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Summary

The thesis consists of a study of problems in ergodic theory relating to one-dimensional
dynamical systems, Markov chains and generalizations of Markov chains. It is divided
into chapters, three of which have appeared in the literature as papers. Chapter 1 looks
at continuous families of circle maps and investigates conditions under which there is a
weak*-continuous family of invariant measures. Sufficient conditions are exhibited and the
necessity of these conditions is investigated. Chapter 2 is about expanding maps of the
interval and the circle, and their relation with g-measures and generalized baker's trans-
formations. The g-measures are generalizations of Markov chains to stochastic processes
with infinite memory and generalized baker's transformations are geometric realizations of
these. The chapter is based around the question of whether there exist expanding maps
preserving Lebesgue measure, for which Lebesgue measure is not ergodic. Results are
known if the map is sufficiently differentiable (for example C1+Q

), but the Cl case is still
unclear. The chapter contains some partial solutions to this question. Chapter 3 is about
representation of Markov chains on compact manifolds by measured collections of smooth
maps. Given a measured collection of maps, a Markov chain is induced in a natural fashion.
This chapter is about reversing this process. Chapter 4 describes a specialization of the
setting of Chapter 3 to Markov chains on tori. In this case, it is possible to demand more
of the maps of the representation than smoothness. In particular, they can be chosen to be
local diffeomorphisms. The chapter also addresses the question of whether in general the
maps can be taken to be diffeomorphisms and gives a counterexample showing that there
exist Markov chains on tori which do not admit a representation by cliffeomorphisms.



S01l1eProblems in Ergodic Theory

Anthony Quas

This dissertation concerns itself with problems of ergodic theory, the branch of dy-

namical systems theory which deals with problems of long-term averages of values of a

measurement taken at discrete intervals of time. In general, the formulation is that T is

a map from some measure space X to itself and f is an L1 function X ---+ R. The main

objects of study in ergodic theory are the averages

Ergodic theory gives conditions for these to converge pointwise almost everywhere with

respect to an appropriate measure (or in L1) to a function 1. These measures are in fact

the invariant measures, which are central in the study of ergodic theory. Further conditions

can be given to ensure that the limit function j is constant almost everywhere with respect

to the invariant measure for any L1 function f. This turns out to be extremely important.

Chapter 1 of this dissertation considers the case where there is a continuously pa-

rameterized family of circle maps (that is orientation-preserving homeomorphisms of the,

circle). Each circle map is known to have at least one invariant measure. In this chapter,

I consider whether the invariant measures for the family of circle maps may be chosen to

vary continuously with respect to the parameter. In general, I show that subject to certain

conditions, this may be arranged by careful choice of the invariant measure. In an experi-

-
mental situation, the invariant measure is determined by the initial conditions. Typically,

without special initial conditions, one would not expect to see continuous variations of the

long-term averages as the parameter is varied continuously. The results of this chapter
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thus show that while typically long-term averages change discontinuously with respect to

small changes in the parameter, they may in special circumstances vary continuously.

Chapter 2 deals with the relationships between the concepts of expanding maps, 9-

measures and generalized baker's transformations. The starting point is the question of

uniqueness of absolutely continuous invariant measures for Cl expanding maps of the

interval and the circle. This leads naturally into an investigation of 9-measures, which

may be considered as a generalization of Markov chains to processes which depend on the

entire past, not just the last outcome. These are known to have a geometric realization

as generalized Baker's transformations. This realization is studied in Chapter 2 and made

more explicit. Finally, I present some examples of possible constructions of Cl maps which

might have more than one absolutely continuous invariant measure. If correct, these would

provide a solution to a question of Keane ([Kea)).

Chapter 3 looks at Markov chains on compact manifolds. Conditions are found for

Markov chains, under which there exists a family of smooth maps from the manifold to

itself and a probability measure on them such that applying the maps at random according

to the probabilities specified by the measure reproduces the Markov chain. This is called

a representation of a Markov chain. A representation of a Markov chain allows it to be

viewed as a Random Dynamical System (RDS), as described in [Ki] and [AC].

Chapter 4 is a specialization of Chapter 3 to the case where the manifold is a torus.

In this case, it is shown that a smooth Markov chain admits a representation by local

diffeomorphisms. It is then natural to ask whether such a Markov chain in fact admits a

representation by diffeomorphisms. It is shown that in general this is not the case.
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Chapter 1. Invariant Measures
for Families of Circle Maps

1. Introduction

This chapter considers the invariant measures of a continuous family of circle maps.

There is some evidence (see below) that a continuous family of circle maps should have

a continuous family of invariant measures. In fact, this does not always turn out to be

the case, but in this chapter, we give conditions for the conclusion to hold and show the

necessity of some of these. The results of this chapter have appeared in the literature as

[Q2].

Let 7r denote the projection R ---+ SI given by x f-+ exp(27rix). We will denote in

the usual way intervals on the circle (for example, the interval [a, b] is the closed interval

starting at a and going anticlockwise round to b). By a circle map, we will always mean

an orientation-preserving homeomorphism T : SI -e+ SI. For a detailed introduction to

the theory of circle maps, the reader is referred to [CFS], §3·3. The main results, however,,

are summarized below for convenience. The dynamical behaviour of circle maps is very

well understood, and may be principally characterized by the rotation number of the map.

This is a measure of the 'average rotation' that the map imparts to a point. To define

the rotation number of a circle map T : SI ---+ SI, we first need its lift F : R ---+ R. The

lift of a co"ntinuous map rP of the circle (not necessarily a circle map) is a continuous map

<I> : R ---+ R defined by the equation 7r0 <I> = rP 0;'. This is uniquely defined up to an additive.
integer constant. The degree of the map rP is given by <I>( x + 1) - <I>( x). This is always an
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integer and is independent of the point x E R and the lift chosen. In the case of a circle

map, the degree is always 1. The rotation number of the circle map T is then given by

() li
Fn(x)-x

pT = m ,
Tt-OO n

where F is a lift of T. This limit exists for all z , and is independent of z , The convergence

of the limit is uniform in z and the rotation number is unique for a map T up to an additive

integer constant (depending on the particular lift chosen to represent T). The notion of a

circle map with rational rotation number is therefore well-defined, since this property does

not depend on the lift chosen. It can be shown that a circle map has rational rotation

number with denominator q say (with the fraction expressed in its lowest terms), if and

only if it has periodic points of period q. Further, if this is the case, then each point of the

circle converges monotonically to a periodic point under iteration of the map. From these

facts, it follows that a circle map with irrational rotation number has no periodic orbits.

Here, the dynamics are also well-understood: each point has the same w-limit point set

and this is either a Cantor set, or the whole circle. In the former case, the map is semi-

conjugate to a rotation through 211"times the rotation number, and in the latter case, the

map is conjugate to a rotation 'through 211"times the rotation number.

It may be shown by elementary means that the map taking a circle map to its rotation

number is continuous with respect to the CD-topology on the space of circle maps; see for

example [CFS], §3.3, theorem 2.

Suppose now that F is a lift of a circle map T. Write R( x) = F( x) - x and r : SI ---+

R; y 1--+ R(1I"-I(y)). This is well-defined since R is periodic, and is the amount of rotation

which the point y undergoes when it is acted upon by T. Now, we have

1 Tt-I. 1.~L r (T' (11"(X ))) = ~(r:(x) - x) .
i=O

4



From this it follows that ~ 2:~:01r(Ti(y)) converges uniformly to p(T) as n ---7 00. But, for

any invariant measure v for T, J r(y) dv(y) = J ~ 2:::01 r(Ti(y)) dv(y), so taking limits,

we get

J r(y) dv(y) = p(T).

This shows that the rotation number of a circle map is numerically equal to the amount

of rotation at each point integrated with respect to an invariant measure for the circle

map. As T changes continuously, r(y) and p(T) both change continuously. This suggests

the invariant measures also depend continuously on the circle map in some sense. The

appropriate sense of continuity turns out to be weak" -continuity, and this chapter contains

an investigation of the weak" -continuity of the invariant measures of circle maps.

In the statement of the theorems, we will need some definitions. We say that a family

(TCI')CI'EJ of circle maps, with J a compact subinterval of R is a continuous family of circle

maps if the map T: J X SI ---7 S\ (a,e) 1-+ TQ'(e) is continuous.

Given a circle map T with rotation number p/q, let S be the lift of Tq fixing the

preimages of the periodic points. Define u(x) = S(x)-x. Note that u satisfies the equation

u(x) = u(x + 1), since the degree of T" is 1. The function v: SI ---7 Rj e 1-+ uCrr-l(e))

is then well-defined. Note that the zeros of v are precisely the periodic points of the map

T. Then given a periodic point e, there may be a neighbourhood of e on which v takes

the value 0 only at e itself. If such a neighbourhood exists, we say the periodic point is of

definite type, and conversely, if no such neighbourhood exists, we say the periodic point is

of indefinite type. If the periodic point is of definite type, it follows that there is an open

interval II clockwise from e with e as an endpoint on which. the sign of v is constant, and

a similar interval 12 anticlockwise from e (See Figure 1·1).
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Figure 1·1 Possible arrangement of intervals about a periodic point.

We say that e is of type ++, +-, -+ or -- according to the sign of v on these

two intervals. A hyperbolic periodic point is one of type +- or -+ (these are stable and

unstable respectiv~ly). The types ++ and -- of periodic point are non-hyperbolic and

have stability on one side only. We call a map with non-hyperbolic periodic points (or

sometimes its parameter value) critical. Note that if a point on a periodic orbit is of a

particular type, then all the other points on the orbit are of that type (this follows since

the maps are orientation-preserving homeomorphisms), so that it makes sense to say that

a periodic orbit is of a specific type, or in particular hyperbolic or non-hyperbolic (see

Figure 1·2).
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Figure 1·2 Lift of an iterate of a circle map showing the types of periodic points.

An invariant Borel probability measure (or briefly invariant measure) for a circle map

T is a probability measure f..£on the Borel er-algebra n satisfying f..£(T-1(B)) = f..£(B) for

any Borel set B. A circle map T is uniquely ergodic if it has exactly one invariant measure.

There is a well-known theorem of ergodic theory (see [Wa3], theorem 6·18) saying that if

T is a circle map with irrational rotation number, then T is uniquely ergodic. A map with

rational rotation number is uniquely ergodic if and only if it has a unique periodic orbit

(see Lemma 2).

We are now ready to state the theorem:

Theorem 1. ' Suppose that (Ta )aEJ is a continuous family of circle maps such that

(i) for each non-trivial interval K on which the rotation number has a constant value,

there are at most finitely many values of a in K for which Ta is critical, and

(li) for each a E J such that Ta has rational rotation number, Ta has a finite number

of periodic orbits. If there is more than one such orbit, then at least one of them is
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hyperbolic.

Then there is a weak* -continuously varying family of probability measures J.La such that

J.La is an invariant measure for Ta.

Part of Theorem 1 was previously known to Herman. In particular, Herman showed

that the map taking a circle map with irrational rotation number to its unique invariant

probability measure is weak*-continuous on the sets Fp, the collection of circle maps with

rotation number equal to p (irrational). He in fact shows (see [He], proposition X.6.1), that

the (semi- )conjugacy h conjugating a circle map f E Fp to the rotation by 27rp depends

continuously on f. Since the invariant measure is given by J.L(A) = A(h(A)), this implies

that the map taking f to its invariant measure J.L is weak* -continuous when restricted to

Fp. This result can easily be recovered from the proof here.

2. Two examples showing necessity of some conditions for Theorem 1

Before embarking on a proof of Theorem 1, we first present two examples to show that

some restrictions are necessary for the conclusions of the theorem to hold. In particular,
..

we exhibit families which do not satisfy condition (ii) for which the conclusion fails. It

seems likely that condition (i) is unnecessary for the conclusion of the theorem to hold,

although any significant relaxation of this condition will necessarily make the construction

of the invariant measures much harder than the one given in this proof.
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Figure 1·3 A family for which the conclusion of the theorem fails.

The first example for which the conclusion fails is illustrated graphically in Figure 1·3.

The process which takes place is that a pair of fixed points vanish simultaneously with the

birth of another pair of fixed points. The limits from the two sides in the parameter space

of the invariant measures are concentrated on the dying pair (respectively new pair) for

parameter values lower than (respectively greater than) the critical value (see Lemma 2).

The example shows that even in the one-dimensional case, there exist examples for

which the unrestricted version of this theorem fails. The reliance of this proof on properties

of circle maps suggests that this would fail more spectacularly in higher dimensions.

This example works by having a parameter value such that the probability measures

for parameters on the left converge to a limit and similarly with parameters on the right,

but that the two limits fail to agree. It is then natural to ask if this is the only way that

the theorem .could go wrong. In particular, if a parameter value is on the boundary of an

interval on which the rotation number is rational, then this construction cannot be used.

The question is then whether the condition (ii) needs to apply at the boundary of regions

of constant rotation number.
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The next example, which is more complicated, shows that the conclusion of the the-

orem need not hold even if condition (ii) fails only on the boundary of an interval in the

parameter space on which the rotation number is constant. To write down the example,

we regard the circle as the interval [0,1) mod 1. The maps which we consider are then of

the form T( x) = z + v( x) mod 1. The form of the functions V which we are considering is

shown in Figure 1·4.

Figure 1·4 'Speed Function' for the counterexample.

The function V depends on the parameters € and TJ. It is ,clear that if € and TJ are

allowed to vary continuously with respect to a parameter a say, then the family of circle

maps given by TO'(x) = x +vO'(x) mod 1 is in fact a continuous family of circle maps. The

family VO'is given explicitly by the expression

x E [O,~]
XE[~,l]·

We then consider a family with the properties that €(a) ~ 0 and TJ( a) ~ 0 as

a ~ ao, and investigate the limit of the invariant measures of the maps TO'as a ~ ao and

in particular, show that the limit exists if and only if log €/ log TJ has a well-defined limit
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as a -t ao. In this case, the limit is a measure J.L concentrated at the points i and ~ with

(1)

It is clear that there exist examples of continuous functions t:(a) and 1](a) with the

properties that t:(a) -t 0 and 1](a) -t 0 as a -t ao, t:(a) > 0 and 1](a) > 0 for all a < ao

such that the limit of log t:/ log 1] fails to exist as a -t ao.

It is a well-known fact of ergodic theory that each circle map TC'< has some invariant

measure, J.LQ say (see [Wa3], corollary 6.9.1). To evaluate the limiting measure J.Ldescribed

above, we take a small set containing i,say A = [i - h, i+h) and a similar one containing

i, say B = [i - h, i + h), and estimate J.LQ(A) and J.LC'«B) for a -e+ ao. To do this, we note

that if it takes between nand n + 1 steps 'for a point to go all the way around the circle'

(that is if 0 ~ TQ~l+l(O) < TC'«O) and this is the first such n), and if it takes between m

and m + 1 steps for a point to go through A (that is, if TQm+l (i - h) ~ i + S and this is

the smallest such m), then

where XA is the characteristic function of the set A. This follows by invariance of the

measure. But for each point, we have

n-lm-I 1", . m+l
--~-~XAoTQ'(:Z:)~ ,
n n . n

1=0

It follows that IJ.LQ(A) - 7~ I ~ ~. There is of course a similar result for J.LQ(B). If we then

show that the amount of steps in each cycle spent outside sets A and B is bounded above

by some constant, then it is clear that we can evaluate the limit of J.LQ(A) as a -t ao,

by estimating the values of m and n, since these tend to infinity as a -t ao. The only
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calculation which we need to perform is to solve a simple recurrence relation to estimate

the time spent in certain sets of a very simple form. Suppose then we are considering

a set C of the form [O,a) and the 'speed' function is given by v(x) = c - (c - b)x/a

where c - b < a, and we have T(x) = X + v(x)j then the recurrence relation is Xn+l =

c + (1 - (c - b)/a)xn. Let p = 1 - (c - b)/a. Then we are solving Xn+l = C + pxn. The

solutions are Xn = c/(1 - p) + Apn. By substituting the initial conditions, we see that

in fact Xn = c(1- pn)/(1_ p). The number of steps thus spent in the set C is thus the

rounded-up value of

log(1 - (1- p)a/c)/logp = (logb/c)/logp.

We can now apply this to the collection of circle maps described above. In what follows,

we will require € and 7] to be bounded above by /6. The first thing we show is that the

amount of steps per cycle spent outside the sets A and B is bounded above by a constant

as € and 7]tend to zero. To show this, we note the symmetry of the situation: the number

of steps taken to get from ° to i - b is the same as the number of steps to get from

± + 6 to ~. This number is given by the round up of log(8. v(i - 6))/log(~ + 4€). This
,

is bounded above by log(48)/ log( ~), so we see that the number of steps spent outside

A and B is bounded above by 410g(48)/log(i). The number of steps in A is given by

-210g€/logO + 4€) plus a term which is bounded, and similarly the number of steps in

B is given by -210g7]/logO +47]) plus a bounded term. Set m(€) = -210g€/logO +4€)

and p( 7])= ~210g 7]/ logO + 47]). Then given a constant (J' > 0, there exists a T such that

By elementary analysis, we see that the assertion of equation (1) is now proved, and thus

the example is complete.

