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0.1 Abbreviations

Al := {1, 2, 3.....l}

N := {1, 2, 3.....}, the set of natural numbers starting with 1

Nk := {k, k + 1, k + 2.....}, the set of natural numbers starting with k

CFG Characteristic Form Game

EBA Equilibrium Binding Agreement

EEBA Extended Equilibrium Binding Agreement

ICB Independent Commission on Banking

IMF International Monetary Fund

PFG Partition Form Game

P.O. Pareto Optimum

SME Small and Medium Enterprises
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Abstract

Following the recent international financial crisis, a number of policy proposals

have been made: one of which is the partitioning of banks into modules (groups),

to contain financial shocks. The firewalls, which surround modules, prevent fi-

nancial contagion: when a shock hits a bank it spreads to other banks in the

same module, but not to banks in other modules. Conditional on bank modules

avoiding shocks, businesses can achieve their latent business opportunities. The

optimal banking system has a cost-benefit trade off: increased module size allows

for more lucrative business opportunities, but increases systemic banking risk.

This thesis, using a theoretical approach, assesses the importance of the distri-

bution of business opportunities when using modules. When the distribution is

uniform, the optimal structure of the banking industry is fully characterised: it

surprisingly takes only two forms, either one all-encompassing module (contain-

ing all the banks), or atomistic modules (each module contains only one bank).

The intuition behind this sharp characterisation is the increasing marginal re-

turns that modules have on social welfare. A counter-example is constructed

where, with a non-uniform matching of business opportunities, conversely, the

efficient solution does have multiple modules each containing multiple banks.

The model’s policy recommendation is that the banking system needs to be

designed in accordance with the financial requirements of businesses.

Keywords: Financial Regulation, Financial Stability, Network, Markov Chain,

Contagion, Bank Run

JEL Classification: E44, D85, G01, G20, G21
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Chapter 1

The Standard Model

1.1 Summary

This chapter starts by considering financial contagion: what it is, and how it

has been modelled, both pre-crisis (customer liquidity shocks, see Allen and Gale

(2000)), and post crisis (random networks of banks, where an exogenous nega-

tive shock disables a single bank, and the shock propagation is then calculated

computationally, see Gai and Kapadia (2010)). It then considers the Haldane

(2010) policy response: the partitioning of bank networks into modules (separate

groups). It argues that banking modules need to be formed ex-ante, not ex-post

(before shocks arrive, not afterwards), unlike for example Stiglitz (2010b).

My model uses cost-benefit analysis in the form of a welfare function to consider

the optimality of bank modularisation. A Markov process is formed from the

stochastic disabling banking shocks, and re-enabling module recoveries. As in

Gintis (2012), such systems generically converge rapidly to a unique stationary

distribution. This limiting state of the system gives the asymptotic probability

that each module is enabled. These probabilities then micro-found an ex-ante

welfare specification for every partition.

16



This chapter formulates a standard model under the assumption of a uniform

distribution of business opportunities. The main result is that the use of modules

is rejected, for all parametrisations. Specifically, any proper partition, (with

both multiple modules and multiple banks per module), is inefficient. Hence,

the efficient partition is either the grand coalition, (one big module containing

all the banks), or the atomistic partition (each bank in its own separate singleton

module).

The four step outline of the proof, which rejects not just symmetric interior

partitions but also non-symmetric interior partitions, is as follows. First the

bank one utility maximisation programme is considered where, without loss of

generality, bank one is in module one. Second it is proven that the model has

negative externalities: a merger between modules two and three always makes

bank one worse off. This implies that the bank one argmax is of the form {x1, 1,

1, 1, ..1}. Third it is proven that the bank one utility function, v1[x1], has quasi-

convexity, and hence that the bank one optimal partition is on the boundary.

Fourth, by symmetry, this boundary partition is also welfare maximising.

This chapter then considers partition formation, and it shows that if agents are

farsighted, then the Extended Equilibrium Binding Agreement (EEBA), from

Diamantoudi and Xue (2007), results in the efficient partition being formed

(Chapter 2 considers other partition formation solution concepts in Section

2.3.3). Finally, for realistic parametrisations, Section 1.9 argues that it is the

atom partition that is efficient rather than the grand coalition.

1.2 Introduction

The 2007-09 financial crisis initially manifested itself in one place; one mar-

ket: the US sub-prime mortgage market. However, the shock was contagious,
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and spread to affect banks world wide. This resulted in a number of major

banks either collapsing, being bailed out or being nationalised. This included

US investment banks, such as Lehman Brothers and Bear Stearns, and UK re-

tail banks, such as Northern Rock, Royal Bank of Scotland (RBS), and Halifax

Bank of Scotland (HBOS). However, banks worldwide were affected, and they

dramatically reduced their lending: due to a lack of confidence and in order to

rebuild capital buffers. The resulting credit crunch meant that businesses could

no longer borrow, and hence there was a large opportunity cost from wasted

business opportunities. Due to the large social cost of the crisis there is a strong

political sense that, ‘there must be a better way’, and hence there is a search

for policy responses: for example, in the UK by the Independent Commission

on Banking (ICB). In this introduction, I will examine firstly, contagion (both

non-financial and financial), and then secondly the policy response of grouping

banks into modules.

The concept of contagion comes from epidemiology: the study of disease trans-

mission. If Albert has a disease, and he has contact with Bill, then Bill in turn is

infected.1 This process is repeated, and there is a cascade effect, so that the dis-

ease is spread across the whole population. Similarly, financial contagion occurs

when a negative shock hits one bank in a network, and that shock then spreads

system wide.2 During the crisis there are many factors that enabled the financial

contagion to occur, these include: high levels of bank leverage, the complexity

of the derivative market, and banker misbehaviour. However, one critical factor

is high bank inter-connectedness: this thesis focuses on that factor.
1This assumes the disease is completely contagious. In a more complex model, the diffusion

occurs probabilistically.
2The term contagion has been used in multiple contexts in economics. For example co-

movements in stock markets. Here I am using the term restricted to banks in-line with the
original definition (see Bagehot (1873)). See Moser (2003) for a survey of the use of contagion
in economics.
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Pre-crisis the main model of financial contagion was the “early-late” consumer

model of Allen and Gale (2000). However, their model is focused on explaining

how financial contagion can happen, rather than assessing policy responses; has

shocks to consumer liquidity demand rather than banks assets; and is restricted

only to very small networks: those with four banks. Further, the crisis has cast

doubt on a number of the model’s conclusions: for example, that the complete

network (where every bank lends to every other bank), is the most stable.

Post-crisis a second stream of literature has emerged, for example Gai and Kapa-

dia (2007), that has focused on the mechanisms which propagate shocks between

banks. The criticism of the mechanism approach is that these are positive, rather

than normative, models: the only agents are banks; there are no businesses (or

consumers). So, it studies negative externalities between banks, but not of banks

on businesses, and hence it does not model the effect of bank failures on the real

economy. In contrast, this thesis develops a model containing businesses and

derives a micro-founded welfare function which leads to the ability to assess

efficiency.

Unlike Allen and Gale (2000), whose “central aim .. is to provide some microe-

conomic foundations for financial contagion”, my aim is to take things to the

next stage: take the existence of financial contagion as given, and assess a po-

tential policy response. There are two main types of policy response: the first is

to reduce the probability of an initial bank failure, for example through higher

capital requirements, or ring fencing (separating retail and investment divisions

of banks); the second is to reduce the probability of propagation between banks.

My model assesses such a containment proposal from Haldane (2009, 2010): the

use of modules to partition banks, so that banks within the same module are

connected, but banks in different modules are not connected.

So, a banking module is a group of banks that are close together: in good states
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of the world, banks in the same module can do business at low cost; but in

bad states, one financial shock disables all the banks in a module. An histori-

cal example of banking modules comes from the USA. In the USA, pre World

War One, “the US system was based on unit banking - geographically isolated

single-office banks” (Calomiris, 2010). Post World War One state banks, (which

are licensed under state law), faced increasing competition from national banks,

(which are licensed under federal law). However, the 1927 McFadden law, parti-

tioned the USA into 49 modules: it confirmed that national banks were allowed

branches, but restricted them to operating only in the state of their headquar-

ters.3 In 1956 this law was replaced by the Douglas Amendment to the 1956

Bank Holding Company (HC) Act, which let individual states decide whether to

allow out of state banks to operate in their state. However, “until 1978, every

state in the union barred banks from other states, so instead of one national

banking system, we had more like 50 little banking systems, one per state”, but

“By 1992, all states but Hawaii had passed reciprocal entry laws of some sort.”

(Morgan, Rime and Strahan, 2004).4 Further, the financial system became more

internationalised through an interconnected network of bank lending (for exam-

ple, EU banks holding sub-prime debt issued by American banks), and so, by the

time of the 2007 crisis, the banking system was one all-encompassing module.

However, despite this, my thesis is that the risk of financial contagion is not a

sufficient argument for partitioning banks into (proper) modules.

In different contexts modules can be formed at different times: ex-post (after

a shock hits), or ex-ante (only before a shock hits). The idea of modules in

disease control is that we separate uninfected people from those who are infected.

This is the concept of quarantine: we isolate infected countries, for example,
3There are currently 50 states plus Washington, District of Columbia; however, Alaska and

Hawaii did not achieve statehood until 1959.
4“In 1978 Maine passed a law allowing entry by bank holding companies from any state

that allowed entry by Maine banks.” (Morgan, Rime and Strahan, 2004)
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by cancelling transport links ex-post. However, in contrast, modules in some

other environments need to be created ex-ante: there are firebreaks in forests

to stop the spread of fire; and bulkheads in ships to form separate watertight

compartments, so that one breach of the hull does not sink the ship. But these

modules need to be ex-ante: we cannot wait until there is a fire before forming

a firebreak (bulldozers move slowly; fire spreads fast); and we cannot install

bulkheads in a ship that is sinking.5

Similarly, it is my contention that banking is such an environment, where mod-

ules need to be created ex-ante, not ex-post. In contrast, it is arguably feasible

for countries to employ “circuit breakers”: state contingent capital controls (see

Stiglitz 2010b).6 This is because governments determine their own laws, and

there is a divide between national and international investors.7 So, after such

a policy change, there can remain a functioning internal economy. Whilst with

banks, taking a topical example, suppose the regulator lets European banks hold

American bonds as collateral, but then gets a signal that American debt is go-

ing bad. So the regulator decides to partition European from American banks,

and orders them to get a new asset base. In order to buy new assets, European

banks will need to sell off their American bonds. However, the price of American

bonds will already have been lowered by the negative signal, and will be further

decreased by the rush of European banks to sell. This fire sale means they will

be unable to afford new assets, and thus will need re-financing: the same require-

ment as without the ex-post partitioning. Hence, I will be modelling modules
5The Internal Examiner has noted that “Actually, one way to fight a large forest fire is

precisely to bulldoze firebreaks after the fire has broken out, but far enough away and soon
enough so that they will indeed stop the fire spreading beyond them. One also ’fights with fire’
by deliberately lighting minor back fires intended to remove fuel that would otherwise burn in
the major fire.”. This spoils the analogy somewhat!

6Stiglitz(2010b) does not have productive inter-country links. This may affect his results.
7The clarity of this dividing line may be unclear, for example in the case of the EU. But

that is argument for ex-ante country modules; rather than an argument for ex-post banking
modules.
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in banking as being ex-ante, and further I will be considering ex-ante efficiency

rather than interim efficiency or ex-post efficiency. Specifically, I am additionally

assuming that, for reasons either of feasibility or preference, after the arrival of

a disabling shock there is no change in the partitioning of the banks that remain

enabled: once modules are in place they are not altered conditional on shocks,

not just for one or two periods, but over an infinite time horizon.

Andrew Haldane, director of financial stability at the Bank of England, in 2009,

2010 policy papers, both recognises the potential for financial contagion, and via

a watchmaker analogy from Simon (1962) advocates the use of modules. The

analogy shows that, a watchmaker in an environment with stochastic shocks,

has a much lower expected completion time, when he uses modules.8 Hence

he concludes: “What is second nature to the watch-maker needs to become

second nature to the watchdog”. In response, my model assesses the usefulness

of this analogy: I use the welfare function to consider the optimality of bank

modularisation.

My work here makes two main contributions to our understanding of the use of

modules as a policy response to the risk of financial contagion. Firstly, the first

chapter shows that, under the standard assumption of a uniform distribution of

business opportunities, the use of modules is rejected, for all parametrisations.

Specifically, any proper partition (both multiple modules and multiple banks per

module), is inefficient. Hence, the efficient partition is either the grand coalition

(one big module containing all the banks), or the atomistic partition (each bank

in its own separate singleton module).

Secondly, the second chapter shows that, varying the structure of business op-
8Note this is not the same argument as advocated in Smith (1776), which gives the famous

example of a pin factory where each worker specialises in one task and a more than 240 fold
increase in productivity is achieved (see I.1.3). Instead with Simon (1962), modules reduce
the amount of work in progress lost when an adverse shock hits the manufacturing process.
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portunities can vary the optimal policy choice. For example, section 2.2.1.1

considers a variant model where matches are no longer distributed uniformly:

instead banks are arranged in a circle, and matches are always between imme-

diate neighbours. Under this model, generally the efficient partition is proper:

there will be multiple modules, and each module will have multiple member

banks. This shows the importance of understanding the financial requirements

of businesses when designing bank networks.

1.3 Literature Review

There are two parts to this literature review. First, I will overview the literature

on the policy of containing financial shocks. Within this part, I consider hier-

archies, Haldane (2009), Simon (1962); modularisation, Haldane (2010), Stiglitz

(2010b), Leitner (2005); neighbourhoods, Castiglionesi and Navarro (2007); the

differential potential roles of banks (Allen and Carletti (2009)), and the require-

ment to consider the financial needs of businesses when designing the bank-

ing system (Mayer (2011)); and the ICB report (Independent Commission on

Banking (2011). Then, in the second part, I consider the modelling of financial

contagion, both using the traditional consumer liquidity model, Allen and Gale

(2000); and the post crisis propagation mechanism literature which considers:

different possible shock transmission pathways, Nier et al (2008); the robust yet

fragile network characterisation, Gai and Kapadia (2010); the effect of multiple

asset classes, May and Arinaminpathy (2010); and the effect of different network

designs, Gai, Haldane and Kapadia (2011) and Georg (2011).

Haldane in two policy papers, Haldane (2009) and (2010), advocates splitting

the banking system into components. Haldane (2009) argues for a hierarchical

approach: he uses an analogy from Simon (1962), which compares two watch-
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makers. Tempus and Hora are each making identical watches from the same

1000 elements: it is just that their production processes are organised differ-

ently. Tempus, simply has one task of assembling all the elements together

into a watch. By contrast, Hora has a hierarchy of tasks. In particular, Hora

manufactures recursively : at each level the same number (10) of lower level com-

ponents are used. So, Hora has 100 sub-assembly formation tasks, where each

sub-assembly is formed from 10 elements; then Hora has 10 tasks of forming

assemblies, where each assembly consists of 10 sub-assembles; and then one final

task of forming the watch from the 10 assemblies.

Is it better to make watches with, or without hierarchies? This is in a stochastic

environment, where disabling shocks can hit the watchmaker. If a shock hits,

then previously completed tasks are unaffected; but all progress on the current

task is lost. The watchmakers want to minimise expected completion time. The

result of the model is that, Hora through using a hierarchical approach, is over

1000 times faster than Tempus. Haldane (2009) advocates the applicability of

this example to banking, but is watchmaking an appropriate comparison? As

Simon (1962) states: “Metaphor and analogy can be helpful, or they can be

misleading. All depends on whether the similarities the metaphor captures are

significant or superficial”.

Haldane (2010) talks about the benefits of modules (non-hierarchical structures

where the whole system is broken down into modules, but modules are not

further broken down), as a policy response to potential shocks, for example

using firebreaks to protect forests against fire. He again suggests this applies to

banking: “(banking) has many of the same basic ingredients as other network

industries, in particular the potential for viral spread and periodic systemic

collapse.”

Stiglitz (2010b) has a number of models containing modules; these are principally
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between countries, but are claimed to also apply to banks. Here is a stylised ver-

sion of his modelling. There are a number of countries and a single consumption

good: each country i has constant absolute risk aversion preferences (represented

by utility function u(x) = 1 − exp[αx], where x is consumption), and an initial

endowment C.9 This risk aversion is a difference from both Haldane (2010) and

my model. The timings are as follows. Firstly, the social planner assigns the

countries into modules. Secondly, within a module, countries agree state con-

tingent goods transfers. Thirdly, each country then receives a shock εi which is

either small (mean 0, variance σ2) or big (negative infinity):10

εi
iid∼

⎧⎪⎪⎨
⎪⎪⎩
D(0, σ2) probability (1− p)

−∞ probability p

The big shock case represents contagion: the big shock wipes out all countries in

a module, and they all get a utility of 0. If all countries in a module only receive

small shocks, then the state contingent transfers take place, and consumption

occurs.

The program can be solved through backwards induction as follows. At the

second stage, as the countries are ex-ante identical (in preferences, endowments

and their shock distribution), and risk averse, there will be complete consumption

smoothing within each module. At the first stage, module size x is chosen to

maximise the expected utility of a sample country:

EU = (1− p)xE[1− exp(α[C +
1

x

x∑
i=1

εi])]

9Note that the coefficient of absolute risk aversion is −u′′[x]
u′[x] = −−α2 exp[αx]

−α exp[αx] = −α, and so
the requirement for agents to be risk averse (rather than risk loving) means that α < 0.

10The D(0, σ2) notation for the small shock case represents some probability distribution
with mean 0 and variance σ2.
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Taking a 2nd order Taylor approximation gives:11

EU = (1− p)x
(
1− (1 +

0.5

x
σ2α2) exp[αC]

)

Log-linearising gives:

ln[EU ] = x ln(1− p)− (1 +
0.5

x
σ2α2) exp[αC]

and the first order condition for a maximum then gives

x2 = −0.5σ2α2 exp[αC]

ln[1− p]

There is a trade off in module size between risk aversion and contagion avoidance:

the risk aversion creates a desire for consumption smoothing, and hence large

modules; whilst the risk of contagion creates a demand for small modules. Note,

that there are decreasing returns from larger modules: expected consumption is

already close to the optimal level (in the good state of no contagion). There is

only one class of goods, so ex-post, every transfer makes one country better off,

but another country worse off. This contrasts with both normal trade, where

there are gains for both the buyer and the seller (the buyer values the good at

higher than the transaction price; the seller at lower than the transaction price),

and my model, which has Pareto improving investment opportunities. Hence,

the Stiglitz model has a lower desire for large modules, and so in general has an

interior solution.

Leitner (2005), like this thesis, directly assesses the idea of bank modules. It

models how the threat of contagion, may induce interbank support, when there is
11using f(a + h) ≈ f(a) + hf ′(a) + 0.5h2f ′′(a) and so E[f(a + h)] ≈ f(a) + E[h]f ′(a) +

0.5E[h2]f ′′(a) where there is uncertainty in h but not in a.
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neither pre-commitment nor a repeated game. However, it assumes that, illiquid

banks (hit by shocks) can be saved by liquid banks (which avoided shocks): “To

allow for some benefits from mutual insurance, I also assume that by pooling

resources, the liquid banks can come up with the extra funds required for helping

the illiquid bank, so that in the first best, no bank, whether liquid or illiquid,

goes bankrupt”. This is an environment with private bail-ins by other banks;

rather than public bailouts by the government. So, Leitner (2005) is considering

less severe shocks than in this thesis: when a bank is hit by a bad shock, it is

possible for contagion to be prevented. In reality, when the illiquid bank gets

very big, bail-ins become much less feasible: the private bail-in of LTCM (Long

Term Capital Management) cost $3.6 Billion, and the positions formerly held by

LTCM were successfully liquidated by their rescuers for a small profit (Partnoy,

2003); whilst, when Lehman Brothers applied for Chapter 11 bankruptcy it cited

debt of $613 billion, but currently it is estimated that creditors will be paid $65

Billion, (New York Times 30th August 2011)).

Leitner (2005) has a multi-stage model, where the network for the n banks has

to be chosen before the endowments are known: stage 1) social planner decides

the bank network; stage 2) bank endowments are resolved; stage 3) banks make

transfers to other banks; stage 4) banks invest (if they have enough money); stage

5) if all banks in a module invested then they each get return R. Leitner (2005)

does not get completely conclusive results; it constructs an example where a non-

trivial solution is best: the optimal network is neither empty nor fully connected.

But the intuition is that: if the expected bank endowment is large, then we want

fully connected bank networks to smooth out stochastic shocks that leave a few

banks illiquid; conversely, if the expected endowment is small, then we want an

empty network so the rare liquid banks can invest, without being stopped by the

many illiquid banks. Leitner proves that the fully connected network is ex-ante
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strictly preferred to the empty network, if and only if,12

Prob(
n∑

i=1

min(ei, R)≥n) > Prob(e1≥1)

Castiglionesi and Navarro (2007) is a financial fragility network model, not a

financial contagion partition model, and includes both the potential for bank

moral hazard and liquidity shocks. The setup has two types of agents, (depositors

and shareholders), and a network of inter-bank links between (some) of the

banks. Each bank can then invest in either a safe asset or a risky asset. Safe

assets always generate enough returns to pay back the bank’s depositors. In

contrast, the risky assets may fail, in which case the depositor loses their deposit;

or may succeed, in which the shareholders make extra profits, which gives the

model its moral hazard feature. Banks that invest in risky assets are called

gamblers, and the setup of the model is such that banks only have an incentive

to gamble if their capital endowment is below a critical level.

There is a stochastic environment consisting of both negative liquidity shocks

and failures of risky projects. The network of inter-bank links has both benefits

(in providing resilience to liquidity shocks), and costs (when projects fail). If a

bank receives a liquidity shock then that can be smoothed out by a linked liquid

bank, (similar to the Leitner (2005) bail-in mechanism). If a risky project fails

then the bank that gambled on that project fails, along with all its immediate

neighbours (those with direct links to it), irrespective of their own investment

choices and capital endowments. However, the shock can never propagate fur-

ther: specifically, it does not take out any banks that are not the hit bank’s

neighbours, but are only neighbours of its neighbours or even more remote. This

limited propagation means that this is a financial fragility model, not a financial
12This preference condition reflects an additional complication: as the highest return a bank

can get is R, the highest they are prepared to invest (directly or in transfers), is R.
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contagion model: a single shock cannot have systemic global effect; it can only

have local effects. And hence this is a model where the outcome depends on the

network of neighbours that each bank has; rather than on how the banks are

partitioned into modules.

The form of the efficient network depends on the parametrisation, but the format

is always a core and a periphery. If there is high aggregate bank capital then there

is a complete network, and every bank is in the core for maximum resilience to

liquidity shocks. Further, each bank is allocated enough capital to be incentivised

to invest safely. Alternatively, if there is low aggregate bank capital, then the

social planner finances as many banks as possible to the level where they will

invest safely. Completed links are formed between these safe banks to form a

core. The residual capital is split amongst the remaining banks, who will then

gamble and form the periphery. Each peripheral bank will be connected to some

core banks and to some peripheral banks. 13

Haldane and May (2011) models the mechanics of how shocks move around

system of banks, and so how financial contagion can occur; however, there are

no businesses and no modules. Further, the model does not assign a social value

to banks: it does not say how they matter. So, it is silent on questions of the

type: “is it better to have some banks enabled all the time, or all the banks

enabled some of the time?”. Despite these difficulties, the conclusion of Haldane

and May (2011) is pro-module:

“modularity protects the systemic resilience of both natural and con-

structed networks. The same principles apply in banking.”

Johnson (2011), in a direct response to Haldane and May (2011), cautions that:

“Policy-makers may never fully appreciate a model’s limitations... (so without
13What links the gambling banks form depends on the parameter values.
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careful application) ... we simply increase risk, rather than reduce it”. The finan-

cial crisis, was in part caused by complex financial derivative products created

using physics models. So it would be ironic (and potentially tragic), if cen-

tral bankers through inappropriate use of physics models of financial contagion,

made policy mistakes in response. In using physics, there are two particular

methodological issues. Firstly, economists do like to see themselves as scien-

tists (studying how the world works), but economics has another aspect: policy

work. And policy work is more engineering (problem solving), than science.14 As,

Keynes (1931) opined, “If economists could manage to get themselves thought of

as humble, competent people on a level with dentists, that would be splendid.”,

and whilst there is a scientific aspect to dentistry, its primary role is treat-

ment. Secondly, there is a difference in falsifiability between economic-science

and physics: physicists can run laboratory experiments to test their models;

whilst economics is an observational science like astronomy, so economists rely

on real world data with all the ethical and practical issues that implies.15

The Allen and Carletti (2009) survey paper identifies four potential explanations

for the existence of banks (or other financial intermediaries), in addition to, or

instead of, a more decentralised financial market. The first is the traditional

intertemporal risk-smoothing pathway: banks issue long term loans to business

and householders, whilst offering accounts with short notice periods to savers.

Because of the maturity mismatch between their assets and liabilities, however,

banks are subject to the possibility of runs and systemic risk.

The other three explanations are borrower monitoring , (banks have the informa-
14See Mankiw (2006) for a discussion on the twin roles of an economist: scientist and

engineer. Interestingly, writing before the recent financial crisis, he uses the example of the
Great Depression to argue that the policy economist’s toolkit has not moved forward much in
the last 50 years.

15There has been a recent growth in laboratory economics, but that is new and there are
issues, for example of external validity.
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tion about their client business to ensure that they are trustworthy; in contrast

market-based financiers face a free rider problem with respect to monitoring

business effort); economic growth, (in a bank-based system there are close re-

lationships between banks and businesses resulting in high growth; in contrast

in a market-based system there are distant relationships between financiers and

businesses resulting in low growth); and corporate governance (in a bank based

system there are long-term relationship between a bank and its client firm, the

holding of both debt and equity by the bank, and the active intervention of the

bank should its client become financially distressed). My work includes the risk

of systemic bank failure, (without the microfoundations of risk-smoothing, or

the mechanics of liquidity shocks); requires banks to fund businesses in order for

them to grow; and the inability for businesses to move banks can motivated in

terms of borrower monitoring.

Mishkin (2007), p181, identifies that “A healthy and vibrant economy requires a

financial system that moves funds from people who save to people who have pro-

ductive investment opportunities.”, and establishes, from Hackethal and Schmidt

(2004), eight stylised facts: 1) stocks provide only small amount of business fi-

nance ( about 10%); 2) bonds provide only small amount of business finance

(about 10-15%); 3) indirect finance (where there is an intermediary between

saver and borrower), is more important than direct finance (no intermediary

between saver and borrower); 4) financial intermediaries (especially banks) pro-

vide most Finance; 5) there is a lot of financial regulation; 6) only big businesses

use stock or bond markets; 7) collateral is important; and 8) debt contracts are

complicated. My model is inline with the first six of these facts: 1) has no stock

market; 2) has no bond market; 3) has indirect finance; 4) uses banks to provide

finance; 5) considers another possible form of regulation: modularisation; and 6)

focuses on businesses too small to use the stock market.
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Mayer (2011) claims that: “One of the best-established associations in economics

is between financial development and growth – countries with well-developed fi-

nancial systems grow faster”.16 He argues that businesses need finance to grow,

and that banks are especially important for financing medium sized businesses:

small businesses are family funded; whilst large businesses use the stock mar-

ket. He emphasises the importance of local banking; for example, in financ-

ing the industrial revolution during 19th century Britain. The strength of local

banks is that they offer long term relationships to Small and Medium Enterprises

(SMEs).17 However, local banks are smaller and hence riskier.18 In response to

this riskiness, regulatory changes have made banks larger and hence safer; but

also more distant from their business customers: resulting in a lack of funding

for SMEs. He concludes, post crisis, “that the focus is ... on the immediate issue

of avoiding another failure of the banks”, whilst it should be on ensuring “that

British banks provide sufficient financing for SMEs”. This motivates, firstly my

model’s use of cost benefit analysis to assess the effect that different structures of

the financial sector have on the business sector, and thus on the overall welfare

of society; secondly my model’s use of banks to finance businesses; and thirdly

the inability of businesses in my model to change which bank they use.

It could be argued that this story about the dependence of businesses on banks

can be undermined using Modigliani and Miller (1958), whose main result is the

Modigliani-Miller Theorem, “a firm’s valuation is the same whether financed by

equity or debt”. However, Modigliani and Miller (1958) themselves caution that

“Misinterpretation .... can be avoided by remembering that this Proposition tells
16Colin Mayer is the Peter Moores dean and professor of management studies at Saïd Busi-

ness School, University of Oxford.
17The internal examiner Professor Peter Hammond raised the interesting question of the

effect of competition amongst local banks. The competition effect would reduce business
lending costs, but the effect of firms changing banks to reduce costs would be to erode long
term bank-business relationships.

18In the sense of higher chance of individual bank failure due to high exposure to local shocks
rather than in the systematic sense of financial contagion.
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us only that the type of instrument used to finance an investment is irrelevant

to the question of whether or not the investment is worth while. This does not

mean that the owners (or the managers) have no grounds whatever for preferring

one financing plan to another; or that there are no other policy or technical issues

in finance at the level of the firm.”

Further, their results rely on strong assumptions such as, the absence of borrow-

ing constraints, symmetric information, the absence of (distorting) taxes, the

absence of agency costs, and complete markets. The complete market assump-

tion is particularly onerous as it needs to apply over uncertainty, and that further

requires state of world verification. As Mayer (1988) says, Modigliani and Miller

(1958) require that “all contingencies must be appropriately contracted; there

must be a complete set of (Arrow–Debreu State) contingent contracts.” Fur-

ther, Freixas and Rochet (1997) demonstrate “the discouraging fact that banks

are useless in the Arrow–Debreu world”. They show, that in a general equilib-

rium environment with complete market, banks make zero profits and “the size

of bank’s balance sheets have no impact on other economic agents”, and thus

conclude that “the Arrow–Debreu paradigm leads to a world in which banks are

redundant institutions”.19 This shows the particular importance of the complete

markets assumption in the Modigliani–Miller Theorem.

One of the primary concerns of the ICB was to prevent shocks jumping from in-

vestment banking to retail banking. Hence, their main proposal is ring-fencing:

this is the internal separation of retail and investment divisions of universal
19Within the general equilibrium framework, the internal examiner, Peter Hammond,

pointed out the potential relevancy of Green (1974), which has bankruptcy contagion in a
temporary equilibrium model. Green (1974) is a continuation of Green (1973), which con-
sidered temporary equilibria in a multiple period environment. Green (1974) considers what
happens if today it is not feasible for an agent to implement a transaction he agreed yesterday
because today’s endowment is found to be too small, and hence has to declare bankruptcy.
Within this environment each agent can be a debtor to some agents but a creditor some other
agents, leading to the potential for contagion.
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banks; not the external separating of banks by firewalls.20 As Kay (2011) said,

in his evidence at the Treasury Select Committee hearings into the final version

of the ICB report, “I think the ICB was asking what is the minimal change to

the structure industry, that they could propose, that would achieve the objective

of eliminating or reducing the taxpayer’s subsidy to investment banking”. Sim-

ilarly, Hahn (2011) said to the committee, of the ICB report, “this is tinkering

rather than stepping back (and making more wholesale changes)”. For example

they propose that inside the ring fence banks would be allowed to lend within

the EEA (European Economic Area), but not outside: “(they would) not be

allowed to engage in trading or other investment banking activities, provide ser-

vices to financial companies, or services to customers outside the EEA”, (ICB)

2011. Their justification for this proposed modularisation is that, “The UK’s

international treaty obligations make the appropriate geographic scope the EEA

rather than the UK.” Of course, the UK should respect its treaty obligations,

however, it is feasible for treaties to be re-negotiated, and it should be assessed

whether there are net benefits from such changes.

The Independent Commission on Banking (ICB), rather than choosing an opti-

mal design for the banking system, were trying to reduce the size and frequency

of governmental bail-outs of banks: “The package of banking reforms .. is de-

signed to reduce the probability and impact of financial crises in the future”,

ICB (2011). Their approach was based on empirical judgement rather than

mathematical modelling. They give three explanations for not using models.

The first is “because no model exists which can both reliably account for the

frequency and incidence of financial crises and encompass the effects of reform

recommendations.”, ICB (2011). And, clearly there are difficulties in modelling

financial systems and the effectiveness of possible policy reforms. However, I feel
20Given this significant difference I would not consider the modularisation of banks as being

an example of ring-fencing.
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this is too pessimistic, particularly when considering policies to reduce the like-

lihood of financial contagion, rather than prevent an initial bank failure: with

such policies we can take the initial financial shock as exogenous. The second

explanation implicitly assumes that models are sensitive to parameter values:

“Even if such a model did exist, sufficient empirical historical data about the

relation between the recommendations and the frequency or impact of financial

crises is not available to populate it.”, ICB (2011). However, with my model, as

the efficient partition always takes one of two forms, the policy implication is

not generally critically dependent on parameter values. The third explanation

is more philosophical, “attempts to quantify these effects are inherently limited,

because ... future risks which will certainly arise but whose precise scale and

nature is fundamentally unknowable.”, ICB (2011). Again, in this aspect my

model is resilient, for example the results are robust to the inclusion of common

shocks that effect all banks directly.

I am now going to consider contagion, which consists of three parts: the first is

initiation, the shock starts at only one node of a system; the second is propaga-

tion, the shock spreads node by node in an iterative process, (it is not just the

initial node that can infect other nodes; every node, once infected, can spread

the shock onto it’s neighbours); and the third is the result , all of, or a significant

proportion of, a network is affected. The term financial contagion is used when

this concept is applied to a banking network: the initiation consists of an initial

negative liquidity shock to one bank; and the shock is propagated through the

inter-bank links.21

Pre-crisis Allen and Gale (2000) used the variable consumer liquidity demand
21The term contagion has been used in multiple contexts in economics. For example co-

movements in stock markets. Here I am restricting the term to banks in-line with the original
definition (see Bagehot (1873)). See Moser (2003) for a survey of the use of contagion in
economics.
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story of Diamond and Dybvig (1983), both to motivate the existence of a network

of inter-bank lending, and explain how that network can result in contagion. In

their model inter-bank lending normally adds value, as it facilitates consump-

tion smoothing. However, in the rare bad states of the world, when there is a

large liquidity shock, this is propagated from one bank to the whole banking

network; resulting in all consumers getting adversely affected. This is the cost of

inter-bank lending: without it, the shock would have been contained to just the

customers of a single bank, and there would have been no financial contagion.

Notwithstanding this, the conclusion of the model is that if the state of the world

where contagion occurs is rare enough, then inter-bank lending is ex-ante wel-

fare enhancing. In the context of the present crisis, however, their model has a

number of issues. Firstly, it is focused on explaining how financial contagion can

happen, rather than assessing policy responses; for example, financial contagion

in their model is a zero probability outcome.22 Secondly, their model has shocks

to consumer liquidity demand rather than banks’ assets. Thirdly, the crisis has

cast doubt on a number of the model’s conclusions: for example, that the com-

plete network (where every bank lends to every other bank), is the most stable.

Fourthly, their analysis is restricted only to very small networks: specifically,

those with four banks.23

The aim of Allen and Gale (2000) is to provide micro foundations for financial

contagion, rather than to asses policy responses. The set-up has banks which

smooth consumer consumption, but do not enable business investment. So, there

are customers, but no non-financial businesses. Each bank has specified explicit
22Diamond and Dybvig (1983), that Allen and Gale (2000) uses for its model of bank runs,

has multiple equilibrium; whilst Goldstein and Pauzner (2005) provides a bank run model
where customers receive noisy signals that has a unique equilibrium (they use a method related
to Carlsson and van Damme (1993) and Morris and Shin (1998)). Dasgupta (2004) uses this
noisy signal approach to extend Allen and Gale (2000), and assess the probability of contagion.

23An extension to the paper claims that the arguments extend to the case of many banks;
but few details are given.
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inter-bank and bank-consumer lending. The inter-bank lending can take different

network structures. However, due to the number of banks being restricted to

four, only three different network structures can be analysed.24 In increasing

order of robustness to financial shocks, these are shown to be: circular, bilateral

and complete. There are strong foundations to these results: the welfare function

is derived from the preferences of consumers and all results are found using

analytical methods.

In economics, the first contagion paper that theoretically considers the inter-bank

propagation mechanism is Iori, Jafarey and Padilla (2006), which examines the

potential for the interbank market to propagate liquidity crises.25 Their model

is behavioural, and they assess different networks using numerical simulations.

Their results are that with homogeneous banks, “no evidence of the potential

for contagion is found” and their conclusion for this case is that “an interbank

market unambiguously stabilizes the system”. Contrastingly, with heterogenous

banks, the network has the characteristic later described by Gai and Kapadia

(2010) as “robust but fragile”: robustness as “interbank lending contributes to a

lower incidence of bank failures through the mutual insurance role”; fragility as

“at the same time, (inter-bank lending) does create the tendency for the system

to display avalanches (episodes of multiple bank collapse)”. The authors identify

that shock transmission occurs through both direct (“the failure of one bank has
24The consumer liquidity shocks are perfectly negatively correlated between the odd num-

bered banks (1, 3) and the even numbered banks (2, 4): in state s1 the proportion of consumers
demanding liquidity are (wh, wl, wh, wl), whilst with state s2 the proportions are (wl, wh, wl,
wh). So firstly efficiency excludes the possibility of a disconnected bank. Secondly, risk is
traded on the open market using state contingent Arrow-Debreu bonds. Hence, trading re-
lationships may or may not be symmetric. Let x → y represent the situation where bank x
buys a state contingent bond from bank y which pays out when bank x receives a negative
liquidity shock. If the relationship is mutual then this represented by x ↔ y. And so we
need to consider the following directed networks: i) bilateral network (1 ↔ 2, 3 ↔ 4), ii)
complete network (1 ↔ 2, 1 ↔ 3, 1 ↔ 4, 2 ↔ 3, 2 ↔ 4, 3 ↔ 4), and iii) circular network
(1→ 2→ 3→ 4→ 1).

25This paper is an expansion of the earlier Iori and Jafarey (2001) which was published in an
econophysics journal. Further see Furfine (2003) for an early empirical contagion paper that
considers US banks in February-March 1998.
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knock-on effects on its creditors”), and indirect (“bank failures tend to weaken the

system and drive it to an unstable state in which it becomes susceptible to further

simultaneous failures”) pathways. There are two main results on avalanches. The

first is that “increasing inter-bank connectivity leads to increased probability of

large avalanche sizes”.26 The second is that avalanche behaviour has a power

law relationship: the log-log plot of the statistical distribution of avalanche size

is linear (see the below figure from Iori and Jafarey (2001)). The existence of

this power law relationship is consistent with the predictions of Self Ordered

Criticality (SOC) theory, (see Bak, Chen, Scheinkman and Woodford, 1993).27

26An avalanche of size k occurs when an exogenous shock is applied that causes one bank to
fail, results in a total of k− 1 further banks failing after the full shock transmission effects are
considered. For example, suppose an exogenous shock disables bank 1, that the knock on effects
from that disable banks 2 and 3, and that the knock on effects from banks 2 and 3 disabling
in turn disable banks 4 and 5. If there are no further knock-on effects then k = 1+ 2+ 2 = 5.

27Note that under SOC power-law relationships apply at the limiting state of the system.
However, the Iori et al. results are not from the limiting state of the system: with the their
model defaulting banks are never re-enabled, in the limiting state all banks are in default, and
there can be no avalanches.
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Figure 1.1: Iori and Jafarey (2001) Log-Log plot of avalanche size

However, it is not until post-crisis, that the propagation mechanism literature

has fully emerged: this focuses on considering the mechanics of how the 2007

financial crisis could have been propagated worldwide from the US sub-prime

market. In this literature there a number of major differences compared with

Allen and Gale (2000): firstly, there is an arbitrary banking network, (there

are an arbitrary number of banks, and the network of inter-bank lending is ex-

ogenous and irrational: the lending is not microfounded, as the preferences of

banks are not specified); secondly, for each bank there is a balance sheet, (which

specifies assets (loans to other banks, and external asset holdings), and liabili-

ties (customer deposits, and loans from other banks)); thirdly, the initial shock
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affects bank assets rather than bank liquidity, (rather than a bank’s customers

withdrawing deposits, a bank’s investments have failed). Fourthly, this litera-

ture instead of considering social welfare, specifies a propagation rule, and then

constructs impulse response functions (the cascade resulting from shocking one

bank). This is typically found using numerical simulations, although additionally

Gai and Kapadia (2010), includes a probability generating function approach,

and May and Arinaminpathy (2010), includes a mean field approximation.28 In

contrast, my model includes bank-business externalities and assesses efficiency.

Mechanism papers often consider different inter-bank propagation channels, other

than just the direct inter-bank lending channel. For example, Nier, Yang, Yorul-

mazer, and Alentorn (2007) identifies four possible contagion channels: 1) inter-

bank lending, 2) asset fire-sales, 3) asymmetric information (imperfect informa-

tion about bank exposures, leading to a general drop in confidence), and 4) a

common source of risk. In terms of my model it is helpful to consider the pos-

sible pathways that contagion can take, in order to understand the implications

for what modularisation means in practical terms. The definition of a module is

that it contains shocks within itself: so, for modularisation to be a feasible policy

response to the first three pathways, the following are needed respectively: 1) no

inter-module bank lending, 2) banks in separate modules hold separate classes

of assets, and 3) common knowledge on bank exposures (inter-bank lending and

bank assets).29 In terms of the fourth pathway, common risk, modules do not
28The concept of a mean field approximation is that we ignore the distribution of a random

variable, X. So E[f(X)] ≈ f(E[x]). Hence, here the mean field approximation means that
every bank has the same number of both credit and debtor banks. The idea of using mean
field approximations is to ignore stochastic variation when making predictions; this contrasts
with “First order equivalence”, Malinvaud (1969), where stochastic variation is ignored when
making decisions. For another economics example of a mean field approximation see Jackson
(2008) pp125− 129, which considers a poison network with growth. Jackson explains, “While
we might prefer to calculate things like degree distributions analytically, this usually turns out
to be intractable for all but the starkest of models.”; whilst cautioning, “Analytically, we know
distressingly little about when such approximation are good and when they are not.”

29In terms of preventing asset fire-sales, we might think it sufficient to partition banks by
what risky assets they have, but let all bank hold a common portfolio of safe assets. The
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help.30

The stylised results of Gai and Kapadia (2010) are that, banking systems are

robust (many shocks spread to few other banks), yet fragile (some shocks spread

to many, or even all, banks). This fragility means the system has the capacity

for financial contagion. For example, one model in Gai and Kapadia (2010)

considers when propagation occurs through both the direct (inter-bank defaults),

and indirect (asset price decreases due to fire sales), channels. Their results can

be characterised in terms of z: the average degree.31 In the region of z = 1

the extent of shock propagation jumps from approximately 0% of banks, to

approximately 100% of banks.32

The main model of May and Arinaminpathy (2010) has multiple asset classes.

Each bank holds n different assets: n− c of which are idiosyncratic; whilst c are

in a shared asset class. Each shared asset class has assets shared amongst g + 1

banks. The initial shock is assumed to cause one asset of one bank to lose all its

value. As in Gai and Kapadia (2010), the shock is then propagated through both

a direct inter-bank lending channel, and an indirect liquidity channel. However,

here the liquidity channel takes 2 forms: strong (fire sales: experienced by banks

holding other assets in the same class), and weak (confidence effect: experienced

by banks holding other assets in different classes). With the inclusion of these

weak liquidity effects, May and Arinaminpathy (2010) generically rejects inter-

mediate propagations: “(with high initial bank net worth) very few simulations

problem here is that a shock to a certain type of risky asset, for example US sub-prime
mortgages, will cause banks holding them to experience a liquidity shock, and hence tend to
sell their liquid safe assets, for example US treasury bonds. This will decrease the value of US
treasury bonds, and hence other banks holding those assets will experience a negative shock.
So to prevent financial contagion spreading between modules via an asset fire-sales channel,
requires complete separation in terms of what assets banks in different modules hold.

30Although it may be case that the common risk is not truly innate; so if we restrict bank
lending by class then what was a common risk becomes a bank specific risk.

31The average degree is defined as follows: there is a directed network of n banks and a
typical bank i has lent money to j(i) other banks. So let z := 1/n

∑n
i=1 j(i)

32See figure 8 in Gai and Kapadia (2010)
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have any failure other than the initiating one, but the few simulations that do

show failures bring the entire system down, and thus have disproportionate ef-

fects on the average number of failures; quite small further decreases in g (initial

bank net worth), result in a much higher proportion of all banks having failed

(but still no intermediate propagations).”

So both, Gai and Kapadia (2010), and May and Arinaminpathy (2010), motivate

the assumption in my model that financial contagion is full and immediate: a

shock hits one bank, and is then immediately propagated to all the other banks

connected to it (directly or indirectly). Similarly, in my model modularisation

is also completely effective. Hence, when contagion occurs it always affects all

banks in the affected module, but never spreads across module boundaries. This

high cost-benefit ratio gives modularisation the most chance of being an effective

policy.

Gai, Haldane and Kapadia (2011) is a recent mechanism paper which contains

two innovations. Firstly it compares two different distributions for the random

financial network: Poisson and geometric. In a Poisson network every inter-bank

link exists with probability p and so the node degree has a Poisson distribution:

P (node degree k) = zk ∗ exp(−z)/k!

where z = p ∗ n is the average degree and n is the number of nodes.33 An

alternative random network is the geometric, or scale free network, which has

fat tails: there are more nodes with high degree than in the Poisson network.

One method of generating a geometric network is as follows: the initial network

consists of a fully connected network of m + 1 nodes; the other n − m nodes

are then added sequentially. Each of those added nodes, i, forms links with
33See Newman et al (2001) page 4.
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exactly m existing nodes, and the probability of connecting to existing node j is

proportional to the existing degree of node j. So, if dj is the existing degree of

node j, then

P (i connect to j:dj=d) = d ∗ P (i connect to j:dj=1)

The final node distribution after all the n −m nodes have been added is given

by

P (node degree k) = 2(m2)k−3

and this can be generalised to the geometric function

P (node degree k) = γ(mγ)k−γ−1

The following motivation of this generalisation is given by Jackson (2008) on

p133. Suppose that at each time t, rather than a single node being introduced,

that a group of new nodes are introduced. Suppose that a fraction α of links are

from new nodes to existing nodes, and that a fraction 1 − α of links are from

new nodes to new nodes. This leads to the case γ ≡ 2
α
.

The second innovation is it considers haircuts: if a bank has AL liquid assets

and can borrow up to (1 − h)AL, then h is the haircut. Either a single bank

may receive an idiosyncratic haircut shock or all banks may receive an aggregate

haircut shock.

Gai, Haldane and Kapadia (2011) consider 6 different experiments and 4 different

policy exercises. Each of these experiments and exercises specifies a calibration

of the 20 parameters. The average node degree, z, is varied and for each choice

of z, 1000 different realisations of both the random network and the node hit by

the liquidity shock are selected. The extent of shock dissipation in each of the
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trials can then be measured. This enables the authors to estimate the average

dissipation levels for different levels of connectivity within each experiment or

exercise.

They often find that if a bank has more partners then a shock to any one partner

has less effect, so there are tipping points z∗: if z < z∗ then Prob(contagion) ≈ 1

and if z > z∗ then Prob(contagion) ≈ 0. Experiment 1 considers a Poisson

network and then “shocks a single bank into receiving a very large adverse id-

iosyncratic haircut shock which causes it to start hoarding liquidity”. This gives

a baseline result and the tipping point z∗ ≈ 7.5. In Experiment 2, the network is

still Poisson but all banks face an increased haircut: 10% pre-shock to 20% post

crisis. As expected an initial shock now has more effect and the tipping point

moves to approximately 15.

The other four experiments consider geometric networks. In Experiment 3,

shocks are randomly (uniformly) distributed. The network demonstrates re-

silience, as there is no tipping point: for all values of the average node degree,

the Prob(contagion) is less than 1 and its maximum is approximately 0.5. In

Experiment 4, the haircut shock is targeted on the highest degree node. The

result is that there is now a tipping point and it has a very high value: approx-

imately 60. Both these results are inline with the network literature: fat-tailed

networks are robust to random shocks; but vulnerable to targeted shocks.34 In

Experiment 5, there is a return to random shocks but unsecured interbank lia-

bilities are increased from 15% to 25% of the balance sheet. As in Experiment

3 there is no tipping point but the maximum probability of contagion increases

from 0.5 to 0.7. Experiment 6 fixes the average connectivity, at 50, but varies the

pre-shock aggregate haircut h; the post-shock aggregate haircut is fixed at 0.25.

The result is that the contagion probability is 1 for h less than approximately
34See for example (Anderson and May, 1991; Albert et al., 2000)
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0.06, and then the contagion probability decreases linearly for h up to 0.20.

Policy Exercise 1 considers the effect of tougher liquidity requirements. There

is an increase in liquid asset holdings for all banks from 2% to 3.5%; resulting

in increased resilience: the maximum Prob(contagion) drops to 0.2 from 0.5

compared with Experiment 3. Policy Exercise 2, considers systemic liquidity

requirements, where banks that lend more are required to hold greater liquidity:

banks are required to hold a minimum of 2% liquid assets, plus an amount

equal to 10% of their total interbank assets. As average interbank assets are

15%, this implies average liquid asset holdings of 3.5%: the same as Policy

Exercise 1. The result is that maximum Prob(contagion) drops to 0.1 from

0.2. The interpretation is that it is effective to focus liquidity requirements on

high connectivity banks. Policy Exercise 3 considers counter-cyclical liquidity

requirements to offset decreases in haircuts. There is a tough rule in which

liquid assets are required to rise from 2% of total assets at an aggregate haircut

of 0.25 to 4.5% when haircuts are zero, and an alternate weak rule, in which the

liquid asset requirement only rises to 3.25%. Both rules show increased resilience

compared with Experiment 6: the maximum contagion probability is below 0.1

under the tough rule, and below 0.5 under the weak rule. Policy Exercise 4,

considers the effect of more restrained behaviour by shocked banks, for example

because they have more confidence in the systemic integrity of the financial

system due to increased network transparency. So shocked banks, instead of

withdrawing all their liquidity from other banks, withdraw their liquidity needs

plus 50% of the remainder. The result is that then the probability of contagion

reduces to below 0.2 for all connectivities.

Ladley (2011) is a mechanism paper with firms as well as banks and house-

holds. Every agent has a utility function, however, agents’ actions do not have

rational microfoundations: firms and households follow behavioural rules; whilst
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the network of inter-bank lending is random. The paper considers the effec-

tiveness of three different policy responses: increasing equity ratios, increasing

reserve ratios, and constraining the maximum funds a bank may lend to a single

counter-party; but not the effectiveness of modules.35 The paper includes three

robustness checks: firstly, parameter sensitivity; secondly, adding in a bank con-

fidence channel, (during a crisis banks have less confidence that their loans will

be repaid); and thirdly, adding in a creditworthiness channel, (riskier banks are

charged a higher interest rate when they borrow). However, firstly, the paper

has no efficiency assessment, and secondly, it relies on computational calculations

providing no closed form solutions.

Bank regulators get blamed more for bank failures than they are praised for suc-

cessful lending by banks to businesses. As Hahn (2011) said in his evidence to the

ICB, “The regulatory regime is always going to be penalised for failures of banks;

(but) it won’t get a reward for the economy doing well. The Government gets

the upside and the downside; the regulator only gets the downside”. A number

of the mechanism papers in this literature review have had contributions from

Bank of England employees such as, Andrew Haldane, Sujit Kapadia, Erlend

Nier, Jing Yang and Tanju Yorulmazer.36 This may partly explain the propa-

gation mechanism literature’s modelling of inter-bank externalities, rather than

bank-business externalities; lack of a business sector; lack of a welfare function;

and its focus on bank capital losses, rather than the real economy.

The policy literature, the propagation mechanism literature and the recent em-

pirical evidence, all motivate the assumption of the existence of financial con-

tagion that this thesis makes. My aim in this thesis is to assess the validity
35Increasing equity ratios means requiring banks to hold more capital relative to their hold-

ings of risky assets; increasing the reserve ratio means forcing banks to hold more of their
assets in liquid form (for example as reserves with the central bank).

36 The Bank of England is the British central bank and (partly) responsible for bank regu-
lation.
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of the pro-module hypothesis: it will explicitly compare bank networks with or

without modules. A partition of modules can be thought of as a network with

disconnected regions, where each region has full internal links.37 In line with

Allen and Gale (2008) p19, a cost benefit approach will be followed: “the costs

of avoiding crises must be traded off against the costs of allowing crises”. Whilst

bank bail outs are large in absolute terms, they are small in size relative to the

real economy costs; so in my model the cost of financial contagion is forgone

investment opportunities, and hence is rooted in the real economy.38 Therefore,

this thesis abstracts from modelling bank balance sheets.

As in the propagation mechanism literature, I have an arbitrary number of banks.

There are three key features in common with Allen and Gale (2000): firstly, the

models have non-banks (consumers in Allen and Gale; non-financial businesses

in this thesis); secondly, analytical methods are used; and thirdly, the results are

interpreted using a welfare function micro-founded in stakeholder utility. Under

the standard model, with a uniform distribution of business opportunities, the

conclusion is contrary to Haldane and May (2011): for all parametrisations the

use of modules is rejected as inefficient. In contrast, under an alternative model,

where the matches are between neighbouring banks, the use of proper modules

is efficient.

Allen and Gale (2008) p2 accepts that the financial system has “a basic function

of allocating investment”. A credit crunch has a much greater effect on businesses

than householders. Householders are unable to get extra credit (for example to

enter, or move up, the housing market), but they have got long term credit line

availability, for example through 25 year mortgages. In contrast, businesses have

floating credit lines on much shorter term lengths: this can result in them being
37Equivalently consider networks with transitive links where if x is connected to y and y is

connected to z then x is connected to z.
38Further, bank bail outs are “mostly transfers” Allen and Gale (2008) p19.
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unable to grow, or even carrying on trading. In the UK, the hearings into the

ICB interim report (Treasury Select Committee 2011a, 2011b), demonstrated a

similar focus as they asked many questions about the effect the credit crunch

was having on businesses, but none on its effect on consumer credit. Therefore,

my model focuses on businesses not consumers.

A third class of financial systemic risk models, exemplified by Garratt, Mahadeva

and Svirydzenka (2011), rather than using particular experimental simulations, is

more empirical in form: the aim is to summarise relevant features of the network

without imposing too many assumptions. Their approach is to use lending data

to infer contagion probabilities and hence formulate modules. The data they use

is bilateral lending claims between banks in 21 countries, on a quarterly basis

for the period 1985 Q1 to 2009 Q3. The data set was supplied by the Bank for

International Settlements and data is aggregated at the country level, with each

bank being associated with the country where their headquarters are located.

The countries present are Austria, Australia, Belgium, Canada, the Cayman Is-

lands, Switzerland, Germany, Greece, Denmark (excluding Faeroe Islands and

Greenland), Spain, Finland, France (including Monaco), United Kingdom (ex-

cluding Guernsey, Isle of Man and Jersey), Ireland, Italy, Japan, Luxembourg,

Netherlands, Portugal, Sweden, and the United States.

