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3.2 Gröbner Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 The Modified Normal Form Algorithm . . . . . . . . . . . . . 34

3.2.2 Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . 38

3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Choice of S-Polynomials - Buchberger’s Criteria . . . . . . . . 46

3.4.2 Working over Z/pmZ . . . . . . . . . . . . . . . . . . . . . . . 54

i



3.5 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 A Macaulay2 package to Compute Gröbner bases over fields with
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Abstract

In the emerging field of tropical geometry, algebraic varieties are replaced by

polyhedral objects called tropical varieties. The algebraic and tropical variety share

many invariants, but due to its polyhedral structure the tropical variety is often

easier to work with. In this thesis, we look at two problems related to constructing

tropical varieties.

In the first, we extend the theory of Gröbner bases to the case where we

are looking over a field with a valuation. The motivation is that we can use these

Gröbner bases in order to compute tropical varieties over fields with valuations. We

discuss some complexity and implementation issues and present a family of ideals

whose Gröbner basis with respect to the p-adic valuation is small, but all of whose

standard Gröbner bases are large.

In the second, we investigate finding tropical curves over fields with the

trivial valuation from their two-dimensional coordinate projections. A tropical curve

has the support of a one-dimensional fan, and we use its coordinate projections to

reconstruct the rays of this fan. We discuss some implementation issues and we see

examples of tropical curves which can be computed using our projection techniques

which cannot be computed with existing techniques.
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Chapter 1

Introduction

In the emerging field of tropical geometry, we replace a subvariety X of the n-

dimensional algebraic torus with a polyhedral object trop(X) called a tropical vari-

ety. A fundamental question is to determine the structure of this polyhedral object.

This is because the algebraic variety X and tropical variety trop(X) share many of

the same invariants, such as their degree and dimension. This means that under-

standing trop(X) would help us to understand X. Due to its polyhedral nature, the

tropical variety is often easier to understand as combinatorics can be used to study

its polyhedral structure. In this thesis we will investigate two different constructions

of tropical varieties. The first, which we will see in Chapter 3, uses the theory of

Gröbner bases, and the second, which we will see in Chapter 4, uses coordinate

projections.

Let K be an algebraically closed field equipped with a valuation, which is a

function K∗ → R where K∗ denotes the non-zero elements of K. The Fundamental

Theorem of Tropical Geometry (Theorem 2.1.5) will give us a way of constructing

tropical varieties over a field with a valuation using a variant of Gröbner theory

that takes the valuation of coefficients into account. Currently, computational work

is focused on the case of K = Q with the trivial valuation (which is the valuation

for which all non-zero elements have valuation zero) as this can be analysed using

standard Gröbner techniques where the valuations of the coefficients do not play a

role.

Buchberger [1965] introduced an algorithm which could compute these stan-

dard Gröbner bases. In Chapter 3, joint work with my supervisor Diane Macla-

gan [Chan and Maclagan, 2013], we will extend this Gröbner theory to our situation

where we take the valuations of coefficients into account.

In Section 3.6 we introduce GroebnerValuations, which is a computer pack-
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age to compute Gröbner bases over Q with the p-adic valuation. As is common for

standard Gröbner bases over Q, the coefficients can grow very large. However, we

show (Proposition 3.3.4) that valuations of coefficients occurring in a Gröbner basis

over a field with a valuation can be bounded in terms of the valuations and ab-

solute values of the coefficients of the original generators. This motivates working

over Z/pmZ for some suitably large m ∈ N. We see this, and other implementation

issues in Section 3.4.

We end this part by seeing a family of examples of ideals whose Gröbner

basis with respect to the 2-adic valuation has size two but any of whose standard

Gröbner bases with respect to any standard term ordering has size at least linear

in the degree. This gives a usefulness to this work outside of tropical geometry as

it provides an example where an ideal has a small p-adic Gröbner basis but all of

whose standard Gröbner bases are large.

In the second part of this document, we concentrate on constructing tropical

varieties over a field with the trivial valuation. The current methods to construct

these tropical varieties comes from the work of Bogart, Jensen, Speyer, Sturmfels,

and Thomas [2007]. A key step in their algorithms is the construction of a tropical

curve. Thus in Chapter 4 we concentrate on tropical curves as any improvement

in the tropical curve algorithm would provide improvement to the tropical variety

algorithm. Further, we see in Section 4.3 an example of a tropical curve which cannot

be computed efficiently using the existing methods, but which can be computed using

the methods described in Chapter 4.

Let C be a one-dimensional subvariety of the n-dimensional algebraic torus

(K∗)n. Then the Structure Theorem of Tropical Varieties (Theorem 2.2.5) will

tell us that the tropical curve trop(C) has the support of a one-dimensional fan

in Rn. We look to use a set of projections to find trop(C). We will do this by

recovering the points that are in the pre-image of all of the projections in this set.

This will be a superset of the rays of trop(C). In Section 2.5 we will see that Bieri

and Groves [1984] and Hept and Theobald [2009] show that we can always choose

these projections sufficiently generically so that in this way, we will recover only the

rays of trop(C). However, it is often difficult to determine whether projections are

sufficiently generic. Additionally, generic projections can be difficult to compute as,

for example, the degrees of generators can grow very large.

The key idea is that we will restrict our attention to coordinate projections.

In general, these are not generic enough to recover only the rays of the tropical

curve, but they are usually easier to compute. In Section 4.2 we provide algorithms

to reconstruct tropical curves from a set of coordinate projections in two main steps.

2



The first is recovering a set of rays which are in the pre-image of all the coordinate

projections in our set. This is a superset of the rays in trop(C), and in general

will contain extra rays not in trop(C) as our coordinate projections will not be

sufficiently generic. So, the second step will be to determine which of the rays in

this superset are rays of trop(C).

In Section 4.5, we introduce TropicalCurves which is a computer package

to compute tropical curves from its coordinate projections using these algorithms.

We also discuss various implementation issues.

This document is structured as follows. It is comprised of three chapters:

• Chapter 2 introduces the basics of tropical geometry. The Fundamental

Theorem 2.1.5 gives three equivalent formulations of tropical varieties and the

Structure Theorem 2.2.5 asserts that it has the support of a rational poly-

hedral complex. We then look at the existing methods of Bogart, Jensen,

Speyer, Sturmfels, and Thomas [2007] to compute tropical varieties. We out-

line the work of Bieri and Groves [1984] and Hept and Theobald [2009] on

tropical varieties from regular projections and the tropical elimination theory

of Sturmfels and Tevelev [2008]. We end by looking at how to compute the

degree of a tropical curve from tropical intersection theory.

• Chapter 3 studies Gröbner bases over fields with valuations. We see how the

algorithms from standard Gröbner theory need to be altered when considering

valuations of coefficients. We discuss complexity and implementation issues

and end with an example of a Gröbner basis over Q whose p-adic Gröbner

basis has size two, but any of whose standard Gröbner bases have size at least

linear in the degree.

• Chapter 4 looks at tropical curves over fields with the trivial valuation. The

fan structure of a tropical curve is reconstructed from its two-dimensional

coordinate projections. We see some implementation issues, and an example

of a tropical curve which cannot be computed using existing techniques, but

which can be computed using these coordinate projection methods.
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Chapter 2

An Introduction to Tropical

Geometry

Tropical geometry can be thought of as a piecewise linear approximation to algebraic

geometry where an algebraic variety is replaced by a rational polyhedral complex

called a tropical variety. The adjective tropical was given to this area of research by

a group of French mathematicians including Jean-Eric Pin, Dominique Perrin and

Christian Choffrut to honour their Brazilian friend and colleague Imre Simon [1988]

who pioneered the use of the tropical semi-ring. This semi-ring, also known as the

min-plus semi-ring, originally had important applications to Optimisation Theory

and Theoretical Computer Science [Perrin, 1990].

In this chapter, we set out the Tropical Geometry background which we

need. Full details can be found in the draft book “Introduction to Tropical Ge-

ometry” [Maclagan and Sturmfels, 2013]. We begin by defining the tropicalisation

trop(X) of an algebraic variety X in terms of the intersection of tropical hypersur-

faces. The Fundamental Theorem 2.1.5 gives us two different, but equivalent, formu-

lations of trop(X) and the Structure Theorem 2.2.5 tells us that it has the support

of a weighted balanced rational polyhedral complex. We then discuss the methods

of Bogart, Jensen, Speyer, Sturmfels, and Thomas [2007] to compute trop(X) and

see that the construction of a tropical curve is a key step in their algorithms. We

end with some technical material which we will need, including an outline of some

tropical elimination theory, and the tropical intersection theory used to find the

degree of a tropical curve combinatorially.
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2.1 Tropical Varieties and the Fundamental Theorem

The tropical semi-ring is (R ∪ {∞},⊗,⊕) where tropical multiplication ⊗ is the

usual addition and tropical addition ⊕ is the usual minimum. These operations

satisfy the familiar axioms of arithmetic; for example they are both commutative

and the distributive, 0 is the identity element for tropical multiplication and ∞ is

the identity element for tropical addition. In fact all of the ring axioms are satisfied

except for the existence of an additive inverse as there is no well defined tropical

subtraction. Thus (R ∪ {∞},⊗,⊕) has the structure of a semi-ring.

