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Abstract

This thesis focuses on the algorithm configuration problem. In particular, three efficient

learning configurators are introduced to tune parameters offline. The first looks into meta-

optimization, where the algorithm is expected to solve similar problem instances within

varying computational budgets. Standard meta-optimization techniques have to be repeated

whenever the available computational budget changes, as the parameters that work well for

small budgets, may not be suitable for larger ones. The proposed Flexible Budget method

can, in a single run, identify the best parameter setting for all possible computational

budgets less than a specified maximum, without compromising solution quality. Hence, a lot

of time is saved. This will be shown experimentally. The second regards Racing algorithms

which often do not fully utilize the available computational budget to find the best parameter

setting, as they may terminate whenever a single parameter remains in the race. The

proposed Racing with reset can overcome this issue, and at the same time adapt Racing’s

hyper-parameter α online. Experiments will show that such adaptation enables the algorithm

to achieve significantly lower failure rates, compared to any fixed α set by the user. The

third extends on Racing with reset by allowing it to utilize all the information gathered

previously when it adapts α, it also permits Racing algorithms in general to intelligently

allocate the budget in each iteration, as opposed to equally allocating it. All developed

Racing algorithms are compared to two budget allocators from the Simulation Optimization

literature, OCBA and CBA, and to equal allocation to demonstrate under which conditions

each performs best in terms of minimizing the probability of incorrect selection.
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CHAPTER 1 Introduction

1.1. Motivation and problem statement

This thesis focuses on the algorithm configuration problem. Many search

algorithms, and metaheuristics in particular, have several parameters that affect their

performance in terms of solution quality and running time. Population size in Evolutionary

Algorithms (EA), tabu list length in Tabu Search (TS), and evaporation rate in Ant Colony

Optimization (ACO) are examples of numerical parameters, while parent and survival

selection types in EAs are examples of categorical parameters. Incorrectly setting these

parameters can, in extreme cases, cause the algorithm to behave greedily, converging early

to a local optimum. Or, it may behave similar to a random walk, where it does not converge

to any solution in the allowed time limit. In either case, computational effort is wasted on

poor quality solutions (De Jong, 2007). Ideally, the algorithm should explore as much as

possible before converging to high quality solution(s). See Figure 1.1.

Figure 1.1. Effect of different parameter settings on an algorithm’s performance applied to a
minimization problem.
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Informally, the algorithm configuration problem is defined as: finding parameter

values which enable the algorithm to reach its best possible performance within the available

computational budget. Specifying what is “best” depends on the application, it could be, for

instance, the solution quality obtained within a time limit (or computational budget), the

running time needed to reach a target solution quality, or the percentage of how often a

stochastic algorithm reaches a target solution quality under a budget constraint.

Hutter (2009, pp. 9-12) formally defines the problem as a 6-tuple ,߆,޿〉 Π,ߢ௠ ௔௫,ߧ, 〉߬

where: Α is a stochastic algorithm, Θ is the parameter space which includes the solution to

the algorithm configuration problem, Π is the set of problem instances, often generated from

a distribution D, κmax is the maximum cap time an algorithm is allowed to run, ο is the

observed performance of the algorithm, and τ is a statistical measure (e.g. mean or median)

of the observed performance that is to be optimized.

1.2. Solution approaches

Setting the parameters of an algorithm is not trivial. There are many challenges that

require innovative methods to address them. This section first presents the major challenges,

and then moves to a broad description of the solution approaches.

First, an algorithm can have categorical and/or numerical parameters (continuous

and/or discrete), some of which can be conditional (i.e. they exist only if others do). For

example, crossover rate and tournament size are only relevant for an EA if a crossover

operator and a tournament selection are used, respectively. The parameter space is made up

of all possible combinations of parameter values, and its landscape (defined later) is likely to

be discontinuous and highly multi-modal, such that exhaustive search may not be feasible

(Eiben and Smit, 2011).

Second, evaluating a parameter’s quality, utility hereafter, on stochastic algorithms

may require several replications, which raises the question of how many replications are

needed to properly distinguish between the competing parameters. Moreover, utility values
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depend on the budget available for assessment. A greedy parameter setting can seem

superior under a small budget compared to an explorative one. The situation may be

reversed if more time is allowed for the latter, see Figure 1.2. This presents the challenge of

specifying the budget needed to evaluate a parameter setting.

Figure 1.2. Different parameter settings are suitable for different budgets.
For a minimization problem, a greedy parameter is suitable for small budgets, but not larger ones.

Third, parameter settings which work well on one problem domain, routing for

example, may not work for another, like cutting stock. The same issue extends across

instances of the same domain if they differ greatly, or even within the same instance

depending on its landscape. A problem domain encloses all instances (realizations of the

problem) that share common similarities. Measuring similarities depends on the problem

itself. For example, in a vehicle routing problem the number of nodes, their distribution

(scattered, clustered, or random), and the number of vehicles can be used to distinguish

between various instances. Smith-Miles and Lopes (2011) present several measures to

characterize many real-world optimization problems, and assess their difficulty.

If the problem is to be solved only once, it is desirable to find a parameter setting

which works best for that specific problem. Conversely, if similar problems, or instances, are

to be solved repeatedly, a parameter setting which performs well overall might be preferred.

Eiben and Smit (2011) refer to the earlier as a specialist, and the latter as a generalist. They
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also point out that finding a good generalist is by itself a multi-objective optimization

problem, with each problem, or instance, being one objective.

Solving the algorithm configuration problem requires another algorithm, working at

a higher level, and capable of searching the parameter space. EAs are an example. To

distinguish between both, the higher level algorithm will be referred to as the configurator

and the lower level algorithm as the target algorithm, see Figure 1.3 .The solutions of the

configurator are parameter settings suitable for the target algorithm. Some configurators

generate/modify parameter settings (e.g. through evolution as in EAs), while others only

select the best out of a given set. Note that the configurator is likely to be stochastic as well,

indicating that it, too, may require multiple replications.

Figure 1.3. Configuring parameters with a higher level algorithm.
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The stopping condition for a parameter determines the frequency of feedback to the

configurator. One extreme is to report the performance only after the target algorithm

terminates, in which case multiple assessments require multiple complete runs of the target

algorithm on different instances of the optimization problem. The other extreme is to report

performance after one or more applications of a parameter (an operator) before the target

algorithm terminates, in which case the configurator gets feedback while the optimization

problem is being solved.

The former case will be referred to as offline tuning as parameter settings are learnt

after the problem is solved across many instances, and remain fixed. It is suitable for finding

a generalist based on a training set of instances that is assumed to be large enough and

representative, such that the best parameter setting found during training will also perform

best on other, unseen, test instances. The latter case will be referred to as online control as

parameter settings are learnt, and hence change, while solving the problem. It is suitable for

finding a specialist.

Using online or offline rests on the application; does the problem require a specialist

or a generalist? It remains unclear, however, if a generalist can perform just as well as a

specialist, or if there is much to gain from online control over offline tuning. This issue will

be further addressed in Chapter 2, where a comprehensive overview of the state-of-the-art

configurators is presented, alongside a unique classification.

Finally, the term Hyper-heuristics was introduced just over a decade ago to refer to

high-level methods specializing in generating or selecting lower-level heuristics, or heuristic

components. The heuristics can be simple crossover or local search operators for example.

They can also be parameter settings for algorithms. Hyper-heuristics have little or no

problem domain knowledge, only information about the heuristics themselves; thus, hyper-

heuristics should be able to find solutions for a wide range of problem instances (Cowling et

al., 2001). Constructive hyper-heuristics combine heuristic components to produce a new
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heuristic that is potentially able to solve a number of problem instances. Selective hyper-

heuristics, however, select and apply a heuristic to the current solution in order to improve it.

Comprehensive surveys on the topic are found in Burke et al. (2013) and in Chakhlevitch

and Cowling (2008).

Almost any configurator can be viewed as a hyper-heuristic. In this work, though,

the terms configurator, parameter setting/operator, and target algorithm will be used to

describe a framework for the algorithm configuration problem.

1.3. Contributions

The contributions are methodological. In specific, new efficient configurators are

introduced to tune algorithm parameters. This Section briefly describes each contribution,

the motivation behind it, and a summary of its experimental assessment results.

1.3.1. Meta-Optimization with a Flexible Budget

The first contribution concerns offline tuning, where the configurator modifies its

solutions to reach better ones. Such configurators are also known as meta-optimization

methods. Meta-optimizers are computationally intensive as evaluating a single parameter

setting requires a complete run of the target algorithm on the optimization problem. Also,

several replications, for both levels, may be required for stochastic algorithms. Matters

become worse if the computational budget for the target algorithm varies, because this will

require a re-run of the whole meta-optimizer for each potential new budget. Figure 1.4

displays the performance of an algorithm, applied to a minimization problem, under three

different parameter settings. It is clear that the best parameter setting depends on the length

of the lower level run.



Chapter 1 Introduction

7

Figure 1.4. The performance of an algorithm, applied to a minimization problem, under three different
parameter settings, each is suitable for a different computational budget.

This work proposes a new meta-optimizer capable of finding the best parameter

settings for any computational budget less than a specified maximum in a single run, thus

saving a lot of time. The algorithm is called Meta-Optimization with a Flexible Budget, or

Flexible Budget for short. It makes use of the entire convergence curve of a parameter

setting to calculate a rank-based utility.

It will be shown later that, for the experiments conducted here, the Flexible Budget

method always finds the best parameter settings for any computational budget less than a

specified maximum, while saving about 60%-70% of the computational effort required by

the repeated application of the Fixed Budget method, without compromising solution

quality. However, some experiments with a small budget using the quad function (defined

later), showed minor solution quality degradation. Further details are in Chapter 4. Initial

results of this method were presented in Branke and Elomari (2012).

A real-world application of the Flexible Budget is found in shipping. For next-day

parcel deliveries, the daily work load varies, which, in turn, affects the time needed to

prepare the parcels (e.g. inspection, weighing, sorting.). Such variability disturbs the running

time available to a routing algorithm dispatching vehicles on the next day. Obviously, with

only one to two hours at hand, the algorithm may perform better with a greedy parameter

setting, while for longer running times, more explorative parameters are desired.
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1.3.2. Racing with a self-adaptive significance level

The second contribution also falls under offline tuning where the configurator

selects the best out of a set of parameter settings. There are a number of algorithms that

specialize in efficiently allocating a computational budget (e.g. a training set) among several

competing systems, the characteristics of which are unknown beforehand, such that the true

best is selected when the budget is consumed. These algorithms guarantee a correct selection

in the limit (i.e. if the budget is infinite), and converge to it at varying rates.

The term “system” is originally used in the Simulation Optimization literature to

refer to the performance of a simulated system (e.g. a production plant), which is usually

modeled with a probability distribution. Here, the term will be used to speak of the

performance of an algorithm, or a parameter setting over various problem instances.

Racing is one such algorithm. It works by discarding inferior systems, or parameter

settings, as soon as there is enough statistical evidence that they are significantly worse than

the current best. In every iteration, the surviving systems are sampled once and the tests are

run again. This continues until one system remains, or if the entire budget is consumed, in

which case the system with the best performance measure is chosen as the winner. The

algorithm’s performance (e.g. the probability of selecting the best) is affected by the

significance level α set by the user. A very high α results in less conservative tests and

increases the probability of discarding the true best as the systems are dropped off more

quickly. A very low α means more conservative tests, where the systems are hardly

discarded and the algorithm samples all systems almost equally.

Note that Racing may terminate before the entire budget is consumed. In situations

where there is a fixed budget constraint, such that there is no advantage of terminating the

algorithm beforehand, a new Racing algorithm, Racing with reset, is introduced. Its basic

idea is as follows: whenever a winner is identified and the budget is not entirely consumed,

Racing with reset rolls back to the iteration where the first dropout occurred, lowers the
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significance level, and runs the tests on all systems. Consequently, if the best system was

incorrectly discarded before, it now has another chance to survive in the race. The process is

repeated as many times as needed until the budget is consumed. Racing with reset is thus

able to consume any given budget and at the same time automatically adapt α.

It will be shown later that Racing with reset, at a relatively high α (say 0.3), always

reaches a lower probability of incorrect selection (defined later), than its standard version

with the best fixed α set by the user. Moreover, if the variances of the parameter settings’

performance distribution are quite close, or they are highly correlated, its probability of

incorrect selection converges to zero faster than one of the best budget allocators from the

Simulation Optimization literature, namely the Optimal Computing Budget Allocation

(OCBA) algorithm, which addresses a problem similar to the focus of this thesis. See Chen

and Lee (2010). There are, of course, situations where Racing with reset is inferior (e.g. if

the variances are exponentially increasing), such situations will be detailed in Chapter 5.

Initial results of Racing with reset were presented in Branke and Elomari (2013).

1.3.3. One-way Racing with an intelligent budget allocation

All Racing algorithms currently used in the literature rely on a two-way Analysis of

Variance (ANOVA) test, so as to account for the effect of the parameter setting (first factor),

the effect of the problem instance (second factor), and their interaction. This, in turn, dictates

having an equal number of samples for each of the competing systems whenever the tests are

run, More importantly, every time a system is discarded, the remaining systems must all be

sampled the same number of times (once is the default). This has two disadvantages, first, it

does not allow for a more intelligent way of allocating the budget in each iteration. Second,

it does not allow Racing with reset to use all previously collected data if the algorithm

terminates before the budget is consumed.

A new Racing with reset algorithm is introduced here, which implements a one-way

statistical test, the Kruskal-Wallis test (Kruskal and Wallis, 1952). The algorithm will be
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called KW-RaceR and can handle unequal sample sizes. To better allocate the budget in

every iteration, instead of sampling all surviving systems equally, OCBA is run to determine

the distribution of that iteration’s budget, utilizing all previous knowledge. This combination

allows for a different exploration vs. exploitation balance, compared to that obtained with

equal allocation (the default). It will be shown that such a combination causes KW-RaceR to

perform very similarly to OCBA.

1.4. Organization of the thesis

This thesis consists of six main chapters. Every chapter begins with an introduction

section stating its objectives and expectations, and finishes with a conclusion section

summarizing the main issues and findings. It is possible to grasp the main ideas of this thesis

just by reading these two sections of each chapter.

The most relevant work to the developed methods are reviewed in Chapter 2, with

the main objectives of positioning the before mentioned contributions within the literature,

and highlighting some areas that received little or no attention, and are believed to represent

future research topics. The theory and methodology of each contribution are detailed in

Chapter 3. Chapter 4 empirically validates the first contribution by comparing it to the

current methods in the literature and over a variety of scenarios. Chapter 5 does the same for

the second and third contributions. Finally, Chapter 6 summarizes what was presented and

proposes future research topics and extensions to this work.
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CHAPTER 2 Literature Review

2.1 Introduction

The algorithm configuration problem has been recently advanced by different

research communities, and now there exists a wealth of literature describing various solution

approaches. Many of these approaches can be seen as extensions, or variations, of a few

ideas, and can hence be grouped under a common umbrella. This chapter identifies two such

key ideas, online control and offline tuning. It then organizes the current literature

accordingly, along with a constructive critique when possible. This classification will assist

in understanding how the current state-of-the-art methods have developed, and it helps

position the work presented in this thesis.

The chapter is organized as follows: Section 2.2 describes the basis for the

classification and the applications of each class. Section 2.3 reviews the literature on online

control. Section 2.4 reviews the literature on offline tuning. Section 2.5 presents a few

experimental studies comparing both classes. Section 2.6 points to some research areas

which received little, or no, attention so far. Finally, Section 2.7 concludes this chapter.

2.2 Classification

Broadly speaking, algorithm configurators can be seen as online controllers, or

offline tuners. The difference being whether parameters change while the target algorithm is

solving the optimization problem, according to feedback from the search, or they remain

fixed. In both cases these parameter settings have to be learnt; online methods do it on-the-

fly, which makes them more likely to find specialized parameter settings for specific

instances, while offline methods make use of a training set of problem instances, which
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makes them more likely to find generalized parameter settings suitable for instances similar

to the training set.

Eiben et al. (1999) distinguished between three types of online control:

deterministic, self-adaptive, and adaptive. Deterministic methods first learn a schedule of

parameter-changes based on a training set, and then apply these changes while the target

algorithm is running; hence, there is no feedback from the specific instance being solved.

Still, they can be considered as online controllers as the parameters change. Self-adaptive

methods are best seen in an EA context, where the parameter settings are encoded with the

solutions and evolve to better values. Whitacre et al. (2006) pointed out that such methods

increase the size of the search space, making the problem even harder to solve. Finally,

adaptive methods use performance feedback gathered during the search to determine which

operator to apply next.

A different sub-division of online control is proposed in this thesis, that is: single

step look-ahead methods, where the operator which is best for the next immediate move is

preferred, or multi-step look-ahead methods, where the operator which is best n-steps ahead

is preferred. The latter assumes that while the immediate rewards of a chosen operator may

be less than those of the others, the gain expected n-steps ahead outweighs such smaller

losses.

Offline methods are sub-divided according to whether, or not, a model is built to

guide the search for the best parameter setting. The model represents a relationship between

the performance of an algorithm and a particular parameter setting. Model-free offline tuners

are further sub-grouped into meta-optimizers, or computational budget allocators that

efficiently distribute a training budget among the competing parameters. Figure 2.1 shows

the proposed categorization.
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The application determines whether to use online or offline. If one is

interested in solving a single instance, a dynamic instance, or instances that are quite

different from one another, then online control is expected to discover a specialist for

that particular instance, without the need for the expensive training overhead

required by offline tuning, which may not be feasible to begin with. On the other

hand, if one is interested in solving many, similar, instances, then it may be

meaningful to invest once in offline tuning and find a generalist that works well on

many instances. In addition, offline tuning has the advantage of synthesizing

algorithm components, or even entire algorithms through Genetic Programming or

Grammatical Evolution.

Online control Offline tuning

The algorithm configuration problem

Single step
look-ahead

Multi-step
look-ahead

Model-free Model based

Meta-optimization Budget allocators

Figure 2.1. The proposed categorization of algorithm configurators.
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2.3 Online control

2.3.1 Single step look-ahead

Adaptive Operator Selection (AOS) methods are composed of two stages: Credit

Assignment (CA) and Operator Selection (OS). AOS applies an operator, from a set of

operators, to the target algorithm, observes its effect, assigns a reward to that operator based

on its performance, and finally selects an operator for the next iteration. The underlying

assumption is that the credit assigned to an operator, up until the current iteration, is

indicative of its future performance. Different CA and OS methods are available, and any

combination can be used.

The most basic CA method is based on solution quality observed during the last

iteration. A slightly advanced version considers the average quality, or a weighted average,

over the last n iterations. Whitacre et al. (2006) were among the first to introduce the idea

that operators which produce rare, but large, improvements could be more beneficial than

those performing well on average. They setup an experiment to select the best out of ten EA

operators using five CA methods based on average performance, and two based on extreme

values. Results showed that the two extreme-value methods were significantly better than

the rest. However, they pointed out that if extreme improvements are very rare, it might be

better to focus on operators with steady improvements, especially towards the end of the run.

Extreme values were not always beneficial, for example Gong et al. (2010) applied

four CA methods to a Probability Matching Differential Evolution with Adaptive Strategy

Selection algorithm (PM-AdapSS-DE), they were: absolute reward, average normalized

reward, extreme absolute reward, and extreme normalized reward. PM-AdapSS-DE was

compared to a uniform selection DE and the Self-adaptive Differential Evolution algorithm

(SaDE) of Qin et al. (2009). PM-AdapSS-DE was able to outperform the others in terms of

solution quality and convergence speed when using average rewards instead of extreme

ones.
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An operator can be credited for more than one performance measure. Maturana and

Saubion (2008) combined quality variation, diversity variation, and application time in a

single normalized credit, averaged over the last ω iterations. Their method, Compass,

introduces its own hyper-parameters: the compass angle θ which determines how much

weight the user assigns to quality variation or diversity variation, and the window size ω.

Comparing Compass to Adaptive Pursuit (Thierens, 2005), APGAIN (Wong et al., 2003),

and random selection, the authors showed the superior performance of Compass for larger

population sizes. For smaller ones, however, Adaptive Pursuit was able to better control the

diversity and was eventually superior. Compass has been further extended to use extreme

values for ω (Maturana et al., 2009a, Fialho et al., 2008), and to dynamically adapt θ during

the search (Di Tollo et al., 2011).

As for OS, a basic approach, known as Probability Matching (PM), assigns to each

operator a selection probability equal to the operator’s credit divided by the sum of the

credits of all the operators. These probabilities are updated after each application of an

operator. To guarantee that no operator receives a 0 (respectively, 1) selection probability in

the long run, a minimum selection probability Pmin is usually enforced  Pmax = 1 – Pmin(k -

1), where k is the number of operators. Hence, all PM-based techniques have the additional

hyper-parameter Pmin that needs to be set or controlled.

PM techniques dominated the literature for some time, despite their limitation

(Thierens, 2005). When the number of operators is small and their credits are quite close,

PM will assign almost similar selection probabilities to all operators, making it hard to

capitalize on the best. This was first observed in Thierens (2005), where an alternative

method, Adaptive Pursuit (AP), was proposed. In AP, the best operator gets its selection

probability increased while all the others get their selection probabilities decreased, yet

remaining within the [Pmin, Pmax] interval. AP introduces the hyper-parameter β to control the

greediness of the algorithm. AP outperformed PM and random selection on a test set

simulated from a non-stationary process. It was unclear, though, if this performance scales
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with the number of operators. An extended AP, which pursues a set of operators, is in

Drugan and Thierens (2011).

A Self-adaptive Particle Swarm Optimization algorithm (SLPSO) was proposed in

Wang et al. (2011), where PM was used to select between four velocity update strategies:

Comprehensive Learning PSO (CL-PSO) which has exploration abilities, a modified version

of CL-PSO which has exploitation abilities (CL-PSO-pbest), Difference based Velocity

update strategy (DbV) for rotated optimization functions, and Estimation based Velocity

update strategy (EbV) for unimodal optimization functions. SLPSO performed significantly

better compared to 8 other PSO algorithms on 26 optimization functions with characteristics,

such as rotation, noise, ill-conditioning, and multi-modality. The authors did not force a Pmin

and they did not comment on how this might cause the search to “ignore” exploring all the

strategies.

Maturana et al. (2009b) added a new level, BLACKSMITH, to select and/or create

new operators for an EA. For credit assignment the authors used three performance metrics:

the Pareto Dominance (PD) which measures the number of operators dominated by another

operator, the Pareto Rank (PR) which measures the number of operators which dominate a

given operator, and Compass (discussed earlier). These CA methods were combined with

several OS methods, such as: random selection, PM, and Multi-Armed Bandit (explained

shortly) to select from a set of 307 operators for the Boolean satisfiability problem (SAT).

The authors found that PD-PM and PR-random offer the best combination of CA and OS in

terms of solution quality.

A challenge in online control is to determine when to stop applying an operator.

Ideally, one would like to stop when there is little chance of improving performance.

Techniques from Optimal Stopping and Multi Armed Bandit (MAB) can be used to address

this issue, see Hill (2011) and Gittins et al. (2011) for introductions on each respectively.
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Knowing when to stop does not say much about which operator to use next; nonetheless, it

has shown to improve performance of the target algorithm.

Bontempi (2011) attempted to determine the maximum number of function

evaluations allocated to a local search operator using the Odds Algorithm of Bruss (2000),

which returns a step value s such that if one stops at the first success encountered after s, the

probability that this is the last success is maximized. A success in this case is reaching a

local optimum. Compared to a fixed strategy (i.e. a fixed number of function evaluations

allocated to the local search operator), the Odds algorithm found better local optima.

A MAB consists of a number of arms K each having a stationary binary reward (0 or

1). After each arm is pulled the player gains an expected reward μk and, in a full information

game, is able to observe the expected rewards that could have been gained by pulling the

other arms; hence, a regret can be calculated as r = μk* - μk, where k* is the arm with the best

reward. A player’s goal is to minimize the regret (or maximize the reward) over a number of

n trials.

An optimal policy to the MAB problem was presented in Gittins (1979), which uses

a set of indices, known as Gittins Indices, that are calculated at each trial for each arm, and

the arm with the largest index is pulled. Further details about how to calculate these indices

can be found in Gittins et al. (2011). One condition under which this policy is optimal, is the

assumption of an infinite time horizon (i.e. an arm can be pulled indefinitely), which may

not apply for parameter configuration.

Many variants of the MAB problem have been studied, examples include: Dayanik

et al. (2008) where the arms are not always available and may break down (repair is possible

at a cost), dynamic reward distribution (Whittle, 1988, Weber and Gideon, 1990, Bertsimas

and Niño-Mora, 2000, Kleinberg et al., 2010), continuous arms (Bubeck et al., 2011), and

correlated arms (Rusmevichientong and Tsitsiklis, 2010). In the latter study, the authors

utilized the correlation to find a policy which scales better, in terms of regret, with the
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number of arms (possibly infinite), compared to other traditional policies that assume

independence.

A commonly used MAB algorithm is the Upper Confidence Bound (UCB1) (Auer et

al., 2002, Auer and Ortner, 2010), which selects at each time t, the arm with the highest

+௜,௧ݍ ඨ
2 log∑ ௝݊,௞

௄
௝ୀଵ
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, 2.1

where the first term is the average empirical reward of arm i up until time t, and ni,t is the

number of times an arm has been selected up to time t. The first term favors exploitation

while the second favors exploration.

Viewing the operators as arms of a MAB, Dacosta et al. (2008) introduced a new

OS method using the UCB1 algorithm. Realizing it cannot be used directly, because

operators have non-stationary reward distributions, and their rewards are not binary, the

authors used a distribution-change detection test, known as the Page-Hinkley test (Hinkley,

1971), such that when the test is triggered the quantities in 2.1 are reset to their initial values.

Meaning, the algorithm “forgets” all it has learnt previously, allowing it to adapt to the new

distribution. They also introduced a scaling factor C that is multiplied by the second term of

2.1 to normalize the different rewards assigned to the operators. This Dynamic MAB

(DMAB) outperformed PM, AP, and UCB1 (the static version) when tested on the same

dataset used in Thierens (2005).

Any combination of CA and OS can be used. A comprehensive comparison between

various combinations can be found in Fialho (2010), and Fialho et al. (2010), where the

authors also discuss the robustness of these methods against their hyper-parameters.
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2.3.2 Multi-step look-ahead

Single-step look-ahead methods can be seen as greedy approaches to the problem, as

an operator which seems inferior at the moment may lead to greater gains later on. Looking

two steps ahead (i.e. considering the reward of operator x if it is applied after another

operator y), Cowling et al. (2001) introduced a choice function that selects the next operator

based on a weighted average of past performance, time elapsed since last application, and

the pervious operator used. The first and third measures favor exploitation, while the second

favors exploration. This differs from the Compass algorithm in that it considers the sequence

in which operators were applied. The choice-function-based method performed significantly

better than random and greedy selection on the sales summit scheduling problem.

Generalizing the choice function idea, Burke et al. (2007) used a TS algorithm to

find the best sequence of operators constructing a solution for a timetabling problem. Their

algorithm starts with a set of operators, applied in sequence to construct a complete solution.

The set is then perturbed, checked against the tabu list, and evaluated based on solution

quality. The process continues for a pre-determined number of iterations. Compared to nine

other specialized algorithms, the authors showed that their algorithm never outperformed the

best, but its results were within range of the others. This work was extended in Qu and

Burke (2008) to include other algorithms at the upper level, namely: Iterated Local Search

(ILS), Variable Neighborhood Search (VNS), and Steepest Descent (SD). ILS and VNS

showed to be superior to the other methods when tested on the same data set.

Another multi-step look-ahead approach is Dynamic Programming (DP), in which a

non-myopic control policy can be learnt to account for the future effects of selecting an

operator. While this seems appealing, there are three difficulties: first, fully describing the

state space is not trivial, especially if it is continuous. Second, the action-reward relationship

maybe complex and could require approximation with a learning function. Third, the policy

itself has to be learnt from a training set, which makes this approach an online deterministic
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one and can restrict its applicability to similar test instances. Such difficulties have been

addressed by a few researchers, but generally speaking a DP-based approach has not yet

been fully developed, and the experimental studies conducted thus far indicate that learning

an optimal, or near optimal, policy is a hard task.

Nareyek (2004) proposed ten reinforcement learning strategies to update the weights

of a set of heuristics, from which selection is made probabilistically. Five were used in case

of solution quality improvement, and the remaining in case of a decline. Different

combinations of improving and non-improving strategies were tested on the Orc Quest

problem and a modified Logistic Domain problem1. The authors concluded that, generally, a

low update rate of weights is better in case of an improvement, whereas a high rate is better

in case of a decline.

In Battiti and Campigotto (2008), the authors modeled the algorithm configuration

problem as a Markov Decision Process, and used the Least Squares Policy Iteration (LSPI)

algorithm, adopted from Reinforcement Learning (RL), to learn a near optimal control

policy through a training set. The policy was used to learn how to change the prohibition

length parameter for the Reactive Tabu Search (RTS) algorithm of Battiti and Protasi (1997).

Comparing RTS with LSPI-RTS revealed that LSPI-RTS could not outperform its non-

adaptive counterpart; however, it was not significantly worse. Comparison to three other

SAT solvers showed superior performance of LSPI-RTS.

Extending the above work in Battiti and Campigotto (2011), the authors compared

three LSPI-based algorithms to their original versions using default, and tuned, parameter

settings. Tuning was carried out with ParamILS (Section 2.4.1.2 later) of Hutter et al.

(2009a). The algorithms were: Hamming Reactive Tabu Search (HRTS), Adaptive

WalkSAT, and Scaling and Probabilistic Smoothing (SAPS) together with its Reactive

version (R-SAPS). When testing against default parameter settings, the LSPI-based HRTS,

1 Detailed description of both problems can be found in Nareyek, A., 2001. Constraint-based agents: an architecture for
constraint-based modeling and local-search-based reasoning for planning and scheduling in open and dynamic worlds. 1st ed.
Berlin: Springer.
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SAPS, and R-SAPS showed superior performance on a set of benchmark random MAX-3-

SAT problems; however, the LSPI-based Adaptive WalkSAT performed worse. Repeating

the same comparison on other structured MAX-SAT industrial instances, the control policy

degraded the performance of SAPS and R-SAPS, while the other two algorithms performed

just as well or slightly better. When testing against tuned parameter settings, LSPI-based

SAPS was not significantly worse than SAPSoffline, and the LSPI-based HRTS was either

significantly worse than HRTSoffline or just as good. The authors contribute the inferior

performance of the LSPI-based methods to its inability to converge to a single policy during

training.

Mcclymont and Keedwell (2011) attempted to learn the best sequence of applying a

number of operators. Their method, Markov Chain Hyper-heuristic (MCHH), uses Markov

chains to model the transition probabilities between operators, and RL to update the

transition probabilities online based on the operators’ performance. MCHH was applied

within a (1+1)-Evolutionary Strategy (ES) to determine which variation operator to select

next. The authors compared a (1+1)-ES using MCHH to random selection and a prohibition-

based algorithm proposed by Burke et al. (2005). They found their algorithm to be superior

to random selection, and it performed just as well as the prohibition-based one. However, the

authors noted that while their method converges at a reasonable rate, higher population

diversity is still needed.

Gaspero and Urli (2012) created three RL-based heuristic selection policies: tabular

RL, where the possible actions and rewards are relatively few and can be read from a table;

Multi-layer Perceptron RL, where the actions and rewards are related through a function that

is approximated with Artificial Neural Networks; and Eligibility Traces RL, where each

action on the trajectory to a reward is assigned a share of that reward, not just based on the

last action. Each of the policies introduced its own hyper-parameter which the authors set

using the offline tuner F-Race (Section 2.4.1.2 later). However, all three policies performed
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rather poorly when tested on the Cross-domain Heuristic Search Challenge2 (CHeSC) test-

bed, see Burke et al. (2011), due to the limited number of training instances available to

learn the policies.

A slightly different approach to determine which operator(s) to apply for the next n-

steps is landscape analysis, which seeks to characterize the topology surrounding the current

solution. Proper characterization of the landscape can offer guidance to whether the

algorithm should diversify or intensify its search, and select its operators accordingly.

Introductions to the topic can be found in Merz and Freisleben (2000), Kallel et al. (2001),

and Battiti et al. (2009).

Ideally, the algorithm should use problem independent measures to characterize the

landscape. One such measure is ruggedness, first introduced by Weinberger (1990), which

calculates the autocorrelation of a time series of fitness values generated by a random walk

algorithm. A related measure is the correlation length, which estimates the largest distance,

or time lag, between two points at which the value of one point can still provide information

about the expected value of the other one (Hordijk, 1996). Put differently, it estimates the

largest time lag t for which one can still expect some correlation between two points, t steps

apart.

Another common measure is the fitness distance correlation, first introduced by

Jones (1995), which measures the extent to which solution quality values are correlated with

the distance to the global optimum. Additional measures include: the number of global and

local optima, the distribution (uniform or random) of the global and local optima, and the

structure of the basins of attraction (Weinberger, 1991). These measures have also been

extended to multi-objective optimization applications, see Deb (1999), and Knowles and

Corne (2002).

2 http://www.asap.cs.nott.ac.uk/external/chesc2011/
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Problem specific measures have also been created. Smith-Miles and Lopes (2011)

review such measures for assignment, routing, knap-sack, bin packing, graph coloring, and

timetabling problems. Unfortunately, real optimization problems are highly dimensional and

are very complex to analyze or measure. This limits landscape analysis to simple and

artificial landscapes such as the N-k landscape (Kauffman and Levin, 1987). Early attempts

to measure the relationship between solutions within an N-k landscape (using the auto-

correlation function and the auto-correlation length) can be found in Weinberger (1990), and

Hordijk (1996). Recently, ideas based on complex network analysis, which not only relates

solutions within the same landscape, but also relates different landscapes to each other, can

be found in Ochoa et al. (2008) Tomassini et al. (2008), and Ochoa et al. (2011).

2.4 Offline tuning

2.4.1 Model-free methods

2.4.1.1 Meta-optimization

Model-free tuners can work by introducing a higher (meta-) level search algorithm,

operating on the parameters’ search space. The meta-level is another optimization algorithm,

where a single solution (parameter setting) is evaluated by running the lower-level algorithm

on the optimization problem, until a stopping condition is met. Performance is then fed back

to the meta-level to improve the current solutions. See Figure 2.2.

Early attempts to meta-optimization can be traced back to Mercer and Sampson

(1977), who used a Genetic Algorithm (GA) to find best mutation and crossover rates for

another lower-level GA. However, due to the computational limitations at that time, their

experiments were small in scale and constituted of a single run of the lower-level. The same

approach was conducted in Grefenstette (1986), but on a slightly larger scale (20 generations

at the meta-level and 2000 function evaluations at the lower-level). Selection at the meta-

level was based on average solution quality obtained from the lower-level.
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Later, Shahookar and Mazumder (1990) used a meta-GA to find best values for

mutation, crossover, and inversion rates required for a lower-level GA solving the Standard-

cell Placement Problem. They compared the tuned GA to the TimberWolf placement

software package (Sechen and Sangiovanni-Vincentelli, 1985), and showed that the tuned

GA was able to reduce the number of evaluated configurations. A similar approach to tuning

ACO parameters using a meta-GA can be found in Botee and Bonabeau (1998) and in White

et al. (1998), where the authors compared the tuned ACO to another using the default

parameters published in the literature, on a set of Traveling Salesman Problem (TSP)

instances, and a set of path finding instances. Results favored the tuned ACO in terms of

convergence speed in both studies.

Meta-optimization methods performed well on dynamic problems as well. Stanhope

and Daida (1998) used a meta-GA to find optimal crossover and mutation rates for a lower-

level GA, solving a simple dynamic fitness function changing at pre-determined rates, which

the authors created. Their experiments showed that as the change in the fitness function

increases, the meta-GA converges to higher mutation rates and lower crossover rates, and
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Figure 2.2. Meta-optimization framework.
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vice-versa. This supports the general notion that for highly dynamic problems, utilizing

information learnt from the past is not the best policy.

A slightly different application can be seen in Cortez et al. (2001), where the authors

used a meta-GA to determine the best coefficients of a lower-level Autoregressive Moving

Average (ARMA) model. The Root Mean Squared Error was used as a performance measure

of the ARMA model. They compared the tuned ARMA model to Exponential Smoothing,

tuned using grid search, and an un-tuned Autoregressive Integrated Moving Average

(ARIMA) model. Tests on a number of forecasting instances with different characteristics

(seasonal and trended, seasonal, trended, and non-linear) showed that Exponential

Smoothing performed best on seasonal instances. However, the tuned ARMA performed

best on non-linear instances especially when trend components are present.

Stephenson et al. (2003) used a meta-EA to combine/create new compiler heuristics,

from a set of available heuristics. The idea was to evolve a general purpose heuristic

applicable to a wide range of problems. They tested their method on three case studies from

computer architecture, and were able to at least match the performance of human-generated

heuristics, and in some cases achieved considerable speedups. Still, the authors noted two

drawbacks in the approach: first, over-training the meta-optimizer caused degradation in

performance on the test cases; even though they at least matched the human-generated ones.

Second, there is a limit to the diversity of test cases to which the general compiler heuristic

can be applied to.

Particle Swarm Optimization was used as a meta-optimizer in Meissner et al.

(2006). The authors introduced the concept of Optimized Particle Swarm Optimization

(OPSO), to optimize the free parameters of a PSO applied to neural network training. The

tuned PSO was compared to a standard PSO and the Constriction type PSO (Clerc and

Kennedy, 2002), both un-tuned, on a set of five artificial fitness functions. Results indicate
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that the tuned PSO outperformed the other methods in terms of solution quality and running

time.

Pedersen and Chipperfield (2008c) tuned the parameters of Differential Evolution

(DE) algorithms which optimize a number of Artificial Neural Networks (ANN) weights.

The meta-algorithm in their study was the Local Unimodal Sampling (LUS) (Pedersen and

Chipperfield, 2008a). Briefly, the method adds a random number to the current solution to

obtain a new solution. The random number is initially drawn from the search-range, which

decreases as the search progresses. Four DE variants were compared to a Back Propagation

(BP) algorithm, which is a gradient-based method as opposed to DE. The results were in

favor of BP, even though the differences in performance were minor. This could be

attributed to the small training set the authors used to tune the DE algorithms; one training

instance vs. four test instances. It is also possible that BP is simply superior for these kinds

of problems, as it is gradient-based.