Garratt, Mahadeva and Svirydzenka (2011) model shocks as being transmitted

through 2 channels: a credit channel (a bank defaulting on its loans transmits

stress to its creditors) and a funding channel (when a bank is hit by a shock

it reduces the funding it provides to banks it has previously lent to). In the

network, each of the n countries is represented by 2 nodes a (C)redit node and

a (F )unding node: country i has nodes Fi and Ci. So there are 4 contagion

channels between each pair of countries: considering countries 1 and 2, i) if 1

defaults then 2 has reduced funding (contagion flow F1 to C2), ii) if 2 defaults
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then 1 has reduced assets (contagion flow from C2 to F1), iii) if 2 defaults then

1 has reduced funding (contagion flow from F2 to C1), and iv) if 1 defaults then

2 has reduced assets (contagion flow from C1 to F2).

Garratt, Mahadeva and Svirydzenka (2011) use an ad hoc model to translate

funding and credit levels into contagion probabilities. Recalling that there are

both credit and funding nodes: let x be a 2n∗2n matrix representing the absolute

amount of bilateral lending for each pair of nodes. Lending is always between

funding and credit nodes so x(Fi, Fj) = 0 and x(Ci, Cj) = 0. Further, the

amount lent from Fi to Cj is the same as the amount received by Cj from Fi. So

x(Fi, Cj) = x(Cj, Fi) represents the value of loans that banks in country j have

made to banks in country i.

Except for the special case of within country contagion (contagion between fund-

ing and credit nodes of the same country), contagion weight v is the same as

the bilateral lending. So between funding and credit nodes in different countries,

contagion weight is given by the lending level. So v(Fi, Cj) = x(Fi, Cj) = v(Cj,

Fi) = x(Cj, Fi). There is no intra-funding or intra-credit node contagion: so

v(Fi, Fj) = 0 and v(Ci, Cj) = 0. In the special case of intra-country contagion,

the weight is given by the total level of outside funding that the country has:

v(Fi, Ci) =
∑n

j=1 x(Fi, Cj). The contagion weights v, are normalised to form the

contagion probabilities π, π(Ci, Fj) =
v(Ci,Fj)∑n

k=1 v(Ck,Fj)
and π(Fi, Cj) =

v(Fi,Cj)∑n
k=1 v(Fk,Cj)

.

The prestige pCi
or pFi

of a node is defined as the steady state probability of

a shock being at that node. So the prestige vector p over all 2n nodes is a

steady state solution of the π transition matrix, hence: p = πp. Similarly, pm,

the prestige of module m is given by the sum of the prestiges of all the nodes

contained in module m. This prestige can be thought of as the frequency with

which shocks visit the module.

Finally modules are formed from the contagion probabilities. The nodes are
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classified using 2 types of book: a single index book and (generically) multiple

code books. In the index book, each module has a single entry. There is one

code book per module, and each code book has 1 entry for each bank in that

module. For intra-module travel, where a shock travels between 2 nodes in the

same module, just the single code book is used. Whilst with inter-module travel,

where a shock jumps to a new module, both the index book and the code book

for the new module is used. It is more costly to use 2 books than 1, but it is also

more costly to use nodes which have higher entry numbers in a code book. So

the question is how can nodes be arranged into modules to minimise this cost?

Garratt, Mahadeva and Svirydzenka (2011) find the best partition using an

entropy method. The entropy cost of a probability measure z is given by, H(z) =∑
zi ∗ Log[zi]. The entropy cost of a partition M, consisting of M modules, is

given by L(M) = q ∗ H(Q) +
∑M

m=1 p
m ∗ H(Pm), where q is the aggregate exit

probability of all the modules, H(Q) is the entropy cost of the index book, pm

is the prestige of module m and H(Pm) is the entropy cost of the module m

codebook.

Clustering is done at each date from 1985 Q1 to 2009 Q3. The results suggest a

great deal of instability in the modularisation: there are 25 different partitions

over the 99 quarters:
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Table 1.1: Garratt, Mahadeva and Svirydzenka (2011) Number of Modules by
quarter

Starting Number of Number of
Quarter Quarters Lifetime Modules
1985 Q1 6 19
1986 Q3 4 18
1987 Q3 7 17
1989 Q2 1 18
1989 Q3 1 17
1989 Q4 9 19
1992 Q1 1 19
1992 Q2 1 19
1992 Q3 5 19
1993 Q4 13 18
1997 Q1 1 16
1997 Q2 8 18
1999 Q2 5 17
2000 Q3 1 16
2000 Q4 1 17
2001 Q1 4 16
2002 Q1 4 17
2003 Q1 6 16
2004 Q3 2 17
2005 Q1 1 16
2005 Q2 10 17
2007 Q4 4 17
2008 Q4 1 18
2009 Q1 1 17
2009 Q2 2 18

Given that there are 21 countries, in every period the estimated partition is close

to the atomistic partition. We can simplify the picture by abstracting away from

some of the non-key modules: these mainly consist of geographic relationships

or of a small country’s banks being interlinked with those of a big neighbour.

Firstly, the Cayman Islands are in the same module as the US in every quarter.

Garratt, Mahadeva and Svirydzenka (2011) acknowledge this as, “reflecting the

fact that the Cayman Islands is an offshore centre for US banking. The IMF

(International Monetary Fund) recently estimated that 57% of the assets of the
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Cayman Islands banking system are overnight sweep accounts in branches of

US banks.”. Secondly, Luxembourg is in a two member module with Germany

for 89 of the 99 quarters: in one of the other quarters it shares a module with

Switzerland and in the other 9 it is in a singleton module. Thirdly, for one

quarter Canada shares a module with the US: the rest of the time Canada is in

a singleton Module. Fourthly, for 5 quarters the Netherlands and Belgium are in

a 2 member module: the rest of the time they are in singleton modules. Fifthly,

since 1999 q2, in every quarter Finland and Sweden have been in the same

module, and since 2001 q1 for every quarter they have been joined by Denmark.

Ignoring these links leaves the following significant non-singleton modules:

Table 1.2: Garratt, Mahadeva and Svirydzenka (2011)
Significant non-singleton Modules by quarter

Period Significant
Period Lifetime non-Singleton Modules

1985 Q1 6
1986 Q3 4 UK, Japan
1987 Q3 7 UK, Japan, US
1989 Q2 1 UK, Japan
1989 Q3 1 UK, Japan, US
1989 Q4 9
1992 Q1 1 UK, Switzerland
1992 Q2 1
1992 Q3 38 UK, Switzerland
2002 Q1 4
2003 Q1 6 UK, Switzerland
2004 Q3 21

This table shows that there are 2 significant deviations from the atomistic par-

tition. The authors note the first of these: the series of modules in the 3 year

period from 1986 Q3 to 1989 Q3, involving Japan, the United Kingdom, the

United States and the Cayman Islands: “In the late 1980s four important fi-

nancial centres formed one large supercluster”. The second is the UK Swiss
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relationship covering 45 of the 50 of the quarters starting with 1992 Q1.

One of the robustness checks that Garratt, Mahadeva and Svirydzenka (2011)

carried out was to, “(employ) the map equation on the data set before splitting

into funding and credit arms to see if that could generate some interesting mod-

ular structure without splitting out these two channels that allow for intrabank

claims.” However, when this was done, their algorithm always reported that

there is only one module for every period. So in this case they have found the

other boundary solution of the grand coalition.

My model is parsimonious, and assesses a specific policy proposal in a believ-

able, internally consistent scenario; it is not an attempt to do a multi-channel

calibrated model of, for example the 2007–2009 financial crisis. This gives the

standard model tractability (through a quasiconvexity argument); the variations

considered in the second chapter are harder to do algebraically, but computa-

tional methods still give clear results.

1.4 Model Overview

This section starts with a visualisation story, and then continues with an overview

of the model, the solution methodology, and its results. Subsequent sections then

formally define the model and derive the results.

Imagine a small town consisting of a series of two storey buildings, each occu-

pied by a single married couple. The wife works downstairs as a banker, and the

husband upstairs as a businessman. The husband creates an invention which is

clever and interesting; but not necessarily useful. The wife takes the invention

and searches for another wife, whose husband has produced a compatible inven-

tion, which it can be matched with, in order to produce a completed sellable

finished product.
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The buildings are arranged in rows and each row forms a street.39 Wives have

close social connections to women in their own street, but are more distant from

women in other streets. So, if a matching invention is present in the same street,

then the match is certain to be successfully completed, but if the matching

invention is in a different street, then the match may fail to occur.

The buildings can receive negative shocks in the form of lightning strikes: every

period, each building has an independent and identical probability of being hit by

a lightning strike. The effect of a strike is communal within streets (a lightning

strike to one building burns down all buildings in a street), but idiosyncratic

between streets (streets are separated enough so that fire cannot spread inter-

street). Couples from a fire-damaged building cannot operate commercially until

their house is repaired.

Fire-damaged streets require planning permission before they can be rebuilt, and

each period each fire-damaged street has an independent and identical probabil-

ity of getting planning permission. When the repairs occur, all houses in a street

are repaired at once. Since fire and repairs both affect all the houses in a street

simultaneously, at any time all the buildings in a street will be in the same state:

either all operating normally, or all fire-damaged and non-operational.

The cost of fire and the benefits of business matches generate a trade off: if a

street has a lot of buildings, then fire has a large cost; conversely, if a street

contains only a few buildings, then it is harder to complete matches. So the

question facing a town planner in this environment is: “What is the best town

plan?”. The model constructed in this chapter, answers that, the town planner

always rejects proper partitions: street plans where there are both more than

one street, and more than one house per street. My model argues, specifically,

that for all parameterisations every interior partition is strictly dominated by at
39We allow the extreme case of a street consisting of a single building: a row of length one.
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least one of the boundary partitions, so the efficient partition is always either the

grand coalition (one street with all the buildings in it), or the atomistic partition

(one building per street).40 This choice between these 2 partitions depends on

the parameter values.41

Now, I will overview the banking model, which is formed by a simple equivalence

from the town planning model in terms of: stakeholders (husbands become busi-

nesses, wives become banks, and the town planner becomes the social planner);

business opportunities (go from needing both of a matched pair of husbands to

needing both of a matched pair of business); negative shocks initiation (exoge-

nous stochastic lightning strikes become exogenous stochastic disabling financial

shocks); shock propagation (fire transferring between adjoining buildings be-

comes shocks passing between connected banks); the negative effect of shocks

(couples unable to take advantage of their invention become businesses unable

to take advantage of their business opportunities); and the recovery process (the

stochastic planning permission granting process becomes a stochastic bank re-

covery process).

The banking model in this thesis has two classes of stakeholders: banks and

(non-financial) businesses. In the standard model, banks and businesses have

aligned interests, so mathematically, it would be possible to construct the model

with only one class. However, it is more natural to use two classes as there are

two sectors to the economy (financial and business), and it makes interpretation

cleaner as the investment opportunities are then clearly rooted in the business

sector. Further, it lets us more easily consider extensions, where banks and

businesses have different interests.

The role of businesses is to produce socially beneficial products; the role of banks
40This result holds for all shock probabilities, all recovery probabilities, all ratios of inter-

street to within-street match values, and all population sizes.
41For a critical curve of parameters both the boundary partitions are efficient
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is to facilitate investment between businesses. The stakeholders are risk neutral,

both for tractability, and in line with the Haldane-Simon watchmaker analogy.

There is no bank–business strategic interaction: each bank has a representative

client business, (section 2.2.2.2 shows that there are still boundary solutions

when we allow multiple businesses per bank.); businesses do not move between

banks, (a motivation for this would be that, when a module is enabled there is no

incentive for them to move, and when a module is disabled it is not feasible); and

there is an exogenous split of investment returns between banks and businesses,

(the efficiency results are robust to the addition of negotiation between banks

and businesses over the distribution of investment returns, as long as the scenario

where business opportunities are lost because negotiations break down does not

occur).

The businesses are using banks to facilitate business investment. So, it is more

natural to think of businesses which are medium sized; rather than small (which

are family funded, for example by personal mortgages), or large (which have

access to the stock market). The business opportunities come in the form of

matches that requires two firms: for example, a finished product that requires

both a manufacturing company and a service company.42 The value of matches

depends on whether the matches are inside (banks in same module), or outside

(banks in different modules). Inside matches are of greater value than outside

matches, because for example outside matches have higher transaction or search

costs. The distribution of matches between businesses is independent of which

banks the businesses use. Each match is identically distributed, and so we can

just consider the value of a single sample business transaction.

Banks are either enabled or disabled : enabled banks can facilitate; disabled
42In the Fire-Invention analogy, the wives actively match inventions; whilst in the bank-

business model, banks are required to provide banking services to businesses, in order for their
exogenous matches to be productive.
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banks cannot. Disabled banks need not be insolvent: they may be rebuilding

their capital buffers and hence be unable to lend. Both businesses in the match

need banking services, so in order for a match to be productive, both banks need

to be enabled. So if either one or both banks are disabled, then the match is

unproductive, and of no value.43 When productive, the social benefit of an inside

match is 2, whilst that of an outside match is 2θ < 2.

The model assumes risk neutrality and comparable utility, so the micro-allocation

of returns is not relevant for welfare. However, for notational simplicity, assume

that returns are split equally into four quarters: each bank and each business

in the match gets a quarter of the total. So with an inside match each bank or

business gets 0.5, and with an outside match each gets 0.5θ.

The financial economy is at risk of being hit by negative disabling financial

shocks: these cause enabled banks to become disabled. Similarly, there is a

stochastic recovery process that repairs disabled banks, and thus re-enables

them. These disabling and enabling shocks combine to form a Markov process.44

Each module is modelled as being at this Markov process’s stationary distribu-

tion. The intertemporal model in section 2.4.1 shows that this assumption is

robust.

The financial shocks will be formulated in discrete time, before considering the

model in continuous time. In the discrete version, each period each enabled bank

is independently with probability q hit by a shock. If a shock arrives, it then

spreads to all other banks in the same module immediately, and with certainty.
43One motivation for a business not being able to borrow from an outside bank would be the

use of relationship lending, (banks making lending decisions using information collected both
historically and at the time of the lending decision); rather than transaction lending, (banks
making lending decisions using information collected only at the time of the lending decision),
(see Berger (2010) and DeYoung (2010)).

44The idea of a Markov process is that the current state, but not past state(s), matter in
determining future states. The formal definition of Markov chains (the type of Markov process
used in this thesis), is given in appendix B.
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Each period a disabled module gets re-enabled with probability ρ. So, all banks

in the same module are in the same state. Taking a continuous time limit of

this process has two gains: it is more realistic and more tractable. The Markov

process only has two states, so to align the discrete and continuous time versions

we just need to equate the leaving times of each state.45

There is a trade off in module size: the benefit of large modules is that more of

the matches are inside one module, and hence (when productive), are of higher

value; the cost of large modules is that shocks have larger effects, so large modules

are less likely to be enabled, and hence matches are less likely to be productive.

The decision maker, whether the social planner or the banker, makes this choice

under an ex-ante basis: they know the parameter values and the probability

distribution of both shocks and business opportunities; but do not know the

actual future realisations of either the shocks, or the business opportunities.

The standard model assumes that the system is already at the limiting state of

the Markov process of shocks. So when the economy is centralised, the social

planner makes the choice of bank partition using a farsighted utilitarian welfare

function; in contrast, when the economy is decentralised, modules are formed by

banks playing one of the games described in sections 1.8 and 2.3.3.

This stochastic formulation can be motivated in terms of modelling methodology,

stakeholders’ preferences, and the feasibility constraints that bank regulators

face. There are two methodological reasons. Firstly, Appendix C shows that

the Markov process converges exponentially fast, which provides re-assurance

that errors in early periods from the system being far from its limiting state are

not likely to be significant. Secondly, the Markov process formulation means

that after a disabled module is re-enabled, the social planner has no reason

to change their original choice of partition. This is because the social planner
45See Appendix C for the details.

58



has gained no extra information: no learning has occurred as they started with

perfect information about the system’s parameters. Hence, they are in the same

position as when they made their initial choice.

There are two preference arguments. Firstly, choosing the structure of banking

systems is a long run decision, and the model reflects this: it is reasonable to

focus on the welfare of future generations. Secondly, Section 2.4.1 shows that

the results are robust to considering an intertemporal model where welfare is

summed over all time periods, rather than being evaluated just at the limiting

state.

There are three feasibility explanations: firstly, in the form of what information

the social planner receives, and how they can use it; secondly, there are lags in

the effectiveness of module changes; and thirdly, the evidence of the response to

the 2007–2009 financial crisis. In terms of information, firstly, the social planner

does not receive the signals required to manipulate the economy for short term

advantage: in the financial sector, they cannot predict which banks will go bust;

and in the business sector, they cannot predict what the future business matches

will be. Secondly, it is not feasible to re-structure inter-bank links continually:

so even if they had short run information then they would not be able to use it.

There are lagged effects both when modules merge and when they split. After

a merger, it takes time for banks that were previously in different modules to

move closer, gain trust in each other, or communicate better. Hence, the full

business benefits of being in the same module do not appear immediately in the

form of lower transaction costs, or more effective matching. Similarly, after a

split, it takes time for shock propagation channels between banks to disappear.

And so the full gains that module separation offers in preventing financial shock

propagation do not appear immediately.

The response to the crisis has shown four relevant points. Firstly, during a crisis
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the regulator is fire fighting, not fire preventing: they are focused on fixing bad

banks, not changing relationships between the remaining good banks. Secondly,

re-organising banks is a slow process: it is already 5 years since the financial crisis

started and not much change has occurred; for example 4 years had passed before

the ICB report was produced. Thirdly, the changes that are currently happening

are explained by learning (regulators were previously too optimistic about light

touch banking regulation), rather than by regulators having a pre-crisis planned

strategy of state conditional actions. Fourthly, the currently planned changes

to banking regulation are not conditional on the occurrence of bank failures.

For example, there are three different sets of possible changes to bank reserve

requirements: 1) higher reserve requirements for all banks all the time; 2) reserve

requirements made pro business cycle, (higher when there is lots of business

lending, lower when there is less), to smooth out lending; and 3) higher reserve

requirements for banks with riskier lending. However, there is no requirement

that one bank being in crisis means that another has a different reserve level.

The solution methodology developed in this work is as follows. There are many

possible different partitions of n banks, and it is hard to systematically assess

them all. However, we know that a partition that maximises a utilitarian welfare

function must be Pareto optimal. So, we start by looking for Pareto optimal

partitions, and in particular for Pareto optimal partitions that maximise the

expected utility of bank 1. If the partition that maximises the expected utility

of bank 1 is symmetric, then we know that it gives the same expected utility to

all the other banks.46 Hence it is the only Pareto optimal partition, and hence

the solution to the welfare maximisation program.
46Utility is assumed to be non-transferable. If instead utility is transferable, then the social

planner ex-ante will still want to maximise the total expected value of all business matches,
and ex-post will give all the surplus to bank 1. Hence the social planner will still choose the
same (trivial) partition.
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Without loss of generality, we assume that bank 1 is in module 1. We have

negative externalities: if two other modules merge then this makes bank 1 worse

off.47 So, bank 1 will want the banks not in module 1 to be in singleton modules,

and so will choose a partition of form {x1, 1, 1, ....1, 1, 1}, where x1 ∈ An := {1,
2, 3, 4.....n}. Let v1[x1] be the expected utility function for a member of module

1 (hereafter the utility function), and define x∗
1 := argmaxx1∈An v1[x1]. We can

now find x∗
1 using standard single variable calculus methods.

The solution can, potentially, either be on the boundary (x∗
1 = 1 or x∗

1 = n),

or in the interior (1 < x∗
1 < n). If x∗

1 = 1 then the atomistic partition of

singletons {1, 1, .....1, 1} maximises v1, and by symmetry this partition gives all

banks the same utility. So the atomistic partition is then the only Pareto optimal

partition, and so maximises the utilitarian welfare function. Similarly, if x∗
1 = n

then the grand coalition {n} maximises v1, is the only Pareto optimal partition,

and so maximises the utilitarian welfare function. Either the atomistic partition

of singletons or the grand coalition, will be called trivial partitions or boundary

partitions. Any partition which is neither the atomistic partition, nor the grand

coalition is a non-trivial partition, and also will be called an interior partition.

Conversely, if it was the case that 1 < x∗
1 < n then there would be a non-trivial

Pareto optimal partition, and there might be a non-trivial partition that maxim-

ised the welfare function. However, under the standard model, such non-trivial

partitions are rejected for all parameterisations. Specifically, fix a parametrisa-

tion (number of banks (n), shock probability (q), recovery probability (ρ), and

value of outside matches (θ)); then every feasible interior partition is strictly

dominated by at least one of the boundary partitions. And hence the efficient
47Without loss of generality, consider a merger between modules 2 and 3, where bank 2 is a

member of module 2. Bank 2 is now less likely to be enabled due to the exposure to financial
contagion from module 3, but bank 2 is still an outsider to bank 1. So ex-ante a match between
banks 1 and bank 2 has less expected value. Hence bank 1 is worse off.
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configuration is proved to be a trivial partition: it is either the grand coalition

{n} or the atomistic partition {1, 1....1, 1}.48 Generically, the solution set will

consist of just one of the two boundary partitions; although, on a critical curve

of parameters the solution set consists of both boundary partitions.

The intuition behind these results is that there are increasing marginal returns

from more modules. If there is only one module, then P (outside match) = 0, and

P (a match is productive : one module is disabled) = 0. Whilst if the number of

modules is increased to two, then P (outside match) = 1/2, and

P (a match is productive:one module is disabled) = 1/4: productivity requires

that both the matched businesses are in the enabled module. More generally,

suppose there are k equally sized modules, then P (outside match) = (k−1)/k

and P (a match is productive:one module is disabled) = ((k−1)/k)2. This leads

to one way of understanding the rejection of interior partitions. The “cost” of

modules comes from outside matches; whilst the “benefit” comes from the re-

silience the system has to shocks. So these two probabilities can be used to

estimate the cost and benefit of modules. Hence the “benefit” ((k−1)/k)2 is the

square of the “cost” (k−1)/k: so there are increasing marginal returns. This

explanation abstracts from a number of factors: for example, how module en-

ablement probability changes with the number of modules, and the possibility

of multiple modules being disabled. These factors are all included in the math-

ematical model given in the next section and the proofs given in subsequent

sections.

The choice between the two trivial partitions can be interpreted as follows: ce-

teris paribus , increasing n past a critical value causes a switch in the efficient

solution from the grand coalition, to the atomistic partition of singletons. The

explanation is that as the number of banks increases, the probability of the one
48Efficient in terms either of Pareto optimality or utilitarian welfare maximisation.
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all-encompassing module being enabled tends to zero.

A second interpretation is to consider the three cases of necessity , co-ordination

and protection. When outside matches are of low value, θ ≤ 1
n
, we need the

grand coalition to get a worthwhile return from the business opportunities. This

is the necessity story and it holds irrespective of the level of shocks. When there

are low levels of shocks, γ < 1−θ
(θn−1)

, the efficient solution is to co-ordinate all the

banks: keep them in sync through the grand coalition. Only if both the outside

matches are of high value, θ > 1
n
, and there are high levels of shocks, γ > 1−θ

(θn−1)
,

do we need the protection of singleton modules.49

A third interpretation is that it depends on the relative values of outside and

inside matches (θ = (θ/1)), and the relative enablement probabilities (P [n]
P [1]

). If

θ <P [n]
P [1]

, then the grand coalition is efficient. If θ =P [n]
P [1]

, then both the trivial

partitions are efficient. If θ >P [n]
P [1]

, then the atomistic partition is efficient.

If the matching process is changed from uniform to circular (imagine a circle of

banks, where a business opportunity is always between immediate neighbours),

then for module sizes above two the welfare function is now quasi-concave, and

hence the efficient solution is generally interior. This case is covered in section

2.2.1.1.

One key stability concept used is Extended Equilibrium Binding Agreement

(EEBA), from Diamantoudi and Xue (2007), which is fully defined in section 1.8

below. The EEBA is an extension of Equilibrium Binding Agreement (EBA),

from Ray and Vohra (1997).50 Under the EBA modules can only split; whilst

under the EEBA there is complete flexibility: not only can existing modules

split and merge, but it is feasible for any coalition to deviate, and form a new

module or modules. In both concepts, they choose to do so if it makes sense
49For completeness, with γ = 1−θ

(θn−1) there is indifference between the two trivial partitions.
50If the EBA is used instead similar results are obtained, but with the EEBA interpretation

is cleaner.
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on a farsighted basis: they accurately predict how other banks will respond to

their initial deviation, and deviate if they prefer the final state to the current

state. A partition is stable if there are no feasible deviations from it which are

farsightedly rational. Under the standard model, the trivial partitions are stable

if and only if they are efficient.51 If we consider a variant model, where there are

short run banks (zero lifetimes), then for all parametrisations the grand coalition

is always stable, and no other partition is stable (see section 2.3.2.1).52

In the rest of this chapter: section 1.5 describes in detail the standard model;

section 1.7 finds its efficient solutions; section 1.8 investigates their stability;

section 1.9 calculates the efficient partition under different parametrisations; and

finally section 1.10 considers the policy implications.

1.5 The Standard Model

This section formally defines the standard model. As motivated in the Model

Overview pages 58-60, we will be evaluating the model at its asymptotic steady

state. There are n identical risk neutral banks; each bank has a risk neutral

business as a client. Banks facilitate investment between ‘real’ economy busi-

nesses. Each bank is either enabled or disabled. A pair of businesses each has

half of a business opportunity. Each business needs their bank to be enabled in

order for the match to be productive.53

Unproductive matches are of value 0. Productive matches are valued differ-

ently depending on whether the matched banks are in the same module (inside
51Further, under the generic case of there being a unique efficient outcome, no non-trivial

partition is stable.
52This assumes that all the banks start enabled. If any are disabled then the same analysis

applies just with the disabled banks excluded.
53As the bank-business relationships are fixed we can, without risk of confusion, talk about

matches between banks rather than between businesses.
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matches), or in different modules (outside matches):

Table 1.3: Standard Model Productive Matches: Distribution of Investment
returns

Match Business 1 Bank 1 Bank 2 Business 2 Total
Inside 0.5 0.5 0.5 0.5 2
Outside 0.5θ 0.5θ 0.5θ 0.5θ 2θ < 2

The timings of the model are as follows:

1. Nature determines the system’s parameters (n, θ, γ), where n ∈ N is the

number of banks, θ ∈ (0, 1) is the relative value of outside matches and

γ ∈ (0,∞) is the shock parameter.54 These values are common knowledge.

2. The decision maker (social planner or any of the banks), determines a

partition (xi ∈ N1)
k
i=1 of N = {1, 2, 3....n}, the set of banks, such that∑k

i=1 xi = n, and (xi ≥ 1)ki=1 .55 The first constraint means that banks can

be grouped, but not created or destroyed; the second requires a minimum

module size of one. Let P be the feasible set of partitions that satisfy both

these constraints.

3. The system is evaluated at its steady state. So Nature determines the state

of each module independently using the stationary distribution, meaning

that56

P (Module i enabled) =
1

1 + γxi

54Firstly, I exclude boundary parameter values for simplicity, but with them the key results
remain. Secondly, Appendix C shows that the continuous time model that equates to the
discrete time model has γ = −Log[1−q]

−Log[1−ρ] , where q is the bank disabling shock probability and ρ

is the module re-enabling probability.
55Banks are ex-ante identical so we can identify a partition just in terms of the number of

banks in each module.
56The derivation of this form for the module enablement probability is given in Appendix C
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4. Nature allocates a random business opportunity, which is uniformly dis-

tributed on N2. So (P (b1, b2) = 1/n2)
n
b1,b2=1.

57

5. Return is stochastically distributed:

Table 1.4: Standard Model Social Return Distribution

Match Social Return Probability
Productive:- Inside 2

∑k
i=1

(
x2
i

n2P [xi]
)

Productive:- Outside 2θ
∑k

i=1

(∑
j �=i

xixj

n2 P [xi]P [xj]
)

Unproductive 0 1− P (Return is 2)− P (Return is 2θ)

Consider a partition x = (xi)
k
i=1. Let Vi[x] be the ex-ante expected total return

to all banks in module i.58 Let vi[x]:= 1
xi
Vi[x] be the ex-ante unit expected return:

the expected return to a single bank in module i. Let W [x] :=
∑k

i=1 Vi[x] be the

social planner’s ex-ante welfare function.

For a (generally asymmetric) partition, x:

• Bank Payoff: vi[(xj)
k
j=1] :=

xi

n2P [xi] +
∑

j �=i θ
xj

n2P [xi]P [xj]

• Module Worth Vi[(xj)
k
j=1] :=

x2
i

n2P [xi] +
∑

j �=i θ
xixj

n2 P [xi]P [xj]

• Welfare: W [(xi)
k
i=1] :=

k∑
i=1

(
x2
i

n2P [xi] +
∑
j �=i

θ
xixj

n2 P [xi]P [xj]

)

For the particular case of a symmetric partition, consisting of k modules each

with d members, then, with a slight abuse of notation, these evaluate to:

• Bank Payoff vi[d] :=
d
n2P [d] + θ (n−d)

n2 P 2[d]

• Module Worth V i[d] :=
d2

n2P [d] + θ d(n−d)
n2 P 2[d]

• Welfare W [d] := d
n
P [d] + θ (n−d)

n
P 2[d]

57Allowing the self match (b1, b1) makes the results cleaner. Without them we still always
reject non-trivial partitions: just that the parameter condition for switching between the two
trivial partitions is more complicated.

58As the banks and the businesses get the same return we can just consider the bank return.
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So far we have been considering the return of a bank in module i, rather than

the preferences of a generic bank j. These are linked by the straightforward

condition, that j prefers the partition where its module gets the highest per

bank return. So x �j x∗ if and only if vi[x] > vi∗ [x
∗] : where j is in modules

i and i∗ for partitions x and x∗ respectively. This completes our definition of

what Diamantoudi and Xue (2007) call a simple coalition formation game with

externalities. It is also a symmetric game in the sense of Yi (2003).

1.6 Partition Form Games

In co-operative game theory the main focus is on coalition formation rather

than on the question of what coalition structure is the most efficient. And it

is often assumed that the grand coalition will form; as Maskin (2003), in his

Presidential address to the Econometric Society, says “Perhaps one reason that

cooperative theory has not been more influential on the mainstream is that its

two most important solution concepts for games of three or more players, the

core and the Shapley value, presume that the grand coalition—the coalition of

all players—always forms.”. The formation, and efficiency, of the grand coalition

is often driven by the assumption of superadditivity : “A game is superadditive if

the union of two disjoint coalitions can obtain at least the sum of the payoffs of

the two separate coalitions”, (Maskin, 2008). A second criticism is that: “most

cooperative theory ignores externalities, the possibility that a coalition can be

affected by the actions of those not in the coalition”, (Maskin, 2008). In contrast

to such characteristic form games (CFGs), with partition form games (PFGs),

there are externalities: how outside agents are grouped does affect you.59 This

same difference exists between PFGs and Club Goods models: see Appendix J
59See Definition 7 in Section 1.7.
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for more details.

This section reviews the partition form game literature and explains how my

standard model from Section 1.5 fits into that literature. Next, section 1.7

establishes properties for a general partition model under which the efficient

partition is either the grand coalition or the atomistic partition of singletons,

and shows that Section 1.5 constructs such a model. Then Section 1.8 starts

by considering the extra difficulties in considering stability within PFGs; before

applying the Extended Equilibrium Binding Agreement (EEBA) to the general

partition model. The standard model is solved using four further solution con-

cepts in Section 2.3.3: the three concepts used by Yi (1997) for symmetric games

(The Simultaneous-Move Open Membership Game, The Unanimity Game and

Equilibrium Binding Agreement (EBA)); as well as a PFG developed version of

the Jackson Wolinsky (1996) network solution concept of bilateral stability.

In this section, first I consider the literature on partition formation, and start

with attempts to extend the two main characteristic form solution concepts, the

Shapley value and the core, to partition form games. Then I consider the two

main approaches developed specifically to solve partition form games: blocking

and bargaining. Second I consider efficiency conditions for partition form games;

I start with superadditivity and how that condition needs to be altered in PFGs

in order to ensure grand coalition efficiency. Some of the applications of these

approaches to my standard model are included in the subsequent Efficiency and

Stability sections, which focus on hedonic games.

Maskin (2003) develops an extension of the Shapley value for superadditive par-

tition form games.60 Maskin assumes four axioms for the partition formed and

the payoff allocation.61 The first axiom requires that coalitional worth not be
60See Shapley (1953).
61The axiom descriptions are adapted from Ray(2007), as well as of course Maskin (2003).
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wasted: the payoff allocation must be such that the sum of payoffs allocated to

members of each coalition equals the worth of that coalition. The second and

third axioms consider players’ marginal contributions: the second axiom requires

that each player be assigned to a coalition where their marginal contribution is

highest; the third requires that she indeed be allocated this marginal contribu-

tion. The fourth axiom requires inter-stage consistency: the final payoffs and

partition that result if the partition of the first j− 1 players has already formed,

should be the same as those that result if player j then joins the coalition to

which his gross marginal contribution is greatest.

Maskin (2003) argues that when there are significant positive externalities, due

to the free rider effects, it is unreasonable to assume that the grand coalition

will form; whilst conversely with negative externalities “the likelihood of the

grand coalition forming would only be strengthened”. He states three theorems.

Theorem 1 is an existence result: for any superadditive partition form game,

and any order of players there is a solution satisfying his axioms. Theorem 2 is

a grand coalition formation result: if the PFG is superadditive and has negative

externalities then the grand coalition will form. Theorem 3 is that his axioms

are indeed an extension of the Shapley Value CFG concept: if the PFG is super-

additive and there are no externalities, then taking the average over all the n!

orderings generates exactly the Shapley value. He provides detailed proofs for

the 3 player case and claims, “The extension to n > 3 (more than 3 players),

uses exactly the same methods.”. However, counter examples with 4 players

are provided in Hafalir (2007), and Cao and Yang (2011).62 This motivates

why the later papers considered below have considered stronger and different

conditions from bilateral superadditivity , such as supermodularity , multilateral

superadditivity and grand coalition superadditivity.
62Cao and Yang (2011) provide a counter example for Theorem 1; whilst Hafalir (2007)

provides counter-examples for Theorems 2 and 3.
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The second approach used to solve characteristic form games is the core: the

set of feasible allocations v = (vj)
n
j=1 that cannot be blocked by any deviating

coalition D.63 And we say that D blocks v, if coalition D can deviate and make

themselves all better off. Formally, Ø � D and
(
ucf
j [D] > vj

)
j∈D. Note that

here the group D of deviators don’t need to consider how the residual players

N \D respond, as it is a CFG their payoff is independent of how N \D partition

themselves into coalitions.

However, in contrast, in partition form games how the residual agents structure

themselves does matter. This is a well known issue and, hence with PFGs

there are different definitions of the core depending on how we model the other

agents structuring themselves in respond to the deviation. For example, Hafalir

(2007) provides 4 different definitions: the first, the s-core, is the core with

singleton expectations: the deviators D expect N \ D to partition themselves

into singletons; the second, the c-core, is the core with cautious (pessimistic;

punishing) expectations: the deviators D expect N \D to partition themselves

into the partition that minimises the value of the module D; the third, the m-

core, is the core with merging expectations: the deviators D expect the members

of N \ D to merge and form a single module in response; and the fourth, the

r-core, is the core with rational expectations: the deviators D expect N \D to

partition themselves into the partition that maximises the value of N \ D. In

models with negative externalities, such as those considered here, the punishment

response and the merging response are the same and hence the c-core and the

m-core are the same. Further, within my standard model deviating from the

efficient partition makes both the deviators and the non-deviators (weakly) worse

off; hence for all 4 definitions of the core, the core contains the efficient partitions

payoffs.
63Feasibility means that for some partition π, the payoff of π is greater than or equal to∑n
j=1 vj . It often assumed that this partition is the grand coalition.
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A more subtle issue is the question of what allocations are feasible. If the Grand

Coalition is efficient then the set of feasible allocations simply consists of the

v = (vj)
n
j=1 such that

∑
j∈N vj ≤ V [N, {N}], where V [N, {N}] is the worth

of the grand coalition. With PFGs there is often an implicit assumption that

the grand coalition is efficient: Hafalir (2007) explicitly assumes supermodularity

which make the grand coalition efficient, but then is implicit about the feasible

allocations when defining the core; whilst McQuillin (2009), when describing an

extension and generalisation of Shapley approach to PFGs, acknowledges “the

implicit supposition in the (his) Efficiency axiom that” the grand coalition is

efficient. However, if this assumption no longer holds, and it is not (necessar-

ily) the case that the grand coalition is efficient, then we need to define what

are the feasible allocations. One way is as follows, and for each partition to

allow transferable utility within modules, but not between modules. So the feas-

ible allocations allowed by partition π = (πi)
k
i=1 are vπ = (vπj )

n
j=1 such that∑

j∈πi
vπj ≤ V [πi, π], where V [πi, π] is the worth of module πi within partition π.

And an allocation is feasible in a PFG if it is feasible for some partition π.

One solution technique developed specifically for PFGs in de Clippel and Serrano

(2008A) is that of strict dominance. The concept is first applied to coalitions:

coalition S is a strictly dominant coalition if each member of S ranks S strictly

as the best coalition, whatever the other players do.64 Specifically, if π is a

partition that contains S, π′ is a partition that does not contain S, and j is a

member of S, then require vj[π] > vj[π
′]. The concept is then applied iteratively

to potentially form a strictly dominant partition as follows. The initial step is

that any strictly dominant coalitions S form. The iterative step is that, given

the existing coalitions, there maybe a new strictly dominant coalition T , which

then forms. The iterative step is repeated as often as possible. If every member
64This equates to the members of S, as in the c-core, having pessimistic expectations.
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ends up in a coalition then the resulting partition is called strictly dominant.

de Clippel and Serrano (2008A) shows the usefulness of strictly dominant par-

titions: If a strictly dominant partition exists then it is both the only member

of the pessimistic core and the equilibrium outcome of the sequential unanimity

game they develop. Applying strict dominance to my standard model gives the

following results: if the grand coalition is efficient then the grand coalition is

a strictly dominant partition; however, if the atomic partition of singletons is

efficient, then there are no strictly dominant coalitions.65

Yi (1997) considers symmetric games with ex-ante identical players, so it is the

number of players in each module, rather than their identities, that determines

payoffs. He surveys a number of different formation games, such as the Open

Membership Game (Yi and Shin, 1995), the Infinite-Horizon Coalition Unanim-

ity Game (Bloch, 1996), and the Equilibrium Binding Agreements from Ray

and Vohra (1997). These approaches to partition formation are applied to my

standard model in chapter 2 of this thesis.

In the second part of this section, we now move on from partition formation

to partition efficiency. Characteristic function games (CFGs) are often assumed

to be superadditive: this requires that if S and T are disjoint coalitions then

V [S ∪ T ] ≥ V [S] + V [T ]. With CFGs there are no externalities onto other

modules, so superadditivity implies that the grand coalition is efficient. This

definition of bilateral superadditivity can be extended to PFGs:
65In the standard model, due to symmetry considerations, when the grand coalition is effi-

cient it maximises not just the total welfare but also utility of every individual member, (see
Proposition 14 in specific and Efficiency section 1.7 in general). When the atomic partition is
efficient, the result follows from negative externalities: if a singleton module forms then the
pessimistic response is a single module containing n−1 members; if a 2 member module forms
then the optimistic response is a n−2 singleton modules. And v1[{1, n−1}] > v1[{2, 1, 1, 1....1}]
requires 1

θ + n < 3 and n > 1, which is impossible.
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Definition 1. if π = (πi)
k
i=1 is a partition then

V [π1 ∪ π2, {π1 ∪ π2, π2+}] ≥ V [π1, π] + V [π2, π]

where π2+ := (πi)
k
i=3.66

However, with PFGs bilateral superadditivity does not imply grand coalition

efficiency: if a PFG has negative externalities then although merging modules

always benefit, outside modules may be worse off and the total payoff in the

grand coalition can be less then the total payoff from some other partition.67

Conversely, if a PFG has positive externalities, then super-additivity does indeed

imply the efficiency of the grand coalition: merging modules always benefit, as

do outside modules.

In order to produce sufficient conditions for grand coalition efficiency in PFGs,

various strengthenings of bilateral superadditivity have been proposed. Ray

(2007) proposes grand coalition superadditivity : directly postulating the effi-

ciency of the grand coalition. Clippel and Serrano (2008), propose multilateral

superadditivity:

Definition 2. Multilateral superadditivity requires that if π = (πi)
k
i=1 is a par-

tition and 1 ≤ j ≤ k then

V [ ∪
1≤i≤j

πi, { ∪
1≤i≤j

πi, πj+}] ≥
j∑

i=1

V [πi, π]

where πj+ := (πi)
k
i=j+1.

Note that for CFGs, by a simple iterative argument, bilateral superadditivity

implies multilateral superadditivity. However, with PFGs this is no longer the
66Theorem 28 shows that with my standard model, the grand coalition is efficient when it

is bilaterally superadditive.
67See Example 1 in Hafalir (2007).
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case, as the list of outside modules changes. Taking j = k shows that multilateral

superadditivity is a sufficient condition for grand coalition efficiency, and taking

j = 2 shows that multilateral superadditivity is a sufficient condition for bilateral

superadditivity.

A third approach is supermodularity :

Definition 3. Suppose that π = (πi)
k
i=1 is a partition and S, T are any coalitions

such that S
⋃
T = π1

⋃
π2: specifically we allow S and T not to be disjoint,

allowing S
⋂

T �= ∅. Without loss of generality, c := |S ∩ T |, t := |T \ S| and

s := |S \ T |. Then supermodularity requires that

V [S ∪ T, {S ∪ T, π2+}] + V [S ∩ T, {S ∩ T, S \ T, T \ S, π2+}] ≥

V [S, {S, T \ S, π2+}] + V [T, {T, S \ T, π2+}]

where π2+ := (πi)
k
i=3.68

Supermodularity implies both bilateral superadditivity (consider the case where

S = π1 and T = π2), and multilateral superadditivity (see Proposition 1 in

Hafalir (2007), which proves the result using induction). The supermodularity

condition can be re-arranged into a ‘convexity’ increasing increases condition:

V [S ∪ T, {S ∪ T, π2+}]− V [S, {S, T \ S, π2+}] ≥

V [T, {T, S \ T, π2+}]− V [S ∩ T, {S ∩ T, S \ T, T \ S, π2+}]

This says that the increase in module worth when t members transfer from T \S
to S forming S∪T , is greater than the increase in module worth when t members

transfer from T \ S to S ∩ T forming T . With my standard model, Theorem
68Note that this is supermodularity of the module worth function V with respect to the

embedded coalition lattice, rather than of the welfare function W with respect to the partition
lattice. This prevents the use of the Topkis (1978, 1998) results. See Appendix L for details.
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30 shows that the grand coalition is efficient if and only if it is supermodular.

However, this thesis introduces a novel quasi-convexity condition, and in general

supermodularity is a stronger condition than the quasi-convexity condition in

two aspects: firstly, supermodularity is a condition on all partitions, whilst my

quasi-convexity approach is a condition only on partitions with at most one

non-singleton module; secondly, it is a convexity condition rather than a quasi-

convexity condition.

Finally, within the PFG literature there is a lack of results on the efficiency

of the atomic partition. Here my thesis makes a particular contribution: it

gives efficiency results for the atomic partition in terms of quasi-convexity and

subadditivity (Theorems 14 and 32). And for the standard model it shows that

the subadditivity condition is strictly stronger than that required for efficiency

of the atomic partition (Theorem 33).

1.7 Efficiency

In this section, I will first abstract from the standard model and consider general

bank utility functions on the set of partitions. Then, I will consider the solution

concept of efficiency. Next, I will show that if the preferences satisfy the three

properties of anonymity (it is only the size of modules that count, and not

their indices), negative externalities (if modules 2 and 3 merge, then members of

module 1 are always worse off), and strict quasi-convexity (note, this is required

to hold only on the set of partitions of with at most one non-singleton module,

{x1, 1, 1, 1....1}), then any efficient partition must exist on the boundary. I then

show that the standard model satisfies these three properties generically, and so

has boundary solutions.

I will start with a few mathematical preliminaries:
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Definition 4. A partition (Xi)
k
i=1 of a set X is a pairwise disjoint covering

so,
⋃
i

Xi = X and (Xi

⋂
Xj = Ø)i �=j. In mathematics, partitions are important

special examples of lattices.69 In lattice theory a member X i of a partition is

often called a block. However, here, in line with the motivation given above, the

term module will be used. In contrast, the term coalition will refer to a general

subset Z of X; coalitions may or may not be modules. Generally, let Al be

the first l strictly positive natural numbers, where l is itself a natural number:

so Al := {1, 2, 3.....l}. We restrict to consideration to symmetric models: we

have n ex-ante identical banks, and so we just specify the number xi of banks

in each module i, this gives a general partition (xi)
k
i=1. Note that generally i is

an index on modules, not banks. Define the grand coalition to be {n}. Define

the atomistic partition of singletons to be {1, 1, 1, 1....1}. These will be called

the two trivial partitions; they will also be referred to as boundary solutions.

Other partitions are non-trivial, and have proper or real modularisations. For a

specific, n ∈ N, let Pn be the set of all partitions of An, and let Pn
i be the subset

of Pn where the module i is non-empty. Let In = Pn \ {{n}, {1, 1, 1, 1...1}, be

the proper partitions of An. Finally, taking the union over possible values of n:

P :=
⋃
n∈N

Pn and Pi :=
⋃
n∈N

Pn
i .

Next, we define when one partition can be formed from another partition, by

merging modules:

Definition 5. Partition x is strictly coarser than y if, x and y are distinct, and

each module in x is either: a module in y, or can be formed as a merger of

modules in y. Specifically, if x has k modules and y has l modules then require

k < l and the existence of a mapping f : Al → Ak s.t.
(
xj =

∑
f(i)=j yi

)k

j=1
,

where Al = {1, 2, 3, 4.....l} and Ak = {1, 2, 3, 4.....k}. Conversely, partition x is

strictly finer than y, if and only if, partition y is strictly coarser than x.
69See Appendix L which includes a presentation of the partition lattice.
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Next, we define the utility and welfare functions for this general model:

Definition 6. Consider a general partition x = (xi)
k
i=1 ∈ P. Let the module

utility function V g
i : Pi → R, where V g

i [x] is the total return to all members

of module i from partition x. Let the bank utility function vgi : Pi → R such

that vgi [x]:=
1
xi
V g
i [x] is the return per member of module i. Let welfare function

W g : Pi → R and W g[x] :=
∑k

i=1 V
g
i [x] be the social planner’s utilitarian welfare

function. These three functions together form a general partition model. So

far we have been considering the return of a bank in module i, rather than the

preferences of a generic bank b. As in the standard model, these are linked by

the straightforward condition, that bank b prefers the partition where its module

gets the highest per bank return. So x �g
b x

∗ if and only if vgi [x] > vgi∗ [x
∗] : where

b is in modules i and i∗ for partitions x and x∗ respectively.

The definition of a Partition Form Game originates in Lucas (1963). The modern

notation, as in for example Hafalir (2007), is:

Definition 7. In a Partition Form Game any coalition S ⊆ N generates a value

V [S, π] where π is a partition of N and S ∈ π.

Next, I define the three conditions which are required for the boundary solutions

result to hold. The first, anonymity, intuitively means that agents do not care

about their indices. This needs to apply both in terms of your own index and

those of other modules. Anonymity means that the model forms a symmetric

PFG. Formally:

Anonymity requires that both the following two properties hold for all x:

1. if xi �= 0 then V g
i [x] = V g

1 [x
∗], where x∗

1 := xi, x∗
i := x1, and x∗

j = xj for all

other j.
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2. if x∗ is a permutation of x such that x∗
i = xi then V g

i [x] = V g
i [x

∗].70

The second condition is that the model satisfies negative externalities in the N1

sense of Yi (1997): intuitively, if two modules a and b merge, then banks in a

third module c are always worse off. The formal definition is that:

Definition 8. The general partition model satisfies negative externalities, if

when modules merge to form a larger module, outside modules not involved

in the merger are strictly worse off. Specifically, if x is strictly coarser than

y, and xi = yi, then that implies that vi[x] < vi[y]. Conversely, the general

partition model satisfies positive externalities, if when modules merge to form a

larger module, outside modules not involved in the merger are strictly better off.

Specifically, if x is strictly coarser than y, and xi = yi, then that implies that

vi[x] > vi[y].

The third property is that partitions where at most one module is non-singleton,

must possess weak quasi-convexity. So we now define the bank utility vg1,1[x1]

for partitions where apart from a first module of size x1, the other modules are

singletons. This is formed as a restriction of the bank payoff function vg1 [x]:

Definition 9. Bank utility function vg1,1 is defined by vg1,1 : An→ R s.t. vg1,1[x1] =

vg1[x], where x := {x1, 1, 1, 1, 1...1}.

Consider the general definition of strict and weak quasiconvexity:

Definition 10. Suppose f : S → R where S is a convex subset of Rl. Then f

is strictly quasiconvex if and only if f [λx+ (1− λ)x0] < max{f [x], f [x0]} for all

λ ∈ (0, 1) and (x, x0) ∈ S2 where x �= x0.71 Then f is weakly quasiconvex if and

only if f [λx + (1 − λ)x0] ≤ max{f [x], f [x0]} for all λ ∈ (0, 1) and (x, x0) ∈ S2

where x �= x0.
70x∗ = (x∗

i )
k
i=1 ∈ P is a permutation of x = (xi)

k
i=1 ∈ P iff ∃ bijection f : Ak → Ak s.t.

(x∗
i = xf(i))

k
i=1

71See Definition 103 in Appendix F.
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And applied to partitions with at most one non-singleton module, where the size

of module 1 is a natural number:

Definition 11. Bank utility function with at most one non-singleton module is

strictly quasi-convex if
(
vg1,1[x1] < max{vg1,1[a], vg1,1[b]}

)b−1

x1=a+1
where a < b. Bank

utility function with at most one non-singleton module is weakly quasi-convex if(
vg1,1[x1] ≤ max{vg1,1[a], vg1,1[b]}

)b−1

x1=a+1
.

Now we define the solution concept of strict efficiency:

Definition 12. x∗ is strictly efficient if it maximises W g[x], the utilitarian wel-

fare function.

We now consider the effect of these assumptions on a general model. First, if a

model has negative externalities then a bank wants the other modules to be of

minimal size:

Proposition 13. If the partition model satisfies negative externalities and x∗ ∈
argmaxx∈Pn v1[x] then x∗ = {x∗

1, 1, 1, 1, 1....1} for some x∗
1.

Proof. Proof by contradiction. Suppose partition x∗ is not of the required form

so there exists a second non-singleton module. Form partition y by splitting that

module into singletons. However, as the model satisfies negative externalities,

and as x∗ is strictly coarser than y, and x∗
1 = y1, then that implies that vg1 [x∗] <

vg1 [y].

The following proposition shows that if there is strict quasi-convexity, then ev-

eryone is worse off at an inefficient partition:72

Proposition 14. If the partition model has anonymity , negative externalities

and vg1,1[x1] is strictly quasi-convex then

72This proposition is used in the stability section 1.8.
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1. if vg1,1[1] > vg1,1[n] then x �= {1, 1, 1...1} ⇒ (
x ≺g

j {1, 1, 1....1}
)n
j=1

2. if vg1,1[n] > vg1,1[1] then x �= {n} ⇒ (
x ≺g

j {n}
)n
j=1

3. if vg1,1[1] = vg1,1[n] then x ∈ In ⇒ (
x ≺g

j {n} and x ≺g
j {1, 1, 1...1}

)n
j=1

.

Proof. Let us start by searching for the partition, or partitions, x∗ that max-

imise(s) the utility of bank 1. By anonymity we can assume, without loss of

generality, that bank 1 is in module 1, and so we want to maximise vg1[x]. The

model has negative externalities, so by Proposition 13, x∗ = {x∗
1, 1, 1, 1, 1....1} for

some x∗
1. Further, as vg1,1[x1] is strictly quasi-convex, by Definition 11, x∗ = {1, 1,

1, , , 1} or x∗ = {n}. 1) follows, as by anonymity for all i, vgi [{1, 1....1}] = vg1 [{1,
1....1}], so if vg1,1[1] > vg1,1[n] then x �= {1, 1, 1....1} ⇒ (

x ≺g
j {1, 1, 1....1}

)n
j=1

. 2)

follows as partition {n} only has one module, so it gives every bank the same

utility, hence if vg1,1[n] > vg1,1[1] then x �= {n} ⇒ (
x ≺g

j {n}
)n
j=1

. Similarly 3)

follows.

This is the main result, a general model with our three properties will always

reject interior partitions as inefficient:

Theorem 15. If the partition model has anonymity , negative externalities and

vg1,1[x1] is weakly quasi-convex then the only possible candidate partitions to be

strictly efficient are {1, , , , , 1} and {n}.

Proof. If vg1,1[x1] is not only weakly quasi-convex, but also strictly quasi-convex

then, by Proposition 14, argmaxx∈P W
g[x] = argmaxx∈P v

g
1 [x] ⊆ {{1, 1, 1, 1....1},

{n}}. Now instead suppose that vg1,1[x1] is weakly quasi-convex, but not strictly

quasi-convex. Then the previous arguments about {1, , , , , 1} and {n}, still hold.

So at least one of those 2 partitions is strictly efficient. However, suppose

some interior x∗
1 argmax of vg1,1[x1] generates a further strictly efficient parti-

tion x∗ = {x1, 1, 1, ...1}. Suppose vg1 [{1, 1111}] ≥ vg1 [{n}] then x∗ cannot be
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strictly efficient, as banks not in module 1 strictly prefer {1, 1, , , , 1} to x∗, (due

to negative externalities), and banks in module 1 are indifferent, (as both x∗ and

{1, 1, 11....1} maximise vg1 [x]).

Conversely, suppose that vg1 [{n}] > vg1 [{1, 1, 1...1}], and so {n} is both strictly

efficient and an argmax for vg1 [x]. We need
(
x∗ �g

j {n}
)n
j=1

, (as else we could put

bank 1 in j’s module and strictly increase their utility). And so we further need(
x∗ ∼g

j {n}
)n
j=1

, (as else x∗ cannot be strictly efficient). So considering module

2 as a sample outside module: vg2 [x
∗] = vg1 [{n}]. However, vg2 [x

∗] < vg2 [{1, 1,
....1}], as banks not in module 1 experience negative externalities from module

1. This now gives a contradiction: vg1 [{1, 1, 1...1}] < vg1 [{n}] = vg2 [x
∗] < vg2 [{1,

1....1}] = vg1 [{1, 1....1}].

Next we derive a number of results about the inefficiency of the boundary parti-

tions in terms of the elasticity of the module function, V g
1,1[x1], rather than the

bank function vg1 [x1]. Informally, V g
1 [x1], is the total worth of module 1, when

all other modules are singletons. Formally

Definition 16. Module utility function with at most one non-singleton module

V g
1,1 : An→ R s.t. V g

1,1[x1] = x1 ∗ vg1,1[x1] or equivalently V g
1,1[x1] = V g

1,1[x] ,

where x := {x1, 1, 1, 1, 1...1}.

We now prove two proposition linking V g
1,1[x1] and vg1,1[x1]. With a slight abuse of

notation, we consider V g
1,1[x1] with domain extended from An := {1, 2, 3, 4...n}

to the reals. This extension is required in order for point elasticities to be well

defined.

Proposition 17. Suppose V g
1,1[x1] is differentiable and V g

1,1[x1] ≥ 0 . Then

vg
′

1 [x1] > 0 if and only if V g
1,1 is elastic at x1.
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Proof. dvg1,1[x1]

dx1
=

d
V
g
1,1[x1]

x1

dx1
=

x1V
g′
1,1[x1]−V g

1,1[x1]

x2
1

, where V g′
1,1[x1] =

dV g
1,1[x1]

dx1
. So dvg1,1[x1]

dx1
>

0 if and only if x1V
g′
1,1[x1]− V g

1,1[x1] > 0 if and only if x1V
g′
1,1[x1]

V g
1,1[x1]

> 1 if and only if

εV g
1,1,x1

> 1, where εV g
1,1,x1

:=
x1V

g′
1,1[x1]

V g
1,1[x1]

is the elasticity of V g
1,1 at x1.

