
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/59055 

 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/59055


Low Computational SLAM for an Autonomous

Indoor Aerial Inspection Vehicle

by

Stefan Winkvist

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

WMG

November 2013



ACKNOWLEDGMENTS

Acknowledgments

This project was funded by both Sellafield Ltd and the Engineering and Physical

Sciences Research Council (EPSRC) through the former Warwick Innovative Man-

ufacturing Research Centre (WIMRC).

I want to thank:-

My supervisors Emma Rushforth and Ken Young for their excellent help and guid-

ance.

Sellafield Ltd, in particular James Moore, Stephen Hepworth, Paul Mort and Samuel

Abraham including Nick Mallinson from the WIMRC for doing their utmost to aid

and support me throughout the project.

The University of Warwick, the WMG and the Manufacturing Technology Centre

(MTC ) for allowing me to fly the UAV inside their buildings.

The undergraduate students of the Warwick Mobile Robotics: Search & Rescue pro-

ject 2010 – 2013 whom I’ve spent many enjoyable hours lending a helping hand while

repetitively subjecting them to the same bad jokes and terrible puns. In particu-

lar James Williams of the 2008 – 2009 team whom, during a demonstration of the

WMR robot at an exhibition hosted by Sellafield, asked if they were interested in

sponsoring a robotics Ph.D, effectively founding this project.

All my friends at Warwick who have all helped in some way, from offering a endless

stream of procrastination to picking up pieces of UAV that one time it “decided” to

hit a wall. In particular Mark Hollands and Simon Walker for volunteering to be

operators during flight testing.

Lastly, a special thank-you to my parents for supporting me throughout, for en-

during much whingeing and complaining during the writing of this thesis, and for

their help with proof-reading.

i



DECLARATIONS

Declarations

I hereby declare that:-

• This thesis and work is my own and that no part of this thesis has been

published or submitted for publication elsewhere.

• Where other sources have been used, they have been acknowledged.

ii



ABSTRACT

Abstract
The past decade has seen an increase in the capability of small scale Unmanned

Aerial Vehicle (UAV) systems, made possible through technological advancements

in battery, computing and sensor miniaturisation technology. This has opened a new

and rapidly growing branch of robotic research and has sparked the imagination of

industry leading to new UAV based services, from the inspection of power-lines to

remote police surveillance.

Miniaturisation of UAVs have also made them small enough to be practically flown

indoors. For example, the inspection of elevated areas in hazardous or damaged

structures where the use of conventional ground-based robots are unsuitable. Sel-

lafield Ltd, a nuclear reprocessing facility in the U.K. has many buildings that require

frequent safety inspections. UAV inspections eliminate the current risk to personnel

of radiation exposure and other hazards in tall structures where scaffolding or hoists

are required.

This project focused on the development of a UAV for the novel application of

semi-autonomously navigating and inspecting these structures without the need for

personnel to enter the building. Development exposed a significant gap in knowledge

concerning indoor localisation, specifically Simultaneous Localisation and Mapping

(SLAM) for use on-board UAVs. To lower the on-board processing requirements

of SLAM, other UAV research groups have employed techniques such as off-board

processing, reduced dimensionality or prior knowledge of the structure, techniques

not suitable to this application given the unknown nature of the structures and the

risk of radio-shadows.

In this thesis a novel localisation algorithm, which enables real-time and three-

dimensional SLAM running solely on-board a computationally constrained UAV in

heavily cluttered and unknown environments is proposed. The algorithm, based

on the Iterative Closest Point (ICP) method utilising approximate nearest neigh-

bour searches and point-cloud decimation to reduce the processing requirements has

successfully been tested in environments similar to that specified by Sellafield Ltd.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

One of the great challenges for nuclear facilities, be it for power generation, refining

or storage, is that at some point in time they need to be decommissioned and

dismantled. Modern facilities have been designed with this in mind, making the

process of dismantling both quicker and cost-effective in the long run. However,

early generations of plants built in the 1960’s or earlier generally didn’t follow this

practice, allowing plants to be designed, built and operational in a fraction of the

time and cost. Only now is this becoming a problem, as the older plants are nearing

the end of their service life and require decommissioning.

An example of which is the legacy plant at Sellafield located in the Lake District,

Cumbria (see Figure 1.1). Sellafield is the largest nuclear site in the United Kingdom,

built initially to produce plutonium for the UK military weapons programme in

1950s [1]. Sellafield has also housed a number of prototype reactors, one of which in

1957 accidentally overheated, caught fire and subsequently released large amounts

of radioactive material into the atmosphere[2].

In the late 1990s a newer reprocessing facility was built at the site, allowing decom-

missioning work to start on the older, disused legacy plant. Due to the complexity

of the legacy plant and the way in which it was constructed it is estimated to take

several decades to complete the decommission.
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Figure 1.1: The Sellafield Site in 2009[3]

1.1 Nuclear Decommissioning

The process of decommissioning a nuclear facility includes[4]:-

1. Characterisation: Gathering data about the building being demolished.

2. Decontamination: Removal of hazardous waste.

3. Demolition: Progressively demolishing the structure

4. Waste Storage: Separating high, medium and low level radioactive waste for

storage and allowing radioactivity to drop before “safe” disposal.

Firstly data needs to be gathered about the structural state of the building and its

surroundings, along with a detailed analysis of the location, quantity and condition

of any hazardous materials held within. Although classification is the first step of the
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process, it is also a continuous task throughout the decommissioning project as over

time the structure may decay or weaken, which for example may potentially lead

to hazardous materials leaking from containers. It is therefore imperative that this

information is kept up to date for the whole site, as situations may unexpectedly

arise where a building may require immediate remedial work, resulting in other

decommissioning projects to be temporarily put on hold.

Once data has been collected about the structure and its contents, a decontamin-

ation plan can be created. Depending on the level of radiation this may be done

manually by sending workers into the building in protective clothing, or where levels

are unsafe investigate other alternatives. However, this generally requires specialist

one-off robotic or mechatronic solutions. One such example was required for decon-

taminating the Caesium extraction plant, where a robotic solution was developed

(Figure 1.2) to decontaminate and dismantle the high-level radiation areas, allowing

safe access for personnel to enter and complete the demolition process [5].

Even though remote decommissioning is preferred, generally lowering the risks and

dose levels for the workers, using and developing these types of machines is a slow

and expensive process and usually not portable or transferable to other sites or

buildings.

The same problems also arise for classification, where it is primarily done by hand,

relying on the workforce to either enter the buildings in protective gear, or through

the use of cameras entered through drilled inspection holes. This method, although

suitable for smaller, easily accessible structures poses a challenging problem for the

larger structures, such as storage areas or chimneys, where the workforce has to rely

on gantries or walk ways to safely access elevated areas of the structures. However,

some of these structures have either not been fitted with the gantries when built, or

the integrity of the gantries over the years has become questionable. In these cases

additional hoists or scaffolding need to be installed. This is generally avoided as it

too will become contaminated and require to be discarded as low level radioactive

waste, further adding to the cost and complexity of the decommissioning effort. Not

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Caesium Plant Dismantling Machine[5]

to mention the ever present risks of working at height, highlighted by the unfortunate

incident where a worker was killed after falling from the upper section of one of the

pile chimneys[6].

To address the issues, of helping lowering the dose of exposure to the workers and

expediting the classification and decommissioning process, Sellafield Ltd has recently

been looking for ways to remotely inspect the more difficult to reach areas. One way

this has been attempted is through inviting businesses and universities to exhibitions

to help showcase present technology and to get fresh ideas for possible solutions.

Back in 2008, the Warwick Mobile Robotics (WMR) group were invited to attend

one of these exhibitions, both to demonstrate their search and rescue robot (Figure

1.3) and also to try to understand the needs and requirements for robotics in the

nuclear industry, more specifically, nuclear decommissioning. With the intention, of

a possible new direction for the WMR project in the years to come. What became

apparent was that there were already many competing commercial robotic platforms

available, many of which with developed radiation hardened bespoke sensor and
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Figure 1.3: The Warwick Mobile Robotics: Search & Rescue Robot

actuator solutions.

A number of similar robots were later used in the Fukushima incident in Japan

in 2011, although many failed to complete their mission of inspecting the reactor

buildings. Common problems encountered were attributed to, for example lack of

trained personnel to operate the vehicle due to the infrequent nature of these types of

incidents, and umbilical power and data cables either breaking or snagging affecting

the function of the robots requiring these [7].

The most successful robots were the military developed PackBOT and TALON,

which entered the reactor building and successfully returned images and data of its

interiors. Both robots however, were limited to observing from the ground floor, as

there was hesitation allowing them to ascend or descend stairs [7].

During a discussion with the director of decommissioning at Sellafield it was pointed

out, that despite all the commercial robots available there is a significant limitation

to their use. They are all ground based and only able to inspect items near the

5



CHAPTER 1. INTRODUCTION

bottom of a structure, with no suitable solutions available to remotely inspect the

internal details of taller structures. It is for this reason that this project was commis-

sioned: to research and develop a novel robotic system which is capable of remotely

inspecting these elevated areas.

1.2 Structure of the Thesis

As this project follows the conception and development of a complex system, the

structure of this thesis is laid out to follow a systems V-Diagram approach to ensure

a clear and easy to follow thought process behind all the vital system components

shown in figure 1.4. The following chapter (Chapter 2) discusses the capability

and requirements as given by Sellafield, which forms the foundation of the decision

making behind the project and specifies the end goal.

Requirements

Capture

Review of the

State of the Art

Architectural

Design

Sub-System

Design

Design

Phase

Sub-System

Testing

Flight

Testing

Conclusions

Figure 1.4: Systems V-Diagram

Once the requirements are understood it is important to review the current state-of-

the-art. This is primarily done through a literature review to check if the requested

system is achievable with current technology and whether a solution has already been

developed, potentially for a different application. This forms Chapter 3 “Review of

the State of the Art”. Chapter 4 “Architectural Design” takes the knowledge acquired

from the literature review and specifies how the system, at a high level, should be
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constructed. It also highlights the areas where the current state-of-the-art is lacking

and needs to be developed further.

Chapter 5 “Sub-System Design” in detail explains how each of the chosen and de-

veloped systems function and any modifications made. Later moving back up the V-

Diagram with verification and testing, firstly through Sub-System Testing in Chapter

6 where the key individual systems are tested. Later through whole system testing,

in this case Flight Testing in Chapter 7 where the system is tested against the listed

requirements.
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Chapter 2

Requirements Capture

One of the most important steps in designing a system is knowing specifically what

it has to be able to do, so that it can be both designed and tested against the same

requirements. This chapter lists and discusses the primary aims and objectives of

the project, of which are based on the requirements stated by Sellafield ltd at the

start of the project.

2.1 Operating Environment

Sellafield’s intended operating environment for the robot would be either medium

sized buildings (where the longest distance between opposite walls is less than ap-

proximately 20-30m) with generally open interiors or a large chimney approximately

125 metres tall and 15 metre diameter[5] shown in figure 2.1. The structures may

contain scaffolding and hanging cables which need to be avoided. There may also be

considerable clutter both on the ground and on the walls, which although static dur-

ing a mission may be moved between inspection flights, meaning the robot cannot

accurately rely on using the same features for navigation between missions.

Another issue was that many buildings at Sellafield were not designed for easy

worker access, occasionally resorting to seal-and-forget maintenance solutions during

construction. This meant that, in order to get personnel or equipment into these

building holes would need to be cut in the walls, so the smaller the designed robot

could be, the better. Also, these structures are generally unlit or rely on temporary

8
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Figure 2.1: Example of the internals of one of the Sellafield chimneys [5]

lighting solutions, so the robot should ideally not have to rely on external lighting

to perform its task.

2.2 Inspection

With regards to inspection, Sellafield has requested that the robot should be able

to record imagery, either through still photographs or video. A live feed was not

required to be high-resolution as the imagery would be inspected post-flight, but

was used to keep an eye on what the robot was doing and to align the robot with a

point of interest.

The robot should also be equipped with a dosimeter, so that it could collect inform-

ation about radiation levels, and possibly have a modular solution so that it could

be swapped with other sensors as required, e.g. infrared camera, probes etc.

Lastly Sellafield were interested in obtaining geometric measurements (three-dimensional

maps) concerning the structure and its contents, using this information they can
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more accurately pinpoint the location of points of interest, or compare with older

data to see if there has been any movement of items or parts of the structure between

inspections.

2.3 Robotic Platform

The robot needed to be:-

1. As compact as possible to fit through inspection holes (approximately 30cm).

2. Have an operating time sufficient to monitor a couple of points of interest

between charges.

3. Airborne and non-contact with any part of the structure.

4. Able to carry the required sensors and devices.

5. Cost less than £10,000 unless reliability and re-use can be guaranteed.

2.4 Autonomy

One of the primary criteria issued by Sellafield was that the robot should be easy

to operate and maintain, requiring only minimal training in order to be used safely.

This would increase the deployability of the system as there was a higher likely hood

that someone is on site to operate it at short notice.

The robot however, needed to remain primarily under operator control as full

autonomy was discouraged, the reasoning for this is two-fold. Firstly, program-

ming and instructing the robot exactly what to look for would be more challenging

than to let the operator tell the robot where to travel. Secondly, due to the on-site

health and safety requirements imposed on these types of facilities, if used, the ro-

bot would need to be robust and reliable and all failure modes considered. A task

10



CHAPTER 2. REQUIREMENTS CAPTURE

made more difficult for a fully autonomous robot where its “thought process” and

response cannot necessarily be guaranteed, particularly in an unknown, untested

environment.
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Chapter 3

Review of the State of the Art

A review of the state of the art is a key step in developing a successful system.

In-depth knowledge about the current state of technology and related projects not

only helps highlight whether or not the system can feasibly be built (within the

allotted time) but also results in a more capable system through intelligent design.

Intelligent design being, for-instance, understanding the function of a chosen sensor,

knowing its fundamental weaknesses/strengths and using this knowledge to better

the synergy between itself, other sensors and the robotic platform.

A robot can generally be split into four separate yet heavily dependent sub-systems:-

1. The Robotic platform to which the sensors and other components are mounted.

2. Sensors - Used to give the robot sufficient exteroceptive and interoceptive

data to provide sufficient knowledge of its surroundings and present state

respectively.

3. Data processing and Autonomy - Analysing the sensor data to allow the robot

to complete its task safely and in a timely manner.

4. Communication - If needed, sending and/or receiving data back to an operator

or other robots.

This chapter aims to highlight and discuss some of the various options available for

the sub-systems above. Later discussing their implementation through analysing

similar projects in 3.5.
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3.1 Flying Platforms

In the following section the different forms of aerial vehicles will be investigated,

highlighting their advantages and disadvantages along with progress and use within

current Unmanned Aerial Vehicles (UAVs) research. All aerial vehicles can be gen-

eralised into three distinct groups based on their method of creating lift, these are:-

• Lighter-than-air (e.g. blimps)

• Fixed wing (e.g. aeroplanes)

• Rotary wing (e.g. helicopters)

3.1.1 Lighter-than-Air

Lighter-than-air craft, as the name implies, specifies that the craft creates its lift

through being positively or neutrally buoyant with the surrounding atmosphere.

Historically this has been achieved through hot-air balloons, functioning on the

principal that as air warms it becomes less dense and therefore rises above the

surrounding air until it cools. Flight is achieved through holding a sufficiently large

envelope of warm air, so that the buoyancy of the displaced air-mass is capable of

lifting the payload.

Another method is to use a gas inherently lighter than air such as hydrogen or

helium, although hydrogen is rarely used due to the reactive nature of the gas. This

is the primary method of lift used for weather balloons and airships and offers a

much higher ratio of lift/envelope volume compared to the hot-air method. Limited

propulsion can be achieved through mounting motors, in the case of airships on the

envelope, allowing the craft to be able to manoeuvre as opposed to just be carried

by winds[8].
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(a) Blended Wing[9] (b) Biplane (c) Glider

Figure 3.1: Examples of the differing types of Fixed Wing aircraft designs

3.1.1.1 Advantages & Disadvantages

One of the primary advantages of Lighter-than-Air craft is that no energy necessarily

is required to keep the craft airborne, which drastically increases the potential flight-

time of the craft. However, to lift a sensor payload and batteries a comparatively

large envelope is required, having the side effect of giving the craft very high parasitic

drag, thus lowering the manoeuvring speed, responsiveness and tolerance to winds,

gusts and turbulence.

3.1.2 Fixed Wing

Fixed Wing (FW) aircraft are the most common type of aircraft. Lift is achieved

using the airflow from the forward motion of the aircraft passing over one or more

wings which are fixed to the body of the craft. There are many varied designs of FW

aircraft, ranging from differing wing designs (Figure 3.1a), number of wings (Figure

3.1b), and powered/un-powered (gliders) (Figure 3.1c).

3.1.2.1 Advantages & Disadvantages

FW aircraft have the advantages of being effective and efficient at travelling long

distances and also more resilient to turbulence. The main drawback for surveillance

and inspection purposes is that the aircraft requires forward speed to generate the
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Figure 3.2: An example of a VTOL aircraft the Bell/Boeing Osprey

lift required to remain airborne. This means that the the aircraft is usually un-

able to hover and flying at slow speed raises the risk of aerodynamic stalling and

impairs manoeuvrability. The exception being a small group of aircraft equipped

with Vertical Take-Off and Landing (VTOL) functionality, which have the ability

to vector the engine thrust. Examples include designs such as the BAe Harrier and

the Bell/Boeing Osprey (see Figure3.2) which could be argued as being a rotary

wing aircraft. The Osprey utilises a propeller driven propulsion system, which can

be rotated through the lateral axis to either pull the aircraft forward or vertically

to produce lift much like a helicopter.

3.1.3 Rotary Wing

Rotary Wing aircraft create lift through the constant motion of a rotor through

the air. Unlike fixed wing, a rotary wing aircraft doesn’t require forward motion

through the air to maintain lift, allowing them to hover or even fly backwards.

There are many differing types of rotary wing aircraft, depending on the placement

of the rotors, number of rotors and method of propulsion. The most common form
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is the classic single rotor helicopter design, however in recent years there has been a

substantial shift in the hobbyist/robotics community towards multicopter designs.

The reason for the shift is twofold, firstly multicopters are mechanically simpler and

secondly allow for easier payload placement.

3.1.3.1 Helicopters

The primary method used to control helicopters in-flight is through varying the pitch

of the rotor blades as they rotate. The total thrust produced by the rotors can be

varied by either slowing or speeding up the rotation or by varying the pitch of the

rotor as it spins. On larger remote controlled helicopters or full sized helicopters the

rate of rotation is generally kept constant and rely solely on varying the pitch whilst

in-flight. Similarly, roll and pitch is controlled by changing the thrust produced by

the rotors at different stages of its rotation.

To achieve this the rotors use what is called a swashplate (Figure 3.3), the swashplate

is composed two elements. One which is linked with the rotor blades and therefore

is spinning, and a non-rotating element which is connected to the controls or servos.

The whole swashplate can be tilted in the roll and pitch axis through the non-

spinning element, and effectively functions as a guide for the pitch of the rotors.

Due to this, helicopters tend to be mechanically complex with many safety critical

linkages, most of which moving and being adjusted at high-speed.

3.1.3.2 Co-Axial

A variant of the helicopter is the co-axial helicopter, where two in-line counter

rotating rotors are used to generate lift (see Figure 3.4). Due to the rotors being

counter rotating a tail rotor is not necessary as each rotor counters the torque

generated by the other rotor. Co-axial rotors are however rarely used for full scale

helicopters, partly due to the mechanical complexity and risk of the rotors colliding

but also due to the high parasitic drag induced when travelling at speed [10].
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Figure 3.3: Swash plate and linkages on a model remote controlled helicopter (rotor
blades removed).
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For small scale remote controlled helicopters however, co-axial helicopters are a

popular design particularly for small low-cost Remote Control (RC) helicopters.

With the modification of gyroscopically stabilising the top rotor through a flybar,

and with the controls only influencing the bottom rotor, a very stable and easy to

fly model can be achieved. The top rotor acts as a passive stabiliser opposing any

induced motion or rotation (apart from yaw). By not having to supply linkages to

the upper rotor the mechanical controls are no more complicated than a conventional

helicopter. However, they can be stable and sluggish to fly, has a severely limited

forward speed and the top rotor can easily collide with the bottom rotor in gusty

conditions.

Figure 3.4: A full size co-axial helicopter (Kamov Ka-50)[11]

3.1.3.3 Multicopters

Multicopters refer to a type of helicopter which has three or more rotors, each placed

on outriggers away from the centre of the helicopter, an example of which is shown

18



CHAPTER 3. REVIEW OF THE STATE OF THE ART

Figure 3.5: Example of multicopter design (Hexacopter)

in Figure 3.5. As the rotors are placed away from the centre of gravity, multicopters

can control the pitch and roll of the aircraft by varying the total thrust from each

rotor. This negates the need for a swashplate and the associated linkages, as the

thrust from each rotor can be adjusted by simply varying the speed of the motor.

The inherently unstable hover characteristics of the helicopter are also present in

the multicopters and to some extent worsened. This is due to each rotor being

powered by a separate motor, each of the motors will have a slightly different ef-

ficiency and the motor speeds will have to be rapidly changed to correct for any

in-flight disturbance or commanded movement [12]. Just as the helicopter requires

mechanical complexity to achieve flight, the multicopters rely on advanced electron-

ics and sensors. Multicopters rely on a three axis rate gyroscope to sense if it is in

the required pose. If not it individually varies the thrust produced by each rotor,

resulting in a mechanically simple but electronically complex setup which is less

fragile and requires less maintenance.

An added benefit of having the rotors placed away from the centre of gravity, is

easy sensor mounting, unlike conventional helicopters where heavy payloads need

to be mounted directly underneath the rotor. Multicopters have a large area in the
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middle of the craft, where sensors can easily and safely be attached, both above and

below the rotor line without the problems of affecting the craft’s centre of gravity.

3.1.3.4 Advantages & Disadvantages

Table 3.1 highlights the advantages and disadvantages between the different types

of rotary craft.
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Table 3.1: Comparison between Helicopter, Co-Axial and Multicopters
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3.2 Sensor Systems

Choosing the correct sensors is very important, as the sensors provide the only

means for the robot to perceive the environment it is in. There are many differing

types of sensors, ranging from contact to contact-less and active to passive. All

sensors have strengths and weaknesses with what they can detect, along side with

the quality of data they produce. Usually robots use several sensors to try and

minimise errors, increase reaction times or detect what may be hidden from a single

individual sensor.

Some of the big challenges with building UAVs are caused by the UAVs low payload

weight capacity and small physical size restrictions, leading to large compromises

over the number and type of sensors that can be used. The following section gives an

overview of the current sensor technologies available and how they work. By knowing

how the technology functions their strengths and weaknesses can be determined with

regards to a UAV application.

3.2.1 Active Sensors

Active sensors function by emitting some form of radiation or energy which reflects

or interacts with the environment which is then detected by the sensor. The majority

of active sensors are used for measuring distance to an object, this can be achieved

either through measuring the time of flight or through triangulation. Below are

some of the most commonly used active sensors within the robotics community.
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3.2.1.1 Ultrasonic range finders

Figure 3.6: A typical ultrasonic range finder (SRF02)

Ultrasonic sensors (sometimes referred to as SoNAR) are very popular in robotics

due to their low cost and low weight. The sensors function by periodically emitting

an acoustic pulse (chirp) in the ultrasonic frequency range (∼40kHz and up). The

pulse travels through the air until it is reflected by a denser object. By knowing the

speed of sound through the material, in this case air, it is possible to calculate the

distance travelled by the pulse and therefore the distance to the object.

