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Abstract  

Mitochondria are cytoplasmic organelles that are found in almost all mammalian 

cells. Mitochondria contain their own genome, mitochondrial DNA (mtDNA) that 

encodes 13 subunits of the electron transfer chain, which is the primary 

generator of cellular energy. Precise regulation of mtDNA copy number is 

essential for normal cell function and also the differentiation of stem cells into 

specialized cell types. Abnormal regulation of mtDNA copy number is 

associated with cellular dysfunction, mitochondrial disease and more recently 

cancer.  Glioblastoma multiforme (GBM) is a highly malignant subgroup of brain 

tumors that exhibit similar characteristics to human neural stem cells (hNSCs) 

including multipotency and the expression of the stem cell factors. It is unknown 

how GBM cells regulate their mtDNA copy number during differentiation and 

whether this differs to hNSCs. Furthermore, it is unknown what role mtDNA 

plays in the gene expression profiles and the tumorigenicity of GBM. 

 

To address these issues, GBM cells and hNSCs were differentiated for 28 days 

and their mtDNA copy number and gene expression were analyzed. In addition, 

GBM cells were progressively depleted of their mtDNA using the depletion 

agent, 2'-3'-dideoxycytidine, and their in vivo tumorigenicity assessed. 

 

hNSCs and GBM cell lines regulated their copy number in a differential manner 

during differentiation. hNSCs progressively expanded their mtDNA copy number 

and adopted a differentiated phenotype whilst GBM cells failed to mimic these 

processes and their differentiation was incomplete. In addition, progressive 

depletion of mtDNA copy number in GBM cells resulted in reduced proliferation 

rates and the down regulation of stem cell factors. In vivo, mtDNA depleted 

GBM cells formed tumors at a reduced rate and frequency relative to non-

depleted cells.  

These outcomes demonstrate that mtDNA copy number is abnormally regulated 

in GBM cells and hinders their ability to complete differentiation. The failure of 

mtDNA-depleted GBM cells to consistently generate tumors strongly suggests 

that maintenance of mtDNA copy number is essential for GBM cells to be 

tumorigenic.  
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GAPDH glyceraldehyde 3-phosphate dehydrogenase 
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HIF  hypoxia inducible factor 
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HMG  high mobility group 
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mtDNA mitochondrial DNA 
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Chapter 1:General Introduction 

1.1 Mitochondria 

Mitochondria are cytoplasmic organelles that are found in almost every cell type 

of the mammalian body. The primary function of mitochondria is to generate 

cellular energy, or adenosine triphosphate (ATP), via oxidative phosphorylation 

(OXPHOS) and the electron transfer chain (ETC) (Pfeiffer et al., 2001). In 

addition, mitochondria also play essential roles in fatty acid oxidation (Hirschey 

et al., 2010), regulation of apoptosis (Joza et al., 2001), calcium homeostasis 

(Brini, 2003) and steroidogenesis (Bose et al., 2002), amongst others.  

 

It is largely accepted that mitochondria are derived from an endo-symbiotic 

interaction between primitive anaerobic eukaryotes and α-protobacterium 

(Kurland and Andersson, 2000). The relationship, which developed over 

millions of years, granted eukaryotes access to the bacterium’s   enzymatic 

machinery to perform oxidative respiration. In support of this symbiotic 

relationship, mitochondria share a similar membrane structure to gram-negative 

bacteria (Kurland and Andersson, 2000). Mitochondria contain a double 

membrane, consisting of an outer membrane that is freely permeable to small 

molecules and ions and a folded inner-membrane that is largely impermeable 

(Smoly et al., 1970). Transfer of molecules such as protons (H+) across the 

inner membrane occurs via inner-membrane bound transporters (Nicholls and 

Ferguson 2002). The membrane bound transporters consist of five super 

complexes that form the ETC. The inner-mitochondrial membrane encloses the 

viscous region called the mitochondrial matrix (Frey and Mannella, 2000), which 



 28 

harbors all the enzymatic components involved in the tricarboxylic acid cycle 

(TCA cycle), β-oxidation and amino acid oxidation (Baltzer et al., 2010). All of 

the processes that drive ATP production through oxidative pathways are found 

within the mitochondrion. Glycolysis, which can be performed under aerobic and 

anaerobic conditions, takes place in the cytosol (Meyerhof, 1951). 

 

1.1.1 Glycolysis  

Glycolysis is an energetic pathway that involves the conversion of one molecule 

of glucose to two molecules of pyruvate via a series of enzymatic reactions 

(Meyerhof, 1951). Energy is conserved during these reactions in the form of 

ATP and nicotinamide adenine dinucleatide (NADH) (Meyerhof, 1951).  

Glycolysis is composed of ten steps, which can be divided into two 5-step 

phases, the preparatory phase and the payoff phase. During the preparatory 

phase, glucose is converted to glyceraldehyde-3-phosphate and 

dihydroxacetone phosphate in a series of reactions that requires two molecules 

of ATP to be donated (Nelson and Cox 2008). The payoff phase recovers the 

invested ATP molecules by converting glyceraldehyde-3-phosphate to pyruvate, 

which in total yields 4 molecules of ATP with a net gain of 2 molecules of ATP 

and 2 molecules of NADH (Nelson and Cox 2008). Under aerobic conditions, 

eukaryotes are able to further metabolize glycolysis-derived pyruvate via the 

TCA cycle (Section 1.1.2) (Krebs and Johnson, 1937). The substrates and 

electron donors that are generated through the TCA cycle are subsequently 

utilized by the ETC to generate ATP (Krebs and Johnson, 1937; Mitchell, 1961).  

Under anaerobic conditions the oxidization of pyruvate occurs at a reduced rate 

and a large proportion of pyruvate is converted to lactate by lactate 
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dehydrogenase (LDH) (Nelson and Cox 2008) in a process known as anaerobic 

respiration or fermentation. 

 

1.1.2 The TCA cycle 

Prior to entry into the TCA cycle, glycolysis-derived pyruvate is converted into 

acetyl-CoA by pyruvate dehydrogenase (PDH) (Figure 1.1) (Krebs and 

Johnson, 1937). Alternate sources of acetyl-CoA are also derived from β-

oxidation and amino acid oxidation processes (Baltzer et al., 2010) and the 

reactions of the TCA cycle are illustrated in Figure 1.1. With each TCA cycle, 3 

molecules of NADH, 1 molecule of flavin adenine dinucleotide (FADH2), 1 

molecule of guanosine triphosphate (GTP) (or ATP) are generated and 2 

molecules of CO2 are released (Figure 1.1) (Krebs and Johnson, 1937)Nelson 

and Cox 2008). The NADH and FADH2 that are generated from glycolysis and 

the TCA cycle are subsequently utilized by the ETC where they function as 

electron donors (Mitchell, 1961). 
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Figure 1.1. Schematic representation of the tricarboxylic cycle. The 

enzymes of the cycle are highlighted in red text. The short black arrows indicate 

the substrates that are consumed and generated by the cycle. The long black 

arrow represents the continuation of the cycle.  
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1.1.3  The ETC and OXPHOS 

The ETC is composed of five membrane bound protein super-complexes, 

Complex I (NADH dehydrogenase), Complex II (Succinate Dehydrogenase), 

Complex III (Cytochrome C Reductase), Complex IV (Cytochrome C Oxidase) 

and Complex V (ATP Synthase) (Adam-Vizi and Chinopoulos, 2006; Mitchell, 

1961). Each of ETC complexes consists of multiple subunits that are assembled 

in the mitochondria with Complexes I-V containing 45, 4, 11, 13 and 16 

subunits, respectively (Griguer and Oliva, 2011). Electrons from NADH and 

FADH2 are donated to complexes I and II respectively, and each complex is 

able to initiate OXPHOS (Figure 1.2) (Adam-Vizi and Chinopoulos, 2006; 

Mitchell, 1961). Electrons are subsequently shuttled to Coenzyme Q and 

Complex III. From Complex III electrons are accepted by Cytochrome C, which 

in turn donates electrons to Complex IV. In the final electron transfer step, O2 

accepts two electrons, which leads to the generation of H2O. The flow of 

electrons through Complexes I, III and IV are accompanied by the transport of 

protons (H+) across the inner-membrane into the inter-membrane space (Figure 

1.2) (Adam-Vizi and Chinopoulos, 2006; Mitchell, 1961). The transport of 

protons creates an electrochemical gradient in which the inter-membrane space 

and mitochondrial matrix become positively and negatively charged, 

respectively (Adam-Vizi and Chinopoulos, 2006; Mitchell, 1961). The 

electrochemical gradient is utilized by Complex V, which transports protons 

back across the inner-membrane into the mitochondrial matrix whilst 

regenerating ATP from ADP and inorganic phosphate (Figure 1.2) (Adam-Vizi 

and Chinopoulos, 2006; Mitchell, 1961). 
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Figure 1.2. Schematic representation of the electron transfer chain. 
Electrons are donated to Complexes I and II and are subsequently passed 

along the chain through each of the complexes. The transfer of electrons is 

accompanied by a shuttling of protons (H+) across the inner mitochondrial 

membrane by Complexes I, II and IV, which creates an electrochemical 

gradient. Protons re-enter the mitochondrial matrix via Complex V, which 

regenerates ATP from ADP and inorganic phosphate.  
Abbreviations: I (Complex I), II (Complex II), III (Complex III), IV (Complex IV), V 

(Complex V), H+ (Protons), ADP (Adenosine di-phosphate), ATP (Adenosine 

tri-phosphate), Cyt C (Cytochrome C), CoQ (Coenzyme Q), FAD (flavin adenine 

dinucleotide), FADH2 (flavin adenine dinucleotide reduced), H (Hydrogen), H2O 

(Water), NAD (nicotinamide adenine dinucleotide), NADH (nicotinamide 

adenine dinucleotide reduced), Pi (inorganic phosphate), O2 (Oxygen). 
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The net combined yield of ATP from glycolysis and OXPHOS ranges between 

30-36 molecules of ATP (2 from glycolysis and 28-34 from OXPHOS) per 

glucose molecule (See Table 1.I) (Brown, 1992; Pfeiffer et al., 2001). In 

comparison to OXPHOS, glycolysis is a relatively inefficient source of ATP 

production and thus, most eukaryotic cells utilize OXPHOS extensively under 

aerobic conditions (Brown, 1992; Pfeiffer et al., 2001). Table 1.I below 

summarizes the combined ATP yield of glycolysis, TCA cycle and the ETC. 

 

Enzymatic Reaction Reaction Yield ATP Yield 
1x Glucose  Glucose-6-  -1 ATP -1 
1x Frutose-6-phosphate  
Fructose 1,6-bisphosphte 

-1 ATP -1 

2x Glyceraldehyde-3-phosphate  
2x 1,3-Bisphosphoglycerate 

2x NADH 3-5 

1x 1,3-Bisphosphoglycerate  
2x 3-Phosphoglycerate 

2x ATP 2 

2x Phosphoenolpyruvate  2x 
Pyruvate 

2x ATP 2 

2x Pyruvate  2x Acetyl-CoA 2x NADH 5 
2x Isocitrate  2x  α-ketoglutarate 2x NADH 5 
2x  α-ketoglutarate  2x Succinyl-CoA 2x NADH 5 
2x Succinyl-CoA  2x Succinate 2x GTP/ATP 2 
2x Succinate  2x Fumarate 2x FADH2 5 
2x Malate  2x Oxaloacetate 2x NADH 5 
 

Table 1.I Summary of Glycolysis and TCA cycle reactions that subsequently 

consume or generate ATP through OXPHOS. Table modified from Nelson and 

Cox 2008. 
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1.1.4 Mitochondrial DNA 

The ETC super-complexes consist of multiple protein subunits that are encoded 

by both the nuclear and mitochondrial genomes (mtDNA). The exception is 

Complex II, which is entirely encoded by nuclear factors (Clayton, 1998). 

MtDNA is a maternally inherited double-stranded genome consisting of a heavy 

(H) and a light (L) strand (Attardi and Schatz, 1988). In humans, mtDNA is 

16,569kb in length and encodes 13 subunits of the ETC (7 of Complex I, 1 of 

Complex III, 3 of Complex IV and 2 of Complex V) and 22 transfer RNAs 

(tRNAs) and 2 ribosomal RNAs (rRNAs), which are essential for the decoding 

and subsequent translation of mtRNA into mitochondrial proteins (Anderson et 

al., 1981) (Figure 1.3). The remaining nuclear encoded subunits of the ETC are 

synthesized by cytosolic ribosomes and imported into the mitochondria prior to 

assembly into ETC complexes (Hildenbeutel et al., 2008; Kurland and 

Andersson, 2000).  
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Figure 1.3. Diagrammatic representation of the mitochondrial genome 
(mtDNA). MtDNA is a circular genome that encodes 13 subunits of the electron 

transfer chain, 22 tRNAs and 2 rRNAs. The colours of the genes correspond to 

the complexes shown in the key.  

 

Each mitochondrion contains multiple copies of mtDNA (1-15 copies) (Legros et 

al., 2004; Satoh and Kuroiwa, 1991). When each copy of mtDNA is identical this 

state is referred to as homoplasmy. Mutations in mtDNA can occur through 

point mutations, insertions and deletions and this can lead to the coexistence of 

mutant and wild type copies of mtDNA within single or multiple mitochondria, 

which generates a state referred to as heteroplasmy. The level of heteroplasmy 

can vary greatly from 1-100% (Carling et al., 2011) within individual 

mitochondria and can also vary greatly between mitochondria of different tissue 

types (Schwartz and Vissing, 2002). The manifestation of a pathological state 
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generally does not occur until the percentage, or mutant load, of mtDNA 

reaches a threshold level, which can range from 60-90% (Chinnery et al., 1997). 

Once this threshold has been reached, bioenergetic defects begin to arise at a 

cellular level due to reduced ETC function, which is instigated by mutant mtDNA 

encoded subunits contributing to the formation of abnormal ETC Complexes.  

 

Severe bioenergetic defects can elicit deleterious effects at cellular and tissue 

levels (Wallace, 1999; Wallace, 2005). Since mtDNA is essential for ETC 

function and OXPHOS, mtDNA mutations severely affect high-energy requiring 

tissue types, such as skeletal muscle and neural tissue (Wallace, 1999; 

Wallace, 2005). This is evidenced by the mitochondrial DNA diseases that 

primarily effect neural and skeletal tissue and include Leber’s  hereditary  optic  

neuropathy (LHON) (Holt et al., 1989), Mitochondrial encephalomyopathy, lactic 

acidosis, and stroke-like episodes (MELAS) (Schon et al., 1992) and 

Neuropathy, ataxia, and retinitis pigmentosa (NARP) (Holt et al., 1990). In 

addition, mutations in mtDNA have also been associated with other neurological 

disorders,   such   as   Parkinson’s   disease   and   also   diabetes   (Wallace, 1999; 

Wallace, 2005). 

 

1.1.5 MtDNA transcription and replication  

MtDNA contains no introns, however, there are two non-coding regions 

(Anderson et al., 1981). The displacement loop (D-Loop) is the largest non-

coding region, spanning ~1200 base pairs (bp) and encompasses the origin of 

replication for the H-strand (OH) and the promoters of L-strand transcription 

(HSP1, HSP2 and LSP) of mtDNA (Anderson et al., 1981). The second non-
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coding region is a short 30 bp sequence that contains the origin of replication of 

the L-strand (OL) (Anderson et al., 1981), which is located two-thirds around the 

mitochondrial genome from the D-loop region.  

 

Mitochondria do not possess the biological machinery required to replicate their 

own genome and, in order to mediate this process, they rely exclusively on 

nuclear encoded factors that are translocated and imported into the 

mitochondrial matrix (Falkenberg et al., 2007). Peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1α) is a protein that plays a key role 

in energy metabolism and is a master regulator of mitochondrial biogenesis (Wu 

et al., 1999). In response to external physiological stimuli (Puigserver et al., 

1998; Zhu et al., 2010), PGC1α interacts with multiple transcription factors 

including the nuclear respiratory factors (NRF1 and NRF2) (Wu et al., 1999). 

The NRFs bind to the promoter region of the high mobility group (HMG) protein, 

mitochondrial transcription factor A (TFAM) (Wu et al., 1999). TFAM interacts 

with mtDNA via the D-loop region, which is the primary site of interaction 

between the nuclear-encoded transcription and replication factors and mtDNA 

(Anderson et al., 1981). TFAM binds to the enhancer regions of the LSP and 

HSP and induces structural changes to mtDNA and exposes the promoter 

region (Falkenberg et al., 2007). The mitochondrial specific-RNA polymerase 

(mtRNApol) and mitochondrial transcription factor B1 (TFB1M) and B2 (TFB2M) 

are recruited and assist in the initiation of mtDNA transcription and 

subsequently generate a RNA-DNA hybrid primer (Fernandez-Silva et al., 2003; 

Gleyzer et al., 2005). The hybrid primer is utilized by the mitochondrial specific 

polymerase, Polymerase Gamma (POLG) to initiate mtDNA replication (Ropp 
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and Copeland, 1996). POLG is a heterotrimer enzyme consisting of a catalytic 

subunit, POLGA, and two accessory subunits, POLGB. POLGA is responsible 

for the replication of mtDNA whilst POLGB is essential for recognition of the 

hybrid primer and for high fidelity binding to POLGA (Carrodeguas et al., 2001; 

Ropp and Copeland, 1996). Other factors that assist in the process of mtDNA 

replication include the mtDNA helicase, TWINKLE (Li et al., 1999), and 

mitochondrial single stranded binding protein, MTSSB (Takamatsu et al., 2002). 

Since mtDNA transcription and replication is reliant on multiple factors, the 

precise orchestration of these factors is essential for efficient transcription and 

replication to occur and to maintain normal cell function (Clayton, 1998). 

 

Currently, there are two proposed models of mtDNA replication, the asymmetric 

model and the coupled strand synthesis model. The asymmetric model was first 

proposed in 1972 and suggests that replication of mtDNA occurs at the HSP 

and proceeds two-thirds around the genome to the LSP (Shadel and Clayton, 

1997). From the LSP, replication occurs in the opposite direction and completes 

the process of replication. The long-standing asymmetric model has since been 

challenged, which led to the development of the coupled strand synthesis 

model (Yasukawa et al., 2006). This model suggests that mtDNA replication 

occurs in a similar manner to nuclear DNA replication in which replication 

occurs bi-directionally from the HSP and H and L strands, simultaneously. It is 

likely that both models of replication occur simultaneously, however, this topic 

remains highly disputed (Bogenhagen and Clayton, 2003; Holt and Jacobs, 

2003)  
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1.2 Mitochondrial DNA Copy Number 

1.2.1 MtDNA copy number regulation during (in vitro) development 

In order to analyze how mtDNA copy number is regulated during development 

reliable in vitro models are required. Stem cells are specialized populations of 

cells that are able to self-renew, which generates two identical daughter cells, or 

they differentiate into specialized cell types. The differentiation of stem cells 

often mimics in vivo development. Advances in cell biology techniques over the 

past two decades have resulted in the establishment stem cell lines in vitro from 

both embryonic and adult origins and are now a powerful research tools. Stem 

cell models of development allow scientists to consistently mimic in vivo 

developmental processes (Kehat et al., 2001; Lumelsky et al., 2001; Wichterle 

et al., 2002) in vitro and they also provide an excellent opportunity to investigate 

how mtDNA copy number is regulated during development.  

 

Embryonic stem cells (ESCs) are one of the most intensely researched stem 

cell types and have contributed greatly to our understanding of the regulation of 

mtDNA copy number and its impact on energy metabolism (Cho et al., 2006; 

Facucho-Oliveira et al., 2007; Prigione et al., 2010; St John et al., 2005; Varum 

et al., 2011). ESCs are derived from the inner cell mass of a blastocyst (Evans 

and Kaufman, 1981; Thomson et al., 1998) and were first derived from mice in 

the   1980’s   (Evans and Kaufman, 1981; Thomson et al., 1998). ESCs are 

pluripotent, which is demonstrated by their ability to generate cell types of the 

three primary germ layers, the ectoderm, mesoderm and endoderm as well as 

germ cells (Bradley et al., 1984; Hubner et al., 2003). ESCs are also 

characterized by their self-renewal and proliferative properties. ESCs express a 
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core set of transcription factors, OCT4, NANOG and SOX2 and these that are 

essential for the maintenance of pluripotency (Ginis et al., 2004).  Down 

regulation of these factors is associated with the onset of differentiation (Cai et 

al., 2006; Zaehres et al., 2005). 

 

Undifferentiated ESCs are associated with low mtDNA copy number, defined as 

the mtDNA set point (Facucho-Oliveira et al., 2007), and express the nuclear 

encoded mtDNA transcription and replication factors, POLGA, POLGB and 

TFAM, at low levels (Facucho-Oliveira et al., 2007; St John et al., 2005).  The 

mitochondrial biogenesis factors, PGC1α, PGC1β and NRF1 are also 

expressed at low levels (Prigione et al., 2010). Low mtDNA copy number in 

ESCs is accompanied by the presence of immature mitochondria that are 

spherical in morphology; contain poorly organized cristae and a matrix with low 

electron density (Cho et al., 2006; St John et al., 2005). The combination of low 

mtDNA copy number and immature mitochondria results in ESCs possessing 

low oxidative capacity (Varum et al., 2011). In agreement, ESCs express low 

levels of the ETC subunits and TCA enzymes and generate low levels of ATP 

(Cho et al., 2006; Facucho-Oliveira et al., 2007; Prigione et al., 2010; St John et 

al., 2005; Varum et al., 2011) relative to mature cells types. ESCs are thus 

heavily reliant on glycolysis as a means of metabolic support and express 

increased levels of glycolytic enzymes, exhibit a high rate of glycolytic flux and 

secrete elevated levels of lactate relative to mature or differentiated cell types 

(Prigione et al., 2010; Varum et al., 2011).  

 



 41 

Differentiated/mature cell types, such are neurons and myocytes, require large 

amounts of ATP to perform their specific cellular functions (Moyes et al., 1998). 

In order to meet this energetic demand, these cell types rely extensively on 

OXPHOS for the generation of ATP (Chung et al., 2007). High-energy cell types 

also possess high mtDNA copy number and mature mitochondrial networks, 

which are consistent with an increase in OXPHOS utilization (Cho et al., 2006; 

Miller et al., 2003). It is therefore likely that the transition from stem cell to 

mature cell type requires a shift from glycolytic to oxidative metabolism that is 

accomplished by an increase in mtDNA copy number and expression of the 

nuclear and mtDNA encoded subunits and assembly factors of the ETC.   

 

Evidence of this transition has been observed in multiple studies. Differentiation 

of murine ESCs was associated with an expansion of mtDNA copy number; 

increased expression of mtDNA transcription and replication factors and ETC 

associated genes (Facucho-Oliveira et al., 2007). These changes did not occur 

at the onset of differentiation (Day 0) and are observed on Day 6 of 

differentiation. In a study of murine neural stem cells (NSCs), a multipotent stem 

cell population found within the brain (Wang et al., 2011; Wang et al., 2010), 

mtDNA copy number was immediately and progressively increased following 

the onset of differentiation. NSCs are multipotent and give rise to only neural 

cell types. It is plausible that expansion of mtDNA copy number occurs at the 

time of lineage specification, which may occur earlier in NSCs due to their 

restricted potency.  
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Differentiated cell types have been shown to express higher levels of ETC and 

TCA cycle enzymes, consume greater concentrations of O2, generate higher 

levels of ATP and secrete less lactate than ESCs (Chung et al., 2007; Prigione 

et al., 2010; Varum et al., 2011). Changes in gross mitochondrial morphology 

also occur during differentiation, with mitochondria becoming more elongated 

with complex cristae and dense matrices (Cho et al., 2006; Varum et al., 2011). 

Furthermore, mitochondrial membrane potential increases and is consistent 

with increased proton flow across the mitochondrial membrane and increased 

utilization of the ETC (Cho et al., 2006; Facucho-Oliveira et al., 2007; Prigione 

et al., 2010; St John et al., 2005; Varum et al., 2011). 

 

In summary, the journey of an undifferentiated stem cell to a fully differentiated 

cell type requires dynamic changes in mtDNA copy number and mitochondrial 

function. Acquisition of mtDNA copy number occurs during differentiation and 

lineage specification and reflects the future metabolic requirements of the 

terminally differentiated cell type. Changes in mtDNA copy number and 

maintenance of copy number are regulated entirely by nuclear encoded factors 

and their precise interaction with the mitochondrial genome is essential to 

maintain  normal  cellular  function.  The  loss  of  a  cell’s  ability  to  regulate/maintain  

mtDNA copy number is associated with mitochondrial diseases (Wallace, 1999; 

Wallace, 2005) and more recently cancer. 

 

1.2.2 Tumorigenesis and the association with mtDNA copy number 

Tumorigenesis is the formation or development of cancer. It is a complex 

process that can be summarized by the “transformation” of a normal cell into a 
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cancer/tumor cell that subsequently undergoes uncontrolled cell division and 

develops into a tumor mass (Evan and Vousden, 2001; Reya et al., 2001). It is 

well established that tumorigenesis is associated with abnormal regulation of 

chromosomal genes that regulate cell proliferation (oncogenes & tumor 

suppressors) and apoptosis (Evan and Vousden, 2001; Reya et al., 2001).  

However, the role that mtDNA plays in tumorigenesis is less clear. As discussed 

earlier in this chapter, the regulation of mtDNA copy number is essential to 

support normal cellular function and deviations or changes in mtDNA copy 

number are associated with cellular dysfunction and disease. It is, therefore, 

likely that abnormal regulation of mtDNA copy number plays a role in 

tumorigenesis. In support of this hypothesis, changes in mtDNA copy number in 

tumors, relative to the neighboring healthy tissue, are now well documented and 

are summarized in Table 1.II. The possible mechanisms for changes in mtDNA 

copy number in tumors are discussed in more detail below.  
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Tumor origin  MtDNA copy number Reference   
Breast Decreased  (Fan et al., 2009; Mambo et 

al., 2005; Tseng et al., 
2006; Yu et al., 2007) 

Gastric Decreased (Wu et al., 2005) 
Colon Decreased (Chen et al., 2011) 
Liver Decreased (Lee et al., 2004; 

Vivekanandan et al., 2010; 
Yamada et al., 2006; Yin et 
al., 2004) 

Brain Increased  (Liang and Hays, 1996) 
Head & Neck Increased (Jiang et al., 2005; Kim et 

al., 2004; Shieh et al., 2004) 
Lung Decreased (Lin et al., 2008) 
Prostrate  Increased (Mizumachi et al., 2008) 
Acute lymphoblastic 
leukemia  

Increased (Egan et al., 2010) 

Endometrial  Increased (Wang et al., 2005) 
Esophageal  Increased (Tan et al., 2006) 
Non-Hodgkin 
lymphoma  

Increased (Kusao et al., 2008) 

Ovarian  Increased (Wang et al., 2006) 
Thyroid Increased (Mambo et al., 2005) 
Ewings sarcoma  Decreased (Yu et al., 2010) 
Fibrolamellar  Decreased (Vivekanandan et al., 2010) 
Renal cell Decreased (Heddi et al., 1996; 

Meierhofer et al., 2004; 
Selvanayagam and 
Rajaraman, 1996; Xing et 
al., 2008) 

 

Table 1.II. Summary of the changes in mtDNA copy number in tumors. 

 

1.2.3 Mechanisms for increased mtDNA copy number in tumor cells 

Some tumor types consistently show increases in mtDNA copy number relative 

to healthy neighboring tissues (See Table 1.II). Increases in mtDNA copy 

number are associated with the ageing process (Lee et al., 1998) and the 

probability of the development of cancer also increases during ageing, although 

cancer can also affect the young (Finkel et al., 2007). There is also evidence to 

suggest that mtDNA mutations/deletions accumulate during ageing (Lee et al., 

1998; Richter et al., 1995; Wei, 1998) and it is hypothesized that the increases 
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in mtDNA act as a compensatory mechanism for OXPHOS defects that are a 

consequence of accrued mtDNA rearrangements and exposure to oxidative 

stress over time (Lee et al., 2000).  

 

Experimentally, increases in mtDNA copy number in response to oxidative 

stress have been demonstrated by Lee et al., who observed increases in 

mtDNA copy number in primary lung cells following hydrogen peroxide 

exposure (Lee et al., 2000). The authors concluded that changes in mtDNA 

copy number are early molecular events to support adaption to exogenous and 

endogenous oxidative stress (Lee et al., 2000). In support of the association of 

increased mtDNA copy number and ageing, the analysis of brain tissues from 

aged rhesus monkeys and murine NSCs revealed elevated mtDNA copy 

number relative to non-aged controls (Mao et al., 2012; Stoll et al., 2011). The 

aged NSCs exhibited a reduced OXPHOS profile and increased glycolytic 

activity despite the increases in mtDNA content. These outcomes suggest that 

OXPHOS becomes increasingly defective during ageing. The development of 

OXPHOS defects is likely to be multifactorial, however, there is now evidence to 

suggest that mtDNA mutations play a key role in this process since mtDNA 

mutations occurred at an increased frequency in aged rhesus monkey neural 

tissue relative to non-aged controls (Mao et al., 2012). 

 

MtDNA copy number is cell specific and is related to the specialized function of 

individual or groups of cells (Kelly et al., 2013). Interestingly, changes to mtDNA 

copy number during ageing also appear to occur in a cell/tissue specific 

manner. Whilst increases in mtDNA copy number have been observed in 
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stressed lung cells and aged neural tissue (Lee et al., 2000; Mao et al., 2012), 

mtDNA copy number was reduced in aged liver tissue and unchanged in aged 

cardiomyocytes, relative to non-aged controls (Barazzoni et al., 2000). Similar 

to aged tissues, alterations in mtDNA copy number in tumor cells appear to be 

tumor specific (see Table 1.II). Nevertheless, a correlation exists between 

ageing, the accumulation of mtDNA rearrangements and OXPHOS defects.  

 

1.2.4 Mechanisms for decreased mtDNA copy number in tumors 

There are 16 known DNA polymerases that function in eukaryotic cells. POLGA 

is the only DNA polymerase that is currently known to replicate mtDNA and is, 

therefore, vital to mitochondrial function (Hance et al., 2005). Loss of POLGA 

function in tumor cells has been shown to cause reductions in mtDNA copy 

number (mtDNA depletion), increased production of mitochondrial reactive 

oxygen species (ROS) and an overall decrease in mitochondrial function (Chan 

and Copeland, 2009; Chandra and Singh, 2011). A study by Singh et al. 

outlined a possible mechanism by which POLGA mutations could promote 

tumorigenesis (Singh et al., 2009), by ectopically expressing a proofreading 

deficient POLGA into a breast cancer cell line. The proofreading deficient 

POLGA induced mtDNA depletion in the transformed cells compared to 

controls. In addition, the transformed cells showed enhanced tumorigenic 

potential in in vitro based assays (Singh et al., 2009). This study highlighted that 

defects in POLGA can potentially play a role in mtDNA depletion syndromes 

and enhanced tumorigenicity of tumor cells. 
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Loss of TFAM function is associated with respiratory chain defects and has 

recently been linked with cancer (Hansson et al., 2004). TFAM is an essential 

transcription factor involved in mtDNA transcription and replication and there is 

evidence to suggest precise regulation of TFAM protein levels are required to 

maintain mtDNA copy number (Litonin et al., 2010). A recent study by Guo et al. 

comprehensively described the potential role that TFAM mutations may play in 

tumorigenesis and to date is the only study highlighting this association. In this 

study, truncating mutations in TFAM were associated with 74% of colorectal 

tumors that exhibited microsatellite instability, whilst no mutations were 

observed in tumors with microsatellite stability (Guo et al., 2011). In vitro, cells 

with truncating mutations exhibited reduced TFAM protein levels, mtDNA 

depletion and reduced mtDNA gene expression relative to cells with wild type 

TFAM. Cells expressing mutant TFAM also generated tumors in 

immunocompromised mice at an accelerated rate relative to controls and 

suggests that mutant TFAM elicits a growth advantage. Finally, cells harboring 

the TFAM mutant exhibited enhanced resistance to the chemo-agent, cisplatin, 

compared to wild type controls. Since TFAM interacts directly with the mtDNA 

HSP within the D-loop (Ekstrand et al., 2004), it is likely that mutations in TFAM 

compromise interactions with the D-loop. In support of this hypothesis, mutant 

TFAM was shown to bind to the D-loop region at a reduced affinity in 

comparison to wild type TFAM (Guo et al., 2011). Collectively, this seminal 

study demonstrated that TFAM mutations contribute to mtDNA depletion and 

promotes proliferation and chemo-resistance (Guo et al., 2011). Given the 

importance of POLG and TFAM to mtDNA transcription and replication, it is 

important to consider whether factors upstream of these factors, such as 
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PGC1α and the NRFs, may also be exerting strong effects on mtDNA copy 

number in tumor cells. However, at present very little research has been 

preformed on their respective roles in the regulation of mtDNA copy number in 

tumor cells. 

 

The D-loop is a ~1200bp non-coding region of mtDNA that contains three 

regulatory sites for mtDNA transcription and replication (Anderson et al., 1981). 

Mutations within the D-loop have been frequently reported in various tumor 

types (Lee et al., 2004; Yu et al., 2010; Yu et al., 2007). Given the importance 

of the D-loop region, it is likely that mutations within the D-loop region also 

disrupt the binding affinity of TFAM and the initiation of mtDNA transcription and 

replication. This could lead to reduced mtDNA turn over and depletion over 

time. Experimental evidence supports this hypothesis with an association of D-

loop mutations with mtDNA depletion in hepatocellular carcinoma (Lee et al., 

2004), breast cancer (Yu et al., 2007), and Ewings sarcoma (Yu et al., 2010). In 

addition, mtDNA depletion has also been associated with increased 

tumorigenicity and resistance to chemo-agents in tumors (Guo et al., 2011; 

Singh et al., 2009). It is, therefore, likely that mutations within the D-loop region 

may play a role in the initiation and or maintenance of tumorigenesis.  

 

p53 is a tumor suppressor gene that is implicated in DNA repair, cell cycle 

control and apoptosis (Achanta et al., 2005). In addition, p53 interacts directly 

with POLGA and functions to maintain mtDNA integrity in response to insults 

such as mitochondrial ROS, which are generated by the ETC and are 

potentially harmful to mtDNA due to their close proximity to each other (Achanta 
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et al., 2005). Achanta et al. demonstrated that p53 enhances the DNA 

replication and proofreading properties of POLGA (Achanta et al., 2005). The 

knockdown of p53 was shown to have the reverse effect and increased the 

frequency of mtDNA damage and increased the frequency of in vivo mutations 

(Achanta et al., 2005). p53 also functions as a checkpoint protein during 

mitochondrial biogenesis and acts as an external repair protein. In addition, the 

loss of p53 expression was associated with mtDNA depletion (Kulawiec et al., 

2009a). Loss of p53 function occurs at a high frequency in cancer and is 

observed in ~50% of tumors (Vogelstein et al., 2000). Given the association of 

p53 with mtDNA, it is likely that the loss of p53 function will induce deleterious 

effects on mtDNA that include the loss of mtDNA integrity and also increases 

the likelihood of abnormal mtDNA replication through reduced POLG function 

(Achanta et al., 2005). Consequently, loss of p53 function may play an indirect 

role in mtDNA depletion, establishment of multiple mtDNA variants and large-

scale deletions, which are often observed in tumors (Chen et al., 2011; Lee et 

al., 2004; Shieh et al., 2004; Yu et al., 2010; Yu et al., 2007). 

 

1.2.5 MtDNA-less tumor cells 

The observed alterations in mtDNA copy number in tumors strongly suggest 

that mtDNA plays either a direct or indirect role in tumorigenesis. In an attempt 

to further elucidate this role, multiple laboratories have completely removed 

mtDNA from tumor cells. The removal of mtDNA is a powerful technique that 

allows scientists to determine how mtDNA alters cellular function. In vitro, tumor 

cells can be progressively depleted of mtDNA by long-term exposure to 

ethidium bromide (King and Attardi, 1989). Low concentrations of ethidium 
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bromide intercalate into mtDNA and inhibit the activity of POLGA, which results 

in stalled mtDNA replication and transcription (King and Attardi, 1989). As the 

cell continues to divide, mtDNA is sequentially diluted until a surviving 

population of cells remains that are devoid of mtDNA and are referred to as ρ0 

cells. To  this  end,  ρ0 cells have been derived from multiple tumor cell types that 

include lung (A549) (Amuthan et al., 2002), bone (143BTK-) (Singh et al., 2005) 

and cervical (HeLa) cancer cells (Shidara et al., 2005), amongst others. Due to 

the loss of mtDNA,  ρ0 cells possess OXPHOS defects and rely extensively on 

glycolysis for the generation of ATP (King and Attardi, 1989). Consequently, the 

study  of  ρ0 tumor cells provides the opportunity to investigate how the loss of 

mtDNA impacts upon the functions of tumor cells, particular their tumorigenic 

properties.  

