 if |e;(7)|=0

We start this presentation with the description of player asymmetries. A

quick glance at the histograms given in [Figure 4.5 and |[Figure 4.9 shows that there

is no significant differences between the two samples.

below, portrays the main results for this experiment. Again, we
observe a fast convergence to long run dynamics. However, asymptotic dynamics
are no longer described by a unique SCE solution. The stochastic process does not
converge to an absorbing state. This solution is best defined as an invariant set, and
asymptotic dynamics are described by a stationary distribution. A quick inspection

reveals that aggregate consumption outcomes converge to values close to the SCE
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Figure 4.9: Robust population distributions.

solution portrayed in Although these two experiments cannot be directly
compared, since initial values and population characteristics are not identical, this
result suggests that the invariant set describing this game asymptotic dynamics can
be characterized as a quasi-optimal solution to . The level of uncertainty faced
by the ensemble of players has dramatic consequences on the quality and complexity
of solutions to . The picture on the left, describing the dynamics of total proba-
bility, portrays the evolutionary mechanism driving the complex macro dynamics ob-
served. In the long run, a minority of players is undecided between choosing conser-
vative or aggressive investment strategies, 0.1 < n~! YieN H;F +nt Y ient; <0.5.
The indecision leads to unintended consequences, which in turn feeds strategic in-
teractions and further changes in the environment. On the other hand, a majority
of players maintains their long run investment strategies, 0.5 < n~! Eie N 9? < 0.9,
despite the changes imposed by the undecided minority. In a continuous co-evolution
process, undecided investors drive the market and reshape the economic landscape.

The dynamics of this economy are thus dominated by the decisions of a minority.
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Figure 4.10: Total probability, consumption and game dynamics.
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We finish this presentation with a figure portraying the asymptotic dynam-
ics of n™13" e (7) |, X2y Z2,i (1) and Y, Zs; (). The dynamics of n= 1>, |e; (1) |
portray the consequences of persistently high uncertainty on the forecasting process.
Errors in this setup alternate between stable and bursting periods with different
amplitudes. The largest bursts identify the decisions that imposed greater changes
on the state of the game. The consequences of these interactions are portrayed in
the dynamics of Y, Zo; (1) and Y, Zy; (7). Investment and portfolio decisions are
asymptotically stationary but consistently drift away from the mean. Further insight
on this and other matters requires a thorough statistical analysis of this stochastic

process.
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Figure 4.11: Asymptotic mean absolute forecast errors and aggregate dynamics.

4.5 Conclusions and further research

In this chapter, we described a class of differential games, where players’ optimal
strategies require information that is not available to them. Decisions in this con-
text, we argued, have to be based on subjective beliefs, and optimality requires the
existence of a SCE solution. To demonstrate this conjecture, we proposed two exten-
sions of the consumer-investor problem. In the first example discussed in
beliefs impose a unique strategic solution and the existence of a SCE requires the
existence of credit markets with complete information that are able to price risk
optimally. Solutions can be evaluated qualitatively when beliefs are naive. Numeri-
cal results show that game solutions are not stable for a wide range of institutional
scenarios. This result is not surprising, as these constraints impose a game envi-
ronment where both creditors and debtors believe that they will be worse off. We
concluded that stable SCE solutions require that the strict assumptions imposed on

the evolution of beliefs are at least partially dropped. This result illustrates the
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dramatic consequences of introducing further nonlinear mechanisms in competitive
economic models. Insection 4.4] we showed that the introduction of additional non-
linearities in the initial game is sufficient to introduce multiple equilibria. Solutions
are consistent with a game with a state-space bounded asymptotically, but standard
qualitative methods cannot be employed in this context. We propose that game solu-
tions can be evaluated as a multi-objective optimization problem under uncertainty.
Given the specific nature of this game, we proposed to evaluate game solutions as a
multi-criteria HMM, consistent with learning in a co-evolutionary environment, and
focused on the role played by uncertainty. First, we showed the existence of SCE
solutions, when uncertainty depends linearly on forecast errors. When uncertainty
is persistent, belief-based decisions lead to unintended consequences and strategic
interactions that have dramatic effects on the macro evolution of this economy. So-
lutions are now of a quasi-optimal nature. This phenomenon is driven by a minority
of players, which suggests the existence of strong emergence phenomena. Further
insight on these two hypotheses requires the computation of samples and a thorough
statistical analysis. It is our opinion that the statistical analysis of quasi-optimal
solutions to nonlinear dynamic games is bound to play an important role in future
economics literature. Finally, the introduction of learning heterogeneity represents a
natural extension to the simple framework proposed. It would also be interesting to
investigate the implications of introducing evolutionary adaptation in the decision