12



3. Proof of Theorem 1

A useful lemma is the following:

Lemma 2. The invariant Borel probability measures for a circle map T with rational

rotation number p/q are precisely those measures which can be expressed in the form

q-l
1~ .IL(A) = - L.J v(T-Z A),
q i=O

where v is a probability measure concentrated on the fixed points of T",

Proof. Certainly any Borel probability measure of the form described is invariant for the

circle map in question. Conversely, in the preliminary discussion, it was noted that each

point of the circle converges monotonically under iteration of the map to a periodic orbit.

From this, it follo~s that the only non-wandering points of the map are the periodic points.

There is then a standard theorem telling us the non-wandering set has full measure (that

is measure 1) with respect to any invariant Borel probability measure (see [Wa3], theorem

6·15). The remainder of the proof follows easily from the invariance of the measure.

Lemma 3. Suppose that (Ta )aEJ is a continuous family of circle maps such that Tao has a

hyperbolic periodic orbit of period q through a point e E SI. Then for each neighbourhood

M of e, there exists a neighbourhood N of ao such that if (3 E N, then Tf3has a periodic

point of period q in M.

Proof. Suppose that we are given a neighbourhood M of e. Then there must exist a

closed subinterval 1 of M with e E Int(l) with the property that Tao q(l) C Int(l) or

Tao q(Int(l)) ::::> (1) according to whether e is stable or unstable. But then for any T which

is sufficiently close to Tao, the appropriate containment property persists (Tq(l) C Int(l)
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or Tq(Int(I)) :) I respectively). But then it follows by Brouwer's fixed point theorem that

T has a periodic point of period q in Int(I).

Lemma 4. Suppose X is a compact metric space and To : X -+ X is a continuous map

which is uniquely ergodic, with unique invariant measure Vo, say. Then for any weak*-

neighbourhood N of Vo, there is a neighbourhood U of To such that for T E U and v any

invariant measure for T, we have v E N.

Proof. By reducing N if necessary, we may first of all assume that N is a basic neighbour-

hood of Vo (that is N = {J.L : IJ fi dJ.L - J Ii dvol < Ei, i = 1, ... ,n} for a finite sequence

Ui)l<i<n of continuous functions and (Edl<i<n a finite sequence of positive bounds). We- - - -
may further assume that n = 1 as for larger n, we may simply take the intersections of the

resulting neighbourhoods U obtained from the proof below. We will therefore assume for

this proof that the neighbourhood N is given by N = {J.L : J f dj.£ - J f dVQ I < E}. Now

assume for a contradiction that for any neighbourhood U of To, there is a map T E U

and an invariant measure v for T such that I J f dv - J f dVQ I 2: E. It follows that there

exists a sequence of maps (Tn)nEN converging uniformly to To, having invariant measures

(2)

Since X is a compact metric space, the space of Borel probability measures on X is weak*-

compact, hence weak*-sequentially compact. The sequence of measures (vn) therefore has

a convergent subsequence, (vn;) converging to j.£, say. Since vn; is invariant for Tn;, we

have for any continuous g, that

J 9 0 r; dvn; = J 9 dvn;, Vi. (3)

14



Now since Tn; converges to To uniformly, it follows that goTn; converges to goTo uniformly,

and hence, taking limits of (3) as i -+ 00, we see that J goTo dJ.L= J 9 dJ.Lfor any continuous

function g. It follows that J.Lis an invariant measure for To, yet taking the same limit in

(2), we see that J.L=1= va. This contradicts our assumption that To was uniquely ergodic,

and hence proves the Lemma. 0

We now proceed to the proof of Theorem 1.

Proof of Theorem 1.

Set C = CI{o: E J : p(Ta) ¢ Q}. We will show that for those values of 0: in C, the

map Ta is uniquely ergodic. If p(Ta) ¢ Q, then this is a standard ergodic theorem as noted

earlier. If Ta has a hyperbolic periodic point, of period q say, then by Lemma 3, there is

a neighbourhood of parameter values about 0:, such that for maps with parameters in the

neighbourhood, there is a periodic point, and hence the rotation number is rational on a

whole neighbourhood of parameter values about 0:. In particular, 0: ¢ C. It follows that

if 0: E C and p(Ta) E Q then Ta has no hyperbolic periodic points. We therefore see that

Ta must have periodic points, and these must all be non-hyperbolic. By hypothesis (ii) of

the theorem, we have that Ta has a unique periodic orbit. It now follows from Lemma 2,

that there is a unique invariant probability measure.

We proceed by defining J.La for 0: E J\C. First, note that since C is a closed set, we

have that J\ C is an open subset of J and hence consists of a countable disjoint union of

Open subintervals of J, say J1, J2, • ... Now fix such an interval Jj• Unless J, is one of

the end intervals, J, is open in R, so we write J; = (O:j,f3j). In this case, Ta; and Tj3; are

uniquely ergodic, so the invariant measures are determined at the endpoints of the interval.

If Jj is one of the end intervals, then we typically have that it is closed at one end or the
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other. Now set K, = CI(Ji) = [ai,,Bi]. The idea behind the construction is as follows.

Plotting the periodic points of Ta against a for a E K, gives a graph similar to Figure 1·5.

The invariant measure, being concentrated on the periodic points, must be chosen to be a

superposition of 'b-measures', moving along the periodic point curves. Since these curves

can terminate, it may be necessary to transfer to a new periodic curve. This must also

be done continuously, so in the construction, one curve is being phased in, while another

curve is being phased out.

SI

Parameter

Figure 1·5 Typical diagram of periodic points against parameter.

We construct an open cover for Ki. Suppose the rotation number of the maps with

parameters in Ki is p!q. This may be assumed by the continuity of p. Then let Sa be a lift

of Taq fixing the preimages (under 11") of the periodic points, and set ua(x) = Sa(x) - z ,

Clearly the maps (a,x) H Sa(x) and (a,a:) H ua(a:) are continuous on K, X R. Given

a E Ki ;we seek a connected open neighbourhood Na containing a, and a continuous map

cPa : CI(N a) --+ R taking each parameter value to a fixed point of S for that parameter

value (that is Sp(<Pa({3)) - <Pa({3)).
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If the periodic points of TOI are all non-hyperbolic, choose e to be any periodic point

of TOI. Note that in this case, there is exactly one periodic orbit, so e is clearly bounded

away from any other periodic points. If TOI has a hyperbolic periodic orbit, choose e to be

a hyperbolic periodic point. In either case, there is a neighbourhood of e in which there

are no other periodic points of TOI. Let a: be a preimage (under 71') of e. There is then

a neighbourhood of a: which contains no fixed points of SOl' Choose T small such that

[a:- T,a: + T] is in this neighbourhood. Then set € = min(luOl(a:+ T)I, luOl(a:- T)I). By

continuity of u, there exists a 01 > 0 such that 1,8- al < 01 implies that up i= 0 at a: - T

and a:+ T. By hypothesis (i) of the theorem, we also have that there are finitely many

values of,8 in (a - 01, a + 01) with Tp critical, so it follows that there is a 0 > 0 such that

o < 1,8- al < 0 implies that up i= 0 at a:- T and a:+T, and that Tp has no non-hyperbolic

periodic orbits (note that there may be a non-hyperbolic orbit at a itself, but if so, it must

lie outside [a:- T, a:+ T] or TOI must have no hyperbolic periodic orbits).

We then define NOI = {,8 : la -,81 < o} nK, and define <POIon this reduced interval by

the equation

<P0i(,8) = sup{Y E [a:- T, a:+ T] : up(y) = oj.

We claim that <POI is continuous. If <POI is not continuous, there exists a sequence (,8i)iEN

of points in N Oi tending to some ,8 E N o such that <PrA,8dfails to converge to <P0I(,8). By

passing to a subsequence, we may assume that the <POI(,8d converge to some other limit. If

<P0i(,8) is smaller than this, then we get a contradiction by noting that up(lim <POI(,8i)) = 0,

so that <P0I(,8) was in fact not the supremum of those fixed points in the range of interest.

Conversely if <P0I(,8) > lim <POI(,8i), we must have,8 i= a as TOI has only a single periodic point

in [a:- T, a:+ T]. But then Tp cannot be critical, so 71'( <P0I(,8)) must .be a hyperbolic periodic
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point. The orbit at 7r(<Pa(f3)) therefore persists for parameter values near f3, which is a

contradiction by construction of <Pa. This shows that <Pais continuous, so for each a E Ki,

there exists a neighbourhood N a of a in Ki, and a continuous function <Pa defined on N a,

such that for all f3 E Na, <Pa(f3) is a fixed point of Sp. By reducing the neighbourhood Na

if necessary, we may assume the additional properties that <Pa is continuous on the closure

of N o and that the only neighbourhoods containing ai and f3i are N C'ti and N Pi. We have

then found an open cover of Ki, and so may apply compactness of K; to pick a finite

sub cover. We may assume that this sub cover is minimal by inclusion (that is there is no

smaller subcover, each of whose sets is a member of our chosen subcover). We label the sets

in the open cover in the order of the left-most point from left to right as NI, Nz, ... , N k,

and write Nj = (aj,bj) for 1 < j < k; NI = [aI,bJ)j Nk = (ak,bkj, where we have taken

bk = f3i and al = ai. Let <Pjbe the <p-function associated to the interval Nj. We then have

by the minimality ofthe cover. To see this, note that clearly the sequence of ai is increasing

by construction. The sequence of b, must also be increasing, since otherwise one of the

intervals would be completely contained in another. We need that NjUNj+z jJ Nj+I giving

the condition that bj :::;aj+2, and the condition aj+I < bj arises from the requirement that

the collection be a cover.
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Figure 1·6 Possible arrangement of chosen periodic points.

In Figure 1·6, an example of such a configuration is shown. We are then in a position

to construct the invariant measures for the Ta with a E Ki, Define

if a E [a j+I ,bj J

if a E [bj, aj+2],

where 0, is the Dirac o-measure with unit mass concentrated at ( and where we take

ak+l = bk and bo = al' Given a continuous function f E C(SI):

if a E [a j+ I ,bj J

if a E [bj, aj+2J.

Continuity is clear everywhere except at the aj and bi, and this can be checked by comparing

the expressions and using the fact that the </>-functionswere chosen to be continuous on the

closures of the subintervals. We can then see that the family (va )aEKi is a continuous family

of probability measures, and vp is concentrated on the periodic points of Tp. Forming

q-l
1~ .

J..ta = - L...J V« 0 Ta -1

q i=O
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gives a continuous family of invariant measures on K, by Lemma 2. Notice that by the

construction, since we forced NI = NQi and Nk = Npp the limit of the measures as they

approach the end-points is just the required measure, in the (usual) case where this is

uniquely ergodic.

Repeating this process inductively, we will be able to define a family of invariant Borel

probability measures, one measure for each parameter in the set J\O, and so since we have

already shown the uniqueness of the probability measures for maps with parameters lying

in 0, we have defined the whole family of invariant measures. The family thus constructed

has already been shown to be continuous on all intervals contained in J\0, and therefore,

since J\O is an open set, it follows that the map M : a f-t /-LQ is continuous for a E J\O.

It remains to show continuity at points of 0, but this is a straightforward application of

Lemma 4, so we are done. 0
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Chapter 2. Expanding Maps,
g-Measures and Generalized
Baker's Transformations

1. Introduction

In this chapter, we discuss the relationship between expanding maps, g-measures and

generalized baker's transformations.

Throughout this chapter, we take a definition of expanding maps which is slightly

different from the traditional one, as we include also the possibility that the map is not

differentiable. I will denote the unit interval. For a subinterval J of I, IJI will denote the

length of the interval J.

Note that in what follows, we will often refer to maps which are piecewise monotone

and continuous or piecewise monotone and c-. These mean that the map is piecewise,

strictly monotonic and on each of those pieces the map is continuous or c» respectively.

In the latter case, the map is assumed to have a c- extension to the closure of any interval

of monotonicity.

Definition 1. Let T : I ~ I be piecewise monotone and continuous. T is expanding if

there exists a constant C > 1 such that whenever J is a subinterval of I, for which the

restriction ofT to J is a homeomorphism, we have IT(J)I ;:::CIJI.

Definition 2. An expanding map T will be called Markov if it has the additional

properties:
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(i) There is a finite partition of I into subintervals I = Io U ... U In-1 such that the

restriction of T to each of these subintervals is a homeomorphism.

(li) Cl(T(Int Ii)) is a non-empty union of some of the Cl(Ij).

Note that in this situation, we can define an associated Markov mairiz A by setting

Aij = 1 if CI(T(Int Ii)) ~ Ij and 0 otherwise. This matrix is said to be mizing if the

entries of An are all strictly positive for some n > o.

Note also that this is also at variance with the definition ofthe Markov property given

in [Ma], where additional continuity/differentiability properties are required of T.

There is another situation, in which we frequently find ourselves, so this will be given

its own definition.

Definition 3..A map T from the interval to itself will be called a full map if it is expand-

ing, has a finite partition of I into subintervals I = Io U ... U II-1 such that the restriction

of T to the interior of each subinterval is an orientation-preserving homeomorphism onto

(0,1). T will be called a c- full, map if it has a c» extension to each of the intervals el(Ii).

The degree of the map is l, the number of branches.

The reason for this nomenclature is that the symbolic dynamics associated with T

take place on the fulll-shift (see below).

Let T be an expanding map of the interval. An absolutely continuous invariant mea-

sure (or A~IM) for T is a Borel probability measure which is absolutely continuous with

respect to Lebesgue measure and is invariant under T.

Many authors have studied the existence and the number of such measures for expand-

ing maps T of the interval. Krzyzewski and Szlenk showed that for C2 expanding maps of

compact manifolds (that is C2 maps whose Jacobian is everywhere bounded below by some
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c > 1), there is a unique ACIM (see [KS] and [Kr1)). This applies to those maps of the

interval which are obtained from C2 expanding endomorphisms of the circle. Lasota and

Yorke showed in [LaY] that any piecewise C2 expanding map of I has an ACIM. Kowalski

([Ko)) improved this by showing that the same conclusion holds if the map is piecewise

CHI (that is the map has Lipschitz derivative). Mane's book ([Ma)) gives a refined proof

showing that this remains true if the map is piecewise cHao Wong ([Wo)) found that the

conclusion holds when the assumption is altered to assuming that the map is piecewise Cl

with the reciprocal of the derivative, liT', of bounded variation.

Krzyzewski ([Kr2)) managed to show that the same conclusions do not in general hold

for Cl maps by showing that for any manifold M, there exist Cl expanding maps of M

which do not have any ACIM. His proof however was not constructive, so there was still

some interest in constructing an explicit example of such a Cl map in (for example) the

simple case of the circle. This was done by Gora and Schmitt (see [GS)).

Various authors then turned their attentions to the number of ergodic ACIMs in the

piecewise C2 case (where ACIMs are known to exist). Papers on this include [LiY], [BS]
,

and [BB]. These in particular imply that if T is a C2 full map, then there is a unique

ACIM for the map T. Such an ACIM would therefore necessarily be ergodic.

A natural question which remains is the following:

Question 1. Does there exists a Cl full map with more than 1 ACIM?

This question has been recently answered -for CO maps and even for Lipschitz maps

in the affirmative: There. exist relatively simple examples of Lipschitz full maps which

preserve Lebesgue measure, but for which Lebesgue measure is not ergodic. This was

first answered by Bose in [Bosl] using generalized baker's transformations. I have since
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found a simpler, but less geometric proof of this result using g-measures, which is pre-

sented below. This chapter contains a demonstration of the relationship between the two

approaches, and in general exhibits the connection between expanding maps, generalized

baker's transformations and g-measures.

The general question which remains then is to see what constraints are imposed on

a system by assuming that it is a Cl full map of I, preseving Lebesgue measure. In

particular, is such a system automatically ergodic? The results described below stem from

an attempt, as yet unsuccessful, to answer Question 1.

We now summarize the theory of g-measures. Let A be a mixing Markov 1 x 1matrix

as described above. We will assume the indices of A run from ° to I - 1. Then EA is the

space of sequences defined by

. :EA = {X E {O,1, ... ,l-1}z+ : AXi,Xi+l = 1, Vi 2: O}.

This space is endowed with the induced topology on EA of the product topology on

{a, 1, ... ,1 - l}z+ by giving it the metric

d(X'Y)={~_n
if X = Yi
if Xi = Yi for i = 0,1, ... ,n -I,'but Xn ::j:. Yn.

We then consider the map er: :EA --+ EA defined by er(x)n = Xn+l. The map er is commonly

known as the shift map. The topological space (X, d), together with the map er acting on it

is known as a mixing subshift of finite type. We will often work with the special case where

A is the I X I matrix consisting entirely of Is. In this case, :EA is the space of all sequences

of symbols of {a, 1, ... ,I - I}, and is denoted now by :El .. This space (together with the

map er) is known as the full shift on I symbols. Most of this chapter will concentrate on

this restricted situation. We will be looking at those Borel probability measures which
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are invariant under the action of the shift map. These measures are called shift-invariant.