 

The effects of mtDNA depletion using ethidium bromide in tumor cells vary 

considerably in the literature. Loss of mtDNA resulted in enhanced 

tumorigenicity in breast (Kulawiec et al., 2009b), lung (Amuthan et al., 2002), 

osteosarcoma (Singh et al., 2005), melanoma (Ballot et al., 2010) and prostrate 

tumor cells. However, other studies have reported reduced tumorigenicity in 

tumor cells derived from the same tumor types listed above (Cavalli et al., 1997; 

Magda et al., 2008; Yen et al., 2005). There is some evidence to suggest that 

mtDNA depletion not only alters cell metabolism but can also induce changes in 

nuclear gene expression and induce epigenetic modification (Singh et al., 2005; 

Smiraglia et al., 2008). Interestingly, gene expression and epigenetic changes 

were reversible in ρ0 cells following the re-population of tumor cells with donor 

mtDNA (Singh et al., 2005; Smiraglia et al., 2008). These reports provide strong 
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evidence that mtDNA interacts with nuclear DNA (nuclear-mtDNA cross talk) 

and suggests that mtDNA may play a direct role in tumorigenic transformation. 

 

1.3 New approaches for investigating the role of mtDNA in 

tumor cells: Multipotent tumor cells 

It remains to be fully determined how tumor cells regulate their mtDNA copy 

number relative to normal cells. The studies cited in Table 1.II directly compared 

the mtDNA copy number of tumor tissue to neighboring healthy tissue. These 

studies have provided invaluable insight into how copy number in tumor cells 

differs to that of normal cells, however, they do not show how mtDNA copy 

number is regulated over time. Over the last decade, a number of studies have 

identified subpopulations of cells within tumors that exhibit stem cell-like 

properties. It has been speculated that the self-renewal and differentiation these 

stem cell-like cells may underpin tumor heterogeneity. The study of these cell 

types would provide valuable insight into how mtDNA copy number is regulated 

in tumor cells and also during tumorigenesis. Tumor cells exhibiting stem cell-

like properties are commonly refereed to as cancer stem cells (CSCs) or tumor 

initiating cells (TICs) (Clarke et al., 2006). Although the existence of CSCs 

remains a controversial topic, self-renewing tumor cells have been identified in 

blood (Lapidot et al., 1994), brain (Singh et al., 2003), breast (Al-Hajj et al., 

2003), prostrate (Collins et al., 2005) and colon cancers (Ricci-Vitiani et al., 

2007).  

 

The drive behind the identification of CSCs originates from hematological 

research (Lapidot et al., 1994; Spangrude et al., 1988). Hematopoietic stem 



 52 

cells (HSCs) are characterized by a battery of surface antigens and/or clusters 

of differentiation (CD) markers (Spangrude et al., 1988). The application of 

these criteria led to the identification of a subpopulation of tumorigenic self-

renewing leukemic cells (Lapidot et al., 1994).  Subsequently, probing for stem 

cell characteristics in solid tumors led to the identification of self-renewing tumor 

cell types (Al-Hajj et al., 2003; Collins et al., 2005; Ricci-Vitiani et al., 2007; 

Singh et al., 2003). One tumor subtype that exhibits striking stem cell-like 

characteristics are glioblastoma multiforme (GBM).  

 

GBM is the most common and malignant primary brain tumor and accounts for 

more than 70% of all central nervous system malignancies (Buckner et al., 

2007). GBM is renowned for its resistance to current therapeutic strategies and 

the median prognosis for GBM patients currently remains at 12 to 15 months 

despite recent advances in medical therapeutics (Buckner et al., 2007; Hess et 

al., 2004). GBM is characterized by its cellular heterogeneity, proliferative 

nature, chromosomal instability, angiogenic and infiltrative properties and 

resistance to multimodal therapies (Furnari et al., 2007; Park and Rich, 2009). It 

has been speculated that the cellular heterogeneity and therapeutic resistance 

of GBM is due to the presence of CSCs (Figure 1.4) that share multiple 

characteristics with neural stem cells (NSCs).    
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Figure 1.4. Diagrammatic representation of cancer stem cell mediated 
therapeutic resistance. 1. The tumor mass contains a heterogeneous 

population of cells with interspersed CSCs (brightly coloured cells). 2. Following 

aggressive chemotherapy, the bulk of the tumor is destroyed, however, CSCs 

are able to survive. 3. Overtime, the CSCs self-renew and give rise to 

differentiated progeny and a secondary tumor is established.  

 
1.3.1 GBM and NSCs 

In vivo, NSCs reside within the subventricular zone and dentate gyrus of the 

brain (Gage, 2000; McKay, 1997). In vitro, NSCs have been derived from 

differentiating ESCs by defined culture conditions (Ying et al., 2003). A key 

characteristic of NSCs is their ability to form and propagate as floating 

aggregates of cells called neurospheres (Svendsen et al., 1998; Ying et al., 

2003). In vitro, NSCs are cultured in media containing the growth factors 

epidermal growth factor (EGF) and fibroblast growth factor (FGF), which 

promote proliferation and self-renewal (Ying et al., 2003). NSCs express a core 
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set of markers that include NESTIN, MUSASHI1 and SOX2 (Kaneko et al., 

2000; Lendahl et al., 1990; Li et al., 1998).  

 

GBM cells with NSC-like properties were first isolated from tumors by Singh et 

al in 2003 (Galli et al., 2004; Singh et al., 2003). Putative GBM CSCs were 

responsive to media containing EGF an FGF and propagated as non-adherent 

neurospheres. In addition, the culture of GBM CSCs under NSC conditions was 

shown to maintain the genetic phenotype of the parental tumor from which the 

CSCs were established, whereas culture in media containing serum resulted in 

changes in both their genetic and epigenetic status and tumorigenicity (Lee et 

al., 2006). GBM CSCs express a number of NSC factors that include but are not 

limited to NESTIN, SOX2, MUSASHI1 and CD133 (Ma et al., 2008). The 

intensity of expression of these factors in GBM tumors has been shown to 

closely correlate with patient prognosis, with high levels of expression indicating 

a poor clinical outcome (Ma et al., 2008). Coupled to the expression of stem cell 

factors, GBM CSCs have also been shown to overexpress DNA repair proteins 

(Bao et al., 2006a) and drug transporters (Frosina, 2009) that collectively 

provide anti-apoptotic characteristics. 

 

1.3.2 Markers of GBM CSCs 

The direct comparison of GBM CSCs and NSCs has led to the identification of a 

number of factors that are associated with GBM CSC populations, which appear 

to play a similar role in both GBM CSCs and NSCs. CD133 (Prominin-1) is a 

cell surface glycoprotein that is expressed in multiple adult stem cell populations 

(Uchida et al., 2000; Yin et al., 1997). CD133 has received much attention as a 
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defined GBM CSC marker over recent years with reports that CD133+ cells 

were a therapeutically resistant population of GBM CSCs with elevated DNA 

repair mechanisms and expression of drug transporters (Bao et al., 2006a). 

Other laboratories suggested that only CD133+ GBM CSCs could give rise to 

tumors in severe combined immunodeficiency (SCID) mice, whilst CD133- cells 

were not tumorigenic (Beier et al., 2007). However, recent studies by Wang et 

al and others demonstrated that CD133- cells were in fact tumorigenic and 

capable of self-renewal, differentiation and could give rise to both CD133- and 

CD133+ cells (Chen et al., 2010; Ogden et al., 2008; Wang et al., 2008a). 

These studies provided strong evidence that CD133 was not a unique marker of 

GBM CSCs.  

 

Other factors identified as a potential GBM CSC markers include the core NSC 

factors, namely NESTIN, MUSASHI1 and SOX2 (Galli et al., 2004; Singh et al., 

2003). NESTIN is a type IV intermediate filament protein that is expressed in 

NSCs and embryonic tissue (Zimmerman et al., 1994). Its expression is 

elevated in GBM CSCs and has been associated with the de-differentiation 

status of GBM, cell motility and invasiveness (Dell'Albani, 2008). MUSASHI1 is 

a transcription factor that is essential for the maintenance of stemness in NSCs 

and is often overexpressed in GBM CSCs (Ma et al., 2008). The abolition of 

MUSASHI1 expression has been shown to reduce GBM tumor growth (Sureban 

et al., 2008) and provides evidence to suggest that MUSASHI1 performs a 

similar role in GBM and NSCs. SOX2 is from the family of high mobility group 

(HMG) proteins and is an essential transcription factor that plays a key role in 

maintenance of stemness in NSCs and also ESCs (Fong et al., 2008; Kim et al., 
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2008; Suh et al., 2007). SOX2 plays key role in the maintenance of stemness 

and tumorigenicity of GBM CSCs as silencing of SOX2 resulted in decreased 

cell proliferation, cell cycle entry and tumorigenicity in vivo (Gangemi et al., 

2009). Furthermore, the silencing of SOX2 was accompanied by reduced 

NESTIN and OCT4 expression (Oppel et al., 2011) and strongly suggests that 

embryonic signaling networks are active in GBM. OCT4, along with NANOG 

and SOX2, form a core set of pluripotent stem cell factors (Kim et al., 2008). 

Although GBM cells are not pluripotent, the expression of these factors has 

been associated with GBM tumorigenicity (Clement et al., 2007; Ma et al., 2008; 

Zbinden et al., 2010). Indeed, the expression of OCT4 has been linked to 

increased GBM motility and invasiveness (Kobayashi et al., 2012). A recent 

study by Zbinden et al reported the expression of NANOG in GBM samples and 

also observed that NANOG, OCT4 and NESTIN expression were enriched in 

CD133+ cells (Zbinden et al., 2010).  The knockdown of NANOG in GBM cells 

resulted in reduced clonogenicity, cell proliferation and in vivo tumorigenicity. 

The knockdown of NANOG was also associated with the down regulation of 

OCT4 and NESTIN (Zbinden et al., 2010) and provides further evidence of 

active embryonic signaling in GBM CSCs. 

 

The above studies strongly suggest that GBM CSCs are characterized by a 

number of cellular markers despite the optimism that a single marker could 

identify GBM CSCs and provide a potential therapeutic target. Nevertheless, 

recent studies point towards the activation of embryonic signaling pathways in 

the establishment of a stem cell-like phenotype in GBM cells. Indeed, GBM 

CSCs appear to have undergone a form of cellular reprogramming that is not 
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too dissimilar to induced pluripotent stem (iPS) cells. iPS cells are derived from 

somatic cells that are induced to express pluripotent factors (Takahashi et al., 

2007; Takahashi and Yamanaka, 2006). Indeed, GBM CSCs have been shown 

to express some of the factors used to generate iPS cells, OCT4, SOX2 and the 

proto-oncogene c-MYC (Kobayashi et al., 2012; Oppel et al., 2011; Wang et al., 

2008b). Since GBM CSCS often express multipotent and pluripotent factors it is 

likely that the abnormal regulation of these factors is a major driving force 

behind the malignancy of GBM, through the promotion of proliferative and anti-

apoptotic properties. It is, therefore, likely that targeting these pathways may 

prove effective at enriching for GBM CSC populations and also provide novel 

therapeutic targets.  

 

1.3.3 NSC and GBM CSC multipotency and the implications for mtDNA 

copy number 

Another property that GBM CSCs share with NSCs is multipotency. NSCs have 

been successfully differentiated into neuronal and glial (astrocytes and 

oligodendrocyte) cell types using defined culture conditions (Brustle et al., 1999; 

Fraichard et al., 1995; Li et al., 2005; Nat et al., 2007; van Inzen et al., 1996). 

Likewise, GBM CSCs have been differentiated into neuronal and glial-like cell 

types (Galli et al., 2004; Singh et al., 2003) (Figure 1.5). Therefore, NSCs and 

multipotent GBM CSCs are powerful research tools. NSCs can be utilized to 

enhance our understanding of neural development whilst GBM CSCs can 

provide valuable insight into abnormal development and tumorigenesis. 

Furthermore, these cell types also provide excellent models to enhance our 

understanding of the role of mtDNA copy number in stem cell differentiation and 
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tumorigenesis. Due to the similarity of GBM CSCs with NSCs, it is essential to 

determine whether GBM CSCs regulate their mtDNA copy number in a similar 

manner to NSCs as they undergo differentiation. Currently no data exist for the 

regulation of mtDNA copy number in CSCs and the analysis of differentiating 

GBM CSCs would, therefore, be a novel approach and provide essential insight 

into the role of mtDNA in GBM and also CSCs.  

 

 
Figure 1.5. Diagrammatic representation of NSC and GBM CSCs and their 
differentiated progeny. In the undifferentiated state, NSCs and GBM CSCs 

have been shown express the stem cell factors NESTIN, MUSASHI1, SOX2 

and CD133. Following the onset of differentiation, NSCs give rise to neuronal 

and glial cell types. In addition, GBM CSCs give rise to differentiated progeny 

that express markers of neuronal and glial cell types. Both NSCs and GBM 

CSCs provided excellent experimental models to investigate how mtDNA copy 

number is regulated in normal and abnormal development.  



 59 

1.4 Conclusion 

Stem cells are associated with low mtDNA copy number, immature 

mitochondria and possess low OXPHOS capacity. The onset of differentiation 

involves the maturation of mitochondria and a concurrent increase in mtDNA 

copy number and the expression of differentiation markers in order to allow fully 

differentiated cell types to generate sufficient quantities of ATP via OXPHOS. 

GBM CSCs share remarkable similarities with hNSCs, which include self-

renewal, multipotency and gene expression profiles. However, it remains to be 

determined whether differentiating GBM CSCs and hNSCs regulate mtDNA in a 

similar manner. To date, data for mtDNA copy number only exists from 

established tumors and does not discriminate between CSCs and their 

differentiated progeny. Thus, GBM CSCs provide the opportunity to enhance 

our understanding of the regulation of mtDNA copy number in tumorigenesis. In 

addition, tumors often express altered mtDNA copy number relative to healthy 

tissue and there is evidence to suggest that these changes promote a 

tumorigenic phenotype. It is, therefore, essential to fully determine how changes 

in mtDNA content affect tumor cell function and tumorigenicity in order to 

enhance our understanding of tumor cell biology and to develop novel 

therapeutic approaches.  

 

1.5 Hypothesis 

I hypothesize that GBM CSCs will show differential regulation of mtDNA copy 

number relative to hNSCs in a process that is underpinned by the abnormal 

expression of nuclear-encoded factors. Since mtDNA copy number is essential 

for normal cell function, I hypothesize that depleting GBM CSCs of mtDNA will 
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alter their gene expression patterns and tumorigenicity. Finally, mtDNA 

mutations have been shown to induce cellular dysfunction and I therefore 

hypothesize that altering the mtDNA genotype of tumor cells will alter their 

mtDNA copy number and differentiation potential.  

 

1.6 Aims 

The primary aims of each of the experimental chapters described in this thesis 

are to: 

1. Determine how mtDNA copy number is regulated in differentiating 

hNSCs and GBM cell lines, in vitro, and the role this plays in the use of 

OXPHOS (Chapter 3) 

2. Determine the effects of mtDNA depletion on the gene expression 

profiles and proliferation rates of HSR-GBM1 cells in vitro (Chapter 4) 

3. Determine the effects of varying degrees of mtDNA depletion on the 

tumorigenicity of HSR-GBM1 cells in vivo (Chapter 5) 

4. Determine how changes in mtDNA genotype impact upon the regulation 

of mtDNA copy number, gene expression and differentiation of tumor 

cells in vitro (Chapter 6) 
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Chapter 2: General Materials and Methods 

2.1 Preparation of cell culture growth factors and solutions   

2.1.1 Preparation of poly-L-ornithine  

50 mg of poly-L-ornithine (Sigma, St. Louis, MO, USA) was dissolved in 5 ml of 

deionized H2O (dH2O) to generate a stock solution of 10 mg/ml. The solution 

was filter sterilized and 50 l aliquots were transferred into 600 l tubes 

(Axygen, Union City, CA, USA) and stored at -20oC until use. 

 

2.1.2 Preparation of laminin  

Laminin stock solution (1 mg/ml; Sigma) was diluted 1:50 to a working 

concentration of 20 g/ml in sterile dH2O. 10 ml aliquots were transferred into 

15ml tubes (BD Biosciences, Franklin Lakes, NJ, USA) and stored at -20oC until 

use. 

 

2.1.3 Preparation of epidermal growth factor (EGF) 

100 g of lyophilized EGF (Millipore, Bellerica, MA) was reconstituted in 5 ml of 

sterile 0.1% (w/v) bovine serum albumen (BSA; Sigma) in phosphate buffered 

saline (PBS) (Invitrogen, Carlsbad, CA, USA) to generate a 20 g/ml stock 

solution. 250 l aliquots were transferred into 1.7 ml tubes (Axygen, Union City, 

CA, USA) and stored at -20oC until use. 
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2.1.4 Preparation of basic fibroblast growth factor (bFGF) 

50 g of lyophilized bFGF (Millipore) was reconstituted in 5 ml of sterile 0.1% 

(w/v) BSA in PBS to generate a 10 g/ml stock solution. 250 l aliquots were 

transferred into 1.7 ml tubes and stored at -20oC until use. 

 

2.1.5 Preparation of uridine  

250 mg of uridine (Sigma) was dissolved in 5 ml of dH2O to generate a 50 mg/ml 

stock solution. The solution was filter sterilized and 250 l aliquots were 

transferred into 1.7 ml tubes and stored at -20oC until use. 

 

2.1.6 Preparation of bromo-deoxyuridine (BrdU) 

50 mg of BrdU (Sigma) was dissolved in 5 ml of 5% (v/v) ethanol to generate a 

10 mg/ml stock solution. The solution was filter sterilised and 500 l aliquots 

were transferred into 1.7 ml tubes and stored at -20oC until use. 

 

2.1.7 Preparation of 2'-3'-dideoxycytidine (ddC) 

21.1 mg of ddC (Sigma) was dissolved in 10 ml of dH2O to generate a stock 

solution of 10 M. The solution was filter sterilized and 250 l aliquots were 

transferred into 1.7 ml tubes and stored at -20oC until use. 

 

2.1.8 Preparation of dialyzed fetal bovine serum (dFBS) 

40 ml of fetal bovine serum (FBS) (Invitrogen) was dispensed into 25 cm of 

dialysis tubing (Fisher Scientific, Waltham, MA, USA) and sealed by a double 

knot in the dialysis tubing. The tubing was transferred to a 5-litre beaker, 
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secured, and suspended vertically in 5 litres of PBS. PBS was continuously 

stirred at 4oC for 24 hours with a PBS change after 12 hours. dFBS was 

removed from the dialysis tubing and transferred to a 50 ml tube (BD 

Biosciences, Franklin Lakes, NJ, USA)  and filter sterilized. 10 ml of dFBS was 

aliquoted into 15 ml tubes and stored at -20oC until use. 

 

2.1.9 Preparation of cytochalasin B 

10 mg of cytochalasin B (Sigma) was dissolved in 5 ml of dimethyl sulfoxide 

(DMSO; Sigma) to generate a working concentration of 2 mg/ml. 200 l aliquots 

were transferred into 1.7 ml tubes and stored at -20oC until use. 

 

2.2 Cell culture 

2.2.1 Fibronectin treatment of culture plates  

Cell culture dishes (BD Biosciences, Franklin Lakes, NJ, USA) were pre-treated 

with fibronectin prior to cell seeding to promote cell attachment. A stock solution 

of fibronectin (1 mg/ml; Millipore) was diluted 1:50 in sterile PBS to a working 

concentration of 20 g/ml.  Culture vessels were coated with 1.5 ml/10 cm2 of 

the fibronectin solution and incubated at 37oC for 1 hour or overnight at 4oC. For 

short-term storage (2-4 weeks), culture vessels coated with fibronectin, wrapped 

in parafilm and stored at 4oC until use. Prior to use, the fibronectin solution was 

removed and culture vessels were used immediately for cell plating.  
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2.2.2 Poly-L-Ornithine and laminin treatment of culture plates 

Culture dishes were pre-treated with poly-L-ornithine and laminin prior to cell 

seeding to promote cell attachment. A stock solution (10 mg/ml) of poly-L-

ornithine was diluted 1:500 in sterile dH2O to a working concentration of 20 

g/ml. Culture vessel surfaces were coated with 1.5 ml/10 cm2 of the poly-L-

ornithine solution and incubated at 37oC for 1 hour. Following incubation, poly-L-

ornithine was removed and culture vessels were washed twice with sterile H2O. 

Culture vessel surfaces were immediately coated with laminin (20 g/ml; 1.5 

ml/10 cm2) and incubated at 37oC for 2 hours. Following incubation, laminin was 

removed and culture vessels were washed with sterile PBS. Prior to use, PBS 

was removed and the culture vessels were used immediately for cell plating. For 

short-term storage (1-2 weeks), culture plates treated with poly-L-

ornithine/laminin, wrapped in parafilm and stored at 4oC until use.  

 

2.2.3 Culture of human neural stem cells 

Human neural stem cells (hNSCs) derived from the NIH-approved H9 (WA09) 

human embryonic stem cell line were purchased from Invitrogen (Invitrogen). 

For routine culture, hNSCs were cultured as a monolayer at a density of 5 x 104 

cells/cm2 on fibronectin coated culture plates in StemPro Complete Medium. 

StemPro  Complete  Medium  consisted  of  Dulbecco’s  Modified  Essential  Medium  

(DMEM)/F12 (1:1), 2% (v/v) StemPro Neural Supplement, 2 mM Glutamax (both 

from Gibco, Carlsbad, CA, USA), bFGF (20 ng/ml) and EGF (20 ng/ml) at 37oC 

with 5% CO2/95% humidity. Culture media was replenished every two days.  
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hNSCs were enzymatically passaged at 70-80% confluence. Culture media was 

removed and hNSCs were washed twice in sterile PBS and 150 l/10 cm2 of 

Accutase (Sigma) was added and incubated at 37oC for 2-3 minutes and cell 

detachment monitored. Following incubation, cells were gently agitated to 

promote detachment and four volumes of StemPro Complete Medium was 

added to neutralize the Accutase enzymatic activity and cells were gently 

triturated to generate a single cell suspension. The cell suspension was 

transferred to a 15 ml tube (BD Biosciences) and centrifuged at 1800 rpm for 3 

minutes to obtain a cell pellet. The supernatant was removed and cells were 

resuspended in 2-5 ml of fresh StemPro Complete Medium and cell counts 

performed, as described in Cell counting (Section 2.2.6). hNSCs were re-plated 

on to fibronectin coated culture plates at a density of 5 x 104 cells/cm2.  

 

2.2.4 Culture of GBM CSCs 

The human Glioblastoma Multiforme (GBM) CSC line, HSR-GBM1 (Galli et al. 

2004), was kindly donated by Professor Neil Watkins ((Centre for Cancer 

Research (CCR) Monash Institute of Medical Research (MIMR) Australia)). The 

GBM CSC lines, GBM-L1 and GBM-L2, were kindly donated by Associate 

Professor Terrance Johns (CCR, MIMR, Australia). GBM CSCs were routinely 

cultured as floating neurospheres in 6-well ultra low attachment plates (Sigma) 

at a density of 192,000 cells/ml in StemPro Complete Medium at 37oC with 5% 

CO2/95% humidity. Culture media was replenished ever 2 days. GBM CSCS 

were passaged every 5-7 days.   
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GBM CSCs were passaged by transferring the neurospheres to 15 ml tubes and 

centrifuging at 1800 rpm for 3 minutes to obtain cell pellets. The supernatant 

was removed and 100-200 l Accutase added. Using a 200 l pipette set at a 

180 l range, the pelleted cells were gently triturated and then incubated at 37oC 

for 2-3 minutes. After incubation, 1 ml of StemPro Complete Medium was added 

and GBM CSCs were dissociated into a single cell suspension and centrifuged 

at 1800 rpm for 3 minutes. The supernatant was removed and GBM CSCs were 

resuspended in 2-5ml of fresh StemPro Complete Medium and a cell count was 

performed, as described in Cell counting (Section 2.2.6). GBM cells were 

resuspended at a density of 192,000 cells/ml of StemPro Complete Medium and 

transferred into culture vessels. 

 

2.2.5 Culture of osteosarcoma (143BTK-) cell lines 

Human osteosarcoma cell lines (143B) deficient in thymidine kinase activity (TK-

) (143BTK-) were kindly donated my Dr. Matthew McKenzie ((Centre for 

Reproduction and Development (CRD) MIMR, Australia)). 143BTK- cells have 

previously been utilized to derive cells devoid of mtDNA through the long-term 

exposure to ethidium bromide and are termed rho zero (ρ0) (King and Attardi, 

1989). These studies have allowed scientists to analyze how the loss of mtDNA 

affects cellular function. ρ0 cells can also be repopulated with donor mtDNA 

through the fusion of ρ0 cells with cytoplasts from various cell sources. The 

subsequent hybrid cells are referred to as trans-mitochondrial cybrids. Trans-

mitochondrial cybrid technology allows for the repopulation of ρ0 cells with 

mtDNA that contain specific mutations and allows for the investigation of how 

mtDNA mutations impact upon cellular function.  All the 143BTK- cell lines that 
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were donated and also the trans-mitochondrial cybrids that were derived through 

cell fusion experiments are listed in the table below. 

 

Cell Line MtDNA status MtDNA Mutation Associated 
mtDNA Disease 

143BTK-ρ+ 143BTK- mtDNA Multiple variants N/A 

143BTK-ρ0 No mtDNA N/A N/A 

143BTK-3243 A3243G mutation tRNALeu(UUR) MELAS 

143BTK-8993 T8993G mutation ATPase6 NARP 

143BTK-11778 G11778A mutation ND4 LOHN 

143BTK-NSC hNSC mtDNA Wild type None 

143BTK-GBM HSR-GBM1 mtDNA Multiple variants N/A 

143BTK-GBML1 GBM-L1 mtDNA Multiple variants N/A 

143BTK-GBML2 GBM-L2 mtDNA Multiple variants N/A 

  

Table 2 I. Summary of 143BTK- cell lines and trans-mitochondrial cybrids. 

 

143BTK- cells were routinely cultured in standard DMEM (SD-DMEM) consisting 

of DMEM, 2 mM Glutamax, 10 mM Sodium Pyruvate, 10% (v/v) FBS, 1% (v/v) 

penicillin/streptomycin (all from Gibco) and uridine (50 mg/ml; Sigma). Uridine 

provides the necessary pyrimidines required for DNA synthesis. Uridine 

synthesis is dependent on the presence of a functional respiratory chain. Since 

143BTK-ρ0 cells are devoid of mtDNA and contain a compromised respiratory 

chain, uridine supplementation is required to allow efficient DNA synthesis to 

occur. The remaining 143BTK- cell lines that contained single mtDNA point 

mutations, which have deleterious effects on respiratory chain function, were 

also supplemented with uridine to support DNA synthesis. 143BTK- cells were 

incubated at 37oC with 5% CO2/95% and media was replenished every 2 days.  
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143BTK- cells were passaged at 70-80% confluence. Culture media was 

removed and cells were washed twice in sterile PBS and incubated with 

Accutase (150 l/10 cm2) at 37oC for 2-3 minutes and cell detachment 

monitored. Following incubation, cells were gently agitated to promote 

detachment and four volumes of SD-DMEM were added and the cells were 

gently triturated to generate a single cell suspension. The cell suspension was 

transferred to a 15 ml tube and centrifuged at 1800 rpm for 3 minutes. 143BTK- 

cells were suspended in SD-DMEM and re-plated at a ratio of 1:4 in culture 

vessels and the total media volume increased to 3 ml/10 cm2.  

 

2.2.6 Cell counting 

Cell counts were performed using a haemocytometer (BRAND GMBH, 

Wertheim, Germany). 15  μl   of   cell   suspension  were   added   to   15  μl   of   trypan  

blue (Sigma), resulting in a dilution factor of 2. Trypan blue (Sigma) is unable to 

penetrate live cells with intact cell membranes and allows the determination 

between   live  (white)  and  dead  (blue)  cells  during  counting.  10  μl  of  cell/trypan  

suspension was applied to each chamber (x2) of the haemocytometer. The 

number of non-trypan blue stained cells in 4 quadrants of the haemocytometer 

grid was counted per chamber, resulting in a total of 8 quadrants being counted. 

The total number of cells was divided by 8 to generate a mean cell count per 

quadrant. The mean cell count number was then subjected to the following 

calculation:  

 

Cells/ml =  (Mean cell count x dilution factor) x 104 
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2.2.7 Cryopreservation of cell line stocks 

Low passage stocks of cell lines were maintained where possible using 

cryopreservation. Cell lines were frozen at the time of passaging using the 

protocols outlined in Cell culture (Sections 2.2.3-2.2.5). Cells were harvested, 

resuspended in their respective media and cell counts performed, as described 

in Cell counting (Section 2.2.6). Cells were centrifuged to obtain cell pellets and 

were resuspended at a density of 1-2 x 106 cells/ml in respective media with 

10% (v/v) DMSO and transferred to 2 ml cryovials (Nunc, Rochester, NY, USA). 

The cryovials were transferred to a Mr Frosty (Nalgene, Waltham, MA, USA) 

container containing 200 ml isopropanol (Merck, Darmstadt, Germany) and 

stored at -80oC for 24 hours. The combination of the Mr Frosty container and 

isopropanol provides a freezing rate of 1ºC/min, which reduces the loss of cell 

viability during freezing. After 24 hours, cryovials were transferred to designated 

storage boxes and immersed in LN2 for long-term storage.  

 

2.3 Differentiation Experiments  

2.3.1 Differentiation of hNSCs 

hNSCs were cultured and passaged, as described above Culture of human 

neural stem cells (Section 2.2.3), until sufficient cells were available for 

experiments. hNSCs were harvested using Accutase, as described in Culture of 

human neural stem cells (Section 2.2.3), and resuspended in 2-5 ml of StemPro 

Complete Medium and cell counts were performed, as described in Cell 

counting (Section 2.2.6).  
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For astrocyte differentiation, undifferentiated (Day 0) hNSCs were seeded onto 

fibronectin coated culture plates at a density of 5 x 104 cells/cm2 and cultured in 

Astrocyte Induction Medium (AIM) consisting of DMEM, 2 mM Glutamax, 10 mM 

Sodium   Pyruvate,   1%   (v/v)   N2   supplement,   2%   (v/v)   FBS   and   0.1   mM   β-

mercaptoethanol (all from Gibco). Cells were incubated at 37oC with 5% 

CO2/95% humidity for up to 28 days with media changes every 3 days. 

 

Samples were harvested at selected time points for DNA/RNA analysis. For 

immunocytochemical analysis, hNSCs were seeded at the densities, described 

above, into the wells of 8-well chamber slides (Ibidi, München, Germany) and 

cultured in AIM for up to 28 days. 

 

2.3.2 Differentiation of GBM cell lines 

GBM cell lines were cultured and passaged, as described in Culture of GBM cell 

lines (Section 2.2.4), until sufficient cell numbers were available for experiments. 

GBM cells were removed from culture dishes and transferred to a 15 ml tube 

and centrifuged at 1800 rpm for 3 minutes to obtain a cell pellet. GBM cells were 

dissociated into single cells using Accutase and a cell count performed, as 

described in Culture of GBM cell lines (Section 2.2.4) and Cell counting (Section 

2.2.6). 

 

For astrocyte differentiation, undifferentiated GBM cells (Day 0) were seeded at 

a density of 2.5 x 104 cells/cm2 onto fibronectin treated culture plates in AIM, as 
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described above. Cells were incubated at 37oC with 5% CO2/95% humidity for 

up to 28 days with media changes every 3 days.  

 

Samples were harvested at selected time points for DNA/RNA analysis. For 

immunocytochemical analysis, GBM cells were seeded at the densities, 

described above, into the wells of 8-well chamber slides and cultured in AIM for 

up to 28 days. 

 

2.3.3 Mitochondrial DNA depletion of HSR-GBM1 cells 

HSR-GBM1 cells were cultured, as described in Culture of GBM cell lines 

(Section 2.2.4), with the exception that ddC (10 m) and uridine (50 mg/ml) were 

added to the culture medium. Culture media was replenished daily through half 

volume changes of media for up to 50 days. Cell samples were collected every 7 

days.  MtDNA depleted HSR-GBM1 cells were differentiated after 7, 14 and 21 

days of depletion, as described in Differentiation of GBM cell lines (Section 

2.3.2), or cultured as neurospheres in StemPro Complete Medium with uridine 

for 14 days to asses mtDNA copy number recovery.  

 

2.4 Extraction of nucleic acids  

2.4.1 RNA extraction from intact cells with DNase treatment  

Prior to RNA extraction, cells were collected, transferred to 1.7 ml tubes and 

pelleted by centrifugation. Total RNA was extracted from cells using the RNeasy 

Mini  Kit  (Qiagen,  Valencia,  CA,  USA),  according  to  the  manufacturer’s  protocol.  
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Qiagen supplied all the reagents provided within the RNeasy Mini kit and the 

70% (v/v) ethanol was purchased from Merck.   

 

Cell samples (<5 x 106 cells) were lysed with 350 l of Buffer RLT. For low cell 

number samples, culture media was removed from culture flasks and cells 

washed twice with PBS and 350 l of lysis Buffer RLT added directly to the cells 

and gently agitated for up to 5 minutes to promote cell lysis before transfer to 1.7 

ml tubes. Samples were lysed thoroughly by pulse vortexing and pipetting to 

produce a lysate. The lysate was homogenized using a QIAshredder spin 

column (Qiagen). The lysate was transferred into a QIAshredder spin column 

assembled in a 2 ml collection tube, centrifuged at 13,000 rpm for 2 minutes and 

the flow-through retained. 350 l of 70% (v/v) ethanol was added and mixed 

gently by pipetting and inverting the tubes. The lysate/ethanol solution was 

applied to an RNeasy spin column assembled in a 2 ml collection tube and 

centrifuged at 13,000 rpm for 1 minute. The flow-through was discarded and the 

collection tube reused in subsequent steps. 350 l of Buffer RW1 was added to 

the spin column and centrifuged at 13,000 rpm for 1 minute and the flow-through 

discarded.  

 

To remove any contaminating genomic DNA, samples were treated with DNase 

I. 80 l of DNase I (30 Units; Qiagen) in Buffer RDD was applied to the spin 

column and incubated at room temperature for 30 minutes. Following incubation, 

350 l of Buffer RW1 was added to the spin column and centrifuged at 13,000 

rpm for 1 minute and the flow-through discarded. 500 l of Buffer RPE was 

applied to the spin column and centrifuged at 13,000 rpm for 1 minute and the 
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flow-through discarded. A second application of 500 l of Buffer RPE was added 

to each spin column and centrifuged at 13,000 rpm for 2 minutes and the flow-

through discarded. The spin column was transferred to a clean 2 ml collection 

tube and centrifuged for an additional minute at 13,000 rpm to ensure all 

residual wash solutions had been removed. The spin column was placed into a 

clean 1.7 ml tube and RNA recovered by elution with the addition of 50 l of 

RNase-free water directly to the spin column membrane and centrifuged at 

13,000 rpm for 1 minute. Total RNA was stored at -80oC until required. 

 

2.4.2 RNA extraction from tumor samples 

Up to 30 g of tumor tissue was isolated using a clean scalpel blade and 

transferred to a clean 5 ml tube. 700 l of lysis Buffer RTL was applied and 

tumor samples were disrupted using a Pro 200 tissue homogenizer (Pro 

Scientific, Oxford, USA). 700 l of 70% (v/v) ethanol was added to the sample 

and mixed by pulse vortexing. Up to 700 l solution was applied to an RNeasy 

spin column assembled in a 2 ml collection tube and centrifuged at 13,000 rpm 

for 1 minute. This step was repeated until all of the solution had been applied to 

the RNeasy spin column. Total RNA was extracted from samples and DNase 

treated by following the protocol, as described in RNA extraction from intact cells 

with DNase treatment (Section 2.4.1). Total RNA was stored at -80oC until 

required. 
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2.4.3 DNA extraction from intact cells 

Total DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen), 

according   the   manufacturer’s   protocols.   Pelleted   cell   samples   were  

resuspended in 200 l PBS and 20 l of Proteinase K (20 mg/ml; Qiagen) and 4 

l RNase A (100 mg/ml; Qiagen) was added to remove any contaminating 

protein and RNA. 200 l of Lysis Buffer AL was added to each sample and 

mixed by pulse vortexing and incubated at 56oC for 15 minutes. 

 

 For direct cell lysis from culture plates, culture media was moved and cells 

washed twice with PBS. PBS was removed and the lysis solution of PBS, 

Proteinase K, RNase A and Buffer AL (total 424 l) were added directly to the 

cells and incubated at room temperature for 5 minutes. After incubation the lysis 

solution was gently triturated and transferred to a clean 1.7 ml tube. The 

samples were pulse vortexed for 15 seconds and incubated at 56oC for 15 

minutes.  