process discussed.
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Appendix A

Appendix to chapter 1

A.1 Optimal control conditions

The current value Hamiltonian for the intertemporal maximization problem given

in (2.34)) is,

HY[CO(#), 1), B(t), K (t),A(t),q(t)] =

CHY+XO)B@t)+q@t) K (t), (A1)

where B (t) and K (t) are given in (A.6) and (A.7). The Pontryagin necessary and
sufficient conditions for the existence of an optimum solution for (2.34)), are given

by:
Optimality conditions

OH*
acC (t)

OH*
a1 (t)

Multiplier conditions

ma it) .

200 = pg (t) — s = d () =a () (0+ ) + A ()

=0&9C (1) ==X (1);

=0eq(t)=—-\() <1+h
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State conditions

oB(t) _ oH*

ot T oD <
: hI(t) dB(t) (A-6)
S B =CW+10) (1+555) +rB @) (1+ 523) — ek (1);
0K (t) OH* .
= K({t)=1(t)—0K (t); AT
5= sy S KO =10 - 0K (1) (A7)
Transversality conditions
: —-pt _ 0.
tliglo A(t)B(t)e ” = 0; (A.8)
i —pt — -
Jim g (1) K (t) e ; (A.9)
Admissibility conditions
By=B(0),Ky=K(0). (A.10)

A.2 Non-feasible steady states

Following the discussion in on Z* € R, we show in this section under
what conditions this set of steady states can be computed numerically. The general

expressions describing the intersection of two quadratic curves are given by

rd h

5 (B =232+ 5 (Z0)"+ (r +0) Zy+ Zi — 1n =0, (A.11)
T e BxY T DX EY F
rd 1 rd 1
-3 (Z3)2 +rdZ3 ZF — 3 (Z)? + Tl (r+0) Zi+(r+d—m) £ =0. (A12)
N’ N e
S HXY - % KY - Y
GX Iy JX L

It is now convenient to characterize the geometry of the quadratic curves
described by and . We discard the case of infinitely many equilib-
rium and the hypothesis that these quadratic curves are represented by degenerate
conic sections. Following these assumptions, we characterize each quadratic curve

by determining the quantities:
B? —4AC =1 —rdh; (A.13)

d 1
H? —AGI = rd® - % =rd <rd - h> . (A.14)
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Following (A.13) the curve (A.11]) is defined by: (i) a hyperbola when hrd < 1;
(ii) a parabola when hrd = 1; and (iii) an ellipse when hrd > 1. Given ({A.14) the

curve (A.12) is: (i) a hyperbola when hrd < 0 A hrd > 1; (ii) a parabola when
hrd = 1; and (ii) and ellipse when 0 < rdh < 1. The general solution to the system

defined by (A.11) and (A.13)) is given by a fourth order equation. We can solve

this system analytically when the parabola constraint is considered, as it allows
for a reduction of the fourth order equation to a second order one. To solve the
intersection of (A.11)) and (A.12]), assuming rdh = 1, it is convenient to rearrange

(A.11)) in the following fashionEl,

A B D E F
2_ _“Hy2 D s
Y* = CX CXY CX CY ok (A.15)

Substituting the Y2 term in (A.12) by the expression given in (A.15) we obtain:
G-H X2+ (H-E)xv+ (-2 x+(K-E)y+L-Z =0. (A16)