Figure 3.6 shows typical ultrasonic range finder used on the Warwick Mobile Ro-

botics robots. The SRF02 has an effective range from 10cm to 7m, and like most

ultrasonic range finders it has a high field of view (approximately 20°). This makes

ultrasonic range finders a good choice for detecting of objects, however poor at de-

termining its precise position. The SRF02 has a resolution of approximately 1cm,

the accuracy varies slightly with temperature, humidity and air pressure as the built

in electronics computes the distances using the standard atmospheric model. Other

larger units are available which can for-example account for changes of density due

to temperature.

There are a couple of limitations which are prevalent with ultrasonic range finders:-

• Echoing occurs on every chirp and limits the possible update rate of the sensor.
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If the update rate is too high a second chirp may be emitted before the original

chirp has dissipated (reflecting off the walls in the room) and may misinter-

pret the two signals. Practically, with this particular sensor the effect is not

noticeable under 10Hz.

• If the object has flat surfaces with an acute angle from the sensor it is possible

that the chirp will reflect away from the sensor resulting in erroneous values

or not detecting the object, instead accidentally detecting secondary reflected

signals.

• Is susceptible to high frequency noise pollution.

3.2.1.2 Infrared Range Finder

Figure 3.7: A typical infrared range finder (Sharp GP2Y0A700K)

Infrared (IR) range finders, much like the ultrasonic range finders offer a low cost,

low weight measurement solution. Instead of relying on time of flight to calculate

distances the sensors use triangulation. Figure 3.7 shows a typical sensor, the sensor

comprises of two parts, the emitter, which is usually a infrared LED and a detector.

The detector comprises of a lens and a linear Charged Coupled Device (CCD), a two-

dimensional version of which is commonly used as the sensors in digital cameras.

The emitter and detector is placed a set distance apart, therefore by varying the
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distance from the object you vary the angle the light returns to the detector, this

can then be measured and a range computed.

One of the main limitations of the sensor however is its relatively limited acceptable

range, which tends to be fairly short distance. The sensor shown in figure 3.7 is

a longer range version and has an effective range from 1m to 5m, outputted as an

analogue voltage. One of the limitations of the IR range sensors is that it computes

the distance from the strongest return on the CCD. This assumes the walls are plain

and not textured and with ideally a white finish.

3.2.1.3 LiDAR/RaDAR

Figure 3.8: A small LiDAR Scanner (Hokuyo UTM-30LX)

Laser range finders are one-dimensional measuring tools. It operates through emit-

ting a pulse of light in the form of a laser beam, and timing its time-of-flight to

the object and subsequent reflection. This has several advantages over the infrared

range finders (see 3.2.1.2). Firstly, as a laser is used, higher resolution measurements

of the surroundings can be achieved due to the smaller beam width (which doesn’t

disperse to the same extent). Secondly, laser range finders accept a wider range
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of distance measurement and are more accurate, which tends to be limited to the

brightness of the laser and sensitivity of the detector and not the width and angular

resolution of the device as with infrared range finders. The main disadvantage being

mainly cost.

Laser range finders, however, can only measure the distance to the point where the

laser is aimed. LiDAR (Light Detection and Ranging) scanners (Figure 3.8) operate

using a laser range finder and collect two or even three dimensional data by shining

the laser onto a spinning mirror, as shown in 3.9a. By scanning the laser and taking

multiple measurements during the rotation (see Figure 3.9b), a detailed point-cloud

representation of the room can be calculated. Some scanners are also able to either

scan the laser vertically or utilise multiple laser beams and therefore be able to

provide three-dimensional data.

As the LiDAR scanner is an optical sensor, it has several weaknesses. Firstly if the

scanner is being used in a room with reflective surfaces such as glass, there is a

high likelihood the laser will be reflected and the reflected distance being measured

erroneously. Secondly, if the environment has significant amounts of dust, steam or

other airborne particles, the effectiveness and reliability of the measurements will

also be compromised[13].
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(a) Diagram showing the sensor, laser and spinning mirror of a LiDAR
scanner

(b) Diagram showing a single sweep of a LiDAR scanner

Figure 3.9: Diagrams showing the function of a LiDAR scanner
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3.2.1.4 Flash LiDAR and Structured Light

Building on the principle of the LiDAR scanner, there is a type of sensor called a

flash LiDAR (Figure 3.10). Its operation is more akin to a camera than a LiDAR

scanner, a diffused laser is flashed forwards from the sensor illuminating the view

of the sensor array. Each pixel then calculates the time of flight of the laser flash

to hit the object and return, a three dimensional image can then be created by

combining the measurements of all the pixels on the array [14]. Although a flash

LiDAR generates three-dimensional representations of its environment, it is limited

much like a camera in respect of its field of view being limited. Therefore to generate

a scan of a room several scans need to be taken and stitched into a panorama.

Figure 3.10: A SR4000 flash LiDAR built by Mesa Imaging [14]

A similar approach to creating three dimensional imagery is using structured light

to project a pattern grid over the scene, which a camera can detect and analyse. One

such sensor is the popular Microsoft Kinect (Figure 3.11a), which projects a static

infra-red reference grid onto the objects it is facing (Figure 3.11b). By knowing

the grid’s pattern and having the detector offset from the pattern projector it is

possible to generate a depth (distance) map of the image. A big disadvantage with

structured light based sensors is that they have a very limited range where they

produce reliable and valid depth measurements, too close and the detector cannot
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reliably distinguish the pattern, too far and the angular change is too small and the

measurements become noisy (much like the IR range finder see section 3.2.1.2).

(a) Internals of the Kinect [15]

(b) Light pattern created by the Kinect [16]

Figure 3.11: The Microsoft Kinect sensor

3.2.2 Passive Sensors

Passive sensors function through purely observing the environment and do not emit

any form of radiation or energy to collect their measurements.

3.2.2.1 Cameras

We heavily rely on vision to interact and navigate with the world we live in, with the

advancement both in camera equipment and image processing, the use of cameras is
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becoming more commonly found in robotics. There are many possible applications

of a camera sensor, from simply getting a raw image which could be returned to the

operator, to more advanced features such as object detection and tracking, visual

odometry (much like an optical mouse) and even three dimensional depth extraction

giving similar data to that of the LiDAR.

Unlike humans, cameras don’t have to operate in the visual spectrum. Specialised

cameras can for-instance detect heat (infrared) or ultra-violet radiation (higher and

lower frequencies are possible to image, however building capable detectors and

lenses become increasingly difficult).

3.2.2.2 Inertial Measurement Unit (IMU)

Figure 3.12: A small electronic IMU[17]

Inertial Measurement Units (IMU) detect and measure changes in the angular and

linear velocity of the object to which they are mounted and are very commonly used

to estimate the orientation of a robot, an example of which is shown in figure 3.12.
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The robots velocity and position can be computed through respectively integrating

or double integrating the detected accelerations. This leads to one of the primary

limitations of the IMU - drift. All sensors have noise or bias and if for instance

the robot’s position is being calculated, any erroneous data would also be double

integrated and lead to large errors accumulating over time.

For angular measurements drift can be lowered through using the data from multiple

sources using the assumption that the average detected linear acceleration will be

gravity. Using this assumption the roll and pitch axis can be aligned with the

horizon, given that the robot does not accelerate laterally in one direction for an

extended period of time. Detecting heading drift is more difficult and requires the

use of magnetometers which function much like a compass. A three dimensional

magnetometer can also help to stabilise the roll and pitch axis, but much like any

compass suffers greatly from electromagnetic interference from for-instance electric

motors.

Traditionally IMUs have utilised mechanical gyroscopes in applications such as avi-

ation INS (Inertial Navigation System) units prior to the adoption of GPS (discussed

in more detail in Section 3.3.2.1). The more modern units using fibre optic techno-

logies enabling higher accuracy without moving parts. These units however weigh

several kilograms and are expensive.

Recent breakthroughs in “solid state” MEMS technology has allowed accelerometers

to be fabricated “on chip” (figure 3.13) at a fraction of the cost and weight, with

only a small decrease in accuracy.
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Figure 3.13: The silicon substrate of a gyroscopic rate sensor seen using a scanning
electron microscope[18]

3.2.2.3 Pressure Sensors

Pressure sensors are very common in aviation and their primary means is to measure

the speed and altitude on larger aircraft. Atmospheric ambient pressure decreases

with altitude at the rate of approximately 1hPa per 28ft (8.5m) below ∼2000ft

(610m) above mean sea-level[19]. Through comparing the ambient (static) pressure

with a known reference pressure the aircraft’s altitude can be determined. Airspeed

can be measured through comparing the pressure from a forwards facing pitot tube

with the ambient static pressure, yielding primarily the velocity driven dynamic

pressure [20].

Small electronic pressure sensors which are suitable for model aircraft can be man-

ufactured using MEMS technology (see Figure 3.14). In the case of using a pressure

sensor as an altimeter there are limitations to its use, such as small (<10cm) mo-

tions being difficult to detect due to the small variation in air-pressure. Also any

turbulence or wind buffeting will cause erroneous measurements.
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Figure 3.14: The internals of a MPX4115 static pressure sensor[21]

3.2.2.4 Radiation Sensors

The ability to be able to sense radiation is an integral part to performing classi-

fication of a nuclear structure, allowing anomalies to be detected and determining

the dose that the workforce would be exposed to if they entered. Dose signifies the

accumulated exposure to radiation, a dosimeter may or may not be able to meas-

ure the immediate exposure to radiation, but it is used to determine the type and

amount of radiation it has been exposed to, essential for long-time worker radiation

monitoring and safety.

There are a multitude of different technologies which enable the detection of ionising

radiation, the four primary types are listed below:-

Gaseous Ionisation Detectors function on the principal that an enclosed volume

of gas (commonly argon or helium) when exposed to ionising radiation, will emit ions

which can be detected using measurement circuitry. There are three primary types

of gaseous ionisation detectors, depending on the voltage applied to the anode and

cathode within the chamber. Ion chambers operate at the lowest voltage (region II

in Figure 3.15), where all the detected gas ions are created purely through ionisation

events, which allows for accurate dose measurement, however require sophisticated

electronics to measure the low signals produced (especially for gamma radiation).

The proportional counter utilises a slightly higher field strength than used for the
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ion chamber detector (region III in Figure 3.15). In this region the ions created by

each ionisation event are accelerated by the electric field to an energy higher than

that of the ionisation event, allowing for secondary ions to be produced through

impact. The amount of secondary ions produced is proportional to the energy of

the incoming radiation, therefore not only can the type of radiation (alpha, beta or

gamma) be distinguished, but also its energy.

Geiger counters operate in the much higher field strength - Geiger-Müller region

(region V in Figure 3.15). In this region not only are there secondary ions created

like the proportional counter, but the gas ion has enough energy to produce an

Ultra-Violet (UV) photon. This UV photon has enough energy to ionise other gas

molecules, causing further avalanches. Geiger counters have the advantage that a

single ionisation event causes an easier to detect “maximum response” regardless of

power or type of the incoming radiation. This leads to the major disadvantages with

Geiger counters, namely that they cannot directly discriminate between the power

and type of the incoming radiation [22].

Semiconductor Radiation Detectors function much in the same way as a

gaseous ion chamber, however instead of using gas as a detection medium a p –

n or p – i – n semiconductor junction is used. When an ionising particle enters the

intrinsic region, it will lift a certain amount of electrons from the valence band into

the conduction band, the electron/hole pair are then moved to the n+ and p+ re-

gions respectively. The ionisation event can then be measured as a small current

generated by the p – n junction. Benefits being that they are more robust being a

solid-state device and that it is possible to measure the energy and type of radiation

that it is exposed to [22].

Scintillation based Radiation Dosimeters function on the principal that some

inorganic crystalline, and organic materials, emit photons when absorbing ionised

radiation. The energy and type of radiation can be determined through the charac-

teristics of the emitted photon, which is commonly amplified using photo-multipliers
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Figure 3.15: Relationship between produced pulse size and the potential applied to
the electrodes in a gas ionisation chamber.
Region I - recombination region; Region II - simple ionisation region; Region III -
proportional region; Region IV - limited proportional region; Region V - Geiger-
Müller region; Region VI - continuous discharge region [22].

35



CHAPTER 3. REVIEW OF THE STATE OF THE ART

for easier detection. Each material has a differing response when being ionised, so

through knowledge of the radiation being measured and intelligent choice of detector

material accurate and effective detectors can be built [22].

Film Dosimeters function on the simple principal that photographic film black-

ens when it is exposed to ionising radiation. By overlaying metallic patterns of

varying thicknesses, it is possible to determine the type of (alpha, beta or gamma)

radiation the film has been exposed to. Film is a popular choice for dosimetry, as

it is low cost and simple. The disadvantage is that there is no instantaneous no-

tification of exposure, the radiation levels can only be determined once the film is

developed [22].

3.2.3 Contact Sensors

Although not generally appropriate for flying vehicles, contact sensors are included

for completeness. Contact sensors function through touching the object they are

measuring unlike measuring an electromagnetic response such as the passive and

active sensors above. They are used extensively for collision avoidance as they are

impervious to problems found with active and passive sensors such as dust and

reflections and therefore guarantee detection of any physical object within range.

An example of a contact sensor are whiskers, used for-instance on SCRATCHbot

developed by Bristol Robotics Laboratory (Figure 3.16) [23].

3.3 Localisation

Accurate and reliable knowledge about the robots pose and position in its envir-

onment is the key to successful autonomous control and planning. Without this

knowledge, the robot would be unaware of where to travel in order for it to reach

its waypoint or to correct itself if it has drifted off-course. There are two primary
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(a) SCRATCHbot robot[23] (b) SCRATCHbot Closeup[23]

Figure 3.16: SCRATCHbot robot developed by Bristol Robotic Laboratory

methods for a robot to determine its position in space “Aided Localisation”, relying

on external devices (see 3.3.1), or “Autonomous Localisation”, relying purely on

on-board sensors (see 3.3.2).

3.3.1 Aided Localisation

Aided localisation is where the robot relies on external transmitters or markers to

determine its position within the environment. There are many commercial products

and techniques available depending on the accuracy required, type of environment

and cost, a few of which are listed below.
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3.3.1.1 Global Positioning System (GPS)

Figure 3.17: An EM-406A SiRF III GPS Receiver[17]

An extremely popular method for outdoor localisation is through using the Global

Positioning System (GPS). GPS is built up from a constellation of 24 satellites

in a polar orbit ∼20200km above the earth, with each satellite broadcasting its

current position and time. By capturing this data from three or more satellites

simultaneously, the receiver is able to calculate the distance to each satellite, through

knowing the position of the satellites the receivers position can then be calculated

[24].

The GPS receivers have the added benefit of being very cost effective, compact

and lightweight, some of which only weighing tens of grams including both detector

circuitry and antenna (see figure 3.17). Typically an absolute accuracy of approxim-

ately 5 metres can be expected (greater with a partially obscured sky), but is able

to detect much smaller movements, used to detect velocity and heading, obtaining

a typical update rate of 1 – 4Hz . Higher accuracy can be achieved but requires

the use of very expensive, larger and heavier surveyor grade receivers [25]. The
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drawbacks are however, that it can only function outdoors and when the receiver is

in line of sight of at least three of the satellites. There are situations, even when

outdoors, where a building or structure may obscure the view of the satellites, caus-

ing degraded accuracy or erroneous position updates through either signal loss or

multi-path propagation. This situation is referred to as an urban canyon [26], and

can cause severe GPS disruption when operating in built up areas.

3.3.1.2 Triangulation and Radio Beacons

In aviation, prior to the deployment and acceptance of GPS, radio beacons were the

only method to get the aircraft’s absolute location when navigating out of sight of

the ground. The first beacons were simple AM radio transmitters known as Non-

Directional Radio Beacons (NDBs). The antenna on-board the aircraft could detect

the direction in which the signal was strongest and the instrument would give a

relative bearing (“point towards”) the direction of the beacon [27].

Due to the low accuracy of the bearing obtained from the NDB and that various

environmental effects cause the signal to appear to be coming from slightly differ-

ent directions, another more sophisticated mode of localisation was devised. These

newer beacons, Very High Frequency Omni-directional Radio Beacons (VORs), trans-

mit not only an AM signal but also a similar FM signal the phase of which is

proportional to the compass rose of the beacon [27].

Instead of determining the aircraft’s bearing to the beacon, VORs operate in reverse,

the aircraft instead determines its location based on its orientation with regards

to the beacon. To determine the aircraft’s location two or more VORs are used,

triangulating the position using the bearing angles. Some VOR beacons are also

fitted with Distance Measurement Equipment (DME) which allows the aircraft to

measure its distance from the beacon. This has the benefit that only one beacon

is needed to determine the aircraft’s position (as the bearing and distance from the

beacon are both known) [27].
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Higher accuracy, more localised positioning solutions are available using similar

principles and relying on external beacons to localise the detector. An example of

which is the XSens MVN MotionGrid which utilises a constantly transmitting tag.

The transmissions are monitored by a minimum of nine detector “beacons” with an

accuracy of approximately 5 – 8cm within a 20x20metre work area. The work area

can be expanded using additional beacons or at the cost of reduced accuracy [28].

3.3.2 Autonomous Localisation

Autonomous localisation is the opposite to assisted localisation, as it does not require

off-board devices for the robot or craft to over localise itself, thus relying solely on

its own sensor data to extract the position.

3.3.2.1 Inertial Navigation System (INS)

Inertial Navigation Systems (INS) rely on double integration of the acceleration of

the craft as measured by an IMU (see 3.2.2.2). The pitfall with INS is with regards to

the double integral - any bias or erroneous measurement of the acceleration will cause

an exponential divergence in position (drift). To counter this another localisation

method has to be occasionally used to correct the drift, the frequency of which

relies on how “good” the sensors are and the accurate requirements of the computed

position.

Higher accuracy INS, such as the types fitted to for instance the Apollo space craft

or the Concorde are both expensive and heavy, making them unsuitable for smaller

robotic platforms. With the increasing quality and availability of solid state Micro-

ElectroMechanical Systems (MEMS) accelerometers, INS has only the past decade

become a viable and cost effective method for small scale robotics.
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(a) Initial stages of map building

(b) After significant movement of the UAV

Figure 3.18: Visualisation of SLAM (Orange being recent data, green being the map
being built and blue being the calculated position of the UAV). See Appendix D.2

3.3.2.2 Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation and Mapping (SLAM), is the process of using on-board

sensor data to build, in real-time, a representative model of the environment, while

simultaneously using the same model to localise the robot. Much akin to drawing

a map of a newly explored area and at the same time using the map to determine

your current location as shown in figure 3.18.

It is said that the problem of SLAM has already been solved at the conceptual and

theoretical level, however implementing with real-world “noisy” sensors, cluttered

environments and operating with constrained processing power poses a significant

challenge [29, 30].
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Non-Probabilistic vs. Probabilistic There are two main branches to approach

SLAM, either using a non-probabilistic approach which assumes that the sensors and

the matching algorithm are ideal and have no error which (at present) is incorrect.

Probabilistic methods attempt to overcome this shortfall by applying statistical

methods to account for the inaccuracies in the sensor’s collected data. Using the

probabilistic method however adds significant processing overheads as each point is

not only matched, but the likely-hood of its location is also computed.

For this reason probabilistic SLAM approaches tend to not use the raw sensor data,

instead it relies on using landmarks or features extracted from the data. The posi-

tioning and probability calculations are then performed solely on these landmarks,

using as few as possible as the computational requirements scale to the square of

the number of landmarks [29].

Herein lies a significant problem and one can severely limit the environments the

robot can operate in. Landmarks need to be efficiently extracted from the raw

sensor data (possibly from multiple sources), common and easy to extract landmarks

will vary between different applications and environments. For office and corridor

style environments edges and corners are commonly used, and other algorithms exist

which attempt to identify its own landmarks without relying on predetermined ones.

SLAM Variants Over the years a multitude of different algorithms have been

developed that attempt to solve the difficult problem of SLAM, at present there

is no one-unified algorithm which will work in all environments using any type of

sensor, instead many research groups build more specific algorithms based on their

operating environment and type of robot. A few of these variants are discussed

below:

Orthogonal SLAM [31, 32] is based on the assumption that the environment consists

of orthogonal planar surfaces, such as a tidy office style environment. By extracting

the planes out of the raw pointcloud and then matching the features a significant
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speed improvement can be found, as well as increased robustness due to the reduced

chance of false positive matches (compared to using raw pointcloud data), however

this method requires known and defined geometric features to function correctly.

FastSLAM [33, 34] is an example of a particle based (probabilistic) feature based

SLAM algorithm. The algorithm also enables loop-closing which is invaluable if the

robot is operating in cyclic environments whereby the robot may return to the start

position through a previously unexplored route. Without loop-closing the accumu-

lated errors usually cause the looping point not to line-up causing further errors

as the robot explores further, however, with loop closing the robot identifies that

it has returned to certain location and re-estimates the positions and uncertainties

of the previous scans to attempt to align the two paths. It has been shown that

the original FastSLAM algorithm degenerates over time[35]. There are also variants

which utilise similar methods to FastSLAM but instead of relying on landmarks,

function on raw laser range data[36, 37].

There also exists a number of minimalist SLAM algorithms such as TinySLAM [38]

which offer basic probabilistic LiDAR based SLAM in under two hundred lines of C-

language code, proving that SLAM doesn’t require lengthy sophisticated algorithms

to function.

Iterative Closest Point (ICP)[39, 40, 41] is a three-dimensional registration algorithm

used to align two or more three-dimensional datasets such as point-clouds, fea-

tures or geometry. The algorithm explained in further detail in 5.4.1 on page 90

was not developed specifically for the purpose of SLAM, however, it has signific-

ant advantages such as ease of implementation and that its principal operation is

representation-independant. This means that it functions on any environmental

representation and is not limited to a specific method such as raw point-cloud, land-

mark features or geometric representations, with the disadvantage that it solves to

a local minima of the mean-square distance metric, meaning the algorithm is not

guaranteed to find the global minima (correct alignment) of scans in all situations.

There are also a number of visual SLAM algorithms such as [42] which function
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using feature detection from a single vision camera. Other algorithms also exist

where an RGB-D sensor such as the kinect is used[43], offering both image and

depth maps to aid the map building process.

Specific localisation algorithms used on related projects are discussed below in sec-

tion 3.5 and later summarised in section 3.6 on page 55.

3.4 Autonomy

Autonomy can be considered the “holy grail” of mobile robotics, for ideally it is

being capable of doing its job without intervention from people. This has been one

of the forefronts in robotics research for the past decade, and has had many break-

throughs primarily for rigid tasks while operating in semi-structured environments.

An example of which is self-driving cars, the task is rigid and simple, drive to the

destination without crashing or endangering others. Doing this however, is more

challenging, as the robot will need to be aware of the traffic laws, aware of other

road users and be able to plan it’s journey. What makes the task easier is that the

road network is generally a structured environment, with high accuracy road maps

and road markings are available for planning and guidance, along with one way and

speed restriction data.

Autonomy is a collection of various systems functioning in synergy. The robot needs

to be able to calculate where it is, where it is going and how to best get there. A task

only made more difficult when further unknowns are introduced such as incomplete

knowledge of the environment or a vague, potentially unreachable target position

to find an object. Similar to the analogy of trying to get between two points in an

unknown maze.

