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Abstract. In this review we collate recent results for the
statistical scaling properties of fluctuations in the solar wind
with a view to synthesizing two descriptions: that of evolv-
ing MHD turbulence and that of a scaling signature of coro-
nal origin that passively propagates with the solar wind. The
scenario that emerges is that of coexistent signatures which
map onto the well known “two component” picture of solar
wind magnetic fluctuations. This highlights the need to con-
sider quantities which track Alfv́enic fluctuations, and energy
and momentum flux densities to obtain a complete descrip-
tion of solar wind fluctuations.

1 Introduction

The solar wind provides a unique laboratory for the study of
Magnetohydrodynamic (MHD) turbulence with a magnetic
Reynolds number estimated to exceed 105 (Matthaeus et al.,
2005; see alsoGoldstein and Roberts, 1999). Solar wind
monitors such as WIND and ACE provide in situ observa-
tions of bulk plasma parameters at∼1 AU in the ecliptic,
spanning time intervals from minutes to years. These are
complemented by observations over a range of heliographic
distances and latitudes, most notably from ULYSSES which
has provided several polar passes. These observations sug-
gest turbulence via the statistical properties of their fluctua-
tions (Tu and Marsch; Goldstein, 1995; 2001); a clear scal-
ing range in the magnetic field power spectrum extends from
tens of seconds to a few hours with an exponent evolving
toward the Kolmogorov (Kolmogorov, 1941, hereafter K-
41) value of∼−5/3; non-Gaussian probability densities of
fluctuations (Sorriso-Valvo et al., 1999; Hnat et al., 2002);
and intermittency (that is, multifractality seen in the struc-

Correspondence to:S. C. Chapman
(s.c.chapman@warwick.ac.uk)

ture functions). Alfv́enic fluctuations dominate the observed
power in the solar wind magnetic field with propagation prin-
cipally away from the sun implying solar origin (e.g.Hor-
bury et al., 2005). The Kolmogorov- like value of the power
spectral exponent is therefore somewhat unexpected (e.g.Tu
and Marsch, 1995; Goldstein, 2001) from the point of view
of incompressible magnetohydrodynamic turbulence; and in-
deed, intervals can be found where different magnetic field
and velocity components simultaneously exhibit scaling con-
sistent with−5/3 and −3/2 spectral exponent (e.g.Vel-
tri, 1999). Intermittency modifies the power spectral ex-
ponent and this has been suggested to account for the ob-
served∼−5/3 power spectra in terms of some incompress-
ible MHD phenomenologies (Carbone et al., 1993), also this
scaling can simply be difficult to distinguish in low order mo-
ments (Carbone et al., 1995).

Alfv énic fluctuations, when isolated by the use of El-
sasser variables (e.g.Horbury et al., 2005) and decomposed
by considering different average magnetic field orientations
that occur at different times, are found to be multicomponent
(Matthaeus et al., 1990) and coupled (Milano et al., 2004).
This observationally inspired picture is then of an essentially
incompressible, multicomponent Alfvénic turbulence with a
significant population of Alfv́enic fluctuations that evolve to
have wavevectors almost perpendicular to the background
magnetic field, leading to a ’fluid- like’ phenomenology, and
the −5/3 power spectral slope. Critical to quantifying the
scaling properties of fluctuations projected w.r.t. some back-
ground magnetic field direction is how the background field
is extracted from the data. If the turbulence is sufficiently
weak, one might envisage that a macroscopic average (over
a typical inertial range upper timescale of an hour, say) is ap-
propriate; however for strong turbulence the relevant back-
ground field becomes a function of scale and thus may enter
into the resultant scaling exponents. Here we review a recent
example (Chapman and Hnat, 2007) which includes the scale
dependent local field.
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Solar wind density fluctuations also show nontrivial scal-
ing (Tu and Marsch, 1995 and more recentlyHnat et al.,
2003), remote observations suggest that these are not sim-
ply proportional to that in magnetic field (Spangler et al.,
2004). A topical question is then whether the turbulence
is compressible (Hnat et al., 2005): this is important since
if it is the case, the evolution of fluctuations in the expand-
ing solar wind cannot be captured by models which describe
the observed Alfv́enic properties in terms of fluctuating coro-
nal fields that have advected passively in the expanding so-
lar wind (see e.g.Giacalone et al., 2006). The solar wind
does also carry with it the remnant signature of heating at
the corona. At frequencies below the inertial range, the so-
lar wind exhibits an energy containing range which shows
∼1/f scaling (Matthaeus and Goldstein, 1986). Many stud-
ies of coronal heating mechanisms are in terms of the scaling
properties of coronal structures (Schrijver et al., 1998; Tu et
al., 2005), heating rates (Klimchuk and Porter, 1995) and dif-
fusion via random walks of magnetic field lines (Giacalone
et al., 2006), all of which suggest self-similar processes. So-
lar flares show scale invariance in their energy release statis-
tics over several orders of magnitude (Aschwanden, 2000;
Schwanden and Parnell, 2002) which has been discussed in
terms of Self-Organized Criticality (SOC, see e.g.Lu and
Hamilton, 1991; Hughes et al., 2003; Dendy et al., 2007).
There is also recent evidence, that we review here, in non-
cascade quantities, such as magnetic energy density, of a sig-
nature within the inertial range that shows scaling that cor-
relates with the level of magnetic complexity in the corona
(Hnat et al., 2007; Kiyani et al., 2007).