Recall now that the first two terms in (A.16|) are given by the following
expressions, G — AIC™' = —rd (2h) ' +rd(2h) ' =0 and H — BIC™' = rd—h™'.
When rdh = 1, the second term vanishes and (A.16]) reduces to,

KC - EI LC—-FI

X =- — . Al
JC — DI JC — DI (A.17)
Substituting now (A.17)) in (A.11)), we obtain,
KC—EI ( yKC—EI LC—FI ( A LC—FI
[JCLDI (A JC—DI — B) + C} Y2+ [JCfDI (AJCLDI - D) + F} (A.18)
(KC—EI)(LC—FI) _ B(LC—FI)+D(KC—EI) _ '
+ [2atKeEOES D0 +E|Y =0,
The non feasible steady states when hrd = 1 are given by
S+ L) h — —® + /P2 — 40T
gp— THEORR L S g SREVETABY
rd+r+46 rd+r+0 20
where ©, ® and V¥ are defined by the following set of expressions:
KC—FEI ( f KC—EI LC—FI ( g LC—FI
O = [JC—DI (A JC—DI — B) + C} y U= [JC—DI (AJC—DI - D) + F} (A.20)

- (KC—EI)(LC—FI)  B(LC—FI)+D(KC—EI)
and ® — [ZA —PDGCED D+Dd +E}.

!To allow for a clearer presentation, we shall use the general expressions of both quadratic curves
throughout this section.

136



Substituting ©, ® and ¥ by system parameters we obtain:

©=2h, &=22 _ (4§41 and

rd+r+0
U — r4+0—2r; |rd [ r+6—2r; \ | — <A21)
T ord+r+6 | 2 rd+r+6 (T + ) Tk

We now describe a numerical algorithm for the computation of the general
solution of the system defined in and . We propose a two step solution
to solve this problem in a robust and efficient fashion. First, we define a solution
that is linear in terms of one of the coordinates solution of and . We
choose coordinate Y for this purpose. Multiplying by I and by C, and
imposing equality between the resulting expressions, we obtain the solution for Y in

terms of the coordinate solution of X,

(GC — Al X%+ (JC — DI) X + (LC — FI)

Y= (EI — KC)+ (BI — HC) X

(A.22)

We now have to determine the coordinate solution for X. This solution is
given by a fourth order polynomial. First we rearrange the original expressions,
(A.11) and (A.12)), as quadratic polynomials in terms of Y coordinate. Then we set

the resulting system in a Sylvester matrix form:

C BX+E AX?2+DX+F 0 Y3
0 C BX +E AX?2 + DX + F Y2
* oA —0.  (A23)
I HX+K GX?+4+JX+1L 0 yl
0 I HX + K GX?2+JX+1L Yo

In order to obtain the coordinate solution in terms of X, we follow Bezout’s
theorem, and determine the resultant of the two original polynomials. To obtain the
resultant, we set the determinant of the Sylvester matrix defined in (A.23) equal to

zero. This condition is given by:

[C(GX24+JX+L)~I(AX24+DX+F)]?
(A.24)
—[C(HX+K)—I(BX+E)][(BX+E)(GX?+JX+L)—(HX+K)(AX?4+DX+F)]=0.

Solving the above expression, we obtain the fourth order polynomial in terms of X

coordinates. After a fair amount of calculus we obtain the following equation,

boX* 4+ 01X + b X2 + 03X 4+ by =0, (A.25)
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where the coefficients of this polynomial are given by the following expressions:
by = (CG —TA)? + (HA— BG) (CH — IB); (A.26)

by =2(CJ — ID)(CG — IA) — (KB + HE) (CG + I A)

A27
+(BJ—HD)(IB — CH) +2(CHKA + IBEG); (4.27)

by = (CJ —ID)* +2(CL — IF) (CG — IA)
+(HF — BL)(CH — IB) — (KB + HE) (CJ + ID) (A.28)
+(KA—EG)(CK —IE)+2(CHKD + IBEJ);

by =2(CL—1IF)(CJ—1ID)— (KB + HE)(CL + IF)

A.29
+(KD - EJ)(CK — IE)+2(CHKF + IBEL); (4.29)

by=(CL—IF)*+ (KF — EL)(CK — IE). (A.30)

To finish this procedure, we must now employ a polynomial solver and ob-
tain the coordinate solution in terms of X, given the solution defined in (A.25)) to
, and then substitute this solution in to obtain the corresponding Y
coordinate?]