Proposition 18. Suppose V g
1,1[x1] is differentiable and V g

1,1[x1] ≥ 0 . Then

vg
′

1 [x1] < 0 if and only if V g
1,1 is inelastic at x1.

Proof. See the proof of Proposition 17.

Corollary 19. If the partition model has anonymity , negative externalities and

V g
1,1 is elastic for all x1 then the only strictly efficient partition is {n}.

Proof. This follows directly from Theorem 15 and Proposition 17.

Corollary 20. If the partition model has anonymity , negative externalities and

V g
1,1 is inelastic for all x1 then the only strictly efficient partition is {1, 1, 1...1}.

Proof. This follows directly from Theorem 15 and Proposition 18.

Corollary 21. If the partition model has anonymity , negative externalities,

V g
1,1[x1] is convex and V g

1,1[0] = 0 then the only strictly efficient partition is {n}.

Proof. First note that the assumption V g
1,1[0] = 0 is without loss of generality as

V g
1,1 is an extension of an original function defined on domain {1, 2, 3...n}. Second

we use the quasi-monotone conditions for a convex function: from Theorem 21.2

in Simon and Blume (1994), if V g
1,1is convex then V g

1,1[y1]−V g
1,1[x1]

y1−x1
≤ V g′

1,1[x1], when

y1 < x1. Taking y1 = 0 gives that V g
1,1 is elastic at x1, and the result then follows

directly from Corollary 19.

Corollary 22. If the partition model has anonymity , negative externalities,

V g
1,1[x1] is concave and V g

1,1[0] = 0 then the only strictly efficient partition is

{1, 1....1}.
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Proof. A similar methodology to that used in Corollary 21 shows that if V g
1,1[x1]

is concave then V g
1,1 is inelastic for all x1, and the result then follows directly

from Corollary 20.

Finally, we show that the standard model satisfies each of the required three

conditions, and hence its efficient partition is always either the grand coalition

or the atomistic partition of singletons.

Proposition 23. The standard model satisfies anonymity for all parameter val-

ues.

Proof. We demonstrate each of the two required conditions hold for all x:

if xi �= 0 then let x∗
1 := xi, x∗

i := x1, and x∗
j := xj for all other j. Then:

V1[x
∗] = x∗2

1

n2 P [x∗
1] +

∑
j �=1 θ

x∗
1x

∗
j

n2 P [x∗
1]P [x∗

j ] =
x2
i

n2P [xi] +
∑

j �=1 θ
xix

∗
j

n2 P [xi]P [x∗
j ]

⇒ V1[x
∗] = x2

i

n2P [xi] +
∑

j �=1,j �=i θ
xixj

n2 P [xi]P [xj] +
∑

j=i θ
xix1

n2 P [xi]P [x1]

⇒ V1[x
∗] = x2

i

n2P [xi] +
∑

j �=1,j �=i θ
xixj

n2 P [xi]P [xj] +
∑

j=1 θ
xix1

n2 P [xi]P [x1]

⇒ V1[x
∗] = x2

i

n2P [xi] +
∑

j �=i θ
xixj

n2 P [xi]P [xj] = Vi[x] as required

and

Suppose x∗ is a permutation of x such that x∗
i = xi then ∃ bijection f : Ak → Ak

s.t. (x∗
i = xf(i))

k
i=1 and f(i) = i. So:

Vi[x
∗] = x∗2

i

n2 P [x∗
i ] +

∑
j �=i θ

x∗
i x

∗
j

n2 P [x∗
i ]P [x∗

j ]

⇒ Vi[x
∗] = x2

i

n2P [xi] +
∑

j �=i θ
xix

∗
j

n2 P [xi]P [x∗
j ]

⇒ Vi[x
∗] = x2

i

n2P [xi] + θ xi

n2P [xi]
∑

j �=i x
∗
jP [x∗

j ]

⇒ Vi[x
∗] = x2

i

n2P [xi] + θ xi

n2P [xi]
∑

j �=i xjP [xj] = Vi[x] as required.

Intuitively, there are negative externalities in the standard model, as a merger

between modules j and k has no benefits to module i, but does have costs as
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matches between module i and j, (or i and k), are now less likely to be productive.

The formal proof is as follows:

Proposition 24. The standard model satisfies negative externalities for all pa-

rameter values.

Proof. By Proposition 23, the standard model has anonymity. So if we can prove

that modules 2 and 3 merging makes a bank in module 1 worse off, then we are

done. Let x be the original partition and y be the partition where modules 2 and

3 have merged, so y = (x1, x2+x3, x4, ....xk). Then v1[x]n2

P [x1]
v1[x] = x1+θ

∑
j≥2

xjP [xj]

and v1[y]n2

P [x1]
= x1 + θ

(
(x2 + x3)P [(x2 + x3] +

∑
j>3

xjP [xj]

)
. As γ > 0 , P [d] is

strictly decreasing in d. So x2P [x2] > x2P [x2 + x3] and x3P [x3] > x3P [x2 + x3],

and hence x2P [x2] + x3P [x3] > (x2 + x3)P [x2 + x3]. The result then follows.

Proposition 25. The standard model satisfies weak quasi-convexity for all parametri-

sations; is monotone for all parametrisations; and satisfies strict quasi-convexity

when P [n] �= θP [1].

Proof. We need to show that (v1,1[x1] ≤ max{v1,1[a], v1,1[b]})b−1
x1=a+1. Recall that

v1[(xj)
k
j=1] :=

x1

n2P [x1]+
∑

j �=1 θ
xj

n2P [x1]P [xj], and so v1,1[x1] :=
x1

n2P [x1]+θn−x1

n2 P [x1]P [1].

Hence ∂v1,1[x1]

∂x1
= (γ − θ − γθn + 1)P [1]P [x1]. This has the same sign for all x1:

specifically, ∂v1,1[x]

∂x1
≥ 0 if and only if P [n] ≥ θP [1]. So not only is v1,1[x1] weakly

quasi-convex, it is monotonic.

Corollary 26. Under the standard model the strictly efficient partitions are as

follows: {n} is strictly efficient when P [n] > θP [1]; whilst {1, 1, 1....1} is strictly

efficient when P [n] < θP [1]; and both {n} and {1, 1, 1....1} are strictly efficient

when P [n] �= θP [1]. No other partition is ever strictly efficient.
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Proof. By Propositions 23, 24 and 25 the standard model has anonymity, nega-

tive externalities, and weak quasi-convexity. So by applying Theorem 15, parti-

tions other than {n} and {1, 1, , 1...1} are rejected as inefficient. Then, by com-

paring W [{1, 1...1}] and W [{n}], the results on the choice between {1, 1, 1..1}
and {n} follow.

A second proof of this result for the standard model uses a continuity argument,

and is given in Appendix F.

Finally we come to the concept of superadditivity. Bilateral superadditivity for

anonymous symmetric PFGs of the type considered in this thesis, requires simply

that the worth of a super-module, formed by merging 2 modules, is greater than

the aggregate worth of the 2 original modules, where it is assumed that the other

modules are unaltered. Specifically:

Definition 27. An anonymous symmetric PFG being bilaterally superadditive

requires that, if x = (xi)
k
i=1 is any partition then V g

1 [x
′
] ≥ V g

1 [x] + V g
2 [x], where

x′ =
(
x1 + x2, (xi)

k
i=3

)
.

Theorem 28. The standard model is bilaterally superadditive if and only if the

grand coalition is a strictly efficient partition.

Proof. Considering a general partition x and defining x
′ , as in the Definition 27.

The condition trivially holds if either x1 = 0 or x2 = 0. So we assume x1 ≥ 1 and

x2 ≥ 1. Then, V1[x
′
]−(V1[x]+V2[x])

(x1∗P [x1]∗x2∗P [x2]∗P [x1+x2])
= (−2θ−2γθt+γt+2)−R (γ2θt+ 2γθ),

where t := x1 + x2 and R :=
∑

i>2 xiP [xi]. The coefficient on R is negative and

hence it is hardest for this expression to be positive when R is maximised. As the

model has negative externalities this occurs with R = (n−x1−x2)∗P [1]. Hence

bilateral superadditivity holds if and only if θ < θc[t] :=
2γ+γ2t+γt+2

2γ+2γn+γ2(n−t)t+2γ2t+2

for all t such that 2 ≤ t ≤ n. As dθc[t]
dt

=
γ(γ+1)(γ2t2+γ(4t−2)+2)
(2γ(n+1)+γ2t(n−t+2)+2)2

> 0, the binding
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constraint occurs with t = 2. This gives the grand coalition efficiency condition,

θ ∗ P [1] ≤ P [n], as required.

Definition 29. An anonymous symmetric PFG being supermodular requires

that, if x = (xi)
k
i=1 is any partition then V1[x1 + x2 + x3, 0, 0, x3+] + V1[x1, x2,

x3, x3+] ≥ V1[x1 + x2, x3, 0, x3+] + V1[x1 + x3, x2, 0, x3+], where x3+ = (xi)
k
i=4.73

Theorem 30. The standard model satisfies supermodularity if and only if θP [1] ≤
P [n].

Proof. Consider any partition (xi)
k
i=1. Then let e[x] := V1[x1+x2+x3, 0, 0, x3+]+

V1[x1, x2, x3, x3+] − (V1[x1 + x2, x3, 0, x3+] + V1[x1 + x3, x2, 0, x3+]). Trivially

e[x] = 0 if either x2 = 0 or x3 = 0. So we can restrict ourselves to partitions where

x2, x3 ≥ 1 and consider

f [x] := e[x]
P [x1+x2]P [x1+x3]P [x1]P [x1+x2+x3]x3P [x3]x2P [x2]

, where R :=
∑k

i=4 xiP [xi]. We

want to know for which parametrisations (n, θ, γ), is f [x] ≥ 0 for all partitions

x, where x2, x3 ≥ 1. Hence f [x] ≡ C0[x]−θC1[x], where C0[x] := (γx2+1)(γx3+

1)(2x1γ + γx2 + γx3 + 2)

and

C1[x] := x2
1γ

2(γx2 + γx3 + 2) + (γx2 + 1)(γx3 + 1)(γR(γx2 + γx3 + 2) + 2(γx2 + γx3 + 1)) +

x1γ
(
2γR(γx2 + 1)(γx3 + 1) + γ2x2

2 + γx2(4γx3 + 5) + γ2x2
3 + 5γx3 + 4

)
. The θ coefficient

is negative, and so f [x] > 0 iff θ < θmax[x] := −C0[x]
C1[x]

. We now let x2,3 := x2+x3,

and x123 := x1 + x2 + x3. Holding x1, x2,3 and x3+constant we find the choice

of x3 that minimises f [x]. Differentiation gives that, dθmax[x1,x2,3−x3,x3,x3+]

dx3
=

(x2,3 − 2x3)
g[x]
h2[x]

, where

g[x] := γ3x1(γx2,3 + 2) (2γ2x2
1 + γx1(3γx2,3 + 4) + γ2x2,3 + 3γx2,3 + 2) > 0

73As in Section 1.6 above, this is supermodularity of the module worth function V with
respect to embedded coalitions; rather than of welfare W with respect to partitions. See
Appendix L for an explanation.
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and

h[x] := γx3+(γx3+1)(2γx1+γx2,3+2)(γx2+1)+γx1

(
γ2x2

2,3 + γx2,3(2γx3 + 5)− 2γ2x2
3 + 4

)
+

γ2x2
1(γx2,3 + 2) + 2(γx2,3 + 1)(γx3 + 1)(γx2,3 − γx3 + 1). So minima occur with x3 = 1

and with x3 = x2,3 − 1.74 So without loss of generality x3 = x2,3 − 1 and hence

x2 = 1. Similarly dθmax[x1,1,x1,2,3−x1,x3+]

dx1
= − l[x]

m2[x]
where:

l[x] := γ(γ+1)
(
γ2(x1,2,3 − 1)x1,2,3 + γ(2x1,2,3 − 1) + 1

) (
γ2(2x1 + 1) + 2γx1,2,3 + 2 + γ2(x1,2,3 − x1 − 1)2

)
>

0 and m[x] := γ(γ+1)R
(
γ2

(
x2
1 + x1 − x2

1,2,3 + x1,2,3

)
+ γ(x1 − 3x1,2,3 + 2)− 2

)−
(γx1,2,3 + 1) (γ2 (− (x2

1 + 2x1 + 2)) + γx1,2,3(γ(x1 + 2) + 2) + 2). So we want to

maximise x1 bearing in mind the constraint that x3 ≥ 1. So x1 = x123 − 2,

x2 = 1 and x3 = 1. Hence θmax[x] = θmax[x1,2,3, 1, 1, x3+] =
γ+1

(γ+1)γR+γx1,2,3+1
.

So we want to maximise R: this requires x3+ = {1, 1, 1..1} and hence gives

R = (n− x1,2,3) ∗ P [1, γ]. Hence θmax[x] = θmax[x1,2,3, 1, 1, {1, 1...1}] = γ+1
(γn+1)

.

Definition 31. An anonymous symmetric PFG being bilaterally subadditive

requires that, if x = (xi)
k
i=1 is any partition then V g

1 [x
′
] ≤ V g

1 [x] + V g
2 [x], where

x′ =
(
x1 + x2, (xi)

k
i=3

)
.

Theorem 32. The atomic partition is strictly efficient for any symmetric bilat-

erally subadditive PFG with negative externalities.

Proof. Suppose x = (xi)
k
i=1 is a partition and module k is non-singleton. Then

let x′ := ((xi)
k−1
i=1 , xk − 1, 1). Due to negative externalities the worth of each of

the first k − 1 modules is no lower; and due to subadditivity the members from

xk are better off as well. So by induction the atomic partition is efficient.

Theorem 33. The standard model is bilaterally subadditive if and only if θP [0.5n] ≥
P [n].

74By symmetry both x3 = 1 and x3 = x2,3 − 1 give the same value for f [x].
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Proof. Consider any partition (xi)
k
i=1. Then let e[x] := V1[x1 + x2, x2+] −

(V1[x1, x2, x2+] + V1[x2, x1, x2+]). Trivially e[x] = 0 if either x2 = 0 or x3 = 0.

So we assume x1 ≥ 1 and x2 ≥ 1. Let f [x] := e[x]/(x1P [x1]x2P [x2]P [x1 + x2]).

Then f [x] ≡ −2(θ + γθR− 1)− γx1,2(θ(γR + 2)− 1), where R :=
∑k

i=3 xiP [xi]

and x1,2 := x1 + x2 ≥ 2. Then,

f [x] ≡ (γx1,2 + 2) − θ (2γR + γ2Rx1,2 + 2γx1,2 + 2). The θ coefficient is neg-

ative so f [x] ≤ 0 if and only if θ ≥ θmin[x] := (γx1,2+2)

2γR+γ2Rx1,2+2γx1,2+2
. As

θmin[x] is maximised when R is minimised, we set R = (n − x1,2)P [n − x1,2],

and so θmin[x1,2] = γx1,2+2
γ(n−x1,2)(γx1,2+2)

γn−γx1,2+1
+2γx1,2+2

. Hence dθmin[x1,2]

dx1,2
= γ∗g[x]

h2[x]
, where

g[x] := (−2γ2n2 − 4γn+ 2) + x1,2 (8γ + γ2(4n− x1,2)) and h[x] := γn(3γx1,2 +

4)− 3γ2x2
1,2 − 2γx1,2 + 2. As x1,2 ≤ n, g[x] is quasi-convex and hence θmin[x] is

maximised either with x1,2 = 2 or with x1,2 = n. θmin[x1,2 = n] − θmin[x1,2 =

2] =
γ(n−2)(4γ+γ2n+1)

2(γn+1)(3γ2(n−2)+2γ(n−1)+1)
≥ 0, where n ≥ 2, as x12 ≥ 2. As θmin[x1,2 =

n] = P [n]
P [0.5n]

, the result now follows.

1.8 Stability

This section assesses the stability of the standard model using the EEBA (Ex-

tended Equilibrium Binding Agreement), building on the ideas, techniques and

definitions which were introduced in Section 1.6. It does this by first describ-

ing the hedonic approach before reviewing the distinction between characteristic

form games and partition form games. It then introduces the modelling of ex-

pectations within partition form games.

In a general non-hedonic co-operative game, there are two stages: agents firstly

form modules, and then secondly play a strategic form game. Contrastingly, in

a hedonic game there is no second stage: the partition is sufficient to define the
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payoffs each agent gets. Bogomolnaia, and Jackson (2002) introduced the idea

of hedonic coalition games where, each agent’s preferences over partitions are

completely characterized by his preferences over the coalitions that he belongs

to in each partition. Mathematically, π �j π
′ ⇐⇒ Cπ(j) �j Cπ′(j), where Cπ(j)

is the coalition in π that j belongs to.75 Diamantoudi and Xue (2007) extend

the concept to form hedonic partition games, where for every agent there exists

a complete, reflexive, and transitive binary relation on partitions. The banking

models used in this thesis are all hedonic, and having a hedonic game simplifies

some of the definitions used below, which show how partition form games differ

from characteristic form games.

Typically in co-operative game theory there are no externalities: how outside

agents organise themselves does not affect you. Your utility in such a char-

acteristic form game is determined by the members of your coalition, but is

independent of how the other outside agents are grouped. Formally, if N is the

set of all agents then, for each nonempty coalition S ⊆ N , a characteristic func-

tion U cf determines an |S| dimensional vector, U cf [S] =
(
ucf
i [S]

)
i∈S. In such

characteristic form games, a central equilibrium notion is the core: the set of all

unblocked coalitions. And we say that D blocks S if a coalition D of agents can

deviate away from S, and make themselves all better off. Formally, Ø �= D ⊆ S

and
(
ucf
i [D] > ucf

i [S]
)

i∈D.

In contrast, with partition form games, there are externalities: how outside

agents are grouped does affect you. So, in partition form games, utility is de-

termined not only by the members of your module, but also by the modules

formed by agents not in your module. Formally, there is a partition function Upf ,

that for every partition π assigns a payoff to every agent, Upf [π] =
(
upf
i [π]

)
i∈N

.76

75This description is adapted from Burani and Zwicker (2003).
76Recall from Definition 4 that a partition π = (πi)

k
i=1 of a set N is a pairwise disjoint
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With such games it is not trivial to define what the core is. Why? Suppose we

start with partition π, from which a coalition S is considering deviating to form

a new partition π∗, at which S gets higher payoffs: assuming the other modules

do not react.77 However, at π∗ there may be a new coalition S∗ that does want

to react to form π∗∗; and at π∗∗ it may be that S is worse off than they were

at π. Further, this process is iterative: coalitions like S∗ that might want to

deviate in response to the S deviation, need to think how their deviation may

provoke further deviations in turn. Hence, with partition form games, we need

to include expectations in our solution concept.78

The EEBA (Extended Equilibrium Binding Agreement) concept, is a farsighted

solution concept: “when contemplating a deviation, a coalition takes into con-

sideration that further deviations may occur and that other deviating coalitions

also apply similar reasoning. For farsighted agents, it is the final agreement

their deviations lead to that matters.”, Diamantoudi and Xue (2007). Note that

farsightedness is a two part concept: such agents have not just farsighted expect-

ations (the knowledge and ability to work out the end state of the system), but

also farsighted preferences (it is only the end state they care about and not any of

the intermediate states). In contrast, section 2.3.3 considers a number of solution

concepts that are myopic in expectations or preferences: The Simultaneous-Move

Open Membership Game, The Unanimity Game and Bilateral Stability.79

Now, I will define the preference relation. Then I will explain how the EEBA

extends the original Equilibrium Binding Agreement (EBA), of Ray and Vohra

(1997), through increasing the feasible set of allowable deviations. Then I will

covering so,
⋃

πi
i

= N and (πi

⋂
πj = Ø)i �=j .

77Later in this section it is formally defined what new partition(s) a deviating coalition can
form.

78For a detailed description of partition form games, including expectations, see Ray (2007);
for a brief summary of a number of different extensions of the core to PFGs see section 1.6.

79 Section 2.3.3 also considers the Equilibrium Binding Agreement (EBA) which like the
EEBA is farsighted in both expectations and preferences.
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define the indirect dominance relation. Then I will define a stable set, and then

finally show that generically the unique EEBA solution of the standard model

is the efficient partition.

We define a coalition preference, by requiring the individual preference to hold

for all members of the coalition. Formally:

Definition 34. Let N be the set of agents, and let P and Q be partitions of N .

Coalition S strictly prefers P to Q (notation P �pf
S Q), if each member of coali-

tion S strictly prefers partition P to Q. Specifically, require that
(
P �pf

i Q
)
i∈S

,

or in utility formation, upf
i [P ] > upf

i [Q] for all i ∈ S. Note, that S can be

any subset of N : there is no requirement that S be a member of either of the

partitions.

The idea of a coalitional deviation is as follows. Initially, there is a partition P

consisting of modules {S1, S2....Sk}. A coalition T then deviates from partition

P to form new modules {T1, ..., Tl}. Each Sj module simply loses the members

that have joined T . Formally:

Definition 35. We write P
T→P ′ to denote a coalitional deviation where the

following conditions on P , T and P ′ hold. P = {S1, ..., Sk} is a partition of N .

A coalition T can partition itself to form new modules, (Tl)
L
l=1. The resulting

partition structure of N , before any further regrouping and restructuring, is P´

such that:

1.
(
Tl ∈ P

′)L
l=1

; that is the partitioning of T is itself included in the new

partition structure.

2. ∀j = 1, ..., k, Sj

⋂
T �= Ø ⇒ Sj \ T ∈ P´; that is, the residuals of all

modules affected by the deviation of T are modules in the new partition

structure.
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3. ∀j = 1, ..., k, Sj

⋂
T = Ø ⇒ Sj ∈ P´; that is, all those modules that

were unaffected by the deviation of T remain modules in the new partition

structure.

The EEBA allows any sequence of coalitional deviations, so deviating banks can

re-deviate: specifically, this allows Pi
Ti→ Pi+1, Pj

Tj→ Pj+1, b ∈ Ti ∩ Tj, and i �= j.

In contrast, the EBA only allows internal deviations (splits within a module), and

each agent can only deviate once. The benefit of EEBA is the added flexibility

in allowing these more general deviations to take place; but the cost is that the

solution set may not exist, or that there may be multiple solutions. However

for a partition model with anonymity, negative externalities, and strict quasi-

convexity, the solution always exists, and is unique except for a set of measure

zero (when both the trivial partitions are efficient). So in this section the EEBA

is used; section 2.3.3.4 shows the robustness of these results to using the EBA.

These general partition model results apply directly to generic parametrisations

of the standard model; except in the case where there is indifference between

the two boundary partitions. In this special case of the standard model, there is

only weak quasi-convexity and there are extra EEBA.

As explained above, with partition form games we need to consider expecta-

tions. Under the EEBA, this is done using the indirect domination relation:

P´ indirectly dominates P if there exists a sequence of partitions P = P1, P2,

..., Pk = P ′, and a sequence of coalitions T1, T2, ..., Tk−1 such that, at each stage

there is both feasibility (the deviators Tj define a coalitional deviation Pj
Tj→Pj+1),

and farsighted individual rationality (each deviator Tj strictly prefers the end

state P ′ to the current state Pj). More formally:

Definition 36. P´ indirectly dominates P (denoted by P ′ �pf P ), if there

exists a sequence of partitions P1, P2, ..., Pk , where P1 = P and Pk = P ′ and a
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sequence of coalitions T1, T2, ..., Tk−1 such that
(
Pj

Tj→ Pj+1 and Pj ≺pf
Tj

P´
)k−1

j=1
.

For its solution concept, the EEBA uses the stable set of von Neumann and

Morgenstein (1944), applied to partitions under the indirect domination relation.

Intuitively, the stable set requires that; firstly, no solution can be preferred to

any other solution, and secondly, every non-solution must be inferior to some

solution. Formally:

Definition 37. Consider a set X and some binary partial ordering > on X.

Then R where, Ø �= R ⊆ X, is a vN–M stable set for (X,>), if it is both

internally and externally stable:

• R is vN–M internally stable for (X,>), if there do not exist P, P´ ∈ R

such that P´ > P

• R is vN–M externally stable for (X,>), if for any P ∈ X \ R, there exists

some P´ ∈ R such that P´ > P

Finally, we have the definition of an EEBA:

Definition 38. P is an EEBA (extended EBA), if there exists R s.t. P ∈ R

and R is a vN–M stable set of (P, �pf ), where P is the set of partitions.

We are now ready to apply the EEBA concept, first to the general model, and

then to the standard model.

Proposition 39. In the general model, if there is anonymity, negative external-

ities, vg1,1[x1] is strictly quasi-convex, and if {n} is the unique strictly efficient

partition then P ′ �= {n} ⇒ {n} �g P ′.

Proof. We need to find a path from P ′ to {n}, that is both feasible (possible

via a sequence of coalition deviations), and individually rational on a farsighted
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basis (for the deviators at every stage). Here that transition can occur directly

in one stage. Firstly, P ′ {n}→ {n} is feasible. Secondly, by Proposition 14.2,

({n} �g
i P

′)ni=1 . Hence {n} �g P ′ as required.

Theorem 40. In the general model, if there is anonymity, negative externalities,

vg1,1[x1] is strictly quasi-convex, and if {n} is the unique strictly efficient partition,

then {n} is the unique EEBA.

Proof. Existence. Consider R = {{n}}, the set containing the grand coalition

partition. The set R only has one member, and so trivially it is internally

stable. Suppose it is not externally stable and so there exists partition P ′ s.t.

{n} ��g P
′ . However, by Proposition 39 {n} �g P ′. This is a contradiction.

Hence R is stable, and so {n} is an EEBA.

Uniqueness. Suppose R′ �= {{n}} is stable. If {n} /∈ R′ then it will not be

externally stable. So {n} ∈ R′. Suppose also that P ′ ∈ R′ and P ′ �= {n}. But

then it will not be internally stable as {n} �g P ′. Hence no such R′ exists.

There are similar results in the reverse case where P [n] < θP [1], and hence the

atomistic partition {1, 1, 1...1} is the unique efficient partition:

Proposition 41. In the general model, if there is anonymity, negative exter-

nalities, vg1,1[x1] is strictly quasi-convex, and if {1, 1, 1...1} is the unique strictly

efficient partition then P ′ �= {1, 1, 1...1} ⇒{1, 1, 1....1} �g P ′

Proof. We need to show a path from P ′ to {1, 1, 1...1} that is both feasible

(possible via a sequence of coalition deviations), and individually rational on

a farsighted basis (for the deviators at every stage). Here that transition can

occur directly in one stage. Firstly, P ′ {n}→ {1, 1, 1...1} is feasible. Secondly, by

Proposition 14.1, ({1, 1, 1..1} �g
i P

′)ni=1 . Hence {1, 1, 1....1} �g P ′ as required.
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Theorem 42. In the general model, if there is anonymity, negative externalities,

vg1,1[x1] is strictly quasi-convex, and if {1, 1, 1...1} is the unique strictly efficient

partition then {1, 1, 1....1} is the unique EEBA.

Proof. Existence. Let R := {{1, 1, 1...1}}, be the set containing the atomistic

partition of singletons. R only has one member, so trivially it is internally

stable. Suppose it is not externally stable and so there exists partition P ′ s.t.

{1, 1, 1..1} ��g P
′ . However, by Proposition 41, {1, 1, 1..1} �g P ′, so this is a

contradiction. Hence R is stable, and so {1, 1, 1..1} is an EEBA.

Uniqueness. Suppose R′ �= {{1, 1, 1...1}} is stable. If {1, 1, 1...1} /∈ R′ then it

will not be externally stable. So {1, 1, 1...1} ∈ R′. Suppose also that P ′ ∈ R′

and P ′ �= {1, 1, 1...1}. However, then it will not be internally stable as {1,
1, 1...1} �g P ′. Hence R′ = {{1, 1, 1...1}} and so {1, 1, ....1} is the unique

EEBA.

Proposition 43. In the general model, if there is anonymity, negative exter-

nalities, vg1,1[x1] is strictly quasi-convex, and if {1, 1, 1...1} and {n} are the

only strictly efficient partitions then P ′ �= {1, 1, 1...1} and P ′ �= {n} ⇒{1, 1,
1....1} �g P ′ and {n} �g P ′

Proof. We need to show a path from P ′ to {1, 1, 1...1} that is both feasible

(possible via a sequence of coalition deviations), and individually rational on

a farsighted basis (for the deviators at every stage). Here that transition can

occur directly in one stage. Firstly, P ′ {n}→ {1, 1, 1...1} is feasible. Secondly, by

Proposition 14.3, ({1, 1, 1..1} �g
i P

′)ni=1 . Hence {1, 1, 1....1} �g P ′ as required.

Similarly, we need to find a path from P ′ to {n}, that is both feasible (possible

via a sequence of coalition deviations), and individually rational on a farsighted

basis (for the deviators at every stage). Here that transition can occur directly
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in one stage. Firstly, P ′ {n}→ {n} is feasible. Secondly, by Proposition 14.3,

({n} �g
i P

′)ni=1 . Hence {n} �g P ′ as required.

Theorem 44. In the general model, if there is anonymity, negative externali-

ties, vg1,1[x1] is strictly quasi-convex, and if {1, 1, ....1} and {n} are both strictly

efficient, then {1, 1, ....1} and {n} are both EEBA.

Proof. Let R = {{1, 1, 1...1}, {n}}, be the set containing both the trivial parti-

tions.

Internal Stability. Consider a path that starts at one of the trivial partitions and

ends at the other. All banks are indifferent between {1, 1, 1....1} and {n}. So

no initial group of deviators can be strictly better off at the end state compared

with the start state. Hence R is internally stable.

External Stability. Suppose it is not externally stable so there exists some par-

tition P ′ s.t. {1, 1, 1...1} ��g P ′ and {n} ��g P ′. However, by Proposition 43

{1, 1, 1..1} �g P ′ and {n} �g P ′ . This is a contradiction. Hence R is stable,

and so both {1, 1, ....1} and {n} are EEBA.

Now, with the standard model, we in turn consider the three cases, P [n] > θP [1],

P [n] < θP [1] and P [n] = θP [1].

Theorem 45. In the standard model, if P [n] > θP [1] then {n} is the unique

EEBA.

Proof. The result follows from a direct application of Theorem 40: the model is

strictly quasi-convex by Proposition 25; has anonymity by Proposition 23; has

negative externalities by Proposition 24; and the partition {n} is the unique

efficient partition by Corollary 26.
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Theorem 46. In the standard model, if P [n] < θP [1] then {1, 1, ....1} is the

unique EEBA.

Proof. The result follows from a direct application of Theorem 42: the model is

strictly quasi-convex by Proposition 25; has anonymity by Proposition 23; has

negative externalities by Proposition 24; and the partition {n} is the unique

efficient partition by Corollary 26.

With the critical parameter case, P [n] = θP [1], we have weak, but not strict,

quasi-convexity in v1[x1]; and hence we cannot use Theorem 44. Hence it is

necessary to use an intermediate proposition, which for the special case of P [n] =

θP [1], generalises Proposition 13 to the ith module:

Proposition 47. If P [n] = θP [1] then argmax vi[x]={{(1)i−1
j=1, xi, (1)

n+1−xi
j=i+1 } :

xi ∈ An+1−i}

Proof. Let us start by considering the partition(s) x that maximise v1[x], the

utility of a bank in the first module. As there are negative externalities all the

modules after the first one must be singletons. So x = {x1, 1, 1, 1....1}: there

must be one module of size x1 and n−x1 modules of size 1. So v1[x] =
x1

n2P [x1]+

θ (n−x1)
n2 P [x1]P [1]. Hence ∂v1[x]

∂x1
= (γ−θ−γθn+1)P [1]P [x1]. So as P [n] = θP [1],

∂v1[x]
∂x1

≡ 0. This proves the result for the first module. The same argument

applies for the ith module as appropriate, (with the caveat that we need there

to be an ith module, and so we require the first i − 1 modules to be singleton

modules).

Theorem 48. In the standard model, if P [n] = θP [1], then {1, 1, ....1} and {n}
are both EEBA. Further all other partitions with precisely one non-singleton

module are also EEBA.
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Proof. Let R be the set containing all partitions with either 0 or 1 non-singleton

modules. So it contains all elements such as {1, 1....1}, {x1, 1, 1..1}, {1, x2, 1,

1..1},{1, 1, x3, 1, 1..1}, {1, 1, 1, ...., xi, 1, 1, 1, 1}, and {n}.

Internal Stability. We need to prove that there do not exist P, P´ ∈ R such

that P´ � P . Proof is by contradiction: suppose such a path from P1 := P

to Pt := P ′ exists, and that the length t is the minimal length. Then there is

a set T1 of deviators from P1 to some P2. Without loss of generality, assume

that the potential non-singleton module within P , is module 1. Suppose T1

contains no members of module 1 of P. Then we must have P2 = P, or that P2

is a permutation of P ; however, in either case the path is now not of minimal

length. Instead suppose T1 contains some, or all, the members of module 1 of P .

However by Proposition 47, P ∈ argmax v1[x]. And so such members of module

1 of P that are deviating, cannot be strictly better off at the end partition P
′ .

So there is a contradiction in this case as well. Hence R is internally stable.

External Stability. Suppose P ′ /∈ R. And so that P
′ must have at least 2 non-

singleton modules, so P /∈ argmax vi[x], by Proposition 47. I will now show

that there is a path from P ′ to {n}, that is both feasible (possible via a sequence

of coalition deviations), and individually rational on a farsighted basis (for the

deviators at every stage). The transition can occur directly in one stage. Firstly,

P ′ {n}→ {n} is feasible. Secondly, the argmax of v1[x] includes {n}. So {n} �i P
′

for all i. Hence {n} � P ′ as required.

The internal examiner, Professor Peter Hammond, notes that in these proofs the

transitions take place in one stage, and asked what this meant for the requirement

of farsightedness. In general the EEBA definition includes multiple deviations

because it allows situation such as P = P1, P2, P3 = P ′ where the deviators are

T1 and T2 such that T1 prefers P ′ to P and T2 prefers P ′ to P2 but does not prefer
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P ′ to P : with each EEBA sequence, deviating agents prefer the end partition to

the current partition at the point they deviate, but there is no requirement that

they prefer the end partition to other partitions in the sequence.

However, here following Proposition 14 as the partition model has anonymity,

negative externalities and vg1,1[x1] is strictly quasi-convex, there is generically a

unique efficient partition such that at other partitions everyone is worse, and so

the transition can be completed in one stage. One interpretation of this would

be that the issues of farsightedness are non-critical. However, if we want to

imagine that in practice that at each stage simple deviations are possible (a

single module splitting; or 2 modules merging) but compound deviations are not

feasible (multiple modules splitting or more than 2 modules merging), then the

farsightedness requirement would again be non-trivial.

1.9 Parameterisations

So far we have considered the model in terms of three parameters: n, the number

of banks; θ, the value of outside matches; and γ, the shock parameter. This

section considers some sensible ranges of these parameters: the number of banks,

n, is one of {10, 20, 30, 40, 50, 100, 1000}; the value of outside matches, θ, has

a minimum of 0, a maximum of 1.0 and has an increment of 0.1; the shock

parameter, γ, is one of {0} ∪ 0.01N9∪0.1N30, where Nn := {1, 2...n}.80 So, the

n parameter is one of 7 values, the θ parameter is one of 11 values, and the γ

parameter is one of 40 values. This gives a total of 7 ∗ 11 ∗ 40 = 3080 different

parametrisations. For each of these cases we consider which out of the atomistic

partition of singletons, Atom, and the grand coalition, GC, is preferred.
80Firstly, the net effect is that the γ range is {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,

0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,
2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0}. Secondly, Appendix E, shows that 3 is a reasonable upper
limit for γ.
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For each parametrisation, the welfare of the atomistic partition is given by W[1];

the welfare of the grand coalition is given by W[n]; and g, the percentage gain

from choosing the atomistic partition over the grand coalition, is given by 100 ∗
(W [1]−W [n])/W [n].81 In 2444 cases the atomistic partition is strictly preferred;

in 11 cases there is indifference; and in 625 cases the grand coalition is strictly

preferred. This argues that for realistic parameter values the atomistic partition

should be chosen.

How the distribution of the gain varies can be displayed for each parameter in

a separate table. Each line of a table fixes one parameter value, but lets the

other parameters vary. So, for example, the top line of the n table includes the

parametrisations where, n is fixed at 10, θ varies between 0 and 1, and γ varies

between 0 and 3. These 11 ∗ 40 = 440 cases are considered to see what the

distribution of the gains is.

The grand coalition is the unique solution, if and only if P [n] > θP [1]. So

the n table and the θ table show that as either n or θ increases, there is an

increase, both in the number of cases with gain from atomisation, and in the

gains in those cases. Re-arrangement gives that GC � Atom if and only if

(γ < (1− θ)/(θn− 1) or θn ≤ 1). The γ table shows that an increase in the

shock parameter, γ, generally leads to a switch from the grand coalition to the

Atomistic partition of singletons: however, this does not occur if θn ≤ 1, for

example when θ ∈ {0, 0.1} and n = 10.
81Here we are allowing modules to have fractional sizes. So the feasible set of partition is

{(xi)
k
i=1 : xi ∈ R, xi ≥ 1, k ∈ N and

∑k
i=1 xi = n}
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Table 1.5: Standard Model n Table

percentage gain from atomisation broken down by n
n (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,25000)

10 151 169 115 5 0 0 0 0 0 0 0 0
20 106 116 75 66 58 19 0 0 0 0 0 0
30 91 87 63 45 50 40 37 26 1 0 0 0
40 83 68 51 47 34 32 33 33 30 19 10 0
50 78 63 44 37 31 27 30 26 23 25 25 31

100 67 23 39 21 22 26 15 22 13 11 18 163
1000 49 2 3 2 3 3 3 4 4 2 3 362

All 625 528 390 223 198 147 118 111 71 57 56 556

Table 1.6: Standard Model θ Table

percentage gain from atomisation broken down by θ
θ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,25000)

0.0 280 0 0 0 0 0 0 0 0 0 0 0
0.1 108 106 25 6 1 1 1 2 1 0 0 29
0.2 66 82 60 7 12 17 0 1 0 1 1 33
0.3 49 64 46 41 14 1 9 17 3 0 0 36
0.4 37 54 37 39 30 17 0 1 9 9 10 37
0.5 30 55 31 25 29 25 18 1 0 1 8 57
0.6 22 46 26 30 29 18 24 16 3 0 0 66
0.7 15 33 39 30 16 24 15 22 12 7 1 66
0.8 10 30 43 19 20 16 22 13 21 9 10 67
0.9 8 27 44 10 29 10 17 18 12 19 7 79
1.0 0 31 39 16 18 18 12 20 10 11 19 86
All 625 528 390 223 198 147 118 111 71 57 56 556

101



Table 1.7: Standard Model γ Table

percentage gain from atomisation broken down by γ
γ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,25000)

0.00 70 7 0 0 0 0 0 0 0 0 0 0
0.01 49 19 1 1 1 1 1 1 1 1 1 0
0.02 41 22 5 0 1 0 1 0 1 0 1 5
0.03 35 24 6 3 0 1 0 0 1 0 0 7
0.04 31 24 8 3 2 0 0 1 0 0 0 8
0.05 28 23 10 3 3 1 0 0 0 1 0 8
0.06 26 22 10 5 1 3 1 0 0 0 1 8
0.07 25 19 12 6 2 1 3 0 0 0 0 9
0.08 25 17 12 7 2 1 2 2 0 0 0 9
0.09 21 21 10 7 3 2 1 2 1 0 0 9
0.1 21 17 13 7 4 1 1 1 2 1 0 9
0.2 15 14 9 10 5 4 3 2 1 0 1 13
0.3 12 12 9 9 6 5 2 4 1 2 0 15
0.4 11 11 11 5 7 3 5 3 3 1 2 15
0.5 10 10 10 7 6 4 3 4 2 3 1 17
0.6 10 10 10 6 4 5 4 4 3 3 0 18
0.7 10 10 10 4 6 5 3 5 2 1 3 18
0.8 9 10 10 5 6 5 3 5 1 2 3 18
0.9 8 10 10 5 6 6 3 5 1 2 3 18
1.0 8 9 9 7 5 7 3 2 4 2 3 18
1.1 8 9 9 7 5 7 3 3 3 2 3 18
1.2 8 9 9 7 7 5 3 5 1 2 3 18
1.3 8 9 10 7 6 5 3 5 1 2 3 18
1.4 8 9 11 6 6 5 3 5 1 2 3 18
1.5 8 9 13 4 6 5 3 5 2 1 3 18
1.6 8 9 13 4 6 5 4 4 2 1 3 18
1.7 8 9 13 4 6 5 4 4 3 3 0 18
1.8 8 10 12 4 6 5 4 5 2 3 1 17
1.9 8 11 11 4 6 5 5 4 2 3 1 17
2.0 8 12 10 6 4 7 3 4 2 3 1 17
2.1 8 12 10 6 6 5 3 4 2 3 1 17
2.2 8 12 10 6 8 3 3 4 2 3 1 17
2.3 8 12 10 7 7 4 4 2 2 3 1 17
2.4 8 12 10 8 7 3 5 2 4 1 1 16
2.5 8 12 10 8 7 3 5 3 3 1 2 15
2.6 8 12 10 8 7 3 5 3 3 1 2 15
2.7 8 12 10 8 7 4 5 2 3 1 2 15
2.8 8 12 10 8 7 4 5 2 3 1 2 15
2.9 8 12 12 6 7 4 5 2 3 1 2 15
3.0 8 13 12 5 7 5 4 2 3 1 2 15
All 625 528 390 223 198 147 118 111 71 57 56 556

102



1.10 Interpretation

This chapter has constructed and considered the efficiency of a standard model,

and concluded that, depending on the parametrisation, we should either: choose

the grand coalition and accept boom and bust; or choose the atomistic partition

and accept low income. This section considers the regulatory implications of

this module rejection result: firstly, at what level of government should bank

regulation take place; secondly, do inter-bank relationships need regulating, and

thirdly, what are the implications of the 2007–2009 financial crisis.

The efficiency of the boundary partitions advocates the homogenous regulation of

inter-bank relationships, as in both cases regulation of the inter-bank relationship

is the same for every pair of banks (i, j): with the grand coalition it is low for

all (i, j); whilst with the atomistic partition it is high for all (i, j). This is unlike

a partition with real modularisation where regulation is low between banks in

the same module, but high between banks in different modules. So, the grand

coalition solution implies that banking regulation should be international; whilst

the atomistic partition implies it should be local. Neither suggests it should be

at an intermediate or regional level (for example by the EU).

The EEBA solution concept has farsighted agents, and Section 1.8 has showed

that for the standard model, with this concept only the efficient modularisation

is stable. This result argues against the need for regulation of banking networks.

However, in contrast, chapter 2 will show that in formulations with myopic

agents: the atomistic partition may be unstable, even when it is efficient; and

the grand coalition stable, even when it is inefficient. So with myopic banks the

conclusion is that there is a pro grand coalition bias.
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Finally, it provides this two-part conflicting interpretation of the policy of highly

interconnected banks that allowed the 2007–2009 financial crisis to become global.

If the shock parameter is low enough, or the cost of high regulation large enough,

then low regulation is optimal despite boom and bust. So, the occurrence of a

single crisis is not sufficient to argue for a policy change. Conversely, however, as

the number of banks increases, there is a tipping point at which the efficient solu-

tion jumps from the grand coalition to the atomistic partition, and indeed the

parameterisations considered in section 1.9 suggest that separation into minimal

sized banks is likely to be the optimal policy.

My model does not allow for growth in the banking sector, but it does suggest

that in such an environment the efficient policy is to switch from low to high

regulation once the number of banks reaches a certain critical level. And it is

possible that the banking sector has grown past that critical level, and thus the

pre crisis structure was sub-optimal.
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Chapter 2

Criticality and Robustness

2.1 Summary

This chapter considers the criticality and robustness of the standard model in

four aspects: the business sector, the financial sector, the social planner’s pref-

erences and partition formation. There is criticality with respect to an aspect

of the standard model, if altering that aspect can result in the optimality of

proper partitions, (where there are multiple modules, and each module will have

multiple member banks). A method often used to demonstrate criticality is to

computationally evaluate the altered model’s welfare function for interior sym-

metric partitions. The method is valid as it leads to a lower bound for the

welfare gain when interior non-symmetric partitions are additionally allowed.

Conversely, there is robustness with respect to an aspect of the standard model,

if on altering that aspect the standard model’s rejection of proper partitions still

remains. A method often used to demonstrate this is to computationally find the

interior partition that maximises the utility of bank 1. As Appendix A shows,

this leads to an upper bound for the welfare gain from interior partitions.

The business sector demonstrates criticality in aspects such as circular matching,
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(businesses are arranged in a circle, and matches are always between immediate

neighbours); hypercube models, (either 4 businesses arranged in a square, or

8 businesses arranged in a cube); and non-uniform matching (with 3 or 4 busi-

nesses). Contrastingly, the financial sector demonstrates both robustness (where

the probability of a bank receiving an initial shock increases with module size),

and criticality (if banks receive biased incentives, for example in terms of their

time horizons). The standard model is robust to altering the preferences of the

social planner (either in terms of risk aversion or including intertemporal utility).

Further, this chapter applies different partition formation concepts to the stand-

ard model. The efficient partition is again always formed under either the Equi-

librium Binding Agreement (EBA), of Ray and Vohra (1997), or the Unanimity

Game of Bloch (1996). However, inefficient partitions can be formed under bi-

lateral stability from Jackson and Wolinsky (1996), or the Open Membership

game from Yi and Shin (2000).

2.2 Business

2.2.1 Circular Business Networks

2.2.1.1 Circular Matching

The standard model has uniform matching: this represents a ‘global’ world where

business matches are as likely to be between businesses that are on opposite sides

of the world, as they are to be between businesses that are close neighbours of

each other. In contrast, here with the circular model we consider an environment

where all matches are between business that are local to each other. The use

of a circle of agents, rather than a line segment, is done partly to represent the

106



circular (spherical) nature of the earth and partly to avoid introducing special

matching behaviour at the end points.

This section considers a variant model where there is a circle of banks and will

show that the efficient partition generally has proper modules: multiple modules

each with multiple member banks.1 We are attempting to show the inefficiency of

the boundary partitions, so it is sufficient to check only the symmetric partitions:

if there is a symmetric partition that beats both the trivial partitions, then there

must be a partition in the bigger set of all partitions that beats both the trivial

partitions. Hence, for simplicity, in this section we will consider only symmetric

partitions, which partition the circle into k modules of length d, {[id, (i+1)d)}k−1
i=0 ,

where kd = n and d ≥ 1. We assume infinite divisibility of banks, and so the

matching process is represented by a probability density function (pdf), rather

than a probability function.2 All matches are between neighbouring banks one

unit distance apart: so the matching process has probability density function

p(i, i+ 1) = 1/n where i ∈ [0, n].3

As in the standard model, matches are either inside (banks in same module), or

outside (banks in different modules), however, the probability of an inside match

is different:

Theorem 49. The inside match probability is given by: P (Inside) =

⎧⎪⎪⎨
⎪⎪⎩

d−1
d

d < n

1 d = n

.

Proof. Outside matching occurs when matches ‘stretch’ over a module bound-

ary, so as matches are of length one, P (inside) is the number of inter-module
1The next two sections 2.2.1.2 and 2.2.1.3 consider respectively circular models where the

minimum module size is parametrised and where the match size is variable.
2Infinite divisibility is assumed to ensure that symmetric partitions are valid even when

they have modules which contain a fractional number of banks.
3Where in a slight abuse of notation, addition is modulus n and so n+1 = 1. Hence, more

generally, p(z, z + 1− n) = 1
n when z ∈ [n− 1, n]
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boundaries divided by n. With k modules the number of boundaries is, 0 if

k = 1 and k if k > 1. This discontinuity generates the two-part formula: when

there are multiple modules, (d < n), the match is inside one module, unless the

first bank in the match is within one unit of its module’s upper bound, so as

each module is of length d, this gives the d−1
d

term; when there is only a single

module (d = n), the match is always inside.

For symmetric sized modules the welfare function is given by:

Wc[d]= P (inside)P [d]+θP (outside)P 2[d], where P [d] = 1
1+γd

is the standard

module enablement probability. As with the matching probability, the wel-

fare function has two parts: Wc[1 ≤ d ≤ 0.5n]=
(
1− 1

d

)
P [d]+θ

(
1
d

)
P 2[d] and

Wc[d = n]=P [n] .4 This gives:

∂Wc[d]

∂d
|d<n= −

(6γθ − 2γ + θ − 1) + (d− 2)
(
4γ2 + 3γθ + γ

)
+

(
4γ2 + γ

)
(d− 2)2 + γ2(d− 2)3

d2(γd+ 1)3

The (d− 2), (d− 2)2 and (d− 2)3 coefficients are all negative (note the leading

minus sign). So, in the region where d > 2 the function is quasi-concave not

quasi-convex : once the slope is negative it stays negative. So in general, with

circular matching the efficient partition is non-trivial: it has real modules. So

when the matching is circular this is a pro-module argument.

Next, for a range of different parametrisations we compute the partition that

maximises Wc[d]. The number of banks, n, is one of {10, 20, 30, 40, 50, 100, 1000}.
The value of outside matches, θ, has a minimum of 0.1, a maximum of 0.9 and

has an increment of 0.1. The shock parameter, γ, is one of {0}∪0.01N9∪0.1N30,

where Nn := {1, 2...n}.5 So, the n parameter is one of 7 values, the θ parameter
4For general asymmetric partitions, the welfare function is Wc[(xi)

k
i=1] ={∑k

i=1

(
(xi−1)

n P [xi] +
θ
nP [xi]P [xi+1]

)
k > 1

P [n] k = 1
5Firstly, the net effect is that the γ range is {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,

0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,
2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0}. Secondly, Appendix E, shows that 3 is a reasonable upper
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is one of 9 values, and the γ parameter is one of 40 values. This gives a total

of 7 ∗ 9 ∗ 40 = 2520 parametrisations. For each of these cases we consider which

out of the atomistic partition of singletons, Atom, and the grand coalition, GC,

is preferred.

For each parametrisation, the welfare of the best trivial partition is given by

Wb := Max{Wc[1],Wc[n]}; the welfare of the best symmetric interior partition

is given by Wi := Max{Wc[n/k]}n−1
k=2 ; and g, the percentage gain from choosing

an interior partition, is given by 100 ∗ (W i −W b)/W b.6 The large gains from

interior partitions, represented in Tables 2.1, 2.2 and 2.3 below, mean that the

standard model rejection of interior partitions is critical to replacing a uniform

distribution of business opportunities with a circular distribution. If the gain

had been calculated over all partitions rather than just symmetric partitions

then each gain would have been weakly higher and so this criticality would only

be stronger.

How the distribution of the gain varies can be displayed for each parameter in a

separate table. The n table shows, firstly that there are nearly always gains from

interior partitions, and secondly, as n increases that there are occasionally very

high percentage gains from interior partitions. The θ table shows that there is a

clear correlation between low θ and high gains from the interior partitions: this

suggests the best boundary solution is the atomistic partition, and that when θ

gets big that the atomistic partition becomes an increasingly valued option. The

γ table shows that as γ increases, the gains from including interior partitions go

up: there is an increased co-ordination value of getting both banks enabled at

the same time.

limit for γ.
6Here we are allowing modules to have fractional sizes. So the feasible set of partition is

{(xi)
k
i=1 : xi ∈ R, xi ≥ 1, k ∈ N and

∑k
i=1 xi = n}
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Table 2.1: Circular Matching n table

Overall gain percentage distribution broken down by n
n (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

10 36 236 88 0 0 0 0 0 0 0 0 0
20 14 229 51 33 33 0 0 0 0 0 0 0
30 13 222 53 28 13 16 15 0 0 0 0 0
40 13 214 61 27 10 10 4 7 14 0 0 0
50 13 209 62 30 10 9 6 5 5 4 7 0

100 13 201 60 35 11 10 9 5 5 4 4 3
1000 13 197 58 34 11 8 12 10 6 4 4 3
All 115 1508 433 187 88 53 46 27 30 12 15 6

Table 2.2: Circular Matching θ table

Overall gain percentage distribution broken down by θ
θ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

0.1 13 42 35 17 24 13 46 27 30 12 15 6
0.2 12 41 37 86 64 40 0 0 0 0 0 0
0.3 11 39 152 78 0 0 0 0 0 0 0 0
0.4 10 139 125 6 0 0 0 0 0 0 0 0
0.5 9 201 70 0 0 0 0 0 0 0 0 0
0.6 9 257 14 0 0 0 0 0 0 0 0 0
0.7 8 272 0 0 0 0 0 0 0 0 0 0
0.8 8 272 0 0 0 0 0 0 0 0 0 0
0.9 35 245 0 0 0 0 0 0 0 0 0 0
All 115 1508 433 187 88 53 46 27 30 12 15 6
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Table 2.3: Circular Matching γ table

Overall gain percentage distribution broken down by γ
γ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

0 63 0 0 0 0 0 0 0 0 0 0 0
0.01 9 50 2 0 1 0 0 0 1 0 0 0
0.02 6 49 6 0 1 0 0 1 0 0 0 0
0.03 4 51 6 1 0 0 0 1 0 0 0 0
0.04 3 51 5 3 0 0 0 1 0 0 0 0
0.05 2 51 6 3 0 0 0 1 0 0 0 0
0.06 0 51 8 2 1 0 0 1 0 0 0 0
0.07 0 51 8 2 1 0 1 0 0 0 0 0
0.08 0 49 10 2 0 1 1 0 0 0 0 0
0.09 0 48 9 4 0 1 1 0 0 0 0 0
0.1 0 48 9 4 0 0 2 0 0 0 0 0
0.2 7 38 8 7 1 0 2 0 0 0 0 0
0.3 7 38 8 6 1 1 2 0 0 0 0 0
0.4 7 38 8 5 1 1 3 0 0 0 0 0
0.5 7 38 6 7 1 1 3 0 0 0 0 0
0.6 0 45 6 7 1 0 4 0 0 0 0 0
0.7 0 45 6 7 1 0 4 0 0 0 0 0
0.8 0 45 6 7 0 1 4 0 0 0 0 0
0.9 0 45 6 7 0 1 4 0 0 0 0 0
1.0 0 44 7 7 0 1 0 4 0 0 0 0
1.1 0 44 7 7 0 1 0 4 0 0 0 0
1.2 0 43 8 7 0 1 0 4 0 0 0 0
1.3 0 35 16 7 0 1 0 4 0 0 0 0
1.4 0 35 16 1 6 1 0 4 0 0 0 0
1.5 0 35 16 0 7 1 0 1 3 0 0 0
1.6 0 35 16 0 7 0 1 1 3 0 0 0
1.7 0 35 16 0 7 0 1 0 4 0 0 0
1.8 0 35 10 6 7 0 1 0 4 0 0 0
1.9 0 35 10 6 7 0 1 0 4 0 0 0
2.0 0 35 10 6 7 0 1 0 1 3 0 0
2.1 0 28 17 6 7 0 1 0 1 3 0 0
2.2 0 28 17 6 7 0 1 0 1 3 0 0
2.3 0 28 17 6 2 5 1 0 1 3 0 0
2.4 0 28 17 6 2 5 1 0 1 0 3 0
2.5 0 28 17 6 2 5 1 0 1 0 3 0
2.6 0 28 17 6 2 5 1 0 1 0 3 0
2.7 0 28 17 6 2 5 1 0 1 0 3 0
2.8 0 28 17 6 2 5 1 0 1 0 1 2
2.9 0 21 24 6 2 5 1 0 1 0 1 2
3.0 0 21 18 12 2 5 1 0 1 0 1 2
All 115 1508 433 187 88 53 46 27 30 12 15 6
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2.2.1.2 Circular Matching: variable minimum module size

In the previous section there are two normalisations of size 1: firstly, the min-

imum banks module size is 1, and secondly the match length is of size 1. And we

cannot, in a mathematical model, make two such normalisation without losing

generality.7 This section tests the robustness of the circular model where the

minimum module size is no longer 1: previously the maximum number of mod-

ules was n; now it is n ∗ s. If s = 1 then the maximum number of modules is n,

and the minimum module size is 1, as in the original circular model. If s < 1

then the maximum number of modules is less than n, and the minimum module

size is greater than 1. If s > 1 then the maximum number of modules is greater

than n, and the minimum module size is less than 1.