For anything but simple tasks, especially in commercial products, full/true autonomy

is either too difficult, costly or simply not required. Instead partial autonomy is of-

ten implemented, mainly to aid the operator, improving the ease of use or speed of
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Level Types Definition

Level 1 Fully Tele-operated The robot is fully tele-operated,
much like a remote controlled toy.
All sensor data is returned to the

operator and not used for any
on-board functions.

Level 2 Assisted
Tele-operation
“Tele-Assist”

The robot is controlled by the
operator much like Level 1,

however the robot uses sensor data
to aid the operator. This can be

thought of as kinematics on a robot
arm as opposed to joint control.

Level 3 Assisted Autonomy
“Tele-Robot”

The robot is autonomous in most
functions, only relying on the

operator to verify correct operation
or to decide on a route or path.

Level 4 Fully Autonomous The robot is fully autonomous and
does not require human

participation at any point during
the “mission”.

Table 3.2: The Different Levels of Autonomy

operation as opposed to the novelty or completely independent system. The amount

of autonomy used in a robotic system can be classified into four levels as shown in

Table 3.2, ranging from a fully tele-operated robot where the user is in complete

control and the robot has no autonomous features, to fully autonomous systems.

Small robotic UAVs have only become viable in the past couple of years due to the

improvement and miniaturisation of sensor, computational and battery technologies.

Previously, autonomous capability could only be achieved in the larger “full scale”

UAVs, primarily developed by the military for surveillance missions, due to their

cost and complexity. For these UAVs the military has focused heavily on the use

of autonomy to reduce the operator’s/pilot’s workload and enable them to control

several vehicles simultaneously, essentially shifting the pilot from flying the craft

towards directing which targets to find, track or follow. Lately, this has become

possible with smaller and cheaper UAV systems, enabling their use with hobbyists,

photographers, police and military forces. With the widening availability of suitable
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sensors, lightweight UAV platforms and powerful miniature computers, small UAVs

are becoming a popular choice for robotics research as well as commercial platforms.

3.5 Examples of Related Projects

The following section aims to highlight and discuss the design choices made by

similar UAV projects, along with their performance and limitations. With the hopes

of learning from their work, integrating the best solutions, lessening the risk of re-

inventing the wheel while avoiding common pitfalls.

3.5.1 International Aerial Robotics Competition

The International Aerial Robotics Competition (IARC) is organised by the Asso-

ciation for Unmanned Vehicle Systems International (AUVSI) and was started to

help promote the academic development of autonomous flight using small UAVs.

The competition started in 1991 and has primarily focused on outdoor UAV mis-

sions, such as autonomously finding an object and delivering it to a certain location.

In 2009 (fifth mission) the focus of the competition turned towards autonomously

navigating indoor or GPS-denied environments, mainly due to the increase in pop-

ularity of small robotic UAVs [44].

The fifth mission comprised of an indoor scenario, where a control panel with a

blue flashing Light Emitting Diode (LED) had to be autonomously found and pho-

tographed with no human interaction. The environment was highly-structured and

largely two dimensional, much like an room/corridor arrangement with minimal

clutter, see Figure 3.19. In some areas of the arena windows were added to increase

the difficulty of the task, as the UAV would have to locate the opening and then

be able to fly accurately enough to pass through. The UAVs were not allowed any

prior knowledge of the layout of the arena, instead having to explore, map and plan

a route through the arena as it progressed.
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Figure 3.19: The IARC 2009 Arena[46]

A team from MIT, were the only participants who managed to complete the full

mission, albeit on the last run of the competition, which demonstrated that UAVs

were reaching the level of being capable of autonomous flight in structured yet

unknown environments.

Since then, a sixth mission has been held in October 2012, with more difficult

and demanding objectives. The task being to enter a similar yet more cluttered

environment with the goal of finding and replacing a USB flash drive. Although

showing promising results no teams completed the mission successfully and the

competition has been re-scheduled for 2013 [45].

3.5.2 MIT-Ascending Technologies UAV

The MIT-Ascending Technologies (MIT-AscTec) were the winners of the 2009 IARC

competition (see 3.5.1), managing to build a miniature UAV system, capable of flying

in unknown yet semi-structured environments autonomously.
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Figure 3.20: The MIT-AscTec UAV[47]

3.5.2.1 Flying Platform

A quadrotor was chosen as the robotic platform, due to their partnership with

Ascending Technologies GmbH a prototype quadrotor was developed (Figure 3.20).

Ascending Technolgies GmbH had several commercial-off-the-shelf quadrotors avail-

able, but all lacked the payload capacity needed to lift the sensor payload [46]. An

additional modification to the quadrotor was the inversion of the front rotor, switch-

ing from a pulling to a pushing rotor, which increased the viewing angle of the camera

system.

3.5.2.2 Sensors

The sensors on-board the MIT-AscTec were chosen so that the UAV would be cap-

able of both LiDAR mapping and visual inspection. A Hokoyu UTM-30LX LiDAR

was used which has an effective range of 30 metres, on the side of which a mir-

ror was mounted to allow for accurate height measurement. Two video cameras
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Figure 3.21: System overview of the MIT-AscTec UAV[47]

were also used to form a 3d camera with a wide interocular distance to give better

medium/long-range depth perception [46, 47].

3.5.2.3 Localisation and Autonomy

To estimate its position in space the UAV uses a combination of visual and LiDAR

based SLAM (GMapping[46, 36]). The height of the UAV is obtained through the

use of a mirror mounted on the side of the LiDAR, which directs a portion of the

scan perpendicularly below the craft. This allows for accurate height measurement

up to the range of the LiDAR scanner. However, this technique requires precise

knowledge of the UAV’s roll and pitch to correct for any off-axis measurements

and it is necessary to filter the data to remove sporadic returns when passing over

objects.

The developed SLAM and planning algorithms require large amounts of processing

power and memory, more than is available using (with sufficient speed) the on-board

computer. Figure 3.21 shows a simplified diagram of the developed system. The key

to solving the processing requirements for the SLAM algorithm was to process the

data off-board on the ground station where powerful computers could be used. The

drawback being that it takes a certain amount of time to relay the sensor information
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to the ground-station, compute the position, plan the next move and then return

the data to the UAV. It was discovered that the processing time (approximately 3

seconds) was too great to correct for the lateral dynamics of the UAV. Instead the

UAV uses a “Relative Position Estimator” which acquires the current sensor data

and estimates the motion of the UAV, much like an odometer. Given the lower

complexity of the algorithm it can be run on-board and stabilise the UAVs motion

between position and target updates from the ground station.

Due to the competition regulations of IARC the MIT-AscTec UAV was designed to

be fully autonomous, having the ability to fly in a one story building environment

and also capable of finding the simulated door openings and windows to progress

between rooms. In reality, this is more difficult as the robot has to be able to

detect if the window is actually open (as glass is transparent/reflective for LiDAR

scanners).

3.5.3 Georgia Tech Aerial Robotics

Much like the MIT-AscTec team (3.5.2) the Georgia Tech Aerial Robotics team also

took part in the 2009 International Aerial Robotics Competition. Although they did

not manage to successfully fully complete the course, their approach and solution

was notable.

3.5.3.1 Flying Platform

The approach taken by the Georgia Tech Aerial Robotics team for the 2009 IARC

competition was to base their robot on a “passively” stable rotary wing design.

One such design is a co-axial helicopter whereby the top rotor, through a flybar

mechanism, partially counteracts the UAVs motion. The team based their UAV

on a commercial-off-the-shelf E-Sky Big Llama shown in figure 3.22a, modifying

it through removing the bodywork, attaching sensors, upgrading to more powerful

motors and adding a rotorguard shown in figure 3.22b [48].
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(a) A E-Sky Big Llama (off-the-shelf) co-axial helicopter[48]

(b) The Georgia Tech Aerial Robotics UAV[48]

Figure 3.22: Georgia Tech Aerial Robotics UAV, as purchased (a) and as finished
(b).
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Figure 3.23: Results of scanning an ultrasonic range finder through 180 degrees
inside a room. EZ1 and EZ4 representing the model numbers of the ultrasonic
range finders used [48].
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3.5.3.2 Sensors

Due to the limited payload capacity of the UAV platform the team focused their

efforts on using only low-cost, low-weight sensors. This ruled out the use of LiDAR

scanners due to their cost. Instead the team used a combination of ultrasonic and

infrared range finders. An ultrasonic range finder was used to measure the height

of the UAV. The reason being that the sensor is unaffected by small pitch and roll

angles due to its large spread, whereas the infrared and laser sensors would over-

read by not measuring the height directly under the craft. Initially, ultrasonic range

finders were also used for estimating the lateral position of the UAV and mapping.

However, tests showed that it was difficult to distinguish objects, walls and doorways

(Figure 3.23). Instead the team favoured the use of infrared range finders, although,

with their limited acceptable range inputs, this still proved a more sensible sensor

choice [48]. A camera was also fitted to the craft, its sole purpose being to detect

the blue LED on the control panel[49].

3.5.3.3 Localisation and Autonomy

The UAV was not capable of detailed mapping due primarily to the low angular

resolution (low data-density) of the chosen sensors (see Figure 3.23). Instead the

UAV used a “wall following” technique to navigate the maze to attempt to find the

control panel[49]. If it detected that it was in a room, it would try to centre itself in

the middle of the room, then spin through 360° in order to scan for open doorways.

Using this method a rudimentary map could be made, detailing doorways it had

passed through, allowing for rudimentary path planning[48]. A benefit of using the

low data-density sensor was that all processing could be done on-board, thereby not

relying on reliable communications to a ground station.
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Figure 3.24: The search and rescue UAV[50]

3.5.4 A Search and rescue UAV

Search and Rescue is also another active area in mobile robotics, using robots to help

locate survivors and to gather intelligence that the emergency personnel can later

use to expedite their efforts. This project looks at developing a UAV that can fly

both indoors and outdoors, along with the transition between the two environments

and that can autonomously locate objects of interest.

3.5.4.1 Flying Platform

Similarly to that of the MIT-Ascending Technologies UAV in 3.5.2, the UAV utilises

an Ascending Technologies Pelican UAV as their base platform (Figure 3.24).
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3.5.4.2 Sensors

The UAV uses a LiDAR for detecting walls and movement, an IMU to stabilise itself

and four vision cameras. Two of the cameras form a stereoscopic three-dimensional

camera pointing ahead of the UAV, along with an upwards facing and a forward

facing camera (not shown in Figure 3.24)

3.5.4.3 Localisation and Autonomy

The UAV is fully autonomous, does not rely on reliable communications with a

ground station and is claimed to be capable of robust indoor SLAM in unknown

and cluttered environments. For localisation the UAV doesn’t store a map of the

environment, instead it uses known landmarks as it reduces the processing and

memory requirements. It, however uses a variant of Iterative Closest Point for

odometry between map comparisons to achieve better control [50].

3.6 Summary of Related Projects

There are numerous other similarly related projects than the ones listed above, such

as [51, 52, 53, 54, 55, 32, 56]. Although the intended applications vary, most of these

UAVs follow a similar setup, using a quad/multi-copter as a development platform,

and using localisation algorithms with their positions derived from LiDAR and/or

camera data.

The potential robotic control of quadrotors have been demonstrated by the GRASP

Laboratory at the University of Pennsylvania and ETH Zürich which show extremely

high levels of control. An example being the ability to autonomously fly through

gaps slightly larger than the UAV (see figure 3.25a) or precision formation flying (see

figure 3.25b). These projects however, rely on external infrared tracking cameras

and special fluorescent tags attached to the UAVs to determine their location and
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pose. Something which is not viable for this project, but highlights with accurate,

robust and rapid access to the location and pose of the UAV, precise control can

and has been achieved [57, 58, 59, 60].

The largest academic problem regarding indoor autonomous UAVs appears to be

determining the UAVs location and pose without relying on external devices, all

while remaining within the payload limits of the platform and achieving robust and

precise measurements. SLAM is renowned for requiring large amounts of processing

power in-order to operate in real-time. While this is not so much of a problem

for Unmanned Ground Vehicles (UGV), as they can simply stop and wait between

measurements, UAVs cannot simply stop, requiring guaranteed real-time position

updates in-order to stay in control.

SLAM is a very popular choice for localisation within the academic projects and

many advancements have been made, however there is still the fundamental problem

that SLAM requires large amounts of memory and processing power. To overcome

this issue, research groups have found ways to lessen the processing requirements to

make up for the lack in on-board processing power of current computer technology.

These include:-

Remote processing: Rather than processing all the data on-board, and being

limited by the available on-board processing constraints, several research groups

instead relay all the sensor data to a ground-station which processes the data and

relays position reports and motion commands back to the UAV. Although this al-

lows for more sophisticated SLAM and planning algorithms to be used it has one

significant drawback, namely if two communications are lost at any point then the

UAV would be “flying blind”.

Assumptions about the geometry of the environment: If assumptions can

be made about the operating environment, then the processing requirement can

be greatly lowered. If the UAV for-instance is to be flown in a highly structured
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(a) A small UAV autonomously flying through a gap slightly larger than itself [61]

(b) Demonstration of swarm control of miniature UAVs[62]

Figure 3.25: Progress of autonomous UAV control demonstrated by GRASP Labor-
atories
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environment (such as an office/corridor style environment), the walls can generally

be assumed to be straight and mostly orthogonal. Enabling the SLAM algorithm

to match each type of wall as opposed to the raw three-dimensional point-cloud can

significantly reduce the processing requirement needed.

Two dimensional instead of three dimensional maps: Although UAVs op-

erate in three-dimensional space, some environments can be approximately repres-

ented in two dimensions with the assumption that the UAV maintains a consistent

height during the flight and that the environment comprises primarily of featureless

vertical walls. Ignoring a dimension drastically reduces the SLAM algorithm’s pro-

cessing and memory requirements, however is not generally suitable for an airborne

system. Another approach is to use a 2.5 dimensional model, whereby the two di-

mensional map is projected into three dimensions. This can offer more robust scan

matching, however is unable to accurately represent three-dimensional changes in

the environment.

It is not always beneficial to use a “high-tech” solution - keeping the UAV as simple

as possible not only reduces development time but also generally lowers the cost

of the unit. A notable example of this is the “Sphere Drone” (see figure 3.26)

developed by Japanese Ministry of Defence for returning imagery of the insides of

buildings, much like the projects above. Instead of using complex algorithms and

sensor installations to avoid collisions and provide autonomy, this UAV utilises a

large plastic shroud which allows the UAV to be flown into walls. With intelligent

design of the CoG the unit also self rights when on the floor and self right if it has

rolled across the floor. The UAV is completely tele-operated and is flown manually

by an operator. This is achievable as most in-flight collisions during the mission are

not a danger to the functionality of integrity of the UAV[63].
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Figure 3.26: Sphere Drone developed by the Japanese Ministry of Defence[64]
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Chapter 4

Architectural Design

Using the knowledge and information gathered in the Review of the State of the Art

in chapter 3 and the Requirements Capture from chapter 2 the architectural design

of the proposed UAV can be created. The architectural design refers to identifying

and detailing the sub-systems which will make up the UAV system, ensuring that

the sub-systems meet the requirements with minimal development and also function

in symbiosis with each other.

4.1 Robotic Platform

Following the earlier discussion in 3.1 regarding established and available flying

platforms, the multicopter style design was chosen over the others for the reasons

listed in table 4.1. Reliability and performance is paramount to any robotic platform,

it was therefore decided that the UAV would be developed using a commercially

available multicopter platform. The benefits being that a suitable and capable

platform could be acquired at the start of the project, along with the guarantee of

reliable controlled and flight electronics “out-of-the-box”.

There are numerous multicopter products available, with a mark-able split between

“hobbyist” products and more “fully commercial” solutions. “Fully commercial”

solutions such as Microdrone shown in figure 4.1a and DraganFlyer shown in figure

4.1b tend to offer products more suitable to aerial surveying and filming. They

are certified and have comprehensive end-user support, however all come at a cost
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(a) Microdrone MD4-200[65] (b) Draganflyer X6[66]

Figure 4.1: Examples of “fully commercial” multicopter solutions

of over £10,000. More “hobbyist” style multicopters with slightly lower levels of

functionality are available, generally sold as self-assembly kits at a fraction of the

cost.

After analysing the different options a HexaKopter designed and produced by HiSys-

tems GmbH was chosen as the development platform as shown in figure 3.5 on

page 19. The HexaKopter, with it’s six independent rotor and motor controllers,

offer a high lifting payload of approximately 2kg and a flight time greater than 10

minutes, longer flight times up to 25 minutes are possible with lighter payloads.

An added benefit of using more than four rotors is that there is the possibility of

redundancy, where the UAV can remain flying with a non-functioning or broken

rotor.

4.2 Autonomy

The reasoning behind automating the UAV was to simplify the operation of flying

it, to the extent that an inexperienced operator with minimal training could effi-

ciently use the UAV to complete a set mission. Manually flying a remote controlled

helicopter accurately (slightly less so with multicopters) is notoriously difficult and
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Classification Type Reasoning

Lighter-than-Air Blimps

Lighter-than-Air designs were disregarded due to
the large envelope size required to lift the

estimated sensor & battery payload (1.4kg [see
4.4]).

Other disadvantages include low manoeuvrability
and susceptiveness to wind/drafts, with the

benefit of being stable and safer as its inherently
buoyant. The estimated size of the envelope, if

modelled as a sphere would be in excess of 1.37m
diameter or if modelled as a blimp would be

2.58m long and 1m wide, as calculated in
Appendix A on page 186.

Fixed Wing N/A

FW designs were not considered, as it would be
both dangerous, difficult and inefficient to pilot an
aircraft large enough to lift the payload within the

limited space of the interiors of the buildings.

Rotary Wing
Helicopter

A helicopter, especially a contra-rotating style
design was considered and met the requirements
of slow speed flight and payload capacity (while

remaining compact). However, due to their
mechanical and dynamic complexity they fall

short on the ease of use and maintenance criteria
in the specification.

Multicopter

Much like the helicopter, but without the
mechanical complexity. Dynamic complexity (such

as rotor balancing) is also reduced as the craft
uses more albeit much smaller rotors, thus

reducing its effects.
Instead of mechanical complexity, multicopters

rely heavily on electronics and rate gyros to keep
stable, following the approach of configure and

forget, which allows for much simpler and robust
operation.

Another point of note, depending on the number
of rotors used, it is possible to achieve redundancy,
where the multicopter still is controllable after a

motor, motor-controller or rotor failure.

Table 4.1: Comparison of flying vehicles for use in the project
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the operator requires substantial training for it to be done safely. For the intended

application of this project, the UAV was to be flown indoors, in close proximity to

walls, with obstacles and with no line of sight to the operator. To manually fly the

UAV the operator would have to rely on on-board cameras to detect and avoid any

collision risks, keep the UAV in stable flight and fly the mission objectives. A task

which is extremely difficult without contacting any part of the structure, given the

reduced situational awareness given by first person view video systems.

The developed system is similar to a fly-by-wire system, where the operator may

have the illusion of control, however is actually behind a layer of abstraction. The

system monitors the on-board sensor data, allowing it to autonomously maintain

stable flight in a set position and avoid potential collisions while attempting to mimic

or interpret the control inputs given to it by the operator (see figure 4.2).

Processing

SLAM
UAV Flight Controller

On-Board

Server

Control System

On-Board Processes Ground Station

Operator’s

Laptop

Operator

Interface

Video

Goggles

Video

Receiver
Video

Transmitter

Video

Camera

Sensors

Range Data

Orientation

Height

Figure 4.2: A diagram showing the UAV system’s high-level architecture

4.3 Localisation - Contribution to Knowledge

To autonomously pilot the UAV and correct for unwanted drift it needs to be aware

of its current position and velocity in three-dimensional space. If the UAV were

to operate in outdoor environments a system based on INS backed up with GPS

to counter for drift would be a robust and easy to implement solution (see 3.3.1).

However, as the system is to be used indoors GPS is not a viable option. The
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requirements also state that no external devices, including beacons or (off-board)

sensors are to be used, limiting the localisation methods to relying solely on the

on-board sensors.

Given that the requirements state that the UAV should be capable of creating three-

dimensional models of the environment for post-flight analysis, SLAM (see 3.3.2.2)

would seem the obvious choice. Using SLAM would require no additional sensors to

the ones needed to build the models, minimising both the UAV’s complexity, mass

and cost.

The most lightweight and cost-effective solution to perform accurate mapping/SLAM

on a mobile robot is to use cameras as the primary sensor[67]. Due to the envir-

onment the UAV is required to operate in, where lighting conditions may be very

poor or completely unlit. The use of visual mapping/SLAM would require powerful

on-board lighting systems in order to sufficiently illuminate distant walls (which in

the chimney could be as far as 15 metres). Such a lighting system would be heavy

and consume a substantial amount of battery power. Also, due to the light source

being mounted on-board the UAV, as the UAV moves around inside the structure,

the lighting conditions and shadows would vary, making visual SLAM more difficult.

Therefore LiDAR based SLAM, although slightly heavier and more expensive, is the

better option for this particular application.

SLAM has a few major disadvantages, such as ensuring the robustness of the system

and its high processing requirements. As discussed earlier in Section 3.6, there

exist a number of similar projects which have chosen to use SLAM for positioning.

These projects however have overcome their processing limitations by either relaying

their data to a ground-station where more powerful computers can be used, making

assumptions about the environment they occupy and/or having access to a prebuilt

map of the structure [68].

These methods are not suitable for this project, the geometry of the intended en-

vironment will vary between missions and may be used in largely “unknown” en-

vironments. Furthermore, due to the design of the structures, which are generally
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heavily reinforced, radio shadows may form within the UAVs operating area. If the

UAV were to rely on relaying the sensor data for processing, any loss of two way

communication would result in the UAV flying “blind” potentially in a runaway

state.

No commercial solutions or literature were found detailing a LiDAR based SLAM al-

gorithm or approach which could overcome these limitations. Therefore a large por-

tion of this project was spent on solving the novel problem of creating an algorithm

which functions in three-dimensions, doesn’t rely on pre-programmed features and

can function solely on the on-board computer of a computationally constrained UAV,

discussed in-depth later in 5.4 on page 89.

4.4 Sensors & Processing

Choosing the correct sensors is a vital component when building a mobile robot and

is generally an iterative process, which is difficult to convey in an easy to follow

succinct manner. The sensors being used on-board the UAV are listed in Table

4.2 and are influenced by the technologies available (summarised in Section 3.2 on

page 22), their successful use in similar projects (see Section 3.5 on page 46) and

various manufacturer recommendations.

These sensors were chosen as they offer a minimal and low-weight solution to per-

forming LiDAR based SLAM. The LiDAR (Hokuyo UTM-30LX) was chosen over

other manufacturers due to its low-weight, suitable measurement range and scan

speed, the UTM-30LX has also been successfully used in a range of UAV and UGVs

applications.

An orientation sensor was required to measure the pitch and roll of the UAV and to

compensate for the resulting tilting of the LiDAR’s planar view. The chosen XSens

orientation sensor has been integrated into both civil and military applications with
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its key benefits being high-quality pre-calibrated sensor data. The sensor also pro-

cesses all the raw data internally, outputting only the final calibrated orientation and

acceleration values thus lowering the processing demands on the UAV’s on-board

computer along with development time.

The altimeter (MPX 4115A) is a standard component mounted and integrated into

the MikroKopter platform’s flight-controller. Testing showed that it offered suitable

performance and thus was not changed. The SoNAR (SRF02) digitally calculates

the range values on-board the unit, requiring less processing by the UAV’s on-

board computer and it was chosen based on its performance in the author’s previous

projects.

At the start of the project the smallest, lightest and most powerful x86 based

computer found was the newly released Kontron pITX-SP. More powerful ARM

based devices such as smart-phones were emerging, however the x86 architecture

was chosen for better driver and application support.