A.3 Linearized dynamics and non-degeneracy conditions

Recall that given the restrictions described in the Jacobian in the vicinity

of the economic meaningful steady states, Z **_ is given generically by:

y—1
Ty I | (A.31)
0 B3y I3

d Tk *x
0 - ‘]1,3 J1,3
J** — 1

The characteristic equation for this Jacobian comes,

(A )3 —2J5%5 (A )2 —A (’Y — 1J1,3 - (J2,2) + s (J2,3) )
—rdJy <h=]2,3 - HJ2,2> =0

2For this purpose we built a C routine and compiled our code with the GNU scientific li-
brary(GSL) polynomial solver, which is based on the Horner’s method for stability. We then obtain
absolute computation errors by substituting the numerical solution in the original system,
and (A.12), and test their accuracy for an error tolerance defined by |maxerror {X*, Y} < 107°.
For this error tolerance , all computed solutions consistent with, X* Y™ € R, were accepted. We
confirmed this procedure by running a routine in MATLAB using the built-in polynomial solver
function roots and no significant differences were found.
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where A** stands for the eigenvalues solving the characteristic polynomial in the
vicinity of Z;*. The condition guarantecing the Jacobian defined in (A.31)) is non-
degenerate, Det (J**) # 0, is given by:

rdJi ( o . ii) #0=>rdJis £ 0N # ——3 T35, (A.33)

We now focus on the linearized dynamics in the vicinity of of the non feasible
set of steady states. Given the restrictions described in the Jacobian in
the vicinity of Z * is given by:

Jiy 00
T=1 1 T, J5s | (A.34)
0 HJ5s J3s

The characteristic equation for this Jacobian comes,

(ia—8) (524 = 2 (73)°] =0, (35)

where A* stands for the eigenvalues solving the characteristic polynomial in the vicin-

ity of ZZ* . Non-degeneracy condition, Det (J*) # 0, impose the following restriction,

* * \2 rd * \2 * * * rd
T |(F2)" — n (/33) } FO=Ji1 # 0N Joy # £330/ 7 (A.36)

The solution of the characteristic equation defined in (A.35]) is given by:

d
A = T AN = T3+ Ty % (A.37)

A.4 Local bifurcation analysis

In this section, we provide the analytical conditions for the existence of saddle-
node and fold-hopf bifurcations, following the discussion in In order
to put forward the sufficient conditions for existence of saddle-node bifurcations in
this system, we first start by proving that the bifurcation constraint, r;*, given in
([2-67), is consistent with Det (J**) = 0. Recall that according to Viéte’s theorem

the product of eigenvalues is given by,
3

1 1
[T =rdis (Jgg - J;*Q) , (A.38)
o S\R2 T 4217
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where j is the eigenvalue index. Since rdJis # 0, we require that the following
condition is fulfilled,

1
C(rrdZst 0 - Z7) = (L4 hZj = Z5)

(A.39)

=

Substituting the equilibrium expression for Z5*, (2.60]), and solving in terms of
Z}*, we confirm that 77" is consistent with the existence of this singularity, A7* = 0,
and equal to the equilibrium expression for Z;* (r;*), given in (2.68)),

- <p+ 5y + (7—1)(07;;5(%1)) _ L;l) o
Zyr = e = 7 (r). (A.40)
—“hd 271

In three dimensional systems a saddle-node bifurcation occurs if the remaining eigen-
values are of opposite signs, A5* - A5 < 0. Following (A.39), the characteristic
equation is now given by:

rdh d

kok r koK
P (J53)° - ,}/_J1,3:| =0. (A.41)