In this section the rest of the model stays the same. Again, we will consider

only symmetric partitions, which partition the circle into k modules of length

d, {[id, (i + 1)d)}k−1
i=0 , where kd = n, 1 ≤ k ≤ ns and k ∈ N. We continue to

assume infinite divisibility of banks, and so the matching process is represented

by a probability density function (pdf), rather than a probability function. All

matches are still between neighbouring banks one unit distance apart: so the

matching process has the same probability density function p(i, i + 1) = 1/n

where i ∈ [0, n]. And hence the same welfare function, Wc[d], still applies.

Next, for a range of different parametrisations we compute the partition that

maximises Wc[d]. The s parameter has a minimum of 0.1, a maximum of 2 and

an increment of 0.1. The other parameters have the same ranges as before: the

number of banks, n, is one of {10, 20, 30, 40, 50, 100, 1000}; the value of outside

matches, θ, has a minimum of 0.1, a maximum of 0.9 and has an increment of
7Although we might justify on practical terms why the normalisations could be the same.

For example suppose there a number of small towns existing on a circle and each match is
between business in neighbouring towns, and it is excluded on efficiency grounds for there to
be multiple banks per town.
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0.1; the shock parameter, γ, has a minimum of 0.1, a maximum of 3.0 and an

increment of 0.1.8 So, the s parameter is one of 20 values, the n parameter is

one of 7 values, the θ parameter is one of 9 values, and the γ parameter is one

of 30 values. This gives a total of 20 ∗ 7 ∗ 9 ∗ 30 = 37800 parametrisations.

For each parametrisation, the welfare of the best trivial partition is given by

Wb := Max{Wc[1/ns],Wc[n]}; the welfare of the best symmetric interior par-

tition is given by Wi := Max{Wc[n/k]}ns−1
k=2 ; and g, the percentage gain from

choosing an interior partition, is given by 100 ∗ (W i−W b)/W b. The large gains

from interior partitions, represented in Tables 2.4, 2.5, 2.6 and 2.7 below, mean

that the standard model rejection of interior partitions is critical to replacing a

uniform distribution of business opportunities with a circular distribution with

variable minimum module size. If the gain had been calculated over all partitions

rather than just symmetric partitions then each gain would have been weakly

higher and so this criticality would only be stronger.

How the gain varies can be displayed for each parameter in a separate table. The

s table shows the significant differences between this model and the previous

model. If s is small (0.1 to 0.4) then modules in the atomistic partition are

much bigger than the size of the matches: so we want smaller modules not

bigger modules; hence the interior partitions are further from the ideal module

size and there are very few gains from interior partitions. As s increases, there

are more cases with gains from interior partitions, and once s is above 0.5 then

in the majority of cases there are gain from interior partitions. With s = 1, we

get the original circle model as a special case: minimum module size and match

length are both 1, and this case represents a high point both for the frequency of

gains from interior partitions, and for the size of gains from interior partitions.

Once s > 1, the atomistic partition has modules of size less than 1, and hence
8This choice of n and s ensures that ns is an integer.
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the atomistic partition always has outside matches. As s increases further, the

atomistic partition has increasingly small modules, and hence the enablement

probability of each atomic module increases, but the probability of an inside

match is always 0 and so does not decrease further. Hence, once s > 1, the

welfare of the atomistic partition is strictly increasing as s increases further, and

hence the opportunities for gains from interior partitions are reduced.

Table 2.4: Circular Matching: variable minimum module size s table

Overall gain percentage distribution broken down by s
s (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

0.1 1890 0 0 0 0 0 0 0 0 0 0 0
0.2 1890 0 0 0 0 0 0 0 0 0 0 0
0.3 1872 18 0 0 0 0 0 0 0 0 0 0
0.4 1796 94 0 0 0 0 0 0 0 0 0 0
0.5 1276 614 0 0 0 0 0 0 0 0 0 0
0.6 434 1456 0 0 0 0 0 0 0 0 0 0
0.7 147 1743 0 0 0 0 0 0 0 0 0 0
0.8 65 1814 11 0 0 0 0 0 0 0 0 0
0.9 40 1455 387 8 0 0 0 0 0 0 0 0
1.0 28 1057 373 170 84 51 43 22 29 12 15 6
1.1 168 1001 343 146 84 37 43 24 26 15 3 0
1.2 301 974 301 112 64 41 49 24 24 0 0 0
1.3 462 882 267 113 28 61 47 30 0 0 0 0
1.4 604 795 242 89 22 81 49 8 0 0 0 0
1.5 715 719 237 59 63 65 32 0 0 0 0 0
1.6 770 706 231 23 88 65 7 0 0 0 0 0
1.7 875 615 223 17 116 42 2 0 0 0 0 0
1.8 934 556 223 17 141 17 2 0 0 0 0 0
1.9 987 503 223 17 156 2 2 0 0 0 0 0
2.0 1001 491 221 59 114 2 2 0 0 0 0 0
All 16255 15493 3282 830 960 464 278 108 79 27 18 6
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Table 2.5: Circular Matching: variable minimum module size n table

Overall gain percentage distribution broken down by n
n (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

10 2423 2373 604 0 0 0 0 0 0 0 0 0
20 2345 2177 461 206 211 0 0 0 0 0 0 0
30 2321 2165 457 131 159 89 78 0 0 0 0 0
40 2307 2179 458 119 150 86 42 28 31 0 0 0
50 2297 2189 434 132 154 91 44 26 16 9 8 0
100 2284 2202 434 121 143 99 57 27 16 9 5 3
1000 2278 2208 434 121 143 99 57 27 16 9 5 3
All 16255 15493 3282 830 960 464 278 108 79 27 18 6

Table 2.6: Circular Matching: variable minimum module size θ table

Overall gain percentage distribution broken down by θ
θ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

0.1 817 1008 453 204 788 414 278 108 79 27 18 6
0.2 840 986 1658 494 172 50 0 0 0 0 0 0
0.3 891 2412 771 126 0 0 0 0 0 0 0 0
0.4 979 2927 288 6 0 0 0 0 0 0 0 0
0.5 1540 2562 98 0 0 0 0 0 0 0 0 0
0.6 2124 2062 14 0 0 0 0 0 0 0 0 0
0.7 2618 1582 0 0 0 0 0 0 0 0 0 0
0.8 3039 1161 0 0 0 0 0 0 0 0 0 0
0.9 3407 793 0 0 0 0 0 0 0 0 0 0
All 16255 15493 3282 830 960 464 278 108 79 27 18 6
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Table 2.7: Circular Matching: variable minimum module size γ table

Overall gain percentage distribution broken down by γ
γ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,1100)

0.1 351 729 111 47 0 0 22 0 0 0 0 0
0.2 479 607 99 42 11 18 4 0 0 0 0 0
0.3 545 559 92 20 23 19 2 0 0 0 0 0
0.4 576 528 96 5 35 17 3 0 0 0 0 0
0.5 601 503 84 17 35 17 3 0 0 0 0 0
0.6 610 494 78 23 35 16 4 0 0 0 0 0
0.7 611 493 78 23 35 16 4 0 0 0 0 0
0.8 614 490 78 23 30 17 8 0 0 0 0 0
0.9 611 487 84 28 25 17 8 0 0 0 0 0
1.0 597 498 81 34 25 17 4 4 0 0 0 0
1.1 589 506 81 34 25 13 8 4 0 0 0 0
1.2 582 502 92 34 25 13 8 4 0 0 0 0
1.3 581 477 118 34 20 18 8 4 0 0 0 0
1.4 576 481 113 34 26 18 4 8 0 0 0 0
1.5 574 483 113 24 36 18 4 5 3 0 0 0
1.6 560 497 113 24 36 10 12 5 3 0 0 0
1.7 545 505 120 18 42 10 12 4 4 0 0 0
1.8 545 498 121 24 37 15 12 4 4 0 0 0
1.9 536 507 115 24 43 15 8 8 4 0 0 0
2.0 536 507 115 24 43 10 13 4 5 3 0 0
2.1 535 501 122 24 43 10 13 4 5 3 0 0
2.2 531 505 122 24 43 10 13 4 5 3 0 0
2.3 514 508 136 24 33 20 11 6 5 3 0 0
2.4 507 515 124 30 39 20 9 8 5 0 3 0
2.5 499 523 124 30 39 15 14 4 6 3 3 0
2.6 498 524 124 30 39 15 14 4 6 3 3 0
2.7 496 519 131 30 39 15 14 4 6 3 3 0
2.8 495 520 131 30 34 20 14 4 6 3 1 2
2.9 481 513 152 30 29 25 10 8 6 3 1 2
3.0 480 514 134 42 35 20 15 8 6 0 4 2
All 16255 15493 3282 830 960 464 278 108 79 27 18 6

2.2.1.3 Circular Matching: variable match lengths

Consider an extension of the circle model where the gap z between matched

banks is not fixed at 1, but instead is uniformly distributed between 0 and M .

Specifically, consider a circle of circumference n, so that matched banks (x1,
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x2) ∈ [0, n)2 and z :=| x2 − x1 |∼ U [0,M ]. The gap has probability density

function, f(z) =

⎧⎪⎪⎨
⎪⎪⎩

1
M

z ≤M

0 z > M

. We can now formulate the welfare function for

the symmetric case of k modules of length d:

Theorem 50. The Circular Model with variable match lengths has this welfare

function for symmetric partitions:

Wgc[d] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
2M

P [d] + θ (2M−d)
2M

P [d]2 d ≤M

(
1− M

2d

)
P [d] + θM

2d
P [d]2 M ≤ d ≤ 0.5n

P [n] d = n

Proof. If the gap is z then in order for the match to be inside (both banks are in

the same module), we require the first bank to be in the first d− z units of the

module. If the gap, z, is bigger than the size of the module, d, then the match

is always outside (banks are in different modules). Also in the special case of 1

module, the match is always inside. Hence:

P (Inside : z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 k = 1 ≡ d = n

d−z
d

z ≤ d

0 z ≥ d

So by integrating over z, we can calculate the inside match probability for the

case of k > 1 symmetric modules: P (Inside : k ∈ N2) =
´M
z=0

P (Inside :

z)f(z)dz =
´Min{d,M}
z=0

d−z
d

1
M
dz = 1

dM

´Min{d,M}
z=0

(d − z)dz. This splits naturally

into 2 cases: P (Inside : d < M) = d
2M

and P (Inside : d < M) = 1 − M
2d

.

The welfare function is given by Wgc[d] = P (Inside)P [d] + θP (Outside)P [d]2,

where P [d] = 1
1+γd

is the module enablement probability from the standard
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model. Including in the special case of 1 module, gives us the full 3-piece welfare

function:

Wgc[d] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
2M

P [d] + θ (2M−d)
2M

P [d]2 d ≤M

(
1− M

2d

)
P [d] + θM

2d
P [d]2 M ≤ d ≤ 0.5n

P [n] d = n

We now consider the argmax in each of the first two pieces, d∗1 and d∗2 respectively,

and d∗ the argmax of the whole function.

Theorem 51. The first piece of Wgc[d], where d ≤ M , is quasi-convex and

hence d∗1 = 1 or d∗1 = M .

Proof. The first piece is the standard model with parametrisation (n = 2M, θ, γ).

That model is quasi-convex and hence d∗1 = 1 or d∗1 = M .

Corollary 52. Hence if M = 0.5n then the whole function consists of just the

first piece and d∗ = 1 or d∗ = M .

Theorem 53. The 2nd piece of Wgc[d] is quasi-concave and hence

d∗2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M θ ≥ 1+γM
1+3γM

FOC
(γn+2)(2M(γn+1)−γn2)

2M(3γn+2)
< θ < 1+γM

1+3γM

0.5n θ ≤ (γn+2)(2M(γn+1)−γn2)
2M(3γn+2)

Proof. With piece two, W ′
gc[d : M ≤ d ≤ 0.5n] =

M(2γ2d2−3γd(θ−1)−θ+1)−2γd2(γd+1)

2d2(γd+1)3

and so 2d2W
′
gc[d]

P [d]3
= M (2γ2d2 − 3γd(θ − 1)− θ + 1) − 2γd2(γd + 1). Considering

this as a cubic expansion around d = M, gives that W
′
gc[d : M ≤ d ≤ 0.5n] > 0

if and only if:
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(−3γθM2 + γM2 − θM +M
)−(2γ2M2 + 3γθM + γM

)
(d−M)−(2γ + 4γ2M

)
(d−M)2−2γ2(d−M)3 > 0

The (d −M), (d −M)2, and (d −M)3 coefficients are all negative, so the 2nd

piece of Wgc[d] is quasi-concave and hence:

d∗2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M W
′
gc[d = M ] ≤ 0

FOC W
′
gc[d = M ] > 0 andW

′
gc[d = 0.5n] < 0

0.5n W
′
gc[d = 0.5n] ≥ 0

Algebraic re-arrangement gives:

W
′
gc[d = M ]

⎧⎪⎪⎨
⎪⎪⎩
≤ 0 3θ > 1 andM ≥ 1−θ

γ(3θ−1)
< 0

> 0 3θ ≤ 1 orM < 1−θ
γ(3θ−1)

W
′
gc[d = 0.5n] ≥ 0 if and only if M ≥ γn2(γn+2)

(2γ2n2+6γ(1−θ)n+4(1−θ))
.

The result then follows.

Corollary 54. If M = 1 then the whole function is the middle piece.

We can do further analysis by considering specific parametrisations: the number

of banks, n, is from {10, 20, 30, 40, 50, 100, 1000}; θ, the value of outside

matches, has a minimum of 0.1, a maximum of 0.9 and an increment of 0.1; the

shock parameter, γ, has a minimum of 0.1, a maximum of 3.0 and an increment

of 0.1; M , the maximum match distance is set to be M = m ∗ n, where m has a

minimum of 0.01, a maximum of 0.5 and an increment of 0.01.9

We can consider the potential gains from interior partitions by using a separate

table for each parameter. For each parametrisation, the welfare of the best
9Forming M from m in this way ensures that M ≤ 0.5n for all choices of n.
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trivial partition is given by Wb := Max{Wgc[1],Wgc[n]}; the welfare of the best

symmetric interior partition is given by Wi := Max{Wgc[n/k]}n−1
k=2 ; and g, the

percentage gain from choosing an interior partition, is given by 100 ∗ (W i −
W b)/W b. The low frequency of large gains from interior partitions, represented

in Tables 2.8, 2.9, 2.10 and 2.11 below, suggests that the standard model rejection

of interior partitions is robust to replacing a uniform distribution of business

opportunities with a circular distribution with variable match length. However,

if the gain had been calculated over all partitions rather than just symmetric

partitions then each gain would have been weakly higher and so this may not

then hold.

The quasi-concave region occurs with mn ≤ d ≤ 0.5n. As m increases this region

gets smaller, and hence the potential for interior solutions is less. So in the m

table, for larger m, both the frequency of interior solutions and the gains from

interior solutions are lower. In the θ table, increases in θ results in, a reduction

in the frequency of, and gains from, interior partitions: the atomistic partition

has more outside matches than any interior partition; so as θ increases, there are

greater benefits to the atomistic partition than to interior partitions. Similarly,

increases in either n or γ, result in the same shift away from interior solutions.

120



Table 2.8: Circular Matching: variable match lengths m table

Overall gain percentage distribution broken down by m
m (-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100) [100,140)

0.01 1724 149 9 3 3 0 0 1 0 0 0 1
0.02 1612 221 34 11 5 2 2 2 0 1 0 0
0.03 1511 282 55 20 10 6 1 2 1 1 0 1
0.04 1504 255 76 24 13 6 5 2 2 2 0 1
0.05 1461 285 77 29 16 9 2 6 1 2 0 2
0.06 1505 234 77 33 15 10 5 3 2 3 0 3
0.07 1552 188 76 31 13 11 6 5 1 3 1 3
0.08 1575 164 78 28 14 11 6 3 5 2 0 4
0.09 1578 171 69 28 15 9 5 7 2 2 1 3
0.10 1557 198 64 26 17 8 4 7 2 3 1 3
0.11 1553 207 59 29 14 8 5 5 3 4 0 3
0.12 1574 183 64 30 11 8 7 4 3 3 1 2
0.13 1602 165 57 26 13 8 6 4 3 3 1 2
0.14 1618 150 58 26 11 9 5 5 1 5 1 1
0.15 1641 128 58 26 12 8 5 5 3 2 2 0
0.16 1659 115 55 24 12 10 4 4 3 4 0 0
0.17 1675 107 50 23 13 8 5 4 1 4 0 0
0.18 1685 101 48 22 14 6 5 5 3 1 0 0
0.19 1694 94 50 18 14 8 5 4 3 0 0 0
0.20 1710 84 46 19 12 8 5 4 2 0 0 0
0.21 1720 81 41 16 13 9 6 3 1 0 0 0
0.22 1728 75 40 19 12 8 4 4 0 0 0 0
0.23 1737 67 40 21 11 6 7 1 0 0 0 0
0.24 1739 70 40 17 11 7 5 1 0 0 0 0
0.25 1745 69 37 17 13 8 1 0 0 0 0 0
0.26 1756 66 33 16 10 8 1 0 0 0 0 0
0.27 1765 60 31 15 12 7 0 0 0 0 0 0
0.28 1771 56 32 16 11 4 0 0 0 0 0 0
0.29 1778 51 32 17 9 3 0 0 0 0 0 0
0.30 1784 48 31 17 9 1 0 0 0 0 0 0
0.31 1788 46 32 17 7 0 0 0 0 0 0 0
0.32 1795 46 27 17 5 0 0 0 0 0 0 0
0.33 1800 46 28 15 1 0 0 0 0 0 0 0
0.34 1803 46 29 12 0 0 0 0 0 0 0 0
0.35 1812 41 28 9 0 0 0 0 0 0 0 0
0.36 1816 41 30 3 0 0 0 0 0 0 0 0
0.37 1820 44 26 0 0 0 0 0 0 0 0 0
0.38 1828 38 24 0 0 0 0 0 0 0 0 0
0.39 1829 42 19 0 0 0 0 0 0 0 0 0
0.40 1835 42 13 0 0 0 0 0 0 0 0 0
0.41 1837 46 7 0 0 0 0 0 0 0 0 0
0.42 1842 46 2 0 0 0 0 0 0 0 0 0
0.43 1848 42 0 0 0 0 0 0 0 0 0 0
0.44 1851 39 0 0 0 0 0 0 0 0 0 0
0.45 1854 36 0 0 0 0 0 0 0 0 0 0
0.46 1863 27 0 0 0 0 0 0 0 0 0 0
0.47 1870 20 0 0 0 0 0 0 0 0 0 0
0.48 1879 11 0 0 0 0 0 0 0 0 0 0
0.49 1890 0 0 0 0 0 0 0 0 0 0 0
0.50 1890 0 0 0 0 0 0 0 0 0 0 0
All 86263 4823 1782 720 371 214 112 91 42 45 8 29
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Table 2.9: Circular Matching: variable match lengths θ table

Overall gain percentage distribution broken down by θ

θ (-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100) [100,140)

0.1 6236 1958 1181 461 251 144 88 71 28 45 8 29
0.2 8420 1387 342 154 88 51 24 20 14 0 0 0
0.3 9439 795 145 70 32 19 0 0 0 0 0 0
0.4 10033 359 73 35 0 0 0 0 0 0 0 0
0.5 10286 173 41 0 0 0 0 0 0 0 0 0
0.6 10402 98 0 0 0 0 0 0 0 0 0 0
0.7 10458 42 0 0 0 0 0 0 0 0 0 0
0.8 10489 11 0 0 0 0 0 0 0 0 0 0
0.9 10500 0 0 0 0 0 0 0 0 0 0 0
All 86263 4823 1782 720 371 214 112 91 42 45 8 29

Table 2.10: Circular Matching: variable match lengths n table

Overall gain percentage distribution broken down by n

n (-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100) [100,140)

10 10958 1690 572 194 68 18 0 0 0 0 0 0
20 11652 1075 405 165 92 57 31 16 6 1 0 0
30 12144 742 292 128 73 49 24 22 11 11 3 1
40 12444 549 229 103 58 39 24 21 12 13 2 6
50 12589 487 185 85 49 34 21 19 8 12 1 10

100 12990 276 96 44 28 17 12 11 5 8 2 11
103 13486 4 3 1 3 0 0 2 0 0 0 1
All 86263 4823 1782 720 371 214 112 91 42 45 8 29
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Table 2.11: Circular Matching: variable match lengths γ table

Overall gain percentage distribution broken down by γ

γ (-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100) [100,140)

0.1 2249 342 175 113 74 54 39 34 23 10 8 29
0.2 2484 245 126 93 58 55 17 18 19 35 0 0
0.3 2614 211 116 58 57 29 26 39 0 0 0 0
0.4 2702 180 88 79 32 39 30 0 0 0 0 0
0.5 2759 172 89 46 47 37 0 0 0 0 0 0
0.6 2797 159 92 40 62 0 0 0 0 0 0 0
0.7 2826 156 81 46 41 0 0 0 0 0 0 0
0.8 2848 154 74 74 0 0 0 0 0 0 0 0
0.9 2873 143 71 63 0 0 0 0 0 0 0 0
1.0 2889 146 61 54 0 0 0 0 0 0 0 0
1.1 2906 148 55 41 0 0 0 0 0 0 0 0
1.2 2916 145 76 13 0 0 0 0 0 0 0 0
1.3 2923 144 83 0 0 0 0 0 0 0 0 0
1.4 2931 139 80 0 0 0 0 0 0 0 0 0
1.5 2938 134 78 0 0 0 0 0 0 0 0 0
1.6 2947 130 73 0 0 0 0 0 0 0 0 0
1.7 2954 130 66 0 0 0 0 0 0 0 0 0
1.8 2961 127 62 0 0 0 0 0 0 0 0 0
1.9 2964 131 55 0 0 0 0 0 0 0 0 0
2.0 2965 137 48 0 0 0 0 0 0 0 0 0
2.1 2967 140 43 0 0 0 0 0 0 0 0 0
2.2 2973 139 38 0 0 0 0 0 0 0 0 0
2.3 2975 146 29 0 0 0 0 0 0 0 0 0
2.4 2976 157 17 0 0 0 0 0 0 0 0 0
2.5 2982 162 6 0 0 0 0 0 0 0 0 0
2.6 2983 167 0 0 0 0 0 0 0 0 0 0
2.7 2986 164 0 0 0 0 0 0 0 0 0 0
2.8 2991 159 0 0 0 0 0 0 0 0 0 0
2.9 2992 158 0 0 0 0 0 0 0 0 0 0
3.0 2992 158 0 0 0 0 0 0 0 0 0 0
All 86263 4823 1782 720 371 214 112 91 42 45 8 7

2.2.2 Other Business Networks

2.2.2.1 Increased probability of self matching

The standard model assumes that the probability of a self match (b1, b1), a match

where both businesses have the same bank, is 1/n2; the same probability as when
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the banks are different: P [(b1, b2)] = 1/n2 for all (b1, b2). This section shows the

robustness of the results of the standard model to varying that assumption.

In this section there are 2 classes of matches: self-match matches (class 1) and

standard matches (class 2). If the class is 1 then the match is certain to be

between businesses with the same bank. So P [(b1, b1)| class1] = 1/n. If the class

is 2 then the match is distributed in the same way as in the standard model:

self-matches can occur but are no more probable than any other match, so P [(b1,

b2)| class2] = 1/n2. The match is class 1 with probability s and is class 2 with

probability 1 − s. This means that: when s = 0, we have the standard model;

when s = −1/(n−1), we have a model where the probability of a self match is 0;

and if s = 1 then the probability of a self match is 1.

This generates for a (generally asymmetric) partition, x = (xj)
k
j=1:

• Bank Payoff vsi[x] := s 1
n
P [xi] + (1− s)

(
xi

n2P [xi] +
∑
j �=i

θ
xj

n2P [xi]P [xj]

)

• Module Worth Vsi[x] := sxi

n
P [xi] + (1− s)

(
x2
i

n2P [xi] +
∑
j �=i

θ
xixj

n2 P [xi]P [xj]

)

• Welfare Ws[x] := s
n∑

i=1

xi

n
P [xi] + (1− s)

n∑
i=1

(
x2
i

n2P [xi] +
∑
j �=i

θ
xixj

n2 P [xi]P [xj]

)

Theorem 55. This model has boundary solutions

Proof. The optimality of the trivial partitions can be shown using the same

methodology as with the standard model. There are again negative extern-

alities, and so the argmax for vs1[x] will be of the form {x1, 1, 1, , , , 1} for

some x1. The optimal x1 can be found as follows. The derivative v
′
s1[x1] :=

∂vs1[{x1,1,1,,,,1}]
∂x1

=− θ+γ(θn−1)+s(γ−θ+1)(γn+1)−1
(γ+1)(γnx1+n)2

and so v
′
s1[x1] > 0 if and only if s <

γ−θ+γθ(−n)+1
γ−θ+γ2n−γθn+γn+1

; but this condition is independent of x1, and so vs1[x1] is mono-

tonic. So the best partition for bank 1 is always either the grand coalition {n},
or the atomistic partition {1, 1, 1...1}. Hence, as in the standard model, only the
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trivial partitions can be strictly efficient. The preference between the two trivial

partitions is given by the condition that, the grand coalition is weakly preferred

to the atomistic partition if and only if P [n] ≥ (1− s)θP [1] + s.

2.2.2.2 Multiple Businesses per Bank

We get similar results when we have multiple (f) businesses per bank, and

matches are always between distinct businesses. This gives that:

vf1[x1]:=
1

fn

(fx1 − 1)

fn− 1
P [x1] + θ

1

fn

f(n− x1)

fn− 1
P [x1]P [1]

Hence v
′
f1[x1] =

γ(γ+1)+f(γ−θ+γθ(−n)+1)
(γ+1)(γx1+1)2

, and so the efficient solution is always a

trivial partition.

2.2.2.3 Star Business Network

Consider a setup where there is 1 big firm and n small firms. Suppose the

business match is always between the big firm and one of the small firms. This

can be visualised as a star network: the big firm is the hub; each small firm

is a spoke. Each firm is the single client of a bank. So there is 1 big bank

and n small banks. Formulating financial shocks in discrete time, each small

bank is hit independently by a disabling shock with probability q, whilst the big

bank is hit by a disabling shock with probability Q. As in the standard model,

P [d] = 1
1+γd

, is the enablement probability for a module with d small banks (but

not the big bank). Similar analysis to that used for the standard model gives

that the enablement probability for a module containing d small banks plus the

1 big bank is Pb[d] =
1

1+Γ+γd
, where γ = Log[1−q]

Log[1−ρ]
and Γ = Log[1−Q]

Log[1−ρ]
.

Due to the negative externalities we know that the efficient partition will be of

the form, {(1 big, d small), 1small, 1small, ......1small}: it is inefficient for a
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module to contain multiple small firms, unless that module also contains the

big firm. So we only need to consider the welfare function for partitions of that

format, Wstar[d] =
d
n
Pb[d] + θ (n−d)

n
Pb[d]P [1]. This represents that the matched

small bank is in the same module as the big bank with probability d
n

and in a

different module with probability n−d
n

. When the banks are in different modules

we have standard θ parameter to represent transaction costs.

Differentiation with respect to d gives that W
′
star[d] = (1+Γ)(γ−θ+1)−γθn

(γ+1)(γd+1+Γ)2
. So

W
′
star[d]

P [1]Pb[d]2
= (1 + Γ)(γ − θ + 1) − γθn. Hence Wstar[d], is monotonic and so

the maximisation program has boundary solutions.

2.2.2.4 Trilateral Business Matches

In the standard model, business opportunities always involve two businesses.

Here we consider the variant model where matches involve three businesses.10

We first form vtri,i[x] the return for a sample member of module i. These are

then aggregated to form the welfare function W tri[x].

Each match can be put into one of four different categories, from the perspect-

ive of module i. The first is when all three businesses are in module i. The

second is when two businesses are in module i, but the third is in a distinct

module j. The third is when one business is in module i, but the other two

are in a distinct module j. The fourth is when the first business is in mod-

ule i, and the other two businesses are in distinct modules j and k. In cases

two and three where the businesses are split over two modules, the value of

a productive match is θ1. In case four where the businesses are split over

three modules, the value of a productive match is θ2. As there are increas-

ing transaction costs from matches involving multiple modules, 0 < θ2 < θ1 <

1. Keeping the same behaviour of financial shocks as in the standard model,
10Thanks to Professor Herakles Polemarchakis for suggesting the investigation of this aspect.
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gives us: vtri,i[x] =
x2
i

n3P [xi] +
2xi

n2 P [xi]θ1
∑

j �=i
xj

n
P [xj] +

1
n
θ1P [xi]

∑
j �=i

x2
j

n2P [xj] +

1
n
θ2P [xi]

∑
j �=i, k �=i, j �=k

(xjxk

n2

)
P [xj]P [xk].

As Vtri,i[x] = xi∗vtri,i[x] and Wtri[x] =
∑k

i=1 Vtri,i[x], aggregation gives: Wtri[x] =∑k
i=1

[
x2
i

n3Ei + 2 xi

n2Eiθ1
∑

j �=i
1
n
Ej +

1
n
Eiθ1

∑
j �=i

x2
j

n2P [xj] +
1
n
θ2Ei

∑
j �=i, k �=i, j �=k

1
n2EjEk

]
,

where El := xlP [xl] is the expected number of enabled banks in module l.

and for the symmetric case this simplifies to:

Wtri[d] =
1
n2 (d

2P [d] + 3d(n− d)P 2[d]θ1 + θ2((n− d)((n− 2d)P 3[d])

Proposition 56. If γ ≥ 0.5 then the trilateral model has negative externalities.

Proof. We now consider vtri,1[x], to see when it has negative externalities. Con-

sider x = (x1, T − x3, x3, x4, x5.....xk). This gives: dvtri,1[(x1,T−x3,x3,x4,x5.....xk)]

dx3
=

P [x1]P [x3]
2P [T−x3]

2(T−2x3) {θ2 [γR(γT + 2) + 2γT + 2] + θ1(2γx1 − 1)(γT + 2)},
where R :=

∑
j>3 xjP [xj]. So, if x3 < 0.5T then dvtri,1[(x1,T−x3,x3,x4,x5.....xk)]

dx3
> 0 if

and only if θ2(γR(γT + 2)+ 2γT + 2)+ θ1(2γx1− 1)(γT + 2) > 0. So γ ≥ 0.5 is

sufficient for negative externalities.

Proposition 57. If γ < 0.5, then there exist values of the other parameters

(θ1, θ2, n) such that the trilateral model does not have negative externalities.

Proof. From the proof of Proposition 56, in order for the model that to have

negative externalities we need that θ2 [γR(γT + 2) + 2γT + 2]+θ1(2γx1−1)(γT+
2) > 0 for all partitions and resulting values of R, T, and x1. It is hardest for

this condition to be positive when: R is minimised, which happens when all

the members not in the first three modules are in one big module, resulting in

R = P [n − T − x1]; when T is maximised, which requires T = n − x1; and

that x1 is minimised which requires x1 = 1.11 This combines to give R = 0,
11The result R = P [n−T−x1] only applies in the case where n−T−x1 > 0. If n−T−x1 = 0

then R = 0
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T = n − 1 and x1 = 1. Hence the model has negative externalities if and only

if (2γ − 1) [γ(n− 1) + 2] + 2r [γ(n− 1) + 1] > 0. where r := θ2/θ1. The second

term is positive, but as γ < 0.5, the first term is negative. Hence for sufficiently

small values of r, the whole expression is negative.

Theorem 58. The vtri program, where outside modules are restricted to being

singletons, has boundary solutions.

Proof. Consider the partitions of form
(
x1, (1)

n+1−x1
j=2

)
where modules apart from

module 1 are singletons. Then:

vtri,1[
(
x1, (1)

n+1−x1
j=2

)
] = 2x1(n−1)P [1]P [x1]θ1+x2

1P [x1]+θ1(n−1)P [1]P [x1]+θ2(n−1)(n−2)P [1]2P [x1]

This gives:

1

P [1]2P [x1]2

dvtri,1[(x1, (1)
n+1−x1
j=2 ]

dx1
= −(n−1)

[
(γ2 − γ − 2)θ1 + γθ2(n− 2)

]
+
(
2γ2 + 4γ + 2

)
x1+

(
γ3 + 2γ2 + γ

)
x2
1

The x1 and x2
1 coefficients are both positive. So once the slope is positive it stays

positive. Hence for partitions of this form vtri,1 is quasi-convex.

Corollary 59. So if non-singleton outside modules can be rejected, for example

due to γ > 0.5, then the efficient partition is a boundary solution.

This corollary motivates why no cases were found with interior solutions to the

welfare maximisation program. This rejection of interior partitions for every

parametrisation argues that the standard model rejection of interior partitions

is robust to replacing a bilateral distribution of business opportunities with a

trilateral distribution.

For each parametrisation, the welfare of the best trivial partition is given by

Wb := Max{Wtri[1],Wtri[n]}; the welfare of the best symmetric interior partition

is given by Wi := Max{Wtri[n/k]}n−1
k=2 ; and g, the percentage gain from choosing
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an interior partition, is given by 100 ∗ (W i−W b)/W b. The number of banks, n,

is one of {10, 20, 30, 40, 50, 100, 1000}. The value of outside matches spread over

2 modules, θ1, has a minimum of 0.1, a maximum of 0.9 and has an increment of

0.1. The value of outside matches spread over 3 modules, θ2, is θ1∗r, and r has a

minimum of 0, a maximum of 1 and has an increment of 0.1. We know there are

no interior solutions, with γ ≥ 0.5: so the shock parameter, γ, has a minimum

of 0.1, a maximum of 0.4 and an increment of 0.1. So, the n parameter is one of

7 values, the θ1 parameter is one of 9 values, the r parameter one of 11 values,

and the γ parameter is one of 4 values. This gives a total of 7 ∗ 9 ∗ 11 ∗ 4 = 2772

parametrisations.

In every case considering symmetric partitions, the best boundary partition has

a higher welfare than the best interior partition. This leads to the following

conjecture:

Conjecture 60. The trilateral program has boundary solutions for a large range

of parameter values.

The θ1, r2, n and γ tables, each show that when their parameter is increased

then, whilst the best interior partition is still worse than the best boundary

partition, the scale of the loss from choosing an interior partition is reduced:
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Table 2.12: Trilateral Matching θ1 Table

Overall gain percentage distribution broken down by θ1
θ1 [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0)

0.1 225 11 10 8 3 51
0.2 53 119 21 10 11 94
0.3 0 131 14 12 16 135
0.4 0 67 45 19 11 166
0.5 0 24 60 17 16 191
0.6 0 14 36 30 14 214
0.7 0 10 16 33 17 232
0.8 0 0 17 22 24 245
0.9 0 0 8 15 24 261
All 278 376 227 166 136 1589

Table 2.13: Trilateral Matching r2 Table

Overall gain percentage distribution broken down by r2
r2 [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0)

0.0 33 117 60 33 8 1
0.1 29 67 40 29 26 61
0.2 29 48 28 22 22 103
0.3 29 37 19 19 17 131
0.4 26 30 16 14 14 152
0.5 26 20 17 10 12 167
0.6 25 16 11 11 9 180
0.7 23 13 11 8 8 189
0.8 21 11 10 7 6 197
0.9 19 10 7 6 10 200
1.0 18 7 8 7 4 208
All 278 376 227 166 136 1589

Table 2.14: Trilateral Matching n Table

Overall gain percentage distribution broken down by n
n [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0)

10 77 68 62 52 44 93
20 55 70 48 35 31 157
30 53 58 36 29 20 200
40 38 62 28 21 19 228
50 33 55 28 18 13 249

100 18 39 17 10 9 303
103 4 24 8 1 0 359
All 278 376 227 166 136 1589
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Table 2.15: Trilateral Matching γ Table

Overall gain percentage distribution broken down by γ
γ [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0)

0.1 93 85 75 55 46 339
0.2 67 96 56 43 36 395
0.3 65 93 51 35 27 422
0.4 53 102 45 33 27 433
All 278 376 227 166 136 1589

2.2.2.5 Temporal distribution of business opportunities

We now show the resilience of the standard model to different temporal dis-

tributions of the business opportunities, when: the initial module enablement

probabilities are given by the stationary distribution of financial shocks, and

business opportunities remain independent of financial shocks. Let s = (st)t∈R+

be a generic realisation of business opportunities, with st ∈ R opportunities at

time t. Let f(s) be the probability density function (pdf) of s and let ft(st) be

the induced pdf of st. Let Wbis[x] be the aggregate expected welfare given our dis-

tribution of s. Then by the law of total expectation Wbis[x] =
´
s
Wbis[x|s]f(s)ds.

The conditional expectation is given by Wbis[x|s] =
´∞
t=0

δtstW [x]dt, where δ is

the intertemporal discount factor and W [x] is the welfare function of the stan-

dard model. Hence, Wbis[x] =
´
s

´∞
t=0

δtstW [x]dt f(s)ds. As W [x] is independent

of both s and t, this gives: Wbis[x] = W [x]
´
s

´∞
t=0

δtstdt f(s)ds. So the optimal

choice of x is the same as in the standard model.

2.2.3 Small number of banks

2.2.3.1 Regional trade

Mundell (1961) considers optimal currency areas and how they vary depending

on the distribution of industry. He considers the example of a world consisting
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of just the USA and Canada, where eastern region of each country makes cars,

and the western region makes wood products. He then argues in face of sectoral

shocks that it may be better to have an eastern currency and a western currency;

than a Canadian currency and an American currency. We can consider a similar

simple example to consider financial stability.12

Imagine a world with 2 countries (North and South) and that each has a man-

ufacturing sector in the west and a service sector in the east. So this gives 4

regions: {NW,NE, SW, SE}. Business opportunities are national (NW to NE

or SW to SE) with probability 1 − φ, or sectoral (NW to SW or NE to SE)

with probability φ. The question is what partition of modules best enables busi-

ness to operate. There are 4 symmetric partitions to choose from: 1) the grand

coalition G := {{NW,NE, SW, SE}}; 2) the national partition N := {{NW,

NE}, {SW, SE}}; 3) the sectoral partition S := {{NW,SW}, {NE, SE}}; and

4) the atomistic partition A := {{NW}, {NE}, {SW}, {SE}}.13 Using the

same shock dynamics as in the standard model, where θ is the value of inter-

module matches and P [d] = 1
1+γd

is the module enablement probability, gives

the following welfare function: WM [G] := P [4], WM [N ] := (1−φ)P [2]+φθP 2[2],

WM [S] := φP [2] + (1− φ)θP 2[2], and WM [A] := θP 2[1].

The choice between the national and sectoral partitions is determined by whether

national or sectoral matches is more likely: S � N ⇐⇒ φ > 1
2
. Given the

symmetry of the example, without loss of generality we assume φ > 1
2
. The pref-

erence conditions comparing the sectoral partition with the boundary partitions

are as follows: S � A ⇐⇒ φ > θ(P 2[1]−P 2[2])
P [2]−θP 2[2]

and S � G ⇐⇒ φ > (P [4]−θP 2[2])
P [2]−θP 2[1]

.

Re-arrangement gives that S is the sole argmax partition if and only if, φ >

12Guillaume Sublet suggested investigating such an example.
13Allowing asymmetric partitions like {{NW,NE, SW}, {SE}} makes the maths intract-

able. However, when only symmetric partition are allowed with most parametrisations there is
an interior solution, and increasing the feasible set of interior solutions can only make interior
solutions occur more often.
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0.5 and θ > θmin and (θ < θmax or γ ≥ ϕ) where, ϕ := 1+
√
5

2
(the golden ratio),

θmin := (2γ+1)(2γ−φ4γ+1−φ)
(1−φ)(4γ+1)

, and θmax := (γ+1)2(2γ+1)φ
γ2(φ+3)+2γ(φ+1)+φ

.

The following graphs plot this region in purple in a series of graphs with φ on

the x-axis and θ on the y-axis. There is one graph for each value of γ, the shock

parameter, starting at 0, incrementing by 0.1 and ending at 1:

Figure 2.1: Regional Trade Model Interior Sectoral Solution Plot
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We can see that this region is large for all non-zero values of γ used. To the top

left of the purple region is the region where the atomistic partition is strictly pre-

ferred to the sectoral partition: once γ reaches the golden ratio (approximately
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1.61803), this region is empty. To the bottom left is the region where the grand

coalition is strictly preferred to the sectoral partition. Each of the graphs plots

φ between 0.5 and 1: If we consider what happens with φ between 0 and 0.5,

then there is a symmetric relation for the preference of the national partition

over the atomistic partition and the grand coalition.

For each parametrisation, the welfare of the best trivial partition is given by

Wb := Max[WM [A],WM [G]]; the welfare of the best interior partition (regional

or sectoral partition) is given by Wi := Max[WM [N ],WM [S]]; and g, the per-

centage gain from choosing an interior partition, is given by 100∗(W i−W b)/W b.

This gain was found for a range of different parametrisations: the shock para-

meter, γ had a minimum of 0.1, a maximum of 3 and an increment of 0.1; the

sectoral match probability, φ had a minimum of 0.1, a maximum of 1 and an

increment of 0.1 and outside match parameter, θ similarly had a minimum of

0.1, a maximum of 1 and an increment of 0.1. In general, the large gains from in-

terior partitions, represented in Tables 2.16, 2.17 and 2.18 below, mean that the

standard model rejection of interior partitions is critical to replacing a uniform

distribution of business opportunities with a four country orthogonal distribu-

tion. However, in the special case of uniform matching, where φ = 0.5, there is

both a low frequency of parametrisations (35%) where there are gains from an

interior partition and small gains in those parametrisations (below 10% in all

cases). In this case the robustness appears to remain.

The distribution of the gain percentages can be displayed for each of the 3

choice parameters. The γ table shows, as expected from the indifference graphs

above, that for all values of γ, the frequency of interior solutions is low and that

frequency decreases as γ decreases. The φ table has vertical symmetry given

the symmetric choice between the sectoral partition in response to φ and the

national partition the sectoral partition in response to 1 − φ. Only when the
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matching parameter, φ, is close to 0.5 are there no gains, or only small gains,

from the interior partitions. In the θ table, there is not much of a correspondence

between θ and the gain, except to observe that there are especially few cases of

boundary solutions when θ is 0.6, 0.7 or 0.8.

Table 2.16: Regional Trade γ Table

Overall gain percentage distribution broken down by γ
γ [-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90)

0.1 50 36 24 0 0 0 0 0 0 0
0.2 37 25 24 24 0 0 0 0 0 0
0.3 30 22 22 20 16 0 0 0 0 0
0.4 25 23 16 16 16 14 0 0 0 0
0.5 21 19 18 18 16 4 14 0 0 0
0.6 19 15 20 18 10 14 14 0 0 0
0.7 14 16 18 16 14 16 16 0 0 0
0.8 12 16 16 16 18 16 2 14 0 0
0.9 10 14 16 18 18 10 8 16 0 0
1.0 10 14 14 16 16 8 16 16 0 0
1.1 9 15 12 16 14 10 18 16 0 0
1.2 6 12 14 18 12 14 18 0 16 0
1.3 6 12 14 16 12 14 18 2 16 0
1.4 6 12 14 16 6 18 20 2 16 0
1.5 6 10 14 12 10 20 12 8 18 0
1.6 6 8 14 14 10 20 6 14 18 0
1.7 5 9 14 12 10 20 4 18 18 0
1.8 5 7 16 10 12 20 2 18 20 0
1.9 5 7 16 10 12 18 2 20 20 0
2.0 5 7 14 10 14 16 4 20 0 20
2.1 5 7 14 10 14 14 6 20 0 20
2.2 5 5 16 8 16 14 6 20 0 20
2.3 5 5 16 8 16 12 8 20 0 20
2.4 5 5 16 8 16 12 8 20 0 20
2.5 5 5 16 6 18 10 10 20 0 20
2.6 5 5 16 6 18 8 12 20 0 20
2.7 5 5 16 6 18 8 12 20 0 20
2.8 5 5 16 4 20 6 14 20 0 20
2.9 5 5 16 4 20 6 14 20 0 20
3.0 5 5 16 4 20 4 16 20 0 20
All 337 351 488 360 412 346 280 364 142 220
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Table 2.17: Regional Trade φ Table

Overall gain percentage distribution broken down by φ
φ [-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90)

0.0 0 4 13 14 13 13 27 35 71 110
0.1 2 9 14 19 20 32 57 147 0 0
0.2 7 16 19 28 46 128 56 0 0 0
0.3 17 26 37 93 127 0 0 0 0 0
0.4 45 68 161 26 0 0 0 0 0 0
0.5 195 105 0 0 0 0 0 0 0 0
0.6 45 68 161 26 0 0 0 0 0 0
0.7 17 26 37 93 127 0 0 0 0 0
0.8 7 16 19 28 46 128 56 0 0 0
0.9 2 9 14 19 20 32 57 147 0 0
1.0 0 4 13 14 13 13 27 35 71 110
All 337 351 488 360 412 346 280 364 142 220

Table 2.18: Regional Trade θ Table

Overall gain percentage distribution broken down by θ
θ [-100,0) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90)

0.1 54 34 38 42 28 40 22 34 16 22
0.2 48 32 42 40 30 44 20 36 16 22
0.3 46 26 46 36 36 44 22 36 16 22
0.4 40 22 54 34 38 40 26 38 16 22
0.5 38 18 56 30 44 38 30 38 16 22
0.6 16 32 60 30 46 38 30 40 16 22
0.7 5 39 62 26 50 36 34 40 16 22
0.8 5 41 66 20 56 32 34 38 16 22
0.9 21 55 34 56 46 18 32 36 10 22
1.0 64 52 30 46 38 16 30 28 4 22
All 337 351 488 360 412 346 280 364 142 220

2.2.3.2 Orthogonal

The results in the previous section consider a world with 4 banks arranged in a

square. This section generalises the setup to consider a D dimension orthogonal

model: there are n = 2D banks and they are arranged at the vertices of a D

dimensional hypercube. Bank positions can be represented in co-ordinate form

as being the members of the set Y := {(yi)Di=1 : (yi ∈ {0, 1})Di=1}.
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The business matches are distributed such that informally, each business trades

with a business a ’distance’ of 1 unit away. More precisely, matched businesses

have the same co-ordinates in D − 1 dimensions and different co-ordinates in

exactly 1 dimension. So a match (y, y
′
) between the banks in positions y and

y′ means that there exists dimension j s.t. (yi = y
′
i)i �=j and yj �= y

′
j. The

probabilistic distribution of matches is as follows. Each bank has a probability

2−D of being the first bank picked. Without loss of generality, we order the

dimensions such that the probability, φi ∈ (0, 1), of the second bank in the

match being in dimension i is weakly decreasing as i increases: so (φi ≥ φi+1)
D−1
i=1 .

There are no self matches and normalisation requires
∑D

i=1 φi = 1. For future

use, we define the accumulative probability that the match is in one of the first

j dimensions, Φj :=
∑j

i=1 φi. This implies that, ΦD = 1, and we further define

Φ0 := 0 . Financial shocks operate as in the standard model: shocks are fully

transmitted between banks in same module and there is no transmission between

banks in different modules.

We now define a set of feasible partitions. Informally, partition Xj has ’breaks’

in j dimensions and ’joins’ in D − j dimensions. So it has kj := 2j modules

each containing dj := 2D−j banks. The gain from extra joins is that there

are more high value inside matches, and fewer low value outside matches. The

cost from extra joins is that each initial financial shock spreads further, and

does more damage. So optimally, the D − j join dimensions will be the first

D − j dimensions, as these have the highest matching probabilities, and the

breaks will be in the last j dimensions, as these have the lowest matching

probabilities. Formally,
(
Xj := {{y ∈ Y : (yi = mi)

D
i=D+1−j}m∈Mj

}
)D

j=0
where

Mj := {((0)D−j
i=1 , (yi)

D
i=D+1−j) : (yi ∈ {0, 1})Di=D+1−j}. As special cases we have

the boundary partitions, X0 is the grand coalition and XD is the atomistic par-

tition.
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The welfare function is

Worth[Xi] = ΦD−iP [2D−i] + θ(1− ΦD−i)P
2[2D−i]

This can be interpreted in the usual way: the first term comes from inside

matches; the second term from outside matches. From the standard model

we use: θ, the value of outside matches; P [d] = 1
1+γd

, the module enablement

probability for a module of size d; and γ the shock parameter. The grand

coalition and the atomistic partition have the expected welfares:

Worth[X0] = P [2D]

and

Worth[XD] = θP 2[1]

We now now consider when Xj+1 is preferred to Xj.

Worth[Xj] = ΦD−jP [2D−j] + θ(1− ΦD−j)P
2[2D−j]

and

Worth[Xj+1] = ΦD−j−1P [2D−j−1] + θ(1− ΦD−j−1)P
2[2D−j−1]

The trade off is formed as follows. Recall that Φi is an increasing function, so

that partition Xj has the higher probability of an inside match: ΦD−j compared

with ΦD−j−1. However, it also has the lower module enablement probability:

P [2D−j] compared with P [2D−j−1]. Re-arrangement gives that Xj+1 � Xj if and
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only if

ΦD−j <
γθnkj (3γn+ 2kj+1) + 2ΦD−j−1 (γn+ 4)2 (γn+ (1− θ)kj+1)

(γn+ kj+1)
2 (γn+ (1− θ)kj)

In order for there to be an interior solution we need a partition Xj such that

Xj � X0 and Xj � XDim. The conditions for this are as follows:

Table 2.19: Hypercube Preference Conditions

Xj � X0 Xj � XDim

θ terms
(γdj+1)

(
(1+γdj)
(γn+1)2

−ΦDim−j

)

(1−ΦDim−j)
< θ θ <

(γ+1)2 ΦDim−j(γdj+1)

(γdj+1)2−((1+γ)2(1−ΦDim−j))

ΦDim−j
(γdj+1)2−θ(γn+1)2

(γn+1)2((1−θ)+γdj)
< ΦDim−j

γθ(dj−1)((γ+2)+γdj)

(γ+1)2((1−θ)+γdj)
< ΦDim−j

Here, n = 2D is the total number of banks, kj = 2j, is the number of modules

in partition Xj, and dj = n
kj

= 2D−j is the number of banks in each of those

modules.

2.2.3.3 3-Dimension case

We now focus on the three-dimensional case, where there are 23 = 8 banks, and

four symmetric partitions: 1) X0, the grand coalition, 1 module of 8 banks; 2)

X1, 2 squares, 2 modules of 4 banks; 3) X2 4 lines, 4 modules of 2 banks; and

4) X3 atomistic partition, 8 modules of 1 banks.14 The welfare valuations are

Worth[X0] =
1

8γ + 1

Worth[X1] =
θ(1− Φ2)

(4γ + 1)2
+

Φ2

4γ + 1

14As in section 2.2.3.1, allowing asymmetric partitions makes the maths intractable. How-
ever, when only symmetric partition are allowed with most parametrisations there is an interior
solution, and increasing the feasible set of interior solutions can only make interior solutions
occur more often.
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Worth[X2] =
θ(1− Φ1)

(2γ + 1)2
+

Φ1

2γ + 1

Worth[X3] =
θ

(γ + 1)2

The parameters from the standard model have their standard ranges: θ ∈ (0,

1) and γ ∈ (0,∞). The parameters specific to this orthogonal model satisfy,

1/3 ≤ Φ1 < Φ2 < 1 andΦ2 ≤ 2∗Φ1 andΦ2−Φ1 ≥ 1−Φ2. In the case of uniform

matching (no bias towards any dimension) then Φ1 = 1
3

and Φ2 = 2
3
. In the

case of non-uniform matching, the inequalities are all strict: 1/3 < Φ1 < Φ2 <

1 andΦ2 < 2 ∗Φ1 andΦ2−Φ1 > 1−Φ2. The following conditions can be derived

for when the interior partitions are strictly preferred to the boundary partitions:

Table 2.20: 3D Hypercube Preferences General Matching

strict preference conditions for an interior partition over a boundary partition
X0 (Grand Coalition) X3 (Singletons)

X1 (2 Squares) c10 :=
(4γ+1)(64γ2Φ2+4γ(4Φ2−1)+Φ2−1)

(8γ+1)2(Φ2−1) < θ θ < (γ+1)2(4γ+1)Φ2

γ2(Φ2+15)+2γ(Φ2+3)+Φ2
=: c13

X2 (4 lines) c20 :=
(2γ+1)(64γ2Φ1+2γ(8Φ1−1)+Φ1−1)

(8γ+1)2(Φ1−1) < θ θ < (γ+1)2(2γ+1)Φ1

γ2(Φ1+3)+2γ(Φ1+1)+Φ1
=: c23

With Uniform Matching, this becomes:

Table 2.21: 3D Hypercube Preferences Uniform Matching

strict preference conditions for an interior partition over a boundary partition
X0 (Grand Coalition) X3 (Singletons)

X1 (2 Squares) − (4γ+1)(128γ2+20γ−1)
(8γ+1)2

< θ θ < 2(γ+1)2(4γ+1)
47γ2+22γ+2

X2 (4 lines) − (2γ+1)(32γ2+5γ−1)
(8γ+1)2

< θ θ < (γ+1)2(2γ+1)
10γ2+8γ+1

To get an interior solution requires either, (X1 � X0 andX1 � X3) or

(X2 � X0 andX2 � X3). With uniform matching this simplifies to X1 � X0andX2 �
X3. Graphically this becomes:
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Figure 2.2: 3D Uniform Matching Model Interior Solution Plot
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The large green region shows that for most values of γ and θ, that there is an

interior solution. Above this region there is an area where the atomistic partition

is preferred: Once γ ≥ 1
4

(√
57 + 5

)
= 3.14 (3S.F.), this region becomes empty.

On the far left there is a very small region where the grand coalition is preferred:

Once γ ≥ 1
64

(√
57− 5

)
= 0.0398 (3S.F.), this region also becomes empty.

For each parametrisation, the welfare of the best trivial partition is given by

Wb := Max[(Worth[Xj : Φ1 = 1/3,Φ2 = 2/3])j=0,3]; the welfare of the best interior

partition (regional or sectoral partition) is given by

Wi := Max[(Worth[Xj : Φ1 = 1/3,Φ2 = 2/3])2j=1]; and g, the percentage gain from

choosing an interior partition, is given by 100 ∗ (W i−W b)/W b. The large gains

from interior partitions, represented in Tables 2.22 and 2.23 below, mean that the

standard model rejection of interior partitions is critical to replacing a uniform

distribution of business opportunities with a 3D Orthogonal Uniform Matching

distribution.
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This gain was found for a table of parametrisations: the shock parameter, γ

had a minimum of 0.1, a maximum of 3 and an increment of 0.1; and θ had

a minimum of 0.1, a maximum of 0.9 and an increment of 0.1. As expected

from the graph above: as θ increases there are both fewer parametrisations with

interior solutions and less gains from the parametrisations that do have interior

solutions; the γ table shows fewest interior partitions with γ = 0.6.