Finally, the Go-Pro camera was chosen as it offered a light-weight solution to ob-

taining on-board locally recorded High-Definition 1080p footage or higher resolution

still images taken at intervals. It also supports simultaneous lower-resolution pre-

viewing which allows the same camera to be used for the operator’s transmitted

video feed.
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Device Mass Model Use

LiDAR 290g
Hokuyo

UTM-30LX

A high performance,
two-dimensional low-weight

LiDAR scanner (30metres range
1080points @ 40Hz).

Orientation 65g XSens MTi
To correct UAV angular pose

and detect tilt of LiDAR
scanner.

SoNAR ∼5g
Devantech

SRF02

For detecting height of UAV
when close to the ground

(<6 – 7m)

Altimeter ∼5g
Freescale MPX

4115A

Pressure sensor for detecting the
height of the UAV when out of

SoNAR range.

Camera 190g GoPro Hero 2
Video feed for operator and
acquires images/video for

post-mission analysis.

Computer 175g
Kontron
pITX-SP

Computer for on-board
processing (1.6GHz Intel Atom,

2Gb RAM, 8Gb Storage)

Table 4.2: Sensors and computer used on-board the UAV
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Chapter 5

Sub-System Design

The following chapter aims to give a detailed explanation of the developed al-

gorithms, systems and resulting UAV (shown in figure 5.1). Given the limited

time available for the project to research, develop and build a solution a number of

design philosophies were adhered to throughout the project. Firstly, the emphasis

was on designing the UAV using established commercial equipment where possible

rather than attempting to re-invent the wheel for the sake of reducing costs. Once a

prototype had been built and verified, bespoke equipment could be developed once

the exact requirements were known. Secondly, to aid rapid development, testing,

debugging and with a view to the potential future commercialisation of the UAV,

an emphasis on keeping the whole system and software as simple as possible was

maintained throughout.

5.1 System Overview

Given the ease of use and autonomy requirements issued by Sellafield (see Chapter

2), it was decided that the UAV should implement a low-level assisted autonomy

control approach (see Table 3.2 on page 45). More specifically, the UAV should

autonomously be responsible for stable flight, collision detection and overall safe

operation. The operator’s job was then shifted towards instructing the UAV where

to move to and what specifically to inspect, which enabled an operator with little or

no training and experience to successfully and safely carry out inspection missions.
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Figure 5.1: The built UAV. Image courtesy of Wired UK [69]
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The developed system can be split into four distinct physical sub-systems, namely

the UAV platform, sensors, processing and autonomy and the ground station, all of

which is discussed in detail in the following sections.

5.2 The UAV

It was decided early in the project that Commercial Off-The-Shelf (COTS) solutions

should be used wherever possible to enable rapid development of a robust prototype.

The process of developing and building bespoke UAV and sensor systems is both a

difficult and intricate process and requires a substantial development cycle and is

out of the scope of this project.

A potential disadvantage of using COTS is the loss of flexibility of the device. These

devices are usually sold as a “black box”, meaning that the exact function of the

device may be unknown, only that it should conform with the associated data-

sheets. It is often the case that COTS devices cannot be modified to suit particular

tasks, instead a device needs to be found which best conforms to the intended end

application, usually giving rise to compromises.

A significant advantage, however, is that COTS devices usually are readily available

and are consistent between devices. In the event of damage to a device a new one

can rapidly be purchased and fitted, with the expectation that the replacement

will function much like its predecessor. This is not always easily achieved using

early-stage prototype electronics.

5.2.1 Modifications to the Hexakopter Platform

As mentioned earlier in 4.1 on page 60 a Hexakopter designed and produced by

HiSystems GmbH was chosen as the flying base platform. The Hexakopter is a

commercially available multicopter platform sold as a kit for primarily hobbyist or
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low-budget commercial uses. The kit shown in figure 5.2 on the next page contains

all the required electronics, motors and other mechanical components to build the

HexaKopter platform.

No significant modifications have been made to the HexaKopter platform or its con-

trol systems, these still remain as manufactured. However, a few slight modifications

have been made to allow the sensors and devices to be mounted onto the platform,

including the addition of two high-power three watt LEDs to help illuminate the

environment in low-light conditions, shown in figure 5.3.

5.2.2 On-Board Sensors and Devices

Sensor placement and mounting is a critical aspect of UAV design, ensuring that the

sensor has an un-obstructed view while remaining within Centre of Gravity (CoG)

or weight constraints of the UAV platform. The inherent design of multicopters

simplifies this task as the primary mounting point clear from the rotors also happens

to be the lateral CoG. This means that sensors and devices can be easily mounted

below and above the rotor line, while remaining within CoG limits. Although, for

added stability, the heaviest devices should be placed below the rotor-line to increase

the pendulum stability of the UAV.

Figure 5.4 shows the mounting positions of the various devices and sensors on the

UAV as listed Table 4.2 on page 67. The devices can be split into the upper and

lower device stack according to their location relative to the vertical rotor-line of

the UAV.

5.2.2.1 Upper Device Stack

The upper device stack, shown in figure 5.5 “houses” the Hokuyo LiDAR and XSens

IMU and is mounted directly above the HexaKopter’s flight controller, conveniently

offering a similar footprint to the attached devices.
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(a) The HexaKopter kit

(b) Partially assembled HexaKopter

Figure 5.2: Building the Hexakopter platform
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Figure 5.3: Photo showing the lighting attached to the UAV.
White “headlights” to improve camera lighting.
Red and Blue strip light to improve directional visibility during testing.

Being one of the heavier sensors, the LiDAR should preferably, from a CoG per-

spective, be placed below the rotor-line. However, if the LiDAR were to be mounted

below the rotor-line problems would arise with the landing legs obscuring the scan-

line, causing blind spots. Instead the LiDAR was placed at the top of the upper

device stack, free from obstructions and potentially slack cables.

The IMU is less particular about its placement, however there are three factors

which can degrade performance:-

1. Magnetic interference

2. Vibration

3. Off-axis acceleration

Magnetic interference causes the internal magnetometers to misread leading primar-

ily to erroneous heading data. This can be reduced by distancing the IMU from the

motors or other high current devices such as the batteries or motor controllers.
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Figure 5.4: A diagram showing the mounting locations of the on-board devices
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Heavy vibration will cause degraded performance for both linear and rotary acceler-

ometers and should be dampened whenever possible. Unfortunately powered UAV’s,

especially rotorcraft, commonly have high levels of vibration from the rotors and

motors. To reduce the vibration and possible shock impacts from less than perfect

landings both the upper and lower device stacks are mounted on rubber dampeners,

offering some limited protection.

Off-axis acceleration is caused when the accelerometer is placed away from the centre

of rotation while the UAV pitches, rolls or yaws. Due to the lateral offset any

rotational movement will induce not only a measured rotational but also a lateral

acceleration. To lessen these seemingly erroneous readings, the IMU should be

placed as close to the centre of rotation (usually near the CoG) of the UAV as

possible.

Taking the above into account it was decided that the IMU should be placed in

the upper stack, below the LiDAR. This is the nearest the IMU could be placed to

the CoG without mounting it directly beside the motor controllers and high current

circuitry, potentially causing disruptive electro-magnetic fields.

5.2.2.2 Lower Device Stack

The lower device stack, shown in figure 5.6, contains the remainder of the on-board

devices including a GoPro camera, LiPo battery pack, computer, SoNAR and the

Power Regulation and HexaKopter Interface board (described in 5.2.2.3).
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Figure 5.5: The upper device stack on-board the HexaKopter, holding the LiDAR
and IMU, mounted above the HexaKopter’s flight controller.
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Figure 5.6: The lower device stack on-board the HexaKopter. Holding the battery,
computer, power regulation PCB and camera.

5.2.2.3 Power Regulation and HexaKopter Interface

Figure 5.7 shows the only “project custom” electronics used on the UAV. Its purpose

is threefold:-

Power Regulation The sensors and devices added to the UAV require a stable

electricity supply at a specific voltage. The computer, XSens, ultrasound and re-

ceiver circuitry requires 5volt - the LiDAR and video transmitter, however, operates

at 12volt meaning that two voltage converters were used, stepping from the LiPo

battery’s rated 14.8v to the required voltages, while smoothing spikes caused by

sudden power draw from the motors.

SoNAR The downwards facing SoNAR (centre of the image) was attached to the

board primarily because it is the lowest point of the UAV with an unobstructed
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view downwards. The SoNAR was connected to the computer via the leftmost USB

to Serial converter in figure 5.7a.

The Hexakopter Interface and Safety Controller This circuit is based on

an Atmel 2313 microcontroller which has been programmed to convert commands

sent to it from the PC into a Pulse Width Modulated (PWM) style signal, which

is then interpreted by the HexaKopters propriatory flight-controller. It also serves

a crucial role in safety during testing, as it interfaces with a standard model RC

receiver enabling a “safety pilot” to take control if necessary, as described in 5.5.5

on page 113.

5.2.3 Cost

One of the objectives of the project was to develop the UAV while keeping the unit

cost below £10,000. The sensors and systems currently in use on the UAV are

listed in table 5.1, and demonstrates that the proposed system design is well within

budget.

There are a number of items not included in the table, that are, however, vital for

the UAV’s functions. These include the WiFi router and video receiver. Their cost

is not included as they are part of the ground-station, and their reuse can mostly

be guaranteed even in the event of a loss of the UAV.

Device Approximate unit cost at time of order (Ex-VAT) Year of Purchase

LiDAR £3223.00 2009

HexaKopter £1963.00 2012

XSens £1300.00 2009

GoPro £268.73 2012

Computer £257.00 2009

Antennas £98.49 2010

Powerboard £76.22 2009

SoNAR £9.99 2009

Total ∼£7196.43 N/A

Table 5.1: Breakdown of the cost of parts used on-board the UAV
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(a) The protoboard design

12v Regulator

5v Regulator

USB-Serial

Converter

USB-Serial

Converter

Battery

USB 

from

PC

SoNAR

UAV

Interface

Safety 

RC Receiver

UAV

LiDAR

Video TX

PC

PWM

(b) Flow diagram of the board’s functions

Figure 5.7: The custom board holding the power regulators, downwards facing
SoNAR and safety circuit.
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5.3 On-Board Processing and Control

An abbreviated flow-diagram showing the functions and processes running on the on-

board computer is shown in figure 5.8. This section aims to describe the functionality

of each of the processes listed within the flow-diagram, except for the sensors and

UAV control interface which have already been discussed in 5.2.2.

5.3.1 Localisation

See 5.4 on page 89 for an in-depth explanation of the developed localisation al-

gorithm.

5.3.2 Collision Avoidance

The collision avoidance algorithm presently in use is a simple reactive collision detec-

tion algorithm originally designed by the Warwick Mobile Robotics Search & Rescue

project in 2008[70]. The affectionately named PieEye algorithm gathers data from

various range sensors, calculates the average distance in each slice, and monitors

each slice for any incursion between the average distance and the predetermined

severity levels (shown in figure. 5.9).

If a severity level is found to be breached, the algorithm finds the largest detectable

open area and notifies the UAV’s path planner and control logic of the possible

collision risk. As the object gets closer to the UAV further severity levels will be

activated resulting in a more aggressive counter-motion being sent to the control

system.

At present the first severity level is set at 1.5m from the centre of the UAV. The

PieEye algorithm directly influences the angular control logic as opposed to the

positional control. This allows for basic obstacle avoidance even in the event of

the localisation algorithm or associated sensors malfunction. Once the UAV has
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Figure 5.8: An abbreviated flow-diagram showing the processes on-board the UAV
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Figure 5.9: Diagram of a 31 slice PieEye implementation with five severity levels[70]

cleared the obstacle and is no longer considered a threat, control is returned to the

positional control logic and a new position waypoint is set to the current position to

minimise the chance of the UAV trying to the return to the position of the collision.

5.3.3 Control Theory

Knowing the location of the UAV and knowing where it should be going is only the

start of the larger challenge of actually flying the UAV. Flying machines generally

have many non-linear dynamics acting on them and the control inputs can have

variable effectiveness depending on a large number of factors. This is one of the

reasons why helicopters are particularly difficult to fly.

One of the primary motives for purchasing a commercial UAV platform was that the

dynamics to some extent were solved internally on the UAV’s flight controller, mean-

ing that any commands sent to the UAV would result in a positive and commanded

movement. This would allow the UAV’s flight controller to monitor the UAV’s pose

and subsequently vary the individual motor speeds to keep the commanded orient-

ation as best as possible without additional sensors or algorithms (axes defined in

Figure 5.10). The on-board computer and its algorithms could then concentrate

82



CHAPTER 5. SUB-SYSTEM DESIGN

Figure 5.10: Definition of axes on the UAV

on the “low-speed” dynamics, such as hovering in a set location or transversing the

environment at a set velocity.

There are a number of projects, which are researching the challenge of solving the

dynamics of an indoor UAV platform, as briefly discussed in 3.6 on page 55 and it

has to a large extent been solved. Implementing their designs, however, takes con-

siderable knowledge and skill within the control theory field and is out of the scope

of this research project, which is primarily focusing on investigating and developing

a suitable method for on-board indoor localisation.

For this work, a non-model based control system was used as the system stability

and dynamics have yet to be characterised and modelled, which limits the use of

more advanced control methods, such as “Feed Forward” techniques. Instead the

UAV is temporarily relying on simple Proportional Integral Derivative (PID) control

until a more intelligent control strategy can be fully implemented. Simple PID

control has been proven to function on similar UAV setups [12].
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The UAV utilises three separate PID controllers to control the UAV, namely - pos-

itional, angular and height, as discussed in the following three sub-sections. Given

the lack of a mathematical model of the built UAV, and that creating and verifying

one is very time consuming, made simulating the UAV impractical. Instead the

PID gains were iteratively tuned through real-world flight testing. By logging the

individual P, I and D terms during short flights it was possible to selectively tune

the gain values resulting in stable, although not optimised, PID control.

5.3.3.1 “Height” PID loop

The “height” PID loop controls the throttle, which primarily affects the vertical

speed of the UAV. It is the simplest PID controller in that it only takes its inform-

ation from a single source, the SoNAR sensor, and the set-point from the motion-

planner in the server application. To prevent spurious throttle changes the SoNAR

data is filtered and the output of the PID loop is capped to a certain range of values.

5.3.3.2 “Angular” PID loop

Although the HexaKopter’s internal flight controller handles the fast dynamics of the

UAV, the interface between the PC and the HexaKopter platform is analogue and

arbitrary. This means that an angular position can easily be commanded, but the

actual angle achieved can vary due to many environmental and internal influences.

For this reason an “angular” PID loop is used, which takes the high accuracy roll,

pitch and heading data from the XSens IMU and enables the UAV to be flown

accurately and consistently to a set angular position.

5.3.3.3 “Positional” PID loop

The “positional” PID loop takes data from the localisation algorithm and the velo-

city estimator (fixed-frame co-ordinates from the take-off position and orientation)
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and outputs a target angle for the UAV, fed into the “angular” PID.

The primary component of the “positional” PID is a PID loop centred on controlling

the UAV’s velocity, the reason being the compatibility between the way in which a

PID loop operates and the way in which a rotary wing craft flies. An ideal rotary

wing craft, when level, will not accelerate and will maintain its current velocity,

only varying when a bank/pitch angle is applied. In order to fly to a position the

UAV first needs to be accelerated towards the target setpoint, and then needs to

decelerate to stop perfectly at the desired point.

If a solely positional PID is used, then the UAV will always overshoot the target

setpoint. This is due to the fact, that the PID’s output will be “zero’ed” around the

setpoint, meaning, if the output is the angular orientation, that the UAV will only

start decelerating once it has overshot the target, due to the non-linearity between

position and requested angle.

The design of the “positional” PID loop through the testing phases of the project

is a fusion of a PID and a PI loop, PID for velocity and a PI loop for positioning.

Due to position being the integral of velocity the control system can be visualised

as a P (I + I2)D loop shown in full in eqn. 5.1.

u(t) = Kp[V el(τ)] + Kd[Acc(τ)] + Ki[Pos(τ)] + Kii

τ
ˆ

0

[Pos(τ)]dτ (5.1)

Where:-

Kp, Kd, Ki and Kii are the gain constants and u(t) is the output of the PID as the

UAV’s desired angle in either roll or pitch.

Acc is the error between the acceleration measured by the IMU and requested by

the motion planner

V el is the error between the velocity calculated by the velocity estimator (see 5.3.4)

and the requested velocity by the motion planner.

Pos is the error between the blended position from the velocity estimator (see 5.3.4)
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and the localisation algorithm (see 5.4), and the position requested by the motion

planner.

5.3.4 Position and Velocity Estimator

The localisation algorithm is not ideal and will have errors in its position measure-

ments, which, when differentiated to calculate the current velocity, can introduce

significant high-frequency noise, shown in 6.3 on page 123. A common solution to

this problem is to perform data fusion between the IMU and the localisation al-

gorithm. As discussed earlier in the feasibility section regarding INS ( 3.3.2.1 on

page 40), inertial navigation suffers from drift caused by, amongst other things,

bias in the accelerometers. Due to the acceleration being double integrated when

calculating position, large errors can accumulate quickly.

This drift can be minimal if the absolute positions calculated by the localisation

algorithm are used to correct the integral error. The benefit of this is two-fold,

the control algorithms benefit from getting positional and velocity updates at the

rate of the much faster IMU as opposed to the slower localisation algorithm, as

PID control requires that the sampling rate and system dynamics meet the Nyquist

frequency criteria in-order to function correctly (where the sample rate is at least

double of the signal being controlled to prevent aliasing[71]) . Additionally, there is

a delay when collecting the LiDAR data, processing and determining the location,

a characteristic that can be significantly reduced by allowing the IMU to estimate

the current position. Meanwhile the localisation algorithm is used to correct drift

on stored past data.

5.3.5 Motion Planner

The role of the motion planner is to aid the control logic interpolating all position

instructions to avoid step inputs that may introduce instability into the PID con-

trollers (5.3.3). To provide additional stability and to minimise overshoot in the
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PID controllers the velocity of the interpolated positions are ramped both up and

down using predefined constants.

The motion planner is pre-programmed with a maximum velocity, ramp-up and

ramp-down accelerations. When a new position is requested the motion planner

uses the equations given below.

Given the constants:-

• Maximum velocity:V max = 0.5m/s

• Ramp-up time:Tru

(

↑V max
0m/s

)

= 5seconds

• Ramp-down time: Trd

(

↓0m/s
V max

)

= 5seconds

• Ramp-up acceleration: Aru = Vmax

Tru

• Ramp-down acceleration: Ard = Vmax

Trd

The variables:-

• Distance to final position:Dxy

• Current velocity of the UAV: Uxy

• tru, tcruise and trd are the calculated respective ramp-up, cruise and ramp-

down times needed to complete the motion.

• Dru, Dcruise and Drd are the calculated respective ramp-up, cruise and ramp-

down distances needed to complete the motion.

For a large Dxy where V max can be reached the timings are calculated by:-

tru =
Uxy − V max

Aru
(5.2)

trd = Trd (5.3)
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Dru = Uxytru + 0.5Arut2

ru (5.4)

Drd = UxyTrd − 0.5ArdT 2

rd (5.5)

Dxy = Dru + Dcruise + Drd (5.6)

Therefore to calculate tcruise:

tcruise =
Dxy −Dru −Drd

Vmax
(5.7)

Thus the ramped and interpolated position can be given as:

Dtarget =















































Uxyt + 0.5Arut2 t < tru

Dru + Vmax (t− tru) tru < t <
←−−→
tcruise

Dru + Dcruise + Uxy

(

t−←−−→tcruise

)

− 0.5Ard

(

t−←−−→tcruise

)

2 ←−−→
tcruise < t < ttotal

Dxy Otherwise

(5.8)

Where:
←−−→
tcruise = tru + tcruise & ttotal = tru + tcruise + trd

For small motions it may not be possible to reach V max given the ramp-up and

ramp-down constraints. In this case the motion planner ignores the cruise stage and

calculates a partial ramp-up and ramp-down scenario. As V max cannot be reached

Eqn. 5.2 gains an unknown and the assumption of Eqn. 5.3 is no longer valid. A

different method of obtaining tru and trd needs to be used. Given the assumption

tcruise = 0 ∴ Dcruise = 0 and that the ramp-up and ramp-down time constants are

equal such that Trd = Tru ∴ Aramp = Ard = Aru, Eqn. 5.4 – 5.6 can be rearranged

to:-

tru =

√
2
√

A2
ramp(2ArampDxy + U2

xy)− 2ArampUxy

2A2
ramp

(5.9)

trd =
Uxy + Aramptru

Aramp
(5.10)
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5.3.6 Error Handling

Error handling is an important aspect in all software, especially mission critical soft-

ware such as the software on-board the Hexakopter. The error detection capabilities

of the Hexakopter can be split into two categories, passive and active. A “passive”

error is captured by the individual classes in the code, where an error report is

submitted to the error handler and the class tries its best to solve the problem in-

ternally. An “active” error is, for instance, where a sensor or mission critical task

simply stops responding. After a specified elapsed time the error handler will re-

initiate the thread or sensor and notify dependant classes. This is detected through

the use of an extensive watchdog system, where each critical class has to report

to the error handler as part of its normal operation to prove that it is functioning

correctly.

The unfortunate scenario on the Hexakopter is that at present, due to weight and

size restrictions, there are no redundant sensors (except height to a degree). When

a sensor drop-out is detected, depending on the sensor or thread that has stopped

working, the error handler has pre-programmed responses and failure modes to try

and best recover control, as described in Table 5.2. Notifications of all detected

errors are sent to the operator to aid with situational awareness, which is further

explained in Section 5.5.1.

5.4 On-board Localisation

In continuation of the systems outline in 4.3 of the Architectural Design chapter,

this section describes, in-detail, the developed localisation algorithm, its known

limitations and strategies put in place to avoid them.

There are many existing base algorithms which can be used to enable the robot to

perform SLAM, as discussed in 3.3.2.2 on page 41 of the Review of the State of the

Art chapter. Base algorithms are tried and tested algorithms, however, they are
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Type of error Immediate response Secondary action

Ultrasound
Timeout

Set throttle to slightly below raw
hover to prevent runaway and

establishes a controlled descent.

Clear port connections and
attempt to reinitialise sensor

device class then notify operator

IMU Timeout Set raw hover pitch, roll and yaw
trim (should level Hexakopter to

avoid further lateral
acceleration)

Clear port connections and
attempt to reinitialise sensor

device class then notify operator

LiDAR Timeout Clear port connections and
attempt to re-initialise sensor

device class

Notify operator

Localisation
Error

Switch to INS localisation only. If mapping is not restored within
a few seconds, the old map is
discarded and a new map is

created.

Table 5.2: Error recovery responses for critical processes

often built for different projects or environments, thus not optimised nor tested for

the required new task. In line with the UAV’s requirements that it should be able

to operate in an unknown environment without re-configuration or learning, a base

algorithm was chosen, which doesn’t rely on landmark/feature detection. One such

algorithm is the popular Iterative Closest Point (ICP) algorithm[39, 40, 41, 72].

5.4.1 The Iterative Closest Point Algorithm

The ICP algorithm, although not the most modern, has a few significant advantages

towards the application of the project. Firstly, the algorithm functions on unpro-

cessed point-cloud data, meaning that the raw LiDAR sensor data can be used

without the need for further processing. Secondly its simplicity allows for rapid

implementation and modification compared to more complex probabilistic methods

generally developed and maintained by large research groups.

