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Abstract

Choline dihydrogen phosphate has previously been shown to be a good ionic conductor 
as well as an excellent host for acid doping, leading to high proton conductivities 
required for e.g., electrochemical devices including proton membrane fuel cells and 
sensors. A combination of variable-temperature 1H solid-state NMR and 2D NMR pulse 
sequences, including 31P and 13C CODEX and 1H BaBa, show that the proton conduction 
mechanism primarily involves assisted transport via a restricted three-site motion of the 
phosphate unit around the P-O bond that is hydrogen bonded to the choline and exchange 
of protons between these anions. In other words, proton transport at ambient temperatures 
appears to occur most favorably along the crystallographic b axis, from phosphate dimer 
to dimer.  At elevated temperatures exchange between the protons of the hydroxyl group 
on the choline cation and the hydrogen-bonded dihydrogen phosphate groups also 
contributes to the structural diffusion of the protons in this solid state conductor.
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Introduction

Research into fuel cell technology is motivated by the need to develop a replacement 

for fossil fuels as our main energy source.  The traditional materials used for electrolyte 

applications in fuel cells are polymer membrane systems such as Nafion, a perfluorinated 

ionomer.  These membranes typically only operate well under humid conditions, thus 

requiring an operating temperature lower than 100C.  Several different systems have 

been explored as alternatives to polymer membranes including solid acid compounds,1

phosphoric acid polybenzimidazoles (PBI)2 and phosphoric acid polyphosphazenes3.  

Choline dihydrogen phosphate (DHP) is a novel organic ionic plastic crystal that has 

recently shown promise for the electrolyte component in fuel cells.4,5  It has a low 

volatility, high thermal stability and fast ionic conductivity (103 S/cm) in the plastic 

crystalline phase (140C). Doping of this plastic crystal material with phosphoric acid 

sees a significant improvement in ionic conductivity and a high proton diffusivity, higher 

than either the dihydrogen phosphate anion or the choline cation.5 Understanding the 

structure and dynamics in such plastic crystal systems and the nature of the proton 

conduction is of significant physical chemistry interest that will influence the design of 

new, low volatility solid state proton conductors.

Solid-state nuclear magnetic resonance (NMR) is a powerful technique for the study 

of both local structure and dynamics.  Proton double-quantum filtered (1H DQF) 

experiments have been used in the study of a large number of systems for determination 

of the packing arrangement of the hydrogen-bonding motifs.6-11  These experiments 

access the information inherent to through-space dipolar coupling and the relative 

strength of the measured dipolar coupling can be used as a probe of molecular mobility.  
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Here we establish the assignment of the proton resonances and the hydrogen-bonding 

structure of choline DHP by correlating the X-ray diffraction (XRD) structure to the 1H 

NMR spectrum using heteronuclear and DQF homonuclear correlation techniques.  After 

determining the hydrogen-bonded proton network, a combination of experiments were 

used to develop a description of the microscopic processes that give rise to proton 

transfer in choline DHP.  Variable-temperature 1H NMR studies are used to characterise 

the local proton mobility by observing the narrowing and/or coalescence of the 

resonances.10-13  The centreband-only detection of exchange (CODEX) pulse sequence 

measures the reorientation of a molecule by studying the changes in chemical shift 

anisotropy (CSA) with time.14  It enables determination of the number of sites involved in 

the reorientation and the timescale of the motion.  Using these techniques, we explore 

whether the high conductivity of choline DHP results from transport of protons by 

rotation of the phosphate anions and/or the hydroxyl groups of the choline cation in a 

Grotthuss-type mechanism via structural diffusion.15  Another possible means for proton 

transport is through vehicle transport, where the phosphate anion moves as a complete 

unit through the structure. By elucidating the molecular level mechanism of proton 

conduction in choline DHP, we can improve upon the design properties for electrolyte 

systems based on organic ionic plastic crystals.

Results and Discussion

1H NMR: Structure and Influence of Drying Conditions

The one-dimensional 1H MAS NMR spectrum of choline DHP (Figure 1) at ambient 

temperature (307 K) shows six distinct proton resonances in three distinct regions: 
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hydrogen-bonded (14-9 ppm), water (9-7 ppm) and aliphatic (4-2 ppm).  The relative 

ratios for the isotropic chemical shifts of the aliphatic protons (9:2:2 for resonance A, B 

and C, assigned on the inset) correspond to those determined by solution-state NMR.4  

Solid-state NMR can elucidate packing arrangements and intermolecular interactions not 

available to solution state because of rapid exchange of the hydrogen-bonded protons.