Table 2.22: 3D Uniform Matching θ Table

3D Uniform Matching: percentage gain distribution broken down by θ

θ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800)
0.1 0 1 1 1 1 11 6 7 2
0.2 0 1 13 14 2 0 0 0 0
0.3 0 14 16 0 0 0 0 0 0
0.4 0 26 4 0 0 0 0 0 0
0.5 0 30 0 0 0 0 0 0 0
0.6 1 29 0 0 0 0 0 0 0
0.7 13 17 0 0 0 0 0 0 0
0.8 20 10 0 0 0 0 0 0 0
0.9 26 4 0 0 0 0 0 0 0

Total 60 132 34 15 3 11 6 7 2
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Table 2.23: 3D Uniform Matching γ Table

3D Uniform Matching: percentage gain distribution broken down by γ

γ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800)
0.1 2 7 0 0 0 0 0 0 0
0.2 3 4 2 0 0 0 0 0 0
0.3 3 4 1 1 0 0 0 0 0
0.4 3 4 1 0 1 0 0 0 0
0.5 3 4 1 0 0 1 0 0 0
0.6 4 3 1 0 0 1 0 0 0
0.7 3 4 1 0 0 1 0 0 0
0.8 3 4 1 0 0 1 0 0 0
0.9 3 4 1 0 0 1 0 0 0
1.0 3 4 1 0 0 1 0 0 0
1.1 3 4 1 0 0 1 0 0 0
1.2 3 4 1 0 0 1 0 0 0
1.3 3 4 1 0 0 1 0 0 0
1.4 3 4 1 0 0 1 0 0 0
1.5 2 4 1 1 0 1 0 0 0
1.6 2 4 1 1 0 0 1 0 0
1.7 2 4 1 1 0 0 1 0 0
1.8 2 4 1 1 0 0 1 0 0
1.9 2 4 1 1 0 0 1 0 0
2.0 2 4 1 1 0 0 1 0 0
2.1 1 5 1 1 0 0 1 0 0
2.2 1 5 1 1 0 0 0 1 0
2.3 1 5 1 1 0 0 0 1 0
2.4 1 5 1 1 0 0 0 1 0
2.5 1 5 1 1 0 0 0 1 0
2.6 1 5 1 1 0 0 0 1 0
2.7 0 5 2 1 0 0 0 1 0
2.8 0 5 2 1 0 0 0 1 0
2.9 0 5 2 0 1 0 0 0 1
3.0 0 5 2 0 1 0 0 0 1

Total 60 132 34 15 3 11 6 7 2

Considering the case of non-uniform matching in 3 dimensions, it is the case for

all (γ,Φ1,Φ2) parametrisations that c10 < c20 < c13 < c23. Hence there is an

interior solution if and only if c10 < θ < c23. The interior solution is plotted

below for a range of values of Φ1:
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Figure 2.3: 3D Non-Uniform Matching Model Interior Solution Plot
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In each case Φ2 has the minimal value (Φ1+1
2

): if it is increased further then

the region on the far left, which is barely visible, where the grand coalition is

preferred becomes yet smaller ; whilst the region at the top where the atomistic

partition is preferred stays the same size. As Φ1 increases across the plots, we

see that the interior solution region becomes bigger.

Further, as with other models, we can consider a range of different parametrisa-

tions, and see what the percentage gain is from choosing the best interior parti-

tion compared with the best boundary partition: the welfare of the best trivial

partition is given by Wb := max[(Worth[Xj])j=0,3]; the welfare of the best sym-

metric interior partition is given by Wi := max [(Worth[Xj])
2
j=1]; and g, the per-

centage gain from choosing an interior partition, is given by 100∗(W i−W b)/W b.

The large gains from interior partitions, represented in Tables 2.24, 2.25, 2.26

and 2.27 below, mean that the standard model rejection of interior partitions is

critical to replacing a uniform distribution of business opportunities with a 3D

Orthogonal Non-Uniform Matching distribution.

The θ and γ parameters have their usual ranges: θ has a minimum of 0.1, a
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maximum of 0.9 and an increment of 0.1; γ has a minimum of 0.1, a maximum

of 3.0 and an increment of 0.1. Next we calculate appropriate choices for the

Φ1 and Φ2 ranges. The three required conditions are as follows: 1) 1/3 < Φ1 <

Φ2 < 1, (as Φj is an increasing function, and one of the dimensions must be

chosen with a probability of at least 1/3); 2) Φ2 < 2Φ1, (as φ2 < φ1); and

3) Φ2 − Φ1 > 1 − Φ2, (as φ2 > φ3). These requirements combine to give the

following conditional range for Φ2 given Φ1 : (1 + Φ1)/2 < Φ2|Φ1 < min[2Φ1, 1].

The implementation for Φ1 and Φ2 is as follows: Φ1 has a minimum of 1/3, an

increment of 0.1, and a maximum of 0.6 + 1
3
; Φ2 is one of 11 equally spaced

out values, with a minimum of (1 + Φ1)/2, a maximum of min[2Φ1, 1], and an

increment of 0.1 (min[2Φ1, 1]− (1 + Φ1)/2). The choice of Φ2 is achieved using

an intermediate variable f , so Φ2 = Φ1 + f*0.1 (min[2Φ1, 1]− (1 + Φ1)/2).

The results are presented below in separate tables for f , Φ1, θ and γ. In the f

table the choice of f has very little effect: this is simply because given Φ1, the

choice of Φ2 has very little effect. The top line of the Φ1 table equates to the

uniform case, and as Φ1 increases, the welfare from X2 increases, but the welfare

from both the boundary partitions is unaltered. Hence there is a shift towards

interior partitions, and higher gains are achieved. In the θ table, as θ increases,

the welfare of the atomistic partition increases, and hence the gains from interior

partitions are less. In the γ table, as γ increases somewhat surprisingly we see a

shift towards interior solutions; however, this can be explained as follows. Recall

that in this model there are no self matches: so, with the atomistic partition,

we need two independent modules to be enabled in order for a match to be

productive, an unlikely event when γ is large; however, with X2 which has 1

dimensional modules, with probability Φ1 a match is contained inside a single

module.
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Table 2.24: 3D Non-Uniform Matching: f Table

3D Non-Uniform Matching: percentage gain distribution broken down by f

f (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,2100)

0.0 100 768 398 188 110 76 54 39 31 126
0.1 100 767 397 190 109 77 54 39 31 126
0.2 100 765 399 190 109 77 54 39 31 126
0.3 100 763 400 190 110 76 55 39 31 126
0.4 100 760 401 192 110 75 56 39 31 126
0.5 100 757 399 197 110 72 58 40 31 126
0.6 100 756 400 197 110 71 57 42 31 126
0.7 100 756 400 197 110 71 54 44 32 126
0.8 100 755 401 196 109 73 52 45 32 127
0.9 100 754 402 195 109 74 52 44 32 128
1.0 100 750 405 193 110 76 51 42 33 130

Total 1100 8351 4402 2125 1206 818 597 452 346 1393

Table 2.25: 3D Non-Uniform Matching:Φ1 Table

3D Non-Uniform Matching: percentage gain distribution broken down by Φ1

Φ1 (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,2100)

10/30 660 1452 374 165 33 121 66 77 22 0
13/30 286 1528 465 250 120 58 79 55 57 72
16/30 110 1467 548 302 132 97 56 56 47 155
19/30 44 1286 661 308 195 80 77 66 44 209
22/30 0 1067 759 319 220 143 66 77 66 253
25/30 0 869 781 374 253 143 110 55 66 319
28/30 0 682 814 407 253 176 143 66 44 385
Total 1100 8351 4402 2125 1206 818 597 452 346 1393

Table 2.26: 3D Non-Uniform Matching: θ Table

3D Non-Uniform Matching: percentage gain distribution broken down by θ

θ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,2100)

0.1 0 28 66 52 58 176 212 232 214 1272
0.2 0 26 226 499 455 367 275 209 132 121
0.3 0 182 763 606 407 231 110 11 0 0
0.4 0 613 927 484 242 44 0 0 0 0
0.5 0 1100 836 330 44 0 0 0 0 0
0.6 11 1496 671 132 0 0 0 0 0 0
0.7 143 1661 484 22 0 0 0 0 0 0
0.8 330 1683 297 0 0 0 0 0 0 0
0.9 616 1562 132 0 0 0 0 0 0 0

Total 1100 8351 4402 2125 1206 818 597 452 346 1393
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Table 2.27: 3D Non-Uniform Matching: γ Table

3D Non-Uniform Matching: percentage gain distribution broken down by γ

γ (-100,0) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,2100)

0.1 44 451 198 0 0 0 0 0 0 0
0.2 77 361 123 88 44 0 0 0 0 0
0.3 77 354 100 66 57 17 22 0 0 0
0.4 77 356 100 50 34 26 17 11 11 11
0.5 77 357 99 50 22 28 13 14 11 22
0.6 77 335 121 50 22 27 13 15 11 22
0.7 66 341 115 61 11 38 13 15 11 22
0.8 66 341 114 51 22 37 13 5 11 33
0.9 66 319 121 55 33 25 19 11 11 33
1.0 66 318 122 54 23 33 22 10 12 33
1.1 55 319 121 65 23 33 21 11 12 33
1.2 44 319 121 64 35 22 30 12 2 44
1.3 44 308 132 55 44 22 29 4 11 44
1.4 44 297 143 55 44 22 17 16 11 44
1.5 33 286 154 66 33 33 16 17 11 44
1.6 33 286 121 88 33 22 33 22 10 45
1.7 22 275 143 87 34 22 33 21 1 55
1.8 22 264 154 74 47 22 22 30 3 55
1.9 22 253 165 66 55 22 22 18 15 55
2.0 22 242 165 77 43 34 22 11 22 55
2.1 11 242 165 77 44 44 22 11 22 55
2.2 11 231 175 67 55 33 11 33 21 56
2.3 11 220 165 88 55 22 22 22 20 68
2.4 11 220 154 99 55 22 22 22 19 69
2.5 11 220 154 99 44 33 22 22 11 77
2.6 11 176 198 99 44 33 22 22 11 77
2.7 0 165 198 99 54 45 22 22 11 77
2.8 0 165 198 88 64 35 22 22 11 88
2.9 0 165 187 88 66 33 33 11 22 88
3.0 0 165 176 99 66 33 22 22 22 88

Total 1100 8351 4402 2125 1206 818 597 452 346 1393

2.2.3.4 3-node case

Consider a 3-node model where, unlike in the standard model, there is non-

uniform matching: the nodes are numbered {0, 1, 2}, and the matching probab-
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ility between nodes i and j is qij.15 There is no self matching and so there are 3

matching probabilities, which sum to one: q01 + q02 + q12 = 1. The 3 nodes have

5 possible partitions:

Table 2.28: 3 Nodes Model Partitioning Table

Partition Modules W3

GC: Grand Coalition {{0, 1, 2}} W3[GC] = P [3]
S0: Separate node 0 {{0}, {1, 2}} W3[S0] = θ(q01 + q02)P [1]P [2] + q12P [2]
S1: Separate node 1 {{1}, {0, 2}} W3[S1] = θ(q01 + q12)P [1]P [2] + q02P [2]
S2: Separate node 2 {{2}, {0, 1}} W3[S2] = θ(q02 + q12)P [1]P [2] + q01P [2]
Atom: Atomistic {{0}, {1}, {2}} W3[Atom] = θP 2[1]

The best of the three S partitions comes from when the highest probability

match is inside the 2 node module. Without loss of generality, we assume that

q := q01 ≥ q02 ≥ q12, (this also means that q ≥ 1/3), and thus that W3[S] =

W3[S2] ≥ W3[S1] ≥ W3[S0], where S := S2. Hence the strict interior solutions are

given when W3[S] > W3[GC] and W3[S] > W3[Atom]. The preference conditions

are S � GC ⇔ q > qGC [γ, θ] := 1− γ(γ+1)
(3γ+1)(γ−θ+1)

and S � Atom⇔ q > qAtom[γ,

θ] := γθ
(γ+1) (γ−θ+1)

. The green region shows the interior solution, where q >

max[1− γ(γ+1)
(3γ+1)(γ−θ+1)

, γθ
(γ+1) (γ−θ+1)

]:

15One particular application of the 3 node model is to have 3 geographic blocks: Asia, USA,
and EU. Each business opportunity comes from a product made in Asia and sold in either
the USA or the EU; so each match is between Asia and one of the US and EU. Letting Asia
be node 0, USA be node 1 and the EU node 2; the match distribution is P [0, 1] = q01 and
P [0, 2] = 1− q01.
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Figure 2.4: 3 Node Model Interior Solution Plot
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This leads to the following result:

Proposition 61. In the 3-node model with no self matching a necessary condi-

tion for an interior solution is that q > 0.5.

Proof. Recall for an interior solution we need both q > qGC [γ, θ] := 1− γ(γ+1)
(3γ+1)(γ−θ+1)

and q > qAtom[γ, θ] :=
γθ

(γ+1) (γ−θ+1)
. Fix an arbitrary value of γ, and note that,

∂qGC

∂θ
= − γ(γ+1)

(3γ+1)(γ−θ+1)2
< 0 , ∂qAtom

∂θ
= γ

(γ−θ+1)2
> 0, qGC [γ, 0] = 1 − γ

(3γ+1)
> 2/3

and qAtom[γ, 0] = 0. For θ = 0, the qGC condition is binding, but as θ increases,
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the qGC condition becomes weaker, and the qAtom condition becomes stronger,

so for some values of γ, the qAtom condition becomes binding. If we have such a

γ then at the crossing point, qGC [γ, θ] = qAtom[γ, θ] and θ = θ∗[γ] := (γ+1)2

3γ+1
. This

gives that qGC [γ, θ
∗[γ]] = qAtom[γ, θ

∗[γ]] = 1
2
. If θ < θ∗ then the qGC condition

is binding and θ < θ∗ ⇒ qGC [γ, θ] >
1
2
. Conversely, if θ > θ∗ then the qAtom

condition is binding and θ > θ∗ ⇒ qAtom[γ, θ] >
1
2
. If γ is such that there is no

crossing point, then the qGC [γ, θ] is binding for all θ and 1 < θ∗[γ] := (γ+1)2

3γ+1
. So

qGC [γ, θ] >
1
2
.

We can further analyse this model with our usual table approach. For each

parametrisation, the welfare of the best trivial partition is given by Wb :=

Max{W3[Atom],W3[GC]}; the welfare of the best interior partition is given by

Wi := W3[S]; and g, the percentage gain from choosing an interior partition,

is given by 100 ∗ (W i −W b)/W b. The high frequency (69%) of positive gains

from interior partitions, represented in Tables 2.29, 2.30 and 2.31 below, suggests

that the standard model rejection of interior partitions is critical to replacing a

uniform distribution of business opportunities with a 3 Node distribution.

For an interior solution we need q > 0.5, so q has a minimum of 0.55, a maximum

of 0.95 and an increment of 0.05. The θ and γ parameters have their usual ranges:

θ has a minimum of 0.1, a maximum of 0.9 and an increment of 0.1; γ has a

minimum of 0.1, a maximum of 3.0 and an increment of 0.1. The q table has

the clearest pattern: as expected, increasing q leads to greater gains from the

interior partition. There are also increase in the gains from the interior partition

when the θ and γ parameters increase, however, these are less dramatic.
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Table 2.29: 3 Node Model q Table

3 Node Model: percentage gain distribution broken down by q
q (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

0.55 261 9 0 0 0 0 0 0 0
0.60 234 34 2 0 0 0 0 0 0
0.65 161 81 28 0 0 0 0 0 0
0.70 65 89 94 22 0 0 0 0 0
0.75 25 33 90 101 21 0 0 0 0
0.80 13 16 27 75 123 16 0 0 0
0.85 6 9 15 27 57 134 22 0 0
0.90 2 7 10 15 24 50 126 36 0
0.95 0 4 7 11 16 24 41 97 70

Total 767 282 273 251 241 224 189 133 70

Table 2.30: 3 Node Model θ Table

3 Node Model: percentage gain distribution broken down by θ
θ (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

0.1 127 22 24 24 17 20 19 12 5
0.2 117 26 27 22 19 22 20 12 5
0.3 108 29 30 18 23 23 21 12 6
0.4 103 32 21 24 25 25 21 12 7
0.5 98 22 26 29 27 27 19 14 8
0.6 72 34 33 31 31 27 18 15 9
0.7 65 35 34 33 31 26 20 17 9
0.8 49 39 43 34 31 21 24 19 10
0.9 28 43 35 36 37 33 27 20 11

Total 767 282 273 251 241 224 189 133 70
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Table 2.31: 3 Node Model γ Table

3 Node Model: percentage gain distribution broken down by γ
γ (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

0.1 53 20 8 0 0 0 0 0 0
0.2 39 18 14 10 0 0 0 0 0
0.3 34 13 15 14 5 0 0 0 0
0.4 30 13 11 14 13 0 0 0 0
0.5 27 11 11 12 12 8 0 0 0
0.6 27 8 13 10 11 12 0 0 0
0.7 26 10 9 11 10 12 3 0 0
0.8 24 10 10 11 10 9 7 0 0
0.9 23 10 11 9 9 9 10 0 0
1.0 23 9 10 9 9 10 11 0 0
1.1 24 8 9 8 11 9 10 2 0
1.2 23 9 9 8 10 9 8 5 0
1.3 23 8 9 9 9 9 7 7 0
1.4 23 9 8 8 10 8 6 9 0
1.5 23 9 7 9 9 8 7 9 0
1.6 24 8 7 9 8 8 8 9 0
1.7 23 8 8 8 8 8 9 9 0
1.8 23 8 8 8 8 8 9 9 0
1.9 23 8 8 8 7 8 10 9 0
2.0 23 7 9 8 7 8 9 9 1
2.1 23 7 9 7 7 9 9 8 2
2.2 23 7 9 7 7 9 8 7 4
2.3 22 8 8 8 7 8 9 6 5
2.4 23 8 7 8 7 8 8 6 6
2.5 23 8 7 8 7 8 8 5 7
2.6 23 8 7 7 8 8 7 4 9
2.7 23 8 8 6 8 8 7 4 9
2.8 23 8 8 6 8 8 6 5 9
2.9 23 8 8 6 8 7 7 5 9
3.0 23 8 8 5 8 8 6 6 9

Total 767 282 273 251 241 224 189 133 70

2.2.3.5 2 rich 2 poor

Imagine that there are 4 countries: 2 rich countries (R1, R2) and 2 poor countries

(P1, P2). Each business opportunity is between a random rich country and a

random poor country. So the distribution of matches is P [R1, P1] = 0.25, P [R1,
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P2] = 0.25, P [R2, P1] = 0.25 and P [R2, P2] = 0.25. Countries are partitioned into

modules and, as in the standard model, financial shocks are fully transmitted

within modules; financial shocks are never transmitted between modules; and

the module enablement probability is P [d] = 1
1+γd

.

The possible partitions can be classified into five different types: firstly there is

the grand coalition {{RRPP}}; secondly there is the one singleton partition that

separates off one poor or rich country into a singleton module, {{P}, {RRP}} or

{{R}, {RPP}}; thirdly there is the heterogenous pairs partition that has each

module consisting of one rich country and one poor country, {{RP}, {RP}};
fourthly there is the split partition that has 3 modules, one rich-poor module and

two singletons {{RP}, {R}, {P}}; and fifthly there is the atomistic partition of

singletons, {{R}, {R}, {P}, {P}}.16 The welfares of the partitions are as follows:

Table 2.32: 2 Rich 2 Poor Model Welfare Table

Partition X Description Welfare Wrrpp[X]

{{RRPP}} Grand Coalition P [4]

{{P}, {RRP}} or {{R}, {RPP}} One Singleton (1/2)P [3] + (1/2)θP [3]P [1]

{{RP}, {RP}} Pairs (1/2)P [2] + (1/2)θP [2]2

{{RP}, {R}, {P}} Split (1/4)P [2] + (1/4)θP [1]2 + (1/2)θP [2]P [1]

{{R}, {R}, {P}, {P}} Atomistic Partition θP [1]2

Proposition 62. If there is a strict interior solution then it is the pairs partition,

I := {{RP}, {RP}}

Proof. There are 3 interior partitions: i) One Singleton, ii) Pairs and iii) Split.

First, the pairs partition strictly dominates the one singleton partition: Wrrpp[{{RP},
{RP}}] −Wrrpp[{{R}, {RPP}}] = γ(2γ2+γ(3−θ)+1)

2(γ+1)(2γ+1)2(3γ+1)
> 0. Second, if there is a

solution at the split partition, then we need the split partition to be weakly pre-

ferred to the pairs partition, and strongly preferred to the atomistic partition:
16Firstly due to the symmetry we do not need to specify the specific rich or poor country

in order to calculate the welfare. Secondly we have excluded the partitions {{RR},{PP}},
{{RR},{P},{P}}, {{R},{R},{PP}} as they have homogenous modules which increases conta-
gion but have no business value.
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Wrrpp[{{R}, {RPP}}] ≥ Wrrpp[{{RP}, {RP}}] and, Wrrpp[{{R}, {RPP}}] >

Wrrpp[{{R}, {R}, {P}, {P}}]. This requires (γ+1)2(2γ+1)
6γ2+6γ+1

≤ θ < (γ+1)2

4γ+1
and hence

8γ2 + 6γ + 1 < 6γ2 + 6γ + 1, a contradiction.

This leads to the condition for an interior solution:

Theorem 63. There is a strict interior solution if and only if 2γ+1
4γ+1

< θ <

(γ+1)2(2γ+1)
7γ2+6γ+1

.

Proof. From Proposition 62 the pairs partition I := {{RP}, {RP} is the only

candidate interior maximum. The result then comes from comparing the pairs

partition with the grand coalition GC := {RRPP} and the atomistic partition

Atom := {{R}, {R}, {P}, {P}}: I � Atom ⇔ θ < θAtom[γ]:= (γ+1)2(2γ+1)
7γ2+6γ+1

and

I � GC ⇔ θ > 2γ+1
4γ+1

.

Corollary 64. A necessary condition for an interior solution is that θ > 0.5

Proof. An interior solution requires I � GC ⇔ θ > 2γ+1
4γ+1

⇔ θ > 2γ+0.5+0.5
4γ+1

⇔
θ > 1

2
+ 0.5

4γ+1
> 0.5

Corollary 65. A sufficient condition for the grand coalition to be optimal is that

θ ≤ 0.5

Proof. Follows from Corollary 64.

Corollary 66. A necessary condition for a strict atomistic solution is that θ is

greater than the only real root of f [θ] := 49θ3−43θ2+5θ−1. The root is given by

θ∗ :=

(
16+

3
√

379−21
√
105+

3
√

379+21
√
105

)2(
11+2

3
√

379−21
√
105+2

3
√

379+21
√
105

)
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(
90+8

3
√

379−21
√
105+(379−21

√
105)

2/3
+8

3
√

379+21
√
105+(379+21

√
105)

2/3
) = 0.780(3d.p.).
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Proof. ∂θAtom[γ]
∂γ

=
2(7γ4+12γ3+4γ2−2γ−1)

(7γ2+6γ+1)2
. This has only one first order point, a

local minimum where γ∗ = 1
21

(
−5 + (

379− 21
√
105

)1/3
+

(
379 + 21

√
105

)1/3)
.

Evaluating θAtom[γ
∗] gives the required result.

The interior region is plotted in green below:
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Figure 2.5: 2 Rich 2 Poor Model Interior Solution Plot

The percentage gain from welfare is shown in table 2.33 as a function of θ and

γ, and the distribution of the gain is given in single variate θ and γ tables.

For each parametrisation, the welfare of the best trivial partition is given by

Wb := Max{Wrrpp[Atom],Wrrpp[GC]}; the welfare of the best symmetric interior

partition is given by Wi := Wrrpp[I]; and g, the percentage gain from choosing

an interior partition, is given by 100 ∗ (W i − W b)/W b. The following tables,

2.33, 2.34 and 2.35 show that the percentage gain is small (always below 10%),

for each of the considered parametrisations. This argues for that the standard

model rejection of interior partitions is robust to replacing a uniform distribution

of business opportunities with a four country 2 Rich 2 Poor distribution.

155



The tables show that there can still be interior solutions when θ = 1 and outside

matches have the same value as inside matches. This occurs for large values of

γ, specifically when γ > 1
2

(
1 +

√
5
)
= 1.62 (2d.p.). Remember, that with the

atomistic partition it is necessary for 2 independent modules to be enabled in

order for the match to be productive; whilst with the pairs partition half the time

we only need one module to be enabled in order for the match to be productive:

for big enough γ the probability of 2 separate singleton modules being enabled is

small enough that the pairs partition is preferred. The θ table shows firstly, that

with intermediate values of θ there are most likely to be interior solutions, (this

is consistent with the above graph), and secondly that to get the highest gains

requires a large θ. The γ table shows that the highest gains occur with γ = 2;

whilst the frequency of interior solutions increases as γ increases: specifically,

once γ > 2.2 all solutions are interior.
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Table 2.33: 2 Rich 2 Poor Percentage Gain Table

Percentage Welfare Gain from the interior partition
γ\θ 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
0.0 -23.0 -20.0 -18.0 -15.0 -13.0 -10.0 -7.5 -5.0 -2.5 0.0
0.1 -15.0 -12.0 -10.0 -7.6 -5.2 -2.8 -0.3 -2.0 -4.9 -7.6
0.2 -10.0 -8.2 -5.9 -3.6 -1.3 1.0 -2.8 -6.1 -9.1 -12.0
0.3 -7.6 -5.5 -3.3 -1.2 1.0 -1.0 -4.9 -8.3 -11.0 -14.0
0.4 -5.7 -3.7 -1.7 0.3 2.3 -1.7 -5.7 -9.3 -12.0 -15.0
0.5 -4.4 -2.5 -0.6 1.3 3.1 -1.6 -5.7 -9.4 -13.0 -16.0
0.6 -3.4 -1.7 0.1 1.9 3.6 -0.8 -5.1 -8.9 -12.0 -15.0
0.7 -2.7 -1.0 0.6 2.3 3.9 0.3 -4.1 -8.0 -12.0 -15.0
0.8 -2.1 -0.6 1.0 2.5 4.1 1.8 -2.7 -6.8 -10.0 -14.0
0.9 -1.7 -0.3 1.2 2.7 4.1 3.6 -1.1 -5.4 -9.1 -13.0
1.0 -1.4 0.0 1.4 2.8 4.2 5.6 0.7 -3.7 -7.6 -11.0
1.1 -1.1 0.2 1.5 2.8 4.2 5.5 2.6 -1.9 -5.9 -9.6
1.2 -0.9 0.3 1.6 2.9 4.1 5.4 4.7 0.0 -4.1 -7.9
1.3 -0.7 0.5 1.7 2.9 4.1 5.2 6.4 2.0 -2.3 -6.1
1.4 -0.6 0.6 1.7 2.8 4.0 5.1 6.3 4.2 -0.3 -4.3
1.5 -0.5 0.6 1.7 2.8 3.9 5.0 6.1 6.3 1.8 -2.3
1.6 -0.4 0.7 1.7 2.8 3.8 4.9 5.9 7.0 3.9 -0.4
1.7 -0.3 0.7 1.7 2.7 3.7 4.8 5.8 6.8 6.0 1.7
1.8 -0.2 0.8 1.7 2.7 3.7 4.6 5.6 6.6 7.5 3.7
1.9 -0.2 0.8 1.7 2.6 3.6 4.5 5.4 6.4 7.3 5.9
2.0 -0.1 0.8 1.7 2.6 3.5 4.4 5.3 6.2 7.1 8.0
2.1 -0.1 0.8 1.7 2.6 3.4 4.3 5.2 6.0 6.9 7.8
2.2 -0.0 0.8 1.7 2.5 3.3 4.2 5.0 5.9 6.7 7.5
2.3 0.0 0.8 1.6 2.5 3.3 4.1 4.9 5.7 6.5 7.3
2.4 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.3 7.1
2.5 0.1 0.8 1.6 2.4 3.1 3.9 4.7 5.4 6.2 6.9
2.6 0.1 0.8 1.6 2.3 3.1 3.8 4.5 5.3 6.0 6.8
2.7 0.1 0.8 1.6 2.3 3.0 3.7 4.4 5.2 5.9 6.6
2.8 0.1 0.8 1.5 2.2 2.9 3.6 4.3 5.0 5.7 6.4
2.9 0.1 0.8 1.5 2.2 2.9 3.5 4.2 4.9 5.6 6.3
3.0 0.2 0.8 1.5 2.1 2.8 3.5 4.1 4.8 5.5 6.1
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Table 2.34: 2 Rich 2 Poor θ Table

Percentage gain broken down by θ
θ (-100,0) [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)

0.55 23 8 0 0 0 0 0 0 0 0
0.60 10 21 0 0 0 0 0 0 0 0
0.65 6 3 22 0 0 0 0 0 0 0
0.70 4 1 2 24 0 0 0 0 0 0
0.75 3 1 0 5 16 6 0 0 0 0
0.80 6 1 2 0 8 8 6 0 0 0
0.85 10 1 0 1 0 9 7 3 0 0
0.90 12 1 0 1 0 3 7 7 0 0
0.95 15 0 1 0 1 0 4 7 3 0
1.00 16 1 1 0 1 0 1 6 4 1
All 105 38 28 31 26 26 25 23 7 1
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Table 2.35: 2 Rich 2 Poor γ Table

Percentage gain broken down by γ
γ (-100,0) [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)

0.0 9 1 0 0 0 0 0 0 0 0
0.1 10 0 0 0 0 0 0 0 0 0
0.2 9 0 1 0 0 0 0 0 0 0
0.3 9 1 0 0 0 0 0 0 0 0
0.4 8 1 0 1 0 0 0 0 0 0
0.5 8 0 1 0 1 0 0 0 0 0
0.6 7 1 1 0 1 0 0 0 0 0
0.7 6 2 0 1 1 0 0 0 0 0
0.8 6 1 1 1 0 1 0 0 0 0
0.9 6 0 1 1 1 1 0 0 0 0
1.0 4 2 1 1 0 1 1 0 0 0
1.1 4 1 1 2 0 1 1 0 0 0
1.2 3 2 1 1 0 2 1 0 0 0
1.3 3 1 1 2 0 1 1 1 0 0
1.4 3 1 1 1 1 1 1 1 0 0
1.5 2 1 2 1 1 0 1 2 0 0
1.6 2 1 1 1 2 1 1 1 0 0
1.7 1 1 2 1 1 1 1 2 0 0
1.8 1 1 1 1 2 1 1 1 1 0
1.9 1 1 1 1 1 1 2 1 1 0
2.0 1 1 1 1 1 1 1 1 1 1
2.1 1 1 1 1 1 1 1 2 1 0
2.2 1 1 1 1 1 1 2 1 1 0
2.3 0 2 1 1 1 2 1 1 1 0
2.4 0 2 1 1 2 1 1 1 1 0
2.5 0 2 1 1 2 1 1 2 0 0
2.6 0 2 1 1 2 1 1 2 0 0
2.7 0 2 1 2 1 1 2 1 0 0
2.8 0 2 1 2 1 1 2 1 0 0
2.9 0 2 1 2 1 2 1 1 0 0
3.0 0 2 1 2 1 2 1 1 0 0
All 105 38 28 31 26 26 25 23 7 1
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2.3 Financial

2.3.1 Variable Shock Initialisation Probability

In the standard model, the module enablement probability is P [d] = 1
1+γd

, where

d is the module size variable and γ is the shock parameter. The shock parameter

does not vary with module size variable. In this section we consider the variant

α model where the module enablement probability is given by Pα[d] =
1

1+γdα
,

and α is an extra parameter. This can be interpreted as follows: consider a

module enablement probability PΓ[d] =
1

1+Γ(d)d
, where Γ(d) is some completely

general shock parameter function Γ : R→ R+; then the α model equates to the

case where ε, the elasticity of Γ with respect to d, is constant and equals α− 1.

In the standard model independent of the module size d, banks in enabled mod-

ules receive disabling shocks at rate Log[1 − q], and disabled modules receive

enabling shocks at rate Log[1 − ρ]. Let us now consider the α model. If α < 1

then an increase in d decreases the module enablement probability by less than

it would in the standard model: this equates to the case where banks in bigger

modules receive fewer shocks and/or recover faster. If α = 1 then we have the

standard model. If α > 1 then an increase in d decreases the module enablement

probability by more than it would in the standard model: this equates to the

case where banks in bigger modules receive more shocks and/or recover slower.

We now follow the solution methodology as followed with the standard model.

This consists of finding the Pareto optimal allocations for bank 1. The welfare

function for a general allocation x = (xi)
k
i=1 is:

Wα[(xi)
k
i=1] =

k∑
i=1

(
xi

n
)2Pα[xi] +

k∑
i=1

∑
j �=i

θ(
xi

n
)(
xj

n
)Pα[xi]Pα[xj]
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Similarly the expected return for bank 1, assumed without loss of generality to

be in module 1, is:

v1α[(xi)
k
i=1] = (

1

n
)(
x1

n
)Pα[x1] +

k∑
i=2

θ(
1

n
)(
xi

n
)Pα[x1]Pα[xi]

Lemma 67. If α > 0 then v1α[(xi)
k
i=1] has negative externalities. If α < 0 then

v1α[(xi)
k
i=1] has positive externalities.

Proof. Consider Δv1α the change in utility to bank 1 from merging two outside

modules 2 and 3. So Δv1α := v1α[x1, x2 + x3, (xi)
k
i=4] − v1α[x1, x2, x3, (xi)

k
i=4].

Hence n2Δv1α
θPα[x1]

= x2+3Pα[x2+3]− x2Pα[x2]− x3Pα[x3]. Re-arrangement gives that

Δv1α > 0 if and only if

x3
(x3

α − (x2 + x3)
α)

Pα[x2]
+ x2

(xα
2 − (x2 + x3)

α)

Pα[x3]
> 0

When α > 0, each of the terms is always negative and so Δv1α ≤ 0. Hence,

v1α[(xi)
k
i=1] when α > 0 has negative externalities.

Conversely, when α < 0, each of the terms is always positive and so Δv1α > 0.

Hence, v1α[(xi)
k
i=1] when α > 0 has positive externalities.

Lemma 68. If α < 0 then the grand coalition is the solution to the α model.

Proof. If α < 0 then from Lemma 67 the partition that maximises the utility of

bank 1 in module 1 will be of the format (x1, n− x1) due to the presence of the

positive externalities. Hence, let v1αp[x1] := v1α[(x1, n− x1)].

Further, let Δv[x1] :=
v1αp[n]−v1αp[x1]

γPα[n]Pα[x1]Pα[n−x1]
, which is positive if and only if there is

a gain to bank 1 from being in the grand coalition (n) compared with being in
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the partition (x1, n− x1). Letting a = −α and re-arranging gives:

Δv[x1] = γn−ax−a
1 (n1+a − x1+a

1 )(n− x1)
−a + n1−ax−a

1 (na − xa
1) + (n− x1)

1−a

So Δv[x1] > 0 for all x1 and hence the grand coalition is the unique Pareto

optimal partition.

Lemma 69. If α = 0 then the grand coalition is the solution to the α model.

Proof. If α = 0 and x1 > 0 then Pα[x1] = P [1]. Define the normalised welfare

function:

Wn[(xi)
k
i=1] :=

n2Wα=0[(xi)
k
i=1]

P [1]

So:

Wn[(xi)
k
i=1] =

k∑
i=1

x2
i +

k∑
i=1

∑
j �=i

θxixjP [1]

whilst:

Wn[x1+x2, (xi)
k
i=3] = (x1+x2)

2+
k∑

i=3

x2
i+(x1+x2)

k∑
j=3

θxjP [1]+
k∑

i=3

θxi

∑
j �=i

xjP [1]

So

Wn[x1+x2, (xi)
k
i=3]−Wn[(xi)

k
i=1] = 2x1x2+θP [1]

(
(x1 + x2)

k∑
j=3

xj +
k∑

i=3

xi

∑
j �=i

xj −
k∑

i=1

∑
j �=i

xixj

)

Hence
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Wn[x1 + x2, (xi)
k
i=3]−Wn[(xi)

k
i=1] = 2x1x2(1− θP [1])

So merging modules always increases welfare and hence the grand coalition max-

imises welfare.

We now consider only partitions of the form {x1, 1, 1, .....1}, where all modules

apart from the first module are singletons and define

v1α[x1] := (
1

n
)(
x1

n
)Pα[x1] + θ(

1

n
)(
n− x1

n
)Pα[x1]Pα[1]

Then v′1α[x1] = v′1αn[x1](γ − θ + 1)n−2P 2
α[x1]Pα[1]x

−1
1 where

v′1αn[x1] := −Nxα−1
1 − (α− 1)γxα

1 + 1

and N := nαγθ
γ−θ+1

> 0.

So v′1α[x1] > 0 if and only if the normalised function v′1αn[x1] > 0. We can now

characterise v1α[x1]:

Theorem 70. If 0 < α ≤ 1 then v1α[x1] is quasi-convex. Conversely if α ≥ 1

then v1α[x1] is quasi-concave.

Proof. If α = 1 then this comes from the standard model results, as

v′1α[x1 : α = 1] = γ−θ+γθ(−n)+1
(γ+1)(γx1+1)2

For α �= 1 then this will proved using v′1αn[x1]. If α < 1 then α−1 < 0. Suppose

y1 > x1 then −Nyα−1
1 > −Nxα−1

1 and γ(1 − α)yα1 > γ(1 − α)xα
1 . Hence if

v′1α[x1] > 0 and y1 > x1 then v′1α[y1] > 0. Hence if 0 < α ≤ 1 then v1α[x1] is

quasi-convex.

If α > 1 then α − 1 > 0. A similar argument as in the above case then shows
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that if v′1α[x1] < 0 and y1 > x1 then v′1α[y1] < 0. Hence if α ≥ 1 then v1α[x1] is

quasi-concave.

Corollary 71. If 0 < α < 1 then the model has boundary solutions.

Proof. This follows from applying Theorem 15: the α model clearly possesses

anonymity; Lemma 67 shows that the model has negative externalities; and

Theorem 70 shows that there is quasi-convexity.

So the standard model, where α = 1, is at a tipping point between the quasi-

convex and quasi-concave regions. However, when α > 1 despite v1α[x1] being

quasi-concave it may be monotonic and hence not have interior solutions. Con-

sidering v′1αn[1] and v′1αn[n] leads to 9 different cases:

Table 2.36: α Model Characterisation Table

Characterisation of Argmax v1α[x1] when α > 1
v′1αn[1] v′1αn[n] x∗

1

< 0 < 0 1
< 0 = 0 impossible due to quasi-concavity
< 0 > 0 impossible due to quasi-concavity
= 0 < 0 1
= 0 = 0 impossible due to quasi-concavity
= 0 > 0 impossible due to quasi-concavity
> 0 < 0 interior
> 0 = 0 n
> 0 > 0 n

This leads to the following characterisation theorem:

Theorem 72. When α > 1: if v′1αn[1] ≤ 0 then the atomistic partition is the

only Pareto optimal partition; if v′1αn[n] ≥ 0 then the grand coalition is the only

Pareto optimal partition; if v′1αn[1] > 0 and v′1αn[n] < 0 then there is an interior

Pareto optimal partition.
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Proof. The results follow directly from the table above.

Corollary 73. If the atomistic partition is the solution of the standard model

then it is also the sole solution to the α model when α > 1.

Proof. Re-arrangement gives firstly that

v′1αn[1]
P 3[1]

= −(α − 1)γ2 − θ − γ(−αθ + α + θ + αθn − 2) + 1, and secondly that

v′1αn[1] ≤ 0 if and only if α ≥ γ2−γθ+2γ−θ+1
γ2−γθ+γ+γθn

. If the standard model has the

atomistic solution then P [n] < θP [1] and hence γ2−γθ+2γ−θ+1
γ2−γθ+γ+γθn

< 1 < α.

A second argument is as follows. Differentiation gives that
∂v1α[x1]

∂α
= −γxα

1 log(x1)(θn+ x1(γ − θ+ 1))P [1]P 2
α[x1]. As log[1] = 0, ∂v1α[1]

∂α
= 0.

The ∂v1α[x1]
∂α

expression has a leading negative and so when x1 > 0 the other

factors are always positive. So x1 > 0 ⇒ ∂v1α[x1]
∂α

< 0. Hence v1α[1] = v1[1] and

(v1α[x1] < v1[x1])x1>0
. So if 1 = argmax1≤x1≤n v1[x1], then 1 = argmax1≤x1≤n v1α[x1].

Corollary 74. In order for the α model to have an interior solution we require

that α > 1 and that the grand coalition be the solution of the standard model.

Proof. When α ≤ 0 then by Lemmas 68 and 69 there is no interior solution.

When 0 < α ≤ 1 the non-existence of interior solutions follows from the quasi-

convexity shown in Theorem 70 and the negative externalities shown in Lemma

67. When α > 1 the result follows from Corollary 73

Corollary 75. If α > 1 and the grand coalition is the solution of the α model

then the grand coalition is also the solution of the corresponding standard model.

Proof. This again follows from Corollary 73. But also directly: v′1αn[n] ≥ 0 if

and only if nα ≤ γ−θ+1
αγ2+αγ−γ2+γθ−γ

if and only if α ≤ 1+ γ−θ−γθnα+1
γ2nα+γnα . This requires

γ − θ − γθnα + 1 > 0 and hence that P [nα] > θP [1]. As α > 1 it follows that
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n < nα, and so P [n] > θP [1] and hence that the grand coalition is the solution

to the standard model.

Corollary 76. The α model has an interior Pareto Optimal partition if and

only if Max{1, γ−θ+γ2nα−γθnα+γnα+1
γ2nα+γnα } < α < γ2−γθ+2γ−θ+1

γ2−γθ+γ+γθn
.

Proof. The need for α > 1 follows from Lemmas 68, 69 and Corollary 71. The-

orem 72 gives that if α > 1 then there is a interior PO partition if and only

if both v′1αn[1] > 0 and v′1αn[n] < 0. The definitions of v′1αn[1] and v′1αn[n],

gives that v′1αn[n] < 0 iff α > αlower[n, θ, γ, α] :=
γ−θ+γ2nα−γθnα+γnα+1

γ2nα+γnα and that

v′1αn[1] > 0 iff α < αupper[n, θ, γ] :=
γ2−γθ+2γ−θ+1
γ2−γθ+γ+γθn

.

This is a graphical representation of the interior solution region:
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Figure 2.6: α Model Interior Solution Plot
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Theorem 77. If the standard model has the grand coalition as a solution then

there is a value of α > 1 with an interior Pareto Optimum of the α model.

Proof. From Corollary 76 the α model has an interior P.O. if both
γ−θ+1

nα +γ2−γθ+γ

γ2+γ
<

α < γ2−γθ+2γ−θ+1
γ2−γθ+γ+γθn

and α > 1. The two conditions will be checked in turn.
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As nα > n, a sufficient condition for condition 1 is
γ−θ+1

n
+γ2−γθ+γ

γ2+γ
< α <

γ2−γθ+2γ−θ+1
γ2−γθ+γ+γθn

, which equates to (γ−θ+1)(γn+1)
γ(γ+1)n

< α < (γ+1)(γ−θ+1)
γ(γ+θ(n−1)+1)

. The interval is

non-empty if and only if θP[1] < P [n]: the condition for the grand coalition to

be the solution of the standard model.

We now need to check that the intersection of this range with (1,∞) is non-

empty. This requires (γ+1)(γ−θ+1)
γ(γ+θ(n−1)+1)

> 1, which occurs when θP[1] < P [n]: the

condition for the grand coalition to be the solution of the standard model.

We now consider a range of different parametrisations to investigate the potential

that v1α[x1] has for interior solutions. The number of banks, n, is one of {10,
20, 30, 40, 50, 100, 1000}. The value of outside matches, θ, has a minimum of

0.1, a maximum of 0.9, and has an increment of 0.1. The shock parameter γ

has a minimum of 0.1, a maximum of 3.0, and an increment of 0.1. The α

parameter, has a minimum of 1.0, a maximum of 3.0 and an increment of 0.1.

The n parameter is one of 7 values, the θ parameter is one of 9 values, the γ

parameter is one of 30 values and the α parameter is one of 21 values. This gives

a total of 7 ∗ 9 ∗ 21 ∗ 30 = 39690 parameterisations.

In each of these cases, assuming x1 to be integer, it is firstly assessed whether

there is a boundary solution or an interior solution. Secondly, the percentage

gain from the best interior solution over the best boundary solution is com-

puted. For each parametrisation, the bank 1 utility of the best trivial partition

is given by vb := Max{v1α[1], v1α[n]}; the bank 1 utility of the best symmetric

interior partition is given by vi := Max{v1α[n/k]}n−1
k=2 ; and g, the percentage gain

from choosing an interior partition, is given by 100 ∗ (vi − vb)/vb. In 99.65% of

these cases the v1α program has a boundary solution. In cases where it does

not, the gain has a maximum of 35%. The high frequency of parametrisations

with boundary solutions, and the absence of large gains when there are interior
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solutions, leads to the conclusion that the standard model rejection of interior

partitions is robust to replacing a distribution of financial shocks which is in-

dependent of module size, with a distribution where the incidence of financial

shocks is higher in bigger modules.

The gain percentage results can be presented in a summary table for each of the

different dimensions (n, θ, γ, α) of the parameters. In the α table, for every value

of α, the number of cases with interior solutions is low: the highest proportion

(1.59%) occurs with α = 1.10, whilst with α > 2.7 there are no cases with

interior solutions. When α = 1, we have the standard model and so there are

no gains from interior partitions. With α slightly bigger than 1, there are a few

examples where, in the standard model the grand coalition is optimal, but in

the α model, due to the decreased enablement probability of large modules, an

interior partition with smaller modules is now optimal. Once α becomes large,

the solution is always the atomistic partition. The n table shows that, when n

is small, interior solutions are more frequent, and are of greater benefit. Once

n becomes large then, in the standard model, the atomistic partition is always

preferred, and so this is also the case in the α model. Specifically, if n is chosen

to be 100 or 1000 then there are no gains from interior partitions for all choices

of the other parameters. Similarly, in the standard model, if θ or γ increases

then generically the solution converges to the atomistic partition, and so the θ

table and the γ tables show the same result for the α model.17

17As θ tends to 1 the result holds for all parametrisations. As γ tends to ∞ the result holds
unless θn ≤ 1.
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Table 2.37: α Model α Table

Overall gain percentage broken down by α
α (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35)

1.0 1890 0 0 0 0 0 0 0
1.1 1860 28 2 0 0 0 0 0
1.2 1866 14 9 0 1 0 0 0
1.3 1871 9 6 3 0 1 0 0
1.4 1876 5 5 3 0 1 0 0
1.5 1877 7 3 0 1 2 0 0
1.6 1881 3 2 2 2 0 0 0
1.7 1883 3 1 2 0 0 0 1
1.8 1885 1 3 0 0 0 1 0
1.9 1885 3 1 0 0 1 0 0
2.0 1886 3 0 0 1 0 0 0
2.1 1887 2 0 0 1 0 0 0
2.2 1888 1 0 1 0 0 0 0
2.3 1889 0 0 1 0 0 0 0
2.4 1889 0 1 0 0 0 0 0
2.5 1889 0 1 0 0 0 0 0
2.6 1889 1 0 0 0 0 0 0
2.7 1889 1 0 0 0 0 0 0
2.8 1890 0 0 0 0 0 0 0
2.9 1890 0 0 0 0 0 0 0
3.0 1890 0 0 0 0 0 0 0
All 39550 81 34 12 6 5 1 1

Table 2.38: α Model n Table

Overall gain percentage broken down by n
n (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35)

10 5585 51 17 9 4 2 1 1
20 5641 15 9 2 1 2 0 0
30 5656 7 5 1 0 1 0 0
40 5663 4 2 0 1 0 0 0
50 5665 4 1 0 0 0 0 0

100 5670 0 0 0 0 0 0 0
1000 5670 0 0 0 0 0 0 0

All 39550 81 34 12 6 5 1 1

170



Table 2.39: α Model θ Table

Overall gain percentage broken down by θ
θ (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35)

0.1 4308 54 25 11 5 5 1 1
0.2 4384 17 7 1 1 0 0 0
0.3 4401 7 2 0 0 0 0 0
0.4 4408 2 0 0 0 0 0 0
0.5 4409 1 0 0 0 0 0 0
0.6 4410 0 0 0 0 0 0 0
0.7 4410 0 0 0 0 0 0 0
0.8 4410 0 0 0 0 0 0 0
0.9 4410 0 0 0 0 0 0 0
All 39550 81 34 12 6 5 1 1
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Table 2.40: α Model γ Table

Overall gain percentage broken down by γ
γ (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35)

0.1 1254 32 20 5 6 4 1 1
0.2 1298 15 5 4 0 1 0 0
0.3 1310 8 3 2 0 0 0 0
0.4 1315 5 2 1 0 0 0 0
0.5 1317 4 2 0 0 0 0 0
0.6 1320 2 1 0 0 0 0 0
0.7 1320 2 1 0 0 0 0 0
0.8 1321 2 0 0 0 0 0 0
0.9 1321 2 0 0 0 0 0 0
1.0 1321 2 0 0 0 0 0 0
1.1 1322 1 0 0 0 0 0 0
1.2 1322 1 0 0 0 0 0 0
1.3 1322 1 0 0 0 0 0 0
1.4 1322 1 0 0 0 0 0 0
1.5 1322 1 0 0 0 0 0 0
1.6 1322 1 0 0 0 0 0 0
1.7 1322 1 0 0 0 0 0 0
1.8 1323 0 0 0 0 0 0 0
1.9 1323 0 0 0 0 0 0 0
2.0 1323 0 0 0 0 0 0 0
2.1 1323 0 0 0 0 0 0 0
2.2 1323 0 0 0 0 0 0 0
2.3 1323 0 0 0 0 0 0 0
2.4 1323 0 0 0 0 0 0 0
2.5 1323 0 0 0 0 0 0 0
2.6 1323 0 0 0 0 0 0 0
2.7 1323 0 0 0 0 0 0 0
2.8 1323 0 0 0 0 0 0 0
2.9 1323 0 0 0 0 0 0 0
3.0 1323 0 0 0 0 0 0 0
All 39550 81 34 12 6 5 1 1
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2.3.2 Biased Incentives

2.3.2.1 Zero Lifetime Bankers

This section considers bankers who are short lived. In particular it will assume

the limiting case of them having zero lifetime.18 Imagine bankers who firstly,

know that there is a last round of business opportunities before they retire, and

secondly, are able to reorganise the modules before the business opportunities

come through. For the sake of simplicity assume that initially all the modules

are enabled.19

The per bank utility function has the same format as in the standard model, but

with an altered module enablement probability:

vi0[(xj)
n
j=1] :=

xi

n2
P0[xi] +

∑
j �=i

θ
xj

n2
P0[xi]P0[xj]

where P0[d] is the enablement probability of a module of size d. There is no

time for a shock to hit in zero time, so every module stays enabled, and hence

P0[d] = 1 for all d. Therefore:

vi0[(xj)
n
j=1] =

xi

n2
+

∑
j �=i

θ
xj

n2
=

xi + θ(n− xi)

n2
=

θn+ (1− θ)xi

n2

However, recall from the standard model that P [d] = 1
1+γd

with γ = −Log[1−q]
−Log[1−ρ]

where γ is the shock parameter and so P0[d] = P [d : γ = 0]. So the EEBA

analysis above for the standard model still applies: just that the bankers have

the wrong γ. P [n : γ = 0] = 1 and θP [1 : γ = 0] = θ. So as θ < 1 the grand

coalition is the only stable partition. Hence when P [n] < θP [1] the market
18An extension in the next section shows that the results extend to the case of short lived

bankers with non-zero life times.
19If some modules are initially disabled then the result is that all enabled modules merge

and the disabled modules remain separate.
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outcome is inefficient.

2.3.2.2 Short Run Bankers

Section 2.3.2.1 considers the case of zero lifetime bankers and concludes that such

bankers will, for all parameterisations, choose the grand coalition. This section

extends the results to the case where the business opportunity is at time t > 0

in the future, after which the bankers retire. Assuming that initially all banks

are enabled, then as the Markov process converges exponentially fast, we get the

time t module enablement probability, Pt[d] = P [d]+((1−q)d(1−ρ))t(1−P [d]),

where the terms have their standard meanings: P [d] is the module enablement

probability of the standard model, d is the module size, q is the probability that

a bank is hit by a disabling shock, and ρ is the re-enablement probability. In

this section I will consider for what size of t the short run bankers inefficiently

prefer the grand coalition over the atomistic partition of singletons.

The welfare function for short run bankers with symmetric partitions is given by,

Wt[d]:=d/nPt[d] + θ(n−d)/nPt[d]
2. We calculate the percentage gain, g, the social

planner has from his preferred choice, compared with the choice of the period

t short run banker. This is done on the basis that: firstly, the social planner

remains concerned solely about welfare in the limiting state; and secondly, that

the banker has to choose a boundary partition. Precisely: Wsp = max{W [1],

W [n]}; dbank = argmaxd∈{1,n} Wt[d]; and g = 100 ∗ (Wsp −W [dbank])/W [dbank].

Using a similar approach as with other variant models, we include the time t

as one dimension of the parametrisations: the time, t, has a minimum of 0, a

maximum of 20 and an increment of 1; the number of banks, n, is one of 10, 20,

30, 40, 50, 100, 1000; the value of outside matches, θ, has a minimum of 0.1,

a maximum of 0.9 and an increment of 0.1; the disabling shock probability, q,

comes from the range, 0.001N9∪0.01N9∪{0.1}; and the enabling probability, ρ,
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comes from the range 0.001N9 ∪ 0.01N9 ∪ {0.1, 0.2, 0.3}, where N9 := {1, 2, 3, 4,
5, 6, 7, 8, 9}. So, the t parameter is one of 21 values, the n parameter is one of 7

values, the θ parameter is one of 9 values, the q parameter is one of 19 values, and

the ρ parameter is one of 21 values. This gives a total of 21∗7∗9∗19∗21 = 527877

parametrisations.

The next five tables record the percentage gain to a social planner from deciding

the partition themselves, rather than leaving it to the market: they assess how

biased a market of period t bankers is; and the final sixth, bias length table,

records directly the number of biased cases at each period. The t table shows that

as time increases, the banker’s choice converges to the social planner’s choice.

The n table shows that if there are lots of banks, then it is less likely that

bankers want the grand coalition even in the short run; but when they do choose

the wrong partition, the social costs are very high. As θ increases, there are lower

costs from outside matches; less gains to the bankers from moving away from

the atomistic partition; and hence less social costs from the market solution.