Suppose now that l:A is a mixing subshift of finite type. Let a = (ao, al, ... ,as-I) be a

finite (possibly empty) word satisfying Aai,ai+l = 1 for each i, let x E l:A and suppose

Aa,_I,XO = 1, then denote by ax, the sequence in l:A given by concatenating a onto the

front of e:

if i < Si
if i ~s.

If x E l:A, then we define [x]n to be the nth cylinder about e: [x]n = {y : d(x,y) <

2-n}. If f E C(l:A), the nth variation of f is given by varn(J) = max{lf(x) - f(y)1 :

x,y E l:A, d(x,y) < 2-n}. The function f is Lipschitz if there exists a C > 0 such that

varn(J) :::;C . 2-n for all n. It is Holder if there exists a C > 0 and a f3 < 1 such that

We are now in a position to start defining g-measures.

Let 9 : l:A ~ [0,1] be a Borel-measurable function such that 2::YEI7-1(x) g(y) = 1 for

all x E l:A. Write g or g(l:A) for the set of all such functions. The subclass of those 9

which are bounded below by a positive number will be denoted by g+. We will usually
,

restrict attention to the subclass of those 9 E g which are continuous and strictly bounded

away from o. We will write gO for this class of functions. Given 9 E go, define the

Ruelle-Perron-Frobenius operator Cg : C(l:A) ~ C(l:A) as follows:

Cgf(x) = L g(y)f(y).
yEI7-1(x)

This is a positive operator and it satisfies Cgl = 1 for all 9 E gO. Since Cg is a linear

map defined on the Banach space of continuous functions on l:A, it has a dual map C;
which maps the space of finite signed measures on l:A into itself .. The defining relation for
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.c; is then J .cgl dJ.L= J I d.c;J.L. The above facts noted about c, imply that .c; maps

the probability measures on ~A into themselves.

A q-measure for 9 E gO is simply a probability measure v such that .c;v = v.

The following Lemma records some elementary properties of g-measures.

Lemma 1. The following properties of g-measures hold.

(i) For each 9 E go, there is at least one g-measure;

(li) Any g-measure is shift-invariant;

(iii) Any g-measure is fully supported on ~A;

(iv) A g-measure may be characterized by the property

(1)

(v) For any given 9 E go, the g-measures form a non-empty convex set. The extreme

points of this set are ergodic.

(vi) All g-measures are non-atomic.

Proof. To show (i) holds, let f..£ be any probability measure on ~A. Form the averages

11-1
(n) _ 12:.c*iJ.L - - J.L.n 9

i=O

Then since ~A is compact, there is a weak" -convergent subsequence of J.L(n), say J.L(I1;)

converging to some measure u. Then for any continuous function I, we have I J I dJ.L(n;) -

J I d.c;J.L(7l;) I :::; 2111111n. Taking limits, it follows that J I dv = J I d.c;v. The measure v

is therefore a g-measure, completing the proof of (i).

Now note that .cg(f 00') = I for any continuous f. Using this, and supposing that v

is a g-measure, we have

J I 0 0' dv = J I 0 0' d.c; v = J c,(f 0 0') dv . J I dv
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for any continuous function f. It follows that v is shift-invariant, showing (ii).

We prove (iii) by contradiction. Suppose v is a g-measure which is not fully supported.

Then there must be an open subset U of ~A such that v(U) = O. We may therefore assume

that U is a basic set: an n-cylinder for some n > O. So now write U = [z]n. Write Xv

for the characteristic function of U. We are assuming that A is a mixing Markov matrix,

so let k be chosen such that Ak has strictly positive entries. Then pick x E ~A. We have

A~n ,xc > O. It follows that there exists a sequence Yo, ... ,Yk-l such that AYi ,Yi+l = 1 for

each i, Azn,yO = 1 and Ayk_1,XO=1. In particular, the concatenation zyx is a member of

~A. Now, we have

xv(u)g(u)g(O"(u)) ... g(O"n+k(u))

~ xu(w)g(w)g(O"(w)) ... g(O"n+k(w)) where w = zyx

= g( w )g( 0"(w)) ... g( O"n+k( W )).

But now, since 9 is strictly bounded away from 0, this is strictly positive. Since this is

true for all z , we now have that J .c;+k+lXV dv > 0, but this implies J Xv dv > 0, which

is the desired contradiction.

To prove (iv), let J.Lbe any probability measure. Now extend the definition of 9 by

saying that'g : ~l -+ [0,1], where g(x) = 0 if x E ~l \ ~A. Similarly, we may regard J.Las a

measure on ~l by the natural inclusion. We now have

.c;J.L([ix]n+l) = J X[ilo(X[xln 00-) d.c;J.L

=J .c(X[ilo(X[xln 00")) dJ.L= r g(iy) dJ.L(y),
J[xln

In particular, if J.Lisa g-measure, then the desired conclusion holds using the continuity of
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g. Notice that this implies the important equation

d.c;J-L( ix) = g( ix )dJ-L( x). (2)

Conversely, suppose (1) holds. Then write J-Li(A) for the quantity J-L(iA). Then J-Li

is a measure. The equation (1) implies that dJ-Ld dJ-L(x) = g( ix), or dJ-L(ix) = g( ix )dJ-L( x).

Comparing with (2), we see that J-L has the same derivative as .c;J-L. This implies that

.c;J-L = J-L, and part (iv) is proved.

In showing that (v) holds, note that it is clear that the set of g-measures is a non-

empty (by (i)) convex set since the operator .c; is affine. Suppose now that J-Lis an extreme

point of this set of g-measures, and suppose for a contradiction that J-Lis not ergodic. Then

there exists a set B such that J-L(B) E (0,1) and such that B = q-l(B). Now form a new

measure v in the usual way by defining v(A) = J-L(A n B)j J-L(B). Now we have

(
J-L - J-L(B)V)J-L= (1 - J-L(B)) 1 _ J-L(B) + J-L(B)v,

so that if we can prove that t/ is still a g-measure, then we are done. To show this, let f

be a continuous function and note that

.cg(fXB)(X) = L g(y)f(Y)XB(Y)·
yEu-1(x)

Note that ify E q-l(X), then XB(Y) = 1 if and only if XB(X) = 1 for J-L-almostall e. It

follows that .cg(fXB)(X) = .cgf(X)XB(X) for J-L-almostall x. We now get
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It follows that v is a g-measure, so by the earlier comments, we have achieved the desired

contradiction, proving (v).

Now, suppose x is a non-periodic point of ~A' Then it is easy to check that u-m(x) n

u-n(x) = 0 for each m > n 2: 0: Suppose not. Assume that y E u-m(x) n u-n(x).

Then um(y) E {x} n {um-n(x)}, which establishes a contradiction. Using this, we see

that any atoms of an invariant probability measure must be concentrated on its periodic

points, for otherwise, if x is a non-periodic atom, then the sets u-n( z ) have equal positive

measure and are disjoint, which contradicts the finiteness of the measure. Now suppose

v is a g-measu-re and that x is an atom of u, Then x must be periodic since g-measures

are shift-invariant. Next, let n be such that An has strictly positive entries where A is

the associated Markov matrix. Then there are at least 1 elements of u-n( x). Only one of

these can be periodic (namely the one which has the n terms which are added on copied

from z itself). Let y be one of the non-periodic preimages of x. From (1), we can see that

v({y}) = g(y)g(u(y)) ... g(un-1(y))v({x}). Hence v(y) > 0, which is a contradiction by

the argument above, thus proving (vi).

This completes the proof of the Lemma. D

Note that as yet, we have only defined g-measures for 9 E gO. However, we use (1) to

define g-me~sures for general 9 E g. Since (vi) only relies upon (1) and the fact that 9 is

positive, it follows that the conclusion of (vi) holds for 9 E g+.

We will now describe a more probabilistic interpretation of g-measures. We consider

sequences (Xn)nEl of random variables taking values in the set {O, ... , 1 - 1}, often re-

garding their values as outcomes of a sequence of experiments, one performed at each

integer time. Strictly, one should consider the Xn as maps from some probability space n
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to {0, ... ,1-1}, and write Xn(w) for Xn, but as we will be using the same probability

space throughout, we often prefer to simply write Xn• We will look at the evolution of the

random variables by specifying the probabilities ofthe various outcomes of the 'present' ex-

periment (that is Xo) conditional on the 'past' (that is (Xn)n<O). The simplest non-trivial

examples of this are given by Markov chains, where the probabilities of the outcomes of

the present experiment are completely determined by outcome of the previous one (that is

P(Xn = ilXn-1 = ii, Xn-2 = j2, ... ) is independent ofh, h, .... One can similarly con-

sider the so-called 'finite range' processes or le-step Markov chains, where the probabilities

are determined by the outcomes of the previous k experiments.

We will look at a generalization of these to 'infinite range' processes. Let (Xn)nEZ

be a sequence of random variables taking values in {O, ... , 1 - I}. Suppose the sequence

satisfies

P(Xn = ilXn-1 = aI, Xn-2 = a2, ... ) = 9(i,al,a2, ... ), (3)

where 9 E gO(~I). If we now fix an n, then we get a natural map Pn : n -t ~l given by

Pn(W)i = Xn-i(w). If we have a probability distribution on the subsequence (Xm)m:$n,

then this pushes forward (under Pn) to a probability measure JL on ~l. If the evolution

at the n + 1st stage is governed by 9, as in (3), then the induced probability distribution

on (Xm)m:$;t+l pushes forward under Pn+l to C;JL. This follows by (2), which just says

that the probability of adding an i on the front of the sequence x is given by 9( ix). It

then follows that the stationary distributions for the random variables correspond exactly

to 9-measures: If P is a stationary probability distribution on n, satisfying (3), then by

stationarity, we have Pn(P), the push-forward of the distribution on those symbols before

the nth is independent of n. Call this measure u, say. It follows that C;v = v, so v is a
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g-measure. Clearly this also works in reverse.

The first use of g-measures was in the 1930s to describe the so-called Learning Models,

where people were interested in finding a mathematical description of the processes of

learning. These were studied by Doeblin and Fortet in [DF], where they were called chains

with complete connections. Karlin (see [Kar]) also looked at these and claimed he had a

proof that for each 9 E go, there is a unique g-measure. This proof was however incorrect,

and this statement is now known to be false. Keane ([Kea]) invented the name 'g-measures'

and showed that for a large class of g, there exists a unique g-measure, and this measure

has strong ergodic properties with respect to the shift transformation. In fact, in [Kea],

he works on the circle, using instead of the map a ; the map T : z t---+ 2x (mod 1). The

results may be readily translated to the situation which we are discussing. In this context,

Keane's results state that if 9 is Lipschitz then there exists a unique g-measure, which

is strong-mixing. Keane asked whether there exists a unique g-measure for each 9 E go,

which is very closely related to the question left open by Karlin's wrong proof. Walters (see

[Wa1]) then showed that there is a unique g-measure when 9 has summable variation (that

is L~=lvarn(g) < 00). This holds in particular, when 9 is Holder continuous. Palmer,

Parry, andWalters took up the question of uniqueness of g-measures in [PPW], but their

attempt yielded only some preliminary results. More recently, Berbee ([Be]) considered

the question, providing weaker conditions than those of Walters, under which there exists

a unique g-measure. It may be noted that the development of results for g-measures is

similar to the development of results for expanding maps. The reasons for this are discussed

in the next section.

Hulse ([Hu]) applied some ideas of statistical mechanics' to find a new class of 9
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which have unique g-measures. This paper was interesting as the result followed from

general statistical mechanical restrictions on g, rather than strong continuity conditions.

In particular, Hulse introduced the definition of attractive g-functions. He worked mainly

on ~2, and introduced a partial order ::::5 on it:

A g-function is then attractive if g(1x) ~ g(1y) whenever x ~ y. This says (in the

probabilistic interpretation) that the more 1s that one has in the past, the more likely

one is to get a 1 at the present. One important consequence of this shown in [Hu] is

that the sequence .c;nS, is weak" -convergent to a g-measure, where bi is the probability

measure concentrated on the point of ~2 whose terms are all equal to i. Normally, to get

a g-measure, one is compelled to take subsequences of Cesaro averages as in Lemma 1,

but then one typically has very bad control of the reulting measure. In [Kal], Kalikow

introduced the concept of bounded uniform martingales (which he gave the unfortunate

acronym b.u.m.), which is equivalent to the concept of g-measures. Finally, in [BK),

Bramson and Kalikow used this and attractive g-measures to provide an example of a

9 E gO for which there is more than one g-measure. This finally solved the main problem,

which had been a major conjecture for a considerable time. It does not however solve the

problem of Keane in its original form, as there is in general a difficulty in lifting functions

from ~2 to the circle, so the example of Bramson and Kalikow may not be lifted into the

context of Keane.

The third concept, which we shall require in this chapter is that of generalized baker's

transformations, as introduced by Bose (see [Bost]). For the purposes of describing this, we

will consider generalized baker's transformations with two slices, although it is possible to
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look at generalized baker's transformations with more slices. Let fo and h be measurable

functions on [0,1] such that fo +h = 1 almost everywhere and Ii ~ C almost everywhere,

with respect to Lebesgue measure>. for i=O and 1. Then define

¢~(x) = lx

fo(t)dt

¢~(x) = ¢~(1) + foX h(t)dt.

These maps are homeomorphisms of the interval onto their images, and the union of their

images is the whole interval. There is therefore a 2-branched expanding Lebesgue measure-

preserving map ¢, of which ¢o and ¢1 are the two inverse branches. Then the generalized

baker's transformation is defined as follows:

( ) _ { (¢(x),fo(¢(x))y)
Tf x,y - (¢(x),l - (fl(¢(x))(l _y)))

if x < c,
if x ~ c,

where c = ¢~(1). We will refer to this also as the generalized baker's tran.sformation based

on ¢, as the map ¢ is easily seen to determine the whole transformation, by noting that

¢'(x) = 1/ fH¢(x)) almost everywhere, where i is 0 if x < c and 1 if x ~ c. Note that if we

consider the projection p sending points of S onto their first coordinate then po'I'] = Tf op,

so the pair (Tf, >.x >.)may be factored through this projection. The result of this is just

the pair (¢,'>.). We call ¢ the vertical projection of T],

This situation is illustrated in Figures 2·1 and 2·2 below:
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Figure 2·1 Possible graph of <p.

Figure 2·2 Fundamental partition of Sunder TI'

The transformation operates as follows. The square is divided into two rectangles:

Ro = {(x,y) : x < c} and RI = {(x,y) : x 2:: c}. The rectangle Ro is then stretched
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(non-uniformly) horizontally to have width 1, with z moving to 4>(x). There is a corre-

sponding vertical contraction so that areas are preserved. The image of Ro is then called

Po. Meanwhile, RI is flipped vertically and then stretched (also with x moving to 4>(x))

in such a way as to fill the remainder of the square lying over the image of Ro. The image

of RI is PI.

In [Bos1], Bose shows how to find generalized baker's transformations which are mea-

surably isomorphic to stationary stochastic processes. Recently, Rahe (see [Ra]) has re-

lated generalized baker's transformations and the work of Kalikow to represent generalized

baker's transformations as uniform martingales. [Bos2] uses generalized baker's transfor-

mations to construct examples of CO expanding, Lebesgue measure-preserving maps of I

with varying degrees of ergodic properties.

2. Connections between g-Measures, Expanding Maps and Generalized Baker's

Transformations

In this section, we show how the concepts of expanding maps, g-measures and

generalized baker's transformations are related. First, we show how to use Walters' result

[Wa1] to give a quick proof of a simple, but archetypal result for expanding maps. This is

somewhat similar to the rather more general proof given in [Wa2].

Propositi()n 2. Suppose T : I ~I is a Markov expanding map which is piecewise CHo-,

(that is the derivative is piecewise Holder continuous with exponent a). Suppose further

that T has a mixing associated Markov matrix A. Then T preserves a unique ACIM.

Proof. Let the constant in the definition of expanding maps be C, where C > 1. We use

standard symbolic dynamics arguments to get a topological semi-conjugacy 7r from (~A' u)

to (I,T) such that T7t(7r(x)) E IXn for each n ~ o. This semi-conjugacy is one-to-one off

35



a countable set, which is, of course, of Lebesgue measure o. Lebesgue measure .:\therefore

pulls back under 7r to give a measure J-L defined on :BA. The triples (T,I,.:\) and (u,:BA,J-L)

are therefore measure-theoretically isomorphic, although J-Lis not a shift-invariant measure.

We then define g(x) to be 1/T'(7r(x)), taking the appropriate one-sided derivatives at the

endpoints of the intervals Ij (that is if x is the left hand endpoint of Ij, then T' (x) is taken

to be the right derivative of T at x).

Now take any function f on I. Then we have by the change of variables formula,

where T, is the restriction of T to Ii. This says (under the isomorphism) that

(4)

for any continuous function f on :BA.