The ICP algorithm was initially developed to register three-dimensional point clouds.

Registration being the process of determining the transformation and rotation offset

between two point-cloud datasets, determining their relation in space.
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5.4.1.1 Principles of Operation

ICP is, as the name suggests, an iterative algorithm requiring many passes to fully re-

gister or “align” the two datasets. Unlike some probabilistic registration algorithms

ICP requires the two point-clouds to be in the approximately correct orientation

and location allowing the algorithm to fine-tune it’s position as opposed to seeking

and matching from an expansive dataset.

Algorithm 5.11 shows an implementation of the ICP algorithm, which can be split

into the following steps[73, 74]:-

1. Firstly, the two point-clouds are compared and the nearest neighbour of each of

the scan/model points (mi) is found in the map dataset (di) and the respective

mean distances cm,cd are calculated using:.

cm =
1

N

N
∑

i=1

mi cd =
1

N

N
∑

i=1

di (5.11)

2. To converge the two point-clouds both the translation and rotation needs to be

estimated. There exists a number of ways to calculate the rotation matrix (R),

such as through singular value decomposition (SVD), orthogonal matrices and

unit quaternions[74]. When solving the rotation through SVD the rotation

can be calculated using R = V UT where V and U are derived from the SVD

H = UΛV T , where H is a correlation matrix calculated from:

H =
N

∑

i=1

m′T
i d′

i (5.12)

where m′

i = mi − cm and d′

i = di − cd

3. Given the rotation matrix (R) calculated above the translation (t) can then

be found through a least squares solution using t = cm −Rcd .

E(R, t) =
Nm
∑

i=1

Nd
∑

j=1

ωi,j

∥

∥

∥mi − (Rd̂j + t̂)
∥

∥

∥

2

(5.13)
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4. The error function is then calculated, equation 5.13 can be simplified to:

E(R, t) =
1

N

N
∑

i=1

‖mi − (Rdi + t)‖2 (5.14)

given that:

N =
Nm
∑

i=1

Nd
∑

j=1

sgn ωi,j (5.15)

Through comparing the error function with the previous iteration

‖Ei−1(R, t)− Ei(R, t)‖ the improvement of the applied transformation can

be gauged. If the error falls below a threshold or if the maximum amount of

iterations are reached then the iterative loop is broken and the two datasets

are considered aligned, otherwise another iterative step is performed (goto 1).

5.4.1.2 Limitations

Fundamentally there are a number or limitations to the ICP algorithm, which can

cause erroneous point-cloud registrations. Although the basic algorithm given above

has been proven to minimise the error function, it cannot detect whether the calcu-

lated solution is a local or global minima. Errors in the point pairing process is also

one of the reasons why the ICP algorithm is required to be iterative, rarely giving a

correct “one-shot” solution. Figure 5.12 shows the inherent difference between true

point-pairing (Figure 5.12a), and a nearest neighbour search (Fig 5.12b).

5.4.2 Nearest Neighbour Searches

The most computationally intensive step of the ICP algorithm is determining the

Nearest Neighbour (NN) of each of the points in the dataset. In order to get the

algorithm to function on a computationally contained UAV the nearest neighbour

search, a “brute force” approach to finding the points, cannot be used. Instead

optimised spatial sorting methods need to be used, such as Octree and Kd-Tree

algorithms.
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Iterative Stage

Nearest Neighbour Search

Calculate Translation

Find Initial Error

Delta Error less than

threshold?

No

Yes Yes

No

Wait for new LiDAR data

Scan Match Successful

Report New Position

Start

Calculate Rotation

Calculate Error Function

Maximum iterations

reached?

[Optional]

Add Points to World Map

Figure 5.11: Flow diagram of the ICP algorithm as described by[74]
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Pointcloud A

Pointcloud B

Distance

(a) Ideal, correctly assigned point-pairs

Pointcloud A

Pointcloud B

Distance

(b) Typical output from a nearest neighbour search

Figure 5.12: Errors introduced during point-pairing/nearest neighbour searches
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5.4.2.1 Brute Force Search

A brute force search or exhaustive search is a sorting algorithm, which searches every

possible combination before returning an answer. The advantages are, that the data

does not require prior sorting or tagging and is easy to implement. However, the

search is very inefficient, as each search requires that each datapoint in the whole

dataset is inspected for every point in the model dataset, thus rapidly becoming

unwieldy for larger datasets.

5.4.2.2 Octree

The octree approach is a significant improvement over the brute force search, in

essence providing a structure to the dataset allowing for rapid exclusion of data-

points. As shown in Figure 5.13 the dataset is stored in a hierarchical tree structure,

where each node has eight children, which are spatially distributed as an evenly

subdivided cube. The nodes at the lowest layer of the tree hold their respective

data-points located within their bounds and a fixed number of layers are used,

generally chosen to optimally represent the intended dataset [75].

Data is retrieved through recursively checking which of the eight nodes the requested

co-ordinates exist in, until the lowest layer is reached and nearest node with data-

points are found. Depending on the number of layers used and thus the grid size

of the lowest layer, it may contain multiple data-points. These data-points, which

are a small subset of the original data set, can then be realistically searched using,

for-instance, the brute force algorithm.

When the new points are added to the dataset each point has to transverse the tree

to find their respective low-level layer node, which for each additional layer adds

further processing overheads, but results in a smaller “bin” for subsequent brute

force searches.
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Figure 5.13: Subdivision structure of an Octree[76]

5.4.2.3 Kd-Tree

Kd-Trees, much like the Octree, utilises a binary tree structure to manage the data-

set. However, unlike the Octree, where each node is a section of the parent’s spatial

bounds, the Kd-Tree operates on the principle that the individual points in the

dataset determine the subdivisions, and all points are assigned an individual node

on the tree structure.

Figure 5.14a shows the segmentation of a simple two-dimensional dataset with the

resulting tree structure shown in Figure 5.14b. Firstly, an initial point is chosen,

an intersection is made in the x-axis forming the first node and the second node is

split using a greater-than/less-than criteria given its relative x-axis location of the

intersection. For the second intersection a different axis is used, in this case the

y-axis. This method is repeated until all points are assigned nodes.

5.4.2.4 Approximate Nearest Neighbour Search

A significant performance gain can be achieved if the application allows the use of

an Approximate Nearest Neighbour (ANN) as opposed to the absolute/true nearest

neighbour. Searching for an approximate nearest neighbour allows the search al-

gorithm to utilise optimisation algorithms to rapidly guess the location of a nearby
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(a) Two-dimensional representation of the structure of the tree[77]

(b) The resulting tree structure[77]

Figure 5.14: Structure of a basic two dimensional Kd-Tree
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point, which may not always be the absolute closest neighbour. The tolerance of

this can be set in the algorithms parameters.

A popular ANN solution is the Fast Library for Approximate Nearest Neighbour

(FLANN)[78]. FLANN is a library composed of a collection of nearest neighbour

search algorithms, developed to be easily implemented into existing software. It

also automatically structures the data into an optimised Kd-Tree, requiring only to

be sent the initial unstructured dataset and any subsequent new points for it to

function.

5.4.3 The Developed SLAM Algorithm

During the course of the project the on-board SLAM algorithm has undergone many

iterations, with the objective of achieving accurate, robust and rapid real-time loc-

alisation of the robot within an unknown, unstructured and potentially cluttered

environment on-board a computationally constrained UAV. The algorithm is based

on the ICP method for scan-matching (the process of matching a LiDAR scan with a

world point-cloud), utilising FLANN for fast nearest neighbour searches along with

a number of application specific optimisations, all of which are further explained in

5.4.3.1.

The developed SLAM algorithm is novel and unique, in that no other UAV found in

literature is capable of real-time, on-board, fully three-dimensional, LiDAR based

SLAM, which can operate in an unknown and unstructured environment. Similar

combinations of ICP and approximate nearest neighbour based algorithms have been

successfully deployed on UGVs to explore and map unknown environments[79, 80],

however, this has not been transferred and solved for an indoor UAV solution as

proposed herein.
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5.4.3.1 Principles of Operation

As shown in the analysis of the SLAM algorithm in section 6.4 on page 125 of the

Sub-System Testing chapter, the three most processor intensive tasks of the basic

ICP algorithm are primarily the nearest neighbour search, calculating the error

function followed by the function calculating the rotational offset.

Due to the limited amount of processing power available on the UAV the algorithm

has been modified to minimise and optimise these tasks as far as possible. These

are the four major modifications and optimisations, which have been applied to the

basic ICP SLAM algorithm:-

1. The use of an approximate nearest neighbour search, FLANN, to lower the

processing requirements and hence speed-up each iteration.

2. Reduction of the number of points used from each LiDAR scan. Fewer points

require less processing and result in a less dense world map which requires less

memory.

3. Removal of the error function from the iterative part of the algorithm, instead

relying more on a before and after scan-matching error metric.

4. Removal of the function which calculates the best rotational fit. Instead relying

solely on sensor data to detect rotation, only using the SLAM algorithm to

effectively calculate lateral translation. This also helps to reduce the time

taken for each iteration of the ICP algorithm.

Rarely can significant performance gains be made without compromises. Applying

the above modifications has given rise to a number of limitations, which are fully

explained later in 5.4.3.2.

The core functionality of the developed algorithm is shown in Figure 5.15, and fully

listed in Appendix B on page 189. The core algorithm functions in much the same
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way as the initial ICP algorithm shown in 5.4.1.1 on page 91, with a few significant

modifications.

The developed algorithm can be described in a similar way to that of the original

ICP algorithm in 5.4.1.1 on page 91 by the following steps:-

1. Firstly, the two point-clouds are compared and the nearest neighbour of each of

the scan/model points (mi) is found in the map dataset (di) and the respective

mean distances cm,cd are calculated using:

cm =
1

N

N
∑

i=1

mi cd =
1

N

N
∑

i=1

di (5.16)

2. Given that the rotation of the two point-clouds is corrected through the ori-

entation sensor only the translation needs to be corrected. This can be found

through using: t = cm − cd

3. Step 1 and 2 is performed for a set number of iterations, unless the translation

t is found to be erroneously large at which point the scan is discarded and the

algorithm waits for new data.

4. The error function is then calculated. Given the simplified error function

calculated earlier in Eqn. 5.14 and 5.15 on page 92:

E(R, t) =
1

N

N
∑

i=1

‖mi − (Rdi + t)‖2 N =
Nm
∑

i=1

Nd
∑

j=1

sgn ωi,j (5.17)

This can be simplified further given that the rotation matrix R is no longer

used:

E(t) =
1

N

N
∑

i=1

‖mi − (di + t)‖2 (5.18)

Instead of calculating the error function for each iteration the error is only

computed before and after the iterative stage. If the error suggests an in-

correctly aligned scan the algorithm skips the scan and waits for new data.
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Through using uniform weighting (ω) processing can be reduced further as N

will remain constant between scans.

5. If a significant movement is detected since the last update of the map dataset

(di), in this case ±0.2m height and 0.5m laterally, the aligned scan data (mi)

is added to the map dataset (di).

5.4.3.2 Limitations

The performance gains of the developed algorithm do, however, give rise to compromises:-

By using an approximate nearest neighbour search, as opposed to a true nearest

neighbour search, errors are introduced into the scan-matching process. Paramet-

ers can be set in the FLANN algorithm which can be used to specify the levels of

approximations used. More detailed searches can be made but at the cost of in-

creased computational time. Tests discussed in 6.4.3 on page 128 showed that the

error is acceptable for use in-flight, however for off-line processing, where detail and

accuracy is required, a true nearest neighbour search should be used.

Reducing the number of points used and stored during SLAM process significant

memory and performance gains are achieved. However, it will result in loss of

detail, adversely affecting the accuracy and robustness of the scan-matching process.

Through experimentation and testing shown in 6.4.2 on page 126 it was found that

not all of the 1080 points from the LiDAR scanner needed to be used. Instead it

found that similar and sufficient accuracy and robustness could be achieved through

using every fifth (216) points (for the likely environments that this UAV is to be

exposed to).

Removing the function which corrects for rotation considerably lowered the iterat-

ive processing time, however its complete removal is questionable. The developed
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Iterative Stage

Nearest Neighbour Search
!ndNearestPointsFLANN()

Calculate Translation
calcBestTranslation()

Find Initial Error
calcErrorFunction()

Iterations = maxIterations?
No

Yes

Distance moved >1m?

Yes

No

Apply Calculated Transform
applyTransform()

Calculate Resultant Error
calcErrorFunction()

Error Suggests Erroneous

Match?

Yes

No

Substantial Distance

 Moved?

Yes

No

Add Points to World Map
worldmap.addPoints(points)

Wait for new LiDAR data
(Orientation Corrected)

Scan Match Successful

Report New Position

Start

Figure 5.15: Flow diagram depicting the developed SLAM algorithm. For full list-
ings see Appendix B on page 189
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SLAM algorithm only solves translational drift and does not correct for any rota-

tional component, relying solely on accurate, drift free heading data from the IMU.

Accurate heading from the IMU, however, is not guaranteed and can be prone to

significant deviation (drifting) depending on the sensor used and its placement on

the UAV. If significant drift occurs, the integrity of the map will become comprom-

ised, causing localisations based on the previous map to be erroneous. As discussed

and demonstrated in both the sub-system testing (Section 6.1.2 on page 118) and

final flight tests (Chapter 7 on page 144), this did not pose a problem during testing.

However, if further development is planned, it may prove beneficial to implement

a periodic routine for checking the rotational alignment instead of blindly agreeing

with the IMU sensor data.

By moving the error function out of the iterative section of the algorithm and relying

on a before and after scan-matching comparison, it no longer becomes possible to

check whether each iteration is converging or diverging from a solution or determ-

ining whether further iterations are necessary. Instead a fixed number of iterations

are used, derived through testing to give the best compromise between convergence

and performance.

5.4.3.3 Post-Processed vs. Real-Time Mapping

As one of the requirements state that the data collected by the UAV should be

able to be produced into high-density point-clouds, which can later be used for

inspection, two versions of the proposed mapping algorithm exist. The real-time

maps are generated using the methods proposed above with the focus on high-

speed robust localisation. The point-cloud generated by this algorithm, although

sufficient for establishing navigational information, is not sufficient for inspection

purposes. Instead a modified version of the algorithm was developed, which analyses

the logged data through post-processing the data, both to more accurately verify

the assumptions made by the proposed algorithm but also to provide these highly

detailed point clouds.
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The offline mapping algorithm is identical at its core to the real-time algorithm,

however, as processing time is no longer restricted, the algorithm utilises every point

from each scan, uses octree optimisation instead of FLANN for increased accuracy

and functions on logged scan data (stored locally on-board the UAV during the

flight). The UAV’s logged data can also be exported to commercial grade point-

cloud registration software if needed and available. No such software was used in

the processing and development for the point-clouds shown in this thesis.

5.5 Ground Station

Shown in figure 5.16 is the complete ground station. The ground station comprises

of two distinct components - communication equipment for relaying data to and

from the operator station, which allows the operator to effectively control the UAV.

The communication equipment comprises of a two way data-link allowing digital

data to be transferred between the UAV and the operator station, discussed in 5.5.3

on page 111, and a separate real-time video feed discussed in 5.5.4 on page 112.

Although shown to be in close proximity in the photo, in reality the radio equipment

can be placed at a distance from the operator’s station through the use of a tether.

This allows the radio equipment to be placed inside the building being flown in

to allow for a clearer signal, while allowing the operator to keep their distance if

required.

The operator’s station comprises of the equipment available for the operator to

help maintain situational awareness and to send commands to the UAV. A laptop

is used as the primary source of information and control as discussed in 5.5.1 on

the following page and utilising a popular game controller for easy, intuitive control

(see 5.5.2 on page 110). The video feed is currently shown on a pair of video goggles

shown in the centre of figure 5.16. It can be displayed on a standard television if

more than one operator is required to see the footage.
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Figure 5.16: The ground-station. Showing the laptop, controller, WiFi router, video
receiver and goggles.

5.5.1 Graphical User Interface

The operator’s laptop runs custom software, also developed for this project, which is

used to interface with a server running on-board the UAV and display the necessary

information in an easy to interpret form to the operator. The designed Graphical

User Interface (GUI) is shown in figure 5.17. The GUI has been designed to al-

low fast dissemination of the UAV’s system status’, along with the rapid access to

commonly requested functions.

The GUI can be split into two distinct sections. The upper half showing primar-

ily the current position and orientation and the lower half showing more in depth

messaging.
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(a) Example screenshot of the GUI while in-flight

(b) Explanation of the various components of the GUI

Figure 5.17: The Graphical User Interface
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Figure 5.18: Enlarged version of figure 5.17a detailing the upper section of the GUI

107



CHAPTER 5. SUB-SYSTEM DESIGN

5.5.1.1 Upper Half of the GUI

Figure 5.18 shows a detailed view of the upper half of the GUI. The upper half is

designed to allow the operator to at-a-glance get full situational awareness of the

UAV’s present state, position and it’s target goals. This is achieved through the use

of a few “virtual” instruments (from left to right):-

1. An artificial horizon, updated with current data from the orientation sensor.

2. A slider both graphically and numerically displaying the current height of the

UAV, along with the target height overlaid in orange.

3. Three warnings lights, each with a unique colour/flashing combination notify-

ing the operator of detected failures and faults. If clicked it will highlight the

error on the lower half of the GUI (see 5.5.1.2). The three levels are: Warning,

a non critical process has encountered a problem. Error, a critical system has

encountered a problem. Fatal, a critical system has encountered a potentially

unrecoverable fault.

4. A top-down two-dimensional interactive zoomable map is used to display real-

time LiDAR data, heading orientation, “breadcrumb track” of previous move-

ment and the current target position. To allow for fast and easy navigation of

the UAV if the map is clicked, the software calculates the physical position of

the computer’s cursor in the UAV’s co-ordinate system and instructs the UAV

of its new waypoint. This allows the operator to essentially laterally navigate

the UAV through simply clicking on the “map”.

5.5.1.2 Lower Half of the GUI

The lower half of the GUI, shown in figure 5.19, is more of a secondary interface,

displaying current system status, debug information and a log of commands sent to

the UAV, as well as the option to manually type non-standard commands if required.
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Figure 5.19: Enlarged version of figure 5.17a detailing the lower section of the GUI
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The messenger system (left) displays all the messages generated by the various

classes and systems on-board the UAV and allows for rapid filtering of messages

either by “type of error” or by name. This allows the operator to stay informed in

detail about the specific status of the UAV in case an error or anomaly is detected.

The Robot Low Lag Connection (RLLC) was initially developed by the WMR

team[70]. The RLLC allows for the sending of commands from the robot through a

plain-text TCP/IP connection. This not only allows the operator to inspect the com-

mands being sent, but also manually type commands which may be non-standard

or not yet implemented into the GUI.

5.5.2 Game Controller

By using a dedicated game controller with a fixed layout for various commonly

used functions, it becomes possible for the operator to intuitively control the UAV

through haptics alone. This allows the operator to become visually immersed in

other tasks, such as monitoring the live video feed while still being in-control of the

UAV.

By moving the common functionality from the GUI to the game controller, the

GUI’s clutter and visual complexity can be reduced, further aiding the operator.

The operator’s interaction with the GUI has been reduced as far as possible due

to the concentration and time needed to issue instructions. For example, if a game

controller were not used and the operator was focusing on monitoring the video

feed, a simple instruction such as rotate would require the operator to look over to

the laptop, find the cursor, move the mouse to the required button, click and then

return his attention to the video feed, thus requiring a lapse of situational awareness

for each instruction. The use of a controller always-in-hand allows for a fast and

haptic method of sending these common commands without the need to break eye

contact.
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Figure 5.20: Layout of the Game Controller

The layout of the game controller is displayed in figure 5.20, which allows for ba-

sic control of the UAV. For “long distance” navigation where the UAV is clear of

obstacles, the use of the GUI’s point-and-click navigation, discussed in 5.5.1.1, is

encouraged. Although taking slightly longer to issue the instruction, a more precise

waypoint can be chosen with reference to the LiDAR data returned from the UAV.

5.5.3 Two-Way Data Communication

For ease of use and cost effectiveness all digital data and control commands are

transmitted through Wi-Fi, although a multitude of different digital transmission
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systems could be used. A Wi-Fi router is located at the ground station which the on-

board computer connects to. The operator’s computer can be connected either using

a wired or wireless connection to this router enabling communication between the

operator’s computer and the UAV. To reduce latency and bandwidth only minimal

data, needed to populate the GUI and instruct the UAV of its next waypoint, is

sent. The remaining data is logged and stored locally.

Before deployment for long (>50m) distance missions, much like the live video feed,

the Wi-Fi will need to be upgraded to a different transmission method or towards

a high-power licensed Wi-Fi router to get the range required.

5.5.4 Live Video Feed

As the on-board video feed is not being used to enhance the robots abilities, but

solely to increase the situational awareness of the operator, the video system has

been designed to be completely separate from the other systems on the UAV. The

benefits from this are two fold, firstly, it helps to conserve bandwidth and to min-

imise latency on the Wi-Fi communications. Secondly, if the UAV were to be com-

mercialised, licensed high-power transmitters would be required in order for it to

operate at a useful range from the ground-station, whereby costs would be dramat-

ically reduced by using a dedicated simplex video transmitter combined with a lower

bandwidth duplex digital transmitter.

To minimise crosstalk and interference with the other transmitters and receivers

on-board the UAV the video system should ideally operate in a frequency band

not in use by other on-board systems. There are many hobbyist video transmitters

designed for RC models, which are as compact and lightweight as possible. These

are available in range of “public” frequency bands (900MHz, 1.2GHz, 2.4GHz and

5.8GHz). However, most are developed for the US market and many are illegal

for use in Europe and the UK due to differing regulations with regards to public

broadcast bands. One example is the popular 900MHz and 1.2GHz video systems,
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which in Europe is used by GSM mobile phone network. In the UK the only publicly

open frequencies, which these products have been developed for, are in the 2.4GHz

and 5.8GHz band. As the Wi-Fi router and the safety controller functions in the

2.4GHz band, the 5.8GHz band was chosen, even through the higher frequency

is more restrictive towards line-of-sight operation and suffers greater from radio

shadows and multi-path propagation inside buildings [81].

A commercially developed hobbyist 5.8GHz video transmitter and receiver designed

specifically for RC aircraft were purchased. The transmitter power is limited to

25mW due to OFCOM licensing regulations[82]. In light of the potential issues with

localised radio shadows and multi-path propagation a more advanced “diversity”

receiver was ordered. The “YellowJacket 5.8 Pro Diversity Receiver” utilises two

aerials and receivers and internally monitors the signal strength of each receiver,

which allows it to automatically toggle to the receiver with the strongest (and usu-

ally) the clearest signal. The weakness is, that it only monitors signal strength, but

doesn’t check the signal itself, meaning that if there is a strong interfering transmis-

sion on a similar frequency, the receiver may mistakenly lock on to the interfering

signal [83].

5.5.5 Safety Controller

To aid testing and development of the autonomous features of the UAV and also to

increase safety, the UAV platform not only accepts input commands from the on-

board computer but also from a model RC controller (see figure 5.21). This enables

the UAV to be flown manually when needed or even relinquishing certain controls

in order to test individual systems.

On top of the standard throttle, yaw, pitch, roll channels three extra channels were

used:-

• Emergency-Stop: If this switch was engaged the motors on the UAV would be

switched off regardless of the position of any of the other inputs.
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Figure 5.21: The model RC controller used (Spektrum DX7)

• Level of Control: This is a three position switch and varies the amount of

control given to the PC.