The purpose of this review is to bring together two quan-
titative features of solar wind fluctuations seen on timescales
that are within the observed inertial range of turbulence. The
first of these is anisotropy, and we discuss prospects for quan-
titative comparison between the predictions of turbulence
theories, and the observed scaling exponents. The second
of these is a signature of scaling at solar maximum that is
self- affine (fractal) and not multifractal to good precision;
the suggestion being that this is of coronal origin and is not
a signature of turbulence per- se. We will begin with a simi-
larity approach to the intermittency free scaling properties of
turbulence. This provides a framework, distinct from prob-
ing the intermittency of the flow, that distinguishes quanti-
tatively between turbulence phenomenologies. Importantly,
it also highlights that scaling encompasses a wider class of
behaviour than turbulence. In the case of the solar wind, this
points to the possibility that the observed anisotropic scaling
may not be solely the result of in situ turbulence, but may
instead be the result of a superposition of signatures that are
turbulent, and that are scaling but of direct coronal origin.

Since the above scenarios all predict scaling in the statis-
tics of fluctuations, quantifying this scaling is central to our
understanding of the solar wind. Quantifying these fluctua-
tions is also needed to model the transport of solar energetic
particles and galactic cosmic rays within the heliosphere.

The measurement of scaling exponents with sufficient preci-
sion to distinguish scenarios for coronal heating and the pre-
dictions of various MHD turbulence theories presents signif-
icant challenges where datasets are finite. We do not present
an exhaustive review of techniques here, rather we highlight
some recent developments that have yielded new insights
into the solar wind.

2 Scaling exponents, MHD turbulence models and sim-
ilarity analysis

Theories of hydrodynamic turbulence aim to predict the sta-
tistical properties of fluctuations in components of velocity
by considering ensemble averages. Fluctuations in the ve-
locity field can be characterized by the difference in compo-
nents, or in the magnitude,δv=v(r+L)−v(r) at two points
separated by distanceL. The dependence ofδv uponL is de-
termined in a statistical sense through the moments<δvp>,
where<...> denotes an ensemble average (practically speak-
ing, assuming ergodicity an average overr). Statistical the-
ories of turbulence based on details of the phenomenology
then aim to predict scaling of the form<δv

p
L>∼Lζ(p) with

exponentsζ(p).
It is instructive to organize these ideas in terms of univer-

sality (see e.g.Sethna et al., 2001) in as far as it can be identi-
fied. We will not present an exhaustive discussion here in the
context of hydrodynamic turbulence (see e.g.Frisch, 1995
for a summary) but rather, provide a context within which to
order the various results for MHD turbulence. We will ap-
ply similarity analysis (Barenblatt, 1996also known as the
Buckingham5 theoremBuckingham, 1914) to the problem
of MHD turbulence. The central idea of similarity analysis
is that if one has the relevant quantitiesQ1..N that describe a
given system, then the general solution of the system’s be-
haviour must be a function of the possible dimensionless
groups51..M(Q1..N ) which can be formed from theQ1..N .
The (unknown) functionF(51, 52, ..5M) is universal, de-
scribing all systems that depend on theQ1..N through the
51..M(Q1..N ) and the relationships between them. Thus this
method can lead to information about the solution of a class
of systems where the governing equations are unavailable. If
we haveN quantities expressed inR dimensions (i.e. mass,
length, time) then there areM=N−R dimensionless groups.
To identify these, we simply tabulate the relevant quantities,
theQ1..N .

We now use similarity analysis to obtain the turbulent en-
ergy spectrum. We insist that the system is in steady state
so that there is an average energy per unit wavenumber (or
per characteristic lengthscale) and an average rate of energy
input, which are constants. The relevant quantities are then
shown in Table 1.

The first three variables, that is, energy per wavenumber,
wavenumber and rate of energy input are the minimum that
we can consider and give the scaling behaviour of ideal in-
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compressible hydrodynamic turbulence in the inertial range.
We haveN=3 andR=2 so there is only one dimensionless
group:

51 =
E3(k)k5

ε2
0

(1)

and the universal solution is someF(51). The simplest as-
sumption is that51 is a constant,C, of order unity, so that
rearranging (1) gives:

E(k) = Cε
2/3
0 k−5/3 (2)

that is, we recover “Kolmogorov’s 5/3” law for hydrody-
namic turbulence with a single, universal scaling exponent
that is completely constrained by the similarity analysis.