Let x1, . . . , xn be variables which represent elements in the tropical semi-

ring (R ∪ {∞},⊗,⊕). A tropical monomial is any product of the variables. By

evaluating these tropical monomials with classical arithmetic, the tropical monomial

xa11 . . . xann for some ai ∈ N can be thought of as representing the ordinary linear

form Σn
i=1aixi. As a shorthand, we let xa := xa11 . . . xann for a = (a1, . . . , an) ∈ Nn.

A tropical polynomial is simply a finite linear combination of tropical monomials:

f(x1, . . . , xn) =
⊕s

i=1 a ⊗ xi11 . . . x
in
n . This represents a piecewise linear function

Rn → R.

LetK be an algebraically closed field and byK∗ denote the non-zero elements

of K. A real valuation on K is a function val : K∗ → R such that the following

axioms are satisfied:

1. val(ab) = val(a) + val(b);

2. val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ K∗.

The image of the valuation map, denoted Γ, is called the value group. After scaling

if necessary, we can assume that Γ contains 1. We assume that there always exists a

group homomorphism φ : Γ→ K∗ with val(φ(w)) = w which is denoted by φ(w) =

tw. This always exists if K is algebraically closed [see, for example, Maclagan and

Sturmfels, 2013, Lemma 2.1.15]. The valuation ring of K is

R = {a ∈ K : val(a) ≥ 0},

which consists of all elements of K which have non-negative valuation. It is a local

ring with unique maximal ideal

m = {a ∈ K : val(a) > 0}.

The quotient ring k = R/m is called the residue field of K. For a ∈ R we denote by

a the image of a in the residue field k.
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Example 2.1.1. Let K = Q be the field of rational numbers and fix a prime p ∈ Z.

Any rational number n ∈ Q can be written in the form n = pma
b for some m ∈ N

and a, b ∈ Z such that p does not divide a or b. Then the p-adic valuation is the map

valp : Q∗ → Z where valp(n) = m. The valuation ring is {a ∈ Q : valp(a) ≥ 0} = Z(p)

which has unique maximal ideal {a ∈ Q : valp(a) > 0} = 〈p〉 and residue field Z/pZ.

The image of valp is Γ = Z and we can take φ to be φ(w) = pw. 3

Example 2.1.2. An important example of a field with a valuation is the field of

Puiseux series over C denoted by C{{t}}. An element of C{{t}} is of the form

c(t) = c1t
a1 + c2t

a2 + c3t
a3 + . . . where ci ∈ C∗ and a1 < a2 < a3 < . . . are rational

numbers bounded below by a1 and with a common denominator. We can write

C{{t}} =
⋃
n≥1 C((t1/n)), the union of Laurent series in the formal variable t1/n. The

field of Puiseux series over C is algebraically closed [see, for example, Markwig, 2010,

Theorem 6]. We define a valuation val : C{{t}} → R which sends a Puiseux series

to its lowest exponent of t. That is, val(c(t)) = a1. The valuation ring consists of

power series with rational exponents with common denominator, and the maximal

ideal consists of those Puiseux power series whose constant term is zero. The residue

field is C and the image of val is Γ = Q. We can take φ to be φ(w) = tw.

In the Puiseux series definition, the field C can be replaced by any field K

and K{{t}}, the field of Puiseux series over K, can be defined in an analogous way.

Similarly to over C, the field of Puiseux series over K is algebraically closed if K is

an algebraically closed field of characteristic zero [see, for example, Maclagan and

Sturmfels, 2013, Theorem 2.1.5]. In fact, in this case, the field of Puiseux series

K{{t}} is the algebraic closure of the field of Laurent series K((t)) [Ribenboim, 1999,

7.1.A(β), p.186]. 3

Example 2.1.3. Let K be an algebraically closed field. Then the trivial valuation is

the valuation val such that val(a) = 0 for all a 6= 0. These are important to consider

as many objects we will consider, for example Gröbner bases and the Gröbner com-

plex, originate from the case where we do not consider the valuations of coefficients.

Unfortunately, several of the theorems and results in tropical geometry require that

the valuation be non-trivial. If K is a field of characteristic zero then we can con-

sider the field K as a subfield of the field of the Puiseux series field K{{t}}. The

trivial valuation on K can be thought of as the restriction of the valuation on the

field of Puiseux series over K from Example 2.1.2 to K, noting that for the Puiseux

series valuation, we have that val(a) = 0 for all a ∈ K ⊆ K{{t}}. If K has positive

characteristic, then as K{{t}} may not be algebraically closed we need to consider

the generalised power series ring K((Γ)), where Γ is the image of the valuation map

val, for val the usual valuation on the Puiseux series. The generalised power series
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ring K((Γ)) consists of elements of the form
∑

g∈Γ αgt
g where αg ∈ K and the set of

supports {g : αg 6= 0} is a well-ordered set. Then Poonen [1993, Corollary 5] showed

that K{{t}} is isomorphic to a subfield of the field of generalised power series K((Γ))

which is algebraically closed [Poonen, 1993, Corollary 4]. We can then think of K

with the trivial valuation as the restriction of the valuation on K((Γ)) to K. 3

Let Pn be the n-dimensional projective space over K. Let Tn be the n-

dimensional algebraic torus over K. The homogeneous coordinate ring of Pn is

the polynomial ring K[x0, x1, . . . , xn] and the coordinate ring of Tn is the Laurent

polynomial ring K[x±1 , . . . , x
±
n ].

Remark 2.1.4. In tropical geometry we are interested in varieties X which are

contained in the algebraic torus Tn. By the inclusion i : Tn ↪→ Pn we can think of

X as a projective variety in the following way. The map i is given by the projective

closure in Pn of the map x 7→ [1 : x]. Algebraically, if X ⊆ Tn is given by an ideal

I ⊆ K[x±1
1 , . . . , x±1

n ], then first set J = I∩K[x1, . . . , xn]. The homogenisation of J is

the Zariski closure of i(X) in Pn [Maclagan and Sturmfels, 2013, Proposition 2.2.6].

In this way, we can think of a variety of the algebraic torus Tn given by an ideal in

K[x±1 , . . . , x
±
n ] as a variety of Pn given by a homogeneous ideal in K[x0, x1, . . . , xn].

Conversely, if X is a subvariety of Pn, then we will consider X0 = X ∩Tn as

this is then a subvariety of Tn. 3

Let f = Σu∈Zncux
u be a Laurent polynomial in K[x±1

1 , . . . , x±1
n ]. We define

the map trop, which takes a polynomial to its tropicalisation, by sending coefficients

to their valuations, the usual addition + to tropical addition ⊕ and the usual mul-

tiplication × to tropical multiplication ⊗. If f = Σu∈Zncux
u is a usual polynomial

then its tropicalisation is trop(f) = min{val(cu) + Σn
i=1uixi}.

The tropical hypersurface trop(V (f)) defined by the polynomial f is the set

of points of Rn where the minimum in trop(f) is achieved at least twice. The tropical

pre-variety of a finite set {f1, . . . , fs} is the intersection of the tropical hypersurfaces

trop(V (f1)), . . . , trop(V (fs)). Let I be an ideal in K[x±1
1 , . . . , x±1

n ] and X = V (I).

Then the tropical variety of X is

trop(X) =
⋂
f∈I

trop(V (f)).

A finite set {f1, . . . , fs} ⊆ I is called a tropical basis for I if its tropical pre-variety

equals the tropical variety trop(X). That is:

trop(X) =

s⋂
i=1

trop(V (fi)).
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We shall see in the Fundamental Theorem 2.1.5 another more algebraic for-

mulation of the tropical variety. For this, we shall need the theory of initial ideals.

Fix a weight vector w ∈ Γn and set W := trop(f)(w) = min{val(cu) + w.u :

cu 6= 0}. The initial form of f with respect to w is defined as

inw(f) :=
∑

u∈Zn:val(cu)+w.u=W

cut− val(cu)xu,

which is a polynomial in the Laurent polynomial ring k[x±1
1 , . . . , x±1

n ] over the residue

field. When considering initial terms with respect to a monomial term ordering ≺
(see [Cox, Little, and O’Shea, 2007, Section 2.2] for more information on monomial

term orderings) in≺(I) is always a monomial term. However, this is not always the

case for our initial terms as we are considering initial ideals with respect to a weight

vector. For example, consider x+3y+12z ∈ Q[x, y, z] where Q is equipped with the

2-adic valuation. Then the initial form with respect to the weight vector (1, 1, 1) is

in(1,1,1)(x+ 3y + 12z) = x+ y.

The initial ideal of I with respect to w is the ideal generated by the initial

forms of all polynomials in I:

inw(I) = 〈inw(f) : f ∈ I〉 .

The initial ideal is an ideal in k[x±1
1 , . . . , x±1

n ].

