THE UNIVERSITY OF

WARWICK

Original citation:

T2K Collaboration (Including: Barker, Gary John, Boyd, Steve B., Briggs, Keith, Carver,
A., Hadley, David, Harrison, Paul F., Lister, Callum, Litchfield, Reuban P., Morgan, B.
(Ben), Richards, Derrick, Scully, Daniel, Taylor, lan and Whitehead, Leigh). (2013) The
electromagnetic calorimeter for the T2K near detector ND280. Journal of
Instrumentation, Volume 8 (Number 10). Article number P10019.

Permanent WRAP url:

http://wrap.warwick.ac.uk/58906

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution- 3.0 Unported
(CC BY 3.0) license and may be reused according to the conditions of the license. For
more details see http://creativecommons.org/licenses/by/3.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

e —
nighlight your research

http://wrap.warwick.ac.uk/



http://go.warwick.ac.uk/
http://wrap.warwick.ac.uk/58906
http://creativecommons.org/licenses/by/3.0/
mailto:publications@warwick.ac.uk

IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The electromagnetic calorimeter for the T2K near detector ND280

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2013 JINST 8 P10019
(http://iopscience.iop.org/1748-0221/8/10/P10019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 137.205.202.97
This content was downloaded on 17/01/2014 at 16:27

Please note that terms and conditions apply.



iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-0221/8/10
http://iopscience.iop.org/1748-0221
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

’ InSt PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: August 15, 2013
ACCEPTED: September 4, 2013
PUBLISHED: October 17, 2013

The electromagnetic calorimeter for the T2K near
detector ND280

The T2K UK collaboration

D. Allan,¢ C. Andreopoulos,® C. Angelsen,® G.J. Barker,’ G. Barr, S. Bentham,*

I. Bertram, S. Boyd,’ K. Briggs,’ R.G. Calland,” J. Carroll,” S.L. Cartwright,”

A. Carver,’ C. Chavez,” G. Christodoulou,’ J. Coleman,’ P. Cooke,” G. Davies,‘

C. Densham,® F.Di Lodovico,? J. Dobson,’ T. Duboyski,? T. Durkin,© D.L. Evans,’
A. Finch,© M. Fitton, F.C. Gannaway,’ A. Grant,” N. Grant, S. Grenwood,”

P. Guzowski,” D. Hadley,’ M. Haigh,? P.F. Harrison,’ A. Hatzikoutelis,*

T.D.J. Haycock,” A. Hyndman,? J. llic,© S. Ives,” A.C. Kaboth,” V. Kasey,” L. Kellet,”
M. Khaleeq,” G. Kogan,” L.L. Kormos,! M. Lawe,” T.B. Lawson,” C. Lister,’

R.P. Litchfield,’ M. Lockwood,” M. Malek,” T. Maryon,® P. Masliah,”

K. Mavrokoridis,” N. McCauley,” I. Mercer,© C. Metelko,* B. Morgan,’ J. Morris,?

A. Muir,® M. Murdoch,’ T. Nicholls,* M. Noy,” H.M. O’Keeffe,? R.A. Owen,’

D. Payne,” G.F. Pearce,’ J.D. Perkin,"” E. Poplawska,’ R. Preece,” W. Qian,*

P. Ratoff,© T. Raufer,© M. Raymond,” M. Reeves,° D. Richards,’ M. Rooney,*

R. Sacco,? S. Sadler,” P. Schaack,” M. Scott,” D.I. Scully,’ S. Short,” M. Siyad,*

R. Smith,2 B. Still,? P. Sutcliffe,” I.J. Taylor,’ R. Terri,’ L.F. Thompson,” A. Thorley,’
M. Thorpe,¢ C. Timis,? C. Touramanis,” M.A. Uchida,’ Y. Uchida,” A. Vacheret,*
J.F. Van Schalkwyk,” O. Veledar,” A.V. Waldron,s M.A. Ward,"” G.P. Ward,” D. Wark,*¢
M.O. Wascko,” A. Weber,¢ N. West,? L.H. Whitehead,’ C. Wilkinson” and

J.R. Wilson?

4STFC, Daresbury Laboratory, Daresbury, U.K.
bImperial College London, London, U.K.

¢Lancaster University, Lancaster, U.K.

4Queen Mary, University of London, London, U.K.
¢STFC, Rutherford Appleton Laboratory, Oxford, U.K.
I University of Liverpool, Liverpool, U.K.

& University of Oxford, Oxford, U.K.

hUniversity of Sheffield, Sheffield, U.K.

University of Warwick, Coventry, U.K.

E-mail: 1.kormos@lancaster.ac.uk

ICorresponding author.

(© 2013 IOP Publishing Ltd and Sissa Medialab srl. Content from this work may be

X7 used under the terms of the Creative Commons Attribution 3.0 License. Any further
distribution of this work must maintain attribution to the author(s) and the title of the work, journal
citation and DOL

doi:10.1088/1748-0221/8/10/P10019


mailto:l.kormos@lancaster.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1088/1748-0221/8/10/P10019

ABSTRACT: The T2K experiment studies oscillations of an off-axis muon neutrino beam between
the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed
on measuring the mixing angle 6,3 by observing V, appearance via the sub-dominant v, — Vv,
oscillation and searching for CP violation in the lepton sector. The experiment includes a sophis-
ticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production
target in order to measure the properties of the neutrino beam and to understand better neutrino
interactions at the energy scale below a few GeV. The data collected with the ND280 are used to
study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in
order to reduce uncertainties in the oscillation measurements by the far detector. A key element of
the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator
bars sandwiched between lead sheets and read out with multi-pixel photon counters (MPPCs). The
ECal is vital to the reconstruction of neutral particles, and the identification of charged particle
species. The ECal surrounds the Pi-0 detector (P@D) and the tracking region of the ND280, and is
enclosed in the former UA1I/NOMAD dipole magnet. This paper describes the design, construction
and assembly of the ECal, as well as the materials from which it is composed. The electronic and
data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced
from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is
described.
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1 Introduction

Many parameters of neutrino oscillations have yet to be measured precisely. The Tokai-to-Kamioka
(T2K) experiment is a long-baseline neutrino oscillation experiment designed to measure several
of these parameters. It consists of three main components: a dedicated beamline from the proton
synchrotron main ring of the Japan Proton Accelerator Research Complex (J-PARC) that is used to
produce an intense beam of muon neutrinos; a suite of near detectors situated 280 m downstream
of the neutrino production target (INGRID and ND280) [1, 2] that characterize the neutrino beam
before the neutrinos change flavour; and the far detector, Super-Kamiokande [3], which measures
the oscillated neutrino beam. Unlike previous accelerator-based neutrino experiments [4, 5], T2K
uses an off-axis configuration in which the detectors sample the neutrino beam at an angle of
2.5° to the primary proton beam, thus providing a narrower neutrino energy spectrum peaked at
approximately 600 MeV which is optimized for neutrino oscillation measurements using Super-
Kamiokande at a distance of 295 km downstream and assuming the current measured value of
Am%z. The ND280 is centred on the same off-axis angle as Super-Kamiokande in order to sample a
similar portion of the neutrino flux that will be used to measure the oscillation parameters. The use
of a near and far detector in this way reduces the systematic uncertainty on the measured oscillation
parameters. The main aim of T2K is to measure 63 through the appearance of v, in a v, beam [6],
and to improve the measurements of 0,3 and the mass difference Am%2 through observation of v,
disappearance [7]. With recently-measured large values of 03 [8, 9], T2K has a unique role to
play in determining whether or not there is CP violation in the lepton sector. T2K was the first
experiment to observe indications of a non-zero value for 03 in 2011 [10].

The ND280 [2] is contained within the refurbished UA1 magnet, which in its current config-
uration provides a field of 0.2 T. The detector consists of two principal sections: the Pi-0 Detec-
tor (POD) [11], optimized for identifying and measuring 7° decays, and the tracker, designed for
precision measurement and identification of charged particles. The tracker comprises three time
projection chambers (TPCs) [12] interspersed with two fine-grained detectors (FGDs) [13] to pro-
vide target mass, surrounded by an electromagnetic calorimeter (ECal). The POD, TPCs, FGDs
and downstream ECal (Ds-ECal) are mounted in a supporting structure or ‘basket’ which sits in-
side the UA1 magnet, while the surrounding barrel- and POD-ECal are affixed to the magnet yoke,
which splits vertically as shown in figure 1 to provide access for installation and maintenance.
The yoke itself is instrumented with slabs of plastic scintillator to act as a muon detector, the side
muon range detector (SMRD) [14]. With the exception of the TPCs, plastic scintillator is used as
the active material in all ND280 subdetectors. It should be noted that, in contrast to conventional
charged-particle beams, neutrino interactions may occur at any point within the ND280 and its
immediate environment.

The ND280 must provide a well-measured neutrino energy spectrum, flux, and the beam neu-
trino composition, as well as measurements of neutrino interaction cross-sections in order to reduce
the systematic uncertainties in the neutrino oscillation parameters. This information is used to pre-
dict the characteristics of the unoscillated beam at Super-Kamiokande. Additionally, the neutrino
cross-section measurements are interesting in their own right, as there are few such measurements
in the literature at present.
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Figure 1. An exploded view of the ND280 detector, showing the POD-ECal and barrel-ECal affixed to the
magnet return yoke and the Ds-ECal mounted inside the basket. The v, beam enters from the left of the
figure. The detector co-ordinate system is right-handed as shown with the origin at the geographical centre,
which lies near the downstream end of the first TPC.

The ECal forms an important part of the ND280 and is essential to obtain good measurements
of neutral particles and electron/positron showers that lead to correct particle identification and
improved energy reconstruction. It can also be used as target material to determine neutrino in-
teraction cross-sections on lead. This paper describes the design, construction and performance of
the ECal.

2 Overview of the calorimeter design

The ECal is a lead-scintillator sampling calorimeter consisting of three main regions: the POD-
ECal which surrounds the P@D; the barrel-ECal which surrounds the inner tracking detectors; and
the Ds-ECal which is located downstream of the inner detectors and occupies the last 50cm of
the basket. It is often useful to consider the ECal detectors that surround the tracker region of the
ND280 together; hence the barrel-ECal and Ds-ECal together are referred to as the tracker-ECal.
Altogether, the ECal consists of 13 modules: 6 POD-ECal (2 top, 2 bottom, 2 side), 6 barrel-ECal
(2 top, 2 bottom, 2 side), and 1 Ds-ECal. The position of the ECal within the ND280 is shown in



figure 1. The ECal modules that surround the barrel (barrel-ECal and POD-ECal) are attached to
the magnet and must have two top and two bottom modules in order to allow for the opening of the
ND280 magnet.