To discuss incompressible MHD, we introduce an addi-
tional relevant quantity, the Alfv́en speedv0. With the above
quantities we now haveN=4 andR=2 which gives a second
dimensionless group:

52 =
v2

0

Ek
(3)

To proceed we now need some postulate to relate51 and52.
For turbulence, a simple assumption is that the51 and52
are related by some single scaling exponentα, that is, in the
absence of intermittency, so that51=5α

2 . This corresponds
to an energy spectrum of:

E(k) ∼ k−(5+α)/(3+α) (4)

with the anomalous scaling exponentα to be determined. Im-
portantly, the above analysis does not specify the nature of
the fluctuations, eddies or structures that mediate the cas-
cade (or even, its direction). Thus it captures the scaling
of any cascading quantity that carries ’mass normalized’ ki-
netic energy, that is, with physical dimension[L]

2
[T ]

−2.
The energy spectrumE(k) has dimension of (mass nor-
malized) kinetic energy per wavenumber, thus the above
also applies to processes that are anisotropic ink provided
that the Fourier transform is understood to be taken over
the relevant dimension.

The scaling exponentα is anomalous meaning that it is
no longer completely constrained by the similarity analy-
sis. Additional constraints introduced by the phenomenol-
ogy can determineα. These include anisotropy (a constraint
on the effective Euclidean dimension of thek space), and
for weak turbulence, the wave dispersion relation and con-
straints on allowed wave- wave interactions. It is thus open
as to whether MHD turbulence is in this sense universal.
Numerical and analytical studies of incompressible MHD
then provide different predictions forα, depending upon the
strength of the turbulence, the strength of the background
magnetic field, and anisotropy. Iroshnikov and Kraichnan’s
(Iroshnikov, 1964; Kraichnan, 1965; hereafter WI) origi-
nal isotropic, weak (random phase) phenomenology leads
to a ∼k−3/2 spectrum. Introducing anisotropy in the weak

Table 1. Buckingham5 theorem applied to homogeneous turbu-
lence (first 3 rows); if there is also a relevant characteristic speed
this adds an extra quantity (row 4).

Quantity dimension description

E(k) [L]
3
[T ]

−2 (mass normalized) average energy
per unit wavenumber

ε0 [L]
2
[T ]

−3 rate of energy input
k [L]

−1 wavenumber
v0 [L][T ]

−1 characteristic speed

case leads to a∼k−2
⊥

spectrum for fluctuations perpendicular
to the background magnetic field (e.g.Galtier et al., 2000;
hereafter WA). In contrast, strong turbulence phenomenol-
ogy (hereafter SA seeGoldreich and Sridhar, 1997and ref-
erences therein) yields a∼k

−5/3
⊥

spectrum. This symmetric
case where the fluxes of oppositely directed Alfvén waves
are equal does not however strictly apply to the solar wind
(Goldreich and Sridhar, 1997), where the fluxes are observed
to be asymmetric. Recent numerical simulations (Müller and
Grappin, 2005), and analysis (Boldyrev, 2006hereafter SB)
obtain a∼k

−3/2
⊥

spectrum for the case of a strong local back-
ground magnetic field. This−3/2 exponent, combined with
the anisotropy of the fluctuations, is in contradiction with WI
(either isotropic,−3/2 exponent or anisotropic,−2 expo-
nent) and SA (anisotropic,−5/3 exponent) phenomenolo-
gies. In summary, then, in the absence of intermittency, these
phenomenologies giveα=1 (WI), α⊥=0 (SA), α⊥=1 (SB)
andα⊥= − 1 (WA).

These models, although usually expressed in terms of the
energy spectrum, predict the intermittency free scaling expo-
nent that applies to all the moments of the differences, i.e.
for hydrodynamic turbulence, the<δv

p
L>∼Lαp.

Intermittency, when expressed as scale dependence of the
energy transfer rateεL, enters via the scaling properties of
the differences. Intermittency in the context of MHD tur-
bulence has been studied numerically (see e.g.Müller and
Biskamp, 2000alsoMerrifield et al., 2006, 2007) with ref-
erence to models such as that of She and Leveque (She and
Leveque, 1994; see alsoPolitano and Pouquet, 1995). Di-
mensional analysis, as we shall see next, provides an over-
all framework from which we can obtain intermittency free
exponents that are independent of this phenomenology. We
will phrase this discussion in terms of velocity differences,
however as above this dimensional analysis will apply to any
quantity that carries “mass normalized” kinetic energy, with
physical dimension[L]

2
[T ]