Throttle - Only throttle is controlled by the computer, yaw, pitch and roll

controlled manually.

Position - Yaw, pitch and roll controlled by the computer, throttle controlled

manually.

Full Auto - No manual control, computer controls all channels.

• Take Control: Toggles between the control modes above and full manual con-

trol.
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Chapter 6

Sub-System Testing

When testing a newly developed system it is important not only to test the system

as a whole, as discussed later in Chapter 7, but also to test the individual sub-

systems from which it is built. Through testing and verification of the function

of the individual sub-systems greater reliability and performance can be obtained.

This chapter aims to verify any assumptions made during the development and to

prove the proposed SLAM algorithm.

6.1 Sensor Performance

Throughout the Sub-System Design Chapter (Chapter 5) a number of assumptions

were made regarding the functionality, performance and reliability of certain sensors.

There were two primary assumptions. Firstly, reliable height information can be

obtained through the use of a downwards facing SoNAR sensor and that, when the

SoNAR sensor is out of range, a pressure based altimeter could be used in its place

(assumed in 4.4 on page 65). Secondly, that the XSens orientation sensor provides

accurate and low drift data regarding the UAV’s heading during flight (assumed

in 5.4.3.1 on page 99).

6.1.1 Height Detection

Accurate and reliable height information is critical to enable the correct function of

the UAV’s control system and the SLAM algorithm. The proposed UAV solution
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Figure 6.1: Comparison between SoNAR and altimeter height information, climbing
and descending over level ground

utilises two methods for detecting the height of the UAV as discussed earlier. When

the UAV is less than 5-6 metres above the ground the downwards facing SoNAR

sensor is used, when above this range the altimeter is used in its place.

Data was collected from both the SoNAR and pressure altimeter during flight to

ensure that the data provided was coherent and as expected. Initially there was some

doubt of the quality of the data produced. For instance, the pressure altimeter

becomes unreliable when exposed to turbulence which may occur from the rotor

blades and the SoNAR’s ultrasonic pulse may be interfered with by the noise from

the rotors and the associated airflow. The altimeter’s sensitivity was also disputed

due to the low differential in atmospheric pressure when climbing/descending short

distances.

Figure 6.1 shows a short flight in which the UAV is flown over level ground to test

the performance of the two sensors. The SoNAR data closely resembles the observed
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Figure 6.2: SoNAR response in an “out-of-range” condition

height profile of the UAV during the test and remains functional throughout. The

altimeter closely follows the SoNAR plot, however with some slight discrepancy and

quantisation of the data. The reported height of the altimeter during landing how-

ever is erroneous, most likely due to ground-effect as the UAV is in close proximity

to the ground (<20cm), which creates a “cushion” of higher pressure air causing

incorrect readings.

For this reason the proposed UAV utilises the SoNAR sensor when flying close to

the ground, less than 5-6metres, to allow for accurate height detection of the ground

below for take-off and landing, as over time there may be slight pressure differences in

the room causing the altimeter data to drift. This drift does not significantly impair

the UAV when at height, however can pose a significant issue when attempting to

land.

To demonstrate that the SoNAR will re-aquire a “lock” on the height of the UAV

another test was performed, whereby the UAV was flown outside the range of the
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SoNAR, then descended to a landing. A sample of the results of these tests is

shown in Figure 6.2, and shows that that the UAV needs to be flown well under the

SoNAR’s maximum range in-order to re-aquire the signal.

A problem arises, however, when the UAV is not flown on level ground and the

SoNAR sensor is being used, as the SoNAR sensor will report the height above

object below the UAV, which may not necessarily be the floor. To counter this the

UAV checks for any large fluctuations in the SoNAR’s reported height. If a sudden

step of more than 30cm is detected, then an offset is set which adjusts for the height

of the object allowing the UAV to some extent not to be affected when overflying

cluttered areas, as demonstrated in figure 6.3.

One scenario which the UAV does not presently account for, which was not stated

in the requirements, is a ramped change of height of the floor. A ramped change in

height would not be detected by the step filter discussed above, and the only way to

detect this scenario would be to contrast the altimeter and SoNAR measurements

during the flight.

6.1.2 Heading Data from the Orientation Sensor

To test the assumption that the UAVs approximate heading can be derived solely

through the use of the XSens orientation sensor and that the UAV’s vibration and

electromagnetic interference does not compromise the sensor, a short test flight was

conducted whereby the UAV was briefly flown with large heading fluctuations, shown

in figure 6.4. By landing the UAV in the same orientation that it took off from, the

magnitude of the heading drift can be seen, which is in this case is negligible.

6.2 Communications

Initial outdoor tests of the video system showed acceptable range and clarity. How-

ever, later tests inside the test halls, which are large open halls, usually with metal
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Figure 6.3: Utilising step detection to lessen the impact of overflying an object when
using the SoNAR sensor

roofing and heavily reinforced concrete walls, significantly reduced the operating

range to a point where it was unusable in most cases. Occasionally only getting an

effective range of 5 – 10metres before the video was unrecognisable due to distortion

and noise (analogue video transmission).

It was believed the cause of the drastically reduced range still was the result of

heavy multi-path interference, where the signal was reflecting off the walls and

ceiling before returning to the receiver.

A number of solutions to reduce the encountered interference were researched, but

the common solutions required the current transmitter and receiver to be replaced

with more expensive, high-end devices employing signal error detection and recov-

ery or more exotic modulation methods. One simple solution that could easily be

implemented was to change the polarity of the antennas of the system. The stand-

ard “rubber duck” antennas (see figure 6.5) that are provided as part of the system
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Figure 6.4: A graph showing the heading data outputted by the XSens during a
short flight where the take-off and landing was in the same orientation.
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Figure 6.5: Linear “rubber duck” antenna (left), cloverleaf circular polarised antenna
(right)

transmit a mostly linearly polarised signal This has a further disadvantage not yet

discussed. where, if the model aircraft is banking heavily, the polarisation angle

between the receiver and transmitter will vary greatly causing signal loss. Fortu-

nately, as the UAV is generally in level flight this effect is minimal. This is also the

case with light if a radio signal is reflected off a surface. Depending on the angle of

incidence the reflected signal will become either linearly polarised with respect to

the angle of surface or loose its polarisation [84]. The solution is to use circularly

polarised antennas as a circularly polarised signal rotates through time as opposed

to oscillating in a particular direction (linear). Circular polarisation can either have

a clockwise or anti-clockwise rotation, analogous to horizontal and vertical linear

polarisation.

The benefit of using circular polarisation is that if the signals are reflected the

polarisation will be changed and therefore be attenuated by the circularly polarised

antenna at the receiver. This has not solved the interference problem, but has greatly

increased the indoor range, typically to more than 30 metres. Figure 6.6 shows the

improvement from using circular polarised antennas instead of linear antennas inside

a workshop at approximately 15 metres range.
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(a) Linearly polarised antenna

(b) Circularly polarised antenna

Figure 6.6: Comparison of video clarity from (a) linearly and (b) circularly polarised
antennas inside a workshop at 15m range.
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Figure 6.7: Comparison between raw data and fused velocity data produced by the
Velocity Estimator

6.3 Velocity Estimator

The Velocity Estimator described in 5.3.4 on page 86 utilises data from both the

IMU and the SLAM algorithm to produce an estimate of the current velocity of the

UAV with significantly reduced noise. Figure 6.7 displays a sample of data collected

from a test flight, it shows both the raw un-filtered data and the output of the IMU

fused velocity. Simply using a low pass filter would introduce a phase-change in the

resulting signal, which manifests itself as a time-delay, shown in figure 6.8. Initial

tests showed that this time-delay introduced significant oscillations in the control

algorithms. It was for this reason the Velocity Estimator was implemented.
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Figure 6.8: Comparison between raw data and using a simple weighted average filter
to reduce noise.
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Table 6.1: Profiling of the iterative stage of the initial ICP localisation implement-
ation, showing the total time to produce a small map.

6.4 Performance of the SLAM Algorithm

This section aims to demonstrate the performance gains achieved by the proposed

SLAM algorithm described in section 3.3.2 on page 40. Verification of the reliability

and robustness of its function in a range of varying scenarios is shown later in 6.5

on page 129 and during flight testing in chapter 7 on page 144.

6.4.1 Changes Made to the Original Algorithm

As mentioned in 5.4.3.1 on page 99 the original ICP algorithm’s iterative stage com-

prises of a number of functions which has been removed in the proposed algorithm.

A profiling of the original ICP algorithm’s iterative stage during the process of build-

ing a small map can be viewed in table 6.1, the data of which was gathered through

remotely profiling the algorithm onboard the UAV’s using JAVA/Netbeans during

a short flight.

As demonstrated in this figure the most process intensive task is the nearest-

neighbour search (findSimilarPoints), followed by the error-function (calcCostFunc-

tion), rotation estimator (calcBestRotation) and translation estimator (calcBestTrans-

lation). The error-function overheads are significantly reduced in the proposed al-

gorithm as it has been moved out of the iterative stage of the algorithm and is now

used as a before-and-after check to verify the success of the matching of each scan.

The rotational estimator component has been completely removed and the efforts

to reduce the nearest-neighbour overheads are discussed below in 6.4.2 and 6.4.3.
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Figure 6.9: Number of points used vs. approximate processing time per scan (based
on Octree).

6.4.2 Reduction of the Point-Cloud density

Reducing the amount of points used for both the scan matching and points stored

in the map greatly decreases the processing time and memory requirements of the

SLAM algorithm as depicted in figure 6.9. The proposed SLAM algorithm uses two

methods to reduce the number of points that need processing.

The first method is through globally reducing the number of points handled. This

is done through limiting the number of points read by the LiDAR, a demonstration

of this can be seen in figure 6.10. This reduction, however, is a balance between

the required accuracy of the SLAM algorithm and the performance gain required.

As points are removed from the scan, detail is lost and noise from object clutter

becomes more difficult to distinguish.

The second method used in the proposed algorithm is reducing the number of points

stored in the “world” map, thereby lightening the load for the nearest neighbour

search algorithm. Not every new scan of the LiDAR contains data which would

enrich the “world” map dataset, such as when the UAV is hovering in a set loca-

tion. If data is added when significant movement is detected instead of after every

scanmatch, the number of points automatically stored in the “world” map is re-

duced significantly, aiding the nearest neighbour searches to function optimally. An
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(a) 1080 points per scan (b) 76 points per scan

Figure 6.10: Resulting point-cloud from using full (a) and reduced (b) dataset (width
∼30m)

(a) Full world (b) Reduced world

Figure 6.11: Resulting point-cloud from using all (a) or a subset (b) of the scans
during map building

example of this is shown in figure 6.11, whereby the number of point used in each

scan is kept the same. However, a new scan is only added when certain motion

conditions are met. For this image and the flight tests discussed in the next chapter

these conditions were set:-

1. Change in Height of ±0.2m

2. Change in lateral position of 0.5m.
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6.4.3 Nearest Neighbour Search

As shown previously in figure 6.1 on page 125, the nearest neighbour search is the

most process intensive part of the ICP algorithm and thus was a key focus during

the development of the proposed algorithm. Initially an Octree[75] based sorting

method was implemented due to its ease of use, however, during initial trials it was

found to be too slow to be used in real-time on the on-board computer. It was for

this reason that the FLANN algorithm[78] was investigated and implemented into

the proposed solution.

FLANN performed approximately ten times faster than the Octree implementation

used initially[68], which is demonstrated by data from a sample flight in figure 6.12.

The data was obtained through flying the UAV for approximately one minute while

logging all the sensor data. After the flight the data was then processed using

the UAV’s on-board computer. For each pass of the SLAM algorithm the number

of points in the logged data was decimated, monitoring both the calculated end-

position and the total time taken. The figure demonstrates a number of key aspects,

firstly that the FLANN algorithm is significantly faster than Octree, however also

shows the impact of implementing the point-cloud density reduction discussed in

6.4.2.

The drawback however with using an approximate nearest neighbour algorithm is

that it finds the approximate nearest neighbour, not the true nearest neighbour,

discussed earlier in 5.4.2.4 on page 96. This may not be significant when comparing

high density point-clouds. However, as the density is reduced these approximate

pairings can start to introduce errors, as a slightly mismatched nearest neighbour has

a larger effect on the accuracy of the algorithm as a whole. Figure 6.13 demonstrates

the effect of the point-cloud density reduction on the accuracy of the calculated final

position after the SLAM algorithm had run.

As mentioned earlier in 5.4.3.2 on page 101, the proposed real-time algorithm uses

every fifth point in the scan (i.e. 216 points total), which offers a significant re-
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Figure 6.12: Comparison of processing time between Octree and FLANN pairing on
reducing datasets [68]
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Figure 6.13: Comparison of error between Octree and FLANN pairing on reducing
datasets [68]

duction in the processing time, however has enough points not to adversely affect

the accuracy significantly in the process of mapping the environments the UAV was

designed to be flown.

6.5 Testing of the SLAM Algorithm in Challenging Con-

ditions

The SLAM algorithm has been tested by flying the UAV through as many visually

dissimilar environments as possible. It was not possible to find a chimney of similar
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dimensions to the one listed in the requirements, therefore no data is available

for the SLAM algorithm’s performance in a chimney environment. However, it is

assumed that due to their simple regular geometry, usually remaining approximately

the same through their height, that if the UAV functions well inside a cluttered

three-dimensional environment, then it should function well within the simple and

constant geometry of a chimney.

The following flights were performed by flying the UAV manually and not relying

on its autonomous systems for control such as the flights performed in the following

chapter "Flight-Tests”. The reasoning behind hand flying the UAV is that it can

be flown in smaller, more confined areas and also in environments where the SLAM

algorithm is predicted to fail without risk of loss of control as is the case if flown

autonomously. The goal of this section was to test the limits and performance of

the proposed SLAM algorithm as opposed to the fundamental function of the UAV

as a whole as demonstrated in the next chapter.

6.5.1 Cluttered Environment

Cluttered environments pose a challenging scenario for SLAM algorithms as the

perceived environment can vary greatly between each successive scan. This can be

caused by debris or small objects, which can be thought of as high frequency noise

onto the scan data.

One of the most cluttered environments available was a workshop, a section of which

shown in figure 6.14. The UAV was manually flown on a short flight above and

around the cluttered area and the resulting real-time low-density map is shown in

figure 6.15. The map shows that a coherent and visually similar map was produced

and that the SLAM algorithm remained functional throughout despite the heavily

cluttered environment.
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Figure 6.14: Cluttered area of the workshop in which the UAV was flown.

6.5.2 Environmental Transition

Figure 6.16: The pit used to test the SLAM algorithm’s response to a sudden step
change in its perceived environment
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(a) Plan View

(b) Perspective View

Figure 6.15: High density, post processed maps of the workshop flight

132



CHAPTER 6. SUB-SYSTEM TESTING

To test the SLAM algorithm’s response to a sudden step change in the perceived en-

vironment, where there would be a large apparent physical change in the structure’s

layout as it flew, the following test was devised. The test involved manually flying

the UAV out of a pit, shown in figure 6.16, while the SLAM algorithm attempted

to keep track of its location.

Figures 6.17 – 6.19 show the high-density post-processed and low-density real-time

generated maps of the flight out of the pit, a video of the flight is available in

Appendix D.2. There are three key observations to this test:-

Firstly, figure 6.18 shows that the step detection applied to the SoNAR sensor

(see 6.1.1 on page 115) functioned as designed, detecting the perceived height change

when flying out of the pit and compensating to the change in height of the floor

without adversely effecting the map.

Secondly, the mapping algorithm handled the sudden change flying out of the pit into

the new environment without loss of significant or observable positioning, demon-

strating the robustness of the proposed algorithm even in highly varying (yet static)

environments.

Lastly, in figure 6.17, the walls on the outer edges of the map have a slight rotational

creep. This is due to a slight discrepancy in the heading information given by

the orientation sensor during the flight, caused by drift. The proposed algorithm

does not currently account for rotational drift in-flight, with the aim of improved

reliability of the scan-matching even in poor correlation environments. Although

not severely impacting the robustness and accuracy of the localisation of the robot

in this case it may prove beneficial to perform occasional rotational correction using

the point-cloud to avoid this scenario from escalating, if it is encountered.

6.5.3 Entering and Exploring a New Area

The UAV may not always start its flight in the room which it is inspecting, this

may be due to several reasons, for instance restrictions on access.
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(a) Post-processed high density point-cloud

(b) Real-time low density point-cloud

Figure 6.17: Plan view comparison between the post-processed and real-time maps
created from the flight in the pit
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(a) Post-processed high density point-cloud

(b) Real-time low density point-cloud

Figure 6.18: Side-view comparison between the post-processed and real-time maps
created from the flight in the pit

In this test the UAV was started in a corridor leading to the room, flown around the

room and returned to a point near the starting position in the corridor. The resulting

point-clouds can be viewed in figures 6.20 and 6.21. The point-cloud shows that the

post-processing based SLAM algorithm created a consistent map which joined back

at the starting position in the corridor, although with a slight rotational drift.

The real-time low-density navigational map is much the same apart from a slight

temporary misalignment, seen on the right of figure 6.20b. It, however, recovered

from the misalignment and produced a finishing result similar to the post-processed

version, where the initial corridor is aligned after being out of view for a significant

portion of the flight, the total flight time being approximately 2 minutes and 10

seconds.
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(a) Post-processed high density point-cloud

(b) Real-time low density point-cloud

Figure 6.19: Perspective view comparison between the post-processed and real-time
maps created from the flight in the pit
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(a) Post-processed high density point-cloud. Including the path of the UAV (blue)

(b) Real-time low density point-cloud

Figure 6.20: Plan view comparison between the post-processed (a) and real-time
(b) maps created from the flight in the large hall.
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(a) Post-processed high density point-cloud. Including the path of the UAV (blue)

(b) Real-time low density point-cloud

Figure 6.21: Perspective view comparison between the post-processed (a) and real-
time (b) maps created from the flight in the large hall.
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Figure 6.22: The auditorium used to test the performance of the SLAM algorithm
in an irregularly shaped room.

6.5.4 Irregularly Shaped Environment

The SLAM algorithm is stipulated to perform poorly in a room comprising solely

of sloping walls in the z-axis (height). Flying in a environment with sloping walls

would make the UAV see a constantly changing environment as it climbs or pitches,

and thus making it difficult for the SLAM algorithm to calculate and maintain an

accurate fix of the UAV’s position. An environment, which resembles this type of

structure, is an auditorium. The room used for this test is shown in figure 6.22.
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(a) Post-processed high density point-cloud

(b) Real-time low density point-cloud

Figure 6.23: Plan view comparison between the post-processed (a) and real-time
(b) maps created from the flight in the auditorium.
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(a) Post-processed high density point-cloud

(b) Real-time low density point-cloud

Figure 6.24: Perspective view comparison between the post-processed (a) and real-
time (b) maps created from the flight in the auditorium.

The UAV was flown facing the seats (manually, without autonomy), thereby emu-

lating the room as an approximate ramp-like structure as much as possible. The

resulting maps created by the SLAM algorithm can be viewed in figure 6.23 and
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Figure 6.25: The incorrectly calculated path of the UAV overlaid onto the point-
cloud

6.24. Although the SLAM algorithm retained an approximate representation of the

room, there is significant drift occurring at the upper levels in the y-axis caused

by the ambiguity of the structure’s layout. The x-axis localisation however remains

stable due to the symmetric and consistent nature of the side walls.

Figure 6.25 shows the path calculated by the UAV. The true path of the UAV was a

forwards motion (positive y-axis) over the seats before returning to land, the video of

which is available in Appendix D.2. Instead the UAV calculated that it had moved

backwards (negative y-axis) due to the misaligned position estimates. If this had

been an autonomously flown flight, the UAV would have been unable to distinguish

that it was calculating an erroneous localisation drift and it would have corrected

the position of the UAV to match the perceived drift. If erroneous position estimate
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was transitory as it climbed or explored the new area, control would be regained,

although the UAV’s reference frame to the starting position would be impaired but

manageable by the operator, such as the case with the results of this test. However,

if the map disintegrates completely, control of the UAV would be lost.
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Chapter 7

Flight Testing

Flight testing has been an on-going integral part of the project. Flight tests have

been performed in many varying locations to test the UAV system as a whole and

to test the performance of individual algorithms through-out development.

This chapter presents the results from a selection of these tests, each demonstrating

particular conditions or scenarios likely to be encountered during use in its intended

application. All the results below, unless stated otherwise, shows the performance

of the latest iteration of the UAV design and there is no “tweaking” of the UAV’s

programming to enhance its performance for each particular test.

7.1 Full System Testing

To test the UAV’s compliance with the required objectives set at the start of the

project (see Chapter 2 on page 8), a number of full system tests were conducted.

Although testing the UAV in the chimney would be the ultimate test, this unfor-

tunately was not possible due to the extensive health and safety requirements of

testing a prototype robot at a nuclear facility.

Instead a number of tests were designed to demonstrate the proposed UAV’s function

and performance and was conducted in a manner as if the UAV was used in its

intended application.
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Figure 7.1: An image showing the operator work station along with the test arena.

7.1.1 Test Methodology

This test was designed to test all of the aspects of the UAV’s functionality and

aimed to demonstrate whether the proposed UAV satisfied the key objectives set at

the start of the project. The three key components to this test were as follows:-

Firstly, an operator who had no experience in flying remote controlled helicopter-

s/aircraft was chosen to pilot the UAV for the duration of the mission. The operator

was given approximately ten minutes of tuition in how the GUI on the laptop op-

erates, the layout of the functions on the game controller and a brief discussion on

detecting and mitigating various failure modes. The operator was placed with his

back to the test arena, as shown in figure 7.1, to discourage “peeking” as it was

meant to be flown solely through the laptop GUI and the video system. This was

to test the ease of use of the UAV.

Secondly, a mission briefing was given to the operator, which depicted how the test

should be flown and what to inspect. The diagram given to the operator is shown

in figure 7.2. It depicts a flight taking off from the yellow X, flying towards the
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Figure 7.2: Illustration given to the operator, to help visualise the aims of the
mission.

ledge on the left, climbing above it later turning and moving over to the ledge on

the right, later descending and returning to the X to land. This tested that the

operator could fly a required route and that the control and autonomy of the UAV

was capable of three dimensional move instructions while remaining in control at all

times.

Thirdly, the SLAM algorithm was being tested, although transparent to the operator

the mapping algorithm should be able to locate the UAV at all times during the

flight, particularly in the specified climb and descend stages of the flight, where the

ledges form large step changes in the perceived data as the UAV flies above them,

thus testing the robustness of the three dimensional localisation capabilities.

If the UAV’s autonomous control was revoked through the use of the safety control-

ler, the flight would be deemed a failure.

7.1.2 Results and Discussion

During the flights all the key functions of the UAV were recorded much like an

aircraft’s black box. Using this data it was possible to determine how well the various
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Flight-ID Operator Flight Time RMSE from
target position

(m)

Max drift (m)

Full-1 1 6 min 5 s N/A N/A

Full-2 2 4 min 17 s 0.90 2.85

Full-3 1 2 min 47 s 1.17 4.14

Full-4 2 2 min 43 s 1.17 4.07

Full-5 2 3 min 27 s 0.76 2.71

Full-6 2 3 min 3 s 0.72 3.66

Table 7.1: Textual results from the test flights

algorithms functioned, while also determining the overall flight characteristics of the

UAV.

Six identical test flights were performed, using two operators. Table 7.1 gives a

statistical overview of the flights, with the graphics listed in Appendix C on page 208.