Theorem 2.1.5 (The Fundamental Theorem of Tropical Algebraic Geometry). Let

K be an algebraically closed field with non-trivial valuation val. Let I be an ideal

in K[x±1
1 , . . . , x±1

n ] and X = V (I) its variety in the algebraic torus Tn. Then the

following three subsets of Rn coincide.

1. The tropical variety trop(X) =
⋂
f∈I trop(V (f));

2. The closure of {w ∈ Γn : inw(I) 6= 〈1〉} in Rn;

3. The closure of {(val(u1), . . . , val(un)) : (u1, . . . , un) ∈ X} in Rn.

The Fundamental Theorem gives us three equivalent formulations of tropical

varieties. The first in terms of the intersection of tropical hypersurfaces which we

have already seen, the second in terms of initial ideals, and the third as the image of

the valuation map. This third formulation allows us to think of the tropical variety

as being a shadow of its algebraic counterpart. The second formulation in terms

of initial ideals gives an algebraic way to check if points are in a tropical variety.

This is because initial ideals over the polynomial ring can be finitely computed using
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Gröbner bases as we shall see in Chapter 3. By Remark 2.1.4, we can think of a

variety of the algebraic torus Tn given by an ideal in K[x±1 , . . . , x
±
n ] as a variety

X ⊆ Pn with defining homogeneous ideal I ⊆ K[x0, x1, . . . , xn]. In this situation,

fix a weight vector w ∈ Γn+1. Then {g1, . . . , gs} is called a Gröbner basis for I with

respect to w if the initial ideal inw(I) is generated by {inw(g1), . . . , inw(gs)}. In this

case, the second set of the Fundamental Theorem 2.1.5 becomes the closure in Rn+1

of the set

{w ∈ Γn+1 : inw(I) does not contain a monomial}.

We omit the proof of the Fundamental Theorem 2.1.5 (details can be found

in [Maclagan and Sturmfels, 2013, Theorem 3.2.5]) and instead we provide an ex-

ample.

Example 2.1.6. Consider K = C with the trivial valuation and consider the variety

X = V (x+ y + 1) ⊆ K[x±1, y±1]. Theorem 2.1.5 requires our valuation to be non-

trivial; recall from Example 2.1.3 that we can consider C as a subfield of the field

of Puiseux series C{{t}}. We construct trop(X) in the three ways as described in

Theorem 2.1.5 and demonstrate that they are all equal.

Firstly, the definition of trop(X) = trop(V (x + y + 1)) is the set of all

w = (w1, w2) ∈ R2 such that the minimum in trop(x + y + 1)(w) is achieved at

least twice. By definition, trop(x + y + 1)(w) = min{w1, w2, 0}. This minimum is

achieved twice at

1. w2 and 0 when w = (α, 0) for all α > 0;

2. w1 and 0 when w = (0, α) for all α > 0;

3. w1 and w2 when w = (−α,−α) for all α > 0.

This minimum is achieved three times when w = (0, 0). Thus the tropical variety

trop(X) equals the three half lines spanned by positive multiples of (1, 0), (0, 1),

(−1,−1) and the origin as shown in Figure 2.1.

Secondly, trop(X) is seen as the closure in R2 of the set of all w ∈ Γ2 such

that inw(I) 6= 〈1〉. As I is generated by a single polynomial x + y + 1, this is the

same as finding all w ∈ Γ2 such that inw(x+ y + 1) is not a monomial. The initial

form inw(x+ y + 1) is not a monomial at

1. w = (α, 0) for all α > 0 where inw(x+ y + 1) = y + 1;

2. w = (0, α) for all α > 0 where inw(x+ y + 1) = x+ 1;

3. w = (−α,−α) for all α > 0 where inw(x+ y + 1) = x+ y;

9



Figure 2.1: A tropical line in the plane

4. w = (0, 0) where inw(x+ y + 1) = x+ y + 1.

Again, we see that trop(X) is as in Figure 2.1.

Finally, consider trop(X) as the closure of the image of the algebraic va-

riety under the valuation map. The variety is V (x + y + 1) = {(a,−1 − a) :

a ∈ C{{t}}, a 6= 0, 1} and so consider (val(a), val(−1 − a)). If val(a) > 0 then

as val(a + b) = min{val(a), val(b)} if val(a) 6= val(b) we have that val(−1 − a) =

min{val(−1), val(−a)} = min{0, val(a)} = 0. Then (val(a), val(−1−a)) = (val(a), 0).

If val(a) < 0 then by similar arguments, we have that (val(a), val(−1 − a)) =

(val(a), val(a)). If val(a) = 0 and a = b − 1 for some b with positive valuation,

then (val(a), val(−1− a)) = (0, val(b)); otherwise, (val(a), val(−1− a)) = (0, 0).

Again, we conclude that trop(X) is as in Figure 2.1. 3

2.2 Polyhedra and the Structure Theorem

We shall see that tropical varieties have a polyhedral structure for which we shall

need some background in polyhedral geometry. For full details, see for exam-

ple Ziegler [1995, Chapter 1].

A polyhedron P in Rn is the intersection of finitely many closed half spaces.

That is, for some A ∈ Mat(m× n,R) and z ∈ Rm, it can be presented in the form

P = P (A, z) := {x ∈ Rn : Ax ≤ z} (2.1)

where by Ax ≤ z we mean that if a1, . . . am are the rows of A and z = (z1, . . . , zm),

then we have inequalities ai · x ≤ zi for all 1 ≤ i ≤ m.

A bounded polyhedron in Rn is called a polytope. That is, it can be described
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as the bounded intersection of finitely many closed half-spaces. We call a polytope

given with this description an H-polytope as it is given by an intersection of half-

spaces. Equivalently [Ziegler, 1995, Theorem 1.1], a polytope can be described as

the convex hull of a finite set of points. That is, if V = {v1, . . . , vk} is a finite set in

Rn then P can be presented in the form

P = conv(V ) :=

{
λ1v1 + ...+ λkvk : λi ≥ 0,

k∑
i=1

λi = 1

}
.

We call a polytope given with this description a V-polytope as it is given by its set

of vertices.

Using Fourier-Motzkin Elimination [Ziegler, 1995, Theorem 1.4] we can turn

a V-polytope into an H-polytope and vice versa. We shall use this in Section 2.3.1

when we are computing tropical hypersurfaces. We shall also need the lattice length

of an edge of a polygon, which is defined to be the number of interior lattice points

plus one.

Let P be a polyhedron in Rn. The face of P minimising some w ∈ Rn is the

set:

facew(P ) = {y ∈ P : w · y ≤ w · x for all x ∈ P}.

For some subgroup Γ ⊆ Rn, P is called Γ-rational if A ∈ Matm×n(Q) and z ∈ Γm

in (2.1). For the case where Q ⊆ Γ, this is equivalent to P having rational facet

normals and vertices in Γn. The affine span, aff(P ), of a polyhedron P is the affine

subspace u + span{v − u : v ∈ P}, for some u ∈ P , the dimension of which is

the dimension of P . The zero-dimensional faces are called vertices and the one-

dimensional faces are called edges. Faces which are not contained in any larger

proper face are called facets. The relative interior of P is its interior in its affine

span. The lineality space of P is the largest affine subspace contained in P . That

is, if V is a subspace of Rn for which x+ v ∈ P for all x ∈ P and v ∈ V , then it is

the lineality space of P .

A polyhedral complex Σ is a collection of polyhedra for which if the inter-

section of any two polyhedra is non-empty, then it is a common face of each. It

is called Γ-rational if every polyhedron in this collection is itself Γ-rational. The

lineality space of a polyhedral complex is the intersection of the lineality spaces of

all the polyhedra in the complex. The support |Σ| of Σ is the set of all points which

are contained in some polyhedron in Σ:

|Σ| = {x ∈ Rn : x ∈ P for some P ∈ Σ}.
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A polyhedral complex Σ is pure of dimension d if every polyhedron in Σ which is

maximal with respect to inclusion has dimension d. If Σ is pure of dimension d,

then we say it is connected through codimension one if for every two d-dimensional

polyhedra P and Q in Σ, there is a chain

P = P0, P1, . . . , Pt = Q

for which Pi and Pi+1 intersect in a unique codimension-one polyhedron for every

0 ≤ i ≤ s− 1.

Proposition 2.2.1. Let X be an irreducible d-dimensional subvariety of Tn. Then

the tropical variety trop(X) is the support of a pure d-dimensional Γ-rational poly-

hedral complex which is connected through codimension one.

Let X be an irreducible d-dimensional subvariety of Pn given by an ideal

I ⊆ K[x0, x1, . . . , xn]. Let X0 = X ∩ Tn with tropicalisation trop(X0), which is

the support the Γ-rational polyhedral complex Σ in Rn. The support |Σ| of this

polyhedral complex is determined by the defining ideal I and so is a fixed invariant

of the ideal, but the polyhedral complex structure applied to it may vary. For

example, trivially, one face can be subdivided into two, but there are also non-

trivial examples [see, for example, Maclagan and Sturmfels, 2013, Example 3.2.9].