As the enablement probability q increases, the time before a disabling shock

arrive reduces, and hence the banker’s choice is less biased. The re-enablement

probability, ρ, does not have much effect on the banker’s choice: they are short

run and there is unlikely to be enough time for the system to both be disabled

and then re-enabled again before time t. The bias length table shows that: firstly,

once t reaches a couple of years, that there is a large decrease in the number of

biased choices by bankers; but secondly, also that there is a substantial number

of residual cases where the banker’s choice is biased even for large t (up to 20

years).
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Table 2.41: Short Run Bankers t Table

Overall gain percentage distribution broken down by t
t [0,0] (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100] (100,1000] (1000,∞]

0 2955 800 858 812 768 630 758 511 610 453 482 11293 4207
1 16045 680 626 548 504 387 483 296 355 244 270 4543 156
2 18852 523 457 403 367 287 364 222 274 183 206 2962 37
3 20188 504 396 354 316 245 313 181 227 136 153 2111 13
4 21076 479 357 324 284 204 279 137 200 103 133 1556 5
5 21715 459 343 292 247 165 240 111 172 88 118 1182 5
6 22193 443 322 268 216 140 214 91 144 72 98 934 2
7 22585 445 299 231 189 121 196 75 123 63 85 724 1
8 22883 432 272 189 171 107 176 66 101 59 71 610 0
9 23136 422 244 171 150 95 153 58 92 56 63 497 0
10 23360 404 225 154 135 86 131 54 77 50 53 408 0
11 23514 412 201 136 123 78 111 49 71 46 47 349 0
12 23649 393 186 123 111 75 96 47 63 42 40 312 0
13 23814 378 171 115 98 62 85 42 56 39 34 243 0
14 23922 367 161 100 90 58 80 40 48 35 31 205 0
15 24025 350 146 92 82 53 70 36 43 31 27 182 0
16 24096 341 136 87 70 50 68 32 34 30 25 168 0
17 24170 332 122 81 64 48 57 30 33 29 23 148 0
18 24234 317 112 78 58 43 56 27 33 27 22 130 0
19 24293 307 105 72 53 42 55 27 30 26 20 107 0
20 24359 291 97 68 51 41 50 26 25 23 18 88 0
All 455064 9079 5836 4698 4147 3017 4035 2158 2811 1835 2019 28752 4426

Table 2.42: Short Run Bankers n Table

Overall gain percentage distribution broken down by n
n [0,0] (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100] (100,1000] (1000,∞]

10 58003 4434 2379 1939 1514 1024 1434 558 1144 419 488 2075 0
20 61750 2018 1439 808 663 741 1112 457 377 470 598 4978 0
30 63734 1036 893 914 903 337 327 332 371 402 436 5726 0
40 65148 686 550 488 562 496 722 239 230 231 228 5831 0
50 66091 600 376 381 367 288 359 388 599 135 182 5550 95

100 68622 296 192 163 136 124 79 179 89 175 79 4175 1102
1000 71716 9 7 5 2 7 2 5 1 3 8 417 3229

All 455064 9079 5836 4698 4147 3017 4035 2158 2811 1835 2019 28752 4426
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Table 2.43: Short Run Bankers θ Table

Overall gain percentage distribution broken down by θ
θ [0,0] (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100] (100,1000] (1000,∞]

0.1 48847 3616 1451 1014 787 450 612 244 484 55 38 791 264
0.2 48618 1753 1337 538 463 637 886 214 277 349 414 2836 331
0.3 48482 811 801 1140 968 256 343 397 254 346 450 4045 360
0.4 48950 664 556 553 635 625 1018 226 175 197 197 4494 363
0.5 49722 607 509 407 417 346 453 402 918 168 133 4012 559
0.6 50635 572 466 352 331 246 272 266 280 333 404 3892 604
0.7 51820 471 321 353 256 202 195 197 215 179 211 3626 607
0.8 53236 370 261 211 192 169 149 123 131 144 101 2945 621
0.9 54754 215 134 130 98 86 107 89 77 64 71 2111 717
All 455064 9079 5836 4698 4147 3017 4035 2158 2811 1835 2019 28752 4426

Table 2.44: Short Run Bankers q Table

Overall gain percentage distribution broken down by q
q [0,0] (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100] (100,1000] (1000,∞]

0.001 18936 949 694 618 460 341 411 353 268 342 209 3973 229
0.002 20027 721 612 484 446 298 384 329 316 229 314 3385 238
0.003 20988 641 561 419 451 350 370 206 306 222 179 2855 235
0.004 21826 576 443 436 373 274 427 169 315 143 174 2396 231
0.005 22470 472 447 369 389 240 344 188 238 143 166 2076 241
0.006 22955 502 396 297 331 258 331 121 199 145 147 1863 238
0.007 23425 421 341 374 200 247 311 103 211 65 174 1678 233
0.008 23695 453 337 261 262 177 299 98 195 80 122 1570 234
0.009 23901 464 301 240 267 166 267 113 172 68 110 1477 237
0.01 24193 365 312 228 256 113 273 99 148 84 84 1389 239
0.02 25229 366 233 162 130 103 118 75 88 63 74 897 245
0.03 25575 386 192 156 81 94 72 62 51 50 42 779 243
0.04 25791 388 153 115 89 67 75 48 48 36 37 699 237
0.05 25876 379 172 100 88 53 70 33 45 35 38 659 235
0.06 25972 404 130 85 77 56 52 32 44 31 33 637 230
0.07 25975 422 134 97 59 52 59 31 50 23 32 624 225
0.08 26053 402 115 93 55 49 58 31 40 27 27 611 222
0.09 26076 382 132 86 64 42 60 33 40 21 31 599 217
0.1 26101 386 131 78 69 37 54 34 37 28 26 585 217
All 455064 9079 5836 4698 4147 3017 4035 2158 2811 1835 2019 28752 4426
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Table 2.45: Short Run Bankers ρ Table

Overall gain percentage distribution broken down by ρ
ρ [0,0] (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100] (100,1000] (1000,∞]

0.001 20324 576 385 367 277 251 270 135 199 131 146 1907 169
0.002 20349 355 395 278 253 176 332 113 239 94 120 2207 226
0.003 20413 345 331 208 246 183 322 103 196 135 153 2263 239
0.004 20475 373 275 204 269 136 340 97 219 112 166 2231 240
0.005 20556 358 289 172 248 142 345 138 199 87 162 2202 239
0.006 20582 423 193 287 186 236 269 106 191 155 121 2146 242
0.007 20665 444 181 224 285 158 267 123 211 117 142 2084 236
0.008 20743 406 215 291 190 213 273 105 176 129 190 1970 236
0.009 20836 367 213 295 161 275 169 216 153 169 119 1928 236
0.01 20903 378 263 208 245 190 249 124 220 111 147 1862 237
0.02 21414 408 333 225 336 105 202 181 143 88 80 1391 231
0.03 21717 498 349 263 266 110 194 122 124 89 75 1102 228
0.04 22041 450 430 219 234 120 152 100 125 46 79 923 218
0.05 22288 488 367 237 188 130 134 73 90 60 69 801 212
0.06 22460 512 338 262 158 99 118 88 65 66 37 727 207
0.07 22650 548 269 232 141 116 83 83 58 55 49 655 198
0.08 22839 462 308 196 133 91 97 68 52 57 43 596 195
0.09 22902 562 228 203 102 107 79 69 56 41 42 556 190
0.1 23025 529 230 173 116 92 71 61 48 44 45 516 187
0.2 23771 352 140 92 71 47 42 33 27 25 22 370 145
0.3 24111 245 104 62 42 40 27 20 20 24 12 315 115
All 455064 9079 5836 4698 4147 3017 4035 2158 2811 1835 2019 28752 4426



Table 2.46: Short Run Bankers Bias Table

Time t
Frequency of cases where at time t the grand coalition
is preferred by the banker but the social planner
prefers the atomistic partition.

0.0 22182
0.5 12107
1.0 9090
1.5 7375
2.0 6256
2.5 5480
3.0 4849
3.5 4374
4.0 3920
4.5 3585
5.0 3259
5.5 3018
6.0 2768
6.5 2530
7.0 2361
7.5 2230
8.0 2062
8.5 1906
9.0 1808
9.5 1676
10.0 1581
10.5 1506
11.0 1417
11.5 1359
12.0 1286
12.5 1194
13.0 1120
13.5 1063
14.0 1009
14.5 954
15.0 912
15.5 876
16.0 843
16.5 801
17.0 771
17.5 739
18.0 708
18.5 677
19.0 648
19.5 612
20.0 583
Total 527877



2.3.2.3 Banks and Businesses have different transaction costs

We now consider how the returns from matches may be split up between banks

and businesses. The proportions may be different for inside and outside matches,

and this can affect the banks’ choice of partition. As in the standard model,

assume that inside and outside matches have total values 1 and θ respectively.

The standard model assumes that the bank and the business receive equal shares.

Now let us generalise and assume that the proportion of the return received by

the bank is α and β in the two cases:

Table 2.47: Bank-Business Distribution Table

Inside Outside
Bank α βθ
Business 1− α (1− β)θ
Total 1 θ

The social planner has the standard θ program and hence has welfare function:

WSP [(xi)
k
i=1] := W [(xi)

k
i=1 : Θ = θ] =

∑n
i=1

(
x2
i

n2P [xi] +
∑

j �=i θ
xixj

n2 P [xi]P [xj]
)
.

The bank has inside and outside returns of α and βθ respectively. So the bank

welfare function is: WBank[(xi)
k
i=1] :=

∑n
i=1

(
α

x2
i

n2P [xi] +
∑

j �=i βθ
xixj

n2 P [xi]P [xj]
)
.

This can be re-normalised to the standard welfare program with Θ = βθ
α

, as

WBank[(xi)
k
i=1] = α ∗W [(xi)

k
i=1 : Θ = βθ

α
]. However it is possible that βθ

α
> 1,

and so the banker prefers outside matches to inside matches. We need to check

that in this case, where θ > 1, the standard model still has boundary solutions:

Proposition 78. The standard model with θ > 1, and all other parameters still

in their standard ranges, has the atomistic boundary solutions to the welfare

program.

Proof. First note the model still has negative externalities: if modules 2 and

3 merge to form a ‘super module’ then module 1 is worse off as banks in the
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super module are less likely to be enabled. So the partition that maximises the

utility of bank 1 will be of form {x1, 1, 1, 1, 1, 1..1}. As in the standard model the

bank 1 utility function is given by v1[x1] =
x1

n2P [x1] + θ (n−x1)
n2 P [x1]P [1]. Hence

∂v1[x1]
∂x1

= (1− θ + γ(1− θn))P [1]P [x1]
2. As θn > 1 and 1 − θ < 0 we get,

∂v1[x1]
∂x1

< 0 and hence the atomistic partition of singletons is the solution to both

the v1[x1] program and the general W [x] program.

So, the bank will still want a boundary solution, but not necessarily the same

boundary as the social planner. Secondly, the form of the bias depends on

only the relative level of the 2 shares λ := β/α, but not on the absolute levels

α and β: from the standard model, {n} �SP {1, 1, 1....1} ⇐⇒ P [n] > θP [1]

and {n} �B {1, 1, 1....1} ⇐⇒ P [n] > λθP [1], where �SP and �B represent

the preferences of the social planner and the banker respectively. Similarly let

x∗
SP and x∗

B represent the argmax of the social planner and the bank. So if

β < α then the banker is biased towards the grand coalition, conversely if β > α

then the banker is biased towards the atomistic partition of singletons. The

condition for the banker to inefficiently choose the grand coalition (x∗
B = {n}

and x∗
SP = {1, 1, 1, 1...1}) is λθ < P [n]

P [1]
< θ. A necessary condition for this to

happen is λ < 1, which equates to β < α. Conversely, the condition for the

banker to inefficiently choose the atomistic partition (x∗
B = {1, 1, 1, 1...1} and

x∗
SP = {n}) is θ < P [n]

P [1]
< λθ. A necessary condition for this to happen is λ > 1,

which equates to α < β.

The percentage loss calculation is as follows. Firstly, the welfare of the social

planners choice is calculated using the unbiased match value θ, and is just WSP =

max[W [1 : θ],W [n : θ]. Secondly, the banker choice, dbank, is calculated using,

λθ, the biased match value: dbank = argmax1,n W [d : λθ]. The loss, l, is then

calculated as the percentage loss they experience by delegating the decision to the

banks, rather than making the decision themselves. Hence, l = 100 ∗ (W [dbank :
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θ]−WSP )/WSP .

Using the same approach as with other variant models, we consider a range of

parametrisations. The number of banks, n, is one of 10, 20, 30, 40, 50, 100, 1000.

The value of outside matches, θ, has a minimum of 0, a maximum of 1.0 and an

increment of 0.1. The shock parameter, γ, has a minimum of 0, a maximum of

3.0, and an increment of 0.1. The λ parameter is one of {0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. So, the n parameter is one of 7 values,

the θ parameter is one of 11 values, the γ parameter is one of 31 values, and the

λ parameter is one of 20 values. This gives a total of 7 ∗ 11 ∗ 31 ∗ 20 = 47740

parametrisations.

The λ table below shows, that for very small values of λ, the banker is biased

towards the grand coalition: in particular when λ = 0, the banker always chooses

the grand coalition, resulting in many cases where the bankers’s outcome is

inefficient. However, once λ reaches 0.2, whilst there can be large costs from

the banker’s bias, these are rare: in 77.5% (1791) of cases the banker’s choice

of boundary partition is the same as the social planner. Once λ equals 1 the

banker is unbiased, and so always makes the same choice as the social planner.

Once λ is above 1, the direct of bias now switches: the banker is biased towards

the atomistic partition. However, in 2033 of the 2310 cases the social planner

prefers the atomistic partition already; so the banker’s bias has little effect. So

with λ > 1, there are few cases of losses due to the banker bias, and when they

occur they are generally small in size.

The n table shows that as n increases, firstly, there are fewer case with losses,

but secondly, when losses do occur they are larger in magnitude. This is because,

with large n, the social planner more strongly wants the atomistic partition: so

even with their λ bias the bank is likely to still want the atomistic partition;

however, when the λ bias is strong enough to make the bank choose the grand
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coalition, the loss to the social planner is large. In the θ table, when θ = 0,

both the social planner and the banker always choose the grand coalition. For

large values of θ, the same pattern emerges, and for the same reason, as in the

n table: there are fewer case with losses; but when losses occur they are large

in magnitude. In the γ table, when γ = 0: the social planner always prefers the

grand coalition (strictly if θ < 1; weakly if θ = 1); however, the bank chooses

the atomistic partition if θλ > 1. Apart from when γ is small, for example 0.1

or 0.2, there are few defections as, even with a potential λ bias, there needs to

be a low γ for the bank to select the grand coalition.

Table 2.48: Bank-Business Distribution Model λ Table

Percentage loss broken down by λ
λ (-100,-90) [-90,-80) [-80,-70) [-70,-60) [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) 0

0 545 473 304 230 150 115 88 61 41 25 355
0.1 0 68 164 229 150 115 88 61 41 25 1446
0.2 0 0 23 82 85 114 88 61 41 25 1868
0.3 0 0 0 14 40 54 86 61 41 25 2066
0.4 0 0 0 0 12 26 41 61 41 25 2181
0.5 0 0 0 0 0 8 21 37 41 25 2255
0.6 0 0 0 0 0 0 5 19 41 25 2297
0.7 0 0 0 0 0 0 0 4 23 25 2335
0.8 0 0 0 0 0 0 0 0 8 19 2360
0.9 0 0 0 0 0 0 0 0 0 11 2376
1 0 0 0 0 0 0 0 0 0 0 2387
2 0 0 0 0 0 1 11 14 23 28 2310
3 0 0 0 0 9 11 14 16 23 28 2286
4 0 0 0 8 9 12 14 16 23 28 2277
5 0 0 0 8 10 12 14 16 23 28 2276
6 0 0 7 9 10 12 14 16 23 28 2268
7 0 0 7 9 10 12 14 16 23 28 2268
8 0 0 7 9 10 12 14 16 23 28 2268
9 0 0 7 9 10 12 14 16 23 28 2268
10 0 0 7 9 10 12 14 16 23 28 2268
All 545 541 526 616 515 528 540 507 525 482 42415
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Table 2.49: Bank-Business Distribution Model n Table

Percentage loss broken down by n

n (-100,-90) [-90,-80) [-80,-70) [-70,-60) [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) 0

10 0 0 5 130 206 200 185 224 261 253 5356
20 0 25 169 145 111 90 156 46 151 127 5800
30 0 118 130 111 77 77 30 149 59 38 6031
40 9 165 105 74 70 33 112 54 18 18 6162
50 56 146 83 78 26 106 33 16 18 28 6230

100 181 85 29 71 17 14 15 9 9 9 6381
1000 299 2 5 7 8 8 9 9 9 9 6455

All 545 541 526 616 515 528 540 507 525 482 42415

Table 2.50: Bank-Business Distribution Model θ Table

Percentage loss broken down by θ

θ (-100,-90) [-90,-80) [-80,-70) [-70,-60) [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) 0

0.0 0 0 0 0 0 0 0 0 0 0 4340
0.1 29 2 0 69 23 123 160 197 238 234 3265
0.2 30 20 51 78 94 81 125 52 139 127 3543
0.3 30 30 72 133 60 63 35 129 59 29 3700
0.4 40 41 84 65 117 11 113 37 9 10 3813
0.5 57 52 69 75 9 151 18 15 9 9 3876
0.6 58 67 65 48 36 64 76 7 0 10 3909
0.7 59 87 66 12 74 18 6 63 8 0 3947
0.8 69 85 53 23 62 6 0 7 63 0 3972
0.9 78 79 42 51 27 5 7 0 0 63 3988
1.0 95 78 24 62 13 6 0 0 0 0 4062
All 545 541 526 616 515 528 540 507 525 482 42415
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Table 2.51: Bank-Business Distribution Model γ Table

Percentage loss broken down by γ

γ (-100,-90) [-90,-80) [-80,-70) [-70,-60) [-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) 0

0.0 0 0 35 49 56 56 63 63 63 63 1092
0.1 9 12 26 43 49 47 39 48 17 58 1192
0.2 14 19 25 31 30 30 42 23 45 9 1272
0.3 15 25 28 20 31 28 22 23 27 19 1302
0.4 17 24 28 16 24 23 18 24 26 19 1321
0.5 18 23 20 24 20 15 20 22 27 10 1341
0.6 18 27 14 27 15 19 14 20 26 9 1351
0.7 21 21 20 18 13 17 11 20 16 18 1365
0.8 21 21 20 18 12 22 18 8 15 9 1376
0.9 21 20 20 20 13 17 17 16 7 10 1379
1.0 21 20 16 23 15 8 15 23 0 20 1379
1.1 21 20 16 22 14 8 15 13 9 19 1383
1.2 21 16 18 21 12 8 15 12 9 18 1390
1.3 21 16 18 21 12 8 15 12 9 18 1390
1.4 21 16 18 18 15 8 15 12 9 18 1390
1.5 21 16 18 18 14 8 14 12 9 17 1393
1.6 20 17 17 12 19 8 13 12 9 16 1397
1.7 18 19 16 12 15 11 12 12 9 16 1400
1.8 18 19 16 12 15 10 12 11 17 8 1402
1.9 18 19 12 16 9 16 12 11 16 9 1402
2.0 18 19 8 18 9 15 12 10 16 9 1406
2.1 18 17 10 18 9 15 12 10 16 9 1406
2.2 18 15 12 18 8 15 12 10 15 9 1408
2.3 18 15 12 18 8 15 12 10 15 9 1408
2.4 17 15 12 16 10 15 12 10 14 9 1410
2.5 17 15 12 16 10 15 12 10 14 9 1410
2.6 17 15 12 14 12 15 12 10 14 9 1410
2.7 17 15 12 14 12 15 12 10 14 9 1410
2.8 17 15 12 14 12 15 12 10 14 9 1410
2.9 17 15 12 14 12 12 15 10 14 9 1410
3.0 17 15 11 15 10 14 15 10 14 9 1410
All 545 541 526 616 515 528 540 507 525 482 42415

2.3.3 Partition Formation

In section 1.8 we considered the EEBA game where agents are farsighted in

both expectations and preferences. Ideally, we want expectations and prefer-
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ences aligned in terms of their timeframe. Recall that, the preferences in the

standard model rely on the Markov process being at its limiting state; all the

stability games in this section, like the standard model, have farsighted pref-

erences. However, the first two formations, (Bilateral Stability and the Open

Membership Game), here have agents with myopic expectations, who only con-

sider the direct effect of their actions. These games for their validity rely on

the assumption that after the first deviation, it is assumed that subsequent de-

viations are not feasible (see subsections 2.3.3.1 and 2.3.3.2).20 The final two

games in this section, the Unanimity Game and the EBA (Equilibrium Binding

Agreements), like the EEBA game, have full farsightedness in both preferences

and expectations. The following stability table considers these four new games,

along with the earlier EEBA and the Zero Lifetime Bankers:

Table 2.52: The Stability Bias Table

Atomistic Partition Stability Level

Never Less Correct Too Always

Grand
Coalition
Stability
Level

Never

Less

Correct EEBA
Unanimity Game

EBA

Too Bilateral Stability
Always Zero Lifetime Bankers Simultaneous-Move

In table 2.52, the results from the six approaches are summarised: when is each

trivial partition stable? Is it correctly stable (stable if and only if it is efficient)?

Or is it biased: either too stable (stable for some parameter values at which it

is inefficient), or less stable than ideal (unstable for some parameter values at
20An alternative motivation for myopic expectations would be agents who only have short

run preferences (see sections 2.3.2.1 and 2.3.2.2), and for example, will be retired before any
response occurs.
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which it is efficient)? Further, the pro or anti-stability bias may be extreme: the

partition may be either, always stable (stable for all parameter values), or never

stable (unstable for all parameter values).

The EEBA and Unanimity Games give us ’goldilocks’ results: each of the trivial

partitions is stable if and only if it is efficient. However, in contrast three of the

other solution concepts all suggest that there is a bias towards the grand coali-

tion: with bilateral stability, the atomistic partition is correctly stable, but the

grand coalition is too stable; with the Simultaneous-Move game, the atomistic

partition is correctly stable, but the grand coalition is always stable; and with

Zero Lifetime Bankers, the atomistic partition is never stable, but the grand

coalition is always stable.21

2.3.3.1 Bilateral Stability

The concept of bilateral stability , from Jackson and Wolinsky (1996), is often

used in the network literature. In network theory, with bilateral stability, the

feasible set of changes is that individual agents can unilaterally remove links but

it takes a pair of agents to bilaterally form a new link. So, if no single agent

gains from removing any of their links, and no pair of agents gains from creating

a link between them, then the network is bilaterally stable.

Extending this concept to partition form games, means considering an environ-

ment where there are random opportunities for individual modules to split, and

pairs of modules to merge. Bilateral stability requires that no module wants

to split, and no pair of modules want to merge. Bilateral stability ignores the

potential for subsequent deviations, and so requires myopic agents: either in
21With the EBA modules can split, but not merge, resulting in a structural bias towards the

atomistic partition. In particular, for all payoff functions by definition the atomic partition
is always an EBA. However, the convention is to pick the coarsest EBA as the solution. And
under this convention for the standard model the solution EBA is always efficient: see Corollary
96 and Proposition 97.

187



expectations (agents do not believe that future deviations are possible), or in

preferences (agents have short run preferences and do not care about the long

run outcome). In the standard model, the agents’ preferences are farsighted: the

payoffs in the model are evaluated using asymptotic probabilities. Therefore, to

justify the use of this solution concept, we need a story that makes subsequent

deviations unfeasible. For example, imagine that, a banking commission is re-

designing the banking network, whilst structural changes (in the form of bank

mergers and bank splits), are on-going. After the commission announces their

new design for the bank network, there is time for one final structural change in

response, before the network is finalised. So, the timing of such a story would

be:

1. The social planner assigns a partition x.

2. At random, either a single module xi or, a pair of modules (xi, xj), is given

a chance to deviate. The single module xi can split; the pair of modules xi

and xj can merge. The resulting partition x∗(xi) or x∗(xi, xj) is now fixed

forever.22

Partition x is bilaterally stable if, for any possible xi or (xi, xj), there is no feasible

profitable deviation, and so x∗ always equals x. For my banking model, when

are the trivial partitions bilaterally stable? Starting at the atomistic partition,

it is not feasible for a singleton module to split, but it is feasible for two modules

(without loss of generality these are assumed to be modules 1 and 2), to merge.

The initial partition gives both banks 1 and 2 an expected utility of:

v1[{1, 1, 1....1}] = 1

n2
P [1] +

1

n2
θ(n− 1)P [1]P [1]

22In June 2010 the UK government setup the Independent Commission on Banking (ICB)
to make recommendation on how to reform the banking industry. But it knew that as soon as
it issued its recommendations that it would be dissolved: this happened in September 2011.
This kind of setup motivates why the commission has to make a static choice, and why they
can not respond and make further alterations to the banking network.
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whilst merging gives them each:

v1[{2, 1, 1....1}] = 2

n2
P [2] +

1

n2
θ(n− 2)P [1]P [1]

Re-arranging gives that {1, 1, 1....1} is bilaterally stable if and only if P [n] ≤
θP [1]: the condition for the atomistic partition to be efficient.

Now considering the grand coalition {n}, the alternative is to split to form {0.5n,
0.5n}.23 So the initial partition gives each bank an expected utility of v1[{n}] =
1
n
P [n]; whilst deviating gives each bank an expected utility of v1[{0.5n, 0.5n}] =
1
2n
P [0.5n]+ 1

2n
θP [0.5n]P [0.5n]. Re-arranging gives that {n} is bilaterally stable,

if and only if n ≤ n
2θ
− (1−θ)

θγ
. This is weaker than the condition for {n} to be

efficient. So, there exist parameter values for which {n} is bilaterally stable, but

not efficient.24

2.3.3.2 The Simultaneous-Move Open Membership Game

The simultaneous-move open membership game comes from Yi and Shin (2000).

It defines a game where there is an exogenous list of groups , and every agent

simultaneously picks one group to be in. Every agent gets to be in the group

they asked to be in; each group becomes a module, and thus a partition is

formed. This partition becomes permanent. The solution concept is that the

agents strategies need to form a Nash equilibrium of the game.

The permanency of the partition motivates the use of asymptotic payoffs. We

look to see when each of the trivial partitions can be formed as a Nash equilibrium

of this game. Recall vi[(xj)
n
j=1] =

xi

n2P [xi] +
∑

j �=i θ
xj

n2P [xi]P [xj]. Starting with

23If there are gains to splitting, then the partition with the highest total utility over the 2
modules is the symmetric partition {0.5n, 0.5n}.

24See Appendix J for a discussion of how models of club goods differ from partition form
games.
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the atomistic partition, the equilibrium strategy gives bank 1 a utility of v1[{1,
1, 1....1}] = 1

n2P [1]+ 1
n2 θ(n−1)P [1]P [1]; whilst deviating gives v1[{2, 1, 1....1}] =

2
n2P [2] + 1

n2 θ(n − 2)P [1]P [1].25 Re-arranging gives that {1, 1, 1....1} is a Nash

equilibrium, if and only if, P [n] ≤ θP [1]: the condition for the atomistic partition

to be efficient. 26

Considering the grand coalition, the equilibrium strategy has a payoff of v1[{n}] =
1
n
P [n]; whilst deviating gives v1[{1, n − 1}] = 1

n2P [1] + θ(n−1)
n2 P [1]P [n − 1]. Re-

arrangement shows that for all parameter values {n} is a Nash equilibrium. The

intuition behind why a single bank never wants to deviate is that {1, n−1} gives

bank 1 most of the cost of a big module (low enablement probability for partner

banks that bank 1 could be matched with), but few of the benefits (low rather

than high match values as it is in a different module).

2.3.3.3 The Unanimity Game

The Yi (1997) paper considers the Unanimity game of Bloch (1996). In the

Unanimity game a module forms if and only if all proposed members agree to

form the module. Suppose the N players are labelled {P1, P2, P3...PN}. First,

P1 makes a proposal for a module, e.g., {P1, P3, P4, P7}. Then each of the other

proposed module members, starting with the smallest index (here it is P3), ac-

cepts or rejects the proposal. If P3 accepts, then it is P4’s turn to accept or

reject the proposal, and so on. Module formation needs unanimity, so if any of

the other proposed members rejects P1’s proposal, then the current proposal is

completely thrown out: firstly, there is no module formation among the players

who agreed to the original proposal, and secondly the player who first rejected
25Many different strategies have an outcome which is a trivial partition. But, the simplest

for the atomistic partition is each bank i picking group i, and every bank picking group 1 for
the grand coalition.

26This is the same derivation as with bilateral stability.
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the proposal starts over by proposing another module. If, instead, all proposed

members accepted P1’s proposal, then they form a module and the remaining

players continue the module formation game, starting with the player with the

smallest index making a proposal. Notice that once a module forms, it cannot

break apart, admit new members, or merge with other modules, regardless of

how the rest of the players form modules.

Bloch (1996) shows that the Unanimity game yields the same stationary sub-

game perfect equilibrium structure as the following ‘‘Size Announcement’’ game:

player P1 first announces the size of his module s1, and the first s1 players form

a size s1 module, and then player Ps1+1 proposes s2, and the next s2 players

form a size s2 module, and so on until PN is reached. Intuitively, the equivalence

between the two games holds because of the identical players in the Unanimity

game: the proposer has reason to care about his module size but no reason to

care about the labels of the other player he selects; the receiver has no reason

to reject any proposal as what is best for the proposer is best for the receiver.

Under the standard model, the formation results for the Unanimity Game are

as follows:

Theorem 79. Under the standard model if P [n] > θP [1] then proposing the

grand coalition {n} is the unique SPE solution of the Unanimity game.

Proof. Firstly we know that the Unanimity game is equivalent to the size an-

nouncement game, so we can assume that if player 1 rationally proposes {n}
then it will be accepted by the other players. Secondly if P [n] > θP [1], then {n}
is the unique partition that maximises v1[x], so any other partition gives player

1 a worse payoff.

Theorem 80. Under the standard model if P [n] < θP [1] then each player pro-

posing a singleton module is an SPE solution of the Unanimity game.
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Proof. As P [n] < θP [1], then {1, 1, 1...1} is the partition that maximises the

utility of each and every player. So consider the strategy where each player

proposes a singleton module. Then no deviation can lead to a higher payoff.

2.3.3.4 Equilibrium Binding Agreement (EBA)

Chapter One in Section 1.8 considered the Extended Equilibrium Binding Agree-

ment (EEBA), from Diamantoudi and Xue (2007). This section will now consider

the original Equilibrium Binding Agreement (EBA), of Ray and Vohra (1997),

which has a smaller feasible set of allowable deviations but has the same coalition

preference relation, formed by requiring the individual preference to hold for all

members of the coalition. Formally:

Definition 81. Let N be the set of agents, and let P and Q be partitions of N .

Coalition S strictly prefers P to Q (notation P �S Q), if each member of coali-

tion S strictly prefers partition P to Q. Specifically, require that (P �i Q)i∈S, or

in utility formation, ui(P ) > ui(Q) for all i ∈ S. Note, that S can be any subset

of N : there is no requirement that S be a member of either of the partitions.

With the EEBA coalitional deviations are allowed; whilst with the EBA only

internal coalitional deviations are allowed: with the EEBA any members can

form a module and deviate; whilst with the EBA all the deviating members

need to come from the same module. Formally:

Definition 82. We write P
T�−→P ′ to denote an internal coalitional deviation

where the following conditions on P , T and P ′ hold:

1. P is a partition of N

2. T � S ∈ P ; that is T is a strict subset of one of the modules in P .
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3. P ′ = P \ S ∪ {S \ T, T} ; that is P ′ has one more module than P , and all

those modules that were unaffected by the deviation of T remain modules

in the new partition structure.

Specifically, the EEBA allows any sequence of coalitional deviations, so deviating

agents can re-deviate: this allows Pi
Ti→ Pi+1, Pj

Tj→ Pj+1, b ∈ Ti ∩ Tj and

i �= j. In contrast, the EBA only allows internal deviations (splits within a

module), and further each agent can only deviate once: Pi
Ti�→ Pi+1, Pj

Tj�→ Pj+1,

b ∈ Ti and i �= j ⇒ b /∈ Tj. This single deviation property is captured within

the definition of RV-reachable, which allows a sequence of deviations, but at

each stage forces newly formed modules to be members of the final partition: no

member can be in more than one module in the final partition, and so can only

be in (at most) one deviating coalition.

Definition 83. P´ is RV-reachable from P if there exists a sequence of partitions

P1, P2, ..., Pk , where:

1. P1 = P and Pk = P ′ ; the sequence of partitions needs to start with P and

end with P
′

2. and a sequence of modules (Tj ∈ P ′)k−1
j=1 such that

(
Pj

Tj�→ Pj+1

)k−1

j=1

; the

deviating coalition at each stage is a module in the final partition P ′

There are a number of different, but equivalent, definitions of RV dominance,

the dominance relation used by the EBA. The original Ray and Vohra (1997)

definition is explicitly recursive. However, Diamantoudi and Xue (2007) prove

that there are two other equivalent formulations, and we use a definition based

on the second of these.27

27See Diamantoudi and Xue (2007) Proposition 1 and Corollary 1, and Bloch and Datta
(2010) definition 15.
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Definition 84. P´ RV dominates P (denoted by P ′ �RV P ) if there exists

a sequence of partitions P1, P2, ..., Pk and a sequence of modules T1, T2, ..., Tk−1

such that:

1. P´ is RV-reachable from P through the sequence of partitions and modules.

2. P ≺T1 P´; the initial deviators prefer the end partition P ′ to the starting

partition P .

3. If Q = P2 or Q is RV-reachable from P2 via a strict subset R ⊂ {T2, T2, ...,

Tk−1} then there exists S ∈ {T2, T2, ..., Tk−1} \R s.t. Q ≺S P
′ ; Suppose T1

deviates because they prefer P ′ to P , and there is a sequence of deviators

(Tj)
k−1
j=1 that leads from P to P ′ (in the RV-reachable sense). However,

perhaps not all the other potential deviators deviate: for RV-dominance

we require that whatever subset of the (Tj)
k−1
j=1 do not deviate there is at

least one Tj who has not deviated yet, that prefers P ′ to their current

partition Q.

For its solution concept, the EBA uses the same stable set of von Neumann

and Morgenstein (1944), as the EEBA does; but it uses RV domination instead

of indirect domination. Recall, that intuitively, the stable set requires that:

firstly, no solution can be preferred to any other solution; and secondly, every

non-solution must be inferior to some solution. Formally:

Definition 85. Consider a set X and some binary ordering > on X. Then R,

whereØ �= R ⊆ X, is a vN–M stable set for (X,>), if it is both internally and

externally stable:

R is vN–M internally stable for (X,>), if there do not exist P, P´ ∈ R such that

P´ > P

R is vN–M externally stable for (X,>), if for any P ∈ X \ R, there exists some

P´ ∈ R such that P´ > P
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Finally, we have the definition of an EBA:

Definition 86. P is an EBA, if there exists R s.t. P ∈ R and R is a vN–M

stable set of (P, �RV ), where P is the set of partitions.

The Yi (1997) paper gives a number of useful results for partition form games

under negative externalities, including four different conditions. The first and

most important, (N1) we met in chapter 1:

Definition 87. (N1) The game satisfies negative externalities , if when modules

merge to form a larger module, outside modules not involved in the merger are

strictly worse off. Specifically, if x is strictly coarser than y, and xi = yi, then

that implies that vi[x] < vi[y].

And recall:

Definition 5. Partition x is strictly coarser than y if each module in x can

be formed as a merger of modules in y. Specifically, if x has k modules

and y has l modules then require k < l and the existence of a mapping

f : Al → Ak s.t.
(
xj =

∑
f(i)=j yi

)k

j=1
where Al = {1, 2, 3, 4.....l} and

Ak = {1, 2, 3, 4.....k}. Conversely, partition x is strictly finer than y, if and

only if, partition y is strictly coarser than x.

We now introduce the next 2 definitions: which are about the internal effects of

changes in the partition structure (that is the effects on players who are members

of modules which change in size). With (N2), a member of a module becomes

better off if his module merges with larger or equal-sized module:

Definition 88. (N2) If x = (xi)
k
i=1 and x′ = (

∑j
i=1 xi, (xi)

k
i=j+1) are partitions

where (x1 ≤ xi)
j
i=1 then v1[x

′] > v1[x].
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With (N3), a member of a non-singleton module becomes better off if he leaves

his module to join another module of equal or larger size:

Definition 89. (N3) If x = (xi)
k
i=1 and x′ = ((xi)

j−1
i=1 , xj − 1, (xi)

l−1
i=j+1, xl + 1,

(xi)
n
i=l+1) are partitions and xl ≥ xj ≥ 2 then vj[x] < vl[x

′].

Here I introduce the stronger variant condition (N3∗) which removes the require-

ment for the departing and receiving modules to be non-singletons:

Definition 90. (N3∗) If x = (xi)
k
i=1 and x′ = ((xi)

j−1
i=1 , xj − 1, (xi)

l−1
i=j+1, xl + 1,

(xi)
n
i=l+1) are partitions and xl ≥ xj ≥ 1 then vj[x] < vl[x

′].

Theorem 91. Under the standard model, (N3∗) holds if and only if P [n] >

P [1]θ.

Proof. Without loss of generality assume j = 1 and l = 2. Recall

v1[x] =
x1

n2
P [x1] +

∑
j �=i

θ
xj

n2
P [x1]P [xj]

and similarly

v2[x
′
] =

x2 + 1

n2
P [x2 + 1] + θ

x1 − 1

n2
P [x2 + 1]P [x1 − 1] +

∑
j>2

θ
xj

n2
P [x2 + 1]P [xj]

If v2[x
′
] > v1[x] then D[x, x′] > 0 where

D[x, x′] :=
n2(v2[x

′
]− v1[x])

(1− x1 + x2)P [x1]P [x1 − 1]P [x2]P [x2 + 1]

The term D[x, x′] can be re-arranged to give
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D[x, x′] = 1− γ − θ + γ(1− θ)(x1+x2) + γ2(1− θ)(x1−1)x2

−Rγθ
{
1 + γ(x1 + x2−1) + γ2(x1 − 1)x2

}

where R :=
∑

j>2 xjP [xj]. The R coefficient is negative, so it is hardest for D[x,

x′] to be positive when R is maximised: this occurs when the other n− x1 − x2

members are arranged in singleton modules and R = (n − x1 − x2)P [1]. So

x = (x1, x2, 1, 1, 1....1) and x′ = (x1 − 1, x2 + 1, 1, 1, 1...1). This equates to

requiring that the two conditions

θγ

1− γ + γ(x1 + x2) + γ2(x1 − 1)x2

+
γθ (n− x1 − x2)

γ + 1
≤ 1− θ

and
γ

1 + γ(x1 + x2) + γ2(x1 − 1)x2

< 1− θ

both hold for all suitable x1 and x2. However, these conditions are strictly

harder to solve for smaller x1 and x2. So we need only to consider the case

with x1 = x2 = 1, which gives P [n] > P [1]θ: the grand coalition efficiency

condition.

Corollary 92. Under the standard model if P [n] > P [1]θ then (N3) holds.

Proof. (N3) is weaker then (N3∗), so this follows directly from Theorem 91.

Further, following the same argument as in that theorem’s proof and considering

the case x1 = x2 = 2, gives the following necessary and sufficient condition for

(N3) to hold: γ2(2− 2θ(n− 3)) + γ(3− θn) + 1− θ > 0.

The region where the (N3) condition holds but the grand coalition is inefficient,

is plotted below in green, with n on the x-axis and θ on the y-axis, with plot for
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each value of the shock parameter γ between 0.1 and 1.0 with an increment of

0.1:

Figure 2.7: (N3) holds but Grand Coalition Inefficient Plots
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The final condition concerns the effect of a merger between a non-singleton and

a singleton module on the non-singleton module. Formally: 28

Definition 93. d∗ is the largest integer which satisfies (2 ≤ xi ≤ d∗ and x =

(xj)
k
j=1 a partition) ⇒ vi[x] ≥ vi[x

′] where x′ := ((xj)
i−1
j=1, xi − 1, 1, (xj)

k
j=i+1)

28Yi (1997) has different notation and uses k0 for what I have called d∗.
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So intuitively, if there is a module of size smaller than or equal to d∗ and we

split off a singleton module, then the members of the remaining module can be

no better off, whatever the initial structure of the other modules.29

Theorem 94. For the standard model, d∗ =

⎧⎪⎪⎨
⎪⎪⎩
n θP[1] ≤ P [n]

1 θP[1] > P [n]

Proof. Recall from the standard model that

vi[x] :=
xi

n2
P [xi] +

∑
j �=i

θ
xj

n2
P [xi]P [xj]

and

vi[x
′] =

xi − 1

n2
P [xi − 1] +

∑
j �=i

θ
xj

n2
P [xi − 1]P [xj] + θ

1

n2
P [xi − 1]P [1]

Hence

n2(vi[x]− vi[x
′]) = (xi + θR)P [xi]− (xi + θR− 1 + θP [1])P [xi − 1]

where R :=
∑

j �=i xjP [xj]. Without loss of generality we let i = 1 and consider

module 1. Factorising gives:

n2(v1[x]− v1[x
′]) = (γ − θ − γ2θR− γθR− γθx1 + 1)P [1]P [x1]P [x1 − 1]

So v1[x] ≥ v1[x
′] if and only if (γ−θ−γ2θR−γθR−γθx1+1) ≥ 0. We are looking

for x1 where this condition holds for all possible specifications (xj)j>1 of the rest

of the partition and hence we want to consider the partition that maximises R.
29Yi (1997) defines this concept as definition 4.1 in section 4.1 However different notation

and terminology is used: k0 is the maximum module size, C represents a partition (although
the terminology partition is not used), and π(k;C) considers a module of size k and represents
the utility per member of that module.
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This occurs when the other modules are all singletons and R = (n − x1)P [1].

This gives v1[x] ≥ v1[x
′] if and only if γ − θ + γθ(−n) + 1 ≥ 0. This equates to

v1[x] ≥ v1[x
′] if and only if θP[1] ≤ P [n]

The condition on d∗ is the same as the condition as whether the grand coalition

or the atomistic partition of singletons is efficient. So if the grand coalition is

efficient, then starting from any partition any module that merges with a sin-

gleton module weakly gains. Conversely, if the partition of singletons is efficient

then for any other partition there is at least one module that would strictly gain

from a split where it lost one member.

Now we formulate the Equilibrium Binding Agreement (EBA) solutions. Con-

sider part 1 of Proposition (4.3) from Yi (1997):

Proposition 95. Under (N1) if partition x = (xi)
k
i=1 is such that (xi ≤ d∗)ki=1

then x is a stable coalition structure under the Equilibrium Binding Agreements

rule.

Corollary 96. If θP[1] ≤ P [n] then every partition x is a stable coalition

structure under the Equilibrium Binding Agreements rule.

Proof. By Theorem 94, if θP[1] ≤ P [n] then d∗ = n. Hence every partition

satisfies the (xi ≤ d∗)ki=1 condition of Proposition 95 and the result follows.

This multiplicity of EBAs is not a surprise: the EBA allows for splits of modules

but does not allow mergers between modules. So when the grand coalition is

efficient and we start at a general partition x, then the only feasible change

is for a module to split, and that takes the system further from the efficient

partition. In contrast, when the atomistic partition is efficient, we can derive

the uniqueness of the atomistic EBA from first principles:
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Proposition 97. If θP[1] > P [n] then only the atomistic partition {1, 1, 1...1}
is a stable coalition structure under the Equilibrium Binding Agreements rule.

Proof. The atomistic partition is stable as it allows no internal coalitional de-

viations.30 To show uniqueness, consider some other partition x, which must

have at least one non-singleton module. Through a choice of internal coalitional

deviations {1, 1, 1...1} is RV-reachable from x. And as {1, 1, 1...1} is the unique

Pareto efficient partition it RV-dominates x. Hence, due to the internal stability

property of stable sets, x cannot be a stable coalition structure.

With the EBA modules can split, but not merge, resulting in a structural bias

towards the atomistic partition. So, in particular, for all payoff functions by def-

inition the atomic partition is always an EBA. However, firstly the convention is

to pick the coarsest EBA as the solution. See both Bloch and Dutta (2010), “The

‘solution’ of the game is the set of coarsest EBAs.”, and Ray (2007), “Typically,

many coalition structures admit EBAs. Which of these should be considered as

the set of EBAs for the game? The answer to this question depends on what

we consider to be the ‘initial’ coalition structure under which negotiations com-

mence. In keeping with the spirit of our exercise, which is to understand the

outcomes of free and unconstrained negotiation, we take it that the initial struc-

ture is the grand coalition itself. Under this supposition, it is natural to focus on

the set of equilibrium binding agreements for the grand coalition, or, if this set

is empty, on the next level of refinement for which the set of EBAs is nonempty.”

With this convention, for the standard model, under the generic case of a unique

efficient partition, then the solution EBA is the efficient partition. Secondly if we

had an approach, which was the reverse of the EBA, (where the initial partition
30Definition 86 defines EBAs in terms of stable sets. In an earlier equivalent formulation,

Ray and Vohra (1997), the atomistic partition is directly defined to be stable.
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is the atomistic partition; whilst, mergers, but not splits, are allowed), then my

conjecture is that we would get the opposite result: a pro-Grand Coalition bias.

2.4 Social Planner Preferences

2.4.1 Intertemporal Model

The standard model assumed that the system was already at the limiting state

of the Markov process of shocks. This section shows that the results are robust

to considering a model with a uniform inter-temporal distribution of business

opportunities. It considers a model, where welfare is summed over all time

periods, rather than being evaluated just at the limiting state: this is the only

difference the intertemporal model has compared with the standard model.

Appendix I derives the form of vc1, the intertemporal expected utility function

for a member of module 1; shows it to be of the ratio quadratic form defined

in appendix H; and hence proves that for all parametrisations, vc1 is either

quasi-convex, or quasi-concave (or monotonic and hence both quasi-convex and

quasi-concave). This leads to the following characterisation:

Table 2.53: Intertemporal Model Characterisation Table

condition on vc1 Stationary Points vc1 description x∗
1

vc1[1]<vc1[2] vc1[n− 1]<vc1[n] none increasing n

vc1[1]<vc1[2] vc1[n− 1]=vc1[n] 1 local max in range [n− 1, n] quasi-concave n− 1 and n

vc1[1]<vc1[2] vc1[n− 1] > vc1[n] 1 local max quasi-concave interior31

vc1[1]=vc1[2] vc1[n− 1]<vc1[n] 1 local min in range [1, 2] quasi-convex n

vc1[1]=vc1[2] vc1[n− 1]=vc1[n] impossible
vc1[1]=vc1[2] vc1[n− 1]>vc1[n] 1 local max in range [1, 2] quasi-concave 1 and 2

vc1[1]>vc1[2] vc1[n− 1]<vc1[n] 1 local min in range [2, n− 1] quasi-convex 1 or n or both
vc1[1]>vc1[2] vc1[n− 1]=vc1[n] 1 local min in range [n− 1, n] quasi-convex 1
vc1[1]>vc1[2] vc1[n− 1]>vc1[n] none decreasing 1

31Either the floor or the ceiling of the stationary point
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Now, we evaluate vc1, bank 1’s utility, for a range of different parametrisations,

(β, n, θ, q, ρ). There does not appear to be a simple closed form solution for the

vc1 maximisation program, so the behaviour needs to be investigated computa-

tionally; however, there are four reasons why this is not onerous. Firstly, here we

do have closed forms for the expected utility function vc1, and so we can directly

assess the value of each policy option without using a Monte Carlo approach;

conversely, in the propagation mechanism literature, there is no closed form for

the expected utility function, and so it needs to be sampled from the data gen-

erating process using a Monte Carlo approach. Secondly, table 2.53 shows that

x∗
1 := argmax x1∈Nvc1[x1] is strictly interior, if and only if, both vc1[1]< vc1[2]

and vc1[n− 1]>vc1[n]: we do not need to evaluate vc1 for all possible partitions

in order to select parametrisations with interior solutions. Thirdly, there are

only n−2 interior cases to evaluate, so the computational search cost is linear in

parameters.32 Fourthly, when vc1 has an interior solution, that solution is also

the unique local maximum: so once a local maximum is found the search can be

terminated.33

For each parametrisation, the utility of the best trivial partition is given by

vB := Max{vc1[1], vc1[n]}; the utility of the best interior partition is given by

vcI := Max{vc1[x1]}n−1
x1=2; and g, the percentage gain from choosing an interior

partition, is given by g := 100 ∗ (vI − vB)/vB. Without loss of generality, we

can consider one period to be a year, and we assume that the discount factor β

is 0.97, 0.98 or 0.99.34 The number of banks, n, is one of {10, 20, 30, 40, 50,

100, 1000}. The value of outside matches, θ, has a minimum of 0.1, a maximum
32Certain well known computer science problems, for example the traveling salesman prob-

lem, are believed to only have solutions that are exponential in parameters: making it imprac-
tical to find their solutions for large examples.

33This is because in order for vc1 to have an interior maximum, it is necessary that it is
quasi-concave.

34This is without loss of generality as the argmax is homogenous of degree 0 with respect to
jointly Log[β], Log[1− q] and Log[1− ρ].
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of 0.9 and an increment of 0.1. The disabling shock probability, q, comes from

this list of values, {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}; and the enabling probability, ρ,

independently comes from this list, {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007,
0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3}. The β

parameter is one of 3 values, the n parameter is one of 7 values, the θ parameter

is one of 9 values, the q parameter is one of 19 values, and the ρ parameter is

one of 21 values. This gives a total of 3∗7∗9∗19∗21 = 75411 parametrisations.

In nearly all these parametrisations (74601 out of 75411), vc1 has a boundary

solution and, in such cases, as argued earlier by symmetry, this solution also then

solves the welfare maximisation program. In contrast, only 810 (1.7%) of these

cases have interior solutions. Further, there is only ever a small gain to bank 1

from choosing an interior solution: the highest gain in the table is 3.6%.35 Due to

the existence of negative externalities, we know that at interior solutions, banks

not in module 1 lose out: they prefer {1, 1, . . . , 1, 1, 1, 1} to {x∗
1, 1, 1, . . . , 1, 1},

and hence prefer argmaxx1∈{1,n} vc1[x1] to x∗
1. So, when comparing interior and

boundary partitions, the bank 1 utility percentage gain, is an upper bound to

the welfare percentage gain, and it is possible that even when vc1 does have an

interior solution that Wc does not: the costs of the losers may dominate the

benefits of the winners. In summary, with the intertemporal model, the welfare

program rarely has interior solutions, and when they do occur they only give

a small increase in welfare. Hence, the conclusion is that the standard model

rejection of interior partitions is robust to replacing asymptotic preferences with

intertemporal preferences.

The results can be further broken down in term of each of the five choice para-

meters. These show that interior solutions are most likely to occur for: low
35This occurs with (β = 0.97,n = 20, θ = 0.1, q = 0.02, ρ = 0.001)
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number of banks, n; low levels of θ, the value of outside matches; low levels of

ρ, the re-enablement probability; low levels of β, the discount factor; and for

intermediate values of q, the disabling shock probability.

Table 2.54: Intertemporal Model n Table

Overall gain percentage distribution broken down by n
n (-100,0) [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4)

10 10463 160 62 35 26 20 7 0 0
20 10581 105 38 20 15 6 5 2 1
30 10655 69 22 13 7 3 3 1 0
40 10680 52 18 8 7 4 4 0 0
50 10704 41 14 5 6 2 1 0 0

100 10745 21 6 1 0 0 0 0 0
1000 10773 0 0 0 0 0 0 0 0

All 74601 448 160 82 61 35 20 3 1

Table 2.55: Intertemporal Model θ Table

Overall gain percentage distribution broken down by θ
θ (-100,0) [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4)

0.1 7994 161 84 48 44 25 19 3 1
0.2 8179 113 45 18 15 8 1 0 0
0.3 8272 73 17 13 2 2 0 0 0
0.4 8316 50 10 3 0 0 0 0 0
0.5 8347 28 4 0 0 0 0 0 0
0.6 8363 16 0 0 0 0 0 0 0
0.7 8374 5 0 0 0 0 0 0 0
0.8 8377 2 0 0 0 0 0 0 0
0.9 8379 0 0 0 0 0 0 0 0
All 74601 448 160 82 61 35 20 3 1
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Table 2.56: Intertemporal Model q Table

Overall gain percentage distribution broken down by q
q (-100,0) [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4)

0.001 3947 21 1 0 0 0 0 0 0
0.002 3931 33 5 0 0 0 0 0 0
0.003 3914 38 13 2 2 0 0 0 0
0.004 3919 30 12 7 0 1 0 0 0
0.005 3916 30 11 8 2 1 1 0 0
0.006 3915 30 12 5 6 0 1 0 0
0.007 3905 36 11 6 6 3 2 0 0
0.008 3899 35 14 8 5 7 0 1 0
0.009 3900 33 14 9 5 4 2 2 0
0.01 3899 34 13 8 9 2 4 0 0
0.02 3917 23 6 6 8 3 5 0 1
0.03 3927 23 9 3 4 3 0 0 0
0.04 3933 14 9 6 4 2 1 0 0
0.05 3936 12 8 3 3 5 2 0 0
0.06 3939 14 5 4 3 2 2 0 0
0.07 3945 14 4 3 1 2 0 0 0
0.08 3948 12 5 3 1 0 0 0 0
0.09 3953 10 4 1 1 0 0 0 0
0.1 3958 6 4 0 1 0 0 0 0
All 74601 448 160 82 61 35 20 3 1
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Table 2.57: Intertemporal Model ρ Table

Overall gain percentage distribution broken down by ρ
ρ (-100,0) [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4)

0.001 3530 21 15 9 4 8 3 0 1
0.002 3531 24 10 7 8 3 6 2 0
0.003 3531 22 14 9 8 4 2 1 0
0.004 3525 33 14 6 4 6 3 0 0
0.005 3529 31 11 7 8 3 2 0 0
0.006 3534 25 16 7 6 2 1 0 0
0.007 3538 28 11 6 5 2 1 0 0
0.008 3539 26 11 10 1 3 1 0 0
0.009 3541 29 9 4 5 2 1 0 0
0.01 3540 27 10 6 7 1 0 0 0
0.02 3547 23 12 5 3 1 0 0 0
0.03 3557 25 6 2 1 0 0 0 0
0.04 3567 18 4 1 1 0 0 0 0
0.05 3568 19 3 1 0 0 0 0 0
0.06 3567 20 3 1 0 0 0 0 0
0.07 3569 18 3 1 0 0 0 0 0
0.08 3572 16 3 0 0 0 0 0 0
0.09 3570 18 3 0 0 0 0 0 0
0.1 3575 14 2 0 0 0 0 0 0
0.2 3582 9 0 0 0 0 0 0 0
0.3 3589 2 0 0 0 0 0 0 0
All 74601 448 160 82 61 35 20 3 1

Table 2.58: Intertemporal Model β Table

Overall gain percentage distribution broken down by β
β (-100,0) [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4)

0.97 24807 179 66 36 24 14 10 0 1
0.98 24862 155 52 28 18 15 6 1 0
0.99 24932 114 42 18 19 6 4 2 0
All 74601 448 160 82 61 35 20 3 1
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2.4.2 Risk Aversion

2.4.2.1 Risk Averse Social Planner

Suppose we now have a risk averse social planner, but we keep the same distri-

bution for b[x], the business returns as a function of the partition x, as in the

standard model:

b[θ] ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 1− PI [x]− PO[x]

θ PO[x]

1 PI [x]

Here PI [x] and PO[x] are the probabilities of enabled inside and outside matches:

as in the standard model, they are given by PI [x] =
∑k

i=1(
xi

n
)2P [xi] and PO[x] =∑k

i=1

∑
j �=i(

xi

n
)(

xj

n
)P [xi]P [xj]; note specifically, that these functions are inde-

pendent of θ. We model the social planner as penalising high variances in

business returns, and having a quadratic utility function, WRA[x] := E[b[θ]] −
λVar[b[θ]], where 1 > λ > 0 is a fixed parameter.