Each module consists of layers of scintillating polystyrene bars with cross-section 40 mm X
10 mm bonded to lead sheets of thickness 1.75 mm (4.00mm) in the tracker-ECal (POD-ECal)
which act as a radiator to produce electromagnetic showers and which provide a neutrino-interaction
target. The size of the ECal is constrained by its position between the basket and the magnet. A
larger ECal would necessitate a smaller basket and thus smaller inner subdetectors. A scintillator
bar thickness of 10 mm was chosen to minimize the overall depth of the ECal while still providing
sufficient light to produce a reliable signal. Scintillator bar widths, lead thickness and the number
of layers per module were optimized for particle identification and tracking information. Smaller
bar widths are favoured for tracking information, and optimization studies indicated that the 7°
reconstruction efficiency becomes seriously compromised for widths greater than 50 mm; hence,
40 mm was chosen as a compromise between reconstruction efficiency and channel cost. Similarly,
the lead thickness of 1.75 mm was chosen based upon studies of 7 detection efficiency. The num-
ber of layers was determined by the requirement to have sufficient radiation lengths of material to
contain electromagnetic showers of photons, electrons and positrons with energies up to 3 GeV.
At least 10 electron radiation lengths, Xp, are required to ensure that more than 50% of the energy
resulting from photon showers initiated by a 7° decay is contained within the ECal. This require-
ment is satisfied in the tracker-ECal. More information about the scintillator bars and the lead are
in sections 3.1 and 3.2.

The physics aims of the tracker-ECal and POD-ECal are somewhat different, and this is re-
flected in their design and construction. The tracker-ECal is designed as a tracking calorimeter to
complement the charged-particle tracking and identification capabilities of the TPCs by providing
detailed reconstruction of electromagnetic showers. This allows the energy of neutral particles to
be measured and assists with particle identification in the ND280 tracker. To this end, there are 31
scintillator-lead layers in the barrel-ECal and 34 layers in the Ds-ECal, or approximately 10 X and
11 Xy, respectively. The direction of the scintillator bars in alternate layers is rotated by 90° for 3D
track and shower reconstruction purposes.

In contrast, shower reconstruction in the POD region of the ND280 is done by the P@D it-
self, which consists of four, pre-assembled ‘Super-P@Dules’, two with brass/water targets each of
which provides 2.4 (1.4) radiation lengths of material when the water is in (out), and two with lead
targets each of which provides 4.9 radiation lengths of material. The role of the POD-ECal is to
tag escaping energy and distinguish between photons and muons. The construction of the POD-
ECal therefore differs from that of the tracker-ECal, with coarser sampling (six scintillator layers
separated by 4 mm-thick lead sheets, corresponding to approximately 4.3 Xp) and all bars running
parallel to the beam direction. With only six scintillator layers, the POD-ECal requires thicker lead
sheets to ensure that photons are detected with high efficiency, that showers are well contained, and
that photon showers can be distinguished from muon deposits. Simulation studies using photons
and muons with energies between 65 and 1000 MeV, normally incident on a POD-ECal face, were
used to determine the optimum lead thickness. A thickness of 4 mm was found to provide good
photon tagging efficiency (> 95% for photons above 150 MeV) and good p /7y discrimination while
minimizing the number of photons that are detected only in the first layer, and might therefore be
rejected as noise [15].



Table 1. Summary of the ECal design showing the overall dimensions, numbers of layers, length and
orientation of scintillator bars, numbers of bars, and lead thickness for each module.

DS-Ecal | Barrel ECal POD ECal
Length (mm) 2300 4140 2454
Width (mm) 2300 1676 top/bottom 1584 top/bottom
2500 side 2898 side
Depth (mm) 500 462 155
Weight (kg) 6500 8000 top/bottom 1500 top/bottom
10000 side 3000 side
Num. of layers 34 31 6
Bar orientation x/y Longitudinal and Perpendicular | Longitudinal
Num. of bars 1700 2280 Longitudinal top/bottom | 912 Longitudinal top/bottom
1710 Longitudinal sides 828 Longitudinal sides
6144 Perp top/bottom
3072 Perp sides
Bars per layer 50 38 Longitudinal top/bottom 38 Longitudinal top/bottom
57 Longitudinal side 69 Longitudinal sides
96 Perp top/bottom/sides
Bar length (mm) 2000 3840 Longitudinal 2340 Longitudinal
1520 Perp top/bottom
2280 Perp sides
Pb thickness (mm) | 1.75 1.75 4.0

Each scintillator bar has a 2 mm-diameter hole running longitudinally through the centre of the
bar for the insertion of wavelength-shifting (WLS) fibres. Light produced by the passage of charged
particles through the bars is collected on 1 mm-diameter WLS fibres and transported to solid-state
photosensors, known as multi-pixel photon counters (MPPCs) [16]. The Ds-ECal WLS fibres are
read out from both ends (double-ended readout); the barrel-ECal modules have a mix of double-
and single-ended readout; and the POAD-ECal modules have single-ended readout. The fibres that
are read out at one end only are mirrored at the other end with a vacuum deposition of aluminium.
The WLS fibres and MPPCs are discussed more fully in sections 3.3 and 3.4, respectively. Each
layer in each module is encased in a 20.0 mm wide x 12.5 mm high aluminium border with holes
to allow the WLS fibres to exit the layer.

A summary of the ECal design is shown in table 1. Further explanation is given in the fol-
lowing subsections and in section 4. Figure 2 shows one complete side of the ECal in situ. The
POD-ECal is on the left and the barrel-ECal is on the right in the figure. Visible are the top, side
and bottom modules for each. Notice that the POD-ECal is thinner than the barrel-ECal as de-
scribed above.

2.1 The downstream ECal

The first detector to be constructed and commissioned was the Ds-ECal, which also acted as a pro-
totype. The outer dimensions of the Ds-ECal are 2300 mm high x 2300 mm wide x 500 mm long



Figure 2. One entire side of the ECal in situ installed in the ND280. The three POD-ECal modules are on
the left in the figure, the three barrel-ECal modules are on the right. Part of the magnet yoke (top, red) is
visible.

(depth in the beam direction). Each of the 34 layers has 50 scintillator bars of length 2000 mm. The
bars of the most-upstream layer run in the x-direction (horizontally) when the module is installed
in the ND280 basket. Surrounding the 34 layers on all four sides are 25 mm-thick aluminium bulk-
heads, which have holes for the WLS fibres to exit. Once outside the bulkhead, each end of every
fibre is secured inside a custom-made Teflon ferrule as discussed in section 3.5 and shown in fig-
ure 11, which is then covered by a matching sheath that allows the WLS fibre to make contact with
the protective, transparent, resin coating of the MPPC. This contact is maintained by a sponge-like
spring situated behind the MPPC that can absorb the effects of thermal expansion and contraction
in the WLS fibres. The sheath also contains a simple printed circuit board which couples the MPPC
to a mini-coaxial cable that carries the information between the MPPC and the front-end electronic
cards. Figure 3 shows the top barrel-ECal module during construction. The fibre ends in the fer-
rules are visible protruding from the module bulkheads. The electronics are described in section 5.
The ferrule is designed to latch into the sheath which is then screwed to the bulkhead in order to
hold the ferrule and WLS fibre in place, and to assure that the coupling between the WLS fibre and
the MPPC is secure. The MPPC-WLS fibre coupling is described in section 3.3.

There is a 1 cm gap between the layers and the bulkheads on all sides to leave space for the
light injection (LI) system. The LI system, described in section 6, uses LED pulsers to deliver
short flashes of light through the gap to illuminate all of the WLS fibres, allowing integrity and
calibration checks to be performed.



Figure 3. One of the top barrel-ECal 1.5 m x 4 m modules lying horizontally during construction. The fibre
ends encased in their ferrules are visible protruding from the module bulkheads. The structure of the 2D
scanner can be seen surrounding the module.

Cooling panels for temperature control are located outside the bulkheads as shown in figure 4.
Pipes carrying chilled water maintain these panels at a constant temperature of approximately 21°C;
the bottom panel also has perforated air pipes through which dry air is pumped to prevent conden-
sation within the module. Large air holes through the cooling panels and the bulkheads allow the
air to flush through the active region of the detector and escape from the module.

The Trip-T front-end electronic boards (TFBs) are mounted on the cooling panels using screws
and thermally-conducting epoxy resin; slots in the panels allow the cables from the MPPCs to pass
through and terminate on the TFBs. Each TFB has 64 channels to read out MPPCs, a built-in
internal temperature sensor, and a port that connects to an external temperature sensor mounted on
the bulkhead near the MPPCs in order to monitor the MPPC temperatures. There are 14 TFBs per
side. Figure 4 shows the left-side cooling panel with the TFBs installed.

The cooling panels are protected by anodized aluminium cover panels, while the 2000 mm X
2000 mm outer surfaces are covered by carbon-fibre panels in order to minimize the mass of these
dead regions. These cover panels form the outside of the module. Each carbon-fibre panel consists
of two sheets of carbon-fibre of dimensions 2059 mm wide x 2059 mm long x 1.2 mm thick. A
foam layer of 22.6 mm thickness is sandwiched between the two sheets, making the entire panel
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Figure 4. The left side of the Ds-ECal lying horizontally during construction. When upright in situ, the
bottom in the figure becomes the upstream surface of the Ds-ECal nearest to the inner detectors, and the top
in the figure becomes the downstream surface nearest to the magnet coils. Shown at the top and bottom are
the Cat Se cables (commonly used as ethernet cables), the LI cables (small, black cables at the bottom), the
TFBs (green cards), the external temperature-sensor cables (multi-coloured), the cooling pipes (aluminium,
top and bottom), and the bus bars (brass, centre) mounted on the cooling panels. Air holes in the cooling
panel are visible on the right side of the figure. The Cat Se cables at the top include both the signal and
trigger cables; those at the bottom are signal cables.

25 mm deep. The carbon-fibre sheets are glued tongue-in-groove into an aluminium border that is
120 mm wide and 25 mm thick, making the dimensions of the entire carbon-fibre-aluminium panel
2299 mm x 2299 mm x 25 mm thick. In situ, the Ds-ECal sits upright inside the basket. Water, dry
air and high-voltage enter through the bottom cover panel. The information to and from the TFBs
is carried by shielded Cat Se cables which exit through a patch panel in the bottom cover panel. In
addition to these 56 signal cables, there are 28 trigger cables, routed through 28 cable glands in the
top cover panel of the module, which come from the TFBs that are connected to the MPPCs located
near the downstream edge of the module. Data from these channels form part of the ND280 cosmic
ray trigger. Upon exiting the cover panels, the signal Cat Se cables are connected to the readout
merger modules (RMMs) which are attached to the outer surface of the cover panels. The RMMs
are discussed in section 5. The trigger cables are connected to fan-in cards on the top of the module.
The Ds-ECal is the only ECal module which forms part of the ND280 cosmic ray trigger system.

2.2 The barrel ECal

The four barrel-ECal top and bottom modules are 4140 mm long (parallel to the beam) x 1676 mm
wide x 462 mm high, with 31 lead-scintillator layers: 16 (including the innermost layer) with
1520 mm-long scintillator bars running perpendicular to the beam direction, and 15 with 3840 mm-
long bars running longitudinally, i.e. parallel to the beam direction.

The structure of each of the ECal modules is very similar to that described above for the Ds-
ECal, except that the perpendicular bars have single-ended readout, with the fibres mirrored on the
end that is not read out. The mirrored ends of the fibres terminate just inside the scintillator bars,



whereas the ends that are read out exit through the bulkhead as in the Ds-ECal. The longitudinal
bars all have double-ended readout.