−2. Again, consider a cascade
(direction unspecified) in which fluctuationδv on length-
scaleL transfers kinetic energyδv2 on timescaleT ∼L/δv,
implying an energy transfer rateεL∼δv2/T ∼δv3/L. If the
statistics of the fluctuations in the energy transfer rate are
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independent ofL, its p moments will be<ε
p
L>∼ε

p

0 where
the constantε0 is the average rate of energy transfer. This
leads to the K-41 scaling<δv

p
L>∼Lp/3. For incompressible

MHD turbulence, we again consider an additional relevant
quantity which will introduce an additional factor here that
must be dimensionless (Barenblatt, 1996). To obtain an ex-
pression solely in terms of velocity differences we thus in-
troduce a characteristic speed (the Alfvén speed)v0 into the
problem, if instead we were considering magnetic field fluc-
tuations we could instead introduce the constant background
field strengthB0. This simply modifies the energy transfer
time to T ∼(L/δv)(v0/δv)α, leading to an energy transfer
rateεL∼δv(3+α)/L so that<δv

p
L>∼Lζ(p) and

ζ(p) =
p

(3 + α)
(5)

again, with anomalous scaling exponentα to be determined
from the phenomenology. This corresponds directly to the
intermittency free power spectrum above, since dimension-
ally, E(k)∼<δv2>/k giving E(k)∼k−(5+α)/(3+α).

Deviation from this single exponent (fractal) scaling, that
is, intermittency (e.g.Sornette, 2004), can now be introduced
through a lengthscale dependence of the fluctuations in en-
ergy transfer rate so that<ε

p
L>∼ε

p

0 (L/L0)
µ(p), whereL0 is

some characteristic lengthscale andµ(p) is the intermittency
correction. The scaling for the moments then becomes:

ζ(p) =
p

(3 + α)
+ µ

(
p

3 + α

)
(6)

That this scaling will apply to any cascading quantityεc can
be seen if we replaceδv by δε

1/2
c in the above, whereεc

has dimension[L]
2
[T ]

−2 or (mass normalized) energy, in
the sense that<δε

p
c >∼Lζ(2p). This scaling property is ob-

tained without referring to specific phenomenology, arising
solely from similarity analysis (Barenblatt, 1996). This does
not determine the functional form ofµ or the direction of
the cascade for which phenomenology, or governing equa-
tions, are needed. For K-41 hydrodynamic turbulence for
we have the “4/5” law<δv3

L>∼−4/5L (e.g.Frisch, 1995)
determined from the Navier- Stokes equations (for the equiv-
alent relation for isotropic MHD seePolitano and Pouquet,
1998). This follows since<δv3>/L is the energy transfer
rate.

The experimental study of the fundamentals of turbulence
then centres around measurement of theζ(p). A full de-
scription requires both the anomalous exponentα and the
(difficult to determine) intermittency correction, theµ(p).
However, if the system is in a homogeneous steady state, the
average energy transfer rate is uniform so that<εL>=ε0 and
µ(1)=0 so that for MHD flows, this simple dimensional ar-
gument implies that there is an “intermittency free” exponent
(e.g.Chapman and Hnat, 2007):

ζ(3 + α) = 1 (7)

which is independent of the intermittency of the flow. Since
the lower order moments are more precisely determined, this
offers the possibility to distinguishα=0 andα=1 for in- situ
observations of the solar wind and we give an example in
Sect. 5.

Finally, in an infinite domain, homogeneous system, these
exponents ideally make direct contact with the class of sta-
ble distributions (i.e. Gaussian, Lèvy, and log- Normal;Sor-
nette, 2004). Experimentally (or observationally) one finds
that the turbulent fluctuations are large but finite range, and
the Probability Density Function (PDF) of fluctuations is non
Gaussian, with tails that can be approximated by a stretched
exponential or by a power law with exponential truncation
(Sorriso-Valvo et al., 1999; Hnat et al., 2003). At least for
fractal (selfsimilar) scaling, the scaling exponents can quite
generally specify the PDF through, for example, nonlinear
Fokker – Planck equations (Hnat et al., 2003; Chapman et al.,
2005; Hnat et al., 2005).

3 Structure function analysis

We now consider time series from a single spacecraft so that
the ensemble averages will be over time rather than over
space, the spatial separation above being replaced by a time
intervalτ using the Taylor hypothesis (Taylor, 1938; see also
Matthaeus et al., 2005). Consistent with almost all experi-
mental studies of turbulence we consider generalized struc-
ture functions of a given quantityx:

Sp(τ ) =<| x(t + τ) − x(t) |
p>=<| y(t, τ ) |

p> (8)

on all available time intervalsτ where< ... > indicate en-
semble averaging overt . This statistical scaling withτ fol-
lows that of the modulus moments of the PDF ofy, P(y, τ ):

Sp(τ ) =
〈
|y|

p
〉

=

∫
∞

−∞

|y|
m P(y, τ )dy (9)

For the case considered here, where a single set of exponents
ζ(p) apply to both the positive and negative fluctuations, the
scaling propertySp∼τ ζ(p) is preserved under the modulus
operation, however the signed moments (as in the sign of
the 4/5 law) are not. The odd order moments vanish for a
symmetric PDF so that practically, for a finite sample and in
the presence of observational uncertainties, unless the PDF
is strongly asymmetric they can be poorly determined; hence
the modulus moments provide a more robust estimator of the
ζ(p).

