

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/58493

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/58493

JHG 05/2011

Library Declaration and Deposit Agreement

1. STUDENT DETAILS

Please complete the following:

Full name: …………………………………………………………………………………………….

University ID number: ………………………………………………………………………………

2. THESIS DEPOSIT

2.1 I understand that under my registration at the University, I am required to deposit my thesis with the
University in BOTH hard copy and in digital format. The digital version should normally be saved as a
single pdf file.

2.2 The hard copy will be housed in the University Library. The digital version will be deposited in the
University’s Institutional Repository (WRAP). Unless otherwise indicated (see 2.3 below) this will be made
openly accessible on the Internet and will be supplied to the British Library to be made available online via
its Electronic Theses Online Service (EThOS) service.
[At present, theses submitted for a Master’s degree by Research (MA, MSc, LLM, MS or MMedSci) are
not being deposited in WRAP and not being made available via EthOS. This may change in future.]

2.3 In exceptional circumstances, the Chair of the Board of Graduate Studies may grant permission for
an embargo to be placed on public access to the hard copy thesis for a limited period. It is also possible to
apply separately for an embargo on the digital version. (Further information is available in the Guide to
Examinations for Higher Degrees by Research.)

2.4 If you are depositing a thesis for a Master’s degree by Research, please complete section (a) below.
For all other research degrees, please complete both sections (a) and (b) below:

(a) Hard Copy

I hereby deposit a hard copy of my thesis in the University Library to be made publicly available to
readers (please delete as appropriate) EITHER immediately OR after an embargo period of
……….................... months/years as agreed by the Chair of the Board of Graduate Studies.

I agree that my thesis may be photocopied. YES / NO (Please delete as appropriate)

(b) Digital Copy

I hereby deposit a digital copy of my thesis to be held in WRAP and made available via EThOS.

Please choose one of the following options:

EITHER My thesis can be made publicly available online. YES / NO (Please delete as appropriate)

OR My thesis can be made publicly available only after…..[date] (Please give date)

 YES / NO (Please delete as appropriate)

OR My full thesis cannot be made publicly available online but I am submitting a separately
identified additional, abridged version that can be made available online.

 YES / NO (Please delete as appropriate)

OR My thesis cannot be made publicly available online. YES / NO (Please delete as appropriate)

Oliver Francis John Perks

0501148

--

-- --

JHG 05/2011

3. GRANTING OF NON-EXCLUSIVE RIGHTS

Whether I deposit my Work personally or through an assistant or other agent, I agree to the following:

Rights granted to the University of Warwick and the British Library and the user of the thesis through this
agreement are non-exclusive. I retain all rights in the thesis in its present version or future versions. I
agree that the institutional repository administrators and the British Library or their agents may, without
changing content, digitise and migrate the thesis to any medium or format for the purpose of future
preservation and accessibility.

4. DECLARATIONS

(a) I DECLARE THAT:

 I am the author and owner of the copyright in the thesis and/or I have the authority of the
authors and owners of the copyright in the thesis to make this agreement. Reproduction
of any part of this thesis for teaching or in academic or other forms of publication is
subject to the normal limitations on the use of copyrighted materials and to the proper and
full acknowledgement of its source.

 The digital version of the thesis I am supplying is the same version as the final, hard-
bound copy submitted in completion of my degree, once any minor corrections have been
completed.

 I have exercised reasonable care to ensure that the thesis is original, and does not to the
best of my knowledge break any UK law or other Intellectual Property Right, or contain
any confidential material.

 I understand that, through the medium of the Internet, files will be available to automated
agents, and may be searched and copied by, for example, text mining and plagiarism
detection software.

(b) IF I HAVE AGREED (in Section 2 above) TO MAKE MY THESIS PUBLICLY AVAILABLE

DIGITALLY, I ALSO DECLARE THAT:

 I grant the University of Warwick and the British Library a licence to make available on the
Internet the thesis in digitised format through the Institutional Repository and through the
British Library via the EThOS service.

 If my thesis does include any substantial subsidiary material owned by third-party
copyright holders, I have sought and obtained permission to include it in any version of
my thesis available in digital format and that this permission encompasses the rights that I
have granted to the University of Warwick and to the British Library.

5. LEGAL INFRINGEMENTS

I understand that neither the University of Warwick nor the British Library have any obligation to take legal
action on behalf of myself, or other rights holders, in the event of infringement of intellectual property
rights, breach of contract or of any other right, in the thesis.

Please sign this agreement and return it to the Graduate School Office when you submit your thesis.

Student’s signature:…… Date: ..

12/11/13

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Addressing Parallel Application Memory

Consumption

by

Oliver Francis John Perks

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

July 2013

Abstract

Recent trends in computer architecture are furthering the gap between CPU

capabilities and those of the memory system. The rise of multi-core processors

is having a dramatic effect on memory interactions, not just with respect to

performance but crucially to capacity. The slow growth of DRAM capacity,

coupled with configuration limitations, is driving up the cost of memory systems

as a proportion of total HPC platform cost.

As a result, scientific institutions are increasingly interested in application

memory consumption, and in justifying the cost associated with maintaining

high memory-per-core ratios. By studying the scaling behaviour of applications,

both in terms of runtime and memory consumption, we are able to demonstrate

a decrease in workload efficiency in low memory environments, resulting from

poor memory scalability.

Current tools are lacking in performance and analytical capabilities motivat-

ing the development of a new suite of tools for capturing and analysing memory

consumption in large scale parallel applications.

By observing and analysing memory allocations we are able to record not

only how much but more crucially where and when an application uses its mem-

ory. We use use this analysis to look at some of the key principles in application

scaling such as processor decomposition, parallelisation models and runtime

libraries, and their associated effects on memory consumption. We demonstrate

how the data storage model of OpenMPI implementations inherently prevents

scaling due to memory requirements, and investigate the benefits of different

solutions.

Finally, we show how by analysing information gathered during application

execution we can automatically generate models to predict application memory

consumption, at different scale and runtime configurations. In addition we pre-

ii

dict, using these models, how implementation changes could affect the memory

consumption of an industry strength benchmark.

Acknowledgements

This thesis, and the supporting research, was made possible by a great number

of people. Their support throughout, both academically and personally, has

maintained my focus and drive to research.

A special thank you to my supervisor Prof. Stephen Jarvis, for accepting me

onto the PhD program, and supporting my research throughout.

After almost eight years at the University of Warwick, there are far too many

people to thank individually, but certain people deserve special recognition.

Simon Hammond, for helping me through the difficult first years of research

and still being there until the end. All those with whom I work with on a

daily basis: David Beckingsale, Bob Bird, Dr. Adam Chester, James Davis, Dr.

Henry Franks, Dr. Matthew Leeke, Andrew Mallinson, Dr. John Pennycook and

Steven Wright.

To Dr. Mark Pharaoh and Anna Wordsworth, my triathlon coaches, for

keeping me sane and providing pastoral care throughout my PhD.

Andrew Herdman, Wayne Gaudin and others at AWE for providing the

industry focus to my research, and general support.

Todd Gamblin for continued support of my research, and access to countless

resources, both physical and intellectual.

Lastly to my family and loving girlfriend, Claire.

iv

Declarations

This thesis is submitted to the University of Warwick in support of the author’s

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the cases outlined below:

• Initial collection of runtime and memory consumption results from the

Lawrence Livermore National Laboratories was performed by Simon Ham-

mond (Sandia National Laboratories).

v

Parts of this thesis have been previously published by the author:

• O. F. J. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. Should

We Worry About Memory Loss?, SIGMETRICS Performance Evaluation

Review, March 2011 [105]

• O. F. J. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. WM-

Tools - Assessing Parallel Application Memory Utilisation at Scale, In Pro-

ceedings of the European Performance Engineering Workshop (EPEW),

Borrowdale, UK, October 2011 [106]

• O. F. J. Perks, D. A. Beckingsale, S. D. Hammond, I. Miller, J. A.

Herdman, A. Vadgama, A. H. Bhalerao, L. He, and S. A. Jarvis. Towards

Automated Memory Model Generation via Event Tracing, The Computer

Journal 56(2), June 2012 [103]

• O. F. J. Perks, R. F. Bird, D. A. Beckingsale, and S. A. Jarvis. Exploit-

ing Spatiotemporal Locality for Fast Call Stack Traversal, In Workshop

on High-performance Infrastructure for Scalable Tools (WHIST), June

2012 [104]

• O. F. J. Perks, D. A. Beckingsale, and S. A. Jarvis. Analysing the Influence

of InfiniBand Choice on OpenMPI Memory Consumption, In International

Workshop on High Performance Interconnection Networks (HPIN), July

2013 [102]

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• The University of Warwick, United Kingdom:

Warwick Postgraduate Research Scholarship (2009–2013)

• Royal Society:

Industry Fellowship Scheme (IF090020/AM)

• UK Atomic Weapons Establishment:

“The Production of Predictive Models for Future Computing

Requirements” (CDK0660)

“AWE Technical Outreach Programme” (CDK0724)

“TSB Knowledge Transfer Partnership” (KTP006740)

vii

Abbreviations

API Application Programming Interface

CPU Central Processing Unit

DDR Double Data Rate

DBI Dynamic Binary Instrumentation

DIMM Dual In-line Memory Module

DRAM Dynamic Random Access Memory

ECC Error Correcting Code (Memory)

EDR Enhanced Data Rate (InfiniBand)

FDR Fourteen Data Rate (InfiniBand)

FLOP/s Floating-Point Operations per Second

HCA Host Channel Adapter (InfiniBand)

HPC High-Performance Computing

HWM High Water Mark

IB InfiniBand

ISV Independent Software Vendor

LANL Los Alamos National Laboratory

LLC Last Level Cache

LLNL Lawrence Livermore National Laboratory

MHD Magnetohydrodynamics

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

QDR Quad Data Rate (InfiniBand)

RAM Random Access Memory

RDMA Remote Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SNL Sandia National Laboratories

viii

TDP Total Power Draw

Definitions

Call Stack

The chain of function calls which brought execution to the current point.

Collective

Defines a type of communication with more than two parties involved, with

multiple sources, multiple destinations, or both. Within MPI this represents

function calls such as ‘MPI Gather’ and ‘MPI Allreduce’.

Compute Bound

A computational operation whose time is primarily decided by the time taken

to operate on the data, rather than the time to load the data into memory. In

such a scenario the use of a faster processor will afford a proportional gain in

overall performance.

Data Occupancy

The proportion of required data that is accessible in cache. High occupancy

usually equates to high efficiency computation, and relates to a compute bound

operation.

ECC RAM

Error-Correcting Code (ECC) RAM is a type of memory with built in error

detection and correction, through the use of parity bits. This makes the memory

immune to single bit errors, increasing reliability.

Ghost Cells

With parallel grid based computations it is frequently necessary to access data

which resides in another processor’s memory space. Such a situation usually

occurs at the boundary of a processor’s computational region. To improve the

performance of fetching the data, a buffer is used to replicate the whole boundary

region on the local processor. This data is rarely computed, but used as input

to the computation of other cells.

x

High-Water-Mark

An application high-water-mark (HWM) is a measure of the maximum amount

of memory consumed by the application at any point during its execution. In

the case of parallel applications, we refer to HWM as being the maximum HWM

of all of the processes within the job.

Memory Bound

A computational operation whose time is primarily decided by the time taken

to load the required data into memory, rather than the actual computational

operation. In such a scenario the use of a faster processor will not afford a

gain in overall performance. Improvements in performance will only be afforded

be improvements to the memory system, such as faster RAM or more memory

bandwidth.

Paging

The process of swapping memory pages to disk, when system memory becomes

full, thus increasing memory capacity. This introduces increased access over-

heads when these pages are swapped back into memory, and is traditionally not

used in HPC configurations.

Parallel Efficiency

Is a measure of application scalability. It is defined by the parallel speedup S(p),

the parallel time T (p) over the serial runtime T (1), divided by the number of

processors used p.

S(p) =
T (p)

T (1)
(1)

E(p) =
S(p)

p
(2)

Point-to-Point

Defines a type of communication with a single source and destination. Within

MPI this represents ‘MPI Send’ and ‘MPI Recv’ function calls, and their asso-

ciated variations.

Strong Scaling

The act of increasing the core count used to solve a problem of the same size.

Weak Scaling

The act of increasing the core count used to solve a problem of increasing size,

where the size per core remains the same.

Contents

Abstract ii

Acknowledgements iv

Declarations v

Sponsorship and Grants vii

Abbreviations viii

Definitions x

List of Figures xx

List of Tables xxii

1 Introduction 1

1.1 Motivation . 2

1.2 Domain . 3

1.3 Benchmark Applications . 4

1.4 Research Methodology . 4

1.5 Thesis Contributions . 5

1.6 Thesis Overview . 7

2 Background: Computer Memory 10

2.1 Hardware Perspective . 10

2.1.1 DDR Technology . 11

2.1.2 Trends in Memory Architecture 14

2.1.3 Hardware Capacity and Costs 16

2.1.4 Challenges in Memory Technology 20

xiii

2.1.5 Future Technologies . 22

2.1.6 Accelerators . 25

2.2 Software Perspective . 27

2.2.1 Allocations . 27

2.2.2 Virtual Memory . 30

2.2.3 Reporting Consumption 30

2.3 Memory Reduction Techniques 32

2.3.1 Memory Deduplication . 32

2.3.2 In Memory Compression 33

2.3.3 AMR . 33

2.4 Summary . 34

3 Background: Memory Analysis Tools 35

3.1 Types of Tool . 35

3.1.1 Debugging . 35

3.1.2 Profiling . 36

3.2 Interface Methodology . 37

3.2.1 API . 37

3.2.2 Interposition . 38

3.2.3 Code Injection / Pre-processing 38

3.2.4 DBI . 39

3.2.5 Sampling . 40

3.2.6 Lightweight and Heavyweight Tools 41

3.3 Related Tools . 41

3.3.1 memP . 42

3.3.2 MAP . 42

3.3.3 MEMWATCH . 43

3.3.4 Valgrind . 43

3.3.5 Existing Tool Critique . 44

3.3.6 Motivating New Tools . 45

3.4 Summary . 45

4 WMTools 47

4.1 WMTrace - Data Collection . 47

4.1.1 Library Structure . 48

4.1.2 Application Interaction 49

4.1.3 Data Storage . 50

4.2 WMAnalysis - Data Analysis . 51

4.2.1 Analysis Phase . 52

4.2.2 HWM Analysis . 52

4.2.3 Functional Breakdown . 55

4.2.4 Temporal Graph . 56

4.2.5 Temporal Function Graphs 58

4.2.6 Heat Map . 59

4.2.7 Comparative Analytics . 61

4.3 Comparison . 63

4.3.1 Functionality . 63

4.3.2 Performance . 68

4.4 Project Availability . 70

4.5 Summary . 70

5 Workload Analysis and Memory Scalability 72

5.1 Related Work . 73

5.2 Application Memory Consumption 74

5.3 Simulating Effects of System Memory Loss 76

5.3.1 Workload Construction 76

5.3.2 Machine Simulation . 77

5.3.3 Performance Analysis . 78

5.4 Understanding Scalability . 80

5.4.1 Ghost Cells . 81

5.4.2 Processor Decomposition 82

5.4.3 On-node Parallelism . 85

5.4.4 Communication Buffers 88

5.5 Summary . 88

6 MPI Memory Consumption 90

6.1 InfiniBand Communication . 91

6.1.1 MPI Receive Queues . 92

6.1.2 InfiniBand Interface . 92

6.2 Related Work . 93

6.3 Application Profile . 95

6.3.1 Application Communication Classification 96

6.3.2 Application Memory Profile 98

6.4 Identifying MPI Memory Consumption 99

6.5 MPI Implementation Comparison 102

6.6 Runtime Configurations . 102

6.7 Vendor Libraries . 105

6.7.1 MXM . 105

6.7.2 PSM . 106

6.8 Application Modifications . 107

6.9 Summary . 108

7 Memory Modelling 110

7.1 Related Work . 111

7.2 Point-wise Comparison . 113

7.2.1 Linear Regression . 114

7.2.2 Misinterpretation of Relationships 114

7.3 Lare2D - Simplistic Model . 115

7.3.1 Multiple Models . 118

7.3.2 Increased Problem Size 118

7.4 Chimaera - Complex Model . 119

7.4.1 Growth Factor Analysis 121

7.5 Modelling Implementation Changes 123

7.5.1 3D Processor Decomposition 124

7.5.2 Hybrid MPI and OpenMP 125

7.6 Model Confidence . 128

7.7 Summary . 128

8 Conclusion 130

8.1 Contributions . 131

8.1.1 Beneficiaries . 133

8.2 Limitations . 133

8.2.1 Data Volume . 134

8.2.2 Technologies . 134

8.3 Future Work . 136

8.3.1 Static Source Code Analysis 136

8.3.2 Mixed Mode Data Collection 137

8.3.3 Model Prediction Validations 138

8.3.4 Power Consumption . 138

Bibliography 139

Appendices 153

A Context: Architectures and Applications 154

A.1 Machines . 154

A.1.1 Cab (LLNL) . 155

A.1.2 Hera (LLNL) . 156

A.1.3 Minerva (Warwick) . 157

A.1.4 Kay (Bull) . 158

A.2 Applications . 159

A.2.1 Chimaera (AWE) . 159

A.2.2 Orthrus (AWE) . 160

A.2.3 POP (LANL) . 160

A.2.4 SNAP (LANL) . 160

A.2.5 Sweep3D (LANL) . 160

A.2.6 NPB (NASA) . 161

A.2.7 LAMMPS (SNL) . 161

A.2.8 MiniFE (SNL) . 161

A.2.9 phdMesh (SNL) . 162

A.2.10 Lare2D (Warwick) . 162

A.3 Summary . 162

List of Figures

2.1 Hierarchal overview of traditional memory subsystem 11

2.2 LLC size of processors over time 15

2.3 Top 5 supercomputer memory per core ratios 16

2.4 DRAM cost capacity comparison 19

2.5 Structure of virtual memory address space for application 29

4.1 WMTrace data collection process 48

4.2 Per rank HWM distribution for Chimera 1203 on 128 cores . . . 54

4.3 Comparison of maximum and minimum HWM threads for Chi-

maera 1203 on 128 cores . 57

4.4 Rank 48 temporal functional graph for Chimera 1203 on 128 cores 59

4.5 Heat Map at point of HWM for Chimera 1203 on 128 cores . . . 60

4.6 WMTrace analysis of Chimaera on 64 cores 64

4.7 MAP analysis of Chimaera on 64 cores 65

4.8 Valgrind Massif temporal graph for Chimera 1203 on 64 cores . . 67

5.1 Runtime and HWM scaling behaviour for benchmark applications

on Hera . 75

5.2 Simulated runtimes for workloads with different memory restric-

tions . 79

5.3 Data dependency and ghost cells in a cube 81

5.4 Decompositions of an 83 cube onto eight processes 82

5.5 Proportion of ghost cells as a percentage of total cells in different

decompositions of a 10243 cube 83

5.6 1D and 2D decomposition comparison for SNAP 85

5.7 Flat MPI and hybrid MPI and OpenMP comparison for SNAP . 87

xix

6.1 Source-destination distribution for point-to-point messages on

128 cores . 98

6.2 Frequency distribution of message sizes on 128 cores 99

6.3 Temporal memory usage for Orthrus on128 cores 99

6.4 Orthrus MPI memory consumption at 1024 cores 100

6.5 Platform comparison of Orthrus memory scalability with OpenMPI101

6.6 Orthrus BullXMPI comparison with low memory profile on Kay

- Mellanox . 104

6.7 Orthrus using MXM comparison with default OpenMPI on Kay

- Mellanox . 106

6.8 Orthrus using PSM comparison with default OpenMPI on Cab -

QLogic . 107

7.1 Model prediction against temporal trace of Lare2D on 16 cores . 117

7.2 Model prediction against temporal trace of Lare2D on 128 cores . 117

7.3 Chimaera MPI memory growth against model prediction 122

A.1 Node level structure of Cab . 155

A.2 Node level structure of Hera . 156

A.3 Node level structure of Minerva 157

A.4 Node level structure of Kay . 158

List of Tables

4.1 Chimaera HWM strong scaling profiles 53

(a) 603 HWM profile . 53

(b) 1203 HWM profile . 53

4.2 Chimaera node level HWM for 1203 62

(a) 128 cores . 62

(b) 256 cores . 62

4.3 Memory tool feature comparison 63

4.4 Memory tool overhead comparison for Chimaera 1203 on 64 cores 68

5.1 Mixed application workload compositions 76

5.2 Percentage runtime increase from 1536 MB to 682 MB per core . 78

6.1 Different communications at 64, 128 and 256 cores 97

7.1 High water mark results for Lare2D 40962 115

7.2 Model prediction results for Lare2D 40962 116

7.3 Second model prediction results for Lare2D 40962 118

7.4 Compound model prediction results for Lare2D 81922 119

7.5 Model validation for Chimaera 121

(a) Chimaera 1203 . 121

(b) Chimaera 603 . 121

7.6 Model predictions for Chimaera using Equation 7.5 123

7.7 Model predictions for Chimaera with 3D processor decomposition 124

(a) Chimaera 603 . 124

(b) Chimaera 1203 . 124

7.8 Model predictions for Chimaera with hybrid parallelism 126

(a) Chimaera 603 . 126

xxi

(b) Chimaera 1203 . 126

A.1 Computer system specifications 154

CHAPTER 1
Introduction

High performance computing (HPC) has become the cornerstone of many scien-

tific disciplines, supporting experimentation through simulation to reduce cost

and mitigate risk.

Whilst the benefits of HPC have been apparent to large scientific institutions

for many decades, such systems have traditionally been prohibitively expensive

for smaller companies and research groups. The rise of commodity computing

has since lowered the machine cost and released the potential of HPC in many

new domains.

Recent developments in parallel processing hardware, such as multi-core

commodity processors, have had a dramatic effect on the performance of these

supercomputing platforms. The evolving technologies constantly striving for

increased performance at the high end of supercomputing result in a ‘trickling

down’ of technologies, and their associated performance, to commodity com-

puting. From historical analysis we can see that it only takes between six and

eight years for the slowest machine in the Top500 list [82] to achieve the same

computational power of the number one machine. Beyond the HPC domain we

see that it only takes eight to ten years for a notebook computer to replicate

the performance of that slowest machine in the Top500 [83].

Whilst the majority of media, and industry, attention has traditionally

focused on the computational power of CPU architectures, the increased scale

of modern HPC platforms has identified a number of other performance bot-

tlenecks. Most scientific applications can be classified by their dependence

on the four key components of computing: computational power; memory

access latency and bandwidth; interprocessor communications; and I/O. The

1

1. Introduction

veritable neglect of these other components has stifled performance gains for

many large scale scientific applications. To address this architectural imbalance

the proportional component cost of supercomputers has been slowly evolving,

and as such memory is consuming a larger portion of machine procurement

budget than ever before.

In this thesis we focus on the role of computer memory in the HPC ecosystem,

specifically focusing on memory capacity and utilisation. Whilst not directly a

performance modifier, memory consumption and associated scaling will have

a dramatic effect on available runtime configurations, dictating core counts

and problem sizes. We also address how, in many situations, there is an

inherent tradeoff between performance and memory usage, motivating the use

of non-optimal techniques to reduce memory footprints and thereby enable the

execution of larger problems.

1.1 Motivation

The rise of multi-core processors, and their increasing core count densities, is

having a dramatic effect on memory-per-core ratios. The rate of technological

development in computer memory (DRAM) has not matched equivalent ad-

vances in CPU architecture. Specifically, the rate of growth of DRAM capacity

has not been proportional to the increase in CPU core counts. Where high

capacity DRAM modules are available they are often prohibitively expensive,

or their usage comes with performance limiting caveats.

Within HPC a job’s memory is provisioned on a per-core or per-node basis,

defining constraints based on physical resources and resource sharing policies.

Failure to adhere to these restrictions results in job termination, often with-

out warning or accurate error reporting, thus job configuration and accurate

resource provisioning are crucial for maintaining a productive computational

environment.

Predicting application memory usage is largely a ‘dark art’, comprised of

2

1. Introduction

an algorithmic expectation of usage and experimental experience of failing jobs.

Historically it has often been cost effective to over-provision memory resources

to prevent job failures, but with rising costs this option is becoming harder and

harder to justify. As such it is increasingly important to accurately provision

memory capacity resources during machine procurement, where the balance

between cost and usability is most critical.

The rising scale of the jobs mean that it is harder to algorithmically predict

memory usage, as other factors begin to play a more crucial role in memory

consumption, and the failure of jobs is less acceptable as they waste valuable

machine time. For this reason it is now key to fully understand the memory

usage characteristics of key scientific applications in HPC institutions. Code

users and system designers are increasingly looking towards software tools to

provide and analyse this information.

Where application memory requirements are prohibitively disproportionate

to others in an institution’s workload, code engineers must look to reduce

their memory consumption. This reduction can come in two different forms;

either more memory efficient runtime configurations or the re-engineering of

applications libraries. Again scientists look to tools to provide analytical insight

into the cause of consumption, and validation of the results of any memory

reduction exercise.

As such the tool chain supporting memory consumption analysis must be

strong enough to support high level application analysis as well as fine gained

analysis. We do not feel that these requirements are accurately provisioned for

by existing memory analysis tools, and therefore propose the development of a

new suite of tools to provide this level of data analysis.

1.2 Domain

Within this thesis we are concerned with the memory capacity, and associated

resource utilisation, of parallel applications within the HPC domain. Whilst

3

1. Introduction

many of the topics we discuss have a broader scope, we limit ourselves to focusing

on the application of such topics to supercomputers. In the case of our discus-

sions on computer hardware we touch upon only a subset of technologies, to

facilitate a more in-depth evaluation of HPC-centric hardware. Whilst elements

of other hardware technologies may be applicable we try to maintain focus on

current, and anticipated, industry trends.

Similarly the tools and methodology we present are not necessarily confined

to HPC applications and architectures but we deliberately constrain ourselves

to the field to demonstrate their capabilities.

1.3 Benchmark Applications

Throughout this thesis we make use of a wide range of benchmark applications.

Each of these applications is used specifically to demonstrate the capabilities of

different memory consumption analysis techniques. The choice of each applica-

tion is designed to expose certain memory behavioural characteristics which are

best investigated with the current technique. Although most of the techniques

could be applied to all of the applications discussed, we do not believe that an

interesting insight could be gained with every combination.

A full description of the applications used is presented in Appendix A.2.

1.4 Research Methodology

In this thesis we ask – to what extent can non-intrusive profiling methods be

used to analyse application memory consumption? We look to provide code

developers with the tools and methodologies to evaluate the precise reason for

behavioural characteristics in memory consumption, with the ultimate goal of re-

ducing application memory high water mark. Memory is an increasingly crucial

component of parallel applications, with financial and physical constraints lim-

iting future capacity. Such limitations are coupled with an evolving view of how

4

1. Introduction

parallelism is achieved, and how resources can be best utilised. Existing tools

are very limited in their capabilities to deliver fine-grained analysis into how

and where application memory consumption especially in relation to job scale.

In this research we explore the capabilities of memory consumption analysis

for increasing the scalability of applications, and in the process future-proofing

them against trends in declining memory-per-core ratios.

To answer this question we employ quantitive methodologies. Through

empirical analysis of parallel application we study relationships in memory

consumption.

The early portion of this research is dedicated to the development of tools,

of sufficient quality, to provide observational information regarding application

memory behaviour. The latter is dedicated to the analysis of this information

and the construction of hypotheses. Where possible we verify these hypotheses

and evaluate their impact through more empirical testing.

1.5 Thesis Contributions

This thesis is based around the development of a memory consumption analysis

tool, and its application in understanding different aspects of the memory

utilisation of HPC applications.

Our analysis serves two purposes: the first is the understanding of an appli-

cation’s memory profile with sufficient detail to accurately provision hardware

resources, either during job submission or machine procurement; the second is

providing a much deeper level of understanding to facilitate code re-engineering

to reduce memory consumption.

In addition to the presentation of our tools and methodologies we present

three investigations into application behaviour, driven by a need to understand

memory consumption behaviour.

Tools and Methodology We describe a methodology for collecting the mem-

ory allocation data of a parallel application, mid execution, and analysing the

5

1. Introduction

resulting data. We develop a suite of tools to achieve this data collection,

and the associated analysis, to demonstrate the validity and capability of the

methodology. For each method of analysis we present an example of where the

tools can be used to improve understanding of the underlying application.

Scaling Analysis We show how memory consumption analysis can be applied

to a full machine workload. We show how strong scaling can be used to facilitate

the deployment of low memory machines, and analyse the viability of such

platforms through efficiency analysis on simulated workloads. To further the

potential of this method, we address some of the concepts and techniques

for reducing ghost cells to improve memory consumption scalability without

detriment to performance.

MPI Memory Analysis We apply our analysis to evaluate the impact of

MPI implementation choice, for specific network hardware. By looking at the

memory consumption attributed to MPI on different platforms, for different

implementations, we identify the best configurations to improve memory con-

sumption scalability.

Automated Memory Modelling We investigate the potential of using mem-

ory consumption traces to automatically generate predictive models for memory

high water mark. Using allocation size comparisons we can predict memory con-

sumption at different scales, both in terms of problem size and core count, with

a high degree of accuracy based on data from only two runs. We further show

how these models can be used to predict the memory effects of implementing

new programming principles, such as 3D processor decompositions and hybrid

MPI and OpenMP parallelism.

These contributions show how far non-intrusive methods of memory consump-

tion profiling can be extended to provide critical analysis for application devel-

opers. We show how the collected data can be used to understand application

6

1. Introduction

consumption, and critically monitor the artefacts of consumption as the size of

the job is scaled. The fine-grained analysis allows us to study potential issues at

small scale before they become dominant problems at large scale. Additionally

we show how this data can be used for predicting memory consumption at scales

greater than those obtainable with current configurations.

1.6 Thesis Overview

The remainder of this thesis is organised in the following way:

Chapter 2 presents an introduction to computer memory, divided into two

logical sections to discuss memory in terms of both hardware and software. We

discuss why architectural nuances influence trends, and help determine memory

capacity, coupled with an analysis of core counts to understand memory-per-core

ratios. Additionally we discuss how memory is used within the system, and use

this to understand differences in the way memory usage is reported to the user.

In Chapter 3 we continue with our introduction, but within the domain of

software tools, presenting some key concepts and methodologies. We discuss

the fundamental differences between tool types, and the roles that they play in

the software ecosystem. Further more we discuss the methods of data collec-

tion utilised by these tools and evaluate their inherent performance properties.

Within the domain of memory analysis, we present a discussion of a number

of different software tools, evaluating them on the data they can collect and

analysis they can perform. We use this evaluation to motivate the development

of a new memory analysis tool, by identifying their limitations and desired

functionality.

Chapter 4 presents the development of our memory analysis tool suite,

WMTools, and features a demonstration of the various analysis methods applied

to the AWE Chimaera benchmark application. We detail the key design prin-

ciples, based on our previous evaluation of existing tools, and describe how our

approach to data collection and, importantly, storage can be used for advanced

7

1. Introduction

analysis.

In Chapter 5 we investigate the memory scalability of applications, us-

ing strong scaling to reduce memory-per-core footprints. We use HWM data,

with accompanying runtime data, to simulate the execution of mixed science

workloads on computers with decreasing memory-per-core ratios. From this

we are able to show the decrease in workload efficiency resulting from such

usage, caused by the poor memory scalability of some applications. We further

investigate the cause of poor memory scalability by demonstrating the impact

of ghost cells, and present a number of memory reduction techniques such as

processor decompositions and hybrid parallelism programming models.

Chapter 6 presents an investigation into MPI memory consumption, and

the associated impact of communication buffers when strong scaling applica-

tions. Through analysis of a benchmark application we evaluate the memory

scalability of different MPI implementations and different InfiniBand hardware.

We experiment with a range of improved implementations to show how MPI

memory consumption, which can grow at an alarmingly rate, can be reduced to

more manageable levels.