Meta-optimization has been extended to evolve certain algorithm components (e.g.

pheromone update rules in ACO, or survival selection methods in EAs) using Genetic

Programming (GP) (Koza, 1992), or algorithms as a whole using Grammatical Evolution

(GE) (O'neill and Ryan, 2003).

With primitives like selection operators, variation operators, and replacement

methods, Oltean (2005) applied linear GP to evolve new EAs for various optimization

functions. They also evolved EAs for the TSP and the Quadratic Assignment Problem

(QAP). The evolved EAs were compared to standard GA and ES algorithms from the

literature, and performed just as well, or worse than, the standard algorithms over most

instances. Superior performance was observed on only few instances. Likewise, Ross (2002)

evolved three main algorithm classes for the TSP using GP, they were: hill climbing,

annealing, and genetic algorithms. A new crossover operator was discovered as well. The

evolved algorithms had different structures than their counterparts in the literature, and
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performed just as well, but not better. In both studies, the parameters of the evolved

algorithms were not tuned. Instead, the default values of the competing algorithms were

used, which may have degraded their performance.

Poli et al. (2005) evolved new position, velocity, and acceleration equations for PSO

using GP. The evolved equations outperformed the ones in the literature, in terms of distance

to the optimal solution, when tested on the Rastrigin and City Block Sphere functions.

Similarly, Runka (2009) created new probabilistic decision formulas for ACO, they were of

the type: roulette wheel, greedy, and tournament selection of size seven. None of them was

an exact match to the default formulas in the literature, although tournament selection was

the closest. Comparing the performance of ACO using the new formulas to that when using

the default, the average performance, in terms of closeness to the optimal solution, was

significantly better for the developed roulette wheel and greedy formulas, on two-thirds of

the test instances, and for the remaining one-third the performance was either the same or

worse. Tournament selection performed worse on all instances. It is worth noting that the

developed formulas were parameter-free as GP set those parameters as part of its evolution.

Tavares and Pereira (2011) used Strongly Typed Genetic Programming (STGP) to

evolve pheromone update strategies for ACO. The evolved strategies were competitive to

the default, human-designed, ones used in the Max-Min Ant System (MMAS) when tested

on the QAP. The authors also carried out a cross-problem validation for the evolved

strategies; in specific, pheromone update strategies evolved using a TSP training set were

tested on a QAP test set and vice-versa. Over most QAP instances, the strategies evolved for

the TSP were competitive to the MMAS strategy; yet, they were inferior to specifically

evolved strategies for the QAP. In the reverse experiment, strategies evolved for QAP

perform worse than the MMAS strategy when tested on the TSP. All evolved strategies used

un-tuned parameters.
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Tavares and Pereira (2012) extended their previous work by evolving complete

ACO algorithms using GE. The algorithm components were taken from human-designed

ACO algorithms. Two important results came out of this study: first, none of the evolved

algorithms exactly matched any of the currently used ACO variants. Nonetheless, three

algorithms were similar to Ant Colony System, one was similar to Rank-based Ants System,

and one was similar to Elitist Ants System. Second, the meta-algorithm did not converge to a

single ACO algorithm, but some components were selected more often than the others. This

is probably due to the small training set used (only three TSP instances). Upon testing, the

best evolved algorithms performed significantly better than the human-designed ones, with

one exception where the Rank-based Ants System performed best on a single instance. The

authors did point out that the language used for the meta-algorithm was restrictive, and

relaxing this restriction allows for more innovative algorithms, at the expense of

convergence speed.

It should be noted that evolving algorithm components, or entire algorithms,

depends largely on the function and terminal sets (in GP), or language (in GE), made

available to the meta-level algorithm. Having a general language which includes all possible

functions and terminals is not feasible; therefore, knowledge of the algorithm class which

needs to be developed, and its application, comes a long way in properly designing the meta-

level.

2.4.1.2 Computational budget allocators

Computational budget allocators take, as an input, a number of algorithms k, or the

same algorithm with different parameter settings, a problem instance generator I, and a

computational budget N. The objective is to allocate N among the 〈݈ܽ ℎ݉ݐݎ݅݋݃ , ݅݊ ݐܽݏ ݊ܿ݁ 〉

pairs, such that the best algorithm is correctly identified when the budget is consumed.

Running algorithm i on an instance j returns a utility Uij, and aggregating all the utility
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values gives one measure, which can be used to compare between the different algorithms

and select the best.

Each algorithm is first run on the same subset of problem instances n0 to obtain an

estimate of its performance. Then, the budget allocator determines how to distribute the

remaining budget, or a portion of it as allocation is usually made sequentially. For stochastic

algorithms, replicating an 〈݈ܽ ℎ݉ݐݎ݅݋݃ , ݅݊ ݐܽݏ ݊ܿ݁ 〉 pair may be necessary; however, Birattari

(2005) showed that performing a single on each instance (hence testing on more instances

under the same budget) produces a smaller variance of the aggregated measure compared to

replicating. While the allocation itself happens online, the algorithm solving the problem

instance does not adapt itself during the search, this is why these methods are classified as

offline tuners. See Figure 2.3.

Problem instance or
sample number

Parameter settings or systems
1 2 3 4 5

1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 2 3 2 3 5
7 2 3 3 5
8 2 3 4 5
9 2 4 4 5
10 4 4 5
… … … …
m

Figure 2.3. An example of allocating a budget between five parameter settings with n0 = 5. The
numbers indicate the iteration in which the runs were made. For instance, parameter settings 1 and 3

were run in the second iteration with parameter setting 1 being tested on instances 6-9, while
parameter settings 3 was run on instance 6.

Racing is a group of algorithms which follow the above mentioned framework.

Maron and Moore (1994) introduced the first Racing algorithm to solve the model selection

problem in Machine Learning. Racing applies a two-stage statistical test, to identify

algorithms/parameter settings whose performances are significantly worse than the current

best, and discard them from the race. The first stage only detects if at least one algorithm is

significantly different from the rest, using tests such as ANOVA, for normally distributed
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data, or ranked-based ANOVA (e.g. Friedman’s F-test or the Kruskal-Wallis test), for non-

normal data. Racing algorithms are named according to the corresponding ANOVA test (e.g.

F-Race).

If the first test is significant, the second stage is carried out to identify those inferior

algorithms, using tests such as the paired t-test, for normally distributed data, or any non-

parametric post-hoc test for non-normal data, see Conover (1999, pp. 369-371) and Sheskin

(2004, pp. 830-850) for various suggestions. The race ends when one algorithm remains, or

the computational budget is consumed. As Racing is one of the main focal points of this

thesis, its technical details will be elaborated on in Chapter 3. For now, the focus is on its

application to tune algorithm parameters.

Rossi-Doria et al. (2003) compared the performance of five different metaheuristics

on timetabling problems. To allow for a fair comparison, all algorithms had their parameters

tuned with F-Race. Results showed that even for a very specific problem domain, no one

algorithm was able to outperform the rest on all instances. A similar application of F-Race

can be found in Paquete and Stutzle (2006) where the authors tuned the parameters of five

metaheuristics for the QAP, and compared the results to those obtained by the same

algorithms with default parameter settings. Results favor the tuned algorithms in almost all

cases.

Balaprakash et al. (2009) improved the performance of an estimation-based local

search algorithm, by combining heuristically two variance reduction techniques: Importance

Sampling and Adaptive Sampling. The authors applied Iterated F-Race (Birattari et al.,

2009) to tune the parameters of several Importance Sampling variants. In the same fashion

Racing algorithms have been used to tune different algorithms applied in various fields,

examples include: Blum and Socha (2005) in neural network training, Chiarandini and

Stutzle (2007) in Graph coloring, Gaspero et al. (2007) in portfolio selection, and Di

Gaspero and Roli (2008) and Lenne et al. (2008) in bioinformatics.
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Racing has indirectly been used in parameter tuning, specifically for selection within

metaheuristics. Yuan and Gallagher (2007) used F-Race to reduce the computational cost of

running a (1+λ)-ES tuning a number of numerical and categorical parameters of a GA.

Instead of evaluating all λ individuals equally to find the best one, F-Race was used to

efficiently allocate the computational budget to the most promising individuals. Likewise, F-

Race was combined with ACO (Birattari et al., 2007), Mesh Adaptive Direct Search (Yuan

et al., 2010), Bound Optimization By Quadratic Approximation, Derandomized Evolution

Strategy with Covariance Matrix Adaptation, and Uniform Random and Iterated Random

Sampling (Yuan et al., 2012).

F-Race can only select from the initial set of parameter settings provided to it. If a

better parameter setting exists for that algorithm, and it was not included in the initial set, it

will not be discovered. To overcome this issue, Chiarandini et al. (2006) proposed inserting

a new parameter settings into the race in each iteration. This parameter setting is first tested

on as many instances as the others, and then the statistical tests are carried out. Another

exploration mechanism can be found in Birattari et al. (2010), where the authors created an

iterative version of F-Race (I\F-Race). Each iteration is a single race, and with each iteration

the initial set of parameter settings is biased towards the best. In their implementation,

biasing was done in a manner analogous to an Estimation of Distribution Algorithm (EDA)

working at a higher level.

Yuan and Gallagher (2004) compared a Racing algorithm using a normal-model

ANOVA, A-Race, with F-Race. They observed better performance for F-Race in terms of

identifying the best parameter setting (which was determined by exhaustive

experimentation), and the number of survivors at the end of the race. A possible explanation

for the poor performance of A-Race is that the assumptions required by a normal-model

based ANOVA were violated (e.g. normality, independence, and homoscedasticity).

Moreover, F-Race implements a blocking design, and it was not clear if the same was used

for A-Race. More details in Chapter 3.
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A more extensive comparison of different budget allocators was carried out by

Caelen and Bontempi (2005). Five methods, from different research communities, were

experimentally evaluated. They were: a two-stage selection from simulation optimization

(Dudewicz and Dalal, 1975), the MAB, Equal Allocation, Greedy Allocation, and F-Race.

While no single allocator outperformed the rest in all test cases (model selection), the

following general observations were made: the two-stage selection method performed worst

in most cases due to its independence-of-models assumption, MAB performed best in most

cases when the available budget is low, and finally F-Race performed best when the

available budget is high.

Another budget allocator is Parameter Iterated Local Search (ParamILS) (Hutter et

al., 2007b, Hutter et al., 2009a), which uses ideas from the Iterated Local Search algorithm

(Lourenco et al., 2002) to search for good parameter settings. It begins with a set of

parameter settings ଴ݏ consisting of the algorithm’s default, or user specified, and a random

sample from the configuration space. Then, ଴ݏ is evaluated on a sub-set ଴ܫ of the training

instances, using a part ଴݊ of the total computational budget�ܰ . Depending on ଴݊ multiple

replications maybe carried out. The best parameter setting ଴ݏ
∗ is further improved via local

search (e.g. one-exchange neighborhood). ParamILS next enters its main optimization loop,

where ଴ݏ
∗ is randomly perturbed and improved via a local search procedure. If the resulting

parameter setting improves over ଴ݏ
∗, it is accepted as the initial starting point for the

following iteration. This continues until a termination condition is met. A diversification

mechanism of ParamILS is to draw a random parameter setting, with a probability of ,݌ and

use it as a starting point for its optimization loop.

ParamILS has two variants: BasicILS and FocusedILS, which differ mainly in the

way the training budget is allocated between the competing parameter settings. While

BasicILS allocates the budget equally, FocusedILS does a more efficient job by focusing on

more promising configuration, and spending less effort on the poor performing ones. The

idea of FocusedILS is similar to that of Racing, except that allocations are determined
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heuristically rather than statistically. Hutter et al. (2007a) used FocusedILS to tune 27

parameters of the SAT algorithm SPEAR (Babic and Hu, 2007), solving a number of real-

world bounded model-checking and software verification instances. The tuned algorithm

was able to significantly reduce the average run time of the standard, hand-tuned, algorithm

by many folds.

Khudabukhsh et al. (2009) created SATenstein, which is a framework to design

stochastic local search algorithms for SAT problems. It has just over 40 parameters which

were set using FocusedILS, enabling it to create new SAT solvers outperforming current

state-of-the-art algorithms. Later Xu et al. (2010) combined SATenstein with the per-

instance algorithm selector SATzilla (Xu et al., 2008), in what the authors call Hydra.

Tuning Hydra with FocusedILS enabled it to outperform 16 state-of-the-are SAT solvers in

terms of solution quality, and was, on several occasions, able to do so in less than a third of

the time required by its competitors.

Hutter et al. (2010b) used FocusedILS to tune the parameters of the complete mixed

integer programming solvers LPSOLVE, CPLEX, and GUROBI. They were able to lower

the time required to reach optimal solutions, by a maximum of 52 folds, and reduce the gap

between the best solution and the optimal one (when there is a time constraint) by a

maximum of 45 folds. However, they did note that such gains come at the cost of large

training instances.

FocusedILS was extended in Fawcett et al. (2009) to take advantage of unimodal

parameter response surfaces. Specifically, the local search step now searches through

solutions that are only adjacent to the current one. The extended version was used to tune a

highly parameterized solver for the course timetabling problem, which the authors created,

and outperformed other algorithms in the 2007 International Timetabling Competition3.

Another extension can be found in CluPaTra and SufTra (Lindawati et al., 2011,

3 http://www.cs.qub.ac.uk/itc2007/index.htm
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Lindawati et al., 2013), which groups problem instances into clusters with similar search

trajectory patterns4, and then applies ParamILS. The authors showed that this method finds

better parameter settings per cluster compared to those obtained without clustering.

The Ranking and Selection literature has numerous algorithms solving problems

similar to the algorithm configuration problem. For instance, a number of stochastic

simulation systems are made available along with a computational budget. Since evaluating

a system is expensive, it is crucial to efficiently allocate the budget such that the true best is

selected when the entire budget is consumed. It is beyond the scope of this thesis to review

such a huge literature, and the interested reader is referred to the works of Kim and Nelson

(2006), Branke et al. (2007), and Kim (2013) for an overview. Instead, the focus will be on

two methods, namely: the Optimal Computing Budget Allocation (OCBA) (Chen, 1995,

Chen et al., 1997), and its correlated version Correlated Budget Allocation (CBA) (Fu et al.,

2004, Fu et al., 2007).

Similar to Racing, OCBA/CBA first estimates the performance of all k systems

using ݇ ∙ ଴݊ samples, and then it allocates the remaining ܰ�– �݇ ∙ ଴݊ samples all at once, or

over several iterations using in each iteration a portion ∆ of ܰ�– �݇ ∙ ଴݊. Unlike Racing,

however, OCBA/CBA never discards a system, it may choose not to sample some systems

for a while, but all systems are candidates for sampling at any iteration. The difference

between OCBA and CBA is that CBA is designed to account for correlation between the

systems, while OCBA assumes independence. Still, both methods require the normality

assumption. The detailed workings of both methods will be presented in Chapter 3, and the

focus here is on their applications.

OCBA has been developed and applied more than CBA, examples include:

comparing alternative system designs in order to select the one with the best performance

(Chen et al., 2000, Brantley et al., 2008, Chen et al., 2010), selecting the m-best designs

4 A search trajectory pattern is defined as the path that an algorithm follows as it iteratively moves
from an initial solution to a neighboring one.
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(Chen et al., 2008), or selecting the one that optimizes multiple objectives simultaneously

(Lee et al., 2004, Loo Hay et al., 2007, Chen and Lee, 2009, Teng et al., 2010). Extending

OCBA to handle correlated data, with known correlation structure, was done in Fu et al.

(2004), and Fu et al. (2007). The method was further improved in Qu et al. (2012) to learn

the unknown correlation structures. OCBA has also been modified to work with non-normal

data in Glynn and Juneja (2004), and with heavy-tailed distributions in Blanchet et al.

(2008).

Moreover, OCBA has also been integrated into other algorithms to improve their

performance. He et al. (2010) combined a new variant, OCBA-CE, with the extended Cross

Entropy algorithm to select the top m designs and accurately estimate their performance.

Shortle and Chen (2008), Shortleab et al. (2012) used OCBA to efficiently allocate a

simulation budget such that the variance of the estimate of the probability of rare-event

simulations is minimized. A comprehensive overview of these applications, and others, were

recently published in the book of Chen and Lee (2010).

Neither OCBA nor CBA have been directly applied to tune parameters, and they

were never compared to budget allocators designed for the algorithm configuration problem.

However, OCBA was used within the algorithm configurator SPOT, see Section 2.4.2, to

make it run more efficiently. OCBA and CBA will be tested against various versions of

Racing algorithms to see under which conditions each performs best.

2.4.2 Model Based Methods

Methods under this category work in a sequential manner. First, a set of parameter

settings are selected and evaluated to build an initial model of the algorithm’s performance.

The model is used to find the best parameter setting observed, or predicted. Second, based

on the model, a new set of parameter settings are sampled and evaluated to update the

current model, and find a new best parameter setting. The process continues until a stopping
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condition is met. This general framework is known as Sequential Model Based Optimization

(SMBO).

Coy et al. (2001) used a 2-level full factorial designed experiment to construct a

linear response surface, representing the performance of two heuristic algorithms for the

VRP. Using steepest descent, the authors discovered new parameter settings which enabled

both heuristics to outperform other algorithms. However, this approach consisted of a single

stage, which means that the initial model built was not updated.

A similar approach, based on Taguchi’s fractional designs combined with local

search, was presented in Adenso-Diaz and Laguna (2006). As opposed to the previous

approach, CALIBRA, updates its model over several stages and fits a non-linear surface

when necessary. While CALIBRA showed improved performance, when used to tune six

heuristics, compared to their default parameters, it is limited to only a small number of

parameter settings, and does not analyze interaction effects, it is, therefore, more effective in

situations where the interaction effect is negligible.

Gagliolo et al. (2004) created an Adaptive Online Time Allocator (AOTA), which

uses algorithm runtime and problem features, to build and update a simple linear regression

model. Additional runs are allocated to the promising algorithms/parameter settings based

on extrapolating their performances on the next instance. AOTA was able to find algorithms

which outperformed specialized GAs designed for SAT instances. This work was extended

in Gagliolo and Schmidhuber (2006), and Gagliolo and Schmidhuber (2011) by introducing

a MAB solver at a higher level, which selects from a set of eleven allocators including

uniform and greedy. This method, GAMBELTA, showed superior performance compared to

a uniform allocator and an oracle which has insight into the runtime distributions beforehand

(based on training). However, it was unable to react to any incorrect predictions made by the

model.
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Sequential Parameter Optimization (SPO) differentiates itself from other SMBO

approaches by fitting a noise-free Gaussian Process model to the sampled data (Bartz-

Beielstein et al., 2005). The best parameter setting, based on the model, is determined by the

Expected Improvement criterion, which tries to balance between exploring new options and

exploiting the current best. A comprehensive treatment of SPO can be found in Hutter et al.

(2010a).

Hutter et al. (2009b) investigated four design choices in SPO: how to construct the

initial model, use of the Expected Improvement criterion, fitting a model to raw data or log-

transformed data, and use of an intensification mechanism. They concluded that changing

the intensification method and fitting a model to log-transformed data had the largest impact

on algorithm performance, in terms of solution quality and running time. They also proposed

SPO+ which replaces the current best solution if its competitor shows improved

performance after it has been sampled the same number of times. This better distinguishes

between competing parameter settings. Still, SPO+ also has a rule to discard a competitor if

it fails to show improvement for a pre-determined number of iterations, which may lead to

loosing good parameter settings.

Time Bounded SPO (TB-SPO) introduces three modifications to the basic method:

first, the intensification phase is now limited by a time constraint (Hutter et al., 2010c).

Second, to save time, the Gaussian Process model is replaced with an approximation model

known as the Projected Process model. Third, it interleaves choosing parameter settings

based on the Expected Improvement criterion and random selection. TB-SPO showed

significant speedups when compared to the standard SPO tuning a local search algorithm for

the SAT problem.

Another extension of SPO, relevant to this work, can be found in Bartz-Beielstein et

al. (2011), where the authors applied the combination of OCBA with SPO, see Lasarczyk

(2007), to intelligently determine the best distribution of the computing budget among the
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new design points. SPO was used as an optimization algorithm applied to five noisy

optimization functions. The authors compared six SPO variants and three optimization

algorithms and found that OCBA significantly improves on SPO on three out of the five

functions, and did not degrade the performance on the remaining two. It was noted, however,

that given the small scale of the experiments, the results are only indicative, and further

research is needed.

Hutter et al. (2011) introduced Sequential Model-based Algorithm Configuration

(SMAC), which is based on random forests models. It handles categorical parameter settings

and works over a set of problem instances, not just one as in SPO. SMAC performed better

when compared to ParamILS and a Gender Based Genetic Algorithm, see Ansotegui et al.

(2009), when configuring a number of SAT solvers.

Relevance Estimation and Value Calibration (REVAC) is an EDA variant which

estimates a parameter’s relevance using normalized Shannon entropy (Nannen and Eiben,

2006). Instead of estimating the performance of an algorithm under different parameter

values, REVAC calculates the expected performance of a parameter taken from a probability

distribution constructed over the parameter space. It then evolves such distributions into

ones with decreasing Shannon entropies, such that relevant parameter settings are selected

more often and hence evolve to better values. Further details can be found in Smit and Eiben

(2010a).

Initial implementations of REVAC were focused on tuning GAs solving a number of

continuous optimization functions (Nannen and Eiben, 2007). It was concluded that tuning

the mutation rate is more important than the crossover rate, with recommended values of

0.01-0.1 and 0.6-1.0, respectively. Smit and Eiben (2010c) trained a generalist and a

specialist using REVAC. Again the algorithm was a GA solving a number of continuous

optimization functions. Comparing solution quality of these algorithms to those obtained
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with default parameter settings, the generalist outperformed the specialist on four out of six

functions, but it was inferior to the default on the Sphere function.

REVAC also showed significant gains when tuning the winner of the 2005 CEC

competition, even though its default parameters were carefully set by the creators (Smit and

Eiben, 2010b). The competing algorithms were presented with a number of continuous

optimization functions, and were evaluated on three different performance measures. One

outcome of this study is that REVAC found different parameter settings for each

performance measure. While this is expected, it raises questions about using one parameter

setting for different performance measures, as was done with the winning algorithm.

2.5 Online or offline?

Only few recent studies compared online and offline methods, in hopes to better

understand when to apply each. Still, this research area remains scarce and requires more

attention. Nareyek (2004), see Section 2.3.2, compared adaptive reinforcement learning

strategies, used in finding the best set of weights for a number of heuristics, to fixed

strategies obtained through training. They concluded that the fixed ones outperform their

adaptive counterparts given sufficient time, and if they are tested on instances similar to the

training set. They also remarked that for complex problems, the fixed strategy performs just

as well as the adaptive one, even if sufficient time is available.

Pedersen and Chipperfield (2008c), and Pedersen and Chipperfield (2008b) used

several DE variants to solve a number of optimization functions, and to find the best weights

for a number of ANNs. To allow for a fair comparison, all DEs were tuned by meta-

optimization, even though some had adaptive mechanisms to adjust their parameters online.

The conclusion was that the adaptive DEs did not have any advantage, in terms of solution

quality and convergence rate, over those using the fixed parameter settings obtained from

training. Also, the adaptive methods did not change the parameter settings they started with

very often.
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Battiti and Campigotto (2011), see Section 2.3.2, compared two algorithms using

reinforcement learning strategies to adapt their parameters, to the same algorithms using

fixed tuned parameter obtained by running ParamILS. Results showed that the fixed

parameters performed significantly better on few instances, and were better on all other

instances but the improvement was not significant. Again, this indicates that online

adaptation has no advantage over carefully tuned fixed parameter settings.

A recent study specifically aiming at comparing online and offline methods can be

found in Pellegrini et al. (2010). Six parameters for the MMAS algorithm, applied to the

TSP, were tuned using five self-adaptive online tuners and one offline tuner, F-Race. Four

different scenarios were compared: use default parameter settings, tune the parameters

offline, control the parameters online, and finally starting with offline-tuned parameters,

using F-Race, try to find better ones online. Results showed that the improvement in

MMAS’s performance is higher with offline tuning. Also, online control can find better

parameters than what is used in the literature if the computational budget is low. The effect

of increasing the number of parameters tuned online was also investigated, starting from one

parameter and going up to six parameters. It was shown that the performance of the online

methods degrades as the number of parameters increases.

The same authors carried out another analogous study using Memetic Algorithms

applied to the QAP (Francesca et al., 2011). Their conclusions were generally the same. The

interested reader is also referred to Stützle et al. (2011) for an extensive review on the

various parameter tuning methods used for ACO algorithms.

Generalizing the results of these studies is not possible, as they apply only to the

algorithms and experimental setup chosen. Yet, they are consistent in their findings and do

seem to support the counter-intuitive conclusion that online control has no advantage over

offline tuning.
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2.6 Prospect research

Significant advances have been made to the algorithm configuration problem.

However, there remain many areas which received little, or no, attention so far. This section

will highlight such areas.

Starting with online control, determining the number of applications and replications

required to properly evaluate an operator remains unclear. Evaluating too often (e.g. after a

single application and a single replication) may lead to poor evaluations, especially if the

algorithm is stochastic. Evaluating after many applications and replications can be

expensive, and may not allow the algorithm to react in a timely fashion. Most online

methods evaluate an operator after a single application, and hardly ever replicate. Only few

methods evaluate an operator over a sliding window, but with no proper justification to the

choice of the window size. An example is the configurator Compass discussed earlier.

From the literature reviewed in this chapter, it can be seen that all algorithm

configuration methods, online or offline, introduce their own hyper-parameters. In some

situations there are just as many hyper-parameters as there are parameters to tune, see Table

2.1 for an example. Some authors claim that the hyper-parameters are robust and are easier

to set. Others use a third level algorithm to configure the hyper-parameters of the

configurator itself. It remains unclear whether tuning/controlling the hyper-parameters will

improve the configurator’s ability to find better parameters settings for the target algorithm,

ones that could not have been discovered if the hyper-parameters were not tuned or

controlled.
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Table 2.1. A sample comparison of the number of hyper-parameters required by some online
controllers and the corresponding number of parameters to control.

Configurator Number of Hyper-parameters Number of parameters
Whitacre et al. (2006) 8 10

PM-AdapSS-DE (Gong et al., 2010) 4 6
Compass (Maturana and Saubion, 2008) 3 5

AP (Thierens, 2005) 5 6
SLPSO (Wang et al., 2011) 4 6

DMAB (Dacosta et al., 2008) 4 5

This issue was tackled in Herdy (1992), where the author used three ES algorithms:

the first optimizes the sphere function, the second tunes the mutation step size of the first

ES, and the third tunes the number of generations of the second ES. All three levels work

offline so the whole algorithm can be considered a meta-meta-optimizer. It was empirically

shown that the long term performance is improved when tuning the second level compared

to setting its parameters by trial and error. One drawback of Herdy’s approach is the huge

computational overhead added by the third level. This can be improved, for example, if the

third level is replaced with an online controller. Moreover, the number of levels that should

be added to tune/control the parameters one level below is potentially infinite, and one can

argue that the algorithm configuration problem is just shifting from one level to another (De

Jong, 2007).

Whether tuning the hyper-parameters is truly needed, and is in fact feasible,

algorithm configurators have improved the performance of many algorithms compared to the

default settings. With all the available configurators nowadays, it is unjustifiable to hand-

tune newly created algorithms, or accept the default when solving problems from different

domains.

2.7 Conclusion

This chapter reviewed research relevant to the algorithm configuration problem,

where it was broadly classified as online control or offline tuning. Online control was further

sub-divided into single step look-ahead methods, where operator selection is done in every

iteration, and multi-step look-ahead methods, where an operator is allowed several
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applications before it is evaluated and a new selection is made. Within offline tuning, model-

based methods were distinguished from model-free methods on the basis of whether, or not,

a model is built to map the relationship between parameter settings and algorithm

performance. Model-free methods were further classified into meta-optimizers or

computational budget allocators.

Configuring algorithms online or offline depends on the application. Online control

is more suitable when solving a single instance, a dynamic instance, or instances that are

quite different from one another. Offline tuning, however, is more suitable when solving

many, similar, instances. A few comparative studies have been carried out in this direction,

and contrary to the general belief, online control has not shown advantage over offline

tuning. Still, these results apply only to the algorithms and problem instances tested, so

further research is needed.

Within the above mentioned categorization, the first contribution, the Flexible

Budget method, falls under meta-optimization, while the second and third contributions,

Racing with a self-adaptive significance level and one-way Racing with an intelligent budget

allocation, fall under computational budget allocation. All contributions are offline tuners.

Finally, no single algorithm has outperformed all other algorithms over all problems

and performance measures, even if its parameters are properly set. An attempt to find a

configurator which tunes, or controls, the parameters of a target algorithm, such that it

performs well over a wide range of different problem domains, was carried out in the

CHeSC in 2011. The interesting result was that the winning algorithm of Mustafa Misir et

al. (2012) was never the best on any individual problem domain, but was best, on average,

across all problem domains.
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CHAPTER 3 Theory and Methodology

3.1 Introduction

This chapter details the workings of each of the aforementioned contributions,

together with that of the methods they compare to, or improve upon. The chapter is

organized as follows: Section 3.2 explains why a typical meta-optimizer requires several

runs to find the best parameter settings for different computational budgets, and how the

Flexible Budget method can determine the best parameter settings for any computational

budget, in a single run. Computational budget allocators, OCBA and CBA, are discussed in

Section 3.3, and Racing algorithms are in Section 3.4. Section 3.5 shows how a Racing

algorithm can adapt its parameter, the significance level, and consume any given budget.

Section 3.7 introduces one-way Racing and shows how it has an advantage over two-way

Racing when used with the reset idea. Finally, Section 3.7 concludes this chapter.

3.2 Meta-optimization

Meta-optimization is an offline tuning method consisting of a meta-level algorithm

searching the parameter settings’ space of another lower-level (LL-) algorithm, which, in

turn, searches the solution space of an optimization problem (e.g. TSP). To simplify the

description, both levels are assumed to be EAs, following a basic EA cycle: initial

population  parent selection  variation operators  survival selection  new

generation. Solutions of the meta-EA (its individuals) are parameter settings of the LL-EA

that can be numerical and/or categorical.
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3.2.1 Meta-optimization with a fixed budget

The meta-EA begins with a population of individuals, usually selected at random

from the configuration space. It then evaluates each by running the LL-EA, with that fixed

parameter setting, on the optimization problem, until a stopping condition is met. This

reflects that parameter’s performance at only a single point (the end of the run). The utilities

of individuals are typically the solution quality of the LL-EA, the running time required to

reach a target solution quality, or the number of times a target is reached within a specific

time limit. Afterwards, the meta-EA chooses parents from its current population, based on

the utilities, and creates a new offspring population by applying variation operators (e.g.

crossover and mutation). Out of the two populations, a sub-set is selected to “survive” to the

next generation. An example is shown in Figure 3.1.

Since the LL-algorithm is likely to be stochastic, obtaining accurate utility values

requires multiple runs. The same holds for the meta-level if it is stochastic, it should ideally

converge to the same parameter settings, or close enough, over different replications. All of

this leads to a very time consuming offline tuner. Matters get worse if the computational

Figure 3.1. A sample meta-EA.
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budget for the lower level changes often, as optimizing different computational budgets

requires a separate run of the meta-optimizer, one run for each potential new budget. For

example, different instances of a VRP are solved repeatedly under varying time constraints.

Figure 3.2 shows an example of convergence curves for an algorithm, minimizing a

multimodal function, under two different parameter settings. Clearly, a greedy parameter

setting is suitable for lower budgets, whereas an explorative one is better for higher ones.

Figure 3.2. Convergence curves of an algorithm, applied to a minimization problem, under two
different parameter settings.

3.2.2 Meta-optimization with a flexible budget (1st contribution)

The main idea is to maintain a diverse set of parameter settings suitable for different

computational budgets. To achieve this, utilities no longer reflect the algorithm’s

performance at a single point (the end of the run), but they are rather composed of each point

on the entire convergence curve, building a lexicographic ordering between the parameter

settings. This, in turn, will affect the selection at the meta-level, favoring individuals fit for

different computational budgets, rather than for a pre-defined fixed budget. The proposed

contribution will be referred to as the Flexible Budget method, compared to the traditional

Fixed Budget method.
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Again, assuming both levels are EAs, the Flexible Budget method works as follows:

1. Randomly initiate a population of parameter settings from their domains.

2. Evaluate each individual at the meta-level by running the lower level algorithm, with

that parameter setting, for a specific computational budget nmax (maximal computational

budget of interest). Replicate k times using common random numbers.

3. Using the lower-level objective function value as a utility, record for each parameter

setting the best-so-far average utility at each function evaluation (avBSF).

4. Identify the parameter setting(s) with the best avBSF at each function evaluation of the

lower-level. Rank these parameter settings as rank 1.

5. Remove rank-1 parameter settings from the population and repeat as before, classifying

the new parameter settings as rank 2.

6. Continue until all parameter settings have been ranked.

Example: Figure 3.3 shows the convergence curves of an algorithm under three

different parameter settings. During the first 160 iterations, the solid line has the best

objective value, so it’s ranked 1. The dashed line has the best objective function value

from iteration 160 onwards, so it is ranked 1 too. Removing rank-1 parameters, one line

remains, rank it as 2.

This ranking scheme is inspired by the non-dominated sorting of Deb et al. (2002).

7. To favor between individuals in the same rank, three secondary criteria are proposed:

 Length (L): select individuals which are in that rank for a longer period.

Example: In Figure 3.3 if parent selection at the meta-level used a tournament

selection of size 2, and the dashed and solid lines were chosen, pick the solid line as

it is in the same rank but for a longer period.

 Area Under the Curve (AUC): select individuals with a smaller (respectively larger)

AUC for a minimization (respectively maximization) problem.

Example: In Figure 3.4, both curves are in the same rank, if one is to be selected at

the meta-level, choose the solid line as it has a smaller AUC.
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 Area Lost (AL): this measure represents the quantity lost if a particular individual is

not selected at the meta-level; hence, prefer individuals with higher AL values.

Example: In Figure 3.5, both curves are in the same rank, if one is to be selected at

the meta-level, disregard the solid line, as one loses less area if it is not chosen.

The AL measure is relative to the individuals being compared, whereas the AUC

measure for a curve is independent of the other curves.

Figure 3.3. Ranking parameter settings using the Flexible Budget method.
Assume a minimization problem.

Figure 3.4. Area Under the Curve as a secondary criterion for the Flexible-Budget method.
Assume a minimization problem.
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Figure 3.5. Area Lost as a secondary criterion for the Flexible-Budget method.
Assume a minimization problem.

8. When the meta-level terminates, report the best parameter setting found at each lower-

level function evaluation, as the parameter setting to use when solving a similar problem

with only that many function evaluations.

Example: In Figure 3.6, if a new instance is to be solved with only 100 iterations, the

parameter setting which generated the solid line will be used. Likewise, for 50

iterations, select the dashed line.

Figure 3.6. Parameter settings suitable for different computational budgets.
Assume a minimization problem.
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Algorithm 3.1: The Flexible Budget method
Input for the meta-EA: metaGen, metaRep, metaPopSize, LL-parameters
Input for the LL-EA: nmax, k
1 Initialize meta-EA

2
randomly choose LL-parameters
from their respective domains

3 ←ݎ 0; ݃← 0; ݅← 0
//replication, generation,
//and individual counters

4 while r < metaRep //Meta-EA run
5 while g < metaGen
6 while i < metaPopSize
7 run LL-EA using individual i //LL-EA run

8
store the entire convergence curve
averaged over k replications

9 assign ranks //Rank-based evaluation
10 calculate L or AUC //absolute measures
11 i++
12 end while
13 parent selection //using ranks and L, AUC,

//or AL. AL is a relative
//measurement

14
if AL is used
calculate AL for the competing individuals

15 apply variation operators
16 survival selection //using ranks and L, AUC,

//or AL. AL is a relative
//measurement

17
if AL is used
calculate AL for the competing individuals

18 g++ //next meta-generation
19 end while
20 r++ //next meta-replication
21 end while
Output: best parameter settings for any computational budget less than nmax

Figure 3.7. A pseudo-code of Flexible Budge method.

3.3 Budget allocators

Inputs to a computational budget allocator are: a number of algorithms k, or the

same algorithm with different parameter settings, a problem instance generator I, and a

computational budget N. The objective is to allocate N among the 〈݈ܽ ℎ݉ݐݎ݅݋݃ , ݅݊ ݐܽݏ ݊ܿ݁ 〉

pairs, such that the best algorithm is correctly selected when N is consumed. This is the

training phase. The working assumption is that the training set is large enough and

representative, and that the testing set does not differ much such that the algorithm which

performed best during training will also perform best on the testing set.

Running algorithm i on an instance j yields utility Uij, and aggregating all the

utilities gives one measure that is used to favor between the competing algorithms. All

algorithms are first run on the same subset of problem instances n0 to estimate their

performance, and then the allocator is run to determine how to distribute the remaining

ܰ − ݇ ∙ ଴݊ samples. Generally the remaining budget is not allocated all at once, but rather
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sequentially; every time a portion Δ of the remaining budget is distributed, the aggregated 

utilities are updated, and the allocator is run again. See Figure 3.8.

The Ranking and Selection literature has many budget allocation algorithms which

fit the same setting just described. The parameter settings are replaced with stochastic

simulation systems, and the problem instances are replaced with samples drawn from a

distribution representing the simulation output. The focus here is on two such algorithms,

OCBA and its correlated version CBA.

Problem instance or
sample number

Parameter settings or systems
1 2 3 4 5

1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 2 3 2 3 5
7 2 3 3 5
8 2 3 4 5
9 2 4 4 5
10 4 4 5
… … … …
m

Figure 3.8. An example of allocating a budget between five parameter settings/systems with n0 = 5.
The numbers indicate the iteration in which a sample is taken. For instance, systems 1 and 3 were

sampled in the second iteration with system 1 being tested on instances 6-9, while system 3 was run
on instance 6.