A special case that we will test for here is statistical self-
similarity (fractality) which implies that any PDF at scaleτ

can be collapsed onto a unique single variable PDFPs :

P(y, τ ) = τ−HPs(τ
−H y) , (10)

whereH is the Hurst exponent. Equation (10) implies that
the incrementsy are self-affine i.e. they obey the statistical
scaling equality
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Fig. 1. The effect of conditioning a Levy flight.F are theζ(p)

obtained from the raw time series, all other symbols refer to con-
ditioned time series for different values of the limitsy±=Aσ(τ)

whereA=[5−20]. The conditioned results yield a scaling expo-
nentH=0.544 which corresponds to a Lévy index ofµ=1.84 (after
Chapman et al., 2005).

y(bτ)
.
= bH y(τ), (11)

such that the structure functions will scale withτ as

Sp(τ ) = τHpSp
s (1) . (12)

The procedure for extracting the scaling exponents from the
data is in principle simply to plot the log structure functions
versuslog(τ ), the gradients yield the corresponding scaling
exponents, theζ(p) for the region whereSp∼τ ζ(p). How-
ever, finite experimental data sets include a small number of
extreme events which have poor representation statistically
and may obscure the scaling properties of the time series.
One method (Veltri 1999; Chapman et al., 2005, for other
approaches see e.g.Katul et al., 1994; Horbury and Balogh,
1997; Kiyani et al., 2006) for excluding these rare events is
to fix (large) upper limitsy± on the magnitude of fluctuations
used in computing the structure functions. Importantly, the
y± must possess the same dependence on the temporal scale
τ as the fluctuation PDF; generally this is not known a pri-
ori. A practical approach is simply to base the limit on the
standard deviationσ(τ); that is, we choose an upper limit of
y±=Aσ(τ) whereA=[5−20], this matches exactly the scal-
ing of the PDF for the special case of fractal scaling, since
the single exponent which rescalesσ also rescales the entire
PDF. We illustrate this in Fig. 1 with a manifestly self-similar
process, anα-stable Ĺevy process of indexµ=1.8 (µ=1/H

as in the notation here).
This match of they± scaling to that of the PDF as a whole

is only approximate for multifractal timeseries however prac-
tically it can still give good convergence (that is, exponents
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Fig. 2. ζ(p) Vs.p plots for(a) µ=1.0 symmetric Ĺevy process and
(b) p=0.6 p-model process, as outliers are successively removed
(afterKiyani et al., 2007).

that are insensitive to the choice ofA). We check for con-
vergence, i.e. that the scaling exponents are not strongly sen-
sitive to the value of the upper limit and are thus reliable.
Above 10σ(τ) this process eliminates less than∼1% of the
data considered here.

A procedure that does not impose a priori assumptions on
the y± was recently proposed byKiyani et al. (2006) (see
alsoKiyani et al., 2007). One systematically excludes a min-
imal percentage of the outlying eventsy from the integral in
(9) so that the statistics of the PDF tails become well sam-
pled. This is done by successively removing (one at a time)
the largest outliers from the set of differencesy(t, τ ) and re-
calculating the structure functions<| y(t, τ ) |

p> and the
corresponding exponents, theζ(p). Since the PDF ofy(t, τ )

may be asymmetric, outliers are removed successively from
both positive and negative tails. For a strongly non- Gaus-

www.nonlin-processes-geophys.net/15/445/2008/ Nonlin. Processes Geophys., 15, 445–455, 2008



450 S. C. Chapman et al.: Solar wind and solar cycle

0 1 2 3 4 5
0.5

1

1.5

2

2.5

Percentage of points removed

ζ(
2)

0 1 2 3 4 5
0.16

0.17

0.18

0.19

0.2

0.21

0.22

Percentage of points removed

ζ(
2)

Fig. 3. Exponent of the second momentζ(2) vs. the percentage of
points excluded for(a) the Lévy model of Fig. 2 and(b) p-model.