Next, we check that 9 is Holder continuous. If d(x,y) < 2-n, then 7r(x) and 7r(Y)

lie in the same n-cylinder. But the n-cylinders are mapped homeomorphic ally by T" into

I. In par-ticular, since T expands distances by at least C, we have that the length of the

n-cylinder is bounded above by o:», This means that 17r(x)-7r(y)1 ~ c=, It follows that

Ig(x) - g(y)1 ~ K . (C-n)C¥ where K and a are the Holder constant and exponent. This

is however of the form k{3n for some {3 < 1, so we see 9 is Holder continuous. Note that
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in general 9 rf. 9 so that the dual of .c9, although well-defined does not map probability

measures to probability measures. The remainder of the proof will follow from the Ruelle-

Perron-Frobenius operator theorem (see [PP)). This says that there is a 9 cohomologous

to 9 (that is g( z ) = K-g( x )h( x ) / h 0 0'( x) for a constant K- > 0 and a continuous function

h > 0), and an equilibrium measure v such that:

(i) .c91 = 1,

(ii) .c~1converges uniformly to J 1dv and

(iii) v is ergodic and shift-invariant.

By a straightforward calculation, we see that h· .c91 = K-.cg(h. f). Taking 1= 1 and

integrating with respect to f-L, using (4), we see that K- = 1. It follows that h·.c~1 = .c;(h.f).

Integrating with respect to f-L and taking the limit as n -7 00 gives J 1dv = J 1.h du. In

particular, v is absolutely continuous with respect to f-L. By the isomorphism 71', v lifts to

an ACIM for T. Since the lifted measure remains ergodic, it follows that v is unique as

claimed. This completes the .proof of the proposition. 0

This illustrates how problems about expanding maps gIve rise to problems m g-

measures. The following Lemma provides a connection in the other direction.

Lemma 3. Given a g-measure v on E2, with 9 E g+, there exists a continuous surjection

7r : ~2 ~ SI and a degree 2 full Lipschitz map T : SI -7 SI such that

(i) T preserves Lebesgue measure>. and

(li) (T,>.) is measure-theoretically isomorphic under 71' to (O',v). Suppose further that
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9 E gO and that 9 satisfies

z '" Y =} g(x) = g(y), where

x=y
x = aOlll ,Y = alOOO. .. for some finite (possibly empty) word a,

x '" Y if x = alOOO ,Y = aOl11 . . . for some finite (possibly empty) word a,
x = 00000 ,Y = 11111... or
x = 11111 ,Y = 00000 ...

(5)

Then the map T has the additional property that it is Cl.

We will find it convenient to write gcomp for the set of those 9 E gO satisfying (5). We

call these 9 compatible.

Proof. Define a total order on :E2, the lexicographic ordering:

x < Y ¢:> 3n;::: 0 such that Xo = Yo, ... ,Xn-1 = Yn-1 and Xn < Yn'

Now, set [x,y] = {z : z ::; z ::; y} and define the open intervals analagously. We will at

this point record for later use the following equation, which follows from (1). Suppose z

and Y lie in :E2 and have the same first term. Suppose also ~ ::; y. Then we have

v(x,y] = r g(xoz) dv(z).
J(u(x),u(y))

(6)

We will regard the circle as the quotient of the interval [0,1] by the relation 0=1. Write

o for the sequence in :E2 whose terms are all O. Now define 7r : :E2 -7 SI by 7r(x) = v[o,x]

(mod 1): Using elementary properties of g-measures (that they are non-atomic and of full

Support), we have that 7r(x) = 7r(y) ¢:> X '" y.

To check that 7r is surjective, note that 7r is continuous (since v has no atoms), so that

7l'(~2) is compact and hence closed. The set 7r(:E2) also contains the set 7r({aOOO •.. : a
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is a finite sequence}), which is dense in SI, so 7r is surjective. We also want to check

that the metric topology on SI coincides with the quotient topology it inherits from the

projection 7r : :E2 -+ SI. We have already noted that 7r is continuous with respect to the

metric topology on SI. This implies that the open sets in the metric topology are open in

the quotient topology. We have to check the converse. Suppose A is open in the quotient

topology on SI, that is 7r-I (A) is open in :E2• This implies that 7r-1 (A) is a union of

cylinders in :E2. Pick ( E A. Then 7r-1 «() consists of a ",-,-equivalence class. If this class

has only one member, then since 7r-1 (A) consists of cylinders, it must contain a cylinder

which contains 7r-1 (0. It is easy to see that ( must be contained in the interior of the

image under 7rof this cylinder, hence ( E Int(A). If the class has two members, then each

member must be contained in a cylinder. These cylinders will project to a left- and a

right-neighbourhood of (, which implies, again that ( E Int(A). It follows that A is open

in the metric topology, which shows that the two topologies coincide.

We can use this information to construct the map T. Note that if x "'-'y then cr(x) "'-'

cr(y), so 7r0 cr(e ) = 7r0 cr(y) .. Using the universal property of quotients, this implies that

there is a continuous map T : SI -+ SI such that To 7r= ~ 0 cr. Now, 7r is a measure-

theoretic isomorphism between the pairs (cr,v) and (T,7r*v), where 7r*v(A) = v(7r-I(A)).

Note that7r-I«() consists of at most two points. Write p+(O for max(7r-I«()) and p_«()

for min(7r-'I(O). Now, we have

7r*V([O,())= v(7r-I[O,()) = v([o,p+(O))

= 7r(P+(O) = ( = >'([0, (D.

It follows that 7r*V = >., so we have shown that 7r is a measure-theoretic isomorphism

between (cr,v) and (T,>.). It remains to show that T is an expanding map. Note though
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that 9 E g+. This implies that 9 ~ C for some constant C > o. Since g(Ox) + g(lx) = 1,

this implies that C :::;9 :::;1 - C. Now pick X and y in the same O-cylinder of ~2. By (6),

we see that lI(x,y] :::; (1- C)lI((u(x),u(y)]), so lI((u(x),u(y)]) ~ (1 - C)-ll1(x,y]. Now

given two points ( and ~ in the same branch of T (thinking of T as a map of I), with

(>~, we can take X and y to be lifts of these points. Since lI(x,y] = A(7r(X),7r(y)], the

above equation then implies that IT() - T(~)I ~ (1- C)-II( - ~I.It follows that the map

T is expanding. Note we also have that IT() - T(~)I :::;C-ll( - ~I,so T is Lipschitz.

If 9 E gcomp, then we may once again appeal to (6), to get

Since T 0 7r= 7r0 a, this is equal to

If we now assume y > X and that x and y lie in the same O-cylinder, then the quotient

is just lI(u(x),u(y)]/lI(x,y]. By (6), this converges to l/g(x) as y -t X because of the

continuity of g. The same analysis can be performed in the case that y < z , It is not

hard to see that this implies T'(7r(x)) = l/g(x). Note that the requirement (5) on 9 is

needed to ensure that the left and right derivatives coincide at those points ( of the form

7r(aOl11. .. ) = 7r(a1000 ... ).

We have that 1/ 9 is continuous on ~2 and it collapses equivalence classes, so we can

write (l/g) = h 0 7r for some continuous function h : SI -t (1, (0). The above shows that

T'() = h(O, which implies that T is Cl as claimed. ,This completes the proof of the

Lemma.D

Note that the requirement that 9 E g+ is stronger than we need. Most of the proof

will still work if we have that the integral of 9 over any cylinder is positive. The only thing
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which fails is that the map T will not in general be Lipschitz. Also the 2-shift used in the

argument could be replaced by an i-shift for any l, We will need these facts in the next

section.

The two proofs above show how we can translate between problems of expanding maps

and g-measures. The general situation is that for expanding maps, one has a complicated

map, but a straightforward measure (that is Lebesgue measure or some other measure

absolutely continuous with respect to Lebesgue measure), while for g-measures, one has a

straightforward map (the shift map), but a complicated measure.

This Lemma also gives a possible approach to Question 1. The approach would then

be to construct a 9 satisfying (5), which has a non-ergodic g-measure, v. The Lemma

would then provide a Cl expanding map T preserving Lebesgue measure which would

have the property that). is not ergodic for T by the isomorphism described in the Lemma.

We conclude this section by exhibiting the relationship between generalized baker's

transformations and g-measures.

Lemma 4. Suppose T is a generalized baker's transformation based on the expanding

map ¢. Then there is a continuous surjection 7r : 2:2 -+ I and a shift-invariant measure v

such that

(i) The pair (0", v) is measure-theoretically isomorphic to (¢, ).), the vertical projection of

(T,). x).).

(li) v is-a g-measure where g(x) = 1/¢'(7r(x)). This 9 is defined almost everywhere with

respect to v and we have 9 E g+.

Proof. We define 7r as in Proposition 2. The map ¢ is required to preserve Lebesgue

llleasure (as described in the section defining generalized baker's transformations). 7r IS
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a bijection on a set of full Lebesgue measure. It follows that 7r is a measure-theoretic

isomorphism between (¢,>.) and (u,v) for some shift-invariant measure t/, Following the

proof of Proposition 2, we see that v is a g-measure, where g(x) = 1/¢'(7r(x)). We know

that ¢ is a Lipschitz map, so it follows that its derivative is defined on a set of Lebesgue

measure 1. This definition therefore makes sense. By the conditions placed on </>, we see

that 9 can be taken to be a member of g+, by possibly redefining on a set of measure o.

o

Note that we can be still more specific. If the first term of x is 0, then ¢'(7r(x)) =
1/10 (x) almost everywhere (with respect to v) and if the first term of z is 1, then ¢'(7r(x)) =

1/11(x) almost everywhere. This implies that g(Ox) = 10(7r(Ox)) and g(lx) = /J(7r(lx)).

This means that the system (</>, >.) is isomorphic to (u, v) where </> is the vertical projection

of a generalized baker's transformation TI, 9 is just given by compositions ofthe I-functions

with a semi-conjugacy and v is a g-measure.

3. Construction of Examples of Expanding Maps

In this section, we use the results of the previous 'section to produce examples

of expanding maps which preserve Lebesgue measure. We also prove some basic results

about the non-existence of certain types of example. This section is in fact primarily

motivated by finding an answer to Question 1. Throughout, we will be interested in full

maps of the interval, which preserve Lebesgue measure. One well-known construction of

invariant sets is that of 'Cookie Cutters'. These are degree 3 full maps of the interval,

and one considers the Cantor set S of points whose forward orbit never enters the middle

subinterval. This set satisfies T( S) C S so if the map preserves Lebesgue measure and

the set S has positive Lebesgue measure, then it follows that Lebesgue measure is not
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ergodic. Bowen gives a similar construction in [Bow]. We now give a construction of such

a Lebesgue measure-preserving Cookie Cutter with a positive measure Cantor set.

Consider the space ~3. Let J.L1 be the Bernoulli measure on ~3 with probability

vector (~, ~, ~) and J.L2 be the Bernoulli measure with probability vector (~, 0, ~). Let

v = HJ.L1 + J.L2)' Let B be the subset of ~3 whose elements have no terms equal to 1. Then

v(B) = ~ since J.L1(B) = 0 and J.L2(B) = 1. We now define 9 by

g(ix) = { ! if x ~ B,
if x E Band i=O or 2,
if x E Band i= 1.

Then 9 E 9 and v is a g-measure. Note that 9 ~ g+, but as indicated in the note following

the proof of Lemma 3, we still get a Lebesgue measure-preserving degree 3 full map T

of the interva~ such that (T, >.) is measure-theoretically isomorphic to (0', v), because the

v-measure of any cylinder is positive. This map has the property that the set of those

points which never enter the middle interval has Lebesgue measure ~. The graph of this

map is shown in Figure 2·3. The map however is certainly not Cl or even Lipschitz since

9 is not continuous. This is so for a good reason.
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Figure 2·3 Graph of T.

Lemma 5. Suppose T is a Lipschitz full map of the interval, preserving Lebesgue measure

>.. Suppose further that C is a closed set such that T( C) c c. Then either C = I or

>'(C) = o.

,
Proof. Note that full maps of the interval may also be considered as expanding maps of

the circle. This implies that, if J is any open interval, then TIl( J) = I for some n > o.

Now suppose that C is a closed set, such that C =I- I and T(C) C C. Let U be any open

interval in 1\ C. There is then an n > 0 such that TIl(U) ::::> C.

Let _A = UnT-n(c). It follows that TIl(A) = C. We have however that T is Lipschitz

so there exists a constant K such that T' (x) ~ K, for almost all x E I (with respect to

x), It follows that >.(T(A)) ~ K>.(A). In particular, >.(C) ~ KIl>.(A). Note however that

points of A are non-recurrent: Any point of A will never return to A after any time beyond

n. It follows by the Poincare recurrence theorem that the measure of A is 0 with respect
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to any invariant measure, so we have ).(A) = 0 and hence ).(0) = 0 as claimed. 0

This proof in fact shows something stronger. Namely, if A is an invariant set of a

Lipschitz map T preserving Lebesgue measure and if )'(A) > 0, then A is dense in I. We

have already noted that if an invariant set contains an interval then it is all of I, so we

have that if a Lipschitz map preserving ). is non-ergodic, then it has an invariant set of

measure different from 0 and 1. Such a set would have to contain no intervals and would

also have to be dense in I by the above.

In fact, we can use the same idea as the previous example to construct a Lipschitz map.

For this example, work on ~2' Let ILl be the Bernoulli measure with weight vector (~, !)
and let IL2 be any other Bernoulli measure. Suppose the weight vector is (a,l - a). Then

set v = !(ILI + IL2)' Set R = {x E ~2 : limn_co l/n 2:~:;OI Xi = 1/2}. Then ILl (B) = 1 and

IL2(B) = 0 by the ergodic theorem (or the Strong Law of Large Numbers). Define 9 by

g(ix) = { i
1-a

if x E B
if i = 0 and x f/. R
if i = 1 and x ~ B

Then 9 E c+ and v is a non-ergodic g-measure (since u(B) C Band vCR) = !). It follows,
by Lemma 3, that there is a Lipschitz map T preserving Lebesgue measure, for which

Lebesgue measure is non-ergodic. This answers Question 1 in the affirmative in the class

of Lipschitz maps. This example has already been pointed out by Bose in [Bos l], although

his proof relied on constructing a generalized baker's transformation.
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4. Some Possible Approaches to Question 1

In the remainder of this chapter, I discuss two possible ways of attacking Question 1.

The first is to construct Cl maps with unbounded distortion. The idea behind this is that

many of the proofs of uniqueness of ACIM rely on a property known as bounded distortion

(see [Ma]). An example of a Cl map preserving Lebesgue measure with unbounded dis-

tortion is therefore a possible candidate for a Cl map with two ACIMs. This construction

is based on the paper [GS]. The second approach, which seems more hopeful is to modify

the proof of [BK] to make the 9 which is constructed satisfy (5). The proofs required to

make this method work are likely to be even more difficult than the already technically

advanced methods used in [BK).

Suppose T is a map of the interval. T is said to have bounded distortion if there exists

a constant C > 0 such that when K, and K2 are subintervals of an interval K, for which

the restriction of T" to K is a homeomorphism then

It is shown in [Ma] that if T is piecewise CHQ', then T'has bounded distortion, so it

is of interest to find an example of a piecewise Cl map which has unbounded distortion.

Of course, it will follow that the derivative of such a map will not be Holder continuous.

We will c~nstruct a degree 3 full map of the interval with this property. Write To, TI

and T2 ~or the three branches of the map. These are defined on the intervals 10 = [0, t],

II = [~,~] and 12 = [~,1]. For each non-empty string s, of Os and 2s, define Js to be an

the interval of length 3- (H lsI), where Is I denotes the length of the string s. Specifically,

L, is the subinterval of [0,1] which consists of those numbers where the first lsi digits of

their ternary expansions are given by s and whose (Is I + 1)st digits are 1s. These intervals
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are arranged as in Figure 2·4.

o c===J 0 I

Figure 2·4 Configuration of J intervals.

Let J denote II (that is the J interval indexed by the empty string). Then define

a map T acting on finite strings by truncation on the left: T(aoal'" an) = (al ... an).

Then define a map T on the intervals Js as follows: For each non-empty string s, T is a

diffeomorphism of Js onto Jr(s)' The restriction of T to those Js, for s starting with a

o 'bulge upwards', while the restrictions to Js for s starting with a 2 'bulge downwards'.

This is illustrated in Figure 2·5.

J

)
J

Figure 2·5 Construction of the map T.
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Write T; for the restriction of T to Js. We will require the Ts to have derivative equal

to 3 at the endpoints. The derivative must also be bounded above i, in order that T can
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preserve Lebesgue measure. In order that T be differentiable, we will require that there

exists a sequence an tending to 0 such that if Is I = n then 3 - an ::; T~(x) ::; 3 + an for

all x E Js• If one writes down the left-hand branches (that is the T, for s starting with

a 0), then the right-hand branches will be determined by the requirement that the map

preserves Lebesgue measure. In order to have unbounded distortion, we will need to have

We now construct the map T. Since the union of the intervals Js is dense in I, it

IS clearly sufficient to specify the map on those intervals. Next note that if we define

To : x I-t 3x (mod 1), then To maps Js homeomorphically onto Jr(s). To prove that

T is differentiable, we will show that T is the limit in the Cl topology of a sequence of

differentiable maps Tn. To get Tn from Tn-1 we modify the map Tn-1 on the intervals Js

for which lsi = n. As described above, we will require the restrictions T; to these intervals

to have derivative 3 at their endpoints, and to have derivative bounded throughout the

interval between 3 - an and 3+ an for some positive sequence an decreasing to o. This will

imply that the uniform distance between Tm and Tn is bou~ded above by 3-(m+1)am for

m > n. The uniform distance between their derivatives is bounded above by am. It follows

that the sequence is Cauchy in the Cl topology and hence converges to a differentiable

map T as required.

