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a b s t r a c t

This paper studies the fault detection process (FDP) and fault correction process (FCP) with the
incorporation of testing effort function and imperfect debugging. In order to ensure high reliability, it
is essential for software to undergo a testing phase, during which faults can be detected and corrected by
debuggers. The testing resource allocation during this phase, which is usually depicted by the testing
effort function, considerably influences not only the fault detection rate but also the time to correct a
detected fault. In addition, testing is usually far from perfect such that new faults may be introduced.
In this paper, we first show how to incorporate testing effort function and fault introduction into FDP and
then develop FCP as delayed FDP with a correction effort. Various specific paired FDP and FCP models are
obtained based on different assumptions of fault introduction and correction effort. An illustrative
example is presented. The optimal release policy under different criteria is also discussed.

& 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

As software is becoming more and more widely used, both the
functionality and the correctness of software are of great concern.
In order to ensure high reliability, testing is usually conducted,
during which faults in software manifest by causing failures and
can be detected and removed by debuggers [9,4,15]. On the other
hand, it is almost impossible to make bug-free software even
though scientific and disciplined development practices are fol-
lowed. During the last 30 years, many software reliability growth
models (SRGMs) have been proposed as a tool to track the
reliability growth trend of the software testing process
[16,3,35,23]. SRGMs are very useful in the sense that they can
help management making critical decisions, such as testing
resource allocation and the determination of software release
time [19,13,12].

Testing consumes a large amount of resources, such as man-
power and CPU hours, which are usually not constantly allocated
during testing phase. The function that describes how testing
resources are distributed is usually referred to as testing effort
function (TEF) and it has been incorporated into software

reliability studies by some researchers [30,16,17]. Yamada et al.
[34] pointed out that the TEF could be described by a Weibull-type
distribution, which actually includes Exponential curve, Rayleigh
curve and Weibull curve. Weibull-type curve can well fit most data
and is often used in the field of software reliability modeling [7].
Logistic TEF is used instead of Weibull-type TEF by some research-
ers and appeared to be fairly accurate in describing the consump-
tion of testing effort [24,5,8].

Generally a detected fault cannot be corrected immediately and
the time required to correct a detected fault is usually called
debugging lag/delay. The idea of modeling the fault correction
process (FCP) was first proposed in Schneidewind [28], in which it
was modeled as a separate process following the fault detection
process (FDP) with a constant time lag. Based on this framework,
Xie et al. [33] and Wu et al. [31] proposed several paired FDP and
FCP models through incorporating other variants of debugging
delay. Later, Hwang and Pham [10] developed a generalized NHPP
model considering quasi-renewal time-delay fault removal.
Jia et al. [14] proposed a Markovian software reliability model
considering the fault correction process. However, the influence of
testing effort on debugging lag is not considered in these papers.
Intuitively, the time needed to correct a detected fault, or the
debugging lag, tends to be shorter if more testing effort is allocated
during the period between detection and correction of the fault.
Thus it is more reasonable to incorporate testing effort function
into the modeling framework on both FDP and FCP.
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Moreover, the debugging process is usually far from perfect and
actually many faults encountered by customers are those intro-
duced during debugging [36,29,6,26]. It is essential to incorporate
imperfect debugging into FDP and FCP models [32,2,18].

In this paper, a framework is proposed to develop testing
effort dependent FDP and FCP models with the consideration of
imperfect debugging. The rest of this paper is organized as
follows. In Section 2, a framework is proposed to obtain testing
effort dependent paired FDP and FCP models with the considera-
tion of fault introduction. In Section 3, several specific models
are derived based on different assumptions of fault introduction and
the correction effort. In Section 4, several commonly used testing
effort functions are reviewed. In Section 5, an illustrative example is
presented. The optimal release policy under different criteria is studied
in Section 6. Conclusions and discussions are presented in Section 7.

2. Testing effort dependent FDP and FCP models with fault
introduction

The expected total number of faults at time t is denoted by the
fault content rate function a(t), which is the sum of the number of
initial faults in the software a (¼a(0)) and the number of faults
introduced during time interval [0, t). We use w(t) to denote the
time dependent testing effort rate and W(t) to denote the
cumulative testing effort consumed till time t.