The 1H solid-state NMR spectrum of choline DHP shows two distinct resonances that 

correspond to hydrogen-bonded protons (resonances E and F).  The X-ray crystal 

structure of choline DHP was reported recently (e.g. Figure 2)16 showing the presence of 

three unique O-H…O hydrogen bonds. Each phosphate anion has two similar hydrogen 

bonds to another phosphate unit (O4-H4O-O2 in Figure 2), forming a dimer, and two 

hydrogen bonds with the hydroxyl group of two different choline cations.  The latter two 

hydrogen bonds have the choline hydroxyl acting as a hydrogen bonding donor group and 

an acceptor respectively.  For clarity, these two bonds will be referred to as the 

phosphate-choline donor (O5-H5O-O1) and the phosphate-choline acceptor (O3-H3O-

O5) hydrogen bonds.  The phosphate-phosphate dimers are connected to each other 

through the hydrogen bonds to the hydroxyl groups.  This arrangement, where each 

phosphate anion is hydrogen-bonded to two cations and one anion, results in columns of 

choline DHP molecules along the a axis.  The assignment of these proton chemical shifts 

to the crystallographic hydrogen bonds cannot be made based on the heteroatomic 

distances alone.  The differences between the bond distances are small, only 0.03 Å, 

while the chemical shift difference is greater than 3 ppm.  The relative ratio for the two 

hydrogen bonds is 2:1 for resonance E and F respectively, indicating there are two 

hydrogen-bonded environments represented at the lower frequency.  The local 
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environments, including H-O and O-H…O bond distances, of the phosphate-phosphate 

and phosphate-choline donor hydrogen bonded protons are similar (Table 1) and 

therefore they are tentatively assigned to resonance E (confirmed by the correlation 

experiments below).  This assignment will be confirmed through the use of heteronuclear 

and homonuclear correlation NMR techniques. Moreover, since the crystal structure was 

obtained at 193 K, these solid-state NMR methods help ascertain that the hydrogen 

bonding arrangement is similar at temperatures within the operating range of fuel cell 

applications.

Figure 3 includes 1H MAS NMR spectra at ambient temperature of choline DHP 

treated by varying the drying time.  The sample that has not been treated is referred to as 

“wet”.  The water protons resonance in the “wet” sample is very narrow, suggesting a 

highly mobile species.  As the drying time increases, the water resonance decreases in 

signal intensity, broadens and moves to higher frequency.  This suggests that it is possible 

to remove some of the water from the structure, but that even after extensive heat 

treatment, some water remains tightly bound.  It has been observed previously in 

hydrogen-bonded structures, for example in SiO2-Nafion composites, that there are strong 

hydrogen-bonding sites available that trap water molecules,17 consistent with the results 

observed here. The aliphatic resonances appear to broaden after heat treatment, which 

might indicate that the structure is now slightly condensed so that the aliphatic protons 

experience a stronger dipolar interaction with the surrounding protons that is less 

completely averaged or perhaps there is an increase in disorder in the sample that is most 

reflected in the aliphatic resonances.  The following experiments were all performed 

upon the sample dried for three days at 80 C under vacuum (Figure 3c).  Even in these 



PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

6

‘dry’ samples, isothermal TGA analysis at 110 C has suggested that around 2% water 

may still be present in the choline DHP material.5  This corresponds to the brittle 

crystalline phase of choline DHP and, according to a recent detailed investigation of the 

thermal behaviour of this material,5 this phase is constant throughout the entire 

temperature range studied here (up to 330 K).

1H-31P HETCOR and 1H-1H 2D DQ MAS NMR: Assignment and Determination of 

Hydrogen-Bonding Arrangement

The accurate assignment of the two hydrogen-bonded resonances can be made using 

the short-range contact information provided by the homonuclear and heteronuclear 

dipolar couplings and is essential to be able to study the local dynamics.  Heteronuclear 

1H-31P correlation (HETCOR) experiments were performed to determine which 

hydrogen-bonding species include the phosphate group.  The 31P spectrum of choline 