WrIte as for the affine orientation-preserving map sending [0,1] onto Js and write Ss

for the composition a;(~) 0 T; 0 as. The mapS', is a rescaled copy of Ts: We can therefore

specify T, by describing Ss. The requirements we have placed on T; are equivalent to the

requirements that Ss has derivative equal to 1 at its endpoints and that its derivative is

bounded between 1-~ and 1+~. Now fix a sequence an: let an = lin. Now for lsi = n
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and s starting with a 0, define Ss by

In particular, Ss(x) > z , We have for such an s, that 3 - ~ ~ T; ~ 3+~. For s starting

with a 0, T, therefore satisfies the conditions bounding the derivative. Also, we see that

the derivative of Ss is 1 at the endpoints as required. We then define T, for those s starting

with a 2 by the requirement that the map as a whole must preserve Lebesgue measure. By

the change of variables formula, this can be seen to be equivalent to the requirement that

1L T'() = 1,
yET-l(x) Y

for all z , Applying this to a point z of Js, we get the requirement that

1 1 1
"3 + TJs(Yo) + T~s(Y2) = 1, (7)

where Yo and Y2 are the preimages of x in Jos and J2s respectively. Since we know that

TJs is bounded within an/4 of 3, one can check that if we impose condition (7), in order

that T preserves Lebesgue measure, then T~s is bounded within an of 3. Note that this

relies on the fact that an ~ 1. It also follows from (7) that the derivative of T2s is 3 at the

endpoints. as required. This completes the definition of T.

Note that the derivative of T is not of bounded variation. The variation is given by

L 2(max(Tn - min(T~)).
s

This is at least as big as Ln /2 2n-1 an since the derivative of T; is 3 at the endpoints and

is at least as large as 3 + 1!4 an at some point of the interv~ J; providing that s starts

with a 0. In particular, this sum is divergent.
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We now show that T has unbounded distortion as claimed. We will take for the

interval K, an interval of the form Jooo ... o, set K2 = K and take KI to be an initial

segment of K. In particular, write J(m) for the interval J8 where s is the string consisting

of m Os. Write a(m) for the corresponding affine map and T(m) and s(m) for the T and S

maps corresponding to J(m). Distortions are unaffected by composing T" before or after

with affine maps. To consider the distortion, it is therefore sufficient to work with the

maps sv», which are clearly also much more convenient. Now fix f > O. In this picture,

take J = [0,1], K2 = J and KI = [0, f]. We are then interested in

Is(1) 0 ••• 0 s(n)(K1 )1/ IKII
IS(1) 0 ... 0 s(n)(K2)1 IK21'

Since Ss(K). K for all s, this is equal to S(I)o ... os(n)(f)/f. Let Cn = S(I)o"'Os(n)(f).

The claim is that Cn --t 1 as n --t 00.

Certainly, Cn is increasing, since s(m)(x) > x for all x E (0,1) and s(m) is an increasing

function, so we must have that Cn increases to some TJE (f, 1]. Suppose that TJ =1= 1. Write

f(x) = i2x2(1 - x)2. Then f(TJ) > O. By continuity of t, there exists a k > 0 such that,

However this tends to infinity as n --t 00, thus furnishing us with a contradiction. This

proves that Cn --t 1 as n --t 00. In particular, the distortion is at least as big as 1/f for all

e, so is infinite.

The second approach consists of modifying the g-function constructed in [BK] so that

it satisfies (5). To describe the proof in [BK], we will need to introduce some further

concepts. Bramson and Kalikow deal exclusively with the space ~2, and construct a g-

function there. If x E ~2, write x for the sequence obtained by reversing each term of

x (that is Xi = 1 - Xi, for all i). Say 9 is symmetric if g(x) = g(x) for all x. This says
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that the whole system is symmetric under the involution x 1-+ it. In particular, given a

g-measure, there is a conjugate g-measure: p,(A) = J.L(.A), where .A = {it : x E A}. In [BK],

Bramson and Kalikow introduce agE gO which has the property that there is a g-measure

1/for which 1/([1]) > !,where [1] is the cylinder set of those sequences in ~2 which start

with a 1. The conjugate g-measure ii then has ii([l]) < !,which implies that there is more

than one g-measure. There is therefore a non-ergodic g-measure. The situation of having

more than one g-measure is known in statistical mechanics as phase transition, and the

existence of non-symmetric solutions to symmetric equations (that is the non-symmetric 1/

being the solution to the symmetric equation C;J.L = J.L) is known as spontaneous symmetry

breaking. If one could find a non-ergodic g-measure with 9 E gcomp, then by Lemma 3,

one would have an answer to Question 1.

As already mentioned, the proof in [BK] relies heavily on the fact that the 9 which

they construct is attractive. To mimic that proof, one would like to find a 9 which is

continuous, compatible, attractive and symmetric. Unfortunately, we can show that such

a 9 has a unique g-measure.

Lemma 6. Suppose 9 is attractive, continuous and compatible. Then there is a unique

g-measure.

Proof. To show this, we will show that 9 is increasing with respect to the lexicographic

ordering (:5) on ~2. Suppose that x and yare in ~2 and satisfy x < y. Then let n be

such that Xi = Yi, for all i < n, but Xn = 0 and Yn = 1. Write a for the finite word

XOX1X2 ••• Xn-I. Then we have x :::;a0111 ... and a1000 ... :::5 y, so g(x):5 g(a0111 ... ) =
g( a1000 ... ) :5 g(y). Now suppose 1/ is a g-measure. By Lemma 3, there exists a Cl full

map T which preserves Lebesgue measure such that the pairs (T, A) and ((1',1/)are measure-
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theoretically isomorphic. Further, we have that 1IT'(x) = g(rr(x)), from which it follows

that liT' is monotonically increasing and hence of bounded variation. It follows by the

result of Wong ([Wo)) that such maps preserve exactly one ACIM, so Lebesgue measure is

ergodic for T and hence v is ergodic, proving that v is the unique g-measure. D

One attempt to get around this introduces a different notion of compatibility. We

define a second equivalence relation ~ on :E2•

{

X = Yi
X ~ Y if X = a01000 and Y = allOOO .

X = allOOO and X = a01000 .
where a is a finite word, or
where a is a finite word.

Note that by finite words, we are allowing the possibility that they are empty.

Lemma 7. Suppose hE gO has the property that there is a non-ergodic h-measure and

x ~ Y => h( x) = h(y) (8)

Then there is agE gcomp, such that there is a non-ergodic g-measure.

Proof. Define the 2-1 map' P : :E2 --t :E2 by P(x)n = Xn + Xn+l (mod 2). This map is

certainly continuous. It has two inverse branches TO and T~ given by TO(X)n = Xo + Xl +

'" + Xn-l mod 2 and TI(X)n = 1 + Xo + Xl + ... + Xn-} mod 2. Note that (Ti(X))O = i.

Let M denote the probability measures on E2 and define the map T* : M --t M by

T*JL(A) = ~JL(TO-} A) + ~JL(TI-} A). This is equal to ~JL(P(A n [0])) + ~JL(P(A n [1])). We

will us~ (1) to show that if JL is an h-measure, then T* JL is an hoP-measure. We have for

n ~ 1,

T*JL([xt) ~JL(p([x]n n [0])) + ~JL(p([x]n n [1]))
T*JL([U(x)]n-l) - tJL(P([u(x)]n-l n [0])) + ~JL(P([u(x)]n-1 n [1]))

- JL(P([u(x)]n-l))'
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Since P and a commute and p([x]n) = [p(x)]n-l, this IS equal to J.L([p(x)]n-l)/

J.L([(j(Px )]n-2). Since J.Lis an h-measure, we see that

It follows that -r" J.Lis a g-measure, where 9 = hoP as claimed. However, we see that X rv y

implies that P(x) ~ P(y), so by the conditions on h, we have g(x) = g(y). This means

that 9 satisfies (5). It remains to check that if J.Lis non-ergodic, then r" J.Lis non-ergodic.

Suppose then that J.Lis non-ergodic. There exists a Borel set B such that (j-l B = B, with

J.L(B) different from 0 and 1. Since P and a commute, it follows that (j-l (P-1 B) = p-l B.

Now, we have

so r* J.Lhas a shift-invariant set of measure distinct from 0 and 1. It follows that -r" J.Lis

also non-ergodic as required. D

This proof works by finding a recoding of ~2 to a (hopefully) more useful form. At

first sight, the equivalence relation (8) seems as if it might be more easy to satisfy, whilst

maintaining attractiveness, than (5). This implies that to answer Question 1, it would be

sufficient to exhibit an h E gO satisfying (8) such that there is a non-ergodic h-measure.

Unfortunately this equivalence relation is even worse than (5) in its interaction with the

property of attractiveness.

Lemma 8. Suppose h E gO is attractive and satisfies (8). Then h == ~.

Proof. Suppose h is as in the statement of the Lemma. Then we will show that if a is

any finite word (possibly empty), then h(a1000 ... ) = h(aOOOO ... ).
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We have for any finite word a that a10000 :::S allOOO ... ~ a01000 . ... Repeating

this, we have a10000 ... :::S a01000 ... :::S a00100 etc. Since h is attractive, we have

h( a10000 ... ) :::; h( a01000 ... ) :::; h( a00100 ... ) . ... But since h is continuous, if we write

zen) for the word consisting of n Os, it follows that h(az(n)1000 ... ) -+ h(aOOOO ) as

n -+ 00. It follows that h(a1000 ) :::; h(aOOOO ... ). But we also have aOOOO :::S

a1000 so h(aOOOO ... ) :::; h(a1000 ). Taking these together, we see that h(aOOOO ) =

h(a1000 ), as we wanted.

Now define a function C on the finite words by C ( a) = h( aOOOO... ). Define a map </>

on the finite words which truncates them on the right, so for example </>(101000)= 10100.

If a ends in a. 0, then C(a) = C(</>(a)). But if a ends in a 1 then by the previous argument

C(a) = C(</>(a)O) (that is we can replace the last 1 by a 0), but C(</>(a)O) = C(</>(a)) so

for all a, we have C(a) = C(</>(a)). It now follows that C is independent of a. We have

however that the elements aOOO ... are dense in ~2, so using continuity, we see that h is

constant, and therefore equal to ~ everywhere. 0

This approach is based on an attempt to find a shift-commuting recoding of ~2 to

one where it is easy to copy the argument of [BK]. I conjecture that whatever recoding

one uses, one will always find problems of incompatibility with attractiveness. As a result

of this, one is led to attempt to find a proof which does not rely upon the property of

attractiveness.

In order to do this, it is important to be clear about the role played by attractiveness

in [BK]. As described above, attractiveness allows one to get hold of g-measures as weak*-

limits of .c;nSi where Si is the measure concentrated on the point of ~2, all of whose

terms are is. A second aspect of this property is used in 'coupling' arguments. Given two
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measures J.L1 and J.L2 on ~2, a coupling is a measure J.L on the product ~2 X ~2 which projects

under the coordinate projections to J.L1 and J.L2 respectively (that is J.L(A x ~2) = J.L1(A)

and J.L(~2 X A) = J.L2(A)). Note that the product of the measures J.L1 and J.L2 is always a

coupling, but we are in general interested in more complicated couplings.

The following Lemma is implicitly used at several important points in the proof of

[BK).

Lemma 9. Suppose 9 E gO is attractive, h E gO and h(lx) ~ g(lx) for all x E ~2' Let w

be a point of ~2' Then we consider random variables (Xn)nEl and (Yn)nEl taking values

in {O, I}, which have Xn = Yrt = w-(n+I) for n ::; -1. Suppose the evolution of (Xn) is

governed by 9 for n ~ 0 as in (3), while that of (Yn) is governed by h for n ~ O. Then

there is a coupling of Xn and Yrt such that Yrt ~ Xn with probability 1.

Proof. We have 2l X 2l ~ 4l by the shift-commuting homeomorphism 0 : 2l X 2l --t

4l, (x,y) 1-7 z, where z; = 2Yi + Xi. Write 11'1 and 11'2 for the two coordinate projections

4l --t 2l, and PI and P2 for their truncations 4l+ --t 2l+. 90nsider the function f defined

on {O,2, 3}l+ by

f(3z) = g(P1(Z))

f(Oz) = 1- h(p2(Z)).

Note that on {O,2,3}l+, P2(Z) t P1(Z), so h(p2(Z)) ~. g(p2(Z)) ~ g(p1(Z)) so the above

function f is non-negative, and lives in g. Now consider random variables given by

Z n = {O ~fW - (n+1) = 0
3 If W-(n+1) = 1,

for n ::;-1and evolving under f for n ~ O. Then certainly 11'2(Z) t 11'1(Z) with probability
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1. It remains to show that the random variables 7rdZ) and 7r2(Z) are evolving under 9

and h respectively.

The probability that 7r1(Z)n is I given the values of (7r1(Z)m)m<n is the same as the

probability that Zn is 3 given the values of (7r1(Z)m)m<n, but this is just g((7r1(Z)m)m<n)

as required. A similar argument works for 7r2(Z) proving the Lemma. 0

The importance of this Lemma is that it gives a way of relating g- and h-measures for

attractive g-functions.

In the remainder of this chapter, we present a class of examples of g-functions, based

on those in [BK], which are in go, are symmetric and have some compatibility properties.

To describe these, we will need a third equivalence relation, which is essentially the same as

(8), but which contains the symmetry and requires that the finite words a be non-empty.

z ::=::: y if

x=y
x = all000 , y = aOIOOO .
x = aOIOOO , y = all000 .
x = aIOlll.~., y =aOOIII .
x = aOOlll ... , y = alOlll .

for some finite non-empty word a,
for some finite non-empty word a, (9)
for some finite non-empty word a, or
for some finite non-empty word a.,

Note that if we find a 9 satisfying x ::=::: y --+ g( x) = g(y) and use Lemmas 7 and 3 to get

a map T preserving Lebesgue measure, then the derivative of T will have discontinuities

at 7r{OOl1l1 ... ) and -ncuu ...),where 7r is the semi-conjugacy described in Lemma 3.

(These are the cases we miss out by assuming a is non-empty). If we consider T2, though,

these points will be endpoints of intervals; so T2 will be a degree 4 Cl full map. If ). is

not ergodic for T, then ). is not ergodic for T2.

The construction is in several steps. First, we show that 'E2/ ::=::: is metrizable and

that the metric K can be chosen in such a way that the map (x, y) f-t K{ x, y) is Holder

continuous. Note that a metric on 'E2/ ::=::: is the same as a pseudometric don 'E2 such that
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d( z , y) = 0 ¢:> z X y. Such a metric can be constructed by defining c(z , y) = j3n where the

nth is the first place where x and y differ, for j3 < 1 sufficiently large, and letting

This d can then be checked by a lengthy calculation to be a pseudometric with the required

properties. Note that we may easily assume that d is symmetric (that is d(x, y) = d(x, y)).

Next, let 0(2n) = {x E 1':2 : Xl, X2, ... , X2n have more than n xos} and define

d-(~ 0(2n)) + (1 )d-( . 0(2n))W(71)(ix) = f_ 2:, --= f_ 2X,
d(Ix, 0(2n)) + d(ix, 0(2n))

This function wen) is symmetric (that is w(n)(x) = w(n)(x)) because 0(2n) = 0(2n).

It satisfies w(n)(ox) + w(n)(1x) = 1. The functions wen) are also Holder continuous.

The desired function 9 is then constructed by taking a very rapidly increasing sequence

is symmetric, continuous and of a similar construction to that in [BK). It also satisfies
,

x X Y =? g(x) = g(y). In particular, if it is truncated by replacing all the W functions

after the kth by ~, then it becomes Holder. I conjecture that for a careful choice of ni, the

above example has a non-ergodic g-measure, and hence, as described above gives rise to a

full map preserving Lebesgue measure, but for which Lebesgue measure is non-ergodic.
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Chapter 3. Representation of
Markov Chains on Manifolds

1. Introduction

In this chapter, we consider the problem of representation of Markov chains. By a

Markov chain, one usually means a process described by a sequence of random variables

(Xn)nEN, where each random variable takes values in some finite or countable set Sand

the sequence satisfies the Markov property:

P(Xn = 8 I Xn-k = 8n-k,··· ,Xn-I = 8n-I) = P(Xn = 8 I Xn-I = 8n-I)

where kEN, 8 E Sand 8n-i E S for 1 :S i :S k.

Here, we will take a generalized definition. A Markov chain will be a random process

described by a sequence of. random variables (Xn)nEN, each taking values in a measure

space M with er-algebra B. This time, the above statement of the Markov property is

insufficient as we will be considering spaces M which are not countable. We will require

instead·

P(Xn E A I Xn-k E An-k, ... ,Xn-I E An-d = P(Xn E A I Xn-I E An-d

where kEN, A E B, An-i E B for 1 :S i :S k and P(CID) is the probability of C given D.