 

Following incubation, 200 l of 96-100% (v/v) ethanol was added to each 

sample and mixed thoroughly by pulse vortexing. The lysate/ethanol solution 

was transferred to a DNeasy Mini spin column assembled in a 2 ml collection 

tube and centrifuged at 13000 rpm for 1 minute, the flow-through was discarded 

and the spin column transferred to a new collection tube. 500 l of Buffer AW1 

was applied to the spin column and centrifuged at 13000 rpm for 1 minute and 

the flow-through discarded and the spin column transferred to a clean collection 

tube. 500 l of Buffer AW2 was applied to the spin column and centrifuged at 

13,000 rpm for 3 minutes to dry the spin column filter. The flowthrough was 
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discarded and the spin column was transferred to a clean collection tube and 

centrifuged at 13,000 rpm for 1 minute to remove any residual wash solutions. 

The spin column was placed into a clean microcentrifuge tube and 100-200 l of 

Elution Buffer AE applied. Spin columns were incubated at room temperature for 

1 minute and centrifuged at 13000 rpm for 1 minute to recover DNA. DNA was 

stored at -20oC until required.  

 

2.4.4 DNA extraction from tumor samples  

Up to 30 g of tumor tissue was isolated using a clean scalpel blade and 

transferred to a clean 5 ml container. 180 l of Tissue Lysis Buffer ATL, 20 l 

Proteinase K (20 mg/ml) (Qiagen) and 4 l RNase A (100 mg/ml) was applied to 

the tissue sample. Tissue samples were disrupted using a tissue homogenizer 

and incubated overnight at 56oC. Following incubation, the solution was 

centrifuged at 13,000 rpm for 2 minutes and the supernatant carefully 

transferred to a clean 1.7 ml tube. 200 l of Buffer AL was applied to the 

solution, mixed by pulse vortexing and incubated for a further 10 minutes at 

56oC. After incubation 200 l of 100% (v/v) ethanol was added to the solution 

and mixed by pulse vortexing. The solution was applied to a DNeasy Mini spin 

column assembled in a 2 ml collection tube and samples were further 

processed, as described in DNA extraction from intact cells (Section 2.4.3). DNA 

was stored at -20oC until required.  
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2.4.5 Quantification of nucleic acids 

Extracted RNA and DNA was quantified and assessed for purity using the 

NanoDrop ND-1000 UV-Vis Spectrometer. The NanoDrop loading surface was 

cleaned and 1.5 l of dH2O applied to initialize the ND-1000 Software Version 

3.2.0 (NanoDrop Technologies, Wilmington, USA). A second application of 1.5 

l dH2O was used to blank the ND-1000 software to register a zero value. 1.5 l 

of RNA/DNA was applied to the NanoDrop and absorbance was measured at 

220-350 nm. Ratios of absorbance at 260/280 nm and 260/230 nm were 

calculated by the ND-1000 Software. Ratios of 1.7-2.1 indicated good quality 

and a high level of purity of RNA/DNA. 

 

2.5 Polymerase Chain Reaction (PCR) 

2.5.1 Reverse transcription 

Complementary DNA (cDNA) was synthesised from Total RNA by reverse 

transcription using the Bioline System (Bioline, London, UK). Up to 1 g of RNA 

was transferred to clean 200 l PCR tubes and reverse transcribed in reactions 

consisting of 2.5 mM Oligo(dt)18 (Bioline) and dH2O to a final volume of 20 l. 

The mixture was heated to 70oC for 5 minutes using an RT-200 thermal-cycler 

and immediately cooled on ice. To the mixture, 1x Reaction Buffer, 0.3 mM 

dNTPs 40U Ribosafe RNase inhibitor, 200U BioScript enzyme (all from Bioline) 

and dH2O to a volume of 10 l were added and gently mixed. The reaction 

mixture was heated to 42oC for 60 minutes, 72oC for 10 minutes and 

immediately cooled on ice. cDNA was stored at -20oC until required. 
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2.5.2 Primer design 

Primer pairs for genes of interests were designed using the Primer-Blast 

Designing Tool (National Centre for Biotechnology Information, NCBI, Bethesda, 

MD, USA) using complete sequences that were available online (NCBI; 

http://www.ncbi.nlm.nih.gov/gene).  Where possible, primer pairs were designed 

included similar G/C content and similar length in order that the primers would 

possess similar annealing temperatures. Furthermore, where possible, primer 

pairs were designed to span introns or exon-exon junctions so that presence of 

genomic DNA contamination could be identified by gel electrophoresis.  Primer 

annealing temperatures were estimated using the following equation (Sambrook 

et al. 1989): 

 

Ta = %C/G x 0.41 + 64.9 - 600/n 

 

where Tm corresponds to the melting temperature, %G/C corresponds to the 

percentage of guanosine (G) and cytosine (C) nucleotides in the primer and n 

corresponds to the total number of base pairs in the primer. 

 

Primer pairs were designed to have annealing temperatures between 52-60oC 

and generate PCR products of 150-300 bp in length. Furthermore, primer pairs 

were assessed for specificity using the human BLAST sequence program 

(NCBI) prior to fabrication using the Custom Oligos Design Package (Sigma). 

Primer pairs were tested upon delivery by performing PCR reactions using 

annealing temperatures set at Ta, Ta+1oC and Ta-1oC to determine the optimal 

annealing temperature.  
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2.5.3 PCR 

Genes of interest were amplified using conventional PCR (using DNA templates) 

and reverse transcription PCR (RT-PCR) (using cDNA templates). PCR and RT-

PCR reactions were performed in clean 200   μl   PCR   reaction   tubes   (Axygen). 

Reaction   volumes   of   50   μl   consisted   of   200   ng   DNA   or   cDNA,   1x   NH4 PCR 

Buffer, 1mM MgCl2, 0.5 nM dNTPs, 5U BioTaq DNA Polymerase (all from 

Bioline),   1   μM   forward   and   reverse   primers   (see   individual experimental 

chapters) and dH2O  to  a  volume  of  50  μl.  PCR  reactions  were  performed  using  a  

RT-200 thermal-cycler (MJ Research, Waltham, MA, USA) and consisted of an 

initial denaturation step at 95oC for 5 minutes and 35 cycles of denaturation at 

94oC for 30 seconds, annealing for 30 seconds at primer specific temperatures 

(see individual experimental chapters), extension at 72oC for 45 seconds and a 

final extension step at 72oC for 5 minutes. 

 

2.5.4 Gel electrophoresis  

PCR   products   were   resolved   using   gel   electrophoresis.   20   μl   of   PCR   product  

was  mixed  with  5  μl  of  5x  loading  buffer  (Bioline)  and  loaded  into  the  wells  of  a  

2% (w/v) agarose gel in 1 x tris-acetic-ethylenediaminetetraacetic acid (EDTA) 

(TAE) buffer (Merck). DNA products were electrophoretically separated at 90mV 

for 1 hour. PCR products were fluorescently labeled with 1x SyberSafe 

(Invitrogen) for visualization under ultra violet (UV) light. PCR product size was 

determined by comparison to a DNA ladder (Hyperladder IV; Bioline) containing 

DNA fragments of known length (100-1000 bp).  
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2.5.5 PCR product purification 

PCR products were visualised under UV light and manually excised using a 

clean scalpel blade and transferred to a clean 1.7 ml tube. DNA was extracted 

from the agarose gel slices using the QIAquick Gel Extraction Kit (Qiagen), 

according   to   the   manufacturer’s   protocols.   The   weight   of   gel   slices   was  

determined by weighing each eppendorf tube prior and after the addition of gel 

slices. Three volumes of Buffer QG were added to 1 volume of gel slice (300 l 

per 100 mg of gel) and incubated at 50oC for 10 minutes (or until gel slice is 

dissolved) with gentle agitation by brief pulse vortexing every 2 to 3 minutes. 

One gel volume (100 l per 100 mg) of isopropanol (Merck) was added to the 

sample and mixed gently by inverting the microcentrifuge tubes. The sample 

mixture was applied to a QIAquick spin column assembled in a 2 ml collection 

tube and centrifuged at 13,000 rpm for 1 minute. The flow-through was 

discarded and a collection tube reused for subsequent wash steps. 500 l of 

Buffer QG was applied to the spin column and centrifuged at 13,000 rpm for 1 

minute and the flow though was discarded. 750 l of Buffer PE was applied to 

the spin column and centrifuged at 13,000 rpm for 1 minute and the flowthrough 

was discarded. The spin column was centrifuged at 13,000 rpm for an additional 

minute to remove any residual wash solutions. The flowthrough was discarded 

and the spin column transferred to a clean 1.7 ml tube. DNA was recovered by 

elution with 30-50 l of Buffer EB followed by centrifugation at 13,000 rpm for 1 

minute. Purified DNA was stored at -20oC until required. 
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2.5.6 DNA sequencing  

To confirm that the PCR products generated through RT-PCR contained the 

sequences of the gene target, DNA products excised from agarose gels were 

purified using the QIAquick gel extraction kit, as described in PCR product 

purification (Section 2.5.5). DNA was sequenced using the automated direct 

sequencer an Applied Biosystems 3130xl Genetic Analyzer and the Applied 

Biosystems BigDye Terminator 3.1 reaction kit (both from Applied Biosystems, 

Carlsbad, CA, USA). Reaction mixtures consisted of 50-200 ng (1-6 l) of DNA, 

312 nM of primer (see individual experimental chapters) and dH2O to a volume 

of 16 l. DNA samples were sequenced through the Monash Health 

Translational Precinct (MHTP) Medical Genomics Facility (Monash Institute of 

Medical Research, Clayton, VIC, Australia). Sequence files were analyzed for 

sequence read quality using the sequence viewer software, 4 Peaks (v1.7.1) 

(mekentosj.com). DNA sequences were analyzed using the Basic Local 

Alignment Tool (BLAST; NCBI; http://blast.ncbi.nlm.nih.gov) to confirm that 

correct DNA regions had been amplified.  

 

2.6 Real-Time PCR 

2.6.1 Preparation of PCR standards 

For the preparation of PCR standards, PCR products were generated through 

the amplification of DNA (mtDNA & β-Globin for absolute quantification of 

mtDNA copy number) or cDNA (genes of interest for relative quantification) 

using conventional PCR or RT-PCR, respectively (see individual experimental 

chapters). PCR products were resolved using 2% agarose gels, purified and 
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quantified, as described in Gel electrophoresis (Section 2.5.4), PCR product 

purification (Section 2.5.5) and Quantification of nucleic acids (Section 2.4.5). 

PCR products were diluted in sterile dH2O to generate a series of 10-fold 

dilutions ranging from 1 x 10-2 ng/l - 1 x 10-8 ng/l. PCR products were stored 

at 4oC and -20oC for short and long-term storage, respectively.   

 

2.6.2 Real-time PCR 

Real-time PCR reactions were performed using a 72-well Rotorgene-3000 Real-

time PCR machine (Corbett Research, Cambridge, UK). 20 l reaction mixtures 

contained 10 l of 2x SensiMix (Bioline), 6 l dH2O, 1 l (0.25 M) of each 

forward and reverse primer (see individual experimental chapters) and 2 l (20 

ng) of template (DNA or cDNA). 

 

Reaction conditions consisted of initial denaturation at 95oC for 15 minutes 

followed by 40 cycles of denaturation at 95oC for 15 seconds, annealing at 

primer specific temperatures for 15 seconds (see individual experimental 

chapters) and extension at 72oC for 15 seconds. Data were acquired from the 

FAM/Sybr channel during the extension phase (excitation at 470 nm and 

detection at 510 nm). To eliminate fluorescent signals generated by potential 

primer dimers in the PCR reaction, a secondary acquisition phase of 15 seconds 

was applied to each of the 40 cycles of PCR (see individual experimental 

chapters). Secondary acquisition temperatures were specific to primer pairs (see 

individual experimental chapters) and were set at just below the melting 

temperature of the amplicon of interest.  
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Melt curve analysis was performed in a subsequent cycle by ramping the 

temperature from 47oC to 98oC at 1oC intervals and data were acquired from the 

FAM/Sybr channel. Standards were run in duplicate whilst DNA and cDNA 

samples were run in triplicate and each reaction was performed twice, 

generating 6 values per DNA/cDNA sample. The closest values were expressed 

as mean  SEM (Bustin, 2000).  

 

2.6.3 Gene expression analysis  

Relative expression of gene targets was determined by real-time PCR using 

reaction conditions described in the individual experimental chapters. Relative 

expression was calculated using the Pfaffl method (Pfaffl, 2001). The Pfaffl 

method allows the expression of a gene of interest to be compared across 

multiple samples i.e. control and test samples. In order to normalize against the 

unknown amount of cells present in the RNA extraction process and also the 

extraction efficiency, the expression of a gene of interest is expressed relative to 

the housekeeping gene or genes. Housekeeping genes selected upon their 

consistent levels of expression across cell lineages and all stages of 

differentiation. Relative gene expression was calculated using the following 

formula: 

(E Target)
ΔTarget  Ct  (Ct  control  – Ct sample) 

                  Ratio =               

        (EHousekeeping)Δ  Housekeeping Ct (Ct control – Ct sample) 

 

Where the ETarget and EHousekeeping are the PCR amplification efficiencies 

(calculated from the standard curve) of the real-time PCR reactions for the gene 

of interest and housekeeping gene, respectively. Δ  Target  Ct   (Ct  control   – Ct 
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sample) is the difference in Ct value of the gene target between the control and 

test samples. Δ  Housekeeping  Ct  (Ct  control  – Ct sample) is the difference in Ct 

of the housekeeping gene between the control and test samples. This equation 

presents the expression of the gene of interest in the test sample relative to the 

control sample.  

 

2.6.4 MtDNA copy number analysis  

MtDNA copy number was quantified by real-time PCR using reaction conditions 

described in the individual experimental chapters. In order to quantify mtDNA 

copy number in an unknown number of cells, DNA concentration, per ng, was 

extrapolated from standard curves generated for known concentrations of 

purified mtDNA and β-Globin PCR product. Sample DNA concentrations were 

converted to copies per gene, per reaction, using the following equation:  

 

N = (ng of DNA x 6.023 x 1014) / (Nbp x 660) 

 

where N is the number of molecules per reaction. 6.023 x 1014 is a conversion 

of   1   mol   to   1   nmol   using   Avogadro’s   constant,   which states 1 mol contains 

6.023 x 1023. Nbp is the number of base pairs of the amplicons of interest and 

660 is the mean molecular weight of a nucleic acid base paring in Daltons (Da). 

The  closest  4  values  generated  per  sample  for  mtDNA  and  β-Globin were then 

subjected to the following equation: 
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                        No. of copies of mtDNA 
No. of mtDNA copies/cell = 

                      (No. of copies of β-Globin/2) 

 

The calculated number of β-Globin copies was divided by 2 since each cell 

contains two copies, or alleles of the β-Globin gene. This value permits the 

calculation of mtDNA copy number cell and also represents the number of cells 

from which DNA has been extracted in a given reaction. Calculated values were 

subsequently expressed as mean  SEM (Bustin, 2000). 

 

2.6.5 SABiosciences real-time PCR gene expression array (RT2 Profiler) 

Total RNA was extracted from cells using the RNeasy Mini Kit with the on-

column DNase treatment step, as described in RNA extraction from intact cells 

(Section 2.4.1). An additional genomic DNA elimination step was performed by 

adding 2 l of 5x genomic DNA Elimination Buffer (SABiosciences, Valencia, 

CA, USA) to 1-8 l (400 ng) of total RNA and incubated at 42°C for 10 minutes. 

 

cDNA was synthesized using the RT2 First Strand Kit (SABiosciences) according 

to the manufacturers protocol. Each 20 l reaction contained 400 ng of DNA-free 

RNA (10 l), 4 l 5x RT Buffer, 1 l Primer and External Control Mix, 2 l RT 

Enzyme Mix (all from SABiosciences) and 3 l dH2O. The reactions were 

performed on a RT-200 thermal-cycler at 42oC for 15 minutes and stopped by 

incubating at 95oC for 5 minutes. Prior to PCR Array analysis, 91 l of 

RNase/DNase free H2O was added to the cDNA and gently mixed. 
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Real-time reactions were performed in 384-well optical reaction plates (Applied 

Biosciences). A master mix consisting of 550 l RT2 SYBR Green/ROX 

(SABiosciences), 448 l sterile dH2O and 102 l cDNA was prepared for each 

replicate of the array (4 replicates per plate). Final reaction volumes were 10 l 

and were prepared using a CAS-1200 Robotic Liquid Handling System (Corbett 

Robotics, Queensland, Australia). Real-time reactions were conducted on an 

ABI 7900HT Real Time PCR instrument (Applied Biosystems) and consisted of 

an initial denaturation step at 95oC for 5 minutes followed by 40 cycles of 

denaturation at 95oC and annealing/extension at 60oC for 1 minute.  

 

PCR reactions were performed in triplicate for each target gene and data were 

generated in the form of cycle threshold (Ct) values. This value represents the 

point at which fluorescence intensity generated in the PCR reaction reaches a 

set threshold above the background signal. Relative gene expression was 

calculated by the Ct method (Livak and Schmittgen, 2001) and normalized 

against the average Ct values of 5 housekeeping genes (GUSB, HPRT1, 

HSP90AB1, GAPDH and β-ACTIN).  

 

2.6.6 High resolution melting (HRM) curve analysis 

Detection of mtDNA variants was confirmed using HRM curve analysis. HRM 

utilizes fluorescent dyes that intercalate into double stranded DNA molecules, 

which are generated through the PCR reaction. HRM analysis allows for the 

monitoring of the fluorescent signals present in PCR products in real-time. The 

melting temperatures of PCR products are determined by the G/C nucleotide 

content, therefore, single or multiple base changes result in a shift in the melting 
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temperature of a PCR product. The shifts in melting temperature are detected in 

real-time as a rate of change in fluorescent signal during the melting of PCR 

products as the products are subjected to a progressive ramping in 

temperature. The changes in melting temperature are subsequently 

extrapolated as melting curve profiles. Shifts in these profiles compared to wild-

type/control samples are indicative of DNA mutations or variants.  

 

DNA samples were initially subjected to HRM-PCR. Reaction mixtures 

contained   10   ng/μl   genomic  DNA,   1x  HRM  master  mix  with   LCGreen® Plus+ 

(TrendBio,  Melbourne,  Victoria,  Australia),  2.5  μM  forward  and  reverse  primers  

(see individual experimental chapters), sterile dH2O  to  a  volume  of  10  μl  and  20  

μl of mineral oil (Sigma). HRM reactions were performed on a MultiGeneTM 

Gradient Thermal Cycler (Labnet International, Edison, NJ, USA) with the 

following conditions: An initial denaturation step at 95oC for 2 minutes followed 

by 45 cycles of denaturation at 94oC for 30 seconds and annealing for 30 

seconds at primer specific temperatures (see Experimental Chapters). A final 

step of 95oC for 30 seconds was performed to allow hetroduplex formation and 

samples were held at 4oC prior to further processing. Amplified products were 

analysed using the LightScanner (Idaho Technologies, Salt Lake City, Utah, 

USA) by progressively ramping from 70-90oC and data analysis was performed 

using the LightCycler-480 software package (Roche Diagnostics, Castle Hill, 

NSW, Australia). Melting curves were normalized by the omission of melt 

profiles generated from non-template controls (H2O). Samples were referenced 

against a baseline/control melting profile, which was derived from hNSCs that 

contained wild type mtDNA. 
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2.7 Cellular respiration 

The oxygen (O2) consumption rates of intact cells were determined by high-

resolution respirometry (Oroboros Oxygraph-2K, Innsbruck, Austria). The 

Oxygraph-2k system was calibrated by determining the zero and maximum O2 

values within each measurement chamber. 2.2 ml of sodium dithionite (5 mg/ml; 

Sigma) was dissolved in Hanks balances salt solution (HBSS; Gibco) and added 

to each measurement chamber; which were subsequently sealed, maintained at 

37oC and continuously stirred at 750 rpm. The sodium dithionite solution 

removed >99% of the O2 present in the measurement chambers and these 

values were used to set zero O2, or baseline, for subsequent measurements. 

For maximal O2 calibration, the measurement chamber contents were aspirated 

and thoroughly washed 5 times with dH2O. 2.2 ml of fresh HBSS was added to 

the measurement chambers and sealed. Maximal O2 concentration was 

recorded following equilibration of the O2 flux (rate of change in O2 

concentration) in each measurement chamber. Following the calibration process, 

analysis of O2 consumption of intact cells commenced.   

 

For analysis, cells were dissociated using Accutase and cell numbers 

determined, as described in Cell culture and Cell counting (Sections 2.2-2.2.6).  

1-2 x 106 cells were resuspended in 50 l HBSS and transferred into each 

measurement chamber using a syringe (Oroboros). O2 consumption was 

measured using the integrated software package Datlab (Version 3.1; 

Oroboros), which presented cellular respiration as O2 flux (i.e. pmol O2 per 106 

cells per second). Following the addition of intact cells and stabilization of O2 

flux, basal/resting O2 consumption rates were recorded for 5 minutes. 
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Subsequently, a series of respiratory chain inhibitors were added at 5-minute 

intervals to manipulate cellular respiration. 4 mg/ml of the ATP synthase 

(Complex V) inhibitor Oligomycin (Sigma) was added to determine the amount 

of proton leakage (Leak) across the mitochondrial inner membrane via non-

phosphorylating respiration (Non-Phos). The ETC was uncoupled by a titration 

(50-200 nM) of carbonyl cyanide p-trifluoromethoxy-phenylhydrazone; (FCCP; 

Sigma) to obtain the maximal respiratory capacity of the ETC. Finally, 5 mM of 

the complex III inhibitor, Antimycin A (Sigma), was added to determine the 

background respiration levels occurs outside the respiratory chain and this 

measurement was subtracted from all calculated values to normalize the data.  

 

2.8 Luciferase and fluorometric based assays 

2.8.1 Measurement of total cellular ATP content 

Total cellular ATP content was determined using the ATPlite Luminescence 

ATP Detection Assay (PerkinElmer Life Sciences, Zaventem, Belgium), 

according  the  manufacturer’s  instructions.  PerkinElmer  Life  Sciences  provided  

all reagents in the assay kit. Cells were harvested using Accutase and cell 

counts performed, as described in Cell culture and Cell counting (Sections 2.2-

2.2.6). 100,000 cells per replicate were resuspended in 100 l DMEM and 

transferred to wells of a white 96-well micro-plate (Nunc). To each well, 50 l of 

cell lysis buffer was added and the micro-plate was gently agitated using an 

orbital  shaker  for  5  minutes.  50  μl  of  substrate  solution  was  added  to each well 

and the micro-plate was agitated using an orbital shaker for 5 minutes and 

immediately incubated in the dark for 10 minutes. For each experiment, a 
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standard curve was prepared using an ATP standard solution, which contained 

a  known  quantity  of  ATP.  ATP  standards  containing  10  μl  standard  in  dH2O, 90 

μl  DMEM,  50  μl  cell   lysis  buffer  and  50  μl  substrate  solution  were  generated  

using a series of five-fold dilutions from 1 x 10-4 M to blank.  

 

Each experimental sample was measured in triplicate and the experiment 

repeated three times. Luminescence was measured using an optical plate 

reader (BMG Labtech, Allmendgrün, Ortenberg). A standard curve was 

generated and analyzed for efficiency using the MARS data analysis package 

(BMG Labtech). Measurements were corrected for background by removing 

values generated from the blank standard.  ATP content present in samples 

was extrapolated from the standard curve using the MARS software and 

reported as nM of ATP per cell. 

 

2.8.2 Measurement of cellular lactate production  

Cellular lactate production was determined using a Lactate Assay Kit II 

(Biovision, San Francisco, CA, USA). Biovision provided all reagents within the 

Lactate Assay Kit. Cells were cultured under routine conditions, as described in 

Cell culture (Section 2.2). Prior to analysis, culture media was completely 

removed and replaced with fresh media. After 24 hours, a sample of media (50 

μl)   was   removed   for   analysis   and   cells were collected and counted, as 

described in Cell culture and Cell counting (Section 2.2-2.2.6). Reactions were 

performed in clear 96-well plates (Nunc). Sample reaction mixtures contained 1 

l sample media and 49 l lactate assay buffer. For standard curve 

preparation, a lactate stock standard solution (100 mM) was diluted in dH2O to 
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a concentration of 1 mM. The 1 mM standard solution was used to prepare 

standards of 10, 8, 6, 4, 2 and 0 nM by adding 10, 8, 6, 4, 2 and 0 l of 1 mM 

standard to each well and lactate assay buffer was added to a volume of 50 l.  

To each sample and standard reaction, 2 l lactate enzyme mix, 2l lactate 

substrate mix and 46 l lactate assay buffer were added.  Samples were mixed 

using an orbital shaker for 5 minutes and incubated at room temperature for 30 

minutes. Absorbance was measured at 450nm using an optical plate reader 

(BMG Labtech).  A standard curve was generated and analyzed for efficiency 

using the MARS data analysis package (BMG Labtech). Measurements were 

corrected for background by removing values generated from the 0 (blank) 

standard. The lactate content present in the samples was extrapolated from the 

standard curve using the MARS software package and reported as lactate 

concentration per 105 cells. 

 

2.9 Statistical analysis 

Statistical significance for the RT2
 PCR arrays were determined using the Web-

Based PCR Array Data Analysis software (SABiosciences), which used a two-

tailed   Student’s   t-test. For real-time PCR, O2 consumption rates, cellular ATP 

content and lactate production, and tumors growth curves, statistically significant 

differences were determined using One-way ANOVA followed by Bonferroni 

post-hoc test using GraphPad v5.0c (GraphPad Software, Inc., San Diego, CA, 

USA). Statistical significance was expressed as *p<0.05, **p<0.01 and 

***p<0.001. 
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Chapter 3: The abnormal regulation of 

mitochondrial DNA copy number and gene 

expression in glioblastoma multiforme stem-like 

cells 

3.1 Introduction 

For the last decade tumor metabolism has been chiefly characterized by 

aerobic glycolysis, which is also known as the Warburg Effect. The Warburg 

Effect is a phenomenon by which tumor cells exhibit an enhanced glycolytic 

state and secrete large amounts of lactate under aerobic conditions that are 

sufficient to support OXPHOS (Warburg, 1956). Even though OXPHOS is a 

much more energy-rewarding pathway, elevated glycolytic rates have been 

shown to be beneficial to rapidly proliferating cells by providing sufficient 

quantities of ATP and also through the maintenance of pools of biosynthetic 

intermediates (nucleotides, amino acids, fatty acids), which support growth 

(Christofk et al., 2008; DeBerardinis et al., 2008; Levine and Puzio-Kuter, 2010; 

Moreno-Sanchez et al., 2007; Vander Heiden et al., 2009). This is achieved 

through the incomplete catabolism of glucose, which allows the shunting of 

glycolysis-derived pyruvate towards anabolic processes via the TCA cycle and 

pentose phosphate pathway (PPP) (Christofk et al., 2008; DeBerardinis et al., 

2008; Levine and Puzio-Kuter, 2010; Moreno-Sanchez et al., 2007; Vander 

Heiden et al., 2009). 
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Interestingly in 2011, the synonymous relationship between tumor metabolism 

and the Warburg Effect was challenged. Recent work now suggests that some 

tumor cells undergo an alternate form of metabolic reprogramming and enhance 

their OXPHOS capacity rather than become increasingly glycolytic. This 

phenomenon is referred to as the “Reverse  Warburg   Effect” (Pavlides et al., 

2009). The underlying concept of the Reverse Warburg Effect is that the human 

body undergoes metabolic decline during ageing and that ageing cells acquire 

OXPHOS defects and become increasingly glycolytic (Ertel et al., 2012). 

Subsequently, glycolytic cells secrete energy rich lactate into the extracellular 

matrix. Tumor cells with enhanced OXPHOS capacity are then able to consume 

and metabolize the extracellular lactate to support their cellular function and 

proliferation (Ertel et al., 2012). In an in vitro co-culture system, tumor cells have 

been shown to induce oxidative stress in fibroblasts cells, which also resulted in 

premature ageing in the same cells (Lisanti et al., 2011a; Lisanti et al., 2011b). 

The aged fibroblasts secreted lactate into the culture media that was consumed 

and utilized by the tumor cells and this process was mediated through an 

enhanced OXPHOS state in the tumor cells (Lisanti et al., 2011a; Lisanti et al., 

2011b). In another study, immunohistochemical analysis of primary breast 

tumor samples revealed enhanced expression of cytochrome-c-oxidase (COX; 

Complex III) relative to healthy neighboring cells (Whitaker-Menezes et al., 

2011). These studies provide strong evidence that OXPHOS may play an 

important role in tumor cell metabolism and maintenance of their cellular 

function. 
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The above studies demonstrate that tumor cell metabolism is more complex 

than previously thought. GBM CSCs have been shown to exhibit characteristics 

of the Warburg Effect (DeBerardinis et al., 2008; DeBerardinis et al., 2007; Wolf 

et al., 2011) however, much less is known regarding the role of OXPHOS in 

these cell types. Furthermore, very little is known regarding how mtDNA is 

regulated GBM CSCs and its implications on metabolism and OXPHOS. 

 

GBM CSCs exhibit stem cell-like properties such as self-renewal and 

multipotency (Galli et al., 2004; Singh et al., 2003); however, it is unknown 

whether GBM CSCs regulate their mtDNA in a similar manner to normal stem 

cells. Furthermore, it is unknown whether GBM CSCs are able to undergo the 

metabolic transition that occurs during the differentiation of normal stem cells. 

As a stem cell undergoes differentiation, there is a metabolic transition from 

glycolysis to OXPHOS metabolism that serves to fulfill the future energy 

requirements of the terminally differentiated cell type (Cho et al., 2006; 

Facucho-Oliveira et al., 2007; Prigione et al., 2010; Varum et al., 2011). The 

differentiation of embryonic stem cells (ESCs) is associated with an expansion 

in mtDNA copy number that enhances OXPHOS potential by increasing the 

number of mtDNA copies available for translation into functional subunits of the 

ETC (Facucho-Oliveira et al., 2007; St John et al., 2005). Since the ETC is 

encoded by both nuclear and mtDNA both genomes must work synergistically in 

order to generate a functional respiratory chain (Woodson and Chory, 2008). 

Human neural stem cells (hNSCs) are the closest non-transformed counterpart 

of GBM CSCs and it is likely that hNSCs undergo a similar mtDNA copy number 



 94 

expansion and metabolic transition during differentiation that has previously 

been observed in ESCs, however this requires confirmation. 

 

The direct comparison of undifferentiated and differentiated hNSCs and GBM 

CSCs provides an excellent opportunity to analyze how mtDNA is regulated in 

both normal and transformed multipotent cell populations. Furthermore 

metabolic profiling of undifferentiated and differentiated GBM CSCs will also 

further explore the role of OXPHOS in GBM CSCs. 

 

3.2 Hypothesis 

GBM CSCs and hNSCs share multiple characteristics that include self-renewal, 

multi-potency and gene expression profiles. Normal stem cell populations have 

been shown to contain low numbers of mtDNA copies and the onset of 

differentiation is associated with an expansion of mtDNA copy number and a 

transition from glycolytic to OXPHOS metabolism.  Tumors cells, including GBM 

CSCs, show abnormal expression of factors that regulate cell metabolism, such 

as c-MYC (Gordan et al., 2007), and it is likely that this will impact upon the 

ability of GBM CSCs to undergo differentiation and modulate their mtDNA copy 

number accordingly and will therefore differ to that of normal hNSCs. 

 

3.3 Aims 

1. To determine how mtDNA copy number is modulated during the 

differentiation of hNSCs and GBM CSCs 
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2. To determine how the expression of NSC and lineage specific markers are 

regulated during the differentiation of hNSCs and GBM CSCs  

3. To characterize the energy metabolism profiles of undifferentiated and 

differentiated hNSCs and GBM CSCs through functional experiments. 
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3.4 Materials and Methods 

3.4.1 Cell Culture  

hNSCs, HSR-GBM1, GBM-L1 and GBM-L2 cell lines were routinely cultured, as  

described in Culture of human neural stem cells (Section 2.2.3) and Culture of 

GBM cell lines (Section 2.2.4), until sufficient cell numbers were available for 

experiments. hNSCs and GBM cell lines were differentiated for up to 28 days, 

as described in Differentiation of hNSCs (Section 2.3.1) and Differentiation of 

GBM cell lines (Section 2.3.2). 

` 

3.4.2 MtDNA copy number analysis  

MtDNA copy number was quantified in undifferentiated and differentiated hNSC 

and GBM CSCs using real-time PCR, as described in Real-time PCR (Section 

2.6) and MtDNA copy number analysis (Section 2.6.4), using primer pairs 

specific to mtDNA and β-Globin. Primer sequences and annealing and 

secondary acquisition temperatures are listed in Table 3.I.  

 

3.4.3 Gene expression analysis 

The expression of the NSC and lineage specific markers, NESTIN, MUSASHI1, 

CD133 and GFAP were analyzed by real-time PCR and the Pfaffl method (Pfaffl, 

2001), as described in Real-time PCR (Section 2.6) and Gene expression 

analysis (Section 2.6.3). β-ACTIN was selected as the housekeeping gene. 

Primer sequences and annealing and secondary acquisition temperatures are 

listed in Table 3.I.  
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Gene Forward Primer Reverse Primer Product 
Length 

(bp) 

Annealing 
Temperature 

(oC) 

Secondary 
Acquisition  

Temperature 
(oC) 

β-ACTIN CAAAACCTAACTTGCGCAGA TTTTAGGATGGCAAGGGACT 261 56 80 

β-GLOBIN CAACTTCATCCACGTTCACC GAAGAGCCAAGGACAGGTAC 268 56 80 

CD133 GCATTGGCATCTTCTATGGTT CGCCTTGTCCTTGGTAGTGT 190 55 78 

GFAP GAAGCTCCAGGATGAAACCA ACCTCCTCCTCGTGGATCTT 165 55 80 

MtDNA CGAAAGGACAAGAGAAATAAGG CTGTAAAGTTTTAAGTTTTATGCG 152 53 76 

MUSASHI1 AGAAAGCTCAGCCAAAGGAG GAATTCGGGGAACTGGTAGG 194 55 84 

NESTIN AAACCAGAGCCATGAGACAC TGGCCTACAGCCTCTTTTTC 156 55 76 

 

Table 3.I. Primer sequences, product sizes and annealing temperatures for conventional PCR, RT-PCR and real-time PCR. 

Secondary acquisition temperatures are also listed for real-time PCR reactions. 
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3.4.4 Total ATP content and Lactate production 

Total ATP content and lactate production in undifferentiated and differentiated 

hNSCs and HSR-GBM1 cells was determined using luminescence and 

fluorescence bases assays, as described in Measurement of total cellular ATP 

content and Measurement of cellular lactate production (Section 2.8). 

 

3.4.5 Cellular respiration  

Cellular respiration analyses of undifferentiated and differentiated hNSCs and 

HSR-GBM1 cells were performed using the Oxygraph 2K system, as described 

in Cellular respiration, in the General Materials and Methods (Section 2.7.1). 

 

3.4.6 Statistical analysis 

Statistical analysis was performed, as described in Statistical analysis, in the 

General Materials and Methods (Section 2.11). 
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3.5 Preliminary Experiments 

3.5.1 Analysis of neural stem cell and lineage specific marker expression 

in GBM CSCs 

Three GBM CSC lines were selected for analysis, HSR-GBM1, GBM-L1 and 

GBM-L2. These cell lines are derived from patient (primary) tumor samples and 

have not been transformed or immortalized in vitro. These cell lines, therefore, 

provide the closest representation of true malignant cells, in vitro.  

 

In the literature, GBM CSCs are reported to express multiple NSC markers 

(Galli et al., 2004; Ma et al., 2008; Singh et al., 2003) and thus, I sought to 

confirm the expression of these factors in the three selected GBM CSC lines. 

Each of the GBM CSC cell lines were propagated as neurospheres and 

routinely cultured, as described in Culture of GBM cell lines (Section 2.2.4).  

HSR-GBM1 cells were used at high passage (>p60) whilst GBM-L1 and GBM-

L2 were used at low passage (<p20). The expression of the NSC markers, 

NESTIN, MUSASHI1 and CD133 were determined by RT-PCR and gel 

electrophoresis, as described in Sections 2.5 and 2.5.4. β-ACTIN was selected 

as a housekeeping gene and primer sequences are listed in Table 3.I. Each of 

the GBM CSC lines expressed NESTIN, which was demonstrated by the 

generation of PCR products of appropriate size (Figure 3.1). MUSASHI1 was 

abundantly expressed in each of the GBM CSC lines as demonstrated by a 

high fluorescent intensity of the PCR product (Figure 3.1). CD133 was 

expressed at low levels in HSR-GBM1 cells and highly expressed in GBM-L1 

cells. However, no expression of CD133 was detectable in GBM-L2 cells 
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(Figure 3.1). Despite differences in passage number, each of the GBM CSC 

lines expressed at least 2 out of 3 NSC markers. I therefore reasoned that these 

cell lines were suitable for the comparison of GBM CSCs with their closest non-

transformed counterpart, hNSCs. Furthermore, the gene expression analysis of 

three GBM CSC lines allows for greater characterization of this tumor cell type. 