DHP at ambient temperature shows one resonance at 0.5 ppm (Figure 4).  There are 

correlations to all of the protons except for those of the water molecules.  This means that 

all of the hydrogen-bonded resonances can be attributed to hydrogen bonds involving the 

phosphate group.  This is supported by the crystal packing arrangement in Figure 2.  It is

clear that the strength of the 1H-31P correlation is stronger for resonance F than resonance 

E.  The H-P bond distance between the proton of the choline acceptor hydrogen bond and 

the phosphorus is significantly shorter (2.02 Å) than the other two hydrogen bonds (2.15 

and 2.77 Å), producing a stronger dipolar coupling consistent with the assignment of 

resonance F to the proton of the phosphate-choline acceptor hydrogen bond.
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The elucidation of the packing environment is often best investigated by looking at 

the proximities of the protons to each other using DQ filtered experiments.6,7  Protons 

that are mobile on the timescale of the experiment are motionally averaged and filtered 

from the spectra.  In the 1D DQF 30 kHz MAS NMR spectrum of fully dried choline 

DHP acquired using the Back-to-Back (BaBa) pulse sequence6,18 at ambient temperature 

(Figure 5a), only the water protons are filtered out, indicating that at 307 K, the protons 

of the water molecules are the only protons mobile on the timescale of the DQF 

experiment (33 s).  None of the protons associated with the choline DHP structure are 

mobile at ambient temperature on this fast timescale.  By extending the length of the 

recoupling (excitation) time, the BaBa sequence can be used to detect weak dipolar 

couplings which are partially dynamically averaged by local mobility.  Figure 5c shows 

the 1D 1H DQF spectrum after six rotor periods (198 s) where the hydrogen-bonded 

resonances are both filtered out.

In a 2D 1H-1H DQF experiment, correlations between like protons are found on the 

diagonal (2A, A) and between unlike protons occur on either side of the diagonal (A + 

B, A) and (A + B, B).  Figure 6 shows the 1H 2D DQF spectrum for choline DHP 

at 30 kHz and ambient temperature.  The strong self-correlation between the aliphatic 

protons dominates the diagonal at the top right quadrant of the spectrum. The data shows 

that the three hydrogen-bonded protons (resonances E and F) are dipolar coupled with 

themselves (self-correlations E-E and F-F in Figure 6) and with each other (cross peaks 

E-F).  This implies that not only are the two hydrogen-bonded phosphate anions close to 

each other and close to a hydroxyl, but that there must also be two hydrogen-bonded 

choline groups close to each other, again consistent with the hydrogen-bonding network 
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determined from XRD results. Close inspection of the slices in the 2D spectrum show 

that resonance F is not spatially close to the methyl groups (C) on the ammonium head 

group.  Looking at the proton-proton proximities in the crystal structure, all of the 

hydrogen bonds are located close to the aliphatic protons except for the proton of the 

phosphate-choline acceptor hydrogen bond that is >5.4 Å away from the methyl protons.  

This is further evidence supporting the assignment of resonance E and F to the 

phosphate-phosphate/phosphate-choline donor and the phosphate-choline acceptor 

hydrogen bonds respectively.  

The homonuclear and heteronuclear correlation NMR spectroscopy confirms the 

recently reported packing motif determined from XRD16 with all the possible hydrogen-

bonding contacts.

1H NMR: Identifying and Quantifying Dynamic Processes

The behaviour of the resonances with temperature (307 – 330 K) is shown in Figure 

7a for the sample dried for three days.  Several trends are observed with increasing 

temperature.  The resonances of the aliphatic protons narrow slightly with temperature 

and show a small shift to lower frequency (change of about 0.1 ppm).  Similar to the 

behaviour observed upon drying, the water resonance shifts to higher frequency with 

temperature and broadens.  At first glance, this observation seems inconsistent with the 

water molecules being mobile.  Generally, mobile species narrow and tend towards lower 

frequency with increasing temperature.  However, the resonance is completely filtered 

out during the BaBa acquisitions (Figure 7b), confirming the fast mobility.  The 

broadening of the resonance and the shift to high frequency suggests that the water 
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protons are exchanging with the hydrogen-bonded resonances and that the resonances 

would eventually coalesce at higher temperatures.  It is clear that resonances E and F shift 

to lower frequency with temperature, possibly both coalescing with the water protons.  