Theorem 98. A necessary condition for this program to have an interior solu-

tion is that θ < P [n]
P [1]

< θ−λθ2

1−λ

Proof. As Var[b] = E[b[θ]2] − E2[b[θ]], this means that WRA[x] = E[b[θ]] −
λE[b2[θ]]+λE2[b[θ]]. Further, b2[θ] has the same distribution as b[θ2], and hence

WRA[x] = E[b[θ]] − λE[b[θ2]] + λE2[b[θ]]. Simplifying using and letting W [x, θ]

be the welfare for the standard model with x as the partition and θ as the value

of outside matches, gives: WRA[x] = (1− λ)W [x, θ−λθ2

1−λ
] + λ(W [x, θ])2.36

As λ < 1, we have an average of standard programs each with positive weights.

We know that standard programs have boundary solutions. So if both the θ−λθ2

1−λ

36The key step is that E[b[θ]] =
∑k

i=1(
xi

n )2P [xi] + θ
∑k

i=1

∑
j �=i(

xi

n )(
xj

n )P [xi]P [xj ] and
E[b[θ2]] =

∑k
i=1(

xi

n )2P [xi] + θ2
∑k

i=1

∑
j �=i(

xi

n )(
xj

n )P [xi]P [xj ]. So E[b[θ]] − λE[b[θ2]] =

(1− λ)
∑k

i=1(
xi

n )2P [xi] + θ(1− θλ)
∑k

i=1

∑
j �=i(

xi

n )(
xj

n )P [xi]P [xj ]

208



and θ standard model programs have the same boundary solution, then the risk

averse WRA[x] will also have that boundary solution. Conversely, in order for the

risk averse program to have an interior solution it is necessary for the 2 standard

programs to have different boundary solutions. Recall that in the standard

model, the grand coalition is strictly preferred if and only if P [n] > θP [1].

Further as λ < 1, we have θ−λθ2

1−λ
> θ. So in order for the risk averse program

to have an interior solution, it is necessary that the standard model θ program

has a grand coalition solution, and that the θ program has an atomistic solution.

This equates to the required condition, θ < P [n]
P [1]

< θ−λθ2

1−λ
.

The risk aversion model was assessed for a range of parameterisations. As the

welfare function is specified directly at the social planner level rather than at

the individual bank level, the welfare function is used rather than the per bank

utility function. The number of banks n, has a minimum of 3, a maximum of

100 and an increment of 1. The value of outside matches, θ, has a minimum

of 0, a maximum of 1 and an increment of 0.1. The shock parameter γ has

a minimum of 0, a maximum of 3 and an increment of 0.1. The risk aversion

parameter, λ, has a minimum of 0, a maximum of 1.0 and an increment of 0.1.

This gives a total of 98 ∗ 11 ∗ 31 ∗ 11 = 367598 different parametrisations. Only

7925 of these cases satisfy the θ < P [n]
P [1]

< θ−λθ2

1−λ
condition. In each case the best

interior symmetric partition was compared to the best boundary partition. In

every case the best interior partition had lower welfare than the best boundary

partition. Hence, the conclusion is that the standard model rejection of interior

partitions is robust to changing the social planner from being risk neutral to

having quadratic risk aversion. Further, the absence of interior solutions leads

to the following conjecture:
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Conjecture 99. The risk averse social planner program has boundary solutions

for all parameter values.

The following projection tables are produced using the same parameter ranges

as above, except that n is restricted to the standard range, (10, 20, 30, 40, 50,

100, 1000). For each parametrisation, the welfare of the best trivial partition

is given by Wb := Max{WRA[1],WRA[n]}; the welfare of the best symmetric

interior partition is given by Wi := Max{WRA[n/k]}n−1
k=2 ; and g, the percentage

gain from choosing an interior partition, is given by 100∗ (W i−W b)/W b. When

either λ = 0 or λ = 1 the social planner has preferences equal to those given

in the θ parametrisation of the standard model. However, with λ = 1 the

welfare function is the square of the standard model’s utility function, and so

the losses from an interior partition are larger. This motivates why in the λ

table, when λ is larger, the losses are larger. In the n table, as n increases the

loss from choosing an interior partition decreases. This is because for nearly

all parametrisations the best boundary partition is the atomistic partition, and

the nearest interior partition occurs with k = n − 1 modules; so as n increases

the nearest interior partition gets closer to the atom partition. In the γ table,

when γ = 0, the efficient partition is the grand coalition and the closest interior

partition has 2 modules each with 0.5n members: this has outside matches half

the time and so there is a big drop in welfare. For small, but strictly positive

γ, the efficient partition rapidly switches to become the atomistic partition, and

the n−1 module interior partition can get close to it, resulting in smaller losses.

However, as γ increases, the cost of larger modules increases, and so the loss

from interior partitions increases.
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Table 2.59: Risk Aversion Model λ Table

Overall gain percentage distribution broken down by λ
λ [-75,-50) [-20,-10) [-10,-5) [-5,-4) [-4,-3) [-3,-2) [-2,-1) [-1,0]

0.0 49 54 308 162 289 430 511 584
0.1 58 56 327 146 291 435 506 568
0.2 58 66 329 158 286 444 492 554
0.3 58 70 340 168 291 442 477 541
0.4 58 84 350 176 276 464 449 530
0.5 58 105 356 177 287 452 433 519
0.6 58 132 343 191 312 429 414 508
0.7 61 166 331 221 326 384 401 497
0.8 61 199 367 218 324 337 397 484
0.9 63 230 407 215 326 285 387 474
1.0 67 289 462 199 321 269 338 442
All 649 1451 3920 2031 3329 4371 4805 5701

Table 2.60: Risk Aversion Model n Table

Overall gain percentage distribution broken down by n
n [-75,-50) [-20,-10) [-10,-5) [-5,-4) [-4,-3) [-3,-2) [-2,-1) [-1,0]
10 149 1168 1725 250 251 142 53 13
20 103 92 1780 630 454 362 268 62
30 87 56 272 990 1086 645 477 138
40 80 48 62 128 1253 1245 673 262
50 78 40 47 22 273 1934 963 394
100 76 25 23 10 12 43 2367 1195
103 76 22 11 1 0 0 4 3637
All 649 1451 3920 2031 3329 4371 4805 5701

211



Table 2.61: Risk Aversion Model θ Table

Overall gain percentage distribution broken down by θ
θ [-75,-50) [-20,-10) [-10,-5) [-5,-4) [-4,-3) [-3,-2) [-2,-1) [-1,0]

0.0 150 149 283 135 204 260 500 706
0.1 110 83 158 105 187 450 710 584
0.2 88 62 209 158 339 535 463 533
0.3 77 69 305 207 311 482 418 518
0.4 77 77 358 195 320 447 412 501
0.5 77 82 406 180 334 418 401 489
0.6 70 109 423 185 334 397 390 479
0.7 0 201 426 201 328 376 389 466
0.8 0 215 434 216 327 350 388 457
0.9 0 175 495 227 334 332 376 448
1.0 0 229 423 222 311 324 358 520
All 649 1451 3920 2031 3329 4371 4805 5701
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Table 2.62: Risk Aversion Model γ Table

Overall gain percentage distribution broken down by γ
γ [-75,-50) [-20,-10) [-10,-5) [-5,-4) [-4,-3) [-3,-2) [-2,-1) [-1,0]

0.0 532 154 77 7 0 0 0 77
0.1 71 65 17 1 5 27 91 570
0.2 27 52 30 25 34 55 201 423
0.3 11 37 69 31 47 95 248 309
0.4 4 31 93 38 56 127 247 251
0.5 2 23 108 43 81 136 222 232
0.6 1 23 115 49 94 147 197 221
0.7 1 23 118 61 91 173 172 208
0.8 0 28 119 64 98 187 155 196
0.9 0 27 131 66 103 190 150 180
1.0 0 30 131 68 114 184 152 168
1.1 0 32 136 72 107 199 150 151
1.2 0 34 140 66 118 198 148 143
1.3 0 38 143 64 120 190 153 139
1.4 0 41 145 64 124 186 151 136
1.5 0 44 146 66 125 182 148 136
1.6 0 45 149 66 127 177 148 135
1.7 0 48 148 68 124 170 155 134
1.8 0 49 150 70 129 159 156 134
1.9 0 49 145 78 134 152 156 133
2.0 0 51 143 85 132 147 148 141
2.1 0 51 145 90 128 144 146 143
2.2 0 52 146 89 131 141 145 143
2.3 0 53 145 92 130 138 146 143
2.4 0 53 144 88 136 137 146 143
2.5 0 53 145 89 136 128 146 150
2.6 0 53 146 87 138 125 146 152
2.7 0 53 148 86 140 122 145 153
2.8 0 53 149 87 139 121 145 153
2.9 0 53 149 86 143 118 146 152
3.0 0 53 150 85 145 116 146 152
All 649 1451 3920 2031 3329 4371 4805 5701

2.4.2.2 General Equilibrium Approach

This section shows that a general equilibrium model, under the assumption of

complete markets, reduces to a standard model, and thus has boundary solu-

tions. The setup is as follows: firstly, suppose there are n banks, each with T
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businesses and that each business has a risk averse utility function u[.]. Secondly,

compared with the risk neutral model we need 2 parameters, not 1, to model

outside matches: let p be the probability that a match can be made between

matched businesses in 2 different modules and let v be the value of a success-

fully completed outside match. This leads to the following welfare function for

symmetric matches: WGE[d] =
d
n
P [d]nT ∗ u[ 1

nT
] + (n−d)

n
P 2[d]pnT ∗ u[ v

nT
].

This can be derived as follows: as the businesses are risk averse and there are

complete markets the result will be complete consumption smoothing. So when

there is a successful inside match each of the nT businesses gets 1
nT

units of

consumption, whilst when there is a successful outside match each business gets

v
nT

. Dividing by nT and without loss of generality setting u[ 1
nT

] = 1, gives:
WGE [d]

nT
= d

n
P [d] + (n−d)

n
P 2[d]pu[ v

nT
]. So this program is the same as the standard

model with θ = pu[ v
nT

], and hence has boundary solutions.37

2.4.2.3 Within Module Consumption Smoothing

Suppose that businesses are risk averse and can smooth consumption with other

businesses in the same module, but not with businesses in other modules. As in

the standard model, n is the number of banks, and γ is the shock parameter. And

as in the general equilibrium case in section 2.4.2.2 above, p is the probability

that two businesses in distinct enabled modules can match, v is the value of that

match once made and u[.] is the utility function, where we assume u[0] = 0.

Considering symmetric partitions: in the case of an inside match, the return of 1

is shared equally amongst d businesses and so each has utility u[ 1
d
]; in the case of

an outside match, the return of v is shared equally amongst the 2d businesses in

the 2 modules and so each has utility u[ v
2d
]. This leads to the following welfare

37p is a probability so 0 < p < 1 and v is the value of an outside match so 0 < v < 1. We
have normalised u(0) = 0 and u( 1

nT ) = 1, so 0 < u( v
nT ) < 1. Hence 0 < pu( v

nT ) < 1. So this
is a valid value for θ.
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function:

Wcs[d]:=(d/n)P [d]d ∗ u[1/d] + p((n− d)/n)P [d]2 ∗ 2d ∗ u[v/2d]

Risk averse preferences are represented by a utility function of form u[c] = cω,

with 0 < ω < 1, so there is constant relative risk aversion with a coefficient of

relative risk aversion of 1− ω.38

This model satisfies negative externalities, and so we consider v1,CS[x1], the util-

ity that bank 1 gets when it is in a module of size x1 and all other modules are

singletons.39 The utility function is as follows:

v1,cs[x1]:=(x1/n)
2P [x1](1/x1)

ω + p(x1/n)((n− x1)/n)2P [x1]P [1](0.5v/x1)
ω

The first term represents inside matches: there is an inside match involving

module one with probability (x1/n)
2, and then each of the module 1 businesses

gets a utility of (1/x1)
ω. The second term represents outside matches: this

requires ones of the selected modules to be module 1, a x1/n probability event,

and one module is not module 1, a (n−x1)/n probability event. The 2 is present

because module 1 could be either the first or the second module selected. If the

match is completed, then the value v is shared equally between the 2 modules,

and then each of the module 1 businesses gets a utility of (0.5v/x1)
ω.

By considering ∂v1,cs[x1]

∂x1
, we can use our usual technique to see if v1,cs[x1] is quasi-

38If the coefficient of relative risk aversion is greater than or equal to 1 then we can no longer
have u[0] = 0, indeed we require u[0] = −∞. This causes difficulties as even in good states
of the world when the match is successfully completed, businesses in other modules get no
return.

39Similarly we know that the model has negative externalities: if an outside module has
more than one member then it is less likely to be enabled and bank 1 is worse off.
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convex. Re-arrangement gives:

∂v1,cs[x1]

∂x1

=
dv1,cs[x1]P [1]P [x1]

2

n2(xω
1 )

where

dv1,cs[x1] := ax2
1 + bx1 + c

a := (1− ω)γ (γ + 1− 2pυ)

b := (−γω + 2γ − 2γnpυω + 2pυω − 4pυ − ω + 2)

c := 2npυ(1− ω)

υ := (0.5v)ω

Theorem 100. If a �= 0 then v1,cs[x1] either has boundary solutions or an

interior solution at x1 =
−b−
√

(b2−4ac)

2a
.

Proof. As ∂v1,cs[x1]

∂x1
= 0 if and only if dv1,cs[x1] = 0, the roots of dv1,cs[x1] equate

to the first order points of v1,cs[x1]. So if the quadratic function dv1,cs[x1] does not

have any roots in the range [1, n] then v1,cs[x1] is monotonic and has boundary

solutions. The function dv1,cs[x1] has an x2
1 term whose coefficient can either

be positive or negative. If a > 0 then x1− :=
−b−
√

(b2−4ac)

2a
is a local maximum

and x1+ :=
−b+
√

(b2−4ac)

2a
is a local minimum: as x1 < x1− ⇒ dv1,cs[x1] > 0,

x1− < x1 < x1+ ⇒ dv1,cs[x1] < 0 and x1 > x1+ ⇒ dv1,cs[x1] > 0. So comparing

dv1,cs[x1−] with dv1,cs[1] and dv1,cs[n] shows if the v1,cs program has an interior

solution or not.40 If a < 0 then x1− :=
−b−
√

(b2−4ac)

2a
is a local maximum and

x1+ :=
−b+
√

(b2−4ac)

2a
is a local minimum: note that as a < 0 that x1+ < x1−, so

x1 < x1+ ⇒ dv1,cs[x1] < 0, x1+ < x1 < x1− ⇒ dv1,cs[x1] > 0 and x1 > x1− ⇒
40If x1− is complex or outside the range [1, n] then we already know that there is no interior

solution.
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dv1,cs[x1] < 0. Again comparing dv1,cs[x1−] with dv1,cs[1] and dv1,cs[n] shows if

the v1,cs program has an interior solution or not.

Theorem 101. If a = 0 then v1,cs[x1] either has boundary solutions or an

interior solution where ω = P [x1].

Proof. If a = 0 then (γ + 1− 2pυ) = 0, so b = −γn(1 + γ)ω < 0, and c = n(1 +

γ)(1 − ω) > 0. Hence dv1,cs[x1] < 0 if and only if bx1 + c < 0 if and only if

−γωx1 + (1 − ω) < 0. Once this condition holds, it stays true for larger x1, so

v1,cs[x1] is quasi-concave (which is expected given the signs of b and c). Hence

v1,cs[x1] has a maximum when x1 = (1−ω)
γω

, or equivalently when ω = P [x1]. So

an interior solution requires 1 < (1−ω)
γω

< n.

We now consider the within module smoothing model for a range of different

parametrisations. The number of banks n, is either 10, 20, 30, 40, 50, 100 or

1000. The shock parameter γ has a minimum of 0.1, a maximum of 3 and an

increment of 0.1. The outside match completion probability, p, has a minimum

of 0, a maximum of 1.0 and an increment of 0.1. The outside match completion

value, v, has a minimum of 0, a maximum of 1.0 and an increment of 0.1. The

risk aversion parameter, ω, has a minimum of 0.1, a maximum of 1.0 and an

increment of 0.1. This gives a total of 7 ∗ 30 ∗ 11 ∗ 11 ∗ 10 = 254100 different

parametrisations.

As noted in Theorem 100 above, we only need to check one value of x1 for a

potential interior global maximum of the v1,cs program. If the v1,cs program has

an interior solution, then the Wcs[d] program is checked at each of its interior

partitions. In each of these cases the percentage gain from the best interior sym-

metric partition over the best boundary partition was computed: the welfare of

the best trivial partition is given by Wb := Max{Wcs[1],Wcs[n]}; the welfare of
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the best symmetric interior partition is given by Wi := Max{Wcs[n/k]}n−1
k=2 ;

and g, the percentage gain from choosing an interior partition, is given by

100∗(W i−W b)/W b. In total 20445 cases were found where the v1,cs program has

an interior solution; this total reduced to 2341 (0.92%) cases where the W1,cs[d]

program has an interior solution. This rareness of interior solutions leads to

the conclusion that the standard model rejection of interior partitions is robust

to changing businesses from being risk neutral, to having constant relative risk

aversion and being able to consumption smooth within their own module.

These cases are represented below in five tables that show how the gain varies

with the value of each of the five parameters. In the ω table, there are no gains

from interior partitions with either ω = 0.1 or with ω = 0.9. The explanation

is that the coefficient of relative risk aversion is 1 − ω; so with ω = 0.9, the

level of risk aversion is low and we are close to the risk neutral model (ω = 1.0)

with its boundary solutions; whilst with ω = 0.1, there is a high level of risk

aversion which makes the businesses highly value something over nothing, and

creates a preference for the grand coalition, as then the business is certain to be

part of the module that receives the business opportunity.41 In the γ table, with

the shock parameter γ in the range 0.7 to 3.0 no examples of interior welfare

solutions are found. This can be explained as being due to the low enablement

probability of of non-singleton modules when the shock parameter is high. The

other tables show that conversely increases in the number of banks n, the outside

match completion probability,p, and the outside match completion value v, each

lead to more interior solutions:
41With ω = 0.1 the grand coalition is always preferred to the partition of singletons.
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Table 2.63: Consumption Smoothing Model ω Table

Overall gain percentage distribution broken down by ω
ω (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,70)
0.1 25410 0 0 0 0 0 0 0 0 0
0.2 25272 79 31 9 15 1 2 1 0 0
0.3 25075 199 68 7 4 39 2 2 3 11
0.4 24939 319 16 87 3 4 0 2 4 36
0.5 24918 353 52 6 5 68 8 0 0 0
0.6 25017 253 8 132 0 0 0 0 0 0
0.7 25163 221 26 0 0 0 0 0 0 0
0.8 25145 265 0 0 0 0 0 0 0 0
0.9 25410 0 0 0 0 0 0 0 0 0
1.0 25410 0 0 0 0 0 0 0 0 0
All 251759 1689 201 241 27 112 12 5 7 47
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Table 2.64: Consumption Smoothing Model γ Table

Overall gain percentage distribution broken down by γ
γ (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,70)

0.1 7631 487 51 147 10 76 10 4 7 47
0.2 7851 420 65 90 5 36 2 1 0 0
0.3 8026 366 62 4 12 0 0 0 0 0
0.4 8194 253 23 0 0 0 0 0 0 0
0.5 8341 129 0 0 0 0 0 0 0 0
0.6 8436 34 0 0 0 0 0 0 0 0
0.7 8470 0 0 0 0 0 0 0 0 0
0.8 8470 0 0 0 0 0 0 0 0 0
0.9 8470 0 0 0 0 0 0 0 0 0
1.0 8470 0 0 0 0 0 0 0 0 0
1.1 8470 0 0 0 0 0 0 0 0 0
1.2 8470 0 0 0 0 0 0 0 0 0
1.3 8470 0 0 0 0 0 0 0 0 0
1.4 8470 0 0 0 0 0 0 0 0 0
1.5 8470 0 0 0 0 0 0 0 0 0
1.6 8470 0 0 0 0 0 0 0 0 0
1.7 8470 0 0 0 0 0 0 0 0 0
1.8 8470 0 0 0 0 0 0 0 0 0
1.9 8470 0 0 0 0 0 0 0 0 0
2.0 8470 0 0 0 0 0 0 0 0 0
2.1 8470 0 0 0 0 0 0 0 0 0
2.2 8470 0 0 0 0 0 0 0 0 0
2.3 8470 0 0 0 0 0 0 0 0 0
2.4 8470 0 0 0 0 0 0 0 0 0
2.5 8470 0 0 0 0 0 0 0 0 0
2.6 8470 0 0 0 0 0 0 0 0 0
2.7 8470 0 0 0 0 0 0 0 0 0
2.8 8470 0 0 0 0 0 0 0 0 0
2.9 8470 0 0 0 0 0 0 0 0 0
3.0 8470 0 0 0 0 0 0 0 0 0
All 251759 1689 201 241 27 112 12 5 7 47
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Table 2.65: Consumption Smoothing Model n Table

Overall gain percentage distribution broken down by n
n (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,70)
10 36287 13 0 0 0 0 0 0 0 0
20 36233 64 3 0 0 0 0 0 0 0
30 36170 113 13 4 0 0 0 0 0 0
40 36111 161 17 11 0 0 0 0 0 0
50 36057 199 25 17 1 1 0 0 0 0
100 35854 335 48 49 2 10 2 0 0 0
1000 35047 804 95 160 24 101 10 5 7 47
All 251759 1689 201 241 27 112 12 5 7 47

Table 2.66: Consumption Smoothing Model p Table

Overall gain percentage distribution broken down by p
p (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,70)
0 23100 0 0 0 0 0 0 0 0 0

0.1 23086 14 0 0 0 0 0 0 0 0
0.2 23057 38 0 5 0 0 0 0 0 0
0.3 23022 63 2 9 1 1 2 0 0 0
0.4 22980 94 3 16 1 5 1 0 0 0
0.5 22931 127 12 17 1 8 1 1 1 1
0.6 22881 156 20 23 2 11 1 1 1 4
0.7 22810 207 30 26 2 17 1 0 1 6
0.8 22725 266 39 34 3 20 2 1 1 9
0.9 22629 333 44 48 7 22 2 1 2 12
1.0 22538 391 51 63 10 28 2 1 1 15
All 251759 1689 201 241 27 112 12 5 7 47
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Table 2.67: Consumption Smoothing Model v Table

Overall gain percentage distribution broken down by v
v (-100,0) [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,70)
0 23100 0 0 0 0 0 0 0 0 0

0.1 23029 56 2 10 1 1 1 0 0 0
0.2 22994 76 7 13 0 7 1 0 1 1
0.3 22953 105 12 16 0 10 1 0 0 3
0.4 22917 132 16 16 4 10 0 0 2 3
0.5 22878 163 17 22 2 10 1 2 0 5
0.6 22843 185 23 25 4 13 0 0 2 5
0.7 22809 207 30 27 4 15 1 0 0 7
0.8 22773 238 27 33 4 13 3 2 0 7
0.9 22742 258 33 35 5 16 2 0 2 7
1.0 22721 269 34 44 3 17 2 1 0 9
All 251759 1689 201 241 27 112 12 5 7 47

We have only been able to consider cases where the coefficient of relative risk

aversion is less than 1. So for robustness reasons the constant absolute risk

aversion case is now considered. With absolute risk aversion u[c] = 1−exp (−αc).
Note that the coefficient of absolute risk aversion is −u′′[c]

u′[c] = −−α2exp[−αc]
−αexp[−αc]

= −α,

and so the requirement for agents to be risk averse is that α > 0. Outside

matches are modelled using 2 parameters p and v: p is the probability that an

outside match is successfully completed and v is the gross value of the outside

match. With an inside match the value of 1 is spread equally amongst the xi

members; whilst with an outside match the value of 0.5v is shared amongst the

members of each the matched modules xi and xj. This leads to the following

welfare function:

Wcara[x] =
k∑

i=1

x2
i

n2
(1−e− α

xi )P [xi]+
k∑

i=1

xi

n

∑
j �=i

p
xj

n

(
xi(1− e

− αv
2xi ) + xj(1− e

− αv
2xj )

)
P [xi]P [xj]

and for symmetric cases this becomes
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Wcara[d] =
d

n
d
(
1− exp

(
−α

d

))
P [d] + p

(n− d)

n
(2d)

(
1− exp

(
−αv

2d

))
P 2[d]

We consider the absolute risk aversion within module smoothing model for a

range of different parametrisations. The number of banks n, is either 10, 20, 30,

40, 50, 100 or 1000. The shock parameter γ has a minimum of 0.1, a maximum

of 3 and an increment of 0.1. The outside match completion probability, p, has a

minimum of 0.1, a maximum of 0.9 and an increment of 0.1. The outside match

completion value, v, has a minimum of 0.1, a maximum of 0.9 and an increment

of 0.1. The risk aversion parameter, α, has a minimum of 0.1, a maximum of

2.0 and an increment of 0.1. This gives a total of 7 ∗ 40 ∗ 9 ∗ 9 ∗ 20 = 453600

different parametrisations.

In each of these cases the percentage gain from the best interior symmetric

partition over the best boundary partition was computed: the welfare of the

best trivial partition is given by Wb := Max{Wcara[1],Wcara[n]}; the welfare of

the best symmetric interior partition is given by Wi := Max{Wcara[n/k]}n−1
k=2 ; and

g, the percentage gain from choosing an interior partition, is given by 100∗(W i−
W b)/W b. In total 21776(4.8%) cases were found where the Wcara[d] program has

an interior solution, and the highest percentage gain from an internal solution

was 31%. This rareness of interior solutions leads to the conclusion that the

standard model rejection of interior partitions is robust to changing businesses

from being risk neutral, to having constant absolute risk aversion and being able

to consumption smooth within their own module.
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Table 2.68: Consumption Smoothing Model n Table

Overall gain percentage distribution broken down by n
(-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) [0,10) [10,20) [20,30) [30,40)

10 212 3585 7044 5859 15573 32383 144 0 0 0
20 65 1683 4127 6707 5927 45341 938 12 0 0
30 33 1252 2669 5843 5680 47535 1737 51 0 0
40 20 1022 2006 4307 6405 48523 2407 110 0 0
50 10 869 1703 3358 6616 49129 2959 152 4 0
100 0 840 815 1578 4476 52138 4591 334 28 0
1000 0 840 440 220 100 54891 7552 653 103 1
All 340 10091 18804 27872 44777 329940 20328 1312 135 1
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Table 2.69: Consumption Smoothing Model γ Table

Overall gain percentage distribution broken down by γ
γ (-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) [0,10) [10,20) [20,30) [30,40)

0.00 306 5776 2963 1507 717 71 0 0 0 0
0.01 34 1987 3676 2426 1135 757 924 302 98 1
0.02 0 945 3116 2986 1638 811 1476 333 35 0
0.03 0 561 2138 3131 2364 1015 1821 308 2 0
0.04 0 398 1550 3243 2551 1290 2105 203 0 0
0.05 0 247 1250 3018 2828 1621 2261 115 0 0
0.06 0 120 1093 2557 3139 2028 2363 40 0 0
0.07 0 45 901 2228 3271 2526 2359 10 0 0
0.08 0 12 771 1949 3184 3133 2290 1 0 0
0.09 0 0 701 1720 3237 3508 2174 0 0 0
0.1 0 0 625 1491 3357 3841 2026 0 0 0
0.2 0 0 20 867 2414 7539 500 0 0 0
0.3 0 0 0 500 1701 9110 29 0 0 0
0.4 0 0 0 199 1436 9705 0 0 0 0
0.5 0 0 0 49 1254 10037 0 0 0 0
0.6 0 0 0 1 1076 10263 0 0 0 0
0.7 0 0 0 0 923 10417 0 0 0 0
0.8 0 0 0 0 803 10537 0 0 0 0
0.9 0 0 0 0 714 10626 0 0 0 0
1.0 0 0 0 0 641 10699 0 0 0 0
1.1 0 0 0 0 581 10759 0 0 0 0
1.2 0 0 0 0 533 10807 0 0 0 0
1.3 0 0 0 0 490 10850 0 0 0 0
1.4 0 0 0 0 454 10886 0 0 0 0
1.5 0 0 0 0 423 10917 0 0 0 0
1.6 0 0 0 0 391 10949 0 0 0 0
1.7 0 0 0 0 363 10977 0 0 0 0
1.8 0 0 0 0 345 10995 0 0 0 0
1.9 0 0 0 0 317 11023 0 0 0 0
2.0 0 0 0 0 299 11041 0 0 0 0
2.1 0 0 0 0 284 11056 0 0 0 0
2.2 0 0 0 0 264 11076 0 0 0 0
2.3 0 0 0 0 249 11091 0 0 0 0
2.4 0 0 0 0 235 11105 0 0 0 0
2.5 0 0 0 0 222 11118 0 0 0 0
2.6 0 0 0 0 210 11130 0 0 0 0
2.7 0 0 0 0 199 11141 0 0 0 0
2.8 0 0 0 0 188 11152 0 0 0 0
2.9 0 0 0 0 178 11162 0 0 0 0
3.0 0 0 0 0 169 11171 0 0 0 0
All 340 10091 18804 27872 44777 329940 20328 1312 135 1
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Table 2.70: Consumption Smoothing Model p Table

Overall gain percentage distribution broken down by p
p (-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) [0,10) [10,20) [20,30) [30,40)

0.1 195 2534 3020 3690 6034 34137 731 54 5 0
0.2 72 2103 2875 3661 6098 34491 1007 77 15 1
0.3 34 1472 2814 3593 5951 35097 1334 91 14 0
0.4 18 1105 2510 3453 5476 35941 1777 107 13 0
0.5 9 859 2089 3327 4920 36795 2256 132 13 0
0.6 7 655 1703 3105 4554 37490 2718 154 14 0
0.7 4 529 1433 2745 4239 38106 3133 195 16 0
0.8 1 435 1306 2264 3968 38662 3509 236 19 0
0.9 0 399 1054 2034 3537 39221 3863 266 26 0
All 340 10091 18804 27872 44777 329940 20328 1312 135 1

Table 2.71: Consumption Smoothing Model v Table

Overall gain percentage distribution broken down by v
v (-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) [0,10) [10,20) [20,30) [30,40)

0.1 189 2525 3030 3684 6038 34886 48 0 0 0
0.2 72 2087 2877 3662 6054 35281 367 0 0 0
0.3 35 1456 2802 3600 5739 35946 822 0 0 0
0.4 19 1103 2489 3455 5211 36603 1516 4 0 0
0.5 10 861 2082 3311 4814 37030 2259 33 0 0
0.6 7 664 1701 3094 4580 37311 2945 98 0 0
0.7 5 538 1443 2732 4379 37504 3577 211 11 0
0.8 3 446 1311 2281 4161 37624 4162 376 36 0
0.9 0 411 1069 2053 3801 37755 4632 590 88 1
All 340 10091 18804 27872 44777 329940 20328 1312 135 1
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Table 2.72: Consumption Smoothing Model α Table

Overall gain percentage distribution broken down by α
α (-60,-50) [-50,-40) [-40,-30) [-30,-20) [-20,-10) [-10,0) [0,10) [10,20) [20,30) [30,40)
0.1 0 427 895 1312 1681 18327 38 0 0 0
0.2 0 441 898 1315 1712 18171 143 0 0 0
0.3 1 445 901 1329 1746 17987 271 0 0 0
0.4 1 456 908 1341 1771 17772 431 0 0 0
0.5 4 461 915 1345 1809 17551 595 0 0 0
0.6 4 473 921 1359 1835 17318 770 0 0 0
0.7 7 480 921 1369 1878 17085 940 0 0 0
0.8 7 481 931 1380 1921 16857 1103 0 0 0
0.9 13 489 935 1381 1981 16671 1205 5 0 0
1.0 13 501 939 1383 2038 16506 1285 15 0 0
1.1 15 516 942 1388 2106 16356 1328 29 0 0
1.2 17 519 950 1401 2177 16211 1356 49 0 0
1.3 21 526 952 1416 2268 16055 1379 63 0 0
1.4 25 531 959 1420 2393 15894 1370 88 0 0
1.5 27 535 960 1435 2531 15712 1368 107 5 0
1.6 28 541 970 1439 2715 15471 1372 133 11 0
1.7 33 557 971 1448 2881 15243 1368 164 15 0
1.8 37 565 972 1462 3022 15055 1352 191 24 0
1.9 42 569 980 1467 3124 14908 1331 223 36 0
2.0 45 578 984 1482 3188 14790 1323 245 44 1
All 340 10091 18804 27872 44777 329940 20328 1312 135 1

2.5 Interpretation

The efficiency table 2.73 below assesses the role for interior partitions, and each

row represents a different model. Models are split depending on which aspect

they differ from the standard model: the business sector, the financial sector

or the social planner. Business models are further broken down into 4 sections:

circular business networks, hypercube business networks, networks with small

numbers of banks, and robust networks. Within each section, models are in order

of decreasing criticality: earlier models differ most from the standard model in

having a large role for interior partitions; later models have less role for interior

partitions.

227



Criticality is assessed using the percentage gain distribution, which measures the

role for interior partitions, and there are three different types of percentage gain

calculation represented in the table. In the first type, the W [x] programme, the

gain is calculated by assessing the social welfare over all partitions. In the second

type, the W [d] programme, the gain is calculated by assessing the social welfare

over all symmetric partitions. As the W [d] programme has a smaller feasible set

the W [d] gain is weakly less than the W [x] gain, but is definitely a valid measure

when it shows criticality. In the third type, the v1[x1] programme, the gain is

calculated by assessing the utility of bank 1, assessed over partitions of format

{x1, 1, 1, 1, 1}, where outside modules are all singletons. Due to the presence of

negative externalities, bank 1 is weakly better off than banks not in module 1.

So the v1[x1] programme gain is weakly higher than the W [d] programme gain,

but is definitely a valid measure when it shows robustness.

For each model, the accumulative distribution of gains is assessed: firstly, the

(−100, 0] column gives the proportion of cases where the optimal partition is

not an interior partition; secondly, the (−100, 10] column gives the proportion of

cases where either the optimal partition is not an interior partition, or the gain

from the interior solution is less than or equal to 10%; and thirdly, the (−100,
100] column gives the proportion of cases where either the optimal partition is

not an interior partition, or the gain from the interior solution is less than or

equal to 100%. The final column of the table indicates which type of programme

(W [x], W [d] or v1[x1]), the gain was assessed using.

In the original circle model, the size of a singleton module is the same as the

match length, and there are many interior solutions (99%). The difficulties with

the two boundary partitions are as follows: the atomistic partition has zero

probability of an inside match; whilst the grand coalition has all encompassing

connections, many of which have no business value as there are no distant busi-
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ness matches, but they do have a financial cost as banks are exposed to contagion.

The variable minimum module size model shows that the original model has a

minimum module size which results in the largest role for interior partitions. Any

change in the size of singleton modules results in the welfare of the atomistic

partition strictly increasing: when singleton modules are smaller, then the prob-

ability of an inside match is still zero, but exposure to financial shocks is reduced;

when singleton modules are bigger, then the atomistic partition moves towards

the optimal partition of the original program. With the variable match length

model, some of the matches will be of length less than 1 and so will be inside a

singleton module, this increases the welfare of the atomistic partition, causes the

welfare function to be quasi-convex (rather than quasi-concave) for small module

sizes, and makes it harder for interior partitions to deliver improvements.

Four different hypercube models are considered: firstly, there are either 4 banks

arranged in a 2-dimensional square, or 8 banks arranged in a 3-dimensional

cube; secondly, the matching is either uniform (the match is equally likely to be

in each dimension), or non-uniform (the match is more likely to be in certain di-

mensions). The result is that there are more gains from interior partitions, either

when the hypercube is of higher dimension, or when matching is non-uniform:

with more dimensions, there are more interior partitions to compare against;

with non-uniform matching, the interior partition can contain the dimensions

where the business match is likely to be made inside the module, and have the

dimensions less likely to to offer business matches outside the module.

With a small number of banks, and non-uniform matching, it is often the case

that an interior partition is best. Conversely, the robust business networks sec-

tion shows five variations to the standard model which result in models where

the total rejection of interior partitions remains. For four of the models, the

rejection is proven: Increased Probability of Self Matching, Multiple Businesses
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per Bank, and the Star Business Network and Temporal distribution of business

opportunities. For the fifth, Trilateral Business Matches, the result holds for all

the sampled cases, but is not yet proven.

Concerning the financial sector, letting larger modules have an increased prob-

ability of an initial banking shock, does not result in significant gains for interior

partitions, this is because: firstly, the welfare of the atomistic partition is un-

altered; secondly, the welfare of all other partitions is reduced; and thirdly the

atomistic partition is preferred to the grand coalition, for nearly all paramet-

risations of the standard model. Considering the social planner, the variant

models show robustness to the rejection result, both when intertemporal utility

is considered and when risk aversion is included.

A significant correlation is between model symmetry and the existence of interior

solutions. Here symmetry can be interpreted as occurring when the uncondi-

tional and conditional distributions of the second business in a match are the

same: P (m2|m1) = P (m2) for all choices of m1 and m2 the first and second

members of the match. This is consistent with Appendix L which proves that

if the Welfare function is both symmetric and quasi super-modular then the

solutions will be on the boundary.42

42Appendix L uses a different definition of symmetry but the only model that changes status
is 2.2.2.3 the Star Business Network.
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Table 2.73: Banking Models Efficiency Table

Interior Partition Gain Case Proportion: none; up to small; up to large.
Model Interior Partition

Percentage Gain Distribution
(−100, 0] (−100, 10] (−100, 100] type

Section Description Symmetric none none,small none,large

1.5 Standard Model Y 100% 100% 100% W [x]

Business
Circular Business Networks

2.2.1.1 Original Circular Model N 1% 57% W [d]
2.2.1.2 Variable Minimum Module Size N 43% 84% W [d]
2.2.1.3 Variable Match Lengths N 91% 96% W [d]

Hypercube Business Networks
2.2.3.2 3D Non-Uniform Matching N 5% 46% W [d]
2.2.3.1 2D Non-Uniform Matching N 10% 21% 100% W [d]
2.2.3.2 3D Uniform Matching N 22% 71% W [d]
2.2.3.1 2D Uniform Matching N 65% 100% 100% W [d]

Small number of banks
2.2.3.4 3 node case N 31% 54% 100% W [x]
2.2.3.5 2 rich 2 poor N 33% 100% W [x]

Robust Business Networks
2.2.2.4 Trilateral Business Matches Y 100% 100% W [d]
2.2.2.1 Increased Self Matching Y 100% 100% W [x]
2.2.2.2 Multiple Businesses per Bank Y 100% 100% W [x]
2.2.2.3 Star Business Network Y 100% 100% W [x]
2.2.2.5 Temporal Business Opportunities Y 100% 100% W [x]

Financial
2.3.1 Variable Shock Initialisation Y 99.6% 99.99% 100% v1[x]

Social Planner
2.4.1 Intertemporal Model Y 99% 100% 100% v1[x]
2.4.2.3 Consumption Smoothing Y 99.1% 99.8% 100% W [d]
2.4.2.1 Risk Aversion Y 100% W [d]
2.4.2.2 General Equilibrium Y 100% W [x]

The below stability table considers the stability of each of the boundary parti-
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tions under each of the different partition formation concepts. The first model,

EBA (Equilibrium Binding Agreement), does not allow modules to merge and

hence the atomistic partition is always stable.43 In contrast, with the EEBA (Ex-

tended Equilibrium Binding Agreement), or the Unanimity Game, each bound-

ary partition is stable only for parametrisations of the standard model where

it is efficient. This is because firstly, generically the standard model only has

one Pareto optimal partition, and secondly, there is enough freedom either in

terms of coalition deviations (EEBA), or bargaining (the Unanimity Game), to

reach that efficient partition. So with each of these three concepts, the solution

is efficient.

With the other three concepts, the solutions include inefficient partitions. With

Bilateral Stability, the grand coalition is too stable: an initial deviation from

the grand coalition would give the alternative partition {0.5n, 0.5n}, and it may

be the case that the grand coalition is inefficient, W [{n}] < W [{1, 1, 1, 1, 1, 1}]
but still beats the alternative, W [{n}] > W [{0.5, 0.5n}]. Whilst with Open

Membership the solution is the Nash Equilibrium of a simultaneous move game,

resulting in the grand coalition being stable, for all parametrisations: if every

other bank is in a single big module, no individual bank wants to deviate to {1,
n− 1}, as the member of the singleton module, for a successful business match,

except in the unlikely case of a self-match, still needs the large module to be

enabled in order to be productive, but then, as an outsider, they only get a low

value θ match. Finally, with Zero Lifetime Bankers, the atomistic partition is

never stable: the zero lifetime means that bankers ignore financial risk; they just

want to maximise the value of business matches; and so they always choose the

grand coalition. The Short Run Bankers model, in Section 2.3.2.2, shows that

this bias can last for a few years.
43Although with the EBA it is normally accepted that the ’solution’ of the game is the

partition with the largest modules (Bloch and Dutta (2010)).
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Table 2.74: Banking Models Stability Table

Boundary Partition Stability with each of the different market games
Game Payoffs Expectations atomistic Grand

Partition Coalition
Stability Stability

2.3.3.4 EBA Farsighted Farsighted Always Correct
1.8 EEBA Farsighted Farsighted Correct Correct
2.3.3.3 Unanimity Game Farsighted Myopic Correct Correct
2.3.3.1 Bilateral Stability Farsighted Myopic Correct Too
2.3.3.2 Open Membership Farsighted Myopic Correct Always
2.3.2.1 Zero Lifetime Bankers Myopic Myopic Never Always

2.6 Conclusion

The policy contribution of the first chapter was that it mathematically assessed

the policy proposal of containing financial shocks, by partitioning banks into

modules separated by firewalls: previous authors having relied on analogy or

intuition. The methodological contribution of the chapter was the use of a

theoretical economic model containing a micro-founded welfare function leading

to good interpretability: previous contributions having used behavioural and

computational approaches. In the standard model, where business opportunities

are uniformly distributed, a strong result was derived: the full characterisation

of the optimal structure of the banking industry. Surprisingly, for any choice of

the parameters, the optimal partition took one of two forms, either it was the

grand coalition (one module containing all the banks), or it was the atomistic

partition (each module contains only one bank): the intuition behind this sharp

characterisation was that modules have increasing marginal returns. Section 1.9

went further and argued that for realistic parametrisations, it is the atomistic

partition that will be optimal; whilst Section 1.7 proved that the efficiency of

boundary partitions holds for a more general class of models; and finally, Section

1.8 considered partition formation, and it showed that if agents are farsighted,
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then the Extended Equilibrium Binding Agreement (EEBA), from Diamantoudi

and Xue (2007), results in the efficient partition being formed.

Chapter 2 considered the criticality and robustness of the standard model in four

areas: the business sector, the financial sector, the social planner’s preferences

and partition formation. Section 2.2 showed that the efficiency characterisa-

tion result is robust in a number of aspects of the business sector including, the

temporal distribution of the business opportunities; the elasticity of the shock

parameter; the number of businesses per bank; and the number of businesses

linked in a match. However, it also showed that there is criticality with respect

to the structure of the business sector in a number of other aspects: varying

the distribution of business opportunities can result in the optimality of proper

partitions, (where there are multiple modules, and each module will have mul-

tiple member banks). Examples constructed that demonstrate this criticality

include circular matching, (businesses are arranged in a circle, and matches are

always between immediate neighbours); hypercube models, (either 4 businesses

arranged in a square, or 8 businesses arranged in a cube); and non-uniform

matching (with 3 or 4 businesses).

Next Sections 2.3 and 2.4 further showed that there is robustness both in the

financial sector (where the probability of a bank receiving an initial shock in-

creases with module size), and in the preferences of the social planner (when the

planner is either risk averse or has intertemporal utility): with these variations

the results of boundary solutions remain. Further, Section 2.3.3 applied differ-

ent partition formation concepts to the standard model. This showed that the

efficient partition is again always formed under either the Equilibrium Binding

Agreement (EBA), of Ray and Vohra (1997), or the Unanimity Game of Bloch

(1996). However, inefficient partitions can be formed under bilateral stability

from Jackson and Wolinsky (1996), or the Open Membership game from Yi and
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Shin (2000).

The robustness and the criticality of the current work could be assessed in a num-

ber of other areas, and these forms the basis of potential future work. Firstly, the

current models have a static number of banks and businesses; so one extension

would be to develop a dynamic model where the number of banks and businesses

grows over time. Secondly, in this thesis financial shocks never cross from one

module to another, and never infect some but not all banks in a module. So a

model with probabilistic contagion and probabilistic firewalls would be another

extension. Thirdly in the current models banks cannot make bad investments; so

a model with strategic bank investment behaviour would be another extension.

Fourthly, the current models consider ex-ante efficiency rather than interim effi-

ciency or ex-post efficiency. Specifically, they assume that after the arrival of a

disabling shock the social planner does not alter the partitioning of banks that

remain enabled: once modules are in place, they are not altered conditional on

shocks, not just for one or two periods but over an infinite time horizon. So an

extension would be to allow the social planner to make such a state conditional

choice of partition, and this could be modelled using a Markov Decision Process.
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Appendix A

An Upper Limit to the Welfare

gain from interior partitions

This section will consider the gain in choosing an interior partition over a bound-

ary partition. This section will show that the gain in the v1 program, which

considers only the utility of banks in module 1, provides an upper bound for

the gain in the full W program. The argument relies on there being negative

externalities.

The setup is as follows. As in all variants of model, consider a partition x =

(xi)
k
i=1. Let Vi[x] be the total utility to all banks in module i. Let vi[x]:= 1

xi
Vi[x]

be the utility of a single bank in module i. Let W [x] :=
∑k

i=1 Vi[x] be the social

planner’s welfare function.

The W program feasibility set is as follows. The decision maker chooses a par-

tition (xi ∈ N1)
k
i=1 of N = {1, 2, 3....n}, the set of banks, such that

∑k
i=1 xi = n,

and (xi ≥ 1)ki=1 . The first constraint means that banks can be grouped, but not

created or destroyed; the second requires a minimum module size of one. Hence
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the feasible set of partitions is

P = {(xi ∈ N1)
k
i=1 :

k∑
i=1

xi = n and (xi ≥ 1)ki=1 and k ∈ N1}

The maximum of the v1 program can be found in a reduced set: as there are neg-

ative externalities, a module always looses from mergers between other modules;

hence x∗ = argmaxx∈P v1[x] ⇒ x∗ = (x1, 1......1) for some x1 ∈ N1. Exten-

ded the definition of v1[x1], and let v1[x1] := v1[(x1, 1, 1......1)], where x1 ∈ N1.

Define, x∗
1 := argmaxx1∈An v1[x1].

We now consider the percentage gain from choosing an interior partition over

a boundary.1 With the W program, the welfare of the best boundary partition

is given by W b := Max{W [(1,1....1)],W [(n)]}; the welfare of the best interior

partition is given by W i := Max{W [x] : x ∈ P \ {(1, , , , , 1), (n)}}; and gW ,

the percentage gain in welfare from choosing an interior partition, is given by

gW := 100∗(W i−W b)/W b. With the v1 program, the utility of the best boundary

partition is given by vb1 := Max{v1[1], v1[n]}; the utility of the best interior

partition is given by vi1 := Max{v1[x1]}n−1
x1=2; and g1, the utility percentage gain

from choosing an interior partition, is given by g1 := 100 ∗ (vi1 − vb1)/v
b
1.

Theorem 102. gW ≤ g1

Proof. By contradiction. Suppose not then, gW > g1. By re-arrangement, gW =

100 ∗ (W i/W b) − 100 and g1 := 100 ∗ (vi1/vb1) − 100. So gW > g1 if and only

if (W i/W b) > (vi1/v
b
1). Recall W b := Max{W [(1,1....1)],W [(n)]} and vb1 :=

Max{v1[1], v1[n]}. But by symmetry W [(1,1....1)] = nv1[1] and W [(n)] = nv1[n].

So W b = nvb1. Hence gW > g1 if and only if (W i/n) > (vi1). But this is a

contradiction: it would mean that the highest utility is less than the average
1Of course, my main thesis is that the standard model, and many variations of it, the

optimal partition is a boundary one. In such cases the gain is negative.
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utility.
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Appendix B

Markov Processes

The disabling, and re-enabling, shocks to the bank network will form a Markov

process.1 In a Markov process the current state, but not the past states, matter

in determining the future state: P (st+1|st, st−1......s1, s0) = P (st+1|st), where

st ∈ S is the state at time t. A Markov chain is a time-homogenous Markov pro-

cess: P (st+1 = j|st = i) = P (s1 = j|s0 = i), for all times t, and all states i and

j. A Markov chain is ergodic if there exists a stationary probability distribution

P ∗ which is the limiting probability distribution irrespective of the initial prob-

ability distribution. The t period transition probability is represented by P (i, j,

t) :=P (st = j : s0 = i), and the 1 period transition probability by Pi,j := P (i, j,

1). A Markov chain is aperiodic, if for all states i ∃ T s.t. t > T ⇒ P (i, i, t) > 0.

A Markov chain is irreducible, if all states communicate; that is for all states i, j

∃t s.t. P (i, j, t) > 0. In order for a finite state discrete time Markov chain to

be ergodic it is sufficient that it is aperiodic and irreducible. For a continuous

time, finite state-space, Markov chain to be ergodic it is sufficient just that it

is irreducible. For a continuous time, infinite state space, Markov chain to be
1For full textbook treatments of Markov processes see Norris (1999), Grimmett and Stirza-

ker (2001) chapter 6, or Ross (2010) chapter 4. For a brief description of Markov Processes,
as well as an another application of them in an economic environment, see Gintis (2012).
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ergodic it is sufficient that it is positive recurrent. Positive recurrent means that

for all states i, P (Ti < ∞) = 1 and E[Ti] is finite, where Ti is the return time

for state i: the first time the process returns to state i after having left it.
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Appendix C

Continuous Time Markov Process

Formulation

The first section of this appendix derives the unique stationary distribution of the

stochastic process of enabling and disabling shocks. The second section shows

that this stationary distribution is a global attractor: whatever the initial prob-

ability of module enablement is then the asymptotic limit is that the probability

of module enablement is the stationary probability. The third and final section

shows that this convergence occurs exponentially fast.

C.1 Stationary distribution

Consider X(t) a continuous time Markov process. Let S be the set of states,

and i, j be typical distinct states. The transitions are specified by the leaving

rates qij from state i to state j. Then

P (X(t+ h) = j|X(t) = i) = qijh+ o(h) where i �= j
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and by symmetry the staying rate is given by

qii = −
∑
j �=i

qij

This gives an r period staying probability given by,

P (X(τ) = i ∀τ ∈ (t, t+ r)|X(t) = i) = eqiir

Considering a continuous time formulation of the banking shocks process, there

are two states, (E)nabled and (D)isabled, and four transition rates qEE, qDD,

qED and qDE. By symmetry qED = −qEE and qDE = −qDD. So a general

continuous time shock process can be specified just by the staying rates qEE and

qDD.

A continuous time Markov process represents the same system as a discrete time

Markov process, if for every state the two processes have the same probability

distributions on both destinations and staying (equivalently leaving) times. Here

both versions have only two states, and so both must have the same trivial

probability distribution on destination states: when the process leaves a state

i, it must be to go the other state j. So equivalence requires us only to equate

staying times. With the discrete time version we know the one period staying

probabilities:

PEE = (1− q)d

and

PDD = 1− ρ

So for the continuous time version this requires

qEE = d log[1− q]
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qDD = log[1− ρ]

and hence

qED = −d log[1− q]

qDE = − log[1− ρ]

For the stationary distribution we need the master balance condition to hold:

PEqED = PDqDE

this requires that the flow rate from state E to state D is the same as the flow

rate from D to E. Further, as there are only 2 states:

PD = 1− PE

Hence

PE =
qDE

(qDE + qED)
=

− log[1− ρ]

− log[1− ρ]− d log[1− q]

This gives the following module enablement probability:

P (d) := PE =
1

1 + γd

where the shock parameter γ := −Log[1−q]
−Log[1−ρ]

is the ratio of disablement and re-

enablement rates.
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C.2 Convergence

Next we consider the convergence of the Markov process. Let p(t) be the matrix

of transition probabilities from time 0 up to time t. So p(t) has entry (i, j) given

by:

pij(t) := P (Xt = j|X0 = i)

Hence p(t = 0) = I where I is the identity matrix. Next we consider the rate

of change of p(t). At time t = 0 , define Q := p′(t = 0) = limh→0
p(h)−p(0)

h
. So

Q = limh→0
p(h)−I

h
. As P (X(t + h) = j|X(t) = i) = qijh + o(h) where i �= j,

this gives Qij = qij. As this is a Markov Chain, for general time t the derivative

alters only due to differences in p[t]. So p′[t] = Q p[t]. This differential equation

can be solved to get:

p[t] = exp[tQ]

where the exponential of a matrix has its expected definition: exp[tQ] =
∑∞

k=0
tk

k!
Qk

Let π[t] be the unconditional distribution of X[t] at time t in row vector form,

so

π[t] = π[0]p[t]

If Q has a ’nice’ eigenvalue-eigenvector expansion Q = UΛU−1, where U is

the matrix of eigenvectors and Λ is the diagonal matrix of eigenvectors then

Qk = UΛkU−1 and so

π[t] = π[0]
∞∑
k=0

tk

k!
UΛkU−1 = π[0]U

( ∞∑
k=0

tk

k!
Λk

)
U−1 = π[0]Uexp[tΛ]U−1
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Listing the enabled state first and the disabled state second gives Q =

⎛
⎜⎝ +a −a
−b +b

⎞
⎟⎠,

where a := d log[1 − q] and b := log[1 − ρ]. So the eigenvalues are 0 and

a+ b, which have corresponding eigenvectors

⎛
⎜⎝1

1

⎞
⎟⎠ and

⎛
⎜⎝+a

−b

⎞
⎟⎠ respectively.1 So

Λ =

⎛
⎜⎝0 0

0 a+ b

⎞
⎟⎠ and U =

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠. Then, as required:

UΛU−1 =

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠

⎛
⎜⎝0 0

0 a+ b

⎞
⎟⎠

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠

−1

UΛU−1 =

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠

⎛
⎜⎝0 0

0 a+ b

⎞
⎟⎠ 1

a+ b

⎛
⎜⎝b +a

1 −1

⎞
⎟⎠

UΛU−1 =
1

a+ b

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠

⎛
⎜⎝ 0 0

a+ b −a− b

⎞
⎟⎠

UΛU−1 =

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠

⎛
⎜⎝0 0

1 −1

⎞
⎟⎠ =

⎛
⎜⎝+a −a
−b +b

⎞
⎟⎠ = Q

So using π[t] = π[0]Uexp[tΛ]U−1

π[t] = π[0]

⎛
⎜⎝1 +a

1 −b

⎞
⎟⎠

⎛
⎜⎝1 0

0 exp[(a+ b)t]

⎞
⎟⎠ 1

a+ b

⎛
⎜⎝b +a

1 −1

⎞
⎟⎠

π[t] =
π[0]

a+ b

⎛
⎜⎝1 +a ∗ exp[(a+ b)t]

1 −b ∗ exp[(a+ b)t]

⎞
⎟⎠

⎛
⎜⎝b +a

1 −1

⎞
⎟⎠

1The Internal Examiner has pointed out that as the eigenvalues have negative real parts
that the system will converge exponentially to the stable solution.
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π[t] =
π[0]

a+ b

⎛
⎜⎝b+ a ∗ exp[(a+ b)t] a− a ∗ exp[(a+ b)t]

b− b ∗ exp[(a+ b)t] a+ b ∗ exp[(a+ b)t]

⎞
⎟⎠

Using a = d log[1 − q] = log[(1− q)d] and b = log[1 − ρ] gives exp[(a + b)t] =

(1 − q)dt.(1 − ρ)t =
(
(1− q)d.(1− ρ)

)t. As (1 − q) < 1 and (1 − ρ) < 1 we get

limt→∞ exp[(a+ b)t] = 0. So

π∗ := lim
t→∞

π[t] =

(
πE[0] πD[0]

)
a+ b

⎛
⎜⎝b a

b a

⎞
⎟⎠

π∗ =

(
b a

)
a+ b

=

(
P [d] 1− P [d]

)

Hence irrespective of the initial distribution the limiting state is the stationary

distribution.