 
Figure 3.1. RT-PCR analysis of the NSC and lineage specific markers NESTIN, 

MUSASHI1, CD133 and GFAP in GBM CSCs. β-ACTIN was selected as a 

housekeeping gene. 

 

Reports from the literature suggest that GBM may be derived from transformed 

glial cells (Buckner et al., 2007). GFAP is an intermediate filament protein that is 

expressed by glial cells and is also a marker of astrocyte differentiation. I 

therefore sought to analyze the expression of GFAP in each of the GBM cell 

lines. I observed that GFAP was abundantly expressed in each of the GBM cell 

lines (Figure 3.1) and likely suggest that the GBM cell lines are of glial origin. In 

order to determine how the expression of GFAP and also NESTIN, MUSASHI1 
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and CD133 are regulated during differentiation the expression of these genes 

required a quantitative approach, using real-time PCR (Section 2.6.3).  

 

3.5.2 Optimization of real-time PCR for gene expression analysis 

Real-time PCR reactions for NESTIN, MUSASHI1, CD133, GFAP and β-ACTIN 

were optimized prior to hNSC and GBM differentiation assays. PCR products 

for each of the genes of interest were generated using HSR-GBM1 cells and 

were excised from agarose gels and purified, as described in PCR product 

purification (Section 2.5.5). From each of the purified PCR products, a set of 

standards ranging from 1 x 10-2 - 1 x 10-6 ng were prepared and used as 

templates for the real-time PCR reactions. Real-time PCR reactions were 

performed, as described in Real-time PCR (Section 2.6.1 & 2.6.3), using the 

primer sequences listed in Table 3.I. 

 

For each gene of interest, PCR standards, PCR reaction efficiencies and 

melting curve analysis are illustrated in Figure 3.2. Reaction efficiencies were 

subsequently used for the analysis of relative gene expression using the Pfaffl 

method, as described in Gene expression analysis (Section 2.6.3). Melt curve 

analysis was performed to confirm the generation of a single amplicon of 

interest. Melting curve analysis was also used to determine the optimal 

secondary acquisition temperature (Cycling B), to ensure that the data 

extrapolated from each reaction excluded any PCR artifacts such as primer 

dimers. Secondary acquisition temperatures for each of the genes of interest 

are listed in Table 3.I. 
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Figure 3.2. Real-time PCR standards, PCR standard curves and melt analyses, as indicated, for NESTIN (A), MUSASHI1 (B), 

CD133 (C), GFAP (D) and β-ACTIN (E). 
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3.5.3 Optimization of real-time PCR for mtDNA copy number analysis 

Conventional PCR was performed to obtain the PCR products required to 

generate   DNA   standards   for   mtDNA   and   β-Globin, respectively (Figure 3.3). 

PCR reactions were performed, as described in Polymerase Chain Reaction 

(Section 2.5 & 2.5.3), using primer pairs  specific  for  mtDNA  and  β-Globin (Table 

3.I). PCR products were generated from hNSCs and excised from agarose gels 

and purified, as described in PCR product purification (Section 2.5.5). 

Standards   for  mtDNA   and   β-Globin ranging from 1 x 10-2 - 1 x 10-6 ng were 

prepared and used as templates for real-time PCR reactions. Real-time PCR 

reactions were performed, as described in Real-time PCR (Sections 2.6.2 & 

2.6.4). MtDNA   and   β-Globin standards, PCR reaction efficiencies and melt 

curve analyses are illustrated in Figure 3.3. Secondary acquisition temperatures 

for  mtDNA  and  β-Globin are listed in Table 3.I. 
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Figure 3.3. Amplification of mtDNA and β-Globin regions by conventional PCR in hNSCs and GBM CSCs (A). Real-time PCR 

standards, PCR standard  curves  and  melt  analyses  as  indicated,  for  mtDNA  (B)  and  β-Globin (C). 



 110 

3.5.4 Optimization and validation of the Oxygraph-2K respiratory system 

Prior to O2 consumption analysis of intact NSC and GBM CSCs using the 

Oxygraph-2K system, the optimization of respiratory chain inhibitors was 

required. The Oxygraph-2K system was calibrated and O2 flux equilibrated prior 

to analysis, as described in Cellular respiration (Section 2.7.1).  

 

Cells were collected and counted, as described in Cell culture (Section 2.2) and 

Cell counting (Section 2.2.6) and transferred into the measurement chambers 

using a syringe. O2 consumption increased following the addition of cells, as 

demonstrated by an increase in O2 flux (red-line) and a reduction in O2 

concentration (blue-line) (Figure 3.4). The subsequent equilibration of O2 flux 

was designated as the   “Resting”   or   “Basal”   O2 consumption rate and was 

recorded (Figure 3.4A). The Complex V (ATP Synthase) inhibitor, Oligomycin, 

was added to each chamber to determine the rate of non-phosphorylating (Non-

Phos) O2 consumption. A concentration of 4 mg/ml Oligomycin (Pesta and 

Gnaiger, 2012) was utilized in all experiments and generated stable O2 

consumption rates, as shown in Figure 3.4B. 

 

The ETC uncoupler, FCCP, required titration in order to determine the maximal 

respiratory capacity of the cells under investigation. The efficacy of FCCP varies 

depending on cell number, with greater numbers of cells requiring higher 

concentrations and vice versa. Low concentrations of FCCP resulted in 

incomplete uncoupling, whilst excess FCCP was inhibitory to O2 consumption. 

FCCP was titrated for the analysis of 1-2 x106 cells. 50 μM  of  FCCP  was added 

in increments and O2 consumption was monitored after each addition, as shown 
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in Figure 3.4C. The addition of FCCP was ceased when O2 consumption failed 

to show any further increases (Figure 3.4C). The cumulative concentration of 

FCCP at which maximal O2 consumption was observed was regarded as the 

optimal concentration. For subsequent analyses, one addition of the optimal 

concentration of FCCP was added to each chamber. This was followed by a 

second addition of FCCP to confirm that maximal ETC uncoupling had been 

obtained.  

 

The Complex III (Cytochrome C Reductase) inhibitor, Antimycin A, was used at 

a concentration of 5 mM (Pesta and Gnaiger, 2012). Antimycin A was the final 

inhibitor added to each measurement chamber and was used to determine the 

background O2 consumption that was occurring independently of the ETC 

(Figure 3.4D). 
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Figure 3.4. Graphical representation of cellular O2 consumption with the Oxygraph 2K integrated software package, Datlab. 
The blue line indicates the O2 concentration and the red line indicates the rate of change in O2 consumption (O2 Flux). The O2 

consumption was measured following the addition of cells (A) and manipulation of the ETC following the addition of a series of 

compounds. The following compounds were added to manipulate the ETC: Oligomycin (B) to inhibit Complex V, FCCP (C) to 

uncouple the ETC and Antimycin A (D) to inhibit Complex III.  
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The Oxygraph-2K system is a highly sensitive experimental tool that has been 

utilized extensively for cellular respiration studies over the past decade with 

over 950 citations (www.oroboros.at). To confirm the sensitivity and 

reproducibility of this system I measured the O2 consumption of six different cell 

lines. With a defined number of cells (1x106), the Oxygraph-2K system 

produced a wide range of O2 consumption values with small SEMs (Figure 3.5). 

This was best represented by the differences in O2 consumption rates between 

the osteosarcoma lines, 143BTK-ρ+ (which contain mtDNA) and the 143BTK-ρ0 

(devoid of mtDNA and have a limited respiratory capacity). These outcomes 

demonstrate the sensitivity and reproducibly of the Oxygraph-2K system. 

 

Figure 3.5. Analysis of cellular O2 consumption in multiple cell lines. The 

O2 consumption rates of six different cell line to validate the sensitivity of the 

Oxygraph-2K system  
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3.6 Results 

3.6.1 MtDNA copy number during differentiation of hNSCs 

hNSCs were differentiated in astrocyte induction media for up to 28 days in 

order to determine how mtDNA copy number was regulated in a non-

transformed stem cell population. hNSCs showed a progressive increase in 

mtDNA copy number during differentiation. MtDNA copy number was increased 

by 1.78 (p<0.001) and 1.92-fold (p<0.001) on Day 7 and 14, respectively and 

cumulated with a 3.20-fold (p<0.001) increase by Day 28 (Figure 3.6).  

 

3.6.2 MtDNA copy number during differentiation of GBM CSCs 

In order to determine whether multipotent tumor cells are able to regulate 

mtDNA copy number accordingly during differentiation, I examined mtDNA copy 

number in three GBM cell lines that share similar characteristics to hNSCs.  

HSR-GBM1, GBM-L1 and GBM-L2 cells were differentiated under identical 

conditions to hNSCs, in astrocyte induction media for 28 days and mtDNA copy 

number was analyzed. 

 

In contrast to hNSCs, HSR-GBM1 cells showed small, but significant increases 

in mtDNA copy number on Day 7 (1.25-fold; p<0.001), Day 14 (1.15-fold; 

p<0.01) and Day 28 of differentiation (1.37-fold; p<0.001) (Figure 3.6). 

However, HSR-GBM1 cells failed to mimic the progressive expansion in mtDNA 

copy number observed in hNSCs. The GBM-L1 cell line showed an increase in 

mtDNA copy number on Day 7 (1.98-fold; p<0.001; Figure 3.6) and Day 14 

(2.48-fold; p<0.001). However, on Day 28 the expansion in mtDNA copy 
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number ceased and was reduced by 1.54-fold compared to Day 14 (p<0.001; 

Figure 3.6). GBM-L2 cells showed a different pattern of mtDNA copy number 

regulation. No significant increase in copy number was observed on Day 7 of 

differentiation (Figure 3.6). MtDNA copy number was increased by 1.26-fold 

(p<0.01) on Day 14 and was 1.92-fold (p<0.001) greater than Day 0 by Day 28 

of differentiation. Although an increase in mtDNA copy number was observed 

on Day 28 of differentiation, the magnitude of this expansion was not as 

pronounced as that observed in hNSCs.  
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Figure 3.6. Analysis of mtDNA copy number in differentiating hNSCs and 
GBM CSCs. Fold change in mtDNA copy number relative to Day 0 in hNSCs, 

HSR-GBM1, GBM-L1 and GBM-L2 cells during 28 days of differentiation. 

Columns represent mean values ± SEM (n=3). * Indicates p<0.05 and *** 

p<0.001. 
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3.6.3 Neural stem cell and lineage specific marker expression during 

differentiation 

To further characterise the differentiation of hNSCs and HSR-GBM1 cells, the 

expression of the neural stem cell markers, NESTIN, MUSASHI1 and CD133 

and the astrocyte-specific marker GFAP were analysed. Differing trends were 

observed for the expression of the neural stem cell markers during the 28-day 

differentiation period. NESTIN expression remained unchanged by Day 28 

(Figure 3.7A) in hNSCs and MUSASHI1 showed significant reductions in 

expression on Day 14 and 28 (p<0.001; Figure 3.7B). In addition, a progressive 

increase in CD133 was observed in hNSCs during differentiation (p<0.001; 

Figure 3.7A-C). Despite the varying expression in NSC markers in hNSCs, the 

astrocyte marker was progressively and significantly increased as differentiation 

progressed for 28 days (p<0.001; Figure 3.7D).  

 

HSR-GBM1 cells showed a significant reduction in the expression of the NSC 

markers, NESTIN, MUSASHI1 and CD133 by Day 28 of differentiation (p<0.001; 

Figure 3.7A-C). Interestingly, HSR-GBM1 cells showed an initial surge in GFAP 

expression on Day 7 (p<0.001); however, expression was later reduced as 

differentiation progressed (Figure 3.7D). 
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Figure 3.7. Gene expression analysis of hNSCs and HSR-GBM1 cells during differentiation. Fold change in expression relative 

to Day 0 and weighted against β-ACTIN of NESTIN (A), MUSASHI1 (B), CD133 (C) and GFAP (D) in differentiating hNSCs and 

HSR-GBM1 cells. Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** p<0.01 and *** p<0.001. 
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To further investigate whether the regulation of the NSC and lineage specific 

markers were abnormally regulated in other GBM CSC, gene expression was 

also analysed in the GBM-L1 and GBM-L2 cell lines.  GBM-L1 cells showed 

significant increases in expression of NESTIN, MUSASHI1 and CD133 by Day 

28 of differentiation (p<0.001; Figure 3.8A-C), with the expression of MUSASHI1 

and CD133 showing progressive increases from Day 14 of differentiation 

onwards. Furthermore, the expression of GFAP was increased significantly from 

Day 7 of differentiation onwards with an increase of 70-fold by Day 28 (p<0.001; 

Figure 3.8D). GBM-L2 cells exhibited a differing pattern of expression. NESTIN 

expression was elevated on Day 14 (p<0.001) of differentiation, however, 

expression was significantly reduced on Day 28 of differentiation when 

compared to Day 0 (p<0.001; Figure 3.8E). Similarly, an elevation in MUSASHI1 

and CD133 expression was observed on Day 14 (p<0.001; Figure 3.8E-F) of 

differentiation, which was followed by a reduction in expression by Day 28. 

GFAP expression in GBM-L2 cells showed a similar pattern that of HSR-GBM1 

cells, with an initial 54-fold surge in expression on Day 7 (p<0.001; Figure 3.8G), 

which was followed by a reduction in expression through Days 14 and 28 of 

differentiation. 
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Figure 3.8. Gene expression analysis of GBM-L1 and GBM-L2 cells during differentiation. Fold change in expression 

relative to Day 0 and weighted against β-ACTIN of NESTIN (A & E), MUSASHI1 (B & F), CD133 (C & G) and GFAP (D & H) in 

differentiating GBM-L1 and GBM-L2 cells. Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** p<0.01 and *** 

p<0.001.
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The HSR-GBM1 cell line is the most characterized GBM CSC line (Galli et al., 

2004). Furthermore, despite their relatively high passage number, HSR-GBM1 

cells expressed each of the NSC markers (NESTIN, MUSASHI1 and CD133) 

abundantly. This demonstrates that this cell line stably exhibits stem cell-like 

properties over time and thus, the HSR-GBM1 cell line was selected for further 

comparative analysis with hNSCs.  

 

3.6.4 O2 consumption analysis  

I next determined whether the observed differences between HSR-GBM1 cells 

and hNSCs in mtDNA copy number regulation also affected the respiratory 

capacity of these cell types in their undifferentiated and differentiated states. To 

address these questions the resting O2 consumption, ETC coupling efficiency, 

ETC reserve capacity, O2 consumption, % of ETC devoted to ATP production 

and the maximal respiratory capacity of HSR-GBM1 cells and hNSCs were 

analyzed using the Oxygraph-2K respiratory system. In the undifferentiated 

state, HSR-GBM1 cells showed a 2.32-fold (p<0.01) higher rate of resting 

(‘Basal”)  O2 consumption than undifferentiated hNSCs (Figure 3.9A). The ETC 

coupling   efficiency,   calculated   by   the   ratio   of   ‘Basel’/’Non-Phosphorylating 

respiration’,  was  not  significantly  different between the two undifferentiated cell 

types (Figure 3.9B).  Furthermore, the ETC reserve capacity, calculated by the 

ratio   of   ‘Uncoupled’/’Non-’Non-Phosphorylating   respiration’,   was   close   to   a  

value of 1 in both undifferentiated cell types, which indicates that the measured 

resting respiration was at (or near) maximal capacity (Figure 3.9C).  
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Following 14 days of differentiation, the resting O2 consumption rate of HSR-

GBM1 cells was not significantly different to that of the undifferentiated cells 

(Figure 3.9A). In addition, ETC coupling was also unchanged (Figure 3.9B), 

however, ETC reserve capacity was increased by a small but non-significant 

amount and indicates that a limited amount of ETC capacity was now present 

(Figure 3.9C). In contrast, hNSCs differentiated for 14 days showed a significant 

2.43-fold (p<0.001) increase in resting O2 consumption rate compared to 

undifferentiated cells (Figure 3.9A). The ETC reserve capacity was also 

significantly increased (p<0.001), to a value of 1.91, indicating that the resting 

respiration rate was not at maximal capacity (Figure 3.9C). Furthermore, ETC 

coupling increased in differentiated hNSCs compared to their undifferentiated 

counterparts (p<0.05; Figure 3.9B).  

 

In the undifferentiated state, HSR-GBM1 cells dedicated significantly more O2 

consumption towards the generation of ATP (p<0.001; Figure 3.9D), calculated 

by subtracting the Oligomycin induced O2 consumption from that of the resting 

O2 consumption rates. However, following differentiation, HSR-GBM1 cells did 

increase the amount of O2 consumption devoted to ATP generation. In contrast, 

differentiated hNSCs increased their ATP devoted O2 consumption by 2.95 fold 

(p<0.001; Figure 3.9D) and were comparable to both undifferentiated and 

differentiated HSR-GBM1 cells. Interestingly, in the undifferentiated state, both 

hNSC and HSR-GBM1 cells showed comparable and high % utilization of the 

ETC for the generation of ATP (Basal – Non-Phos / ETC Reserve x 100) 

(~50%; Figure 3.9E). Furthermore, the differentiated hNSCs showed a 

reduction in % utilization of the ETC for ATP generation (~34% p<0.05; Figure 
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3.9E). Even though differentiated hNSCs devoted less ETC capacity to ATP 

generation, their maximal respiratory capacity was increased by 4.30-fold 

(p<0.001; Figure 3.9F), which overall yielded more ATP dedicated O2 

consumption. Similar to hNSCs, HSR-GBM1 cells also reduced their % 

utilization of the ETC for the production of ATP. However, HSR-GBM1 cells did 

not match the increase in maximal respiratory capacity that was observed in 

hNSCs following differentiation (Figure 3.9F). 
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Figure 3.9. Analysis of cellular O2 consumption of hNSCs and HSR-GBM1 cells. Resting O2 consumption rates (A), ETC 

coupling efficiency (B), ETC reserve capacity (C), ATP dedicated O2 consumption (D), percentage activation of the ETC for 

ATP production (E) and maximal respiratory capacity (F) of undifferentiated and differentiated hNSCs and HSR-GBM1 cells 

(n=3). Columns represent mean values. * Indicates p<0.05, ** p<0.01 and *** p<0.001. 
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3.6.5 Total ATP content and lactate production  

To further characterise the metabolic profile of undifferentiated and differentiated 

HSR-GBM1 cells and hNSCs, I determined the cellular ATP content in each of 

these cell populations. Undifferentiated HSR-GBM1 cells contained significantly 

higher total ATP content than undifferentiated hNSCs (1.40-fold; p<0.001; Figure 

3.10A). HSR-GBM1 cells differentiated for 14 days increased their total ATP 

content by 1.62-fold (p<0.001; Figure 3.10A) compared to their undifferentiated 

counterparts. However, differentiated hNSCs showed a more profound increase 

of 4.40-fold (p<0.001; Figure 3.10A) in total ATP content compared to 

undifferentiated hNSCs. Furthermore, differentiated hNSCs showed 2-fold 

(p<0.001) greater total ATP content than differentiated HSR-GBM1 cells (Figure 

3.10A). 

 

Lactate production was also measured as an index of glycolytic metabolism. 

Undifferentiated HSR-GBM1 cells secreted 3.29-fold more lactate than 

undifferentiated hNSCs (p<0.001; Figure 3.10B). After 14 days of differentiation, 

HSR-GBM1 cells exhibited a reduction in glycolytic metabolism, with lactate 

production decreasing by 11.52-fold (p<0.001). Similarly, hNSCs also showed a 

reduction in lactate production (p>0.05) following differentiation (Figure 3.10B), 

although this was not statistically significant. 
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Figure 3.10. Analysis of total ATP content and lactate production of hNSCs and HSR-GBM1 cells. Quantification of total 

cellular ATP content (A) and lactate production (B) in undifferentiated and differentiated hNSCs and HSR-GBM1 cells. 

Columns represent mean values ± SEM (n=3). * Indicates p<0.05 and *** p<0.001. 
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3.7 Discussion 

3.7.1 MtDNA copy number regulation in hNSC and GBM CSCs 

NSCs and GBM CSCs share multiple similarities that include self-renewal, 

multipotency and gene expression profiles (Galli et al., 2004; Ma et al., 2008; 

Singh et al., 2003). These similarities provided an ideal basis for exploring other 

areas of cell biology associated with these cell types, such as how 

differentiation impacts upon mtDNA regulation and energy metabolism. High 

glycolytic rates are associated with stem cells and tumor cells (Levine and 

Puzio-Kuter, 2010; Moreno-Sanchez et al., 2007; Vander Heiden et al., 2009), 

whilst high OXPHOS capacity is associated with differentiated and specialized 

cell types (Prigione et al., 2010; Varum et al., 2011). It remains to be 

determined whether multipotent GBM CSCs are capable of undergoing a 

glycolysis to OXPHOS transition that has been shown to occur in normal 

multipotent stem cells.  Direct comparison of hNSCs and GBM CSCs provided 

an ideal opportunity to explore the cellular and molecular modifications that 

occur during differentiation, and identify disparities between normal and 

transformed cell types that may enhance our understanding of cell biology and 

potentially aid in the development of novel therapeutic strategies. 

 

In order to address the questions outlined above, hNSCs and three GBM CSC 

lines (HSR-GBM1, GBM-L1 and GBM-L2) were differentiated for up to 28 days. 

Throughout differentiation, mtDNA copy number and the expression of neural 

stem cell and lineage specific markers were evaluated. hNSCs and HSR-GBM1 
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cells and the energy metabolism profiles of these cells in undifferentiated and 

differentiated states were assessed.  

 

Differentiating hNSCs showed a gradual increase in mtDNA copy number over 

a differentiation period of 28 days. In addition, the expansion in mtDNA copy 

number correlated with continual increases in expression of the astrocyte 

marker, GFAP. In contrast, HSR-GBM1, GBM-L1 and GBM-L2 cells failed to 

mimic these outcomes during differentiation and exhibited an asynchronous 

relationship between mtDNA copy number and GFAP expression. HSR-GBM1 

cells and GBM-L2 cells failed to match the expansion in mtDNA copy number 

observed in hNSCs. Furthermore, the expression of GFAP peaked early at Day 

7 of differentiation and was followed by a gradual decline in expression. GBM-

L1 cells showed considerable increases in GFAP expression during 

differentiation but did not show pronounced increases in mtDNA copy number.    

 

These data demonstrate that hNSCs possess a synergistic relationship 

between the nuclear and mitochondrial genomes that modulates increases in 

mtDNA copy number and lineage specific gene expression appropriately. 

Furthermore, these outcomes are in agreement with previous studies using 

murine stem cell models In the undifferentiated state, ESCs contain few copies 

of mtDNA (Facucho-Oliveira et al., 2007; Prigione et al., 2010). As 

differentiation proceeds, there is an acquisition of mtDNA copy number that will 

reflect the future energy requirements of a specific cell type (Facucho-Oliveira 

et al., 2007; Prigione et al., 2010). The acquisition of mtDNA copy number is 

essential to ensure that sufficient quantities of ATP are generated through 
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OXPHOS to meet the energetic demands of a specialized cell type. In contrast, 

GBM CSCs show a lack of synchrony between their nuclear and mitochondrial 

genomes in that an increase in the gene expression of differentiation markers 

does not occur concurrently with an expansion in mtDNA copy number.  

 

3.7.2 Metabolic profiling of hNSC and HSR-GBM1 cells 

In vitro, stem cells exhibit similar metabolic profiles to tumor cells and this is 

best characterized by a high glycolytic rate. However, it remains to be 

determined whether multipotent CSCs, such as HSR-GBM1 cells, are capable 

of mimicking the metabolic shift from glycolysis to OXPHOS that occurs during 

the differentiation of normal stem cell populations (Cho et al., 2006; Facucho-

Oliveira et al., 2007; Prigione et al., 2010; St John et al., 2005; Varum et al., 

2011). To address this issue the O2 consumption, ATP content and lactate 

production of undifferentiated and differentiated HSR-GBM1 cells and hNSCs 

were analyzed.  

 

hNSCs and HSR-GBM1 exhibited functional differences in their undifferentiated 

states. Undifferentiated hNSCs consumed O2 at lower rate and secreted less 

lactate than undifferentiated HSR-GBM1 cells. The high levels of lactate 

production in HSR-GBM1 cells provides evidence that glycolytic activity was 

high in this cell type. Interestingly, in both cell types, the calculated percentage 

of ETC utilization of ATP generation was high (~50%). However, the low ATP 

content in both undifferentiated hNSCs and HSR-GBM1 cells suggests that, 

although OXPHOS is active, the capacity of this pathway is low in the 

undifferentiated state. 
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During differentiation, hNSCs showed considerable increases in both resting 

and ATP dedicated O2 consumption, ETC coupling and maximal respiratory 

capacity that were likely supported by the observed expansion in mtDNA copy 

number. Furthermore, hNSCs showed profound increases in ATP content 

during differentiation and a small reduction in lactate production. Collectively, 

these data indicate that in hNSCs, the expansion of mtDNA copy number 

correlates with a concurrent increase in OXPHOS capacity and utilization that 

permits the generation of higher yields of ATP, which are essential for 

differentiated cell types. In contrast, HSR-GBM1 cells did not increase their 

resting and ATP dedicated O2 consumption rates and showed only a small 

increase in maximal respiratory capacity. It is likely that HSR-GBM1 cells are 

unable to expand their OXPHOS capacity to a similar extent as hNSCs due to a 

failed expansion in mtDNA copy number in response to differentiation stimuli. 

However, HSR-GBM1 cells were able to increase their ATP content and reduce 

lactate production. These outcomes suggest that HSR-GBM1 may retain a 

residual potential to utilize OXPHOS during differentiation, however, their 

OXHPOS capacity is much lower than that of differentiating hNSCs. The stalled 

expansion in mtDNA copy number in HSR-GBM1 cells likely restricts the 

availability of the mtDNA-encoded ETC subunits during differentiation and 

ultimately restricts the ETC capacity of HSR-GBM1 cells and their ability to 

generate OXPHOS derived ATP. 
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3.8 Conclusion  

In each of the GBM CSC lines analyzed, an expansion in mtDNA copy number 

did not occur concurrently with an increase in the expression of the lineage 

specific marker, GFAP. These outcomes suggest that an asynchronous 

relationship between nuclear and mitochondrial genomes exists in the GBM 

CSC lines examined. I hypothesize that this asynchronous relationship results 

in incomplete cellular differentiation and is mediated by abnormal nuclear gene 

expression. Due to this abnormal nuclear expression it is likely that HSR-GBM1 

cells are unable to fully establish an increased oxidative capacity that is 

indicative of differentiated cell types. Despite HSR-GBM1 cells lacking the 

ability to enhance their OXPHOS capacity, HSR-GBM1 cells were shown to 

utilize OXPHOS to some degree and it is likely that OXPHOS plays a key role in 

their normal cellular function. Nevertheless, HSR-GBM1 cells are unable to fully 

escape an enhanced glycolytic state and display characteristics of the Warburg 

Effect. In turn this supports rapid cell proliferation, self-renewal and maintains 

their tumorigenic potential. 
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Chapter 4: Mitochondrial DNA depletion alters 

the expression of stem cell associated factors in 

HSR-GBM1 cells 

4.1 Introduction 

The maintenance of mtDNA copy number is essential for normal cell function 

(Wallace, 1999; Wallace, 2005) and there is emerging evidence to support the 

involvement of altered mtDNA copy number in tumorigenesis, genomic 

instability and response to chemotherapy (Guo et al., 2011; Singh et al., 2009). 

Furthermore, mtDNA depletion of tumor cells has provided controversial 

outcomes; with mtDNA-less tumor cells (ρ0) exhibiting increased and 

decreased tumorigenicity in conflicting reports (Amuthan et al., 2002; Cavalli et 

al., 1997; Kulawiec et al., 2009b; Magda et al., 2008). 

 

Although mtDNA encodes only a small proportion of genes compared to the 

tens of thousands encoded by the nuclear genome, there is evidence to 

suggest that mtDNA has the power to induce extensive changes in nuclear 

gene expression. Indeed, ρ0  cell  lines  showed  altered  nuclear  gene  expression  

and epigenetic modifications (Singh et al., 2005; Smiraglia et al., 2008), which 

demonstrates that mtDNA status can elicit considerable influence on the 

nucleus.  However, it remains undetermined how changes in mtDNA copy 

number influence nuclear gene expression and cellular differentiation in GBM 

cells. To address these issues, HSR-GBM1 cells were depleted of their mtDNA 
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for up to 50 days using the mtDNA-specific depletion agent, ddC. The gene 

expression and differentiation potentials of HSR-GBM1 cells were assessed. 

 

4.2 Hypothesis  

Depletion of mtDNA from cells allows for the investigation of how mtDNA 

influences cellular function. I hypothesize that mtDNA depletion induces 

changes in gene expression in HSR-GBM1 cells by disrupting the synergistic 

relationship that exists between the nuclear and mitochondrial genomes, which 

functions to maintain mtDNA copy number and normal cellular function.  

 

4.3 Aims 

 To progressively deplete HSR-GBM1 cells of mtDNA using the mtDNA-

specific depletion agent, 2'-3'-dideoxycytidine (ddC). 

 To determine the effect of mtDNA depletion on gene expression profiles 

and cell proliferation. 

 To investigate whether HSR-GBM1 cells can re-establish their basal 

mtDNA copy number following varying degrees of mtDNA depletion. 

 To determine the effects of mtDNA depletion on HSR-GBM1 

differentiation. 
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4.4 Materials and Methods  

4.4.1 MtDNA depletion of HSR-GBM1 cells 

HSR-GBM1 cells were cultured, as described in Culture of GBM cell lines 

(Section 2.2.4), except that ddC (10 M) and uridine (50 mg/ml) were added to 

the culture media. Culture media was replenished daily through half volume 

changes of media for up to 50 days. Cell samples were collected at Day 7, 14, 

21, 25 and 50 days.   

 

4.4.2 Recovery of mtDNA depleted HSR-GBM1 cells 

HSR-GBM1 cells were allowed to recover following mtDNA depletion. After 7, 

14, 21, 25 and 50 days of depletion, ddC was removed from the culture media 

and HSR-GBM1 cells were cultured under routine conditions for an additional 14 

days in the presence of uridine. Cell samples were collected after 14 days of 

culture.  

 

4.4.3 Differentiation of mtDNA depleted HSR-GBM1 cells 

HSR-GBM1 cells were depleted for 7, 14 and 21 days and induced to 

differentiate in astrocyte induction media for 14 days. Differentiation conditions 

are described in Differentiation of GBM cell lines (Section 2.3.2) and media was 

supplemented with uridine. Cell samples were collected after 14 days.  
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4.4.4 MtDNA copy number analysis  

MtDNA copy number was quantified in non-depleted, mtDNA depleted and 

recovering HSR-GBM1 cells using real-time PCR, as described in MtDNA copy 

number analysis (Section 2.6.4), using primer pairs specific to mtDNA and β-

Globin. 

 

4.4.5 Gene expression analysis  

The expression of the NSC and lineage specific markers NESTIN, MUSASHI1, 

CD133 and GFAP were analyzed in mtDNA depleted and recovering HSR-

GBM1 cells, as described in Gene expression analysis (Section 2.6.3). In 

addition, the pluripotency markers, OCT4, NANOG and SOX2, the proto-

oncogene, c-MYC, and the catalytic subunit of telomerase, hTERT, were 

analyzed by real-time PCR, as described in Gene expression analysis (Section 

2.6.3). β-ACTIN was selected as the housekeeping gene. Primer sequences, 

product lengths and annealing and secondary acquisition temperatures are 

listed in Table 4.I. 
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Gene Forward Primer Reverse Primer Product 
Length 

(bp) 

Annealing 
Temperature 

(oC) 

Secondary 
Acquisition  

Temperature 
(oC) 

c-MYC ACAACACCCGAGCAAGGACGC ACGGCTGCACCGAGTCGTAGT 180 59 83 

hTERT CACCAAGAAGTTCATCTCC CAAGTGCTGTCTGATTCC 310 52 81 

NANOG TTAATAACCTTGGCTGCCGT GCAGCAAATACGAGACCTCT 298 55 81 

OCT4 TCACCCTGGGGGTTCTATTT CTGGTTCGCTTTCTCTTTCG 202 55 80 

SOX2 GGAGCTTTGCAGGAAGTTTG GCAAGAAGCCTCTCCTTGAA 191 55 76 

 

Table 4.I. Primer sequences, product sizes and annealing temperatures for conventional PCR, RT-PCR and real-time PCR. 

Secondary acquisition temperatures are also listed for real-time PCR reactions. 
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4.4.6 Growth kinetics 

At the time of passage, cell counts were performed and population doubling 

times were calculated with the following equation:  

 

1/((Log(N1)-Log(N0))*3.32/t) 

 

Where Log is the logarithm of a fixed value, N1 is the cell count at time of 

passage, N0 is the cell number at time of plating and t is the culture duration in 

hours. 

 

4.4.7 SABiosciences Real-Time PCR Array (RT2 Profiler): Neurogenesis 

and neural stem cells 

The expression of 80 genes associated with neurogenesis and neural stem 

cells were analysed in non-depleted and HSR-GBM1 cells depleted for 25 and 

50 days. Samples were prepared and real-time PCR reactions performed, as 

described SABiosciences Real-Time PCR Gene Expression Array (Section 

2.6.5). Relative gene expression was calculated by the Ct method and 

normalized against the average Ct values of 5 housekeeping genes (GUSB, 

HPRT1, HSP90AB1, GAPDH and β-ACTIN), as described in Section 2.6.5. 

 

4.4.8 Statistical analysis 

Statistical analysis was performed, as described in Statistical analysis, in the 

General Materials and Methods (Section 2.11). 
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4.5 Preliminary experiments  

4.5.1 Determination of the efficacy of mtDNA depletion by 2'-3'-

dideoxycytidine 

Since ddC does not inhibit mtDNA gene expression (Piechota et al., 2006) 

whilst inducing mtDNA depletion and has a clinical history (Dagan et al., 2002), 

it was reasoned that ddC was an ideal mtDNA depletion agent. The HSR-GBM1 

cell line was selected for mtDNA depletion experiments because this cell line is 

the most characterized GBM CSC and expresses multiple NSC factors. In 

addition, HSR-GBM1 cells were donated at a relatively high passage (p60+) but 

sustained their NSC factor expression and CSC properties (See Chapter 3) 

despite their relatively high passage number. It is therefore likely that any 

observed changes in HSR-GBM1 cell properties during ddC exposure are likely 

induced by mtDNA depletion rather than total time in culture.  

 

ddC has previously induced mtDNA depletion in vitro at a concentration of 10 

μM  (Iyer et al., 2012). To confirm that this concentration was sufficient to induce 

mtDNA depletion in the HSR-GBM1 cells, a preliminary experiment was 

performed  to  determine  the  effect  of  10  μM  ddC  on  undifferentiated  HSR-GBM1 

cells. HSR-GBM1 cells were routinely cultured as neurospheres, as described 

in Culture of GBM cell lines (Section 2.2.4), with the exception that ddC was 

added daily into the culture medium through half volume changes of media (see 

MtDNA depletion of HSR-GBM1 cells; Section 2.3.3). HSR-GBM1 cells were 

cultured in the presence of ddC for up to 20 days and mtDNA copy number was 

quantified by real-time PCR, as described in MtDNA copy number analysis 

(Section 2.6.4), at Day 6, 9, 13, 15 and 20 of culture. In addition, after 6 days of 
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culture, ddC was withdrawn from the media to determine the effect of 

withdrawal on mtDNA copy number.  

 

The addition of ddC led to a considerable and progressive decrease in mtDNA 

copy number over the 20-day culture period (Figure 4.1). MtDNA copy number 

was reduced by 4.5 fold by Day 6 and by 94-fold by Day 20 (Figure 4.1). In 

addition, withdrawal of ddC from the culture media at Day 6 allowed recovery of 

mtDNA copy number following an additional 7 days of routine culture, 

demonstrating that ddC induced mtDNA depletion is reversible (Figure 4.1). 

These data demonstrate that 10 M ddC is sufficient to induce mtDNA depletion 

in HSR-GBM1 cells and is suitable for future depletion experiments. However, 

as mtDNA remained detectable in HSR-GBM1 cells depleted for 20 days, it was 

reasoned that an extended period of ddC culture beyond 20 days was required 

in order to induce near complete mtDNA depletion of HSR-GBM1 cells. 
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Figure 4.1. Assessment of the effect of 10   μM   ddC   on   HSR-GBM1 cell 
mtDNA copy number. Fold change in copy number relative to Day 0 of HSR-

GBM1 cells during 20 days of mtDNA depletion. Columns represent mean 

values. 
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4.6 Results  

4.6.1 MtDNA Depletion 

HSR-GBM1 cells were depleted of their mtDNA using the mtDNA specific 

depletion agent, ddC, for up to 50 days and mtDNA copy number was analysed 

at Day 7, 14, 21, 25 and 50 of depletion. HSR-GBM1 cells exhibited significant 

mtDNA depletion following the addition of ddC, with 9.80, 43.47, 454.54, 769.23 

and 1886.79-fold reductions in copy number on Day 7, 14, 21, 25 and 50, 

respectively (p<0.001). By Day 50, the mean mtDNA copy number was < 1 

(Figure 4.2). 