Figure 8 shows a two-dimensional exchange (EXSY)19 spectrum with a mixing time of 5 

ms at ambient temperature that is consistent with this observation.  While DQF 

experiments allow investigation of dipolar coupling of rigid protons, 2D EXSY studies 

are used to investigate the mobile water protons, as well as interactions between the rigid 

and mobile components.  The cross peaks are evidence for chemical exchange between 

different protons.  The cross peaks between resonances E and F in Figure 8 support the 

packing arrangement where the two hydrogen bonds are close to each other in space.  It 

appears that there is also a weak exchange between resonance E and the water protons.  

Whether the water is only exchanging on the microscopic level or if it is involved in 

long-range transport is unclear.  However, the dried choline DHP sample exhibits high 

proton conductivity,4 indicating that the water does not play an essential role in the 

conduction process.  

The most significant change with temperature is the very marked narrowing of 

resonance E at 330 K (from a line width of 970 Hz to 110 Hz) which is filtered out 

completely in the DQF spectrum (Figure 7b).  The behaviour in the wet sample (not 

shown) was similar.  Resonance E narrowed completely with increasing temperature, 

with no additional resonance or broad component present, indicating that both the 

hydrogen bonds assigned to resonance E experience a significant increase in mobility at 

this temperature.  The narrowing of the resonance corresponding to the phosphate-

phosphate and phosphate-choline donor hydrogen bonds means these protons are more 
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mobile than the phosphate-choline acceptor hydrogen bond.  Structural diffusion 

mechanisms are often characterised by reorganisation of the hydrogen-bonding network 

to facilitate proton transport through the solid.  From these results concerning the 

mobility of the hydrogen-bonded protons, we propose that the rotation of the phosphate 

group and the reorientation of these hydrogen bonds is the dominant step in the proton 

transport.  Moreover, the protons are being primarily passed from phosphate unit to 

phosphate unit, possibly involving the hydroxyl groups of the choline through 

rearrangement of the phosphate-choline donor hydrogen bond.

31P CODEX: Study of Anion Dynamics

To study the reorientation of the phosphate unit, the CODEX pulse sequence was 

used to examine changes in the CSA over time.14  After a mixing time (τmix), if chemical 

exchange occurs within the molecule the CSA will not be in the same position and the 

magnetisation will not be completely refocused, causing attenuation of the CODEX 

signal.  The smaller the motion, the longer the time needed to produce significant 

dephasing.  The dephasing is determined by Ntr where N is the number of loops of the 

recoupling 180° pulses and tr is a rotor period, 0.1 ms in these experiments. 

The application of the CODEX pulse sequence requires two separate steps.  First, by 

varying the amount of dephasing and keeping the mixing time constant and at a long 

value, a master curve is constructed.  After sufficient dephasing, the CODEX signal will 

plateau and the final value is related to the total number of sites involved in the 

reorientation according to the following equation14:

mfM
ME )1( 

 (1)   
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where E∞ is the normalised signal intensity (ratio of the CODEX signal to the reference 

intensity where the mixing time was 0.1 ms, the minimum increment), M is the number of 

sites and fm is the fraction of mobile sites involved in the exchange.  The 31P master curve 

for choline DHP at ambient temperature is shown in Figure 9a.  The x axis is determined 

by the product of the span of the CSA () and the number of rotor periods of dephasing 

applied.  The span was determined from a simulation that reproduces as closely as 

possible a static 31P powder pattern of choline DHP.  The CSA parameters were η = 0.98 

 0.02 and  = 18.3  0.3 kHz.  These parameters are similar to those of benzimidazole 

methane phosphonate (Bi-mPA).10  The 31P CODEX signal for choline DHP attenuates to 

about 60% after 50 rotor periods of dephasing.  Within experimental error, this is 

indicative of a three-site reorientation of the phosphate around the C3v axis.  It is possible 

that not all of the phosphate sites (fm < 100%) are participating in the reorientation which 

could explain the plateau being slightly less than the expected 66.6%.14  This restricted 

three-site motion is consistent with the motion of the phosphate unit around the P-O bond 

that is tethered to the choline acceptor hydrogen bond.  The variable-temperature 

experiments confirmed that this hydrogen bond is the least mobile within the choline 

DHP structure.