Of the six flights, five were completed successfully. The failed flight (Flight-ID:Full-

1 ), was the first flight test performed to determine the robustness, accuracy and

performance of the UAV as a whole. Ironically this flight was also the first and

(to-date) only significant crash the UAV has encountered, and even more ironically

due to a fault in the safety controller as opposed to operator or autonomy error. An

in-depth discussion of the crash is reported in 7.1.3 on page 153.

Following repairs, the other remaining flights were successfully completed, achieving

the full route without the need for intervention between the operator and UAV. One

of the flights, Flight-ID:Full-2 is analysed thoroughly below, the remainder of the

flights can be viewed using the same plot types in Appendix C on page 208.

The first plot, figure 7.4 shows a plan view of the UAV’s path overlaid with the

target path set by the operator. The take-off and landing point positions are both

at 0,0m, and the operator approximately followed the guide given in figure 7.2. The

“actual” position of the UAV is the calculated position from the SLAM algorithm

as no other method was available for determining its true position.
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Figure 7.3 gives a breakdown of the UAV’s actual and target positions in the three

positional axis: X position, Y position and Height. This graph gives a better over-

view of the characteristics of the control systems of the UAV as opposed to figure

7.4. To help visualise any motion or significant bias in the position error a polar

plot was produced of the lateral position deviations and is shown in figure 7.5.

The last set of graphs demonstrates the performance of the SLAM algorithm, with

figure 7.6 showing the navigational map created by the UAV as it flew the mission.

Figure 7.7, gives an indication of the time taken to process each individual position

update, along with the output of the velocity estimator shown in figure 7.8.
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Figure 7.3: UAV’s target position and actual position in X,Y and Height axis (Flight-
ID:Full-2)
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Figure 7.4: A plan view of the UAV’s achieved path and target positions (Flight-
ID:Full-2)

149



CHAPTER 7. FLIGHT TESTING

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0

Deviation from Target Position (m) vs Direction (degrees)
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Figure 7.6: The resulting on-board real-time SLAM navigation map (a), plan view
(b)
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Figure 7.8: Output of the Velocity Estimator through-out the flight (Flight-ID:Full-
2)
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As demonstrated in these figures, the UAV remained aware of its own location

through-out the mission, successfully proving the desired function of the mapping

algorithm in this environment. Although there were numerous large lateral de-

viations from the desired track, the PID control loops remained damped and no

diverging oscillations developed.

In summary of the six test flights flown, a number of key reoccurring observations

regarding the functions of the robot were made:-

Firstly, the tests showed that an operator with little or no knowledge of operating

flying vehicles or robots repeatedly completed the set inspection mission successfully

and safely, proving the fulfilment of the “ease-of-use” requirement.

Secondly, the SLAM algorithm maintained a robust map of the environment and

localised the robot within the generated map without significant error.

Lastly, although the control loops maintained control of the UAV and did not de-

velop divergent oscillations, the precision was far from perfect, with the maximum

positional deviations often spanning many metres with a Root Mean Square Error

(RMSE) of approximate one metre. The control loops, although forming an essential

role in this project, have not been the focus of the project and require significant

further work before the UAV should be fully deployed.

One reason which causes the large deviations is due to the over-damped PID loops.

To prevent divergent oscillations, the PID loops have been tuned to not react ag-

gressively and take a “slow and safe” approach to controlling the UAV. This method

perhaps functions well if the UAV is in a hover condition. However, as soon as the

UAV is instructed to move or subjected to an external force like a gust of wind,

the UAV will be slow to respond and can traverse many metres, potentially in the

opposite direction, before again re-aligning with the set-point.
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Figure 7.9: UAV after the crash

7.1.3 The Incident (Flight-ID:Full-1)

The very first “official” test flight ended in a disaster, with the HexaKopter flying

at high-speed into a wall and falling approximately 5 metres causing the extensive

damage shown in figure 7.9. All of the outrigger booms were twisted by the impact

and all of the rotors shattered, as demonstrated in figure 7.10. Even one of the

permanent magnets inside a brush-less motor was cracked, shown in figure 7.11.

Three videos depicting the crash are included in Appendix D.1, two from cameras

recording the flight and one of the operators GUI. The videos depict the UAV flying

autonomously as planned, then suddenly establishing a slight climb along with a

forwards motion. A recovery was attempted using the safety controller, however

there was no response. Even after activating the emergency stop, the UAV simply

continued on its path into the wall in a runaway state, with no change in attitude.

153



CHAPTER 7. FLIGHT TESTING

Figure 7.10: One of the bent and twisted outriggers.

Figure 7.11: The rotor of one of the brush-less motors, showing a shattered perman-
ent magnet

154



CHAPTER 7. FLIGHT TESTING

7.1.3.1 The Cause

The force of the crash caused the on-board computer to suddenly reboot, resulting

in the corruption of the log files. The only method of determining the cause of the

crash was to analyse the footage and the video recording the operator’s GUI.

Firstly, it was determined that the on-board computer was responsive and in full

working order at the time of impact. All the sensors appeared to be functioning,

also a collision avoidance warning was given as the UAV impacted the wall. The

PID loops were shown to be functional, outputting commands to the UAV in the

correct sense.

Even if the computer were unresponsive it cannot degrade the functionality of the

safety controller by design (see 5.5.5 on page 113). The safety controller survived

the crash almost intact and was easily repaired. After a number of hours using

an oscilloscope to attempt to recreate the lockup state, a particular condition was

found which mimicked the situation which caused the crash.

If there was a momentary glitch between the safety controller and the USB-Serial

converter, the safety controller would become unresponsive to any external inputs

and would, however, continue to output the last valid control signal to the HexaK-

opter. It would only recover upon cycling of the power supply. It was discovered

that the serial input pin had been left floating (without a pull-down resistor), thus

when the serial converter was removed, the noise on the wire caused a large amount

of interrupts. Causing the safety controller to loose its syncronisation with the RC

receiver.

The safety controller had been programmed to automatically perform an emergency-

stop halting the motors in this situation, however a “bug” in the software prevented

the correct functioning of this feature in this particular scenario.
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7.1.3.2 The Damage and Repair

On the Hexakopter platform all of the outrigger booms had twisted and two motors

were damaged beyond repair. Most of the UAV was built using plastic bolts, many

of which sheared. All the motor controllers remained functional, however due to a

short circuit the HexaKopter flight controller became unresponsive and was damaged

beyond repair.

The three-dimensional stereoscopic camera previously used for the operator was

also broken along with the Lithium Polymer battery, which although still functional

was discarded due to impact damage. Thankfully all of the sensors, including the

computer survived intact with no apparent damage.

7.2 Other Notable Test Flights

In order to fully evaluate the performance of the UAV it needs to be flown in many

different environments. This is especially important in this project as it focuses on

the development of the SLAM algorithm. It is important to ensure that it functions

not only in the environment it was tested during development, but also many other

environments with varying geometry and features.

7.2.1 Sellafield Demonstration

During the latter stages of the project a demonstration to Sellafield’s employees was

organised, partly to demonstrate the progress and capabilities of such a UAV but

also to test the UAV’s function in a new yet possibly similar environment to which

it may be deployed.

Figure 7.12 shows the building where the UAV was flown. Although relatively ho-

mogeneous in height, there was a lot of clutter which could cause erroneous readings.
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(a) View towards the operator station

(b) View from the operator station (where the UAV was flown)

Figure 7.12: The building in which the Sellafield demonstrations took place
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During the demonstrations numerous flights were used to collect sample data to

which a highly detailed post-processed map could be created to demonstrate the

potential accuracy and detail of the generated maps. The resulting map from one

of these flights can be viewed in figure 7.13.

Also, a few autonomy demonstrations were conducted to show that a competent

pilot was not needed to fly the UAV. This was performed by allowing members of

the audience to have an attempt at taking off, moving down the hall, then returning

to land.

Data from one of these flights is shown in figures 7.16 – 7.15 and the resulting in-

ternally produced maps are shown in figure 7.14. During testing the point and click

navigation method was still experimental and was discouraged, instead the oper-

ators were told to use velocity control. When using velocity control, the operator

controls the UAV’s target velocity (using the game controller) instead of its position,

although when zero velocity is requested the UAV re-enables the positional control

to maintain a steady hover.

0 10 20 30 40 50 60 70 80 90
0.05

0.1

0.15

0.2

0.25

0.3

Time (Seconds)

U
p

d
a

te
 R

a
te

 (
S

e
c
o

n
d

s
)

SLAM Update Rate vs. Flight Time

Figure 7.15: The SLAM algorithm refresh rate during the flight
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(a) Plan View

(b) Perspective View

Figure 7.13: High density, post processed map of the Sellafield demonstration area
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(a) Top View

(b) Perspective View

Figure 7.14: Low density, real-time navigational map of the Sellafield demonstration
area
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Figure 7.16: Target vs actual position for the “autonomous” flight
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Figure 7.17: Plan view of the robot’s path
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Figure 7.18: Gantry used for the close quarter flying test

7.2.2 Close Quarter Flying

A notable flight performed during the development was a short flight through a

confined area, designed to evaluate and demonstrate the control available to the

operator. The operator had little experience of flying the UAV, had line-of-sight

view of the UAV, although often obscured, as well as access to the UAV interface.

The test involved the gantry shown in figure 7.18, whereby the UAV was flown into

the structure between the pillars, shown in figure 7.19, along the structure and out

through the final pillar at the end. Again, the point and click navigation method

was still experimental and was discouraged, instead the operator relied on utilising

the velocity control feature. This meant that the UAV was flown using one of the

analogue sticks on the game controller in order to control its velocity throughout

the mission.
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Figure 7.19: UAV flying through the pillars in the gantry

During the flight a number of key observations were made, a video of which is

available in Appendix D.1:-

Firstly, after exiting the structure at the very end of the flight a bug which has

subsequently been fixed in the motion planner erroneously reset the position of the

set-point of the PID loops to the take off point. This can be seen clearly in figure

7.20 and 7.21 and caused the UAV to loose control and land heavily, luckily with

no damage.

Secondly, the SLAM algorithm maintained a fix throughout the flight, reliably re-

porting the UAV’s position, even when passing objects and exploring new features

as it entered the structure. Unfortunately, the navigational map was not logged for

this flight.

Thirdly, the precise control of the UAV’s path can be achieved through the velocity

control feature, although it requires the operator to pro-actively guide the UAV as

when engaged the positional PID loops are disabled. If no velocity instructions on

a particular axis is given the UAV reverts to hover mode with the positional PID

being active, such as shown in figure 7.20 on the x-axis graph around 200s.
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Figure 7.20: A graph showing the actual and target position of the UAV during the
flight.
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Figure 7.21: A top down view of the UAV’s path through the structure.
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Figure 7.22: Climbing and descending into obstacles are a potential collision risk

Lastly, although the UAV has lateral collision avoidance, climbing or descending into

a collision scenario is still possible with the current sensor layout. Such a situation

was encountered during this flight and is depicted in figure 7.22, however in this

case it was noticed and avoided by the operator.

7.3 Summary and Discussion

This section critically discusses the results and compares them to the requirements

set at the outset of the project, discussed in Chapter 2 on page 8.

7.3.1 Operating Environment

As stated in 2.1 on page 8, the UAV should be able to operate inside a 125 metre

tall, 15 metre diameter chimney with clutter and, potentially, hanging cables.

Unfortunately, gaining access to test the UAV in the chimney has not been possible

at the time of writing, primarily due to the lengthy approval and risk assessment

166



CHAPTER 7. FLIGHT TESTING

process needed to enable a prototype robot to enter an active nuclear facility. Instead

the UAV has been flown in several other large environments to test its capability.

Climbing to 125 metres and returning to ground-level is within the capability of the

UAV platform, discussed further in 7.3.3. This would far exceed the SoNAR sensor’s

approximate seven metre operating range, however, the altimeter should be capable

of providing sufficiently detailed height information to complete the mission as shown

in 6.1.1 on page 115. Although, if higher accuracy height information is required,

then another method of registering the UAV’s height needs to be investigated.

The hanging cables are a problem with the current UAV design. The LiDAR scanner

is able to detect a standard 13amp cable from approximately 1.5 metres distance.

Due to the less than perfect control of the UAV’s PID loops attempting to avoid a

full speed (0.5m/s as stated in 5.3.5 on page 86) collision in less than 1.5 metres is

currently not a possibility. As discussed further in 7.3.3 it may be beneficial to use

a rotor guard to lessen the risk of damage during small impacts.

7.3.2 Inspection

As stated in 2.2 on page 9, the UAV should be able to record imagery of the building,

measure the levels of radiation and also be capable of producing three-dimensional

point-clouds to aid the task of inspection.

The UAV has an on-board camera capable of recording both high resolution stills and

video. Although the camera performs badly in low light it is improved marginally

by the basic on-board lighting system. The camera, however, is not an integral

part of the UAV platform and can easily be replaced with other light-weight camera

systems, such as an infra-red camera for low light conditions.

The UAV is currently unable to detect radiation, as no radiation sensor is currently

mounted to it. There are many light-weight dosimeters available on the market

which could easily be attached and integrated into the system.
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Three-dimensional point-clouds can be produced by the UAV’s sensors. The point-

clouds can either be generated using the proposed algorithm however without the

density limitations, as explained in 5.4.3.3 on page 103, or through the use of com-

mercial point-cloud registration software. It was not within the scope of the project

to create high-accuracy post-processed point-clouds, instead the focus was on build-

ing and developing the UAV. Many tools already exist for point-cloud manipulation,

common within the GeoInformatics field.

7.3.3 Robotic Platform

Linking back to the requirements regarding the robotics platform in section 2.3 on

page 10:-

7.3.3.1 Compact Robot

The robot needs to be compact, ideally being able to be inserted into the operat-

ing environment through inspection holes. This requirement is not achievable or

attempted with the proposed UAV design, it should however be achievable in future

iterations of the design, by for instance implementing a foldable airframe, such as

the Draganflyer UAV pictured in figure 7.23.

7.3.3.2 Sufficient Flight Time for an Inspection Flight

The flight time of the proposed UAV is approximately twelve minutes, given a hover

at around 3 – 5 metres. Twelve minutes should be sufficient to monitor a number of

areas, as demonstrated in the flight-tests in chapter 7 on page 144. For extensive

inspection missions it will be necessary to survey part of the building, land and

recharge the UAV or replace the battery to later continue the mission.

Autonomous “high” altitude tests have not yet been performed, however the UAV

will require a modification to the control theory to enable rapid climb/decent mode
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Figure 7.23: The Draganflyer X4-P, featuring a foldable airframe [66]

to reduce the flight time as much as possible, as for these mission the climb and

descend time can become a substantial part of the overall flight time. A disadvantage

of the multi-copters is that there is no auto-rotation feature as with helicopters,

meaning a loss of motor power equates to loss of control of the craft.

7.3.3.3 Airborne and Non-Contact

The HexaKopter platform is by design a self-sufficient airborne system and does not

require any physical contact or contact guidance through-out the mission.

Contact will however occur if it collides with an object during the flight. At present

the rotors are the first point of contact, hence they will break the rotor and may

cause the UAV to lose control. To mitigate this it may be beneficial to fit the next

iteration of the proposed UAV design with a rotor guard, which will protect the

rotors from slow speed collisions or hanging wires, however, it will add weight and

lower the overall flight time.
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7.3.3.4 Sufficient Payload for Sensors

There is always a compromise between the weight of the UAV and its effective flight

time and through weight reduction it may be possible to extend the UAV’s flight

time. The sensors and devices mounted on the UAV weigh combined approximately

800g (see 4.4 on page 65) excluding battery, cabling and connectors. It should be

possible for the UAV to effectively lift an extra 100 – 200g without serious impact

on flight performance thus allowing sensors or cameras to be upgraded to larger,

heavier products.

7.3.3.5 Cost

The airborne part of the UAV is required to cost less than £10,000. The cost of the

proposed system is approximately £7,200 (see 5.2.3 on page 78) which satisfies this

objective.

7.3.4 Autonomy

Ease of use was a primary requirement for this project, with an emphasis on a

minimally-trained operator being able to safely use the basic functions of the UAV.

This was successfully demonstrated during all the flight-tests in Chapter 7 on

page 144. During the tests an unskilled operator was used and successfully demon-

strated that the UAV could be flown with little to no training, giving the UAV

waypoints on where to fly as opposed to physically controlling it.

The proposed UAV is however not without its flaws. As demonstrated throughout

the flight tests the control theory requires further work, as the UAV often drifted

from its target position by several metres. The problem with control has to some

extent been solved in related UAV projects, however interpreting and implementing

these control methods require substantial effort and was deemed best suited as

further work.
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Regardless of the performance of the control theory, without knowledge of where

the UAV is and where it should go, control is impossible. It is this aspect which has

been the focus of this project, determining the location of the UAV throughout

the flight using only the on-board sensors and computer. The tests performed

on the proposed SLAM algorithm has demonstrated it to be capable and reliable

in the sample environments analogous to the environments it is to be flown. In

certain conditions the algorithm is known to give erroneous results, such as where

the majority of the walls in the room change asymmetrically with height, as shown

in the test in section 6.5.4 on page 139.

Due to the simplicity of the algorithm only single rooms can be reliably explored.

The proposed SLAM algorithm does not use loop-closing or other statistical methods

to improve the accuracy of the map, instead its focus is on speed and robustness

within a single enclosed environment.

The decision to completely remove the rotation estimator from the SLAM algorithm

has introduced both negative and positive aspects. The positive aspects are that the

algorithm requires less information to scan-match each scan as one of the unknowns,

the rotation, is already solved, meaning that an accurate match can be found even

in a cluttered or obscured environment, where the original algorithm would fail.

The negative is that the maps produced are prone to rotational drift, where the

orientation sensor is outputting a slightly incorrect heading. This drift is slow,

however accumulative. The best solution is perhaps a compromise, running the

rotational estimator once every 10 seconds to re-align the point-cloud to reduce the

onset of these errors.

171



CHAPTER 8. FURTHER WORK

Chapter 8

Further work

The following is recommended as further work for the successful development and

deployment of the UAV for use in industry:-

Control Theory: The positional PID control structure needs to be revised or a

different control method used. If the dynamics of the system can be analysed so

that an approximate mathematical model of the UAV can be created, then a model

or predication based control system can be implemented allowing for more accurate

and reliable control.

Simulation: Accurate simulation of the UAV’s dynamics and sensors would en-

able preliminary testing of features and algorithms before actual flight-tests are

performed. This would improve safety as the algorithm or function can be fully

debugged and checked to be working in the correct sense before flight. It would

also improve the reliability as various failure modes or difficult environments can be

emulated and tested without risk.

Further Miniaturisation: Computer and sensor technology is a rapidly pro-

gressing field. If the proposed UAV is to be developed further the new state of the

art devices should be considered, as it may allow for a smaller UAV platform to be

used, or enable significant improvement in flight-time through a reduced payload.

An example of which is the latest-generation smart-phones, they now offer more

processing power than the computer used on-board the UAV, are also lighter and
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use less power and newer sensor technologies enable higher resolution, lower cost

and are both smaller and lighter.

With the development of more powerful computers which are suitable to be used

on-board, more advanced control, autonomy and localisation algorithms can be used

to counter the limitations discussed in the flight testing Summary and Discussion

section (7.3) and the SLAM Limitations section (5.4.3.2).

Currently a two-dimensional LiDAR scanner is used, relying on accurate height, roll

and pitch data to project the scanner two-dimensional plane into three dimensions

(visualised in Appendix D.2). Although not yet commercially available, a suitably

small and low-weight three-dimensional LiDAR scanner may improve the robustness

and accuracy of the SLAM algorithm.
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Chapter 9

Conclusions

This project involved the development of an Unmanned Aerial Vehicle (UAV) for

the purpose of inspecting the internals of buildings or structures, where an operator

cannot enter easily or entry is prohibited. At the start of the project a number of

requirements were set by Sellafield, the project’s industrial sponsor, based on what

they would expect from an ideal end product. To ensure that these requirements

were met as far as possible, a systems style approach was adopted to help guide the

project and was also used to structure this thesis.

A UAV was developed using primarily commercial-off-the-shelf components in an

effort to reduce development time and to increase reliability. A six-rotor HexaKopter

was chosen as the robotic platform, which was modified to carry the sensors and

devices needed to enable autonomy and basic inspection.

A semi-autonomous control approach was chosen, whereby an un-skilled operator

could be used to control the UAV, instructing it where to go as opposed to fly-

ing it manually. Preliminary tests show that the UAV can be safely flown by an

inexperienced operator given a ten minute tutorial on the UAV’s various functions.

The proposed UAV’s primary weakness is, however, its lack of control. Due to

the lack of an accurate simulation environment, significant amounts of testing have

been performed throughout the project in an attempt to experimentally tune and

improve the UAV’s positional PID loops. A frequently encountered problem was

divergent oscillatory behaviour, as a result the developed control system is over-

damped, resulting in generally convergent oscillations. However, this has the side
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effect of non-aggressive control causing large uncommanded deviational drift (greater

than 2m).

9.1 The Proposed SLAM Algorithm

After reviewing the current state of the art it was realised that the localisation

algorithms used by related research groups were not suitable for this project. A

detailed analysis of their solutions revealed that, in order to reduce the SLAM’s

computational overheads, they resorted to methods such as assuming a certain geo-

metric structure, that the building can be represented in two-dimensions, rely on

external (off-board) processing or function on the premise that an accurate model

of the building, in its current state, already exists. None of these methods can be

assumed in order to fulfil the requirements of this project.

Localisation is a fundamental step in enabling accurate control and autonomous

behaviour. Developing a reliable, high-speed, three-dimensional SLAM algorithm,

that could function within a computationally constrained UAV, became the primary

focus of this research project.

The proposed SLAM algorithm is novel in its implementation and is based on the

popular Iterative Closest Point (ICP) algorithm with a number of modifications to

lower the processing requirements, enabling it to run solely on the UAV’s on-board

computer. These modifications include:-

1. Utilising FLANN[78] as an approximate nearest neighbour search algorithm in

an attempt to reduce the time to pair each point with the built “navigational”

point-cloud.

2. Reducing the density of the data collected and stored from the LiDAR scanner.

Experimentally it was determined that every fifth point (216 total) could be

used from each scan without significantly impacting accuracy or the robustness
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of the resulting map. Similarly, through selectively adding these scans to the

navigational point-cloud, the overall data density and thus processing time

could be reduced further.

3. Removal of the rotation estimation and error-function features from the ICP

algorithm. Heading data is instead obtained from the XSens orientation

sensor, which increases the robustness of the scan-matching and lowers pro-

cessing time. However, solely relying on data obtained from the orientation

sensor can lead to slight heading drift over time of a few degrees per minute.

Real-world flight testing has demonstrated that the proposed SLAM algorithm is

both capable and reliable in environments analogous to the ones where the UAV

is expected to be flown. However, in environments comprised of walls sloping with

height, the algorithm will most likely return erroneous results unless an accurate

model of the building can be obtained prior to the flight.
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Appendix A

Approximating the Size of the

UAV Blimp

The following calculations were done to estimate size the approximate size of the

UAV if it were built as a lighter-than-air craft.

These were the density constants used, based on Normal Temperature and Pressure

(NTP) 20°c, 101.325kPa [85]:-

ρair = 1.204kg/m3 (A.1)

ρhelium = 0.1663kg/m3 (A.2)

The UAV’s mass was estimated using the table of sensors listed in 4.2 on page 67

with additional 100g mass to account for wiring and fixturing. The platform mass

is an estimate of the weight of the battery and motors (excluding envelope):-

msensors = 0.9kg (A.3)

mplatform = 0.5kg (A.4)
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mUAV = msensors + mplatform = 1.4kg (A.5)

Therefore the size of the balloon/blimp can be estimated where Venvelope is the

displacement volume needed.