3.3.1 OCBA maximizing the probability of correct selection

The main idea of OCBA is to allocate a large share of the total budget to those

systems which are critical in detecting the true best. Doing so will decrease the variance of

their estimated utility, and increase the Probability of Correct Selection (PCS). Moreover, it

will lower the computational effort spent on non-critical systems, which do not contribute

much in distinguishing between the competing systems.

The problem of allocating a budget N among k systems, such that the PCS is

maximized, can be stated as
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max
௡భ,௡మ,…,௡ೖ

ܵܥܲ

3.1
෍.ݐ.ݏ ௜݊

௞

௜ୀଵ

= ܰ , and ௜݊∈ ℤ
ା ,

where ni is the number of times system i is to be sampled. Chen and Lee (2010, p.41)

showed that for the simple case of k = 2, a theoretical optimal solution can be found. Let

ଶߪ�ଵandߪ,ଶܬ�ଵandܬ be the means and standard deviations of the competing systems. An

optimal allocation is given by

ଵ݊

ଶ݊

=
ଵߪ
ଶߪ

, 3.2

which does not depend on the means, only the standard deviations. For the general case (k >

2), the formulation of the PCS becomes intractable and is replaced with an approximate

probability of correct selection, which is asymptotically maximized when

௜݊

௝݊

= ቆ
௜ߪ ⁄௕,௜ߜ

௝ߪ ⁄௕,௝ߜ
ቇ

ଶ

,݆݅ {߳1, 2, … , }݇and ݅≠ ݆≠ ܾ݁ ݐݏ 3.3

௕݊ = ௕ඩߪ ෍
௜݊
ଶ

௜ߪ
ଶ

௞

௜ୀଵ,௜ஷ௕

, 3.4

where =௕,௟ߜ ௕ഥܬ − ௟ഥܬ and ௕ഥܬ < min௟,௟ஷ௕ܬ௟ഥ, assuming that a system with the lowest mean is

the best. For the two system case, 3.3 and 3.4 reduce to 3.2. It should be noted that the

constraint requiring ni to be integers is relaxed, which means that the solution should be

rounded such that ∑ ௜݊
௞
௜ୀଵ = ܰ .

Figure 3.9 outlines a pseudo-code of an OCBA algorithm, which allocates Δ additional 

samples among the k systems in every iteration t. In particular:

1. Sample each system n0 times.

2. While the computational budget has not been consumed:

 Calculate/update the sample averages and standard deviations.

 Find the system with the best sample average b.
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 Solve 3.3 and 3.4 to determine how to allocate Δ for the next iteration. That is, the 

expected number of samples to take from each system at iteration t+1 ො݊௟
௧ାଵ.

Rounding maybe necessary for this step.

 Sample each system l ݉ ൫݊ො௟ݔܽ
௧ାଵ− ௟݊

௧, 0൯.

 Move on to the next iteration.

Algorithm 3.2: OCBA

Input: k, N, Δ, n0
//n0 ≥ 5 and N-k.n0 is a
//multiple of Δ 

1 Initialize

2 ←ݐ 0; ܿ← 0
//iteration and consumed
//budget counters

3 sample each system n0 times ଵ݊
௧ = ଶ݊

௧ = ⋯ ௞݊
௧ = ଴݊

//initial performance
//estimation

4 ←ݐ ଴݊; ܿ← ଴݊ ∙ ݇

5 Main allocation loop

6 while ܿ≤ ܰ

7 =௟ഥܬ
∑ ߱௜,௟
௡೗
೟

௜ୀଵ

௟݊
௧ ∀݈= 1,⋯ ,݇

//update the sample
//average and standard
//deviation for each.
//ωi,l is the ith sample
//taken from system l

8 =௟ݏ ඨ
∑ ൫߱ ௜,௟− ௟ഥ൯ܬ

ଶ௡೗
೟

௜ୀଵ

௟݊
௧− 1

∀݈= 1,⋯ ,݇

9 find ܾ= ݎܽ݃ min௟ܬ௟ഥ
//find the system with
//the best sample average

10 solve 3.3 and 3.4 such that ∑ ො݊௟
௧ାଵ௞

௟ୀଵ = ∑ ௟݊
௧௞

௟ୀଵ + ∆
//allocate Δ among all 
//systems. rounding maybe
//necessary

11 sample system l ݉ )ݔܽ ො݊௟
௧ାଵ− ௟݊

௧, 0) ∀݈= 1,⋯ ,݇

12 ܿ← ܿ+ ∆ //update consumed budget

13 ←ݐ +ݐ 1 //next iteration

14 end while

Output: optimal allocation of ܰ − ݇ ∙ ଴݊

Figure 3.9. A pseudo-code of the OCBA algorithm.

3.3.2 CBA

Utility values for parameter settings are usually correlated, for example, if a

particular problem instance is hard, parameter settings are expected to perform poorly, or

worse than their average performance. OCBA was extended in Fu et al. (2004) to account

for correlated data. CBA works similar to OCBA, and can be implemented sequentially.

Moreover, it produces the same allocation as OCBA for the k = 2 case with zero correlation.

For the general case (k > 2) with zero correlation, CBA and OCBA reach quite similar

performance, but their solutions are not exactly identical (Fu et al., 2007).
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The implementation specifics of CBA are not as direct as those of OCBA, and some

of its steps can be done in several ways. It is beyond the scope of this work to go into all of

its details, and the interested reader is directed to Fu et al. (2007). However, a simplified

version is described here, that of Fu et al. (2004) to enable the reader to grasp some of the

concepts of the algorithm. First, some definitions are required. As before, ௟݊
௧ is the number

of samples to take from system l at iteration t, and ௟ݏ,௟ഥܬ are the sample average and sample

standard deviation of system l. Denote ∗݊
௧and�݊ ∗∗

௧ as the number of samples to take from the

systems with the best, and second best, sample averages known so far. Furthermore, let Cij

be the covariance between systems i and j. Finally, define the following quantities

௟෡ߚ = ൮
−ഥ∗ܬ തതത∗∗ܬ

−ഥ∗ܬ ௟ഥܬ
൘ ൲

ଶ

∀݈= 1, … ,݇ and ݈≠∗ ⇒ ∗∗መߚ = 1 3.5

௟෪∗ܥ = ∗ݏ
ଶ− ௟∗ܥ2

௟௟෪ܥ = ௟ݏ
ଶ ݂݅ ∗݊

௧≥ ௟݊ 3.6

௟෪∗ܥ = ∗ݏ
ଶ

௟௟෪ܥ = ௟ݏ
ଶ − ௟∗ܥ2

݂݅ ∗݊
௧ < ௟݊. 3.7

To begin with, find a value for ∗݊∗
௧ that satisfies

1 = ෍
መ௟ߚ
ଶܥሚ௟௟ܥሚ∗௟

൫ܥሚ∗,∗∗ + ∗∗,∗∗ሚܥ ∗݊∗
௧⁄ − ሚ∗௟൯ܥመ௟ߚ

ଶ

௞

௟ୀଵ

,݈≠∗ 3.8

using any numerical method. Note that the summation is over all systems except the current

best. Then, all other ௟݊
௧, except ∗݊

௧, are calculated as

௟݊
௧ =

௟௟෪ܥ௟෡ߚ

∗∗,∗ሚܥ + ∗∗,∗∗ሚܥ ∗݊∗
௧⁄ − ሚ∗௟ܥመ௟ߚ

,݈≠∗ ݈≠∗∗. 3.9

Finally, ∗݊
௧ is calculated via

∗݊
௧ = ඪ෍ ൮൦

௟෪∗ܥ

௟௟෪ܥ
൘ ൪ ௟݊

௧ଶ൲

௞

௟ୀଵ

,݈≠∗. 3.10
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Implementing a sequential version of CBA follows the same framework as that of

OCBA. The major difference is how ௟݊
௧ are calculated, and the use/update of a covariance

matrix, which is not present in OCBA. A pseudo-code is in Figure 3.10.

Algorithm 3.3: CBA

Input: k, N, Δ, n0
//n0 ≥ 5 and N-k.n0 is a
//multiple of Δ 

1 Initialize

2 ←ݐ 0; ܿ← 0
//iteration and consumed
//budget counters

3 sample each system n0 times ଵ݊
௧ = ଶ݊

௧ = ⋯ ௞݊
௧ = ଴݊

//initial performance
//estimation

4 ←ݐ ଴݊; ܿ← ଴݊ ∙ ݇

5 Main allocation loop

6 while ܿ≤ ܰ
//total number of samples
//is less than N

7 =௟ഥܬ
∑ ߱௜,௟
௡೗
೟

௜ୀଵ

௟݊
௧ ∀݈= 1,⋯ ,݇

//update the sample
//average each system
//ωi,l is the ith sample
//taken from system l

8 Update the covariance matrix

9 find ܾ= ݎܽ݃ min௟ܬ௟ഥ
//find the system with
//the best sample average

10 solve 3.8-3.10 such that ∑ ො݊௟
௧ାଵ௞

௟ୀଵ = ∑ ௟݊
௧௞

௟ୀଵ + ∆

//allocate Δ samples 
//among all systems
//rounding
//maybe necessary

11 sample system l ݉ )ݔܽ ො݊௟
௧ାଵ− ௟݊

௧, 0) ∀݈= 1,⋯ ,݇

12 ܿ← ܿ+ ∆ //update consumed budget

13 ←ݐ +ݐ 1 //next iteration

14 end while

Output: optimal allocation of ܰ − ݇ ∙ ଴݊

Figure 3.10. A pseudo-code of the CBA algorithm.

3.4 Racing algorithms

Racing algorithms follow the same framework as that of OCBA/CBA. The major

difference, however, is that in each iteration Racing subjects all “surviving” parameter

settings to a series of statistical tests, which could identify a subset that is significantly worse

than the current best. In that case, the subset is discarded from further consideration, and

each surviving parameter setting is tested on the next instance. The statistical tests are

carried out over two stages. The first is an ANOVA test that determines if at least one

parameter setting performs differently from the rest. The second stage is a number of pair-

wise comparisons that pinpoint inferior parameter settings. Figure 3.11 offers a classification

of the Racing algorithms presented here.
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Figure 3.11. Classification of the Racing algorithms used in this thesis.

3.4.1 Parametric Racing

Parametric Racing, A-Race in particular, refers to a Racing algorithm which uses a

normal-model based ANOVA for the first stage filtering, followed by tests such as: a paired

t-test, Tukey's honest significance test, Scheffe's test, or Fisher’s Least Significant

Difference (LSD) to name a few. Montgomery (2001, pp.96-107) presents these and other

methods, and provides a comparative discussion. A normal-model based ANOVA, or simply

ANOVA, assumes that the error terms (see 3.11-3.13) are normally and independently

distributed with mean of zero and unknown but equal variance σ2. More about the

assumptions can be found in Glass et al. (1972), and Wilcox (1987). Some of the

assumptions may not be satisfied when tuning parameters; still, there are methods to reduce

the effect of violating them.

The next section gives a brief background on some ANOVA models that are

relevant to A-Race, followed by a review of various studies showing the effect of not

Parametric Non-parametric

Racing algorithms

One-way
ANOVA test

Two-way
ANOVA test

Balanced Unbalanced

With
blocking

Without
blocking

Balance Unbalanced
(in terms of
replications)

A-Race_2Way

A-Race_1WUB

One-way
ANOVA test

(e.g. KW-test)

Two-way
ANOVA test
(e.g. F-test)

Balanced Unbalanced Balanced

F-RaceKW-Race
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complying with the assumptions. Finally, the applicability of ANOVA models within a

Racing algorithm is discussed.

3.4.1.1 A background on normal-model based ANOVA

The following ANOVA models are discussed here: two-way ANOVA, one-way

ANOVA, and one-way ANOVA with blocking. All methods are considered under fixed and

random effects. Most of what follows is based on the works of Montgomery and Runger

(2011).

Using some terminology from Design of Experiments, an algorithm’s utility, its

response, is affected by two factors: the parameter setting A, and the problem instance B.

The specific values for these factors are called factor levels, or treatments (i.e. a parameter

setting), a levels for factor A and b levels for factor B. The response for level i of factor A,

level j of factor B, over replication k, is a random variable following the linear model

௜ܻ௝௞ = +ߤ ௜߬+ ௝ߚ + ( ௜௝(ߚ߬ + ௜௝௞൝ߝ
݅= 1,2, … ,ܽ
݆= 1,2, … ,ܾ
݇= 1,2, … ,݊

, 3.11

where μ is the overall mean response, τi is the effect of treatment i of factor A, βj is the effect

of treatment j of factor B, (τβ)ij is the interaction effect between factors A and B at levels i

and j, and finally εijk is the random error term ~ࣨ .(ଶߪ,0) This is known as a two-way

ANOVA model. Table 3.1 shows one possible data arrangement for a two-way ANOVA.

Table 3.1. Data arrangement for a two-way ANOVA model.

Factor B

F
ac

to
r

A

Observations 1 2 … b Sum

1 y111, y112,…, y11n y121, y122,…, y12n … y1b1, y1b2,…, y1bn y1..

2 y211, y212,…, y21n y221, y222,…, y22n … y2b1, y2b2,…, y2bn y2..

…

… … … … …

a ya11, ya12,…, ya1n ya21, ya22,…, ya2n … yab1, yab2,…, yabn ya..

Sum y.1. y.2. … y.b. y…

A one-way ANOVA, on the other hand, accounts for only one factor, the parameter

setting, and follows the statistical linear model
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௜ܻ௝ = +ߤ ௜߬+ ௜௝൜ߝ
݅= 1,2, … ,ܽ
݆= 1,2, … ,݊

, 3.12

for which data can be arranged as in Table 3.2. This model is applicable to offline tuning

when it is believed that the algorithm’s performance depends solely on its parameters, and

that the problem instances are quite similar such that their effect can be neglected.

Table 3.2. Data arrangement for a one-way ANOVA model.

F
ac

to
r

A

Observations Sum

1 y11 y12 … y1n y1.

2 y21 y22 … y2n y2.

…

… … … … …

a ya1 ya2 … yan ya.

Overall sum y..

Sometimes there are two factors affecting the response, but only one is of interest,

say factor A. For instance, the effect of the problem instance is considered negligible and one

is interested just in the effect of the parameter setting, so the instance effect needs to be

“blocked out”. In such cases, a one-way ANOVA can still be used if the effect of the other

factor, say B, is blocked out. In this case, the statistical linear model is

௜ܻ௝ = +ߤ ௜߬+ ௝ߚ + ௜௝൜ߝ
݅= 1,2, … ,ܽ
݆= 1,2, … ,ܾ

, 3.13

with data arranged as in Table 3.3. It is clear from the model that the interaction effect is

unaccounted for, as factor B is of no interest.

Table 3.3. Data arrangement for a one-way ANOVA model with blocking.

F
ac

to
r

A

Block Sum

Observations 1 2 … b

1 y11 y12 … y1b y1.

2 y21 y22 … y2b y2.

…

… … … … …

a ya1 ya2 … yab ya.

Overall sum y..

Whether one-way or two-way ANOVA is used, the treatments can be selected in

two different ways. One is to have the experimenter specifically choose some factor levels,

in which case the treatments are considered fixed, and whatever conclusions drawn based on
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them, cannot be extended to others that were not tested. This is known as the fixed effects

model. The other is to have the experimenter select a random sample of treatments from a

larger population of possible treatments, in which case the treatments are considered random

variables, and one can extend conclusions to other treatments that were not tested. This is

known as the random effects model. A two-way ANOVA may have one fixed factor and one

random factor, leading to what is known as a mixed effects model.

In a fixed effects model of two factors, the treatment effects τi, βj, and their

interaction (τβ)ij are seen as deviations from the overall mean μ, such that

෍ ௜߬

௔

௜ୀଵ

= 0,෍ ௝ߚ

௕

௝ୀଵ

= 0,෍ ௜௝ߚ߬

௔

௜ୀଵ

= 0,෍ ௜௝ߚ߬

௕

௝ୀଵ

= 0 , 3.14

and one is interested in testing the null hypotheses H0 that all treatment means, and their

interactions, are zero, against the alternative hypotheses H1 that at least one is not. Hence, if

H0 is true, each observation is composed of the overall mean plus a realization of the random

error term. That is to say, all observations are drawn from a single normal distribution with

parameters μ and σ2, implying that changing between treatments has no effect on the overall

mean response. See 3.15.

:଴ܪ ଵ߬ = ଶ߬ = … = ௔߬ = 0
:ଵܪ ௜߬≠ 0 for at least one ݅

no effect for factor A

3.15
:଴ܪ ଵߚ = ଶߚ = … = ௕ߚ = 0
:ଵܪ ≠௝ߚ 0 for at least one ݆

no effect for factor B

:଴ܪ ଵଵߚ߬ = ଵଶߚ߬ = … = ௔௕ߚ߬ = 0
:ଵܪ ௜௝ߚ߬ ≠ 0 for at least one ݆݅.

no interaction effect

When the factors are random variables, it is assumed that they are independently and

normally distributed with means of zero and variances ఛߪ
ଶ,ߪఉ

ଶ,ߪఛఉ
ଶ , andߪ�ଶ, such that

ܸ൫ܻ ௜௝௞൯= ఛߪ
ଶ + ఉߪ

ଶ + ఛఉߪ
ଶ + .ଶߪ However, 3.14 no longer holds here, and it carries little

meaning to test hypotheses as in 3.15, since the treatments are only random samples from a

larger population. To be able to generalize the results from the treatment sample to the

treatment population, a more appropriate set of hypotheses is
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:଴ܪ ఛߪ
ଶ = 0

:଴ܪ ఛߪ
ଶ > 0

no effect for factor A

3.16
:଴ܪ ఉߪ

ଶ = 0

:଴ܪ ఉߪ
ଶ > 0

no effect for factor B

:଴ܪ ఛఉߪ
ଶ = 0

:଴ܪ ఛఉߪ
ଶ > 0.

no interaction effect

For a one-way ANOVA model, without blocking, 3.14-3.16 reduce only to a single

factor and no interaction term. In case of blocking, 3.14 reduces to ∑ ௜߬
௔
௜ୀଵ = 0,∑ ௝ߚ

௕
௝ୀଵ = 0,

while 3.15 and 3.16 reduce to a single factor with no interaction.

Whether the factors are fixed or random, ANOVA divides the total variability in the

data into variability due to treatment(s), variability due to interaction, and variability due to

random error. For a two-way model, the total variability (SST) is expressed in terms of the

sum of squared differences between individual readings and the overall mean.

ܵܵ ் = ෍ ෍ ෍ ൫ݕ௜௝௞ − ݕ
…
൯
ଶ

௡

௞ୀଵ

.

௕

௝ୀଵ

௔

௜ୀଵ

3.17

Variability due to treatment(s) (SSTreat) is expressed as the sum of squared differences

between the treatment average and the overall mean.

ܵܵ ஺ = ܾ݊ ෍ ൫ݕ
௜..
− ݕ

…
൯
ଶ

௔

௜ୀଵ

3.18

ܵܵ ஻ = ܽ݊ ෍ ቀݕ
.௝.
− ݕ

…
ቁ
ଶ

௕

௝ୀଵ

. 3.19

Variability due to the interaction between factors (SSAB) can be expressed as

ܵܵ ஺஻ = ݊෍ ෍ ൬ቀݕ
௜௝.

+ ݕ
…
ቁ− ቀݕ

௜..
+ ݕ

.௝.
ቁ൰

ଶ
௕

௝ୀଵ

௔

௜ୀଵ

, 3.20

and random error variability is expressed as the sum of squared differences between

individual readings and the cell average (the intersection of two factor levels in Table 3.1).

ܵܵ ா = ෍ ෍ ෍ ቀݕ௜௝௞ − ݕ
௜௝.
ቁ
ଶ

௡

௞ୀଵ

௕

௝ୀଵ

௔

௜ୀଵ

3.21
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ܵܵ ் = ܵܵ ஺ + ܵܵ ஻ + ܵܵ ஺஻ + ܵܵ ா. 3.22

In case of a single factor, without blocking, 3.17-3.22 reduce to

෍ ෍ ൫ݕ௜௝− ഥ൯..ݕ
ଶ

௡

௝ୀଵ

௔

௜ୀଵ

= ݊෍ ൫ݕ
௜.
− ഥ൯..ݕ

ଶ
௔

௜ୀଵ

+ ෍ ෍ ൫ݕ௜௝− ݕ
௜.
൯
ଶ

௡

௝ୀଵ

௔

௜ୀଵ

3.23

ܵܵ ் = ܵܵ ்௥௘௔௧+ ܵܵ ா , 3.24

and in case of blocking they reduce to

෍ ෍ ൫ݕ௜௝− ഥ൯..ݕ
ଶ

௕

௝ୀଵ

௔

௜ୀଵ

= ܾ෍ ൫ݕ
௜.
− ഥ൯..ݕ

ଶ
௔

௜ୀଵ

+ ܽ෍ ቀݕ
.௝
− ഥቁ..ݕ

ଶ
௕

௝ୀଵ

+ ෍ ෍ ቀ൫ݕ௜௝ + −ത..൯ݕ ൫ݕത௜. + ത.௝൯ቁݕ
ଶ

௕

௝ୀଵ

௔

௜ୀଵ

3.25

ܵܵ ் = ܵܵ ்௥௘௔௧+ ܵܵ ஻௟௢௖௞ + ܵܵ ா . 3.26

Sometimes, a single factor experiment, without blocking, may have different

number of observations under each treatment. This is known as the unbalanced experiment.

It is computed as

ܵܵ ் = ෍ ෍ ௜௝ݕ
ଶ

௡೔

௝ୀଵ

−
..ݕ
ଶ

ܰ

௔

௜ୀଵ

3.27

ܵܵ ்௥௘௔௧ = ෍
.௜ݕ

ଶ

௜݊

−
..ݕ
ଶ

ܰ

௔

௜ୀଵ

3.28

ܵܵ ா = ܵܵ ் − ܵܵ ்௥௘௔௧, 3.29

where, ni is the number of observations taken from treatment i and ܰ = ∑ ௜݊
௔
௜ୀଵ .

Once the SS terms are determined, the factor(s) and their interactions are considered

significant if their calculated test statistic, which follows an F-distribution, exceeds some

critical f value at a chosen significance level. Calculation details for a fixed effects model are

given in Tables 3.4-3.6.

Table 3.4. Test statistic calculations of a fixed effects two-way ANOVA model.

Variation source SS Degrees of freedom Mean Squares F-statistic f critical
A treatments SSA a – 1 MSA = SSA / a – 1 MSA / MSE fα, a – 1, ab(n-1)

B treatments SSB b – 1 MSB = SSB / b – 1 MSB / MSE fα, b – 1, ab(n-1)

AB interaction SSAB (a – 1)(b – 1) MSAB = SSAB / (a – 1)(b – 1) MSAB / MSE fα, (a – 1)(b – 1), ab(n-1)

Error SSE ab(n – 1) MSE = SSE /ab(n – 1)
Total SST abn – 1
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Table 3.5. Test statistic calculations of a fixed effects one-way ANOVA model without blocking.

Variation source SS Degrees of freedom Mean Squares F-statistic f critical
Treatments SSTreat a – 1 MSTreat = SSTreat / a – 1 MSTreat / MSE fα, a – 1, a(n – 1)

Error SSE a(n – 1) MSE = SSE / a(n – 1)
Total SST an – 1

Table 3.6. Test statistic calculations of a fixed effects one-way ANOVA model with blocking.

Variation source SS Degrees of freedom Mean Squares F-statistic f critical
Treatments SSTreat a – 1 MSTreat = SSTreat / a – 1 MSTreat / MSE fα, a – 1, (a – 1)(b – 1)

Blocks SSBlocks b – 1 MSBlocks = SSBlocks / b – 1
Error SSE (a – 1)(b – 1) MSE = SSE / (a – 1)(b – 1)
Total SST ab – 1

The error term of a two-way ANOVA has ab(n – 1) degrees of freedom, which

means if only one observation per cell is available (n = 1), the MSE cannot be calculated and

no further analysis can be conducted unless one assumes that the interaction effect is

negligible and uses MSAB instead of MSE. In this case, a two-way ANOVA model reduces to

a one-way ANOVA model with blocking.

Calculations of the F-statistic for random factors are a bit different. For a two-way

mixed effects model, where factor B is random, MSA is divided by MSAB instead of MSE. See

Table 3.7. However, for a one-way model with blocking, if the treatments and/or blocks are

random, then the F-statistic will still be calculated as MSTreat/MSE. The same holds for a one-

way model without blocking.

Table 3.7. Test statistic calculations of a mixed effects two-way ANOVA model.
Factor B is random and factor A is fixed.

Variation source SS Degrees of freedom Mean Squares F-statistic f critical
A treatments SSA a – 1 MSA = SSA / a – 1 MSA / MSAB fα, a – 1, (a – 1)(b – 1)

B treatments SSB b – 1 MSB = SSB / b – 1 MSB / MSE fα, b – 1, ab(n-1)

AB interaction SSAB (a – 1)(b – 1) MSAB = SSAB / (a – 1)(b – 1) MSAB / MSE fα, (a – 1)(b – 1), ab(n-1)

Error SSE ab(n – 1) MSE = SSE /ab(n – 1)
Total SST abn – 1

Finally, an unbalanced two-way ANOVA is possible in terms of having an unequal

number of replications per cell n’s, not in terms of having unequal number of observations

per factor. Think of trying to conduct a paired t-test with unequal sample sizes! This type is

not discussed here as it will not be used.
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3.4.1.2 Violating normal-model based ANOVA assumptions

The effects of violating the assumptions of ANOVA models, both fixed and

random, have been studied extensively, and now there is a general consensus on how the

nominal Type I and Type II error rates (α and β) could change if one, or more, of the

assumptions are not met. This section limits the discussion to the fixed effects one-way

ANOVA model, as it is beyond the scope of this work to review the effect on all ANOVA

models. In specific, the effect of violating the independence, normality, and equal variances

assumptions are investigated. The interested reader is directed to the works of Box and

Andersen (1954) and Scheffé (1999) for random effects models, and Bradley (1952) and

Elashoff (1969) for fixed effects models.

Before going into the smaller details, two points are worth mentioning: first, while

non-parametric versions of ANOVA models are available, one should not rush to applying

them simply because some assumptions are violated; instead, one should be concerned about

the extent to which the violation(s) will change the nominal error rates (Glass et al., 1972).

Second, since many of these studies are computer simulations, which empirically evaluate

error rates and then compare them to the nominal ones, some disagreement between

different studies is expected.

Violating the independence assumption perhaps has the greatest impact on α and β,

compared to the other two assumptions, even if treatments have equal sample sizes n (Glass

et al., 1972). It will be shown shortly that equal n’s reduces the effect of violating the other

assumptions. Cochran (1968) and Scheffé (1999) showed that negative correlation yields

more conservative tests (i.e. actual α is less than the nominal α), while a positive correlation

yields more liberal tests (i.e. actual α is greater than the nominal α). See Table 3.8.

Table 3.8*. Effect of correlation on the actual α values of a one-way ANOVA. Nominal α = 0.05.

Correlation -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Actual α 1.100-5 0.002 0.011 0.028 0.050 0.074 0.098 0.120 0.140

*Reproduced from Scheffe’ (1959, p. 339).
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Violating the equal variances assumption can have a large effect on the nominal α

levels if the n’s are unequal. Based on the works of Box and Andersen (1954), Pratt (1964),

and Hsu and Feldt (1969), Glass et al. (1972) made the following remarks on heterogeneous

variances and unequal n’s: first, actual α levels tend to be higher when small n’s come from

populations with larger variances. Second, actual α levels tend to be lower when small n’s

come from populations with smaller variances. Third, heterogeneous variances seem to have

little, or no, effect on the actual α levels if the n’s are equal. See Tables 3.9-3.11. The third

remark holds for β as well (Horsnell, 1953).

Table 3.9. Effect of heterogeneous variances on the actual α values of a one-way ANOVA model with
various sample sizes. Nominal α = 0.05.

σ1/σ2

n1/n2 0.1 0.2 0.5 1 2 5 10
3* 0.317 0.178 0.098 0.050 0.025 0.008 0.005
1.67* 0.216 0.103 0.072 0.050 0.038 0.031 0.030
1* 0.072 0.058 0.051 0.050 0.051 0.058 0.063
1** 0.050 0.050 0.050 0.050 0.050 0.050 0.050
2** 0.170 0.120 0.080 0.050 0.029 0.014 NA
5** 0.380 0.220 0.120 0.050 0.014 0.002 NA
* Reproduced from Hsu and Feldt (1969)
** Reproduced from Scheffé (1999)

Table 3.10*. Effect of heterogeneous variances on the actual α values of a one-way ANOVA model
with various sample sizes.

Ratio of σ2’s Sample sizes Nominal α Actual α

1:2:3

5, 5, 5 0.05 0.056
3, 9, 3 0.05 0.056
7, 5, 3 0.05 0.092
3, 5, 7 0.05 0.040

1:1:3

5, 5, 5 0.05 0.059
7, 5, 3 0.05 0.110
9, 5, 1 0.05 0.170
1, 5, 9 0.05 0.013

1:1:1:1:3
5, 5, 5, 5, 5 0.05 0.074
9, 5, 5, 5, 1 0.05 0.14
1, 5, 5, 5, 0 0.05 0.025

* Reproduced from Box and Andersen (1954)

Table 3.11*. Effect of heterogeneous variances on the actual α values of a one-way ANOVA model
with equal sample sizes (n1 = n2 = 10).

ଵߪ
ଶ ଶߪ

ଶ⁄ Nominal α Actual α
219/69 0.05 0.050
252/36 0.05 0.054
279/9 0.05 0.066
278/1 0.05 0.062

* Reproduced from Young and Veldman (1963)
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Violating the normality assumption, usually measured in terms of skewness and

kurtosis, does not seem to have major consequences on the actual α and β values (Lindquist,

1953, Games and Lucas, 1966), see Tables 3.12-3.13. Other researchers concluded the same

(Rider, 1929, Egon, 1931, Srivastava, 1959, Young and Veldman, 1963, Cochran, 1968).

The effect of using binomial data (i.e. dichotomous variables) with a one-way ANOVA was

investigated in Lunney (1970), where he showed that actual α and β values are very close to

the nominal ones for equal n’s. Reproduced results are in Tables 3.14-3.15.

Table 3.12*. Effect of non-normality on the actual α values for a one-way ANOVA, with different
number of treatments and sample sizes.

Nominal α levels

Skewness Kurtosis 0.50 0.25 0.20 0.10 0.050 0.025 0.010 0.005 0.001
0 3.0 0.51 0.25 0.20 0.10 0.056 0.029 0.014 0.007 0.002
0 7.0 0.53 0.28 0.23 0.13 0.078 0.046 0.028 0.015 0.008
0 7.0 0.54 0.29 0.22 0.11 0.066 0.038 0.016 0.010 0.004
0 1.7 0.48 0.25 0.20 0.12 0.061 0.032 0.018 0.009 0.001

0.5 3.7 0.51 0.25 0.20 0.10 0.052 0.028 0.013 0.007 0.001
1.0 3.8 0.50 0.24 0.19 0.10 0.048 0.021 0.008 0.004 0.001
1.0 3.8 0.51 0.26 0.20 0.10 0.048 0.023 0.010 0.007 0.001
1.4 3.6 0.51 0.24 0.19 0.09 0.048 0.026 0.010 0.005 0.002

* Reproduced from Lindquist (1953)

Table 3.13*. Effect of non-normality on the actual β values for a one-way ANOVA, with different
number of treatments and sample sizes.

Nominal β levels

Skewness Kurtosis 0.050 0.087 0.097 0.206 0.261 0.417 0.540 0.851 0.954
0.00 2.90 0.059 0.098 0.091 0.200 0.275 0.430 0.519 0.851 0.945
0.45 3.53 0.052 0.096 0.096 0.193 0.266 0.410 0.556 0.848 0.947
0.00 2.91 0.046 0.098 0.098 0.201 0.286 0.518 0.575 0.834 0.946
0.64 3.53 0.054 0.100 0.100 0.188 0.273 0.446 0.563 0.858 0.943
0.00 2.82 0.057 0.097 0.097 0.213 0.268 0.445 0.594 0.828 0.941
2.04 9.54 0.037 0.078 0.078 0.264 0.326 0.541 0.559 0.854 0.910
0.03 2.88 0.057 0.120 0.120 0.325 0.485 0.536 0.657 0.792 0.964
0.00 9.16 0.036 0.109 0.109 0.269 0.338 0.522 0.584 0.874 0.924

* Reproduced from Games and Lucas (1966)

Table 3.14*. Effect of binomial data on the actual αvalues for a one-way ANOVA, with various 
numbers of treatments and equal sample sizes.

Nominal α values
Number of treatments 0.10 0.05 0.025 0.01
2 0.101 0.048 0.023 0.010
3 0.099 0.051 0.026 0.011
4 0.098 0.047 0.024 0.010
5 0.099 0.051 0.026 0.010
* Reproduced from Lunney (1970)
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Table 3.15*. Effect of binomial data on the actual β values for a one-way ANOVA, with different
sample sizes and a constant number of treatments.

Number of treatments α Sample size Nominal 1-β values Actual 1-β values
3 0.01 11 0.8 0.764
3 0.05 11 0.8 0.801
3 0.01 11 0.6 0.607
3 0.05 11 0.6 0.602
3 0.01 21 0.8 0.782
3 0.05 21 0.8 0.846
3 0.01 21 0.6 0.616
3 0.05 21 0.6 0.594
* Reproduced from Lunney (1970)

3.4.1.3 Applicability of ANOVA models to Racing algorithms

Since the sample sizes in Racing algorithms are always equal, the effect of non-

normality and unequal variances is greatly reduced, and correlation can be dealt with using

blocking or two-way ANOVA. A-Race has been used to tune algorithm parameters by

Schaffer et al. (1989) and Yuan and Gallagher (2004); however, it is unclear if they used any

of the proposed versions here, or if the actual α and β values were empirically calculated and

compared to the nominal ones.

With that in mind, the reader should note that Racing is not just a single ANOVA

test, it is a series of tests applied to a decreasing number of parameter settings, and an

increasing number of sample sizes. In addition, the tests are not independent as Racing is a

sequential procedure. This makes it difficult to predict the true α and β values, in both

parametric and non-parametric Racing, see Branke and Elomari (2013).

In this work, the ANOVA models used for A-Race are either two-way (A-

Race_2Way), with the parameter settings factor treated as fixed and the instances factor

treated as random. Or, one-way unbalanced without blocking (A-Race_1WUB), with the

parameter settings treated as a fixed factor. In both cases, ANOVA is followed by Fisher’s

LSD test, which declares any pairs of means μi and μj to be different if

หݕത௜. − <ത௝.หݕ ܯఈ/ଶ,ேି௔ටݐ ாܵ ቀ
1

௜݊
ൗ + 1

௝݊
ൗ ቁ, 3.30
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where a is the number of levels of factor A, nk is the sample size of treatment k, and N is the

total number of samples for all parameter settings. The right hand side of the inequality is

known as Fisher’s LSD. As 3.30 does not cap the family-wise error rate (explained later), α

is divided by twice the number of comparisons made.

3.4.2 Non-parametric Racing

Switching to a non-parametric Racing algorithm does overcome some of the

difficulties discussed previously. Nevertheless, since non-parametric procedures require

transforming the data into a rank-based format, some information is sacrificed, leading to

less powerful tests (Sheskin, 2004, p.388).

The most widely used non-parametric Racing algorithm, for offline tuning, is F-

Race and its iterative version I\F-Race (Birattari et al., 2010). It uses Friedman’s two-way

ANOVA by ranks as a first stage filtering, followed by a non-parametric pair-wise

comparison test. A one-way ANOVA by ranks is also possible, and is known as the Kruskal-

Wallis test. The author is unaware of any implementation of this test into a Racing

algorithm, for the purposes of offline tuning. Still, it will be implemented in this work as

KW-Race. The details of these tests are presented in the next two sections, based on the

works of Conover (1999) and Sheskin (2004).

3.4.2.1 F-Race

This version of Racing implements Friedman’s two-way ANOVA by ranks with

no interaction effect (Friedman, 1937). The null hypothesis is: in a set of k dependent

samples (k > 2), all samples represent medians ϴ of the same population, while the

alternative hypothesis is: at least two samples represent two medians of two different

populations.

଴ܪ
ᇱ:ߠଵ = ଶߠ = ⋯ = ௞ߠ

ଵܪ
ᇱ:ܰܪݐ݋଴

ᇱ.
3.31
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If the F-test is significant, it means that there is a significant difference between at

least two of the sample medians. This, in turn, should trigger a series of follow-up tests to

identify them. In conducting the test, the data is assumed to be in a rank-based format, or can

be transformed into a rank-based format.

Data arrangement of the F-test is shown in Table 3.16. The columns represent

treatments, and the rows constitute B mutually independent k-variate random variables

,௜ଶݕ,௜ଵݕ] … ,[௜௞ݕ, known as blocks. The individual readings ௜௝ݕ are ranked per block as

,(௜௝ݕ)ݎ for example, in block 2 if the second treatment has the lowest value, it is ranked 1,

the second smallest is ranked 2, and so on. If some ௜௝ݕ values are equal in block i, then each

of them will get a rank equal to the average of the ranks they would have received if they

were not equal, but are still less than ,௜௝ାଵݕ see Table 3.17 for an example. Ranking in a

reverse order is also possible (i.e. the largest reading gets a rank of 1). Rank totals are then

calculated per treatment j as

௝ܴ = ෍ (௜௝ݕ)ݎ

஻

௜ୀଵ

∀ ݆= 1,2, … , ,݇ 3.32

and if H0 is true, then one expects ܴଵ = ܴଶ = ⋯ = ܴ௞.

Table 3.16. Data arrangement for the F-test.

Treatment
Block 1 2 … k
1 r(y11) r(y12) … r(y1k)
2 r(y21) r(y22) … r(y2k)
… … … … …
B r(yB1) r(yB2) … r(yBk)
Rank totals R1 R2 … Rk

Table 3.17. An example of the ranking scheme of the F-test.