Such a process may be described by a map P : M x B ~ [0,1] such that for fixed z ,

the map Px : A 1--+ P(x, A) is a probability measure on (M, B), and for fixed A E B, the

map x 1--+ P( e, A) is measurable. This latter condition is required for the above statement

of the Markov property to make sense. The map P is called the transition map of the
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Markov chain M. The quantity P(x, A) is to be thought of as the probability of moving

from the point z into the set A.

The idea behind representation of Markov chains was first introduced in [Kak). There,

he considers a sequence of independent identically distributed random variables (¥;l )nEN

(with the distribution being given by a probability measure m) taking values in a collection

:F of maps from a space M to itself. He shows how a Markov chain M is induced by defining

P(x,A) = m({f: f(x) EA}), Vx E M, A E B. (1)

A measured collection of maps from M to itself is a collection :F of maps from M to

itself and a probability measure m on a compatible O'-algebra on :F, where a O'-algebra is

compatible i~ {f : f( x) EA} is a measurable subset of :F for any measurable subset A

of M and any point z in M. We ask for conditions on a Markov chain that it can be

induced by a measured collection of maps as in (1). Given a Markov chain M on M, we

will say a collection :F of maps from M to itself and a probability measure m on :F is a

representation of M if the transition map of the Markov chain is induced by the collection
,

:F and the probability measure m as in (1). The rest of this chapter asks under what

conditions on a Markov chain M may we find a representation of M for which the :F

lies in a specific collection of maps. In this case, we will say that M may be represented

by maps of this type. This allows us to consider Markov chains as examples of Random

Dynamical Systems (RDS), (see [Ki] and [AC]).

We consider Markov chains for which the space u is a smooth manifold and B is the

O'-algebra of Borel sets. In §3-§6, we find conditions under which M may be represented

by smooth maps. This answers a question in [Ki] and has appeared in the literature ([Q1]).

In §7, we present an aside showing that all the Markov chains in question appearing
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in §3-§6 have a unique invariant probability distribution, and all other probability distri-

butions converge to this one exponentially fast. This material turns out to be well-known,

but I did it independently, and even my proofs are very similar to those which appear in

the literature (see for example [LM)).

The material contained in this chapter is all original except §2, §3 and those parts of

§5 which are explicitly credited to other authors.

2. Previously Known Results

By way of an introduction, we first consider the case of finite state Markov chains. In

this case, some of the questions take on particlarly simple forms relating to the properties

of matrices ", An n-state Markov chain may be described by an n x n matrix A, where

Aij is the probability of going from state i to state j. In the more general transition map

notation, this would have been written P(i, {j}) = Aij. Clearly, we require that for each

i, ~jt=l Aij = 1, and Aij ~ o. In this case, we call the matrix A stochastic. In this set-up,

the version of the question about representation, with which this chapter concerns itself is:,

Does there exist a collection C of maps from S = {I, 2, ... ,n} to itself and a probability

measure m on them such that Aij is equal to m{ ¢ E C : ¢(i) = j}?

Note that in this case, there are finitely many maps from S to itself. Each map may be

described by a matrix of Osand Is such that each row contains exactly one 1. Such matrices

will be-called basic. Such a matrix B corresponds to a map ¢ by Bij = 1 :::}¢(i) = j. Since

there are finitely many possible maps, a probability measure on them is just a collection

of weights, one for each possible map, which add up to 1. Suppose the maps are denoted

by (¢(k)h',5.k~N and correspond to matrices (B(k)h~k~N. These could then have weights

W(k). The condition for the collection of weights and maps to be a representation of the
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Markov chain described by the matrix Aij is that

N

Aij = L w(k) = L w(k) =L w(k) B~:).
{k:t/>(I') (i)=j} {k:B~;)=l} k=l

This is the same as A = 2: w(k) s'», and so to show any finite state Markov chain has a

representation by maps, it is simply necessary to show that any stochastic matrix A is a

convex linear combination of basic matrices. This fact admits a simple proof by induction

on the number of zeros in the matrix. Before we start on the proof, define a matrix A to

be f3-.stocha.stic if Aij ~ 0 and 2:j Aij = f3 for all i.

The inductive step is then as follows: Suppose A is f3-stochastic and has r zero entries.

Then if f3 = 0, we are done. Otherwise, each row contains some non-zero entry. Define <p to

be a map taking a row to the number of a column with a non-zero entry in that row (that

is Ai,t/>(i) > 0 for all i). Then let a = mini Ai,t/>(i) and B be the basic matrix corresponding

to <p. Then A - aB is f3 - o-stochastic and has more than r zero entries.

Since the matrices are finite, this procedure will terminate (in less than n2 steps), at

which the remainder will become o. Since the matrices subtracted are basic, it follows that

the original matrix A was a convex linear combination of basic matrices as required.

Since one is interested in finding 'good' representations of Markov chains, it is natural

to ask whether it is possible to find a representation by permutations. These maps corre-

spond to permutation matrices (that is there is exactly one 1 in each row and each column

and all other entries are 0), all of which are bisiochastic (the columns and rows all sum to

1). Any convex linear combination of such matrices will clearly also be bistochastic, so a

necessary condition for a finite state Markov chain to have .a representation by permuta-

tions is that its transition matrix is bistochastic. In fact, this turns out to be sufficient.

61



This result is originally due to Birkhoff ([BiD, and was later reproved by Hammersley and

Mauldon ([HMD. The proof I include here is based on a sketch of Birkhoff's proof which

was included in the book of Bollobas, [Bol].

The proof relies on the Hall 'Marriage Theorem' (see [BolD which may be stated

as follows. Let Sand T be two finite sets of equal cardinality and suppose there is a

relation ReS x T between members of Sand T. If M is a subset of S, write [M] for

{t ET: (m,t) E R for some m E M}, and write n(M) for the cardinality of [M], I[M]I.

If we have for each subset M of S, that n(M) 2: IMI, then there is a pairing of Sand T

(i.e. a bijection S --t T such that (s,</>(s)) ER for all s). (Note that in the traditional

statement of this result, Sand T are sets of men and women, and R is the relation of

being acquainted with, then the conclusion of the theorem says that if for each set of k

men, they collectively know at least k women, then there is an arrangement by which they

can all get married to someone they previously knew).

The proof that all bistochastic matrices are convex linear combinations of permuta-

tion matrices is similar in style to the proof that stochastic matrices are convex linear

combinations of basic matrices, the difference lying in the inductive step.

As before, we say a matrix A is {3-bistochasiic if Aij 2: 0 and all rows and columns sum

to {3. In the inductive step, it is necessary only to show that if A is {3-bistochastic, then

there exists a permutation matrix B and an a such that A. - aB is ({3- a)-bistochastic

and has more zero entries than A. To show this, let S = T = {I, 2, ... ,n} and R = {(i,j) :
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Aij > O}. Then let M be a non-empty subset of S. In this case, we have

11

(3 .n(M) = L LAij ~ L L Aij
jE[M] i=l jE[M] iEM

11

= L L Aij = L L Aij = (3 . IMI·
iEM jE[M] iEM j=l

We see that the condition for the Hall Marriage Theorem is satisfied unless (3 = 0, in which

case we are already done, so we get a pairing 4> between the rows and the columns of the

matrix in such a way that Ai,</>(i)> O. Let a be the minimum of these entries and B be

the permutation matrix corresponding to 4>. Then A - aB is ((3 - a)-bistochastic. This

completes the inductive step of the proof.

These results have been extended by Kendall [Ken] and from our point of view more

usefully by Revesz [Re], where it is shown that every Markov chain with count ably infinitely

many states and a bistochastic transition matrix may be represented by a measured col-

lection of permutations.

Some further known results about representation of Markov chains are to be found in

the book [Ki], where he shows the following.

Theorem 1. If M is a Borel subset of a complete metric space, then any Markov chain

on M· can be represented by a collection of measurable maps.

With the notation that Px(A) _ P(x, A), [Ki] then reproduces the following result of

[BC].

Theorem 2. Let M be a connected and locally connected. compact metric space. Let M

be a Markov chain on M with transition map P such that Px depends weak*-continuously
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on x (that is continuously with respect to the weak*-topology on the set of measures on

M) and such that Px has full support for each x E M. Then M may be represented by a

collection of continuous maps on M.

Sudakov [Sl has a result which extends Theorem 1 by finding conditions under which a

Markov chain may be represented by maps preserving an invariant measure of the Markov

chain (see §7).

3. Background for Smooth Representation

The next sections consider the problem of representation of Markov chains on

manifolds by maps in the smooth category, where by smooth, we will always mean COO.

All manifolds which we consider will be assumed to be connected. The motivation for

looking at the problem comes from results like Theorems 1 and 2 about representation of

Markov chains on measure spaces and metric spaces. These are described in detail in the

book [Ki], and several questions are raised, including the one which is answered below by

Theorem 3.

We consider the case where M is a smooth manifold, and M a Markov chain on

M. Under certain further conditions, M may be represented by a measured collection

of smooth maps on M. Specifically, we take M to be a smooth, compact, orientable

Riemannian manifold, with metric 9 say. This induces a natural volume element w, with

associated Riemannian volume measure V, say. Let B be the O"-algebra of Borel sets on M

and let P be the transition map of the Markov chain as described above. We will consider

the collection of transition maps P satisfying the following properties:

(i) Px is absolutely continuous with respect to V for all x E M,

(ii) h(x,y) = dPx(y)/dV(y) is smooth in x and y, for all x,y E M.
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(iii) h(x,y) > 0, for all x,y E M.

Such a map is called a smooth transition map with density h and a Markov chain with

a smooth transition map is called a smooth Markov chain. Note that it is a crucial part of

the definition that the density h is strictly positive. We can now state the main theorem

of §3-§6.

Theorem 3. Suppose M is a smooth, compact, orientable Riemannian manifold. If M

is a smooth Markov chain on M, then M may be represented by a collection of smooth

maps on M.

4. Physical Motivation for Theorem 3

We first present an outline of the proof of Theorem 3, showing the fluid dynamical

motivation. This is not essential for what follows.

The Markov chain is to be represented by a collection of smooth maps. We regard the

function h( z , y) as giving the density of maps taking x into a neighbourhood of y (that

is the measure of the maps taking x into a neighbourhood U of small diameter about y

is approximately h(x,y)V(U)). The problem is then to find a collection of maps, and a

measure on them such that the density of the images of x under the maps is h( z , y). We

are thus seeing the images of x for the varying maps as part of a continuum, and we are

seeing how the points of the continuum move as we vary x along smooth paths. Since

h( z , y) > 0 for all z , Y EM, we expect to find at least one map taking any given x E M to

any given y E M. Further, when x moves along any smooth curve (to x' say), we expect

the images of the maps to move along curves of the flow, so that if two maps agree at z ,

then they should agree at x', and hence everywhere. With this in mind, we impose that

there should be exactly one map taking each x E M to each y EM. Fixing Xo EM,
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each map on the manifold may thus be labelled by the image of Xo under that map. The

maps are then smooth maps ]y with the property that ]y(xo) = y. We then define the

map ax : y 1--+ ] Y (x). By the fluid analogy again, we expect the map ax to be a smooth

diffeomorphism, since ax(Y) is the point to which y = axo(Y) flows as x moves along a

path from Xo to z , (See Figure 3.1.)

Figure 3·1 Possible paths in the domain and image.

Take P to be the space of smooth positive density distributions on the manifold (that

is smooth functions with.! ](x)dV(x) = Ii] > 0), then the diffeomorphisms a on the

manifold act naturally on P as

a* : P -t Pi (a*(p))(a(x)) = p(x)/Expansion Coefficient

where the expansion coefficient is the limiting ratio of the volume of the image of a neigh-

bourhood (of small diameter) of x to the volume of the neighbourhood (that is the Jacobian

of the map a with respect to a set of "locally orthonormal" coordinates). This is just an

expression of conservation of mass. Foreachx,y E M, writepx(Y) = h(x,y). Then n; E P.

Further, let Po be the distinguished density Pxo.

We then define the corresponding measures /-Lx by /-Lx(A) = P(x,A). Specifically, the

correspondence is d/-Lx/dV = Px. Set /-L(A) = P(xo, A). We are then forced to define
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m( {fy : yEA}) = IL(A) by considering equation (1) in the case that x = xo. Further, by

considering equation (1), we see

P(x,A) = m({fy : fy(x) EA}) = IL({Y: fy(x) EA})

= IL({Y: ax(Y) EA}) = lL(a;l(A)).

Since ax is a homeomorphism, however, we get P(x, ax(A)) = IL(A). That is

r Px(y)dV(y) = r Po(y)dV(y)
lox(A) lA

This is equivalent to saying that ai (po) = Px' The problem is then reduced to finding a

smoothly parameterized collection of diffeomorphisms ax such that a;(po) = Px'

It is clearly sufficient to find a collection of diffeomorphisms ap such that a;(po) = p

with enough smoothness that apx is smoothly parameterized by z , Given apE P, define

a path in P by p(t) = Po + t1] where 1] is given by p - Po. We then seek a collection

ap(t) of diffeomorphisms associated to densities p(t) (that is such that a;(t)(po) = p(t)).

Moving along this path, there is a constant rate of change of density at each point on the

manifold, such as could arise from a constant flux (by comparison with the fluid dynamics

equation \1 . q; + P = 0, where q; = pv is the flux). We therefore seek a flux vector

field whose divergence is -1], and which depends with sufficient smoothness on 1]. This

gives an expression for the velocity of each point in the continuum which gives rise to the

required flux (at a specific time, the velocity is given, by q;jp(t)). We then let ap(x) be

the position of the point x after unit time flow along the parameterized velocity field. We

will then find that a;(po) = p, as required, and it will remain to check that we have the

required smoothness. This is shown by the theory of elliptic partial differential equations

completing the proof.
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5. Differential Equations Background for Theorem 3

For the proof of Theorem 3, we need to use a lemma, which relies on the following

theorems from the theory of Green functions for the Laplacian on compact manifolds.

The Laplacian is defined by AI = Vi Vi I in local coordinates, where V is the covariant

derivative operator on M (with the Riemannian connection).

Theorem 4. Let M be a smooth, compact, orientable Riemannian manifold. Then if I

is a smooth function on M, with J I( x )dV (x) = 0, then there exists a smooth function u

with Au = I. Further, u is unique up to an additive constant.

Proof. See [AJ, §4.1.2

Theorem' 5. Let M be a smooth, compact Riemannian manifold. There exists a function

G : M x M -+ R such that if </> is a smooth function on M, we get

</>(x)= ~(M)-l 1M </>(y)dV(y) + 1M G(x,y)A</>(y)dV(y)

G(x,y) 2: 0, Vx,y EM

1M G(z , y )dV (y) = C, where C is a finite constant.

(2)

Proof. See [AJ, §4.2.3

Define

P = {I: M -+ (0,00) s~ooth with 11(x)dV(X) = I}

Z = {I :M -+ R smooth with J l(x)dV(x) = o}
V . {Smooth vector fields on M}.

Lemma 6. Given a smooth, compact, orientable Riemannian manifold M, and a collec-

tion {1},a},aEM of smoothly parameterized functions in Z (that is the map ({3,x) H 1}{3{x)
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is a smooth map M x M ~ M), then there is a map Cl?: Z ~ V satisfying

(i) div(Cl?(1]p))= -1]13,

(li) the map (f3,x) 1-+ Cl?(1]p)(x)is smooth.

Proof. Suppose U is an open set in Rk and {eaJO'EU is a smoothly parameterized collection

of functions in Z, then let H 0'( x) be the solution of the equation ll.H 0' = eO' such that

J HO' dV = O. This exists by Theorem 4, is unique, and is smooth in z , Then by Theorem

5, we see

We now have to show that the function H( a, z ) = H 0'( x) is smooth. The ith parametric

partial derivative of H is given by

aa .H(a,x) = lim f ~G(x,y)(eO'+tei(Y) - eO'(y))dV(Y)
at t--O J M t

= lim f G(x'Y)(aa .eO'(y) + ((t,x))dV(y)
t~O JM aI,

where ei is the ith coordinate vector field in U and (( t, x), the remainder term is smooth

in x and ((t, x) ~ 0 as t ~ 0 for all x E M. It follows that ((t, x) ~ 0 uniformly on M

(by compactness) as t ~ 0, and hence by (2), it follows that

a 1 a-a .H(a, x) = G(x'Y)-a· eO'(y)dV(y).at M at

But the ith partial derivative of eO' remains a smoothly parameterized collection of

functions, and the ith partial derivative of H is clearly continuously dependent on a, and

is a smooth function of x by the argument above, so replacing eO' by its partial derivative

in the above procedure shows inductively that H( a, x) depends smoothly on a and z ,
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Finally, take a chart (U, 7j;) of M and use the above, with 801 = -TJ1jJ-l (01)' to get a

smooth function H(a,x) such that D-.HOI(x) = -TJ1jJ-l(OI)' Then set F;3(x) = H1jJ(;3)(x) (This

is chart-independent by the uniqueness mentioned above.) Patch these together using the

independence to get a smooth function F : M x M -+ R such that D-.F;3( x) = -TJ;3( x) and

take (in local coordinates)

This gives the map <P, as required. D

6. Proof of Theorem 3

Proof of Theorem 3. First note that P is a convex set, and that there is a canonical

map from M to P given by x I---t Px where Px is defined by the equation Px(y) = h(x,y).