The second part of the CODEX experiment is to measure the timescale of the 

reorientation of the phosphate units.  This is accomplished by varying the mixing time 

while holding the amount of dephasing constant at 80 rotor periods (where the CODEX 

signal is clearly fully attenuated).  Figure 9b shows the 31P CODEX exchange curve for 

choline DHP at ambient temperature, plotted as the normalised signal intensity versus 

mixing time.  The curve was fit to a single exponential using the following equation:
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))/exp(1( cmtAE  (2)      

where τc is the correlation time of the exchange process that causes the attenuation of the 

CODEX signal.  The inverse of the correlation time is the frequency at which the 

reorientation is occurring.  The correlation time determined at ambient temperature is 290 

± 10 ms.  Comparing this to correlation times for phosphate reorientation in Bi-mPA, the 

reorientation was almost three times faster for Bi-mPA (75 ± 6 ms),10 suggesting that the 

hydrogen-bonding arrangement in choline DHP is stronger.

13C CODEX: Study of Cation Dynamics

The ionic conductivity of choline DHP is an order of magnitude higher than 1-butyl-

3-methylimidazolium DHP.4  It was proposed that this difference could result from the 

hydroxyl group of the choline cation participating in the proton transport mechanism.4  

The 1D 1H variable-temperature studies suggest that one of the hydrogen bonds involving 

the choline hydroxyl group is mobile.  13C CODEX experiments are used to quantify the 

contribution of the choline cations, both the carbon chain and the hydroxyl group, to the 

conductivity.  The variable-temperature data show that the aliphatic protons only narrow 

slightly with increasing temperature.  They are also not eliminated from the DQF spectra, 

even at high temperature, suggesting they are not highly mobile species.  Finally, there 

was no coalescence with the hydrogen-bonded resonances, indicating that the protons are 

not quickly being passed from the phosphate units to the aliphatic protons (not faster than 

the separation between them in Hz, or ~200 µs).  The 13C CP MAS NMR spectrum at 

ambient temperature is shown in Figure 10.  The three resonances are labelled A, B and 

C correspond to the methyl groups attached to the quaternary ammonium group, the 
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carbon attached to the ammonium and the C-O carbon, respectively.  Resonance A is 

completely absent and can only be observed for short constant times (mixing time + Z 

filter = 100 msec).  Figure 11 shows the 13C CODEX exchange curves for resonance B 

and C of choline DHP at ambient temperature. To determine a correlation time, the 

amount of dephasing was set to three rotor periods.  Unfortunately, further dephasing of 

the signal resulted in poor quality spectra, limiting the ability to determine the number of 

sites involved in the exchange. Resonance C is not observed at constant times longer than 

3 sec.

The correlation time determined at ambient temperature for resonance B and C is 1.6 

 0.4 sec.  This timescale is slower than that of the phosphate anion reorientation, but it 

does indicate that the choline molecule may indeed play a part in the structural diffusion 

of the protons. 

Mechanism of Proton Transport:

The proximity of the hydrogen-bonded protons is important for allowing a hopping 

mechanism for proton transport.  The reorientation of the phosphate group is key for the 

structural diffusion of protons in choline DHP.  This occurs by a three-site rotation that 

passes protons from phosphate unit to phosphate unit and, unique to this system, through 

the hydroxyl groups of the choline cation. We should note that previous studies of ion 

transport in plastic crystal materials have suggested that vacancy defects may also play an 

important role in the conduction mechanism.20-23  Indeed as temperature increases and the 

number of defects also increases, the contribution of vacancy defects to ion transport may 

become more significant.  For choline DHP, increases in temperature through the various 
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solid-solid phase transitions would likely lead to increased rotational freedom for the 

anion as well as the possibility of anion/cation defects which both facilitate conduction.  

From the NMR data presented here, the proton transport mechanism certainly favours the 

‘paddle wheel’ mechanism of proton conduction, similar to the processes described for 

high temperature inorganic plastic crystals such as Li2SO4 and Na3PO4.24,25

Only one of the hydrogen bonds to the hydroxyl group appears to be involved in fast 

long-range motion which suggests a complicated transport pathway.  Rather than motion 

straight down the a axis, the protons can move along one of two possible pathways: along 

the b axis from phosphate dimer to dimer or along the a axis in a zig-zag pathway down 

the column from phosphate to hydroxyl.  The 31P and 13C CODEX data indicates that the 

former mechanism is the most energetically efficient and dominant pathway for proton 

diffusion.  The latter mechanism involves motion from the phosphate-choline donor site 

to an adjacent phosphate-choline donor site along the b axis, thereby not involving the 