C.3 Rate of Convergence

Further:

π[t]− π∗ = exp[(a+ b)t]
π[0]

a+ b

⎛
⎜⎝+a −a
−b +b

⎞
⎟⎠

π[t]− π∗ = exp[(a+ b)t]

(
πE[0] 1− πE[0]

)
a+ b

⎛
⎜⎝+a −a
−b +b

⎞
⎟⎠

π[t]− π∗ = exp[(a+ b)t]

(
− b

a+b
+ πE[0]

b
a+b
− πE[0]

)
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π[t]− π∗ = exp[(a+ b)t]

(
−π∗

E + πE[0] π∗
E − πE[0]

)

π[t]− π∗ = exp[(a+ b)t]

(
−π∗

E + πE[0] π∗
E − 1 + 1− πE[0]

)

π[t]− π∗ = exp[(a+ b)t]

(
−π∗

E + πE[0] −π∗
D + πD[0]

)

π[t]− π∗ = exp[(a+ b)t](π[0]− π∗)

So the process converges exponentially fast. This can be re-stated as follows: if

P0(d) is the initial enablement probability, Pt(d) is the probability of enablement

at a general time t and P∞(d) = P (d) is the limiting distribution then:

Pt(d)− P∞(d) =
[
(1− q)d(1− ρ)

]t
[P0(d)− P∞(d)]
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Appendix D

Distribution of Re-enablements

The standard model has a simple representation of the re-enablement process,

and assumes that re-enablements are distributed memorylessly : in each unit of

time there is the same conditional probability of a re-enablement. So in discrete

time formulation this means,

P [re-enablement at time t+ 1 |no re-enablement by time t] = P [re-enablement at time 1]

This implies that the crisis lengths should be distributed geometrically. The

empirical data in table 6 of Frydl (1999), extracted by from Caprio and Klingebiel

(1996), has the following distribution:
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Table D.1: Frydl (1999) Crisis Length Table

Crisis length (t) Observations (x(t)) Geometric probability
1 17 ρ
2 9 ρ(1− ρ)
3 7 ρ(1− ρ)2

4 6 ρ(1− ρ)3

5 4 ρ(1− ρ)4

6 1 ρ(1− ρ)5

7 2 ρ(1− ρ)6

8 2 ρ(1− ρ)7

9 1 ρ(1− ρ)8

10 1 ρ(1− ρ)9

The mean crisis length is 3.1. With a geometric distribution, the Maximum

Likelihood Estimator is the reciprocal of the mean and so ρ̂ = 0.32 (2.d.p.). The

resulting probability function is a good fit for the empirical data:

Figure D.1: Frydl (1999) Banking Crisis Length Plot

2 4 6 8 10
Crisis Length

0.05

0.10

0.15

0.20

0.25

0.30

Frequency
Banking Crisis Length

249



Appendix E

Typical Shock Parameter Values

From Appendix C, the probability of a module remaining disabled for at least r

periods is e−rLog[1−ρ], where ρ is the module enablement probability. So if Tρ is

the median time for a module to remain disabled, then 0.5 = e−TρLog[1−ρ], and

hence Tρ =
Log[0.5]
Log[1−ρ]

. Similarly the median time we expect a module of d banks to

remain enabled is Tq[d] =
Log[0.5]

d*Log[1−q]
, where q is the bank disablement probability.

The table below plots three things: firstly, for each value of ρ, it gives the median

recovery time Tρ; secondly, for each value of q, it gives the median enabled time

Tq[1] for a singleton module; and finally, for each combination of q and ρ it gives

the shock parameter γ := −Log[1−q]
−Log[1−ρ]

.1 We would expect the median recovery time

to be less than 20 years, and the median enablement time of a singleton module

to be greater than 10 years.2 In the table when ρ = 0.03, (where Tρ = 22.8),

and q = 0.07, (where Tq = 9.6), we get that γ = 2.38. This motivates the levels

of γ studied in chapters 1 and 2, where γ is in the range 0 to 3.

1The median enablement time for a module of size d is Tq

d .
2For example, using historical US data, there often periods of 10 years when there are no

bank failures leading to financial contagion: 1857, Ohio Life Insurance and Trust Company;
1873, Northern Pacific Railroad and Jay Cooke and Company, +16 years; 1884, Grant and
Ward, +11 years; 1893, National Cordage Company, +9 years; 1907, Knickerboker Trust Com-
pany, +14; 1930, Bank of United States, +23 (data from both Mishkin (2007) and Calomiris
(2010)).
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Table E.1: Shock Parameter Table

How the shock parameter γ depends on q and ρ

ρ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3
Median Recovery Tρ 69.0 34.3 22.8 17.0 13.5 11.2 9.6 8.3 7.4 6.6 3.1 1.9

q Median Enablement Tq

0.001 692.8 0.10 0.05 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00
0.002 346.2 0.20 0.10 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01
0.003 230.7 0.30 0.15 0.10 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.01 0.01
0.004 172.9 0.40 0.20 0.13 0.10 0.08 0.06 0.06 0.05 0.04 0.04 0.02 0.01
0.005 138.3 0.50 0.25 0.16 0.12 0.10 0.08 0.07 0.06 0.05 0.05 0.02 0.01
0.006 115.2 0.60 0.30 0.20 0.15 0.12 0.10 0.08 0.07 0.06 0.06 0.03 0.02
0.007 98.7 0.70 0.35 0.23 0.17 0.14 0.11 0.10 0.08 0.07 0.07 0.03 0.02
0.008 86.3 0.80 0.40 0.26 0.20 0.16 0.13 0.11 0.10 0.09 0.08 0.04 0.02
0.009 76.7 0.90 0.45 0.30 0.22 0.18 0.15 0.12 0.11 0.10 0.09 0.04 0.03
0.01 69.0 1.00 0.50 0.33 0.25 0.20 0.16 0.14 0.12 0.11 0.10 0.05 0.03
0.02 34.3 2.01 1.00 0.66 0.49 0.39 0.33 0.28 0.24 0.21 0.19 0.09 0.06
0.03 22.8 3.03 1.51 1.00 0.75 0.59 0.49 0.42 0.37 0.32 0.29 0.14 0.09
0.04 17.0 4.06 2.02 1.34 1.00 0.80 0.66 0.56 0.49 0.43 0.39 0.18 0.11
0.05 13.5 5.10 2.54 1.68 1.26 1.00 0.83 0.71 0.62 0.54 0.49 0.23 0.14
0.06 11.2 6.16 3.06 2.03 1.52 1.21 1.00 0.85 0.74 0.66 0.59 0.28 0.17
0.07 9.6 7.22 3.59 2.38 1.78 1.41 1.17 1.00 0.87 0.77 0.69 0.33 0.20
0.08 8.3 8.30 4.13 2.74 2.04 1.63 1.35 1.15 1.00 0.88 0.79 0.37 0.23
0.09 7.3 9.38 4.67 3.10 2.31 1.84 1.52 1.30 1.13 1.00 0.90 0.42 0.26
0.1 6.6 10.48 5.22 3.46 2.58 2.05 1.70 1.45 1.26 1.12 1.00 0.47 0.30
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Appendix F

Quasiconvexity Results

Definition 103. Suppose f : S → R where S is a convex subset of Rl. Then, f is

weakly quasiconvex if and only if the lower level set P a = {x : f(x) ≤ a} is convex

for each real number a . Similarly, f is weakly quasiconcave if and only if the

upper level set P a = {x : f(x) ≥ a} is convex for each number a. Equivalently

f is weakly quasiconcave if and only if f(λx+(1−λ)x0) ≥ min{f(x), f(x0)} for

all λ ∈ (0, 1) and (x, x0) ∈ S2

f is strictly quasiconcave if f(λx+ (1− λ)x0) > min{f(x), f(x0)} for all λ ∈ (0,

1) and (x, x0) ∈ S2 where x �= x0. f is strictly quasiconvex if and only if

−f is strictly quasiconcave. So f is strictly quasiconvex if and only if f(λx +

(1− λ)x0) < max{f(x), f(x0)} for all λ ∈ (0, 1) and (x, x0) ∈ S2 where x �= x0.

Proposition 104. Consider f : [1, n] → R . If f is weakly quasiconvex then f

does not have a strict interior local maximum.

Proof. Proof by contradiction. Suppose f has some strict local interior maximum

x∗ and f(x∗) = a. It is a strict maximum, so there exists some δ > 0 such that

if x ∈ [x∗ − δ, x∗ + δ] and x �= x∗ then f(x) < f(x∗). The set P := {x : f(x) ≤
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max{f(x∗− δ), f(x∗+ δ)}} contains both x∗− δ and x∗+ δ but does not contain

x∗. Hence it is not convex.

Corollary 105. Consider f : [1, n] → R . If f is weakly quasiconvex then

argmax f includes a boundary solution.

Proof. By Proposition 104 no interior point can be a strict local maximum. And

if it is not a strict local maximum then it is not a strict global maximum. So

the argmax includes at least one of 1 and n.

Theorem 106. Suppose f is C1. Then in the following conditions, (1) ⇒(2)

⇒(3):

(1) f ′(x) > 0 and y > x⇒ f ′(y) > 0.

(2) f weakly quasi-convex.

(3) f ′(x) > 0 and y > x⇒ f ′(y) ≥ 0

Proof. (1)⇒ (2)

Proof by contradiction. Suppose not: then there exists level a s.t. P a = {x :

f(x) ≤ a} is not convex and so ∃ x0, x1, x2 s.t. x0 < x1 < x2, f(x0) ≤ a, f(x1) > a

and f(x2) ≤ a. So the average gradient between x0 and x1 is positive and

the average gradient between x1 and x2 is negative. Hence ∃x01s.t. x0 ≤ x01 ≤
x1andf

′(x01) > 0. Similarly ∃x12s.t. x1 ≤ x12 ≤ x2andf
′(x12) < 0. So f ′(x01) > 0

and x12 > x01 but f ′(x12) < 0. This contradicts (1).

(2)⇒ (3)

Proof by contradiction. Suppose not: then there exist y > xs.t.f ′(x) > 0 > f ′(y).

Then, as f is C1, ∃x∗s.t. x < x∗ ≤ y and f ′(x∗) = 0 and x∗ is a local maximum.

This contradicts Proposition 104.
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Theorem 107. Suppose f : R→ R. Then:

i) if f is a monotonic function, then it is both weakly quasiconvex and quasicon-

cave.1

ii) if f increases monotonically to a global maximum and then falls monotoni-

cally, then f is weakly quasiconcave.

ii) if f decreases monotonically to a global minimum and then increases mono-

tonically, then f is weakly quasiconvex.

Proof. i) See Simon and Blume (1994), example 21.11 p524. ii) See Simon and

Blume (1994), example 21.12 p524. iii) consider −f and apply result ii).

Theorem 108. W [d], the welfare function from the standard model evaluated

at symmetric partitions, has boundary solutions.

Proof. By differentiation, W
′
[d] = (−θ−2γθn+1)+d(γθ+γ)

(1+γd)3
. So W ′[d] = t[d]/l[d]

where: t[d] =(−θ − 2γθn + 1) + d(γθ + γ) and l[d] = (1 + γd)3. As l[d] > 0 ∀d,
by Theorem 106 we get that W is weakly quasi-convex if t[d] > 0 and e > d ⇒
t[e] > 0. This is true as (γθ + γ) > 0. Hence W [d] is weakly quasiconvex and

has a boundary solution as required.

Corollary 109. The general welfare function W [x] has boundary solutions

Proof. From Theorem 108, symmetric welfare W [d] has boundary solutions.

From Theorem 115 in appendix G, the symmetric and general programs have

the same maximal value. Hence, the general program also has a boundary solu-

tion.

1Monotonic means a function that is either: weakly decreasing or weakly increasing.
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Appendix G

Asymmetric Partitions

This section proves that for the standard model, the symmetric partitions max-

imise welfare: no asymmetric partition has higher welfare than the best sym-

metric partition.

Recall, that the welfare for symmetric partitions (where d ∈ R++ is the module

size), is given by, Wsym[d] :=
d
n
P [d] + θn−d

n
P [d]2 and P [d] := 1

1+γd
. Let N :=

{1, 2, 3, .....n}. The number of (non-empty) modules, k will be in N and we

need n = kd. So the welfare maximising program over symmetric partitions is:
max
k∈NWsym[

n
k
]

The welfare for (generally) asymmetric partitions is given by, W [(xi)
n
i=1] :=∑n

i=1
x2
i

n2P [xi]+θ
∑n

i=1
xi

n
P [xi]

∑n
j �=i

xj

n
P [xj]. In this section, we force there always

to be exactly n modules, but we allow empty modules: so module i is of size xi ∈
{0}⋃[1, n]. Further, we need to only specify the size of the first n−1 modules, as

the total has to be n. So,
∑n

i=1 xi = n. So, the welfare maximisation program for

general partitions is argmaxx∈A W [x] where A := {(xi ∈ R+)
n−1
i=1 : xi ∈ {0}

⋃
[1,

n] and
(∑n−1

i=1 xi ≤ n− 1 or
∑n−1

i=1 xi = n
)}.

The proof of the main theorem uses the Extreme-Value Theorem:
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Proposition 110. Let f : C → R , be a continuous function and C ⊆ Rn−1 be

a closed bounded set. Then f has a maximum point in C.

Proof. See Sydsæter, K., Hammond, P., Seierstad, A, and Strøm, A. (2005)

Theorem 3.1.3.

Definition 111. For A, use the metric based on the L1 norm: so d : Rn−1 ×
Rn−1 → R s.t. d(x, y) =

∑n
i=1 | xi − yi | where xn := n −∑n−1

i=1 xi and yn :=

n−∑n−1
i=1 yi.

Lemma 112. A is compact: closed and bounded

Proof. A is bounded as it is contained within the ball of radius n+ 1 centred on

the origin.

Let Af := {(xi ∈ R+)
n−1
i=1 : xi ∈ [f(i), nf(i)]and

(∑n−1
i=1 xi ≤ n− 1 or

∑n−1
i=1 xi = n

)},
where f ∈ F = {f : {1, 2, 3...n− 1} → {0, 1}}. So if f [i] = 0 then xi = 0 and if

f [i] = 1 then xi ∈ [1, n]. Hence A =
⋃
f∈F

Af (a finite union as the function f can

only take 2n−1 different forms). Each Af is closed as it is defined by inequalities

satisfied by continuous functions. Hence A is also closed. (See Theorem 12.10

in Simon and Blume (1994) p268).

Lemma 113. W is continuous (with the absolute metric on C)

Proof. W [(xi)
n
i=1] =

∑n
i=1 Vi[x] where Vi[(xi)

n
i=1] := x2

iP [xi]+θxiP [xi]
∑n

j �=i xjP [xj].

So W is the sum of continuous functions, and hence is continuous itself.

Theorem 114. The supremum of the general programs exists and is achieved

so: Maxx∈AW [x] exists, Supx∈AW [x] exists and Maxx∈AW [x] = Supx∈AW [x]

Proof. 1 is an upper bound in 1 for W [x]. So Supx∈AW [x] exists. By lemma

112 A is a compact set, and by lemma 113 W is a continuous function, so by
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Proposition 110 W must achieve its maximum. So Maxx∈AW [x] = Supx∈AW [x].

Theorem 115. The symmetric and general programs have the same maximum:

max x∈AW [x] = max
k∈NWsym[

n
k
]

Proof. From Theorem 114 sup x∈AW [x] exists and max x∈AW [x] = sup x∈AW [x].

Further, W [(d)ki=1, (0)
n−1
i=k+1] = Wsym[d], and so sup x∈AW [x] ≥ max

k∈NWsym[
n
k
].

Suppose W ∗ := supx∈A W [x] > max
k∈NWsym[

n
k
] =: W ∗

sym. Then define the set

of asymmetric partitions that strictly dominate the best symmetric partition,

S0 := {x : W [x] > W ∗
sym} �= Ø. And by Theorem 114, there is a non-empty set

of partitions that maximise W , S1 := {x : x ∈ A and W [x] = W ∗} �= Ø. Define

k(x) to be the number of non-empty modules in x, and define k∗ to be the least

number of modules in a partition that achieves W ∗. So k∗ := min{k(x) : x ∈ S1}.
Now consider the set of partitions that maximise W , with this minimal number

of non-empty modules, S2 := {x : x ∈ S1 and k[x] = k∗} �= Ø.

Take x ∈ S2. Then there must exists i, j s.t. 0 �= xi �= xj �= 0. WLOG assume

i = 1 and j = 2, so: 0 �= x1 �= x2 �= 0. We now consider 2 alternative partitions

that re-assign the members of the first 2 modules: the merged partition xm and

the averaged out partition xa. Partition xm merges the banks from the first 2

modules into a single module, so xm := (0, x1+x2, (xi)
n−1
i=3 ). k(xm) = k(xm)−1 <

k∗ so xm /∈ S2 and hence W [x] > W [xm]. Conversely partition xa averages

out the differences between the size of the first 2 modules, so xa := (0.5(x1 +

x2), 0.5(x1 + x2), (xi)
n−1
i=3 ). x ∈ S2 ⇒ x ∈ S1, so W [x] ≥ W [xa]. Algebraic

manipulation gives that:

W [x] > W [xm]⇔ P [0.5t]
P [t]

> −2γR + 1
θ

and
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W [x] ≥ W [xa]⇔ P [0.5t]
P [t]

≤ −2γR + 1
θ

where t := x1 + x2 is the total number of banks in the first two modules, and

R :=
∑n

i=3 xiP [xi] is the total expected number of enabled banks in the other

modules.

This is a contradiction, hence Maxx∈AW [x] = max
k∈NWsym[

n
k
] as required.

So there cannot be an asymmetric sized partition that has a strictly higher

welfare than the best symmetrically sized partition. 1

1Corollary 26 in section 1.7 goes further and shows that, for no parameterisations, can
there be a partition with asymmetrically sized modules that has the same welfare as the best
symmetrically sized partition.
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Appendix H

Ratio Quadratic Welfare

This appendix considers a general class of welfare functions: the ratio quadratic

where both the numerator and the denominator are quadratic functions of the

policy variable x:1

Definition 116. Define the class of ratio quadratic functions to be h : [1, n]→ R

such that h[x] = ax2+bx+c
ex2+fx+g

where (a, b, c, e, f, g) ∈ R6 and e > 0.

A first example of this class occurs when we have continuous time welfare, see

section 2.4.1. A second occurs when we take the standard model, but then alter

the probability of inside and outside matches.

Theorem 117. If h0 is ratio quadratic and the denominator has negative roots,

then h0 is at least one of quasi-convex and quasi-concave. Further it has either

0 or 1 stationary points.

The proof of this theorem relies of simply transforming the objective function

into partial fraction format giving h[x] = σ+ β1

x−α1
+ β2

x−α2
. However, despite this

the proof is still quite lengthy: firstly, because of the need to consider a range of
1Hopefully, it is not too confusing that in this appendix that, x is a single number, whilst

in the main text it is a partition.
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special cases, such as double roots, and secondly because of the need to consider

a wide range of different parameter values.

Proof. This proof relies on the fact that quasi-convexity and quasi-concavity

properties only rely on the sign of the h′ derivative, and not the level of the

derivative. Hence, we will be able to take a sequence of normalisations (h1, h2,

h3, h4 and h5), that each leave the sign of the derivative unaltered.

Start with h0[x] = a0x2+b0x+c0
e0x2+f0x+g0

= a0
e0

+ b1x+c1
e0x2+f0x+g0

, where b1 = b0 − a0f0
e0

and

c1 = c0 − a0g0
e0

. Now let h1[x] :=
b1x+c1

e0x2+f0x+g0
. As e0 �= 0, h1[x] =

b2x+c2
x2+f2x+g2

, where

b2 = b1
e0

, c2 = c1
e0

, f2 = f0
e0

and g2 = g0
e0

. So let h2[x] :=
b2x+c2

x2+f2x+g2
. Factoring

the denominator gives: h3[x] :=
b2x+c2

(x−α1)(x−α2)
, where we know that α1 < 0 and

α2 < 0.

Starting with the special case of a double root (α1 = α2): h′
3[x|α = α1 = α2] =

−b2x−αb2−2c2
(x−α)3

. Note that x1 > 0 and α < 0, so x − α > 0. So, if b2 < 0 then h

is quasi-convex; if b2 > 0 then h is quasi-concave; and finally if b2 = 0 then h is

both quasi-convex and quasi-concave.

In the general case of distinct roots (α1 �= α2), then without (further) loss of

generality, α2 > α1, and h3[x] =
1

(α2−α1)

[
r

(x−α1)
+ s

(x−α2)

]
, where r = −α1b2 − c2

and s = α2b2 + c2. Let h4[x] :=
r

(x−α1)
+ s

(x−α2)
. So h′

4[x] =
−r

(x−α1)2
− s

(x−α2)2
, and

hence: h′
4[x] > 0⇔ −r(x− α2)

2 > s(x− α1)
2.

Therefore, h4[x] has 4 parameters: r, s, α1 and α2. One can be removed by a

change in the variable: let h5[y] :=
r

(y+δ)
+ s

y
, where y := x−α2, δ := α2−α1 > 0,

h5 : [L,U ] → R, L := 1 − α2 > 1 > 0, and U := n − α2 > n > 1 > 0. Then

h′
5[y] > 0⇔ h

′
n[y] := −(r + s)y2 − 2δsy − sδ2 > 0.

The next 6 results covering certain special cases, come from evaluating the sign

of the [y2] and [y] coefficients. Firstly, if r + s > 0 and s > 0, then once h′
5[y]

becomes negative it stays negative: if z > y and h′
5[y] < 0, then h′

5[z] < 0. So
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h is quasi-concave. Secondly and conversely, if r + s < 0 and s < 0, then h′
n[y]

is monotonic increasing. So h is quasi-convex. Thirdly, if r + s = 0 and s ≥ 0,

then h is quasi-concave. Fourthly, if r+ s = 0 and s ≤ 0 then h is quasi-convex.

Fifthly, if r = 0 then r + s = s, and so r + s and s will have the same sign: this

is covered by the previous 4 cases. Sixthly, if s = 0 then h
′
n[y] = −ry2 and h is

monotonic.

More generally, we need to consider the roots of h′
n[y]. The (real) roots of h′

n[y]

are the only points at which the sign of h′ can change. As h′
n[y] is quadratic,

there are at most 2 such points. If there are no real roots in the range [L,U ], then

h is monotonic, and hence both quasi-concave and quasi-convex. If, there is one

(single) root in the range [L,U ], and increasing y causes h′
n[y] to go from negative

to positive, then h is quasi-convex. If there is one (single) root in the range [L,

U ], but conversely increasing y causes h′
n[y] to go from positive to negative, then

h is quasi-concave. If there is a double root in the range [L,U ], then h has a

point of inflection and so h is (weakly) monotonic. Only if there are 2 roots in

the range [L,U ], will h be neither quasi-concave nor quasi-convex: with 2 roots

there will be both a local maximum and a local minimum. We show that this is

not possible by considering the first order conditions.

We dealt with the cases where s = 0 or r = 0 above, so we now assume that

s �= 0 and r �= 0, and consider the cases where r and s have the same, or

different, signs (Sign[a] = + if a > 0; Sign[a] = − if a < 0). Note that,

h′
5[y] = − r

(y+δ)2
− s

y2
and h′′

5[y] =
2r

(y+δ)3
+ 2s

y3
. So for ŷ to be a first order point of

h5, requires that − s
ŷ2

= r
(ŷ+δ)2

. If Sign[r] = Sign[s], then this has no solutions,

and h is monotonic. As s �= 0 and r �= 0, the first order condition becomes

− ŷ2

s
= (ŷ+δ)2

r
. So h′′

5[ŷ] =
2r

(ŷ+δ)2

(
−δ

(ŷ+δ)ŷ

)
, and Sign[h′′

5[ŷ]] = Sign[−r] = Sign[s].

If Sign[−r] = Sign[s] = +, then any first order point is a local minimum.

Conversely, if Sign[−r] = Sign[s] = −, then any first order point is a local
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maximum. So all the first order points of h are of the same type. So h5 cannot

have both local minima and local maximum, and hence it has either 0 or 1

first order condition points. Hence h0 is either quasi-convex, quasi-concave or

both.

So when h : [1, n]→ R, there is a strict interior solution if and only if h′[1] > 0

and h′[n] < 0.2

If x is now restricted to being an integer, so that h : An = {1, 2, 3, 4.....n} →
R, then there is a strict interior solution if and only if both h[1] < h[2] and

h[n− 1] > h[n].

The decision maker decides the partition of banks into modules; the partition

is then regarded as fixed. One justification for this assumption would be that,

when any module is disabled it is not feasible to alter the partition, and when

all modules are enabled there is no incentive to alter the partition.

2A strict interior solution just means that the argmax excludes both the boundary solutions:
there is an interior solution that is strictly preferred to both boundary solutions.
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Appendix I

Intertemporal Model

The intertemporal model has the same stochastic process as the standard model:

there are financial shocks (disabling shocks hitting enabled banks at rate log[1−
q]; enabling shocks hitting disabled modules at rate log[1− ρ]), and business op-

portunities (business matches are distributed uniformly, so (P (b1, b2) = 1/n2)
n
b1,b2=1.

The enablement probability converges exponentially, meaning that

(Pt[d]−P∞[d]) =
(
(1− q)d(1− ρ)

)t
(P0[d]− P∞[d]) where: d is the module size,

P0[d] is the initial enablement probability, Pt[d] is the probability of enablement

at a general time t, and P∞[d] is the limiting distribution.1 This intertemporal

model, considers a system that starts with fully enabled banks, so P0[d] = 1,

and has the same Markov process of shocks as the standard model, and so has

the same limiting probability: P∞[d] = P [d] = 1
1+γd

. Hence, for general time t,

Pt[d] = P [d] +
(
(1− q)d(1− ρ)

)t
(1− P [d]).

When the partition is of form {x1, 1, 1, ....1, 1, 1}, the expected utility function

for bank 1 at time t is: vt1[x1] := βt(1/n) ((x1/n)Pt[x1] + ((n−x1)/n)θPt[x1]Pt[1]).2

1See Appendix Cfor more details.
2Similarly, the social welfare at time t for a general partition x = (xi)

k
i=1, is given by

Wt[x] := βt
(∑k

i=1(
xi/n)2Pt[xi] + θ

∑k
i=1

∑
j �=i(

xi/n)(xj/n)Pt[xi]Pt[xj ]
)
.
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The explanation for this specification is as follows. The leading βt term gives

the time t discount factor. Without loss of generality, we assume that all the

utility goes to the first bank in a match: this is bank 1 with probability 1/n. The

match is inside with probability x1/n; it is then productive if and only if module

1 is enabled: this occurs with probability P [x1]. The match is outside with

probability (n−x1)/n, and it is then of value θ. Outside matches are productive

if and only if both modules are enabled: the two modules are independently

enabled with probabilities P [x1] and P [1].

Assuming that business matches occur at all times with the same intensity, we

integrate vt1[x1] from time 0 to time infinity to get vc1[x1].3 This can be arranged

into ratio quadratic format, so vc1[x1] =
ax2

1+bx1+c

e(x1−α1)(x1−α2)
where the denominator

coefficients are: e = Log[β]Log[β(q−1)(ρ−1)]Log2[1−q]n2, α1 = −1−(Log[β]+

2Log[1 − ρ])/Log[1 − q], and α2 = −(Log[1 − ρ] + Log[β])/Log[1 − q].4 We see

that e > 0 and α1 < α2 < 0, so Theorem 117 from appendix H holds. This

gives the results given in table 2.53 in section 2.4.1, including that vc1 is either

quasi-convex, or quasi-concave (or both).

3Similarly Wc[x] is the integral of Wt[x], so Wc[x] :=
´ t=∞
t=0

Wt[x]dt
4For completeness, the numerator coefficients are:
a = 2θ log(β) log(1 − ρ) log(1 − q) + (θ − 1) log(β) log(1 − q) log(β − βq) − 2 log(β) log(1 −

ρ) log(1− q) + θ log2(1− ρ) log(1− q)− log(1− ρ) log2(1− q)− log2(1− ρ) log(1− q),
b = 5(θ− 1) log(β) log2(1−ρ)+4θ log2(β) log(1−ρ)− 4 log2(β) log(1−ρ)+2(θ− 1) log3(1−

ρ)−2θn log(β) log(1−q) log(1−ρ)−θn log(β) log(1−q) log(β−βq)−θn log(1−q) log2(1−ρ)+
2θ log(β) log(1−q) log(1−ρ)+θ log2(β) log(β−βq)−5 log(β) log(1−q) log(1−ρ)−log(β) log2(β−
βq) + θ log(1− q) log2(1− ρ)− 3 log(1− q) log2(1− ρ)− log2(1− q) log(1− ρ),

and c = −5θn log(β) log2(1−ρ)−4θn log2(β) log(1−ρ)−2θn log3(1−ρ)−2θn log(β) log(1−
q) log(1− ρ)− θn log2(β) log(β − βq)− θn log(1− q) log2(1− ρ)

264



Appendix J

Club Goods

Buchanan (1965) introduces the economic analysis of joint consumption via club

membership. He considers a setup where for such club goods, the utility of agent

i depends on the level of good acquired by i’s club and the number of members

of that club. This can be modelled mathematically as follows.1 The setup is that

there is a set S of agents (index i or k) and n different goods (index j) that each

agent can consume. Consumption can be private (individual i consumes quantity

xi
j separate from the rest of society); public (individual i consumes quantity xj

jointly with the rest of society and so we need xi
j = xk

j , for each pair of agents i

and k), or within a club (clubs are formed endogenously and consumption takes

place within them). We can capture the preferences of agent i using a utility

function of the form

U i[(xi
j,m

i
j)

n
j=1]

where xi
j ∈ R is an amount of good j that person i has access to shared amongst

the club mi
j. With a society that allows such club consumption we need to both

update the clearing conditions from private goods and to introduce consistency
1This is a generalisation of the original Buchanan (1965) setup in that I allow agent i to care

about the identity of his fellow club members. This makes it easier to specify the conditions
for both consistency of choice and clearing.

265



of choice criteria:

• Consistency of choice

1. You have to belong to your own club. So i ∈ mi
j. Note that, someone

who might describe themselves as not being in a club can be described

as being in their own singleton club {i}.

2. Everyone is in one and only one club. So the mi
j collectively form a

partition of S. All agents need to agree on the implementation of the

same partition: there exists pj ∈ Pj such that
(
i ∈ mi

j ∈ pj ∈ Pj

)
i∈S.

3. Here Pj is a list of allowable partitions (of the agents S) for good j.

Two special cases are as follows:

– If Pj consists just of the grand coalition then good j is public and

this forces that mi
j = S for all i.

– If Pj consists just of the atomic coalition then good j is private

and this forces that mi
j = {i} for all i.

4. Everyone within a club has the same access to a pool of resources: so

mi
j = mk

j ⇒ xi
j = xk

j

– In a slight abuse of notation let xm
j represent this common quant-

ity, the amount of good j consumed jointly by the members of

club m. Precisely, m = mi
j ⇒ xm

j := xi
j, whilst m �= mi

j ∀i ⇒
xm
j := 0

• Clearing

– Suppose the gross endowment of good j is ωj

– Aggregate consumption of good j is
∑

m∈pj x
m
j : we only need to count

the consumption by each club once.
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– So the clearing conditions are
(
ωj =

∑
m∈pj x

m
j

)n

j=1

But note this is different from the partition function model. With the club model

agent i’s utility depends only on the members of the clubs he is in
(
mi

j

)n
j=1

and

how much resource his clubs has
(
xi
j

)n
j=1

. It is independent of the resource levels

of other clubs
((

xk
j

)
i/∈mk

j

)n

j=1
, and the membership of those clubs

((
mk

j

)
i/∈mk

j

)n

j=1
.

So a club model could capture the notion that the probability that a module is

enabled depends on the membership list of that module; but it could not capture

that the utility of bank i depends not only on the membership of its own module

but also of the membership of the other modules. Although later papers allow

an agent to be a member of multiple clubs for a single good (see for example

Ellickson, Grodal, Scotchmer and Zame (1999, 2001)); they do not remove the

restriction that externalities are contained within a club.
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Appendix K

Mathematica Appendix

Mathematica was used to support this work in a number of ways. Firstly it

was used to sketch graphically the welfare function for symmetric partitions.

Secondly it was used to do algebraic manipulation. Thirdly it was used to derive

the parametrisation tables that show for each model how the percentage gain (or

loss) from choosing the best interior partition over the best boundary partition.

The code for forming every gain table is not given as the code is very similar in

the different models. As examples, the explanation of how this was down for the

standard model, the original circular model and the variable shock initialisation

model are given below:

K.1 Standard Model

First the Welfare and module enable probability functions are defined:

W [d_, n_, θ_, γ_]:=d ∗ P [d, γ] + θ ∗ (n− d) ∗ P [d, γ]2

P [d_, γ_]:=(1 + γ ∗ d)−1

Then a data matrix is formed:
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StdModelData = Flatten[Table[{n, θ, γ, P [n, γ]/P [1, γ],W [1, n, θ,

γ],W [n, n, θ, γ], 100 ∗ (W [1, n, θ, γ]−W [n, n, θ, γ])/W [n, n, θ, γ]},
{n, {10, 20, 30, 40, 50, 100, 1000}}, {θ, 0.1, 1, 0.1}, {γ, 0.1, 3.0, 0.1}], 2];

Each row is a different parametrisation. The columns are 1) n, 2) θ, 3) γ, 4)

P [n]/P [1], 5) W [1], 6) W [n], 7) 100 ∗ (W [1]−W [n])/W [n].

Next a function is defined that for each row categories the percentage gain into

one of 12 bins:

StdCounts[data_]:=BinCounts[Flatten[Drop[data, None, 6]],

{{−100, 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 25000}}]

Finally each output table is produced:

StdnOutput = Map[StdCounts, Sort[GatherBy[StdModelData,

#[[1]]&],#1[[1, 1]] < #2[[1, 1]]&]];(* this forms table 1.5 *)

StdθOutput = Map[StdCounts, Sort[GatherBy[StdModelData,

#[[2]]&],#1[[1, 2]] < #2[[1, 2]]&]];(* this forms table 1.6 *)

StdγOutput = Map[StdCounts, Sort[GatherBy[StdModelData,

#[[3]]&],#1[[1, 3]] < #2[[1, 3]]&]];(* this forms table 1.7 *)

Taking the n table as an example the output is produced as follows. Starting

from the inside and working out, The GatherBy command forms separate n10,

n20, n30, n40, ... matrices from the data matrix: one matrix for each value of

n. So for example the n10 matrix has one row for each parametrisation where

n = 10 and the same columns as the data matrix. Next the Sort command

ensures that the n matrices are in numerical order. Finally the Map command

evaluates the StdCounts function for each n matrix: each n matrix producing a

row of output. The θ and γ tables are produced similarly.
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K.2 Original Circular Model

The circular welfare function is defined as:

WC[n_, n_, θ_, γ_]:=P [n,

γ] (* include special rule for single module case with no boundaries*)

WC[d_, n_, θ_, γ_]:=(1− d−1)P [d, γ] + θd−1P [d, γ]2 (* for the gen-

eral case, there is an inside match with probability d−1
d

; an out-

side match with probability 1
d

*)

where P [d, γ]has the same definition as in the standard model.

The percentage gain from an interior partition is defined as follows:

WCperc[n_, θ_, γ_]:=Module[{Wi, Wb},
Wi=Max[Table[WC[n/k,n,θ,γ],{k,2,n-1}]];

(*best interior option*)1

Wb=Max[WC[1, n, θ, γ], WC[n, n, θ, γ]];

(*best boundary option*)

100 ∗ (Wi− Wb)/Wb

(*what % the best interior option is higher than best boundary op-

tion*)

]

The data matrix is formed as follows:

Circledata = Flatten[Table[{n, θ, γ, WCperc[n, θ, γ]}, {n, {10, 20,
30, 40, 50, 100, 1000}}, {θ, 0.1, 0.9, 0.1}, {γ, 0.1, 3, 0.1}], 2];

1Note that with this model it is necessary to check all the interior partitions. However,
with certain models, such as the variable shock initialisation model below, it is possible to run
a pre-process that excludes parametrisations where it is certain the best interior partition has
lower welfare than the best boundary partition.
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The bin categorisation function used is:

CircleCounts[data_]:=BinCounts[Flatten[Drop[data, None, 3]],

{{−100, 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100}}]

Then finally the three output tables are formed:

CirclenOutput = Map[CircleCounts, Sort[GatherBy[Circledata,

#[[1]]&],#1[[1, 1]] < #2[[1, 1]]&]];

CircleθOutput = Map[CircleCounts, Sort[GatherBy[Circledata,

#[[2]]&],#1[[1, 2]] < #2[[1, 2]]&]];

CircleγOutput = Map[CircleCounts, Sort[GatherBy[Circledata,

#[[3]]&],#1[[1, 3]] < #2[[1, 3]]&]];

K.3 Variable Shock Initialisation Model

The payoff per member of module 1 when the other modules are all singletons,

v1α[x1], is given by the mathematica code:

v1α[x1_, n_, θ_, α_, γ_]:=x1P [x1, α, γ]+θP [x1, α, γ](n−x1)P [1, α, γ]

and the module enablement probability is given by:

P [d_, α_, γ_]:=(1 + γdα)−1

The percentage gain in v1α[x1] from the best interior partition over the best

boundary partition is given by
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v1αperc[n_, θ_, α_, γ_]:=Module[{vi, vb, Perc, x1},
vi = Max[Table[v1α[x1, n, θ, α, γ], {x1, 2, n− 1}]];
(*best interior option*)

vb = Max[v1α[1, n, θ, α, γ], v1α[n, n, θ, α, γ]];

(*best boundary option*)

100 ∗ (vi− vb)/vb

(*what % best interior option is higher than best boundary option*)

]

The data matrix is formed as follows:

v1αdata = Map[Append[#, v1αperc[#[[1]],#[[2]],#[[3]],#[[4]]]]&,

Select[Select[Flatten[Table[{n, θ, α, γ, v1α[2, n, θ, α, γ]− v1α[1,

n, θ, α, γ], v1α[n, n, θ, α, γ]− v1α[n− 1, n, θ, α, γ]}, {n, {10, 20, 30,
40, 50, 100, 1000}}, {θ, 0, 0.9, 0.1}, {α, 1.0, 30, 0.1}, {γ, 0.1, 3, 0.1}], 3],
#[[5]] > 0&],#[[6]] < 0&]];

Note, that from Theorem 72 the α model is quasi-concave when α ≥ 1. So in

order to get an interior solution we need v1α[n − 1] > v1α[n − 1] and v1α[1] <

v1α[2]. The v1αdata code therefore discards parametrisations from either of these

conditions does not hold: this makes the code more efficient as it does not waste

time looking check for interior gains when this is not feasible.

The bin categorisation function is given by:

v1αCounts[data_]:=BinCounts[Flatten[Drop[data, None, 6]],

{{−100, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250}}]

The four output matrices are given by:
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v1αnOutput = Map[v1αCounts, Sort[GatherBy[v1αdata,#[[1]]&],

#1[[1, 1]] < #2[[1, 1]]&]];

v1αθOutput = Map[v1αCounts, Sort[GatherBy[v1αdata,#[[2]]&],

#1[[1, 2]] < #2[[1, 2]]&]];

v1ααOutput = Map[v1αCounts, Sort[GatherBy[v1αdata,#[[3]]&],

#1[[1, 3]] < #2[[1, 3]]&]];

v1αγOutput = Map[v1αCounts, Sort[GatherBy[v1αdata,#[[4]]&],

#1[[1, 4]] < #2[[1, 4]]&]];

At this stage it is necessary to reform correctly the ≤ 0 column in the output

table by adding back in the deleted cases:

TableForm[Map[Prepend[#,

(611100/7)−#[[1]]−#[[2]]−#[[3]]−#[[4]]−#[[5]]−#[[6]]−#[[7]]]&,

Drop[v1αnOutput, None, 1]], TableHeadings→ {Table[n, {n, {10,
20, 30, 40, 50, 100, 1000}}], {−100, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 250}}]
TableForm[Map[Prepend[#,

(611100/9)−#[[1]]−#[[2]]−#[[3]]−#[[4]]−#[[5]]−#[[6]]−#[[7]]]&,

Drop[v1αθOutput, None, 1]], TableHeadings→ {Table[θ, {θ, 0.0, 0.5,
0.1}], {−100, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250}}]
TableForm[Map[Prepend[#,

(611100/21)−#[[1]]−#[[2]]−#[[3]]−#[[4]]−#[[5]]−#[[6]]−#[[7]]]&,

Drop[v1ααOutput, None, 1]], TableHeadings→ {Table[α, {α, 1.1,
30, 0.1}], {−100, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250}}]
TableForm[Map[Prepend[#,

(611100/30)−#[[1]]−#[[2]]−#[[3]]−#[[4]]−#[[5]]−#[[6]]−#[[7]]]&,

Drop[v1αγOutput, None, 1]], TableHeadings→ {Table[γ, {γ, 0.1, 3,
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0.1}], {−100, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250}}]
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Appendix L

Lattice Appendix

This appendix first defines what a lattice is. It then compares two different rel-

evant lattice formations: the partition lattice and the embedded coalition lattice.

The implications for the use of the Topkis (1978) supermodularity approach are

then drawn out.

A partial ordering ≤ is a binary relation that satisfies the following conditions:

• (reflexivity) a ≤ a

• (antisymmetry) if a ≤ b and b ≤ a then a = b.

• (transitivity) if a ≤ b and b ≤ c then a ≤ c.

A poset consists of a set L, together with such a partial ordering ≤. If two

elements, a and b, of a poset have a (unique) least upper bound (or supremum),

denoted, a∨b, it is their join. If two elements, a and b, of a poset have a (unique)

greatest lower bound (or infimum), denoted a∧b, it is their meet. A poset (L,≤)
is a lattice if it satisfies the following two closure axioms:

• Existence of binary joins: for any two elements a and b of L, the set L

contains the join a ∨ b.
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• Existence of binary meets: for any two elements a and b of L, the set L

contains the meet a ∧ b.

One condition that a lattice function f : L→ R may satisfy is supermodularity :

for any two elements a and b of L, f [a ∧ b] + f [a ∨ b] ≥ f [a] + f [b].

The partition lattice is a well known and important example of lattices: see for

example Gratzer (2005) pp250–263 and Roman (2008) pp110–120. The present-

ation given here in terms of equivalence relations is based on section 4 of Nation

(1991). An equivalence relation on a set Y is a binary relation E satisfying, for

all x, y, z ∈ Y :

1. (reflexivity) xEx

2. (symmetry) xEy implies yEx

3. (transitivity) if xEy and yEz then xEz.

We think of an equivalence relation as partitioning the set Y into blocks of E-

related elements, called equivalence classes: x and y are in the same equivalence

class if and only if xEy. Conversely, any partition of Y into a disjoint union of

blocks induces an equivalence relation on Y : xEy if and only if x and y are in

the same block. So, in a slight abuse of notation, we write xEy and (x, y) ∈ E

interchangeably. We will be defining a lattice on X, the set of all partitions of Y ,

(or alternatively let X be the set of all equivalence relations on Y so X = EqY ).

The next stage is to define an ordering on X. The ordering used is the refinement

ordering: E1 ≤ E2 if and only if xE1y implies xE2y. So E1 is a refinement of

E2 if and only if each E1 equivalence class is contained entirely within a single

E2 equivalence class. The greatest element of X is the universal relation Y 2:

xEY 2y iff (x, y) in Y 2; so the only equivalence class is the grand coalition Y .

The least element of X is the equality relation =, so: xE=y iff x = y; this
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gives atomic equivalence classes each containing a single member of Y . The

meet operation on X is set intersection, which means that x(E1 ∧ E2)y if and

only if xE1y and xE2y.1 The join operation is given by transitive closure, which

means that x(E1 ∨ E2)y if and only if there exists a finite sequence from x to

y using other members of Y as intermediate points and equating using either E1

or E2 at each stage; so formally, there exists a finite sequence (xj ∈ Y )kj=0 such

that x0 = x,
(
xj−1Eijxj for some ij ∈ {1, 2}

)k
j=1

, and xk = y.2 Finally, here is a

Hasse diagram for the case where Y has 4 elements.

Figure L.1: Partition Lattice with 4 elements ordered by refinement

from http://en.wikipedia.org/wiki/File:Set_partitions_4;_Hasse;
_circles.svg

A related but distinct lattice of embedded coalitions is formed in section 3 of

Grabisch (2010). Let N be the set of n players, let Π(N) be the set of partitions

of the n players. Two specific partitions are the grand coalition partition πGC :=

{N}, and the atomistic partition of singletons πAtom := {{i} : i ∈ N}. An
1See Nation (1991) page 35
2Again, see Nation (1991) page 35
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embedded coalition consists of a partition and an equivalence class from that

partition. Formally, it is a pair (S, π), where π ∈ Π(N) and S ∈ π. Let C(N)

denote all such pairs and thus be the set of embedded coalitions. A naturally

ordering on C(N) is the product ordering which requires the ordering to apply

both to the subset S and the partition π: (S, π)  (S ′, π′) iff S ⊆ S ′ and

π ≤ π′, where ≤ is the refinement ordering on partitions specified above.3 With

this ordering the top element of C(N) is (N, πGC). However, partitions do not

include empty classes and so C(N) has no least element, since all elements of the

form ({i}, πAtom) are minimal. So for mathematical convenience, we introduce

an artificial bottom element b := (Ø, πAtom), and define Cb(N) = C(N) ∪ {b}.
Proposition 2 of Grabisch (2010) shows that, for any n > 2,

(
Cb(N), ) is a

lattice where the meet and the join are given by:

• (S, π) ∧ (S ′, π′) =

⎧⎪⎪⎨
⎪⎪⎩
(S ∩ S ′, π ∧ π′) if S ∩ S ′ �= ∅

b if S ∩ S ′ = ∅
• (S, π)∨(S ′, π′) = (T ∪T ′, ρ), where T , T ′ are the blocks of π∨π′ containing

respectively S and S ′, and ρ is the partition obtained by merging T and

T ′ in π ∨ π′.

This is a Hasse diagram for the 3 player case:
3Similarly, π∧π′ is the meet given by the refinement ordering on partitions specified above

and, π ∨ π′ is the join given by the refinement ordering on partitions specified above.
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Figure L.2: Embedded Coalition Lattice with 3 elements

This is Figure 1 from Grabisch (2010) and elements with the same partition are
framed in blue.

Note that Topkis (1978, 1998) gives results on the maximisation of a super-

modular function specified on a lattice; specifically how the argmax alters with

parameter variation. However, whilst there are clean conditions for the module

worth Vi to be supermodular with respect to the embedded coalition lattice (see

Definition 29 and Theorem 30); there are not clean results for the welfare function

W to be supermodular with respect to the partition lattice (the supermodularity

conditions need to be solved separately for each value of n). Partition Lattice

Supermodularity for the Welfare function W requires that for all partitions S

and T that:

W[S∧T]+W[S ∨ T ] ≥ W [S] +W [T ]

If n = 3 then the only potentially non-trivial case is when S and T are distinct

interior partitions for example S = {12, 3} and T = {1, 23}. This leads to

the requirement W [1, 2, 3] + W [123] ≥ W [12, 3] + W [1, 23], which holds for all

parametrisations.
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If n = 4 then the four potentially non-trivial cases are

W [123, 4] +W [1, 2, 3, 4] ≥ W [12, 3, 4] +W [13, 2, 4]

W [1234] +W [1, 2, 3, 4] ≥ W [12, 3, 4] +W [234, 1]

W [1234] +W [1, 2, 3, 4] ≥ W [12, 3, 4] +W [14, 23]

W [1234] +W [1, 4, 23] ≥ W [123, 4] +W [14, 23]

In order for all 4 conditions to hold need that either θ ≤ γ+1
−6γ2+3γ+1

or 3γ ≥ 1.

Hence the partition supermodularity approach was not used in this thesis. How-

ever, Milgrom and Shannon (1994) introduced the weaker condition of quasi-

supermodularity :

Definition 118. a lattice function f : L → R is quasi-supermodular if for any

two elements a and b of L, f [a] − f [a ∧ b] ≥ 0 ⇒ f [a ∨ b] − f [b] ≥ 0 and

f [a]− f [a ∧ b] > 0⇒ f [a ∨ b]− f [b] > 0

and proved the following characterisation theorem:

Theorem 119. Milgrom and Shannon (1994) Theorem 4 Let f : L × T → R,

where L is a lattice, T is a partially ordered set and S ⊆ L. Then argmax f(l,

t)l∈S is monotone non-decreasing in (t, S) iff both f is quasi-supermodular in L

and satisfies the single crossing property

which uses two additional definitions. Firstly,

Definition 120. Let L be a lattice (choice set), let T a partially ordered set (of

parameters), and f : L × T → R. Then f satisfies the single crossing property

iff
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if l′ > l′′ and t′ > t′′ then f(l′, t′′) > f(l′′, t′′) ⇒ f(l′, t′) > f(l′′, t′) and f(l′,

t′′) ≥ f(l′′, t′′)⇒ f(l′, t′) ≥ f(l′′, t′)

and secondly,

Definition 121. Suppose that M : T → 2L and T is a lattice. Then the set

function M is monotone nondecreasing if t′ ≥ t implies that M(t′) ≥S M(t) with

respect to the set ordering. if m ∈ M(t) and m′ ∈ M(t′) then m ∧m′ ∈ M(t)

and m ∨m′ ∈M(t′)

In the case of symmetric functions, quasi-supermodularity with respect to the

partition lattice is sufficient to give boundary solutions. A symmetric function

is one where the value depends only on the number of members in each module

and does not depend on the sequencing of modules:4

Definition 122. Suppose f : P n → R where P n is the lattice of partitions of n

objects. Then f is symmetric iff there existsfX : Nn → R such that

1. f(l) = fX(x) where x = (xi)
k
i=1 and (xi = |li|)ki=1, where k is the number of

modules in partition l and |li| represents the number of elements in module

li.

2. If x′ = τ(x) and τ is a permutation then fX(x
′) = fX(x).

This leads to the following characterisation theorem:

Theorem 123. If f : P n → R where P n is the lattice of partitions, f is quasi-

supermodular with respect to the partition lattice and f is symmetric then the

argmax is a subset of the 2 boundary partitions (the grand coalition and the

atomic partition of singletons).
4The use of the term symmetric functions is from the mathematics literature, see for ex-

ample MacDonald (2005). In economics equivalently a welfare function would be described as
having anonymity, which is the term I used in Section 1.7.

281



Proof. The proof is by contradiction. Suppose p ∈ argmaxp∈Pn f(p) and p =

(pi)
k
i=1 is an interior partition. Let (xi = |pi|)ki=1.Without loss of generality we

can assume that the modules in p are arranged in non-increasing size so xi ≥ xi+1.

And as there are only a finite number of partitions in P n we can assume that

p has the (weakly) largest module. So q ∈ argmaxp∈Pn f(p) and qj ∈ q implies

|qj| ≤ x1. Without loss of generality we can assume the n objects are assigned to

modules in increasing order. So p1 = {1, 2, 3, ....x1 − 1, x1},p2 = {x1 + 1, x1 + 2,

x1+3, ....x1+x2} and in general pi = {1+
∑i−1

r=1 xr, 2+
∑i−1

r=1 xr, .....xi+
∑i−1

r=1 xr}.

Now consider the partition pm where a single member is switched around between

the first and mth modules. So, pm1 = {1, 2, 3, ....x1 − 2, x1 − 1,
m∑
r=1

xr} and pmm =

{1+∑m−1
r=1 xr, 2+

∑m−1
r=1 xr, .....xm−2+

∑m−1
r=1 xr, xm−1+

∑m−1
r=1 xr, x1}. Whilst

a general element is unaltered, so pmi = pi = {1 +
∑i−1

r=1 xr, 2 +
∑i−1

r=1 xr, .....xi +∑i−1
r=1 xr} when i �= 1 and i �= m.

So |p ∧ pm| = (x1 − 1, 1, x2, x3..., xm − 1, 1, xm+1, ...xk) and |p ∨ pm| = (x1 + xm,

x2, x3..., xm−1, xm+1, ...xk).

As p ∈ argmaxp∈Pn f(p), f [p] ≥ f [p ∧ pm]. So by quasi-supermodularity f [p ∨
pm] ≥ f [pm] and as f symmetric, fX [|p ∨ pm|] ≥ fX [|pm|]. But as pm is a

permutation of p, fX [|pm|] = fX [|p|]. So as p ∈ argmaxp∈Pn f(p), we require

p ∨ pm ∈ argmaxp∈Pn f(p), but p ∨ pm has a module of size x1 + xm > x1 which

is a contradiction.

However in practice it is difficult to show that a partition lattice function is

quasi-supermodular as the number of partitions of n objects is given by the nth

Bell number and this sequence grows very quickly: 1, 1, 2, 5, 15, 52, 203, 877, 4140,

21147, 115975,... An alternative approach that involves considering less cases is

to use the fX(.)function directly. Suppose that for all x:

fX [x1+x2, x3, x−3] ≥ fX [x1, x2, x3, x−3]⇒ fX [x1+x2+x3, x−3] ≥ fX [x1+x2, x3, x−3]
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where x−3 := (xi)
k
i=4

So if merging the first 2 modules of x increases f then repeating the process

increases f further. This quasi-supermodularity type condition is similarly suffi-

cient for boundary solutions. Let g[r] := f [x1+x2+rx3, 0, x3−rx3, x−3]−f [x1+

rx2, x2− rx2, x3, x−3]. Then the condition becomes g[0] ≥ 0⇒ g[1] ≥ 0. For the

standard model:

g[0] ≥ 0⇔ θ ≤ θc0

where

θc0 :=
(γ0.5s+ 1) (γx3 + 1)

2γR + γ2Rs+ γ3Rsx3 + 2γ2Rx3 + γs+ 2γ2sx3 + 3γx3 + 1

which uses the substitutions R :=
∑k

i=5 xiP [xi] and s := x1 + x2. Similarly:

g[1] ≥ 0⇔ θ ≤ θc1 :=
γ0.5t+ 1

2γR + γ2Rt+ γt+ 1

where t := x1 + x2 + x3.

Comparison of θc0 and θc1 gives that:

θc1−θc0 =
γ(γs+ 1)x3(γt+ 3)

2(γR(γt+ 2) + γt+ 1) (γR(γs+ 2)(γx3 + 1) + 2γ2sx3 + 2γx3 + 2γt+ 1)
> 0

So this provides an alternative proof that the standard model has boundary

solutions. Unfortunately attempts to apply the same method to some of the

other models were unsuccessful.
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