2.1. FDP model

Mean value function md(t) is used to depict the expected
number of faults detected till time t and λdðtÞ ¼ dmdðtÞ=dt is used
to denote the fault intensity function. The number of faults
detected during time interval [t, tþΔt) by current testing effort
expenditure is usually assumed to be proportional to the number
of remaining faults at time t [21]. Hence we have

λdðtÞ ¼
dmdðtÞ
dt

¼ bðtÞwðtÞðaðtÞ�mdðtÞÞ ð1Þ

where b(t) is the current fault detection rate per unit of testing
effort at time t, and w(t) is the current testing effort expenditure at
time t. Substituting the marginal condition md(0)¼0 into (1) gives

mdðtÞ ¼ aðtÞ�a exp �
Z t

0
bðxÞwðxÞdx

� �

�exp �
Z t

0
bðxÞwðxÞdx

� �Z t

0
a0ðxÞ expf

Z x

0
bðyÞwðyÞdy

�
dx

ð2Þ
where a0ðxÞ ¼ daðxÞ=dx. Various md(t) can be derived based on
different assumptions of a(t), b(t) and w(t). λdðtÞ can be obtained by
substituting (2) into the right hand side of (1) as

λdðtÞ ¼
dmdðtÞ
dt

¼ abðtÞwðtÞexp �
Z t

0
bðxÞwðxÞdx

� �
1þ

Z t

0

a0ðxÞ
a

�

exp
Z x

0
bðyÞwðyÞdy

� �
dx

�
ð3Þ

2.2. FCP model

Mean value function mr(t) is used to denote the expected
number of faults removed till time t and λrðtÞ ¼ dmrðtÞ=dt is used

to denote the fault removal intensity function. Since a removed
fault must first be detected, FCP can be modeled as a separate
process following FDP with a debugging delay. For convenience of
discussion, the testing effort consumed during the period from
detection of a fault to the final removal of the fault is termed as
correction effort of the fault. Generally correcting different faults
requires different amounts of testing resources, hence correction
effort can be modeled as a random variable with probability
density function (pdf) and the cumulative distribution function
(cdf) denoted as f(x) and F(x).

Thus it can be obtained that

mrðtÞ ¼
Z t

0
λdðyÞFðWðtÞ�WðyÞÞdy ð4Þ

where FðWðtÞ�WðyÞÞ is the probability that the fault detected at y
is corrected before t.

Different mr(t) can be derived based on md(t) and different f(x).
Furthermore, we have

λrðtÞ ¼
Z t

0
λdðyÞf ðWðtÞ�WðyÞÞwðtÞdy

¼
Z WnðtÞ

0
λdðW �1ðWðtÞ�xÞÞf ðxÞwðtÞdðW �1ðWðtÞ�xÞÞ

¼
Z WnðtÞ

0
λdðW �1ðWðtÞ�xÞÞf ðxÞwðtÞ dx

wðW �1ðWðtÞ�xÞÞ
ð5Þ

Different mr(t) can be derived based on md(t) and different f(x).

3. Some specific models

Fault detection rate function b(t) is usually assumed to be
constant and it is denoted as b here [21]. From (2) we have

mdðtÞ ¼ aðtÞ�a expf�bWnðtÞg�expf�bWnðtÞg
Z t

0
a0ðxÞ expfbWnðxÞgdx

ð6Þ
The total number of faults a(t) was usually assumed to be an expo-
nential or linear function of time in the literature. Yamada et al. [34]
proposed two FDP models with consideration of imperfect debugging,
by assuming that the expected total number of faults increases
exponentially and linearly with the testing time, respectively. An
S-shaped concave FDP model was proposed in Pham et al. [25]
assuming that the total number of faults is a linear function of the
testing time. In the following subsections various TEF dependent
FDP and FCP models are derived based on different assumptions
on a(t) and f(x).

3.1. Paired model 1

We assume that the total number of faults increases exponen-
tially with the total testing effort consumed and the correction
effort required is an exponential variable as

aðtÞ ¼ a expfαWnðtÞg; αZ0 ð7Þ

f ðxÞ ¼ c expf�cxg ð8Þ
In this case we have

mdðtÞ ¼
ab

bþα
ðexp αWnðtÞ� ��exp �bWnðtÞ� �Þ ð9Þ

mrðtÞ ¼
ab

ðbþαÞ2ðb expfαWnðtÞgþα expf�bWnðtÞgÞ� ab
ðbþαÞð1þbWnðtÞÞexpf�bWnðtÞg; c¼ b

a
ð1þα=bÞ

c expfαWnðtÞgþα expf� cWnðtÞg
cþα þ c expf�bWnðtÞg�b expf� cWnðtÞg

b� c

� 	
; cab

8><
>: ð10Þ
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Actually (9) can be obtained by combining (6) and (7). (10) can
be obtained by substituting (9) into (3), and (4). When Wn(t)¼t,
(9) is the same as the FDP model obtained in Yamada et al. [34] for
the case when the total number of faults is an exponential function
of testing time. When α¼0 and Wn(t)¼t, (9) and (10) are the same
as the paired model obtained in Wu et al. [31] for the case of
exponential debugging delay.