Original data Ranked data no adjusted for ties Ranked data adjusted for ties
[1.1, 2, 2,2, 3.3, 7, 9] [1,2,3,4,5,6,7] [1,3,3,3,5,6,7]

Probably the most important assumption of the F-test is that the B blocks are

mutually independent. Other assumptions include: the readings per treatment have been
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randomly selected, and that they are continuous random variables. The final assumption is

not often obeyed though (Sheskin, 2004, p.830).

The test statistic for the F-test is approximated with a Chi-square distribution with

k-1 degrees of freedom. In case there are no, or few, ties, its value is calculated as

௥߯
ଶ =

12

ܤ (݇݇+ 1)
቎෍ ൫ܴ ௝൯

ଶ
௞

௝ୀଵ

቏− +݇)ܤ3 1). 3.33

Daniel (1990, p.226) suggested a correction factor in case of excessive ties

ܥ = 1 −
∑ ௜ݐ)

ଷ− (௜ݐ
௦
௜ୀଵ

−ଷ݇)ܤ )݇
, 3.34

where s is the number of sets of ties, and ti is the number of tied scores in the ith set. In the

example in Table 3.17 there is one set of ties (s = 1) and there are 3 tied scores in that set. A

test statistic adjusted for ties is calculated by dividing 3.33 by 3.34.

௥߯௖
ଶ =

௥߯
ଶ

ܥ
. 3.35

Following a significant F-test, pair-wise comparisons are carried out. Daniel

(1990, p.231) proposed calculating a minimum difference (CDF) in rank sums (Ri and Rj),

required for treatments i and j to be significantly different at a specified type I error rate α.

ிܦܥ = ඨݖ
ܤ (݇݇+ 1)

6
, 3.36

where z can be obtained from normal distribution tables. Note that for the individual

comparisons, the maximum family-wise type I error rate αFW, which the user sets, should be

adjusted based on the number of comparisons C. For a one-tail test z is evaluated at αFW/C,

and for a two-tail test z is evaluated at αFW/2C.

Any absolute difference between treatment ranks sums หܴ ௜− ௝ܴห that is greater

than or equal to CDF, means that treatments i and j come from two populations with unequal

medians. For a Racing algorithm, not all pair-wise comparisons are conducted, only those
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with the current best Rb (i.e. |ܴ௕ − ܴ௜|). If |ܴ௕ − ܴ௜| ≥ ,ிܦܥ then parameter setting i should

be dropped out from the race.

Conover (1999, p.371) proposed another test, where treatments i and j are

considered to represent populations with different medians if the following inequality is

satisfied.

หܴ ௜− ௝ܴห> ݐ
ଵି

ఈ
ଶ
ඩ቎

2ቀܤ∑ ∑ ௜௝൯൧ݕ൫ݎൣ
ଶ௞

௝ୀଵ
஻
௜ୀଵ −∑ ௝ܴ

ଶ௞
௝ୀଵ ቁ

ܤ) − 1)(݇− 1)
቏, 3.37

where t1-α/2 can be obtained from t distribution tables with (B-1)(k-1) degrees of freedom. In

this work, F-Race is implemented as it is in literature using 3.33 and 3.37.

3.4.2.2 KW-Race

This version of Racing implements the one-way ANOVA by ranks test of Kruskal

and Wallis (1952). The null hypothesis is: for k independent samples (k > 2), all samples

represent medians ϴ of the same population, while the alternative hypothesis is: at least two

samples represent medians of two different populations.

଴ܪ
ᇱᇱ:ߠଵ = ଶߠ = ⋯ = ௞ߠ

ଵܪ
ᇱᇱ:ܰܪݐ݋଴

ᇱᇱ.
3.38

If the KW-test is significant, it means that there is a significant difference between

at least two of the samples. In that case, follow-up tests should be conducted to identify

these populations. Data arrangement is similar to that of an F-test, but the ranking procedure

is different, see Table 3.18. Instead of ranking the individual readings yij per row i, all yij

values are pooled together, sorted, and ranked such that the lowest value gets a rank of 1,

and the highest gets a rank of ݊ ∙ .݇ Ranking can be reversed and ties are dealt with as in the

F-test. The ranks are then plugged back into their original positions, and treatment averages

are calculated as

തܴ
௝ =

∑ ௜௝൯ݕ൫ݎ
௡
௜ୀଵ

݊
∀݆= 1,2, … , .݇ 3.39
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Table 3.18. Data arrangement for the KW-test.

Treatment
Sample 1 2 … k
1 r(y11) r(y12) … r(y1k)
2 r(y21) r(y22) … r(y2k)
… … … … …
n r(yn1) r(yn2) … r(ynk)
Rank averages ܴଵതതത ܴଶതതത … ܴ௞തതതത

Assumptions for the KW-test include independence of the n samples, individual

readings are continuous and are drawn at random, and that the populations distributions are

identical in shape, but there is no requirement that they follow any specific distribution

(Marascuilo and Mcsweeney, 1977, pp.300-303, Daniel, 1990, pp.200-202, Conover, 1999,

p.289). The final assumption does indicate that the populations’ distributions should have

equal dispersion measures (Maxwell and Delaney, 2003, pp.141-142). However, some work

suggests that the sampling distribution of the KW-test statistic is robust to violating this

assumption, mainly due to the ranking scheme used, which tends to reduce the effect of

outliers (Sheskin, 2004, p.745).

The test statistic for the KW-test is approximated by a Chi-square distribution, with

k-1 degrees of freedom. In case there are no, or few, ties, the value of the test statistic is

calculated as

ܪ =
12

ܰ(ܰ + 1)
෍ ൥

∑ ௜௝൯ݕ൫ݎ
௡
௜ୀଵ

ଶ

௝݊

൩

௞

௝ୀଵ

− 3(ܰ + 1), 3.40

where N is the total number of observations ݊ ∙ .݇ A correction factor may be used in case of

excessive ties, it is calculated as

ܥ = 1 −
∑ ௜ݐ)

ଷ− (௜ݐ
௦
௜ୀଵ

ܰଷ− ܰ
, 3.41

where s and t are interpreted as in 3.34 and the corrected test statistic is again obtained by

dividing 3.40 by 3.41.

Daniel (1990, p.203) proposed calculating a minimum difference (CDKW) in ranks

sums (Ri and Rj), required for treatments i and j to be significantly different at a specified α.
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௄ௐܦܥ = ඨݖ
ܰ(ܰ + 1)

12
ቆ

1

௜݊

+
1

௝݊

ቇ . 3.42

Where z is obtained from normal distribution tables and αFW is adjusted based on the number

of comparisons C. For a one-tail test z is evaluated at αFW/C, and for a two-tail test z is

evaluated at αFW/2C. Any absolute difference between treatment ranks averages หܴത௜− തܴ
௝ห

that is greater than or equal to CDKW, indicates that they come from two populations with

unequal medians. For a Racing algorithm, not all pair-wise comparisons are needed, only

those with the current best (i.e. | തܴ௕ − തܴ
௜|). If | തܴ௕ − തܴ

௜| ≥ ௄ௐܦܥ , then parameter setting i

should be dropped out from the race.

All Racing algorithms follow the same general framework, the only difference is the

set of statistical tests applied. See Figure 3.12.

Algorithm 3.4: A Racing algorithm

Input: k, N, α, n0
//n0 is the number of instances
//for the initial phase

1 Initialize

2 ←ݐ 0; ܿ← 0
//iteration and consumed budget
//counters

3 ←ݏ {1,2, … , }݇
//s is the set of surviving
//parameter settings

4 run all parameter settings on n0
//initial performance estimate of
//each parameter setting

5 ←ݐ ଴݊; ܿ← ଴݊ ∙ |ݏ|

6 Main allocation loop

7 while ܿ≤ ܰ and |ݏ| > 1

8 =௟ഥܬ
∑ ߱௜,௟
௡೗
௜ୀଵ

௟݊

∀݈∈ ݏ

//update the performance measure
//ωi,l is the ith sample/rank of
//system l

9 run an ANOVA test on s
//normal-model based, F-test, or
//KW-test

10 if ANOVA test is significant //first stage filtering

11
{

find ܾ= ݎܽ݃ min௟ܬ௟ഥ,݈∈ ݏ
//find the current best

12 pair-wise comparisons with b
//select tests corresponding to
//the chosen ANOVA

13 if pair-wise comparison is significant

14 ←ݏ ∖ݏ ݈
}

//second stage filtering

15 run ݏ on a new instance

16 ܿ← ܿ+ |ݏ| //update consumed

17 ←ݐ +ݐ 1 //next iteration

18 end while

Output: ݏ //surviving parameter setting(s)

Figure 3.12. A pseudo code of a Racing algorithm.
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3.5 Racing with reset (2nd contribution)

As should be clear by now, Racing may terminate before the permitted budget is

consumed. In situations where there is a fixed budget and there is no gain from early

termination, the algorithm’s failure rate fr can be reduced by utilizing the “excess” budget. fr

is defined as the percentage of runs the algorithm fails to select the true best, either because

it was discarded at some point during the race, or the race terminates with more than one

parameter setting, and the true best has an inferior aggregated performance.

Starting with a relatively high initial significance level ଴ߙ (say 0.3 or 0.2), Racing is

run until a single parameter setting remains. As ଴ߙ is quite large, it is likely that the race

terminates before N is consumed. If this happens, the algorithm rolls back to the iteration

where the first parameter setting was discarded, decreases ଴ߙ by a factor of γ, and then re-

runs the statistical tests on all the parameter settings. Since α is smaller now, Racing will be

less likely to discard parameter settings, and it will either discard all previously dropped

parameters, or pick some up. This online adaptation of α allows the true best a chance to get

back into the race if it was discarded at some point. Thus, fr is reduced. See Figures 3.13 and

3.14. This reset is done as many times as needed until N is consumed, each time the previous

α is discounted by γ. Obviously, all the samples that were collected before are stored in

memory and used in later iterations if needed. Only those parameter settings which had

previously been discarded, but now survive due to the lower α, are sampled.

As shown in Branke and Elomari (2013), Racing with reset is fairly robust to γ.

Tested values of 0.5 and 0.2 showed almost identical performance over a wide range of .଴ߙ

If γ is very small, however, say 0.01, ଴ߙ is reduced by a large amount within a few resets,

and Racing’s performance will approach that of equal allocation. Higher γ values (e.g. ≥

0.8) allow ଴ߙ to gradually approach its optimal value depending on the number of resets

permitted within the available budget. Based on the experiments done in this thesis, it is

advisable to set γ between 0.2 and 0.7.
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Figure 3.13. A pseudo code of a Racing algorithm with a reset.

Algorithm 3.5: Racing with reset

Input: k, N, α, n0
//n0 is the number of instances
//for the initial phase

1 Initialize

2 ←ݐ 0; ܿ← 0
//iteration and consumed budget
//counters

3 ←ݏ {1,2, … , }݇
//s is the set of surviving
//parameter settings

4 run all parameter settings on n0
//estimate performance of each
//parameter setting

5 ←ݐ ଴݊; ܿ← ଴݊ ∙ |ݏ|

6 Main allocation loop

7 while ܿ≤ ܰ or |ݏ| > 1

8 =௟ഥܬ
∑ ߱௜,௟
௡೗
௜ୀଵ

௟݊

∀݈∈ ݏ

//update the performance measure
//ωi,l is the ith sample/rank of
/system l

9 run an ANOVA test on ݏ
//normal-model based, F-test,
//or KW-test

10 if ANOVA test is significant //first stage filtering

11
{

find ܾ= ݎܽ݃ min௟ܬ௟ഥ,݈∈ ݏ
//find the current best

12 pair-wise comparisons with b
//select tests corresponding to
//the chosen ANOVA

13 if pair-wise comparison is significant

14 ←ݏ ∖ݏ ݈
}

//second stage filtering

17 run ݏ on a new instance //only if it was not run before

18 if |ݏ| == 1

//reset idea

19
{
find first drop out tf

20 ←ݐ ௙ݐ
21 ߙ ← ߙ ∙ ߩ

22 ←ݏ {1,2, … , }݇

23
go back to 9

}
25 update c

26 ←ݐ +ݐ 1 //move to the next iteration

27 end while

Output: ݏ //surviving parameter setting(s)
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Figure 3.14. An example of Racing with reset.

The reset differs depending whether the ANOVA test is one-way or two-way. For F-

Race and A-Race_2Way, the number of observations of the competing systems, after the

reset, has to be equal as both algorithms use a two-way ANOVA test. KW-Race and A-

Race_1WUB, however, do not have that restriction and can use all the previously collected

data. For example, in Figure 3.14, reset 1 occurs at iteration 5, if a two-way test is applied,

only readings 0-5 for parameter settings PS0, PS1, and PS3 can go into the test with the new

α. A one-way test, however, can utilize all 15 readings of PS0 and PS1, plus the first 6

readings of PS3.

Depending on the number of resets, α may not become small enough for Racing to

pick up the true best again. Therefore, another strategy is added to increase the chances of

the true best to re-enter the race if dropped. In addition to decreasing α, all previously

discarded parameters are sampled once more (reset and re-sample). This provides a better

estimate of their aggregated utilities. Re-sampling for two-way Racing algorithms is

expected to degrade performance, as they cannot use all previously collected data, and the

re-sampling forces them to become similar to Equal Budget Allocation (EBA), an algorithm
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which will be shown to be inferior in most cases later on. Hence, they will be tested without

the re-sampling idea. One-way Racing, however, is not likely to behave like EBA, and will

be tested with the re-sampling idea.

Racing algorithms with reset will be designated as: F-RaceR, A-RaceR_2Way, KW-

RaceRR, and A-RaceRR_1WUB, where the “R” stands for the reset, and “RR” stands for

reset and re-sample.

3.6 One-way Racing with intelligent budget allocation (3 rd contribution)

Current Racing algorithms rely on a two-way ANOVA test, which requires having

an equal number of samples for each of the competing parameter settings every time the test

is run. This means that every time a drop out occurs, the remaining must all be sampled the

same number of times (once is the default). The disadvantage is that one cannot allocate the

additional budget more intelligently in each iteration. For example, 7 parameter settings are

in the race, and the statistical tests did not discard any of them. In the next iteration, there is

a budget of ∆ = 7 samples that should be distributed among the survivors. Instead of 

sampling each once more, another algorithm can be run to find a better distribution.

To the extent of the author’s knowledge, this idea was never proposed before, as

most of the development focused on F-Race, which cannot handle unequal sample sizes. The

proposed KW-Race and A-Race_1WUB, however, can. In this work, KW-RaceRR is

combined with OCBA (KW-RaceRR_OCBA) to see if intelligently allocating ∆ will provide 

a better, or worse, exploration vs. exploitation balance, and ultimately improve, or degrade,

its performance. The combination is direct, whenever KW-RaceRR attempts to allocate ∆, 

OCBA is run once to try and make a better use out of ∆. It is possible that OCBA elects to 

allocate ∆ equally at some iteration, in which case no benefit is gained from OCBA. 
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3.7 Conclusion

This chapter focused on the theory and implementation details of the contributions

proposed in this thesis. First, the Flexible Budget method that can find the best parameter

settings for any computational budget, less than a specific maximum, in a single run, without

compromising solution quality. Hence, it saves computational effort. Second, Racing with

reset that utilizes any fixed budget to lower its failure rate. This is done by automatically

adapting the significance level parameter. And third, a Racing algorithm that can

intelligently allocate ∆ compared to equally distributing it among the surviving parameters.  

Three versions of the Flexible Budget method were presented. They differ in how

the utilities of the parameter settings are calculated. The first uses the length of the

convergence curve, the second uses the area under the convergence curve, and the third uses

the area lost by not selecting a specific parameter setting. These three versions will be

compared to the standard Fixed Budget method to experimentally demonstrate their

efficiency. That is, finding the best parameter values in a single run, without compromising

solution quality. This is done in Chapter 4.

Different Racing algorithms were presented, those which take advantage of

normally distributed data (A-Race_2Way and A-Race_1WUB), and those which do not

require the data to follow any specific distribution (F-Race and KW-Race). Two more

algorithms from the Simulation Optimization literature were suggested as offline tuners,

namely OCBA and CBA. They mainly differ from Racing algorithms in that inferior

parameter settings, or systems, are never discarded, but are rather sampled less often. All

budget allocators will be compared in the Chapter 5 to see under which circumstances each

performs best.



Chapter 4 Experiments, Results, and Analysis: Meta-Optimization with a Flexible Budget

78

CHAPTER 4 Experiments, Results, and Analysis

Meta-Optimization with a Flexible Budget

4.1 Introduction

This chapter describes the experiments conducted to validate the first contribution,

the Flexible Budget method, and assess its performance against other algorithms currently

used in the literature. The chapter is organized as follows: Section 4.2 presents the

experimental setup (competing algorithms, performance measures, and training and testing

sets), followed by the results and analysis in Section 4.3. Section 4.4 concludes this chapter.

4.2 Experimental setup

4.2.1 Competing algorithms and performance measures

A meta-optimizer with a fixed budget is compared to a meta-optimizer with a

flexible budget to test the null hypothesis H0: the difference in solution quality obtained by

both methods is equal to zero for various computational budgets, against the alternative

hypothesis H1: the difference is not equal to zero. To do so, the Flexible Budget is first run

once, optimizing parameters for any budget less than nmax. Then, several computational

budgets are selected for the Fixed Budget { ଵܾ, … , ௞ܾ:�ܾ௜≤ ௠݊ ௔௫ ∀�݅= 1, … , }݇, which is run

k times optimizing parameters for a specific bi in each run. Finally, solution qualities

൛ݍ௕భ, … ௕ೖൟி௜௫௘ௗݍ,
and ൛ݍ௕భ, … ௕ೖൟி௟௘௫௜௕௟௘ݍ,

are compared. The expectation is that, over

many replications, these quantities will be statistically indifferent, at a given significance

level. If this is the case, then the Flexible Budget is shown to have saved a lot of time,

depending on k, while maintaining the same solution quality. See Figure 4.1.
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Figure 4.1. Comparison of the Fixed and Flexible Budget methods at different computational budgets.
In this example, the Flexible Budget, using L, AUC, or AL, was able to find a better (lower) solution

quality at each of the four selected budgets less than 3000 (nmax).

The lower-level algorithm is the derandomized Evolution Strategy with Covariance

Matrix Adaptation (CMA-ES)1. This (μW, λ)-CMA-ES generates λ offspring for the next

generation g+1, from the current population of μ individuals, according to a multi-variate

normal distribution with a weighted mean and a covariance matrix.

௞ݔ
௚ାଵ

~ࣨ ൫ݔ௪
௚

௚ߪ,
మ
=݇,௚൯ܥ 1, … ,ߣ, 4.1

where the recombination point ௪ݔ
௚

= ∑ ௜:ఒݔ௜ݓ
௚ఓ

௜ୀଵ is a weighted average of the selected

individuals, such that the weights <௜ݓ 0 for all�݅= 1, … �andߤ, ∑ ௜ݓ
ఓ
௜ୀଵ = 1. C is the

covariance matrix with a step size of σ. The detailed workings of CMA-ES are beyond the

scope of this work, the reader is directed to Hansen and Kern (2004) for more details.

Five parameters are to be tuned for CMA-ES, they are: λ, μ, σ0 (the initial step size),

recombination type, and update type. The recombination type parameter specifies the wi’s.

Three types are used: Equal where =௜ݓ 1 ⁄ߤ , Linear where =௜ݓ −ߤ ,݅ and Superlinear

(non-linear) where =௜ݓ ݈݃݋ +ߤ) 1) − ݈݃݋ �(݅+ 1). The update type parameter specifies the

1 CMA-ES is implemented from the Shark library http://image.diku.dk/shark/sphinx_pages/build/html/index.html. See Igel, C.,
Heidrich-Meisner, V. and Glasmachers, T., 2008. Shark. Journal of Machine Learning Research, 9 (1), pp.993-996.)
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rank of the matrix used to update C. It is either a Rank-μ matrix, or a Rank-1 matrix. These

parameters are to be tuned for different nmax and bi values, see Table 4.1.

Hansen and Ostermeier (2001) showed improved solution quality when using

Superlinear recombination over Equal and Linear. They also noted that the best setting of

this parameter depends on the function being optimized. Rank-μ is expected to reduce the

number of generations required to reach the optimal solution, as reported by Hansen et al.

(2003). Their experimental results showed reduction in the time complexity of CMA-ES

from quadratic to linear over various functions.

Table 4.1. nmax and bi for which parameters of CMA-ES are to be tuned.

Set2 Dimension nmax bi

1 5 3000 {600, 1200, 1800, 2400}

2

5 3000 {600, 1200, 1800, 2400, 3000}

10 3000 {600, 1200, 1800, 2400, 3000}

15 4500 {3000, 3500, 4000, 4500}

3

5

1000 {400, 600, 800, 1000}10

15

The meta-level is a basic EA with crossover and mutation operators (detailed

shortly). The population size is 15 and the number of generations is 40. Parents are selected

according to a tournament selection of size 2, while survival selection is the elitist selection

with a constant population size. The initial values for the recombination and update types are

randomly selected from their respective domains, while λ, μ, and σ0 are randomly initialized

from [10, 20], [2, λ], and [0.01, 2], respectively. Note that 2 ≤ ≥ߤ ߣ (Hansen, 2006). Each

individual is represented as ,଴ߪ,ߤ,ߣ〉 ݎ݁ ݉ܿ݋ ܾ݅ ݊ ݊݋ݐܽ݅ ݁݌ݕݐ� ݀݌ݑ, ݐܽ݁ ݁݌ݕݐ� 〉 and is evaluated

over k = 6 replications of CMA-ES. Finally, the meta-EA is replicated 30 times.

The crossover and mutation operators work as follows: following parent selection, a

random cut-off point c is chosen from the set {2,3,4}, where c = 2 means that a cut-off

occurs after the second “gene”, and so on. Each individual is then cut-off at c and the two

2 Set-1 is a mixture of function, Set-2 is the hump family of functions, and Set-3 is the quadratic
family of functions. All will be detailed shortly.
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parts are swapped. This ensures that ≥ߤ ߣ is maintained. Mutating λ, μ, and σ0 of the new

individuals is done by drawing a number at random from a normal distribution with its mean

centered about the current value, and its standard deviation equal to 1. For λ and μ, the new

values are rounded to integers. This indicates that, on average, 38% of the time λ and μ

remain the same. If σ0 becomes negative, it is reset to a value of 1.

4.2.2 Training and testing sets

Three sets of optimization functions are used, each using different random seeds for

training and testing. Set-1 contains eight functions from which different instances cannot be

generated; thus, each function is used for training and testing. These functions are: Ackley,

Griewangk, Rastrigin, Schwefel, Schwefel ellipsoid, Schwefel ellipsoid rotated, Rosenbrock,

and Rosenbrock rotated, all in 5 dimensions and are implemented as in Igel et al. (2008).

Set-2 and Set-3 are the hump and quadratic family of functions, from which various

instances can be created. These functions are taken from the generator by Rönkkönen et al.

(2011), and are implemented in 5, 10, and 15 dimensions. See Figures 4.2-4.3.

Figure 4.2. Example instances of the hump function in 2D. Set-2.
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4.3 Results

Testing H0 required using the non-parametric 1-sample sign test, as the data did not

follow a normal distribution and was not symmetric. The procedure is designed to test if the

population median η is equal to a hypothesized value η0, in which case one would expect

that half the data set will be greater than η0, against a one-sided or a two-sided alternative. In

specific, the hypothesis tested is =ߟ�:଴ܪ ≠ߟ�:ଵܪ.ݏݒ�0 0. The sign test reports the number of

times the difference in solution quality is below (B), equal (E), or above (A) η0, along with

the p-values. Results are presented separately for each set, followed by a discussion about

the best parameter settings each method converged to. Finally, computational savings gained

by using the Flexible Budget over the repeated application of the Fixed Budget are shown.

4.3.1 Results for Set-1

Only λ and μ were tuned here. Initial results were first presented in Branke and

Elomari (2012), and are reproduced in Table 4.2.a. Table 4.2.b. shows the best solution

qualities achieved, averaged over all replications. To make the table easier to interpret,

column S is added to summarize the results of the sign test. It is read as follows: for the

chosen α level of 0.05, a (+) sign indicates that the Flexible Budget method is significantly

Figure 4.3. Example instances of the quadratic function in 2D. Set-3.
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better, a (≈) sign indicates that there is no significant difference in solution quality between 

both methods, and a (-) sign indicates that the Fixed Budget method is significantly better.

Overall, these results indicate the superiority of the Flexible Budget method over the

repeated application of the Fixed Budget method, especially when the AUC criterion is used.

Note, however, that the Flexible Budget method was not designed to improve solution

quality, but rather to save computational effort.

Table 4.2.a*. Comparison of the solution quality obtained by the Fixed and the Flexible Budget
methods at various computational budgets, with α = 0.05. Results are for Set-1 functions.

*Reproduced from Branke and Elomari (2012).

Budget
Function

(All in 5D)

Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

2400

Ackley 8 0 22 0.016 + 1 0 29 0.000 + 5 0 25 0.000 +
Griewangk 5 17 8 0.581 ≈ 0 20 10 0.002 + 3 16 11 0.057 ≈ 
Rastrigin 6 12 12 0.238 ≈ 3 1 26 0.000 + 2 3 25 0.000 +
Schwefel 6 8 16 0.053 ≈ 5 9 16 0.027 + 6 7 17 0.035 +

SchwefelElip 13 11 6 0.167 ≈ 3 14 13 0.021 + 7 12 11 0.481 ≈ 
SchwefelElipR 14 5 11 0.690 ≈ 2 15 13 0.007 + 13 6 11 0.839 ≈ 

Rosenbrock 9 2 19 0.087 ≈ 0 0 30 0.000 + 0 0 30 0.000 +
RosenbrockR 8 0 22 0.016 + 3 0 27 0.000 + 5 0 25 0.000 +

1800

Ackley 8 0 22 0.016 + 3 0 27 0.000 + 6 0 24 0.001 +
Griewangk 7 9 14 0.189 ≈ 4 10 16 0.012 + 9 6 15 0.308 ≈ 
Rastrigin 7 4 19 0.029 + 0 3 27 0.000 + 2 3 25 0.000 +
Schwefel 3 6 21 0.000 + 3 5 22 0.000 + 1 10 19 0.000 +

SchwefelElip 11 9 10 1.000 ≈ 1 11 18 0.000 + 6 8 16 0.053 ≈ 
SchwefelElipR 10 5 15 0.424 ≈ 2 10 18 0.000 + 9 7 14 0.405 ≈ 

Rosenbrock 10 11 9 1.000 ≈ 0 0 30 0.000 + 0 0 30 0.000 +
RosenbrockR 10 3 17 0.248 ≈ 8 0 22 0.016 + 7 1 22 0.008 +

1200

Ackley 18 0 12 0.362 ≈ 16 1 13 0.711 ≈ 19 0 11 0.201 ≈ 
Griewangk 5 3 22 0.002 + 3 1 26 0.000 + 4 3 26 0.000 +
Rastrigin 5 8 17 0.017 + 4 0 26 0.000 + 4 0 26 0.000 +
Schwefel 5 10 15 0.041 + 4 11 15 0.019 + 6 9 15 0.078 ≈ 

SchwefelElip 6 9 15 0.078 ≈ 2 7 21 0.000 + 3 7 20 0.000 +
SchwefelElipR 9 6 15 0.307 ≈ 3 7 20 0.001 + 8 6 16 0.152 ≈ 

Rosenbrock 30 0 0 0.000 - 1 2 27 0.000 + 5 3 22 0.002 +
RosenbrockR 1 7 22 0.001 + 0 5 25 0.000 + 1 7 22 0.000 +

600

Ackley 13 7 10 0.678 ≈ 2 17 11 0.023 + 5 11 14 0.064 ≈ 
Griewangk 6 7 17 0.035 + 2 10 18 0.000 + 3 12 15 0.008 +
Rastrigin 14 2 14 1.000 ≈ 11 0 19 0.200 ≈ 12 0 18 0.362 ≈ 
Schwefel 3 9 18 0.002 + 3 8 19 0.001 + 5 7 18 0.012 +

SchwefelElip 5 10 15 0.041 + 0 11 19 0.000 + 5 10 15 0.041 +
SchwefelElipR 8 5 17 0.108 ≈ 7 4 19 0.029 + 9 6 15 0.308 ≈ 

Rosenbrock 30 0 0 0.000 - 4 5 21 0.001 + 7 4 19 0.029 +
RosenbrockR 6 2 22 0.004 + 2 2 26 0.000 + 2 3 25 0.000 +

Overall 41% (+), 53% (≈), 6% (-) 94% (+), 6% (≈), 0% (-) 62% (+), 38% (≈), 0% (-)
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Table 4.2.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-1.
The numbers are averaged over all replications. The optimal value for all functions is 0.0.

Table 4.3 shows the parameter settings suggested by each method, averaged over all

30 replications of the meta-EA. The Flexible Budget proposes smaller μ/λ ratios 50% of the

time when using L, 72% of the time when using AL, and 78% of the time when using AUC.

See Table 4.3.d. This links to the significantly better results seen in Table 4.2. Clearly, high

μ/λ ratios degrade the algorithm’s performance under a relatively small budget for these

functions.

Budget Function (all in 5D) Flexible-L Flexible-AUC Flexible-AL Fixed

2400

Ackley 0.000 0.000 0.000 0.000
Griewangk 0.015 0.015 0.025 0.015
Rastrigin 2.975 1.990 1.990 1.993
Schwefel 0.001 0.000 0.000 0.000

SchwefelElip 0.000 0.000 0.000 0.001
SchwefelElipR 0.000 0.000 0.000 0.001

Rosenbrock 0.000 0.000 0.000 0.000
RosenbrockR 0.000 0.000 0.000 0.000

1800

Ackley 0.000 0.000 0.000 0.001
Griewangk 0.015 0.015 0.025 0.031
Rastrigin 2.975 1.990 1.990 2.011
Schwefel 0.001 0.000 0.000 0.001

SchwefelElip 0.000 0.000 0.000 0.000
SchwefelElipR 0.000 0.000 0.000 0.000

Rosenbrock 0.000 0.000 0.000 0.001
RosenbrockR 0.000 0.000 0.000 0.000

1200

Ackley 0.000 0.000 0.000 0.001
Griewangk 0.015 0.015 0.025 0.013
Rastrigin 2.975 2.013 2.013 2.105
Schwefel 0.001 0.000 0.000 0.000

SchwefelElip 0.000 0.000 0.000 0.001
SchwefelElipR 0.000 0.000 0.519 0.014

Rosenbrock 0.123 0.178 0.123 0.103
RosenbrockR 0.049 0.049 0.172 0.130

600

Ackley 0.200 0.200 0.200 0.190
Griewangk 0.337 0.337 0.430 0.389
Rastrigin 6.580 4.239 4.239 4.583
Schwefel 0.002 0.000 0.001 0.001

SchwefelElip 1.017 1.017 1.017 1.017
SchwefelElipR 0.740 0.897 0.680 0.702

Rosenbrock 0.981 1.672 0.981 0.791
RosenbrockR 0.381 0.381 0.410 0.339



Chapter 4 Experiments, Results, and Analysis: Meta-Optimization with a Flexible Budget

85

Table 4.3. The best parameter settings proposed by the Fixed and Flexible Budget methods for Set-1.
The numbers are averaged over all 30 replications of the meta-EA.

Table 4.3.a. λ and µ proposed by the Flexible Budget method using L as a secondary criterion. Highlighted cells indicate lower µ/λ ratios proposed by the Flexible Budget.

Flexible L Fixed

Function
600 1200 1800 2400 600 1200 1800 2400

λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ

Ackely 6.10 4.10 0.70 6.10 4.10 0.70 6.10 4.20 0.70 6.10 4.20 0.70 6.20 4.00 0.65 6.70 4.70 0.70 7.30 5.10 0.70 6.80 5.00 0.74

Griewank 5.00 4.50 0.90 5.50 4.50 0.80 7.70 3.90 0.50 8.10 3.10 0.40 7.70 4.40 0.57 8.30 5.60 0.67 8.50 5.70 0.67 8.50 6.10 0.72

Rastrigin 9.30 5.30 0.60 10.10 6.20 0.60 10.20 6.20 0.60 10.30 6.50 0.60 7.90 5.40 0.68 7.60 4.90 0.64 9.10 6.90 0.76 9.50 7.40 0.78

Rosenbrock 9.00 5.00 0.60 9.10 5.00 0.50 7.10 4.30 0.60 7.10 4.30 0.60 7.50 5.40 0.72 7.70 4.00 0.52 7.40 4.10 0.55 7.30 4.30 0.59

RosenbrockR 5.80 2.10 0.40 5.80 2.10 0.40 5.50 2.50 0.50 5.60 2.50 0.40 7.20 4.30 0.60 7.60 4.10 0.54 8.60 4.40 0.51 7.80 4.70 0.60

Schwefel 6.40 4.80 0.80 6.30 4.80 0.80 6.40 5.10 0.80 6.50 5.00 0.80 5.80 2.40 0.41 5.10 2.30 0.45 7.70 3.70 0.48 6.00 4.30 0.72

SchwefelE 6.80 4.20 0.60 6.20 3.80 0.60 7.20 3.60 0.50 6.30 3.40 0.50 5.90 3.20 0.54 6.70 3.10 0.46 6.80 3.30 0.49 5.60 2.60 0.46

SchwefelER 6.50 3.50 0.50 6.40 3.20 0.50 6.00 3.10 0.50 5.80 3.00 0.50 7.50 4.00 0.53 7.00 4.00 0.57 7.20 4.10 0.57 5.60 2.80 0.50

Table 4.3.b. λ and µ proposed by the Flexible Budget method using AL as a secondary criterion. Highlighted cells indicate lower µ/λ ratios proposed by the Flexible Budget.

Flexible AL Fixed

Function
600 1200 1800 2400 600 1200 1800 2400

λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ

Ackely 6.30 4.10 0.65 6.50 4.10 0.63 6.50 4.20 0.65 6.10 4.00 0.66 6.20 4.00 0.65 6.70 4.70 0.70 7.30 5.10 0.70 6.80 5.00 0.74

Griewank 8.30 4.50 0.54 7.30 4.60 0.63 6.70 5.10 0.76 6.50 5.00 0.77 7.70 4.40 0.57 8.30 5.60 0.67 8.50 5.70 0.67 8.50 6.10 0.72

Rastrigin 5.30 2.70 0.51 9.20 6.20 0.67 9.50 6.70 0.71 9.50 6.50 0.68 7.90 5.40 0.68 7.60 4.90 0.64 9.10 6.90 0.76 9.50 7.40 0.78

Rosenbrock 8.00 5.00 0.63 7.40 3.70 0.50 7.50 3.80 0.51 7.30 3.80 0.52 7.50 5.40 0.72 7.70 4.00 0.52 7.40 4.10 0.55 7.30 4.30 0.59

RosenbrockR 7.20 3.40 0.47 7.80 3.40 0.44 7.40 3.00 0.41 6.90 2.70 0.39 7.20 4.30 0.60 7.60 4.10 0.54 8.60 4.40 0.51 7.80 4.70 0.60

Schwefel 6.20 4.90 0.79 6.20 4.90 0.79 6.60 5.60 0.85 6.40 5.30 0.83 5.80 2.40 0.41 5.10 2.30 0.45 7.70 3.70 0.48 6.00 4.30 0.72

SchwefelE 5.80 3.60 0.62 4.60 2.00 0.43 6.00 2.40 0.40 4.60 2.00 0.43 5.90 3.20 0.54 6.70 3.10 0.46 6.80 3.30 0.49 5.60 2.60 0.46

SchwefelER 6.70 3.50 0.52 6.20 3.10 0.50 5.80 3.20 0.55 5.70 2.80 0.49 7.50 4.00 0.53 7.00 4.00 0.57 7.20 4.10 0.57 5.60 2.80 0.50

8
4

9
4
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Table 4.3.c. λ and µ proposed by the Flexible Budget method using AUC as a secondary criterion.
Highlighted cells indicate lower µ/λ ratios proposed by the Flexible Budget.

Flexible AUC Fixed

Function
600 1200 1800 2400 600 1200 1800 2400

λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ λ µ µ/λ

Ackely 6.00 4.10 0.68 6.10 4.10 0.67 6.30 4.10 0.65 6.00 4.10 0.68 6.20 4.00 0.65 6.70 4.70 0.70 7.30 5.10 0.70 6.80 5.00 0.74

Griewank 8.20 3.80 0.46 8.60 3.30 0.38 7.70 4.20 0.55 7.60 4.20 0.55 7.70 4.40 0.57 8.30 5.60 0.67 8.50 5.70 0.67 8.50 6.10 0.72

Rastrigin 5.70 2.70 0.47 8.90 6.40 0.72 8.90 6.60 0.74 8.90 6.40 0.72 7.90 5.40 0.68 7.60 4.90 0.64 9.10 6.90 0.76 9.50 7.40 0.78

Rosenbrock 7.70 4.40 0.57 7.10 3.20 0.45 7.10 3.20 0.45 7.10 3.20 0.45 7.50 5.40 0.72 7.70 4.00 0.52 7.40 4.10 0.55 7.30 4.30 0.59

RosenbrockR 6.20 2.90 0.47 6.10 3.00 0.49 6.10 2.60 0.43 5.70 2.60 0.46 7.20 4.30 0.60 7.60 4.10 0.54 8.60 4.40 0.51 7.80 4.70 0.60

Schwefel 5.80 4.50 0.78 5.90 4.30 0.73 5.90 4.60 0.78 5.80 4.30 0.74 5.80 2.40 0.41 5.10 2.30 0.45 7.70 3.70 0.48 6.00 4.30 0.72

SchwefelE 5.80 3.50 0.60 4.50 1.50 0.33 5.90 2.20 0.37 4.50 2.00 0.44 5.90 3.20 0.54 6.70 3.10 0.46 6.80 3.30 0.49 5.60 2.60 0.46

SchwefelER 6.10 3.10 0.51 5.50 2.50 0.45 5.40 2.40 0.44 5.20 2.20 0.42 7.50 4.00 0.53 7.00 4.00 0.57 7.20 4.10 0.57 5.60 2.80 0.50

Table 4.3.d. Percentage of time the Flexible Budget proposed higher, lower, or equal µ/λ ratios compared to the Fixed Budget method.
The numbers are based on Tables 4.3.a – 4.3.c for all budgets.