Let <P be as defined in Lemma 6 and then define IX(y, t) by

IX(Y'O) = y, Vx,y EM

d,x(y, t) = ( <p(px - Po) ) ( ( t)).
dt (1 - t)po + tpx IX y,

Write Ix,t(y) = IX(y, t), and using the lemma, we see the vector field above depends

smoothly on the parameters x and t, so that we can use the parameterized flow theorem

(see [AMR], §21.4) to show that the Ix,t form a smoothly parameterized collection of

diffeomorphisms. In particular, define smoothly parameterized diffeomorphisms 8x(Y) =

IX,}(y). We will then show that

r Px(y)dV(y) = r po(y)dV(y)
l~(A) lA

(3)
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for Borel sets A and pEP. Assuming this for now, we complete the claim by setting

fy(x) = Ox(y)

:F = {fy : y E M}

m{fy : yEA} = P(xo,A) for A E B.

We then check

P(x, A) = j Px(y)dV(y) = r Po(y)dV(y) = p(xo, O;l(A))
A Je:;l(A)

= P(xo,{Y: Ox(Y) EA}) = P(xo,{Y: fy(x) EA})

= m({fy : fy(x) EA}).

In this, we used for the second equality, (3) and the fact that Ox is a homeomorphism.

This statement is then the required condition, completing the proof subject to the proof

of the claim (3) made above.

To prove (3), note that it is sufficient to prove it for sets A which are open subsets of

M with piecewise smooth boundary. So fix U open in M with piecewise smooth boundary,

take x E M and set pet) = (1 - t)po + tpx. We then show the following equation holds.

!(j (p(t))(y)dV(Y)) = 0
'."t(U)

Equation (3) then follows from this.

Now, set 1}= Px - Po and X = <p(1}). Using the Transport Theorem with mass density

(see [AR, §8.2.1]), the left hand side of the above is equal to

1 dp(t)=s:: + CX/p(t) (p(t)w)
")'."t(U)
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where Cl" is the Lie derivative in direction Y. The integrand is then equal to

ryw +wCx/p(t)(p(t)) +p(t)Cx/p(t)(w)

= TJW+ p(t) (Xi 8~i p(t)) + p(t)div (p~))w

= nt» + p(t) (Xi 8~iP(t)) + (div(X))w +Xip(t)WVi(p~t)) = o.

This completes the proof. 0

7. Invariant Measures for Smooth Markov Chains

In this section, M will continue to be a smooth Markov chain on a compact Riemannian

manifold. We will assume that the volume measure V is normalized: V(M) = 1.

Write P(M) for the collection of probability measures on M. Define Ps(M) = {J.LE

P(M) : dJ.L(x) = g(x)dV(x) for a smooth g}. These are the smooth measures. We then

define the transition operator P* : P(M) ~ P(M) by P*[J.L](A) = J Pi», A)dJ.L(x). We say

a measure J.Lis invariant if P* J.L= J.L.

Theorem 7. Let M be a smooth Markov chain. Then the following hold.

(i) M has a unique invariant probability measure u,

(li) v is smooth and has everywhere positive density.

(iii) If J.Lis any probability measure, then P* ItJ.L-+ v as n ~ 00 in tbe strong topology.

(iv) v depends continuously on the transItion density h.

In fact, in (iii), we have diam(p*n[P(M)]) -e+ 0 as n -+ 00. Before we prove the theorem,

it will be necessary to establish a preliminary lemma.

Lemma 8. Im P* C Ps(M).
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Proof.

P*JL(A) =1P(x,A)dJL(x) =1(i h(x,y)dV(y))dJL(x)

= i (J h(x,y)dJL(x))dV(y).

From this, we see that P* JLis absolutely continuous with respect to V and dP* JL(y)/ dV(y)=

J h( x, y )dJL(x) which is smooth. D

Note that this means that any P*-invariant measure must be smooth. Using [Ki],

which asserts the existence of an invariant measure for such a system, we have therefore

guaranteed the existence of a smooth invariant measure, v say. We now turn to the question

of uniqueness.

Note that Ps(M) is in bijection with {g E COO(M) : g(x) ~ 0, Vx E M;

J g(x)dV(x) = I}, so we may consider the restriction of P* to Ps(M) by looking at

the map L : COO(M) ~ COO(M) given by the equation below, since if JL is absolutely

continuous with respect to V with Radon-Nikodym derivative g, then P*JL is absolutely

continuous with respect to V with derivative L[g], where'

L[g](y) =1g(x)h(x,y)dV(x).

We in fact consider L as a map C(M) ~ C(M) (noting however that by the lemma,

1m L. C COO(M)). Equip C(M) with its usual norm Ilgll = sUPxEM Ig(x)1 and set Ilglh =

J Ig(x)ldV(x). Note that Ilglh :S Ilgll· The operator L is positive (i.e. f ~ 0 =} L[fl ~ 0)

and

1L[g](x)dV(x) = 1(1g(x)h(x,y)dV(x))dV(y)

= J g(x)(J h(x,y)dV(y))dV(x) =1g(x)dV(x).
(4)
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Define

So = {f E C(M) : J f(:c)dV(:c) = o}

SI = {f E C(M) : f(:c) ~ 0, V:c;J f(:c)dV(:c) = I}.

By the above, L(So) C So and L(SI) C SI'

We now proceed to the proof of the Theorem 7.

Proof of Theorem 7.

Since we have shown any invariant measure is smooth, we are looking for fixed points

of L lying in SI. For (i) and (ii), we therefore need to show that there is exactly one

function go E SI such that L[gol = go. This function must also have go(:c) > 0, V:c. Since

we are already guaranteed the existence of a smooth invariant measure u, we write go for

its derivative dv/dV. Then L[gol = go.

Suppose we have an independent function g1 such that L[gd = g1. We may then

assume by scaling and adding that there is a function 9 E So - {O} with L[9] = 9. Write

g+ = max(g,O), g_ = min(g,O), V+ = {:c EM: g(:c) ~~} and V_ = {:c EM: g(:c) :S O}.

Then 9 = 9+ + 9- and L[9+] ;::: L[9+ + 9-] = 9+ + 9-. But x E V+ ::::} L[9+](X) ;:::

g+(:c) + g_(:c) = g+(:c) and z E V_ ::} L[g+l(:c) ~ ° = g+(:c), so we see that L[g+l ~ g+.

By (4) then, we see that L[g+l = g+. Now, pick y E V_. We have g+(y) = L[g+](y) =

J g+(:c )h(:c, y )dV (x) > ° and this a contradiction. This proves part (i). This last argument

can be applied to 9 to prove part (ii) also.

We now move on to part (iii). Let J.L be a probability measure. By Lemma 8, P* J.L is a

smooth probability measure. Suppose its derivative with respect to V is g. Then 9 E SI.

It follows that go - 9 E So. We therefore have to show that Ln[go - gl converges uniformly

to 0. It is clearly sufficient to show that f E So ::::}IILIl fll -+ O.
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Define a = minx,yh(x,y) and r = maxx,yh(x,y). Note that 0 < a ~ 1 ~ r. We have

IIL[f]11= s~plJ h(x,Y)f(x)dV(x)1 ~ s~p J h(x,y)lf(x)ldV(x)

~ rllflh

Write f = f+ + f- as before. Note Ilf+lh = Ilf-ih and Ilflh = Ilf+lh + Ilf-lil. Then

L[f+](y) = J f+(x)h(x,y)dV(x) ~ ullf+lh· Similarly, L[f-](y) ~ -ullf-Ih· We then have

IIL[J]lh = IIL[J+]+ L[J-Jlh

= IIL[f+J- ullf+ Ih+ L[J-J + ullf-Ih 111

~ IIL[J+J- ullf+ Ih 111 + IIL[f-J + ullf-Ih 111

= IIL[J+Jlh- ullf+lh + IIL[f-Jlll - ullf-Ih

= Ilf+lll + Ilf-liI - u(llf+lh + Ilf-lll)

= (1 - u)llflh.

From this, we see IILII[JJII~ rIlLn-l[fJlh ~ r(1 - ut-Illflh ~ r(1 - u)lI-lllfli. So

Ln[fJ converges uniformly to 0 as required. This completes the proof of part (iii).

We now prove part (iv). By the above, we see that IILniso II ~ r(1 - u)n-l. We can

therefore define cP : So -t So by cP = 1 + L + L2 + .... Then note that 1 + L 0 cP = CP.

Suppose 9 is the invariant member of SI for L. Then suppose SL is a perturbation of

L with IISLII< 1/llcpll. Form W = cP 0 SL. Then SL + Low = W.

Now

. (L + SL) [g + W[gJ + W2[gJ ... J

= 9 + (L 0 W + SL)[gJ + (L 0 W + SL)[W[g]] ...

= 9 + W[g] + w2[gJ + ...
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It follows that g+W[g]+W2[g] ... is the invariant member of SI for L+hL. Note the invariant

functions differ by norm at most IlgllllcpllllhLII/(l-II~llllhLII), so that as IlhLII-t 0, hg -t 0

also. 0
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Chapter 4. Representation
of Markov Chains on Tori

In this chapter, we continue the investigation started in Chapter 3 of representation of

Markov chains on manifolds. In particular, we look at the special case where the base

space of the Markov chain is a torus. This allows us to insist that the maps used in the

representation have special properties.

In §1, we consider the case where the base space M of the Markov chain is an n-torus

(Tn). In this case any smooth Markov chain may be represented by homotopic N-to-1

local diffeomorphisms for some sufficiently large value of N. The material of this chapter

has appeared as [Q3l.

It is natural to ask which values of N can occur in the results of §l. In §2, we give an

answer to this question in the case that the underlying manifold is the circle. In particular,

we exhibit a Markov chain which cannot be represented by degree 1 homeomorphisms.

This partly answers a second question in [Ki], w~ere he asks: Can every smooth

Markov chain on a manifold be represented by diffeomorphisms? We give in §3 an example

of a Markov chain on 51 which cannot be represented by diffeomorphisms (that is which

cannot be represented by a combination of degree 1and degree -1 diffeomorphisms.)

The material contained in this chapter is all original except that I received some advice

on the proof of Theorem 1, where my original version was somewhat more complicated

than the current version.
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1. Representation of Markov Chains on Tori

In what follows, we will frequently refer to 'regarding the torus T" as [o,l)n mod 1'.

By this, we mean that we identify T" with Rn jln and denote an equivalence class by its

unique representative in the set [o,l)n. The additive structure of the torus is then referred

to as 'addition mod 1'. This will be denoted in the normal way by + and it should be

clear from the context whether addition is taking place in Rn or T".

We also frequently refer to the lift of a map of the torus. Suppose the map </> : T" -+ T'~

is continuous. Then a lift of </> is a continuous map cP : Rn -+ Rn such that 11" 0 cP = </> 0 11"

where 11" is the standard projection Rn -+ T". Such a lift is unique up to an additive integer

vector constant. The map cP may then be uniquely decomposed into a linear part and a

periodic part as cp(x) = p(x) + Ax where A is an integer matrix and p(x + m) = p(x) for

all m E In. Note that two maps of T" are homotopic if and only if their lifts have equal

linear parts. In the case that the map is a map of the circle, the matrix of the linear part

is just a number and is known as the degree of a map.

Theorem 1. Let M be a Markov Chain on T" with a smooth transition map. Then M

may be represented by a collection of homotopic N-to-l surjections for some N.

Proof. By Theorem 3·3, there exists a smoothly parameterized collection {fY}YET" of

maps with the property that for each pair z , z E T", there is exactly one y such that

fy( x) = z. In this case, write y = </>( z , z). For fixed x, the map z t-t </>( x, z) is a

diffeomorphism of T", We also have that P(x,A) = /-L{Y : fy(x) E A} where there exists

an Xo E T" such that for all B E B, /-L(B) = P(xo, B). As such, /-Lis a smooth volume form

on T", so by Moser's Theorem ([Mo)), there exists a smooth diffeomorphism ex : T" -+ T"

such that /-L(B) = .x(ex-1B) for Borel sets B, where .x is Haar measure.
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Now define ey(x) = fC't(y)(x). Then

P(x, A) = J.L{Y : fy(x) EA} = ,\{a-1(y) : fy(x) E A}

= '\{y: fC't(y) (x) EA} = '\{y: ey(x) EA}.

Note also that eC't-1(1)(x,z))(x) = fcp(x,z)(x) = z, so the collection ey has exactly the proper-

ties of the collection fy except that the measure on the parameters is just Haar measure.

We may therefore assume without loss of generality that the original measure J.Lwas in

fact Haar measure.

Next, write 4>z(x) = 4>(x,z). Then 4>z has lift q,z : Rn -7 Rn say. As usual, we write

q,z(x) = Azx +pz(x) where Az is an integer matrix and P» is periodic. Since the collection

¢z is smoothly parameterized, it follows that the linear part Az is continuously dependent

on z, so since Az is an integer matrix, Az must be constant, say Az = A.

Now choose a norm II . lion Rn. This induces an operator norm (which we will

also denote by II . II) on Mn(R), the n x n matrices over R satisfying IIAxl1 ~ IIAllllxll.

Consider r- as [O,l)n mod 1, pick MEN such that Af > IIAII+ sUPx,zETn IIDxPzl1 and

set e( z , z) = ¢(z , z) +M z , For fixed z , the map z I-t e( z , z) remains a diffeomorphism of

T". Set gy(x) = ex -l(y). Clearly gy(x) is continuously dependent on y for fixed e, and so

the maps gy are certainly homotopic. Note also that

P(x,A) = '\{y: fy(x) EA} = '\{¢(x,z) : z E A}

= .),{e(x,z)··: z E A} = J{y: gy(x) EA} ,

so the collection {gy}yETn represents M. It therefore remains to show that all the maps

gy are N-to-1 surjections for some uniform N.

To prove this, consider 9y -l{z} = {x : Ox(z) = y}. Setting "Yz(x) = e(x,z), we see
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9y -l{Z} = 'Yz-l{y}, so it is sufficient to show that 'Yz is an N-to-l surjection for the

some N which is independent of z. But 'Yz(x) = ¢;(x,z) + Mx, which has lift fz(x) =

Ax + Mx + pz(x). Write L for the matrix (A + MI) where I is the identity matrix and

suppose x =I=- y. Then

Ilfz(x) - fz(y)11 = IIM(x - y) + A(x - y) + pz(x) - pz(y)11

;:::Mllx - yll - (IIAII + sup IIDxPzll)llx - yll > 0.
z,xETn

so I'z is injective.

We now show rz is surjective. Since IIAII < M, we see that the matrix L is invertible,

so given y E Rn, define the map

The image of F is a bounded subset of Rn and so is contained in some closed ball B(O, R).

Now consider F as a map from B(O, R) into itself. By the Brouwer fixed point theorem,

there exists a point Xo E B(O,R) such that F(xo) = xo. Then Xo = L-1(y - Pz(xo)), so

we see that rz (xo) = y. It follows then that rz is surjective. We then show that this

implies that 'Yz is a [det LI-to-l surjection. Note that L" is the disjoint union of cosets

Lln -+- Xi, 1 ~ i ~m where m = [det LI by standard theory of maps on tori. Denote by 7r

the standard projection from Rn to T" and pick ( E T". Then 7r-1(() = T" + x for some

x E Rn. Let Pi = 7r(fz -l(x +xd). 'I'hese are distin~t, for if Pi = Ph then

Applying I'z, we get Xi = x j +Lm which implies i = j. It. therefore follows that the points
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Conversely, suppose /'z(p) = (, then pick wE 7r-l(p). So, 7r(fz(w)) = (and fz(w) E

In + X, so in particular I'z(w) = Lm + X + Xi for some m E In and some i. So

From this, we deduce w = m + f,;l(x + Xi) and P = Pi. Then /,,;1{(} = {PI,'" ,Pm} and

/'z is [det LI-to-l as required. This number is clearly independent of z. D

Further, we may characterize the homotopy class of the maps as follows. By standard

results on the theory of maps of the torus, the map (Jhas a lift 8 : Rn X Rn --+ Rn. The lift 8

may then, as usual, be split up into linear and periodic parts: 8(x,z) = Ax+Bz+C(x,z),

where A and B are integer matrices, and C is periodic in X and z. Note that [det BI = 1

as the map z I---t (J(X, z) is a diffeomorphism for fixed x. We have, however, that gy( x) =

(J;I(y). Let Gy(x) be the lift of gy. By definition, we see (J(x,gy(x)) = y. Lifting this, we

get 8(x, Gy(x)) = Y, where Y is a preimage of y under the natural projection. Substitution

gives Ax + BGy(x) + C(x,Gy(x)) = Y. As x varies, the right hand side must remain a
,

preimage of y, so by continuity, we have that the right hand side is constant. As x moves

through an integer displacement m E In, Ax moves through Am and C(x, Gy(x)) remains

constant as C is periodic. It therefore follows that BGy(x + m) = BGy(x) - Am, so in

particular

The linear part of Gy therefore has matrix _B-1 A, where A is the matrix of the

linear part of (J for fixed z (considered as a map of x) and B is the corresponding matrix

for fixed z ,
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2. Degree of a Markov Chain on the Circle

Definition. A smooth Markov chain M on a smooth Riemannian manifold M is said to

be nicely represented by a collection {fY}yEM of maps and a volume form p, on M if the

following properties llOld:

(i) For all points x and z in M, there exists a unique y in M such that fy(x) = z . In this

case, write y = Y(x, z).