In Chapter 7 we demonstrate the ability to generate automated memory

models based on the execution traces from WMTools. We look at two cases: a

simplistic model of Lare2D, where we construct two different models to capture

the characteristics of two code regions; and the more complex modelling of

Chimaera, where we capture the artefacts of ghost cells. We validate these

models against results from strong scaling and a change in problem size. We

then use the Chimaera model to generate predictions for memory savings based

on 3D processor decompositions, and hybrid programming model, in accordance

to the effects demonstrated in the latter half of Chapter 5.

In Chapter 8 we conclude this body of research by reiterating the contri-

butions, discussing limitations to the research and detailing future work in the

same domain.

Lastly in Appendix A we present a detailed evaluation of the architectures

8

1. Introduction

and applications used throughout this thesis.

9

CHAPTER 2
Background: Computer Memory

In this chapter we present an overview of the memory subsystem within modern

computers, with respect to both hardware and software. We describe the

different layers in the memory hierarchy and where our research interests sit.

Additionally we look at current hardware trends, and from this identify a

number of issues with current memory hardware. From this we discuss a number

of future and emerging technologies, and describe the ways in which they address

current problems in hardware.

From a software perspective we discuss the structure of applications in

virtual memory, and how this relates to application memory consumption.

We discuss different methodologies for measuring memory consumption and

their limitations, and use this discussion to motivate our choice of measuring

application level memory management in memory studies, both for accuracy

and information availability.

2.1 Hardware Perspective

Figure 2.1 outlines the different layers of the memory subsystem hierarchy. The

closer a layer is to the top of the pyramid, the closer it is to the logic units of the

processor, and also the faster it is. The limitation of proximity is size, meaning

to be close and fast the memory layer must also be small, thus the largest layers

sit furthest away from the processor’s logic units.

The majority of memory allocations are handled by the Random Access

Memory (RAM), a layer built on the inherent tradeoff between capacity and

performance. When the specific pages of memory are required by the application

they are loaded into cache, a small but high-performance layer.

10

2. Background: Computer Memory

CPU
Registers

L1 Cache

L2 Cache

L3 Cache (Optional)

Random Access Memory

Hard Disk Drive

Performance Capacity

On CPU Chip

Figure 2.1: Hierarchal overview of traditional memory subsystem

In this thesis we are solely concerned with RAM, and the issues surrounding

capacity limitations. The performance of RAM is already considered a bottle-

neck in memory bound applications, thus having to resort to another layer of

the hierarchy to achieve sufficient capacity is not considered a viable option [34].

Within the HPC community the use of Error Correcting Code (ECC) RAM

is standard, as a measure to reduce errors in calculations, thus increasing the

accuracy of scientific applications and increasing overall system stability [42].

One of the downsides to ECC RAM is the increased cost, with chips often

costing twice as much as equivalent non-ECC RAM. This is, partly, a result of

requiring an additional storage for the parity bit, but mainly to do with the

limited market as ECC RAM is not common in desktop computers.

Software level ECC, such as that provided in many Graphics Processing

Units (GPUs), result in a capacity reduction of 12.5% with an associated reduc-

tion in memory bandwidth.

2.1.1 DDR Technology

Main computer memory is traditionally comprised of Double Data Rate (DDR)

memory Dual In-line Memory Modules (DIMMs) composed of SDRAM memory

modules. The current generation of DDR is DDR3, which provides a doubling

of data rate at a reduced voltage over the previous DDR2 generation. The next

generation, DDR4, is expected to be released in 2013 with support provided by

11

2. Background: Computer Memory

architectures such as Intel’s Haswell-E processors, with increased clock speeds

at a further reduced voltage.

There are a number of competing DIMM technologies currently used within

DDR3, each with a different emphasis on a different aspect of technology.

Whilst these other technologies are available, RDIMM remains the most com-

mon DRAM used in HPC platforms due to the trade-off between cost, capacity

and performance.

Ranks

DDR DIMMs are often referred to in terms of ranks: single, dual, quad and

the emerging octal rank. The rank describes the number of modules, group of

similar DRAM chips, on a DIMM. Each rank has a maximum capacity based

on DRAM chip capacity and payload.

For example a quad rank RDIMM can support up to 32 GB, with a rank

width of 72 bits for ECC support, by utilising 16 × 4 Gb DRAM chips each

rank can support up to 8 GB [52].

Thus to achieve higher DIMM capacity one must either increase the number

of ranks, or the the rank capacity. The introduction of 8 Gb DRAM technology

will facilitate the development of 64 GB RDIMMs, alternatively moving to octal

rank LRDIMMs which can support up to 64 GB [84].

RDIMM

Registered DIMMs contain a register to buffer the address and control lines in

addition to the clock. This makes a more stable memory system, allowing for

higher capacity DIMMs and, often, the use of more DIMMs per channel. This

buffering does introduce a minor latency, and can reduce bandwidth when using

a single DIMM per memory channel. The additional hardware and relatively

low market prevalence result in a slight increase in cost over UDIMM.

12

2. Background: Computer Memory

UDIMM

Unregistered DIMMs are slightly cheaper than comparable RDIMMs, at smaller

capacities (2 GB to 4 GB). Each UDIMM installed introduces electrical load

and issues with noise [63]. Achieving higher capacities without buffering is

harder, meaning there is limited availability of the highest capacity DIMMs

(8 GB), and they are often more expensive than RDIMMs. Within HPC the

use of UDIMMs is not popular, due to the unattractive price-per-GB and the

restrictions on configurations.

FBDIMM

Whilst FBDIMMs are no longer favoured, their technological achievements make

them an interesting point of discussion. Fully Buffered DIMMs were designed

to increase the number of DIMM slots supported on each memory channel, by

providing an area of on-chip memory to act as an advanced memory buffer

(AMB) [43]. Through the use of a serial bus the memory channel would

communicate with the AMB providing some error correction and facilitating

the issuing of parallel read/write commands, as they can be buffered.

In addition to increased cost FBDIMMs were plagued with power usage

and heat dissipation issues [74], and were not widely adopted. Many manu-

facturers have since ceased production, and removed the technology from their

roadmap. The technological benefits behind FBDIMMs are very desirable and

work to replicate them is still underway; we discuss some of these projects in

Section 2.1.5.

LRDIMM and HCDIMM

Load Reduced DIMMs and Hyper Cloud DIMMs are very similar in concept,

as an amalgamation of RDIMM and FBDIMM technology. In addition to the

buffering done by RDIMMs they buffer the data lines, making all lines fully

buffered. The reduction in electrical loading on the chips, due to the buffer

logic, enables the processors to drive more DIMMs at a higher clock speed.

13

2. Background: Computer Memory

Quad rank LRDIMMs utilise their rank multiplication to present their four

logical ranks as two virtual ranks, enabling three quad rank chips to appear

as six virtual ranks. The increase in rank capability enables the use of higher

capacity DIMMs.

HCDIMM differs from LRDIMM by providing logic support without the need

for BIOS configuration. This is claimed to provide an increase in bandwidth

and throughput [95].

The cost of LRDIMM, and HCDIMM, is slightly more than RDIMM due to

the additional logic and limited market prevalence.

DDR Data Rate

DDR stands for double data rate. This is the process of ‘double-pumping’ data

with regards to the clock – data is transferred on both the rise and the fall of

the clock signal. This results in a slight confusion of terms, generally amongst

vendors, between clock rate Megahertz (MHz) and data rate Mega-Transfers per

second (MT/s). A chip labeled DDR3-1600 will have a data rate of 1600 MT/s,

resulting from a clock speed of half that figure, 800 MHz, though many vendors,

and other sources, may incorrectly label it as 1600 MHz.

During this thesis we refer exclusively to the data transfer rate to avoid

confusion.

2.1.2 Trends in Memory Architecture

In this section we will look at some of the underlying trends in hardware

technology and machine architecture. Using the ‘CPU DB’ data set from the

Stanford VSLI group [28] we are able to track architectural changes in a number

of key regions for a wide range of processors from the past 40 years. We note

that whilst this data set is significant it does lack details of a number of more

recent architectures. Additionally we compile data from the Top 500 list of

supercomputers [82] looking at the historical trends of the largest supercom-

puters in the world. The third data set we utilise is Intel ARK [55], a product

14

2. Background: Computer Memory

64

128

256

512

1024

2048

4096

8192

16384

32768

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

L
L

C
Si

ze
(K

B
)

Release Date

1 Core
2 Core
3 Core
4 Core
6 Core
8 Core

Figure 2.2: LLC size of processors over time

specification database. Specifically we use information collected about the server

grade products: the E7, E5, E3, 7000, 6000, 5000 and 3000 product lines.

Kogge and Dysart presented a more comprehensive analysis of the Top

500 list, evaluating historical trends and making future projections based on

roadmaps [65]. From this study they are able to observe the fall in the bytes

/ FLOP metric, a comparative measure of storage to compute capacity. They

attribute this, in part, to the rise of lightweight and heterogeneous systems.

Cache Size

Figure 2.2 plots the size of the Last Level Cache (LLC) (either L2 or L3

depending on the architecture) against the processor’s release date. Additionally

we have grouped the data by the number of cores on the processor, which allows

us to view the different trends in architecture design. We can clearly see that

over time the LLC size is increasing, signifying its importance in modern day

computing. There is also no discernible trend between core count and cache size;

a number of single and dual core chips have equivalent cache sizes as chips with

higher core counts. Some patterns are clearly visible though, like the preference

for 2 MB per core, resulting in a number of quad core chips with 8 MB of LLC

and dual core chips with 4 MB of LLC.

15

2. Background: Computer Memory

0

1

2

3

4

5

6

07-2008
01-2009

07-2009
01-2010

07-2010
01-2011

07-2011
01-2012

07-2012
01-2013

M
em

or
y
/

C
or

e
(G

B
)

List Date

Top 5 Average

Figure 2.3: Top 5 supercomputer memory per core ratios

Memory Per Core

Using the Top500 list we collect information on the top five systems from each

list, and plot their memory per core ratios. For heterogeneous systems we

represent only the ratio of DRAM to CPU cores, and exclude GPU processing

and memory capacity.

Figure 2.3 shows this trend over the last five years. What we see from this

graph is that the average memory per core of the top five systems is actually

quite constant, generally between 1.5 GB and 2.5 GB per core.

Whist we do not observe a decline in memory-per-core ratios, as expected,

we attribute this to the extreme scale of the platforms analysed. At the top

end of HPC price is always a dominating factor and so memory capacity has

always been constrained. Although we do not have sufficient data to analyse the

full 500 machines in the list, we would expect to observe some capacity-based

trends. Whilst we observed in Chapter 1 that it only takes six to eight years for

the performance of the top computers to be amortised into the lower echelons to

the Top 500 list, we do not believe this trend to hold true for memory-per-core

ratios.

2.1.3 Hardware Capacity and Costs

The memory capacity of computers is controlled by two factors: physical ca-

pability and financial constraints. In this section, we discuss how memory

16

2. Background: Computer Memory

architecture influences memory capacity, through configuration options, and

briefly investigate the financial considerations.

From this we show that the challenges to maintain existing memory-per-core

ratios is managing the DIMM configurations to minimise financial overheads. In

other, more memory constrained, domains the limitations on memory capacity

are resulting in the proposal of novel architectures such as disaggregated memory

systems [73].

Memory Channels

Current generations of Intel processors support up to four memory channels

per processor [55], which determines bandwidth. Each memory channel can

normally support three DIMMs [88, 89] of up to 32 GB in capacity. This gives a

theoretical maximum capacity of 768 GB for a two socket, four memory channel,

three DIMMs-per-channel (DPC) 32 GB DIMMs configuration, though such a

configuration is highly expensive.

Intel does support up to four DPC through the use of the Intel 7500 genera-

tion chipset, which supports Scalable Memory Buffer (SMB) [56, 57]. Building

on the principles of FBDIMMs, the SMB acts as an intermediary operation

buffer, but utilises traditional DDR3 RDIMMs. Each SMB provides two mem-

ory channels, each supporting eight logical ranks, allowing the use of four quad

rank chips per SMB.

The 7500 chipsets are generally used for very memory dense servers, theoret-

ically allowing up to 4096 GB, when the 128 DIMM slots of an 8-socket server

are populated with 32 GB DIMMs.

With regards to memory systems, Intel and AMD based architectures are

very similar, and so assertions illustrated with Intel based examples are also gen-

erally applicable to AMD as well. The AMD ‘Magny Cours’ micro-architecture

exhibits many of the same memory subsystem configurations as Intel’s ‘Ne-

halem’ micro-architecture including an integrated memory controller [23]. Both

architectures support up to four memory channels per CPU, each supporting

17

2. Background: Computer Memory

three DPC.

The AMD ‘Interlagos’ architecture is slightly different as each CPU is made

up of two logical dies, with each die containing up to four ‘Bulldozer’ modules

(two ‘cores’ with a shared floating point unit). Each die has its own memory

controller with two memory channels, giving a total of four channels per CPU.

The IBM Power architecture is similar to the Interlargos architecture in the

way that multiple dies, with independent memory controllers, are contained

within the same chip [53].

The future Haswell-E architecture from Intel, which will support DDR4, is

rumoured to contain only four memory channels, similar to current generations,

and be limited to one DPC due to the use of octal rank DIMMs.

Hardware Limitations

Although the memory capacities discussed above are theoretically achievable,

in practice it is not always that easy. Whilst the use of three DPC is supported

configuring such a system is non trivial [11, 41, 120]. UDIMMs only support a

maximum of two DPC, with a maximum combined capacity of 64 GB.

Memory channels can support a maximum of eight logical ranks each, this

means up to two quad rank DIMMs or a mixture of three dual or single rank

DIMMs. 32 GB RDIMMs are only available in quad rank, which is only

supported in two DPC mode, thus limiting the maximum memory capacity

to 64 GB per channel.

LRDIMMs can be run in three DPC mode with ‘quad rank’ chips, as they

will appear as a combined six virtual ranks, enabling up to 96 GB per memory

channel. One limitation is that such a configuration can only be supported

in reduced performance mode, reducing the I/O clock speed from 666 MHz

to 533 MHZ, resulting in a reduction of transfer rate from 1333 MT/s to

1066 MT/s.

Additionally some system configurations will not allow the use of low voltage

DDR3 DIMMs (1.35 V as opposed to 1.5 V) when utilising three DPC, due to

18

2. Background: Computer Memory

0

200

400

600

800

1000

2 4 8 16 32
0

10

20

30

40

50

D
IM

M
C

os
ts

($
)

M
ea

n
C

os
t/

G
B

($
)

DIMM Capacity (GB)

DIMM Costs
Mean Cost / GB

Figure 2.4: DRAM cost capacity comparison

the increased noise and signal degradation.

DIMM Cost

To maintain established memory-per-core ratios, within nodes with increased

core counts, nodes must increase their memory capacity accordingly. Often it

is not just the case of adding more memory DIMMs to the specific nodes.

In Figure 2.4 we present an evaluation on the current list price of DDR3

RDIMM chips with ECC support from Crucial as of June 2013 [25]. We

present the cost-per-DIMM of varying DIMM capacities, factoring in the cost

of different speeds and configurations, in addition to the average cost-per-GB

of each capacity DIMM. What we see from this figure is that whilst initially

the cost-per-GB decreases, to a ‘sweet spot’ at 8 GB DIMMs, the cost-per-GB

then starts increasing, demonstrating that higher capacity DIMMs are less cost

effective.

In a DIMM count-constrained environment the system architect will have to

utilise higher capacity DIMMs to maintain memory-per-core ratios in high core

count configurations. The implication of this figure is that such a configuration

is less efficient in terms of cost-per-GB, thus driving up the total cost of the

machine.

Whilst we note that these prices only reflect those available to public con-

19

2. Background: Computer Memory

sumers, at small purchasing scale, we believe the trend to be representative

of larger procurements. A discussion on relative DIMM costs by Fujitsu also

concluded a price-per-GB sweet spot at 8 GB DIMMS [41]. They also high-

light how UDIMM is comparatively cheaper than RDIMM, and LRDIMM is

comparatively more expensive, supporting our descriptions in Section 2.1.1.

Power Consumption

Whilst the power consumption of individual DDR3 DIMMs is considered to be

fairly low, the cost is multiplied by their sheer multitude. There are two factors

to take into account with DIMM power consumption: idle power and active

power.

HP report the active power consumption of an 8 GB dual rank low-voltage

(1.35 V) RDIMM to range from between 3.5 to 5 W, depending on speed [50].

This falls to about 0.5 W when idle, regardless of speed.

If we take for example a cluster, similar in configuration to Bull’s Kay

platform, of a 1000 dual socket nodes utilising oct-core Intel E5-2580s, with

a maximum Thermal Design Power (TDP) of 130 W and 8 GB low-voltage

RDIMMs. Maintaining a memory-per-core ratio of 4 GB will consume in the

region of 40 kW when actively used, compared to the ≈20 kW required to

maintain an active 2 GB-per-core ratio. This is in contrast to the theoretical

maximum of 260 kW consumed by the processors in such a system, but still

represents a significant power consumption saving.

These figures also motivate our research into memory consumption reduc-

tion, as the potential power savings from reducing memory use are significant.

2.1.4 Challenges in Memory Technology

There are three challenges with current memory technology that need addressing

in the future: capacity, performance (latency and bandwidth) and power. The

technological requirements of these problems can be largely distinct, for example

there is a natural trade off between bandwidth and power consumption, but

20

2. Background: Computer Memory

progression in all three domains is required.

The Memory Wall

The original concept of ‘The Memory Wall’ addressed the issue of the perfor-

mance gap between processors and memory with respect to latency [128]. The

concept states that the discrepancy between the rate of improvement between

processor performance and memory latency would eventually lead to a state

where every operation is memory bound, that processing would be so quick

that the defining limiter on computation time would be the memory fetches for

each piece of data that needed computing.

Technological developments have drawn out the effects of ‘the wall’ but it is

still anticipated to influence future platforms.

Rise of Many-core

One of the biggest changes in the performance landscape, from a memory

perspective, is the rise of many-core. Multi-socket systems often utilise separate

NUMA regions, enabling a duplication of memory subsystems. Many-core, on

the other hand, increases core count but using the same fundamental memory

subsystem.

The additional resource contention, resulting from more cores utilising a

similar number of memory channels, has lead to a stark performance gap. The

increase in processor cores has not been met with an equivalent quantity of

increases in other regions of the memory subsystem [79].

One of the implications, of particular interest to this body of research, is the

impact on memory-per-core ratios. Whilst DIMM capacity is increasing, albeit

slowly, the only way of maintaining memory-per-core ratios is to increase DIMM

count. This has implications for both power and performance, but the biggest

implication is for cost, as large capacity DIMMs and server grade motherboards

with high DIMM counts are expensive. On accelerator architectures there is

no user configuration of memory capacity, users are restricted to buying hard-

21

2. Background: Computer Memory

ware to match their memory requirements from the limited selection available.

Thus maintaining memory-per-core ratios is even harder when accelerators are

factored in.

Power Usage

One of the major challenges identified by a leading group of experts in the

DARPA ExaScale Computing Study is energy consumption [14]. Not only did

they perceive it to be a highly critical challenge but also one where there is a

significant gap between current and required technology.

One of the technologies identified as problematic for the projected power

requirements is DRAM, with issues raised over both capacity and utilisation.

They do not predict a reduction in the memory capacity needs of future super-

computing systems, but do identify a need to reduce power consumption.

Whilst there is a move to increase DRAM power efficiency, there are funda-

mental issues which plague the technology. The use of different ‘power states’

in memory can be an efficient way to reduce power consumption, but the state

transition time can have a marked performance impact [32]. DDR3 currently

supports a 1.5 V power supply, with a low voltage option at 1.35 V; DDR4 will

utilise a 1.2 V power supply [61] with a further low power mode predicted at

1.05 V [85], though at lower voltages signal degradation becomes a considerable

factor. One alternative is to dynamically frequency scale the memory controller,

enabling memory power savings with only a small performance cost [31].

2.1.5 Future Technologies

To address the current problems in memory architecture, we look to future

technology. We can see how different technologies are addressing the current

limitations in existing technology, and what the implications are for future

systems. Emerging technologies must provide improvements in a number of

the different problem domains for them to be viable in future systems. Where

technologies address only a single problem, they must be compatible with other

22

2. Background: Computer Memory

technologies which afford similar enhancements in different domains [19, 127].

The combination of such technologies is hoped to bridge the gap between the

power and efficiency developments of CPU architectures and the current state

in memory and interconnect technology [129].

Silicon Photonics

The idea of silicon photonics as viable optical interconnect fabrics for both on-

and off-chip communication is becoming increasingly appealing [14]. The low

power consumption and high bandwidth make it an appealing choice in both

scenarios. Further, silicon photonics can be utilised to communicate between

processors and DRAM, to enhance performance at reduced power levels [9, 10].

3D Stacked DRAM

3D memory is an emerging technology designed to increase performance and

decrease power consumption [1, 68]. The fundamental idea is to stack existing

memory technology in a 3D structure which maximises density and minimises

internal distances. The use of Through Silicon Vias (TSVs) is predicted to be

the most efficient means of connecting layers for the highest density [20, 27].

One of the biggest improvements from stacked DRAM is the potential prox-

imity to the processor, allowing for significant increases in bandwidth [76, 77].

Simulations of 3D DRAM technologies have identified the performance gains

to be significant, in the order of 20% with an associated reduction in energy

consumption of ∼7% [18].

NVIDIA announced at their 2013 GPU technology conference their intention

to include 3D stacked DRAM in the Volta GPU, scheduled for release in the next

four years [2]. They estimate achieving a bandwidth of ≈1 TB/s, significantly

faster than the current 250 GB/s of their Kepler K20X [96].

23

2. Background: Computer Memory

Hybrid Memory Cube

The Hybrid Memory Cube (HMC), developed by Micron, is an extension of the

idea of 3D stacked DRAM, with the addition of a logic layer [60]. This format

allows for high-density memory, thus providing an increase in both performance

and power efficiency.

The current HMC implementation contains 1 GB of DDR, and while it is

expected that capacity of such devices will increase, they are unlikely to compete

with traditional DRAM on price-per-GB in the early days of availability. As

such it is hard to predict the role HMCs will play in future architectures, as to

if they will replace current DRAM, with a probable loss of memory-per-core, or

be used as supplemental memory in another layer of the hierarchy, or as part of

a hybrid system [126].

Processing-In-Memory

The idea of Processing-In-Memory (PIM) is not particularly new, as it was first

discussed in 1970 [118], but is still an active area of research today [64, 100, 33,

130]. The fundamental idea is a tighter coupling of storage and computing, by

integrating a number of vector units into, or very close to, DRAM. The increase

in proximity between storage and compute enables a reduction of latency and

increase of bandwidth for certain memory operations [47, 109].

The Data intensIV Architecture (DIVA) is a PIM-based system coupled

with a conventional microprocessor. Draper et al . show, via an extended RSIM

(Rice Simulator for Instruction-level Parallelism Mulitprocessors) simulator,

to provide an average performance speedup of 3.3× across a broad spectrum

of eight scientific applications [33]. The majority of the performance gain is

attributed to decreases in the memory stall time, afforded by the PIM, with

further performance gains from their ‘WideWord’ unit being able to further

exploit fine grained parallelism.

24

2. Background: Computer Memory

Buffer-on-board Memory

The idea behind buffer-on-board memory is to insert an additional logic layer

between the on-die memory controller and the DRAM DIMMs [21, 24]. This

logic layer, in the form of a simple memory controller, is designed to handle

requests from the memory controller, and return the data back to it. The benefit

from this format comes from the properties of the intermediate bus connecting

the two memory controllers, which is designed to be narrower and faster than a

conventional memory bus.

The ambition is to replicate some of the qualities of FBDIMMs, without

the negative impacts on latency or the power and heat dissipation issues. By

buffering and re-sending data certain issues with signal quality degradation can

be alleviated. Additionally, this enables parallel operations, again enhancing

performance.

As a combination of the concepts of PIM and buffer-on-board memory,

an Active Memory Controller (AMC) can perform certain scalar and stream

operations on cache-coherent data from within the memory controller [36].

2.1.6 Accelerators

Whilst this thesis is focused on the analysis of main memory, it is worth dis-

cussing the role of accelerators, e.g the NVIDIA GPU range and Intel Xeon Phi

co-processors, and their memory in HPC platforms. Not only are accelerators

becoming increasingly popular in HPC, due to their high density of computa-

tional power, but they also present a very interesting perspective for memory.

At the time of writing, accelerators sit on the other end of a PCI bus, which is

often considered a performance bottleneck due to the high cost of data transfer,

motivating increases in code residency for performance [22].

When accelerators are utilised in ‘off-load’ mode, where the host CPU con-

trols the device and sends data to and from main memory. Unless memory is

allocated specifically on the device, both the host and the device must have

25

2. Background: Computer Memory

sufficient memory for the computation. In ‘native’ mode, where the device

acts independently of the host, only the device requires enough memory for the

problem.

DRAM Technology

Accelerator memories are traditionally based on the Graphics Double Date Rate

(GDDR) SDRAM memory technology, due to the increased bandwidth. The

increased latency associated with the technology is hidden by the increased level

of parallelism associated with the processing component in addition to an 8 bit

prefetch scheme.

The latest NVIDIA Kepler GPU, the K20X, has six memory controllers, each

driving 4×256 MB GDDR5 chips, giving a total of 6 GB across the 24 chips and

providing a total memory bandwidth of 250 GB/s. When compared to one of

the Intel Sandy Bridge generation processors, such as the 8-core E5-2680, which

have four memory channels, there is a total bandwidth of 51.2 GB/s.

Memory-per-Core Ratios

Memory-per-core is a non-obvious metric for accelerators, due to the complex-

ities of defining a comparable ‘core’ unit between accelerators and traditional

CPUs. The NVIDIA K20X consists of 14 streaming multiprocessors (SMX) – a

comparable unit to a conventional core, each comprised of 192 CUDA cores.

The card provides 6 GB of GDDR5 memory, of which 5.25 GB is accessible

when ECC is enabled. This gives a memory ratio of 384 MB per SMX and 2 MB

per CUDA core.

The first generation Intel Xeon Phi coprocessor (“Knights Corner”, 7120X)

has 61 lightweight cores, each supporting 4 threads, totalling 244 threads with

access to 16 GB of onboard GDDR5 memory. This gives a memory-per-core

ratio of ≈269 MB per core, and ≈67 MB per thread.

Obviously these memory ratios are much lower than conventional memory-

per-core ratios partly as a result of the programming models supported by these

26

2. Background: Computer Memory

architectures. A fairer comparison would be that made at the socket level, where

16 GB is well within the normal range for a modern 8-core processor.

Whilst conventional processors can be considered latency-bound the high

degree of parallelism in accelerators make them throughput-bound. As such

bandwidth is a more important metric than memory-per-‘core’, and the volume

of device memory only dictates the proportion of a problem which can be

resident at any one time.

2.2 Software Perspective

In this section we evaluate the memory system from a software perspective,

focusing on how applications interact with the operating system and in-turn the

underlying hardware. From this we can then evaluate how memory allocations

are handled and the different methods of measuring memory consumption.

2.2.1 Allocations

Different programming languages have different methods of allocating space,

such as Fortran’s ‘allocatable’ or C++’s ‘new’. These calls all result in POSIX

user level memory management calls, such as malloc and calloc. These alloca-

tions are, in turn, handled by the memory allocator which manages the virtual

address space. The allocator will request memory pages from the operating

system via one of the two system calls, ‘mmap’ and ‘brk’. Although theses

system calls are generally only used by the memory allocator they can be called

explicitly by the user for advanced memory management.

Malloc Malloc is the standard memory allocation function, which returns a

block of virtual memory address space of the given size (in bytes). The memory

is not automatically initialised to a value or touched, and so the allocator may

employ lazy allocation principles.

27

2. Background: Computer Memory

Calloc Unlike malloc, calloc initialises all of the allocated bits to zero thus

preventing lazy allocation. Calloc is designed for allocating a block of memory

composed of an array of elements of specified size.

Realloc Realloc is designed for extending a region of memory, or potentially

shrinking it. Where contiguous space in the virtual address space is available

the call extends the memory region in-place, otherwise it relocates it, in both

cases the content is preserved.

Free The free function call returns a block of memory to the allocator, and

enables the region to be used by other allocations. Unlike languages with

garbage collection, in POSIX languages free must be called explicitly to deallo-

cate memory.

mmap Memory Map (mmap) is an allocator for larger, independent, chunks

of memory. This methodology reduces fragmentation, as chunks can be indepen-

dently deallocated. In addition to mapping physical memory to virtual memory

‘mmap’ can be used to map other devices, or even files, to memory. We note

that whilst this memory is not technically part of the virtual memory heap we

do not differentiate between the two.

brk The use of ‘brk’ is a more traditional way of obtaining more memory

from the operating system. It does this by expanding the current data area in a

continuous block. A call to ‘brk’ with a negative value will shrink the data area,

again in a continuous block. Calls move the ‘program break’ location, defining

the end of the data segment for that process. Due to the use of continuous

regions of memory, fragmentation can occur, which can prevent the whole data

region from being shrunk. To minimise these effects of fragmentation, ‘brk’ is

traditionally only used for small allocations.

The research in this thesis tends to sit at the application level, and thus is

allocator agnostic. As such our experiments are based on the default system

28

2. Background: Computer Memory

Kernel Space

Stack

Memory Maps

Text Segment

Data Segment

BSS Segment

Heap

mmap

brk

Max stack size
(RLIMIT_STACK)

Dynamic libraries,
file mappings &
large allocations

Small allocations

Uninitialised static variables

Initialised static variables

Binary Image (ELF)
Low address

High address

Figure 2.5: Structure of virtual memory address space for application

allocator.

Lazy Allocation

Many operating systems operate on the principle of lazy allocations. This means

that not all of the memory allocated is mapped from virtual memory to physical

memory instantly.

With a large allocation, malloc may return a valid virtual memory address,

but not all of the pages are mapped to physical pages. Only when a page is

accessed is it actually mapped. This behaviour allows the operating system to

oversubscribe hardware pages, between applications, making use of space which

has been allocated but not used. This can cause Out Of Memory (OOM) issues

with the system, where the OOM killer will kill processes to free memory.

This behaviour is one of the main differences between malloc and calloc,

as calloc initialises the memory, thus invoking the mapping. This ensures the

memory is actually available when the application comes to use it.

29

2. Background: Computer Memory

2.2.2 Virtual Memory

Figure 2.5 represents the layout of a C style application in virtual memory

on a Linux style operating system. From this it is clear to see the regions of

memory where consumption can occur. In the figure we differentiate between

the memory map region and the heap, and present more discussion on these

regions in Section 2.2.1.

Memory, from an application perspective, is generally split into two loca-

tions: the stack and the heap (including the memory mapped region).

The Stack This region is generally used for small bits of data, such as vari-

ables and function parameters. It is composed of ‘stack frames’, which represent

the state of the current function. Stack frames are stacked in order of call, thus

are easily traversable and accessible through a single stack pointer.

Memory Mapping Segment This region of memory is consumed by calls

to ‘mmap’, and is for use for dynamic libraries and the mapping files or devices

to memory. Memory maps can also be used by allocators to store large objects.

The Heap This region is managed by calls to ‘brk’, which maintains a con-

tinuous data region. The majority of allocations are served by this data region.

The term is used throughout this thesis to refer to the memory region consumed

by allocations, though the allocator may use either ‘brk’ or ‘mmap’ to handle

the specific allocations.

2.2.3 Reporting Consumption

The use of virtual memory management in Linux makes the recording of memory

consumptions somewhat complex. It introduces subtleties of what should be

viewed as the memory consumption of an application, and how it should be

reported.

Virtual memory is the memory space visible to the application. It appears

30

2. Background: Computer Memory

continuous, but is actually mapped to a number of pages of physical memory.

Pages inside the virtual memory space may or may not actually be loaded

into memory, depending on current usage. Similarly different pages of physical

memory can be shared between multiple virtual memory spaces, in the form of

shared memory.

We detail a few of these perspectives here, and discuss the role they play in

the research presented in this thesis. Of these, one focuses on application level

and the remaining three focus on the operating system level analysis.