Fixed vs. L Fixed vs. AL Fixed vs. AUC
Equal 0.09 0.03 0.00
High 0.41 0.25 0.22
Low 0.50 0.72 0.78

9
4

8
5
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4.3.2 Results for Set-2

Different instances can be generated from the hump family of functions. Both

methods are first trained on five instances, and then the best parameter settings suggested by

each method, at various computational budgets, are tested on four other instances with

different random seeds. Training was done by simply averaging the convergence curve of a

parameter setting over all five instances, then using the averaged curved in assessing an

individual’s performance at the meta-level. As with Set-1, comparison is based on solution

quality using a 1-sample sign test with α = 0.05. Results for 5, 10, and 15 dimensions are in

Tables 4.4-4.6. The best average solution quality achieved is also reported.

Table 4.4.a. Comparison of the solution quality obtained by the Fixed and Flexible Budget methods
at various computational budgets, with α = 0.05.  

Results are for the hump function in 5D where training and testing instances are different.

Budget Instance
Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

3000

Hump-1 8 0 22 0.000 + 20 0 10 0.000 - 5 0 25 0.000 +
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-3 1 0 29 0.000 + 6 0 24 0.000 + 3 0 27 0.000 +
Hump-4 28 0 2 0.000 - 9 0 21 0.000 + 17 0 13 0.000 -

2400

Hump-1 23 0 7 0.005 - 23 0 7 0.005 - 25 0 5 0.000 -
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-3 4 0 26 0.000 + 24 0 6 0.001 - 6 0 24 0.001 +
Hump-4 11 0 19 0.201 ≈ 9 0 21 0.043 + 9 0 21 0.043 +

1800

Hump-1 27 0 3 0.000 - 26 0 4 0.000 - 25 0 5 0.000 -
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-3 18 0 12 0.362 ≈ 14 0 16 0.856 ≈ 20 0 10 0.099 ≈
Hump-4 28 0 2 0.000 - 1 0 29 0.000 + 27 0 3 0.000 -

1200

Hump-1 1 0 29 0.000 + 1 0 29 0.000 + 1 0 29 0.000 +
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-3 1 0 29 0.000 + 1 0 29 0.000 + 1 0 29 0.000 +
Hump-4 4 0 26 0.000 + 4 0 26 0.000 + 2 0 28 0.000 +

600

Hump-1 2 0 28 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-3 19 0 11 0.201 ≈ 17 0 13 0.585 ≈ 14 0 16 0.856 ≈
Hump-4 10 0 20 0.099 ≈ 12 0 18 0.362 ≈ 9 0 21 0.043 +

Overall 35% (+), 45% (≈), 20% (-) 40% (+), 40% (≈), 20% (-) 45% (+), 35% (≈), 20% (-)



Chapter 4 Experiments, Results, and Analysis: Meta-Optimization with a Flexible Budget

88

Table 4.4.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-2.
The numbers are averaged over all replications. The optimal value for all functions is -1.0.
Results are for the hump function in 5D where training and testing instances are different.

Table 4.5.a. Comparison of the solution quality obtained by the Fixed the Flexible Budget methods
at various computational budgets, with α = 0.05.  

Results are for the hump function in 10D where training and testing instances are different.

Budget Instance Flexible-L Flexible-AUC Flexible-AL Fixed

3000

Hump-1 -0.421 -0.356 -0.331 -0.618
Hump-2 0.000 0.000 0.000 0.000
Hump-3 -0.578 -0.486 -0.382 -0.837
Hump-4 -0.499 -0.416 -0.379 -0.787

2400

Hump-1 -0.373 -0.294 -0.225 -0.606
Hump-2 0.000 0.000 0.000 0.000
Hump-3 -0.607 -0.450 -0.235 -0.758
Hump-4 -0.373 -0.234 -0.225 -0.606

1800

Hump-1 -0.201 -0.158 -0.129 -0.420
Hump-2 0.000 0.000 0.000 0.000
Hump-3 -0.364 -0.281 -0.181 -0.634
Hump-4 -0.301 -0.206 -0.181 -0.586

1200

Hump-1 -0.183 -0.156 -0.121 -0.456
Hump-2 0.000 0.000 0.000 0.000
Hump-3 -0.277 -0.252 -0.195 -0.750
Hump-4 -0.272 -0.246 -0.194 -0.750

600

Hump-1 -0.118 -0.079 -0.046 -0.191
Hump-2 0.000 0.000 0.000 0.000
Hump-3 -0.251 -0.155 -0.116 -0.404
Hump-4 -0.251 -0.167 -0.117 -0.405

Budget Instance
Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

3000

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 7 0 23 0.005 + 11 0 19 0.201 ≈ 10 0 20 0.099 ≈
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-4 7 0 23 0.005 + 11 0 19 0.201 ≈ 10 0 20 0.099 ≈

2400

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 11 0 19 0.201 ≈ 9 0 21 0.043 + 9 0 21 0.043 +
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-4 11 0 19 0.201 ≈ 9 0 21 0.043 + 9 0 21 0.043 +

1800

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 23 0 7 0.005 - 23 0 7 0.005 - 23 0 7 0.005 -
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-4 26 0 4 0.000 - 3 0 27 0.000 + 3 0 27 0.000 +

1200

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 4 0 26 0.000 + 4 0 26 0.000 + 9 0 21 0.043 +
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-4 28 0 2 0.000 - 29 0 1 0.000 - 23 0 7 0.005 -

600

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 0 7 23 0.000 + 0 4 26 0.000 + 0 4 26 0.000 +
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-4 12 0 18 0.362 ≈ 11 0 19 0.201 ≈ 9 0 21 0.043 +

Overall 20% (+), 65% (≈), 15% (-) 25% (+), 65% (≈), 10% (-) 30% (+), 60% (≈), 10% (-)
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Table 4.5.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-2.
The numbers are averaged over all replications. The optimal value for all functions is -1.0.
Results are for the hump function in 10D where training and testing instances are different.

Table 4.6.a. Comparison of the solution quality obtained by the Fixed the Flexible Budget methods
at various computational budgets, with α = 0.05. 

Results are for the hump function in 15D where training and testing instances are different.

Budget Instance Flexible-L Flexible-AUC Flexible-AL Fixed

3000

Hump-1 -0.005 -0.005 -0.005 -0.005
Hump-2 -0.228 -0.212 -0.200 -0.211
Hump-3 -0.107 -0.107 -0.107 -0.107
Hump-4 -0.230 -0.213 -0.202 -0.213

2400

Hump-1 0.000 0.000 0.000 0.000
Hump-2 -0.020 -0.020 -0.018 -0.020
Hump-3 -0.013 -0.013 -0.013 -0.013
Hump-4 -0.251 -0.218 -0.198 -0.217

1800

Hump-1 0.000 0.000 0.000 0.000
Hump-2 -0.017 -0.017 -0.014 -0.016
Hump-3 -0.009 -0.009 -0.009 -0.009
Hump-4 -0.247 -0.215 -0.194 -0.214

1200

Hump-1 0.000 0.000 0.000 0.000
Hump-2 -0.013 -0.012 -0.005 -0.012
Hump-3 0.000 0.000 0.000 0.000
Hump-4 -0.295 -0.262 -0.166 -0.304

600

Hump-1 0.000 0.000 0.000 0.000
Hump-2 -0.002 -0.003 -0.005 -0.002
Hump-3 0.000 0.000 0.000 0.000
Hump-4 -0.181 -0.149 -0.204 -0.105

Budget Instance
Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

3000

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-4 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈

3500

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 23 7 0.016 +
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 23 7 0.016 +
Hump-4 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 23 7 0.016 +

4000

Hump-1 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 19 11 0.001 +
Hump-3 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 19 11 0.001 +
Hump-4 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 19 11 0.001 +

4500

Hump-1 0 26 4 0.032 + 0 30 0 1.000 ≈ 0 30 0 1.000 ≈
Hump-2 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 3 22 5 0.041 +
Hump-3 0 30 0 1.000 ≈ 5 15 10 0.011 + 0 30 0 1.000 ≈
Hump-4 0 30 0 1.000 ≈ 0 30 0 1.000 ≈ 0 29 1 0.703 ≈

Overall 6% (+), 94% (≈), 0% (-) 6% (+), 94% (≈), 0% (-) 44% (+), 56% (≈), 0% (-)
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Table 4.6.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-2.
The numbers are averaged over all replications. The optimal value for all functions is -1.0.
Results are for the hump function in 15D where training and testing instances are different.

When the test instances are different from the training ones, the Flexible Budget

performs just as well as the Fixed Budget most of the time. For the cases where there is a

significant difference in performance, the Flexible Budget is still superior more often. The

inferior performance observed over 12 instances in Table 4.4 and 7 instances in Table 4.5,

reflects degradation in solution quality that is in the order of 10-3, and whether this loss is

acceptable, in support of the time savings, depends on the application.

With such performance, one expects both methods to converge to similar parameter

settings. This is supported by the results in Tables 4.7-4.9, where the numerical parameters

are averaged over all replications, while each categorical parameter is presented as a

percentage of the number of times it was selected.

The chosen recombination and update types are very similar for both methods, and

follow the same pattern. That is, the recombination type Equal is chosen the least, and

Superlinear is chosen the most, which is consistent with the findings of Hansen and

Ostermeier (2001). For 10 and 15 dimensions, update types are selected almost equally as

parameter settings are evaluated based on solution quality, not running time, so there should

be no advantage for Rank-μ over Rank-1. Still, for functions in 5 dimensions, Rank-μ is

Budget Instance Flexible-L Flexible-AUC Flexible-AL Fixed

3000

Hump-1 0.000 0.000 0.000 0.000
Hump-2 0.000 0.000 0.000 0.000
Hump-3 0.000 0.000 0.000 0.000
Hump-4 0.000 0.000 0.000 0.000

3500

Hump-1 0.000 0.000 0.000 0.000
Hump-2 0.000 0.000 0.000 0.000
Hump-3 0.000 0.000 0.000 0.000
Hump-4 0.000 0.000 0.000 0.000

4000

Hump-1 0.000 0.000 -0.001 0.000
Hump-2 0.000 0.000 -0.001 0.000
Hump-3 0.000 0.000 -0.002 0.000
Hump-4 0.000 0.000 -0.002 0.000

4500

Hump-1 0.000 0.000 0.000 0.000
Hump-2 0.000 0.000 -0.002 0.000
Hump-3 0.000 -0.001 -0.001 0.000
Hump-4 0.000 0.000 0.000 0.000
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obviously preferred all the time. It is unclear why this is so. Numerical parameters are quite

similar too, particularly in 10 and 15 dimensions. While the Flexible Budget is proposing

lower µ/λ ratios, this does not translate into significantly better results as seen in Set-1,

probably because the hump function has flat areas where the search stagnates.

Table 4.7. Best parameter settings suggested by the Fixed and Flexible Budget methods.
Highlighted cells indicate lower µ/λ ratios proposed by the Flexible Budget. Hump function in 5D.

Budget Method λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

600

Flexible L 18.4 7.1 4.1 13% 27% 60% 30% 70% 0.39

Flexible AL 17.7 7.5 4.5 0% 47% 53% 23% 77% 0.42

Flexible AUC 17.3 6.8 3.7 13% 37% 50% 23% 77% 0.39

Fixed 14.8 7.4 3.8 23% 30% 47% 10% 90% 0.50

1200

Flexible L 18.5 7.5 4.3 7% 20% 73% 23% 77% 0.41

Flexible AL 17.2 6.7 4.4 7% 47% 47% 30% 70% 0.39

Flexible AUC 18.0 7.0 4.1 7% 17% 77% 27% 73% 0.39

Fixed 14.6 6.8 2.6 7% 37% 57% 27% 73% 0.47

1800

Flexible L 17.4 7.2 3.4 3% 23% 73% 33% 67% 0.41

Flexible AL 17.0 7.1 3.1 0% 27% 73% 33% 67% 0.42

Flexible AUC 17.5 6.8 2.9 3% 17% 80% 30% 70% 0.39

Fixed 15.6 6.2 2.0 3% 17% 80% 27% 73% 0.40

2400

Flexible L 17.3 7.0 3.2 0% 13% 87% 20% 80% 0.40

Flexible AL 17.5 7.0 3.0 0% 23% 77% 30% 70% 0.40

Flexible AUC 17.6 7.3 3.3 7% 13% 80% 23% 77% 0.41

Fixed 15.4 5.9 2.3 3% 23% 73% 30% 70% 0.38

3000

Flexible L 17.4 6.9 3.6 0% 13% 87% 27% 73% 0.40

Flexible AL 17.4 6.7 3.0 0% 23% 77% 33% 67% 0.39

Flexible AUC 17.9 6.8 3.3 3% 17% 80% 30% 70% 0.37

Fixed 14.3 5.5 2.3 0% 43% 57% 43% 57% 0.38
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Table 4.8. Best parameter settings suggested by the Fixed and Flexible Budget methods.
Highlighted cells indicate lower µ/λ ratios proposed by the Flexible Budget. Hump function in 10D.

Budget Method λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

600

Flexible L 16.7 7.5 0.7 17% 37% 47% 37% 63% 0.45

Flexible AL 17.4 7.1 0.5 10% 40% 50% 47% 53% 0.41

Flexible AUC 17.4 6.8 0.5 17% 23% 60% 40% 60% 0.39

Fixed 17.7 9.6 0.7 20% 37% 43% 37% 63% 0.54

1200

Flexible L 16.7 7.2 1.1 10% 27% 63% 53% 47% 0.43

Flexible AL 17.1 7.2 0.9 17% 37% 47% 50% 50% 0.42

Flexible AUC 17.0 6.3 0.8 7% 17% 77% 33% 67% 0.37

Fixed 16.7 8.5 1.3 10% 33% 57% 57% 43% 0.51

1800

Flexible L 16.9 7.0 1.3 13% 33% 53% 50% 50% 0.41

Flexible AL 17.2 6.6 1.1 13% 47% 40% 47% 53% 0.38

Flexible AUC 17.1 6.5 1.0 10% 20% 70% 43% 57% 0.38

Fixed 15.9 7.3 1.3 17% 23% 60% 53% 47% 0.46

2400

Flexible L 16.3 6.8 1.4 10% 33% 57% 47% 53% 0.42

Flexible AL 17.5 6.1 1.2 17% 37% 47% 43% 57% 0.35

Flexible AUC 17.0 7.0 0.9 3% 20% 77% 40% 60% 0.41

Fixed 16.4 7.2 2.2 0% 10% 90% 30% 70% 0.44

3000

Flexible L 16.5 7.5 1.5 7% 33% 60% 50% 50% 0.45

Flexible AL 17.7 6.7 1.4 13% 37% 50% 43% 57% 0.38

Flexible AUC 16.3 6.5 1.2 7% 27% 67% 37% 63% 0.40

Fixed 12.8 5.5 1.8 17% 20% 63% 50% 50% 0.43

Table 4.9. Best parameter settings suggested by the Fixed and Flexible Budget methods.
Highlighted cells indicate lower µ/λ ratios proposed by the Flexible Budget. Hump function in 15D.

Budget Method λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

3000

Flexible L 15.8 7.3 2.2 33% 40% 27% 63% 37% 0.46

Flexible AL 17.5 9.3 1.5 27% 27% 47% 50% 50% 0.53

Flexible AUC 15.6 8.9 1.7 10% 47% 43% 53% 47% 0.56

Fixed 14.8 8.5 1.9 27% 27% 47% 47% 53% 0.57

3500

Flexible L 16.3 7.4 2.1 27% 47% 27% 67% 33% 0.45

Flexible AL 17.0 9.1 2.0 27% 27% 47% 53% 47% 0.54

Flexible AUC 15.5 8.9 1.6 17% 40% 43% 53% 47% 0.57

Fixed 15.6 7.3 2.0 20% 33% 47% 73% 27% 0.47

4000

Flexible L 16.5 7.4 2.0 30% 43% 27% 67% 33% 0.45

Flexible AL 17.1 9.0 1.8 27% 33% 40% 53% 47% 0.53

Flexible AUC 15.3 9.1 1.5 20% 43% 37% 57% 43% 0.59

Fixed 16.0 7.3 1.8 23% 30% 47% 47% 53% 0.46

4500

Flexible L 16.6 7.1 1.9 33% 43% 23% 67% 33% 0.43

Flexible AL 17.2 9.3 1.8 27% 37% 37% 47% 53% 0.54

Flexible AUC 15.2 8.7 1.5 20% 47% 33% 60% 40% 0.57

Fixed 16.5 7.3 1.7 33% 37% 30% 67% 33% 0.44
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Examining the parameters across dimensions, λ, µ, σ0 seem to vary less compared to

the categorical parameters. See Table 4.10, where the results are limited to the 3000 budget

case as it is the only one common between all three dimensions. It is also observed that the

µ/λ ratios increase with dimensionality for both methods, their performance becomes more

equivalent as dimensionality increases as well. The connection is unclear though, as the

change happens for both algorithms.

Table 4.10. Comparison of the best parameters proposed by each method across dimensions for Set-2.
Results are limited to the 3000 budget case as it is the only common case between all dimensions.

Method Dimension λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

Fixed
5 14.3 5.5 2.3 0.0 0.4 0.6 0.4 0.6 0.38

10 12.8 5.5 1.8 0.2 0.2 0.6 0.5 0.5 0.43
15 14.8 8.5 1.9 0.3 0.3 0.5 0.5 0.5 0.57

Flexible L
5 17.4 6.9 3.6 0.0 0.1 0.9 0.3 0.7 0.40

10 16.5 7.5 1.5 0.1 0.3 0.6 0.5 0.5 0.45
15 15.8 7.3 2.2 0.3 0.4 0.3 0.6 0.4 0.46

Flexible AL
5 17.4 6.7 3.0 0.0 0.2 0.8 0.3 0.7 0.39

10 17.7 6.7 1.4 0.1 0.4 0.5 0.4 0.6 0.38
15 17.5 9.3 1.5 0.3 0.3 0.5 0.5 0.5 0.53

Flexible
AUC

5 17.9 6.8 3.3 0.0 0.2 0.8 0.3 0.7 0.38
10 16.3 6.5 1.2 0.1 0.3 0.7 0.4 0.6 0.40
15 15.6 8.9 1.7 0.1 0.5 0.4 0.5 0.5 0.57
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4.3.3 Results for Set-3

The same set of experiments is carried out on the quadratic family of functions, with

five training instances and four test instances. Results are summarized in Tables 4.11-4.13.

Table 4.11.a. Comparison of the solution quality obtained by the Fixed Budget method and the
Flexible Budget method at various computational budgets, with α = 0.05.  

Results are for the quadratic function in 5D.

Table 4.11.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-3.
The numbers are averaged over all replications. The optimal value for all functions is -2.0.
Results are for the quad function in 5D where training and testing instances are different.

Budget Instance
Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

400

Quad-1 6 0 24 0.001 + 4 0 26 0.000 + 10 0 20 0.099 ≈ 
Quad-2 3 0 27 0.000 + 2 0 28 0.000 + 2 0 28 0.000 +
Quad-3 6 0 24 0.001 + 3 0 27 0.000 + 3 0 27 0.000 +
Quad-4 11 0 19 0.201 ≈ 12 0 18 0.362 ≈ 10 0 20 0.099 ≈ 

600

Quad-1 18 0 12 0.362 ≈ 14 0 16 0.856 ≈ 12 0 18 0.362 ≈ 
Quad-2 1 0 29 0.000 + 1 0 29 0.000 + 3 0 27 0.000 +
Quad-3 22 0 8 0.016 - 23 0 7 0.005 - 19 0 11 0.201 ≈ 
Quad-4 11 0 19 0.201 ≈ 5 0 25 0.000 + 7 0 23 0.005 +

800

Quad-1 0 0 30 0.000 + 3 0 27 0.000 + 1 0 29 0.000 +
Quad-2 12 0 18 0.362 ≈ 13 0 17 0.585 ≈ 15 0 15 1.000 ≈ 
Quad-3 19 0 11 0.201 ≈ 17 0 13 0.585 ≈ 13 0 17 0.585 ≈ 
Quad-4 19 0 11 0.201 ≈ 15 0 15 1.000 ≈ 15 0 15 1.000 ≈ 

1000

Quad-1 26 0 4 0.000 - 28 0 2 0.000 - 27 0 3 0.000 -
Quad-2 15 0 15 1.000 ≈ 20 0 10 0.099 ≈ 20 0 10 0.099 ≈ 
Quad-3 24 0 6 0.001 - 22 0 8 0.016 - 26 0 4 0.000 -
Quad-4 9 0 21 0.043 + 14 0 16 0.856 ≈ 7 0 23 0.005 +

Overall 38% (+), 43% (≈), 19% (-) 38% (+), 43% (≈), 19% (-) 38% (+), 49% (≈), 13% (-)

Budget Instance Flexible-L Flexible-AUC Flexible-AL Fixed

400

Quad-1 -0.111 -0.096 -0.077 -0.039
Quad-2 -0.113 -0.094 -0.077 -0.038
Quad-3 -1.344 -1.954 -1.551 -0.775
Quad-4 -0.112 -0.089 -0.072 -0.036

600

Quad-1 -0.815 -0.808 -0.821 -0.815
Quad-2 -0.809 -0.814 -0.812 -0.800
Quad-3 -1.531 -1.457 -1.615 -1.481
Quad-4 -0.887 -0.898 -0.901 -0.889

800

Quad-1 -0.384 -0.166 -0.406 -0.294
Quad-2 -0.379 -0.176 -0.404 -0.298
Quad-3 -0.980 -1.811 -1.474 -1.614
Quad-4 -0.404 -0.188 -0.447 -0.317

1000

Quad-1 -0.294 -0.300 -0.262 -0.120
Quad-2 -0.294 -0.299 -0.266 -0.121
Quad-3 -0.677 -0.802 -1.229 -1.878
Quad-4 -0.322 -0.321 -0.292 -0.128
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Table 4.12.a. Comparison of the solution quality obtained by the Fixed Budget method and the
Flexible Budget method at various computational budgets, with α = 0.05.  

Results are for the quadratic function in 10D.

Table 4.12.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-3.
The numbers are averaged over all replications. The optimal value for all functions is -2.0.
Results are for the quad function in 10D where training and testing instances are different.

Budget Instance
Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

400

Quad-1 3 0 27 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 3 0 27 0.000 + 1 0 29 0.000 + 0 0 30 0.000 +
Quad-3 2 0 28 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-4 3 0 27 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +

600

Quad-1 3 0 27 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 3 0 27 0.000 + 1 0 29 0.000 + 0 0 30 0.000 +
Quad-3 2 0 28 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-4 3 0 27 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +

800

Quad-1 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-3 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-4 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +

1000

Quad-1 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-3 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-4 0 0 30 0.000 + 0 0 30 0.000 + 0 0 30 0.000 +

Overall 100% (+), 0% (≈), 0% (-) 100% (+), 0% (≈), 0% (-) 100% (+), 0% (≈), 0% (-)

Budget Instance Flexible-L Flexible-AUC Flexible-AL Fixed

400

Quad-1 0.437 0.035 0.600 1.460
Quad-2 0.423 0.071 0.568 1.426
Quad-3 -1.000 -1.000 -1.000 1.486
Quad-4 0.480 0.068 0.603 1.437

600

Quad-1 -0.186 -0.334 -0.334 1.300
Quad-2 -0.128 -0.312 -0.336 1.313
Quad-3 -1.000 -1.000 -1.000 1.299
Quad-4 -0.160 -0.306 -0.330 1.280

800

Quad-1 -0.231 -0.347 -0.269 0.662
Quad-2 -0.235 -0.343 -0.262 0.652
Quad-3 -1.000 -1.000 -1.000 0.666
Quad-4 -0.261 -0.355 -0.270 0.656

1000

Quad-1 -0.251 -0.327 -0.209 0.075
Quad-2 -0.232 -0.337 -0.230 0.083
Quad-3 -1.000 -1.000 -1.000 0.079
Quad-4 -0.253 -0.336 -0.232 0.093
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Table 4.13.a. Comparison of the solution quality obtained by the Fixed Budget method and the
Flexible Budget method at various computational budgets, with α = 0.05.  

Results are for the quadratic function in 15D.

Table 4.13.b. Best solution quality achieved by the Flexible and Fixed Budget methods for Set-3.
The numbers are averaged over all replications. The optimal value for all functions is -2.0.
Results are for the quad function in 15D where training and testing instances are different.

As with the Set-2, the Flexible Budget method performs just as well, or better than,

the Fixed Budget method in most cases. Some exceptions are observed in Table 4.11 though,

with the actual degrade being in the order of 10-2. Smaller µ/λ ratios, Tables 4.14-4.16, did

help CMA-ES on the quadratic function given the relatively small budget as seen in Set-1.

The recombination and update types follow the same pattern observed earlier; that is, both

methods select Superlinear the most and Equal the least, although Linear seems to be

Budget Instance
Flexible L Flexible AUC Flexible AL

B E A
p-

value
S B E A

p-
value

S B E A
p-

value
S

400

Quad-1 3 0 27 0.000 + 0 0 30 0.000 + 2 0 28 0.000 +
Quad-2 3 0 27 0.000 + 0 0 30 0.000 + 0 0 30 0.000 +
Quad-3 1 0 29 0.000 + 3 0 27 0.000 + 4 0 26 0.000 +
Quad-4 1 0 29 0.000 + 0 0 30 0.000 + 0 0 30 0.000 +

600

Quad-1 2 0 28 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 3 0 27 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-3 1 0 29 0.000 + 0 0 30 0.000 + 0 0 30 0.000 +
Quad-4 3 0 27 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +

800

Quad-1 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 0 0 30 0.000 + 0 0 30 0.000 + 0 0 30 0.000 +
Quad-3 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-4 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +

1000

Quad-1 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-2 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-3 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +
Quad-4 0 0 30 0.000 + 0 0 30 0.000 + 1 0 29 0.000 +

Overall 100% (+), 0% (≈), 0% (-) 100% (+), 0% (≈), 0% (-) 100% (+), 0% (≈), 0% (-)

Budget Instance Flexible-L Flexible-AUC Flexible-AL Fixed

400

Quad-1 2.572 1.457 2.983 5.224
Quad-2 2.598 1.444 2.821 5.182
Quad-3 2.555 1.445 2.988 5.211
Quad-4 2.593 1.515 2.871 5.157

600

Quad-1 0.449 0.115 0.001 4.903
Quad-2 0.493 0.093 -0.019 4.877
Quad-3 0.473 0.011 -0.056 4.379
Quad-4 0.437 0.106 -0.046 4.919

800

Quad-1 -0.165 -0.324 -0.079 2.849
Quad-2 -0.167 -0.286 -0.144 2.896
Quad-3 -0.166 -0.234 -0.089 2.667
Quad-4 -0.166 -0.319 -0.093 2.828

1000

Quad-1 -0.197 -0.300 -0.084 0.855
Quad-2 -0.225 -0.331 -0.095 0.832
Quad-3 -0.201 -0.336 -0.079 0.819
Quad-4 -0.221 -0.297 -0.111 0.837
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selected more often here. Also, Rank-μ update is preferred in all cases, which is

understandable as the budget is relatively small and CMA-ES converges faster with Rank-μ.

Table 4.14. Best parameter settings suggested by the Fixed and Flexible Budget methods
for various computational budgets. Results are for the quadratic family of functions in 5D.

Budget Method λ µ σ Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

400

Flexible L 18.37 7.07 4.13 13% 27% 60% 30% 70% 0.38

Flexible AL 17.67 7.53 4.49 0% 47% 53% 23% 77% 0.43

Flexible AUC 17.33 6.80 3.71 13% 37% 50% 23% 77% 0.39

Fixed 14.80 7.37 3.85 23% 30% 47% 10% 90% 0.50

600

Flexible L 10.87 5.17 0.25 0% 27% 73% 7% 93% 0.48

Flexible AL 8.80 4.03 0.36 0% 40% 60% 13% 87% 0.46

Flexible AUC 10.10 5.17 0.27 3% 30% 67% 7% 93% 0.51

Fixed 11.93 5.60 0.24 3% 27% 70% 7% 93% 0.47

800

Flexible L 10.37 6.87 0.54 0% 27% 73% 7% 93% 0.66

Flexible AL 9.23 5.83 0.66 0% 40% 60% 7% 93% 0.63

Flexible AUC 10.97 7.53 0.54 0% 20% 80% 3% 97% 0.69

Fixed 11.30 8.27 0.63 0% 30% 70% 0% 100% 0.73

1000

Flexible L 10.70 7.10 0.77 0% 30% 70% 0% 100% 0.66

Flexible AL 10.13 7.00 0.92 0% 47% 53% 7% 93% 0.69

Flexible AUC 11.27 7.90 0.74 7% 20% 73% 3% 97% 0.70

Fixed 12.40 10.10 1.06 0% 27% 73% 0% 100% 0.81

Table 4.15. Best parameter settings suggested by the Fixed and Flexible Budget methods
for various computational budgets. Results are for the quadratic family of functions in 10D.

Budget Method λ µ σ Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

400

Flexible L 9.77 5.50 0.55 20% 27% 53% 40% 60% 0.56

Flexible AL 9.83 4.43 0.48 23% 53% 23% 47% 53% 0.45

Flexible AUC 9.80 4.40 0.28 17% 47% 37% 23% 77% 0.45

Fixed 18.93 8.20 0.94 23% 50% 27% 43% 57% 0.43

600

Flexible L 9.43 4.40 0.21 7% 23% 70% 37% 63% 0.47

Flexible AL 9.40 3.53 0.10 17% 37% 47% 47% 53% 0.38

Flexible AUC 9.77 3.73 0.08 17% 33% 50% 27% 73% 0.38

Fixed 18.93 8.20 1.08 30% 53% 17% 30% 70% 0.43

800

Flexible L 9.87 3.97 0.05 13% 10% 77% 37% 63% 0.40

Flexible AL 9.53 3.37 0.08 17% 37% 47% 47% 53% 0.35

Flexible AUC 9.73 3.67 0.05 17% 33% 50% 27% 73% 0.38

Fixed 16.67 6.80 0.55 17% 47% 37% 40% 60% 0.41

1000

Flexible L 9.80 3.97 0.05 13% 10% 77% 40% 60% 0.41

Flexible AL 9.70 3.43 0.08 17% 37% 47% 43% 57% 0.35

Flexible AUC 10.00 3.73 0.04 17% 33% 50% 23% 77% 0.37

Fixed 15.00 5.00 0.29 33% 33% 33% 30% 70% 0.33
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Table 4.16. Best parameter settings suggested by the Fixed and Flexible Budget methods
for various computational budgets.

Results are for the quadratic family of functions in 15D.

Budget Method λ µ σ Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

400

Flexible L 9.77 5.60 0.55 20% 27% 53% 40% 60% 0.57

Flexible AL 9.83 4.53 0.48 33% 34% 33% 43% 57% 0.46

Flexible AUC 9.80 4.50 0.38 27% 36% 37% 33% 67% 0.46

Fixed 19.03 8.20 1.04 23% 40% 37% 47% 53% 0.43

600

Flexible L 9.43 4.40 0.21 17% 13% 70% 37% 63% 0.47

Flexible AL 9.50 3.63 0.20 17% 26% 57% 43% 57% 0.38

Flexible AUC 9.77 3.83 0.08 27% 13% 60% 27% 73% 0.39

Fixed 18.93 8.20 1.18 40% 43% 17% 30% 70% 0.43

800

Flexible L 9.97 4.07 0.15 13% 10% 77% 37% 63% 0.41

Flexible AL 9.63 3.47 0.18 27% 26% 47% 47% 53% 0.36

Flexible AUC 9.83 3.77 0.05 27% 13% 60% 27% 73% 0.38

Fixed 16.67 6.90 0.65 17% 36% 47% 50% 50% 0.42

1000

Flexible L 9.80 4.07 0.15 23% 0% 77% 50% 50% 0.42

Flexible AL 9.70 3.53 0.18 17% 26% 57% 48% 52% 0.36

Flexible AUC 10.00 3.83 0.04 17% 33% 50% 23% 77% 0.38

Fixed 15.00 5.00 0.29 43% 14% 43% 30% 70% 0.33

Examining the best parameter settings across dimensions reveals the µ/λ ratios

decrease with increasing dimensionality. The only exception is the low budget case where

the ratios increase for the Flexible Budget and decrease for the Fixed Budget. These

observations do not link directly to performance as the Flexible Budget becomes better with

increasing dimensionality, regardless of the available budget. No obvious pattern is observed

for categorical parameters. See Tables 4.17-4.20.

Table 4.17. Comparison of the best parameters proposed by each method across dimensions for Set-3.
Results are for the 400 function evaluations budget.

Method Dimension λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

Fixed
5 14.8 7.4 3.9 0.2 0.3 0.5 0.1 0.9 0.50

10 18.9 8.2 0.9 0.2 0.5 0.3 0.4 0.6 0.43
15 19.0 8.2 1.0 0.2 0.4 0.4 0.5 0.5 0.43

Flexible L
5 18.4 7.1 4.1 0.1 0.3 0.6 0.3 0.7 0.39

10 9.8 5.5 0.6 0.2 0.3 0.5 0.4 0.6 0.56
15 9.8 5.6 0.6 0.2 0.3 0.5 0.4 0.6 0.57

Flexible AL
5 17.7 7.5 4.5 0.0 0.5 0.5 0.2 0.8 0.42

10 9.8 4.4 0.5 0.2 0.5 0.2 0.5 0.5 0.45
15 9.8 4.5 0.5 0.3 0.3 0.3 0.4 0.6 0.46

Flexible AUC
5 17.3 6.8 3.7 0.1 0.4 0.5 0.2 0.8 0.39

10 9.8 4.4 0.3 0.2 0.5 0.4 0.2 0.8 0.45
15 9.8 4.5 0.4 0.3 0.4 0.4 0.3 0.7 0.46
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Table 4.18. Comparison of the best parameters proposed by each method across dimensions for Set-3.
Results are for the 600 function evaluations budget.

Method Dimension λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

Fixed
5 11.9 5.6 0.2 0.0 0.3 0.7 0.1 0.9 0.47

10 18.9 8.2 1.1 0.3 0.5 0.2 0.3 0.7 0.43
15 18.9 8.2 1.2 0.4 0.4 0.2 0.3 0.7 0.43

Flexible L
5 10.9 5.2 0.3 0.0 0.3 0.7 0.1 0.9 0.48

10 9.4 4.4 0.2 0.1 0.2 0.7 0.4 0.6 0.47
15 9.4 4.4 0.2 0.2 0.1 0.7 0.4 0.6 0.47

Flexible AL
5 8.8 4.0 0.4 0.0 0.4 0.6 0.1 0.9 0.45

10 9.4 3.5 0.1 0.2 0.4 0.5 0.5 0.5 0.37
15 9.5 3.6 0.2 0.2 0.3 0.6 0.4 0.6 0.38

Flexible
AUC

5 10.1 5.2 0.3 0.0 0.3 0.7 0.1 0.9 0.51
10 9.8 3.7 0.1 0.2 0.3 0.5 0.3 0.7 0.38
15 9.8 3.8 0.1 0.3 0.1 0.6 0.3 0.7 0.39

Table 4.19. Comparison of the best parameters proposed by each method across dimensions for Set-3.
Results are for the 800 function evaluations budget.

Method Dimension λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

Fixed
5 11.3 8.3 0.6 0.0 0.3 0.7 0.0 1.0 0.73

10 16.7 6.8 0.6 0.2 0.5 0.4 0.4 0.6 0.41
15 16.7 6.9 0.7 0.2 0.4 0.5 0.5 0.5 0.41

Flexible L
5 10.4 6.9 0.5 0.0 0.3 0.7 0.1 0.9 0.66

10 9.9 4.0 0.1 0.1 0.1 0.8 0.4 0.6 0.40
15 10.0 4.1 0.2 0.1 0.1 0.8 0.4 0.6 0.41

Flexible AL
5 9.2 5.8 0.7 0.0 0.4 0.6 0.1 0.9 0.63

10 9.5 3.4 0.1 0.2 0.4 0.5 0.5 0.5 0.36
15 9.6 3.5 0.2 0.3 0.3 0.5 0.5 0.5 0.36

Flexible AUC
5 11.0 7.5 0.5 0.0 0.2 0.8 0.0 1.0 0.68

10 9.7 3.7 0.1 0.2 0.3 0.5 0.3 0.7 0.38
15 9.8 3.8 0.1 0.3 0.1 0.6 0.3 0.7 0.39

Table 4.20. Comparison of the best parameters proposed by each method across dimensions for Set-3.
Results are for the 1000 function evaluations budget.

Method Dimension λ µ σ0 Equal Linear Superlinear Rank-1 Rank-μ µ/λ 

Fixed

5 12.4 10.1 1.1 0.0 0.3 0.7 0.0 1.0 0.81

10 15.0 5.0 0.3 0.3 0.3 0.3 0.3 0.7 0.33

15 15.0 5.0 0.3 0.4 0.1 0.4 0.3 0.7 0.33

Flexible L

5 10.7 7.1 0.8 0.0 0.3 0.7 0.0 1.0 0.66

10 9.8 4.0 0.1 0.1 0.1 0.8 0.4 0.6 0.41

15 9.8 4.1 0.2 0.2 0.0 0.8 0.5 0.5 0.42

Flexible AL

5 10.1 7.0 0.9 0.0 0.5 0.5 0.1 0.9 0.69

10 9.7 3.4 0.1 0.2 0.4 0.5 0.4 0.6 0.35

15 9.7 3.5 0.2 0.2 0.3 0.6 0.5 0.5 0.36

Flexible AUC

5 11.3 7.9 0.7 0.1 0.2 0.7 0.0 1.0 0.70

10 10.0 3.7 0.0 0.2 0.3 0.5 0.2 0.8 0.37

15 10.0 3.8 0.0 0.2 0.3 0.5 0.2 0.8 0.38
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4.3.4 Time savings

Computational effort savings are measured by comparing the number of Function

Evaluations (FEs) required by the Flexible Budget to those required by the Fixed Budget for

all discretization levels bi’s. For instance, in Set-1, the Flexible Budget ran for only 2400

FEs, while the Fixed Budget ran for 6000 FEs (∑ ௜ܾ
ସ
௜ୀଵ ). Clearly, savings increase with

increasing discretization (the number of times the problem has to be solved with different

budgets). For instance, if Set-1 ran for another 400 FEs, savings would increase to 67%. See

Table 4.21.