(li) Y( z , z) as defined above is smooth in both variables and for fixed z , the map z I---?

Y(x, z) is a diffeomorphism of M.

(iii) For each Borel set A and each point z E M, P(x,A) = p,{y: fy(x) EA}.

By the proof of Theorem 3·3, every smooth Markov chain has a nice representation

by smooth maps. We now restrict ourselves to the case where M = SI.

Definition. The positive and negative degrees of M are given by

s, = J s~p :x p(x, [zo, z])dx

s: = J inf aa P(x, [zo, zJ)dx.
z x

Nate that these degrees are independent of the point Zo as

Taking suprema over z, the first term of the right hand side is unaffected, and then in-

tegrating, this term gives no contribution, so we see the degree b+ is independent of the

point zoo The same obviously holds for b_. We therefore fix a point Zo E SI for the rest

of this section. Note that b_ :::;0 :::;b+, as can be seen by taking z = zoo
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Theorem 2. Let N > o. Suppose M is a smooth Markov chain on the circle. M may

be nicely represented by degree N local diffeomorphisms if and only if N > 8+.

Theorem 3. Let N > o. Suppose M is a smooth Markov chain on the circle which may

be represented by degree N local homeomorphisms. Then N ~ 8+.

Corollary. Let N > o. There exist smooth Markov chains on the circle which cannot be

represented by degree N local homeomorphisms.

Note these have corresponding versions with N < 0 involving the quantity 8_.

Theorem 2'. Let N < o. Suppose M is a smooth Markov chain on the circle. M may

be nicely represented by degree N local diffeomorphisms if and only if N < 8_.

Theorem 3'. Let N < o. Suppose M is a smooth Markov chain on the circle which

may be represented by degree N local homeomorphisms. Then N :::;8_.

Corollary'. Let N < o. There exist smooth Markov chains on the circle which cannot

be represented by degree N local homeomorphisms.

Proof of Theorem 2. Suppose M is nicely represented by degree N local diffeomor-

phisms. We may then assume the measure on the parameter space to be Haar measure as

in §1. Write Vex, z) for the parameter value of the unique map taking x into z and write

h(~, z) for the probability density of going from x to z, It then follows that

8 - .
8zY(x,z) = h(x,z).

In what follows, we treat the circle as the interval [0,1) mod 1. We then see that Vex, z) =
P( z , [zo, z l) - X (x) where X is some map SI -e+ SI. For M to be represented by local

diffeomorphisms, by the implicit function theorem and the condition that the maps are
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locally orientation-preserving, we require

d 8
-d X(x) > sup -8 p(x, [zo,z]).
x zES1 X

We therefore see that X has degree greater than 15+. But we have

N = I{x : Y(x, z) = y}1 = I{x : p(x, [zo, z]) - X(x) = y}l·

By the conditions placed on X, we have P(x, [zo,z]) - X(x) is monotonic in z , The

cardinality is then the modulus of the degree of the expression as a function of x. This is

precisely the degree of X, so we see that N > 15+.

Conversely, suppose N > 15+. Set

Then we have J a(x)da.: = 15+, so we can find an € > 0 and a smooth function f3(x) such

that

(i) f3(x) ~ a(x) + €

(ii) J f3(x)dx = N.

Then set X(x) = Jz:f3(x)dx (mod 1), and finally, let Y(x,z) = 7r(P(x,[zo,z]) ~ X(x)),

where 7r is the standard projection of the real line onto the circle. For fixed x E SI, the map

Z 1--+ Y(x, z) is a diffeomorphism SI ~ s'. Y is al~o smooth in z , Write Yx(z) = Y(x, z)

and define fy(x) = Yx-l(y). By the implicit function theorem, we see that Dxfy i= 0 since

DxY i= 0 and DzY i= O. The map fy is a smooth local diffeomorphism, and
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From this, we see that fy is N-to-1 and so fy has degree N. Finally, we check that with

J.Ltaken to be Haar measure, this does indeed provide a nice representation of the Markov

chain M.

J.L{y: fy(x) E A} = J.L{Y: Yx-l(y) E A} = J.L{Yx(z) : Z E A}

= J.L{P(x, [zo,z]) : Z E A} = P(x,A).

Note that the third equality uses the translation invariance of Haar measure. It follows

that M is nicely represented by degree N local diffeomorphisms. 0

Before embarking on the proof of Theorem 3, we need some lemmas and definitions.

Definition. A map P : SI x B ~ [O,lJ is an S-map if

(i) For'each x E SI, the map A I-t p(x, A) is a measure,

(li) p(x, SI) is independent of z and

(iii) For fixed A E B, the map z I-t p(x, A) is measurable.

Note, an S-map is just a constant multiple of a transition map. An S-map is said

to be smooth if it is a constant multiple of a smooth transition map. In particular, it is

required to have strictly positive transition densities or all densities identically zero .

.Further, if PI and P2 are S-maps, then we say PI is subordinate to P2 if PI (x, A) <

P2(X, A) for each z E SI and A E B.

- The weight of an S-map P is denoted by w(p) and is defined to be p(x, SI) (which is

independent of x).

Definition. Suppose the Markov chain M is represented by the collection of maps :F

and a measure v on them. A subrepresentation of this is defined by a measurable subset

:F' of:F and the restriction of the measure v to a measure v' defined on the measurable
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subsets of :F' .

Note that in this case the induced S-map (defined by p(x, A) = u' {f E :F' : f(x) E A})

is subordinate to P.

Let ~ be the collection of all S-maps. Then define the maps

m

V+ : ~ -t R+ j p f-t }~oo_su~ L [p( 11"( 7~)' [zo, zd) - p( 11"( i;ll ),[zo, zd) ]
·l···-m i=l

These quantities satisfy for all p E ~, V_(p) ::;0 < V+(p).

Lemma 4. Let p be a smooth S-map. Then we have

Clearly a similar relation will hold for V_.

,
Proof. Set A(x, z) = p(x, [zo, z]). This is smooth in x and z. Write Ax for :x A. Then

17r(i/m) a
::; sup '8p( z , [zo, z]) dx.

7r(i-l/m) z X

From this, we see

This shows the right hand side is bounded above by the left hand side.
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Now we show they are equal. Pick t: > O. By uniform continuity, there exists a

8 > 0 such that IXI - x21 < 8 :::} Vz, IAx(xl'z) - Ax(x2,z)1 < t:. Now pick mEN

such that m > 8-1, and choose i with 1 ~ i ~m. Then let y E SI be such that

Also,

It follow,s that Ax(x,y) ~ suPzAx(x,z) - 2t:. Integrating between 7r(~11) and 7rC:J, we

get

i

AC:t' y) - A( i~/,y) ~ J~[s~p !p(x, [zo, zl) - 2t:]dx.
m

Finally, adding gives

This completes the proof of the lemma. 0

Lemma 5. Suppose p is an S-map arising from some measure v on some collection :F

of degree N local homeomorphisms, liith N > 0 (possibly with v(:F) =1= 1), then V+(p) :S

Nw(p).

Again, there will be a similar version of this lemma which operates for N < 0 and

using V_.
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Proof.

7n
V+(p) = 7~~OO_SU~ L[p(7rC~)'[ZO'Zi]) -p(7r(~/)'[ZO'Zi])]

~l'''-m i=l

where XA is the characteristic function of the set A. But we have

III

L s~.p [X[zo ,z;] (J( 7:l )) - X[zo ,z;) (J( i-;;/ )) ]
i=l -.

where by inequalities on the circle, we mean that there is a continuous choice of argument

on a connected subset of the circle including the specified points on which the order of the

values of the argument is that specified. The cardinality above is however bounded above

by N as there can be at most one such i between any adjacent pair of preimages of Zo

under f. It therefore follows that V+(p) ~ Nv(:F) = Nw(p). 0

Theorem 3 then follows as a straightforward application of these lemmas.

Proof of Theorem 3. Applying Lemmas 4 and 5 to the transition map P of the Markov

chain, we see 8+ = V+(P) ~ Nw(P). But, we also' have that w(P) = 1, so the theorem is

proved. 0

Proof of the Corollary. To prove the corollary, it is sufficient to construct a Markov

chain with 8+ > N. As an example of such a Markov chain, consider the following:
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Considering the circle as the interval [0,1) mod 1, and given positive constants a and

/3, such that a < 1 and /3 < ~, pick a smooth function f such that

(i) f(x) > 0, Vx E SI

(ii) J f(x)dx = 1

11/2+(3
(iii) f( z )dx = a

1/2-(3

.) ) I-a 1 1 )(w f (x = /3 for x ~ ("2 - /3, "2 + /3 .1-2

Next, set h(x,z) = f(z + rx), where r E N, and using this, define P to be the transition

map with probability density h: For a Borel set A and a point x E SI, P( z ,A) is defined

to be fA h(x,z)dz. We then estimate the value of supz txP(x, [zo,z)) as follows:

8 8 lz 8 lz+TX

-8 P(x,[zo,z])=-8 h(x,y)dY=-8 f(y)dy
x . x Zo X ZO+TX

= r(J(z + rx) - f(zo, + rx))

Note that defining ((x) =! -rx, Izo-((x)l2: /3 =} h(x,zo) = t~2fi.Clearly, however, we

have suPz h(x, z) > 2P' so we have

8 (a I-a)Izo-((x)I2:/3=}s~p 8xP(x,[zo,z]) >r 2/3 -1-2/3 .

We also have, however, that suPz txP.(x,[zo,z]) > 0. But Izo - ((x)1 2: /3 on a set of

measure 1 - 2/3, so we deduce

(a I-a) (0)h+ > r - - (1 - 2/3) = r - - 1 .
2/3 1 - 2/3 2/3

Then taking 0 = !, /3 = ~ and r = N, we get h+ > N. This proves the corollary. 0
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The positive and negative degree are very easy to calculate, but have the drawback that

they do not contain all the information which we might want. In particular, it is not clear

that if a Markov chain has positive and negative degrees greater than 1 in modulus, how

to see if it has a representation by a combination of degree 1and -1maps. The following

definition remedies this at the cost of extra complexity involved in the calculation.

Definition. Let 8(p) = w(p) max(V+(p), IV-(p)l). The degree of a Markov chain M on

the circle with transition probability P is then defined by

where the infinum is taken over S-maps PI and P2 of non-negative weight.

Tlie smooth degree of a Markov chain M on the circle with transition probability P

is defined by

where the infinum this time is taken over smooth S-maps PI and P2 of non-negative weight.

Claim. We have in fact

Proof. Let PI and P2 be any two S-maps with non-zero weights WI and W2. Then we have

In

V+(PI + P2) = lim sup L [(PI + p2)(rr( ~J,[ZO, Zi]) - (PI + p2)(7r( i;;-/), [ZO, zd)]
m--oo Zl···Zm i=I

nt .

:::; 11~~~SU~ I:[PI (7rC:J, [ZO,Zi]) -PI(7re~/),[zo,zd)]
-l···-m i=I

In

+ lim sup L [P2 (7rC!J, [ZO, zd) - P2 (7re~tI ), [ZO, zd)]
m--oo Zl···Zm i=l .
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holds for V_: IV_(PI + P2)1/(WI + W2) ~ max(IV_(pdl/WI, IV_(P2)I/W2)' Let P+ = {S-

maps p: 6(p) = V+(p)/w(p)} and p_ = {S-maps P : 6(p) = IV_(p)l/w(p)}. Now suppose

PI +P2+ ... +P» = P. Then we may assume PI, P2, ... ,Pk are in P+ and Pk+I,·· -P» are

in P_. In this case, we have

and

Thus, the claim is proved. 0

A similar statement holds for 6s. We can then use the degree to determine whether

a given Markov chain may be represented by homeomorphisms by the following.

Theorem 6. Suppose a Markov chain M on the circle has 6s < N. Then M may be

represented by a combination of degree N and degree - N local diffeomorphisms.

Theorem 7. Suppose a Markov chain M on the circle has 6 > N. Then M cannot be

represented by a combination of degree N and degree -N local homeomorphisms.

Proof of Theorem 6. Let M be as in the statement of the theorem. Suppose M has

transition map P~ Then by the definition of 6s, there exist smooth S-maps PI and P2 such

that 6(pJ) < Nand 6(P2) < N. Now, applying Lemma 4, and Theorem 2, we get the

required result. 0
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Proof of Theorem 7. Suppose a Markov chain M has a representation by degree N

and degree -N local homeomorphisms. Let PI and P2 be the S-maps associated to the

subrepresentations of degree N and degree -N maps. By Theorem 3, we see that 6(pI) :::;

Nand 6(P2) :::;N, and hence s :::;N. This is a proof of the theorem by contradiction. 0

I conjecture that in the case of smooth Markov chains, one has that h = hs.

3. A Markov Chain which cannot be Represented by Homeomorphisms

The above gives a criterion for maps to be represented by diffeomorphisms. The degree

and smooth degree are however extremely unwieldy objects. In the following, we check one

of its most basic properties: that there exist Markov chains with hs ;:::1. By Theorem 6,

it is sufficient to show, as we do here by ad hoc means, that there is a Markov chain which

cannot be represented by a combination of orientation-preserving and orientation-reversing

homeomorphisms. In this section, we modify the example of the previous section to show

this.

The strategy will be to construct a Markov chain with transition map P and to show

that there can be no S-map induced by a collection of degree 1 homeomorphisms of weight

~ which is subordinate to P and the same thing for degree -1 homeomorphisms. This

will then complete the proof of the theorem as, if the result did not hold, there would

be a representation of the Markov chain which would be composed of degree 1and -1

homeomorphisms. In particular, the measure of one of these subsets would have to be at

least ~, and taking the S-map induced by a subrepresentation of this would contradict the

above.

In the course of the proof, we will take >. to be Haar measure on the circle. The

Markov chain which we will use is that which we constructed in the Corollary above. The
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parameters a, {3and r are to be determined. Write P for the transition map of this Markov

chain. Let «(x) be given by !-rx.

Suppose then that F+ is a collection of orientation-preserving homeomorphisms and

1.1+ is a measure on them such that 1.1+(F+) = ! and such that the induced S-map is

subordinate to P. We perform two estimates: First, fix f E :F+ and consider the set

{x : If(x) - «(x)1 < {3}. The function f(x) - «(x) is monotonic of degree r + 1, so the

set above has r + 1 components. Take a lift G of the function f(x) - ((x) and suppose

G(y) = n - (3 where n E N. Then G(y + 2:) > n + (3, so the measure of each component

of the set is less than ¥, so we get

2{3
A({X: If(x) - ((x)1 > (3}) > 1- -(r + 1).

r

By construction of P however, we have P(x, SI \ [((x) - (3, ((x) + (3]) = 1- a, so in order

for the induced S-map to be subordinate to P, we must also have

1.I+({f E:F+ : If(x) - ((x)1 > ,6}) ~ 1- a.

Integrating these inequalities with respect to f and x respectively and applying Fubini's

theorem, we see that for consistency, we are forced to have

1 (2{3 )1-a>"2 1--;:-(r+1).

Suppose instead we have a collection :F_ of orientation-reversing homeomorphisms

and that 1.1_is a measure on them such that 1.I_(:F_) = !and such that the induced S-map

is subordinate to P. Then, as before, we have

1.I-({f E F_ : If(x) - ((x)1 > (3}) ~ 1 - a.
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We will also require an estimate of the measure of the set {a:: : 1/(a::) - ((a::) I > j3} for fixed

I E F-. This time, I(a::) - (( a::) has degree r - 1, but we can no longer say that the function

is monotonic. We consider a lift G of the function I(a::) - ((a::). As we noted above, this

has degree r - 1. Then pick a point y such that G(y) = !+ (3 and for 1 ::; i ::;r - 1 set

ai = sup{z E [y,y+ 1): G(z) =! + (i -1) +(3}

bi = inf{z E [ai,y + 1) : G(z) = ~+ i - (3}.

Note that G(y + 1) = !+ (3+ (r -1), so that each of the above exists. We have also however

that 7r(ai' bi) C {a:: : 1/(a::) - «(a::)1 > (3}, but bi - ai > 1-;f3 as G(ad = !+ (3+ (i -1) and

G(ai + u) < G(ad + r a . So since the sets 7r(ai,bi) are disjoint, we get

1- 2(3
A({a:: : 1/(a::) - ((a::)1 > (3} > (r -1) .

r

Integrating and using Fubini's theorem as before, we find that we require for consistency

that

1- 2(3
1-a>!Cr-1) .

r

We may then choose a, (3 and r, so taking r = 2, (3= i and a > i,we find that the above

inequalities are not satisfied, and so we have a Markov chain which cannot be represented

by homeomorphisms.
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