Figure 4.2.  MtDNA depletion of HSR-GBM1 cells. Fold change in mtDNA 

copy number relative to Day 0 of HSR-GBM1 cells during 50-day mtDNA 

depletion. Columns represent mean values ± SEM (n=3). *** Indicates p<0.001. 
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4.6.2 Gene expression analysis 

In order to determine whether mtDNA depletion led to changes in expression of 

the neural stem cell markers, the expression of NESTIN, MUSASHI1 and 

CD133 were analysed.  There were differential patterns of NESTIN (Figure 

4.3A) and MUSASHI1 (Figure 4.3B) expression after 7 and 14 days of depletion. 

However, the expression of both genes was upregulated at Day 21 of depletion 

and down regulated by Days 25 and 50. CD133 expression was significantly 

reduced after 7 (p<0.001; Figure 4.3C) and 14 (p<0.001) days of depletion, but 

returned to basal levels by Day 21 of depletion. The expression of CD133 was 

reduced on Day 25 of depletion and was undetectable by Day 50 (p<0.001).  

 

To investigate whether mtDNA depletion initiates the expression of markers of 

differentiation, the astrocyte marker, GFAP, was analysed. There were no 

significant changes in GFAP expression during the first 14 days of mtDNA 

depletion. However, from Day 21 of depletion onwards, the expression of GFAP 

progressively decreased (Figure 4.3D). 
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Figure 4.3 Gene expression analysis of NSC and lineage specific markers 
during mtDNA depletion of HSR-GBM1 cells. Fold change in expression 

relative to Day 0 and weighted against β-ACTIN of NESTIN (A), MUSASHI1 (B), 

CD133 (C) and GFAP (D) during mtDNA depletion for 50 days. Columns 

represent mean values ± SEM (n=3). * Indicates p<0.05, ** p<0.01 and *** 

p<0.001.  
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4.6.3 Neural stem cell and neurogenesis PCR array  

Since there were significant decreases in the expression of the multipotent 

markers during mtDNA depletion, the expression profiles of non-depleted and 

HSR-GBM1 cells depleted for 25 and 50 days were analysed using a real-time 

PCR array that examined 80 genes associated with neural stem cells and 

neurogenesis. 

 

Day 25 and Day 50 depleted HSR-GBM1 cells showed significant and 

differential expression of 26 of the 80 genes analysed with the PCR array 

relative to non-depleted HSR-GBM1 cells. The expression data are summarised 

in Table 4.II. Multiple genes were upregulated in both depleted groups that are 

associated with growth factor signalling, anti-apoptosis and cell proliferation 

(Table 4.II). Factors upregulated included fibroblast growth factor 13 (FGF13), 

glia cell line-derived neurotrohpic factor (GDNF), vascular endothelial growth 

factor A (VEGFA) and semaphorin-4D (SEMA4D) and collectively these factors 

are associated with anti-apoptosis, cell adhesion and proliferation (Greene et al., 

1998; Leung et al., 1989; Lin et al., 1993; Zhou et al., 2012)  

 

Sonic hedgehog (SHH) (Day 50 depletion only), acetylcholinesterase (ACHE), 

anaplastic lymphoma kinase (ALK), dopamine receptor D2 (DRD2), 

hairy/enhancer-of-split related with YRPW motif protein 1 (HEY1) and neuronal 

pentraxin 1 (NPTX) were upregulated in depleted HSR-GBM1 cells relative to 

non-depleted cells. These factors are associated with neurogenesis, 

synaptogenesis, cell proliferation and tumorigenesis (Grifman et al., 1998; 

Hulleman et al., 2009; Leimeister et al., 1999; Odent et al., 1999; Palmer et al., 
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2009; Xu et al., 2008; Zhu et al., 2012) In addition, apolipoprotein E (APOE), 

achaete-scute homolog 1 (ASCL1), delta-like 1 (DLL1), which are associated 

with cell fate decisions and differentiation(Ball et al., 1993; Beckers et al., 1999) 

were significantly down-regulated in depleted HSR-GBM1 cells. Collectively, the 

PCR array data demonstrates that mtDNA depletion of HSR-GBM1 cells leads 

to broad changes in gene expression profiles. 
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Table 4.II. Summary of gene expression analysis from the Neurogenesis and Neural Stem Cell PCR Array. Fold changes in 

gene expression of undifferentiated HSR-GBM1 cells and undifferentiated HSR-GBM1 cells depleted for 25 and 50 days relative to 

non-depleted HSR-GBM1 cells. Statistically significant (p<0.05) increases in expression are shown in red and decreases in 

expression in blue. 

Genes Day 25 Depletion Day 50 Depletion Gene Function 
ACHE 4.877 2.9752 Cell Proliferation, Cell Adhesion, Synaptogenesis 
ALK 1.8307 2.2425 Negative regulator of proliferation 

APOE -1.3745 -3.1814 Synaptogenesis 
ASCL1 -1.4529 -4.8572 Regulator of differentiation and transcription 

CDK5RAP3 1.6607 2.0013 Cell proliferation, Neuronal differentiation 
DLG4 3.0939 1.5442 Synaptogenesis 
DLL1 -1.7325 -3.2369 Cell fate, Cell adhesion, Notch signalling pathway 
DRD2 8.7294 3.448 Synaptogenesis 
EFNB1 1.0598 -2.1937 Cell Adhesion 
ERBB 3.0099 1.9495 Cell Adhesion 
FGF13 2.6468 2.9754 Growth Factor 
GDNF 4.9007 4.3017 Growth Factor, Anti-apoptosis 
HEY1 4.1459 5.0557 Transcription Factor, Embryogenesis 
HEY2 1.0118 -2.2584 Transcription Factor 
NPTX 7.3376 3.7001 Synaptogenesis 

NRCAM 2.4282 2.6759 Cell adhesion, Cell differentiation 
NRP1 2.0396 1.2941 Cell Adhesion 
NRP2 3.1056 1.569 Cell Adhesion 
NTN1 2.0472 1.392 Anti-apoptosis 

PARD6B 2.1265 1.4166 Cell cycle 
S100A6 -1.314 2.5712 Cell proliferation, Cell Cycle, Cell differentiation 
SEMA4D 5.1751 5.0328 Cell adhesion, Anti-apoptosis 

SOX8 -1.2876 -2.3618 Development, Apoptosis, Oligodendrocyte differentiation 
SHH Not Detectable 3.8904 Development, Neurogenesis, Differentiation 
TNR 2.0176 1.6121 Cell Adhesion 
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4.6.4 Expression of pluripotent markers 

Since the Neurogenesis PCR array showed increased expression of early 

developmental markers, such as SHH, the expression of the early 

developmental markers and core pluripotent factors, OCT4, NANOG and SOX2 

were analysed. No significant changes in the expression of NANOG and SOX2 

were observed until Day 50 of depletion (Figure 4.4B & 4.4C), with significant 

decreases in expression detected (p<0.05). In contrast, OCT4 expression 

fluctuated for the first 25 days of depletion, however, by Day 50 of depletion, 

OCT4 expression was significantly increased by 3-fold (p<0.001; Figure 4.4A).  

 

Figure 4.4. Gene expression analysis of pluripotency associated genes 
during mtDNA depletion of HSR-GBM1 cells. Fold change in expression 

relative to Day 0 and weighted against β-ACTIN of OCT4 (A), NANOG (B), 
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SOX2 (C) during mtDNA depletion for 50 days. Columns represent mean values 

± SEM (n=3). * Indicates p<0.05, ** p<0.01 and *** p<0.001. 

 

4.6.5 HSR-GBM1 growth kinetics and expression of proliferative markers 

There are contrasting reports regarding how mtDNA copy number loss 

influences tumor cell proliferation (Amuthan et al., 2002; Cavalli et al., 1997; 

Kulawiec et al., 2009b; Magda et al., 2008). In order to determine the role of 

mtDNA depletion in HSR-GBM1 cell proliferation, growth kinetics and 

population-doubling times were calculated throughout the first 25 days of mtDNA 

depletion. HSR-GBM1 cell proliferation was unchanged after 7 days of 

depletion. However, post 14 days of depletion, HSR-GBM1 cell proliferation 

decreased (Figure 4.5A) By day 25 of depletion, HSR-GBM1 population 

doubling times exceeded 450 hours, indicating very little or no proliferation 

(Figure 4.5A; insufficient material was available for a Day 50 calculation). The 

reduction in HSR-GBM1 cell proliferation correlated with a reduction in the 

expression of cell proliferation markers and self-renewal, c-MYC and hTERT, 

respectively. An initial surge in expression of both genes at Day 7 (Figure 4.5B; 

p<0.001 & 4.5C; p<0.01) was observed, yet by Day 50 gene expression was 

significantly reduced (c-MYC <0.01; hTERT p<0.001). 
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Figure 4.5. Growth kinetics and expression of cell proliferation markers. 
Population doubling times of non-depleted and mtDNA depleted HSR-GBM1 

cells (A) and fold change in expression relative to Day 0 and weighted against 

β-ACTIN of c-MYC (B) and hTERT (C) of non-depleted and mtDNA depleted 

HSR-GBM1 cells. Columns represent mean values ± SEM (n=3). ** Indicates 

p<0.01 and *** p<0.001. 

 

4.6.6 MtDNA copy number recovery in depleted HSR-GBM1 cells 

HSR-GBM1 cells had previously exhibited only minor changes in mtDNA copy 

number following the induction of differentiation. To explore whether HSR-GBM1 

cells could re-establish basal levels of mtDNA copy number (Day 0), HSR-

GBM1 cells were depleted for 7, 14, 21, 25 and 50 days and were subsequently 

grown under routine conditions, without ddC, i.e. a recovery period, for 14 days 

as neurospheres (Figure 4.6).  The mtDNA depletion for 7 days had no effect on 
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the ability of HSR-GBM1 cells to recover their mtDNA content and reached a 

mtDNA copy number 1.12-fold higher than that observed in non-depleted cells 

(p<0.05; Figure 4.6). Depletion for 14 days led to a partial recovery of mtDNA 

content in HSR-GBM1 cells, however, mean mtDNA copy number was 1.40-fold 

lower than that of non-depleted cells. MtDNA depletion in excess of 21 days 

resulted in mtDNA copy number recovery being compromised, with mtDNA copy 

number 6.60-fold (p<0.001) and 23.30-fold (p<0.001) lower in HSR-GBM1 cells 

depleted for 21 and 25 days, respectively, after 14 days recovery (Figure 4.6). 

HSR-GBM1 cells depleted for 50 days failed to replenish their mtDNA content 

and exhibited a mean copy number of <1 following 14 days of recovery 

(p<0.001). These data indicate that mtDNA depletion is a reversible process, 

providing that mtDNA copy number is not depleted beyond ~95% of basal levels. 

Depletion beyond this threshold appears to compromise the replenishment of 

mtDNA copy number in HSR-GBM1 cells. 
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Figure 4.6. MtDNA copy number recovery of depleted HSR-GBM1 cells. 
Fold change in mtDNA copy number relative to Day 0 of HSR-GBM1 recovering 

from 7, 14, 21, 25 and 50 days of mtDNA depletion. Columns represent mean 

values ± SEM (n=3). ** Indicates p<0.05 and *** p<0.001. 

 

4.6.7 Gene expression of recovering HSR-GBM1 cells 

Long-term mtDNA depletion of HSR-GBM1 cells leads to reduced expression of 

the neural stem cell markers, NESTIN, MUSASHI1, CD133 and the astrocyte 

marker, GFAP. To investigate whether mtDNA recovery also led to the 

reestablishment of gene expression patterns that were observed in non-depleted 

cells, expression was analyzed following the recovery from 7, 14, 21 and 25 

days of mtDNA depletion (insufficient material was available for the analysis of 

Day 50 depleted cells). The expression of NESTIN was unchanged in recovering 



 

 152 

HSR-GBM1 cells that were depleted for 7, 14 and 21 days, however expression 

was significantly lower (p<0.05; Figure 4.7A) in cells recovering after 25 days of 

depletion. MUSASHI1 and CD133 showed a similar pattern of expression, with 

an initial increase (p<0.05 MUSASHI1 Figure 7B; p<0.01 CD133 Figure 4.7C) in 

recovering HSR-GBM1 cells that were depleted for 7 days. This was followed by 

a progressive decrease in the expression of both genes that was significantly 

lower in recovering HSR-GBM1 cells depleted for 25 days (p<0.001) than non-

depleted cells. In addition, the expression of GFAP significantly increased in 

recovering HSR-GBM1 cells depleted for 7 days (p<0.001; Figure 4.7D) and this 

was followed by significant decreases in expression in recovering HSR-GBM1 

cells depleted for 21 (p<0.01) and 25 days (p<0.001), respectively.  
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Figure 4.7. Gene expression analysis of NSC and lineage specific markers 
of recovering mtDNA depleted HSR-GBM1 cells. Fold change in expression 

relative to Day 0 and weighted against β-ACTIN of NESTIN (A), MUSASHI1 (B), 

CD133 (C) and GFAP (D) of HSR-GBM1 recovering from 7, 14, 21 and 25 days 

of mtDNA depletion. Columns represent mean values ± SEM. * Indicates 

p<0.05, ** p<0.01 and *** p<0.001.  

 

4.6.8 MtDNA copy number in depleted and differentiating HSR-GBM1 

cells 

To test whether varying degrees of mtDNA depletion would promote or hinder 

cellular differentiation, HSR-GBM1 cells were differentiated using an astrocyte 

induction medium for 14 days following 7, 14 and 21 days of mtDNA depletion. 

HSR-GBM1 cells depleted for 7 days replenished their copy number by Day 14 
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of differentiation and exceeded that of non-depleted cells by 1.46-fold (p<0.001; 

Figure 4.8A). Cells depleted for 14 days replenished their mtDNA copy number 

and exceeded that of non-depleted cells by 1.32-fold (p<0.001; Figure 4.8B). 

However, mtDNA copy number replenishment in HSR-GBM1 cells depleted for 

21 days was limited, with a copy number of >4-fold (p<0.001; Figure 4.8C) lower 

by Day 14 of differentiation than compared to non-depleted cells. 
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Figure 4.8. MtDNA copy number of differentiating mtDNA depleted HSR-GBM1 cells. Fold change in mtDNA copy 

number relative to Day 0 of HSR-GBM1 cells depleted for 7 days (A), 14 days (B) and 21 days (C) and differentiated for 14 

days. Columns represent mean values ± SEM. *** Indicates p<0.001. 
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4.6.9 Gene expression of analysis of mtDNA depleted and differentiating 

HSR-GBM1 cells 

Since Day 21 depleted HSR-GBM1 cells showed restricted mtDNA copy number 

recovery during differentiation, the expression of the NSC and lineage specific 

markers in differentiating HSR-GBM1 depleted for 7, 14 and 21 days were 

assessed.  

 

After 7 days of depletion and 14 days of differentiation, the expression of 

NESTIN (Figure 4.9A) and CD133 (Figure 4.9C) were unchanged compared to 7 

day depleted HSR-GBM1 cells.  MUSASHI1 expression was elevated (p<0.05; 

Figure 4.9B) following differentiation and GFAP expression was also significantly 

increased (p<0.001; Figure 4.9D).  The differentiation of HSR-GBM1 cells 

following mtDNA depletion for 14 days resulted in significant reductions in 

NESTIN (p<0.001; Figure 4.9E) and CD133 (p<0.001; Figure 4.9G), whilst 

MUSASHI1 expression was unchanged (Figure 4.9F). The expression of the 

astrocyte marker, GFAP, was significantly increased following differentiation 

(p<0.001; Figure 4.9H). HSR-GBM1 cells depleted for 21 days showed 

significant reductions in NESTIN, MUASASHI1 and CD133 (p<0.001; Figures 

4.9J-L) following differentiation. However, following mtDNA copy number 

reduction of >99% at the initiation of differentiation, HSR-GBM1 cells showed a 

significant increase in GFAP expression (11.79-fold; p<0.001; Figure 4.9M) 

following differentiation. Furthermore, the induction of GFAP expression was 

significantly higher than that observed for HSR-GBM1 cells depleted for 7 and 

14 days. 
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Figure 4.9. Gene expression analysis of NSC and lineage specific markers in differentiating mtDNA depleted HSR-GBM1 
cells. HSR-GBM1 cells were depleted for 7 days (A-D), 14 days (E-H) and 21 days (J-M) and differentiated for 14 days. Fold change 

in expression relative to Day 0 and weighted against β-ACTIN of NESTIN (A, E, J), MUSASHI1 (B, F, K), CD133 (C, G, L) and 

GFAP (D, H, M). Columns represent mean values ± SEM. * Indicates p<0.05, ** p<0.01 and *** p<0.001. 
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4.7 Discussion 

4.7.1 MtDNA depletion of HSR-GBM1 cells 

Tumorigenesis is often characterized by the reestablishment of proto-oncogene 

activity and loss of function of tumor suppressors (Gordan et al., 2007; Matoba 

et al., 2006; Reya et al., 2001). However, tumor cells also exhibit abnormalities 

within their mitochondria (Bardella et al., 2011; Parsons et al., 2008; Pollard et 

al., 2007) and mitochondrial genome (Brandon et al., 2006). Loss of mtDNA 

integrity though mutation or deletion can have severe effects on cellular function 

(Brandon et al., 2006; Wallace, 2005).  Furthermore, each cell type acquires a 

specific mtDNA copy number to ensure that appropriate quantities of ATP are 

available for cell specific functions and, therefore, alterations to mtDNA copy 

number can also have detrimental effects (Wallace, 1999; Wallace, 2005).  

 

MtDNA copy number in tumors is highly variable, with reports of increased and 

decreased copy number across a broad range of tumor types (see Table 1.II; 

General Introduction). Identified mechanisms that underlie mtDNA copy number 

changes in tumors include accumulation of mtDNA mutations (Lee et al., 2004) 

and loss of function of mtDNA transcription and replication factors (Guo et al., 

2011; Singh et al., 2009). Furthermore, mtDNA copy number changes appear to 

consistently occur in a tumor specific manner. Recent findings have 

demonstrated the importance of mtDNA copy number maintenance,   with   ρ0  

cells exhibiting extensive changes in gene expression and epigenetic status 

(Singh et al., 2005; Smiraglia et al., 2008).  
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In order to address how alterations in mtDNA copy number influence GBM cells, 

HSR-GBM1 cells were progressively depleted of mtDNA and gene expression 

was analyzed. Furthermore, the ability of HSR-GBM1 cells to recover mtDNA 

copy number following depletion was also assessed. HSR-GBM1 cells showed 

rapid mtDNA depletion in the presence of the mtDNA depletion agent, ddC, and 

by Day 50 contained, on average, <1 copy of mtDNA per cell.  

 

In support of a positive correlation between mtDNA depletion and cell division, 

mtDNA depletion occurred rapidly for the first 14 days of culture whilst HSR-

GBM1 cell proliferation rates were largely unchanged.  However, as mtDNA 

depletion progressed to Day 21 days there was a reduction in cell proliferation 

rates. Ultimately, 50 days of depletion was required to obtain a mean mtDNA 

copy number of <1 copy per cell. These observations strongly suggest that to 

maintain cell proliferation rates, HSR-GBM1 cells require sufficient copies of 

mtDNA. These contrasts with other tumor cell lines that have been reported to 

show either unchanged or enhanced proliferation following mtDNA depletion 

(Cavalli et al., 1997; Magda et al., 2008; Yen et al., 2005).  

 

4.7.2 Gene expression analysis 

The early stages of mtDNA depletion did not result in extensive changes in 

expression of the NSC markers NESTIN, MUSASHI1 and CD133. However, 

Day 50 depleted cells showed significant reductions in NESTIN and MUSASHI1 

expression and a complete loss of CD133 expression. Furthermore, the 

expression of the key pluripotency marker OCT4 and multiple factors 

associated with neurogenesis, anti-apoptosis, cell proliferation and growth 
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factor signaling were also upregulated. Since the expression of the early 

developmental markers, NESTIN, MUSASHI1 and CD133 have been 

associated with GBM malignancy (Bao et al., 2006a; Ma et al., 2008; Rutka et 

al., 1999), the reduced expression of these factors may suggest that mtDNA 

depletion reduces the tumorigenic profile of HSR-GBM1 cells. However, the 

expression of OCT4 (Ben-Porath et al., 2008), HEY1 (Hulleman et al., 2009) 

and SHH (Xu et al., 2008) have also been associated with tumorigenicity and 

de-differentiation status of tumor cells and these outcomes could also suggest 

that mtDNA depletion results in an increased tumorigenic profile. It is also likely 

that expression of these factors may be functioning to maintain a stem cell-like 

population of GBM cells rather than promoting tumorigenicity. In support of this, 

knockdown of the GBM CSC marker, SOX2, was recently associated with the 

loss of de-differentiation status and increased tumorigenicity in GBM (Gangemi 

et al., 2009; Oppel et al., 2011). These findings demonstrate that mtDNA 

depletion induces extensive changes in gene expression in HSR-GBM1 cells 

and is in agreement with previous studies that reported that mtDNA-less cells 

exhibit altered gene expression (Singh et al., 2005; Smiraglia et al., 2008). 

 

4.7.3 MtDNA copy number recovery 

Since HSR-GBM1 cells exhibited an inability to expand mtDNA copy number in 

response to differentiation stimuli, I sought to determine whether HSR-GBM1 

cells could recover their mtDNA copy number following depletion when 

maintained in an undifferentiated state. HSR-GBM1 cells maintained the ability 

to recover mtDNA copy number following 14 days of depletion, with 7 days of 

depletion inducing a compensatory effect, with mtDNA copy number exceeding 
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that of Day 0 levels. However, depletion beyond 14 days resulted in reduced 

mtDNA copy number recovery. The elevation in mtDNA copy number of Day 7 

depleted cells also corresponded to an increase in MUSASHI1, CD133 and 

GFAP. Since severe reductions in copy number correlated with reduced 

expression of GBM tumorigenic markers, a converse relationship appears to be 

present in HSR-GBM1 cells, with an increase in copy number correlating with 

increased expression of tumorigenic markers. HSR-GBM1 cells recovering from 

14 and 21 days of depletion showed largely non-significant changes in gene 

expression, with the exception of GFAP in 21 day depleted cells. HSR-GBM1 

cells depleted for 25 days showed minimal mtDNA copy number recovery and 

also showed significant reductions in NESTIN, MUSASHI1, CD133 and GFAP 

expression. Collectively, these data suggest that the maintenance of mtDNA 

copy number plays a role in sustaining a tumorigenic expression profile of HSR-

GBM1 cells.  

 

4.7.4 Differentiation of mtDNA depleted HSR-GBM1 cells 

In order to determine how the effects of mtDNA depletion on HSR-GBM1 cell 

differentiation, HSR-GBM1 cells were depleted for 7, 14 and 21 days and 

induced to differentiate. A similar trend was observed to that of the recovering, 

undifferentiated HSR-GBM1 cells, with differentiating HSR-GBM1 cells depleted 

for 7 and 14 days showing recovery and a small expansion of mtDNA copy 

number after 14 days of differentiation. Furthermore, HSR-GBM1 cells depleted 

for 21 days failed to fully recover mtDNA copy number. These data suggest that 

mtDNA copy number recovery is compromised following depletion beyond 14 

days. In addition, the differentiation of HSR-GBM1 cells depleted for 21 days 
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resulted in down-regulation of all of the NSC markers NESTIN, MUSASHI1, 

CD133 and also exhibited an increase in GFAP expression in excess of 10-fold, 

which was not observed in HSR-GBM1 cells depleted for 7 and 14 days. These 

results indicate that long-term (>14 days) mtDNA depletion may aid in the 

differentiation of HSR-GBM1 cells by assisting in the down-regulation of stem 

cell markers and up-regulation of lineage specific markers.  

 

4.8 Conclusion 

Alterations in mtDNA copy number appear to occur in a tumor specific manner. 

It is likely that the acquisition of a new mtDNA basal level, or set point hereafter, 

occurs during tumorigenic transformation. The maintenance of mtDNA copy 

number is important for normal cellular function (Wallace, 2005) and it is 

conceivable that the mtDNA set point of tumor cells is also of importance for 

tumor cell function and may play a role in the maintenance of tumorigenicity. 

The mtDNA copy number of the cellular origin of the HSR-GBM1 cells line is 

unknown, however, it likely to differ from that of the cell line, as previous studies 

have reported increased mtDNA copy number in brain tumors relative to non-

transformed cells (Liang and Hays, 1996). In this chapter, severely depleted 

HSR-GBM1 cells showed altered expression of factors associated with 

tumorigenicity and also reduced proliferation rates. These outcomes strongly 

suggest that severe disruption of the mtDNA set point forces HSR-GBM1 cells 

towards an immature state whilst decreasing their tumorigenic profile by 

inducing differential expression of multiple malignant markers. Furthermore, 

partially depleted cells showed a drive towards reestablishing the mtDNA set 

point, as evidenced by recovery of copy number to comparable levels of non-
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depleted cells. In addition, long-term mtDNA depletion assisted in the down-

regulation of NSC markers and the up-regulation of lineage specific markers 

during differentiation, however, this was not accompanied by an increase in 

mtDNA copy number. Collectively, the data presented in this chapter illustrate 

that the alteration of mtDNA copy number exerts a strong influence on nuclear 

gene expression and that the loss of mtDNA likely induces a less tumorigenic 

profile in HSR-GBM1 cells. 
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Chapter 5: The maintenance of mitochondrial 

DNA copy number is an key component of HSR-

GBM1 cell tumorigenicity  

 

5.1 Introduction 

The tumorigenicity of mtDNA depleted and ρ0   tumor   cells   remains   a  

controversial topic due to conflicting reports that have demonstrated reduced 

and increased tumorigenicity in the aforementioned cell types (Amuthan et al., 

2002; Cavalli et al., 1997; Kulawiec et al., 2009b; Magda et al., 2008). The 

majority of mtDNA depletion studies utilize ethidium bromide, which intercalates 

into mtDNA and induces mtDNA depletion (Amuthan et al., 2002; Cavalli et al., 

1997; King and Attardi, 1989; Kulawiec et al., 2009b; Magda et al., 2008). 

However, ethidium bromide also intercalates into nuclear DNA (Waring, 1965), 

which is a property that has been exploited extensively for many decades for 

DNA labeling techniques, such as gel electrophoresis. The intercalation of 

ethidium bromide into DNA may increase the possibility of mutagenesis 

(Waring, 1965), which in turn could alter cellular function in an unpredictable 

manner. To circumvent any potential side effects of ethidium bromide, mtDNA-

specific agents, such as ddC, can be utilized to determine the specific effects of 

mtDNA depletion on cellular function and also tumorigenicity.  

 

In Chapter 4, HSR-GBM1 cells were depleted of their mtDNA content using 

ddC. Depletion of HSR-GBM1 cells resulted in reduced proliferation and altered 

gene expression profiles. However, it remains to be determined whether the 



 

 165 

observed changes in expression of GBM tumorigenic markers correlates with 

reduced GBM tumorigenicity, in vivo. To address this issue, non-depleted HSR-

GBM1 cells (100% mtDNA) and HSR-GBM1 cells depleted to 50%, 20%, 3% 

and 0.2% of their mtDNA content were inoculated into immunocompromised 

mice and tumor growth assays were performed. In addition, established tumors 

were harvested and their mtDNA copy number and gene expression were 

analyzed. 

 

5.2 Hypothesis  

Changes in the expression of factors associated with GBM tumorigenicity were 

observed following mtDNA depletion of HSR-GBM1 cells (See Chapter 4). I 

hypothesize that mtDNA depletion will reduce the tumorigenic potential of HSR-

GBM1 cells, since GBM cells showed reduced expression of NESTIN, which 

has been shown to play a role in motility and invasiveness of GBM. 

Furthermore, depleted GBM cells exhibited reduced in vitro proliferation rates in 

the presence metabolic supplements (high glucose & uridine). In vivo, the 

availability of these nutrients to GBM cells will be reduced and I hypothesize 

that mtDNA depletion will result in restricted GBM cell proliferation, in vivo. 

 

5.3 Aims  

 To assess the tumorigenic potential of non-depleted and mtDNA 

depleted HSR-GBM1 cells through in vivo tumor formation assays  

 To determine whether mtDNA is essential for tumor formation of HSR-

GBM1 cells 
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 To determine the mtDNA copy number of established HSR-GBM1 cell 

tumors 

 To analyze the gene expression profiles of HSR-GBM1 derived tumors  
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5.4 Materials and Methods 

5.4.1 MtDNA depletion of HSR-GBM1 cells 

HSR-GBM1 cells were cultured and depleted of mtDNA, as described in MtDNA 

depletion of HSR-GBM1 cells (Section 2.3.4). Non-depleted and depleted HSR-

GBM1 cells were used for tumor formation assays.  

 

5.4.2 HSR-GBM1 tumor formation assay 

Mouse experiments were approved by the Animal Ethics Committee, Monash 

University, Approval Number: MMCA/2001/76. Animal handling and tumor 

formation assays were performed by Dr. Jacqui Donoghue (CCR, MIMR, 

Australia) according to established and published protocols (Adams et al., 2009; 

Greenall et al., 2012). Non-depleted HSR-GBM1 cells (100% mtDNA content; 

control) and mtDNA depleted HSR-GBM1 cells containing variable percentages 

of mtDNA copy number (50%, 20%, 3% and 0.2% mtDNA content) were 

prepared simultaneously and cell counts performed, as described in section Cell 

counting (Section 2.2.6). 1 x 106 cells  were  resuspended  in  100  μl  of  StemPro  

Complete Medium and were inoculated subcutaneously into both flanks (sides) 

of 4 to 6 week old, female BALB/c nude mice (Animal Research Centre, Perth, 

Australia). 6 mice were inoculated per experimental group generating 12 

replicates for each group (100% - control, 50%, 20%, 3% and 0.2% mtDNA 

content). Tumors were measured every second day and tumor volumes were 

determined using the following formula: 

      (L x W2)/2 
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Where L is the tumor length at its longest axis and W is the width measured at 

right angles to the length. Data are expressed as mean tumor volume ± SEM in 

cubic millimeters (mm3). Tumor formation assays were terminated after 200 

days or when tumors volumes reached 1000mm3. 

 

5.4.3 Immunohistochemistry  

Tumor immunohistochemistry was performed by Dr. Jacqui Donoghue. To 

determine the number of proliferating cells present in HSR-GBM1 tumor 

xenografts, tumor sections were stained with the proliferation marker, 

proliferating cell nuclear antigen (PCNA). Proliferating nuclei were identified 

using a mouse monoclonal anti-PCNA antibody (1:1000; Cell Signaling 

Technology, Danvers, MA). Formalin fixed paraffin embedded tumor sections (5 

μm)   were   dewaxed,   rehydrated   and   microwaved   in   citrate   buffer   for   antigen  

retrieval. Once cooled, the sections were incubated with 3% hydrogen peroxide 

in methanol for 15 minutes to quench endogenous peroxidase. All sections 

were then incubated with the DAKO protein blocking solution (Dako Australia, 

Kingsgrove, Australia) to prevent non-specific binding. Negative controls were 

performed by incubating sections without the primary antibodies. Primary 

antibodies were incubated for 1 hour at room temperature. The PCNA was 

visualized with the Link Label-HRP system by DAKO, according to 

manufacturer’s   protocol   (Dako   Australia),   followed   by   the   chromogen   Vector  

Red for 15 mins (Vector Laboratories; Burlingame, CA). 

 

Image analysis was performed using a Leica inverted bright field microscope 

(Leica). Sections were scanned at low magnification to identify areas of high 
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proliferation (hot spots). Images were then captured at X40 optical lens. Positive 

nuclei were counted using the cell counter plug in analysis tool from four fields 

of view (Image J analysis software; National Institute of Health). Positive cell 

counts were presented as mean values ± SEM. 

 

5.4.4 MtDNA copy number analysis  

Total DNA was extracted from HSR-GBM1 cells and tumor samples, as 

described in DNA extraction from intact cells and DNA extraction from tumor 

samples (Sections 2.4.3 & 2.4.4) and quantified by spectrometry, as described 

in Quantification of nucleic acids (Section 2.4.5). Mouse liver DNA was kindly 

donated by Dr. Mulyoto Pangestu (Education Program in Reproduction and 

Development (EPRD) Monash University). MtDNA copy number was quantified 

using real-time PCR, as described in MtDNA copy number analysis (Section 

2.6.4).  

 

5.4.5 Gene expression analysis 

Total RNA was extracted from HSR-GBM1 cells and tumor samples, as 

described in RNA extraction from tumor samples (Section2.4.2) and quantified 

by spectrometry, as described in Quantification of nucleic acids (Section 2.4.5). 

cDNA was synthesized using the Bioline system, as described in Reverse 

transcription (Section 2.5.1). Dr. Mulyoto Pangestu kindly donated mouse brain 

and mouse embryonic fibroblast (MEF) cDNA. Gene expression analysis was 

performed using RT-PCR and real-time PCR. PCR reaction conditions and 

primer pairs are described in Polymerase Chain Reaction (Sections 2.5.3 & 

2.6.3) and are listed in Table 4.I (Chapter 4; Section 4.5.5), respectively. 
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5.4.6 D-loop sequencing  

Total DNA was extracted from hNSCs, HSR-GBM1 cells and tumor samples as, 

described in Sections 2.4.3 & 2.4.4. D-loop PCR products were amplified with 

D-Loop-F TAATACACCAGTCTTGTAAACC and D-Loop-R 

TTGAGGAGGTAAGCTACATA primers by conventional PCR, 

electrophoretically separated, purified and sequenced, as described in Sections 

2.5.3-2.5.6.   

 

5.4.7 HRM analysis  

For the detection of mtDNA variants, tumor samples were subjected to HRM 

analysis. HRM reactions were performed, as described in High resolution 

melting curve analysis (Section 2.6.2) using the following D-loop primers: hD-

Loop F-CCACCATGAATATTGTACGGTA and hD-Loop R -

TGGCTTTGGAGTTGCAGTTG. hNSCs were selected as wild type mtDNA 

controls and used for baseline measurements. Difference curves (calculated 

difference in fluorescence intensity) for tumor samples were compared to the 

“baseline”  melting  curve  profiles  generated  by  hNSC  DNA. 

 

5.4.8 Statistical analysis  

Statistical analysis was performed, as described in Statistical analysis in the 

General Materials and Methods (Section 2.11). 
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5.5 Preliminary Experiments  

5.5.1 Confirmation of non-PCR primer specificity to mouse DNA 

To confirm that mouse DNA would not be amplified from HSR-GBM1 tumor 

xenografts using the primer pairs previously used to amplify mtDNA and β-

Globin DNA, real-time PCR was performed, as described in MtDNA copy 

number analysis (Section 2.6.4), using HSR-GBM1 and mouse liver DNA. Real-

time PCR analysis produced amplification curves for both mtDNA and β-Globin 

using the HSR-GBM1 DNA template. However, for mouse liver DNA, PCR 

amplification curves were not generated until much later in the PCR cycle profile 

(Ct values; >25). Furthermore, the calculated mtDNA copy number for mouse 

liver DNA was <1 (Figure 5.1A). These outcomes demonstrate that any mouse 

DNA that was co-extracted from the HSR-GBM1 tumors would not substantially 

influence the quantification of human mtDNA copy number in the tumor 

samples. 

  



 

 172 

 

Figure 5.1. Quantification of mtDNA copy number of HSR-GBM1 and mouse 

liver DNA (A). RT-PCR screen of NESTIN, MUSASHI1, CD133, GFAP and β-

ACTIN of HSR-GBM1, mouse brain and mouse embryonic fibroblast cDNA (B). 

Amplification of the D-Loop region of mtDNA and β-ACTIN for HSR-GBM1 cells 

and HSR-GBM1 cell derived tumors (C). Columns represent mean values ± 

SEM. *** Indicates p<0.001. 
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5.5.2 Confirmation of non-RT-PCR primer specificity to mouse cDNA  

In order to confirm that mouse cDNA would not be specifically amplified from 

HSR-GBM1 tumor xenografts, RT-PCR reactions were performed, as described 

in Polymerase Chain Reaction (Section 2.5.3), with HSR-GBM1, mouse brain 

and MEF cDNA templates with the human NESTIN, MUSASHI1, CD133, GFAP 

and β-ACTIN primer pairs (see Table 3.I; Chapter 3). PCR products were 

generated from HSR-GBM1 cDNA with NESTIN, MUSASHI1, CD133, GFAP 

and β-ACTIN primer pairs (Figure 5.1B). PCR products were not detectable 

from mouse brain or fibroblasts for NESTIN, CD133, GFAP and β-ACTIN 

(Figure 5.1B). However, MUSASHI1 expression was detectable in mouse brain 

and fibroblasts. MUSASHI1 is a transcription factor that is expressed in brain 

and ectodermal tissues (Sakakibara et al., 1996). Since mouse brain and MEFs 

are of ectodermal origin, both samples could be expected to express 

MUSASHI1 following a RT-PCR screen (Figure 5.1B). Furthermore, the 

MUSASHI1 cDNA sequence is highly homologous between human and mouse 

and may also account for the positive expression detected in these samples. 