In order to minimize the non-active gap in the ECal running down the centre of the ND280
between the two top or the two bottom modules, the mirrored ends of the fibres in the perpendicular
bars are in the centre of the ND280 and the readout ends are at the sides. This made it possible to
replace the thick aluminium bulkhead, cooling panels and cover panels that form the structure on
the other three sides of each module with a thin aluminium cover panel, allowing the two top and the
two bottom modules to be placed closer together and minimizing the dead material between them.

The two side barrel-ECal modules are 4140 mm long x 2500 mm wide x 462 mm deep, with
31 lead-scintillator layers: 16 (including the innermost layer) with 2280-mm-long scintillator bars
running perpendicular to the beam direction, and 15 with 3840-mm-long bars running longitudi-
nally, i.e. parallel to the beam direction. As in the top and bottom barrel-ECal, the perpendicular
bars are single-ended readout, with the mirrored ends of the fibres at the top and the readout ends
at the bottom of the modules.

Unlike the Ds-ECal which has carbon-fibre panels on both the most upstream and downstream
faces, the barrel-ECal modules have a carbon-fibre panel on the innermost face, but the outermost
face has an aluminium panel which provides the required structure for attaching the module to the
magnet yoke.

2.3 The POD ECal

The most noticeable difference between the tracker-ECal modules and the POD-ECal modules is
the smaller size of the POD-ECal, which has six scintillator-lead layers and is only 155 mm deep.
The four top/bottom modules are 1584 mm wide, the two side modules are 2898 mm wide, and all
six are 2454 mm long. The POD-ECal also required thicker 4 mm lead sheets as a consequence of
having fewer layers. All of the scintillator bars, 38 in each top/bottom module layer and 69 in the
side layers, are oriented parallel to the beam, read out on the upstream end and mirrored on the
downstream end. The smaller size also allowed simplifications to be made in the construction.

While the readout electronics of the tracker-ECal detectors were mounted on separate cooling
plates, the POD-ECal TFBs are attached directly to the upstream bulkhead as shown in figure 5.
This bulkhead extends 100 mm above the height of the main detector box so that the TFBs can
be mounted next to the region where the optical fibres emerge. The water cooling pipes are then
recessed into grooves running along the exposed face behind, through which the dry air system
also passes. Because there are no more than seven TFBs in any one module, the boards could have
their power provided via standard copper cables instead of the bus bars used in the tracker-ECal.
The readout region was then protected by an anodized aluminium cover.

Structurally, the POD-ECal modules used the same carbon-fibre panels as the tracker-ECal
on the bases, but all had solid aluminium bulkheads to form the lids. Onto this were bolted the
structures required to mount the detectors on the near detector magnet: cast aluminium rails for the
side modules, and roller cages for the top/bottom modules.



Figure 5. Closeup on the readout side of the upstream bulkhead for a POD-ECal side module. The black
cases at the bottom house the MPPCs (photosensors) coupled to the optical fibres where they emerge from
the inner detector. Each MPPC is connected via a thin grey cable to the TFB mounted above, which receives
its power from the coloured cables on its left and is read via the Cat 5e (ethernet) cable on its right.

3 Materials

3.1 Scintillator bars

The ECal scintillator bars were made at the Fermi National Accelerator Laboratory (FNAL) from
extruded polystyrene doped with organic fluors at concentrations of 1% PPO and 0.03% POPOP.
The polystyrene scintillator bars have a 0.25 +0.13 mm coating of polystyrene co-extruded with
TiO, providing light reflection and isolation. The scintillator was chosen to have the same com-
position as that used for the MINOS detectors [17]. Each bar has a cross-section of (40.0f8:2) mm
wide X (10.0Jj8:2) mm deep with a 2.0 & 0.2 mm hole running down the centre for the insertion of
1 mm-diameter WLS fibre, which is discussed in more detail in section 3.3. Each bar was cut to the
appropriate length during the quality assurance (QA) process described below, to within 0.1 mm.
The number of bars of each length is shown in table 1. Including the 10% extra that were made to
replace any rejected during the QA process, there were a total of more than 18,300 bars shipped
from FNAL.



The scintillator bars underwent both mechanical and optical QA tests. The frequency of testing
was reduced in some cases as the extrusion process at FNAL was refined due to feedback from the
QA group. During the mechanical QA tests, the sizes of 100% of the bars were checked for width
and thickness using custom-made Go and No-Go gauges that could slide easily along bars if the
sizes were within tolerance, and a visual inspection was made for flatness and squareness. The bars
were then cut to length. The hole position and diameter were checked using digital callipers for
100% of the bars for the Ds-ECal, and for 10% of the bars subsequently. Optical QA was carried
out on 10% of the bars for the Ds-ECal and 5% of the bars subsequently.

For the first shipments of bars, which were used in the Ds-ECal, the hole diameter was found
to vary from 1.75 mm to 3.50 mm and the shape was typically elliptical rather than round. This did
not affect the light yield of the bar; however, it did have consequences for the layer construction. If
the hole was too small, the locator pins used to hold the bar in place while the epoxy cured could
not be inserted into the bar; if the hole was too large, glue would enter the hole around the edges
of the locator pin and block the subsequent insertion of the WLS fibre. Approximately 10% of
Ds-ECal bars were rejected due to this problem. Subsequent shipments of bars for use in the other
ECal modules did not have this problem.

Optical QA was carried out on the scintillator bars in order to ensure a consistency of re-
sponse to minimum-ionizing particles (MIPs). To this end, a cosmic ray (CR) telescope was con-
structed consisting of a light-tight enclosure for the scintillator bars and their photo-readout, a
triple-coincidence trigger, and a simple data acquisition (DAQ) system. The bar being tested did
not form part of the trigger [18].

The CR telescope consisted of three 4 cm x 6 cm scintillator pads coupled to 2-inch photo-
multiplier tubes (PMTs) which were biased to approximately 2kV each. The coincidence trigger
consisted of a simultaneous trigger from one scintillator pad above and two pads below the bar be-
ing tested. This criterion excluded showers and random coincidences from the PMTs and reduced
the selection of CRs to those that entered the telescope at a small angle from the zenith, eliminating
the need to correct for path-length differences in the bar due to differing angles of incidence. The
CR telescope registered an average of 450 triggers per hour as expected from calculations.

Each bar to be tested for light yield was first wrapped in two layers of microfibre blackout
material as a form of flexible dark box. In order to obtain a robust signal over the background
electronic noise, the light signal of the test scintillator was collected by three 1 mm-diameter WLS
fibres, rather than one, in the central hole of the scintillator bar, which was possible due to the hole
diameters being larger than specified, as discussed above. The three fibres were coupled to the
centre of a 2-inch PMT with optical grease to improve light transmission. The PMT was biased at
a voltage of 2.55kV.

The bar readout end was confined inside a series of plastic adaptors to enable easy replacement
of the bars for testing, and to ensure a consistent, reproducible optical coupling to the PMT. A
viewing port was built to enable visual verification of the coupling between the WLS fibres and the
PMT, and to act as an input port for an LED-based light-injection system that was used to calibrate
the single photo-electron (PE) peak in the PMT. The optical QA setup is shown in figure 6.

Output signals from the trigger PMTs were fed into a into a computer running LabVIEW that
produced histograms of the charge integrals and exported the data for subsequent analysis [18].
A baseline was established using 12 scintillator bars from an early delivery. After analysis and
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Figure 6. The CR telescope showing the 2 m-long scintillator bar in light-tight microfibre sleeve (centre)
and the triple-coincidence trigger. The trigger scintillator pads are situated with one above and two below
the test bar.

calibration using the single PE peak, the light yield for these 2 m bars read out at a position 66 cm
from the readout end was found to be 34.2 £0.6 PE/MIP with o ~ 5 PE/MIP. Bars with a light
yield within 20 of the baseline light yield were accepted. This criterion did not reject any bars.

3.2 Lead

The target mass and radiator for each layer is provided by a thin sheet of lead stiffened with
2.0+ 0.2% antimony. Traces of other metals are below 0.15%. Each sheet of lead was coated
with black, quick-drying, metal-conditioning primer, CELEROL-Reaktionsgrund 918 (Reaction
Primer), before being used in a layer, in order to protect personnel from the harmful effects of lead
and prevent any possibility of leaching between the lead and the scintillator which might degrade
the light-yield qualities of the scintillator over time. The lead thickness for all layers in the barrel-
ECal and the Ds-ECal is 1.75 £0.10 mm, and for the POD-ECal is 4.0 & 0.3 mm. The tolerances
were determined by the manufacturer and are due to the lead fabrication process. The widths and
lengths differ depending upon the size of the module. Due to the technical difficulty of producing
large sheets of thin lead, for the Ds-ECal and barrel-ECal each layer of lead includes more than a
single sheet.

The Ds-ECal sheets upon delivery were lOOSJjg mm wide X 2019 + 4 mm long and subse-
quently were cut to lengths of 2016 & 1 mm during the layer construction. Two sheets were laid
side by side to make up a single Ds-ECal layer.

The barrel-ECal top and bottom modules have lead dimensions 765J_r3 mm wide X
385 ng mm long. Two sheets were laid side by side to make up a single barrel-ECal top or bottom
layer. The barrel-ECal side modules have lead dimensions 2330f3 mm wide X 964.5% mm long,
with the total length being provided by laying four sheets along the length of each layer.

The POD-ECal top and bottom modules have lead dimensions 1528J_ré mm wide X 2356J_rg mm
long and the side modules have lead dimensions 27701’3 mm wide ><2356fg mm long. Unlike for
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Table 2. The consignment of WLS fibres used in the ECal construction.

ECal Fibre Type Length (mm) | Quantity | Processing
barrel-ECal Side 2343 3072 cut, ice polish,
mirror one end
barrel-ECal Side/Top/Bottom | 3986 4288 cut, ice polish
barrel-ECal Top/Bottom 1583 6144 cut, ice polish,
mirror one end
Ds-ECal 2144 2040 cut, ice polish
POD-ECal Side/Top/Bottom | 2410 1740 cut, ice polish,
mirror one end

the barrel-ECal and Ds-ECal layers, due to the thickness of these sheets it was possible to produce
sheets that were wide enough for the entire layer.

3.3 Wavelength-shifting fibre

All ECal modules used Kuraray WLS fibres of the same type: Y-11(200)M, CS-35J, which are
multi-clad fibres with 200 ppm WLS dye. The fibre diameter was specified to be 1.00f8:8§ mm.
The fibres were delivered for processing as straight ‘canes’ to the Thin Film Coatings facility in
Lab 7 at FNAL. All fibres were cut to length with a tolerance of £0.5 mm and both ends were
polished in an ice-polishing process where a batch of around 200 fibres at a time (800 fibres per
day) were diamond-polished using ice as a mechanical support. The POD-ECal fibres and shorter
fibres from the barrel-ECal modules were then ‘mirrored’ on one end in batches of 800 — 1000
using an aluminium sputtering vacuum process, maximizing the amount of light available to be
read out from the opposite end of the fibre and saving on double-ended readout. A thin layer of
epoxy was applied to each mirrored end for protection. Table 2 summarizes the full ECal WLS
fibre consignment. In total, over 17,000 fibres were processed at Lab 7 and passed through the QA
process described below. This represented about a 10% contingency over the total number of fibres
needed to complete construction of the ECal.