sian PDF one then should find that if the statistics of the
PDF tails are not well sampled, the determinedζ(p) will vary
quite strongly as we successively remove individual outliers
(in other words, an individualy data point has a large influ-
ence on the value ofζ(p)). On the other hand, if the PDF
is well sampled statistically, removing a single outlying data
point does not strongly influence the resulting value ofζ(p).
If and only if the PDF is well sampled in this sense for a
large range ofy that extends well into the tails of the distri-
bution then this value ofζ(p) will provide a good estimate of
the scaling behaviour of they. This method is also particu-
larly sensitive in distinguishing self-affine scaling from weak
multifractality. Both these points are illustrated in Figs. 2 and
3. In Fig. 2 we compare anα-stable Ĺevy process of index
µ=1.0 with a process that is manifestly multifractal, that is,
a p-model withp=0.6. The exponentsζ(p) have been re-
computed as outlying data points are successively removed,
and we can see that removing a small fraction,∼0.001% of
the data leads to a large change in the computedζ(p). A re-
liable estimate of the exponents from the data requires rapid
convergence to robust values; shown inKiyani et al. (2006)
to be a property of self-affine timeseries. We can see this be-
haviour in the Ĺevy model which quickly converges to linear

dependence ofζ(p) with p as expected. The multifractalp-
model approaches linearity more slowly and is roughly linear
after∼3% of the data is excluded.

We can most clearly see this behaviour if we plot the
value of one of the exponents from Fig. 2 versus the per-
centage of points removed. This is shown forζ(2) for the
Lévy process (upper panel) and thep-model (lower panel)
in Fig. 3. As we successively exclude outlying data points,
the self-affine Ĺevy process quickly reaches a constant value
for ζ(2)=2/µ=2.0 whereas for the multifractal, theζ(2) ex-
ponent shows a continuing secular drift. Importantly, suc-
cessively removing outlying data points does not convert the
multifractalp-model timeseries into a self-affine process. In
addition, a plot ofζ(p) versusp is not sufficient to distin-
guish self-affine from multifractal behaviour, one also needs
to examine the convergence properties of the exponents as in
Fig. 3.

4 The datasets

The WIND and ACE spacecraft spend extended intervals at
∼1 AU in the ecliptic and provide in-situ magnetic field ob-
servations of the solar wind over extended periods covering
all phases of the solar cycle. We focus on two studies here.
The first study uses 64 s averaged plasma parameters from
ACE for the interval 1 January 1998–31 December 2001, this
consists of∼1.6×106 samples and is dominated by slow so-
lar wind. The second uses WIND 60 seconds averaged MFI
data at the solar maximum year of 2000 and at the solar min-
imum year of 1996 and ACE 64 s averaged MFI data for
the year 2000, each consisting of∼4.5×105 points. All of
the above intervals show a∼−5/3 power law scaling inertial
range in the power spectra of|B| over several decades and
the timescales of fluctuations that we study here are within
this inertial range.

5 Components of velocity fluctuations

The scaling arguments above encompass the possible real-
izations of MHD turbulence, a subset of which predict dis-
tinct values of the intermittency free scaling exponentα. We
first verify that for the interval under study, there is a stable
region of Alfvénicity that corresponds to the inertial range.
This can be seen in Fig. 4 where we plot a measure of the
Alfv énicity, that is power spectral density of the difference
of forward (+) and backward (–) directed Elsasser variable
(see e.g.Horbury et al., 2005) for GSEx, y, z coordinates.
In the inertial range (and the range of timescalesτ that we
consider here) these ratios are all frequency (that is,τ ) inde-
pendent, giving strong fluctuations at timescales above a few
hours, the timescale for large scale coherent structures.

Anticipating anisotropic phenomenology, we will now
consider vector velocity fluctuations which we will decom-
pose w.r.t. the direction of the magnetic field. In the tur-
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Fig. 4. Aflvénicity of the solar wind interval studied here, defined as
the difference of the power spectrum densities of Elsasser variables
z− andz+. Positive values indicate dominant anti-Sunward waves.
Data set has been averaged on 1 h temporal scale.

bulent flow, the magnetic field also fluctuates, but we can
consider a local background value by constructing a run-
ning average of the vector magnetic field over the timescale
τ ′. For each interval over which we obtain a difference in
velocity δv=v(t+τ)−v(t) we also obtain a vector average
for the magnetic field direction̂b=B̄/ | B̄ | from a vec-
tor sum of all the observed vector values betweent−τ and
t+τ , B̄(t, τ )=B(t−τ)+...+B(t+τ). We choose this inter-
val as the minimum (Nyquist) necessary to capture wavelike
fluctuations. Velocity differencesδv which are Alfv́enic in
character will then have the property that the scalar product
δv · b̂ will vanish. This condition filters out all those fluctu-
ations which generate a velocity displacement perpendicular
to the local magnetic field, and is thus less restrictive than the
Elsasser (Horbury et al., 2005) variables which select prop-
agating pure Alfv́en waves, thus potentially encompassing
both weak and strong turbulence phenomenologies.