However, as all the other genes of interest screened using mouse cDNA 

showed no expression, including the housekeeping β-ACTIN, I reasoned that 

the utilization of these primer pairs would be suitable for gene expression 

analysis of HSR-GBM1 tumor xenografts. Prior to gene expression analysis by 

real-time PCR, depleted and non-depleted HSR-GBM1 tumor xenografts were 

screened for β-ACTIN using RT-PCR to confirm that the xenograft cDNA was 

suitable for subsequent reactions. β-ACTIN PCR products were generated from 

each of the depleted and non-depleted tumors (Figure 5.1C). 
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5.5.3 Optimization of high resolution melting (HRM) curve analysis 

In order to determine whether mtDNA variants were present in HSR-GBM1 cells 

and tumor xenografts, HRM reaction conditions required optimization. HRM 

primers were designed to span 147 bp region of the human D-loop that 

contained a previously identified D-loop variant (personal communication with 

Ka Yu Yueng), C16218T, which is present at low levels in the HSR-GBM1 cell 

line. Using HSR-GBM1 DNA as a template, a series of conventional PCR 

reactions were performed using an annealing temperature gradient, ranging 

from 52-64oC, in order to determine the optimal annealing temperature. 

Reaction mixtures and conditions are, as described in High resolution melting 

curve analysis (Section 2.6.6). PCR products were subjected to HRM analysis, 

as described in High resolution melting curve analysis (Section 2.6.6) and 

subsequently loaded onto a 2% agarose gel and electrophoresis performed, as 

described in Gel electrophoresis (Section 2.5.4). With the exception of 52oC, 

strong fluorescent signal intensity was generated by the PCR products at all 

annealing temperatures, with the greatest intensity observable at temperatures 

between 53.3-58.4oC (Figure 5.2). In addition, PCR products showed 

overlapping melting curve profiles (Figure 5.2), which demonstrates that HRM 

curve analysis was successful at all of the examined annealing temperatures. 

For subsequent HRM analysis using the 147 bp D-loop primers, I reasoned that 

an annealing temperature of 55oC would be appropriate, since high 

fluorescence signal intensity and overlapping melting curve profiles were 

generated for PCR products with annealing temperatures between 53.3 and 

58.4oC. 
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Figure 5.2. Gel electrophoresis of the D-loop temperature gradient PCR using 

HSR-GBM1 DNA (Top). HRM curve profiles of each of the PCR products 

generated from the temperature gradient (Middle) and the shifted melting curve 

profiles for each of PCR product generated from the temperature gradient 

(Bottom). 



 

 176 

5.6 Results 

5.6.1 Tumor growth analysis  

In Chapter 4, long-term mtDNA depletion of HSR-GBM1 cells resulted in 

extensive changes in gene expression and a reduction in proliferation rates. 

Reductions in expression of the factors associated with GBM tumorigenicity 

were also observed. These outcomes suggested that mtDNA depletion reduces 

the tumorigenic potential of HSR-GBM1 cells, however, increases in expression 

of OCT4, SHH, GDNF, HEY1 and VEGFA were also observed, which are also 

associated with GBM tumorigenicity (Bao et al., 2006b; Ben-Porath et al., 2008; 

Xu et al., 2008). In order to determine the true tumorigenic potential of mtDNA 

depleted HSR-GBM1 cells, non-depleted and HSR-GBM1 cells depleted to 

variable levels of mtDNA copy number were simultaneously transplanted into 

immunocompromised mice and tumor growth assays were performed. 

 

MtDNA copy number was analyzed in non-depleted and mtDNA depleted cells 

and converted to a percentage loading of mtDNA, i.e. non-depleted cells would 

contain 100% mtDNA copy number whilst HSR-GBM1 cells with <1 mtDNA 

copy per cell would contain 0.2% mtDNA. Prior to inoculation into 

immunocompromised mice, five groups of HSR-GBM1 cells harboring varying 

levels of mtDNA copy number were established simultaneously and were 

referred to, hereafter, as non-depleted (100%- control), 50%, 20%, 3% and 

0.2% (Figure 5.3). Subsequently, the tumorigenicity of these groups were 

analyzed using tumor formation assays.  
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Figure 5.3. MtDNA copy number loading of non-depleted and depleted 
HSR-GBM1 cells. Columns represent mean values ± SEM (n=3). *** Indicates 

p<0.001. 

 

During the first 40 days post-inoculation, 100% mtDNA and 50% mtDNA HSR-

GBM1 tumors developed at a faster rate than 20% mtDNA, 3% mtDNA and 

0.2% mtDNA tumors (Figure 5.4), although this was not statistically significant. 

Post Day 40, 50% mtDNA tumors grew at an accelerated rate compared to 

100% mtDNA tumors and this trend was maintained for the remainder of the 

tumor formation assay. 20% mtDNA tumors continued to develop slowly until 

Day 55, after which tumors developed at an increasing rate and by Day 65 
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developed at a quicker rate than 100% mtDNA tumors (Figure 5.4; p>0.01). 3% 

and 0.2% mtDNA tumors showed delayed development compared to 100% 

mtDNA tumors (p<0.01), with tumor development only occurring from Day 65 

(0.2% mtDNA) and Day 70 (3% mtDNA) onwards (Figure 5.4). The tumor 

formation rate was significantly lower than that of 100% mtDNA tumors 

(p<0.01). 

 

 

Figure 5.4. HSR-GBM1 tumor formation assay. Tumor growth curve analysis 

of non-depleted and depleted HSR-GBM1 cells (n=12). ** Indicates p<0.01 

relative to non-depleted (100% mtDNA) HSR-GBM1 cells. 

 

The frequency of tumor formation was inversely related to mtDNA depletion. 

From the 100% mtDNA cells, 11/12 tumors were generated (1 regressed); 

10/12 tumors were derived from 50% mtDNA cells (2 regressed); 6/12 tumors 

from 20% mtDNA cells, 6/12 tumors from 3% mtDNA cells (3 regressed) and 
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2/12 tumors from 0.2% mtDNA cells (Table 5.I). Furthermore, the percentage of 

tumors that reached a volume of 500mm3 was least in the 0.2% mtDNA cells 

and greatest in the 100% mtDNA cohort (Figure 5.5). There was also statistical 

significance between the number of tumors formed/failed and the percentage 

loading of mtDNA copy number (p=0.0048), as determined by a Chi squared 

test (Figure 5.6).  

 

 

Figure 5.5. Kaplain-Meier survival plot for non-depleted and depleted HSR-

GBM1 cell cohorts that reached 500mm3. 
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Tumor Group Number of Tumors Formed 

100% MtDNA 11/12 (1 regressed) 

50% mtDNA 10/12 (2 regressed) 

20% mtDNA 6/12 

3% mtDNA 6/12 (3 regressed) 

0.2% mtDNA 2/12 

 
Table 5.I Summary of the number of tumors formed by non-depleted and 

mtDNA depleted HSR-GBM1 cells. 

 

 
 
Figure 5.6. Contingency graph of the number of tumors formed and failed from 

HSR-GBM1 cells that were depleted to variable levels of mtDNA content. ** 

Indicates p<0.01.  

 
5.6.2 Cell Proliferation 

Since 100% mtDNA HSR-GBM1 tumors developed significantly quicker than 

0.2% depleted tumors, histological analysis was performed on these two 
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groups. Tumor sections were stained with the cell proliferation marker, 

proliferating cell nuclear antigen (PCNA), to determine the proliferation status of 

the HSR-GBM1 cells within the established tumors. 100% mtDNA HSR-GBM1 

tumors contained considerably more proliferating cells (indicated by positive 

stained nuclei) than 0.2% mtDNA tumors (Figure 5.7B-G). These observations 

support the tumor growth curve data and indicate that mtDNA depletion results 

in reduced proliferation rates of HSR-GBM1 cells.  Statistical analysis could not 

be performed on these data as 0.2% mtDNA HSR-GBM1 cells only generated 

one full sized (1000mm3) tumor. However, the graphical representation of 

positively stained nuclei strongly suggests that 100% mtDNA HSR-GBM1 

tumors contained greater numbers of proliferating cells (Figure 5.7A).  
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Figure 5.7. Immunohistochemical analysis of HSR-GBM1 tumors. Graphical 

representation of the number of PCNA positive cells in 100% mtDNA (non-

depleted) and 0.2% mtDNA (depleted) HSR-GBM1 cell tumors (A). Columns 

represent mean values ± SEM. PCNA labeling of non-depleted (B-D) and 

depleted (E) HSR-GBM1 cell tumors with positive (F) and negative (G) antibody 

controls. Scale bar as indicated.  
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5.6.3 MtDNA copy number of established HSR-GBM1 tumors  

Prior to inoculation, 0.2% mtDNA HSR-GBM1 cells contained, on average, <1 

mtDNA copy per cell. Since the 3% and 0.2 % mtDNA HSR-GBM1 cells formed 

tumors at a reduced rate, I next determined the mean mtDNA copy number of 

the tumors that established from 100%, 50%, 20%, 3% and 0.2% mtDNA 

groups.  

 

The rationale for analyzing the mean copy number of HSR-GBM1 tumors was 

to determine whether the in vivo environment affected the ability of HSR-GBM1 

cells to reestablish their mtDNA copy number following varying levels of 

depletion. It is worthy of note that one of the 0.2% mtDNA tumors analyzed did 

not reach a volume of 1000mm3 by the termination of the tumor formation 

assay. 1000mm3 was the end point volume for tumor harvest; however, this 

sample was included in the analysis to provide insight into the mtDNA copy 

number of 0.2% mtDNA tumors. The mtDNA copy number of 100%, 50%, 3% 

and 0.2% mtDNA tumors were comparable to one another, however, the 

mtDNA copy number of 20% mtDNA tumors were significantly lower than 100% 

(p<0.05), 50% (p<0.05) and 0.2% (p<0.01) mtDNA tumors (Figure 5.8). 

Collectively, these outcomes demonstrate that despite HSR-GBM1 cells 

containing between 100% and 0.2% mtDNA of their original mtDNA content, 

they proceeded to reestablish and maintain comparable levels of mtDNA copy 

number to one another in vivo.  
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Figure 5.8. MtDNA copy number analysis of HSR-GBM1 cell tumors. Fold 

change in mtDNA copy number of 50%, 20% 3% and 0.2% mtDNA HSR-GBM1 

cell tumors relative to 100% mtDNA tumors (A). Columns represent mean 

values ± SEM. * Indicates p<0.05 and ** indicates p<0.01. 

 

5.6.4 Gene expression analysis 

Since mtDNA depletion induced gene expression changes in in vitro cultured 

HSR-GBM1 cells and the tumors generated from 0.2% mtDNA HSR-GBM1 

cells reestablished their mtDNA copy number in vivo, I determined whether 

recovery of mtDNA copy number in vivo also induced changes in gene 

expression of NSC, pluripotency and early developmental markers in tumors. 

Due to the time limitations of my PhD study, I was unable to analyze the gene 

expression of all the tumors that developed. Since non-depleted HSR-GBM1 
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cells formed the greatest number of tumors and 0.2% mtDNA HSR-GBM1 cells 

formed the fewest tumors, I selected these two experimental groups for gene 

expression analysis.  

 

The expression of the NSC marker, NESTIN, was comparable in 100% mtDNA 

tumor #2 to in vitro grown HSR-GBM1 cells, whilst the expression was 

significantly increased in 100% mtDNA tumors #4 and #5 (p<0.001; Figure 

5.9A). The expression of NESTIN was comparable in 0.2% mtDNA tumor #6 

compared to in vitro grown HSR-GBM1 cells, however the expression was 

significantly higher than in 0.2% mtDNA tumor #9 (p<0.001). NESTIN 

expression in 0.2% mtDNA tumor #9 was significantly greater than that of all 

other tumors (p<0.001; Figure 5.9A).  

 

The expression of NSC transcription factor, MUSASHI1, was significantly lower 

in all tumors samples compared to in vitro cultured HSR-GBM1 cells (p<0.001; 

Figure 5.9B). Gene expression was significantly lower in 100% mtDNA tumor #2 

and 0.2% mtDNA tumor #6 compared to 100% mtDNA tumors #4 and #5 

(p<0.001). The expression of MUSASHI1 was significantly higher in 0.2% 

mtDNA tumor #9 compared to 0.2% mtDNA tumor #6 and 100% mtDNA tumors 

#2 and #5 (p<0.001; Figure 5.9B).  

 

The expression of the cell surface proteoglycan, CD133, was significantly 

reduced in 100% mtDNA tumor 2 (p<0.01) and 0.2% mtDNA tumor #9 (p<0.01) 

compared to in vitro cultured cells (Figure 5.9C). CD133 expression was 

comparable to in vitro cultured cells in 100% mtDNA tumors #4 and #5. 0.2% 
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mtDNA tumor #6 showed the highest level of expression and was significantly 

greater than in vitro cultured cells and all other tumor samples (p<0.001; Figure 

5.9C). 

 

The expression of GFAP showed a similar trend to MUSASHI1, with all tumor 

samples exhibiting significantly lower expression than in vitro cultured HSR-

GBM1 cells. However, between tumor groups, 0.2% mtDNA tumors expressed 

significantly higher levels of GFAP compared to 100% mtDNA tumors (p<0.001; 

Figure 5.9D), with 0.2% mtDNA tumor #6 exhibiting the highest level of GFAP 

expression across all tumor samples (p<0.001; Figure 5.9D).  
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Figure 5.9. Gene expression analysis NSC and lineage specific markers in 
HSR-GBM1 cell tumors. Fold change in expression relative to in vitro cultured 

HSR-GBM1 cells and weighted against β-ACTIN of NESTIN (A), MUSASHI1 

(B), CD133 (C) and GFAP (D). Columns represent mean values ± SEM. * 

Indicates p<0.05, ** p<0.01 and *** p<0.001. 
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The expression of the core pluripotency markers, SOX2, OCT4 and NANOG 

was also assessed in tumor samples. The expression of SOX2 was comparable 

across all tumor samples and expression levels were also comparable to in vitro 

cultured HSR-GBM1 cells (Figure 5.10A). OCT4 expression was elevated in all 

tumor samples compared to in vitro cultured HSR-GBM1 cells. In addition, 0.2% 

mtDNA tumors #6 and #9 showed significantly higher levels of OCT4 

expression than 100% mtDNA tumors (p<0.001; Figure 5.10B). 0.2% mtDNA 

tumor #6 showed a 34.16-fold greater level of OCT4 expression compared to in 

vitro grown HSR-GBM1 cells (p<0.001). The expression of NANOG was lower 

in all tumor samples compared to in vitro cultured HSR-GBM1 cells (Figure 

5.10C). NANOG expression was similar across tumor samples except for 0.2% 

mtDNA tumor #6, which exhibited significantly higher levels of expression 

compared to tumors #2 (p<0.05) and #9 (p<0.05; Figure 5.10C).  

 

Since mtDNA depletion resulted in reduced expression of the proto-oncogene, 

c-MYC and the self-renewal factor, hTERT, in HSR-GBM1 cells in vitro, the 

expression of these factors was also assessed in HSR-GBM1 tumors. The 

expression of c-MYC was reduced in all tumor samples compared to in vitro 

cultured HSR-GBM1 cells (Figure 5.10D). c-MYC expression levels were 

comparable between 100% mtDNA tumor samples. Differential expression was 

observed between 0.2% mtDNA tumor samples with tumor #9 exhibiting the 

lowest expression level, whilst tumor #6 exhibited the highest level of c-MYC 

expression and was significantly greater than all other tumor samples (p<0.001; 

Figure 5.10D). However, c-MYC expression was highly variable in 0.2% mtDNA 

tumor #6 as indicated by a large SEM (Figure 5.10D). The expression of the 
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self-renewal factor hTERT, was comparable between 100% mtDNA tumor 

samples (Figure 5.10E). 0.2% mtDNA tumor samples showed reduced gene 

expression compared to in vitro cultured HSR-GBM1 cells, however, these 

differences were not significant (Figure 5.10E). Furthermore, hTERT expression 

was significantly higher in 0.2% mtDNA tumors compared to 100% mtDNA 

tumors.  

 

The expression of SHH, a morphogen that plays a key role in development and 

neurogenesis, was elevated in depleted HSR-GBM1 cells in vitro (See Chapter 

4) and the expression level of SHH in HSR-GBM1 tumor samples was therefore 

determined. SHH expression was significantly reduced in 100% mtDNA tumors 

#2 and #4 compared to in vitro cultured HSR-GBM1 cells (p<0.001; Figure 

5.10F), whilst tumor #5 exhibited comparable gene expression levels to in vitro 

cultured HSR-GBM1 cells (Figure 5.10F). 0.2% mtDNA tumor #6 demonstrated 

the highest level of SHH gene expression. 
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Figure 5.10. Gene expression analysis of pluripotent and early developmental markers in HSR-GBM1 cell tumors. Fold 

change in expression relative to in vitro cultured HSR-GBM1 cells and weighted against β-ACTIN of SOX2 (A), OCT4 (B), NANOG 

(C), c-MYC (D), hTERT (E) and SHH (F). Columns represent mean values ± SEM. * Indicates p<0.05, ** p<0.01 and *** p<0.001.
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5.6.5 D-loop sequencing  

Previous work within our laboratory has identified multiple variants within the 

mitochondrial genome of HSR-GBM1 cells (personal communication with Ka Yu 

Yeung). I sought to address whether in vivo growth of HSR-GBM1 cells alters 

the level of mtDNA variants and if mtDNA depletion leads to an elimination of 

mtDNA variants. I selected one of the identified variants, C16218T, found within 

the D-loop region, and performed Sanger sequencing of a 1000bp D-loop PCR 

product with in vitro cultured HSR-GBM1 DNA. Sanger sequencing readouts 

showed evidence of the previously identified D-loop variant, which was detected 

as two fluorescent peaks (Figure 5.11; boxed region). I proceeded to amplify 

and sequence the D-loop regions for each of the HSR-GBM1 tumor samples. 

Sequencing readouts showed evidence of heteroplasmy (CT) at position 

16218 in each of the non-depleted tumors (Figure 5.11; boxed regions). 

Furthermore, the fluorescence peaks generated for the variants were higher in 

each of the 100% mtDNA tumor samples compared to in vitro cultured HSR-

GBM1 cells (Figure 5.11). In contrast, no conclusive evidence of the D-loop 

variant in the 0.2% mtDNA tumor samples was observed. Sequencing readouts 

from the 0.2% mtDNA tumor samples were comparable to that of hNSCs, which 

were selected to represent a wild-type population of mtDNA. 
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Figure 5.11.  Sanger sequencing analysis of a 1000 base pairs of the D-
loop region of mtDNA. D-loop sequencing readouts of hNSCs and HSR-

GBM1 cells and derived tumors. Boxed regions indicate the position of the 

C16218T variant.  
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5.6.6 HRM analysis 

To confirm that the frequency or load of the D-loop variant was variable in non-

depleted (100% mtDNA) and depleted tumor samples (0.2% mtDNA), HRM 

analysis was performed. HRM is a powerful and sensitive tool that can detect 

single or multiple base mutations or variants in 150-300 bp regions of DNA. A 

single variant in the DNA sequence (e.g. AC) results in a change in the G/C 

content of the PCR product, which in turn influences the melting temperature 

profile of a given PCR product. HRM is capable of detecting minute changes in 

temperature,  which  are  detected  as  “shifts”  in  the  melting  curve  profile  of  PCR  

products.  

 

A 147 bp region encompassing the D-loop variant was amplified by 

conventional PCR. In agreement with the sequencing outcomes, HRM analysis 

indicated that the D-loop variant was present at higher levels in 100% mtDNA 

tumor samples than in vitro cultured HSR-GBM1 cells, as evidenced by greater 

shifts in the melting curve profiles (Figure 5.12A-B). The D-loop variant was also 

confirmed in the in vitro cultured HSR-GBM1 cells, which was demonstrated by 

a shift in the melting curve compared to the baseline control, hNSCs (Figure 

5.12A-B). In agreement with the Sanger sequencing results, 0.2% mtDNA tumor 

samples showed small changes in melting curve profiles in relation to the 

baseline control, which suggests that the frequency of the D-loop variant was 

reduced in 0.2% mtDNA tumor samples (Figure 5.12A-B). However, as there 

were small shifts in the melting curve profiles of these samples, the complete 

elimination of the variant could not be confirmed. 
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Figure 5.12. HRM analysis of the C16218T D-Loop variant. Melting curve profiles of hNSCs and HSR-GBM1 cells and derived 

tumors (A). Difference curve analysis of hNSCs and HSR-GBM1 cells and derived tumors (B). 
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5.7 Discussion  

5.7.1 MtDNA depletion and tumorigenicity of HSR-GBM1 cells 

Previous studies investigating the effects of mtDNA depletion on tumorigenicity 

have provided contrasting results (Amuthan et al., 2002; Cavalli et al., 1997; 

Kulawiec et al., 2009b; Magda et al., 2008). In vivo tumor formation assays are 

a robust test of tumorigenicity. However, not all of the mtDNA depletion studies 

cited above utilized these assays and instead employed in vitro techniques 

such as colony formation and matrigel migration assays. This may have 

contributed to the conflicting reports regarding the tumorigenicity of mtDNA 

depleted tumor cells. In order to appropriately address how mtDNA depletion 

influences HSR-GBM1 cell tumorigenicity, GBM cells were depleted of mtDNA 

using the mtDNA specific depletion agent, ddC, and in vivo tumor formation 

assays were performed. 

 

The depletion of mtDNA to very low levels (0.2%) in HSR-GBM1 cells resulted 

in a considerable reduction in tumor formation rate. The reduction in tumor 

growth rate correlated with the number of proliferating cells present in 0.2% 

mtDNA tumors, which was considerably lower than that of tumors containing 

100% mtDNA. These outcomes strongly suggest that mtDNA plays a role in the 

maintenance of tumorigenicity of HSR-GBM1 cells. Indeed, HSR-GBM1 cells 

containing 50% mtDNA formed tumors at a slightly quicker rate than 100% 

mtDNA cells. This is in agreement with the pre-inoculation data presented in 

Chapter 4, which showed that HSR-GBM1 cells depleted for a short period (7 

days) contained elevated mtDNA copy number (See Section 4.6.6) and 
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expressed higher levels of NSC markers (See Section 4.6.7) once ddC was 

removed from the culture media. Furthermore, higher expression levels of NSC 

markers are associated with greater GBM tumorigenicity and malignancy (Ma et 

al., 2008). Collectively, these results suggest that partial mtDNA depletion may 

enhance HSR-GBM1 cell tumorigenicity. However, as the extent of mtDNA 

depletion increases beyond 20% of basal levels the tumor formation rates of 

HSR-GBM1 cells decreases, with 3% and 0.2% mtDNA HSR-GBM1 cells 

forming tumors at a significantly reduced rate compared to 100% mtDNA cells. 

In addition, copy number analysis revealed that tumors generated from 50%, 

20%, 3% and 0.2% mtDNA HSR-GBM1 cells recovered their mtDNA copy 

number to levels that were comparable to 100% mtDNA tumors. In summary, 

these outcomes strongly suggest that the maintenance of mtDNA copy number 

is important for HSR-GBM tumor formation and it is likely that the 

reestablishment of the mtDNA set point is required for HSR-GBM1 cells to 

establish tumors. Further evidence that mitochondria are an important aspect of 

tumorigenicity was reported by Skrtic et al, who demonstrated that inhibition of 

mitochondrial translation restricted tumor formation in acute myeloid leukemic 

cells (Skrtic et al., 2011). Collectively, these outcomes suggest that mtDNA 

content and mitochondrial function is essential for the maintenance of 

tumorigenicity. 

 

5.7.2 Gene expression analysis 

Gene expression patterns between the 100% and 0.2% mtDNA depleted HSR-

GBM1 cell tumors was highly variable. No clear trends were identifiable 

regarding changes in expression of factors associated with tumorigenicity. 
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NESTIN, OCT4 and hTERT expression was elevated in HSR-GBM1 tumors 

whilst expression in MUSASHI1, NANOG and c-MYC was reduced. It is 

possible to draw comparisons to a previous study by Holmberg et al. who 

reported differential expression of NSC and pluripotency factors between in vivo 

and in vitro glioma cells (Holmberg et al., 2011). Furthermore, the variability in 

the gene expression profiles observed between 100% mtDNA and 0.2% mtDNA 

tumors shows that despite inoculating immunocompromised mice with what is 

assumed to be a homogenous population of cells, variable gene expression 

was observed. It is likely that the observed differences in gene expression are 

associated with the extent of mtDNA depletion prior to inoculation into 

immunocompromised mice. 

 

Tumor #6 showed considerable increases in CD133, OCT4, hTERT and SHH. 

However, tumor #6 failed to reach the 1000mm3 end point for tumor harvest and 

thus was never fully established. Since all of the other tumors that fully formed 

showed differential gene expression profiles relative to tumor #6, it is likely that 

the irregular gene expression shown in this tumor, such as the up-regulation of 

both pluripotency (OCT4) and differentiation (GFAP) markers, may have 

disrupted tumor formation. Indeed, the coordinated expression of stem cell 

factors may be required for HSR-GBM1 cells to form tumors. Indeed, ESCs, 

which also express the stem cell factors OCT4, NANOG, SOX2 are able to form 

teratomas (tumors containing normal cell types of the primary germ layers). 

However, it is also possible that tumor #6 is an experimental anomaly and the 

outcomes observed may be unreliable in comparison to tumors that fully 

established. Unfortunately, due to time limitations of my study, further 
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experimental replicates could not be performed to resolve the observed 

outcomes and requires further investigation. 

 

5.7.3 Analysis of mtDNA variants 

Previous work in the laboratory identified multiple mtDNA variants in HSR-

GBM1 cells (Ka Yu Yeung, personal communication). One variant found within 

the D-loop, C16218T, which was identifiable by Sanger sequencing, was 

analyzed in both in vitro cultured HSR-GBM1 cells and tumors formed from 

0.2% and 100% mtDNA HSR-GBM1 cells. HRM analysis suggested that the D-

loop variant was present at variable levels within 100% mtDNA tumors. These 

results provide some evidence that the accumulation or loss of mtDNA variants 

may occur randomly and is thus, tumor specific. It is also likely that following 

therapeutic intervention, specific mtDNA variants may be selected for during the 

reestablishment of mtDNA copy number and may promote chemo-resistance 

and the reestablishment of tumors.  However, evidence linking mtDNA variants 

to chemo-resistance is currently lacking.  

 

The HRM curve analysis of 0.2% tumors showed similar profiles to wild type 

mtDNA (hNSCs), which suggests that during the depletion process in vitro, the 

D-loop variant was reduced and not reestablished during mtDNA copy number 

recovery in vivo. It is reasonable to speculate that tumor cells containing altered 

mtDNA genotypes may possess different growth and chemo-resistant 

properties, which may influence the tumorigenicity of HSR-GBM1 cells and 

requires further investigation.  
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5.8 Conclusion 

The outcomes of this chapter identify a clear relationship between mtDNA copy 

number and tumor formation rate in HSR-GBM1 cells. Extensive depletion 

(>20%) of mtDNA results in reduced tumor formation rate. The analysis of 

tumors formed from mtDNA depleted HSR-GBM1 cells also shows a recovery 

of mtDNA copy number, to a level that is similar to non-depleted HSR-GBM1 

cell tumors. I hypothesize that HSR-GBM1 cells are required to reestablish their 

mtDNA set point in order to maintain their tumorigenic potential. It is likely that 

this process occurs during the tumor development lag phase that was observed 

for 3% and 0.2% mtDNA tumors. In conclusion, the maintenance of mtDNA 

copy number is essential for HSR-GBM1 cells to maintain their tumorigenic 

potential.  
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Chapter 6: The derivation of 143BTK- and HSR-

GBM1 trans-mitochondrial cybrids 

6.1 Introduction 

The data presented in Chapters 4 and 5 strongly suggest that changes in 

mtDNA copy number can elicit strong influences on the gene expression 

profiles and tumorigenicity of HSR-GBM1 cells. These outcomes also provide 

strong evidence that mtDNA copy number plays a role in nuclear-mtDNA 

crosstalk.  

 

Germline mtDNA mutations are associated with mitochondrial diseases and 

diabetes, amongst others (Wallace, 1999; Wallace, 2005), whilst the 

accumulation of somatic mtDNA mutations has been more recently linked to 

cancer. MtDNA mutations are deleterious when mutant load is high and this is 

evidenced in the neuropathic and myopathic mtDNA disorders, NARP (Holt et 

al., 1990), MELAS (Schon et al., 1992) and LOHN (Holt et al., 1989), which are 

caused by single point mutations. In contrast, tumor cells have been shown to 

posses multiple mtDNA variants (Kirches et al., 2001; Liu et al., 2001; Polyak et 

al., 1998; Wong et al., 2003) at a frequency of ~70% and these are likely to 

cause cellular dysfunction in a similar manner to single point mutations, 

providing the mutant loading is sufficient. Since changes in mtDNA copy 

number alone are capable of inducing changes in gene expression and 

tumorigenicity HSR-GBM1 cells, it is likely that single or multiple mtDNA 

variants can also alter cellular function and the regulation of mtDNA copy 

number, which may in turn influence tumorigenic potential. Indeed, there is 
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evidence to suggest that the accumulation of mtDNA variants is associated with 

mitochondrial dysfunction and elevated ROS production (Lee and Wei, 1997). 

Furthermore, ROS have been implicated in the regulation of cell proliferation 

and apoptosis, which may act as a stimulus for tumorigenic transformation 

(Levine and Puzio-Kuter, 2010).  

 

In order to study how the mtDNA of tumor cells affect cellular function, 

metabolism and tumorigenesis, researchers have utilized trans-mitochondrial 

cybrid technology. Trans-mitochondrial cybrids are hybrid cells, generated by 

the  fusion  of  ρ0  cells  (devoid  of  mtDNA)  with  enucleated  cytoplasts containing 

donor mitochondria and mtDNA (King and Attardi, 1989). Cells lines have been 

depleted of mtDNA by long-term treatment with ethidium bromide or short-term 

exposure to Rhodamine 6G (R6G), a mitochondrial poison (Trounce and 

Wallace, 1996), and subsequently repopulated with the desired mtDNA 

genotype. Cybrids generated by this method commonly utilize an identical 

nuclear background, which allows the investigation of how different mtDNA 

populations interact with the nuclear genome.  

 

The majority of trans-mitochondrial cybrids have been derived using cancer 

cells containing a common nuclear background such as the osteosarcoma cell 

line, 143BTK- (Bonora et al., 2006; Ma et al., 2010). The 143BTK- cell line is 

deficient in thymidine kinase (TK) and was derived using a similar technique to 

that described by Kit et al. which involved long-term culture in media containing 

high concentrations (25-50 μg/ml)   of   bromo-deoxyuridine (BrdU) (Kit et al., 

1963). 143BTK- cells are resistant to BrdU and can be successfully propagated 
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in media containing BrdU (25-50   μg/ml). This contrasts with TK+ cells, which 

are sensitive to similar concentrations of BrdU (McKenzie and Trounce, 2000). 

BrdU sensitivity provides an excellent selection marker during the trans-

mitochondrial cybrid derivation by which non-enucleated mitochondrial donor 

cells are selectively killed in BrdU supplemented media (McKenzie and 

Trounce, 2000). TK activity also provides an additional selection marker when 

culture media is supplemented with hypoxanthine-aminopterin-thymidine (HAT). 

Aminopterin blocks de novo DNA synthesis (Kennett 1979), which is required 

for cell division, however, hypoxanthine and thymidine provide the necessary 

substrates for DNA synthesis to continue through functional TK (Harlow and 

Lane, 1988; Freshney, 1994). Cells containing functional TK enzyme are 

therefore able to perform DNA synthesis and survive. Since 143BTK- cells are 

TK deficient, they are unable to perform DNA synthesis in HAT +VE media and 

subsequently perish over time (McKenzie et al., 2004). 

 

An advantage of generating trans-mitochondrial cybrids using transformed cells 

is that, unlike primary cell lines, which enter senescence following multiple 

passages, transformed cell lines are essentially immortal. Thus, the generated 

cybrids provide an abundant cellular source for experimentation. The 

repopulation of cancer cells with mtDNA harboring the point mutations T8993G, 

G13997A and G15557A, amongst others, were shown to increase ROS 

production, promote xenograft tumor growth and metastasis and reduce ETC 

activity (Bonora et al., 2006; Ishikawa et al., 2008; Petros et al., 2005; Shidara 

et al., 2005). These outcomes demonstrate that mtDNA mutations are capable 

of inducing diverse changes in tumor cells. However, the effect of mtDNA 
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mutations on copy number in a common nuclear background has yet to be 

determined.  

 

To date, very little is known regarding how mtDNA mutations impact on cellular 

differentiation. The majority of cybrid cells lines are derived from tumor cells that 

do not undergo differentiation and is one possible shortcoming of cell lines such 

as 143BTK-. However, there are some reports of multipotent cybrid cell lines. In 

2004, McKenzie et al. derived cybrids from murine ESCs (McKenzie et al., 

2004). In this study, murine ESCs were depleted of mtDNA with R6G, and 

repopulated with mtDNA from the domestic mouse (Mus Musculus 

Domesticus), which is referred to hereafter as wild type, and mtDNA two 

divergent species, Mus spretus and Mus dunni (otherwise known as Mus 

terricolor). ESCs containing Mus spretus and Mus dunni exhibited 

characteristics of mitochondrial dysfunction with increases in lactate production 

when compared to ESCs containing wild type mtDNA. This study demonstrated 

that pluripotent cells could be utilized to generate cybrids models of 

mitochondrial dysfunction and provided a rationale to investigate the role of 

mtDNA mutations in cellular differentiation.  Recently, a study by Kelly et al. 

utilized the afore mentioned ESC cybrids and examined how divergent 

populations of mtDNA impacted the maintenance of pluripotency and 

differentiation (Kelly et al., 2013). Compared to wild type ESCs, ESCs 

containing divergent mtDNA were shown to differentially express pluripotency 

factors and lineage specific markers during differentiation (Kelly et al., 2013). 

This study provided evidence that divergent populations of mtDNA are able to 
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influence the maintenance of stemness and also cellular differentiation of stem 

cells.  

 

HSR-GBM1 cells are a transformed cell line that exhibits multipotent properties. 

HSR-GBM1 cells therefore provide an excellent cell source to generate a 

multipotent cybrid cell lines harboring altered mtDNA backgrounds or 

genotypes.  HSR-GBM1 cybrids would also provide an opportunity to 

investigate how modifying the mtDNA background of a cell alters gene 

expression profiles and differentiation potential. In addition, it remains to be 

determined how changes to mtDNA genotype impact on the maintenance of a 

cancer stem cell-like phenotype and cellular differentiation.  

 

6.2 Hypothesis  

I hypothesize that the introduction of different mtDNA genotypes into a common 

nuclear background (143BTK-) will result in variable mtDNA copy number levels 

by inducing differential interactions between nuclear and mitochondrial 

genomes. Using the same rationale, I hypothesize that changes to the mtDNA 

genotype of HSR-GBM1 cells will induce changes in gene expression and alter 

the differentiation profile of HSR-GBM1 cell cybrids.   

 

6.3 Aims 

 To derive mtDNA donor cell lines through the fusion of 143BTK- ρ0  cells  

with enucleated hNSCs, HSR-GBM1, GBM-L1 and GBM-L2 cells 

 Assess the mtDNA copy number of 143BTK- cybrids  
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 To derive of HSR-GBM1 cybrids containing HSR-GBM1 and hNSC 

mtDNA 

 To assess the differentiation potential of HSR-GBM1 cybrids 
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6.4 Materials and methods  

6.4.1  Cell lines 

Osteosarcoma cells (143BTK-), hNSCs, HSR-GBM1, GBM-L1 and GBM-L2 

cells were routinely cultured, as described Cell culture (Sections 2.2.3-2.2.5) 

until sufficient numbers were available for experiments.  

 

6.4.2 Enucleation of mtDNA donor cells  

3 x 106 hNSCs, HSR-GBM1, GBM-L1 and GBM-L2 cells were collected and 

each resuspended in 10 ml of SD-DMEM (see Section 2.2.5) and gently mixed 

with 10 ml pre-warmed (37oC) Percoll solution (Sigma), 200 l 

Penicillin/Streptomycin, 2 mg/ml cytochalasin B (2 mg/ml; Sigma) and 

transferred to 50 ml Nalgene high-speed centrifuge tubes (Nalgene, Waltham, 

MA, USA). Cells were enucleated by centrifugation at 20,000 rpm using a SS-34 

fixed angle rotor (Thermo) for 70 minutes at 27oC. Following centrifugation, the 

interface (7.5 ml) containing both enucleated cytoplasts and non-enucleated 

cells was transferred to 15 ml tubes. 7.5 ml of fresh SD-DMEM was added and 

gently mixed to the cell suspension to dilute the remaining Percoll and 

centrifuged for 5 minutes at 4,400 rpm. The supernatant was removed and the 

cell pellets were resuspended in 10 ml SD-DMEM prior to cell fusion.  