A procedure of automatic scanning of fibres was put in place primarily to identify those fibres
with poor light yield that do not necessarily show obvious signs of damage by a visual inspection.
A secondary function of the scanning was to measure and monitor the attenuation length of the
fibres which could be used as part of the ECal calibration task. Two scanning methods were de-
veloped. The first, known as the Attenuation Length Scanner (ALS), tested fibres one at a time
and performed the QA for the Ds-ECal consignment of fibres. The ALS was later replaced by the
Fracture Checking Scanner (FCS) which had a faster through-put of fibres as demanded by the
construction schedule but with a less precise measurement of the attenuation length. In addition,
each ECal module construction centre ran a scan of all fibres within a module layer as part of the
construction procedure (as described in section 4.2) in order to check that the quality had not been
compromised by the installation process.

The ALS, shown in figure 7, consisted of a light-tight tube containing a scintillator bar into
which the test fibre is inserted. A 5 mCi '¥’Cs source producing 662 keV photons was mounted
on a rail system underneath the tube and was able to travel over the full length of the fibre under
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Figure 7. The ALS.

the control of a PC running LabVIEW. The light output of the fibre was recorded using a standard
ECal MPPC (as described in section 3.4) powered by a Hameg HM7044-2 quadruple PSU. The
output current was measured by a Keithley 6485 pico-ammeter also under LabVIEW control.

Figure 8 shows some typical results for good fibres compared to a bad fibre which shows
light loss at two positions along its length (note that scans with the fibre direction reversed help to
confirm the locality of the light loss). Such scans were performed on all of the fibres used for the
Ds-ECal and resulted in the rejection of approximately 100 out of a total of 2000 fibres.

These data were also used in order to extract a measurement of the attenuation lengths of the
fibres. An example of attenuation measurements made with this apparatus can be seen in figure 9.
The current recorded from the MPPC in the region up to x = 1.5 m from the scan start point is fitted
to the following functional form [19]:

R
Lyppc = A ( e M 4 e—x/M) +B. (3.1)

(1+R) (1+R)
The data from the Ds-ECal fibres suggested a flat background of B = 81 nA, A = [108, 128] nA,
R =[0.12,0.14] and attenuation length coefficients of A; = [3.9,4.1]m, A, =[0.21,0.31] m.

The FCS, shown in figure 10, was designed to scan twenty fibres quickly in a single run while
still retaining a reliable identification of problem fibres. The scanner was enclosed within a light-
tight box with the readout electronics positioned outside. A series of 29 scintillator bars were
placed perpendicular to the fibre direction and positioned over a distance of 4 m. The spacings of
the bars were selected to ensure that all of the four lengths of fibre had a scintillator bar within 5 cm
of the end of the fibre. Each scintillator bar was cut with 20 v-shaped grooves into which the fibres
were laid allowing absorption of light from the bars.

Each scintillator bar was illuminated using an ultra-violet LED that was coupled to a ‘leaky
fibre’, one with the cladding intentionally scratched to allow light to escape at points along the
length, that was threaded through the bar. The UV light was absorbed by the scintillator bar which
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Figure 9. Example fits to attenuation length data taken by the ALS. Coloured, jagged lines are data; solid,
black lines are the fits. The shaded grey region is not used in the fits.

then emitted blue light out through the v-shaped grooves and into the WLS fibres. The UV LEDs
were connected to a computer-controlled switching unit that used a binary addressing system to
switch on each of the LEDs in turn. The 20 WLS fibres were each coupled to ECal MPPCs which
were read out via a multiplexer by the pico-ammeter. The complete scanner system was controlled
by a single LabVIEW process.
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Figure 10. The FCS. Ten wavelength shifting fibres can be seen lying in the grooved scintillator bars. The
fibres connect to the MPPCs (shown in their black plastic housings) via a fibre clamp and a short section of
clear optical fibre. The electronics are positioned behind the far end of the light-tight box.

Software was used to check the WLS fibres for sudden drops in light output between each of
the illumination points, an indication that the fibre was cracked or damaged in some way. One of
the 20 WLS fibres in each run was a reference fibre that had been scanned in the ALS. A reference
fibre was used for two reasons. Firstly, it allowed the scanner to be calibrated such that the expected
amount of light collected at each position along the bar was known, allowing the WLS fibres to
be compared to the reference fibre. Secondly, it permitted the attenuation length to be roughly
measured by scaling the attenuation profile of the reference fibre with the relative light response
from the other fibres. The final yield from the QA steps of WLS fibres delivered from FNAL,
including any rejections due to the ferrule gluing step described in section 3.5, was 350 fibres
rejected from the total order of approximately 17,000, a rejection rate of about 2%.

3.4 Photosensors

As mentioned in section 2, light produced in the scintillator bars is transported via WLS fibres to
solid state photosensors. Because the ECal modules sit inside the iron return yoke of the refurbished
UAT1 magnet, either the photosensors needed to work inside the 0.2 T magnetic field provided by
the magnet and be small enough to fit inside the ECal modules, or the light signal would need
to be transported several metres via optical fibres to light sensors outside the ND280. The use of
MPPCs instead of traditional PMTs allowed the first option to be chosen. MPPCs consist of many
independent sensitive pixels, each of which operates as a Geiger micro-counter. The use of Geiger-
mode avalanches gives them a gain similar to that of a vacuum PMT. The output of the device is
simply the analogue sum of all the fired pixels, and is normally expressed in terms of a multiple of
the charge seen when a single pixel fires, sometimes referred to as a ‘pixel energy unit’, or PEU.
A customized 667-pixel MPPC, with a sensitive area of 1.3 x 1.3 mm?, was developed for T2K by
Hamamatsu [20].
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Table 3. Main parameters of the T2K MPPCs. The dark noise rate is given for a threshold of 0.5 PEU, or
half the charge of a single pixel firing.

Parameters

Number of pixels 667
Active area 1.3 x 1.3 mm?
Pixel size 50 x 50 um?
Operational voltage 68—71V
Gain ~ 10°
Photon detection efficiency at 525 nm 26-30%
Dark rate above 0.5 PEU, at 25°C <1.35 MHz

In addition to meeting the above criteria, the MPPCs have a higher photon detection efficiency
(PDE) than PMTs for the wavelength distribution produced by the WLS fibres. Typical PDEs are
given by Hamamatsu for S10362-11-050C MPPCs [21], which are similar to the customized MP-
PCs used by T2K. The peak efficiency, which is at a wavelength of 440 nm, is around 50%, and
at the wavelengths emitted by the WLS fibres (peaked around 510 nm), the efficiency is approxi-
mately 40%. However, these PDE measurements were made using the total photocurrent from the
MPPC, and will therefore count pulses caused by correlated noise such as crosstalk and afterpulsing
in the same way as those due to primary photons. More sophisticated analyses performed by T2K
in which these effects are removed give PDEs of 31% at wavelengths of 440 nm, and 24% in direct
measurements of WLS fibre light [22]. Table 3 shows the main parameters of the MPPCs. More
information about the MPPCs can be found in references [2, 13, 16, 23] and references therein.

As T2K was the first large-scale project to adopt MPPC photosensors, considerable effort was
made to test the first batches of MPPCs before detector assembly. Device properties were mea-
sured in a test stand comprising 64 Y11 WLS fibres, illuminated at one end by a pulsed LED and
terminated at the other by ferrules connected to the MPPCs under test, as described in section 3.5.
MPPCs were read out using a single TFB board and a development version of the ND280 DAQ
software. Two such test stands were created, and the MPPC testing (around 3,700 devices total)
was divided equally between them.

The QA procedure consisted of taking many gated charge measurements for each photosensor
at a range of bias voltages, with and without an LED pulse present during the charge integration
gate. For each bias voltage, a charge spectrum was produced from the measurements, and analyzed
in order to extract the sensor gain, similarly to the process described in section 8.1. The thermal
noise rate, and contributions from after-pulse and crosstalk, were extracted from the relative peak
heights in the charge spectrum, and a comparison of the signals with LED on and off permitted
the extraction of the PDE; absolute calibration of the incoming light level was performed using a
MPPC whose PDE had been previously measured using an optical power meter [22].

The gain curve was fitted to calculate a pixel capacitance and breakdown voltage for each
device, and also the bias voltage required to achieve a nominal gain of 7.5 x 10°. The PDE and noise
characteristics at this gain were then interpolated, to quantify the performance of each device. All
devices were found to be functional and to perform acceptably (with reference to table 3); however,
a 10% contingency of sensors was ordered, and so devices were rejected starting with those with the
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Figure 11. (Left) An exploded view of the WLS fibre to MPPC coupling connector system. The ferrule in
the bottom left of the figure is placed over the end of the WLS fibre (not shown), with the fibre overhanging
the ferrule by 0.5 mm in order to ensure good coupling with the MPPC. The housing for the MPPC and foam
spring is shown in the centre of the figure. The ‘ears’ of the housing slip over the ridge in the ferrule to lock
the assembly together. The external shell, or sheath, covers the MPPC housing and part of the ferrule when
the connector is assembled, preventing the ‘ears’ from disengaging with the ferrule. The circular loop on the
external shell allows the entire assembly to be screwed to the bulkhead securely. (Right) The connector fully
assembled. The assembled connector is approximately 5 cm long.

highest thermal noise rate. More details on the QA procedure and its results can be found in [24]. In
situ, the dominant contribution to the non-linearity of the combined scintillator/fibre/MPPC system
is from the MPPCs, and is estimated to be 2-3% for MIPs and 10-15% for charge deposits typical
of showers.

3.5 Fibre to sensor coupling

An essential component in the overall light-collection efficiency of the ECal modules was the cou-
pling of the WLS fibres to the MPPCs. The design used was a multi-component solution shown in
figure 11 (left) and was adopted by the on-axis INGRID detector [1] and the POD subdetector [11]
of the ND280 in addition to the ECal. The assembly consists of three injection moulded' parts: (1)
a ‘ferrule’ glued to the end of the fibre which engages with (2) a housing that holds the MPPC and
ensures alignment with the fibre end to better than 150 ttm, and (3) an external shell, or sheath, to
contain the inner assembly and provide protection. A 3 mm-thick polyethylene foam disk sitting
just behind the MPPC provided sufficient contact pressure between the fibre end and the MPPC
epoxy window to ensure an efficient connection without the use of optical coupling gels which
could deteriorate over time and present a complicated calibration challenge. Electrical connection
between the MPPC and the front-end electronics is provided by a small, circular, printed circuit
board with spring-loaded pin sockets which contact the legs of the MPPC and connect to a micro-
coaxial connector by Hirose (not shown in figure 11). Figure 11 (right) shows the connector fully
assembled. Early prototypes of the connector revealed that an unacceptable light loss could occur
if the fibre end was glued slightly short of the ferrule end. This led to the production of gluing
guides which ensured a precise overhang of the fibre from the ferrule end by 0.5 mm with a high
production reliability.

! All injection moulded components were fabricated from Vectra ®A130.
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Table 4. The ECal construction and QA model, showing contributions from Daresbury Laboratory (DL),
Imperial College London, Lancaster University, Liverpool University, Queen Mary University London
(QMUL), Rutherford Appleton Laboratory (RAL), University of Sheffield, and University of Warwick.