AR (‘];:5 _A**)Q - -

The eigenvalues at the bifurcation point are thus given by,

rd

T =0AAS=Jyo k| ——
1 2,3 2,2 \/7_1

The existence of a saddle-node bifurcation can be put in terms of parameter d. We

have a saddle-node if
I < —h(J35)° and d>0; orif Jiy > —h(J33)? and d<0.  (A43)

To define analytically the fold-hopf bifurcation point, it is convenient to
continue equilibrium from the saddle node bifurcation defined by r;*. Continu-
ing equilibrium from this point a fold-hopf bifurcation is guaranteed to exist if
J35 (ry7) = 0A J3% (rp") = 0, and provided that d < 0. At this singular point
we have a zero eigenvalue, AT* = 0, and the remaining eigenvalues, AJ%, are given
by a pure imaginary conjugate pair, following the result in . The expression

for the non negative eigenvalues is given by,

rd rd
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To obtain the parameter constraint required for the existence of a codimension two
fold-hopf bifurcation, we have to solve the system given by J3% (r;*) = 0AJa3 (137) =
0. Substituting we obtain,

r+0+rd

2 ) = 4

NZy(ry") =1+ hZ™ (ry") . (A.45)

Substituting (A.45) in , we obtain the second parameter condition, in terms

of parameter p. This condition is given by the following expression,

o == (o) [y =
v —1+hr

hrd h
r+6+rd (y—1)?
_(1—hrd><_ a2t

A.5 Geometric analysis of the quadric nullcline surfaces

(A.46)

To classify the nullclines described by the quadrics, Z» (t) ,Zy(t) = 0, it is first
convenient to redefine these surfaces as a matrix product, x?¥;x’, where y =
[Zo (1), Z4 (t), Z1 (t),1]. The matrix X9 for the nullcline Z (t) = 0 and its upper
sub-matrix, 2/2, are given in general terms, following the notation in by:

B D
4.3 05 A B o
L co % / ;i
Sp=| 2 P land3 = 8 C o0 (A.47)
0 0 0 5 00 0
D E 1
7 2 3 F
For the nullcline Z4 (t) =0, X4 and Z;, are given by,
H J
G 5 0 3 oo
% 0 % ! H ;
Yy = andX,=| & T A .48
J K
5 5 0 L

To define these geometric surfaces we need to define the following quantities:
(i) det (X), det (Z/); (ii) rank (3), rank <Z/>; and (iii) det <Z/ - 7rI> = 0. Where
7 is the eigenvalue solution to the characteristic equation of &' and I the identity
matrix. For the first quadric surface, Zo (t) = 0, we obtain the following quantities.
When hrd # 1, det (X2) = (1 — hrd) /16 and the matrix has full rank, rank (32) =
4, while det (2’2) — 0 and rank (25) — 2. When hrd = 1, det(Z) = 0 and
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rank (X2) = 2, while rank (E;) = 1. The surface is a parabolic cylinder when
hrd = 1. Now we need to evaluate the signs of the non negative eigenvalue solutions,

w9, for EIQ. These are given by,

L (rd+ k) £/} (rd + )P + 1~ rdh
-9 ’

When hrd > 1, we have eigenvalues with the same signs. The quadric

T =0V my = (A.49)

Zo (t) = 01is: (i) an elliptic paraboloid when hrd > 1; and (ii) a hyperbolic paraboloid
when hrd < 1. For the second quadric, Za (t) = 0, we obtain the following quan-
tities. When hrd # 1, det (X4) = 0 and rank (X4) = 3, while det (E;) = 0 and
rank (E;) = 2. When hrd = 1, rank (¥4) = 3 and rank (Z;) = 1, the surface is a

parabolic cylinder. Now we need to evaluate the eigenvalues, my, of 2:1. These are

given by the following expressions,

1 (rd 1 (rd 2 1
L)+ rd(ra- )
—2

When 0 < rdh < 1, the quadric, Z4 (t) = 0, is an elliptic cylinder’] When
hrd < 0 A hrd > 1, the quadric, Z4 (t) = 0, is a hyperbolic cylinder.