Allocations

At the highest level the allocation’s size is the volume of memory requested

by the application. This is the memory consumption we choose to focus on,

as it is closely coupled to the application. As such this volume should not

differ between platforms or operating systems, though the memory consumed

by system libraries may do.

We note that due to the specifics of allocator memory management, discussed

in Section 2.2.1, we must measure allocations at the application level, as opposed

to the system level. Monitoring the system calls to ‘mmap’ and ‘brk’ would only

indicate the memory assigned to the allocator, rather than what the application

specifically requested. As such there is no allowance for understanding the

effects of lazy allocations here; we simply record what the application requests,

and not how the operating system handles the allocations.

Virtual Memory Size

Virtual Memory Size (VSZ) represents an over-prediction of memory consump-

tion, by recording a total of everything that is used and everything that can

be used. This represents the complete size of the virtual memory address

space. This size also includes memory which hasn’t been loaded into physics

memory pages. As such this metric is very close to measuring allocations at the

application level, except with reduced information about the structure of the

31

2. Background: Computer Memory

allocations.

Resident Set Size

Resident Set Size (RSS) represents a total memory consumption which includes

shared memory. Whilst shared memory can be accessed by multiple different

threads, the RSS value of all owning threads will include the full volume of the

shared memory in their report.

Proportional Set Size

Proportional Set Size (PSS) is seen as a fair way of representing memory con-

sumption, but accounting for a proportional cost of shared libraries. Rather than

RSS assuming each process takes full account of the memory used by shared

libraries PSS splits the consumption of each shared library, by the number of

processes sharing it.

This method allows heavily shared libraries to contribute a small volume of

consumption to each process utilising it. This is especially applicable within the

domain of HPC, where multiple instances of the same application are loaded on

the same node.

2.3 Memory Reduction Techniques

Understanding how an application utilises memory, and how virtual memory

is translated onto hardware, lets us investigate potential methods of reducing

memory consumption at the system level. In this section we explore a number

of these memory reduction techniques and discuss how applicable they are to

HPC environments.

2.3.1 Memory Deduplication

Memory deduplication is the process of consolidating replicated pages of memory

to reduce storage requirements. It is a technique which can be applied to

32

2. Background: Computer Memory

multiple domains such as filesystems [15, 132], virtual machines [123] and, of

particular interest, HPC applications [71, 117].

The processing overheads of deduplication can reduce the appeal for many

HPC applications, as the benefits are very application dependent.

2.3.2 In Memory Compression

One alternative to deduplication is compression, where data is stored in RAM

in a compressed format to increase ‘virtual’ capacity [122]. One such example

is the IBM Power7 system which has support for Active Memory Expansion

(AME), where the operating system transparently manages both compressed

and uncompressed pools of memory [48]. In memory constrained situations data

can be compressed to free up space, then when required it can be decompressed.

The compression ratios and associated cost are workflow- and data-dependent,

so the AIX operating system comes equipped with a tool to evaluate workflows

for the ideal compression factor.

2.3.3 AMR

Adaptive Mesh Refinement (AMR) is an algorithmic approach to memory re-

ductions by limiting regions of interest in a uniform fine-grained mesh. The

technique uses a globally coarse mesh whilst maintaining multiple levels of

refinement on these areas of interest, down to the resolution of the uniform

mesh.

The benefit of this method is the global reduction in computational complex-

ity and memory consumption. Parallel implementations must use load balancing

algorithms to evenly distribute patches, to ensure that each processor has a fair

proportion of computational load.

Initial implementations of the AMR technique demonstrated a 5.2× reduc-

tion in memory requirements for the global mesh, for the given 2D problem [13].

A subsequent implementation of a 3D AMR technique saw a 22.1× reduction

in memory requirements for the specific problem [12].

33

2. Background: Computer Memory

AMR is a very popular technique in HPC applications as it can enable the

computation of larger problems, which would otherwise not fit in memory or

would otherwise take too long to compute.

2.4 Summary

In this chapter we have detailed the different types of memory and their pur-

pose in the memory hierarchy. We have demonstrated the past trends of the

technology, identifying the root cause of memory capacity problems in modern

systems.

From a software perspective we have explained the role of memory at both

an application and system level. We have discussed the different types of

allocations, and how the system interprets these calls. Building on this we have

compared the different memory consumption metrics available, and motivated

our design decisions.

By looking at consumption from an application level, by capturing memory

management function calls, we can get an accurate representation of memory

consumption. Whilst this does not allow us to interpret how the operating

system has translated these requests for memory into hardware pages, it provides

access to function information from within the application.

34

CHAPTER 3
Background: Memory Analysis Tools

In this chapter we investigate some of the principles behind software tools, to

understand their methodologies and roles in the software ecosystem. Whilst our

focus is primarily on memory analytics many of the concepts presented here are

generic and can be applied to different aspects of application analysis. Similarly

these techniques are as applicable to parallel software environments as they are

to serial environments.

We conclude this chapter with an analysis of a number of different memory

analysis tools, evaluating each tool’s capability and suitability for memory

consumption analysis. From this analysis we identify limitations in the current

tool chain, and use this to motivate the development of a new suite of memory

analysis tools.

3.1 Types of Tool

In this section we discuss the two fundamental classifications of tools, and

their association to applications. By understanding the level of application

information required we can make an informed choice on the best data collection

methodology to use; we discuss these methods in Section 3.2.

3.1.1 Debugging

Debugging tools are specifically focused on identifying problems with applica-

tions, such as the cause of segmentation faults or race conditions. Within the

field of memory debugging there is specific focus on identifying array indexing

errors and identification of uninitialised values.

35

3. Background: Memory Analysis Tools

The data collection operations required to provide this level of detailed

analysis are inherently expensive, so many tools will strike a balance between

overheads and complexity of analysis. Such a balance can be achieved by using a

mixture of data collection techniques, as this will provide some level of expensive,

deep analysis, interlaced with some cheaper, high level analysis.

The process of collecting all the information, for debugging purposes, can

facilitate the recording of some incidental metrics. In the case of memory

analysis tracking allocations for memory leak detection can also provide some

memory consumption statistics at no additional cost. Using tools for these

additional metrics is usually an expensive way of extracting the information,

but as the features are presented in an existing framework there can be a certain

appeal to their usage.

3.1.2 Profiling

Tools for profiling are more concerned with extracting a comparative metric of

performance or resource usage. Often profiling tools are of a lighter weight, in

terms of overheads, than debugging tools as they generally require less code

interruption.

Data collection is usually achieved through strategic instrumentation points;

this can be timers placed at regular intervals or queries for resource utilisation.

For certain specific profiling operations it is often required to capture the infor-

mation contained in function calls, through a method of interception.

One concern of profiling methods is avoiding the impact of the act of profil-

ing, both in terms of minimising impact and preventing instrumentation skewing

the metrics. In the case of memory consumption this entails ensuring that

the memory overhead of the tool used to record memory consumption is not

recorded. With performance analysis tools, it is minimising timer overhead and

preventing the timing of the instrumentation code.

36

3. Background: Memory Analysis Tools

3.2 Interface Methodology

Both debugging and profiling tools need to collect information about the un-

derlying application to perform their analysis, but the method chosen for data

collection is crucial. Different methods will facilitate access to varying depths of

information, which may or may not be applicable to the specific tool, but each

is accompanied by an associated cost.

In this section we detail a number of the different methods available to tools

for data collection, and identify the benefits and drawbacks of each associated

method. We note that many production tools will call upon aspects of multiple

different data collection methods, to increase portability and improve perfor-

mance.

3.2.1 API

The use of an API in tools is not particularly common, as it requires source

code modifications and will result in a binary targeted towards the specific tool.

Such an approach may be use to integrate a low overhead library which will

be utilised to capture statistics on every execution, such as the Ichnaea timing

library [4].

Some libraries provide profiling APIs, such as the MPI standard profiling

interface (PMPI) [62], to allow easy integration of profiling tools. A similar

approach is taken by the hardware counter analysis tool PAPI, which then

facilitates the construction of other tools which can utilise these function inter-

faces [78].

Another serious limitation of API based tools is the reliance on calls from

the application, relinquishing a certain amount of control to the application.

This can dramatically limit the available data if the API is not fully utilised.

From a performance aspect the overheads are dependent on the frequency of

API calls, enabling a certain amount of performance control within the tool.

37

3. Background: Memory Analysis Tools

3.2.2 Interposition

An extension of the concept of API instrumentation is the use of function

interposition, or interception. This is the process of intercepting a call to a

library function with one belonging to the tool, facilitating the collection of

data before returning control back to the application [26].

This method is feasible due to the way dynamic libraries are loaded with an

inherent ‘order’, allowing function calls of the same name to be chained. This

allows a tool to intercept a function of a given name, perform a data recording

operation, and then call the originally desired function, before returning the

result to the application.

One of the main limitations of this method is that tool control is only

available during the calling of specifically intercepted functions, and in the case

where multiple similar functions exist a matching wrapper function must be

written for each. As this method is based on the linking order of dynamic

libraries, it does not require the application to be recompiled or relinked; rather,

it relies on the runtime linking phase.

Again the performance impact of this method is defined by the number of

functions intercepted, and the frequency of their use within the application.

3.2.3 Code Injection / Pre-processing

One of the limitations of function interposition is that only function calls to

dynamically linked libraries can be intercepted. Code injection is the process of

recompiling the application code but inserting function calls at strategic points,

in accordance with the needs of the tools. Such calls could be surrounding calls

to important functions, or just at regular intervals.

One good example is the use of OpenMP pragma instrumentation, via pre-

processing, in the OPARI source-to-source translator [87].

The process of automated instrumentation allows the tool to gather sufficient

information, around certain interpreted sections, simplifying the user experi-

38

3. Background: Memory Analysis Tools

ence. As with API based instrumentation the user is left with a binary targeted

specifically towards a specific analysis tool, and not suitable for production use

as each execution would incur the overhead of the tool. A second binary is thus

required, without tool instrumentation, for performant executions. Similarly

access to the source code is essential, which is often not the case with ISV

applications or libraries.

3.2.4 DBI

Dynamic Binary Instrumentation (DBI) describes the process of inserting in-

strumentation calls into the underlying application during runtime. The process

utilises just-in-time (JIT) compilation to generate, and insert, efficient instru-

mentation code into the application.

One such system for Dynamic Binary Analysis (DBA) is Intel’s Pin frame-

work, which enables the development of tools for DBI [80].

Profiling with DBI based tools does not require application recompilation

as instrumentation is done at runtime. The overheads incurred by DBI tools

are entirely dependent on the level of instrumentation performed, but it is

potentially a very expensive methodology.

Shadow Memory

Within the field of memory analysis, one of the most important operations

available to DBI tools is memory shadowing. Shadow memory is a duplicate

of physical application memory, but providing an instrumentation interface to

memory operations.

This facilitates the storage of meta-data about the contents of the memory,

allowing the tool to record information such as access counts, array boundaries

or data type. This facility is specifically useful for tools to analyse memory cor-

ruption and indexing problems, and the Valgrind suite is a particularly popular

framework for the development of such tools based on this technique [93].

The process of shadowing memory is inherently expensive, as it adds ad-

39

3. Background: Memory Analysis Tools

ditional workload to every memory read and write operation and introduces a

large number of context switches. Additionally the storage requirements are also

high, as it must essentially duplicate the whole memory space of the application.

At each level of analysis, either at the bit or object level, associated meta-data

is required and thus the additional memory consumption is determined by the

size of this meta-data. These additional memory requirements limit the use of

such tools in memory-constrained environments.

The combined performance and memory overheads make shadow memory

tools extremely heavyweight, and should only be used to locate specific memory

corruption problems, rather than general statistics.

The Umbra [131] scalable shadow memory implementation based on the

DynamoRIO platform [17], presents a number of performance optimisations

over Valgrind, but the toolset remains limited. They demonstrate a reduction in

overheads on the SPEC suite of benchmark applications from 9.47× for Valgrind

to 3.11×.

3.2.5 Sampling

Sampling is a slightly different method of data collection to those presented pre-

viously, as is it not based on an application operation or function call. Rather,

it is based on a temporal interrupt. The concept is to interrupt application

execution at regular intervals and gather certain information about the current

state of the system.

Such an approach to limited to the data it can collect, as the classification of

the function interrupted is not controllable. Whilst it is still feasible to perform

a stack trace, the information may not be representative since the chances of

striking during an operation of particular interest is often low. Similarly, as the

interrupt is handled away from execution flow it is very hard to extract function

parameters.

The use of such a data collection technique is therefore limited to establishing

statistical probabilities, which may be useful in hot spot analysis or querying a

40

3. Background: Memory Analysis Tools

maintained source of information such as hardware counters of system files.

The overheads of this method can be extremely minimal, as the number of

interrupts can be very low, but the level of certainty will be directly affected. As

such this method is used by lightweight tools to gather a basic understanding

of application behaviour, usually as a prelude to more in-depth analysis.

3.2.6 Lightweight and Heavyweight Tools

As we can see from the discussion on data collection techniques there is an ob-

vious divide between lightweight and heavyweight methodologies. Tools which

implement these methodologies will inherit their specific overheads, thus to a

certain extent defining the cost of the tool.

All of these methods describe how to introduce a point of tool control during

application execution, and an inherent measure of frequency. One considerable

factor of overheads then becomes the operation at point of tool control. A

lightweight tool might simply record a single metric or perform a check, whereas

a more in-depth tool may perform a stack traversal or complex validation.

3.3 Related Tools

Whilst memory is a widely investigated topic, the majority of the research todate

has focused on performance and correctness rather than capacity. The majority

of profiling tools have been developed with memory as their specific point of

interest have largely aimed to measure and improve performance, and capacity

analysis is a largely unexplored area. Simple analytics are easy to obtain, but

provide minimal insight into trends or cause. More complex analytics require a

much deeper investigation, one that many non-targeted tools will not attempt.

We classify applications into two distinct camps, lightweight and heavy-

weight, based on the level of intrusion on the underlying application.

Delistavrou and Margaritis present a comprehensive comparison of many

tools for the HPC environment [30]. Their evaluation is based on general

41

3. Background: Memory Analysis Tools

capabilities, rather than the memory centric analysis we present here.

3.3.1 memP

memP was developed to understand parallel application memory consumption,

and as such comes closest to providing a level of analysis acceptable to drive

application improvement. It is designed to capture allocation information as

a program is running, and relate this information to provide an overview of

memory consumption.

Developed at LLNL as a standalone tool to answer specific questions about

the memory consumption of MPI based parallel application, the specific focus

of the tool is heap memory, specifically tracking live allocations through func-

tion interception. By processing the allocation information the tool is able to

calculate the HWM of memory allocations for each processor; this information

can then be combined for a more complete overview of the application’s memory

usage. The design of the tool is to collect and store all information internally,

a method inherently flawed for large complex runs where the volume of this

information could be detrimental to the performance of the underlying applica-

tion. The internal storage method also has performance implications, as each

allocation-deallocation pair must be matched in order to track live allocations

and total memory consumption.

One of the biggest flaws to this tool todate is the inability to store and

process this information at a later date, as it is discarded at the end of execution.

The loss of such data prevents any deeper analysis than consumption. By only

providing HWM data the tool is able to resolve neither where or when the peak

consumption occurred, nor the duration.

3.3.2 MAP

MAP is a commercial product by Allinea, the makers of the DDT parallel de-

bugger. MAP is designed as a performance analytical tool which uses sampling,

rather than events, to supply information. Whilst this method is less accurate,

42

3. Background: Memory Analysis Tools

as key events could be missed, it does provide a very lightweight method of track-

ing code progression. Although designed to identify computational hotspots, the

tool also provides the facility to monitor memory consumption over execution.

The information provided is gathered by querying the process information file

and logging the number of pages of memory allocated to that process. MAP

records the RSS value which, as discussed in Section 2.2.3, is an over prediction

due to the handling of shared libraries. This methodology is problematic, due

to gaps in the data logging, but is a fast and easy way of visualising a rough

description of application memory consumption over time.

The use of sampling in MAP means that whilst the HWM data may be highly

accurate there is no context to the data. As the allocations are not tracked the

consumption profile cannot be related back to allocations in the code, and this

prevents further analysis.

3.3.3 MEMWATCH

MEMWATCH is a memory error checker designed to monitor applications for

memory leaks and other memory faults. MEMWATCH does have some func-

tionality targeted at consumption monitoring, but at the time of writing this is

underdeveloped and only provides minimal consumption analysis.

Unlike the other tools discussed in this section MEMWATCH requires ap-

plication recompilation, as code must be linked against one of their header files.

This level of recompilation does not suit complex applications with multiple

dependencies, such as MPI applications, which must also be also be recompiled.

As such, we do not evaluate MEMWATCH further as a viable tool for large

scale parallel application analysis.

3.3.4 Valgrind

The Valgrind suite is a slightly more complex case, as it is a framework for the

development of tools, rather than a specific tool [93, 94]. Despite this, there are

some well established tools which provide some focus on memory consumption.

43

3. Background: Memory Analysis Tools

A significant portion of the focus for the Valgrind tools is the debugging

of applications. These tools are traditionally aimed at serial applications, but

parallel applications are are supported. The type of bugs the tools are designed

to identify are memory problems, often where memory outside of the normal

frame of use is referenced. To achieve this Valgrind employs the use of shadow

memory at high computational cost. This makes the overheads of Valgrind based

tools non-trivial, and their use to extract memory consumption data excessively

expensive. We also note that due to the way Valgrind occupies memory space

there can be issues profiling binaries with large statically allocated memory

segments, if these address regions overlap the instrumentation will fail.

Memcheck

Memcheck is the default Valgrind tool, which is designed to monitor for improper

memory usage, such as array index out of bounds errors and un-initialised

memory. In addition to error checking, Memcheck returns some select statistics

on heap consumption, such as the HWM.

Massif

Massif is targeted much more specifically at memory consumption on the heap,

and provides more statistics regarding consumption. Massif works on the idea

of ‘snapshots’ that record the current state of memory, which is possible due

to their internal memory management. From these snapshots Massif can then

generate consumption graphs, and even functional break downs. This function-

ality is very desirable, but unfortunately is presented in a very heavyweight

framework thus limiting its appeal.

3.3.5 Existing Tool Critique

Whilst there are a number of memory analysis tool already providing certain

capabilities they are not designed to provide detailed non-intrusive low-level

analysis.

44

3. Background: Memory Analysis Tools

Those applications which do provide low-level analysis do so at a prohibitively

expensive cost, due to their data collection methodology. Whilst those that

employ less intrusive data collection methodologies fail to expose the level of

detail required by the user to really understand what is happening within the

application.

3.3.6 Motivating New Tools

It is clear that there is a gap in the market of memory analysis tools, there is

a need to collect detailed memory consumption statistics and provide detailed

analysis, within a lightweight framework.

Massif is the only other tool to begin to fully analyse the cause of memory

consumption problems, and it does so in a prohibitively expensive framework.

Additionally the analytics are relatively basic, given the depth of information

available to the tool.

We aim to develop a new tool which expands upon some of the ideas dis-

cussed in this section, to provide greater data collection and analysis than

existing tools. Additionally we aim to do this in a lightweight and non-intrusive

environment, facilitating the memory analysis of production applications.

3.4 Summary

In this chapter we have introduced some of the key principles and methodologies

of software tools. By describing the different classifications and their data re-

quirements, we have been able to compare and contrast different data collection

techniques. Understanding the inherent benefits, and associated costs, of these

techniques allows us to understand the benefits and drawbacks of tools based

on these techniques.

This emphasises that tools based on shadow memory techniques will be able

to provide a very deep level of data collection and facilitate through analysis.

However this methodology will incur significant performance detriment which,

45

3. Background: Memory Analysis Tools

whilst acceptable for debugging tools, is excessive for tracing tools. Function

interposition tools can capture similar volumes of memory allocation data when

compared with shadow memory tools but are unable trace memory usage. This

level of data collection is available for a significantly reduced computational

overhead, making this class of tool more viable for tracing. Sampling based tools

provide a much more restricted level of data collection and associated analysis

than the other classes of tool but have a much lighter profiling overhead. This

makes such tools a good first step in profiling, allowing the user to identify

problems, but are often unable to back up this identification with analysis.

Our evaluation of these existing tools is then used to identify a gap in the

memory analysis ecosystem, thus motivating the development of a new memory

consumption analysis tool. By collecting data via the function interposition

method, like memP, but storing this allocation data with stack trace informa-

tion, like Massif, we can perform a varied array of deep analyses offline, thus

minimising the runtime overheads of the tracing tool.

46

CHAPTER 4
WMTools

In this chapter we discuss the development of our own memory consumption

analysis tool suite: WMTools.

Based on our analysis of existing tools in Section 3.3 we develop a multi-

component tool suite designed for increased analytics, where applications first

require a data collection phase and then a data analysis phase. We document

the specifics of the different components of the suite, and the way they combine

to provide analytics. We demonstrate the different forms of analytics through

a case study of the AWE Chimaera benchmark.

To conclude, we provide an analytical comparison of WMTools with the

previously discussed memory tools, identifying functionality differences, and

comparing performance.

The majority of the research presented in this chapter was originally pub-

lished in [106], and the concepts developed further in [103].

4.1 WMTrace - Data Collection

WMTools is designed on the principle of data collection and retention. WM-

Trace is the tool specifically designed to collect memory allocation information

from parallel applications and save this information to file, allowing for in-depth

processing at a later date. Whilst the implications of this data capture and

storage methodology are non-trivial the benefits are clear. Despite potentially

gigabytes of trace information, representing millions of nodes in the application

call tree, being generated you have an exact replica of the series of events

allowing for in-depth analysis [39].

47

4. WMTools

WMTrace

Application + Libraries

stdlib.h / libc

Linux Kernel

Internal
Buffer

C
om

pr
es

so
r

Stack
Database

Trace File
Malloc / Calloc /
Realloc / Free

Event
Processor

Call Stack
Traversal

ELF
Reader

Figure 4.1: WMTrace data collection process

4.1.1 Library Structure

WMTrace is a dynamic C++ library which interposes POSIX based memory

allocation calls, such as malloc, calloc, realloc and free.

Figure 4.1 illustrates the internal layout of WMTrace. As we can see the

library sits between the application and other dynamic libraries such as system

libraries. Data from memory management calls are intercepted and passed to

the event processor which records the size, time and location of allocations. This

event data is then written to an internal buffer. Call stacks, which are generated

from these events to represent the location of an allocation, are passed to a stack

dictionary which maps call stacks to a unique ID, as a mode of compression.

Periodically the internal buffer is flushed and along with a list of the newly

observed call stacks this information is passed through a compression engine,

which in-turn passes the data to file. Analysis of the application, through Elf

and the virtual address space, is also performed and stored in the trace files,

allowing function addresses to be resolved at a later date.

48

4. WMTools

4.1.2 Application Interaction

WMTrace is a dynamic library which is linked via an LD PRELOAD operation

at runtime, during the application setup phase. There are many benefits to this

format, including avoiding the need for compile time linking – there is no need

to recompile applications before tracing them with WMTrace.

WMTrace is specifically designed to handle MPI based applications, and

is initiated by an application’s call to ‘MPI Init’. This allows WMTrace to

establish separate trace files based on rank information.

ELF

From the binary WMTrace is able to ascertain the static memory partition,

which doesn’t present as a malloc but still contributes to memory consumption.

WMTrace also queries the ELF header for function address information, this

is used to resolve addresses obtained during call stack traversal. To gather

information regarding the function addresses of dynamic libraries, WMTrace

must query the virtual address space, using the ‘dl iterate phdr’ function.

We note that WMTrace uses function address information from the ELF

headers and resolves locations to within function address ranges, as such infor-

mation is largely available even without debugging information in the binary.

Stack Tracing

Stack tracing allows WMTools to understand the ‘location’ of an allocation, with

respect to the sequence of function calls which caused it. This information is

essential for any form of complex analysis that differentiates between allocations.

However the collection of this information is expensive, and can generate a lot

of data. The complexities are handled by a third party stack tracing library,

libunwind [90], which is reasonably efficient and highly portable.

We experimented with alternative methods of collecting call stack informa-

tion. There are various methods of improving the performance of frequent call

stack traversal, using additional operations [40, 92, 110, 119, 121, 125]. Many of

49

4. WMTools

these methods involve modification of the stack, and the insertion of markers,

allowing for detection to prevent further unnecessary traversal.

We developed a heuristic call stack traversal method, presented in [104],

which uses the repetition of patterns and the stack size to deduce change. With

this method we were able to predict call stack suffixes with an average accuracy

of 89%, providing an overall speedup of 12% to WMTrace.

Using our initial technique some applications, such as AMG, experienced

stack prediction accuracy as low as 5.2% – a result of low call stack densities

within the application. Methods employed to improve this accuracy were detri-

mental to the performance of the technique, thus reducing the gains available

to WMTools.

During this heuristic traversal we were unable to validate our predictions

without knowledge of the correct call stack information. Thus the variability

of accuracy becomes an issue, as this would inturn diminish confidence in later

analysis we did not pursue the method any further, within WMTools.

4.1.3 Data Storage

WMTrace has a simple method of data storage, utilising a single trace file per

MPI process. This allows each process to act independently, saving runtime,

but resulting in potentially large combined file output.

Data storage is key to WMTools, as it facilitates the offline analysis of runs,

allowing for different forms of analysis to be performed as and when they are

required. The drawback of this method is the volume of data generated, with

implications on both storage and I/O performance.

As WMTrace therefore employs lossless data collection and storage, the size

of the trace files is dependent on the number of allocations, which in most

circumstances will grow over time. The implication is that with extremely long

runs these trace files will build up in size, potentially causing problems.

WMTrace employs an internal buffer, to facilitate the periodic staging of

data to file. As this buffer is appended to file it is passed through a ZLib [133]

50

4. WMTools

compression engine, reducing the data volume.

Ferreira et al . discuss the importance of managing data storage volumes in

HPC, and the potential benefit of using standard compression algorithms to

minimise data from log outputs [38]. They utilise a parallel pzip2 algorithm,

pbzip2 [44], in conjunction with a staging area, similar to the internal buffers

utilised in WMTrace. They achieve compression ratios of over 80% HPCCG (a

conjugate gradient benchmark), though as the compression was handled by a

dedicated ‘spare’ core they do not discuss the performance implications of this

technique.

WMTrace handles the storage of stack traces in a different way to events.

As there is a lot of repetition, we maintain a map structure recording all unique

call stacks. This method of compression is more efficient than relying on ZLib

to spot repetition. Newly observed call stacks are then periodically written to

file, before the event trace segment, and are passed through the ZLib engine for

additional compression. As a form of fault tolerance trace files are well formed,

allowing the partial analysis of runs which fail mid execution.

4.2 WMAnalysis - Data Analysis

With memory consumption analysis, the most fundermental metric is high water

mark (HWM). This value will determine if a job will fit in the available memory

of a compute node, thus is a crucial metric.

From analysis of HWM values, we can gain a high-level understanding of

memory scalability. To interpret the memory consumption behaviour of the

application we need to undertake much deeper analysis. In this chapter we

present a number of analytical methods, available in WMTools, and discuss the

ways in which they can help code custodians.

To demonstrate the capabilities of the different analysis methods we il-

lustrate this section with a case study performed on the AWE application

Chimaera. We will use each analysis method to investigate a different facet

51

4. WMTools

of the application memory profile, to gain insight into the application. We base

these analytics on application runs performed on the LLNL Cab platform, based

on a strong scaling study to represent normal usage.

4.2.1 Analysis Phase

The analysis phase, provided by the WMAnalysis tool, can be executed in

different ways depending on user requirements. The analysis can be performed

as a distinct operation on the trace files, which can happen at any point after

execution – even on a different platform. As the processing on multiple files can

be expensive, WMAnalysis can make use of a parallel environment, such as that

belonging to the initial job, to perform some analysis. As such a post-processing

phase can be triggered to occur at the end of application execution, on the newly

acquired data.

Our preferred method of analysis is to use this parallel post-processing phase

to undertake a very high level HWM analysis, to establish the ranks of particular

interest. Then we undertake an offline analysis of these specific trace files with

the more comprehensive analysis tools. This method enables us to delete files

of little interest whilst preserving those of interest for further analysis, freeing

up disk space.

4.2.2 HWM Analysis

HWM analysis is the the most fundamental analytical form in WMAnalysis,

simply reporting the HWM value and the static memory consumption. When

run in parallel, WMAnalysis will report statistics on the full job, such as maxi-

mum and minimum HWM, and their respective ranks, in addition to a measure

of standard deviation. This helps gauge if there is a memory imbalance between

the processes, which may have resulted from a poor workload decomposition.

52

4. WMTools

Max mem − 288269798(B) (Rank 48)
Min mem − 245339398(B) (Rank 127)
Standard dev i a t i on − 1.4684 e+07(B)
Sta t i c memory consumption o f 10985316(B) .

Listing 4.1: Chimaera HWM report for 1203 on 128 cores

Runtime Max Mem Max Rank Min Mem Min Rank Standard Deviation
(s) (MB) (MB) (MB)

16 56.82 230.41 0 227.94 15 0.57
32 37.66 137.45 0 118.68 31 7.09
64 28.29 88.70 0 61.98 60 6.54

128 28.39 65.72 0 33.66 103 6.40
256 43.06 61.76 0 18.87 255 7.35

(a) 603 HWM profile

Runtime Max Mem Max Rank Min Mem Min Rank Standard Deviation
(s) (MB) (MB) (MB)

32 228.33 860.30 0 853.72 31 1.32
64 131.68 457.06 16 449.56 63 1.69

128 87.21 274.92 48 233.97 127 14.00
256 85.16 179.54 0 122.07 207 12.58
512 199.86 148.23 0 66.32 399 13.21

(b) 1203 HWM profile

Table 4.1: Chimaera HWM strong scaling profiles

Chimaera HWM

When WMTools is run with the instruction to post-process it generates a small

HWM report at the end of execution, utilising the parallel environment of the

job to execute WMAnalysis in parallel. Listing 4.1 illustrates an example of the

WMAnalysis output at the end of execution.

From Table 4.1 we can see both the runtime and memory profile of Chimaera

running the 603 and 1203 problems. We note that the 512 core 603 and 16 core

1203 runs were unable to execute due to invalid processor decompositions and

insufficient node memory, respectively. From these tables we can clearly see

that the HWM scaling of Chimaera is fairly poor at this problem size, but we

also see that there is very good scaling for the minimum HWM process. This

is indicative of a workload imbalance, and some rank specific behaviour such as

file I/O or communication.

53

4. WMTools

0

50

100

150

200

250

300

0 16 32 48 64 80 96 112 128

M
em

or
y

H
W

M
(M

B
)

Rank ID

Figure 4.2: Per rank HWM distribution for Chimera 1203 on 128 cores

Additionally we note that the application exhibits poor runtime performance

at large scale. This is a result of the inefficiencies of wavefront codes when

operating on small ‘pencils’ of data. In the case of 1203 on 512 cores the 2D

decomposition results in a 7×3×120 ‘cube’ which is naturally inefficient for a

wavefront code to calculate.

To better understand this HWM imbalance, we plot the HWM values of

each thread in the job. Figure 4.2 illustrates this for the 128 core run of the

1203 problem. We can clearly see two artefacts in this figure. The first is

the average disparity between the first half (64 cores) of the job and the last

half. This disparity of ≈27 MB is most likely to be the impact of a workload

imbalance. Chimaera utilises a 2D processor decomposition, resulting in a

16×8 decomposition for 128 cores. When applied to the first two dimensions

of a 120×120×120 cube we are left with an imbalance; 64 processors have

a 15×8×120 sub-domain and the remaining 64 processors have a 15×7×120

sub-domain. If we allow for a ghost cell halo, we obtain sub-domain sizes of

17×10×122 and 17×9×122 respectively, which gives a ratio of 10
9 between the

first and last 64 ranks.

The second artefact is the repeating increase of ≈13 MB every 16 cores. This

repetition correlates with the 16 cores per node structure of the Cab platform,

suggesting that a single nominated rank per node is adopting a certain operation,

most probably file I/O or additional communication.