In Fig. 5 we compare the exponents ofδv‖=δv·b̂ with
those ofδv⊥=(δv·δv−(δv·b̂)2)1/2. These exponents were
obtained by conditioning atA=10 (that is, removing fluctu-
ations larger than at 10σ(τ)); we have verified that the ex-
ponents are rather weakly sensitive to conditioning provided
thatA is largeChapman and Hnat(2007). We can see that
both these quantities show a clear scaling range with scal-
ing exponentsζ(3) andζ(4) close to unity forδv‖ andδv⊥

respectively. Thus for a turbulent signal, in the sense of our
dimensional analysis above, we obtain, fromζ(3+α)=1, that
the intermittency free anomalous scaling exponents areα‖=0
andα⊥=1. From the figure we can also see that the scal-
ing in δv⊥ is multifractal, whereas that inδv‖ is closer to
self- affine. This permits at least two possibilities: (i) that all
of this scaling can be accounted for within turbulence phe-
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1.5

Moment p

ζ(
p)

Fig. 5. Scaling exponentsζ(p) versusp for the structure func-
tions of<|δv·b̂|

p>(�) and of the remaining signal (♦). Note that
ζ(3)≈1 andζ(4)≈1 respectively for these quantities.

nomenology or (ii) that one of the components,δv⊥ say, is
due to anisotropic turbulence (and consistent with SB phe-
nomenology) whereas the other,δv‖, arises from another pro-
cess. With this in mind, we next review recent evidence of
scaling that may have a non- local source, namely the corona.

6 Fractal signature of the coronal driver

To discern possible signatures that are of coronal origin,
we next consider intervals of data from different phases of
the solar cycle. We consider a quantity, magnetic field en-
ergy density, which is not anticipated to strongly reflect the
Alfv énic fluctuations in the data and is therefore more sen-
sitively dependent on processes other than Alfvénic turbu-
lence. The effect of iterative conditioning is shown in Fig. 6,
for magnetic field energy density solar maximum,B2

Max and
minimum,B2

Min , respectively. We plotζ(p) versusp as we
successively remove outlying data. In Fig. 6 we see that the
ζ(p) from the raw data move toward a constant level asp

increases. This saturation is especially pronounced during
solar maximum for the moments of orderp>2, reminiscent
of the behaviour found in Ĺevy flights (in both standard and
fractional cases, e.g. (Watkins et al., 2005), see also (Kiyani
et al., 2006)). Different symbols denote the fraction of out-
liers K ∈ [0%, 5%] successively excluded. A straight line
has been fitted to pass throughζ(p)=0−2 on both plots. We
see that atK=0.1% the exponents all approach this line for
solar maximum, consistent with a fractal time series. At min-
imum there is a departure from linearζ(p) behaviour which
is weak but just resolvable within the errors at higherp, even
whenK is relatively large. The rate of convergence can also
be seen to qualitatively differ and is more rapid for solar max-
imum.
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Fig. 6. Scaling exponentsζ(p) as functions of the orderp for
(a) solar maximum and(b) solar minimum. Different symbols
correspond to the fractionK of excluded points used in condi-
tioning: ◦ − K=0, �−K=0.005%,•−K=0.05%, �−K=0.5%,
4−K=1%, ∗−K=2%, ?−K=5%. Straight lines have been fitted
to pass throughζ(p)=0−2 (afterHnat et al., 2007).

In Fig. 7 we plotζ(2) versus the percentage of points re-
moved inB2 for the intervals at solar maximum and min-
imum. The ζ values for these plots were obtained from
an identified scaling range which spanned from∼5.2 min-
utes to∼2.7 hours (see e.g.Hnat et al., 2003). Compari-
son of these plots with Fig. 3 here strongly suggests that at
solar maximum, the magnetic energy density is self-affine;
we can clearly identify a plateau with aH=ζ(2)/2 value of
H'0.44±0.02 for WIND andH'0.45±0.01 for ACE. At
solar minimum, there is no clear plateau and the behaviour is
reminiscent of the multifractalp-model. We have thus dif-
ferentiated the distinct scaling behaviour at solar maximum
and solar minimum. Intriguingly, it is at solar maximum
that we see self-similar behaviour; whereas at solar minimum
the timeseries resembles a multifractal, reminiscent of inter-
mittent turbulence. Since the corona is complex and highly
structured at solar maximum, this is highly suggestive that
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Fig. 7. Exponent of the second momentζ(2) vs. the percentage of
points excluded for(a) WIND and ACE at solar maximum and(b)
WIND at solar minimum (afterKiyani et al., 2007).

this self-similar signature inB2 is related to coronal struc-
ture and dynamics rather than to local turbulence. We em-
phasize that this signature appears at temporal scales within
the inertial range of the turbulent solar wind.

From the above we would anticipate that the PDF of fluc-
tuations inB2 at solar maximum and minimum will not share
the same functional form. We verify this in Fig. 8 where we
compare the distributions of positive fluctuations inB2

Min and
B2

Max, at τ≈30 min, normalized to their respective standard
deviations (this log-log plot emphasizes the PDF tails). We
see that the PDFs do differ significantly for the entire range
of fluctuations. The fluctuations inB2 at solar maximum
are in many aspects similar to those seen in Lévy flights. A
power law tail is evident in the figure at solar maximum over
about 1− 1.5 decades in fluctuations ofB2. This is consis-
tent with, but not unique to, the limiting form of a Lévy PDF,
PL(|δx|→∞) ∝ |δx|

−(1+µ). The slope of the best fitted line
suggests aµ value of≈1.4. At solar minimum, the tails of
the PDF suggest an exponential roll-off.
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ACE at solar maximum (afterHnat et al., 2007).