DL | Imperial | Lancaster | Liverpool | QMUL | RAL | Sheffield | Warwick
ECal design X X
Module engineering/constr. | X X
Ds-ECal layers X
Ds-ECal module X
barrel-ECal side layers X
barrel-ECal side modules X
barrel-ECal top/bott layers X
barrel-ECal top/bott modules | X X
POD-ECal side layers X
POD-ECal side modules X
POD-ECal top/bott layers X
POD-ECal top/bott modules X
2D scanner X
MPPC QA X X X
Scintillator bar QA X X
WLS fibre QA X
MPPC-WLS connectors X
Electronics X X

4 Construction

The T2K UK group employed a distributed construction model to optimize efficiency, space and
the use of available personnel. Module layers were constructed first and then lowered one at a time
inside prepared bulkheads, after which the MPPCs, then cooling panels, TFBs, cooling pipes, and
finally cover panels were attached. The RMMs were then affixed to the outside of the modules.
As each layer was installed inside the bulkheads, a two-dimensional (2D) scanner, discussed in
section 4.3, carrying a 3mCi '37Cs source was used in conjunction with a well-understood set of
‘test” MPPCs to check the integrity of the bar-fibre combination before the next layer was installed,
enabling repairs to be made if necessary. The material preparation and QA also followed a dis-
tributed pattern. The distribution model is shown in table 4. All of the components in the table had
to come together on a co-ordinated schedule for the modules to be constructed. Details of the layer
and module assembly are given in the following sections.

4.1 Layer assembly

Each layer is framed by aluminium bars with an L-shaped cross-section of dimensions 20.00 mm
(base) x 12.54 mm (height). The height of the base is approximately 10.2 mm, very slightly higher
than the scintillator bars, and the width of the stem is 20.00 mm. Construction of the layer began
by screwing the aluminium bars into place onto a Teflon-covered assembly table. The scintillator
bars then were prepared by applying a two-part epoxy (Araldite 2011 Resin and Araldite 2011
Hardener) to one edge of the bars. The bars then were laid inside the layer frame such that the
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Figure 12. Ds-ECal layer under construction. The first of two sheets of lead is in place on top of the
scintillator bars. Visible are the aluminium frame and the locator pins securing the scintillator bars in place
for the duration of the layer construction. The frame is covered with blue tape to keep it free from epoxy.

central hole of each bar was aligned with a 2 mm-diameter hole in the frame. An O-ring with an
uncompressed thickness of 1.5 mm was inserted into the 1 mm gap between the ends of the bar
and the layer frame and compressed into place. This was done to prevent epoxy from entering
the bar hole and compromising the subsequent insertion of WLS fibre. The position of each bar
was stabilized during layer construction by inserting a temporary tapered Teflon-coated locator pin
through the frame hole, the O-ring, and into the bar hole. The locator pins were removed when the
layer was complete.

Once all of the bars were stabilized in position, a thin layer of epoxy was applied to them and to
the lip of the frame, and the lead sheets were placed on top, using a vacuum lifting rig attached to an
overhead crane in order to distribute the weight across several equally-spaced suction cups and so
avoid distorting the lead. The sheets were carefully positioned to minimize the gap between them,
thereby avoiding a region of low density in the middle of the modules, while ensuring sufficient
overlap onto the lip of the layer frame to maintain structural integrity. Figure 12 shows one of the
Ds-ECal layers being constructed, with one sheet of lead in place on top of the scintillator bars.

The entire layer then was covered with a sandwich of vacuum-sealing plastic and fabric, with
the top layer of plastic securely taped to the table. Vacuum pumps were used to evacuate the air
around the layer, allowing the epoxy to cure for 12 hours under vacuum compression.

Once the curing was finished, the layer was unwrapped, the locator pins removed, the screws
securing the layer frame to the table were removed, the WLS-fibre holes were tested to ensure that
they had not been blocked with epoxy, and the layer then was stored for use in a module.
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4.2 Assembly procedures for the ECal modules

The Ds-ECal was the first module to be constructed and most of the procedures developed during
the process were used on the other modules as well. The first step was to assemble the bulkheads
and the carbon-fibre panels. One carbon-fibre panel (the bottom panel during construction which
would become the upstream face when the Ds-ECal was in situ) was attached to the bulkheads to
form an open box. The other (top) carbon-fibre panel was stored until later. The bulkhead box was
positioned on the construction table, and the 2D scanner, discussed in section 4.3, was attached and
commissioned. The first layer then was lowered inside the bulkheads and positioned on top of the
carbon-fibre base. A 1cm gap between the bulkheads and the layer on all four sides was obtained
by tightening or loosening grub screws which were inserted through holes in the bulkhead and
tensioned against the layer frame. The LI LED strips and perspex lenses (see section 6) then were
glued onto the bottom carbon-fibre panel in the 1 cm gap; the LI electronic cards were affixed to the
inside of the bulkheads, with the LI cables routed outside the bulkheads through the air holes. WLS
fibres were inserted through the scintillator bars. A MPPC-fibre connection ferrule was bonded to
each fibre using Saint-Gobain BC600 silicon-based optical epoxy resin. The test MPPCs were
coupled to the fibres using the connection sheaths and connected via a mini-coaxial cable to TFBs,
which provided the control and readout (see section 5 for a description of the TFBs). After this the
layer was covered and made light-tight, and a 2D scan was taken.

The 2D scanner collected data at 20 points along each 2000 mm bar, with data points being
closer together near the ends in order to facilitate an understanding of the light escaping through
the ends of the scintillator bar. For efficiency, the analyzing software ran in parallel with the data-
taking, producing an attenuation profile for each bar in the layer. A typical example of this is
shown in figure 13. The ordinate axis shows a reference value of the light yield since it is calcu-
lated as a ratio of the integrals (from 5.5 PE to 30 PE) of the MPPC response when the source is
present, to the response when the source is not present, and therefore represents (signal + back-
ground)/background. This ratio is calculated at each data point along the length of the bar. More
information about the analysis of the scanner data is available in [18].

The scan data were checked and if problems were encountered, appropriate action was taken.
A common problem involved the coupling between the fibre and the MPPC, often due to the dif-
ficulty of positioning the ferrule on the fibre. In this case, since the ferrule could not be removed,
the fibre would be replaced, a new ferrule would be attached, and the bar would be re-scanned.
After this process, the test MPPCs were removed and the next layer was installed and scanned in
the same manner. Where required, thin Rohacell foam sheets were placed between the layers to
ensure that the layers did not warp inwards.

After several layers were installed in the Ds-ECal, it was noted that the holes in the bulkheads
were no longer aligning well with the holes in the layers and the scintillator bars, which made
the insertion of the WLS fibre difficult. Measurements indicated that the layer frames had been
incorrectly manufactured and were an average of 0.2 mm higher than the specifications. This was
remedied by using a router to thin the frames on the layers that were not yet installed. The layer
frames for subsequent modules did not have this problem.

After all of the layers were installed, LI LEDs and electronic cards were attached to the top
carbon-fibre panel. 9 mm of Rohacell foam was glued to the inside of the panel to ensure that the
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Figure 13. A typical light attenuation profile from scanner data corresponding to one scintillator bar in the
Ds-ECal. The ordinate axis is the ratio of the integrated light yield with the source present to the integrated
light yield without the source; the abscissa is the position along the bar in cm. The light yield measured by
the MPPC at one end of the bar and read out by one of the two TFBs (TFB 0) is shown in the upper plot,
and that from the MPPC at the other end read out by the other TFB (TFB 1) is shown in the lower plot. The
points are data; the curves are a single-exponential fit to the central region of the data.

layers within the bulkheads stayed stable when the Ds-ECal was in its upright position in situ. The
carbon-fibre panel was then affixed to the top of the bulkheads.

The procedure described above completed the construction of the active region of the detector.
The next steps dealt with the data readout. First, the 3400 Ds-ECal ‘production” MPPCs in their
custom-made sheaths complete with foam springs and mini-coaxial cables were attached to the
ferrules of every layer and secured to the bulkheads as described in sections 2.1 and 3.5. Cable-
management brackets were attached to the bulkheads and the MPPC cables were grouped together
and tidied in preparation for the next steps. Tyco Electronics LM92 temperature boards were
screwed onto the bulkheads between the MPPCs in positions that allowed one temperature board
to be connected to each TFB.

The cooling panel for the left-side Ds-ECal was assembled from four separate cooling plates.
The TFBs then were attached and thermally connected to the left-side cooling panel using screws
and thermally-conducting epoxy resin. The cooling panel then was held in position on the left side
of the Ds-ECal while the MPPC and temperature-board cables were threaded through the slots in
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the panel and the LI cables were routed through the panel’s air holes, after which the panel was
placed into its final position and bolted into place. The MPPC and temperature-board cables were
connected to the correct ports on the TFBs. The same procedure was followed for the other three
cooling panels.

The water-cooling circuit then was installed on the cooling panels and the gas distribution
branch was installed on the bottom cooling panel. These systems were tested under pressure.
Following this, cable-management brackets were fitted between all of the TFBs, and low-voltage
feedthroughs and bus bars were installed. The bus bars were checked for continuity, isolation from
ground and from each other. Shielded Cat Se cables then were connected to the TFBs. Along with
the LI cables, they were routed around the detector to a patch panel mounted on the bottom cooling
panel or, in the case of the trigger cables from the TFBs and half of the LI cables, to the top cooling
panel. Figure 4 shows the left-side Ds-ECal cooling panel with the TFBs, bus bars, Cat 5e cables,
LI cables, water-cooling pipes and air holes.

The outer cover panels then were attached to each side. The top cover panel was fitted with
28 cable glands through which the Cat Se cables corresponding to the trigger system exited the
detector, and with air vents to allow the gas being flushed through the detector to escape. Half of the
cables from the LI system exited through holes in the top cover panel. The bottom cover panel was
fitted with power cable clamps, cable-management brackets and RMM cards. The Cat 5e cables
were routed from the patch panel to the RMMs. LI junction boxes were attached and connected to
the LI cables, completing the construction of the Ds-ECal.

This construction procedure was repeated for each of the barrel-ECal modules. Minor alter-
ations to the method were needed to accommodate the slightly different structure of the modules
(see section 2.2). More significant alterations were made to the method for the POD-ECal modules,
reflecting their slightly different design, as described in section 2.3. The most significant differ-
ences were that the TFBs were mounted directly on the bulkhead instead of onto cooling panels,
with the MPPC cables routed to them and supported where necessary; the smaller number of TFBs
per module allowed for the use of a thick standard copper wire, instead of bus bars, to supply power,
which was distributed to the TFBs via branching connections to terminal blocks; in the final step
of the assembly, a non-magnetic support structure was bolted to the aluminium back panel, which
positions the thinner POD-ECal modules away from the magnet, and closer to the basket.

4.3 The bar scanner

Three-axis scanners were designed to position a '*’Cs radioactive source at multiple points above
the surface of each detector layer as each layer was assembled into the subdetector body. Three
variants of the scanner were manufactured:

e Ds-ECal and POD-ECal scanner, with a footprint of 3928 mm x 3578 mm;
e side barrel-ECal scanner, with a footprint of 4862 mm x 3240 mm;
e top-bottom barrel-ECal scanner, with a footprint of 4862 mm x 2410 mm.