54

4. WMTools

4.2.3 Functional Breakdown

Analysis of HWM values can reveal artefacts in consumption but provides little

explanation of the cause. In addition to HWM values WMTools is able to

generate functional breakdowns, allowing the user to perform in-depth analysis

of the allocations live at the point of HWM.

By recording the call stack of each memory allocation, WMTools is able to

group allocations, by location, so as to see the memory consumption from each

area of code. This enables the interrogation of HWM allocations for specific

functions or libraries. In Chapter 6 we exploit this feature to monitor the

memory consumption of the MPI library at the point of HWM. This allows us

to closely monitor changes in MPI memory consumption that occur in different

runtime configurations.

Chimaera Functional Analysis

HWM Functions f i l e from WMTools − WMTrace/ trace −48. f unc t i on s
HWM of 288269798(B)
#
MPI Memory summary : 14124864(B)
(4.89988%) o f memory a t t r i bu t ed to MPI (l ibmpi)
#
High Water Mark Function Breakdown

Cal l Stack : 5513 Al located 212377600(B)
(73.6732(%)) from 128 a l l o c a t i o n s

f o r a l l o c a l l o c a t a b l e
−s e tup s t o r ag e f l ux mod mp se tup s t o r ag e f l ux
−−chimaeramain
. . . .

Listing 4.2: Chimaera HWM breakdown report for 1203 on rank 48 of 128

Listings 4.2 and 4.3 present the start of the HWM function breakdown

analysis for our high (rank 48) and low (rank 127) HWM processes for the

Chimaera 1203 problem on 128 cores. We present the header and the first entry

in the function list, representing the highest consuming call stack.

By comparing the MPI consumption we can clearly see that the maximum

HWM process, rank 48, contains ≈13.5 MB of MPI memory, whereas the

minimum HWM process, rank 127, only contains ≈0.1 MB. This ratifies our

55

4. WMTools

HWM Functions f i l e from WMTools − WMTrace/ trace −127. f unc t i on s
HWM of 245339398(B)
#
MPI Memory summary : 148578(B)
(0.0605602%) o f memory a t t r i bu t ed to MPI (l ibmpi)
#
High Water Mark Function Breakdown

Cal l Stack : 5299 Al located 191139840(B)
(77.9083(%)) from 128 a l l o c a t i o n s

f o r a l l o c a l l o c a t a b l e
−s e tup s t o r ag e f l ux mod mp se tup s t o r ag e f l ux
−−chimaeramain
. . . .

Listing 4.3: Chimaera HWM breakdown report for 1203 on rank 127 of 128

explanation of the 13 MB difference occurring periodically on the first rank of

each node illustrated in Figure 4.2.

Another comparison is the size of allocations made by ‘for alloc allocatable’,

as both threads exhibit the same number of allocations. The ratio of these two

sizes, 212377600 B and 191139840 B, perfectly matches our proposed problem

size ratio of 10
9 , when assuming ghost cells. Additionally both of these sizes

perfectly represent an allocation of 10240 B per local cell.

We note that whilst this mathematical observation accounts for the largest

memory consumer at this scale, accounting for over 70% of HWM consumption,

WMTools allows us to track all other points of consumption. The tool also

enables us to observe how these percentages of consumption change over time,

due to the memory scalability of different components.

4.2.4 Temporal Graph

The HWM metric is a single value for a process, revealing the point of highest

memory consumption. What this figure does not reveal is for what percentage of

time this HWM level was sustained. The natural progression is to understand

the variance of consumption, if the HWM value is significantly higher than

during the remainder of the application’s execution.

A high variance in HWM suggests that there is a single point of execution

where a large volume of memory is allocated, shortly followed by memory deal-

56

4. WMTools

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Static Memory (MB)
Rank 48 Memory (MB)

Rank 127 Memory (MB)

Figure 4.3: Comparison of maximum and minimum HWM threads for Chimaera
1203 on 128 cores

location. Such an event might occur when large buffers are used to temporarily

store values during a data manipulation procedure. When the memory HWM

occurs as a result of a memory inefficient procedure, the implementation of

an alternative method for a potentially trivial operation, could have dramatic

influences on memory HWM.

Such is the case with matrix transpose, where data can be duplicated to

represent it in a different order. The use of in-situ matrix transposition allows

small blocks to be transposed with minimal buffers and without the allocation

of a second matrix [45].

By visualising memory consumption with a temporal reference point, it is

clear to see whether memory is fully utilised, and where there is potential for

optimisation. The comparison of different temporal traces then gives further

comprehension of the relationship between threads within the same job, and

between jobs of different size.

Chimaera Temporal Graph

Utilising the same 1203 128 cores problem we explore the temporal memory

consumption of Chimaera. Figure 4.3 illustrates the memory consumption of

the maximum and minimum HWM ranks, 48 and 127 respectively. From this

figure we can clearly see that there is a very regular pattern to the memory

57

4. WMTools

consumption, replicated on both ranks, where the consumption starts low until

about 12% through execution where it spikes, it further settles at 25%, for the

duration of the run.

By comparing the two traces we can see the absence of the minor consump-

tion growth at around 10% on rank 48, and the further variation at around 20%.

Again, this behaviour is indicative of rank specific operations.

4.2.5 Temporal Function Graphs

To expand upon the idea of temporal analysis we combine it with the func-

tional breakdown discussed previously. This enables the visualisation of the

composition of the memory consumption during execution.

By looking at functional consumption at HWM it is hard to grasp the scope

of the allocations. How long has a contributing function had that memory allo-

cated? How long will that consumption remain? By answering these questions

we can provide more insight into potential memory consumption optimisations.

As the number of unique call stacks is far too large to visualise, we restrict

our analysis to single unique functions. For this we use the last function in the

call stack, before the allocation. Using the breakdown of function consumption

at the point of HWM we select the top consuming functions, ordered by contri-

bution to HWM. All remaining functions are grouped into an additional ‘other’

category.

This form of analysis relies on sampling of the WMTools trace files, so as to

minimise the resulting output graph size. The number of samples, and functions

to display, is user configurable at analysis runtime.

These functional graphs allow the quick comparison of different trace files,

to monitor the cause of differences.

Chimaera Functional Graph

Figure 4.4 plots the memory consumption of the two most dominant contrib-

utors, the function ‘for alloc allocatable’ and the MPI library ‘libmpi.so’, for

58

4. WMTools

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Other
libmpi.so

for alloc allocatable

Figure 4.4: Rank 48 temporal functional graph for Chimera 1203 on 128 cores

the maximum HWM thread, rank 48. Listing 4.2 illustrated the dominance

of these functions at the point of HWM, but Figure 4.4 illustrates how their

consumption changes over time.

We can see that the MPI memory consumption remains fairly constant, after

an initial ramp up in the first 25% of execution. Additionally we see that the

other contributing functions, collectively referred to as ‘Other’, only consume a

very small portion of total memory, but are responsible for the initial variance

at around 12% through execution.

4.2.6 Heat Map

Many of the previous analytic methods present a single metric, such as HWM, or

the progression of a metric over time. These methods focus on a single process.

With the heat map analysis we wanted a way to compare the values of the

processes over time.

WMHeatMap takes each trace file and samples the output for memory

consumption over time. For every time sample we can then represent the current

memory consumption of every process in the job. Using the Silo data format [69],

developed at LLNL, we generate VisIt visualisations [70], which allow this data

to be represented on a grid, over time. Where available, we use the processor

decomposition of the original job to represent the memory data, with processes

59

4. WMTools

Figure 4.5: Heat Map at point of HWM for Chimera 1203 on 128 cores

grouped to nodes.

The benefit of this analysis method is it allows the simultaneous visualisation

of the temporal graph for every process. Additionally, we are able to identify

areas of localised memory consumption and consumption imbalance. Much

like node-level consumption discussed previously, we are interested in the total

memory consumption of a node; WMHeatMap provides an intuitive way of

visualising this data.

By grouping the processes by node it is easy to identify patterns in artefacts.

Poor workload decompositions may result in clusters of high memory consump-

tion processes. Equally, patterns in MPI memory consumption become very

easy to spot.

Chimaera Heat Map

Figure 4.5 shows a snapshot of WMHeatMap displaying the rank level memory

consumption of Chimaera at the sampled interval point closest to the HWM.

60

4. WMTools

For visual clarity we have utilised a greyscale mapping from black at 100% of

HWM, 274.92 MB, to white at 50% of HWM. As we can see from the figure

there is a dominant memory consumption on the first four nodes of the job and

a lower consumption on the remaining four. We can still make out the increased

consumption in the first rank of each node, as the rank grouping has a clear

representation rather than our previous assumptions.

The information portrayed in this figure is very similar to that of Figure 4.2,

for this particular example. If we study the temporal graph in Figure 4.3 we

see that Chimaera has a very flat memory consumption whilst at peak. This

means that whilst the HWM of particular ranks may not occur at the same

time, the magnitude of their consumption will be close to their HWM at any

given point during the ≈22% to 100% phase of execution. With an application

which exhibits a more sporadic memory profile, the variance will result in a

different representation.

4.2.7 Comparative Analytics

In memory analysis we are often concerned with absolute value of consumption.

For example, if one thread has a higher HWM value than another, we can draw

conclusions. What is less obvious is how comparable these values are if they

occurred at different points in execution. Comparison of functional consumption

at HWM may not hold as much significance as initially believed, if the HWM

occurred at different points in time for the different threads.

For this reason we wanted to develop a methodology for comparing threads

at equivalent points of execution.

This process involves being able to analyse a process at any arbitrary point

within execution, not just the point of process HWM. Thus we are able to

sample the processes of a job at multiple time points, and analyse consumption

at key events.

When comparing between jobs, this act becomes significantly more difficult,

and we must look to application behaviour to establish the correct time.

61

4. WMTools

HWM Time
(MB) (%)

1 4196 92.2
2 4196 92.2
3 4195 92.2
4 4196 92.2
5 3759 92.2
6 3760 92.2
7 3761 92.2
8 3756 86.4

(a) 128 cores

HWM Time
(MB) (%)

1 2331 83.5
2 2334 74.4
3 2332 83.3
4 2333 83.3
5 2326 70.8
6 2325 83.5
7 2325 83.3
8 2326 83.5
9 2085 55.2

10 2083 83.3
11 2082 89.1
12 2083 83.5
13 2081 80.0
14 2082 56.4
15 2083 47.6
16 2083 57.0

(b) 256 cores

Table 4.2: Chimaera node level HWM for 1203

Chimaera Node Level HWM

The version of Chimaera used in this study does not make use of OpenMP

parallelism, only MPI. We therefore use our comparative analysis to investigate

node level memory consumption for the code. Due to thread HWMs occurring

at different times the node level HWM is not necessarily the sum of each process

HWM. Rather, this only forms a theoretical maximum.

In Table 4.2 we present the node level HWM values for Chimaera 1203 on (a)

128 and (b) 256 cores. From Table 4.2(a) we can still see the distinct difference

between the consumption of the first and last 64 cores, due to imbalance of

problem decomposition. If we study the node-level HWM between these two

runs we can gauge the memory scaling, as opposed to the rank-level scaling

observed earlier. We observe a 1.8× reduction, over the ideal reduction of 2×

for a halving of local problem size as we transition from 128 cores to 256. If

we compare this to the rank level HWM reduction, from Table 4.1(b), we see a

1.5× reduction. Thus we can conclude that the node level memory consumption

has better scaling than the rank level. As memory is traditionally provisioned

at a node level we consider this to be the more crucial relationship.

62

4. WMTools

WMTools memP MAP memcheck Massif

HWM Value X X X X
HWM Time X � X

Stack Tracing X X X X
Temporal Graphs X X X

Memory Leak Detection X X
Inherently Parallel X X X � �

Data Maintained X � � X

Table 4.3: Memory tool feature comparison

We do, on the other hand, notice the compound effect of the grouping of

ranks with similar decompositions. As we saw in Figure 4.2, the first 64 cores of

the 128 core run have a higher HWM than the latter, as these cores are physically

located on the same nodes, the node-level differences are exacerbated.

4.3 Comparison

In this section we present an evaluation of tool capabilities, comparing our newly

developed WMTools suite with the memory tools analysed in Chapter 3. We

compare functionality and identify where capabilities were available in existing

tools and where we have introduced new capability. Additionally we clearly

identify where WMTools does not provide capability, specifically in the debug-

ging space. Where there is similar functionality we provide some comparable

examples of analysis from these other tools.

Additionally we provide a comparison of runtime overheads based on the

execution of the Chimaera 1203 problem application on 64 cores of the Cab

platform, allowing us to validate our design goal of creating a lightweight tool.

Where applicable we also compare the HWM values of these tools as a measure

of accuracy.

4.3.1 Functionality

Table 4.3 compares the functionality of WMTools to four existing tools. In the

table a ‘X’ represents full compatibility and a ‘�’ indicates partial compatibility.

63

4. WMTools

0

100

200

300

400

500

600

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Static Memory (MB)
Rank 16 Memory Consumption (MB)

Figure 4.6: WMTrace analysis of Chimaera on 64 cores

We define a tool as inherently parallel if it was originally designed for MPI based

parallelism. We also define a tool to maintain data if there is binary output from

the tool which can then be analysed post execution, although we exclude text

based summaries from this criteria.

Where there is only partial capability for a function we exclude it from this

table but discuss it further for the specific tools.

This table illustrates that we succeeded in our original goal to provide a rich

feature set, with enhanced analysis, when compared to the other tools available.

WMTools

Figure 4.6 represents the temporal memory trace from WMTools for a 64 core

run of Chimaera 1203, for the HWM rank. We use this for comparison with

other tools capable of generating temporal traces.

We note that whilst leak detection is not currently available in WMTools,

there is sufficient information contained within the traces to perform some level

of analysis, should such an analysis be desired.

memP

Listing 4.4 represents the output from memP when analysing Chimaera. The

similarities between memP and WMTools are reflected in this output, when

compared with Listing 4.1, as much of the same information is available.

64

4. WMTools

−−
@−−− Greatest Heap High Water Mark (top 1 , descending , bytes) −−−−−−−−−−−−
−−

Rank Heap HWM Stack Sum
0 479541133 10240 479551373

−−
@−−− Heap HWM S t a t i s t i c s −−−
−−
Max : 479541133
Median : 472251153
Mean : 472642340
Min : 471628953
Stddev : 1710734
Co e f f i c i e n t o f v a r i a t i on : 0 .003620

Listing 4.4: Chimaera HWM report from memP for 1203 on 64 cores

Figure 4.7: MAP analysis of Chimaera on 64 cores

Although the data collection methods of the two tools are very similar, the

feature set provided by them is quite different, as see in Table 4.3, with WMTools

providing a much richer analysis framework.

By default memP does not perform stack tracing, and only reports top level

HWM analysis. If a deeper level of analysis is required it must be specified to

memP at runtime, through environment variables, due to the fact that no data

is preserved.

MAP

Figure 4.7 represents a screen shot from the Allinea MAP tool profiling Chi-

maera. In addition to showing memory consumption we see the application

profile in terms of MPI calls and floating point intensity, which helps us to

understand the rough composition of the application. Whilst MAP does provide

capabilities to ‘drill down’ into source code, this is done to analyse computation

hotspots, and no additional memory consumption analysis is provided.

65

4. WMTools

Although MAP uses a different method of data collection to WMTools we

can see that the temporal trace generated is very similar to that of WMTools,

shown in Figure 4.6.

We note that MAP is used here in ‘profile’ mode, where a trace file is

generated during execution which can then be loaded into MAP at a later date

for analysis.

memcheck

Whilst memcheck records information regarding memory allocations and leaks,

it is not specifically designed to monitor heap usage; such functionality is

reserved for Massif. It does report the heap memory consumption at point

of exit, useful for identifying outstanding allocations, which for the Chimaera

application is fairly representative of HWM (as seen in Figure 4.6).

memcheck produces a lot of text output with regard to memory errors, and

warnings, but does not store any allocation information for post-processing.

Whilst we do not consider this maintained data (as it is of little use for analysing

memory consumption) we do record it in our performance comparison in Table 4.4,

for clarity.

Whilst Valgrind-based tools are not inherently designed for MPI-based par-

allel applications, there is sufficient support to enable analysis. One limitation

occurring from this lack of inherent support, is that there is no rank information

embedded in the output and processes are only referred to by their process ID,

which is hard to trace back to MPI rank composition.

Massif

Figure 4.8 represents the ASCII temporal trace printout from Massif, depicting

the same execution we represented in Figure 4.6, for the HWM rank. The most

significant distinction to make is the graph’s x-axis, which is displayed in terms

of giga-instructions (Gi). Due to the significant overhead of Massif, it would be

unreliable to plot a graph in terms of time, as the act of instrumentation would

66

4. WMTools

MB
475.7ˆ ::::::: :::::::::@ :::: :::::::::::: :::::@

|#:::::::::::::::::::::::@@:: : : :: :::: :@::::: ::: : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@
|#: :::: :: : :: : :::: :@ :: : : :: :::: :@: ::: : : : : ::: ::::: :::@

0 +--->Gi
0 646.4

Figure 4.8: Valgrind Massif temporal graph for Chimera 1203 on 64 cores

skew the perspective too much. Although instructions are a good substitute for

time, we attribute the differences in the shape of the graph to the irregularity of

instructions in MPI applications [108]. The MPI in Chimaera, which is dominant

in the early phase of execution (visible in Figure 4.7), will naturally introduce

synchronisation and will affect the rate of instructions, hence warping the graph.

In this example Massif collected 88 snapshots, and provides detailed func-

tional breakdowns at 7 of them.

As we can see from Table 4.3 Massif has the closest feature set to WMTools,

although the data collection methodology is very different, and this is reflected

in the performance comparison in Table 4.4.

The use of process based information in Massif, as with memcheck, makes

it hard to understand the composition of the parallel environment.

The primary distinction between the capabilities of Massif and WMTools

lay in the way data is maintained, and subsequently presented. The use of

‘snapshots’ in Massif mean that only a small subset of information is available,

at points which it has deemed to be important. Due to the way WMTools

maintains an exact copy of the event sequence, all information is available for

all points within execution. The benefit of this methodology is it allows the

analysis of allocates occurring outside of the defined points of interest presented

67

4. WMTools

Runtime (s) Slowdown (×) Data (MB) HWM (MB)

Chimaera 131.68 n/a n/a n/a
WMTools 165.77 1.26 559.09 457.06

memP 179.04 1.36 n/a 457.32
MAP 132.30 1.00 0.76 498.40

memcheck 3433.91 26.08 32.83 459.96
Massif 1322.27 10.04 1.96 475.66

Table 4.4: Memory tool overhead comparison for Chimaera 1203 on 64 cores

in Massif. This ability to perform arbitrary analysis provided much more

information and facilitates the comparative analysis of multiple trace files, where

key points of interest may not have occurred at the same time.

4.3.2 Performance

In Table 4.4 we present an overhead comparison for our selection of alternative

memory tools. Additionally we document the size of any trace files, and the

recorded HWM value. We note that due to the differences in the way these tools

collect their allocation data, there will be differences in the recorded values. The

value record by Massif is considered to be the most ‘accurate’, as it has taken

the most information into account, without over-predicting the consumption.

WMTools records the lowest HWM values out of all the tools, though very

close to memP, which suggests that there is some consumption which is not being

taken into account. We observe that this figure does not take into account the

additional ≈10 MB of static memory contained within the binary, reported in

Listing 4.1.

The sampling based method, MAP, has the lowest overhead. However, it

also over-estimates HWM due to taking its measurements from the RSS value

rather than allocation data.

The two function interposition tools, WMTools and memP, have the next

lowest overheads, and these are comparable between the two tools. We note that

memP has no storage requirements, as data is not maintained, as opposed to

WMTools which has comparatively high storage requirements. As such memP

68

4. WMTools

may be a preferable choice where data storage is constrained.

Lastly the two shadow memory tools, memcheck and Massif, have the highest

overheads with memcheck significantly slower than Massif. We attribute this to

the instrumentation performed at every memory operation to check for errors.

These performance trends are in line with those predicted in Section 3.3,

and are inherently tied to the data collection method employed, as discussed in

Section 3.2.

With regards to data storage as the application in scaled – all tools with data

output will see an increase in storage. MAP make an effort to merge similar

data across multiple processes, so will see a slower rate of data growth as the

core count of the job is increased. Both WMTools and Massif store a distinct

file per process, and so the total volume of data output will scale, roughly,

proportionally with job core count. Due to the high data volume of WMTools

this may present a limitation at large core counts. Both MAP and Massif

also take effort to store data in ‘snapshots’, as such their storage requirements

will not vastly vary with execution duration. Due to the lossless approach of

WMTools all data is maintained so execution duration will have more impact

than for the other lossy tools.

Trace File Size

In prior research we have discussed the storage implications of WMTools trace

files, as job core count is scaled [103]. We observed that whilst trace file sizes

do increase with core count the relationship is not directly proportional. Across

a selection of nine benchmark applications we experienced an average trace file

increase on 1.7× for a doubling in core count. Individual applications exhibited

average trace file increased of between 1.2× and 2.5× when the core count is

doubled.

This mixed behaviour is a result of application structure, as trace file size

is determined by number of allocations made and the depth of the call stack at

point of allocation. For applications with an allocation count proportional to the

69

4. WMTools

local problem size, the trace file size will remain roughly consistent. Applications

with a near constant number of allocations the trace files will increase in size

proportional to the core count. Increases in allocation count can occur when a

job is scaled as a result of the memory management in MPI.

MAP executes a trace merge phase where the individual trace files are

merged into a single files, removing the natural duplication which occurs from

similar events on multiple processes. This technique could be employed within

WMTools to reduce the overall trace file size, but has not not currently been

explored.

4.4 Project Availability

This project was always intended to be an open-source tool, available to anyone

with an interest in understanding memory consumption. As such WMTools

is hosted on a public repository with free access (GitHub) [101], and is made

available under the GNU General Public License (GPL).

Whilst no facility exists to track downloads and usage we have spoken to

individuals who have tested the software at a number of different institutions.

4.5 Summary

In this chapter we have presented our own memory consumption analysis tool

suite, WMTools, after identifying the limitations of existing tools. We have

detailed how the different components of the tools operate, making a clear

distinction between the data collection and data analysis phases. We have

presented a number of analysis forms which exist within the suite, and illustrated

an example of these analytical methods.

We have discussed what functionality is already available through existing

tools, and illustrated where we have established new functionality. To en-

sure competitive performance we have also presented an overheads comparison,

70

4. WMTools

demonstrating where WMTools ranks in relation to the other tools available.

From this we were able to illustrate the enhanced analytics available through

WMTools, at comparable and often favourable levels of overhead to existing

tools.

71

CHAPTER 5
Workload Analysis and Memory Scalability

In this chapter we explore the effects of strong scaling on workload efficiency.

Using measured HWM and runtime data, for a cross section of scientific applica-

tions, we explore how strong scaling can be used to reduce application memory

HWM.

With this information we simulate, using the Maui scheduler, the total run-

time for a workload of jobs on different machine configurations with decreasing

memory-per-core ratios. By reducing the available memory-per-core, we force

the jobs to be run at increasingly large scale, where there is a naturally lower

level of parallel efficiency, and thus increase overall runtime.

Applications with better memory scaling, or inherently lower memory con-

sumption, are more versatile when it comes to runtime configurations in low

memory environments, thus minimising the effects of memory-per-core reduc-

tions. We use this behaviour to drive an investigation into two techniques

to improve memory scalability, with a specific interest in reducing ghost cells.

We demonstrate how processor decomposition choice and on-node parallelism

can drastically improve memory scalability, demonstrated through a benchmark

application (SNAP).

During the first portion of this chapter (Sections 5.2 and 5.3), where we

simulate workflow scalability, we utilise memP to obtain HWM data for the

applications. Although this data collection occurred prior to the development

of WMTools, we would expect the same results had WMTools been utilised.

In the latter portion (Section 5.4), where we analyse the memory scalability of

SNAP, we utilise WMTools as it has support for openMP which is integral to

the analysis.

72

5. Workload Analysis and Memory Scalability

The decision to use a selection of benchmark applications for the first portion

of this chapter is to try and capture the varying memory scalability of different

scientific methods, and implementations. They are used to demonstrate the

methodology of analysing workflow memory scalability, rather than to represent

the exact magnitude of effects.

Similarly we utilise the SNAP benchmark due to its ability to handle different

processor decomposition methods, and its internal hybrid parallelism. What we

present is the methodology of memory analysis, using SNAP as the medium,

although the behavioural results are applicable for a wide range of applications,

although the exact results will be application dependent.

The workload efficiency analysis presented in this chapter was first published

in [105].

5.1 Related Work

Maui has been used to simulate various aspects of HPC execution, including

predicting job start times [72], scheduling policies [59] and resource partition-

ing [116].

These works often take known workloads, measured from a system, and try

to optimise execution by simulating different scheduling configurations. Our

work differs as we are generating artificial workloads, with a fixed scheduling

policy, where the workload is varied based on job size to satisfy differing memory

requirements.

One key principle we have employed is the avoidance of job dependencies,

which are often found in workflows, as this would complicate the ordering of

execution. Instead we allow jobs to be scheduled in any order and enable

scheduler backfilling where appropriate.

In the latter half of this chapter we explore some memory saving techniques,

designed to improve scalability, which can be adapted at runtime. A good

analysis of the available memory savings afforded by hybrid parallelism (in

73

5. Workload Analysis and Memory Scalability

this case MPI and OpenMP) for a large scale scientific framework is presented

by Meng et al . for Uintah [81]. They document how memory constraints are

becoming increasingly problematic at very large scale when utilising flat MPI,

and present an investigation into hybrid MPI and OpenMP parallelism. By

evaluating the memory savings from both a ghost cell and global mesh data

perspective, they are able to build an algorithmic memory consumption model

from which they conclude they can save up to 90% of memory over flat MPI.

Whilst this model does not factor in some runtime and environmental memory

consumption, such as communication buffers, it does indicate the potential

memory savings available.

This modelling does not factor in the use of additional memory, for perfor-

mance aspects such as OpenMP ‘private’ data, where there is replication to avoid

race conditions or the need for memory locks. Such performance techniques will

obviously increase the memory consumption in the practical case.

In our research we instead measure the actual savings achieved by a hybrid

parallel code, and at the same time measure the performance impact. We employ

aspects of this modelling technique in Chapter 7, where we utilise a memory

model to predict savings from the use of OpenMP based node level parallelism.

5.2 Application Memory Consumption

To simulate a workload we take a selection of six applications, representing a

cross-section of scientific domains: POP, miniFE, Sweep3D, phdMesh, MG and

LAMMPS. These applications all exhibit different behaviour, allowing us to

accurately simulate a mixed science workload.

For this section we use memory data collected using memP, as this research

was conducted before the development of WMTools. As WMTools has been

shown to produce results consistent with memP we would anticipate this study

to draw the same conclusions had WMTools been utilised for data collection.

Firstly we benchmark these applications for their strong scaling behaviour of

74

5. Workload Analysis and Memory Scalability

0

100

200

300

400

500

600

700

800

16 32 64 128 256 512 1024 2048

R
un

tim
e

(s
)

Core Count

POP
MiniFE

Sweep3D
phdMesh

MG
LAMMPS

(a) Benchmark applications runtimes

0

200

400

600

800

1000

1200

1400

1600

1800

16 32 64 128 256 512 1024 2048

M
em

or
y

(M
B

)

Core Count

POP
MiniFE

Sweep3D
phdMesh

MG
LAMMPS

(b) Benchmark applications HWM

Figure 5.1: Runtime and HWM scaling behaviour for benchmark applications
on Hera

the LLNL Hera platform, recording the runtime and HWM at each core count,

as shown in Figure 5.1. From Figure 5.1(a) we can see that the majority of the

applications scale reasonably well in terms of parallel efficiency. We do see some

subtly different scaling behaviour, where applications such as POP do not scale

efficiently at high core counts.

Figure 5.1(b) illustrates the memory consumption profiles of these same

applications. To a certain extent we see a similar behaviour in memory as we

do in runtime. Many applications scale very well, but some applications begin

to use more memory on the higher core counts. Our choice of mixed science

applications establishes a wide spread of memory consumption values, indicative

of a real world mixed science workload.

75

5. Workload Analysis and Memory Scalability

5.3 Simulating Effects of System Memory Loss

In this section we investigate the impact on workload performance, resulting

from execution on platforms with reduced memory-per-core ratios. With lower

memory-per-core ratios it becomes impossible to run large memory jobs on small

core counts, thus strong scaling is required to reduce the per-core memory. The

effect of strong scaling an application usually results in a reduction of parallel

efficiency, unless super linear scaling occurs [99]. Whilst the individual job may

complete in a faster time, the resource usage will negatively impact on the

completion of a workload.

We simulate this occurrence through the use of artificial workloads made

from our six benchmark applications, simulated on machines with ever decreas-

ing memory per core values.

5.3.1 Workload Construction

We generate three different workloads with different application weightings, to

avoid bias towards any particular application. We note that from Figure 5.1(b)

that the application phdMesh, for the current problem size, does not scale its

memory consumption below 600 MB per core. For this reason we construct

one of our workloads to exclude phdMesh, allowing us to simulate scaling to

machines with less than 600 MB per core.

Workload 1 Workload 2 Workload 3

POP 40% 20% 15%
miniFE 10% 30% 10%
Sweep3D 15% 5% 35%
phdMesh 15% 10% 0%
MG 10% 20% 25%
LAMMPS 10% 15% 15%

Table 5.1: Mixed application workload compositions

Table 5.1 details the percentage contribution of each application for our three

workloads.

76

5. Workload Analysis and Memory Scalability

5.3.2 Machine Simulation

To simulate workload execution we utilise the Maui scheduler in simulation

mode. The scheduler simulator is is designed to allow users to safely evaluate

arbitrary configurations, but in this case it allows us to simulate a production

environment with various different memory restrictions.

During the simulation each job is submitted in such a way that its runtime

requirements satisfy an artificially imposed limit on the amount of memory

available per core. We initially set our memory-per-core at 1.5 GB, as this

corresponds to the maximum usage seen in Figure 5.1(b), and then reduce this

to 1280 MB, 1024 MB, 768 MB, 682 MB, 512 MB and 256 MB per core. As

Hera has 16 cores per node, as detailed in the appendix in Figure A.2, these

memory-per-core figures represent 24 GB, 20 GB, 16 GB, 12 GB, 10.7 GB, 8 GB

and 4 GB per node. The choice of 682 MB per-core was utilised to represent

the use of a hex-core processor with 4 GB, which whilst not applicable to Hera

is interesting for other platforms.

We use 2048 cores of Hera as a basis for our simulated machine (defined using

a Maui resource trace file), and our simulated workloads consist of 1000 jobs

in the proportions defined in Table 5.1 (defined by a Maui workload trace file).

We maintain the existing polling system in Maui and replicate normal use by

specifying wall-times in excess of known execution time, and allow the scheduler

to backfill jobs where possible. Since the simulator does not allow us to submit

additional jobs while the simulation is running, we must include the complete

job list at the start and rely on polling to ensure a stream of jobs to the system.

Due to the impact of job order we simulate each different workload with ten

random orderings (repeated on all skews), and record the average runtime.

Skew Factor

Even when applications are memory constrained they can still be run on various

core counts. Typical users will often not select core counts for their jobs

optimally. Many jobs will be run at high core counts, therefore lower parallel

77

5. Workload Analysis and Memory Scalability

Skew 0.25 Skew 0.5 Skew 0.75

Workload 1 17.94% 13.21% 9.78%
Workload 2 27.76% 18.32% 12.67%
Workload 3 12.36% 8.09% 4.19%

Table 5.2: Percentage runtime increase from 1536 MB to 682 MB per core

efficiency, to reduce the overall job runtime, without consideration to global

workload efficiency.

We therefore base the selection of application core count in our workloads on

a partitioned Gaussian distribution. The distribution determines how probable

it is to select a particular core count, a skew factor is introduced to adjust this

distribution. A skew of 0.25 will ensure that the distribution has a bias towards

core counts that are closer to the minimum possible core count configuration. A

skew of 0.75 will generate a more even distribution between possible core count

configurations, to represent users who prioritise the turnaround time of their

jobs, rather than workload efficiency. In this work we are not evaluating the

efficiency of scheduling policy, but rather trying to account for the variation in

user preference. As a result, we will focus on the general trend of behaviour

rather than specific values.