T =0Vmy =

(A.50)

3To determine if this elliptic cylinder is real or imaginary the eigenvalues of ¥4 have to be
checked. If the non negative eigenvalues have opposite signs then we have an real elliptic cylinder.
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Appendix B

Appendix to chapter 2

B.1 Optimal control conditions

B.1.1 Optimal control conditions for the non-cooperative game
with coupled institutional risk premium

The current value Hamiltonian for the non-cooperative game in (3.15]) is:

H([B;(t),K;(t),B(t),K(t),\(t),q),Ci(t), ;)] =

. . (B.1)
= Ci ()" + X (t) By (t) + qi (t) K; (1),

where B; (t) and K; (t) are given in (B.6) and (B.7). The general Pontryagin maxi-

mum conditions for the existence of optimal open loop solution are given by:

Optimality conditions

%iCi ()7 = =i (1) (B.2)
qi (t) = =X (1) ; (B.3)
Multiplier conditions
i () = Ai (1) (m - rdi[B(((tt))) : (B.4)
Gi (t) = qi (t) (pi + 0) + Xi () (r) ; (B.5)

State conditions
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Bi (t) =Cj (t) + I; (t) + rB; (t) (1 + dlIB;_((tt))> —rpK; (t) ; (B.G)

Transversality conditions

i . 4 —pit _ .

1thm Ai(t)Bi(t)e =0; (B.8)
i . , —pit _ .

thm qi (t) K; (t)e " =0 (B.9)

Admissibility conditions
Bio (t) = Bi (0),Kip (t) = K; (0) . (B.10)

B.1.2 Optimal control conditions for the non-cooperative game

with coupled endogenous risk premium

The current value Hamiltonian for the non-cooperative game in (3.45)) is:

H [Bz (t) 7Ki (t) ?B (t) 7K (t) ) Ai (t) ) di (t) 702' (t) 7Ii (t)]* =

=Ci ()" + X (t) Bi (t) + qi (t) K; (1),

(B.11)

where B; (t) and K;(t) are given in (B.16) and (B.17). The general Pontryagin
maximum conditions for the existence of optimal open loop solution are given by:

Optimality conditions

YOy () = =\ (1) (B.12)
g (t) = =X (1); (B.13)
Multiplier conditions
S () = A (1) <pi o i ((g Bg) : (B.14)
() = 4 (1) (i + ) + A (1) ( = 8 o k> ; (B.15)



State conditions

B; (t) B(t
B;(t)=C;(t)+ L; (t) + rB; (1) <1 + % ((t; Kiti) — K () ; (B.16)
Ki () = L (t) = 6K (1) (B.17)
Transversality conditions
; ) . —pit _ -
tlgglo i (t) B; (t) e P =0 (B.18)
: . . —pit —_ ).
Jim g (1) Ki (t) e 0; (B.19)
Admissibility conditions
Bio (t) = B; (0), Kip (t) = K; (0). (B.20)

B.2 Qualitative analysis of state-separable systems

B.2.1 Qualitative analysis for the non-cooperative game with cou-
pled institutional risk premium

The state-separable solution to the game defined in , assuming Zy; (t) =
Zm, vVt € T, is given by the system defined by scaled consumption, , scaled net
financial assets, , and productive capital dynamics, , after substituting
in and . The dynamics assuming state-separability are given by:

pi+6—rp— (Zs;—0)(vi—1) )

Z1a(t) = Zua () — : (B.21)
Z‘Q’i (t) = Zl,i (t) + 24’7; + Z27/L' (t) [2’[“ + 20 —rp — 2471'] — Tk (B.22)
K; (t) = K; (0) e(Zai=0)1, (B.23)

The steady states consistent with a feasible solution, Z; > 0,Vt € T, are defined by

the following expressions:
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7 _Tk—Z4,i—Zl,i(0)
2 = ARy
2T+25—Tk—Z4,i

(B.25)

Given that agents commit to an initial investment strategy consistent with
equilibrium for (B.22)), the dynamics in the vicinity of (B.24)) and (B.25)), are de-
scribed by the dynamics of net financial assets. Qualitative dynamics are thus defined
by,