Fbuoyancy = Venvelope ∗ (ρair − ρhelium) ∗ g (A.6)

Venvelope =
Fbuoyancy

(ρair − ρhelium) ∗ g
(A.7)

0 = Fbuoyancy − (mUAV ∗ g) (A.8)

Venvelope =
(mUAV ∗ g)

(ρair − ρhelium) ∗ g
=

mUAV

ρair − ρhelium
(A.9)

Venvelope =
1.4kg

1.04kg/m3
= 1.35m3 (A.10)

If the volume 1.35m3 is modelled as a sphere, it would have a diameter of 1.37m. If

modelled as an ellipsoid with a 1m diameter it would become 2.58m long shown in

fig. A.1.
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Figure A.1: Visual representation of an ellipsoid representing the size needed for the
UAV with the semi-axis of 1.29m, 0.5m, 0.5m
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Appendix B

The Developed SLAM

Algorithm

The class AlignmentThread.java handles the SLAM process and calls the ICP based

iterative functions through ICPFlann.java on page 197. The custom code which

interfaces FLANN with the JAVA code is listed on page 203.

B.1 AlignmentThread.java

1 package HeliServer.ScanMatching;

2

3 import HeliServer .Blackbox.BlackboxItem;

4 import HeliServer .Messenger.Messenger;

5 import HeliServer .Movement.RobotPose;

6 import java. io . BufferedWriter ;

7 import java. io . FileWriter ;

8 import java. io .IOException;

9 import java. util . ArrayList ;

10

11 public class AlignmentThread implements Runnable {

12

13 private static Messenger messenger = new Messenger("ScanMatching", "

Alignment");

189



APPENDIX B. THE DEVELOPED SLAM ALGORITHM

14 private static BlackboxItem blackbox = new BlackboxItem("scanmatch", "X,Y"

);

15 private static LidarData anchor;

16 private static LidarData scan;

17 private static LidarData secondscan;

18 private static float [] initialposition ;

19 private static double initialheading = 0;

20 private static ICPFlann icp = new ICPFlann();

21 public static boolean enabled = true;

22 public static Thread at;

23 private static boolean hasworld = false;

24 float [] lastscanposition = new float[3];

25 double lastscanheight = 0;

26 int counter = 0;

27

28 public AlignmentThread() {

29 }

30

31 public void run() {

32 while (enabled) {

33 try {

34 try {

35 Thread.sleep(20);

36 } catch ( InterruptedException ex) {

37 }

38 if (!hasworld) {

39 continue;

40 }

41 boolean donotrecord = false;

42
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43 setScan(RobotPose.lidar_data);

44 icp . setscan(scan.getLidarXYZ());

45 icp . sett ( icp . getabst()) ;

46 initialposition = icp.getabst() . clone() ;

47 icp . applytransform() ;

48

49 double errorbefore = 0.000001;

50

51 for ( int iterate = 0; iterate < 14; iterate ++) {

52 icp . iterate () ;

53 if ( iterate == 0) {

54 errorbefore = icp. calcerrorFunction () ;

55 }

56

57 icp . applytransform() ;

58

59 if ( distance ( icp . getabst() , initialposition ) > 1) {

60 icp . rollbackabsT( initialposition ) ;

61 donotrecord = true;

62 System.out. println ("Jumping scan due to distance moved."

);

63 break;

64 }

65 icp .acceptmove();

66 }

67

68 double errorafter = icp. calcerrorFunction () ;

69 double error = errorafter / errorbefore ;

70

71 if ( error < 0.0 || error > 1.05 || !hasworld) {
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72 donotrecord = true;

73 System.out. println ("Jumping scan due to low correlation " +

error) ;

74 }

75

76 if (donotrecord) {

77 continue;

78 }

79

80 scan.scanmatched = true;

81 scan.movement_x = icp.getabst()[0];

82 scan.movement_y = icp.getabst()[1];

83

84 icp . applytransform() ;

85 scan.updateLidarXYZ(icp.getscan());

86

87 double dist = distance( icp . getabst() , lastscanposition ) ;

88

89 if ( dist > 0.5 || Math.abs(scan.movement_z − lastscanheight) >

0.20) {

90 lastscanposition = icp.getabst() . clone() ;

91 lastscanheight = scan.movement_z;

92 anchor.addXYZpoints(icp.getscan());

93 icp . setworld (anchor.getLidarXYZ());

94 }

95

96 double[] temp = {icp.getabst() [1], icp . getabst() [0]};

97 RobotPose.updateScanMatching(temp);

98 blackbox. log(temp[0] + "," + temp[1]);

99 } catch (Exception e) {
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100 messenger. printError ("Caught error : " + e.getMessage());

101 }

102 }

103 }

104

105 private static double [][] toDouble(float [][] input) {

106 double [][] output = new double[input.length][input [0]. length ];

107

108 for ( int i = 0; i < input. length ; i++) {

109 for ( int j = 0; j < input [0]. length ; j++) {

110 output[ i ][ j ] = (double) input[ i ][ j ];

111

112 }

113 }

114 return output;

115 }

116

117 private static float [][] toFloat(double [][] input) {

118 float [][] output = new float[input. length ][ input [0]. length ];

119

120 for ( int i = 0; i < input. length ; i++) {

121 for ( int j = 0; j < input [0]. length ; j++) {

122 output[ i ][ j ] = (float) input [ i ][ j ];

123

124 }

125 }

126 return output;

127 }

128
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129 private final static float distance (float [] a, float [] b) {//IGNORES Z

TRAVEL

130 float out = ((a[0] − b[0]) ∗ (a [0] − b[0])) + ((a[1] − b[1]) ∗ (a [1] − b

[1])) ;

131 return (float ) Math.sqrt(out);

132

133 }

134

135 public static void savedata(String path, float [][] xyzdata) {

136 FileWriter fil ;

137 try {

138 fil = new FileWriter(path);

139

140 BufferedWriter bw = new BufferedWriter(fil) ;

141

142 for (float [] data : xyzdata) {

143 for (float d : data) {

144 bw.write(d + ",") ;

145 }

146 bw.newLine();

147 }

148

149 try {

150 if (bw != null) {

151 bw.flush () ;

152 bw.close () ;

153 }

154 } catch (IOException ex) {

155 ex. printStackTrace () ;

156 }
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157 } catch (IOException ex) {

158 System.out. println ("Error writing " + ex.getMessage());

159 }

160 }

161

162 public static short [][] getShortScan() {

163 if (scan == null) {

164 return new short [1][2];

165 }

166 if (scan.getLidarXYZ() == null) {

167 return new short [1][2];

168 }

169

170 ArrayList<short[]> output = new ArrayList<short[]>();

171 for (float [] data : scan.getLidarXYZ()) {

172 short [] temp = {(short) (data[0] ∗ 1000), (short) (data [1] ∗ 1000)};

173 output.add(temp);

174 }

175 return output.toArray(new short[output.size () ][ output.get(0) . length ]) ;

176

177 }

178

179 public static short [][] getShortWorld() {

180 if (anchor == null) {

181 return new short [1][2];

182 }

183 if (anchor.getLidarXYZ() == null) {

184 return new short [1][2];

185 }

186
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187 ArrayList<short[]> output = new ArrayList<short[]>();

188 for (float [] data : anchor.getLidarXYZ()) {

189 short [] temp = {(short) (data[0] ∗ 1000), (short) (data [1] ∗ 1000)};

190 output.add(temp);

191 }

192 return output.toArray(new short[output.size () ][ output.get(0) . length ]) ;

193

194 }

195

196 public static float [][] getFloatWorld() {

197 return anchor.getLidarXYZ();

198 }

199

200 public static void setAnchor(short [] newanchor) {

201 hasworld = false;

202 anchor = new LidarData();

203 anchor. setSingleLidarScan (newanchor);

204 anchor.calcLidar2DXY();

205 anchor. rotate(−RobotPose.xsens_orientation [1], −RobotPose.
xsens_orientation[0], −RobotPose.xsens_orientation[2]) ;

206 messenger. println ("Added new anchor");

207 icp . setworld (anchor.getLidarXYZ());

208 icp . resetabsRt () ;

209 hasworld = true;

210

211 }

212

213 public static void resetWorldMapandRetainPosition() {

214 hasworld = false;

215 anchor = new LidarData();
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216 scan.movement_z = scan.ultrasound_height;

217 scan.ultrasound_height = RobotPose.height_absolute;

218 anchor. setSingleLidarScan (RobotPose.lidar_data);

219 anchor.calcLidar2DXY();

220 anchor. rotate(−RobotPose.xsens_orientation [1], −RobotPose.
xsens_orientation[0], −RobotPose.xsens_orientation[2]) ;

221 icp . sett ( initialposition ) ;

222 messenger. printError ("Tried to recover map, reassigned anchor");

223 icp . setworld ( icp . applytransform(anchor.getLidarXYZ()));

224 hasworld = true;

225 }

226

227 public static void setScan(short [] newanchor) {

228 scan = new LidarData();

229 scan.ultrasound_height = RobotPose.height_absolute;

230 scan.movement_z = scan.ultrasound_height;

231 scan. setSingleLidarScan (newanchor);

232 scan.calcLidar2DXY();

233 scan. rotate(−RobotPose.xsens_orientation [1], −RobotPose.
xsens_orientation[0], −RobotPose.xsens_orientation[2]) ;

234 }

235 }

B.2 ICPFlann.java

1 package HeliServer.ScanMatching;

2

3 import HeliServer .ScanMatching.octree.Octree;

4 import JNIflann.flann ;

5 import java. util . ArrayList ;
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6

7 public class ICPFlann {

8

9 private float [][] dataset , scanset , worldset , similarpoints ;

10 private float [] t = new float[3], absolutet = new float[3];

11 private World world;

12 private float errorbefore ;

13 private float errorafter ;

14 private int [] flann_index ;

15 private boolean first_iteration = true;

16

17 public void ICPOptimised() {

18 }

19

20 public void iterate () {

21 findSimilarPointsFlann () ;

22 t = calcBestTranslation () ;

23 t [2] = 0; //Ignore Z travel

24 }

25

26 public void acceptmove() {

27 absolutet [0] += t[0];

28 absolutet [1] += t[1];

29 absolutet [2] += t[2];

30 }

31

32 public void applytransform() {

33 scanset = doTransformation(scanset);

34 }

35
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36 public float [][] applytransform(float [][] data) {

37 return doTransformation(data);

38 }

39

40 public void rollbackabsT(float [] inp) {

41 absolutet = inp;

42 }

43

44 public float [] getabst() {

45 return absolutet ;

46 }

47

48 public void sett (float [] inp) {

49 t [0] += inp[0];

50 t [1] += inp[1];

51 t [2] += inp[2];

52 }

53

54 public void resetRt () {

55 t = new float[3];

56 }

57

58 public void resetabsRt () {

59 absolutet = new float[3];

60 }

61

62 public float geterrorBefore () {

63 return errorbefore ;

64 }

65
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66 public float geterrorAfter () {

67 return errorafter ;

68 }

69

70 public float [][] getscan() {

71 return scanset ;

72 }

73

74 public void setscan(float [][] input) {

75 scanset = input;

76 first_iteration = true;

77 }

78

79 public boolean hasMoved() {

80 if (t [0] + t[1] + t[2] < 0.000001) {

81 return true;

82 }

83 return false ;

84 }

85

86 public float [][] getworld() {

87 return worldset ;

88 }

89

90 public void setworld (float [][] input) {

91 worldset = input;

92 rebuildWorld(input) ;

93 }

94

95 private void rebuildWorld(float [][] input) {
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96 System.out. println ("BUILDING TREE");

97 world = new World();

98 world.addPoints(input) ;

99 System.out. println ("Tree built ... ") ;

100 }

101

102 public float calcerrorFunction ()

103 {

104 float output = 0.0f;

105 for ( int i = 0; i < scanset. length ; i++) {

106 output += calc3dhypot(scanset[i ][0] − (Octree. allpoints [flann_index[

i ]][0] + t[0]) , scanset [ i ][1] − (Octree. allpoints [flann_index[ i ]][1]

+ t[1]) , scanset [ i ][2] − (Octree. allpoints [flann_index[ i ]][2] + t

[2]) ) ;

107 }

108 output /= scanset.length ;

109 return output;

110 }

111

112 private float [] calcBestTranslation () {

113

114 float [] cm = new float[3];

115 float [] cd = new float[3];

116 for ( int i = 0; i < scanset. length ; i++) {

117 cd[0] += scanset[i ][0];

118 cd[1] += scanset[i ][1];

119 cd[2] += scanset[i ][2];

120

121 cm[0] += Octree.allpoints [flann_index[ i ]][0];

122 cm[1] += Octree.allpoints [flann_index[ i ]][1];
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123 cm[2] += Octree.allpoints [flann_index[ i ]][2];

124 }

125

126 cm[0] /= (float) scanset . length ;

127 cm[1] /= (float) scanset . length ;

128 cm[2] /= (float) scanset . length ;

129

130 cd[0] /= (float) scanset . length ;

131 cd[1] /= (float) scanset . length ;

132 cd[2] /= (float) scanset . length ;

133

134 float [] out = {cm[0] − cd[0], cm[1] − cd[1], cm[2] − cd[2]};

135 return out;

136 }

137

138 private float [][] doTransformation(float [][] input) {

139 float [][] output = new float[input. length ][3];

140 for ( int i = 0; i < input. length ; i++) {

141 output[ i ][0] = input[ i ][0] + t [0];

142 output[ i ][1] = input[ i ][1] + t [1];

143 output[ i ][2] = input[ i ][2] + t [2];

144 }

145 return output;

146 }

147

148 private void findSimilarPointsFlann () {

149 if ( first_iteration ) {

150 flann_index = flann.MatchwithNewData(scanset);

151 } else {

152 flann_index = flann.MatchwithTranslation(t) ;
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153 }

154 }

155

156 private float calc3dhypot(float x, float y, float z) {

157 return (x ∗ x + y ∗ y + z ∗ z) ;

158 }

159

160 public float distanceMoved() {

161 return (float ) Math.sqrt(calc3dhypot(t [0], t [1], t [2]) ) ;

162 }

163 }

B.3 Custom JAVA-FLANN Interface

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #include <jni.h>

5 #include <flann/flann.h>

6

7 int nn;

8 struct FLANNParameters p;

9 float speedup;

10 flann_index_t index_id;

11

12 float ∗ testset ;

13 int testset_size ;

14 float ∗world;

15 int world_size ;

16
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17 int ∗matched_points;

18 int matched_points_size;

19

20 int cols ;

21 int hasscan = 0;

22 float t [3];

23

24 jfloatArray ToFloatArray(float ∗arr , int size , JNIEnv ∗env)

25 {

26 jfloatArray result ;

27 result = (∗env)−>NewFloatArray(env, size);

28 if (! result )

29 {

30 fprintf ( stderr , "Could␣not␣allocate␣memory\n");

31 return NULL;

32 }

33 (∗env)−>SetFloatArrayRegion(env, result, 0, size , arr ) ;

34 return result ;

35 }

36

37 jintArray ToIntArray( int ∗arr , int size , JNIEnv ∗env)

38 {

39 jintArray result ;

40 result = (∗env)−>NewIntArray(env, size);

41 if (! result )

42 {

43 fprintf ( stderr , "Could␣not␣allocate␣memory\n");

44 return NULL;

45 }

46 (∗env)−>SetIntArrayRegion(env, result , 0, size , arr ) ;
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47 return result ;

48 }

49

50 float ∗From2dArray(jfloatArray arr , int sizex , int sizey , JNIEnv ∗env)

51 {

52 float ∗ result = malloc(sizex∗sizey∗sizeof(float )) ;

53 int x,y;

54 for (y=0; y<sizey; ++y)

55 {

56 for (x=0; x<sizex; ++x)

57 {

58 (∗env)−>GetFloatArrayRegion(env, arr, 0, sizex ∗sizey ,

result ) ;

59 }

60 }

61 return result ;

62 }

63

64

65 float ∗From2dTo1d(JNIEnv ∗env, jobjectArray arr, jint sizey , jint sizex )

66 {

67 float ∗ result = malloc(sizex∗sizey∗sizeof(float )) ;

68 int x, y;

69 for (y=0; y<sizey; ++y)

70 {

71 jfloatArray row = (∗env)−>GetObjectArrayElement(env, arr, y);

72 float tmp[sizex ];

73 (∗env)−>GetFloatArrayRegion(env, row, 0, sizex , tmp);

74 for (x=0; x<sizex; ++x)

75 {
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76 int index = y∗sizex+x;

77 result [ index ] = tmp[x];

78 }

79 }

80 return result ;

81 }

82

83

84 JNIEXPORT jintArray JNICALL Java_JNIflann_flann_MatchwithTranslation(JNIEnv

∗env, jobject obj, jfloatArray translate, jint sizex )

85 {

86 float t [ sizex ]; //3d

87 int i ;

88 int result [ testset_size ∗nn];

89 float dists [ testset_size ∗nn];

90 (∗env)−>GetFloatArrayRegion(env, translate, 0, 1, t) ;

91

92 for( i = 0; i<testset_size∗sizex ; i++) testset[ i ]+= t[i%sizex ]; //

Translate the current data

93

94 flann_find_nearest_neighbors_index(index_id, testset , testset_size ,

result , dists , nn, &p);

95 matched_points = result;

96 jintArray out = ToIntArray( result , testset_size ∗nn, env);

97 return out;

98 }

99

100 JNIEXPORT jintArray JNICALL Java_JNIflann_flann_MatchwithNewData(JNIEnv ∗

env, jobject obj, jobjectArray inp, jint sizex, jint sizey )

101 {
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102 if (hasscan > 0) free( testset ) ;

103 hasscan++;

104 int result [ sizex ∗nn];

105 float dists [ sizex ∗nn];

106 testset = From2dTo1d(env, inp, sizex, sizey ) ;

107 testset_size = sizex ;

108 flann_find_nearest_neighbors_index(index_id, testset , testset_size ,

result , dists , nn, &p);

109 matched_points = result;

110 matched_points_size = testset_size;

111 jintArray out = ToIntArray( result , testset_size ∗nn, env);

112 return out;

113 }

114

115 JNIEXPORT void JNICALL Java_JNIflann_flann_setWorld(JNIEnv ∗env, jobject obj,

jobjectArray inp, jint sizex , jint sizey )

116 {

117 nn = 1;

118 p = DEFAULT_FLANN_PARAMETERS;

119 p.algorithm = FLANN_INDEX_KDTREE;

120 p. trees = 1;

121 p.checks = 256;

122 p. log_level = FLANN_LOG_INFO;

123 cols = sizey ;

124 world = From2dTo1d(env, inp, sizex, sizey ) ;

125 world_size = sizex ;

126 index_id = flann_build_index(world, sizex , cols , &speedup, &p);

127 }
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Appendix C

Graphs from Flight Testing
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0 50 100 150 200 250 300

−5

0

5

10

Time (Seconds)

D
is

ta
n

c
e

 (
M

e
tr

e
s
)

Target Position vs Calculated Position (x−axis)

 

 

Calculated

Target

0 50 100 150 200 250 300

−5

0

5

10

Target Position vs Calculated Position (y−axis)

Time (Seconds)

D
is

ta
n

c
e

 (
M

e
tr

e
s
)

 

 

Calculated

Target

0 50 100 150 200 250 300
0

2

4

Measured Height (SoNAR)

Time (Seconds)

H
e

ig
h

t 
(M

e
tr

e
s
)

 

 

Measured

Target

Figure C.1: Flight-ID:Full-2 - UAV’s target position and actual position in X,Y and
Height axis
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Figure C.2: Flight-ID:Full-2 - A plan view of the robot’s path

209



APPENDIX C. GRAPHS FROM FLIGHT TESTING

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0

Deviation from Target Position (m) vs Direction (degrees)

Figure C.3: Flight-ID:Full-2 - UAV’s deviation from the target position as a polar
plot
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Figure C.4: Flight-ID:Full-2 - Update rate (processing time) of the localisation
algorithm during the flight.
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Figure C.5: Flight-ID:Full-2 - Output of the Velocity Estimator throughout the
flight
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Figure C.6: Flight-ID:Full-3 - UAV’s target position and actual position in X,Y and
Height axis
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Figure C.7: Flight-ID:Full-3 - A plan view of the robot’s path
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Figure C.8: Flight-ID:Full-3 - UAV’s deviation from the target position as a polar
plot
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Figure C.9: Flight-ID:Full-3 - Update rate (processing time) of the localisation
algorithm during the flight.
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Figure C.10: Flight-ID:Full-3 - Output of the Velocity Estimator throughout the
flight
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Figure C.11: Flight-ID:Full-4 - UAV’s target position and actual position in X,Y
and Height axis
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Figure C.12: Flight-ID:Full-4 - A plan view of the robot’s path
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Figure C.13: Flight-ID:Full-4 - UAV’s deviation from the target position as a polar
plot
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Figure C.14: Flight-ID:Full-4 - Update rate (processing time) of the localisation
algorithm during the flight.
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Figure C.15: Flight-ID:Full-4 - Output of the Velocity Estimator throughout the
flight
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Figure C.16: Flight-ID:Full-5 - UAV’s target position and actual position in X,Y
and Height axis
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Figure C.17: Flight-ID:Full-5 - A plan view of the robot’s path
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Figure C.18: Flight-ID:Full-5 - UAV’s deviation from the target position as a polar
plot
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Figure C.19: Flight-ID:Full-5 - Update rate (processing time) of the localisation
algorithm during the flight.
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Figure C.20: Flight-ID:Full-5 - Output of the Velocity Estimator throughout the
flight
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Figure C.21: Flight-ID:Full-6 - UAV’s target position and actual position in X,Y
and Height axis
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Figure C.22: Flight-ID:Full-6 - A plan view of the robot’s path
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Figure C.23: Flight-ID:Full-6 - UAV’s deviation from the target position as a polar
plot
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Figure C.24: Flight-ID:Full-6 - Update rate (processing time) of the localisation
algorithm during the flight.
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Figure C.25: Flight-ID:Full-6 - Output of the Velocity Estimator throughout the
flight
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APPENDIX D. VIDEOS

Appendix D

Videos

D.1 Flight Test Videos

Flight Location of Video

Flight-ID:Full-1 (Crash) DVD: /Flight-Testing/Full-1.mp4

Web: http://thesis.steeps.net/full-1/

Flight-ID:Full-2 DVD: /Flight-Testing/Full-2.mp4

Web: http://thesis.steeps.net/full-2/

Flight-ID:Full-3 DVD: /Flight-Testing/Full-3.mp4

Web: http://thesis.steeps.net/full-3/

Flight-ID:Full-4 DVD: /Flight-Testing/Full-4.mp4

Web: http://thesis.steeps.net/full-4/

Flight-ID:Full-5 Not Available

Flight-ID:Full-6 Not Available

Close Quarter Flying DVD: /Flight-Testing/Gantry.mp4

Web: http://thesis.steeps.net/gantry/
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APPENDIX D. VIDEOS

D.2 Testing of Localisation Algorithm

Flight-ID Location of Video

Visual Demonstration of the

SLAM algorithm

DVD: /Localisation/SLAM.mp4

Web: http://thesis.steeps.net/slam/

Environmental Transition DVD: /Localisation/Pit.mp4

Web: http://thesis.steeps.net/pit/

Auditorium DVD: /Localisation/Auditorium.mp4

Web: http://thesis.steeps.net/auditorium/
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