5.3.3 Performance Analysis

We compare the time-to-completion for three different mixed-science workloads

as the available memory per core is reduced. Results are shown with three

different core-count selection skew factors (0.25, 0.5 and 0.75) with an identical

Maui scheduler simulator configuration used throughout.

The results for the three different workloads can be found in Figure 5.2.

For each, the average workload completion time is plotted as a trend line with

maximum and minimum times from the different job orderings reported as error

bars. Several observations can be made regarding these results.

Firstly we can observe a trend supporting our initial hypothesis, that de-

78

5. Workload Analysis and Memory Scalability

5000

6000

7000

8000

9000

10000

512 1024 2048

R
un

tim
e

(s
)

Memory Per Core (MB)

Skew Factor 0.25
Skew Factor 0.50
Skew Factor 0.75

(a) Workload 1 simulated runtime

6000

7000

8000

9000

10000

11000

512 1024 2048

R
un

tim
e

(s
)

Memory Per Core (MB)

Skew Factor 0.25
Skew Factor 0.50
Skew Factor 0.75

(b) Workload 2 simulated runtime

4500

5000

5500

6000

6500

7000

7500

8000

256 512 1024 2048

R
un

tim
e

(s
)

Memory Per Core (MB)

Skew Factor 0.25
Skew Factor 0.50
Skew Factor 0.75

(c) Workload 3 simulated runtime

Figure 5.2: Simulated runtimes for workloads with different memory restrictions

creasing memory-per-core ratios would adversely effect workload efficiency. In

all cases a reduction in memory results in an overall increase in workload

runtime.

Secondly we can see that in all cases the use of a lower skew factor, repre-

senting job submission at the lowest viable core count, results in a more efficient

79

5. Workload Analysis and Memory Scalability

runtime configuration than executions with a larger skew factor. Although these

low skew configurations are more adversely affected by the decreases in available

memory per core, as a factor of tighter job scheduling. A low skew job is more

likely to be run at larger scale when less memory is available, than a high skew

job which may have already been at a large core count. Our results exhibit an

average runtime increase of 19.35% for a skew of 0.25 as opposed to an increase

of only 8.88% for a skew of 0.75, when the memory-per-core is reduced from

1.5 GB to 682 MB.

Thirdly we show that the magnitude of runtime increase is workload depen-

dent, based on the composition of highly scalable applications. We see that

on a whole Workload 3 is much more amenable to memory reductions, when

compared with the other workloads, as visible in Table 5.2. We also see that

within workloads the job ordering has minimal effects, and does not alter the

general trends.

This observation emphasises the importance of low application memory

consumption and good memory scalability. Where applications have poor scal-

ability, or naturally high consumption, decreases in memory-per-core will force

execution on ever increasing core counts, adversely effecting workload efficiency.

Thus good scalability makes applications more versatile in terms of core count

configuration, especially in low memory environments.

5.4 Understanding Scalability

In Section 5.2 we presented the memory profiles of a number of different ap-

plications. What is clear from these results is that there is no fixed trend of

memory scaling for different applications.

One might näıvely assume that when strong scaling the memory consump-

tion will halve with every successive doubling of core count. In a similar vein one

might expect memory consumption to stay constant through weak scaling. Un-

fortunately, much like runtime, neither of these two expected trends are realistic.

80

5. Workload Analysis and Memory Scalability

(a) Seven-point data stencil (b) Ghost cells for 33 cube

Figure 5.3: Data dependency and ghost cells in a cube

Complexities within the application mean that there are some allocations which

are always required, generating a level of constant consumption, regardless of

scale. Additionally there are some allocations which will actually grow in size

with core count.

In this section we discuss the role of ghost cells in memory scalability,

and methods of reducing their impact. We also briefly discuss the role of

communication buffers in memory consumption – a topic we expand upon in

Chapter 6.

We explore the real life memory savings achievable from the techniques

presented above, through the use of the LANL benchmark SNAP, on the LLNL

platform Cab. Using SNAP we test the memory and performance differences

between a 1D and 2D decomposition and the use of hybrid parallelism.

5.4.1 Ghost Cells

The choice of decomposition strategy can make a marked difference on ghost

cell numbers. The ratio of ghost cells to data cells will in turn affect the amount

memory available to store local domain data.

To demonstrate the influence of decomposition let us consider a cubic mesh.

In this example we assume the algorithm operates a simple seven-point stencil,

81

5. Workload Analysis and Memory Scalability

(a) 1D Decomposition (b) 2D Decomposition

(c) 3D Decomposition

Figure 5.4: Decompositions of an 83 cube onto eight processes

meaning each cell requires data from the six cells surrounding it, as illustrated

in Figure 5.3(a). Such a data dependency requires each processor to maintain

a ‘halo’ of ghost cells, demonstrated in Figure 5.3(b). On boundary faces this

halo data may be available locally, but on internal faces this data must be

communicated from other processors, thus also represent communication. Ghost

cells are stored locally, but rarely computed locally, and thus are a duplication

of data that takes up additional space to aid performance.

5.4.2 Processor Decomposition

Figure 5.4 demonstrates the different methods of decomposing an 83 matrix

onto 8 processors. The options presented are 1D, 2D and 3D, all giving an

even decomposition of 64 cells per processor. Thus, in terms of our seven-point

stencil algorithm, these three decompositions are numerically equal in terms of

workload and memory.

82

5. Workload Analysis and Memory Scalability

0

10

20

30

40

50

60

70

1 4 16 64 256 1024

G
ho

st
ce

ll
m

em
or

y
(%

)

Core Count

1D Decomposition
2D Decomposition
3D Decomposition

Figure 5.5: Proportion of ghost cells as a percentage of total cells in different
decompositions of a 10243 cube

In this section we look at the memory effects of the ghost cells required to

support each decomposition. Specifically we investigate the decomposition of

a 10243 cube. For each processor count we compute the best decomposition,

and calculate the number of ghost cells required, as a percentage of the local

memory.

Figure 5.5 represented the percentage of the total cells of the decomposition

which form the halo data. It is clear to see the influence of the decomposition

on this ratio of ghost cells to data cells. As all decompositions are equal and

equivalent the only only difference at each processor count is the nature of the

decomposition.

We see that the 3D decomposition has a better scaling than the 2D decom-

position and significantly better than the 1D, improving the memory scalability

significantly.

We note that these measurements do not represent any analysis on the

suitability of such decompositions on the underlying algorithm, or their com-

munication costs. They only represent the volume of memory required to store

data which is not computed, and can be configured.

The reason the 3D decomposition outperforms the other decompositions is

it tries to configure the shape of the local problem to closely match the global

problem shape. As the global problem is a cube, it is most efficient for that to

represented in the local problem shape. What we are thus representing is the

83

5. Workload Analysis and Memory Scalability

ratio of surface area to volume, for the local problems. The lower this value the

lower the ‘wasted’ memory on each processor.

Is this experiment we have focused on a 7-point stencil; as the data depen-

dency grows to 13- and 25-point stencils the problem is amplified. In such cases

the halo region would usually be two and three cells deep, respectively.

Empirical Study

Although SNAP can operate on a 3D data domain, it only supports 2D processor

decompositions, due to the inefficiencies of 3D decompositions of sweep based

applications [6]. Thus we are only able to test the memory savings between a 1D

and 2D decomposition. Figure 5.5 illustrates the potential differences between

the two decompositions, when a single cell halo is required. To demonstrate

this effect we used a large data mesh of 5123cells, with four energy groups and 4

angles. This configuration was designed to have a large and easily decomposable

mesh, whilst minimising the memory requirements from other parameters.

From Figure 5.6 we can see both the memory consumption and runtime

impact from the choice of a 1D and a 2D decomposition. Figure 5.6(a) il-

lustrates that we see a memory reduction of 6%, on 512 cores, from the 2D

decomposition over the 1D. We also note, from Figure 5.6(b), that there is is

marked performance improvement for the 2D decomposition, as it is naturally

more efficient in terms of communication.

Whilst the memory savings presented in this section may not be of the

same magnitude of those proposed in Section 5.4.2 our memory reduction is an

absolute reduction, thus factoring in all sources of memory consumption not

just problem cells. The suggested savings are based on calculations of ghost cell

ratios to data cells, and not all of the data will contain ghost cells, thus will not

exhibit a reduction with the change of decomposition.

84

5. Workload Analysis and Memory Scalability

0

200

400

600

800

1000

1200

1400

1600

1800

64 128 256 512

M
em

or
y

(M
B

)

Core Count

1D Decomposition
2D Decomposition

(a) Decomposition comparison memory consumption for SNAP

0

50

100

150

200

250

300

350

64 128 256 512

R
un

tim
e

(s
)

Core Count

1D Decomposition
2D Decomposition

(b) Decomposition comparison runtime for SNAP

Figure 5.6: 1D and 2D decomposition comparison for SNAP

5.4.3 On-node Parallelism

Data dependencies can have a serious impact on design decisions, at many dif-

ferent layers of the development process. The choice of processor decomposition

is one area where memory utilisation can be tuned with respect to the storage

of ghost cells.

An alternative solution would be to avoid storage of the ghost cells alto-

gether. With the rise of multicore processors the density of processors-per-node

has increased greatly in the past few years. With respect to processor decompo-

sitions this means we are storing a buffer of a neighbouring thread’s cells, which

may actually reside in the same memory space. These shared memory spaces

may constitute Non-Uniform Memory Access (NUMA) regions, which allow for

fast access of data from multiple cores within the same processor.

For such a scenario, programming models such as hybrid MPI and OpenMP

85

5. Workload Analysis and Memory Scalability

may be more appropriate. For a hybrid implementation the ghost cells would

only need to be stored for the bounding region for the whole processor, rather

than each individual core. Again this minimises the surface to volume ratio,

on a per processor basis. Depending on the number of cores per processor, this

could have a dramatic effect on the number of ghost cells stored.

An extension of this idea of replication avoidance would be to remove it

altogether, not just at the processor level. Through the use of PGAS languages

(or one-sided communications in languages such as MPI) it would be possible

to engineer a solution which communicates cells individually rather than store

them – though practically some form of buffering would be desirable from a

performance perspective. The viability of such an implementation would be

based on the increased communication cost of these transfers and would present

a direct tradeoff between memory consumption and runtime.

Empirical Study

To study the effects of using hybrid parallelism, in the form of MPI and OpenMP

we compare the memory consumption and performance of SNAP. We compare

flat MPI against hybrid MPI and OpenMP run in both node level (16 OMP

threads) and NUMA level (8 OpenMP threads) per MPI task. To demonstrate

these effects on SNAP we used a 2D processor decomposition and a smaller

global mesh (963) but with a much higher number of energy groups and angles:

40 and 500 respectively.

Figure 5.7 presents a memory and runtime comparison for the two different

parallelism models available: flat MPI and hybrid MPI and OpenMP. What

we can clearly see is that there is a significant memory saving from the use of

OpenMP, shown in Figure 5.7(a); a 43.5% reduction at 1024 cores. As with the

decomposition comparison, the memory reduction is proportional to the core

count, due to the increased ratio of ghost cells to data cells.

In the case of the hybrid parallelism model we do see a performance degra-

dation over the flat MPI configuration, shown in Figure 5.7(b); a 32.0% increase

86

5. Workload Analysis and Memory Scalability

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

128 256 512 1024

M
em

or
y

(M
B

)

Core Count

Flat MPI
Hybrid MPI & OpenMP - Node

Hybrid MPI & OpenMP - Socket

(a) Parallelism model memory consumption comparison for SNAP

0

50

100

150

200

250

300

350

128 256 512 1024

R
un

tim
e

(s
)

Core Count

Flat MPI
Hybrid MPI & OpenMP - Node

Hybrid MPI & OpenMP - Socket

(b) Parallelism model runtime comparison for SNAP

Figure 5.7: Flat MPI and hybrid MPI and OpenMP comparison for SNAP

at 1024 cores.

In both cases we also compare the implication of running with a single

MPI task per node against one MPI task-per-socket. This is because a socket

represents a distinct NUMA region, and so memory accesses are constrained to

the memory attached to the specific socket. A more detailed representation of

the memory structure of Cab is presented in the appendix in Figure A.1.

What we observe is a marginally smaller memory reduction to that of the

single MPI task per node hybrid model, as a result of the introduction of one

internal boundary of ghost cells. This is still a significant reduction when

compared to the flat MPI configuration, a 42.9% reduction at 1024 cores.

In addition we observe an increase in performance, over the task per node

model, approaching and even surpassing the performance of the flat MPI con-

figuration, showing a 3.3% decrease in runtime at 1024 cores.

87

5. Workload Analysis and Memory Scalability

From the comparison of these three configurations we begin to understand

the available memory-runtime tradeoffs afforded by hybrid parallelism models.

These results were based on eight core processors - as the cores-per-node ratio

increases with future technology, the memory savings from multiple levels of

parallelism will increase, helping to address the issues of decreasing memory-

per-core ratios.

5.4.4 Communication Buffers

The topics previously covered in this section have been aimed at improving

scalability where strong scaling results in monotonically decreasing memory

consumption. Sadly this is not the case, as we saw at the start of this chapter in

Figure 5.1(b), sometimes memory consumption can increase at large scale. One

of the factors behind this increasing component is the usage of communication

buffers, either explicitly within the application or within the MPI implementa-

tion. The concept of reserving a block of memory proportional in size to the

number of ranks in the job will clearly result in increases in memory consumption

at large scale.

In Chapter 6 we present a study on these effects, identifying and analysing

the memory reserved by MPI for receiving communications from other processes.

5.5 Summary

In this chapter we have demonstrated how gaining knowledge about an applica-

tion’s HWM, from tools such as WMTools and memP, allows us to analyse the

effect of strong scaling on memory consumption.

By using a selection of scientific applications we illustrate how strong scaling

can be used to accommodate reductions in memory-per-core. Utilising higher

core counts to save memory has a negative impact on the application’s parallel

efficiency, and we use this information to model the overall runtime increase in-

curred by memory-per-core reductions. Using the Maui scheduler we simulated

88

5. Workload Analysis and Memory Scalability

the execution of three different workloads, composed of different job mixes, to

study these effects.

We illustrated how a reduction in memory-per-core from 1.5 GB to 682 MB

results in a workload runtime increase of 13.8%. We demonstrated the benefits

of improving memory scalability by constructing a specific workload of memory

scalable applications, and demonstrate a runtime increase of only 10.2% when

memory-per-core is reduced from 1.5 GB to 256 MB.

We continued this chapter by with a look at some of the causes of poor

memory scalability, with specific focus on ghost cells, and the way processor

decompositions can effect their dominance. Using WMTools we were able to

analyse the variation in HWM afforded by different processor decompositions

(1D and 2D) on the SNAP benchmark – observing a 6% reduction in HWM

at 512 cores. Similarly we analyse different parallelism modes within SNAP,

presenting a comparison of flat MPI with hybrid OpenMP and MPI. From this

we were able to demonstrate a saving of nearly 43% with an accompanied 3%

decrease in runtime, with SNAP at 1024 cores running one MPI task per NUMA

region.

Using WMTools to analyse the memory consumption at node-level, rather

than the per-core level available in other tools, enabled a fair comparison of

these parallelism techniques.

89

CHAPTER 6
MPI Memory Consumption

In this chapter we address the memory consumption of the MPI library at

increased scale. Specifically we investigate a known problem of poor memory

utilisation on InfiniBand network hardware [66, 67, 75, 115].

The problem stems from the necessity, within current implementations, to

store certain information for each communicating pair of nodes in a job. Thus

as the core count of the job increases the memory requirements of these com-

munication buffers scale accordingly.

Firstly, we present an analysis of the problem, as exhibited by the OpenMPI

MPI implementation on two different InfiniBand implementations: QLogic and

Mellanox. This analysis is performed using WMTools, to identify the contribu-

tion to memory of the MPI library at time of HWM.

Additionally, we present an investigation into available solutions, including

runtime configurations and vendor-provided libraries, and evaluate their impact

on both memory and application runtime.

We use WMTools in the context of Orthrus, a generic 3D implicit linear

solver benchmark developed at AWE, to analyse this MPI memory consumption

on specific InfiniBand implementations. Our analysis utilises two machines

with InfiniBand from different vendors, QLogic on Cab and Mellanox on Kay,

to understand the key fundamental differences in MPI memory consumption.

The similarities in the platforms, as expressed in the system diagrams in Ap-

pendix A.1, allows us to compare results with a high degree of confidence.

Using Orthrus to drive the PETSc solver library [8] using the Block JACOBI

preconditioner and GMRES solver, we solve a 503 per-core weak scaled problem.

On both platforms we utilised the Intel 12 compiler and OpenMPI 1.6.3, to

90

6. MPI Memory Consumption

build and run Orthrus.

Our reasoning for using the Orthrus benchmark in this chapter is down to

the internal communication structure. The dependence on point-to-point com-

munications, and the associated scaling of this communication pattern makes

it the perfect candidate to examine MPI memory consumption. Due to these

characteristics Orthrus had previously illustrated memory scalability issues, and

thus represented a good candidate for memory analysis. Whilst the artefacts

presented in this chapter are exposed through Orthrus they exist in all codes,

with varying magnitudes. As such any memory savings presented here will be

proportional to the initial artefact and will be code dependent.

We use this benchmark application to definitively demonstrate the memory

scaling issues of MPI under certain conditions, allowing us to identify hardware

and software configurations of specific interest. We examine the effectiveness

of runtime configurations, where communication buffer sizes are constrained, in

reducing MPI memory consumption. Lastly, we investigate the use of vendor-

specific communication libraries, allowing the optimisation of communication

protocols for specific hardware.

The MPI consumption analysis research presented in this chapter was pub-

lished in [102].

6.1 InfiniBand Communication

InfiniBand supports five modes of transport: Reliable Connection (RC), Reliable

Datagram (RD), Unreliable Connection (UC), Unreliable Datagram (UD) and

Raw Datagram. RC is the most common strategy amongst MPI implementa-

tions, due to its support for Remote Direct Memory Access (RDMA) and so

enhanced performance. RC and UC require a connection to be made between

every queue pair (QP), and memory allocated in the event of communication,

an inherently non-scalable method. RD is similar to RC but is designed to be

inherently more scalable – only one QP is used to communicate with other RD

91

6. MPI Memory Consumption

QPs.

UC and UD differ from RC and RD as they do not provide acknowledgements

for messages, and therefore are often impractical for MPI network connections.

Raw Datagram provides the facility to communicate messages which are not

interpreted.

Messages sent between QPs are tracked by a send Work Queue Entry (WQE),

thus the number of WQEs allotted per QP defines the maximum number of

outstanding send-receive operations.

6.1.1 MPI Receive Queues

There are three different types of receive queue in MPI: Per-Peer (P), Shared

Receive Queue (SRQ) and eXtended Reliability Connection (XRC). Per-peer

receive queues allocate dedicated buffers to each sender thus this memory con-

sumption will grow with the number of communicating ranks in the job. SRQs

partition a buffer space which can be utilised for messages from any source,

without dedicating space to any particular source. Thus SRQs allow both WQEs

and buffers to be reused, rather than locked to a single QP. Additionally there is

the eXtended Reliability Connection (XRC) receive queue, which is specifically

designed for Mellanox hardware to reduce the number of QPs required, as it

allows a single receive QP to be shared between multiple SRQs [114].

6.1.2 InfiniBand Interface

The communication from application level to InfiniBand hardware is via a user-

level API - the widely adopted OpenFabrics Enterprise Distribution (OFED)

industry standard. OFED provides a programming interface for libraries, such

as MPI, to enable RDMA and kernel bypass [97].

Vendors are then able to provide customised libraries built on OFED, opti-

mised for their hardware. Similarly vendors can provide optimisation libraries

for their OFED distribution to provide enhanced features.

92

6. MPI Memory Consumption

Mellanox MXM

The Mellanox optimisation library MellanoX Messaging (MXM) was specifi-

cally designed to address some of the issues their hardware faces with resource

utilisation at scale [111]. A transition to the UD communication model is

designed to improve point-to-point memory consumption, by alleviating the

need for QP-specific receive queues. The MXM library is specifically targeted

at scalability and is not intended to improve the performance of point-to-point

messages, or address collectives in anyway. Collective optimisations are pro-

vided through separate Mellanox technologies: Fabric Collective Acceleration

(FCA) for software-based optimisations, and CORE-direct for hardware-based

optimisations. These optimisations are not the focus of this study, due to their

minimal memory overheads.

QLogic PSM

The QLogic Performance Scaled Messaging (PSM) library is an alternative to

InfiniBand verbs (the traditional interface to InfiniBand) designed to increase

performance [107]. PSM is specifically designed for HPC message passing re-

quirements, and is optimised for QLogic’s on-load approach to communication,

where work is delegated to the host CPU. As such, PSM provides improvements

to both point-to-point and collective communications.

6.2 Related Work

The scalability of MPI has been a cause for concern for many years, both in

terms of runtime and resource consumption [7, 115].

As early as 2004, Liu et al. demonstrated memory issues with MPI over

InfiniBand [75]. Their experiments, comparing the memory scalability of MPI

on different network fabrics, demonstrated a problem with the use of the RC

service. The memory consumption of InfiniBand is shown to be significantly

worse than both Quadrics and Myrinet, with a scaling proportional to core

93

6. MPI Memory Consumption

count.

In [66], Koop et al. discuss the memory requirements of connections tested

through the MVAPICH MPI implementation. They determine the additional

memory required per connection with different numbers of WQEs allocated per

QP, which ranges from 8.8 KB, for 5 WQEs-per-connection, to 132.8 KB for

200 WQEs per connection (the default in MVAPICH). They demonstrate a

reduction in memory consumption from 1 GB-per-core at eight thousand cores

using the default 200 WQEs-per-QP, to less than 90 MB-per-core when using 5

WQEs-per-QP, representing an 11.3× decrease. As this reduction in WQEs will

directly affect the messaging rate (only significant for small messages), they also

investigate the use of message coalescing to improve small message performance

at low WQE counts.

In a subsequent paper, Koop et al. document an implementation of MVA-

PICH based on UD rather than RC [67]. They present findings on the memory

consumption comparing two different SRQ configurations and a UD implemen-

tation for a fully connected send-receive run, scaled to sixteen thousand cores.

They show an 80% reduction in memory consumption at sixteen thousand

cores, when comparing the UD and unoptimised SRQ-based RC configuration.

These results also demonstrate near-flat memory consumption scaling, ensuring

the viability of this technique at very large scale, whilst achieving comparable

performance and reliability.

The memory implications of scaling have been evaluated for other network

fabrics, and MPI implementations, to enable MPI on low memory architectures

such as the Blue Gene/L [37].

Shida et al. released a report detailing some of the issues they faced porting

OpenMPI to the K computer at RIKEN in Japan, comprised of 88,128 nodes

with 2 GB main memory per-core[112]. A large focus of this porting effort was

effective MPI memory management through the use of runtime profiles, which

control communication buffer size. We demonstrate a similar technique in this

thesis, with the use of the BullXMPI low memory footprint profile.

94

6. MPI Memory Consumption

In [113], Shipman et al. extended the idea of the shared receive queue to

allow resource pooling, through the use of buckets. The idea behind bucketed-

SRQs (B-SRQ) is that by having a number of receive buffers of different sizes,

buffer utilisation can be optimised for communication. With this receive queue

optimisation they are able to demonstrate efficient utilisation, resulting in an

increase in overall performance for a large selection of applications.

Other research has looked specifically at the memory registration process of

Mellanox hardware, but traditionally the focus has been on performance rather

than consumption [86].

Whilst this prior research has identified the issue of poor memory scalability

under certain conditions, they have not studied the effects on a real application.

Where applications have been used they have been communication benchmarks,

which are not representative of normal application behaviour. Additionally this

prior research has not detailed their memory analysis methodologies, or been

clear on how the MPI consumption is measured.

Where solutions have been proposed in literature, they have again failed to

demonstrate the effects on a real application. Such an approach masks the true

implications of the solution with respect to real users.

In this chapter we clearly demonstrate the issue with a real application,

and illustrate why it is felt with such gravity, and decompose the effects of the

available solutions using our in-depth analysis tools.

6.3 Application Profile

In this section we perform an application analysis, on the Orthrus benchmark,

to gain an understanding into communication and memory consumption be-

haviour. By looking at the communication patterns of the application we can

understand how each technique should reduce memory consumption and impact

performance. By measuring the number of sources of communication for each

process we can understand the ideal number of receive queues, and the size

95

6. MPI Memory Consumption

of these communications we can understand the required size of these queues.

Further, we can speculate about the performance of a queue configuration based

on the balance of these two attributes.

As receive queue count and size are the primary cause for MPI memory

consumption this information can be used to design low memory configurations

with minimal performance implications.

6.3.1 Application Communication Classification

To gain understanding of Orthrus we first perform an analysis of its communi-

cation profile. We evaluate the ratio of point-to-point to collective communica-

tions, and measure the source and destination of point-to-point communications

to understand the communication structure. Lastly, we analyse the message

sizes used in the point-to-point communications to help understand the effect

of receive queue size.

Point-to-Point and Collectives Analysis

Table 6.1 represents the breakdown of total MPI communication calls made

during execution on 64, 128 and 256 cores. From this table it is clear to see that

the dominant communication type, in terms of frequency, is point-to-point. We

also note that the growth factor between 128 and 256 cores suggests that the

frequency of point-to-point messages (3.6×) is increasing at a faster rate than

that of collectives (2.5×). These results suggests that optimisations targeted

towards point-to-point communications is likely to of considerable benefit.

Source - Destination Analysis

In Figure 6.1 we illustrate the communication pattern of our benchmark appli-

cation run on 128 cores. During an instrumented execution, we measure the

source and destination of every point-to-point communication. The colour of a

cell indicates the density of communication between the source and destination

processes, where black represents maximum observed communication through

96

6. MPI Memory Consumption

Library Call Type 64 Cores 128 Cores 256 Cores

MPI ISend Point-to-Point 118,416 446,576 1,618,632
MPI IRecv Point-to-Point 118,416 446,576 1,618,632
MPI Gather Collective 704 1,408 2,816
MPI Gatherv Collective 512 1,024 2,048
MPI Allgather Collective 3,328 6,656 13,312
MPI Allreduce Collective 105,088 263,168 652,288

Table 6.1: Different communications at 64, 128 and 256 cores

a grey-scale to white representing no communication. From this data we can

see the complexity of the problem decomposition and associated processor lay-

out; in this case each processor sends data to ≈ 1
4 of the other processors

and receives data from another ≈ 1
4 of the processors. When visualised as

a 3D processor decomposition each processes sends data to all processes in a

plane of the x-dimension and receives data from all processes in a plane of the

z-dimension. This behaviour is not representative of the communication profile

of the underlying seven-point stencil algorithm, and may indicate issues with

the communication structure.

The fact that each processor also receives from a large number of other

processors means that this application will require a large number of QPs. This

suggests that the application is a prime example to demonstrate MPI memory

scalability problems, and to evaluate potential solutions.

Point-to-Point Message Size

Figure 6.2 augments Figure 6.1 by looking at the size of these point-to-point

messages. From this figure we can see three very distinct clusterings: the first

in the 0 B to 4 B range, the second spanning from 16 KB to 64 KB, the last

group spanning from 128 KB to 512 KB.

What we ascertain from Figure 6.2 is that to optimise the receive queues for

Orthrus, we are required to support a small percentage (≈20%) of very small

messages and a large percentage (≈80%) of larger messages. There is little to

be gained from a large number of medium sized receive queue buffers, and so

97

6. MPI Memory Consumption

0

31

63

95

127

0 31 63 95 127

So
ur

ce
R

an
k

Destination Rank

Figure 6.1: Source-destination distribution for point-to-point messages on 128
cores

large buffers should be prioritised.

6.3.2 Application Memory Profile

We now perform some memory analysis to establish a memory consumption

profile, which will help us understand the importance of memory reductions. By

understanding how much memory MPI consumes, and where in the application

the consumption occurs, we are able to gauge the potential savings from our

different solutions.

Temporal Trace

Figure 6.3 shows the temporal memory profile of Orthrus on 128 cores. We can

see that Orthrus has a very regular profile, with a repeating pattern covering

the 20 time-steps. We note that there is a ‘ramp-up’ phase during the first

98

6. MPI Memory Consumption

0

5

10

15

20

25

0 4 8 16 32 64 128
256

512
1k 2k 4k 8k 16k

32k
64k

128k
256k

512k

Fr
eq

ue
nc

y
Pe

rc
en

ta
ge

(%
)

Message Size (B)

Figure 6.2: Frequency distribution of message sizes on 128 cores

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Figure 6.3: Temporal memory usage for Orthrus on128 cores

time-step where allocations are made.

We can see that the height of the spikes is consistent and non-increasing,

indicating well-managed memory and suggests there are no memory leaks.

6.4 Identifying MPI Memory Consumption

Figure 6.3 showes us that the memory profile of Orthrus is fairly regular,

but does not reveal the source of consumption. To look for MPI memory

consumption we start at large scale, where the effects of MPI artefacts will be

greatest. If we study the functional breakdown at the point of HWM on a 1024

core execution, we can observe where the memory consumption is occurring,

and identify MPI consumption.

99

6. MPI Memory Consumption

HWM Functions f i l e from WMTools − WMTrace/ trace −0. f unc t i on s
HWM of 249748421(B)
#
MPI Memory summary : 92563941(B)
(37.0629%) o f memory a t t r i bu t ed to MPI (l ibmpi)
#
High Water Mark Function Breakdown

Cal l Stack : 100 Al located 67133640(B)
(26.8805(%)) from 8015 a l l o c a t i o n s

l ibmpi . so . 1
−mca bt l openib . so
.

−−−−−−−−−−−openmpi/mca co l l sync . so
−−−−−−−−−−−−l ibmpi . so . 1
−−−−−−−−−−−−−PMTM parameter output
.

−−−−−−−−−−−−−−−−−−main
−−−−−−−−−−−−−−−−−−−/l i b 6 4 / l i b c . so . 6
−−−−−−−−−−−−−−−−−−−− s t a r t

Listing 6.1: Orthrus HWM functional breakdown on 1024 cores

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Total Memory
libmpi.so

Figure 6.4: Orthrus MPI memory consumption at 1024 cores

Listing 6.1 illustrates the output of the HWM functional breakdown, dis-

playing a partial call stack for clarity, for the HWM thread on a 1024 core run

of Orthrus with OpenMPI on Kay.

From this is is clear to see that MPI is consuming 37% of the total memory

at the point of HWM. We also see an example of this consumption as the top

consuming call stack, accounting for ≈27% of memory, occurs from the PMTM

library calling an MPI function. As the highest consuming function is MPI

related, we can immediately tell that MPI consumption is problematic in this

application configuration.

By plotting the temporal memory consumption of ‘libmpi.so’ for the same

100

6. MPI Memory Consumption

140

150

160

170

180

190

200

210

220

230

240

16 32 64 128 256 512 1024

M
em

or
y

(M
B

)

Core Count

Kay - Mellanox
Cab - QLogic

(a) Memory HWM

0

10

20

30

40

50

60

70

80

90

16 32 64 128 256 512 1024

M
em

or
y

(M
B

)

Core Count

Kay - Mellanox
Cab - QLogic

(b) MPI memory at HWM

Figure 6.5: Platform comparison of Orthrus memory scalability with OpenMPI

1024 core run, we can ascertain the nature of the consumption. Figure 6.4 shows

us that the MPI memory consumption is near constant (at ≈75 MB) throughout

the duration of the run. We note that this figure does not include memory

allocated by other MPI libraries, such as the ‘openmpi/mca *.so’ functions,

which account for an additional ≈15 MB.

This indicates that there is something inherently inefficient about the way

OpenMPI is handling memory throughout the execution, rather than a partic-

ular spike in consumption due to a specific operation. Whist this is of serious

concern it does indicate a real opportunity to reduce memory consumption, if a

more memory efficient MPI configuration can be utilised.