The three axes were driven by Mclennan SM9828 Stepper Motors controlled by PM600 In-
telligent Stepper Motor Controller. The controller was programmed via a commodity PC running
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LabVIEW. The PC and stepper motors, along with their controller, were all powered via an un-
interruptible power supply (UPS). The system design included an APC Smart-UPS 2200, 230V,
primarily as a safety feature so the radioactive source could be automatically parked during a power
cut; however, it had the added benefit that short duration power glitches did not stop a running scan.

These controls were integrated into a LabVIEW program providing an operator interface to
control the machine. This operator interface was implemented as a ‘state’ machine, the main states
being ‘source loaded’ and ‘source unloaded’. In the source-unloaded state the radioactive source
was not attached to the scanner head. In this state the head was raised and moved to one side to
position the arm in the least inconvenient position for those working on the detector. The arm could
also be moved in the x-direction to allow for greater access to the detector during construction.

The source was loaded under computer control with the computer prompting the operator to
perform the necessary steps in a safe order. The program then switched to the source-loaded state
where scanning parameters could be input and the scan started. Each scan started with the z-arm
searching for the surface of the module layer at the centre of the module. The arm descended
slowly until the push rod mounted adjacent to the source operated. The arm then backed off and
the source moved to the matrix of measurement positions. At each position the Scan Control
program prompted the DAQ to start data-taking via a network link. On completion of data-taking,
the scanner would move to the next position and iterate until data had been taken at all positions.
When the data-taking was complete, or if the program detected an error condition, the source
would be returned to its lead-shielded safe parked position. Unloading the source was again under
computer control with operator prompts to ensure safety. Re-positioning of the scanner head was
found to be accurate to within 0.02 mm.

Figure 14 shows the scanner in operation during the Ds-ECal construction. The vertical arm
finds its position as described in the text. The operator provides the x — y coordinates and the
required timing at each position. Since radiation safety rules dictated that no one should be in the
area during the scan, the image was taken by a web camera which allowed operators to check on
the scanner progress.

S Readout electronics and data acquisition

As described in section 2.1, the mini-coaxial cable from each MPPC is routed outside the cooling
panels and connected to a custom designed TFB. Each TFB contains 4 Trip-T application-specific
integrated circuits (ASICs), originally designed for the DO experiment at FNAL. Up to 16 MPPCs
can be connected to each ASIC, implying that a maximum of 64 MPPCs can be connected to a
single TFB. In total, the ECal has 22336 electronic channels connected to MPPCs. To increase the
dynamic range of the electronics, the incoming MPPC signal is capacitively split (1:10) into high-
and low- gain channels, which are read by different channels of the ASIC. Depending on the MPPC
gain, the single-pixel (1 PEU) signal corresponds to approximately 10 ADC counts in the high-gain
channel, while the maximum signal in the low-gain channel corresponds to around 500 PEU.

The Trip-T chip integrates the charge in a preset (programmable) time interval which is fol-
lowed by a programmable reset time at least 50 ns long. For T2K, the integration windows are
programmed to synchronize with the neutrino beam timing. The Trip-T chip integrates from 23
readout cycles in a capacitor array and once all cycles have been completed the stored data are mul-

_23_



Figure 14. The 2D scanner moving along the scintillator bars in the Ds-ECal. The '3’Cs source sits at the
bottom of the vertical arm of the scanner, just above the layer being scanned. The blackout material covering
the layer is seen, along with the tape holding it in place for the duration of the scan.

tiplexed onto two dual-channel 10-bit ADCs which digitize the data. Signals from the high-gain
channel are routed via a discriminator which forms part of the Trip-T chip. A field-programmable
gate array (FPGA) produces timestamp information from the discriminator outputs and sends this
information together with the ADC data to a back-end board. In addition, the TFB also records
monitoring data (e.g. temperature, voltage) via the same FPGA, which is asynchronously trans-
mitted to the back-end board for data concentration and buffering. Detailed information about the
Trip-T chip and front-end electronics is given in references [2] and [25].

The back-end electronics system for the ND280 consists of several different boards. The TFBs
are connected to RMMs which provide control and readout. Control is fanned out from a master
clock module (MCM), via several slave clock modules (SCMs), one per subdetector. Additionally,
two cosmic trigger modules (CTMs) are used to provide a selection of cosmic-ray muon triggered
events for calibration and monitoring. All of these boards use a common hardware platform, specif-
ically developed by the Rutherford Appleton Laboratory for use in the T2K experiment. Signals
from up to 48 TFBs, which are mounted on the detector typically less than 1 m away from the
MPPCs, are routed to one RMM via Cat Se cables. The ECal uses a total of 12 RMMs: 8 for
the barrel-ECal, 2 for the Ds-ECal and 2 for the POD-ECal. Each RMM controls its associated
TFBs, distributes the clock and trigger signals to them and receives data from them once a trigger
has been issued. Data from the RMMs are then sent asynchronously via a gigabit ethernet link to
commercial PCs that collect and process the data.

The ND280 uses a single MCM. This receives signals from the accelerator which allow it to
determine when a neutrino spill is about to occur, and also from a GPS-based clock which is used
to synchronize the electronics to UTC. The MCM prioritizes and issues triggers across the whole
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detector, and manages readout-busy situations. The signals and control of the MCM are fanned
out to the SCMs. The trigger and clock signals are passed to the ECal RMMs via the ECal SCM.
The SCMs allow the electronics for a sub-system to be configured independently. It is possible for
the ECal to run autonomously (‘partitioned DAQ’) from the rest of the ND280 for calibration and
debugging by using the ECal SCM as master controller.

The software control of the detector is performed using the “Maximum Integration Data Ac-
quisition System” (MIDAS) [26]. The front-end software is custom written to manage the commu-
nication with the RMMs, CTMs, SCMs, and MCM through gigabit ethernet links. A second pro-
cess combines ADC and TDC information, compresses the data and makes histograms for pedestal
determination and monitoring. A third process manages communications with computers running
the MIDAS DAQ elements. These three processes co-operate on front end PCs running Scientific
Linux, with each front end PC being connected to two back-end boards. The event builder and data
logging use software from the MIDAS distribution with virtually no customization for T2K. The
DAQ contains an online monitoring system which makes histograms for assessing data quality in
real time and passes events to the online event display for monitoring. Detailed information about
the DAQ is given in [2].

6 Light injection system

The ND280 ECal LI system is designed to provide a quick and reliable method of monitoring the
performance of the MPPCs used inside the ECal modules. A complete discussion of the LI system
R&D can be found in reference [27]. The LI system is required to illuminate the MPPCs on a
given readout face of an ECal module, with a short duration optical pulse. The pulse length and
stability must be sufficient to afford accurate (= 1 ns) timing calibration. The intensity across the
readout-face should be uniform and any electromagnetic or electro-optical noise induced by the
system must not interfere with the surrounding sensors or electronics.

In order to accomplish these aims, the LI system employs a modular design incorporating
dedicated electronics for both the interface with the ND280 DAQ and the pulsing of LI sources
within an ECal module. The components are described in the subsections that follow. The LI
front-end electronics are housed in custom-built crate assemblies compatible with a standard 19-
inch rack. In brief the LI signal chain comprises the following components:

1. The trigger card receives the ND280 MCM signal.
2. Control cards (CCs) receive and interpret the DAQ instructions and collate with the clock.
3. The junction boxes (JBs) receive and fan out the CC outputs.

4. The pulser receives the CC output via a JB and drives LED strips which emit optical pulses
for calibration.

Each of the components is described in more detail below.
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6.1 Control cards and trigger receiver

The LI system receives DAQ instructions into a dedicated CC. Each card hosts a TCP/IP server
that allows the DAQ instructions to be interpreted and then encoded into a sequence of TTL pulses
used to drive LED pulser cards, housed inside the ECal modules. The ND280 MCM transmits a
100 MHz signal to the LI system which is received by a dedicated trigger card. The clock signal
is first fanned out to each CC, then collated with the CC outputs onto a RJ45/Cat 5e signal cable
ready for distribution to the LI JBs.

6.2 Junction boxes

The JBs are responsible for directing the TTL pulse train and MCM clock from the CCs to the
relevant LI pulsers, the pulser being the dedicated electronics required to form the electrical exci-
tation pulses used to drive the LED strips used for illumination. There is one JB per ECal module
except for the Ds-ECal which has two: 6x POD-ECal, 6 x barrel-ECal and 2x Ds-ECal, making
14 in total. The JBs are mounted outside, but in close proximity to, the ECal modules themselves.
They are passive devices, used exclusively for fanning out the CC pulses and therefore introducing
no modification to the actual signal.

6.3 Communications protocol and cabling

The low-voltage differential signalling (LVDS) protocol is used throughout to ensure robustness
against interference from electromagnetic noise in the detector. The DAQ instruction and MCM
clock information are received over LVDS, converted to TTL for interpretation by the CCs. The
CC outputs are again transmitted using LVDS, converted to TTL for fan out in the JBs and then
transmitted to the LI pulsers again using LVDS. The Ds-ECal portion of the LI system, however,
is an exception in that it features an older design which implements TTL over LEMO cables rather
than LVDS over RJ45/Cat 5e cables. In order to preserve the relative timing between pulsers, all
Cat 5¢/LEMO cables within an ECal module have been installed with the same length.

6.4 Pulsers

LED pulser cards mounted inside the ECal modules receive the pulses emitted from the CCs via
the JBs. The TTL logic pulses determine the pulse duration, amplitude and number of flashes. A
shaping component of the pulser board introduces activation and deactivation spikes to the leading
and trailing edges of a square-wave electrical pulse. This ensures a constant level of illumination
with a negligible optical rise time. The signal chain is illustrated in figure 15. Different numbers
of pulsers are located in different ECal modules, depending on their size and layout. There are 114
in total: 14 POD-ECal, 84 barrel-ECal and 16 Ds-ECal.

6.5 LED strips and extruded perspex lens

Each LED pulser drives two KingBright LSL-062-05 flexible LED lighting modules. The LED
strips are fitted with an optically coupled, cylindrical lens, made of 2 mm-diameter extruded per-
spex, as shown in figure 16. The KingBright LEDs feature an in-built lens with 1/2 angle 120°
producing a rather wide beam divergence that results in a 75% loss of emission at the layers fur-
thest from the LED strips. The addition of the perspex rods focuses the light so as to reduce this
loss to only 25% of the maximum.
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Figure 15. The LI signal path. The CCs encode an MCM synchronized pulse train with the desired timing
and amplitude characteristics. The pulsers derive the excitation charges from the CC output.

?{3 A s
-\ i ]
©w G 2
i Gl >
N I y et
jgin §y§ &5
£
P r
@L
A
Z
P
2
i

Figure 16. KingBright LED 10 mm-wide strip (left), and optically-coupled acrylic lens (right).

6.6 LI installation

The Ds-ECal JBs were installed and cabled in Aug 2010. The remainder of the JBs and the front
end electronics were installed during Oct/Nov 2010.

The POD-ECal CC receives  : 1x input from the DAQ.
The POD-ECal CC transmits : 1x output to each of six JBs.

A single POD-ECal CC, located in the LI electronics crate, transmits the DAQ instructions and
MCM clock information to the six POD-ECal JBs. Each JB splits and distributes the instructions
and clock information to 14 = 4 x 2 pulsers + 2 x 3 pulsers forming six groups, permitting any
combination of the six POD-ECal modules to be illuminated.