 

1 x 106 143BTK-ρ0 cells were used per fusion. 143BTK-ρ0 cells were 

resuspended in 10 ml SD-DMEM and mixed with the 10 ml cell suspensions of 

hNSCs, HSR-GBM1, GBM-L1 and GBM-L2 cells and transferred to clean 50 ml 

Nalgene high-speed centrifuge tubes. The cell suspension was centrifuged at 

10,000 rpm using a SS-34 fixed angel rotor for 10 minutes at 27oC. The 
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supernatant was carefully removed from the cell pellet. To initiate cell fusion, cell 

pellets were covered with 500 l of cell culture grade polyethylene glycol (PEG; 

Sigma) for exactly 1 minute. PEG was removed immediately and the cell pellet 

was gently resuspended in 10 ml of SD-DMEM.  

 

6.4.3 Trans-mitochondrial cybrid selection 

Intact cells (143BTK-ρ0) were plated at a density of 2.5 x 105, 1 x 105 and 5 x 104 

cells per 100mm culture dish in SD-DMEM for 24 hours at 37oC with 5% 

CO2/95% humidity. After 24 hours, the media was substituted for CSM, which 

consisted of RPMI medium (Gibco), 2 mM Glutamax, 5% dFBS, 1% 

Penicillin/Streptomycin and BrdU (50 mg/ml). In this selection medium, free of 

uridine and sodium pyruvate, only 143BTK-ρ0 cells that have received functional 

mitochondria and mtDNA from cytoplast donors (hNSC and GBM cell lines) 

were able to survive by reestablishing a functional respiratory chain. Non-fused 

143BTK-ρ0 cells are auxotrophic for uridine and sodium pyruvate and do not 

propagate under these conditions. Non-enucleated hNSCs and GBM cells are 

thymidine kinase positive (TK+) and are sensitive to the high concentrations of 

BrdU (50 mg/ml). At this concentration, TK+ cells do not survive and propagate 

under these conditions. In contrast, 143BTK-ρ0 cells are deficient in thymidine 

kinase (TK-) and are resistant to BrdU exposure. After 7 to 14 days, cell colonies 

began to emerge and propagate in the CSM. The colonies were expanded and 

passed using standard protocols, as described in Culture of osteosarcoma cells 

(Section 2.2.5) and were continued to be cultured in CSM to ensure that there 

was no carry over of hNSCs and GBM cells. Cell samples were collected after 

each passage for analysis.  
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6.4.4 MtDNA genotyping 

In order to confirm that the desired mtDNA population had been successfully 

transferred into the recipient 143BTK-ρ0 cells, total DNA was extracted from 

both the mtDNA donor cells and the putative 143BTK- cybrids. Extracted DNA 

was used to amplify a 1200 bp fragment of the D-loop region of mtDNA using 

conventional PCR. PCR reactions were performed, as described in PCR 

(Section 2.5.3) with D-loop primers, as described in Section 5.5.6. PCR 

products were resolved on 2% agarose gels, excised and purified as described 

in Gel electrophoresis and PCR product purification (Sections 2.5.4 & 2.5.5). 

Purified PCR products were quantified by spectrophotometry, as described in 

Quantification of nucleic acids (Section 2.4.5) prior to capillary sequencing.  

 

Samples were processed through the Gandel Charitable Trust Sequencing 

Centre service. Sequencing reactions consisted of 100 ng of purified PCR 

product (1-6 l), 1 l hD-Loop Primers (312 nM) and dH2O to a volume of 16 l. 

Reactions were performed using the automated Applied Biosystems 3130xl 

Genetic Analyzer and the Applied Biosystems BigDye Terminator 3.1 reaction 

kit, as described in DNA Sequencing (Section 2.5.6).  Sequencing output files 

were analyzed for sequence read quality using the sequence viewer software, 4 

Peaks (v1.7.1) (mekentosj.com). hNSC, HSR-GBM1, GBM-L1 and GBM-L2 D-

loop sequences were used as references for the generation 143BTK- cybrids 

and were aligned using the ClustalW2 alignment software tool (EMBL, 

Germany). For example, the D-loop sequence of hNSC cells was aligned 

against the D-loop sequence of 143BTK-NSC cells. The generation of the 
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143BTK-NSC cybrid was deemed to be successful if 100% homology between 

the D-loop sequences (hNSC & 143BTK-NSC) was observed. This D-loop 

sequence comparison was performed for each of the 143BTK- cybrids. 

143BTK- cybrid cell lines are referred to hereafter as 143B-TK-NSC, 143BTK-

GBM, 143BTK-GBML1 and 143BTK-GBML2.  

 

6.4.5 Generation of trans-mitochondrial cybrid (HSR-GBM1) cell lines  

143BTK-NSC and 143BTK-GBM were routinely cultured, as described in Culture of 

osteosarcoma cells (Section 2.2.5). 3 x 106 cells of each cell line were 

enucleated, as described above (Section 6.5.2) with the exception that the 

pelleted cytoplasts were resuspended in 10 ml of StemPro Complete Medium 

prior to cell fusion. 

  
HSR-GBM1 cells were routinely cultured, as described in Culture of GBM cell 

lines (Section  2.2.5)  with  exception   that  R6G  (2  μg/ml)  and  uridine  (50  mg/ml)  

were added daily for 72 hours prior to cell fusion. R6G is a mitochondrial poison 

and was utilized to disrupt mitochondrial function and deplete HSR-GBM1 cells 

of mtDNA. After 72 hours HSR-GBM1 cells were harvested and cell counts 

performed. 1 x 106 HSR-GBM1 cells were used per cell fusion. HSR-GBM1 cells 

were resuspended in 10ml of StemPro Complete Medium and gently mixed with 

the cell suspension of either 143BTK-NSC or 143BTK-GBM cells (fusion control). 

The cell fusion process was performed, as described above in (Section 6.5.2). 

 

Intact HSR-GBM1 cells were plated at a density of 1 x 106 cells per 100mm 

dish. The 100mm dishes were pretreated with laminin (Section 2.2.2) to 

promote attachment of HSR-GBM1 cells. Cells were incubated for 24 hours. 
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After 24 hours, the media was substituted for neural cybrid selection medium 

(NCSM), which consisted of DMEM (2g/litre) medium, 2 mM Glutamax, 2% (v/v) 

StemPro neural supplement, 1x HAT supplement (Invitrogen), bFGF (20 ng/ml), 

EGF (20 ng/ml). NSCM media contained no sodium pyruvate or uridine in order 

to promote the survival of only HSR-GBM1 cells that received cytoplast donors. 

The rationale of pretreating the culture plates was to improve the monitoring of 

cell viability following the fusion process, which proved difficult when culturing in 

suspension. After 72 hours of monolayer culture, HSR-GBM1 cells were 

detached using Accutase and re-plated in low attachment plates to promote 

neurosphere formation.  

 

HSR-GBM1 cells that do not receive cytoplast donors containing functional 

mitochondria and mtDNA do not survive and propagate in NCSM in the 

absence of sodium pyruvate and uridine, due to R6G induced mitochondrial 

dysfunction (See Figure 6.4). The addition of HAT supplement blocks de novo 

DNA synthesis (Kennett 1979) and selects against 143BTK- cells (McKenzie et 

al., 2004) (Figure 6.6 and see Trans-mitochondrial cybrid selection; Section 

6.5.4 and Culture of osteosarcoma cells; Section 2.2.5) whilst HSR-GBM1 cells 

that receive cytoplast donors are able to propagate through the successful 

transfer of functional mitochondria.  

 

Putative HSR-GBM1 neurospheres were cultured for a further 7 days in NSCM 

before re-plating onto laminin treated 100mm culture dishes. The rationale for 

re-plating HSR-GBM1 cells was to assist in the removal of dead cells, since 

viable cells would adhere to the cell culture plastic whilst dead cells float and 
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could be removed by the changing of media. Very few neurospheres attached 

to the cell culture plastic, however, small colonies propagated over time (See 

Figure 6.5) and were referred to as HSR-GBM1 cybrids. HSR-GBM1 cells that 

were fused with 143BTK-GBM cells are referred to hereafter as HSR-HSR cells 

and HSR-GBM1 cells fused with 143BTK-NSC cells as HSR-NSC cells.  

 

HSR-HSR and HSR-NSC cells were cultured in monolayer for an additional 72 

hours in NSCM to increase cell numbers. After 72 hours the cells were 

detached using Accutase and then routinely cultured. Once sufficient cell 

numbers were available, the mtDNA genotypes of HSR-HSR and HSR-NSC 

cells were determined using the protocols described above in MtDNA 

genotyping (Section 6.5.5). The mtDNA genotypes of HSR-HSR and HSR-NSC 

cells were compared to that of hNSCs and HSR-GBM1 cells (See Figure 7) to 

determine if hNSC mtDNA had been successfully transferred into HSR-GBM1 

cells. HSR-GBM1 cells and HSR-GBM1 cybrids were differentiated for up to 28 

days, as described in Differentiation of GBM cell lines (Section 2.3.2). 

 

6.4.6 MtDNA Copy Number Analysis  

MtDNA copy number of 143BTK- cybrids, HSR-GBM1 cybrids and mtDNA 

donor cell lines was determined by real-time PCR, as described in MtDNA copy 

number analysis in the General Materials and Methods (Section 2.6.4). 

 

6.4.7 Gene expression Analysis 

Gene expression was determined by real-time PCR, as described in Gene 

expression analysis in the General Materials and Methods (Section 2.6.3). 
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Primer pairs, annealing and secondary acquisition temperatures are listed in 

Table 4.I (Chapter 3; Section 3.5) 

 

6.4.8 Cellular respiration  

Cellular respiration analyses of 143BTK- trans-mitochondria cybrids, HSR-

GBM1 cybrids (undifferentiated and differentiated for 14 & 21 days) and mtDNA 

donor cell lines was performed using the Oxygraph-2K system, as described in 

Cellular respiration in the General Materials and Methods (Section 2.7.1). 

 

6.4.9 Total ATP content and lactate production 

Total ATP content and lactate production were determined using luminescence 

and fluorescence based assays, as described in Measurement of total cellular 

ATP content and Measurement of cellular lactate production in the General 

Materials and Methods (Section 2.8). 

 

6.4.10 Statistical analysis  

Statistical analysis was performed, as described in Statistical analysis in the 

General Materials and Methods (Section 2.11). 
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6.5 Preliminary experiments 

6.5.1 Confirmation of the sensitivity of 143BTK-ρ0 cells to uridine and 

pyruvate –VE media 

143BTK-ρ0 cells are devoid of mtDNA and thus lack a respiratory chain. 

143BTK-ρ0 cells require uridine and pyruvate supplementation in order survive. 

This characteristic of 143BTK-ρ0 cells is an excellent selection marker during the 

generation of trans-mitochondrial cybrids. The removal of uridine and pyruvate 

from the culture media selects for cells that have accepted donor mtDNA from 

cytoplasts, which will survive by generating uridine and replenishing NADH 

stocks through the reestablishment of a functional respiratory chain. To test 

whether the 143BTK-ρ0 cells utilized in this chapter were sensitive to uridine and 

pyruvate withdrawal, 143BTK-ρ0 cells were cultured in a low glucose selection 

media cybrid selection media (CSM; see Materials and Methods above) without 

uridine and pyruvate and monitored for 12 days. 143BTK-ρ0 cells appeared 

normal after the first day of culture and showing signs of proliferation (rounded 

and glowing cell bodies) with no gross changes in morphology observed (Figure 

6.1A). On Day 3 of culture, 143BTK-ρ0 cells began to exhibit a broadened 

morphology (Figure 6.1B). By Day 6, there was some cell death (Figure 6.1C) 

and a lack of cell proliferation and this continued through to Day 12 (Figure 

6.1D), with few cells of abnormal morphology remaining. These outcomes 

demonstrate that 143BTK-ρ0 cells do not thrive and proliferate when cultured in 

CSM.   
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Figure 6.1. Phase-microscopy analysis of 143BTK-ρ0 cells cultured in uridine 

and pyruvate free media for 12 days at X10 magnification. Day 1 (A), Day 3 (B), 

Day 6 (C) and Day 12 (D). 
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6.5.2 Survival of trans-mitochondrial cybrids in selection media 

To confirm that cybrids generated from the fusion 143BTK-ρ0 cells with donor 

cytoplasts could survive in CSM (see Materials and Methods above), a cell 

fusion was performed and the culture was monitored for 10 days. 10 days after 

the fusion process cell colonies began to emerge (Figure 6.2A) and 

demonstrated that trans-mitochondrial cybrids could survive and thrive under 

selection conditions. Continued expansion of the identified colony was observed 

after a further 24 hours of culture (Figure 6.2B). 

  

Figure 6.2. Emergence of a trans-mitochondrial cybrid colony cultured in CSM 

after 10 days (A) and 11 (B) days at X10 magnification.  
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6.5.3 Repopulation of 143BTK-ρ0  cells with donor mtDNA 

To confirm that trans-mitochondrial cybrids had been generated following the 

fusion of 143BTK-ρ0 cells with donor cytoplasts, the D-loop region of 143BTK-

NSC & 143BTK-GBM cells was amplified by conventional PCR. No PCR product 

was generated using the DNA template of 143BTK-ρ0 cells, confirming the 

absence of mtDNA in this cell line (Figure 6.3A). The PCR reactions of 143BTK-

ρ0 cells fused with hNSC and HSR-GBM1 cytoplasts (143BTK-NSC & 143BTK-

GBM) yielded D-loop PCR products (Figure 6.3A). D-loop PCR was also 

performed on a donated cybrid cell line, 143BTK-3243, to confirm the presence of 

mtDNA. To confirm that the 143BTK-ρ0   cells had been repopulated with the 

desired mtDNA, sequencing was performed on the D-loop PCR products. 

Sequencing readouts confirmed that the D-loop sequences of the 143BTK-NSC 

& 143BTK-GBM cells were identical to that of their mtDNA donors, hNSCs and 

HSR-GBM1 cells, respectively (Figure 6.3B-E). Collectively, these outcomes 

show that 143BTK-ρ0 cells were successfully repopulated with the desired 

mtDNA genotype.   
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Figure 6.3. D-loop PCR of 143BTK-ρ0 cells and trans-mitochondrial cybrids 

(A). Sequencing of the D-loop regions of hNSC (B), HSR-GBM1 (C), 143BTK-
NSC  (D) & 143BTK-GBM cells (E). 
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6.5.4 R6G titration assay 

To determine the optimal concentration of R6G to eliminate mitochondria in 

HSR-GBM1 cells, a titration assay was performed. R6G is a mitochondrial 

poison and was utilized to disrupt mitochondrial function and deplete HSR-

GBM1 cells of mtDNA. HSR-GBM1 cells were plated as a monolayer and 

treated with 1 and 2 μg/ml   R6G   for   72   hours   and  monitored   (Figure   6.4).   1  

μg/ml   R6G   had   very   little   effect   on   cell   viability   after   72   hours   of   culture,  

however, considerable cell death was observed once the culture media was 

changed   to   NCSM   (Figure   6.4   C).   2   μg/ml   R6G   induced   some   cell   death   in  

HSR-GBM1 cells and the cells were at approximately 50% confluence after 72 

hours of culture (Figure 6.4 B). Once more, the transfer of HSR-GBM1 cells to 

NCSM for 5 days resulted in very few cells surviving (Figure 6.4 C and D). As a 

control, HSR-GBM1 cells were cultured in NCSM without R6G for up to 72 

hours. HSR-GBM1 showed no adverse effects during culture in NCSM and 

showed signs of proliferation (Figure 6.4 E & F). It was reasoned that using the 

highest possible concentration of R6G, which did not induce considerable cell 

death after 72 hours, would limit the likelihood of non-mtDNA depleted and non-

fused HSR-GBM1 cells contaminating the cybrid selection process. 

Consequently,  2  μg/ml  of  R6G  was  selected  for  future  experiments. 
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Figure 6.4. R6G titration. HSR-GBM1 cells were treated with 1 μg (A) and 2 μg  

(B) R6G for 72 hours. After 72 hours HSR-GBM1 cells were transferred into 

CSM and growth was monitored (C & D). To confirm that HSR-GBM1 cells 

could propagate in CSM, HSR-GBM1 cells were cultured in CSM for 24-72 

hours (E & F). 

A B 

C D 

E F 
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6.5.5 Generation of HSR-GBM1 trans-mitochondrial cybrids 

R6G treated HSR-GBM1 cells were fused with cytoplasts of 143BTK-NSC and 

143BTK-GBM cells, as described in the Materials and Methods above. Putative 

HSR-GBM1 cybrids were plated onto laminin treated culture plates and were 

monitored. The majority of plated cells did not adhere and whilst some cells 

attached and established colonies (Figure 6.5 represents 17 days post fusion). 

These colonies propagated in CSM and were detached once sufficient cell 

numbers were available.  

   

Figure 6.5. Identification of HSR-GBM1 cybrids. Monitoring of putative HSR-

GBM1 cybrids using phase microscopy at X10 magnification 17 days post 

fusion (A & B) and 25 days post fusion (C & D).  
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6.5.6 Confirmation of 143BTK- sensitivity to HAT supplementation 

To confirm that 143BTK- cells were sensitive to HAT supplementation, 143BTK-

NSC cells were cultured in SD-DMEM with 1X HAT for up to 7 days. Initially 

143BTK-NSC cells maintained a normal morphology at Day 0 (Figure 6.6A) and 

Day 3 (Figure 6.6B). However, by Day 5 143BTK-NSC cells started to die (i.e. 

floating cells) and exhibited a broadened morphology (Figure 6.6C). By Day 7 of 

culture very few 143BTK-NSC cells remained (Figure 6.6D). These outcomes 

demonstrated the sensitivity of 143BTK- cells to HAT supplementation. 

 

 

Figure 6.6 Culture of 143BTK-NSC cells in HAT supplemented media for up to 7 

days. Day 0 (A), Day 3 (B), Day 5 (C) and Day 7 (D). Magnification at X10. 
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6.5.7 MtDNA genotyping of HSR-GBM1 cybrids 

HSR-GBM1 cybrids generated from the fusion of R6G treated HSR-GBM1 cells 

with 143BTK-NSC (HSR-NSC) and 143BTK-GBM (HSR-HSR) cells were subjected 

to mtDNA genotyping, as described in the Materials and Methods below. The D-

loop sequence of HSR-HSR cells was identical to that of HSR-GBM1 cells 

(Figure 6.7). Interestingly, the D-loop of HSR-NSC cells contained two 

populations of mtDNA, or heteroplasmy. HSR-NSC mtDNA was found to be 

primarily of HSR-GBM1 origin, however there were low but identifiable levels of 

hNSC mtDNA present, as indicated by the dual fluorescent peaks in the boxed 

regions of the sequencing readouts (Figure 6.7).   
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Figure 6.7. D-loop sequencing of the HSR-GBM1 cybrids, HSR-HSR and HSR-NSC. The D-loop sequences of HSR-HSR 

and HSR-NSC cells were compared to that of HSR-GBM1 cells and hNSCs. 
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6.6 Results  

6.6.1 MtDNA copy number analysis of 143BTK-ρ0 cells repopulated with 

donor mtDNA 

To investigate how different mtDNA genotypes can influence mtDNA copy 

number, 143BTK-ρ0 cells were fused with cytoplasts from hNSCs, HSR-GBM1, 

GBM-L1 and GBM-L2 cells to generate trans-mitochondrial cybrids. Since 

143BTK-ρ0 cells contain no mtDNA, mtDNA copy number of the trans-

mitochondrial cybrids was compared to non-depleted, non-fused, 143BTK-ρ+  

cells and these values were used as an indicator of the mtDNA copy number 

set point of 143BTK- cells. 

 

The mtDNA copy number of 143BTK-NSC cells was comparable to that of 

143BTK-ρ+  cells whilst 143BTK-GBM cells showed a 1.25-fold increase (p<0.01) 

in copy number relative to 143BTK-ρ+   cells (Figure 6.8). 143BTK-GBML1 and 

143BTK-GBML2 established a similar mtDNA copy number to one another; 

however, these values were significantly lower (p<0.01) than for the parental 

143BTK-ρ+   cells (Figure 6.8). I also analyzed the mtDNA copy number of 

143BTK- cybrid cells harboring single mtDNA point mutations that are the 

underlying cause of the mitochondrial diseases MELAS (143BTK-3243), NARP 

(143BTK-8993) and LOHN (143BTK-11778). The mtDNA copy number of 143BTK-

8993 and 143BTK-11778 cells were not significantly different to the parental 

143BTK-ρ+  cells whilst 143BTK-3243 cells showed a significant elevation in copy 

number (1.65-fold; p<0.001; Figure 6.8). 
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Figure 6.8. MtDNA copy number analysis of 143BTK- cells. Fold change in 

mtDNA copy number relative to 143BTK-ρ+  cells of trans-mitochondrial cybrids. 

Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** p<0.01 

and *** p<0.001. 
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Prior to the cell fusion process, the mtDNA copy number of the mtDNA donor 

cells (hNSC, HSR-GBM1, GBM-L1 and GBM-L2) was calculated and compared 

to the mtDNA copy number of the trans-mitochondrial cybrid cell lines (143BTK-

NSC, 143BTK-GBM, 143BTK-GBML1 and 143BTK-GBML2). By comparing these 

values, I was able to determine whether the initial number of mtDNA copies 

donated during the fusion process affected the final copy number in the trans-

mitochondrial cybrids. Each of the trans-mitochondrial cell lines showed 

significant differences (p<0.001; Figure 6.9) in mtDNA copy number relative to 

of their mtDNA donor cells. 143BTK-NSC cells showed a 2.73-fold increase 

(p<0.01) in copy number relative to their mtDNA donor, hNSCs. 143BTK-GBM 

and 143BTK-GBML1 showed a 1.50 and 1.51-fold increase in copy number 

compared to their respective mtDNA donor cells. Finally, 143BTK-GBML2 cells 

showed a 2-fold (p<0.001) reduction in copy number relative to their mtDNA 

donor cells (Figure 6.9).  

  



 

 227 

 

Figure 6.9. MtDNA copy number analysis of mtDNA donor cell lines and 
trans-mitochondrial cybrids. Fold change in mtDNA copy number relative to 

mtDNA donor cell lines of trans-mitochondrial cybrids. Columns represent mean 

values ± SEM (n=3). *** Indicates p<0.001. 
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Each of the trans-mitochondrial cybrids showed significantly lower resting O2 

consumption rates than the parental 143BTK-ρ+  cells (p<0.001; Figure 6.10A), 

whilst there were no significant differences between the trans-mitochondrial 

cybrid lines. ETC coupling efficiency was significantly reduced (p<0.05-0.001; 

Figure 6.10B) in all of the trans-mitochondrial cybrids relative to the parental 

143BTK-ρ+   cells with the exception of the 143BTK-GBM cells. Between the 

cybrids cell lines, ETC coupling efficiency was greatest in the 143BTK-GBM and 

143BTK-3243 cells whilst the remaining cybrids exhibited similar ETC coupling 

efficiencies to each other (Figure 6.10B). The ETC reserve capacity was 

significantly greater (p<0.001) in the 143BTK-NSC, 143BTK-GBML1, 143BTK-GBML2 

and 143BTK-8993 cells relative to the parental 143BTK-ρ+   cells whilst the 

remaining cybrids showed similar ETC reserve capacities to one another 

(Figure 6.10C).  
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Figure 6.10. Resting O2 consumption rates (A), ETC coupling efficiency (B) and 

ETC reserve capacity (C) of 143BTK- ρ+  cells and trans-mitochondrial cybrids. 

Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** p<0.01 

and *** p<0.001. 

 

The amount of O2 consumption dedicated to ATP production (Basal respiration 

– Non-phosphorylating respiration) was significantly lower (p<0.001) in all of the 

trans-mitochondrial cybrids relative to the parental 143BTK-ρ+   cells (Figure 

6.11). Between the trans-mitochondrial cybrid cell lines, ATP dedicated O2 

consumption was greatest in the 143BTK-GBM and 143BTK-3243 and was 

significantly greater (p<0.05-0.001) than that of 143BTK-NSC, 143BTK-GBML1 and 
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143BTK-8993 cells but not significantly different to 143BTK-GBML2 and 143BTK-

11778 cells (Figure 6.11). 

 

Figure 6.11. O2 consumption rate dedicated to ATP production of 143BTK- 

ρ+  cells and trans-mitochondrial cybrids. Columns represent mean values ± 

SEM (n=3). * Indicates p<0.05, ** p<0.01 and *** p<0.001. 

 

The maximal O2 consumption rate (ETC uncoupling by FCCP) was highest in 

the parental 143BTK-ρ+  cells and was significantly greater (p<0.01-0.001) than 

all of the trans-mitochondrial cybrids with the exception of 143BTK-GBML1 and 
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whilst the lowest maximal O2 consumption rate was observed in the 143BTK-

3243 cells (Figure 6.12).  

 

 

Figure 6.12. Maximal O2 consumption rates of 143BTK- ρ+  cells and trans-
mitochondrial cybrids. Columns represent mean values ± SEM (n=3). * 

Indicates p<0.05 and *** p<0.001. 
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ATP content in the mtDNA depleted 143BTK- ρ0  cell line to provide a reference 

value for the cellular ATP content of a fully mtDNA depleted cell line.  In 

agreement with the reduced resting and ATP dedicated O2 consumption rates 

observed in the trans-mitochondrial cybrids, the cellular ATP content was 

significantly lower (p<0.001) in the cybrids and the 143BTK- ρ0  cells compared to 

the parental 143BTK-ρ+   cells (Figure 6.13). 143BTK-GBM and 143BTK-3243 

showed similar ATP content to the depleted 143BTK- ρ0  cell line, whilst 143BTK-

NSC cells showed slightly higher and significant ATP content than the 143BTK-

3243 cells (p<0.01; Figure 6.13).  

Figure 6.13. Cellular ATP content of 143BTK-ρ0, 143BTK-ρ+   and trans-
mitochondrial cybrids. Columns represent mean values ± SEM (n=3). ** 

Indicates p<0.01 and *** p<0.001. 
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6.6.4 Lactate production  

Prior to the repopulation of 143BTK- ρ0   cells with mtDNA from donor cells, 

143BTK- ρ0   cells are reliant on glycolysis for ATP production and would be 

expected to secrete a large amount of lactate since glycolysis derived pyruvate 

cannot be fully metabolized in the mitochondria due to a lack of a functional 

respiratory chain. I, therefore, determined the cellular lactate production of 

143BTK- ρ0  cells and compared these values to the parental 143BTK-ρ+  cells 

and the three selected trans-mitochondrial cybrids. 143BTK- ρ0  cells secreted 

the highest amount of lactate out of the cell lines analyzed and this value was 

significantly greater than that of 143BTK-ρ+   and 143BTK-NSC cells (p<0.05; 

Figure 6.14). 143BTK-GBM and 143BTK-3243 secreted comparable amounts of 

lactate to 143BTK- ρ0  cells (Figure 6.14). 
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Figure 6.14. Cellular lactate production of 143BTK-ρ0, 143BTK-ρ+  and trans-
mitochondrial cybrids. Columns represent mean values ± SEM (n=3). * 

Indicates p<0.05. 

 

6.6.5 MtDNA copy number analysis of HSR-GBM1 trans-mitochondrial 

cybrids 

Since HSR-GBM1 cells had been treated with R6G and subsequently 

repopulated with HSR-GBM1 and hNSC mtDNA, I determined whether the re-

population process elicited an effect on mtDNA copy number regulation during 

differentiation and compared these outcomes to non-cybrid HSR-GBM1 cells 

and hNSCs.  
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HSR-HSR cells showed a 2.34 (p<0.001) and 2.00-fold (p<0.001) increase in 

mtDNA copy number on Day 7 and 14 of differentiation, respectively, compared 

to Day 0 and by Day 28 where an increase of 4.23 fold (p<0.001) was 

observed. Throughout differentiation, the changes in HSR-HSR mtDNA copy 

number were significantly different (p<0.001) to that observed for HSR-GBM1 

cells and hNSC (Figure 6.15). HSR-NSC cells showed significant increases in 

mtDNA copy number during differentiation (p<0.01-0.001), although these were 

not at as profound as HSR-HSR cells on Day 7 (1.45-fold) and 14 (1.78-fold) 

(Figure 6.15). However, by Day 28 of differentiation, HSR-NSC had increased 

their mtDNA number by 4.58-fold, which was significantly greater than that of 

HSR-GBM1 cells and hNSCs (Figure 6.15). Collectively, the patterns of copy 

number regulation in HSR-HSR and HSR-NSC cells more closely correlated 

with that of hNSCs rather than HSR-GBM1 cells, in that they exhibited 

increased copy number during differentiation.  
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Figure 6.15. Analysis of mtDNA copy number of differentiating hNSC, 
HSR-GBM1, HSR-HSR and HSR-NSC cells. Fold change in mtDNA copy 

number relative to Day 0 of differentiation. Columns represent mean values ± 

SEM (n=3). * Indicates p<0.05, ** p<0.01 and *** p<0.001. 
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HSR-HSR cells showed an increase of 1.56–fold (p<0.01) and 1.40–fold 

(p>0.05) in NESTIN expression on Day 7 and 14 of differentiation, respectively 

(Figure 6.16). By Day 28 of differentiation, NESTIN expression was comparable 

to that of Day 0. HSR-NSC cells showed a significant reduction in NESTIN 

expression on Day 7 of differentiation (2-fold; p<0.05) relative to Day 0, which 

was followed by an increase of 1.39-fold on Day 14, although this was not 

significantly different to Day 0 (Figure 6.16). By Day 28 of differentiation, 

NESTIN expression returned to similar levels to Day 0. Both HSR-HSR and 

HSR-NSC cells showed different patterns of NESTIN expression compared to 

HSR-GBM1 cells and more closely mirrored the expression profiles of hNSCs. 

In HSR-GBM1 cells, NESTIN expression was significantly reduced on Day 28 of 

differentiation whilst NESTIN expression was unchanged in HSR-HSR, HSR-

NSC cells and hNSCs (Figure 6.16). 
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Figure 6.16. Fold change in expression relative to Day 0 and weighted against 

β-ACTIN of NESTIN in differentiating hNSC, HSR-GBM1, HSR-HSR and HSR-

NSC cells. Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** 

p<0.01 and *** p<0.001. 

 

Differential patterns of MUSASHI1 expression were observed between HSR-

HSR and HSR-NSC cells. HSR-HSR cells showed an initial increase in 

expression on Day 7 (1.62-fold; p<0.01) and 14 (1.45-fold; p>0.05) of 

differentiation before expression returned to comparable levels to Day 0 on Day 

28 of differentiation (Figure 6.17). HSR-NSC cells showed an initial decrease in 

MUSASHI1 expression on Day 7 (3.44-fold; p<0.05) and this was followed by a 

1.72-fold increase in expression relative to Day 0 on Day 14 of differentiation 

(p<0.05). By Day 28 of differentiation MUSASHI1 expression was increased by 

1.88-fold (p<0.05) relative to Day 0 (Figure 6.17). HSR-GBM1 cells showed a 

similar pattern of MUSASHI1 expression to HSR-HSR cells for the first 14 days 
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of differentiation, however, MUSASHI1 expression was significantly higher in 

HSR-HSR cells on Day 28 differentiation compared to HSR-GBM1 cells 

(p<0.05; Figure 6.17). Collectively, HSR-HSR and HSR-NSC cells showed 

different patterns of expression compared to hNSCs. 

 

 

Figure 6.17. Fold change in expression relative to Day 0 and weighted against 

β-ACTIN of MUSASHI1 in differentiating hNSC, HSR-GBM1, HSR-HSR and 

HSR-NSC cells. Columns represent mean values ± SEM (n=3). * Indicates 

p<0.05, ** p<0.01 and *** p<0.001. 
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Day 28 of differentiation, CD133 was not significantly different to that of Day 0 

and was also significantly greater (p<0.01) than that of HSR-HSR cells. 

Although HSR-NSC cells showed similar CD133 expression patterns to HSR-

GBM1 cells for the first 14 days of differentiation, by Day 28, CD133 was 

elevated in HSR-NSCs cells (Figure 6.18). hNSCs showed a differential pattern 

of CD133 expression to the other cell lines, and exhibited a steady increase in 

expression throughout differentiation. 

 

Figure 6.18. Fold change in expression relative to Day 0 and weighted against 

β-ACTIN of CD133 in differentiating hNSC, HSR-GBM1, HSR-HSR and HSR-

NSC cells. Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** 

p<0.01 and *** p<0.001. 
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Each of the cell lines analyzed showed increases in GFAP expression during 

differentiation relative to Day 0, however, the patterns of expression varied 

between cell lines (Figure 6.19). HSR-HSR cells showed a similar trend to HSR-

GBM1 cells with a 16.15-fold (p<0.001) increase in GFAP expression on Day 7 

of differentiation relative to Day 0, however, GFAP expression levels were 

reduced to 6.93 (p<0.001) and 5.41-fold (p<0.001) on Day 14 and 28 of 

differentiation, respectively (Figure 6.19). In contrast, HSR-NSC cells exhibited 

a 8.60-fold (p<0.001) increase on Day 7 of differentiation, which was followed 

by a 42.24-fold increase (p<0.001) on Day 14 of differentiation. GFAP 

expression was reduced on Day 28 of differentiation; however, expression 

levels remained 35.43-fold (p<0.001) higher than that of Day 0 (Figure 6.19). 

hNSCs showed a steady increase in GFAP expression during differentiation, 

however, the increases in GFAP expression were more prominent in HSR-NSC 

cells. 
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Figure 6.19. Fold change in expression relative to Day 0 and weighted against 

β-ACTIN of GFAP in differentiating hNSC, HSR-GBM1, HSR-HSR and HSR-

NSC cells. Columns represent mean values ± SEM (n=3). * Indicates p<0.05, ** 

p<0.01 and *** p<0.001. 

 

6.6.7 Cellular respiration of HSR-GBM1 trans-mitochondrial cybrids 

Since HSR-GBM1 cybrids exhibited altered copy number regulation and gene 

expression profiles during differentiation, I sought to assess their cellular 

respiration on Day 14 and 21 of differentiation. Each of the cell lines analyzed 

exhibited increases in O2 consumption following the onset of differentiation. 

HSR-HSR cells showed the greatest change in O2 consumption rate, which was 

increased by 1.87-fold increase (p<0.001; Figure 6.20) compared to a 1.35-fold 
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change in O2 consumption rate relative to undifferentiated cells, the final O2 

consumption rates were similar between HSR-HSR and HSR-NSCs.  

 

 

Figure 6.20. Fold change in O2 consumption rates, relative to undifferentiated 

cells of HSR-HSR and HSR-NSC cells.  Columns represent mean values ± 

SEM (n=3). *** Indicates p<0.001. 

 

 
ETC coupling efficiency was high in each of the cell lines analyzed, as indicated 

by ratios close to a value of 2. Both HSR-HSR and HSR-NSC cells showed 

reductions in coupling efficiency following differentiation and this was statically 

significant in HSR-NSC cells (p<0.05). Nevertheless, each cell line showed 

evidence of a tightly coupled ETC (Figure 6.21). 
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Figure 6.21. ETC coupling efficiencies of undifferentiated and differentiated 

HSR-HSR and HSR-NSC cells. Columns represent mean values ± SEM (n=3). 

* Indicates p<0.05. 

 

HSR-NSC cells exhibited the lowest ETC reserve capacity in the 

undifferentiated state; however, they also showed the greatest increase in 

reserve capacity following the onset of differentiation (1.47-fold; p<0.001; Figure 

6.22). HSR-HSR cells exhibited a similar ETC reserve capacity in the 

undifferentiated state, whilst the reserve capacity was slightly lower than HSR-

NSC cells in the differentiated state. Collectively, both cell lines exhibiting 

significant increases in ETC reserve capacity following differentiation (p<0.05).  
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Figure 6.22. ETC reserve capacities of undifferentiated and differentiated HSR-

HSR and HSR-NSC cells.  Columns represent mean values ± SEM (n=3). * 

Indicates p<0.05 and *** indicates p<0.001. 

 

6.6.8 Cellular ATP content 

I next sought to determine the cellular ATP and lactate production of the HSR-

GBM1 cybrids. HSR-HSR cells exhibited the greatest increase in cellular ATP 

content following the onset of differentiation, with a 2.50-fold increase (p<0.001; 

Figure 6.23). HSR-NSC cells did not significantly increase their cellular ATP 

content during differentiation, however, their ATP content at the undifferentiated 

state was greater than that of HSR-HSR cells and differentiated HSR-HSR and 

HSR-NSC cells had similar ATP contents (Figure 6.23).  
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Figure 6.23. Cellular ATP content of undifferentiated and differentiated HSR-

HSR and HSR-NSC cells. Columns represent mean values ± SEM (n=3). ** 

Indicates p<0.01 and *** indicates p<0.001. 