3.2. Paired model 2

We assume that the total number of faults increases exponen-
tially with the total testing effort consumed as given in (7) and the
correction effort required is a gamma variable as

f ðxÞ ¼ μ expf�μxgðμxÞc�1

ΓðcÞ ; c; m40 ð11Þ

where ΓðcÞ ¼ R1
0 expf�ygyc�1 dy is the Euler gamma function.

Similarly we have

mdðtÞ ¼
ab
bþα

ðexp αWnðtÞ� ��exp �bWnðtÞ� �Þ ð12Þ

mrðtÞ ¼
a expfαWnðtÞgΓðc;0;ðbþαÞWnðtÞÞ

1þ α
bð Þcþ 1

ΓðcÞ
�aΓðc;0;bWnðtÞÞ

1þ α
bð ÞΓðcÞ þaΓðcþ1;0;bWnðtÞÞ

1þ α
bð ÞcΓðcÞ Þ; μ¼ b

a expfαWnðtÞgΓðc;0;ðμþαÞWnðtÞÞ
1þ α

bð Þ 1þ α
μ


 �c
ΓðcÞ

�a expf�bWnðtÞgΓðc;0;ðμ�bÞWnðtÞÞ
1þ α

bð Þ 1� b
μ


 �c
ΓðcÞ

; μab

8>><
>>:

ð13Þ
where Γðε1; ε2; ε3Þ ¼

R ε3
ε2

e�yyε1 �1 dy is a generalized incomplete
gamma function. When α¼0 and Wn(t)¼t, (12) and (13) are the
same as the paired model obtained in Wu et al. [31] for the case of
gamma debugging delay.

3.3. Paired model 3

We assume that the total number of faults increases linearly
with the total testing effort consumed and the correction effort
required is an exponential variable as

aðtÞ ¼ aþsWnðtÞ; sZ0 ð14Þ

f ðxÞ ¼ c expf�cxg ð15Þ
In this case we have

mdðtÞ ¼ a� s
b

� 	
ð1�exp �bWnðtÞ� �ÞþsWnðtÞ ð16Þ

Actually (16) can be obtained by combining (6) and (14). (17) can
be obtained by substituting (16) into (3) and (4). When Wn (t)¼t, (16)
is the same as the FDP model obtained in Yamada et al. [34] for the
case when the total number of faults is a linear function of testing
time. When s¼0 and Wn(t)¼t, (16) and (17) are the same as the
paired model obtained in Wu et al. [31] for the case of exponential
debugging delay.

3.4. Paired model 4

We assume that the total number of faults increases linearly
with the total testing effort consumed as given in (14) and the
correction effort required is a gamma variable as given in (11).

Similarly we have

mdðtÞ ¼ a� s
b

� 	
ð1�exp �bWnðtÞ� �ÞþsWnðtÞ ð18Þ

mrðtÞ ¼

swðtÞ
bΓðcÞðbWnðtÞΓðc;0; bWnðtÞ�Γðcþ1;0;bWnðtÞÞþða� s=bÞ

cΓðcÞ Γðcþ1;0; bWnðtÞÞ; μ¼ b
s

μΓðcÞðμWnðtÞΓðc;0; μWnðtÞ�Γðcþ1;0; μWnðtÞÞ
þða� s=bÞ

ΓðcÞ Γðc;0; μWnðtÞÞ�ða� s=bÞexpf�bWnðtÞg
ΓðcÞð1�b=μÞc Γðc;0; ðμ�bÞWnðtÞÞ; cab

8>>>><
>>>>:

ð19Þ
when s¼0 and Wn(t)¼t, (18) and (19) are the same as the paired
model obtained in Wu et al. [31] for the case of gamma
debugging delay.

4. A summary of various testing effort functions

Testing effort functions that have been commonly used include
Constant, Exponential, Rayleigh, Weibull and Logistic curves.
Exponential curve and Rayleigh curve can be regarded as special
cases of Weibull curve. The details are shown below.