101

6. MPI Memory Consumption

6.5 MPI Implementation Comparison

Figure 6.5 provides a comparison of the two platforms for the memory consump-

tion of our benchmark application, as it is weak scaled. It allows us to compare

the memory consumption of both platforms without the use of any optimisation

libraries. Whilst there is significant growth in memory as we weak scale, we can

not fully attribute this to poor MPI scalability, as changes in the global problem

during scaling may result in increased consumption. To understand the actual

MPI memory scaling behaviour we must employ WMTools to decompose the

sources of consumption at the point of HWM.

Figure 6.5(b) illustrates the scaling of the memory attributed to MPI at the

point of HWM. What we can observe from this graph is that the scaling of MPI

memory is very poor in both cases, consuming up to 88 MB at 1024 cores. There

is a noticeable difference between the MPI memory consumption of QLogic and

Mellanox, of up to 14%.

The most concerning artefact of this graph is not the memory consumption

numbers, but the scaling. When we scale the core count from 16 to 1024 cores

(a 64× increase in processes) we see a corresponding increase in MPI memory

consumption of 616× with Mellanox on Cab. This behaviour is also represented

on the QLogic platform where we observe a 470× memory increase for the same

increase in processor count. This growth rate is unsustainable, even for current

job sizes, due to the limitations of memory capacity. The challenge is then

scaling Orthrus beyond tens of thousands of cores, without MPI dominating

memory consumption.

6.6 Runtime Configurations

In this section we look at a platform specific MPI implementation, BullXMPI,

a derivation of OpenMPI tuned specifically for Mellanox InfiniBand. Whilst

BullXMPI already contains optimisations for both performance and memory

consumption, it is also supplied with a number of runtime profiles. These

102

6. MPI Memory Consumption

runtime profiles each tune a specific aspect of behaviour, such as: packet size,

quality of service and RDMA configurations. A low memory footprint profile is

available to further address memory consumption, and can be used to tune the

size, quantity and type of receive queues used in communication.

The default platform configuration utilises both per-peer (P) buffers and

shared buffers (S). Receive queues are specified as a list of different queue types,

in order of increasing size. The format is as follows:

< QueueType >,< BufferSize >,< BufferCount >,

< MinimumBufferCount >,< SendAllowance >

(6.1)

The default receive queue configuration for OpenMPI on InfiniBand is:

P, 128, 256, 192, 128 : S, 2048, 256, 128, 32 :

S, 12288, 256, 128, 32 : S, 65536, 256, 128, 32

(6.2)

Our optimised BullXMPI configuration utilises the Mellanox XRC (X) buffer

type, with a very simple layout:

X, 6144, 128, 64, 1 (6.3)

This receive queue configuration is coupled with a btl openib max send size

value of 6144.

If we relate the default OpenMPI queue configuration (Equation 6.2) back

to our message size histogram (Figure 6.2) we can see that all of the small

messages will be captured by the P buffer, and a number of the larger messages

by the S buffers. Although the largest messages will have to be split to fit in

even the largest S buffers, there is generally good coverage for the message sizes

of Orthrus.

The new XRC queue structure for the low memory profile (Equation 6.3)

does not provide good coverage of the message sizes. At ≈6 KB the queue is

wasteful for the smallest of messages, and insufficient for the larger messages

which are naturally split as a result of the reduced maximum send size. Whilst

103

6. MPI Memory Consumption

0

1

2

3

4

5

6

7

8

16 32 64 128 256 512 1024

M
em

or
y

(M
B

)

Core Count

BullXMPI
Low Memory BullXMPI

(a) MPI memory at HWM

10

20

30

40

50

60

70

80

16 32 64 128 256 512 1024

Ti
m

e
(s

)

Core Count

BullXMPI
Low Memory BullXMPI

(b) Runtime

Figure 6.6: Orthrus BullXMPI comparison with low memory profile on Kay -
Mellanox

this new structure should provide very strict memory behaviour we expect it

to have a negative impact on the performance of Orthrus, due to the inevitable

queueing of messages resulting from insufficient buffer space.

Whilst our analysis leads us to believe that the configuration provided by

the Bull profile is non-optimal for Orthrus in this configuration, we could use

our understanding to design an optimal configuration. Any such configuration

would be specific to the application run in that configuration of problem size

and core count, and would not be generally applicable. Thus analysis would

be required to generate the best queue configuration for that specific execution,

which is not a viable method of optimisation.

Figure 6.6 shows the impact of running a platform specific MPI implementa-

tion, BullXMPI. The use of BullXMPI presents a significant reduction in MPI

104

6. MPI Memory Consumption

memory consumption over OpenMPI (11.4× reduction at 1024 cores), as can

be seen by comparing Figure 6.6(a) and Figure 6.5(b).

We can also see that the use of XRC receive queues, in the low memory

profile, affords an additional MPI memory reduction over BullXMPI (2.1×

reduction at 1024 cores). This represents a 24× MPI memory reduction over

OpenMPI.

From Figure 6.6(b) we can see that there is a performance impact for utilising

the low memory profile in BullXMPI (1.18× slowdown at 1024 cores). We

observe that this slowdown is more profound at larger scale, observing a similar

trend in the memory savings. We attribute this performance loss to the queueing

of messages when insufficient receive buffer resources are available.

6.7 Vendor Libraries

In this section we look at the effects of vendor-optimised libraries for the MPI

stack. We study how these libraries, when utilised on the relevant platform,

improve performance of OpenMPI with regards to both memory consumption

and runtime.

Whilst QLogic have provided an optimisation library for OpenMPI for a

number of years, the recent introduction of the Mellanox equivalent makes this

a pertinent investigation.

6.7.1 MXM

Figure 6.7 illustrates the scaling of the MPI memory consumption and appli-

cation runtime, of the base OpenMPI install and the MXM configuration. It

is clear to see from Figure 6.7(a) that at 1024 cores the MXM library offers a

significant reduction in MPI memory over the standard MPI install; from 88 MB

to 0.75 MB (a 117× reduction).

The key aspect of these results is the near-flat scaling of MPI memory

consumption from the MXM configuration. We witness only a 7.4× increase

105

6. MPI Memory Consumption

0

10

20

30

40

50

60

70

80

90

16 32 64 128 256 512 1024

M
em

or
y

(M
B

)

Core Count

Base OpenMPI
OpenMPI with MXM

(a) MPI memory at HWM

10

20

30

40

50

60

70

80

16 32 64 128 256 512 1024

Ti
m

e
(s

)

Core Count

Base OpenMPI
OpenMPI with MXM

(b) Runtime

Figure 6.7: Orthrus using MXM comparison with default OpenMPI on Kay -
Mellanox

in consumption through the 64× increase in core count, as opposed to the 616×

increase exhibited by the standard OpenMPI configuration.

From Figure 6.7(b) we observe a very similar performance trend between the

standard MPI install and the MXM optimised version; on average the MXM

configuration is ≈1.05× faster.

6.7.2 PSM

Figure 6.8 demonstrates the scaling of the MPI memory consumption and

runtime, of the base OpenMPI install and the PSM configuration. Similar to

Figure 6.7 we see a significant improvement of MPI memory consumption at

scale – 115× reduction at 1024 cores.

The performance difference between the default configuration and the PSM

106

6. MPI Memory Consumption

0

10

20

30

40

50

60

70

80

90

16 32 64 128 256 512 1024

M
em

or
y

(M
B

)

Core Count

Base OpenMPI
OpenMPI with PSM

(a) MPI memory at HWM

0

50

100

150

200

250

16 32 64 128 256 512 1024

Ti
m

e
(s

)

Core Count

Base OpenMPI
OpenMPI with PSM

(b) Runtime

Figure 6.8: Orthrus using PSM comparison with default OpenMPI on Cab -
QLogic

configuration, shown in Figure 6.8(b), is substantial. This is to be expected as

the PSM library is also designed to address the processing of messages, unlike

MXM which is specifically designed for message management. On average PSM

provides a performance improvement of ≈2×, a significant advantage.

6.8 Application Modifications

In the process of performing the application analysis we identified an unusual

communication pattern within the Orthrus benchmark application. Whilst the

underlying algorithm should make use of basic seven-point stencil communica-

tion, where each process communicates with its six surrounding processes in the

3D cube, we did not see this reflected in the communication analysis (shown in

Figure 6.1). This discrepancy suggested that PETSc was not utilising the data

107

6. MPI Memory Consumption

structure of the matrix in the intended way.

Subsequent modifications to Orthrus, by researchers at AWE and Warwick,

to address the storage of ghost cells and to utilise the PETSc structured interface

allow the data layout to be fully conveyed. Since these modifications we now

see a standard seven-point stencil communication pattern, and a reduction in

point-to-point communication messages sizes. As a result of these changes we

observe a ≈15× reduction in application memory consumption at HWM.

6.9 Summary

In this chapter we have shown how WMTools can be used to drive an investi-

gation into memory consumption scalability. Using trace data, from WMTrace,

we have been able to decompose memory at the point of HWM, attributing allo-

cations to their source function or library. From this we have been able to track

the memory consumption of MPI as we weak scale a benchmark application.

We used this data to illustrate the poor scalability of MPI memory consump-

tion on InfiniBand platforms with OpenMPI, demonstrating a 616× increase in

consumption when scaling from 16 to 1024 cores (on Mellanox hardware).

We were able to track changes in memory consumption when we employed a

vendor-specific MPI implementation, BullXMPI. By relating characteristics in

the application’s communication and memory profiles to the layout of communi-

cation buffers we were able to pre-empt behaviour when transitioning to a new

queue structure. Using this analysis we believe it would be possible to engineer

application-specific receive queue structures to optimise memory consumption,

whilst minimising impact on application performance.

Further, we were able to show how vendor-specific libraries can be used to

configure OpenMPI implementation to vastly improve MPI memory consump-

tion (showing a 117× reduction on 1024 cores on Mellanox hardware). The anal-

ysis capabilities of WMTools facilitate the validation of such memory reduction

techniques, by providing a clear breakdown of the source of consumption. Our

108

6. MPI Memory Consumption

analysis showed how memory consumption can be reduced by the interchanging

of MPI libraries, without modification to the underlying application.

Where vendor-specific optimisation libraries are not currently available this

process of analysis – of first identifying a problem external to the application

and then validating the success of the potential solution – can be used to justify

the provisioning of such libraries to users.

109

CHAPTER 7
Memory Modelling

WMTrace is a lossless data collection tool which stores all data in a file. One

of the novel uses for this information is comparative analysis between processes

of different runs.

In Chapter 5 we demonstrated how memory scaling is not always linear

with core count. This idea was developed in Chapter 6 where we investigated

the memory consumption of MPI libraries showing how memory can increase

with scale. Combined with the analysis presented in Chapter 5 we can see

that memory scaling is more complex than immediately obvious. Strong scaling

will reduce the local domain’s memory consumption, whilst weak scaling will

keep it constant. At the same time, there are other factors at play which will

influence the scalability such as ghost cells, constant data and MPI consumption.

Combined these factors make it harder to predict memory consumption at scale.

In this chapter we discuss the construction of memory consumption models,

through the analysis of multiple trace files. We deduce that at any point in time

we know the composition of memory, and the location of each allocation. By

comparing two or more traces we can identify corresponding allocations, and

look for behavioural patterns in allocation size.

Using some basic information about the different executions, specifically job

size and problem size, we can relate size changes in corresponding allocations

to the changes in job configuration. Whist not 100% accurate, we can identify

some significant trends of growth, and use these trends to generate a model for

memory consumption.

These models can be used to speculate on memory consumption for jobs of

different core counts or input size. This information can be incredibly valuable

110

7. Memory Modelling

in understanding if a job will fit into memory. Analysis of the model can also

help identify problems in application memory consumption scalability.

We show how, by using the models, we can experiment with different runtime

configurations than those currently available in the application. From these

we speculate on the available memory savings afforded by both 3D processor

decompositions and hybrid parallelisation models in the Chimaera benchmark

application.

In this chapter we provide memory models for Lare2D and Chimaera, these

applications have been chosen for this analysis due to their characteristics. The

Lare2D benchmark represents a very simplistic 2D grid calculation, and thus is

easy to understand, and model. As the primary memory consumption occurs

from variables on the grid it has predictable scalability characteristics, and thus

is a good candidate to demonstrate the modelling capabilities within WMTools.

Chimaera represents a more complex 3D grid problem. It has also been the

candidate of our previous memory consumption analysis techniques earlier in

this thesis. This allows us to use our developed knowledge of the application

structure, and memory behaviour, to develop a more complex memory scalabil-

ity model.

Although we only demonstrate the modelling capabilities on these two ap-

plications, the methods are applicable to a much wider range of applications.

Whilst we make no guarantee of the accuracy of this modelling technique outside

of the evaluated scope, we feel confident that it can be successfully applied to

alternative applications.

The initial concepts of memory modelling presented in this chapter were first

published in [103].

7.1 Related Work

There is a history of parameterised performance models at Warwick [29, 91].

Such models are designed to utilise application instrumentation to understand

111

7. Memory Modelling

the performance weightings of certain application operations. Knowing the

application input parameters and the decomposition then allows you to predict

application runtime for arbitrary scale with a high degree of accuracy.

In addition to parameterised models we have utilised simulation based mod-

els to predict application runtime [46]. Here an application skeleton is used with

a few specific parameters, such as processor and network performance metrics,

to emulate execution.

Both these approaches to modelling are very labour intensive, and require

deep knowledge of the application. The resulting models are also specific to

application and often input deck. Our approach is different, because it uses

automated comparison of data points. Without the use of domain knowledge

there is naturally a lower level of accuracy and flexibility in these models, but

they can be generated much quicker and with increased ease.

There has been a body of research into predicting heap memory consump-

tion, under different circumstances. In [51] Hofmann and Jost present a method

of predicting heap usage for first order functional languages. Using linear pro-

gramming, and type deviation, they determine the use of function parameters,

and use this information to infer heap consumption.

Similarly Braberman et al. develop a parameter based heap estimation

methodology for Java based applications [16]. Their approach uses call chains

to track parameter propagation, for a set of values within a method of specific

interest.

Both of these approaches are designed to estimate an upper bound of dy-

namic memory usage, based on the values of input parameters. Our approach

avoids static source code analysis but rather looks at trends which actually occur

when the application is run in different configurations. The two parameters of

particular interest then become local problem size and core count, rather than

specific function parameters. We understand that our method is likely to be less

accurate than a fully parameterised model, as it is constructed from a specific

instance – generating an approximate scaling function.

112

7. Memory Modelling

7.2 Point-wise Comparison

The first step towards a memory model is establishing how each allocation at

the HWM, changes as the problem is scaled. For this analysis we must take two

traces from runs at different scale and perform a point-wise comparison between

allocations. We must look at how each allocation size has changed, in relation

to the change in problem size and core count.

Firstly, WMAnalysis looks at the call stack of each allocation at the point of

HWM and maps them to the corresponding call stacks of the other trace. This

mapping then allows us to visualise the comparable memory consumption for

the two traces. For each call stack we can then compare the allocation values in

the two traces, to build up a mapping of proportional change in allocation size.

We then search for certain specific relationships by looking at these allocation

ratios in comparison to ratios of local problem size and core count. At a basic

level we identify pairs of allocations where: the allocation size is constant,

the change is proportional to the change in problem size, and the change is

proportional to the change in core count. WMAnalysis can then aggregate this

information and produce a general formula to express the changes in memory

consumption as the problem is scaled.

F (P,N) = C1
P

N
+ C2 N + C3 (7.1)

Equation 7.1 represents the three components of the memory model for

problem size P and core count N . The first constant, C1, represents the

portion of memory that shrinks when the core count is increased, this generally

represents the local problem domain. C2 represents the portion that increases

with the core count, such as communication buffers. Finally, C3 represents the

volume of memory which remains constant, regardless of changes in problem

size or core count, representing the static memory of the problem.

113

7. Memory Modelling

7.2.1 Linear Regression

To establish these memory site allocations we employ a very simplistic process

of linear regression. Using the ratio of two allocation sizes (their gradient) we

compare with a set of expected ratios. Such an analysis between two data

points on their own is fairly unreliable, but extremely quick and simple. Our

methodology gains accuracy by the volume of data accumulated. At the point

of HWM there may be tens or hundreds of thousands of live allocations, each

representing a pair of points to evaluate.

So whilst the accuracy of a single linear regression may be low, the accumu-

lated result of thousands of these relationships becomes a slightly more accurate

prediction of behaviour.

The analysis of more than two points, from three or more trace files could

help improve the accuracy of the linear regression, but it is more complex to

perform this evaluation.

7.2.2 Misinterpretation of Relationships

The process of grouping allocations makes many assumptions about the source

of the allocations and their variable dependencies. As a result there can be

errors in categorisation, primarily due to a lack of data.

With only two data points for the analysis of each allocation, WMAnalysis

essentially performs a linear regression and compares the result with known

gradients. Many allocations exhibit more complex behaviour, thus we must

make some allowances when matching allocations.

One of the biggest pitfalls with this approach of modelling is the expectation

that relationships which exist in the example case will persist in the general case.

Allocations which halve in size between two analysed runs are therefore assumed

to halve in a repeating pattern for further runs. This makes it extremely hard

to accurately model data decompositions which change shape on different core

counts.

114

7. Memory Modelling

High Water Mark (MB)

2 2259.91
4 1138.13

Table 7.1: High water mark results for Lare2D 40962

WMAnalysis attempts to addresses this by interpreting processor decom-

position information, but is still prone to incorrect inferences under certain

conditions. Typically a doubling of the core count will halve the local problem

domain in the longest dimension, to achieve the most regular decomposition.

This means that dimensions exhibit a stepping function of reductions, in ac-

cordance with the processor decomposition. Thus when taking two consecutive

strong scaled results the buffer size of only one dimension will have changed,

from this the model can only conclude that this is the only dimension with a

buffer size proportional to local problem size. Predicting this stepping function

is unreliable from only two traces, and would require a more complex model

built from three or more trace files. Such functionality is still under development

within WMTools.

We also note that this methodology is only applicable to deterministic ex-

ecutions. Where there is no deterministic decomposition, such as AMR-based

applications (which employ a load-balancing algorithm) or in Partice-In-Cell

(PIC) codes [124], such a modelling technique is not necessarily appropriate.

7.3 Lare2D - Simplistic Model

In this section we show the progression of the automated modelling technique.

We start by generating a model for a simplistic 2D magnetohydrodynamics

(MHD) application, Lare2D, with good memory scaling. This enables us to

demonstrate the methodology working in a controlled environment.

Due to the simplicity of Lare2D we attempt to model the strong scaling of

a large problem size 40962. We do this by analysing the HWM traces from

execution on two and four core runs; the HWM values for these runs are shown

115

7. Memory Modelling

Prediction (MB) Actual (MB) Error (%)

1 4505.22 4495.02 0.22
2* 2259.88 2259.91 -0.00
4* 1137.22 1138.13 -0.08
8 575.89 577.37 -0.26
16 295.23 296.47 -0.42
32 154.91 149.36 3.70
64 84.78 85.67 -1.04
128 49.75 58.98 -15.64
256 32.34 42.32 -23.59

Table 7.2: Model prediction results for Lare2D 40962

in Table 7.1.

We can see that at this scale the memory scaling is highly efficient (1.99×

reduction in HWM for a 2× increase in problem size). Whilst this does not

express any of the more complex behaviour the code may exhibit at scale, it

is suggestive that our model will be largely based around a local problem size

value.

F (P,N) = 280.7
P

N
+ 1016N + 15257783 (7.2)

The model generated from these two trace files is shown in Equation 7.2.

As we can see Lare2D has very good memory scalability; only a very small

component increases with core count, and the constant consumption is relatively

low (14.5 MB). As predicted, there is a large component dedicated to local

problem size, indicating that the code should scale well.

Using the model we can then predict the memory consumption of Lare2D at

scale. Table 7.2 shows these predictions validated against experimental results.

We see that the model error is very small, with a slight under-prediction, until

128 cores, where the error jumps to over 15% indicating a change in behaviour.

We can see from Figure 7.1 that our model prediction for Lare2D 40962 at

16 cores is accurate for the HWM. We can also see that there are three distinct

phases to the execution: an initial startup phase, a compute phase and finally a

concluding phase. The start and end phases represent the problem composition

116

7. Memory Modelling

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Memory Consumption
Model Prediction

Figure 7.1: Model prediction against temporal trace of Lare2D on 16 cores

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (%)

Memory Consumption
Model Prediction

Figure 7.2: Model prediction against temporal trace of Lare2D on 128 cores

and I/O operations of the application, rather than the actual compute phase.

If we plot one of the higher core count runs, where our model predictions

were less accurate, such as 128 cores (Figure 7.2) we get an insight into the cause

of model inaccuracy. The previously memory dominant phase, the compute, is

now shadowed by the surrounding I/O phases. Whilst still inaccurate at this

scale, the model is actually predicting the memory consumption of the compute

phase, rather than this newly dominant I/O phase. Our model is, in fact, over

predicting the compute phase by ≈10 MB, suggesting that we are not factoring

in sufficient scalability.

117

7. Memory Modelling

Prediction (MB) Actual (MB) Error (%)

64* 85.55 85.67 -0.14
128* 54.71 58.98 -7.23
256 39.35 42.32 -7.02

Table 7.3: Second model prediction results for Lare2D 40962

7.3.1 Multiple Models

By modelling the I/O phase and the compute phase separately, by invoking the

analysis tool on different runs, we can generate a second model for Lare2D. We

can then simply take the maximum of these models, for any given scaling point,

as our prediction.

F (P,N) = 246.9
P

N
+ 566.5N + 24939843 (7.3)

Equation 7.3 represents our new model for the I/O phase, based on the 64

and 128 cores runs. Their validation is presented in Table 7.3, and presents a

significant improvement over those in Table 7.2.

We note that we first observed this I/O phase at very low core count, but

did not anticipate it to exhibit a different scaling behaviour to the compute

phase. Another approach would have been to generate three models, from our

initial traces, one for each of the obvious phases. This would allow us to plot the

behaviour of the of the phases over time, however our approach of sampling the

traces when the new phase becomes dominant allows us to be more confident

about the magnitude of this consumption.

A future extension of these capabilities would be to allow the user to specify

regions of interest and generate models solely for those regions.

7.3.2 Increased Problem Size

Using our new compound model we can now attempt to predict the memory

consumption of a larger problem (81922). Table 7.4 validates our predictions

for this new problem size, and we observe a generally high level of accuracy. As

118

7. Memory Modelling

Prediction (MB) Actual (MB) Error (%)

1 17977.43 17942.23 0.20
2 8995.99 8978.81 0.19
4 4505.27 4495.13 0.23
8 2259.91 2253.38 0.29
16 1137.24 1131.62 0.50
32 575.92 570.83 0.90
64 295.28 289.97 1.83
128 155.01 149.64 3.59
256 85.65 86.18 -0.61

Table 7.4: Compound model prediction results for Lare2D 81922

we have increased the global problem size, it is easier for the models to track

the memory consumption, as a higher percentage of memory is consumed by

the local problem.

Our simplistic model of Lare2D does not capture the behaviour of ghost cells,

but rather encompasses them within the local domain behaviour. This failure

to capture the nuances of behaviour are more problematic in the modelling of

smaller problems, as the ghost cells make up a larger percentage of memory

consumption. As we move to the larger problem, there is a reduction in the

ratio of ghost cells to data cells, thus increasing the accuracy of our model.

With a 40962 problem on 256 cores, we have a local problem size of 256 × 256

cells with a local boundary of 1024 cells; for the 81922 problem, we have a

local problem size of 256×512 cells with 1536 boundary cells. Thus the ratio of

volume to boundary cells has increased from 192:3 to 256:3, giving more efficient

memory utilisation and making it easier for our basic model to predict memory

consumption, without the consideration of ghost cells.

7.4 Chimaera - Complex Model

As we have seen in Chapter 4, Chimaera has reasonably complex memory scaling

behaviour with strong influences from MPI and decomposition. For this reason

we develop a more comprehensive model to predict behaviour in more depth.

119

7. Memory Modelling

To ensure that we capture the MPI behaviour we train our model on the 32

and 64 executions of the 1203 problem, as these core counts are big enough to

exhibit some MPI artefacts.

F (P,N) = 14023
P

N
+ 105887N + 1584851 + 11081.9(GhostCells) (7.4)

From these traces we generate the model shown in Equation 7.4. We note

that the extra term used in this equation is used to denote the memory at-

tributed to ghost cells. WMAnalysis assumes a single halo of ghost data and

identifies the scaling relationships proportional to the changes in ghost cell size

to automatically generate this term. Enhancing WMAnalysis to account for

multiple levels of ghost data would be trivial, but would require the user to

specify the code behaviour at the point of model generation. We also note the

use of the overly simplified term P
N , which assumes that the global problem

is evenly distributed on every processor. Whilst this is true for very large

problem sizes, and low core counts, we have already shown it not to be the

case in Chimaera. For this reason we manually calculate the actual processor

decomposition and pass it to the model, with the corresponding local domain

size. Whilst this is a more involved process, it will produce a more accurate

model prediction.

Table 7.5 presents the validation of the model, from Equation 7.4, against

measured HWM values. From Table 7.5(a) we can see that the model is generally

very accurate for the 1203 problem, with only a minor lapse at 512 cores which

amounts to a difference of 6.9 MB.

Using the same model we can predict the memory consumption of different

problems, as the underlying behaviour of the application should be consistent.

Table 7.5(b) validates our model against the results of the 603 problem. We can

see from the error that there is a factor which our model is failing to capture,

though the magnitude is still reasonably small, 8.1 MB for 256 cores.

120

7. Memory Modelling

Decomposition Local Cells Ghost Cells Prediction (MB) Error (%)

16 4x4 108000 16928 1626.36 n/a
32* 4x8 54000 12368 857.62 -0.31
64* 8x8 27000 8258 456.33 -0.16
128 8x16 14400 6340 274.02 -0.33
256 16x16 7680 4520 177.84 -0.95
512 16x32 3840 3480 141.35 -4.64

(a) Chimaera 1203

Decomposition Local Cells Ghost Cells Prediction (MB) Error (%)

16 4x4 13500 4418 230.36 -0.03
32 4x8 7200 3340 136.33 -0.81
64 8x8 3840 2360 84.27 -4.99

128 8x16 1920 1800 59.14 -10.02
256 16x16 960 1272 53.64 -13.14
512 16x32 480 1008 70.29 n/a

(b) Chimaera 603

Table 7.5: Model validation for Chimaera

From both problem sizes in Table 7.5 we can analyse the ratio of local data

cells to ghost cells, at large scale. For the 603 problem on 512 cores we see over

twice as many ghost cells than data cells, and an almost 1:1 ratio for the similar

case on the 1203 problem. This emphasises the importance of capturing ghost

cells as a model parameter, though knowledge of the domain decomposition

algorithm is required.

7.4.1 Growth Factor Analysis

One of the most important elements of the model is the component relating

to core count, as this will determine the increasing factor as the core count is

scaled (represented as the C2 term in Equation 7.1).

The majority of this consumption is likely to originate from the MPI library

unless the application manages its own rank-to-rank communication buffers.

This means that we can visualise the model’s prediction against that of our

two problem sizes, to gain an insight into the accuracy of our trend prediction.

Whilst the model term is not designed to specifically model MPI growth, and

will not factor in constant size allocations, it is a good approximation.

121

7. Memory Modelling

0

10

20

30

40

50

60

70

16 32 64 128 256 512

M
PI

M
em

or
y

(M
B

)

Core Count

603

1203

Model

Figure 7.3: Chimaera MPI memory growth against model prediction

Figure 7.3 shows that there are essentially two magnitudes to the experienced

MPI memory consumption. MPI memory consumption should be dependent on

core count, and roughly problem size independent, thus we would expect both

problem sizes to exhibit roughly the same MPI memory consumption.

What we see from Figure 7.3 is that our model predicts, with reasonable

accuracy, the trend of growth but arguably fails to grasp the magnitude. One

potential reason is that we trained our model on the 1203 problem on 32 and 64

cores, which from the graph do not exhibit the same magnitude as the equivalent

sizes for the 603 problem.

To experiment, we retrain our model on the HWM traces from the 32 and

64 core runs for the 603 problem and revalidate. An alternative would have

been to utilise the higher core count runs (256 and 512) from the 1203 problem

which also exhibits the increased consumption. Our approach, of using the 603

problem, shows how accurate models can be generated from varying problem

sizes.

F (P,N) = 12480.2
P

N
+ 108125N + 9894469 + 10968.9(GhostCells) (7.5)

Equation 7.5 represents our updated model, based on the 603 problem traces.

We can see that this model has a vastly increased static term, which will increase

122

7. Memory Modelling

603 1203

Prediction (MB) Error (%) Prediction (MB) Error (%)

16 217.98 -5.40 1473.59 n/a
32 133.37 -2.97 784.82 -8.77
64 86.43 -2.56 423.78 -7.28

128 64.32 -2.14 260.35 -5.30
256 60.57 -1.93 174.52 -2.79
512 78.49 n/a 144.34 -2.63

Table 7.6: Model predictions for Chimaera using Equation 7.5

predictions by ≈8 MB, accompanied by a reduction in local problem size.

Table 7.6 shows the predictions, and their associated error, for both problem

sizes when modelling is based on Equation 7.5.

In comparison to the results in Tables 7.5(a) and 7.5(b) the general error rate

is a a bit higher, but in contrast to the previous model our accuracy actually

increases at scale. This trend is likely to be the result of the reduction in the

local problem component, which plays a more important role for larger problems

and at small scale. This means that for a few allocations the model is incor-

rectly identifying a relationship as constant, where it is actually proportional to

problem size.

7.5 Modelling Implementation Changes

In this section we make two conjectures about the design of new features within

the Chimaera code, and use our models to investigate their properties. From our

study in Section 5.4 we established the importance of processor decompositions

and hybrid parallelism models in reducing ghost cells and improving memory

consumption scalability.

Here we will apply modifications to our models to simulate the implemen-

tation of these features and make conjectures about the resulting memory con-

sumptions. As such we are unable to validate these results, and play no consider-

ation to implementation design choices, but rather model based on theoretical

savings. Additionally we make no comment on the performance of any such

123

7. Memory Modelling

Decomposition Local Cells Ghost Cells Prediction (MB) Predicted Saving (%)

16 4x2x2 13500 3908 212.64 2.45
32 4x4x2 6750 2498 119.21 10.62
64 4x4x4 3375 1538 72.29 16.35

128 8x4x4 1800 1090 55.46 13.77
256 8x8x4 960 740 55.00 9.19
512 8x8x8 512 488 73.43 6.45

(a) Chimaera 603

Decomposition Local Cells Ghost Cells Prediction (MB) Predicted Saving (%)

16 4x2x2 108000 15008 1453.50 1.36
32 4x4x2 54000 9488 754.70 3.84
64 4x4x4 27000 5768 397.73 6.15

128 8x4x4 13500 3908 224.19 13.89
256 8x8x4 6750 2498 142.30 18.46
512 8x8x8 3375 1538 118.49 17.91

(b) Chimaera 1203

Table 7.7: Model predictions for Chimaera with 3D processor decomposition

implementations.

We base our further analysis on the architecture of the Cab platform, in

accordance with the Chimaera model generated in Section 7.4.

7.5.1 3D Processor Decomposition

A 2D decomposition of a 3D problem domain will result in local problems in

the shape of a cuboid (a 3D rectangle). Utilising a 3D processor decomposition

will enable the generation of more regular cubic shapes. As we demonstrated in

Section 5.4 the closer to a regular cube the lower the surface to volume ratio,

thus minimising ghost cells.

For both the 1203 and the 603 problem we simulate the best 3D processor

decompositions and use these to generate memory predictions based on the

model in Equation 7.5, and generate an estimated memory saving from the

model results presented in Table 7.6; these predictions are presented in Table 7.7.