The apparent self-similarity of fluctuations at solar maxi-
mum suggest that a good model for the timeseries may be a
(non- Gaussian) random fractal. In Fig. 9 we have overplot-
ted on the PDF of the data that of several candidate models.
A nonlinear Fokker-Planck (F-P) model (Hnat et al., 2003;
Chapman et al., 2005) has been developed to describe self-
similar fluctuations in this context, and is shown on the plot
as a dashed line. In the same figure we overplot as a dot-
ted line a Ĺevy PDF calculated from the characteristic func-
tion asPL(x)=

∫
dke−ikxe−γ |k|

µ
with µ=1.4 andγ=0.3.

We can see that both these functions adequately describe the
data.

7 Conclusions

In this review we have highlighted the distinction be-
tween two classes of departure of scaling from that of Kol-
mogorov’s 1941 theory of hydrodynamic turbulence, which
predicts for example the classical “−5/3” power law power
spectrum, and fractal scaling. The first of these, in our ter-
minology, is a single anomalous scaling exponentα which
we demonstrate arises straightforwardly from dimensional
analysis if we simply insist that there is additional relevant
physics in the problem. This exponentα is anomalous in the
sense that it is not determined by dimensional analysis alone;
different phenomenologies of MHD turbulence predict dis-
tinct values ofα (and introducing anisotropy leads to a dis-
tinct α‖ andα⊥). The second of these is due to intermittency
of the dissipation; that is, a scale dependence in the energy
transfer rate. The assumption of steady state on the average
then leads to an “intermittency free” scaling exponent which
depends onα but not on the intermittency correction. Since
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Fig. 9. Fitted curves over observed pdf forτ=32 minutes. Dashed
line indicates a Fokker-Planck solution and a dotted line corre-
sponds to a Ĺevy PDF withµ=1.4 andγ=0.3.

this is associated with a low order moment this offers a prac-
tical possibility to determineα experimentally.

This idea has been tested on solar wind velocity fluctua-
tions in the inertial range which have been decomposed into
components parallel to and perpendicular to the local back-
ground magnetic field direction (Chapman and Hnat, 2007).
The perpendicular velocity component then givesα⊥∼1 con-
sistent with recent predictions for anisotropic Alfvénic turbu-
lence in a background field. The parallel velocity component
givesα‖∼0 with roughly “K-41-like” scaling. This suggests
an important insight into the previously proposed multicom-
ponent nature of solar wind turbulence in that it suggests one
of two scenarios. One is that the two components both arise
from anisotropic compressible MHD turbulence in the pres-
ence of a background field, in which case this determina-
tion of their scaling properties points to potential develop-
ment of theories of MHD turbulence. The other is that the
turbulent solar wind is comprised of two weakly interact-
ing components- one (seen inδv⊥) that evolves in the high
Reynolds number flow, and the other (seen inδv‖) from the
process that generates the solar wind at the corona. With this
in mind, we also have highlighted here evidence for a scaling
signature of coronal origin within the inertial range of solar
wind turbulence (Kiyani et al., 2007). This relies on a novel
technique, that of iteratively conditioning the structure func-
tions (Kiyani et al., 2006), which is a particularly sensitive
discriminator of fractality, and where the time series is indeed
fractal, quantifies the scaling exponent to good precision. At
solar maximum, the timeseries of magnetic energy density
is found to be fractal, whereas there is a clearly discernable
departure from fractality at solar minimum. This difference
is reflected in the functional form of their PDFs and intrigu-
ingly, at solar maximum, the PDFs show power law tails.
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The appearance of fractal scaling tracks the increased com-
plexity of the magnetic field structure in the corona at solar
maximum. This signature of fractal scaling is found within
the inertial range of turbulence seen in the solar wind, that is,
coincident with the signature of approximately−5/3 power
law power spectra, rather than at the lower frequencies typ-
ically associated with the 1/f scaling seen in energy con-
taining scales. This result may inform understanding of the
interplay between the signature of coronal heating and solar
wind acceleration, propagated to 1 AU (Milovanov and Ze-
lenyi, 1998), and that of locally evolving turbulence. It high-
lights the need for careful quantitative determination of ex-
ponents both of quantities which track Alfvénic fluctuations,
and energy and momentum flux densities to obtain a com-
plete description of solar wind fluctuations. How this relates
to the solar cycle dependence of scaling seen in geomagnetic
indices (Hnat et al., 2005) is also an open question.
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