We thus fix a polyhedral complex structure on |Σ|. For example, it could inherit a

polyhedral complex structure from the Gröbner complex Σ(I), which we now define.

For a homogeneous ideal I ⊆ K[x0, x1, . . . , xn], the Gröbner complex Σ(I)

of I is the polyhedral complex in Rn+1 whose (n + 1)-dimensional open cells are

in bijection with the distinct initial ideals of I. Given w ∈ Γn+1, the Gröbner cell

Cw(I) is the closure in Rn+1 of

{w′ ∈ Γn+1 : inw′(I) = inw(I)}.

This is a Γ-rational polyhedron [Maclagan and Sturmfels, 2013, Proposition 2.5.2]

whose lineality space contains (1, . . . , 1) as the ideal I is homogeneous. Thus after

we quotient out by this lineality space, it is a polyhedron in Rn+1/R(1, . . . , 1). An

ideal has only finitely many different initial ideals [Maclagan and Sturmfels, 2013,

Lemma 2.5.4], and so has only finitely many different Gröbner cells. The Gröbner

complex Σ(I) is the finite collection of Gröbner cells Cw(I) for all w ∈ Γn+1. It is a

Γ-rational polyhedral complex in Rn+1/R(1, . . . , 1) [Maclagan and Sturmfels, 2013,

Theorem 2.5.3] where every Gröbner cell is a face of some n-dimensional Gröbner

cell. In the case where we are considering the trivial valuation, the Gröbner complex
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is the Gröbner fan of I. Gröbner fans were introduced much earlier than Gröbner

complexes by Mora and Robbiano [1988], and are consequently a much more well-

studied object. The Gröbner complex is thus a generalisation of the Gröbner fan to

the case where we are looking at fields with valuations.

By the Fundamental Theorem 2.1.5, it follows that trop(X) consists of the

Gröbner cells Cw(I) for which inw(I) does not contain a monomial. This endows

trop(X) with the structure of a polyhedral complex. This also gives a näıve al-

gorithm for computing the tropical variety. We could first compute the Gröbner

complex, and then trop(X) is the subcomplex consisting of those cells Cw(I) for

which inw(I) does not contain a monomial. However, this turns out to be an in-

efficient method, as we explain in the following example [Bogart, Jensen, Speyer,

Sturmfels, and Thomas, 2007, Example 6.1].

Example 2.2.2. Consider the homogeneous ideal I = 〈x3
5−2x4x5x6 +x3x

2
6 +x2

4x7−
x3x5x7, x4x

2
5 − x2

4x6 − x3x5x6 + x2x
2
6 + x3x4x7 − x2x5x7, x3x

2
5 − x3x4x6 − x2x5x6 +

x2x4x7, x
2
4x5 − 2x3x4x6 + x2

3x7, x3x4x5 − x2x
2
5 − x2

3x6 + x2x3x7, x
2
3x5 − x2x4x5 −

x2x3x6 + x2
2x7, x

3
4− x2x

2
5− x2

3x6− x2x4x6 + 2x2x3x7, x3x
2
4− 2x2x4x5 + x2

2x7, x
2
3x4−

x2x
2
4 − x2x3x5 + x2

2x6, x
3
3 − 2x2x3x4 + x2

2x5〉 ⊆ C[x1, . . . , x7]. Then V (I) defines

a curve times a three-dimensional torus, and so the tropicalisation trop(V (I)) is

a four-dimensional fan with a three-dimensional lineality space. Thus after quo-

tienting out by the lineality space it defines a tropical curve. We compute, using

gfan [Jensen], that trop(V (I)) has five rays spanned by (0, 5,−4,−13,−22, 74,−40),

(0, 4, 1,−2,−5,−8, 10), (0,−5, 11,−8, 8,−11, 5), (0,−5,−17, 76,−41,−53, 40) and

(0,−10,−13,−16, 86,−22,−25) with three dimensional lineality space spanned by

(−1, 0, 0, 0, 0, 0, 0), (0,−1, 0, 1, 2, 3, 4) and (0, 0,−1,−2,−3,−4,−5). However, Σ(I)

is full dimensional and so has many more cones than trop(V (I)). In fact, Σ(I) has

7167 rays whereas trop(V (J)) has only five. 3

Having fixed a polyhedral complex structure on trop(X), we now explain

how to define multiplicities on the d-dimensional polyhedra of Σ. To do this, we

first need the definition of the multiplicity of a minimal associated prime of an ideal

(see [Eisenbud, 1995, Chapter 3] for full details).

An ideal Q of K[x±1
1 , . . . , x±1

n ] is called primary if fg ∈ Q implies that either

f ∈ Q or gm ∈ Q for some integer m > 0. We can write our ideal I as the intersection

of primary ideals I =
⋂s
i=1Qi where each Qi is a primary ideal whose radical is the

prime ideal Pi. If the Pi are all unique and no Qi is redundant in this expression

then it is called a primary decomposition of I. Such an expression is not unique,

but it turns out that the collection of primes {Pi} is independent of the choice of
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primary decomposition [Eisenbud, 1995, Proposition 3.13(a)]. These Pi are called

the minimal associated primes of I. The multiplicity of a minimal prime Pi of I is

defined to be the length of (K[x±1
1 , . . . , x±1

n ]/Qi)Pi as an K[x±1
1 , . . . , x±1

n ]-module:

mult(Pi, I) = length((K[x±1
1 , . . . , x±1

n ]/Qi)Pi).

The multiplicity of a minimal associated prime of I is used to define the multiplicity

of a d-dimensional polyhedron σ of the d-dimensional polyhedral complex Σ =

trop(V (I)). Fix some w in the relative interior of σ and define the multiplicity of σ

to be

mult(σ) =
∑

P a minimal associated prime of inw(I)

mult(P, inw(I)).

Consider any other w′ in the relative interior of σ. We have inw′(I) = inw(I) as

they are both contained in the same Gröbner cone of I. Thus this definition of

multiplicity is independent of the choice of w in the relative interior of σ.

We now explain how this multiplicity can be effectively computed (see [Macla-

gan and Sturmfels, 2013, Lemma 3.4.6] for full details and a proof). For this

we need a multiplicative change of coordinates. This is given by an automor-

phism φ : (K∗)n → (K∗)n. It has an induced map on rings φ∗ : K[x±1
1 , . . . , x±1

n ] →
K[x±1

1 , . . . , x±1
n ] given by φ∗(xi) = xai for some ai ∈ Zn. As φ is an automor-

phism, φ∗ is an isomorphism. Let A be the matrix whose columns are a1, . . . , an.

Notice that as φ is an isomorphism, A is invertible and also that A ∈ GL(n,Z).

We apply a multiplicative change of coordinates so that the polyhedron σ in Σ has

affine span span(e1, . . . , ed). Let w be a relative interior point of σ, k[xd+1, . . . , xn]

the polynomial ring in variables xd+1, . . . , xn over the residue field k and J =

inw(I) ∩ k[xd+1, . . . , xn]. Then V (J) is a finite set of points, the number of which

when counted with multiplicity is the multiplicity of σ:

mult(σ) = dimk(k[xd+1, . . . , xn]/J).

By assigning multiplicities to all maximal dimensional polyhedra in this way, we can

endow Σ with the structure of a weighted polyhedral complex where the d-dimensional

polyhedron σ in Σ has weight given by mult(σ).

Example 2.2.3. Consider the ideal I = 〈1+x2+x2y+xy2+y2〉 ⊆ C[x±1, y±1] where

C has the trivial valuation. Then trop(V (I)) has five rays generated by u1 = (1, 0),

u2 = (0, 1), u3 = (−1, 0), u4 = (0,−1) and u5 = (−1,−1). We determine the

multiplicities. For the ray generated by u1, the initial ideal is inu1(I) = 〈y2 + 1〉 =

〈y+ i〉∩〈y− i〉, and so the ray has multiplicity two. For the ray generated by u2, the
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initial ideal is inu2(I) = 〈x2 + 1〉 = 〈x+ i〉 ∩ 〈x− i〉, and so the ray has multiplicity

two. For the ray generated by u3, the initial ideal is inu3(I) = 〈x2 + x2y〉 = 〈1 + y〉,
and so the ray has multiplicity one. For the ray generated by u4, the initial ideal

is inu4(I) = 〈xy2 + y2〉 = 〈x + 1〉, and so the ray has multiplicity one. For the ray

generated by u5, the initial ideal is inu5(I) = 〈x2y + xy2〉 = 〈x+ y〉, and so the ray

has multiplicity one. This is shown in Figure 2.2 where all rays have multiplicity

one except those indicated with a 2. 3

2

2

Figure 2.2: A weighted fan in R2

We define what it means for a weighted polyhedral complex to be balanced

by first considering the case of a one-dimensional fan. Let Σ be a one-dimensional

weighted Γ-rational polyhedral fan in Rn. Denote by ui ∈ Zn the first lattice point

of the i-th ray of Σ and suppose it has multiplicity mi. The one-dimensional fan Σ

is said to be balanced if ∑
i

miui = 0.