 

6.6.9 Cellular lactate production  

Lactate production was analyzed as an index of glycolytic rate. Each cell line 

showed a reduction in lactate production following the onset of differentiation 

(Figure 6.24). 1.63 (p<0.01) and 2.63-fold (p<0.001) reductions in lactate 

production were observed in HSR-HSR and HSR-NSC cells, respectively.  
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Figure 6.24. Cellular lactate production of undifferentiated and differentiated 

HSR-HSR and HSR-NSC cells.  Columns represent mean values ± SEM (n=3). 

*** Indicates p<0.001. 
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6.7 Discussion  

Over the last two decades trans-mitochondrial cybrids have been utilized to 

investigate how mtDNA mutations impact upon cellular function (Bonora et al., 

2006; Ishikawa et al., 2008; Kelly et al., 2013; Ma et al., 2010; McKenzie and 

Trounce, 2000; McKenzie et al., 2004; Petros et al., 2005; Shidara et al., 2005). 

These studies have provided the foundation for our current understanding of 

how single point mutations, responsible for mitochondrial diseases, can cause 

metabolic defects. Indeed, cybrid cells harboring T8993G, G13997A and 

G15557A mtDNA variants were shown to exhibit increased ROS production and 

reduced ETC function (Bonora et al., 2006; Ishikawa et al., 2008; Petros et al., 

2005; Shidara et al., 2005) and highlight the deleterious effects of mtDNA 

mutations. Currently, there is limited evidence linking mtDNA mutations outside 

that of the D-loop region, with changes in mtDNA copy number. To address this 

issue, the mtDNA copy number of trans-mitochondrial cybrids harboring wild-

type mtDNA, single mtDNA variants and multiple mtDNA variants were 

analyzed.  

 

6.7.1 MtDNA copy number analysis of 143BTK- trans-mitochondrial 

cybrids 

The mtDNA copy number of the trans-mitochondrial cybrid lines was variable 

and distinct differences were observed between the newly established mtDNA 

set points of the cybrid cells. It is difficult to correlate the changes in copy 

number with the presence of single mtDNA point mutations, since 143BTK-3243 

cells exhibited the highest mtDNA copy number whilst 143BTK-8993 and 

143BTK-11778 cells exhibited comparable copy numbers to the parental 143BTK- 
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ρ+  cells. However, it is likely that the elevation in copy number in 143BTK-3243 

cells may be functioning as a compensatory mechanism for the severe 

OXPHOS defect that the A3243G mutation induces (Lee et al., 1998). Similarly, 

variable mtDNA copy number was observed between cybrids harboring GBM 

mtDNA. 143BTK-GBM cells exhibited higher mtDNA copy number than the 

parental 143BTK- ρ+   cells, whilst 143BTK- GBML1 and 143BTK- GBML2 cells 

contained fewer copies of mtDNA. Multiple mtDNA variants have been detected 

in HSR-GBM1, GBM-L1 and GBM-L2 cells and are currently under investigation 

in our laboratory (personal communication with Ka Yu Yeung). It is likely that 

each cell line possess different mtDNA variants of variable mutant load and this 

may account for the differences in copy number observed. Indeed, there is 

some evidence to suggest that mtDNA copy number is increased to 

compensate for reduced ETC function (Lee et al., 2000). Interestingly, 143BTK- 

NSC cells, which contain wild type mtDNA, exhibited a similar copy number to 

that of 143BTK- ρ+   cells. It is likely that the wild type mtDNA more closely 

mirrored the mtDNA genotype of the 143BTK- ρ+   cells and allowed for a 

reestablishment of a comparable mtDNA copy number. Since each of the 

cybrids were generated using a common nuclear background, these outcomes 

indicate that the mtDNA set point established by the nucleus is strongly 

influenced by the mtDNA genotype and provides direct evidence that mtDNA 

variants influence mtDNA copy number regulation.  

 

6.7.2 O2 consumption analysis of 143BTK- trans-mitochondrial cybrids  

The O2 consumption rates of the 143BTK- trans-mitochondrial cybrids were 

analyzed to determine the effects of the newly established mtDNA copy 
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numbers. Each cybrid cell line demonstrated similar resting O2 consumption 

rates to one another; however, these were considerably lower than that of the 

parental 143BTK- ρ+  cell line. Furthermore, each of the cybrids possessed an 

ETC reserve capacity, which demonstrates that each cell line was not respiring 

at a maximal rate.  

 

The treatment of cells with Oligomycin inhibits Complex V (ATP Synthase) 

function and allows for the measurement of ETC coupling or how much O2 

consumption was dedicated to ATP production through the ETC. Each of the 

cybrids lines showed considerably less ATP dedicated O2 consumption rates 

than the parental 143BTK-ρ+cell line. In support of these observations the 

cellular ATP content of 143BTK- NSC, 143BTK- GBM and 143BTK- 3243 mimicked 

that of 143BTK-ρ0   cells, whilst 143BTK-ρ+   cells, which showed high ATP 

dedicated O2 consumption, contained significantly higher ATP content. 

Furthermore, 143BTK- GBM and 143BTK- 3243 cells secreted comparable amounts 

of lactate to 143BTK-ρ0  cells. Collectively, these data suggest that despite the 

repopulation of 143BTK-ρ0   cells with donor mtDNA, 143BTK- cybrids do not 

reestablish a similar O2 consumption profile to the original and parental 

143BTK-ρ+cell line. 143BTK- cybrids more closely mimic 143BTK-ρ0  cells in ATP 

and lactate production and it is likely that the generation of 143BTK-ρ0   cells 

through long-term ethidium bromide treatment has induced lasting changes to 

the metabolic profile of 143BTK- cell line, rendering them highly glycolytic due 

to the chronic absence of mtDNA.  
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The repopulation of 143BTK-ρ0   cells with mtDNA reestablishes a respiratory 

chain, which is evidenced by their resting O2 consumption rates and ETC 

reserve capacities. However, the low ETC coupling efficiencies observed in the 

143BTK- cybrids suggests that a large proportion of the O2 consumed by 

143BTK- cybrids is being utilized by non-ATP generating processes. The ETC 

and OXPHOS are chiefly under the regulation of nuclear encoded factors and 

the introduction of mtDNA into 143BTK-ρ0   cells does no fully reverse the 

glycolytic profile that is adopted during the establishment and maintenance of 

143BTK-ρ0   cells. Indeed, data from other studies showed reduced O2 

consumption rates and ATP content in 143BTK- cybrids relative to 143BTK-ρ+  

cells (Cho et al., 2012). 

 

6.7.3 HSR-GBM1 trans-mitochondrial cybrids  

To determine the effect that different mtDNA genotypes have on gene 

expression and differentiation potential, HSR-GBM1 cells were treated with 

R6G to disrupt mitochondrial function and fused with 143BTK- cybrids 

containing hNSC (wild type) and HSR-GBM1 cells (Controls). D-loop 

sequencing analysis showed that the mtDNA genotype of HSR-NSC was 

heteroplasmic and contained both wild type and HSR-GBM1 mtDNA. The 

ultimate aim of this study was to repopulate HSR-GBM1 cells with 100% wild 

type mtDNA, however, time restrictions limited the number of opportunities to 

achieve this outcome. However, it was reasoned that the analysis of HSR-

GBM1 cells containing a heteroplasmic mtDNA population would be a worthy 

investigation.   
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6.7.4 MtDNA copy number analysis of HSR-GBM1 trans-mitochondrial 

cybrids  

HSR-GBM1 trans-mitochondrial cybrids were subjected to a 28-day 

differentiation assay to determine the effect of the mtDNA repopulation process 

on mtDNA copy number regulation. Both trans-mitochondrial cybrids lines 

(HSR-HSR & HSR-NSC) showed very different copy number patterns to non-

cybrid HSR-GBM1 cells during differentiation. HSR-HSR and HSR-HSR cells 

showed copy number increases in excess of 3-fold on Day 28 differentiation, 

which was considerably greater than that previously observed for non-cybrid 

HSR-GBM1 cells. Since HSR-HSR cells contained the same mtDNA population 

as non-cybrid HSR-GBM1 cells, it is likely that the observed changes in mtDNA 

copy number regulation in the HSR-GBM1 cybrids are due to the R6G 

treatment prior to the fusion process. A possible explanation is that the 

disruption of mitochondrial function with R6G and subsequent repopulation with 

donor mitochondria and mtDNA may have functioned as a “reset switch” and 

allowed for improved interaction between the nuclear and mitochondrial 

genomes of HSR-GBM1 cells. Since mtDNA copy number regulation during 

differentiation has not been investigated following R6G treatment, it cannot be 

confirmed whether the observed differences in copy number regulation between 

HSR-GBM1 cells and HSR-GBM1 cybrids is due to the application of R6G 

alone or the interaction between R6G and the transformed nature of HSR-

GBM1 cells.    
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6.7.5 Gene expression analysis of HSR-GBM1 trans-mitochondrial 

cybrids 

The HSR-GBM1 cybrids exhibited differential expression of the neural stem cell 

markers NESTIN, MUSASHI1 and CD133 compared to non-cybrid HSR-GBM1 

cells. Whilst non-cybrid HSR-GBM1 cells down-regulated the expression 

NESTIN, MUSASHI1 and CD133 by Day 28 of differentiation, HSR-HSR and 

HSR-NSC cells did not match this pattern of expression. Furthermore, HSR-

NSC cells showed profound differences in GFAP expression relative to HSR-

HSR and non-cybrid HSR-GBM1 cells. HSR-HSR and non-cybrid HSR-GBM1 

cells showed similar patterns of GFAP expression, with peak levels of 

expression observable on Day 7 of differentiation that were further reduced on 

Day 14 and 28. In contrast, HSR-NSC cells showed a large surge in GFAP 

expression on Day 14, which remained high on Day 28 of differentiation. 

Although HSR-HSR and HSR-NSC cells showed similar patterns of mtDNA 

copy number regulation during differentiation, they exhibited very different 

patterns of gene expression. The partial repopulation of HSR-GBM1 cells with 

wild type mtDNA appears to have enhanced or altered the differentiation 

potential of HSR-NSC cells relative to HSR-HSR cells that harbor 100% GBM 

mtDNA.  These outcomes could be compared to those of by Kelly et al. who 

observed differential patterns of pluripotency and differentiation marker 

expression in ESCs containing divergent and homoplasmic populations of 

mtDNA (Kelly et al., 2013).   
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6.7.6 O2 consumption analysis of HSR-GBM1 trans-mitochondrial cybrids  

HSR-HSR cells exhibited differences in O2 consumption rates, ETC coupling 

efficiencies and ETC reserve capacities. However, the final O2 consumption 

rates of each cell line were ultimately similar following differentiation. A similar 

trend was observed regarding ATP production, with both cell lines containing 

comparable ATP content after 14-21 days of differentiation. Furthermore, both 

cell lines exhibited significant reductions in lactate production following 

differentiation, which is indicative of the transition between glycolytic and 

OXPHOS metabolism that occurs during differentiation (Cho et al., 2006; 

Facucho-Oliveira et al., 2007; Prigione et al., 2010; Varum et al., 2011). 

Collectively these results suggest that HSR-NSC cells, which demonstrated 

higher O2 consumption rates and ATP content in the undifferentiated state, 

exhibit a more OXPHOS-like profile than HSR-HSR cells when undifferentiated. 

 

6.8 Conclusion 

In summary, single and multiple mtDNA variants are capable of influencing the 

reestablishment of the mtDNA set point in 143BTK- cells. Changes in mtDNA 

copy number have been associated with tumorigenesis and these data 

presented here show direct evidence that mtDNA variants influence mtDNA 

copy number regulation, which is also likely to play a role in tumorigenesis. 

Furthermore, the partial repopulation of multipotent HSR-GBM1 cells with wild 

type mtDNA enhances their ability to upregulate and maintain the expression of 

differentiation markers. These outcomes suggest that mtDNA variants present 

in HSR-GBM1 cells may hinder the ability of these cells to undergo complete 

differentiation and maintain these cells in a naïve and tumorigenic state.   
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Chapter 7: General Discussion 

7.1 GBM CSCs show differential regulation of mtDNA copy number 

compared to hNSCs 

Tumor cell metabolism has been chiefly characterized by aerobic glycolysis (the 

Warburg Effect), which is defined as an enhanced glycolytic state under aerobic 

conditions that are otherwise sufficient to support OXPHOS (Warburg, 1956). 

Elevated glycolytic rates generate sufficient quantities of ATP for cellular 

function whilst providing an abundant source of biosynthetic intermediates to 

support growth and proliferation (Moreno-Sanchez et al., 2007). The majority of 

metabolomic studies on tumor cells have not discriminated between CSCs and 

differentiated cell types (Griguer et al., 2005; Yang et al., 2009) and there is 

currently no existing data examining how GBM CSCs regulate their mtDNA 

copy number in undifferentiated and differentiated states. 

 

Normal stem cell populations, which include ESCs and NSCs, contain few 

copies of mtDNA and generate ATP primarily via glycolysis (Facucho-Oliveira et 

al., 2007; Moreno-Sanchez et al., 2007; Prigione et al., 2010; Wang et al., 

2010). The differentiation of ESCs and NSCs is associated with an expansion of 

mtDNA copy number and a concurrent up-regulation of markers of 

differentiation (Facucho-Oliveira et al., 2007; Moreno-Sanchez et al., 2007; 

Prigione et al., 2010; Wang et al., 2010) (Figure 7.1). Indeed, I observed a 

similar outcome in differentiating hNSCs, which progressively increased their 

mtDNA copy number and the expression of the astrocyte marker, GFAP. In a 

novel observation, differentiating GBM cells failed to mimic this expansion of 

mtDNA copy number and the concurrent increase in GFAP expression (Figure 
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7.1). Since mtDNA transcription and replication are entirely mediated by nuclear 

encoded factors, these outcomes strongly suggest that abnormal regulation of 

these factors may be inhibiting copy number expansion in GBM cells during 

differentiation. Furthermore, from other observations, differentiating HSR-GBM1 

cells expressed lower levels of the mtDNA transcription and replication factors 

TFAM, POLGA, TWINKLE than differentiated hNSCs (personal communication 

with Ka Yu Yeung) (Figure 7.1), which strongly suggests that there is an 

asynchronous relationship between the nuclear and mitochondrial genomes of 

GBM cells. 
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Figure 7.1. Diagrammatic representation of differentiating hNSCs and 
GBM cells. (A) Undifferentiated hNSCs contain very few copies of mtDNA and 

following the onset of differentiation, there is a concurrent increase in the 

expression of mtDNA transcription and replication factors (TFAM & POLG) and 

lineage specific markers (GFAP). Subsequently, hNSCs expand their mtDNA 

copy number and increase their OXPHOS potential and O2 consumption rates 

(OCR). (B) In contrast, differentiating GBM cells show an aberrant regulation of 

the mtDNA transcription and replication factors and also the expression of 

lineage specific markers, which leads to a failed expansion in mtDNA copy 

number and inhibition of differentiation.    

 

Further evidence of the asynchronous relationship in GBM cells was observed 

in the expression profiles of GFAP. GBM cells have previously been shown to 

differentiate into astrocyte and neuronal-like cells, with the expression of glial 

(GFAP) and neuronal (β-III-tubulin) markers observed (Chen et al., 2010; Galli 

et al., 2004; Singh et al., 2003). In these studies, differentiation was induced for 

a short duration (~7-14 days) (Chen et al., 2010; Galli et al., 2004; Singh et al., 

2003), which renders the long-term differentiation of GBM cells an unknown 

entity. Through a long-term differentiation assay (28 days), I observed that GBM 

cells either failed to sustain GFAP expression during differentiation (HSR-GBM1 

& GBM-L2 cells) or increased GFAP expression without an accompanying 

expansion in mtDNA copy number (GBM-L1 cells). These outcomes suggest 

that GBM cells fail to fully commit to differentiation and the patterns GFAP 

expression in GBM cells may represent a transient state by which GBM cells 

become partially differentiated but ultimately fail to fully commit to differentiation 

(Figure 7.1). 
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This hypothesis is also supported by the contrasting energy metabolism profiles 

of differentiated HSR-GBM1 and hNSCs. In agreement with previous studies of 

differentiating ESCs and NSCs (Cho et al., 2006; Varum et al., 2011; Wang et 

al., 2010; Zhu et al., 2012), differentiating hNSCs increased their O2 

consumption rates, which was accompanied by an increase in ETC capacity, 

increased cellular ATP content and reduced lactate production. In contrast, 

HSR-GBM1 cells exhibited only modest increases in O2 consumption rate, ETC 

capacity and ATP content. These outcomes suggest that hNSCs undergo 

glycolysis to OXPHOS transition during differentiation, to meet the ATP 

requirements of differentiated cell types whilst HSR-GBM1 cells appear 

incapable of completing this transition. Despite GBM cells demonstrating some 

OXPHOS potential through my own observations and those of others (Griguer 

et al., 2005), HSR-GBM1 cells fail to fully adopt a true OXPHOS profile. 

Collectively, the failed expansion of mtDNA, abnormal GFAP expression and 

limited OXPHOS profile of GBM cells suggests that GBM cells are unable to 

fully alter their naïve/stem-cell like state and are likely to continue to exhibit 

aerobic glycolysis and consume elevated amounts of glucose and glutamine 

(DeBerardinis et al., 2008; Vander Heiden et al., 2009). 

 

GBM cells not only express a number of NSC factors but also a number of 

factors associated with ESCs that include OCT4, NANOG, SOX2 and c-MYC 

(Ben-Porath et al., 2008; Ma et al., 2008; Xu et al., 2008). c-MYC is a potent 

regulator of cellular metabolism and enhances glycolytic rate (Gordan et al., 

2007) and since c-MYC is overexpressed in ~70% of tumors (Nilsson et al., 

2005), the reestablishment of c-MYC expression in GBM cells may inhibit a 
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glycolysis to OXPHOS transition that occurs during differentiation of normal 

stem cell populations. Furthermore, the aberrant activation of OCT4, NANOG 

and SOX2 could potentially interfere with the ability of GBM cells to upregulate 

and sustain the expression of differentiation markers such as GFAP. Indeed, it 

is possible to draw comparisons between GBM cells and induced pluripotent 

stem cells, which are somatic cells that have been reprogrammed to a stem-like 

state by the forced expression of OCT4, SOX2 and c-MYC, amongst others 

(Takahashi et al., 2007; Takahashi and Yamanaka, 2006). Like GBM cells, iPS 

cells have also been shown to abnormally regulate their mtDNA copy number 

(Kelly et al., 2011) and it is likely that GBM cells behave in a similar manner to 

poorly reprogrammed cells. Nevertheless, I hypothesize that the aberrant 

expression of stem cell factors may be a contributing factor that inhibits GBM 

cells from completing differentiation and maintains GBM cells in a stem-cell like 

state, which in turn supports their glycolytic, proliferative and tumorigenic 

nature.  

 

7.2 Maintenance of the mtDNA set point in HSR-GBM1 cells is an 

essential component of tumorigenicity 

Previous studies have investigated the effect of the complete removal of mtDNA 

(ρ0 cells) on the tumorigenicity of various tumor types, such as bone (Singh et 

al., 2005), cervical (Shidara et al., 2005) and lung (Amuthan et al., 2002). 

However, it remained to be determined how mtDNA depletion influences brain 

tumor cells. Using the mtDNA-specific depletion agent, ddC, I progressively 

depleted HSR-GBM1 cells of their mtDNA content until the average mtDNA 

copy number per cell was <1 and subsequently analysed gene expression 
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changes. I also depleted HSR-GBM1 cells to variable levels of mtDNA content 

(50%, 20%, 3% and 0.2%) and assessed their tumorigenic potential in 

immunocompromised mice.  

 

Short-term depletion (7 days) of HSR-GBM1 cells was associated with an 

increase in the expression of NSC markers NESTIN, MUSASHI1 and CD133 

whilst long-term depletion was associated with reduced expression of these 

factors along with the ESC factors SOX2, NANOG, c-MYC and hTERT. The 

expression of stem cell factors in GBM is associated with increased 

tumorigenicity (Ma et al., 2008) and it is therefore reasonable to speculate that 

short-term depletion of HSR-GBM1 cells enhances their tumorigenicity whilst 

long-term depletion reduces tumorigenicity. Indeed, HSR-GBM1 cells depleted 

to 50%, of their original mtDNA content, which were representative of short-term 

depletion, formed tumors at a faster rate than non-depleted cells. Furthermore, 

HSR-GBM1 cells depleted to 3% and 0.2%, which were equivalent to long-term 

depletion, generated fewer tumors that developed at a significantly reduced rate 

than that of non-depleted cells (Figure 7.2). The gene expression outcomes 

during mtDNA depletion of HSR-GBM1 cells is in agreement with multiple gene 

knockdown studies which have demonstrated reduced tumorigenicity of GBM 

cells following the silencing of MUSASHI1 (Sureban et al., 2008) and SOX2 

(Gangemi et al., 2009). This further strengthens the link between GBM 

tumorigenicity and the expression of stem cell factors. In addition, these 

outcomes provide evidence that deviations in mtDNA copy number exert 

powerful influences on the nuclear genome of GBM cells and that mtDNA 

depletion can reduce GBM tumorigenicity in a similar manner to gene silencing. 
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Figure 7.2. Schematic representation of tumor formation assays using 
non-depleted and mtDNA depleted HSR-GBM1 cells. (Top) Non-depleted 

HSR-GBM1 cells express stem cell associated factors and generate tumors at a 

high frequency. (Bottom) mtDNA depleted HSR-GBM1 cells expressed lower 

levels of stem cell factors and generated tumors at a reduced rate and 

frequency in immunocompromised mice. Tumors developed from mtDNA 

depleted HSR-GBM1 cells possessed comparable levels of mtDNA content to 

non-depleted tumors, which suggests that the reestablishment of mtDNA copy 

number or mtDNA set point, is a prerequisite to tumor formation. It is likely that 

the failed development of tumors by depleted HSR-GBM1 cells is due to their 

inability to reestablish their mtDNA set point. 

 

The observed changes in gene expression in depleted HSR-GBM1 cells are in 

agreement with previous studies reporting altered gene expression and 

epigenetic status of ρ0 tumor cells (Singh et al., 2005; Smiraglia et al., 2008). 

Despite the down regulation of a number of stem cell factors in depleted GBM 

cells, I also observed elevated expression of multiple factors associated with 

early developmental processes and GBM tumorigenicity, which included OCT4, 

SHH and HEY1 (Ben-Porath et al., 2008; Hulleman et al., 2009; Xu et al., 

2008). Since mtDNA depletion was inhibitory to GBM tumorigenicity, it is likely 

that that these factors are playing a role in the maintenance of a stem cell-like 

population of GBM cells that are resistant to mtDNA depletion. MtDNA copy 

number analysis of the tumors formed from 3% and 0.2% mtDNA HSR-GBM1 

cells revealed that their copy number had recovered to a comparable level to 

100% mtDNA tumors. It is likely that in order for HSR-GBM1 cells to establish a 

tumor, they must first reestablish their mtDNA set point. It is also highly 

probable that the observed lag phase in tumor development by 3% and 0.2% 

mtDNA cells is associated with the time required to reestablish the mtDNA set 
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point. In addition, the reduced frequency of tumors formed by 3% and 0.2% 

mtDNA cells may be a consequence of HSR-GBM1 cells failing to reestablish 

their mtDNA set point (Figure 7.2).   

 

MtDNA depleted and ρ0  cells are commonly supplemented with the pyrimidine, 

uridine. Uridine and other pyrimidines are essential for the generation of 

nucleotides and require a functional ETC in order to be continuously 

replenished. Depletion of mtDNA disrupts ETC function and will therefore 

negatively impact on pyrimidine and nucleotide synthesis. A reduction in 

nucleotide stores will limit the ability of a cell to perform DNA synthesis and 

ultimately proliferate. MtDNA depleted HSR-GBM1 cells are supported in vitro 

with uridine, however, following their transfer into immunocompromised mice 

this substrate support is lost. It is likely that mtDNA depleted HSR-GBM1 cells 

are unable to sustain their normal rates of DNA synthesis and maintain their 

nucleotide stores until they successfully reestablish their mtDNA copy number 

and ETC function. Once this process is complete, HSR-GBM1 cells are able to 

successfully perform DNA synthesis, proliferate and establish tumors.  

 

Another possible mechanism for mtDNA depletion inhibiting HSR-GBM1 

proliferation and tumorigenicity is cross-talk between the nucleus and mtDNA 

that results in changes in the expression of genes that regulate cell cycle 

progression. Indeed, Mineri et al. reported altered expression of cell cycle 

associated genes in ρ0 cells of bone (143BTK-) and lung (A459) tumor cells 

relative to their ρ+  counterparts (Mineri et al., 2009). The authors hypothesized 

that a loss of mitochondrial function may signal to the nucleus in a retrograde 
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manner to slow cell cycle progression. A similar signaling mechanism may be 

active in depleted HSR-GBM1 cells and may account for their slowed growth 

and tumor formation rates. Comparative studies of ρ0 and ρ+ cells of lung, 

breast and bone tumors have been performed and have reported broad 

changes in gene expression, however, recent studies have lacked consistency 

regarding the observed changes in gene expression (Behan et al., 2005; Delsite 

et al., 2002; Magda et al., 2008). Mineri et al. performed a comparative analysis 

of ρ0 lung and bone tumor cells and identified a cohort of 88 genes that were 

altered in ρ0 cells of both tumor types, however, there were also a large number 

of genes that were differentially regulated (Mineri et al., 2009). It is likely that 

tumor cells of differing origin each respond uniquely to mtDNA depletion. 

Nevertheless, HSR-GBM1 cells responded negatively to mtDNA by reducing 

their proliferation rates and tumorigenic potential. These outcomes strongly 

suggest that maintenance of mtDNA copy number is an essential component of 

the tumorigenicity of HSR-GBM1 and may also be of importance to other GBM 

types (Figure 7.2). Indeed, disruption to mitochondrial translation in acute 

myeloid leukemic cells was recently shown to inhibit tumorigenicity (Skrtic et al., 

2011) and further highlights the importance mitochondria and mtDNA in tumor 

cell function.  

 

7.3 MtDNA genotype influences the establishment of mtDNA copy 

number in trans-mitochondrial cybrids  

As discussed above, changes in mtDNA content directly influence the nucleus. 

Since the nucleus is receptive to changes in mtDNA copy number, it is highly 
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likely that discrete changes in the mtDNA genotype of a cell, such as base 

changes, mutations and/or variants, can also be detected by the nucleus. 

 

Trans-mitochondrial cybrid technology has been extensively utilized to 

determine the effects of single and multiple point mutations on cellular function 

(Chomyn et al., 1992; Ghelli et al., 2003; Trounce et al., 1994). These 

experiments demonstrated that point mutations are extremely deleterious to 

mitochondrial function that underlies the mitochondrial diseases MELAS, NARP 

and LOHN (Chomyn et al., 1992; Ghelli et al., 2003; Trounce et al., 1994). 

Despite the great value of these outcomes, these studies shed little light on how 

mtDNA mutations can impact on mtDNA copy number regulation and cellular 

differentiation.  

 

The outcomes described in this thesis reveal that tumor (143BTK-) cells 

harbouring differing mtDNA genotypes, which contained wild type mtDNA or 

single and multiple mtDNA mutations, established variable mtDNA copy 

numbers. Despite no clear trend emerging regarding the established mtDNA 

copy number of 143BTK- cells containing single or multiple mtDNA mutations, 

the large increase in copy number of 143BTK-3243 may be a compensatory 

effect due to the severity of the A3243G mutation. It is possible that this 

mutation, which causes MELAS (Schon et al., 1992), may induce the nucleus to 

expand mtDNA copy number to compensate for the mitochondrial defects that 

this mutation causes. This outcome may be similar to that observed in primary 

lung cells exposed high levels of oxidative stress, which exhibited an increase 

in mtDNA copy number relative to control cells (Lee et al., 2000). It is unclear 
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why a similar increase in copy number was not observed in 143BTK-8993 and 

143BTK-11778 cells, which also harbor deleterious mtDNA mutations. However, 

143BTK-8993 and 143BTK-11778 cells possessed greater ETC reserve capacities 

than 143BTK-3243 cells and this may suggest that the increase in copy number is 

a mechanism to improve the ETC capacity of 143BTK-3243 cells, which was not 

required by 143BTK-8993 and 143BTK-11778 cells.  

 

The mtDNA of GBM-L1 and GBM-L2 cells contain multiple mtDNA 

mutations/variants (personal communication with Ka Yu Yueng) and 143BTK- 

cells containing the donor mtDNA from these cell types contained fewer copies 

of mtDNA relative to controls. It is possible that these mutations could be 

present in the regulatory regions of mtDNA, such as the D-loop. Mutations in 

the D-loop region have been frequently reported in multiple tumor types and are 

also associated with reductions in mtDNA copy number (Lee et al., 2004; Yu et 

al., 2010; Yu et al., 2007). It has been postulated that mutations within the D-

loop region may reduce the binding efficiency of TFAM and disrupt mtDNA 

transcription and replication efficiency (Lee et al., 2004; Yu et al., 2010; Yu et 

al., 2007). The presence of D-loop mutations in 143BTK-GBML1 and 143BTK-

GBML2 cells could potentially disrupt mtDNA copy number regulation in these 

cells, resulting in reduced copy number. In summary, differences in mtDNA 

genotype are able to elicit changes in mtDNA copy number by either stimulating 

the nucleus to increase copy number in response to cellular stress or by 

disrupting the action of the nuclear encoded mtDNA transcription and 

replication factors. 
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7.4 MtDNA genotype influences the differentiation of HSR-GBM1 cells 

Single and multiple mtDNA mutations are deleterious to cellular function, 

however, what remains to be fully determined is how changes in mtDNA affect 

cellular differentiation. To address this area, mitochondrial dysfunction was 

induced in HSR-GBM1 cells by R6G exposure before recuse with mitochondria 

and mtDNA from HSR-GBM1 cells (HSR-HSR) or hNSCs (HSR-NSC) (Figure 

7.3). HSR-HSR and HSR-NSC cells exhibited similar expression profiles of 

NSC associated factors, however, there were differences in GFAP expression 

and ETC reserve capacity following differentiation. Differentiated HSR-NSC 

cells showed greater elevation and sustained expression of GFAP and also a 

greater ETC reserve capacity than HSR-HSR cells (Figure 7.3). These 

outcomes suggest that the presence of wild type mtDNA (~20%) enhances the 

differentiation and OXPHOS potential of HSR-NSCs compared to HSR-HSR 

cells. Once more, discrete changes in mtDNA are capable of inducing profound 

effects on gene expression and provide some evidence to suggest that 

alterations to mtDNA, such as mutations, can affect cellular differentiation. 

These observations are in agreement with previous work by Kelly et al who 

observed altered gene expression profiles between undifferentiated and 

differentiated murine ESC cybrids containing divergent populations of mtDNA 

(Kelly et al., 2013). The mechanism(s) by which the nucleus responds to 

changes in mtDNA status by altering gene expression requires further 

investigation. In summary, the partial repopulation of HSR-GBM1 cells with wild 

type mtDNA enhances their differentiation and OXPHOS potential and further 

suggests that the mtDNA genotype of HSR-GBM1s restricts their ability to 

differentiate and maintains their tumorigenic phenotype. 
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Figure 7.3. Schematic representation of the derivation of HSR-NSC cells. 
HSR-GBM1 cells treated with rhomadine 6G (R6G) for 72 hours were recused 

by the transferred of hNSC derived mitochondria and mtDNA (red circles). HSR-

NSC cells contained ~20% wild type mtDNA and exhibited enhanced properties 

of differentiation relative to HSR-GBM1 cells, which included sustained 

elevation of GFAP expression, increased mtDNA copy number and increased 

O2 consumption rates (OCR). 

 

7.5 Conclusion 

GBM are a highly malignant subgroup of brain tumors that consistently exhibit 

resistance to therapeutic intervention (Buckner et al., 2007; Hess et al., 2004).  

GBM contain sub-populations of cells with stem cell-like characteristics called 

cancer stem cells (CSCs) (Galli et al., 2004; Singh et al., 2003). HSR-GBM1 

cells are an established GBM CSC line (Galli et al., 2004), which shares 

numerous properties with hNSCs. Despite their similarities, I observed that 

HSR-GBM1 cells do not regulate their mtDNA copy number in a similar manner 

to hNSCs, which was evidenced by a failed expansion in copy number in 

response to differentiation stimuli. Consequently, HSR-GBM1 cells do not fully 

differentiate and acquire an OXPHOS metabolism profile that is exhibited by 

differentiated hNSCs. I hypothesize that the failed expansion of mtDNA copy 

number supports the glycolytic, proliferative and tumorigenic properties of HSR-

GBM1 cells. Partial repopulation of HSR-GBM1 cells with wild type mtDNA 

enhanced their differentiation potential and suggests a direct role for mtDNA in 

the regulation of gene expression and differentiation of HSR-GBM1 cells that is 

likely to be underpinned by nucleo-mitochondrial DNA cross-talk. Further 

evidence of the influential power of mtDNA on nuclear gene expression was 

observed following mtDNA depletion of HSR-GBM1 cells. Depleted HSR-GBM1 
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cells exhibited changes in the expression of stem cell factors associated with 

tumorigenicity. In addition, mtDNA depleted HSR-GBM1 cells generated fewer 

tumors that formed at a slower rate than non-depleted cells in 

immunocompromised mice. The tumorigenicity of HSR-GBM1 cells was 

inversely related to mtDNA depletion and strongly suggests that HSR-GBM1 

cells require a defined number of mtDNA copies, or set point, to maintain their 

tumorigenic potential. Collectively, these outcomes highlight that mtDNA is an 

essential aspect of HSR-GBM1 cellular function and tumorigenicity. 
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7.6  Future Perspectives   

7.6.1 MtDNA copy number regulation in CSCs 

The outcomes of this thesis demonstrate that GBM CSCs regulate their copy 

number in a differential manner to hNSCs. Future work will focus on elucidating 

the mechanisms that govern the abnormal copy number regulation in GBM 

CSCs. Recent work in the laboratory has provided evidence to suggest that the 

mtDNA transcription and replication factors are down regulated in GBM CSCs 

relative to hNSCs (personal communication with Ka Yu Yueng). Thus, 

examining the factors that control mtDNA transcription and regulation in GBM 

CSCs may provide further insight in to how copy number is regulated in these 

cell types.   

 

Other tumor types have been shown to contain populations of CSCs and it 

would be interesting to determine whether these cells also show abnormal 

patterns of mtDNA copy number regulation. Furthermore, analyzing how mtDNA 

copy umber is regulated in other CSCs is important for two reasons, 1) to build 

a collection of data outlining how CSCs regulate their copy number and 2) 

potentially identify pathways/mechanisms that, if targeted, could potentially 

attenuate abnormal copy number regulation that may in turn reduce 

tumorigenicity. 

 

7.6.2 MtDNA copy number and tumorigenicity  

The data presented in Chapter 5 provides strong evidence to suggest that GBM 

CSCs require sufficient copies of mtDNA to maintain their tumorigenic potential. 
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To build upon the association between sufficient mtDNA content and 

tumorigenicity, future experiments will aim to determine whether other GBM 

CSCs and indeed other tumor cell types, require sufficient copies of mtDNA to 

successfully form tumors. If it is determined that other tumor cells types require 

sufficient copies of mtDNA to maintain their tumorigenicity, this may confirm 

mtDNA as a potential therapeutic target for tumors  

  

In vitro, ddC effectively depletes cells of mtDNA, however, the systemic 

application of ddC is associated with cellular toxicity and mitochondrial 

dysfunction, which renders ddC unsuitable for the targeting of mtDNA in tumors, 

in vivo. Future work will focus on identifying the mechanisms by which mtDNA 

depletion reduces the tumorigenicity of tumor cells, which at present remains to 

be fully determined. A greater understanding of how mtDNA depletion reduces 

tumorigenicity may reveal other approaches that could be utilized to mimic the 

effects of mtDNA depletion in tumors cells. Such approaches may circumvent 

the systemic toxicity of ddC and provide new, safer therapeutic strategies. 

 

Another intriguing outcome was that GBM CSCs depleted, on average, to 0.2% 

mtDNA content were able to reestablish their mtDNA copy number over time 

and also generate tumors in mice. It is unclear how GBM CSCs are able to 

initially survive in vivo with very little or no mtDNA before generating tumors. 

Recent studies have shown that healthy cells can transfer mitochondria to 

neighboring injured or diseased cells in order restore their normal cellular 

function (Islam et al., 2012). It is likely that a similar interaction between mtDNA 

depleted GBM CSCs and healthy neighboring cells may occur in vivo, however, 
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this hypothesis requires further investigation. Finally a greater understanding of 

the role of mtDNA in tumor cells will provide a greater understanding of tumor 

biology and also the mechanisms that underlie therapeutic resistance. 
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