Table 4.21. Computational effort savings gained by the Flexible Budget method
over the Fixed Budget method.

Problem set Fixed Budget Flexible Budget % Savings
Set-1 6000 2400 60%

Set-2 (5D and 10D) 9000 3000 66%
Set-2 (15D) 15000 4500 70%

Set-3 2800 1000 64%

Suitable for
A fixed number of budgets

(4 or 5 here)
Any budget

less than nmax

The space complexity of the Flexible Budget method is represented by the additional

memory required to store the entire convergence curves. Based on the experiments

conducted here, this additional space was minor in today’s computing standards. Moreover,

the additional storage hardly caused any noticeable slowdowns as it was done on the RAM.

4.3.5 Summary

In summary, the Flexible Budget method was able to find parameter settings for any

computational budget, less than nmax, without compromising the solution quality of CMA-

ES. This saved a lot of computational effort as it was done in a single run, compared to the

repeated applications of the Fixed Budget method. Moreover, on some instances, the

Flexible Budget method found parameter settings that enabled CMA-ES to find significantly

better solutions, compared to those suggested by the Fixed Budget method. On other

instances, however, the Flexible Budget method was significantly worse. See Table 4.22.
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The computational budget savings increase with the number of times similar

instances have to be solved with different budgets. For the experiments conducted here, the

savings ranged from 60%-70% of that required by the repeated applications of the Fixed

Budget method. See Table 4.23.

Table 4.22. Percentage of times the Flexible Budget method performed significantly better than (+),
significantly worse than (-), or no significant difference than (≈) the Fixed Budget method at α = 0.05. 

Set Dimension
L AUC AL

+ ≈ - + ≈ - + ≈ - 

Set-1 5 41% 53% 6% 94% 6% 0% 62% 38% 0%
Set-2 5 35% 45% 20% 40% 40% 20% 45% 35% 20%
Set-2 10 20% 65% 15% 25% 65% 10% 30% 60% 10%
Set-2 15 6% 94% 0% 6% 94% 0% 44% 56% 0%
Set-3 5 38% 43% 19% 38% 43% 19% 38% 49% 13%
Set-3 10 100% 0% 0% 100% 0% 0% 100% 0% 0%
Set-3 15 100% 0% 0% 100% 0% 0% 100% 0% 0%

Table 4.23. Computational effort savings gained by the Flexible Budget method
over the Fixed Budget method.

Problem set Fixed Budget Flexible Budget % Savings
Set-1 6000 2400 60%

Set-2 (5D and 10D) 9000 3000 66%
Set-2 (15D) 15000 4500 70%

Set-3 2800 1000 64%

Suitable for
A fixed number of budgets

(4 or 5 here)
Any budget

less than nmax

4.4 Conclusion

Two meta-optimizers were experimentally evaluated in this chapter. The Fixed

Budget method which tunes parameters for only a predetermined fixed computational

budget, and the Flexible Budget method which tunes parameters for any computational

budget less than a specified maximum in a single run. Both meta-optimizers tuned five

parameters of the same target algorithm, CMA-ES, three that were numeric: parent

population size, offspring population size, and the initial step-size, and the other two are

categorical: recombination type and update type. The meta-level algorithm, on the other

hand, was an EA with crossover and mutation operators, tournament selection of parents,

and an elitist survival selection.
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CMA-ES solved three sets of multi-modal optimization functions; Set-1 had eight

functions, all in five dimensions, which were used for both training (finding the best

parameter settings) and testing (running CMA-ES with the proposed parameter settings).

Set-2 and Set-3, on the other hand, had five functions for training and four other functions

for testing, all in 5, 10, and 15 dimensions. Following training, CMA-ES was run with the

parameter settings proposed by each method, for a pre-determined set of computational

budgets. The difference in solution qualities were then compared to see if they significantly

differ from zero. The expectation was that both methods can reach the same solution quality,

but the Flexible Budget can do so in a single run, hence saving computational effort.

From the experiments conducted in this thesis, the Flexible Budget method found, in

most cases, parameter settings which performed just as well, or better than, those suggested

by the Fixed Budget method over all three data sets at the various computational budgets

selected. Nonetheless, in few cases the Fixed Budget method performed significantly better

even though the differences in solution quality did not exceed 10-3-10-2. This exceeded the

expectations set for the Flexible Budget as it is designed to save time, not improve solution

quality. Time savings ranged from 60%-70% for the experiments conducted here. Refer to

Tables 4.22-4.23 for a summary.

As to which secondary criterion to use, results suggest that AL produced

significantly better results on most cases, and L produced results with no significant

difference on most cases. However, this is limited to the functions, and experimental setup,

used here.

Finally, the actual parameter settings each method converged to were analyzed to

help explain the observed performance. Overall, it was clear that both meta-optimizers

selected roughly the same values for the categorical parameters, while the Fixed Budget

method reported higher μ/λ ratios. This forced CMA-ES to explore more solutions under the

relatively limited budget used here, and eventually degraded its performance.
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CHAPTER 5 Experiments, Results, and Analysis

Computational Budget Allocators

5.1 Introduction

This chapter describes the experiments conducted to validate the second and third

contributions: Racing with reset and one-way Racing with intelligent budget allocation. It

also assesses their performances against other algorithms currently used in the literature: A-

Race, F-Race, and OCBA\CBA. The chapter is organized as follows: Section 5.2 presents

the experimental setup (competing algorithms, performance measures, and training and

testing sets), followed by the results and analysis in Section 5.3. Finally, Section 5.4

concludes this chapter.

5.2 Experimental setup

5.2.1 Competing algorithms and performance measures

OCBA/CBA is compared to parametric and non-parametric Racing algorithms, with

and without the reset idea. Since standard Racing algorithms (without reset) may terminate

before the entire budget is consumed, comparison is possible only if they set the budget for

the other algorithms. For instance, if, on a particular instance a winner is identified using

݊≤ ܰ௠ ௔௫ samples (ܰ௠ ௔௫ is the maximum allowed budget), then OCBA/CBA is permitted

just the ݊ samples for that instance. Racing with reset, on the other hand, can run for any

fixed budget. Thus, two sets of experiments are carried out: Set-1 runs with a user-specified

budget, and Set-2 runs with a variable budget specified by Racing. Table 5.1 and Table 5.2

list the competing algorithms for Set-1 and Set-2 respectively.
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Table 5.1. Competing algorithms for Set-1 experiments.

Algorithm Description

A-RaceRR_1WUB
Normal model-based 1-way ANOVA Race with Reset and Resample

(unbalanced)

KW-RaceRR
Non-parametric 1-way Kruskal-Wallis ANOVA Race with Reset and

Resample (unbalanced)
A-RaceR_2Way Normal model-based 2-way ANOVA Race with Reset (balanced)

F-RaceR Non-parametric 2-way Freidman ANOVA Race with Reset (balanced)

OCBA
Optimal Computing Budget Allocation from Simulation Optimization

literature
CBA Correlated Budget Allocation from Simulation Optimization literature

KW-RaceRR_OCBA
Non-parametric 1-way Kruskal-Wallis ANOVA Race with Reset and

Resample (unbalanced), with intelligent budget allocation through OCBA
EBA Equal Budget Allocation

Table 5.2. Competing algorithms for Set-2 experiments.
Either KW-Race or A-Race_2Way set the budget for OCBA, CBA, and EBA.

Algorithm Description
KW-Race Non-parametric 1-way Kruskal-Wallis ANOVA Race (balanced)

A-Race_2Way Normal model-based 2-way ANOVA Race (balanced)
OCBA Optimal Computing Budget Allocation from Simulation Optimization literature
CBA Correlated Budget Allocation from Simulation Optimization literature
EBA Equal Budget Allocation

The performance measures chosen for Set-1 are the Probability of Incorrect

Selection ܥܫܲ) )ܵ and the Expected Opportunity Cost (ॱ[ܱܥ]), estimated experimentally

over a large number of independent replications. Both measures should decrease as more

samples are consumed. The ܵܥܫܲ represents the average failure rate of an algorithm, while

the ॱ[ܱܥ] represents the average loss endured when selecting an inferior system/parameter

setting relative to the true best. The latter measure penalizes bad choices more than slightly

bad choices. For instance, one may prefer to be wrong 99% of the time if the penalty for

being wrong is only $1 (ॱ[ܱܥ] = 0.99 ∗ 1 = $0.99), compared to being wrong only 1% of

the time if the penalty is $1,000 (ॱ[ܱܥ] = 0.01 ∗ 1000 = $10) (Chick and Inoue, 2001).

The same performance measures are used for Set-2; however, they are not tracked

against the consumed budget, as it varies from one replication to the next. Instead, the

minimum average failure rate ௥݂ and ॱ[ܱܥ] achieved at termination are tracked against the

significance level α set for Racing. These will be referred to as Efficiency Curves (EC). Both

measures are expected to drop as α decrease, up to a certain level. If α becomes very small,

the statistical tests of Racing will reject the null hypotheses less often. Hence, systems are
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rarely discarded, and Racing’s performance degrades as it becomes similar to EBA. Since

OCBA and CBA do not require a significance level, their ௥݂ and ॱ[ܱܥ] “at a certain α”

should be interpreted as the performance achieved using the budget set by Racing at that α.

Estimating these measures requires prior knowledge of the true best. This might not

be possible when tuning parameters, as it requires the exhaustive search of the

ܽ݌〉 ݎܽ ݉ ݐ݁݁ ,ݎ ݅݊ ݐܽݏ ݊ܿ݁ 〉 space. Therefore, the performance of each parameter setting, on all

possible instances, is simulated with a probability distribution with pre-determined

characteristics. Moreover, the distributions are made correlated, with varying degrees, to

better capture the performance of real parameters. With this setup, the true best is defined as

the distribution with the lowest mean, and the opportunity cost is the difference between the

mean of the selected best and the mean of the true best.

It is difficult to predict at this stage which algorithm, or set of algorithms, will

outperform the rest, especially for the experiments in Set-1. This is because Racing with

reset overcomes the limitation of terminally discarding the best system. Set-2, on the other

hand, does seem to give a slight advantage to Racing, by allowing it to set the budget; still,

this does not indicate that it should be superior to OCBA/CBA. The results of this chapter

will hopefully clarify under which conditions each algorithm performs best, and why.

5.2.2 Training and testing sets

As explained in Chapter 3, using Racing, or OCBA/CBA, as offline tuners entails

identifying the best parameter setting from a training set, then applying it to another test set.

The working assumption is that the training set is a representative sample, and both sets do

not differ much; therefore, the parameter setting which performed best during training

should also perform best during testing. As the experiments conducted here rely on

probability distributions, one only needs to identify the true best within the available

training, or sampling, budget. There is no need for a testing set.
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In determining which algorithm performs best, the following factors are varied: first,

the number of systems: ݇= 10 and�݇ = 50. Second, the probability distribution type:

Normal, Gamma, and Weibull. Third, the mean/location and variance/scale parameters:

monotonically increasing means with equal variance ~ࣞ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1,

monotonically increasing means with exponentially increasing variance ~ࣞ( ,݅ (݅+

1)ସ)∀݅= 0, … ,݇− 1, monotonically increasing means with exponentially decreasing

variance ~ࣞ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1, and finally the means and variances are drawn at

random from a uniform distribution ~ࣞ൫ܷ (0, )݇,ܷ(10,24)൯, where ࣞ represents the

probability distribution. These means and variances were chosen in specific to be able to

benchmark OCBA/CBA’s results with the ones published in Chen and Lee (2010) and Fu et

al. (2007). And fourth, the correlation level ρ between the k systems: 0.0, 0.3, 0.6, 0.9, and

mixed where the correlation between systems i and j is randomly chosen from [0.2,0.6].

For Set-1 experiments, the total fixed budget is ܰ = 2000 samples, from which

଴݊ = 10 ∗ ݇ samples are equally distributed among all k systems to initially estimate their

performance (i.e. the parameters of the distributions). OCBA and CBA run sequentially,

allocating ∆= ݇ samples in each iteration; thus, they run for a constant number of iterations,

200. Racing with reset algorithms, except KW-RaceRR_OCBA, equally allocate ∆ =

݉ݑ݊ ܾ݁ ݂݋�ݎ ݒ݅ݎݑݏ� ݏݎ݋ݒ in each iteration; hence, they may run for any number of iterations,

but always consuming the same budget of 2000 samples. For KW-RaceRR_OCBA, ∆= .݇

Moreover, Racing with reset requires an initial significance level, this value is set to

଴ߙ = 0.1, and a reduction factor =ߛ 0.5. Branke and Elomari (2013) showed that Racing

with reset is fairly insensitive toߛ�. Finally, the ܵܥܫܲ and ॱ[ܱܥ] measures are estimated over

=ݎ 100,000 replications.

For Set-2, the maximum budget allowed for a standard Racing algorithm is ܰ௠ ௔௫ =

1000 samples, with ଴݊ = 10 ∗ ݇ samples. Again, Racing may terminate at any budget�݊ ≤

ܰ௠ ௔௫, in which case OCBA and CBA are permitted just the ݊ samples for that specific
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replication. The performance measures ௥݂ and ॱ[ܱܥ] are tracked on EC plots using a range

of fixed α values: {0.3, 0.2, 0.15, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.001, 0.0001, 0.00001}.

Finally, ௥݂ and ॱ[ܱܥ] are estimated over =ݎ 10,000 independent replications for each α.

Both ܰ௠ ௔௫ and wereݎ reduced here, compared to Set-1, in order to cover such a wide range

of α within the available timeframe.

Given the large number of factor-level combinations to vary, Set-1 and Set-2

experiments are limited to ݇= 10 systems and a single distribution, the Normal. The best

algorithm(s) of Set-1 is then tested on the remaining distributions, with only 0.0 and 0.9

correlation levels and ݇= 50 systems. All other settings are identical to Set-1. These

experiments will be designated as Set-3.

Finally, the following method was used to create data with pre-determined means,

variances, and correlation levels:

 Create a ݇× ݇ positive definite covariance matrix based on the correlation.

 Find the Cholesky decomposition of the covariance matrix.

 Draw a ݇× 1 vector of random numbers from the basic distribution. Normal(0, 1),

Weibull(1, 8), or Gamma(5, 6) in these experiments.

 Pre-multiply the decomposed covariance matrix by the ݇× 1 vector. This will create the

required correlation.

 Rescale the ݇× 1 vector with the required means and variances.

5.3 Results

All competing algorithms will eventually reach a zero ܵܥܫܲ and ॱ[ܱܥ] if ܰ is large

enough. Nonetheless, they differ in their convergence rate to a target value. Given a fixed

ܰ௠ ௔௫, not all algorithms can achieve the same target value; hence, each case will be

analyzed separately. The analysis will be restricted to the best algorithm, the worst algorithm

(except EBA), and two other algorithms performing at intermediate levels.
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The results for each set are organized in this fashion: first, the performance outcome

is presented, highlighting the major findings at 0.0 and 0.9 correlations. Second, further

examination is conducted to try and explain the observed performance. This is also done for

0.0 and 0.9 correlations only. Third, a summary is presented at the end. The reader can skip

to the summary section to learn about the key outcomes.

5.3.1 Results for Set-1

5.3.1.1 Case 1: Monotonically increasing means with equal variances

Samples are drawn from ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. Since the variance is relatively

low, and constant, most algorithms are expected to perform well within the available budget

of 2000 samples. As seen in Table 5.3, all measures are below 0.05, with the lowest

highlighted in bold. The mixed correlation case does not seem to degrade the performance of

any algorithm, as the results are close to those obtained for 0.3 and 0.6.

Table 5.3. Lowest PICS and E[OC] achieved in Case 1 at 2000 samples for various correlation levels.

Correlation

Algorithm
0.0 0.3 0.6 0.9 Mixed

PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC]
EBA 0.040 0.002 0.018 0.000 0.003 0.000 0.000 0.000 0.025 0.001
A_RaceR_2Way 0.034 0.001 0.021 0.001 0.012 0.000 0.003 0.000 0.021 0.001
F_RaceR 0.031 0.001 0.019 0.000 0.010 0.000 0.001 0.000 0.025 0.001
CBA 0.005 0.000 0.013 0.000 0.003 0.000 0.000 0.000 0.006 0.000
OCBA 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000
A_RaceRR_1WUB 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
KW_RaceRR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KW-RaceRR_OCBA 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

From Table 5.3, it is clear that, by the end of the run, OCBA outperforms CBA even

under correlation. To clarify why this is so, a different set of experiments was carried out.

See Appendix A1 for details. Briefly, the conclusion was that CBA poorly estimates the

covariance matrix, leading to degradation in its performance. This issue was never addressed

in the original paper of Fu et al. (2007). Another finding is that if CBA is provided with the

correct covariance matrix, instead of estimating it through sampling, it will outperform

OCBA only under high correlation (≥ 0.6). Moreover, its allocation becomes close to

EBA’s, and at 0.9 both are almost identical. If correlation is low, on the other hand, CBA
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does not seem to have any performance advantage over OCBA, even when the covariance

matrix is provided.

The convergence curves for 0.0 and 0.9 correlation levels are in Figure 5.1, with

ܵܥܫܲ displayed on a log10 scale. The ॱ[ܱܥ] curves are moved to Appendix A3 as they

follow the same pattern as ܥܫܲ .ܵ The same hold for the other correlation levels. The curves

reveal the ordering of the algorithms during the course of the run.

Figure 5.1. Comparison of different algorithms based on PICS and E[OC] under 0.0 (above) and 0.9
(below) correlation. ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.
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At 0.0 correlation, OCBA is slightly better than its immediate competitor, KW-

RaceRR, during the first 500 samples. Afterwards, KW-RaceRR converges at a higher rate

and eventually outperforms all other algorithms. KW-RaceRR_OCBA performs close to

OCBA, indicating that equally allocating ∆ = ݉ݑ݊ ܾ݁ ݂݋�ݎ ݒ݅ݎݑݏ� ݏݎ݋ݒ works better here,

compared to trying to intelligently distribute ∆ = ݇ samples among the surviving systems.

Moreover, preliminary experiments showed that setting ∆ = ݉ݑ݊ ܾ݁ ݂݋�ݎ ݒ݅ݎݑݏ� ݏݎ݋ݒ with

KW-RaceRR_OCBA caused the algorithm to perform like KW-RaceRR, pointing out that

OCBA could not find a better distribution of ∆ than the default equal allocation.

At 0.9 correlation, only the first 750 samples are displayed for better viewing. Most

algorithms reach nearly a zero ܥܫܲ ,ܵ and beyond 350 samples, their performance is

indistinguishable with only 100,000 replications. As expected, CBA behaves like EBA as

indicated by their overlapping curves. Plus, F-RaceR and A-RaceR_2Way are the fastest

algorithms to converge, though both slow down fairly quickly and hold at a steady rate.

A final note, if the correlation is high, an oscillating pattern is seen for CBA EBA

and OCBA. This is because the performance measures are calculated after each sample;

meaning, the ܵܥܫܲ will be at minimum at the end of each iteration, when all the

observations are collected. This is why the oscillations repeat every 10 samples (a single

iteration). See Table 5.4. This pattern is clearest when correlation is high, as the observations

taken from each distribution are consistent, and is almost none existent if correlation is zero.

It also fades away as the budget gets focused on a few systems as in Racing and OCBA.

Table 5.4. An example of why the PICS are at minimum near the end of an iteration.
The best mean after each sample is shown in bold. The data are for Case 1 at 0.9 correlation.

System 0 1 2 3 4
Correct

Selection?
Observations of iteration x 8.83 8.16 8.55 9.53 11.58

Current means 0.45 1.87 3.13 3.95 5.12

It
er

at
io

n
x

Updated mean after 1st sample 4.67 1.87 3.13 3.95 5.12 No
Updated mean after 2nd sample 4.67 5.01 3.13 3.95 5.12 No
Updated mean after 3rd sample 4.67 5.01 5.84 3.95 5.12 No
Updated mean after 4th sample 4.67 5.01 5.84 6.74 5.12 Yes
Updated mean after 5th sample 4.67 5.01 5.84 6.74 8.35 Yes
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Moving on to the analysis, since this is the equal variances case, an ideal algorithm

would shift the budget to the crucial systems, and barely sample the inferior ones beyond�݊଴.

The difference in performance depends on how fast an algorithm makes this shift. The

crucial systems are defined as those systems whose parameters require a more accurate

estimation, compared to the remaining systems, such that a correct selection is made.

Figure 5.2 displays the overall allocations made per system at 0.0 and 0.9

correlations, averaged over all replications. As anticipated, all algorithms spend most of the

budget on the best two systems (0 and 1), and discard the rest rapidly, but at different rates.

For the independent case, OCBA and KW-RaceRR shift more of the budget to the best two

systems, compared to F-RaceR, and A-RaceR_2Way, leading to superior performance.

Under high correlation, however, F-RaceR and A-RaceR_2Way drop off inferior systems

almost immediately after ଴݊ and focus the majority of the budget on the top two, this links to

the fast convergence.

Figure 5.2. Overall allocation of different algorithms at 0.0 and 0.9 correlation.
~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. The numbers are averaged over all replications.
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The reason behind the behavior of A-RaceR_2Way can be understood by recalling

the sum of squares equations (3.17-3.20). With a 2-way normal-model based ANOVA, SST

was divided into SSA (parameter setting effect), SSB (instance effect), SSAB (interaction

effect), and SSE (random error). If no correlation is present, SSE is likely to be high relative

to SSB and SSAB as there is or no instance effect or interaction effect. Hence, the F-ratio for

factor A will drop and the null hypothesis is rejected less often. This degrades the

performance of A-RaceR_2Way as it behaves more like EBA. The situation is reversed

under high correlation, SSE gets smaller as SSB and SSAB become larger, increasing the F-

ratio for factor A and leading to a faster drop out of inferior systems.

A-RaceRR_1WUB, on the other hand, sums SSB, SSAB, and SSE in one term: SSE.

This does not have much effect when correlation is zero, because SSB and SSAB are expected

to be low. However, under high correlation, this will degrade performance as the F-ratio for

factor A will drop and the null hypothesis is rejected less often. The reason why A-

RaceRR_1WUB performs better for the independent case, compared to A-RaceR_2Way, is

the use of a different reset scheme which utilizes the entire history. Recall Chapter 3.

While F-RaceR also relies on a 2-way ANOVA model, it is rank based and does not

use sum of squares. Under zero correlation, the samples drawn from each system, in each

iteration, will have higher variability compared to those drawn under high correlation. Put

differently, the ranks of each system will be less consistent across iterations if correlation is

zero; hence, it requires F-RaceR more samples to discard inferior systems, compared to the

high correlation case. Table 5.5 shows the variability of the rank averages assigned to each

system over all replications. The NA indicates that no ranks were assigned to that system

beyond�݊଴, as it was discarded in all replications.

The same argument holds for KW-RaceRR; however, since the observations are first

pooled then ranked together, the variability in the ranks should be much higher compared to

F-RaceR. Such a behavior serves KW-RaceRR by forcing it to delay the dropouts, and
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obtain better results by the end of the run, at the cost of a slower convergence at the

beginning. This holds for high and low correlation levels.

Table 5.5. Variability in the average ranks assigned to each system by F-RaceR and KW-RaceRR,
averaged over all replications. The NA indicates that no ranks were assigned to that system beyond n0.

System
F-RaceR KW-RaceRR

0.0 correlation 0.9 correlation 0.0 correlation 0.9 correlation
0 0.30 0.04 4.89 5.31
1 0.28 0.08 5.95 6.41
2 0.26 0.09 5.89 8.23
3 0.28 0.08 6.74 9.76
4 0.25 0.01 7.59 11.17
5 0.17 NA 8.36 12.40
6 0.10 NA 9.04 13.58
7 0.09 NA 9.82 14.94
8 0.08 NA 10.62 16.42
9 0.05 NA 11.49 17.84

Going back to OCBA and KW-RaceRR, Figure 5.2 shows that KW-RaceRR does not

allocate a lot more samples to the best two systems compared to OCBA, although it runs for

more iterations. This makes it harder to understand why KW-RaceRR performs better;

therefore, further examination of how the budget is allocated over time was carried out.

Figures 5.4 and 5.5 (pages 112-113) show the accumulated percentage of the budget

allocated per system as more samples are taken, averaged over all replications, for 0.0 and

0.9 correlation levels respectively. The graph also represents the survival length of each

system (i.e. how long a system is sampled on average).

With no correlation, Figure 5.4, OCBA and KW-RaceRR separate between the

systems faster than F-RaceR and A-RaceR_2Way, which relates to their higher convergence

rate. This means that the ranking scheme of KW-RaceRR (pooling all observations then

ranking them), and the calculated OCBA ratios, better differentiate between the systems

compared to F-RaceR and A-RaceR_2Way. The figure also shows that KW-RaceRR, relative

to OCBA, allocates more samples to systems 2 and 3, at the expense of systems 0 and 1 (this

occurs up to sample 1300). Thus, better estimates of their means make it less likely to

mistakenly select any of them as the best. See Figure 5.3. Although this strategy caused KW-

RaceRR to be slower at the beginning, it achieved higher gains by the end of the run.
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Figure 5.3. Estimated mean of the best two systems under 0.0 correlation at selected points
throughout the run. ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.

The same remarks can be made under high correlation, in Figure 5.4, although one

should note that since the samples drawn are more consistent now, the systems closest to the

best should be sampled more often, compared to the independent case, so as not to

incorrectly select them as the true best. F-RaceR and A-RaceR_2Way are the fastest

algorithms to isolate systems 0 and 1, which relates to their higher convergence rate at the

beginning. Also, A-RaceR_2Way samples systems 0 and 1 almost equally, as can be seen

from their overlapping curves, but it is slower than F-RaceR in discarding inferior systems

(3-9), which may explain why its convergence rate drops earlier. KW-RaceRR is again

investing more samples at the beginning in systems 2 and 3, before discarding them. A

behavior connected with slower convergence at the start, and superior performance later on.

In conclusion, when the variances are equal, if, at the beginning, the budget

allocated to the crucial systems is more evenly spread among them (i.e. more samples are

invested in better estimating the parameters of the second and/or third best distributions),

lower ܵܥܫܲ can be achieved later on. This comes at the expense of a slightly slower

convergence rate at the start. For the experiments conducted here, when correlation is 0.0

OCBA is best if the budget is roughly ≤ 500, and KW-RaceRR is best if the budget is

roughly≥ 700. With 0.9 correlation, F-RaceR is best if the budget is approximately ≤ 350.

Beyond that budget, all algorithms reach very low measures and overlap in terms of

performance. Still, KW-RaceRR seems to have performed better.
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Figure 5.4. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. Correlation = 0.0.
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Figure 5.5. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. Correlation = 0.9.
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5.3.1.2 Case 2: Monotonically increasing means with exponentially decreasing variances

Data are drawn from ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1. Results in Table 5.6 and

Figure 5.6 show that, by the end of the run, OCBA is superior, except at high correlation.

This is expected since OCBA\CBA accounts for the ratio of ௜ߪ ⁄௝ߪ when allocating the

budget, Racing algorithms do not. Properly estimating the covariance matrix degrades CBA.

Table 5.6. Lowest PICS and E[OC] achieved in Case 2 at 2000 samples for various correlation levels.

Correlation 0.0 0.3 0.6 0.9 Mixed
Algorithm PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC]
EBA 0.436 0.257 0.395 0.204 0.323 0.126 0.152 0.025 0.396 0.195
A_RaceR_2Way 0.377 0.188 0.312 0.123 0.217 0.057 0.065 0.006 0.323 0.128
F_RaceR 0.469 0.316 0.419 0.243 0.358 0.168 0.181 0.039 0.438 0.258
CBA 0.335 0.143 0.385 0.197 0.325 0.126 0.163 0.029 0.345 0.153
OCBA 0.288 0.101 0.251 0.075 0.203 0.050 0.120 0.019 0.264 0.083
A_RaceRR_1WUB 0.370 0.177 0.314 0.121 0.252 0.063 0.082 0.008 0.370 0.177
KW_RaceRR 0.360 0.164 0.314 0.121 0.250 0.062 0.100 0.012 0.327 0.126
KW_RaceRR_OCBA 0.316 0.125 0.276 0.093 0.220 0.061 0.134 0.026 0.274 0.100

Figure 5.6. Comparison of different algorithms based on PICS and E[OC] under 0.0 (above) and 0.9
(below) correlation. ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1.
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For better viewing, the curves at the beginning of the run are not displayed,

especially that their performances are indistinguishable there. Throughout the run, OCBA

outperforms all other algorithms for the independent case, and A-RaceR_2Way is best if

correlation is high. KW-RaceRR_OCBA again follows OCBA in terms of performance. As

OCBA performs better than KW-RaceRR, intelligently allocating Δ is beneficial here. 

Moving on to the analysis, since the variances are decreasing exponentially, the

means of all the other distributions fall within .ߪ1 An ideal algorithm is expected to focus

most of the budget on the best systems, and almost never sample the inferior ones past�݊଴.

Racing algorithms will require more samples to start discarding systems, compared

to Case 1, since many systems overlap with the best. OCBA/CBA, on the other hand,

overcomes this issue by utilizingߪ�௜ ⁄௝ߪ . Recall Chapter 3. For OCBA, the better systems

have higher variances; hence, their ௜݊ ௝݊⁄ ratios will be higher than that for the inferior

systems. This will quickly focus the budget on the best systems at the expense of the inferior

ones. The effect of ௕,௝ߜ ⁄௕,௜ߜ is minor, because the means are not that far apart, compared to

how the variances differ by orders of magnitude. See Figure 5.7.

Figure 5.7. Overall allocation of different algorithms at 0.0 and 0.9 correlation.
~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1. The numbers are averaged over all replications
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Moving on to the analysis, at 0.0 correlation, the survival plots (Figure 5.8) show

that OCBA is the earliest algorithm to stop sampling system 3 (roughly after 500 samples)

and focus the budget on systems 0-2, which can be considered crucial. The remaining

systems are nearly never sampled past�݊଴. Racing algorithms are following the same patter,

but are slower in making the shift. This allowed OCBA to obtain more accurate estimates of

the distribution means (of systems 0-2), compared to the others. See Table 5.7.

Table 5.7. Deviation of the estimated means from their nominal values.
The numbers reported for ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1 with 0.0 correlation.

System Nominal mean A_RaceR_2Way F_RaceR KW_RaceRR OCBA
0 0 1.79 2.52 1.45 1.25
1 1 1.64 2.20 1.18 1.08
2 2 1.61 1.81 1.22 1.21
3 3 1.41 1.58 1.19 2.40
4 4 1.02 1.19 0.92 1.80
5 5 0.64 0.94 0.71 1.07
6 6 0.28 0.64 0.43 0.35
7 7 0.07 0.32 0.21 0.03
8 8 0.02 0.09 0.08 -0.01
9 9 0.00 0.00 0.00 0.00

It is worth noting how the ranking scheme of KW-RaceRR and F-RaceR is forcing

these algorithms to retain some non-crucial systems, by assigning almost equal ranks to most

systems. This, in turn, requires allocating more samples to them at the expense of system 0.

Table 5.8 shows how KW-RaceRR is better in distinguishing between the systems, compared

to F-RaceR, as observed by the location of the largest gap in rank averages.

Table 5.8. Averages and variances of the ranks assigned to all systems by F-RaceR and KW-RaceRR.
The numbers are based on all replications for ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1 with 0.0 correlation.

The numbers in bold represent the location of the largest gap in rank averages.

System
F-RaceR KW-RaceRR

0.0 correlation 0.9 correlation 0.0 correlation 0.9 correlation
Av. Var. Av. Var. Av. Var. Av. Var.

0 5.50 0.02 6.10 0.04 351.99 334.24 402.99 407.92
1 5.53 0.04 6.20 0.06 361.75 363.48 409.07 423.21
2 5.56 0.06 6.30 0.08 349.64 318.54 416.40 440.99
3 5.59 0.07 6.35 0.11 329.68 260.12 421.23 445.48
4 5.63 0.09 6.27 0.13 310.04 205.49 406.78 379.56
5 5.61 0.10 6.07 0.15 280.38 143.65 362.06 243.19
6 5.57 0.12 5.69 0.15 250.95 95.86 306.17 132.67
7 5.41 0.12 5.38 0.15 221.94 64.89 257.06 70.54
8 5.08 0.12 5.27 0.16 194.71 47.48 207.83 33.88
9 4.85 0.11 5.20 0.15 170.81 39.24 169.40 15.81
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Figure 5.8. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1. Correlation = 0.0.
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At 0.9 correlation, the samples taken from each system, in every iteration, are more

consistent. This means that the systems closest to the best, probably the second and third

best, should be allocated more of the budget, compared to the 0.0 correlation case, so as not

to be mistakenly selected as the best. This was observed earlier in Case 1, and again in

Figure 5.9 for all Racing algorithms and, to a less extent, OCBA. The survival plots make it

clear why F-RaceR performs the worst. It, again, holds on to many non-crucial systems due

to the high variance, and its ranking scheme discussed before. KW-RaceRR is faster in

discarding systems 6-9 and in shifting their budget to systems 0-3, which allows it to

perform better than F-RaceR. A-RaceR_2Way follows the same pattern as KW-RaceRR but

to a higher extent, enabling it to allocate more of the budget to the best two systems and

discard the inferior ones almost immediately after ଴݊. Also, it isolates the correlation effect.

The survival plot of OCBA is a bit peculiar, as it is very comparable to that of A-

RaceR_2Way, but it translates to a worse performance. A closer look will show that while

OCBA is allocating more of the budget to system 0, compared to A-RaceR_2Way, it is not

doing so at the expense of system 1, but rather at the expense of the inferior systems. See

Figure 5.10. This indicates that for Case 2 with high correlation, the worst systems should

not be neglected quickly, as OCBA does, nor should they be allocated nearly as many

samples as the best systems have, as F-RaceR does, some middle ground is required and A-

RaceR_2Way makes the best balance.

Finally, the performance of F-RaceR is worse than EBA, even though the top 6

systems get more than ܰ௠ ௔௫ ݇⁄ samples on average. To understand why, the estimated mean

of each system is calculated under two conditions: if it is sampled more than�ܰ ௠ ௔௫ ݇⁄ , on

average, and if it is sampled less. Table 5.9 indicates that all systems are sampled more

than�ܰ ௠ ௔௫ ݇⁄ , as expected. But, when they are not, their means are poorly estimated, which

affects the overall estimates. This explains why F-RaceR converges slower than EBA.
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Figure 5.9. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1. Correlation = 0.9.
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Table 5.9. Estimated mean of each system if it is sampled less, or more, than�ܰ ௠ ௔௫ ݇⁄ , when F-RaceR
allocates the budget under 0.0 correlation.

Sampled less than ܰ௠ ௔௫ ݇⁄ Sampled more than ܰ௠ ௔௫ ݇⁄ Means
estimated

with
EBA

Nominal
value

Estimated mean Frequency
Av. # of
samples

Estimated mean Frequency
Av. # of
samples

0 10.27 16.16% 12.44 0.00 83.84% 970.61 0.01
1 8.06 17.56% 12.25 1.01 82.44% 949.58 1.01
2 5.92 19.45% 11.95 2.01 80.55% 912.39 2.00
3 4.16 23.78% 11.63 3.00 76.22% 866.29 3.00
4 3.37 29.39% 11.32 4.01 70.61% 813.24 4.00
5 3.76 38.82% 11.18 5.02 61.18% 760.91 5.00
6 4.82 49.91% 11.11 6.02 50.09% 719.86 6.00
7 6.24 61.92% 11.23 7.02 38.08% 680.61 7.00
8 7.63 71.59% 11.41 8.01 28.41% 657.45 8.00
9 8.90 81.39% 11.66 9.01 18.61% 658.60 9.00

Figure 5.10. Cumulative budget allocated to each system throughout the run, averaged over all
replications. ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1. Correlation = 0.9.

Only the systems getting less than n0 are displayed.

In conclusion, with no correlation, the fastest algorithm to neglect the inferior
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this separation due to accounting for the ratio of the variances. Racing algorithms follow this
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independent case, while inferior systems are not to be neglected completely. A-
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5.3.1.3 Case 3: Monotonically increasing means with exponentially increasing variances

Data are drawn from ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1. Results in Table 5.10 and

Figure 5.11 agree with what was observed in Case 2; OCBA outperforms all other

algorithms due to utilizing the ratio of the variances. CBA is second in line, but never

reaching better results even under correlation. KW-RaceRR_OCBA here too benefits from

intelligently allocating Δ in every iteration, realizing performance close to that of OCBA’s. 

All Racing algorithms perform very closely to each other with KW-RaceRR being slightly

better at 0.0 correlation by the end of the run, and F-RaceR being better up to approximately

sample 1500. At 0.9 correlation, EBA outperforms all Racing algorithms.

Table 5.10. Lowest PICS and E[OC] achieved in Case 3 at 2000 samples for various correlation
levels.

Correlation

Algorithm
0.0 0.3 0.6 0.9 Mixed

PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC]
EBA 0.255 0.489 0.216 0.359 0.168 0.224 0.116 0.114 0.196 0.301
A_RaceR_2Way 0.278 0.535 0.257 0.477 0.238 0.424 0.226 0.384 0.021 0.001
F_RaceR 0.184 0.201 0.223 0.278 0.244 0.331 0.255 0.357 0.231 0.294
CBA 0.009 0.000 0.012 0.001 0.023 0.004 0.028 0.006 0.015 0.002
OCBA 0.006 0.000 0.011 0.001 0.014 0.001 0.019 0.002 0.012 0.001
A_RaceRR_1WUB 0.218 0.332 0.221 0.361 0.191 0.282 0.159 0.199 0.218 0.332
KW_RaceRR 0.163 0.193 0.183 0.244 0.177 0.224 0.172 0.193 0.179 0.231
KW_RaceRR_OCBA 0.013 0.001 0.021 0.002 0.029 0.003 0.049 0.009 0.097 0.120
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Figure 5.11. Comparison of different algorithms based on PICS and E[OC] under 0.0 (above) and 0.9
(below) correlation. ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1.
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Figure 5.12. Overall allocation of different algorithms at 0.0 and 0.9 correlation.
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The survival plots reflect the expected allocations. They also explain the difference in

performance between F-RaceR and KW-RaceRR. For 0.0 correlation, F-RaceR is faster in

separating between the systems leading to improved performance approximately up to

sample 1700. From that point on, its performance overlaps with KW-RaceRR, which

performs somewhat better at the end, but it is unclear why. At 0.9 correlation, as seen in

Case 2 previously, the high variance requires the inferior systems to be sampled more often,

compared to low correlation. It is clear that F-RaceR discards systems 5-9 sooner than KW-

RaceRR, which degrades its performance during the entire run.