Example 2.2.4. Returning to Example 2.2.3, the fan for trop(V (I)) is balanced as

2 ·

(
1

0

)
+ 2 ·

(
0

1

)
+ 1 ·

(
−1

0

)
+ 1 ·

(
0

−1

)
+ 1 ·

(
−1

−1

)
=

(
0

0

)
. 3

Let Σ be a weighted Γ-rational polyhedral complex in Rn. To see that Σ is

balanced we reduce to the case of a one-dimensional fan. Let P ∈ Σ be a polyhedron,

then the star of P , starΣ(P ) is a fan in Rn with cones indexed by those Q ∈ Σ which

have P as a face. Fix w ∈ P , then the cone of starΣ(P ) indexed by face Q is

{v ∈ Rn : ∃ε > 0 with w + εv ∈ Q}+ aff(P )− w
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which is independent of the choice of w. For example, the star of the ray generated

by (1, 0) in the tropical curve of Example 2.2.3 is the horizontal axis, and the star

of the origin is the whole fan of Figure 2.2. If Σ is a pure weighted d-dimensional,

Γ-rational polyhedral complex with P a (d− 1)-dimensional polyhedron in Σ, then

we say that Σ is balanced at P if the one dimensional fan

starΣ(P )/{aff(P )− w}w∈P

is balanced after inheriting the weights from Σ. The complex Σ is said to be balanced

if it is balanced at all (d− 1)-dimensional polyhedra in Σ.

The Structure Theorem of Tropical Varieties [see Maclagan and Sturmfels,

2013, Theorem 3.3.5] asserts that tropical varieties have this additional structure.

Theorem 2.2.5. (Structure Theorem for Tropical Varieties) Let X be an irreducible

d dimensional subvariety of the torus Tn. Then trop(X) is the support of a balanced

weighted Γ-rational polyhedral complex pure of dimension d. If K has characteristic

zero then this complex is connected through codimension one.

2.3 Computing Tropical Varieties

A natural question to ask is how can trop(X) be efficiently computed. Recall that

the Fundamental Theorem 2.1.5 says that for X ⊆ Tn with defining ideal I ⊆
K[x±1

1 , . . . , x±1
n ], the tropical variety trop(X) is the closure in Rn of the set {w ∈

Γn : inw(I) 6= 〈1〉}. In Chapter 3 we explain how over a field with a valuation we

can compute a Gröbner basis which can be used to compute inw(I). We examine

existing methods to compute tropical varieties over fields with the trivial valuation.

This allows us to use the standard theory of Gröbner bases where we do not take

the valuations into account. We shall see firstly that tropical hypersurfaces, which

are defined by a single polynomial f can be constructed from the Newton polygon

Newt(f). We then shall see how tropical curves can be constructed before seeing

how an arbitrary dimensional tropical variety can be constructed using the methods

of Bogart, Jensen, Speyer, Sturmfels, and Thomas [2007].

2.3.1 Tropicalising Hypersurfaces in P2

In this section, we consider tropicalising hypersurfaces which are also curves; that

is, hypersurfaces in P2 defined by a single homogeneous equation in K[x0, x1, x2].

We concentrate on the case of tropicalising hyperplanes in P2 as we shall explic-

itly require these algorithms for our constructions in Chapter 4. In that chapter,
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we will be looking at a different methods of computing tropical curves from pro-

jections to coordinate planes. The work of this section will allow us to compute

the tropicalisations of the coordinate projection of these tropical curves as they are

tropical hypersurfaces. Similar methods can be used to construct tropical hypersur-

faces in Pn. In particular, the tropical hypersurface trop(V (f)) for some polynomial

f ∈ K[x0, x1, . . . , xn] can be constructed from its Newton polygon Newt(f).

As the defining equation f ∈ K[x0, x1, x2] is homogeneous the tropical va-

riety has (1, 1, 1) in its lineality space so we consider the tropical variety after first

quotienting out by (1, 1, 1). This corresponds to first dehomogenising the defining

equation which we can then consider as a polynomial f in K[x±1
1 , x±1

2 ]. We discuss

how to construct tropical hypersurfaces in R2 defined by a single polynomial f from

its Newton polygon and how this can be computed using Fourier-Motzkin elimina-

tion. We shall also see how the multiplicities can be recovered from the lengths of

corresponding edges of the Newton polygon.

We start with some polyhedral geometry. Let P be a convex polygon in R2,

F a face of P and set NF (P ) := {w ∈ R2 : w · y ≤ w · x for all x ∈ P, y ∈ F}.
That is, NF (P ) is the collection of all w ∈ R2 for which facew(P ) ⊆ F . Consider

w = (0, 0). As (0, 0) · y ≤ (0, 0) · x for all x, y ∈ P it follows that for all faces F of

P we have that (0, 0) ∈ NF (P ). Suppose that w,w′ ∈ NF (P ) then w · y ≤ w · x and

w′ · y ≤ w′ · x for all x ∈ P and y ∈ F and so (αw+ βw′) · y ≤ (αw+ βw′) · x for all

α, β ≥ 0 from which it follows that αw + βw′ ∈ NF (P ). We conclude that NF (P )

is a polyhedral cone in R2 and is called the normal cone of P at F .

The normal fan of P is the set of all normal cones at all faces of P :

N (P ) := {NF (P ) : F is a face of P}.

By N0(P ) we denote the subfan of N (P ) containing only the cones of N (P ) which

are not maximal dimensional.

Lemma 2.3.1. Suppose E and F are faces of a convex polygon P with E $ F , then

NE(P ) % NF (P ).

Proof. Let w ∈ NF (P ). Then for all x ∈ P and y ∈ F we have that w · y ≤ w · x.

As this holds for all y ∈ F it must hold for all y ∈ E ⊆ F and so w ∈ NE(P ).

Now suppose that NE(P ) = NF (P ) and let w ∈ NE(P ). Then by definition

facew(P ) ⊇ E and so for all x ∈ E and y ∈ P it follows that w · x ≤ w · y. But

w ∈ NE(P ) so w ∈ NF (P ) and in particular w · x′ ≤ w · y for all x′ ∈ F and y ∈ P
meaning that x′ ∈ facew(P ) for all x′ ∈ F and so F ⊆ E. By assumption E ⊆ F

and so E = F contradicting the assumption that E $ F .
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Let P ⊆ R2 be a two-dimensional polytope. If F is a face of P then by, for

example [Cox, Little, and Schenck, 2011, Proposition 2.3.8(a)], we have that

dim(F ) + dim(NF (P )) = 2.

Combining this with Lemma 2.3.1, we see that there is a bijective dimension-

reversing inclusion between the faces of the convex polygon P and the cones in

its normal fan N (P ).

Returning to constructing the fan which is the support of a tropical curve in

P2, let C be a curve defined by polynomial f =
∑
cux

u in K[x±1
1 , x±1

2 ]. The Newton

polygon of f is defined as the convex hull of the exponents of x which have non-zero

coefficients:

Newt(f) := conv{u : cu 6= 0}.

We can recover the fan that is the support of trop(C) from the Newton polygon of

f as the following result explains.

Lemma 2.3.2. Let f ∈ K[x±1
1 , x±1

2 ] be a polynomial and let Σ be the polyhedral

complex which consists of the non-maximal cones of the Newton polygon of f . Then

the tropicalisation of V (f) is the support of the complex Σ. That is,

trop(V (f)) = N0(Newt(f)).

Further, the multiplicity of the ray of trop(X) which is normal to the edge E of

Newt(f) is the lattice length of E.

Proof. Let P = Newt(f). If f is a monomial, then P is a single point. Setting

P = {x}, then for all w ∈ R2 we have that w · x ≤ w · x and it follows that

NP (P ) = R2 is the only cone, and so N0(P ) = ∅. Clearly trop(V (f)) is empty as

inw(f) is always a monomial, and so the two sets coincide as required.

Now suppose that f is not a monomial. Let u1, . . . , us be the exponents of

the monomials in f which have non-zero coefficients. Now, w ∈ trop(V (f)) means

that inw(f) is not a monomial and so the minimum in mini{w · ui} is achieved

at least twice, which after relabelling, we assume occurs for i = 1, . . . , r for some

r ≤ s. So w · u1 = · · · = w · ur ≤ w · ui for all 1 ≤ i ≤ s which implies that

w · (
∑r

i=1 αiui) ≤ w · (
∑s

j=1 βjuj) for all α1, . . . , αr, β1, . . . , βs ∈ R≥0 such that∑r
i=1 αi = 1 and

∑s
j=1 βj = 1. Notice that

∑r
i=1 αiui ∈ conv{u1, . . . , ur} and∑s

j=1 βjuj ∈ conv{u1, . . . , us} = P and so by definition, we have that w ∈ NF (P )

for F = conv{u1, . . . , ur}. If F is one-dimensional, then by the dimension reversing

correspondence between faces of P and cones of N (P ), it follows that NF (P ) is
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also one-dimensional and so as N (P ) is two-dimensional we have that w ∈ N0(P )

as required. If F is two-dimensional, then NF (P ) is zero-dimensional, and so again

w ∈ N0(P ) as required.