If we study the balance of ghost cells to problem cells with our 3D proces-

sor decomposition, against the standard 2D decomposition, we can see a vast

improvement. For the 512 core, 1203, case we observe 3840 local cell and 3480

124

7. Memory Modelling

ghost cell for the 2D decomposition (Table 7.5(a)) and 3375 local cells with 1538

ghost cells for the 3D decomposition (Table 7.7(b)), a ≈2× increase in the ratio

of local cells to ghost cells. This trend of improvement is exhibited across the

experiments when comparing the 2D and 3D decompositions, though is more

pronounced at higher core counts where difference between the 2D pencil and

the newly established cubic shape is most extreme.

We note that in certain circumstances, such as the 512 core 603 problem

(Table 7.7(a)), the 3D decomposition results in more local cells than the com-

parative 2D decomposition. This is a result of the decomposition of non-power-

of-two problem sizes onto power-of-two processor counts. Fortunately we also

see an approximate halving of ghost cells, thus an overall memory reduction is

still achieved.

As a whole the memory savings presented in Table 7.7 are significant, and if

they were implemented in a sufficiently performant configuration, could prove

very beneficial.

Increased Scale

Using a 3D processor decomposition has one additional benefit: the ability

to scale to more processes. A 2D decomposition of 603 cannot scale beyond

3600 cores, as this would represent a 1 × 1 × 60 problem decomposition; more

cores could not decrease the local problem size, and would be wasted. Using a

3D decomposition, it would be theoretically possible to scale to the maximum

216000 cores where a 1 × 1 × 1 problem decomposition would be achieved.

7.5.2 Hybrid MPI and OpenMP

For the hybrid modelling we remain with the 2D decomposition, and use the

layout developed in Section 5.4 of 1 MPI process and 8 OpenMP tasks per

socket. As such our modelling of 16 cores will now represent the execution of 2

processes, with the underlying parallelism of 16 OpenMP tasks.

As we crudely model the memory consumption, without any consideration of

125

7. Memory Modelling

Decomposition Local Ghost Prediction Prediction Predicted
Cells Cells / Socket (MB) / Core (MB) Saving (%)

16 2x1 108000 15008 1453.50 181.69 14.56
32 2x2 54000 9488 754.70 94.34 20.86
64 4x2 27000 6728 407.77 50.97 29.49

128 4x4 13500 4418 229.53 28.69 48.27
256 8x4 7200 3340 156.47 19.56 64.44
512 8x8 3840 2360 132.62 16.58 77.42

(a) Chimaera 603

Decomposition Local Ghost Prediction Prediction Predicted
Cells Cells / Socket (MB) / Core (MB) Saving (%)

16 2x1 864000 58808 10909.63 1363.70 6.18
32 2x2 432000 36968 5541.13 692.64 8.22
64 4x2 216000 26048 2859.36 357.42 10.13

128 4x4 108000 16928 1485.14 185.64 17.20
256 8x4 54000 12368 807.92 100.99 29.03
512 8x8 27000 8258 469.97 58.75 50.42

(b) Chimaera 1203

Table 7.8: Model predictions for Chimaera with hybrid parallelism

implementation-specific tuning, we consider our predictions to be a lower bound

of consumption.

As our new memory predictions will be per-socket, we must compare them

with the equivalent figures from the model on a per-core basis, thus we divide our

answer through by eight, to represent the number of cores-per-socket. Whilst a

per-node comparison would be fairer, since in the normal decomposition not all

cores have the same memory consumption, it would depend on rank placement

to determine socket and node level memory consumption.

As with our 3D decomposition model, our predictions are based on our

existing memory model (Equation 7.5), and our predictions make no comment

on the computational efficiency of a hybrid solution.

Table 7.8 presents our predictions for memory savings through the use of

hybrid parallelism. We predict the memory-per-socket and derive a memory-

per-core figure by even decomposition, and compare with the predictions from

Table 7.6.

A number of different memory reductions are achieved by this technique,

126

7. Memory Modelling

which add up to a very significant memory saving in certain cases. Firstly, the

decompositions are performed on socket counts, thus lower numbers by a factor

of eight, enabling more balanced decompositions than the equivalent core count

based decompositions. Secondly, by having a lower decomposition count we

remove all internal ghost cells on the socket, which can be very significant at

large scale. Lastly we avoid the duplication of constant data, across each core

within the socket, represented by the C3 term in Equation 7.1.

As we can see from Table 7.8(a) this can theoretically amount to a memory

reduction of over 75%, for the 603 problem on 512 cores. Whilst we would not

expect to see quite this magnitude of memory savings in a production imple-

mentation, they are not that distant from those presented in Section 5.4. In that

example we measured the effects of hybrid parallelism on SNAP (Figure 5.7(a))

and demonstrated a 43% reduction in memory consumption at 1024 cores for a

real implementation of this technique.

Amalgamation of Techniques

As discussed in Section 2.1, core count densities are expected to keep rising. As

they do so, hybrid parallelisation models will become increasingly appealing, if

only for the memory reductions demonstrated above.

Whilst not presented, there is no reason that the two techniques demon-

strated in this chapter (3D decompositions and hybrid parallelism) could not

be combined for additional memory savings. Whilst the performance character-

istics of such an implementation are currently unknown, the potential memory

reductions presented should warrant further investigation into application devel-

opment. As memory restrictions play a more critical role in application design,

a tradeoff between runtime and memory is likely to be required.

127

7. Memory Modelling

7.6 Model Confidence

In this chapter we have shown how, with WMTools, we can automatically

generate memory consumption models. Our technique requires the two sizes

of execution to train the model, after which we are able to predict for different

problem sizes and core counts.

To demonstrate this we have used two different benchmark applications,

and in both situations been able to validate the model predictions at larger core

counts, and problem sizes, with a high degree of accuracy. Although such results

do not establish a universally high degree of model confidence they demonstrate

the success of the methodology. Modelling, and validating the associated results,

for a significantly wider range of applications would increase confidence in the

methodology, but was beyond the scope of this research.

For both our applications we were required to validate the model predictions

on a few more test cases before we were confident of the large scale predictions.

Such a validation methodology would be advised for any subsequent application

modelling exercises.

7.7 Summary

In this chapter we have presented the methodology of generating memory models

from application traces. Using WMAnalysis we have demonstrated our imple-

mentation on two different applications (Lare2D and Chimaera). To the best of

our knowledge this is the first demonstration of the automatic generation of a

memory model based on application traces.

We have shown that the data collection and storage methodology employed

by WMTrace facilitates a much deeper level of analysis than is available in any

other comparable tool, thus justifying the runtime overhead and storage costs

of this method.

By analysing Lare2D for two small scale runs (two and four cores) we can

predict memory consumption of larger scale runs with a high degree of accuracy

128

7. Memory Modelling

(1% error at 64 cores). We also demonstrate how multiple models can be used

to track the scaling behaviour of different phases of application execution.

We demonstrate the construction of a more complex model with the Chi-

maera application, taking ghost cells and processor decompositions into account.

We were able to predict memory HWM to within 5% error on up to 512 cores,

on the same problem, and 13% error for a smaller problem. Analysis of the

growth factors attributed to MPI, allowed us to derive a new model with less

than 9% error across the two problem classes.

The importance of these models, and the ability to predict memory con-

sumption at scale, is in scheduling and potentially procurement. Knowing how

much memory a certain problem size will require allows the user to schedule jobs

on the correct core count, with sufficient memory resources available. A similar

technique can be used to estimate machine memory requirements at the point

of procurement, by predicting the memory consumption of either aspirational

problem sizes or existing job sizes at increased core counts.

Another use of these models, presented in this chapter, is the evaluation of

memory savings afforded by optimisation techniques ahead of implementation.

We adapt our existing models to simulate the development of new runtime

configurations of Chimaera to speculate on the memory savings afforded by both

3D processor decompositions and hybrid parallelism. We estimate that there

could be a potential memory saving using a 3D processor decomposition of up to

18% over the equivalent 2D decomposition. Additionally we predict that using

socket-level OpenMP with a 2D processor decomposition could theoretically

reduce memory consumption by up to 75% when using oct-core processors.

Such investigations can provide a high level benefit analysis of the technique,

from a memory perspective, ahead of time. The capabilities of WMTools mean

this information can guide development efforts to save time and money by

focusing on only those techniques which are likely to afford significant memory

reductions.

129

CHAPTER 8
Conclusion

In this thesis we have developed a methodology for memory consumption data

collection and analysis, and detailed the associated implementation of our mem-

ory consumption analysis suite WMTools. Using our memory analysis tech-

niques we have been able to investigate the effects of consumption, and memory

scalability, from the system workload level to the application level.

We have illustrated how to analyse existing applications and problems to

identify memory consumption in both temporal and functional breakdowns.

We demonstrate how to identify, and compare, artefacts in consumption across

executions of different scale, in terms of both core counts and problem size.

Combining this analysis we present a methodology to predict memory consump-

tion, through automatically constructed memory models based on allocation size

analysis.

Our research goal was to determine to what extent non-intrusive profiling

methods be used to analyse application memory consumption? In this thesis

we have not only shown the importance of memory consumption analysis, but

developed a tool chain to provide low-level non-intrusive memory analysis. We

have shown how these tools and techniques can be used to analyse individual

memory allocations in parallel applications with minimal overheads. We have

shown how this collected data can be used to evaluate memory scalability,

identify memory consumption issues and even make predictions of potential

application and problem set memory consumption. As such we feel like we have

suitably answered the initial research question, and substantially contributed to

the capabilities of the HPC community.

Whilst this research has been focused on HPC, and the benefits exhibited for

130

8. Conclusion

a number of different applications there are a number of different applications

to the methodologies and limitations to the techniques. One of the biggest

limitations to our methodology is the risk of data size expansion. To achieve

both fast and fine-grained analysis we trade off the storage of vast quantities of

data, which must be post processed. This volume of data could be a prohibitive

factor for especially large, or long, jobs. In such scenarios other techniques may

be more suitable.

8.1 Contributions

This thesis presents the following novel contributions to the domain of memory

consumption analysis:

• We have presented a method of collecting memory allocation data through

function interposition, which enables the profiling of large scale parallel

applications without the need for recompilation. By employing a method

of data compression we store all allocation data to file, unlike other tools

which discard much of this valuable information. Offline access to this

information allows for a much greater level of analysis than is otherwise

available. We have developed a suite of applications, WMTools, to imple-

ment this data collection and analysis methodology. This suite provides:

HWM, temporal, functional and comparative analysis to gain a wide

understanding of application memory behaviour. We have shown that

WMTools provides increased facility for data analysis within a lightweight

framework and demonstrated overheads comparable with other lightweight

tools.

• By studying the HWM behaviour of a selection of applications, as they

are strong scaled, we evaluated how reductions in memory-per-core ratios

would affect workload runtime. Using the Maui scheduler we simulated

the execution of artificial workloads of mixed science applications where

131

8. Conclusion

strong scaling is used to reduce memory consumption to below the simu-

lated memory-per-core ratio. From this analysis we emphasise the impor-

tance of efficient memory scalability in making applications more amenable

to memory-per-core reductions, without associated runtime implications.

Further, we looked into how two different programming paradigms (pro-

cessor decompositions and hybrid parallelism) can be used to influence

memory scalability. We demonstrated the magnitude of the available

savings afforded by these techniques through the benchmark application

SNAP.

• Using WMTools we investigated one of the more complex memory scaling

nuances, MPI memory consumption. We demonstrated how our tools

can be used to identify problems with existing OpenMPI implementations

on different InfiniBand hardware. We were able to decompose memory

consumption at HWM to attribute allocations to the MPI library, enabling

us to track the growth in MPI consumption as the core count of our

job is increased. Then we showed how different runtime configurations

(both queue configurations and vendor-optimised libraries) could be used

to address these MPI memory consumption issues. Our analysis identi-

fied that vendor-optimised libraries could be used to improve OpenMPI

implementations, to provide efficient memory scalability.

• With an aim to address concerns over memory scalability, we demon-

strated how analysis of current problems can be used to model application

memory consumption, and thereby make predictions for large scale runs.

We demonstrated how models generated from ‘small scale’ runs can be

used to estimate, with high accuracy, the memory consumption of the

application at different scales, in terms of either core count or problem

size. This type of modelling can be of further use to procurement to

estimate memory requirements for new machines, and identify any issues

which may not have presented at small scale. Additionally we showed

132

8. Conclusion

how these modes can be used to make conjectures about implementation

changes, and their associated memory savings.

8.1.1 Beneficiaries

The tools and methodologies are designed to provide assistance to a wider range

of HPC professionals.

At a high level it is crucial for system administrators to understand node

level memory usage, to assist them with the management of supercomputers.

Such information can be used to diagnose node failures and provide utilisation

statistics.

This level of understanding is also required for requirements gathering for

machine procurement. In such circumstance the needs of the applications are

crucial to minimise expenditure. Further, the modelling techniques presented

in Chapter 7 could be used to make predictions of application memory usage on

new platforms providing higher core counts, but potentially with lower memory.

At the low level this information is crucial for application developers and

code custodians. Understanding memory consumption can assist with debug-

ging and the development of performance enhancements. Tools to analyse

low-level memory consumption behaviour are crucial for the development and

maintenance of high performance code, and ensuring the productivity of devel-

opers.

8.2 Limitations

By understanding the memory requirements of applications at different scale,

we have achieved two main goals: the justification of memory-per-core ratios

during procurement, and enabling the analysis to drive memory reductions –

through both runtime configuration and application redesign.

Whilst the benefit of these goals is clear, there are certain limitations to our

research, which we will address in this section.

133

8. Conclusion

8.2.1 Data Volume

One of the aspects that set WMTools apart from other memory analysis tools

is the preservation of data. We have already discussed the motivation and

benefits of this design decision in Section 4, but there are some limitations to

this method.

The load placed on the network and I/O infrastructure can have a detrimen-

tal impact on the traced application, and also the supercomputer as a whole.

Although we have demonstrated that this method is viable at current scale (up

to a few thousand cores) we have not explored the true implications of large scale

tracing. Our benchmarking applications have been constrained to application

runs of up to an hour, as this is sufficient to gain adequate information, but this

may not be an accurate representation of full scale production application runs.

The data generated by an application run lasting upwards of a few days would

be likely to prohibit the use of such profiling methods as have been presented in

this thesis. Additionally the computational power to analyse the results would

be likely to reflect the scale of the original job.

There are a number of potential solutions, which have not been explored in

this thesis, that we will touch upon in Section 8.3.2.

Further, a very recent paper describes the process of using I/O forwarding

techniques to improve performance of trace file storage for event-based parallel

profiling tools [54]. Many of these techniques may be applicable to WMTools

to increase the viability of memory tracing at increased scale.

8.2.2 Technologies

An original assumption of this body of research was the prevalence, and impor-

tance, of POSIX-based languages in HPC. Such an assumption is based on an

understanding of current HPC applications, but no such assumptions can be

made about future HPC applications.

Whilst legacy code bases are still the body of scientific workloads in many

134

8. Conclusion

institutions there are a number of emerging programming languages and exten-

sions which are not supported by the tools developed in this thesis.

The issue can be divided into two problems: the support for non heap

based memory allocations, such as those on GPUs and other accelerators /

co-processors, and the inability to capture heap based allocations in different

programming languages (e.g Java).

The rise of accelerators has introduced another memory constrained device,

where active memory management is required by the user. For devices where

there is still a concept of host memory management calls the methodologies

presented here for data collection are still applicable, but for devices with

support for internal memory management we must look to alternative collection

techniques. Assuming these techniques can generate sufficient information the

analysis methods presented in WMTools are still valid, though an appreciation

of allocation context would be required.

With regard to alternative programming languages, we have briefly discussed

the use of OpenMP as a supplementary source of parallelism when used with

MPI, and we have provided basic support within WMTools. We have not

considered languages such as Java, as the use of a virtual machine facilitates

a very different approach to instrumentation and tracing, and there exists an

increasingly large body of research already addressing the issue. Additionally

Java has never been a prevalent programming language in large scale HPC,

due to the importance of performance. Java is not designed to optimise data

locality, or facilitate high-level optimisations, additionally the metadata associ-

ated with high-level objects, and garbage collection, results in increased memory

consumption.

Lack of support for emerging languages, which help expose parallelism, is

also a limitation of our tools. Languages such as Charm++ [98] and Intel

Cilk Plus [58] present an extension of C and C++ languages, with additional

library calls to enable parallelism. Such a layout makes it hard to relate memory

usage back to the underlying application, and so new data capture and analysis

135

8. Conclusion

techniques may be required.

8.3 Future Work

Whilst this thesis presents a self-contained and complete body of research there

are a number of potential extensions, which we were unable to address but

believe would add further value to the field.

8.3.1 Static Source Code Analysis

The memory modelling work presented in Chapter 7 is based upon understand-

ing relationships between allocation sizes in successive executions of an applica-

tion. This technique is highly automated in its ability to generate models based

on a few predictable parameters, but this does not allow for the application of

domain knowledge.

During the analysis phase we know the source code location of all of the

allocations, and their associated call stacks, and we believe we could use this

information to further advance the models. Using static source code analysis it

should be feasible to relate allocation sizes to runtime variables, whose origin

can then be traced back through the application. We believe this analysis

could then directly link allocation sizes to application problem parameters,

and potentially the input deck for that problem. Such an understanding of

the relationship between input parameters and memory consumption would

facilitate the construction of increasingly complex models, which capture much

deeper relationships.

Not only would this advanced modelling increase accuracy of memory scal-

ability studies, but it would facilitate a new type of analysis based on problem

parameters to understand which parameters have the most dramatic effect on

memory scalability. This in turn could help the development of new input decks,

with tuned parameters, to solve problems in a more memory economical way.

136

8. Conclusion

8.3.2 Mixed Mode Data Collection

One of the limitations discussed in Section 8.2 is the volume of data, and profiling

overhead, of using WMTools on large scale production runs. In such a scenario

it might be desirable to limit the profiling phase to a specific region of code, or

application execution.

The methodology employed by WMTrace requires that all allocations and de-

allocations are caught and interpreted, thus limiting opportunities to refine the

scope of analysis to a specific regions. One technique which could be employed

to minimise some data storage and runtime overheads is using mixed mode data

collection.

In Section 3.2 we detailed how different data collection techniques have in-

herent performance characteristics. By mixing WMTrace’s interposition method

with a lighter collection technique, we could enable non-allocation based con-

sumption recording (e.g sampling RSS) throughout, but with a specific region

of high intensity allocation based analysis.

As discussed, the data collected in sampling is not entirely compatible with

interposition data, as there are no allocation call stacks or allocation addresses.

This makes the interposition phase more complex, as some deallocations will

not be matched. What this method would allow is knowing roughly how much

memory was used, in total, throughout execution, in addition to tracking the

allocations within the detailed phase.

In addition to the mixed data collection mode the user would need some

method of interacting with the WMTrace library, to instruct it to enter, and

later to exit, the detailed analysis phase. This is likely to be achieved through

API calls, either WMTrace specific, or something based on the existing PMPI

profiling level calls.

This data collection technique would still facilitate the generation of graphs

and models, though not with the same detail and confidence as is available with

our current technique.

137

8. Conclusion

8.3.3 Model Prediction Validations

In Section 7.5 we presented predictions for memory savings arising from im-

plementation changes in the Chimaera application. Our conjecture is based

on the change in decomposition arising from the technique, and the associated

reduction in ghost cells and deduplication of data. Whilst we are confident in

this technique, we understand that techniques for enhancing performance will

increase memory consumption, and the savings may not be of quite the same

magnitude as our predictions for a performant implementation.

We feel that, based on the predictions, Chimaera would deeply benefit from

experimentation with these techniques; for that reason we would like to develop

an implementation which takes these techniques into account. From this we will

be able to validate our model predictions, and hopefully present some substantial

memory savings.

8.3.4 Power Consumption

In Chapter 2.1.3 we discussed the importance of power consumption, in emerging

technology. Whilst the research presented in this thesis relates to memory

consumption, there are clear parallels between the analytical techniques required

to relate the two topics. Understanding how much power an application is

consuming, and where, is likely to become a crucial form of application analysis

in the next few years.

Not only can the analysis methodologies in this thesis be adapted to un-

derstand application power consumption but the memory consumption analysis

alone can be related to power consumption. As the power costs of data storage,

and more crucially movement, begin to dominate overall application power

consumption understanding the memory profile of applications can be used as

auxiliary analysis to drive power reductions.

138

Bibliography

[1] K. Abe, M. P. Tendulkar, J. R. Jameson, P. B. Griffin, K. Nomura,

S. Fujita, and Y. Nishi. Ultra-High Bandwidth Memory with 3D-Stacked

Emerging Memory Cells. In Integrated Circuit Design and Technology and

Tutorial, 2008. ICICDT 2008. IEEE International Conference on, pages

203–206, 2008.

[2] AnandTech. NVIDIA’s GPU Technology Conference 2013

Keynote Live Blog. http://www.anandtech.com/show/6842/

nvidias-gpu-technology-conference-2013-keynote-live-blog.

[3] T. D. Arber, A. W. Longbottom, C. L. Gerrard, and A. M. Milne.

A Staggered Grid, Lagrangian–Eulerian Remap Code for 3-D MHD

Simulations. Multiple values selected, 171(1):151–181, July 2001.

[4] AWE plc. Ichnaea (PMTM). http://sourceforge.net/projects/

ichnaea/.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, and R. S.

Schreiber. The NAS Parallel Benchmarks Summary and Preliminary Re-

sults. Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,

pages 158–165, 1991.

[6] R. S. Baker and R. E. Alcouffe. DANTSYS/MPI–A System for 3-D

Deterministic Transport on Parallel Architectures. Three-dimensional

deterministic radiation transport computer programs, pages 1–17, 1997.

[7] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,

R. Thakur, and J. Träff. MPI on a Million Processors. Recent Advances

in Parallel Virtual Machine and Message Passing Interface, pages 20–30,

2009.

[8] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient

Management of Parallelism in Object Oriented Numerical Software Li-

braries. In Modern Software Tools in Scientific Computing, pages 163–202.

Birkhäuser Press, 1997.

[9] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth,

M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J.

Ram, V. Stojanovic, and K. Asanovic. Building Many-Core Processor-to-

DRAM Networks with Monolithic CMOS Silicon Photonics. Micro, IEEE,

29(4):8–21.

139

8. BIBLIOGRAPHY

[10] S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanovic,

and K. Asanovic. Re-Architecting DRAM Memory Systems with

Monolithically Integrated Silicon Photonics. ACM SIGARCH Computer

Architecture News, 38(3):129–140, 2010.

[11] J. Beckett. Memory Performance Guidelinesfor Dell PowerEdge

12thGeneration Servers . http://i.dell.com/sites/

doccontent/shared-content/data-sheets/en/Documents/

12g-memory-performance-guide.pdf.

[12] J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-Dimensional

Adaptive Mesh Refinement for Hyperbolic Conservation Laws. SIAM

Journal on Scientific Computing, 15(1), Jan. 1994.

[13] M. J. Berger and P. Colella. Local Adaptive Mesh Refinement for Shock

Hydrodynamics. Journal of Computational Physics, 82(1), May 1989.

[14] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,

P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,

M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S.

Williams, K. Yelick, K. Bergman, S. Borkar, D. Campbell, W. Carlson,

W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler,

D. Klein, P. Kogge, R. S. Williams, and K. Yelick. ExaScale Computing

Study: Technology Challenges in Achieving Exascale Systems Peter

Kogge, Editor & Study Lead. Technical report, 2008.

[15] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme

Binning: Scalable, Parallel Deduplication for Chunk-Based File Backup.

Modeling, Analysis & Simulation of Computer and Telecommunication

Systems, 2009. MASCOTS ’09. IEEE International Symposium on, pages

1–9, 2009.

[16] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric

Prediction of Heap Memory Requirements. In ISMM ’08: Proceedings of

the 7th international symposium on Memory management. ACM Request

Permissions, June 2008.

[17] D. L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code

Manipulation. PhD thesis, Massachusetts Institute of Technology, Sept.

2004.

[18] D. W. Chang, N. S. Kim, and M. J. Schulte. Analyzing the Performance

and Energy Impact of 3D Memory Integration on Embedded DSPs. In

140

8. BIBLIOGRAPHY

Embedded Computer Systems (SAMOS), 2011 International Conference

on, pages 303–310, 2011.

[19] M.-F. Chang, P.-F. Chiu, W.-C. Wu, C.-H. Chuang, and S.-S. Sheu.

Challenges and Trends in Low-Power 3D Die-Stacked IC Designs Using

RAM, Memristor Logic, and Resistive Memory (ReRAM). In ASIC

(ASICON), 2011 IEEE 9th International Conference on, pages 299–302,

2011.

[20] M.-F. Chang, C.-S. Lin, W.-C. Wu, M.-P. Chen, Y.-H. Chen, Z.-H.

Lin, S.-S. Sheu, T.-K. Ku, C.-H. Lin, and H. Yamauchi. A High Layer

Scalability TSV-Based 3D-SRAM With Semi-Master-Slave Structure and

Self-Timed Differential-TSV for High-Performance Universal-Memory-

Capacity-Platforms. Solid-State Circuits, IEEE Journal of, 48(6):1521–

1529, 2013.

[21] L. Chen, T. Lu, Y. Wang, M. Chen, Y. Ruan, Z. Cui, Y. Huang, M. Chen,

J. Zhang, and Y. Bao. MIMS: Towards a Message Interface Based Memory

System. arXiv.org, Jan. 2013.

[22] Y. Chen, X. Cui, and H. Mei. Large-Scale FFT on GPU Clusters.

In ICS ’10: Proceedings of the 24th ACM International Conference on

Supercomputing. ACM Request Permissions, June 2010.

[23] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes.

Cache Hierarchy and Memory Subsystem of the AMD Opteron Processor.

Micro, IEEE, 30(2):16–29, 2010.

[24] E. Cooper-Balis, P. Rosenfeld, and B. Jacob. Buffer-on-Board Memory

Systems. SIGARCH Comput. Archit. News, 40(3):392–403, 2012.

[25] Crucial. DDR3 Prices. http://www.crucial.com/store/listmodule/

DDR3/list.html.

[26] T. W. Curry. Profiling and Tracing Dynamic Library Usage via Inter-

position. USENIX Summer 1994 Technical Conference, pages 267–278,

1994.

[27] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen.

Memory-Efficient Logic Layer Communication Platform for 3D-Stacked

Memory-on-Processor Architectures. In 3D Systems Integration Confer-

ence (3DIC), 2011 IEEE International, pages 1–8, 2012.

[28] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. CPU

DB. Communications of the ACM, 55(4):55, Apr. 2012.

141

8. BIBLIOGRAPHY

[29] J. A. Davis, G. R. Mudalige, S. D. Hammond, J. A. Herdman, I. Miller,

and S. A. Jarvis. Predictive Analysis of a Hydrodynamics Application on

Large-Scale CMP Clusters. Computer Science - Research and Develop-

ment, 26(3-4), June 2011.

[30] C. T. Delistavrou and K. G. Margaritis. Survey of Software Environments

for Parallel Distributed Processing: Parallel Programming Education on

Real Life Target Systems Using Production Oriented Software Tools. In

2010 14th Panhellenic Conference on Informatics (PCI). IEEE.

[31] Q. Deng, L. Ramos, R. Bianchini, D. Meisner, and T. Wenisch. Active

Low-Power Modes for Main Memory with MemScale. Micro, IEEE,

32(3):60–69, 2012.

[32] B. Diniz, D. Guedes, W. Meira, Jr, and R. Bianchini. Limiting the Power

Consumption of Main Memory. ACM SIGARCH Computer Architecture

News, 35(2):290–301, 2007.

[33] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,

J. Granacki, J. Shin, C. Chen, and C. W. Kang. The Architecture of the

DIVA Processing-in-Memory Chip. Proceedings of the 16th international

conference on Supercomputing, pages 14–25, 2002.

[34] R. Drost, C. Forrest, B. Guenin, R. Ho, A. V. Krishnamoorthy, D. Cohen,

J. E. Cunningham, B. Tourancheau, A. Zingher, and A. Chow. Challenges

in Building a Flat-Bandwidth Memory Hierarchy for a Large-Scale Com-

puter with Proximity Communication. Proceedings of the 13th Symposium

on High Performance Interconnects, pages 13–22, 2005.

[35] R. Falgout and U. Yang. hypre: a Library of High Performance

Preconditioners. Computational Science—ICCS 2002, pages 632–641,

2002.

[36] Z. Fang, L. Zhang, J. B. Carter, S. A. McKee, A. Ibrahim, M. A. Parker,

and X. Jiang. Active Memory Controller. Journal of Supercomputing,

62(1):510–549, 2012.

[37] M. Farreras, T. Cortes, J. Labarta, and G. Almasi. Scaling MPI to Short-

Memory MPPs Such as BG/L. In ICS ’06: Proceedings of the 20th annual

international conference on Supercomputing. ACM Request Permissions,

June 2006.

[38] K. B. Ferreira, R. Riesen, D. Arnold, D. Ibtesham, and R. Brightwell.

The Viability of Using Compression to Decrease Message Log Sizes. In

142

8. BIBLIOGRAPHY

Euro-Par’12: Proceedings of the 18th international conference on Parallel

processing workshops. Springer-Verlag, Aug. 2012.

[39] I. Finocchi. Software Streams: Big Data Challenges in Dynamic Program

Analysis. The Nature of Computation Logic, 2013.

[40] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-Overhead Call Path

Profiling of Unmodified, Optimized Code. In ICS ’05: Proceedings of the

19th annual international conference on Supercomputing. ACM Request

Permissions, June 2005.

[41] Fujitsu. Memory Performance of Xeon E5-2600/4600

(Sandy Bridge-Ep) Based Systems. http://

globalsp.ts.fujitsu.com/dmsp/Publications/public/

wp-sandy-bridge-ep-memory-performance-ww-en.pdf, Mar. 2012.

[42] A. Gainaru, F. Cappello, and W. Kramer. Taming of the Shrew: Modeling

the Normal and Faulty Behaviour of Large-Scale HPC Systems. In

2012 IEEE International Symposium on Parallel & Distributed Processing

(IPDPS), pages 1168–1179. IEEE.

[43] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-Buffered DIMM Mem-

ory Architectures: Understanding Mechanisms, Overheads and Scaling.

Proceedings of the 13th International Symposium on High Performance

Computer Architecture, pages 109–120, 2007.

[44] J. Gilchrist and A. Cuhadar. Parallel Lossless Data Compression Using

the Burrows-Wheeler Transform. International Journal of Web and Grid

Services, 4(1), May 2008.

[45] F. G. Gustavson and T. Swirszcz. In-Place Transposition of Rectangular

Matrices. In PARA’06: Proceedings of the 8th international conference

on Applied parallel computing: state of the art in scientific computing.

Springer-Verlag, June 2006.

[46] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A. Herdman,

and A. Vadgama. WARPP - A Toolkit for Simulating High-Performance

Parallel Scientific Codes. In Proceedings of the 2nd International Con-

ference on Simulation Tools and Techniques, pages 19:1–19:10, ICST,

Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering).

[47] W. Hassanein, J. Fortes, and R. Eigenmann. Data Forwarding Through

in-Memory Precomputation Threads. Proceedings of the 18th Annual

International Conference on Supercomputing, pages 207–216, 2004.

143

8. BIBLIOGRAPHY

[48] D. Hepkin. Active Memory Expansion. Technical report, Systems and

Technology Group, IBM, Feb. 2010.

[49] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.

Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and

R. W. Numrich. Improving Performance via Mini-applications. Technical

Report SAND2009-5574, Sept. 2009.

[50] Hewlett-Packard. DDR3 Memory Technology, Apr. 2010.

[51] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-

Order Functional Programs. In POPL ’03: Proceedings of the 30th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages.

ACM Request Permissions, Jan. 2003.

[52] HP. Memory Technology in HP Z Workstations. http://h20331.www2.

hp.com/Hpsub/downloads/HP_WS_MemoryTechnology_041812.pdf, Apr.

2012.

[53] IBM. IBM Power Systems. http://www-05.ibm.com/cz/events/

febannouncement2012/pdf/power_architecture.pdf, Feb. 2013.

[54] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knupfer,

K. Iskra, R. Ross, W. E. Nagel, and S. Poole. Optimizing I/O Forwarding

Techniques for Extreme-Scale Event Tracing. Cluster Computing, June

2013.