Each barrel-ECal CC receives  : 1x input from the DAQ.
Each barrel-ECal CC transmits : 2x outputs to each of six JBs.

There are six barrel-ECal CCs in total. One barrel-ECal CC transmits the DAQ instructions and
MCM clock information to one barrel-ECal JB over two RJ45/Cat 5e cables. One JB splits and
distributes the instructions and clock information to 14 pulsers, forming three distinct groupings,
each corresponding to pulsers located on one of the three readout faces. Any combination of
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readout faces (i.e. the ends of the single and double-ended scintillator bars) can be illuminated
within a given barrel-ECal module.

The Ds-ECal JBs are unique in that they sit inside the ND280 magnet, situated directly against
the ECal bulkheads. Moreover they employ LEMO connections along single core coaxial cable
rather than the RJ45/Cat 5e that is ubiquitous elsewhere throughout the ECals and the remainder
of ND280. There are two readout faces per Ds-ECal module each separately illuminated by eight
pulsers. There are two JBs, one North and one South served by a single CC situated in the LI
front-end electronics crate.

7 Testbeam

In 2009, the Ds-ECal module was exposed to the CERN T9 testbeam. This represented the first
opportunity to test the entire integrated system: calorimeter, readout system, DAQ system and
analysis framework. As well as a system shakedown, the data provided by the testbeam have
been used to tune the particle identification algorithms used in T2K analyses and to obtain a better
understanding of detector performance.

7.1 The CERN PS T9 testbeam

The T9 beamline is a medium energy, multiple particle species, tertiary beam generated by the
collision of protons from the CERN PS on a solid target in the CERN East Experimental Hall.
The dual polarity beam supplied a mix of pions, electrons and protons with momenta ranging
from 300 MeV/c up to 15 GeV/c. Data were taken at momentum points between 300 MeV/c and
5.0 GeV/c. The particle composition of the beam changed with momentum setting. Below 1 GeV/c,
electrons made up 90% of the beam. This fraction decreased to approximately 5% for momentum
settings above 3.0 GeV/c, with a corresponding increase in the fraction of hadrons.

7.2 Triggering and event selection

The beamline was instrumented with several detectors to provide particle identification informa-
tion. Two Cerenkov counters filled with CO, at variable pressure were present, and read out using
PMTs connected to an ordinary TFB board. The counters were configured such that only electrons
were above threshold, which provided electron/hadron discrimination. The electron identification
efficiency of the system (requiring both counters to register a hit) was estimated to be (90 +2)%
for momentum settings below 3.0 GeV/c. The Cerenkov system was complemented by a time-of-
flight (TOF) system comprised of two scintillator paddles read out by fast PMTs. The paddles
were separated by a flight distance of 14 metres. Custom NIM-based electronics, including a time-
to-analogue converter (TAC), converted the time of flight to a current pulse, which was read out
using a TFB. The TOF system provided proton-pion separation for momentum settings between
600 MeV/c and 1.8 GeV/c, and also acted as the hardware trigger for the Ds-ECal.

Combining the performance of the TOF and Cerenkov systems with the beam composition,
the contamination of the hadron sample with electrons was estimated to be below 0.5%, and the
electron sample was estimated to be more than 99% pure. Because of the relative timings of the
physics signal and DAQ cycle, the physics data from a single beam event could fall into one of two
Trip-T integration windows. Due to latencies in the system it was also possible that different parts
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of a single event could end up spread across different time buckets. In this case it was impossible to
be sure that activity did not occur, undetected, during the reset period. To eliminate this uncertainty,
events with reconstructed clusters in both windows were rejected. For electron events, the candidate
cluster was also required to arrive between 0 and 65 ns after the Cerenkov signal.

7.3 Detector configuration

The detector was configured as similarly as possible to its final operating conditions; however, there
were some differences, largely due to physical constraints. The downstream end of the detector
(with respect to the J-PARC beam) faced upstream in the testbeam, meaning that incident particles
passed from the back to the front of the detector. This meant that the particles passed through a
lead layer before a scintillator layer, leading to a small difference in behaviour.

In addition to this, the detector was cooled using an air-based chiller rather than water cooled,
leading to a diurnal variation in temperature of around 2°C, and a total temperature range of 16—
28°C over the whole running period. This led to rather larger drifts in MPPC behaviour than ex-
pected for the final system, leading to some difficulties in calibration (section 7.4), though after an
initial commissioning period these were mostly ameliorated by taking very regular calibration runs.

7.4 Calibration differences

Calibration for the testbeam was carried out using only dedicated pedestal runs rather than using
noise spectra as in the final calibration scheme, described in section 8.1. Initially, pedestal runs
were taken infrequently, but after examining the early data we noticed that this was not sufficient
to fully calibrate for the effect of the large temperature variations in the T9 setup. We therefore
changed operating procedure to take a dedicated pedestal run before every physics run. For oper-
ations at J-PARC, we have added the ability to take interspersed pedestal data and measure noise
spectra during normal running, reducing the need for these dedicated runs. The more sophisticated
cooling system at J-PARC also reduces the need for very frequent calibration.

To improve the calibration of early data, we made use of the fact that the average temperature
of the detector was measured at the start of each run. The gain for each channel was then calculated
on a run-by-run basis, using the gains calculated from the most recent pedestal run, the temperature
measurements, and the following formula:

dG

G= Go+ﬁTdiff, (7.1)

where Gy is the gain of the preceding pedestal run, 7y is the temperature difference between the
current run and the preceding pedestal, and g—g is the rate of change of gain with temperature, found
to be -0.67x 10° /°C. This removed much of the charge scale variation between runs.

As shown in figure 17, some residual temperature dependence is seen in the detector response
after making the temperature-based correction, particularly in the period before regular pedestal
runs were taken. A fit to the temperature data corresponding to the final five days in figure 17
indicates that the average temperatures were rising, resulting in the slight decrease in the Landau
most probable values (MPVs) that is visible in the plot. To remove these variations, data from
cosmic ray muons (collected coincidentally with beam events, in DAQ integration periods not
associated with the beam) were processed from each run. The MPV of the charge distribution of
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Figure 17. Time series of the average detector temperature and Landau most probable value (MPV) for
muon hits in each run, after making a temperature-based gain correction. The dashed line represents the
point at which pedestal runs began to be taken regularly.

single hits across all channels was then found for this sample, and used to scale hit charges for
electron events in the run, equalizing the MIP scale for all data runs.

Monte Carlo samples for each individual testbeam run were produced using Geant4 [28]. A
representation of the Ds-ECal geometry was constructed, and a monochromatic beam of electrons
at each central beam momentum point was fired into the centre of the back-face of the Ds-ECal.
The photosensor response was simulated utilizing data from test bench measurements and tuned
using cosmic ray muon data, with special attention to simulating the temperature response of the
photosensor. Monte Carlo samples were generated with temperatures identical to the average local
temperature of each photosensor on a run-to-run basis. A similar cosmic ray muon sample was also
generated at this temperature, and the calculated MPV was used to scale the electron hit charges.

In order to remove any poorly understood noise or readout-chip threshold variation, a charge
threshold equivalent to 0.4 MIP units was implemented in the data and simulation. In addition,
during the final processing of the data, any hits further than 8¢ of the beam-time width from the
peak cluster time were discarded to remove unsimulated cosmic events. The Monte Carlo data sets
were then passed through the same calibration and reconstruction paths as data.

The procedure described successfully accounted for the average gain variation over the running
period due to temperature variation. It was not, however, possible to account for sensor-to-sensor
variations or temperature shifts within individual runs.

7.5 Testbeam performance

The testbeam data were used to calculate the performance of the Ds-ECal in the reconstruction of
incident particles, particularly electrons. The performance results for electrons will be shown here.

Figure 18 shows the measured energy resolution for electrons striking the centre of the ECal
face, as a function of energy. It can be seen that the data and Monte Carlo agree reasonably well,
but the data resolution is somewhat worse over the whole energy range, and particularly at lower
energies. This may be accounted for in part by the intrinsic momentum spread of the beam, which
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Figure 18. Measured energy resolution of the Ds-ECal for electromagnetic showers, for data and Monte
Carlo. The dashed lines show a fit to a stochastic resolution model.

was not modelled in the Monte Carlo. In addition, the temperature-based gain corrections used
for this data will only correct the mean photosensor gain across the Ds-ECal. A spread in MPPC
gains due to temperature differences across the ECal is expected, but cannot be corrected because
the temperatures of individual sensors could not be measured and were not modelled in the Monte
Carlo, which assumes the same temperature for all sensors. This is expected to lead to a larger
spread in measured particle energies.

Because of the limitations described above, the differences between data and Monte Carlo seen
in figure 18 represent a worst-case scenario for the calculation of systematic uncertainties. Work is
currently underway to replace this conservative estimate with one based on in-situ measurements.

Figure 19 shows the angular resolution of the Ds-ECal for normally incident electrons at a
range of energies. Excellent agreement is seen between data and Monte Carlo over the full range
of energies considered.

In summary, the T9 testbeam has provided useful information for the calculation of system-
atic uncertainties, and also gave an opportunity to test the detector and DAQ systems before they
were integrated into the ND280. The data collected were also invaluable in the development of
calibration and reconstruction code in advance of data from the full ND280 becoming available.

8 ECal commissioning and performance

8.1 Calibration

Precise calibration of ECal hits is vital for high-quality calorimetric performance. To this end, a set
of procedures has been developed to calibrate out all significant instrumental effects, with the goal
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Figure 19. Angular resolution for electrons at normal incidence to the detector, in data and Monte Carlo, as
a function of energy.

of obtaining the energy deposited in the scintillator giving rise to the hit, and the precise time at
which the energy was deposited. The calibration can be separated into two main categories which
are described below: energy calibration and timing calibration.

Energy calibration can be logically split into three steps — going backwards down the readout
chain from the ADC value registered by the electronics to the anode charge from the MPPC, from
this to the number of photons incident on the MPPC face, and from this to the energy deposit in the
scintillator.

The first step involves subtracting the electronics pedestal from the ADC counts. This pedestal
is the ADC value registered in the absence of any physics signal, and is different for each channel
and readout cycle. Dedicated runs are taken once a week during beam down-times to measure
the pedestals separately for each cycle, and a per-channel average over cycles is calculated every
three hours from noise spectra recorded by the DAQ in normal running. The diurnal variation
in pedestals, due to temperature changes at the electronics, is up to a few ADC counts, so fine-
granularity corrections are important.

The next step is to convert the pedestal-subtracted ADC into an anode charge. The electronics
response is not perfectly linear, and the calibration must also incorporate the transition from high
gain to low gain ADC channels. Both the high gain and low gain response are mapped using the
TFB’s ability to inject a known charge onto each channel in turn. These charge injection curves
are parametrized for both high and low gain channels using two cubic polynomials joined with a
sigmoid function to smoothly transition between them. The parametrized charge injection curves
also allow us to calibrate the low gain channel response to the high gain channel. The switchover
between the two channels is made at approximately 460 ADC counts in the high gain channel,
which typically corresponds to about 21 PEU. An example of the charge injection curves is shown
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Figure 20. High and low gain ADC response of a typical Trip-T channel. Charge is injected using an
onboard capacitor controlled by a Digital-to-Analogue Converter (DAC). The injected charge is calculated

from the DAC setting. For comparison, a typical MIP deposits of order 107 electrons or 1.6 x 10° fC of
charge.

in figure 20. A typical MIP deposits of order 107 electrons or 1.6 x 103 fC of charge, i.e. in
the first bin on the plot. More information about the charge injection calibration is available in
reference [29]. The parameters for this calibration are rather stable over time, so are only updated
around once per running period.