For the reverse inclusion, notice that w ∈ N0(P ) means that w ∈ NF (P )

for some face F such that NF (P ) is zero-dimensional or one-dimensional. If NF (P )

is one-dimensional this corresponds to F also being one-dimensional and so after

relabelling if required, we can write F = conv{u1, u2}. By the definition of NF (P )

it follows that w · u1 ≤ w · u2 and w · u1 ≥ w · u2 and so it must follow that we have

equality. Further we have that w ·u1, w ·u2 ≤ w ·ui for all 1 ≤ i ≤ s by the definition

of NF (P ). Thus w · u1 = w · u2 ≤ w · ui for all 1 ≤ i ≤ s and so w ∈ trop(V (f)). If

NF (P ) is zero-dimensional, it must be the origin and so F is the whole of P . Again

we must have that w · ui = w · uj for all 1 ≤ i, j ≤ s and so w ∈ trop(V (f)).

Let ρ ∈ trop(V (f)) be a one-dimensional cone in the tropical variety which

by the first part of this Lemma, ρ is a one dimensional cone of the normal fan to

Newt(f). By the dimension reversing inclusion of the normal, ρ corresponds to an

edge E of Newt(f). By a monomial change of coordinates, we can transform Newt(f)

such that E lies horizontally. As we are working in the Laurent polynomial ring, we

can translate the Newton polygon as we wish as this corresponds to multiplication

by monomials. We move Newt(f) so that the transformed Newton polygon Newt(f ′)

lies in the upper half plane and the chosen transformed edge E′ has vertices (0, 0)

and (k, 0) for some k > 0. This means that NE′(Newt(f ′)) extends in the direction

(0, 1).

Let ρ′ = (0, 1). Then as Newt(f ′) lies in the upper half plane, f ′ has only

non-negative powers of x2. Further, all terms in f ′ which involve x1 only have non-

negative powers of x1 due to the position of Newt(f ′). Thus inρ′(f
′) is a polynomial

in x1 only. Let inρ′(f
′) =

∑k
i=0 cix

i
1 where c0, ck 6= 0. Recall that ρ′ has multiplicity

corresponding to the number of points in V (inρ′(V (f ′))). As K is algebraically

closed and f ′ is of degree k with no monomial factors, it has k roots in K and so the

ray ρ′ has multiplicity k. Also, E′ has k−1 interior lattice points. By the definition

of multiplicity of ρ, we see that it equals the multiplicity of ρ′ of our tropical curve

under the coordinate change.

We claim that the original edge E in Newt(f) and the modified edge E′ of the

translated Newton polygon Newt(f ′) both have the same number of interior lattice

points. Let φ : (K∗)2 → (K∗)2 be the monomial change of coordinates with induced

map on rings φ∗ : K[x±1
1 , x±1

2 ] → K[x±1
1 , x±1

2 ] given by matrix A ∈ GL(2,Z). As A

has all integer entries, lattice points in E are sent to lattice points in E′. Then as

A ∈ GL(2,Z) it has a inverse in GL(2,Z) and so by analogous arguments, all lattice
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points in E′ are sent to lattice points in E. Thus they must have the same number

of lattice points as A is an isomorphism.

Using Fourier-Motzkin Elimination, we can turn the Newton polytope from

a V-polytope conv{u : cu 6= 0} to an H-polytope {x ∈ R2 : Ax ≤ z} for some

A ∈ Mat(m× 2,Z) and z ∈ Rm. We claim that if a1, . . . , am are the rows of A, then

the one-dimensional cones of the normal fan to Newt(f) are generated by a1, . . . , am.

This allows us to easily compute the one-dimensional skeleton of the normal fan to

Newt(f), which is the tropical variety trop(V (f)). To see this, we firstly show that

ai is contained in some normal cone of P at some face F . Faces of P are given by

Fj = {x ∈ P : aj · x = zj} for all 1 ≤ j ≤ m. We show that ai is contained in

NFi(P ) by showing that faceai(P ) = Fi:

faceai(P ) = {y ∈ P : ai · y ≤ ai · x ∀x ∈ P}

= {y ∈ P : ai · y = zi ∀x ∈ P}

= Fi.

The second equality follows as ai ·y is a constant for all y ∈ faceai(P ) as ai ·y ≤ ai ·y′

for all y, y′ ∈ faceai(P ). So ai · y′ ≤ ai · y and then ai · y = ai · y′ =: zi. Now we show

that if ai is in the normal fan of P then ai · x ≤ zi is a defining inequality for P as

an H-polytope. Let y ∈ Fi then ai · y = zi, but we know that faceai(P ) = Fi so for

all x ∈ P we have that ai · x ≤ ai · y = zi.

We summarise the results of this section in the following algorithm. It com-

putes the tropicalisation of a hypersurface in P2 from the Newton polygon of its

defining equation, with the multiplicities of the edges being the lattice length of the

corresponding edge.

Algorithm 2.3.3. Input: Polynomial f ∈ K[x0, x1, x2].

Output: A one-dimensional balanced weighted fan which is the support of

trop(V (f)).

1. Write f in the form
∑

u=(u0,u1,u2)∈N3 cux
u. Define a finite set of points V =

{(u1, u2) : cu 6= 0, u = (u0, u1, u2) in the expression f =
∑

u∈N3 cux
u} in N2.

Let P = conv(V ) be the V-polytope defined by V .

2. Define Q = {(x, t) ∈ R2+m : x = V t t ≥ 0 and (1, . . . , 1) · t = 1}.

3. Use Fourier-Motzkin elimination to project away the t variables and write P

as H-polytope P = {x ∈ R2 : Ax ≤ z} for some A ∈ Mat(m × 2,Z) and

z ∈ Rm.
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4. Let m be the lattice lengths of the edges of P .

5. Let Σ be the one-dimensional fan which has rays spanned by the rows of A.

Output Σ,m.

2.3.2 Tropical Curves

In this section, we focus on how to compute tropical curves. Let X be an irreducible

one-dimensional variety in Pn with defining ideal I and tropicalisation trop(X). Re-

call that {g1, . . . , gs} is a tropical basis for I if its tropical pre-variety equals trop(X).

So if we can construct a tropical basis then we would be able to construct the tropical

variety trop(X) as the intersection of those finitely many tropical hypersurfaces.

Let B = {f1, . . . , fr} be a generating set for I and construct the tropical

pre-variety for B. This is the finite intersection of tropical hypersurfaces each of

which is a polyhedral fan by the Structure Theorem 2.2.5. Thus the intersection⋂
f∈B trop(V (f)) is also a polyhedral fan Σ, which may not be pure dimensional.

Consider a cone σ in Σ whose dimension is greater than one. Then as trop(X)

is a tropical curve, by the Structure Theorem 2.2.5 it is a polyhedral complex of

dimension one and so the whole of σ cannot be in trop(X). As trop(X) is one-

dimensional and the cone is two-dimensional, we can find a generic relative interior

point w ∈ σ such that inw(I) contains a monomial xu. Let G be a reduced Gröbner

basis for I with respect to w and let r be the normal form on division of xu with

respect to G. By properties of Gröbner bases [see, for example, Cox, Little, and

O’Shea, 2007, Section 2.6, Proposition 1(ii)] this means that there is some f ∈ I

such that xu = f − r with the property that xu = inw(f). Additionally, as r is

obtained on division by G, it depends only on the reduced Gröbner basis G and not

on the choice of Cw(I). This means that for f = xu+r, if we choose any w′ ∈ Cw(I),

then as inw′(I) = inw(I), G is a Gröbner basis for I with respect to w′ and we would

have that inw′(f) = xu. So f is a witness for Cw(I) not being in the tropical variety.

We add f to B and this excludes the Gröbner cone Cw(I) from being in the tropical

variety.

Now, suppose that σ is zero or one-dimensional, and let w ∈ σ be a relative

interior point. If inw(I) contains a monomial, then σ does not live in the tropical

variety and so we need to add a polynomial which excludes this cone. Proceed as

above to find a witness to add to B. Suppose now that inw(I) does not contain a

monomial. Then as σ is one-dimensional, any other relative interior point of σ is of

the form w′ = αw for some α > 0. Thus inw(I) = inw′(I) and we would have that

w′ ∈ trop(X). Thus σ ∈ trop(X).

21



As I has only finitely many initial ideals and as at each step we exclude at

least one, we only need to add a finite number of polynomials in order to recover

trop(X) in this way, and so we are left with a tropical basis for I and a way to find

the tropical variety trop(X).

We then repeat this process on the enlarged set B until all the cones are

certified to be in the tropical variety. Thus we have a tropical basis and can compute

the tropical curve by the intersection trop(X) =
⋂
f∈B trop(V (f)).