Finally, the performance of all Racing algorithms is worse than EBA at high

correlation. Yet, it cannot be concluded that EBA is better in the limit, as Racing algorithms

were able to separate between the systems by the end of the run. And, if given a higher

budget, should outperform EBA. To test this, EBA and KW-RaceRR are run with a budget

of 10,000 samples instead of 2000. See Figure 5.15 (page 126). Observe how, by the end of

the run, the allocations of KW-RaceRR resemble those of OCBA\CBA. However, the

convergence curves indicate that by the time KW-RaceRR reaches this “optimal” allocation,

EBA will have reached almost a zero�ܲ ܥܫ ,ܵ and at that point it will not make any difference

if KW-RaceRR is allocating the budget optimally or not.

In conclusion, OCBA\CBA benefits from utilizing ௜ߪ ⁄௝ߪ and outperforms all other

algorithms, all throughout the run. KW-RaceRR_OCBA also makes the same benefit and

performs better than KW-RaceRR. All other Racing algorithms focus the budget on the best

system, as it has the lowest variance, but poorly distribute the budget among the others

(especially the inferior ones), due to their high variance. This leads to sampling them almost

equally within the available budget. Further investigation showed that if KW-RaceRR is

allowed a higher budget, its allocation will resemble more that of OCBA\CBA, but it

requires many samples to do so, at which point EBA is a better option.
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Figure 5.13. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1. Correlation = 0.0.
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Figure 5.14. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1. Correlation = 0.9.
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Figure 5.15. Cumulative allocations (a) by KW-RaceRR and convergence curves (b) based on PICS for ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1. Correlation = 0.9.
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5.3.1.4 Case 4: Means and variances are randomly selected

The performance of an algorithm under various parameter settings is not likely to be

as structured, in terms of the means and variances, as was presented up till now. In Case 4,

no assumptions are made on the means and variance, instead they are drawn at random. Two

sets of means and variances are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯, with the exact values

listed in Table 5.11. Generally, the variances in both sets are close to each other, and judging

from the means, systems 0-2, in Set-A, and 0-3, in Set-B, may be the most crucial in

identifying the best. Based on that, Set-B poses a harder problem because the distances

between the means of systems 0-3 are smaller. The only expectation for this random case is

that the crucial systems should be sampled more often, but it is unclear how the budget

should be distributed among the remaining ones.

Table 5.11. The exact means and variances drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯.

Set System 0 1 2 3 4 5 6 7 8 9

A1 Mean 0.10 0.98 1.32 3.27 6.21 6.49 8.03 8.34 9.10 9.78
Variance 35.93 44.34 42.10 24.42 43.39 28.12 44.49 34.35 24.31 39.72

B
Mean 0.23 0.50 1.09 1.65 5.51 5.87 7.50 8.31 8.38 9.85

Variance 39.70 39.40 39.43 29.34 46.50 34.92 35.69 37.39 45.04 40.77

Beginning with Set-A, Table 5.12 and Figure 5.16 show that, under 0.0 correlation,

KW-RaceRR produces the best results from sample 700 (roughly) onwards, while OCBA is

slightly better beforehand. This was observed earlier in Case 1 as well. KW-RaceRR_OCBA

is following the behavior of OCBA and is not offering any noticeable advantage over it. At

0.9 correlation, CBA is doing equal allocation as can be seen from its overlapping curve

with EBA. Also, F-RaceR and A-RaceR_2Way are converging fast at the beginning, then

slowing down later on. Again, this was observed earlier in Case 1, and is expected here as

the variances are close.

1 The same means and variances used by Fu, M. C., Hu, J. Q., Chen, C. H. and Xiong, X., 2007. Simulation allocation for
determining the best design in the presence of correlated sampling. INFORMS Journal on Computing, 19 (1), pp.101-111.
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Table 5.12. Lowest PICS and E[OC] achieved in Case 4, Set-A, at 2000 samples for various
correlation levels.

Correlation

Algorithm
0.0 0.3 0.6 0.9 Mixed

PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC]
EBA 0.084 0.007 0.044 0.002 0.012 0.000 0.000 0.000 0.055 0.003
A_RaceR_2Way 0.048 0.002 0.035 0.001 0.016 0.000 0.006 0.000 0.038 0.001
F_RaceR 0.035 0.001 0.023 0.001 0.013 0.000 0.002 0.000 0.030 0.001
CBA 0.063 0.004 0.031 0.001 0.012 0.000 0.000 0.000 0.025 0.001
OCBA 0.043 0.002 0.034 0.001 0.024 0.001 0.003 0.000 0.034 0.001
A_RaceRR_1WUB 0.021 0.000 0.011 0.000 0.003 0.000 0.000 0.000 0.021 0.000
KW_RaceRR 0.009 0.000 0.005 0.000 0.001 0.000 0.000 0.000 0.004 0.000
KW_RaceRR_OCBA 0.041 0.328 0.032 0.328 0.025 0.328 0.003 0.328 0.016 0.000

Figure 5.16. Comparison of different algorithms based on PICS and E[OC] under 0.0 (above) and 0.9

(below) correlation. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A.
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Moving on to the analysis, the algorithms presented in Figure 5.17 all focus the

majority of the budget to systems 0-2, which supports the conjecture of them being the

crucial ones. For the independent case, F-RaceR and A-RaceR_2Way are allocating more

samples to system 3. This has translated into inferior performance, indicating a better use of

that system’s budget was possible.

Figure 5.17. Overall allocation of different algorithms at 0.0 and 0.9 correlation.

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A. The numbers are averaged over all replications.

The survival plots also reflect the observed performance, and the conclusions made

from them are in line with the Case 1. In specific, under 0.0 correlation, Figure 5.18, OCBA

is the fastest algorithm to separate the crucial systems, particularly system 0, which

translates into is slightly faster convergence at the beginning. On the other hand, the budget

allocated to the crucial systems is more evenly spread among them by KW-RaceRR, which

invests more samples in system 2, compared to OCBA, before it discards it. This enabled it

to achieve better estimates of the crucial systems’ means, and ultimately reach the best

results after sample 700, approximately. See Table 5.13.
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Table 5.13. Deviation of the estimated means from their nominal values.
The numbers are reported at the end of the run, and are based on all replications.

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯. Set-A. Note how KW-RaceRR has the lowest deviation for the crucial
systems except system 0.0 under 0.9 correlation.

System
True
mean

Deviation from true mean
0.0 correlation 0.9 correlation

A_RaceR_2W F_RaceR KW_RaceRR OCBA A_RaceR_2W F_RaceR KW_RaceRR OCBA

0 0.10 0.117 0.087 0.023 0.134 0.001 0.000 0.002 0.005
1 0.98 0.341 0.313 0.054 0.064 0.196 0.158 0.005 0.048
2 1.32 0.382 0.337 0.263 0.339 0.219 0.191 0.131 0.371
3 3.27 0.447 0.407 0.318 0.477 -0.020 -0.039 0.119 0.511
4 6.21 0.352 0.384 0.286 0.402 -0.022 -0.022 0.213 0.408
5 6.49 0.185 0.240 0.173 0.176 -0.015 -0.015 0.083 0.155
6 8.03 0.146 0.185 0.140 0.257 -0.015 -0.015 0.093 0.209
7 8.34 0.068 0.088 0.090 0.129 -0.008 -0.008 0.036 0.085
8 9.10 0.007 0.019 0.024 0.017 -0.013 -0.013 -0.005 0.004
9 9.78 0.024 0.038 0.046 0.090 -0.012 -0.012 0.011 0.054

The same extends to 0.9 correlation in Figure 5.19, where it is clear that F-RaceR

and A-RaceR_2Way are the fastest algorithms to separate the crucial systems, and,

compared to OCBA, are distributing their budget more evenly. This is connected with their

quick convergence at the start. KW-RaceRR follows the same pattern, but to a greater extent

with systems 0-2 being sampled equally till about sample 500 (the investment). This is

linked with the somewhat slower convergence at the start, but superior performance later on.
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Figure 5.18. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A. Correlation = 0.0.
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Figure 5.19. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A. Correlation = 0.9.
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Moving to Set-B, Table 5.14 and Figure 5.20 indicate that, with the exception of F-

RaceR and EBA, all algorithms perform closely to each other, with KW-RaceRR achieving

better results, to some extent, by the end of the run. All the figures here are moved to

Appendix A2 as they are similar to Set-A.

Table 5.14. Lowest PICS and E[OC] achieved in Case 4, Set-B, at 2000 samples.

Correlation

Algorithm
0.0 0.3 0.6 0.9 Mixed

PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC] PICS E[OC]
EBA 0.348 0.040 0.306 0.028 0.238 0.016 0.076 0.002 0.316 0.029
A_RaceR_2Way 0.172 0.009 0.118 0.004 0.045 0.001 0.014 0.000 0.130 0.005
F_RaceR 0.260 0.012 0.2050 0.012 0.126 0.004 0.024 0.000 0.223 0.014
CBA 0.196 0.011 0.250 0.019 0.238 0.016 0.076 0.002 0.181 0.010
OCBA 0.163 0.007 0.118 0.004 0.067 0.001 0.017 0.000 0.130 0.005
A_RaceRR_1WUB 0.164 0.008 0.116 0.004 0.061 0.001 0.002 0.000 0.164 0.008
KW_RaceRR 0.159 0.007 0.113 0.003 0.060 0.001 0.001 0.000 0.126 0.004
KW_RaceRR_OCBA 0.166 0.008 0.119 0.004 0.067 0.001 0.018 0.000 0.090 0.002

The overall allocations and survival plots are interpreted in the same fashion as in Set-

A, and offer the same explanation for the observed performance. It also holds that KW-

RaceRR better estimates the means of the crucial systems as indicated by Table 5.15.

However, it is unclear why F-RaceR performs worse than A-RaceR_2Way in the

independent case, since their survival plots are similar. Their mean estimates for the best

four systems are also close, though F-RaceR gives a more accurate estimate of system 0.

A more important outcome from Case 4 is that while the variances are unequal,

OCBA\CBA is not gaining much from utilizingߪ�௜ ⁄௝ߪ , as seen before when the variances

were exponentially increasing or decreasing.

Table 5.15. Deviation of the estimated means from their nominal values.
The numbers are reported at the end of the run, and are based on all replications.

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯. Set-B.

System
True
mean

Deviation from true mean
0.0 correlation 0.9 correlation

A_RaceR_2W F_RaceR KW_RaceRR OCBA A_RaceR_2W F_RaceR KW_RaceRR OCBA

0 0.10 0.184 0.172 0.049 0.157 0.023 0.024 0.006 0.042
1 0.98 0.248 0.227 0.059 0.112 0.059 0.061 0.004 0.052
2 1.32 0.363 0.322 0.317 0.703 0.153 0.146 0.022 0.866
3 3.27 0.375 0.324 0.338 0.656 -0.074 -0.061 -0.011 0.709
4 6.21 0.489 0.477 0.425 0.331 -0.023 -0.023 0.129 0.155
5 6.49 0.322 0.344 0.308 0.169 -0.017 -0.017 -0.003 0.044
6 8.03 0.132 0.151 0.169 0.075 -0.013 -0.013 -0.001 0.000
7 8.34 0.075 0.089 0.116 0.062 -0.008 -0.008 0.005 -0.002
8 9.10 0.091 0.115 0.143 0.074 -0.017 -0.017 0.025 -0.003
9 9.78 0.024 0.031 0.062 0.028 -0.012 -0.012 -0.002 -0.011
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In conclusion, if the variances are not equal, but are relatively close, the tested

algorithms behaved similarly to Case 1. KW-RaceRR is the best algorithm, on both

measures, if the budget is high, irrespective of the correlation. For a low budget, OCBA is

better to some extent for the independent case, and A-RaceR_2Way is better if correlation is

high. The values of “high” and “low” will depend on the sets of means and variances used,

but for the experiments of Case 4, a budget of 1500 samples, or more, was sufficient for

KW-RaceRR to outperform the other algorithms.

5.3.1.5 Summary

To summarize the results of Set-1 experiments, the following remarks are made:

First, if the variances are equal, or if they are randomly selected, but are relatively close,

KW-RaceRR performs best if the budget is high, regardless of the correlation level. Second,

for Case 1 with a low budget, OCBA performs slightly better under no correlation, and 2-

way Racing is best if correlation is high. Third, if the variances are exponentially increasing

or decreasing, OCBA\CBA makes more use of ௜ߪ ⁄௝ߪ and outperforms the other algorithms

throughout the run, although for the decreasing variance case A-RaceR_2Way was best

under high correlation. Fourth, trying to intelligently allocate Δ in KW-RaceRR using

OCBA is advantageous when the variances are exponentially increasing or decreasing,

otherwise it is similar to OCBA. Fifth, under high correlation, EBA is competitive, given its

simplicity, but it is not the best strategy. See Table 5.16.

Table 5.16. A summary of the best performing algorithms (based on PICS) in Set-1 experiments.

Case Distribution Budget Correlation Best algorithm

1 ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1

≥ 700 0.0 or 0.9 KW-RaceRR
≤ 500 0.0 OCBA

≤ 350 0.9 F-RaceR

2 ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1
Throughout 0.0 OCBA
Throughout 0.9 A-RaceR_2Way

3 ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1 Throughout 0.0 or 0.9 OCBA

4
~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯

Set-A and Set-B

High2 0.0 or 0.9 KW-RaceRR
Low2 0.0 OCBA
Low2 0.9 A-RaceR_2Way

2 The exact values will depend on the means and variances used.
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5.3.2 Results for Set-2

In these experiments Racing algorithms set the budget for OCBA, CBA, and EBA.

The performance measures are ௥݂ and ॱ[ܱܥ] tracked over a wide range of α values and

calculated over 10,000 replications for each α. The objectives of Set-2 experiments are to see

if allowing Racing to set the budget will affect its performance against OCBA\CBA, and to

show how Racing with reset improves upon the standard algorithms by adapting α0. In

previous work it was shown that F-RaceR improves standard F-Race by adapting α0 (Branke

and Elomari, 2013). In addition, F-RaceR, with a relatively high α0, achieved significantly

better results compared to F-Race using any fixed α set by the user.

Next, KW-Race and A-Race_2Way will be the algorithms setting the budget, as they

have shown to be competitive to OCBA\CBA in Set-1. EBA is added to the comparison as a

benchmark, along with Racing with reset (KW-RaceRR and A-RaceR_2Way) to show the

performance gains over the standard Racing algorithms. The means, variances, and

correlation levels are the same as those used in Set-1. Survival plots cannot be generated for

Set-2 experiments as the consumed budget varies with each replication; hence, ECs are used

instead. To make this chapter easier to read, the experiments of A-Race_2Way are moved to

the appendix as their conclusions do not differ from KW-Race’s as will be shown.

Before going into the results and analysis, it should be noted that as α decreases, the

budget required for termination increases. With that in mind, there is always some α that will

force Racing to consume the entire budget, at which point Racing is not “setting” the budget,

but is using a fixed budget, as in Set-1, without the reset. For such α values, the comparison

to OCBA\CBA and EBA does not serve the objectives of Set-2 experiments.

Figure 5.20 shows the average consumed budget by KW-Race for all α values and

correlation levels used, along with box plots. Generally, for ߙ > 0.1 andߩ�≤ 0.3 the

average budget consumed is less than the allowed limit, and in some cases, even the

maximum is less than the limit. In such situations, KW-Race is indeed setting the budget for
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the other algorithms. At the other extreme,ߙ� < 0.001, the average consumed budget is

almost equal to the allowed maximum, which means that, most of the time, KW-Race was

not able to find a winner. In these situations, KW-Race is not specifying the budget and is

not expected to have performance advantage.

Figure 5.20. Box plots of the budget consumed by KW-Race at various α values, and different
correlation levels. The connecting line is that of the means.

0 .0
00

01

0 .0
00

1

0.
00

1

0 .0
1

0 .0
2

0.
04

0 .0
6

0 .0
8

0.
1

0 .1
5

0 .20.
3

1000

750

500

250

0

0.
00

00
1

0 .0
00

1

0 .0
01

0 .0
1

0 .0
2

0.
04

0 .0
6

0 .0
8

0 .1
0 .1

5
0.

2
0 .3

1000

750

500

250

0

0.0

Significane level

A
ve

ra
g
e

bu
dg

et
co

n
su

m
ed

0.3

0.6 0.9

Constant variance

0 .0
00

01

0 .0
00

1

0.
00

1

0 .0
1

0 .0
2

0.
04

0 .0
6

0 .0
8

0.
1

0 .1
5

0 .20.
3

1000

750

500

250

0

0.
00

00
1

0 .0
00

1

0 .0 010 .0
1

0 .0
2

0.0
4

0 .0
6

0 .0
8

0 .1
0 .1

5
0.

2
0 .3

1000

750

500

250

0

0.0

Significane level

A
ve

ra
g
e

bu
dg

et
co

n
su

m
ed

0.3

0.6 0.9

Random Set-A



Chapter 5 Experiments, Results, and Analysis: Computational Budget Allocators

140

5.3.2.1 Case 1 and Case 4: Monotonically increasing means with equal variances, and

means and variances are randomly selected

These two cases are combined together because their conclusions are similar. In

Case 1, the box plots indicate that KW-Race sets the budget, in most replications,

when 0.3 ≥ ߙ ≥ 0.06. Within that range, KW-Race outperforms all other algorithms as seen

in Figure 5.21 (the E[OC] results are in Appendix A3) and Table 5.17, though the difference

is minor atߙ� = 0.3 andߩ�= 0.0 or 0.3. Note that there results for =ߩ 0.0 and 0.3 are

summarized in the tables, but are not plotted as they follow the same pattern. For ߙ ≤ 0.01

KW-Race starts to consume the entire budget in most replications, and behave similar to

EBA, eventually degrading its performance. Note that under high correlation and low α, all

algorithms reach zero ௥݂ and�ॱ .[ܥܱ] This is in line with the results of Set-1.

The same observations apply to Case 4 Set-A and Set-B, but for different ranges of

α. See Tables 5.18-5.19, the remaining results are in Appendix A3. Note how, for the

independent case of Set-A, OCBA is better for high α values (lower budget), and KW-Race

is better for low α values (high budget). In Set-B, under no correlation, OCBA, CBA, and

KW-Race perform closely to each other. Both of these behaviors were seen in Set-1

experiments earlier.

Finally, in Case 1 and Case 4, KW-RaceRR’s performance is fairly stable over a

wide range of α values, and is significantly better −݌) ݒܽ ≫݁ݑ݈ 0.05), at a high ଴ߙ (e.g.

0.3), than KW-Race at any fixed α. This does not apply for small ଴ߙ values as it starts to act

like EBA and degrades its performance.

Table 5.17. A summary of the fr achieved by the competing algorithms at selected α points of an EC.
Data are drawn from ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.

0.3 correlation 0.6 correlation
Alpha KW_Race OCBA CBA EBA KW_RaceRR KW_Race OCBA CBA EBA KW_RaceRR

0.00001 0.030 0.006 0.041 0.079 0.030 0.006 0.003 0.029 0.029 0.006
0.001 0.017 0.006 0.041 0.078 0.017 0.003 0.003 0.029 0.030 0.003
0.01 0.010 0.006 0.042 0.079 0.010 0.001 0.003 0.030 0.030 0.001
0.1 0.004 0.007 0.045 0.088 0.003 0.000 0.003 0.033 0.034 0.000
0.3 0.083 0.093 0.184 0.279 0.000 0.023 0.044 0.173 0.179 0.000
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Table 5.18. A summary of the fr achieved by the competing algorithms at selected α points of an EC. 

Data are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯. Set-A.

0.3 correlation 0.6 correlation
Alpha KW_Race OCBA CBA EBA KW_RaceRR KW_Race OCBA CBA EBA KW_RaceRR

0.00001 0.304 0.261 0.338 0.390 0.304 0.236 0.186 0.324 0.324 0.235
0.001 0.291 0.261 0.336 0.391 0.291 0.226 0.187 0.322 0.323 0.226
0.01 0.282 0.261 0.338 0.390 0.282 0.219 0.185 0.323 0.324 0.218
0.1 0.265 0.260 0.338 0.390 0.264 0.203 0.186 0.324 0.326 0.203
0.3 0.310 0.329 0.423 0.494 0.219 0.180 0.217 0.384 0.388 0.145

Table 5.19. A summary of the fr achieved by the competing algorithms at selected α points of an EC. 

Data are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯. Set-B.

0.3 correlation 0.6 correlation
Alpha KW_Race OCBA CBA EBA KW_RaceRR KW_Race OCBA CBA EBA KW_RaceRR

0.00001 0.032 0.045 0.006 0.141 0.031 0.008 0.028 0.000 0.068 0.007
0.001 0.021 0.045 0.011 0.140 0.021 0.005 0.028 0.000 0.067 0.005
0.01 0.015 0.045 0.026 0.142 0.015 0.003 0.027 0.000 0.068 0.003
0.1 0.012 0.046 0.066 0.145 0.012 0.002 0.028 0.001 0.069 0.002
0.3 0.127 0.158 0.115 0.360 0.013 0.035 0.081 0.003 0.236 0.003

Figure 5.21. ECs based on fr at 0.0 (above) and 0.9 (below) correlation levels.
Data are drawn from ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.
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5.3.2.2 Case 2 and Case 3: Monotonically increasing means with increasing or

decreasing variance

In Set-1 experiments, both these cases had OCBA outperforming KW-RaceRR due

to utilizingߪ�௜ ⁄௝ߪ . The only exception was for the decreasing variance case under high

correlation. If allowing KW-Race to set the budget gives it an advantage, it should become

apparent here. The results of Figures 5.22-5.23 and Tables 5.20-5.21suggest otherwise.

OCBA is still better than KW-Race in both cases, with the same exception.

Moreover, notice how for the decreasing variance case KW-Race consumes nearly

all the budget over all α values if correlation is 0.9. This limits the number of resets of KW-

RaceRR, which explains why its performance is close to KW-Race’s, and it explains why

OCBA’s performance is rather stable. Finally, KW-RaceRR, at a high ଴ߙ (say 0.3 or 0.2),

performs significantly better −݌) ݒܽ ≫݁ݑ݈ 0.05) than KW-Race with a fixed α.

Table 5.20. A summary of the fr achieved by the competing algorithms at selected α points of an EC.
Data are drawn from ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1.

0.3 correlation 0.6 correlation
Alpha KW_Race OCBA CBA EBA KW_RaceRR KW_Race OCBA CBA EBA KW_RaceRR

0.00001 0.470 0.383 0.481 0.471 0.469 0.413 0.341 0.423 0.420 0.413
0.001 0.468 0.384 0.481 0.473 0.468 0.409 0.342 0.423 0.419 0.409
0.01 0.465 0.385 0.483 0.474 0.465 0.406 0.341 0.422 0.420 0.406
0.1 0.456 0.385 0.482 0.473 0.456 0.396 0.339 0.422 0.417 0.396
0.3 0.436 0.421 0.495 0.510 0.415 0.352 0.359 0.436 0.430 0.348

Table 5.21. A summary of the fr achieved by the competing algorithms at selected α points of an EC.
Data are drawn from ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1.

0.3 correlation 0.6 correlation
Alpha KW_Race OCBA CBA EBA KW_RaceRR KW_Race OCBA CBA EBA KW_RaceRR

0.00001 0.425 0.072 0.076 0.442 0.425 0.331 0.078 0.110 0.341 0.330
0.001 0.425 0.072 0.076 0.442 0.425 0.331 0.078 0.110 0.341 0.330
0.01 0.426 0.072 0.077 0.443 0.426 0.330 0.077 0.111 0.342 0.330
0.1 0.419 0.074 0.078 0.444 0.419 0.328 0.077 0.110 0.341 0.328
0.3 0.448 0.203 0.211 0.545 0.356 0.346 0.150 0.176 0.390 0.327
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Figure 5.22. ECs based on fr at 0.0 (above) and 0.9 (below) correlation levels.
Data are drawn from ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1.
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Figure 5.23. ECs based on fr at 0.0 (above) and 0.9 (below) correlation levels.
Data are drawn from ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1.
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5.3.2.3 Summary

The results presented in this section show that having KW-Race set the budget does

not affect its performance ranking among OCBA, CBA, and EBA. That is, if the budget is

fixed and KW-RaceRR performs worse than OCBA, it will again perform worse if it

specifies the budget, given the same means, variances, and correlations. Specifically, KW-

Race remains better if the variances are equal, or are randomly selected, and it is worse if the

variances are exponentially increasing or decreasing (except under high correlation). This

pattern was observed in Set-1 before when KW-RaceRR used a fixed budget.

When α is small enough, KW-Race, and other Racing algorithms in general, sample

all systems almost equally, eventually degrading their performance and moving it towards

EBA’s. KW-RaceRR improves over KW-Race by adaptingߙ�଴, and shows a somewhat stable

performance over a wide range ofߙ�଴. Nonetheless, there is always some ଴ߙ at which KW-

RaceRR performs similar to EBA. More importantly, as presented before in Branke and

Elomari (2013), KW-RaceRR at a high ଴ߙ (e.g. 0.3 or 0.2) achieves significantly better

−݌) ݒܽ ≫݁ݑ݈ 0.05) results than KW-Race at any fixed α. The same conclusions hold for A-

Race_2Way and A-RaceR_2Way, as shown in Appendix A2.

Table 5.22. A summary of the best performing algorithms (based on PICS) in Set-2 experiments.

Case Distribution α range Correlation Best algorithm

1 ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1
0.3-0.02 0.0 KW-Race

0.01-0.000013 0.0 OCBA
0.3-0.00001 0.9 KW-Race

2 ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1

0.3-0.00001 0.0 OCBA
0.3-0.01 0.9 KW-Race

0.001-0.000013 0.9 OCBA

3 ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1 0.3-0.00001 0.0 and 0.9 OCBA

4

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A

0.3-0.2 (low budget) 0.0 OCBA

0.1-0.00001 0.0 KW-Race

0.3-0.00001 0.9 KW-Race

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B

0.3-0.02 0.0 KW-Race

0.01-0.000013 0.0 OCBA

0.3-0.08 0.9 KW-Race

0.01-0.000013 0.9 OCBA

3 KW-Race starts behaving like EBA for these α values.
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5.3.3 Results for Set-3

Based on the findings of Set-1 experiments, KW-RaceRR and OCBA outperformed

all other algorithms in most cases within the available budget. Recall that under high

correlation 2-way Racing algorithms achieve better results if the budget is small, but due to

time limitation, they are not run here. Set-3 experiments consist of testing KW-RaceRR and

OCBA on ݇= 50 systems and non-normal distributions with 0.0 and 0.9 correlation levels.

Performance comparisons are based on .onlyܵܥܫܲ

The settings are similar to Set-1. However, the variances cannot be exponentially

increasing or decreasing due to the large number of systems; instead, they linearly increase

and decrease as: ~ࣞ൫݅ , 3(݇− )݅൯∀݅= 0, … ,݇− 1 and ~ࣞ൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1.

The equal variances case remains unchanged, and the random case now draws number

from ~ࣞ൫ܷ (0,15),ܷ(20,40)൯. The exact values are in Table 5.23. Finally, the non-normal

distributions are Weibull(1, 8), or Gamma(5, 6). See Figure 5.24.

Table 5.23. Means and variances drawn from ~ࣞ൫ܷ (0,15),ܷ(20,40)൯.

System 0 1 2 3 4 5 6 7 8 9 10 11 12
Mean 0.10 1.36 1.43 1.77 2.19 2.36 2.40 2.57 3.04 3.07 3.50 3.50 3.79

Variance 27.76 31.06 28.96 31.56 28.46 33.42 29.66 31.75 36.38 27.59 33.14 29.08 32.74
System 13 14 15 16 17 18 19 20 21 22 23 24 25
Mean 3.83 3.97 3.98 3.99 4.03 4.42 4.42 4.49 4.80 4.86 5.63 5.71 5.81

Variance 26.01 31.08 32.16 34.44 27.82 33.45 31.42 31.91 32.56 29.58 25.59 34.12 24.86
System 26 27 28 29 30 31 32 33 34 35 36 37 38
Mean 6.02 6.26 6.57 6.91 7.05 7.36 7.59 7.72 7.88 8.26 8.44 8.57 9.19

Variance 27.05 29.43 28.45 34.13 33.43 32.48 30.03 30.75 32.84 32.23 24.69 26.68 27.74
System 39 40 41 42 43 44 45 46 47 48 49
Mean 9.55 9.61 9.86 9.86 10.28 10.34 10.35 10.36 10.56 10.69 10.89

Variance 33.73 27.22 26.00 25.41 23.90 33.30 36.66 29.22 28.92 35.63 33.14

Figure 5.24. Weibull (left) and Gamma (right) distributions used in Set-3 experiments.
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5.3.3.1 Case 1: Monotonically increasing means with equal variances

Figure 5.25 shows that, under 0.0 correlation, both algorithms perform closely to

each other, over all three distributions, with KW-RaceRR reaching better ܵܥܫܲ values by the

end of the run, and performing slightly worse when the budget is small. This was observed

before in Set-1 where KW-RaceRR distributed Δ more evenly among the surviving systems, 

at the beginning of the run, such that it obtained more accurate estimates of their parameters

before discarding them. The same pattern can be seen here in the corresponding survival,

Figures 5.26-5.28. The legend on the figures does not display all systems for better viewing.

Note that the survival plots of KW-RaceRR are smoother, and do not display an

oscillating pattern. This is because each additional sample allocated by KW-RaceRR goes to

a different system (recall that it equally distributes ∆ = ݉ݑ݊ ܾ݁ ݂݋�ݎ ݒ݅ݎݑݏ� ݏݎ݋ݒ in each

iteration), while OCBA may allocate anything between 0 and Δ to a single system, hence the 

oscillations. This pattern was observed to a less extent in Set-1 because k was smaller.

At 0.9 KW-RaceRR converges faster, then slows down, and half way through the

run it, and OCBA, reach almost a zero�ܲ ܥܫ .ܵ This is clearer in non-normal distributions. The

corresponding survival plots show that KW-RaceRR samples the third best more often in the

beginning before discarding it. As this links with faster convergence, it means that the third

best is a crucial system at that point, and a good estimate of its parameters is required for

correct selection. Figure 5.29 compares the survival plots of KW-RaceRR across

distributions. Note how the third best survives the longest with Normal data, and the least

with Weibull data. See also Table 5.24.

Table 5.24. Deviation of the estimated means, of systems 0-2, from their nominal values. The
numbers are based on KW-RaceRR allocations by the end of the run under 0.9 correlation.

Normal Weibull
System Nominal mean Deviation from nominal Deviation from nominal

0 0 0.00 0.00
1 1 0.00 0.00
2 2 -0.01 0.18
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In conclusion, increasing the number of systems and/or changing the distribution

type has minor effect the performance of OCBA and KW-RaceRR, compared to Set-1

experiments. With 0.0 correlation, OCBA is still better if the budget is low, and KW-

RaceRR is superior if the budget is high. With 0.9 correlation, KW-RaceRR is superior, but

is more sensitive to the distribution type compared to OCBA. This has the effect of slowing

its convergence half way through, but it reaches a near zero ܵܥܫܲ shortly afterwards, as does

OCBA.
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Figure 5.25. Comparison of different algorithms based on PICS under 0.0 (above) and 0.9 (below) correlation. ~ࣞ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.
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Figure 5.26. Cumulative budget allocated to each system throughout the run. ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. Correlation = 0.0 (above) 0.9 (below).
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Figure 5.27. Cumulative budget allocated to each system throughout the run. ~࣡( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. Correlation = 0.0 (above) 0.9 (below).
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Figure 5.28. Cumulative budget allocated to each system throughout the run. ~ࣱ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1. Correlation = 0.0 (above) 0.9 (below).
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Figure 5.29. Cumulative budget allocated to each system by KW-RaceRR throughout the run. Correlation = 0.9.
Compare the budget allocated to systems 2-5 across distributions.
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5.3.3.2 Case 2: Monotonically increasing means with linearly decreasing variances

This Case and Case 3 are of importance, as they test if OCBA will still gain as much

benefit by utilizingߪ�௜ ⁄௝ߪ if the variances are linearly changing, as opposed to the

exponential change tested in Set-1. Figure 5.30 shows that, under 0.0 correlation, OCBA still

outperforms KW-RaceRR with Normal and Gamma data, but not with Weibull data. Also,

the difference in�ܲ ܵܥܫ is much smaller here compared to the correspond case in Set-1. Under

0.9 correlation, both perform closely to each other, with KW-RaceRR reaching smaller ܵܥܫܲ

by the end of the run. A finding consistent with the same case in Set-1.

These results indicate that OCBA does not benefit as much from utilizingߪ�௜ ⁄௝ߪ

when the variances are linearly decreasing, becauseߪ�௜ ⁄௝ߪ is smaller now, and the

corresponding ratios for systems i and j are smaller (especially thatߜ�௕,௜ ⁄௕,௝ߜ remains the

same). Hence, the best systems are separated at a slower rate, compared to what was

observed in Set-1. See the survival plots in Figures 5.31-5.33.

Relating the observed performance to the survival plots, OCBA is faster in

discarding the third best with Normal and Gamma data, compared to Weibull data if

correlation is 0.0. Meaning, a typical algorithm should not waste sampling effort system 2,

and should focus on 0 and 1 as early as possible. Under 0.9 correlation, the situation is

reversed, as the third best becomes critical and should not be discarded early on as OCBA

does. Notice how KW-RaceRR keeps it in play throughout the run if the data is Normal, and

starts discarding it half way through if the data follows a Weibull distribution. Indicating it is

more sensitive to the distribution type than OCBA.

In conclusion, OCBA does not benefit as much, in terms of performance, from

௜ߪ� ⁄௝ߪ when the variances are linearly decreasing, and KW-RaceRR becomes a close

competitor. Their overall allocations and performance ranking, however, remain similar to

Set-1 experiments. Under high correlation it is apparent that OCBA is more robust to the

distribution type.
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Figure 5.30. Comparison of different algorithms based on PICS under 0.0 (above) and 0.9 (below) correlation. ~ࣞ൫݅ , 3(݇− )݅൯∀݅= 0, … ,݇− 1.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

501 701 901 1101 1301 1501 1701 1901

P
IC

S

Number of samples Normal

KW_RaceRR OCBA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

501 701 901 1101 1301 1501 1701 1901

P
IC

S

Number of samples Gamma

KW_RaceRR OCBA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

501 701 901 1101 1301 1501 1701 1901

P
IC

S

Number of samples Weibull

KW_RaceRR OCBA

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

501 701 901 1101 1301 1501 1701 1901

L
o

g
P

IC
S

Number of samples Normal

KW_RaceRR OCBA

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

501 701 901 1101 1301 1501 1701 1901

L
o

g
P

IC
S

Number of samples Gamma

KW_RaceRR OCBA

1.E-03

1.E-02

1.E-01

1.E+00

501 701 901 1101 1301 1501 1701 1901

L
o

g
P

IC
S

Number of samples Weibull

KW_RaceRR OCBA

1
5

5

94



Chapter 5 Experiments, Results, and Analysis: Computational Budget Allocators

156

Figure 5.31. Cumulative budget allocated to each system throughout the run. ~ࣨ ൫݅ , 3(݇− )݅൯∀݅= 0, … ,݇− 1. Correlation 0.0 (above) 0.9 (below).
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Figure 5.32. Cumulative budget allocated to each system throughout the run. ~࣡൫݅ , 3(݇− )݅൯∀݅= 0, … ,݇− 1. Correlation 0.0 (above) 0.9 (below).
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Figure 5.33. Cumulative budget allocated to each system throughout the run. ~ࣱ ൫݅ , 3(݇− )݅൯∀݅= 0, … ,݇− 1. Correlation 0.0 (above) 0.9 (below).
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5.3.3.3 Case 3: Monotonically increasing means with linearly increasing variances

Similar to what was observed in the corresponding case of Set-1, with no

correlation, OCBA still outperforms KW-RaceRR regardless of the distribution type and the

number of systems. See Figure 5.34. Nonetheless, it is clear that the difference in

performance is much smaller here, as the variances are linearly increasing, and beyond

sample 750 both algorithms reach almost a zero�ܲ ܥܫ .ܵ Additionally, under high correlation,

KW-RaceRR achieves slightly better results at the beginning, which never occurred in Set-1

before. All of this shows how OCBA benefits much less fromߪ�௜ ⁄௝ߪ if the variances are

linearly increasing.

Interestingly, OCBA is not shifting the majority of the budget to the inferior systems

as was observed in Set-1. In fact, systems 6-49 are almost never sampled after�݊଴. See Table

5.25 and Figure 5.35. This means a linearly increasing set of variances does not raise the

ratios of the inferior systems high enough to allocate them more samples. The effect of the

number of systems seems minor as systems 6-9, which were allocated a major part of the

budget in Set-1, now receive almost nothing.

Table 5.25. Percentage of the budget allocated to each system by OCBA at the end of the run.
Data ~ࣞ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1.

System
0.0 correlation 0.9 correlation

Normal Gamma Weibull Normal Gamma Weibull
0 21% 21% 21% 21% 21% 21%
1 25% 25% 26% 26% 26% 26%
2 9% 9% 10% 9% 10% 10%
3 5% 6% 6% 5% 6% 6%
4 4% 4% 4% 4% 4% 4%
5 3% 3% 3% 3% 3% 3%

6-49 2% 2% 2% 2% 2% 2%

The survival plots, in Figures 5.36-5.38, show that OCBA is faster in separating

between the best systems and inferior ones, compared to KW-RaceRR. Plus, the best systems

are allocated more of the budget. Such a distribution works for OCBA’s advantage if

correlation is 0.0, but not if it is high, because the samples taken from each system become
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more consistent, and a better estimate of the their parameters is required for a correct

selection. This was observed in Set-1 as well.