025, (t)

2 = 28 — 1 — Zy . B.26
072,i(t) T TR A (B.26)

B.2.2 Qualitative analysis for the non-cooperative game with cou-
pled endogenous risk premium

The solution to the state-separable optimal control problem defined in , as-
suming Zy; (t) = 2472-,‘# € T, is given by the system defined by scaled consump-
tion, , scaled net financial assets, , and productive capital dynamics,
, after substituting in and . The dynamics assuming state-

separability are given by:

. _ Zyi(t) ‘ 2r(r+(5—rk)_ o o _

R e R RO R R CED

Zoi (t) = Z1i () + Zai + Z24 (1) [7“ + m — Zyi+ 5} - (B.28)
K; (t) = K; (0) e(Zai=0)1, (B.29)

The steady states consistent with a feasible solution, Z; (t) > 0,Vt € T, are defined

by the following expressions:

Zl,i =71 — Z4,i o <p.r 2(7:+§7Tk) , + 2) <7"+Pi(Z4,;5)('Y¢+1)> : (B?)O)

+2. (B.31)



Qualitative dynamics in the vicinity of (B.30)) and (B.31]), are defined by the
following Jacobian matrixﬂ

0 2Zyir(ridory)
Z i—2 i—1
7= 1 r— Z( 427—}— 5)_(72(7"257—%) : (B.32)
4,’L (22’1._2)2

Following the usual conditions for qualitative dynamics in hyperbolic autonomous
planar systemsﬂ. We define the main qualitative features of this solution based on
the general eigenvalue solution, A, to the characteristic equation, det (J — Al) = qﬂ,
of the Jacobian defined in :

A:

2
—tr () £/tr 2(J) ~4det() a

where det (J) = —Ji 2 and tr (J) = Jo2. Substituting the steady state expressions,
(B.30)) and , the main qualitative dynamic features of the state-separability in
the vicinity of equilibrium are the following: (i) saddle point when r > r 4 ¢; (ii)
node when r, <7+ 8§ A Zy; > Q; (iii) repellor when ry, < r+ 3§ A Zy; < Q; and (iv)
at Zy; = Q we have an Hopf bifurcation when r < r + &, where

(B.34)

'The Jacobian is non-degenerate when Ji 2 (Zmyi) # 0.

*Recall that in planar systems we have: (i) an attractor when det (J) > 0 and T (J) < 0; (i) a
saddle point when det (J) < 0; and (iii) a repelling solution when det (J) > 0 and T'r (J) > 0.

3Where I is the identity matrix.
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Appendix C

Appendix to chapter 3

C.1 Optimal control conditions

C.1.1 Optimal control conditions for the non-cooperative game
with investment bias and coupled institutional risk premium

The current value Hamiltonian for the non-cooperative game in (4.8)) is:

H([B;(t),K;(t),B(t),K(t),\(t),q),Ci(t), ;)] =

. . (C.1)
=Ci ()" + N (t) B (t) + qi (t) K; (),

where B; (t) and K; (t) are given in (C.6) and (C.7). The general Pontryagin maxi-

mum conditions for the existence of optimal open loop solutions are given by:

Optimality conditions

%iCi ()7 = =i (1) (C.2)
(0 = -3 (0 (1420 %) (©3)
Multiplier conditions
).\i (t) = )\2 (t) (pi - Tr— ’l“dl[B;Ett))> 5 (04)
2
Gi (t) = q; (t) (pi + 8) + \i (1) (hz- I?i((tt)f + rk> : (C.5)
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State conditions

Bi) = G0+ 1,0) (14 gL ) i) (14 it ) — i (0): (€
Kz (t) = Iz (t) - 6Kz (t) ) (C 7)
Transversality conditions
tlgglo A (t) By (t) e Pt = 0; (C.8)
tliglo q; (t) K; (t) e Pit = 0; (C.9)
Admissibility conditions
Bio (t) = B;i (0), Kip (t) = K; (0). (C.10)