2.3.3 Computing Other Tropical Varieties

In this section, we consider how to construct the tropicalisation trop(X) for an irre-

ducible d-dimensional variety X ⊆ Pn contained in the torus Tn and with defining

ideal I. We use that trop(X) is connected through codimension one to pass from one

maximal dimensional cone to another through a common facet. This is known as a

Gröbner walk and is demonstrated for the case of tropical surfaces in Figure 2.3. We

start at the red shaded face in the first diagram, then walk to the connecting edge

coloured red in the second diagram. We then walk to the connecting red shaded

face in the final diagram. This walk is performed by computing some tropical curve

which has a ray for each neighbouring maximal dimensional cone. Continuing over

all facets of all maximal dimensional cones, we recover the entire tropical variety.

In this subsection, we outline how this works.

Figure 2.3: Walking around a tropical surface

Suppose that we have a maximal dimensional cone of the tropical variety

trop(X). This corresponds to finding a Gröbner basis of I with respect to w such

that inw(I) does not contain a monomial for which the Gröbner cone Cw(I) is d-

dimensional. Let F be a facet of Cw(I) and u a relative interior point of F . Consider

the initial ideal inu(I). As u is a relative interior point of F , inu(I) is homogeneous

with respect to the span of F . Thus as F is (d−1)-dimensional, inu(I) has a (d−1)-
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dimensional lineality space. So V (inu(I)) = C × T d−1 and after we quotient out

by the lineality space, the tropicalisation is a curve trop(C). By Section 2.3.2, we

can compute the tropicalisation trop(C) which is a one-dimensional polyhedral fan,

and so is a collection of rays and the origin. This is shown for the case of a tropical

surface in Figure 2.4. The maximal two-dimensional cone that we are looking at is

shaded red, and the point u in green. Then the tropical curve trop(V (inu(I))), after

we quotient out by the torus, is drawn in blue. Observe that this tropical curve has

a ray pointing in the direction of each neighbouring two-dimensional cone.

Figure 2.4: A tropical curve with a ray pointing in the drection of each two-
dimensional cone of the tropical surface

By Kalkbrener and Sturmfels [1995, Theorem 2], for I a prime ideal, the

initial complex associated to the initial ideal inw(I) is strongly connected. Then

by Kalkbrener and Sturmfels [1995, proof of Theorem 1], V (inw(I)) is also con-

nected. Thus in Chapter 4 where we are looking at computing tropical curves from

coordinate projections, we will assume that the input curve is connected.

Let v be a primitive ray generator of trop(V (inu(I))). This means that v ∈
trop(V (inu(I))) and so by definition inv(inu(I)) does not contain a monomial. For

sufficiently small ε > 0, there exists w′ = u+εv such that inv(inu(I)) = inu+εv(I) =

inw′(I) [Maclagan and Sturmfels, 2013, Lemma 2.4.5]. Then w′ is a point in the

interior of a neighbouring cone to F . Repeating for all rays of trop(V (inu(I))) we

obtain the neighbouring cones of the facet F and then repeating for all the facets of

Cw(I) we obtain a collection of cones which are adjacent to the selected cone Cw(I).

We repeat this procedure for all of the new cones that we have found. For

each of them, we find the facets, then a relative interior point u for the facet then
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compute the tropical curve trop(V (inu(I))), each ray of which corresponds to a

neighbouring cone.

By continuing this process until we add no new cones, we have then recovered

the tropical variety.

It remains to show that we can find some maximal dimensional cone of the

tropical variety as a starting point for this procedure. One possibility is to compute

the entire Gröbner fan. However, this is not very efficient as the Gröbner fan may be

much larger than the tropical variety, as shown in Example 2.2.2. Instead, currently

probabilistic heuristics are used to find a starting cone [Bogart, Jensen, Speyer,

Sturmfels, and Thomas, 2007, Algorithm 4.12].

2.4 Elimination Theory of Tropical Varieties

In Chapter 4 we will use Elimination Theory and Tropical Elimination Theory in

our reconstruction of tropical curves from coordinate projections. We use Elimina-

tion Theory [see, for example, Cox, Little, and O’Shea, 2007, Chapter 3, Section 1]

to find equations of the projection of a curve to coordinate planes. Then, by Trop-

ical Elimination Theory [Sturmfels and Tevelev, 2008], the tropicalisation of this

projection is the projection of the tropicalisation of the original curve. We outline

these results here.

Let I be an ideal in K[x1, . . . , xn]. Then the l-th elimination ideal of I is an

ideal in K[xl+1, . . . , xn] which is defined by

Il = I ∩K[xl+1, . . . , xn].

The following Elimination Theorem [see, for example, Cox, Little, and O’Shea, 2007,

Chapter 3, Theorem 2] tells us that a basis for this elimination ideal can be obtained

from a Gröbner basis for I with respect to the lexicographic term order.

Theorem 2.4.1. Let I be an ideal in K[x1, . . . , xn] where G is a Gröbner basis for

I with respect to the lexicographic ordering with x1 > x2 > · · · > xn. Then for all

1 ≤ l ≤ n, Gl = G ∩K[xl+1, . . . , xn] is a Gröbner basis for the l-th elimination ideal

Il.

The Elimination Theorem 2.4.1 tells us that from the Gröbner basis with

respect to the lexicographic term order, we can recover the l-th elimination ideal

for all 1 ≤ l ≤ n. For our purposes, we shall only require a single elimination

ideal and so it does not make sense to compute a Gröbner basis with respect to the

lexicographic term order. This is especially true as the lexicographic term order can
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lead to some very large Gröbner bases [see Bayer and Mumford, 1993, pp.11-12].

Instead we use an elimination term order where any monomial involving one of

the x1, . . . , xl is greater than any of the monomials in K[xl+1, . . . , xn] and if G is a

Gröbner basis with respect to this term ordering, then Gl = G ∩K[xl+1, . . . , xn] is a

Gröbner basis for the l-th elimination ideal Il.

In Tropical Elimination Theory [Sturmfels and Tevelev, 2008], varieties are

replaced by their tropicalisations. Let X ⊆ Tn and Y ⊆ Tm be a subvarieties of the

same dimension. Denote by Nn the dual lattice to the lattice of characters of Pn

and similarly for Nm. Let trop(X) ⊆ Rn and trop(Y ) ⊆ Rm be the tropicalisations

of X and Y respectively.

Suppose that f : X → Y is a dominant map which is generically finite

of degree δ and α is the homomorphism of tori specified by the Z-linear map

A : (Nn)Q → (Nm)Q. Sturmfels and Tevelev [2008, Theorem 1.1] tell us that the

following diagram commutes

X trop(X)

Y trop(Y )

trop

f A

trop

and so A(trop(X)) = trop(Y ). If σ is a maximal dimensional cone of trop(Y ) then

its multiplicity is given by

mσ =
1

δ

∑
γ∈trop(X) : A(γ)⊇σ

mγ index(γ, σ) (2.2)

where index(γ, σ) denotes the index of the sublattice of Nm generated by A(γ∩Nn)

inside of the sublattice generated by σ ∩Nm.

Example 2.4.2. Let I = 〈xy + 10y2 − 23yz − 4y + 64z − 48, y2 − 4yz + 4z2 + 2y −
3z, 23y2 + 4xz − 52yz − 18y + 171z − 128〉 ⊆ C[x±1, y±1, z±1] be a one-dimensional

ideal which defines a subvariety X of (C∗)3. Let C be equipped with the trivial

valuation. Let f be the projection map onto the first two coordinates. This map

has degree one, and so δ = 1. We verify the results of Sturmfels and Tevelev [2008]

here showing that projection and tropicalisation commute.

First we tropicalise then take the projection. Using the methods of Sec-

tion 2.3.2 we see that trop(X) is a one-dimensional fan in R3 with five rays generated
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by

ρ1 = (1, 0, 0)

ρ2 = (0, 1, 0)

ρ3 = (2, 0, 1)

ρ4 = (−1,−1,−1)

ρ5 = (−1, 1, 1)

with multiplicities mρ1 = 1, mρ2 = 1, mρ3 = 1, mρ4 = 2 and mρ5 = 1. Then

projecting onto the first two coordinates, we have four rays

σ1 = (1, 0), σ2 = (0, 1), σ3 = (−1,−1), σ4 = (−1, 1).

We use (2.2) to find their multiplicities. To find mσ1 we see that both ρ1 and ρ3

project to σ1. We need to now compute the lattice indices. For ρ1, index(σ1, ρ1) is

the index of the sublattice of Z2 generated by f((1, 0, 0)) = (1, 0) inside the sublattice

generated by (1, 0). This has index one. For ρ3, index(σ1, ρ3) is the index of the

sublattice of Z2 generated by f((2, 0, 1)) = (2, 0) inside the sublattice generated by

(1, 0). This has index two. So then

mσ1 =
1

1
[1 · 1 + 1 · 2] = 3.

We similarly compute the other multiplicities using (2.2) as follows:

mσ2 =
1

1
[1 · 1] = 1

mσ3 =
1

1
[2 · 1] = 2

mσ4 =
1

1
[1 · 1] = 1.