phosphate-choline acceptor hydrogen bond.  This mechanism of proton transport is 

illustrated schematically in Figure 12.  Figure 12a shows a representation of the static 

crystal structure16 where the green triangular planes represent the C3v axes of rotation of 

the phosphate anions.  The protons in red (proton A) represent the phosphate-choline 

acceptor hydrogen bonds that are not involved significantly in proton transport at ambient 

temperature.  For proton motion to occur, protons B, B’ and D (green) move to the 

nearest oxygen atoms (Figure 12b).  Subsequently, the phosphate anions rotate in a 

cogwheel fashion to provide free oxygen sites.  In Figure 12c, the proton of the 

phosphate-choline donor hydrogen bond (proton D’) has moved to the oxygen atom of 

the adjacent choline unit.  Finally, proton C transfers to the closest free oxygen atom, the 
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hydroxide of the choline cation (Figure 12d).  Figure 12a and 12d are identical, but the 

different labels (A-D) of the protons allow us to follow the possible pathway of the 

proton migration. 

As detailed in Figure 12, the phosphate-choline acceptor hydrogen-bonded proton is 

not involved in the most favourable pathways.  However, resonance F does shift towards 

lower frequency with temperature, which indicates that the phosphate-choline acceptor 

hydrogen bond is weakening and becoming more dynamic.  It possibly plays a minor role 

in proton transport straight down the a axis which could become more significant at even 

higher temperatures.  

Experimental Details

S y n t h e s i s  o f  C h o l i n e  D H P .  (2-Hydroxy-ethyl)-trimethyl-ammonium 

dihydrogenphosphate [Choline][DHP, (50 g) was synthesised by slow addition of an 

aqueous solution (85%) of phosphoric acid (26.68 g) to 45 % methanoic choline 

hydroxide solution (68.98 g) in an ice bath whilst stirring for 2 hours at room 

temperature. The filtrate was evaporated to obtain a pure white solid in 98 % yield. The 

resultant white solid was recrystallised from ethanol at 273 K.   This material is prone to 

water uptake and hence the samples were stored in a nitrogen filled dry box after drying. 

Solid-State NMR.  1H MAS NMR spectra were acquired at a Larmor frequency of 500.1 

MHz using a Bruker AV-500 (11.7 T) spectrometer.  The variable-temperature studies 

were performed on a triple-resonance probe supporting rotors of 2.5 mm outer diameter 

with a spinning frequency of 30 kHz.  The spectra are referenced to adamantane (1.63 
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ppm).  The 1H spectra were acquired using a 90° pulse length of 2.5 μs and a recycle 

delay of 5 sec.  The temperature was calibrated using Sm2Sn2O7 as a shift thermometer.26  

1H DQ MAS NMR experiments were performed with one cycle of the back-to-back

(BaBa) recoupling sequence.  The t1 increments were set equal to one rotor period.  The 

1D 1H MAS NMR experiments were collected with 64 transients.  The 2D 1H-1H DQ 

MAS NMR and 2D EXSY spectra were obtained with 8 transients and 512 slices in the 

indirect dimension.   Phase-sensitive detection in t1 was achieved through States-TPPI.

The 1H-31P HETCOR experiment was conducted at 11.7 T using a triple-resonance 

probe supporting rotors of 2.5 mm outer diameter.  The spectra are referenced to 

NH4H2PO4 (0.9 ppm).  A 90° pulse length of 2.5 μs was used with 64 transients and 256 

slices in the indirect dimension.

The 31P and 13C CODEX data were acquired at 11.7 T using a triple-resonance Bruker 

probe supporting rotors of 4 mm outer diameter.  The CODEX experiments were 

conducted using a 1 ms contact time for cross-polarisation from 1H to both 31P and 13C 

and 5 μs 180° 31P and 13C pulses.  The MAS frequency used was 10 kHz, which 

translates to 0.1 ms as the lowest increment for the mixing time, τmix.  All other data 

points use a mixing time that is an integer of 0.1 ms intervals.  The reference spectrum 

was acquired using 0.1 ms for the mixing time and 3 s for the Z-filter, while the 

completely attenuated spectra were obtained using 3 s for the mixing time and 0.1 ms for 

the Z filter.  For the 13C CODEX data, at least 1024 transients had to be acquired to 

achieve sufficient signal-to-noise.
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Conclusion