To convert the calculated anode charge to an estimate for the number of photons incident on
the MPPC, we first convert the charge into a number of PEU, by dividing by the gain of the MPPC.
The gains for each channel are calculated for every three hours of data, using the same noise spec-
tra as the pedestal drift, and fitting the position of the first non-pedestal peak in the noise spectrum
which is due to a single pixel firing in the device. Again, diurnal temperature variations have non-
negligible effects on the gain, so this granularity is required. We then need to convert this number of

pixels to a number of photons. For low light levels, this conversion can be approximated by dividing
by the PDE of the MPPC; however, it is complicated by saturation effects (the MPPC has a finite
number of pixels and therefore a limited dynamic range), and also by after-pulsing and crosstalk,
which cause the effective PDE to be larger than the true value.” The resulting response function
cannot easily be calculated analytically, and is therefore modelled on testbench measurements. A
single response function is used for every channel, but the parameters are in turn functions of the de-
vice gain, so that changes in PDE and other parameters with overvoltage can be taken into account.
Next, we need to convert the number of incident photons to an energy deposit. This needs
to be done for each channel, as there will be some non-uniformity due to, for example, the differ-

2 A detected photon has approximately a 10% probability of initiating a secondary avalanche; therefore, the number

of avalanches is in general higher than the number of detected photons
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Figure 21. The effect of the attenuation and uniformity corrections on the hit charge distributions for
through-going cosmic muons in the six modules of the barrel-ECal, shown by the six curves in each plot.
The left side shows the distributions with the pedestal and gain corrected; the right side adds corrections
for attenuation and differences caused by non-uniformity of scintillator bars and WLS fibres. Distributions
shown here are summed within a module, but the corrections are applied on a per channel basis. The slight
variation between modules is typical and insignificant.

ences between channels in the optical coupling between the fibre and the MPPC. The correction
is done using empirical data, taking a sample of cosmic muon tracks passing through the ECal,
performing all other calibrations, including attenuation in the fibre (described below), and track
path-length through the scintillator bar. The corrected hit size distribution for each channel is fitted
with a Landau distribution convolved with a Gaussian smearing. The effect of the attenuation and
uniformity corrections is shown in figure 21; the distributions on the right side are used for the
Landau-Gaussian fit. This is used to calculate the expected hit size for a MIP-size energy deposit
at a fixed (1 m) distance from the sensor; the result is used as a divisor to equalize the sizes of
hits between bars. The signal produced by this “ideal MIP” varies between modules and scintil-
lator bar orientations, but to give a sense of scale, a muon passing approximately perpendicularly
through the centre of the Ds-ECal typically leads to approximately 19 pixel avalanches at each
sensor, corresponding to approximately 17 detected photons.

It is also necessary to correct for the attenuation of photons in the WLS fibres, which is signif-
icant over the length of the ECal bars. This calibration is done after the reconstruction has matched
tracks between the two views of the ECal, so that the component of the hit position along the length
of the scintillator bar can be estimated. The attenuation profile is modelled as a sum of two expo-
nential functions, with an additional correction for the mirroring of the single-ended fibres. This
correction is stable over time, and is calculated separately for each orientation of bar in each mod-
ule using cosmic muon tracks. Figure 22 shows the time stability of the energy calibration over one
period of beam running.

The timing calibration also involves several distinct steps. Each hit is time-stamped using the
TFB clock, based on the time at which the channel’s discriminator was triggered. The discriminator
trigger is nominally set at a level of 3.5 PE. The TFB clocks lag the global detector clock from
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Figure 23. The TFB offset before correction for all channels on one RMM as a function of time for a period
of beam running. Each line shows one TFB.

which they are synchronized, due to delays in the cabling and electronics used to distribute the
clock signals. This effect will be different for each TFB depending on the cable lengths. The
differences between TFBs within the ECal are calculated by considering cosmic muons that leave
hits in channels corresponding to different TFBs, and correcting the hit times for fibre delay and
the transit time of the muon. Synchronizing the ECal with the rest of the detector is achieved using
a similar method. Figure 23 shows the offset for the TFBs on one RMM over a period of runs.

A ‘timewalk’ correction is also applied to the hit times. The decay that causes the WLS
fluors to radiate occurs with a half life of a few nanoseconds, leading to the photons arriving at the
MPPC face over a finite time period. The analogue electronics also have a finite rise time; both of
these effects result in a delay between the idealized propagation of the signal and it crossing the
discriminator threshold. These delays depend on the total hit charge and tend to a small constant
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Figure 24. The distributions of mean hit time values for cosmic muons for each channel of the tracker-ECal
(corresponding to 334 TFBs) before timing calibration (blue dashed line) and after timing calibration (red
solid line).

offset for large hits. The optical component of the timewalk is a stochastic process and affects
the timing resolution, but the average effect can be removed with an analytic function based on an
exponential photon arrival time distribution, using the known decay time of the relevant state in the
WLS fibre. Finally, the travel time for photons in the WLS fibre must be calibrated. This is done
after the reconstruction has matched hits between views, so that the light travel distance is known.

Figure 24 shows a comparison between the mean hit time values of each TFB channel during
cosmic muon triggers before and after corrections. The distribution of mean hit time values narrows
by a factor of two in the RMS, and approaches the limit set by the trigger logic. The central value
corresponds to the time delay between a cosmic muon being observed and the corresponding trigger
being issued by the master clock. The ‘ideal case’ resolution for this delay is approximately 4 ns
RMS, but it is dominated by the 10ns granularity of MCM clock and the fluor decay time, both
of which are non-Gaussian. Resolution on the time between two hits from a single muon is rather
better, and the time resolution on the entire reconstructed ECal track is better still. The dominant
uncertainty comes from the fluor, so each hit provides a largely-independent estimate. For a typical
track or shower reconstructed in the ECal, the time resolution is approximately 1 ns or less, which
is sufficient for direction discrimination when used in combination with information from other
subdetectors.
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from the central region to the exterior of the detector.

8.2 Hit efficiency

The hit efficiency for the ECal can be determined by looking at a sample of through-going cosmic
muons; if the scintillator bars in layer n + 1 and layer n — 1 are hit, the cosmic ray should have
passed through a scintillator bar in layer n. The sample of cosmic rays used for this measurement
ensures that the cosmic rays are isolated from other activity in the ECal, resulting in an accurate
measure of the layer-by-layer efficiency. The hit efficiencies by layer are shown in figure 25. The
average layer efficiency in the Ds-ECal is 98.1% and the average layer efficiency in the barrel-ECal
for double-ended bars is 98.8% and for single-ended bars is 97.0%. The lower efficiency in the
single-ended bars is due to the reduced light collection from only one MPPC.

8.3 Time stability and beam position

The Ds-ECal was in operation at the ND280 site since November 2009, and the barrel-ECal since
November 2010. Over that time period, the operation of the ECal has been stable. The stability
of the operation can be observed from the interactions measured while the beam is on. A low-
level selection requiring only the reconstruction of an energy cluster produces a sample of events
occurring in the ECal. Note that this selection does not correspond to a physics selection, but
simply allows for an accounting of activity in the ECal while the beam is on. Figure 26 shows the
number of interactions in the ECal as a function of time, normalized to the number of protons on
target (POT). The rate is steady over the run periods.

Since the ND280 detector operates off axis, the number of events as a function of spatial
position is expected to be greater near to the axis of the beam and lesser away from the axis of the
beam. The position of the beam centre in the coordinates of the ND280 is approximately (+3200,
-9400) mm, below the lower right quadrant of figure 27, and as shown in the figure, the number of
interactions near the beam is significantly greater than away from the beam. The beam spread is
approximately 4.5 m as measured by the INGRID on-axis detector, and depends on neutrino energy.
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The position of reconstructed ECal objects in the ND280 XY plane
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Figure 27. The charge weighted position of interactions reconstructed in the ECal. The position of the
centre of the beam is to the lower right, and as a result, more events occur in the bottom right of the ECal
than the top left. Events that are recorded in the centre of each module are through-going MIPs that leave
approximately the same charge in each layer, and therefore have a charge weighted position in the centre.
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8.4 Particle identification

One of the goals of the ECal is to provide discrimination between electrons and muons in the region
of phase space that is not covered by the particle identification from the tracker. The first method for
particle identification constructed for the ECal was intended to maximize the separation of track-
like (muon-like) and shower-like (electron-like) interactions. The discriminator is constructed as a
neural network [30] using low level quantities from the reconstruction.

To test the discriminator, samples of muons and electrons are selected from the data. For the
Ds-ECal (barrel-ECal), the muons selected are ‘through-going’ muons that have one track compo-
nent in each of the three TPC modules and the Ds-ECal (barrel-ECal). Additionally, the track must
appear ‘muon-like’ to the TPC [12]. The electron sample is produced by looking at photon pair
production in the FGD [13], requiring tracks with opposite charge, at least one TPC component
in the track, and that the TPC component appears ‘electron-like’. Electrons or positrons that enter
the tracker-ECal are added to the sample. In these control samples, the median muon momentum
is 1.7 GeV/c, with muon momenta ranging from 300 MeV/c to 10 GeV/c; the median electron or
positron momentum is 165 MeV/c. These energies are typical of events seen from the neutrino
beam. Additionally, the discriminator is insensitive to the muon momentum provided that it is
greater than approximately 300 MeV/c; that is, provided that the muon is MIP-like.

The electron and muon samples are shown with the calculated discriminator in figures 28
and 29 for the Ds-ECal and barrel-ECal, respectively. For both, there is good agreement between
the data and the Monte Carlo, and good separation between the muon and electron samples; how-
ever, the separation is somewhat better in the Ds-ECal than in the barrel-ECal due to the different
p — 0 distributions seen in each. The barrel-ECal , because of its position within the ND280, sees,
on average, lower momentum particles with a higher angle of incidence than the Ds-ECal. This
combination of properties presents greater challenges for reconstruction and particle identification.
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9 Summary

The electromagnetic calorimeter (ECal) for the T2K ND280 was designed and constructed in the
U.K. during the period 2007-2010. The first module, the Ds-ECal, was tested in a charged-particle
beam at CERN in spring 2009 and installed in the ND280 at J-PARC in time for the first T2K
neutrino beam in January 2010. The testbeam data validated the design and operation of the system
and have been used to characterize its response. The remaining 12 ECal modules were constructed
in 2009-2010 and installed at J-PARC in time for the second neutrino data-taking period of T2K
starting in fall 2010. The ECal has been operating stably and survived the great earthquake of
March 2011 without any damage. The ECal has met its goals in terms of energy resolution and
particle identification and is an integral part of the ND280. ECal data are used in the ND280
physics analyses and this is becoming more important as larger data samples are collected and
more sophisticated analyses are being developed.
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