4.1. Constant TEF

We assume that w(t) is a constant. It can be expressed as

wðtÞ ¼w ð20Þ
Thus the cumulative testing effort W(t) can be obtained as

WðtÞ ¼wt ð21Þ
It can be seen that the total testing effort consumed tends to positive
infinity, when t approaches positive infinity. In the case that TEF is
not considered, it can be regarded as considering w(t)¼1.

4.2. Weibull TEF

Weibull TEF is very flexible and it can well fit most data that are
often used in the study of SRGM. The cumulative TEFW(t) is given by

WðtÞ ¼Nð1�expf�βtmgÞ ð22Þ
where N is the expected total amount of testing effort that is required
by software testing. β and m are the scale parameter and shape
parameter, respectively. It should also be noted that the cumulative
testing effort consumed is finite and tends to N when t approaches
positive infinity.

Differentiating (22) gives

wðtÞ ¼Nβmtm�1 expf�βtmg ð23Þ

The exponential TEF is a special case of Weibull TEF when m¼1.
Exponential curve is suitable to describe the testing environment
which has a monotonically declining testing effort rate.

The Rayleigh TEF is a special case of Weibull TEF when m¼2.
Rayleigh testing effort rate first increases to its peak, then decreases
with a decelerating speed to zero asymptotically without reaching
zero.

mrðtÞ ¼
a�2s

b


 �ð1�ð1þbWnðtÞÞexp �bWnðtÞ� �þsWnðtÞð1�exp �bWnðtÞ� �Þ; c¼ b

a� s
b


 �
1þb expf� cWnðtÞg� c expf�bWnðtÞg

c�b

� 	
þsWnðtÞ� s

cð1�exp

(
�cWnðtÞ gÞ; cab

8>><
>>: ð17Þ
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4.3. Logistic TEF

Logistic curve was first proposed in Parr [24] as an alternative
of Rayleigh curve. It exhibits similar behavior as Rayleigh curve,
except during the initial stage of the project. The logistic cumu-
lative TEF W(t) is given by

WðtÞ ¼ N
1þA expf�ηtg ð24Þ

where A is a constant parameter and η is the consumption rate of
testing effort expenditure. Similar to the Weibull case, the cumu-
lative testing effort consumed is finite and tends to N when t
approaches positive infinity.

Taking derivatives on both sides of (24) gives

wðtÞ ¼ NAη

exp ηt
2

� �þA exp � ηt
2

� �
 �2 ð25Þ

w(t) reaches its maximum value when t ¼ ln A=η.

5. Illustrative example

5.1. Dataset description

The dataset we use is from the System T1 data of the Rome Air
Development Center (RADC) [22]. Although this is quite an old
dataset, it is widely used and it contains both fault detection data
and fault correction data. Additionally, it contains information of
testing effort, which is characterized by computer time (CPU
hours) consumed in each week. Hence this familiar dataset is
used for illustration.

The cumulative numbers of detected faults and corrected faults
during the first 21 weeks are shown in Table 1. During the time
span, totally 300.1 CPU hours were consumed. Till the end of the
testing, 136 faults were detected and all of them were corrected.

5.2. Select the most suitable TEF for this dataset

Parameters in the different types of TEF are estimated by Least
Square Error (LSE). In order to select a TEF that best fits this

dataset, some criteria are used to compare the performances of
different TEFs.

(1) RMSE
The Root Mean Square Error (RMSE) is defined as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

∑
n

i ¼ 1
ðwðtiÞ�wiÞ2

s
ð26Þ

A smaller RMSE indicates a smaller fitting error and better
performance.

(2) Bias
The bias is defined as the sum of the deviation of the estimated
testing curve from the actual data, as shown below:

Bias¼ 1
n

∑
n

i ¼ 1
ðwðtiÞ�wiÞ ð27Þ

(3) Variance
The variance is defined as [8]

Variance¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

∑
n

i ¼ 1
ðwðtiÞ�wi�BiasÞ2

s
ð28Þ

(4) RMSPE
The Root Mean Square Prediction Error (RMSPE) is defined as [8]

RMSPE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarianceþBias2

p
ð29Þ

RMSPE is also a measure to depict how close the model predicts
the observation.

Estimated parameters and comparison results for different TEFs
are shown in Table 2. Fig. 1 is plotted for graphical illustration.