In conclusion, OCBA does not benefit as much, in terms of performance, from

௜ߪ� ⁄௝ߪ when the variances are linearly increasing, and KW-RaceRR becomes a close

competitor. OCBA’s overall allocations and performance ranking, do change compared to

Set-1 experiments. The most noticeable difference is the focus of the budget on the best

systems, not the ones with the highest variance. Under high correlation KW-RaceRR

performs slightly better at the beginning, and reaches a near zero ܵܥܫܲ half way through the

run where its performance overlaps with OCBA’s. Additionally, it showed to be more

sensitive to the distribution type.
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Figure 5.34. Comparison of different algorithms based on PICS under 0.0 (above) and 0.9 (below) correlation. ~ࣞ൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1.
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Figure 5.35. Overall allocation of different algorithms at 0.0 (a) and 0.9 (b) correlation. ~ࣞ൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1. The numbers are averaged over all replications.
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Figure 5.36. Cumulative budget allocated to each system throughout the run. ~ࣨ ൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1. Correlation 0.0 (above) 0.9 (below).
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Figure 5.37. Cumulative budget allocated to each system throughout the run. ~࣡൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1. Correlation 0.0 (above) 0.9 (below).
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Figure 5.38. Cumulative budget allocated to each system throughout the run. ~ࣱ ൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1. Correlation 0.0 (above) 0.9 (below).
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5.3.3.4 Case 4: Means and variances are randomly selected

Under 0.0 correlation, OCBA converges faster at the beginning, but slows down half

way through the run, where KW-RaceRR starts achieving better results. See Figure 5.39. The

corresponding survival plots, Figures 5.40-5.42, show that OCBA is faster in separating the

best systems from the inferior ones, and focuses most of the budget on the top 3 or 4

systems. In comparison, KW-RaceRR distributes the budget more evenly between the best

systems, and allocates more samples to the inferior ones. While this slows its convergence at

the beginning, it allows for better estimates of the distributions’ parameters, and eventually

leads to better results at the end of the run. Figure 5.43 shows an example for Normal data,

the other distributions are similar. The same behavior was observed in Set-1.

At 0.9 correlation both algorithms still allocate in a similar fashion to the

independent case, which benefits KW-RaceRR more. Recall that under high correlation, the

top systems require a more evenly spread budget among them to better estimate their

parameters, and make a correct selection. Also note that both algorithms reach a near zero

ܵܥܫܲ half way through, and their performances are indistinguishable from that point on.

KW-RaceRR is once more performing differently across distributions. Looking at the

allocations of third and fourth best when the distribution is Normal, compared to the

Weibull, it is clear that KW-RaceRR starts allocating less samples to these systems earlier

with Weibull data. This is linked with the slower convergence, indicating that a better

estimate of their parameter is required for correct selection.

In conclusion, the random case is more affected by the increased of the number of

systems, compared to Set-1, in terms of OCBA performing much better during the early

stages of the run. However, as KW-RaceRR invests in more accurately estimating the

parameters of the best distributions, it converges faster and outperforms OCBA by the end of

the run. Under high correlation, KW-RaceRR is more sensitive to the distribution type as

observed from its performance with Weibull data.
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Figure 5.39. Comparison of different algorithms based on PICS under 0.0 (above) and 0.9 (below) correlation. ~ࣞ൫ܷ (0,15),ܷ(20,40)൯.
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Figure 5.40. Cumulative budget allocated to each system throughout the run. ~ࣨ ൫ܷ (0,15),ܷ(20,40)൯. Correlation 0.0 (above) 0.9 (below).
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Figure 5.41. Cumulative budget allocated to each system throughout the run. ~࣡൫ܷ (0,15),ܷ(20,40)൯. Correlation 0.0 (above) 0.9 (below).
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Figure 5.42. Cumulative budget allocated to each system throughout the run. ~ࣱ ൫ܷ (0,15),ܷ(20,40)൯. Correlation 0.0 (above) 0.9 (below).
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Figure 5.43. Estimated mean of the best four systems under 0.0 correlation at selected points throughout the run. ~ࣨ ൫ܷ (0,15),ܷ(20,40)൯.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

800 1200 1600 2000 800 1200 1600 2000

0.0 correlation 0.9 correlation

E
st

im
a

te
d

m
ea

n

Budget consumed True mean = 0.10

KW_RaceRR OCBA

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

800 1200 1600 2000 800 1200 1600 2000

0.0 correlation 0.9 correlation

E
st

im
a

te
d

m
ea

n

Budget consumed True mean = 1.36

KW_RaceRR OCBA

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

800 1200 1600 2000 800 1200 1600 2000

0.0 correlation 0.9 correlation

E
st

im
a

te
d

m
ea

n

Budget consumed True mean = 1.43

KW_RaceRR OCBA

1.0

2.0

3.0

4.0

5.0

6.0

7.0

800 1200 1600 2000 800 1200 1600 2000

0.0 correlation 0.9 correlation

E
st

im
a

te
d

m
ea

n

Budget consumed True mean = 1.77

KW_RaceRR OCBA

1
7

1

94



Chapter 5 Experiments, Results, and Analysis: Computational Budget Allocators

172

5.3.3.5 Summary

In comparison to Set-1, increasing the number of systems and/or changing the

distribution type has minor effect on the allocations made by KW-RaceRR and OCBA. The

exception is that of the linearly increasing variances, where OCBA did not allocate the

majority of the budget to the inferior systems (largest variance), as their ratios were not high

enough. Instead it allocated the majority to the best ones, similar to KW-RaceRR.

In terms of the�ܲ ܥܫ ,ܵ KW-RaceRR is still superior if the budget is high, and OCBA

is better for lower budgets. This applies for the equal variances case and the random case,

with no correlation. Under high correlation, the distribution type (Weibull in specific) affects

KW-RaceRR by slowing its convergence roughly after 700 samples, although it reaches a

near zero ܵܥܫܲ afterwards. OCBA seems to be more robust against the distribution type.

The cases of linearly increasing or decreasing variances are of importance, as they

show how little OCBA benefits from utilizingߪ�௜ ⁄௝ߪ , and its performance becomes much

closer to KW-RaceRR, compared to Set-1. In addition, if correlation is high and the

variances are increasing, KW-RaceRR performed better with a low budget mainly due to the

more evenly distribution of the budget among the systems. See Table 5.26.

Table 5.26. A summary of the best performing algorithms (based on PICS) in Set-3 experiments.

Case Means and variances Budget Distribution type Correlation Best algorithm

1 ~ࣞ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1

≥ 1500 ࣨ , ,ࣱ࣡ 4 0.0 KW-RaceRR

≤ 1200 ࣨ , ,ࣱ࣡ 0.0 OCBA

≤ 700 ࣨ , ,ࣱ࣡ 0.9 KW-RaceRR

≥ 1500 ࣨ , ,ࣱ࣡ 0.9 Indistinguishable

2 ~ࣞ൫݅ , 3(݇− )݅൯∀݅= 0, … ,݇− 1

Entire ࣨ ,࣡ 0.0 OCBA
≥ 1500 ࣱ 0.0 KW-RaceRR

≥ 1500 ࣨ ,࣡ 0.9 KW-RaceRR

Entire ࣱ 0.9 Indistinguishable

3 ~ࣞ൫݅ , 4(݅+ 1)൯∀݅= 0, … ,݇− 1

Entire ࣨ , ,ࣱ࣡ 0.0 OCBA

≤ 500 ࣨ , ,ࣱ࣡ 0.9 KW-RaceRR

≥ 700 ࣨ , ,ࣱ࣡ 0.9 Indistinguishable

4 ~ࣞ൫ܷ (0,15),ܷ(20,40)൯

≤ 1200 ࣨ , ,ࣱ࣡ 0.0 OCBA
≥ 1500 ࣨ , ,ࣱ࣡ 0.0 KW-RaceRR
≤ 700 ࣨ , ,ࣱ࣡ 0.9 KW-RaceRR
≥ 1000 ࣨ , ,ࣱ࣡ 0.9 Indistinguishable

4 ࣨ = ݎ݉݋ܰ ܽ �݈݀ ݎ݅ݐݏ݅ ݊݋ݐ݅ݑܾ , ࣡ = ݉ܽܩ ݉ ܽ�݀ ݎ݅ݐݏ݅ ݊݋ݐ݅ݑܾ ,ࣱ = ܹ ݁݅ ݀�݈݈ݑܾ ݎ݅ݐݏ݅ ݊݋ݐ݅ݑܾ
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5.4 Conclusion

This chapter compared OCBA, CBA, and EBA to four Racing algorithms, two

based on a 1-way ANOVA test: A-Race_1WUB and KW-Race, and two based on a 2-way

ANOVA test: A-Race_2Way and F-Race. KW-Race and A-Race_2Way were implemented

with and without the reset idea. The chosen performance measures were ܵܥܫܲ and ॱ[ܱܥ],

calculated experimentally over 100,000 replications. Using such measures required exact

knowledge of the parameter settings’ performance distribution, which is not feasible and

depends on the problem domain and optimization algorithm. Hence, they were simulated by

probability distributions (systems) with pre-determined means, variances, and correlations.

Three sets of experiments were conducted: Set-1 had a fixed training/sampling

budget, which meant that Racing algorithms had to use the reset idea to consume the whole

budget. Set-2 had A-Race_2Way and KW-Race specify the budget for OCBA, CBA, and

EBA, which meant that Racing algorithms were run without the reset idea. The main

objectives of Set-2 were to see if allowing a Racing algorithm to specify the budget gives it

an advantage, and to show how the reset idea adapts the significance level and improves on

standard Racing. Finally, Set-3 ran the same experiments as Set-1, but used non-normal

distributions and an increased the number of systems.

Results for Set-1 revealed that the best performing algorithms overall are OCBA and

KW-RaceRR, even with correlated data. Though if the budget is low (roughly ≤ 500) and

correlation is 0.9, 2-way Racing is better. CBA was not competitive due to its inability to

accurately estimate a covariance matrix, which eventually degraded its performance. OCBA

is superior to KW-RaceRR when the variances are exponentially increasing or decreasing,

because OCBA makes use of the ratio between ௜ߪ ⁄௝ߪ when distributing the budget. KW-

RaceRR, on the other hand, performs better than OCBA on all other cases, if the budget is

high (roughly ≥ 1000). It invests more samples to better estimate the parameters of the
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systems closest to the best. While this slows its convergence at the beginning, it enables it to

outperform OCBA later on.

Results for Set-2 showed that KW-Race and A-Race_2Way (the algorithms setting

the budget) perform better\worse than OCBA under the same conditions in Set-1. Indicating

that allowing Racing to specify the budget does not change its performance ranking among

OCBA, CBA, and EBA. In addition, it was shown how Racing with reset improves over

standard Racing algorithms by adapting the ଴ߙ parameter online. Such adaptation allowed

Racing with reset to also have a stable performance over a wide range of ଴ߙ values.

Results for Set-3 were mainly concerned with the robustness of the best performing

algorithms of Set-1 against normality and the number of systems. OCBA and KW-RaceRR

(the only two algorithms tested in Set-3) displayed similar allocation patterns to Set-1. The

same holds, generally, for their performances. The two main outcomes of Set-3 were: first,

OCBA does not benefit as much from utilizing ௜ߪ ⁄௝ߪ if the variances are linearly increasing

or decreasing, and does not outperform KW-RaceRR by a large amount. In fact, it is slightly

worse if correlation is 0.9 and the variances are increasing. Second, OCBA is more robust

than KW-RaceRR to the distribution type, mainly under high correlation and Weibull data.

In summary, the Ranking and Selection literature and the Algorithm Configuration

literature now have a number of new algorithms to choose from, such that better

performance is achieved under various conditions. Some, like KW-RaceRR, are new to both

fields and showed to be competitive to the currently used algorithms.
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CHAPTER 6 Conclusion

The topic of this thesis was the algorithm configuration problem. That is, setting the

values of an algorithm’s parameters such that it performs best with respect to some

performance metric(s). The methods used to set those parameters were termed as

configurators. They were broadly classified as online or offline, the major difference being

whether the parameters are learnt while solving the problem, or after the problem is solved

over a representative training set. This work introduced three new offline configurators to

efficiently learn the best algorithm parameters.

6.1. Summary of contributions

6.1.1. Meta-Optimization with a Flexible Budget

The first contribution concerned meta-optimizers, where the configurator iteratively

modifies its solutions (parameter settings) to reach better ones. Current meta-optimization

methods can only find the best parameter values for a pre-determined computational budget

for the optimization algorithm. If similar problem instances are to be solved with different

budgets, the whole process has to be repeated from scratch with each change, which may be

computationally infeasible.

A more efficient method was presented here, the Flexible Budget method, which can

discover the best parameter settings for any computational budget, less than a specified

maximum nmax, without re-running the meta-optimization process. It works by utilizing the

entire convergence curve to calculate a rank-based utility of a parameter setting, at every

evaluation point up to nmax. Such information is used by the configurator to find the best

parameter values for any budget. Three versions of the method were developed, differing in

how the utility is calculated. The first used the Length of the convergence curve (L), the
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second used the Area Under the Curve (AUC), and the third used the Area Lost (AL) by not

selecting a specific parameter setting.

The experimental validation consisted of comparing the solution quality of the best

parameter settings found by the Flexible Budget method, to those of the standard Fixed

Budget method (that had to be re-run for each different budget). The comparison was done

for various computational budgets. The expectation was that the same solution quality can be

achieved, but with less computational effort (a single run). The savings increase with the

number of different budgets the problem needs to be solved within (discretization). Three

sets of experiments were carried out. The first, Set-1, involved eight multimodal

optimization functions, all in 5 dimensions, used for training and testing. Each of the other

two had five training instances and four other testing instances. The instances were taken

from the hump, Set-2, and quadratic, Set-3, family of functions. Sets 2 and 3 were in 5, 10,

and 15 dimensions.

Results for Set-1 showed that the Flexible Budget method achieved significantly

better results on 62% of the test functions and computational budgets chosen, 38% of the

time the difference in its performance was insignificant, and it never performed worse.

These numbers are based on the AL version of the Flexible Budget method, which was not

the best or the worst performing in Set-1. Computational savings were about 60% of the

effort required by the Fixed Budget method, for the chosen discretization levels.

Results for Set-2 varied with the dimensionality of the functions. In general, for the

AL version, the Flexible Budget method performed significantly better 30%-45% of the

time, 36%-60% of the time there was no significant difference in performance, and 0%-20%

it was significantly worse than the Fixed Budget method. Though in the latter case the

difference were minor and, depending on the application, may be acceptable compared to the

savings gained. The savings ranged from 66% (5 and 10 dimensions) to 70% (15
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dimensions) of the effort required by the Fixed Budget method, for the chosen discretization

levels.

Results for Set-3 also varied with dimensionality. The AL version showed

significant improvement 38%-100% of the time, 0%-49% there was no significant difference

in performance, and 0%-13% of the time it performed significantly worse (again minor).

Time savings were at 64% of the effort required by the Fixed Budget method for all

dimensions.

As for which version of the Flexible Budget to use, the experiments conducted here

point to AL when the training set differs from the testing set and to AUC when they are

similar, but this is limited to the settings used in this thesis.

6.1.2. Racing with a self-adaptive significance level and one-way Racing with an

intelligent budget allocation

The second and third contributions are summarized together, as they share the same

experimental setup and evaluation. Both are offline configurators that select the best out of a

set of parameter settings. Racing algorithms, as configurators, were shown to be sensitive to

their hyper-parameter α, in terms of incorrectly selecting an inferior parameter setting as the

best. Moreover, their termination criterion is either to stop when the computational budget is

consumed, or when the “perceived” best is identified. In situations where the budget is large,

and there is no advantage of terminating early, Racing is not guaranteed to make use of the

entire budget, and premature termination will waste a lot of the computational budget

available.

The second contribution was Racing with reset, which tackled both of these issues.

Whenever a race terminates before the budget is consumed, the algorithm rolls back to the

iteration when the first dropout occurred, lowers α by a factor, then re-applies the statistical

tests on all the parameter settings. This reset is repeated till the budget is consumed. In this



Chapter 6 Conclusion

178

fashion α changes online and any parameter setting that was incorrectly discarded at any

point, now has the potential to compete in the race again.

The third contribution is an extension to the second. Racing with reset was originally

applied to F-Race, the most widely used Racing algorithm to tune parameters. It relies on a

two-way ANOVA test, which dictates having an equal number of samples for each of the

competing parameter settings whenever the tests are applied. More importantly, every time a

dropout occurs, the remaining parameter settings must all be sampled the same number of

times (once is the default). This has two drawbacks, one, it does not allow for a more

intelligent allocation of the budget in each iteration. And two, it does not allow Racing with

reset to use all previously collected data when it rolls back to the iteration when the first

dropout occurred.

To overcome these two issues, one-way Racing algorithms were introduced, that do

not require an equal number of samples for each surviving parameter setting. Namely, they

were: KW-Race and A-Race_1WUB. The first is non-parametric and relies on the Kruskal-

Wallis test, while the second is parametric and relies on an unbalanced ANOVA.

The experimental validation consisted of comparing the developed Racing

algorithms to those used in the literature, basically F-Race and its parametric version A-

Race_2W. In addition, EBA and two algorithms from the Simulation Optimization literature

were added, OCBA and CBA, as they address a similar problem of selecting the best

simulation system from a set. The performance measures were the Probability of Incorrect

Selection ܥܫܲ) )ܵ and the Expected Opportunity Cost ॱ[ܱܥ], calculated experimentally over

100,000 replications. Given these performance measures, the parameter settings were

simulated with probability distributions (systems) with pre-determined means, variances,

and correlations.

Three sets of experiments were conducted. Set-1 had a pre-determined budget for all

algorithms, which meant that Racing had to use the reset idea. Set-2 had Racing set the
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budget for OCBA, CBA, and EBA to see if it provides it with any advantage. Also, Racing

with reset was added to Set-2 to show the improvement in performance over its standard

version. Finally, Set-3 was similar to Set-1, but used a larger number of systems and

different probability distributions.

The results indicated that no one algorithm outperformed the rest on all test cases

and performance measures. Yet, it was shown under which conditions each algorithm

performed best. In general, OCBA and KW-RaceRR were the best over most cases, with

OCBA being slightly better if the budget is low and/or the variances are increasing or

decreasing. Under high correlation, two-way Racing algorithms become competitive,

especially for low budgets, and outperformed the rest in some cases. A more detailed

summary is presented in Tables 6.1-6.3.

Table 6.1. A summary of the best performing algorithms (based on PICS) in Set-1 experiments.

Case
Distribution Budget Correlation

Best
algorithm

1 ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1
≥ 700 0.0 or 0.9 KW-RaceRR

≤ 500 0.0 OCBA

≤ 350 0.9 F-RaceR

2 ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1
Throughout 0.0 OCBA
Throughout 0.9 A-RaceR_2W

3 ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1 Throughout 0.0 or 0.9 OCBA

4 ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A and Set-B
High 0.0 or 0.9 KW-RaceRR
Low 0.0 OCBA
Low 0.9 A-RaceR_2W

Table 6.2. A summary of the best performing algorithms (based on PICS) in Set-2 experiments.

Case Distribution α range Correlation Best algorithm

1 ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1
0.3-0.02 0.0 KW-Race

0.01-0.00001 0.0 OCBA
0.3-0.00001 0.9 KW-Race

2 ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1
0.3-0.00001 0.0 OCBA

0.3-0.01 0.9 KW-Race
0.001-0.00001 0.9 OCBA

3 ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1 0.3-0.00001 0.0 and 0.9 OCBA

4

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A
0.3-0.2 (low budget) 0.0 OCBA

0.1-0.00001 0.0 KW-Race
0.3-0.00001 0.9 KW-Race

~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B

0.3-0.02 0.0 KW-Race
0.01-0.00001 0.0 OCBA

0.3-0.08 0.9 KW-Race
0.01-0.00001 0.9 OCBA
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Table 6.3. A summary of the best performing algorithms (based on PICS) in Set-3 experiments.

Case
Means and variances Budget

Distribution
type

Correlation Best algorithm

1 ~ࣞ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1

≥ 1500 ࣨ , ,ࣱ࣡ 0.0 KW-RaceRR

≤ 1200 ࣨ , ,ࣱ࣡ 0.0 OCBA

≤ 700 ࣨ , ,ࣱ࣡ 0.9 KW-RaceRR

≥ 1500 ࣨ , ,ࣱ࣡ 0.9 Indistinguishable

2
~ࣞ൫݅ , 3(݇− )݅൯∀݅

= 0, … ,݇
− 1

Entire ࣨ ,࣡ 0.0 OCBA
≥ 1500 ࣱ 0.0 KW-RaceRR

≥ 1500 ࣨ ,࣡ 0.9 KW-RaceRR

Entire ࣱ 0.9 Indistinguishable

3
~ࣞ൫݅ , 4(݅+ 1)൯∀݅

= 0, … ,݇
− 1

Entire ࣨ , ,ࣱ࣡ 0.0 OCBA

≤ 500 ࣨ , ,ࣱ࣡ 0.9 KW-RaceRR

≥ 700 ࣨ , ,ࣱ࣡ 0.9 Indistinguishable

4 ~ࣞ൫ܷ (0,15),ܷ(20,40)൯

≤ 1200 ࣨ , ,ࣱ࣡ 0.0 OCBA
≥ 1500 ࣨ , ,ࣱ࣡ 0.0 KW-RaceRR

≤ 700 ࣨ , ,ࣱ࣡ 0.9 KW-RaceRR

≥ 1000 ࣨ , ,ࣱ࣡ 0.9 Indistinguishable

As for trying to intelligently allocate Δ within a one-way Racing algorithm, using 

OCBA, results showed that it only improves performance whenever OCBA is superior to

Racing. That is, if the variances are increasing or decreasing. At which point one can just use

OCBA by itself. However, this does not mean that no better performance can be achieved by

intelligently allocating Δ, it only means that OCBA was not the best choice.  

6.2. Limitations, extensions, and future research

All the work done in this thesis was experimental, and while a vast number of

scenarios were tested, the conclusions are limited to the chosen settings. If one is faced with

a different situation, the results presented here may serve as a guideline as to which

algorithm the user can start testing.

Other experiments and extensions, which could not be implemented within the

available time frame, include: for the Flexible Budget method, running the same experiments

on more test functions and real optimization problems. Using multi-objective optimization

methods during training, with each instance being a different objective, instead of averaging

performance. Finally, using the best parameter settings suggested by the Flexible Budget

method, at each evaluation point, as a schedule to change the parameters online, then

comparing it to algorithms that adapt parameters based on feedback from the search. For
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computational budget allocators, the same experiments can be run with data drawn from

other distributions, possibly discrete, and from real optimization problems. MAB solvers

(like UCB1) and ࣥ ࣨ + + (Kim and Nelson, 2006) can be added to the comparison, with

some modifications. The algorithms can be tested under dynamic conditions where the

distributions change over time. Finally, one-way Racing can be combined with other

methods to intelligently allocate Δ, for instance the two-stage procedure of Rinott (1978). 

Areas which received little, or no, attention thus far, and require additional research,

in the author’s opinion, include: determining the number of applications and replications

required to properly evaluate an operator in online control. Whether adapting, or controlling,

hyper-parameters of the configurator would enable it to discover new (better) parameter

settings, ones which it could not have found with its default hyper-parameters, or will it have

no advantage.
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Appendix

A1. CBA vs. OCBA

The following hypothesis is made regarding CBA: CBA poorly estimates the

covariance matrix, which degrades its performance. To experimentally validate this, CBA is

run under two conditions: with an estimated covariance matrix, and with a fixed covariance

matrix containing the nominal values. The results are then compared to the published ones in

Fu et al. (2007), and to OCBA based on the PICS.

The experimental setup, as specified in Fu et al. (2007), is: ܰ = 500 samples,

଴݊ = 100 samples, ݇= 10, ∆= 400, (i.e. the algorithm is run once to allocate all what

remains of the budget after n0). Data are drawn from Normal distributions with

monotonically increasing means and equal variances ~ࣨ ( ,݅ 6ଶ)∀݅= 1, … , ,݇ and with

randomly selected means and variances ~ࣨ ൫ܷ (1, )݇,ܷ(10,24)൯. The system with the

highest mean is considered the best. Finally, four correlation levels were used: 0.0, 0.2, 0.5,

and 0.9. Note that OCBA was never run; instead, CBA was run with fixing the off-diagonal

elements of the covariance matrix to zero. They called this algorithm the Independent

Budget Allocation (IBA).

The results for the equal variances case are in Table A1.1 and Figure A1.1. Ten

equally spaced correlation levels, from 0.0 to 0.9, are used here. It is clear that CBA can

outperform OCBA only if the covariance matrix is fixed, or the correlation is high (≥ 0.7).

More importantly, under high correlation CBA does not perform much better than EBA,

which questions the need for it. Finally, IBA is not OCBA. That is why it cannot be claimed

that CBA outperforms OCBA as the original paper does. The same observation is made for

the random case, see Table A1.2. Though for this case CBA with a fixed covariance matrix

was not run due to time limitations.
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Table A1.1. Validation of CBA against published results based on PICS. ~ࣨ ( ,݅ 6ଶ)∀݅= 1, … , .݇

Correlation OCBA CBA Est. CBA Fix. EBA CBA Published IBA Published
0.0 0.131 0.146 0.131 0.202 0.170 0.170
0.1 0.122 0.134 0.120 0.189
0.2 0.108 0.127 0.107 0.171 0.133 0.141
0.3 0.101 0.119 0.095 0.151
0.4 0.090 0.114 0.089 0.131
0.5 0.077 0.099 0.074 0.108 0.068 0.097
0.6 0.068 0.079 0.058 0.081
0.7 0.058 0.054 0.035 0.054
0.8 0.050 0.024 0.024 0.024
0.9 0.041 0.003 0.003 0.003 0.003 0.074

Table A1.2. Validation of CBA against published results based on PICS. ~ࣨ ൫ܷ (1, )݇,ܷ(10,24)൯.

Correlation OCBA CBA Est. EBA CBA Published IBA Published
0.0 0.254 0.274 0.323 0.303 0.303
0.1 0.248 0.273 0.306
0.2 0.24 0.263 0.287 0.267 0.286
0.3 0.228 0.255 0.264
0.4 0.211 0.235 0.240
0.5 0.189 0.21 0.210 0.195 0.252
0.6 0.178 0.177 0.178
0.7 0.165 0.137 0.137
0.8 0.141 0.094 0.094
0.9 0.102 0.039 0.039 0.041 0.178
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Figure A1.1. Validation of CBA against published results based on PICS. ~ࣨ ( ,݅ 6ଶ)∀݅= 1, … , .݇
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Note that CBA better estimates high correlations compared to low ones. Figure A1.2

shows the estimated covariance between the best system (0) and all other systems (1-9)

immediately after n0. The numbers are for a randomly selected replication. It is clear that

with no correlation, the covarainces are far from their nominal values (i.e. 0), compared to

0.9 correlation, where the covarainces are close to their nominal values of 32.4.

Figure A1.2. Estimation of the covariance between system 0 and all other systems.
Estimation is made by CBA after n0 at 0.0 (a) and 0.9 (b) correlation.
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A2. A-Race_2Way setting the budget

This section briefly presents the results of Set-2 experiments when A-Race_2Way

sets the budget for OCBA, CBA, and EBA. The conclusion is similar to the case when KW-

Race sets the budget. That is, if A-Race_2Way sets the budget, it will not affect its

performance ranking among OCBA, CAB, and EBA. Additionally, A-RaceR_2Way

significantly improves −݌) ݒܽ ≫݁ݑ݈ 0.05) over A-Race_2Way by adapting ,଴ߙ which

enables a steady performance over a wide range of significance levels.

Figures A2.1- A2.6 show the ௥݂ and ॱ[ܱܥ] at 0.0 and 0.9 correlation for the same

means and variances used in Set-1. The figures for the remaining correlation levels are not

displayed as they follow the same pattern, but are summarized though in Tables A2.1- A2.5.

Table A2.1. A summary of the fr achieved by the competing algorithms at selected α points of an EC.
Data are drawn from ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.

0.3 correlation 0.6 correlation
Alpha A_Race_2Way OCBA CBA EBA A_RaceR_2Way A_Race_2Way OCBA CBA EBA A_RaceR_2Way

0.00001 0.009 0.006 0.041 0.194 0.009 0.000 0.003 0.033 0.141 0.000
0.001 0.003 0.007 0.045 0.256 0.005 0.000 0.005 0.058 0.201 0.000
0.01 0.005 0.012 0.067 0.303 0.005 0.003 0.017 0.107 0.239 0.000
0.1 0.054 0.078 0.164 0.352 0.003 0.035 0.081 0.206 0.276 0.000
0.3 0.184 0.216 0.283 0.367 0.003 0.126 0.185 0.267 0.284 0.000

Table A2.2. A summary of the fr achieved by the competing algorithms at selected α points of an EC.
Data are drawn from ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1.

0.3 correlation 0.6 correlation
Alpha A_Race_2Way OCBA CBA EBA A_RaceR_2Way A_Race_2Way OCBA CBA EBA A_RaceR_2Way

0.00001 0.469 0.382 0.482 0.471 0.469 0.411 0.342 0.424 0.416 0.411
0.001 0.458 0.383 0.480 0.480 0.457 0.389 0.343 0.423 0.426 0.389
0.01 0.429 0.380 0.479 0.501 0.429 0.353 0.344 0.422 0.447 0.353
0.1 0.417 0.414 0.494 0.546 0.407 0.333 0.368 0.462 0.506 0.323
0.3 0.500 0.502 0.544 0.589 0.414 0.434 0.461 0.520 0.547 0.328

Table A2.3. A summary of the fr achieved by the competing algorithms at selected α points of an EC.
Data are drawn from ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1.

0.3 correlation 0.6 correlation
Alpha A_Race_2Way OCBA CBA EBA A_RaceR_2Way A_Race_2Way OCBA CBA EBA A_RaceR_2Way

0.00001 0.425 0.073 0.077 0.443 0.425 0.332 0.077 0.110 0.342 0.332
0.001 0.429 0.076 0.080 0.445 0.427 0.338 0.080 0.112 0.343 0.338
0.01 0.431 0.090 0.095 0.452 0.426 0.341 0.091 0.122 0.350 0.340
0.1 0.462 0.189 0.184 0.511 0.420 0.364 0.162 0.188 0.397 0.331
0.3 0.552 0.386 0.366 0.637 0.414 0.422 0.316 0.324 0.502 0.328
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Table A2.4. A summary of the fr achieved by the competing algorithms at selected α points of an EC.

Data are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯. Set-A.

0.3 correlation 0.6 correlation
Alpha A_Race_2Way OCBA CBA EBA A_RaceR_2Way A_Race_2Way OCBA CBA EBA A_RaceR_2Way

0.00001 0.274 0.262 0.338 0.449 0.274 0.196 0.187 0.322 0.351 0.196
0.001 0.262 0.262 0.339 0.492 0.262 0.174 0.188 0.325 0.402 0.173
0.01 0.248 0.262 0.343 0.521 0.244 0.164 0.192 0.342 0.447 0.160
0.1 0.277 0.307 0.407 0.563 0.239 0.205 0.264 0.420 0.520 0.151
0.3 0.432 0.447 0.505 0.580 0.231 0.378 0.413 0.511 0.539 0.144

Table A2.5. A summary of the fr achieved by the competing algorithms at selected α points of an EC.

Data are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯. Set-B.

0.3 correlation 0.6 correlation
Alpha A_Race_2Way OCBA CBA EBA A_RaceR_2Way A_Race_2Way OCBA CBA EBA A_RaceR_2Way

0.00001 0.016 0.045 0.080 0.274 0.016 0.001 0.027 0.066 0.158 0.001
0.001 0.012 0.045 0.082 0.334 0.012 0.001 0.029 0.086 0.242 0.001
0.01 0.017 0.051 0.097 0.374 0.017 0.005 0.038 0.139 0.293 0.005
0.1 0.088 0.118 0.217 0.435 0.019 0.059 0.112 0.260 0.368 0.005
0.3 0.263 0.285 0.356 0.453 0.049 0.191 0.239 0.356 0.392 0.026
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Figure A2.1. Box plots of the budget consumed by A-Race_2W at various α values, and different
correlation levels. The connecting line is that of the means.

0 .0
00

01

0 .0
00

1

0.
00

1

0 .0
1

0 .0
2

0.
04

0 .0
6

0 .0
8

0.
1

0 .1
5

0 .20.
3

1000

750

500

250

0

0.
00

00
1

0 .0
00

1

0 .0010 .0
1

0 .0
2

0.0
4

0 .0
6

0 .0
8

0 .1
0 .1

5
0.

2
0 .3

1000

750

500

250

0

0.0

Significane level

A
ve

ra
g
e

bu
dg

et
co

n
su

m
ed

0.3

0.6 0.9

Random Se-B

0 .0
00

01

0 .0
00

1

0.
00

1

0 .0
1

0 .0
2

0.
04

0 .0
6

0 .0
8

0.
1

0 .1
5

0 .20.
3

1000

750

500

250

0

0.
00

00
1

0 .0
00

1

0 .0010 .0
1

0 .0
2

0.0
4

0 .0
6

0 .0
8

0 .1
0 .1

5
0.

2
0 .3

1000

750

500

250

0

0.0

Significane level

A
ve

ra
g
e

bu
dg

et
co

n
su

m
ed

0.3

0.6 0.9

Decreasing variance

0 .0
00

01

0 .0
00

1

0.
00

1

0 .0
1

0 .0
2

0.
04

0 .0
6

0 .0
8

0.
1

0 .1
5

0 .20.
3

1000

750

500

250

0

0.
00

00
1

0 .0
00

1

0 .0010 .0
1

0 .0
2

0.0
4

0 .0
6

0 .0
8

0 .1
0 .1

5
0.

2
0 .3

1000

750

500

250

0

0.0

Significane level

A
ve

ra
g
e

bu
dg

et
co

n
su

m
ed

0.3

0.6 0.9

Increasing variance



Appendix

204

Figure A2.2. ECs based on fr and E[OC] at 0.0 (a and b) and 0.9 (c and d) correlation levels. Data are drawn from ~ࣨ ( ,݅ 6ଶ)∀݅= 0, … ,݇− 1.
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Figure A2.3. ECs based on fr and E[OC] at 0.0 (a and b) and 0.9 (c and d) correlation levels. Data are drawn from ~ࣨ ( ,݅ (݇− )݅ଷ)∀݅= 0, … ,݇− 1.
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Figure A2.4. ECs based on fr and E[OC] at 0.0 (a and b) and 0.9 (c and d) correlation levels. Data are drawn from ~ࣨ ( ,݅ (݅+ 1)ସ)∀݅= 0, … ,݇− 1.
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Figure A2.5. ECs based on fr and E[OC] at 0.0 (a and b) and 0.9 (c and d) correlation levels. Data are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-A.
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Figure A2.6. ECs based on fr and E[OC] at 0.0 (a and b) and 0.9 (c and d) correlation levels. Data are drawn from ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B.
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A3. Remaining results of Set-1 and Set-2 experiments

Figure A3.1. E[OC] for 0.0 (above) and 0.9 (below) correlation. Case 1.
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Figure A3.2. E[OC] for 0.0 (above) and 0.9 (below) correlation. Case 2.
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Figure A3.3. E[OC] for 0.0 (above) and 0.9 (below) correlation. Case 3.
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Figure A3.4. E[OC] for 0.0 (above) and 0.9 (below) correlation. Case 4, Set-A.
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Figure A3.5. Comparison of different algorithms based on PICS and E[OC] under 0.0 (a and b) and 0.9 (c and d) correlation. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B.
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Figure A3.6. Overall allocation of different algorithms at 0.0 and 0.9 correlation. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B. The numbers are averaged over all replications.
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Figure A3.7. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B. Correlation = 0.0.

0%

5%

10%

15%

20%

25%

30%

35%

40%

100 300 500 700 900 1100 1300 1500 1700 1900

P
er

ce
n

ta
g

e
o

f
b

u
d

g
et

a
ll

o
ca

te
d

Number of samples OCBA

0 1 2 3 4 5 6 7 8 9

0%

5%

10%

15%

20%

25%

100 300 500 700 900 1100 1300 1500 1700 1900

P
er

ce
n

ta
g

e
o

f
b

u
d

g
et

a
ll

o
ca

te
d

Number of samples A_RaceR_2W

0 1 2 3 4 5 6 7 8 9

0%

5%

10%

15%

20%

25%

30%

35%

40%

100 300 500 700 900 1100 1300 1500 1700 1900

P
er

ce
n

ta
g

e
o

f
b

u
d

g
et

a
ll

o
ca

te
d

Number of samples KW_RaceRR

0 1 2 3 4 5 6 7 8 9

0%

5%

10%

15%

20%

25%

100 300 500 700 900 1100 1300 1500 1700 1900

P
er

ce
n

ta
g

e
o

f
b

u
d

g
et

a
ll

o
ca

te
d

Number of samples F_RaceR

0 1 2 3 4 5 6 7 8 9



Appendix

216

Figure A3.8. Cumulative budget allocated to each system throughout the run, averaged over all replications. ~ࣨ ൫ܷ (0, )݇,ܷ(10,24)൯Set-B. Correlation = 0.9.
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Figure A3.9. E[OC] at 0.0 (left) and 0.9 (right) correlation for Case 1.

Figure A3.10. E[OC] at 0.0 (left) and 0.9 (right) correlation for Case 4 Set-A.

Figure A3.11. ECs based on fr and E[OC] at 0.0 (a and b) and 0.9 (c and d) correlation levels for Case 4
Set-B.
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Figure A3.12. E[OC] at 0.0 (left) and 0.9 (right) correlation for Case 3.

Figure A3.13. E[OC] at 0.0 (left) and 0.9 (right) correlation for Case 4.
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