C.1.2 Optimal control conditions for the non-cooperative game
with investment bias and coupled endogenous risk premium

The current value Hamiltonian for the non-cooperative game in (4.33)) is:

H [B;(t),K;(t),B(t),K (t),\i (t),q (t),Ci(t), L (t)]" =
(C.11)

=Ci ()" 4+ Ni (t) Bi (t) + qi (t) K; (1),

where B; (t) and K (t) are given in (C.16) and (C.17). The general Pontryagin
maximum conditions for the existence of optimal open loop solutions are given by:

Optimality conditions

%iCi (8) 7 = =N (1) (C.12)
(0= -3 (0 (1420 %) (€13

Multiplier conditions
S (1) = A () <pi o Ilj ((2 f’;g;) : (C.14)



2 a2
Gi (t) = q: (1) (pi + ) + i (¢) (h,- i (tt) o ) B() +rk> . (C.15)

State conditions

B (t) = Ci () + L (t) (1 + ’}g?((f))) +rBi(t) (1+ %) kK (1); (C.16)

K (t) = 1; (t) — 6K (t); (C.17)

Transversality conditions

lim \; (t) B; (t) e 7" = 0; (C.18)
t—o00

; , ) —pit _ -
Jim g (¢) Ki (t) e = 0; (C.19)

Admissibility conditions

Bio(t) = B;i(0),Kio(t) = K; (0). (C.20)

C.2 General Ricatti equation solution

The general Ricatti equation of interest is defined by the following first order ordinary

differential equation,

Ix (t)
ot

where a/b < 0, b*> — 4ac > 0. To solve the above Ricatti equation it is convenient to

— ()% + gX (1) + g (C.21)

start by dividing everything by the right hand side expression and then take integrals
with respect to time. Equation ((C.21)) is now given by:

t ox(s) t
/ 5 ds ds:/ 1ds. (C.22)
0 X (s)"+ba~tx(s)+ca”! 0

The right hand side integral is given by ¢ + 01, where 01 is a constant of integra-

tion. We can now focus on the solution of the left hand side integral. We start by

simplifying this integral by assuming u = x (s) = du = a’é(ss) ds,
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/O t ! du. (C.23)

u? +ba"tu+ ca—?!

It is possible to obtain a solvable integral expression to (C.23|) by factoring out
constants through substitution. First we complete the square in (C.23)),

t
/ ! _du. (C.24)
0 ﬁ(élac—b?)—i- (u+ %)

The next substitution is straightforward. We consider, p = u + % = dp = du, and
(C.24) after rearranging comes,

44’

' 1 i
dp:/ ——=9C _dp. (C.25)
/0 ﬁ (4dac — b?) + p? 0 —b24_a42acp2 +1
_1
Factoring out constants and then setting y = —2a (b2 —4ac) 2 p, where dy =

_1
—2a (b2 — 4ac) 2 dp, we obtain,

20 /t L 4 (C.26)
Vb2 —4dac Jo 1—y? v '

Since [1/ (1 — y2) dy = arctanh (y), we substitute everything back and ob-

tain the solution to (C.22),

2a C2ax(t)+0b

Vb2 — 4ac

Taking tanh from both sides the general solution to (C.21) is given by,

arctanh ( > =1t+ o0, where o= 0; — 0. (C.27)

b2 — dac

Vb? — 4actanh (2—1(1 (t + 0) Vb? — 4ac) +5b
x(t)=— 5 : (C.28)
a
Now we consider the existence of an initial value, x (0). Setting t = 0 in (C.2§)),

taking arctanh on both sides and solving in terms of o we obtain:

2ax(0) +9) b)] . (C.29)

Vb2 — dac
Substituting (C.29) in (C.28]), we obtain the general explicit solution to (C.21J),

a
0 = ——— arctanh [—
b2 — dac

a b2—4ac

Vb2 = 4actanh {7”’22_4“0 [t + ——2¢__ arctanh (—%)} } +b (©30)
B 2a '

x(t) =
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