[55] Intel. Intel ARK. http://ark.intel.com/.

[56] Intel. Accelerating Silicon Design with theIntel R© Xeon R©
Processor E7-4800 Product Family. http://www.intel.ie/

content/dam/www/public/us/en/documents/technology-briefs/

intel-it-xeon-e7-4800-accelerating-silicon-design-brief.pdf,

Apr. 2011.

[57] Intel. Intel R© 7500/7510/7512 Scalable Memory Buffer.

http://www.intel.co.uk/content/dam/doc/datasheet/

7500-7510-7512-scalable-memory-buffer-datasheet.pdf, Apr.

2011.

[58] INTELCorporation. Intel Cilk Plus. http://software.intel.com/

en-us/intel-cilk-plus, 2011.

[59] D. B. Jackson, H. L. Jackson, and Q. O. Snell. Simulation Based HPC

Workload Analysis. In Parallel and Distributed Processing Symposium.,

Proceedings 15th International, 2001.

144

8. BIBLIOGRAPHY

[60] J. Jeddeloh and B. Keeth. Hybrid Memory Cube New DRAM Architecture

Increases Density and Performance. VLSI Technology (VLSIT), 2012

Symposium on, pages 87–88, 2012.

[61] JEDEC. JEDEC STANDARD: JESD79-4. Technical report, Sept. 2012.

[62] E. Karrels and E. Lusk. Performance Analysis of MPI Programs. In J. J.

Dongarra and B. Tourancheau, editors, Proceedings of the Workshop on

Environments and Tools For Parallel Scientific Computing, pages 195–

200. SIAM, 1994.

[63] J.-M. Kim, J.-K. Du, J.-R. Yuk, and J.-G. Yook. Noise Coupling Analysis

of the High Speed Memory Module. Antennas and Propagation Society

International Symposium, pages 3948–3951, 2007.

[64] P. M. Kogge. The EXECUBE Approach to Massively Parallel Processing.

In Proceedings of the International Confonference of Parallel Processing,

1994.

[65] P. M. Kogge and T. J. Dysart. Using the Top500 to Trace and Project

Technology and Architecture Trends. Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and

Analysis, page 28, 2011.

[66] M. J. Koop, T. Jones, and D. K. Panda. Reducing Connection Memory

Requirements of MPI for InfiniBand Clusters: A Message Coalescing

Approach. In Proceedings of the 7th IEEE International Symposium on

Cluster Computing and the Grid (CCGRID’07), pages 495–504, May 2007.

[67] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda. High Performance MPI

Design using Unreliable Datagram for Ultra-scale InfiniBand Clusters.

In Proceedings of the 2007 IEEE/ACM International Conference on

Supercomputing, pages 180–189, New York, NY, USA, May 2007. ACM.

[68] C. Kügeler, M. Meier, R. Rosezin, S. Gilles, and R. Waser. High Density

3D Memory Architecture Based on the Resistive Switching Effect. Solid

State Electronics, 53(12):1287–1292, Dec. 2009.

[69] Lawrence Livermore National Laboratory. SILO. https://wci.llnl.

gov/codes/silo/.

[70] Lawrence Livermore National Laboratory. VisIt. https://wci.llnl.

gov/codes/visit/.

145

8. BIBLIOGRAPHY

[71] S. Levy, K. B. Ferreira, P. G. Bridges, A. P. Thompson, and C. Trott.

An Examination of Content Similarity Within the Memory of HPC

Applications. Technical Report SAND2013-0055, Jan. 2013.

[72] H. Li, D. Groep, J. Templon, and L. Wolters. Predicting Job Start Times

on Clusters. Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE

International Symposium on, pages 301–308, 2004.

[73] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and

T. F. Wenisch. Disaggregated Memory for Expansion and Sharing in

Blade Servers. In ISCA ’09: Proceedings of the 36th annual international

symposium on Computer architecture. ACM Request Permissions, June

2009.

[74] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang. Thermal Modeling and

Management of DRAM Memory Systems, volume 35. ACM, 2007.

[75] J. Liu and others. Performance Comparison of MPI Implementations over

InfiniBand, Myrinet and Quadrics. In Proceedings of the 2003 ACM/IEEE

International Conference on Supercomputing, pages 58–71, New York, NY,

USA, 2003. ACM.

[76] G. H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors.

Computer Architecture, 2008. ISCA ’08. 35th International Symposium

on, pages 453–464, 2008.

[77] I. Loi and L. Benini. An Efficient Distributed Memory Interface for Many-

Core Platform with 3D Stacked DRAM. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2010, pages 99–104, 2010.

[78] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer.

End-User Tools for Application Performance Analysis Using Hardware

Counters. International Conference on Parallel and Distributed Comput-

ing Systems, pages 8–10, 2001.

[79] S.-L. Lu, T. Karnik, G. Srinivasa, K.-Y. Chao, D. Carmean, and

J. Held. Scaling the ”Memory Wall”. In ICCAD ’12: Proceedings of

the International Conference on Computer-Aided Design. ACM Request

Permissions, Nov. 2012.

[80] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation. In Proceedings of the

2005 ACM SIGPLAN Conference on Programming language design and

implementation, pages 190–200, New York, NY, USA, 2005. ACM.

146

8. BIBLIOGRAPHY

[81] Q. Meng, M. Berzins, and J. Schmidt. Using Hybrid Parallelism to

Improve Memory Use in the Uintah Framework. In TG ’11: Proceedings of

the 2011 TeraGrid Conference: Extreme Digital Discovery. ACM Request

Permissions, July 2011.

[82] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. TOP500 Super-

computer Sites. http://www.top500.org.

[83] H. W. Meuer and H. Gietl. Supercomputers–Prestige Objects or Crucial

Tools for Science and Industry? Praxis der Informationsverarbeitung und

Kommunikation, pages 1–12, 2012.

[84] Micron. 64GB 1.35V DDR3L SDRAM LRDIMM. http:

//www.micron.com/~/media/Documents/Products/Data%20Sheet/

Modules/kszq144c8gx72lz.pdf, May 2013.

[85] MicronTechnology Inc. DDR3 to DDR4. http://www.micron.com/

products/dram/ddr3-to-ddr4.

[86] F. Mietke, R. Rex, R. Baumgartl, T. Mehlan, T. Hoefler, and W. Rehm.

Analysis of the Memory Registration Process in the Mellanox Infiniband

Software Stack. In Proceedings of the 12th international conference on

Parallel Processing, pages 124–133, Berlin, Heidelberg, 2006. Springer-

Verlag.

[87] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and Prototype

of a Performance Tool Interface for OpenMP. Journal of Supercomputing,

23(1):105–128, 2002.

[88] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory Perfor-

mance and Cache Coherency Effects on an Intel Nehalem Multiprocessor

System. In 2009 18th International Conference on Parallel Architectures

and Compilation Techniques (PACT), pages 261–270. IEEE.

[89] P. Mosalikanti, C. Mozak, and N. Kurd. High performance DDR

architecture in Intel R© CoreTM processors using 32nm CMOS high-K

metal-gate process. VLSI Design, Automation and Test (VLSI-DAT),

2011 International Symposium on, pages 1–4, 2011.

[90] D. Mosberger, A. Sharma, J. F. A. Paulino, B. Sumner, H. Boehm,

M. Delahaye, and L. Tuura. libunwind. 2011.

[91] G. R. Mudalige, M. Vernon, and S. A. Jarvis. A Plug-and-Play Model for

Evaluating Wavefront Computations on Parallel Architectures. Parallel

147

8. BIBLIOGRAPHY

and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–14, 2008.

[92] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred Call Path Profiling.

In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference on

Object oriented programming systems languages and applications. ACM

Request Permissions, Oct. 2009.

[93] N. Nethercote and J. Seward. How to Shadow Every Byte of Memory

used by a Program. In Proceedings of the 3rd International Conference

on Virtual Execution Environments, pages 65–74, New York, NY, USA,

2007. ACM.

[94] N. Nethercote and J. Seward. Valgrind: a Framework for Heavyweight

Dynamic Binary Instrumentation. In Proceedings of the 2007 ACM SIG-

PLAN Conference on Programming language design and implementation,

pages 89–100, New York, NY, USA, 2007. ACM.

[95] NETLIST. Effective Data Rates on Fully Populated 3DPC

Servers. http://www.netlist.com/files/9113/4548/7143/20120814_

NL_White_Paper_Effective_Data_Rates_on_3DPC_Servers.pdf, Aug.

2012.

[96] NVIDIA Corporation. Tesla Kepler Product Overview. http://www.

nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf,

Oct. 2012.

[97] OpenFabrics Alliance. OFED Overview. https://www.openfabrics.

org/resources/ofed-for-linux-ofed-for-windows/ofed-overview.

html.

[98] Parallel Programming Library, University of Illinois. Charm++. http:

//charm.cs.uiuc.edu/research/charm/.

[99] D. Parkinson. Parallel Efficiency Can Be Greater Than Unity. Parallel

Computing, 3(3), July 1986.

[100] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,

C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent RAM.

Micro, IEEE, 17(2):34–44, 1997.

[101] O. F. J. Perks. WMTools - GitHub. https://github.com/

Warwick-PCAV/WMTools.

148

8. BIBLIOGRAPHY

[102] O. F. J. Perks, D. A. Beckingsale, A. S. Dawes, J. A. Herdman,

C. Mazauric, and S. A. Jarvis. Analysing the Influence of InfiniBand

Choice on OpenMPI Memory Consumption. International Workshop on

High Performance Interconnection Networks (HPIN), pages 1–8, Mar.

2013.

[103] O. F. J. Perks, D. A. Beckingsale, S. D. Hammond, I. Miller, J. A.

Herdman, A. Vadgama, A. H. Bhalerao, L. He, and S. A. Jarvis. Towards

Automated Memory Model Generation Via Event Tracing. The Computer

Journal, 56(2):156–174, June 2012.

[104] O. F. J. Perks, R. F. Bird, D. A. Beckingsale, and S. A. Jarvis. Exploiting

Spatiotemporal Locality for Fast Call Stack Traversal. Workshop on High-

performance Infrastructure for Scalable Tools (WHIST), pages 1–8, June

2012.

[105] O. F. J. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis. Should

We Worry About Memory Loss? SIGMETRICS Performance Evaluation

Review, 38(4), Mar. 2011.

[106] O. F. J. Perks, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis.

WMTools - Assessing Parallel Application Memory Utilisation at Scale.

Proceedings of the European Perfomance Evaluation Workshop (EPEW),

6977:148–162, Oct. 2011.

[107] QLogic. The Impact of InfiniBand Architecture on CPU Uti-

lization. http://qlogic.com/Resources/Documents/WhitePapers/

InfiniBand/Impact_IB_Architecture_on_CPU_Utilization.pdf, July

2011.

[108] R. Rabenseifner. Automatic Profiling of MPI Applications with Hardware

Performance Counters. In Proceedings of the 6th European PVM/MPI

Users’ Group Meeting on Recent Advances in Parallel Virtual Machine

and Message Passing Interface. Springer-Verlag, Sept. 1999.

[109] A. Rodrigues, R. Murphy, R. Brightwell, and K. D. Underwood. Enhanc-

ing NIC Performance for MPI Using Processing-in-Memory. In Parallel

and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE

International. IEEE Computer Society, 2005.

[110] M. Serrano and X. Zhuang. Building Approximate Calling Context

from Partial Call Traces. In CGO ’09: Proceedings of the 7th annual

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, pages 221–230. IEEE Computer Society, Mar. 2009.

149

8. BIBLIOGRAPHY

[111] G. Shainer, T. Wilde, P. Lui, T. Liu, M. Kagan, M. Dubman, Y. Shahar,

R. Graham, P. Shamis, and S. Poole. The Co-Design Architecture for

Exascale Systems, a Novel Approach for Scalable Designs. Computer

Science - Research and Development, May 2012.

[112] N. Shida, S. Sumimoto, and A. Uno. MPI Library and Low-Level

Communication on the K Computer. FUJITSU Scientific & Technical

Journal, 2012.

[113] G. Shipman, R. Brightwell, B. Barrett, J. Squyres, and G. Bloch.

Investigations on InfiniBand: Efficient Network Buffer Utilization at

Scale. Recent Advances in Parallel Virtual Machine and Message Passing

Interface, pages 178–186, 2007.

[114] G. Shipman, S. Poole, P. Shamis, and I. Rabinovitz. X-SRQ-Improving

Scalability and Performance of Multi-Core InfiniBand Clusters. Recent

Advances in Parallel Virtual Machine and Message Passing Interface,

pages 33–42, 2008.

[115] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe, and P. G.

Bridges. InfiniBand Scalability in OpenMPI. Parallel and Distributed

Processing Symposium, 2006. IPDPS 2006. 20th International, 2006.

[116] G. Singh and E. Deelman. The Interplay of Resource Provisioning

and Workflow Optimization in Scientific Applications. Concurrency and

Computation: Practice & Experience, 23(16), Nov. 2011.

[117] J. P. Stevenson, A. Firoozshahian, A. Solomatnikov, M. Horowitz, and

D. Cheriton. Sparse Matrix-Vector Multiply on the HICAMP Architec-

ture. In ICS ’12: Proceedings of the 26th ACM international conference

on Supercomputing. ACM Request Permissions, June 2012.

[118] H. S. Stone. A Logic-in-Memory Computer. Computers, IEEE Transac-

tions on, (1):73–78, 1970.

[119] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise Calling

Context Encoding. In ICSE ’10: Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering, pages 525–534. ACM

Request Permissions, May 2010.

[120] Super Micro Computer, Inc. Memory Configuration Guide.

http://www.supermicro.com/support/resources/memory/X9_DP_

memory_config_socket_R.pdf, Mar. 2012.

150

8. BIBLIOGRAPHY

[121] Z. Szebenyi, T. Gamblin, M. Schulz, B. R. d. Supinski, F. Wolf, and

B. J. N. Wylie. Reconciling Sampling and Direct Instrumentation for

Unintrusive Call-Path Profiling of MPI Programs. In IPDPS ’11: Pro-

ceedings of the 2011 IEEE International Parallel & Distributed Processing

Symposium, pages 640–651, Washington, DC, USA, May 2011. IEEE

Computer Society.

[122] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.

Smith, M. E. Wazlowski, and P. M. Bland. IBM Memory Expansion

Technology (MXT). IBM Journal of Research and Development, 45(2),

Mar. 2001.

[123] C. A. Waldspurger. Memory Resource Management in VMware ESX

Server. In OSDI ’02: Proceedings of the 5th symposium on Operating

systems design and implementation. ACM, Dec. 2002.

[124] D. W. Walker. Characterizing the Parallel Performance of a LargeScale,

ParticleinCell Plasma Simulation Code. Concurrency: Practice and

experience, 2(4):257–288, 1990.

[125] J. Whaley. A Portable Sampling-Based Profiler for Java Virtual Machines.

In JAVA ’00: Proceedings of the ACM 2000 conference on Java Grande.

ACM, June 2000.

[126] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid

Cache Architecture with Disparate Memory Technologies. In ISCA ’09:

Proceedings of the 36th annual international symposium on Computer

architecture. ACM Request Permissions, June 2009.

[127] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Design

Exploration of Hybrid Caches with Disparate Memory Technologies.

Transactions on Architecture and Code Optimization (TACO, 7(3), Dec.

2010.

[128] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of

the Obvious. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[129] Y. Xie. Future Memory and Interconnect Technologies. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2013,

pages 964–969, 2013.

[130] J. Yoo, S. Yoo, and K. Choi. Active Memory Processor for Network-on-

Chip-Based Architecture. Computers, IEEE Transactions on, 61(5):622–

635, 2012.

151

. BIBLIOGRAPHY

[131] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra: Efficient and

Scalable Memory Shadowing. In CGO ’10: Proceedings of the 8th

annual IEEE/ACM international symposium on Code generation and

optimization. ACM Request Permissions, Apr. 2010.

[132] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the

Data Domain Deduplication File System. In FAST’08: Proceedings of

the 6th USENIX Conference on File and Storage Technologies. USENIX

Association, Feb. 2008.

[133] zlib. zlib. http://www.zlib.net.

152

Appendices

153

APPENDIX A
Context: Architectures and Applications

In this chapter we discuss some of the factors affecting our benchmarking and

testing environment.

To evaluate the performance and capability of tools and methodologies we

need to utilise some representative HPC applications and execute them on HPC

platforms. We have utilised a number of production HPC platforms, of differing

size and age, to demonstrate tool capabilities at different scale. In some scenarios

we utilise our tools to monitor the differences in hardware behaviour across

similar systems.

For the benchmarking applications we make use of a mixture of scientific

codes from different institutions, which exhibit different properties, to allow us

to compare tool performance and capability in different situations. Whilst these

applications are generally reduced form versions of production applications they

exhibit many of the same characteristics but run faster.

A.1 Machines

Cab Hera Minerva Kay

Institution LLNL LLNL Warwick Bull
Processor Intel Xeon AMD Opteron Intel Xeon Intel Xeon

Processor Model E5-2670 8356 X5650 E5-2680
Cores / Node 16 16 12 16
RAM / Node 32 GB 32 GB 24 GB 64 GB

Nodes 1,296 864 396 150
Network Vendor QLogic Mellanox QLogic Mellanox

Network Type IB QDR IB DDR IB QDR IB QDR

Table A.1: Computer system specifications

Table A.1 documents the machine specification of the various supercomputers

154

A. Context: Architectures and Applications

Node 0 - Appro (TLCC2)

Socket 0 - Intel E5-2670 (2.6GHz)
Core 0

256KB L2

32KB L1

20MB L3

Core 1

256KB L2

32KB L1
Core 2

256KB L2

32KB L1

Core 4

256KB L2

32KB L1
Core 5

256KB L2

32KB L1
Core 6

256KB L2

32KB L1

Memory Controller
4 Channels
10.6 GB/s

QPI
2 Channels

8 GT/s

QLogic QDR InfiniBand HCA

Core 3

256KB L2

32KB L1

Core 7

256KB L2

32KB L1

4G
B 1600M

T/s D
D

R
3

Socket 0 - Intel E5-2670 (2.6GHz)
Core 0

256KB L2

32KB L1

20MB L3

Core 1

256KB L2

32KB L1
Core 2

256KB L2

32KB L1

Core 4

256KB L2

32KB L1
Core 5

256KB L2

32KB L1
Core 6

256KB L2

32KB L1

Memory Controller
4 Channels
10.6 GB/s

QPI
2 Channels

8 GT/s

Core 3

256KB L2

32KB L1

Core 7

256KB L2

32KB L1

PCIe
Controller

4G
B 1600M

T/s D
D

R
3

4G
B 1600M

T/s D
D

R
3

4G
B 1600M

T/s D
D

R
3

4G
B 1600M

T/s D
D

R
3

4G
B 1600M

T/s D
D

R
3

4G
B 1600M

T/s D
D

R
3

4G
B 1600M

T/s D
D

R
3

Figure A.1: Node level structure of Cab

utilised during this research. All computers displayed, with the exception of Kay,

are production platforms and are supporting scientific research at academic and

national research facilities. Kay represents a development platform at Bull, a

supercomputer production company, and is utilised for application and hardware

evaluation during the machine procurement process.

The specifications presented here represent a snapshot of the machine con-

figuration at the time of utilisation. Whilst they may have changed since access,

our results are based on these specifications.

A.1.1 Cab (LLNL)

The Cab platform at LLNL is part of the Tri-labs Linux Capacity Cluster 2

(TLCC2) project – an initiative to procure capacity supercomputers in terms of

scalable units (SUs) using the buying power of the tri-labs (LLNL, LANL and

SNL).

The platform is produced by Appro and Cab represents 8 SUs, utilising

the Sandy Bridge generation of Intel processor, connected with a QLogic QDR

155

A. Context: Architectures and Applications

Node 0 - Appro (TLCC)

Socket 0 - AMD 8356 (2.3GHz)

Core 0

512KB L2

64KB L1

2MB L3

Core 1

512KB L2

64KB L1

Core 2

512KB L2

64KB L1
Core 3

512KB L2

64KB L1

Memory Controller
2 Channels
10.7 GB/s

Hypertransport
3 Channels

8GB/s

4G
B D

D
R

2

4G
B D

D
R

2

Socket 1 - AMD 8356 (2.3GHz)

Core 0

512KB L2

64KB L1

2MB L3

Core 1

512KB L2

64KB L1

Core 2

512KB L2

64KB L1
Core 3

512KB L2

64KB L1

Memory Controller
2 Channels
10.7 GB/s

Hypertransport
3 Channels

8GB/s

Socket 3 - AMD 8356 (2.3GHz)

Core 0

512KB L2

64KB L1

2MB L3

Core 1

512KB L2

64KB L1

Core 2

512KB L2

64KB L1
Core 3

512KB L2

64KB L1

Memory Controller
2 Channels
10.7 GB/s

Hypertransport
3 Channels

8GB/s

4G
B D

D
R

2

4G
B D

D
R

2

Socket 2 - AMD 8356 (2.3GHz)

Core 0

256KB L2

64KB L1

2MB L3

Core 1

256KB L2

64KB L1

Core 2

512KB L2

64KB L1
Core 3

512KB L2

64KB L1

Memory Controller
2 Channels
10.7 GB/s

Hypertransport
3 Channels

8GB/s

4G
B D

D
R

2

4G
B D

D
R

2

4G
B D

D
R

2

4G
B D

D
R

2

PCIe
Mellanox

DDR IB HCA

PCIe

Figure A.2: Node level structure of Hera

InfiniBand. The structure of each node is presented in Figure A.1.

A.1.2 Hera (LLNL)

The Hera platform has been decommissioned since our initial research. Com-

missioned in 2008 the platform formed part of the initial TLCC procurement

project, consisting of 6 SUs. Unlike the other platforms this is a quad-socket

156

A. Context: Architectures and Applications

Node 0 - IBM iDataPlex

Socket 0 - Intel X5650 (2.66GHz)
Core 0

256KB L2

32KB L1

12MB L3

Core 1

256KB L2

32KB L1
Core 2

256KB L2

32KB L1

Core 3

256KB L2

32KB L1
Core 4

256KB L2

32KB L1
Core 5

256KB L2

32KB L1

Memory Controller
3 Channels
10.6 GB/s

QPI
2 Channels

6.4 GT/s

Socket 1 - Intel X5650 (2.66GHz)
Core 0

256KB L2

32KB L1

12MB L3

Core 1

256KB L2

32KB L1
Core 2

256KB L2

32KB L1

Core 3

256KB L2

32KB L1
Core 4

256KB L2

32KB L1
Core 5

256KB L2

32KB L1

Memory Controller
3 Channels
10.6 GB/s

QPI
2 Channels

6.4 GT/s

Intel 5520 I/O Hub

QLogic QDR InfiniBand HCA

PCIe Controller

4G
B 1333M

T/s DDR3

4G
B 1333M

T/s DDR3

4G
B 1333M

T/s DDR3

4G
B 1333M

T/s DDR3

4G
B 1333M

T/s DDR3

4G
B 1333M

T/s DDR3

Figure A.3: Node level structure of Minerva

node, using AMD Barcelona generation quad-core chips.

Due to its age, the platform uses DDR InfiniBand making use of Mellanox

HCAs.

From Figure A.2, we can see that each socket only supports three Hy-

pertransport channels, meaning that there are insufficient channels for a fully

connected system between the four sockets. As socket 0 and 3 are not directly

connected, memory accesses between them require a two hop communication

(via another socket) and the added latency may diminish HPC application

performance.

A.1.3 Minerva (Warwick)

The Minerva platform (Figure A.3) at the Centre for Scientific Computing

(CSC) supports the scientific computational workload of Warwick University.

The computer was commissioned in 2011, to replace the Francesca supercom-

puter, and is based on the IBM iDataPlex platform.

157

A. Context: Architectures and Applications

Node 0 - BullxB510

Socket 0 - Intel E5-2680 (2.7GHz)
Core 0

256KB L2

32KB L1

20MB L3

Core 1

256KB L2

32KB L1
Core 2

256KB L2

32KB L1

Core 4

256KB L2

32KB L1
Core 5

256KB L2

32KB L1
Core 6

256KB L2

32KB L1

Memory Controller
4 Channels
10.6 GB/s

QPI
2 Channels

8 GT/s

Mellanox FDR InfiniBand HCA

Core 3

256KB L2

32KB L1

Core 7

256KB L2

32KB L1

8G
B 1600M

T/s D
D

R
3

Socket 0 - Intel E5-2680 (2.7GHz)
Core 0

256KB L2

32KB L1

20MB L3

Core 1

256KB L2

32KB L1
Core 2

256KB L2

32KB L1

Core 4

256KB L2

32KB L1
Core 5

256KB L2

32KB L1
Core 6

256KB L2

32KB L1

Memory Controller
4 Channels
10.6 GB/s

QPI
2 Channels

8 GT/s

Core 3

256KB L2

32KB L1

Core 7

256KB L2

32KB L1

PCIe
Controller

8G
B 1600M

T/s D
D

R
3

8G
B 1600M

T/s D
D

R
3

8G
B 1600M

T/s D
D

R
3

8G
B 1600M

T/s D
D

R
3

8G
B 1600M

T/s D
D

R
3

8G
B 1600M

T/s D
D

R
3

8G
B 1600M

T/s D
D

R
3

Figure A.4: Node level structure of Kay

Part of the platform is supported by the MidPlus consortium: the University

of Warwick, the University of Birmingham, the University of Nottingham and

Queen Mary, University London. A significant portion of the computational

resource is reserved for MHD research.

A.1.4 Kay (Bull)

The Kay platform at Bull is a heterogeneous cluster comprised of multiple

partitions of homogenous hardware. It is a primarily an internal benchmarking

and research platform, so has a constantly evolving configuration. The partition

utilised during this research is SNBEP64, consisting of 150 BullxB510 nodes,

as described in Figure A.4. The platform, in this configuration, has since been

disbanded and replaced with an Intel Xeon Ivy Bridge platform connected with

FDR InfiniBand.

Although this figure indicates that the nodes utilise an FDR InfiniBand

HCA, they are connected to a QDR backplane. Thus the operating speed of

the network defaults to QDR performance.

158

A. Context: Architectures and Applications

A.2 Applications

Throughout this thesis we utilise a collection of benchmark applications and

a class of small applications referred to as ‘mini-apps’. Such applications are

designed to exhibit the computational behaviour of key algorithms, or processes,

but in a simplistic and portable framework. Projects such as the Mantevo

project at SNL provide a suite of mini-apps targeted at different scientific

domains; they are designed to quickly evaluate hardware, both novel and tradi-

tional, and software methods [49].

Benchmark applications tend to differ from mini-apps in terms of both

size and complexity, as they are designed to more accurately represent the

computational needs of production grade applications. Benchmarks can play a

key role in the procurement process, by evaluating a platform for both compati-

bility and performance. Such applications often contain reduced computational

complexity and are accompanied with reduced problem sets, allowing for the

fast turnaround of computational results during machine evaluation.

Both classes of application are suitable for analysis, specifically with respect

to memory consumption, as they are designed to mimic the methods of larger

codes and so will exhibit many of the same properties and artefacts.

A.2.1 Chimaera (AWE)

The Chimaera benchmark is a 3D particle transport code developed and main-

tained by AWE. It employs a wavefront design pattern, which executes a series

of sweeps through the 3D data array. The purpose of the benchmark is the

replication of operational behaviour of larger internal codes which occupy a

considerable proportion of parallel runtime on the supercomputing facilities of

AWE.

The code shares many similarities with the ubiquitous Sweep3D application

developed by the LANL in the United States, but is considerably larger and

more complex in its operation.

159

A. Context: Architectures and Applications

A.2.2 Orthrus (AWE)

Orthrus was initially developed by Dawes at AWE plc, to assess the parallel

scalability of generic 3D implicitly solved linear diffusion problems. The ap-

plication serves as a driver for the third-party linear solver libraries PETSc [8],

from Argonne National Laboratory; and hypre [35], from LLNL. The applica-

tion constructs a 3D sparse matrix and then drives the preconditioner-solvers

provided by the two aforementioned libraries.

Orthrus forms part of the machine evaluation benchmark suite used to drive

procurement decisions for AWE. Timing instrumentation is provided via the

Ichnaea (PMTM) library [4].

A.2.3 POP (LANL)

The Parallel Ocean Program (POP) is a 3D ocean circulation model, solving

equations for fluid motion on a sphere, using finite difference discretisation.

POP forms part of the the Community Climate System Model, and as such it

can be coupled with other climate simulators for more comprehensive modelling.

A.2.4 SNAP (LANL)

SNAP is a 3D SN proxy application, for the LANL neutron transport code

PARTISN, designed to mimic memory requirements and communication pat-

terns rather than physics. As such SNAP allows the configuration of a number

of runtime parameters such as data cells, energy groups and angles, each of

which can have a dramatic effect on both runtime and memory consumption.

SNAP also supports a level of hybrid parallelism with MPI and OpenMP,

making it a suitable code with which to investigate memory effects.

A.2.5 Sweep3D (LANL)

Sweep3D was the precursor to the SNAP application, and shares many of the

same characteristics both in terms of application and implementation.

160

A. Context: Architectures and Applications

A.2.6 NPB (NASA)

NASA maintains a benchmark suite of applications, referred to as the NAS

Parallel Benchmark (NPB) suite [5]. There are many variants of the suite, where

different programming languages or parallelisation paradigms are implemented.

The Fortran variant of NPB makes heavy use of statically allocated arrays, as

the runtime core count and problem are specified at compile time, making an

efficient, but non-portable binary.

MG

MG is a multi grid solver utilising the Poisson solver. It is quite a memory

intensive application despite having low heap usage, due to the use of static

allocations discussed above.

A.2.7 LAMMPS (SNL)

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a

framework for classical molecular dynamics. It is designed for modelling sys-

tems of millions, and even billions, of particles on large scale HPC platforms.

Whilst LAMMPS contains support for a wide range of particles and interaction

models it also supports modification to allow the user to develop more custom

behaviour.

Written in C++, LAMMPS has support for Fortran interfaces and is inher-

ently designed as a parallel application using MPI, and even includes some GPU

support.

A.2.8 MiniFE (SNL)

MiniFE is a proxy application, representing key functionality from the Sandia

SIERRA suite of finite-element applications in a small and portable application.

It is used to test programming languages and parallelisation models. It is an

instructed implicit finite-element solver using a sparse linear system, constructed

161

A. Context: Architectures and Applications

from steady-state conduction equations.

We present an evaluation of MiniFE’s memory consumption characteristics

in [106], where we investigate the effects of problem size and core count of

temporal memory consumption.

A.2.9 phdMesh (SNL)

phdMesh is a finite element data structure library for parallel heterogeneous

direct unstructured meshes, developed at SNL and initially included as part of

the Mantevo benchmark suite, and is part of the Trilinos project.

Our usage of the code is based upon the ‘gears’ problem, which undertakes

contact search on the unstructured grid. The use of an unstructured mesh makes

it an interesting application to analyse in terms of memory consumption, as it is

likely to exhibit a different profile to traditional structured mesh applications.

The version of phdMesh utilised in our research is written in C++, with a

particularly high rate of object creation and destruction. This makes it a very

interesting code to evaluate the performance of tracing tools with. In [106] we

demonstrated that WMTools exhibited an application slowdown of up to 11.5×

slowdown when profiles the code, but also that this behaviour is in line with

other tools.

A.2.10 Lare2D (Warwick)

Lare2D is a 2D variant of the Lare3D [3] application. Both are Lagrangian-

remap codes for solving the non-linear MHD equations. The original code

development was motivated by the study of solar corona, and their accurate

simulation.

A.3 Summary

In this chapter we have outlined the machines and applications used throughout

this thesis. We use these applications to demonstrate the capabilities of our

162

A. Context: Architectures and Applications

developed tools and methodologies.

The use of a selection of supercomputers enables us to test our implementa-

tion and analyse application behaviour at large scale. As many memory artefacts

are only exhibited at large scale, it is important to capture them in real world

scenarios.

163

	coverperks.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