It can be seen that logistic TEF has the smallest RMSE, Variance,
and RMSPE and also has a smaller Bias than Weibull TEF. Fig. 1 also
shows that logistic TEF fits best. Thus logistic TEF is adopted for
further analysis.

5.3. Performance analysis

The paired model (9) and (10) is used for illustration. After
substituting the cumulative logistic testing effort function (24)
with the estimated parameters N¼321.482, η¼0.3826, and
A¼423.788 into (9) and (10), the paired model is applied to fit
against the real dataset. The LSE estimation of the parameters are
obtained as a¼100.97, b¼0.0094, α¼0.0021 and c¼0.0418.
According to the estimated parameters, there are about 100.97
faults at the beginning of testing. The total number of faults when t
approaches infinity is expected to be limt-1aðtÞ ¼ 198:01. Fig. 2 is
plotted for graphical illustration.

Table 1
The dataset – System T1.

Weeks Computer time
(CPU hours)

Cumulative number of
detected faults

Cumulative number of
corrected faults

1 4 2 1
2 4.3 2 2
3 2 2 2
4 0.6 3 3
5 2.3 4 4
6 1.6 6 4
7 1.8 7 5
8 14.7 16 7
9 25.1 29 13

10 4.5 31 17
11 9.5 42 18
12 8.5 44 32
13 29.5 55 37
14 22 69 56
15 39.5 87 75
16 26 99 85
17 25 111 97
18 31.4 126 117
19 30 132 129
20 12.8 135 131
21 5 136 136

Table 2
Estimated parameters and comparison results for different TEF.

TEF Estimated parameters RMSE Bias Variance RMSPE

Constant w¼14.29 12.11 �0.00048 12.11 12.11

Weibull N¼407.0830 7.86 1.2615 7.76 7.86
β¼2.064E�4
m¼2.923

Logistic N¼321.482 6.7828 �0.5778 6.7570 6.7818
η¼0.3826
A¼423.788
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6. Software release policies

Determination of the optimal release time is a critical decision
for software projects and has been studied in many papers
[1,11,20]. As cost and reliability requirements are of great concern,
they are often used to determine the time to stop the testing and
release the software [21,27].

6.1. Software release policy based on reliability criterion

Software reliability is defined as the probability that no failure
occurs during time interval (T, TþΔT] given that the software is
released at time T. Considering that software normally does not
change in operational phase, the reliability function is

RðΔT jTÞ ¼ expf�λdðTÞΔTg ð30Þ
If R1 is the reliability target and TLC is the length of the software life
cycle, the time when the reliability of the software reaches R1 can
be obtained as T1 ¼ inffλdðTÞr lnð1=R1Þ=ΔT : TA ½0; TLC �g.

6.2. Software release policy based on cost criterion

Besides the reliability requirement, we can also discuss the
optimal release time based on the total cost during the software
testing phase and the operational phase. With the incorporation of
FCP mr(t), the cost model can be expressed as

CðTÞ ¼ c1mrðTÞþc2ðmdðTLCÞ�mrðTÞÞþc3W
nðTÞ ð31Þ

where c1 is the cost of fixing a fault during the testing phase, c2 is
the cost of fixing a fault during the operational phase (c24c140),

c3 is the unit cost for testing effort consumed during testing. By
minimizing the cost model with respect to T, the optimal release
time Tc can be obtained.

Differentiating both sides of (31), we have

C0ðTÞ ¼ c3wðTÞ�ðc2�c1ÞλrðTÞ ð32Þ

Furthermore we have C 0ð0Þ ¼ c3wð0Þ40 Let z1rz2r…rzn
be all the solutions to λrðTÞ=wðTÞ ¼ c3=ðc2�c1Þ during (0, TLC). If
n¼2k (kZ0), Tc can be determined as Tc ¼ arg minT ¼ 0;z2 ;:::;z2kCðTÞ.
Otherwise n¼2kþ1 and Tc can be determined as Tc ¼ arg
minT ¼ 0;z2 ;:::;z2k ;TLC CðTÞ.