An advanced multinuclear (1H, 13C and 31P) NMR approach that probes both the structure 

and the dynamics of the proton conducting solid phase of choline dihydrogen phosphate 

has revealed (i) details of its hydrogen-bonded network, and (ii) the dominant proton 

transport mechanism.  From DQF spectra it is clear that the nature of the structure here 

consists of two hydrogen-bonded phosphate anions together with the hydroxyl group 

from the choline cation, as well as hydrogen-bonded choline groups.  This confirms 

definitively the suggested proton positions from the crystallographic structure.  NMR 

independently probes the cation and anion dynamics in the range 307 to 330 K, leading to 

an understanding of the mechanism of proton transport.  This data suggests that the 

preferred proton pathway is between phosphate dimers along the crystallographic b axis 

via a mechanism including rotation of the phosphate tetrahedra.
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Table 1: Summary of selected bond distances for the three hydrogen bonds in choline 
DHP (phosphate-choline acceptor, phosphate-phosphate and phosphate-choline donor are 
H3O, H4O and H5O respectively).  The bond numbering corresponds to Figure 2.

Bond Type Bond Distance (Å)
O3-H3O 0.79

O3-H3O-O5 1.79
O4-H4O 0.93

O4-H4O-O2 1.60
O5-H5O 0.94

O5-H5O-O1 1.63
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Figure 1: 1H MAS NMR spectrum of choline DHP at 30 kHz and ambient temperature.  

The insert represents the three different aliphatic protons (A-C).
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Figure 2: The molecular packing arrangement of choline DHP.  The phosphorus atoms 

are represented in green, the oxygens in red, the nitrogens in dark blue, the carbons in 

gray and the protons in light blue.  The dashed lines represent the intermolecular O-H…O 

hydrogen bonds.  The oxygen atom labels are consistent with the crystallographic 

information from ref. 16. 
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Figure 3: 1H MAS NMR of choline DHP at 30 kHz and ambient temperature under 

different drying times: (a) wet; (b) dried overnight at 80 C under vacuum.  Note that the 

very weak resonance at ~1 ppm is an artifact that remains unassigned; (c) dried for three 

days at 80 C under vacuum.
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Figure 4: 2D 1H-31P HETCOR spectrum of dried choline DHP acquired at 30 kHz and 

ambient temperature, using a cross polarization contact time of 1 ms.
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Figure 5: (a) 1H MAS and (b)-(c) DQF spectra of dried choline DHP acquired at 30 kHz 

and ambient temperature.  The number of rotor periods of recoupling used is indicated.
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Figure 6: 1H DQ correlation MAS NMR of choline DHP at 30 kHz and ambient 

temperature with one rotor period of recoupling.  The protons are labeled A (aliphatic 

protons A-C) and E and F are the hydrogen-bonded resonances.  The red lines indicate 

the cross peaks.
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Figure 7: 1H variable-temperature MAS NMR spectra acquired at 30 kHz.  (a) 1H MAS 

and (b) DQF using the BaBa pulse sequence and one rotor period of recoupling.
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Figure 8: 1H 2D EXSY spectrum of choline DHP at 30 kHz and ambient temperature, 

with a mixing time of 5 ms.
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Figure 9: (a) The master curve for choline DHP at ambient temperature showing a

plateau at approximately 60%, corresponding to a three-site reorientation. The dashed 

line represents the theoretical plateau of a master curve for a three-site jump; (b) 31P 

CODEX exchange curve for choline DHP.  The single exponential fit gave a time 

constant of 290  10 ms.
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Figure 10: 13C CP MAS NMR spectrum of choline DHP at 10 kHz and ambient 

temperature.  The contact time was 1 ms.
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Figure 11: 13C CODEX exchange curve for choline DHP at ambient temperature.  The 

single exponential fits for both carbon B (filled squares) and carbon C (open circles) gave 

time constants of 1.6  0.4 sec.
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Figure 12: The mechanism of proton transport for choline DHP.  The green triangular 

planes are the C3v axes of rotation and the oxygen atoms, mobile protons and immobile 

protons (phosphate-choline acceptor hydrogen bond) are represented in blue, green and 

red respectively.  The black arrows represent the three-fold rotation of the phosphate 

groups.  The details of the mechanism are described in the text. 
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Graphical contents entry

A combination of solid state NMR techniques reveal the details of 

the proton conduction mechanism via phosphate group rotation in 

the organic ionic conductor choline dihydrogen phosphate.