6.3. Software release policy based on mixed criterion

When both reliability requirements and the total cost are
considered, our goal is to determine the optimal release time Tn

which minimizes the total cost without compromising the relia-
bility requirements. Thus the problem can be formulated as

Minimize CðTÞ ¼ c1mrðTÞþc2ðmdðTLCÞ�mrðTÞÞþc3W
nðTÞ

Subject to RðΔT jTÞ ¼ exp½�λdðTÞΔT �ZR1

The time axis [T1, TLC) can be divided into four types of intervals
such that both R(ΔT|T) and C(T) increase on type 1 intervals, both R
(ΔT|T) and C(T) decrease on type 2 intervals, R(ΔT|T) increases
while C(T) decreases on type 3 intervals, and R(ΔT|T) decreases
while C(T) increases on type 4 intervals. The candidates for Tn

comprise of the minimum T in each type 1 interval that satisfies
R(ΔT|T)ZR1, the maximum T in each type 2 interval that satisfies R
(ΔT|T)ZR1, the end points of type 3 intervals which satisfy R(ΔT|T)

Fig. 2. The paired model fitted against the real dataset.
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ZR1, and the initial points of type 4 intervals which satisfy R(ΔT|T)
ZR1. Tn equals to the candidate which incurs the lowest cost.

6.4. Numerical examples for software release policy

For illustration, we consider the first paired model (9) and (10)
with parameters estimated as a¼100.97, b¼0.0094, α¼0.0021
and c¼0.0418 and logistic TEF with parameters estimated as
N¼321.482, η¼0.3826, and A¼423.788. We also assume TLC¼300,
c1 ¼ $300; c2 ¼ $2000; c3 ¼ $700;,ΔT¼10, and R1¼0.95.

From (9) we have

λdðTÞ ¼ bwðTÞ aα
bþα

exp αWnðTÞ� �þ ab
bþα

exp �bWnðTÞ� �� �

¼ 9033:4 expf0:0021WnðTÞgþ40439 expf�0:0094WnðTÞg
ðexpf0:1913Tgþ423:788 expf�0:1913TgÞ2

ð33Þ
It can be seen that λdðTÞ increases from on [0, 14.112] and decreases
on (14.112, 300). Solving λdðTÞ ¼ lnð1=R1Þ=ΔT ¼ 0:0051 gives
T1¼39.626. The reliability requirement is satisfied if the software
is released after 39.626 weeks of testing.

From (46) and (47) we have

CðTÞ ¼ c1mrðTÞþc2ðmdðTLCÞ�mrðTÞÞþc3W
nðTÞ

¼ 253590�1700mrðTÞþ700WnðTÞ ð34Þ

C0ðTÞ ¼ 700wðTÞ�1700λrðTÞ ð34Þ
In addition we have

λrðTÞ
wðTÞ ¼

aαbc
ðbþαÞðcþαÞðexp αWnðTÞ� ��exp �cWnðTÞ� �Þ
þab2cðexpf�cWnðTÞg�expf�bWnðTÞgÞ

ðbþαÞðb�cÞ
¼ 0:165 expf0:0021WnðTÞg�1:1659 expf�0:0418WnðTÞg
þ1:0009 expf�0:0094WnðTÞg ð35Þ

Solving λrðTÞ=wðTÞ ¼ 700=1700 gives T¼8.013 and 16.848. Thus
C(T) increases on [0, 8.013], decreases on (8.013, 16.848) and
increases on [16.848, 300]. The optimal release time which
minimizes the total cost is Tc¼16.848. The corresponding total
cost is CðTÞ ¼ $217820.

As both RðΔT jTÞ and C(T) increase on [T1, 300], the optimal
software release time Tn¼T1¼39.626. Fig. 3 is plotted for graphical
illustration.

7. Conclusions

This paper studies testing effort function dependent software
FDP and FCP with incorporation of imperfect debugging. Testing
resource is usually not constantly allocated during software testing
phase, which can largely influence the fault detection rate and the
time needed to correct the detected faults. For example, the
debugger may spend a week without doing any testing work
and work very hard in the following few days. In addition, it is
natural for debuggers to make mistakes and introduce new faults
during testing. The debuggers tend to introduce more faults if
more testing effort is consumed since the code has experienced
more changes. In order to capture the influences of testing
resource allocation and fault introduction on both FDP and FCP,
we first derive FDP incorporating testing effort function and the
fault introduction effect, and then obtain FCP as delayed FDP with
a correction effort. Various paired FDP and FCP models are
obtained based on different assumptions on fault introduction
and correction effort. It can be seen that our model is quite general
and flexible. Some simpler models are the special cases of our
models. An example is presented to illustrate the application of

the paired models. The optimal release policy under different
criteria is also studied.
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