Now, suppose we project and then tropicalise the result. By Elimination

Theory, we find that the projection is generated by polynomial x2y− 12xy2 + 9y3 +

155xy+32y2−192x+20y−16. Using Algorithm 2.3.3 we see that the tropicalisation

has rays σ1, σ2, σ3, σ4 with multiplicities mσ1 ,mσ2 ,mσ3 ,mσ4 as required. 3

2.5 Tropical Varieties by Regular Projections

Let X be an irreducible d-dimensional subvariety of Tn with defining ideal I. In

proving that the tropical variety trop(X) has the structure of a polyhedral com-
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plex, Bieri and Groves [1984] showed that a tropical variety can be obtained by con-

sidering the intersection of the pre-images of sufficiently general projections. Hept

and Theobald [2009] then showed that you can always find these projections such

that the tropical variety is then given by an intersection of tropical hypersurfaces.

In this section, we outline this material as it forms the background to Chapter 4

where we reconstruct a tropical curve from its coordinate projections.

Let X be a subvariety of Tn with tropicalisation trop(X). Then trop(X) is

the support of a polyhedral complex Σ in Rn. A projection π : Rn → Rd+1 is called

geometrically regular with respect to Σ [Hept and Theobald, 2009, Definition 3.6]

if:

1. if σ is a k-dimensional face of Σ then dim(π(σ)) = k;

2. if π(σ) ⊆ π(τ) for some σ, τ ∈ Σ then σ ⊆ τ .

That is, if it respects dimensions and inclusion of faces. Bieri and Groves [1984,

Section 4.2] also considered these geometrically regular projections but they simply

called them regular projections. However Hept and Theobald [2009] gave them

the name geometrically regular to avoid confusion with another class of regular

projections which they also defined, algebraically regular projection. Thus we shall

stick to the name geometrically regular of Hept and Theobald [2009].

For π : Rn → Rd+1 a rational projection, π−1π trop(V (I)) is a tropical vari-

ety. If π is additionally geometrically regular, then dim(trop(V (I))) = d and then

π−1π trop(X) is a tropical hypersurface. Thus it is defined by a single equation. We

can find this equation by first applying a coordinate change so that π is a coordinate

projection and finding this equation by the Elimination Theory of Section 2.4.

In proving that the tropical variety trop(X) has the structure of a polyhedral

complex, Bieri and Groves [1984, Proof of Theorem 4.4] also showed that there exists

n− d+ 1 geometrically regular projections π0, . . . , πn−d : Rn → Rd+1 in some dense

open set in the space of all projections such that

trop(X) =

n−d⋂
i=0

π−1
i πi(trop(X)).

From above, for all 0 ≤ i ≤ n − d we have that π−1
i πi(trop(X)) = trop(V (gi))

for some gi ∈ I. Thus we can write trop(X) as the finite intersection of tropical

hypersurfaces. This means that we can find g0, g1, . . . , gn−d ∈ I such that

trop(X) =
n−d⋂
i=0

trop(V (gi)).
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We will use these projection ideas in order to find new ways to construct tropical

curves in Chapter 4 where we will restrict ourselves to coordinate projections.

2.6 The Degree of Tropical Curves

Let C be a curve in Tn with tropicalisation trop(C). We shall see in (2.3) how the

degree of a tropical curve can be defined. The following theorem asserts that both

C and trop(C) have the same degree.

Theorem 2.6.1. [Maclagan and Sturmfels, 2013] Let C be a curve in Tn. Then

deg(C) = deg(trop(C)).

In Chapter 4 we shall use the fact that we know the degree of the algebraic

curve C as then by Theorem 2.6.1 we know the degree of the tropical curve trop(C).

We outline the combinatorial calculation of the degree of a tropical curve here. It

requires some tropical intersection theory. Let Σ1 and Σ2 be two weighted balanced

Γ-rational polyhedral fans in Rn which are the support of two tropical varieties.

Suppose that Σ1 is one-dimensional and Σ2 is (n − 1)-dimensional. We define the

following intersection product [Katz, 2012]:

Σ1 · Σ2 =
∑

(σ1,σ2)∈Σ1×Σ2

µσ1σ2mσ1mσ2 [σ1 ∩ σ2],

where mσ1 is the multiplicity of σ1 in Σ1, mσ2 is the multiplicity of σ2 in Σ2 and

µσ1σ2 =

{
[Zn : Z〈σ1, σ2〉] if σ1 ∩ (σ2 + u) 6= ∅;
0 otherwise,

for some generic u ∈ Zn such that σ1 ∩ (σ2 + u) is a finite set of points. We define

the degree of this intersection:

deg(Σ1 · Σ2) =
∑

(σ1,σ2)∈Σ1×Σ2

µσ1σ2mσ1mσ2 .

If Σ2(u) represents the fan Σ2 translated by u, then we can think of Σ1 · Σ2

as being the set of intersection points of Σ1 and Σ2(u). As u is chosen to be generic,

it follows that this intersection is a finite number of points each point being the

intersection of a cone σ1 ∈ Σ1 and σ2 +u ∈ Σ2(u) with multiplicity µσ1σ2 . That the

degree does not depend on the choice of generic u follows from Allermann and Rau

[2010, Lemma 9.14].
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Example 2.6.2. Let Σ1 and Σ2 be two one-dimensional fans in R2. Suppose that Σ1

has rays generated by ρ1 = (1, 0), ρ2 = (0,−1) and ρ3 = (−2, 1) with multiplicities

2, 1 and 1 respectively, and that Σ2 has rays generated by σ1 = (1, 0), σ2 = (0, 1)

and σ3 = (−1,−1) all with multiplicities one. let u = (−1,−1) then the intersection

Σ1 ·Σ2 as shown in Figure 2.5 and consists of the points (−1, 1) being the intersection

Figure 2.5: The intersection of Σ1 and Σ2 of Example 2.6.2

of ρ3 with σ2 and the point (0,−1) that is the intersection of ρ2 with σ1. Then

µρ3σ2 = [Z2 : Z〈(−2, 1), (0, 1)〉] =

∣∣∣∣∣det

(
−2 1

0 1

)∣∣∣∣∣ = 2;

µρ2σ1 = [Z2 : Z〈(0,−1), (1, 0)〉] =

∣∣∣∣∣det

(
0 −1

1 0

)∣∣∣∣∣ = 1;

and so deg(Σ1 · Σ2) = 2 + 1 = 3. Notice that if we had chosen another generic u,

say u = (1, 0), then we would obtain the same final answer deg(Σ1 · Σ2) = 3. 3

We now explain how to use this tropical intersection theory to find the degree

of a tropical curve combinatorially. Let e1, . . . , en be the standard basis vectors of

Zn and e0 = −e1− · · · − en. Let trop(C) be a tropical curve which is the support of

a one-dimensional weighted balanced fan Σ in Rn. If ρ is the first lattice point on a

ray of Σ then we can decompose it into a sum of e0, e1, . . . , en as

ρ =

n∑
i=0

aiei

for some ai ∈ N. We say a decomposition is minimal if there does not exist another

decomposition with smaller ai. This occurs if and only if at least one ai equals zero.
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Such a minimal decomposition is unique. The support of ρ is supp(ρ) = {ei : ai 6=
0 in its minimal decomposition}.

Let L be the weighted balanced fan which is the tropicalisation of a hyper-

surface defined by a linear polynomial of full support. That is L is the (n − 1)-

dimensional fan consisting of all cones generated by all (n − 1)-element subsets of

{e0, e1, . . . , en} which all occur with multiplicity one. Following Allermann and Rau

[2010], we define the degree of trop(C) as follows

deg(trop(C)) = deg(Σ · L). (2.3)

Example 2.6.3. Consider the ideal I = 〈xy2 + y2 + 1〉 ⊆ K[x±1, y±1] and let

C = V (I). Then by Section 2.3.1 we see that trop(C) is the fan Σ1 of Example 2.6.2

and see that deg(trop(C)) = 3 as we would expect as the generating polynomial of

the hypersurface has degree 3. 3

Fix some j ∈ {0, 1 . . . , n}. In the definition of tropical intersection, we trans-

late one of the tropical varieties by a generic u ∈ Zn. Choose u to be generic and

such that Σ and L(u) intersect only in rays ρ of Σ for which ej ∈ supp(ρ) and cones

σ of L for which ej is not a generator. We do this by choosing u to be cej + ε which

means that we are moving L in the ej direction. The intersection condition for each

ray of Σ gives us a closed set of points of u which are not suitable. As Σ has only

finitely may rays, again we have a closed set of unsuitable choices for u. The set of

generic u is open and Zariski dense in Zn [Fulton and Sturmfels, 1997], and so we

can always find a suitably generic u. With this choice of u, the ray ρ of Σ intersects

L(u) in the cone σ where σ is generated by A = {ei : 0 ≤ i ≤ n, i 6= j, k} for some

0 ≤ k ≤ n where supp(ρ) ⊆ A ∪ {ej}.
This intersection contributes µρσmρ to the degree equation as mσ = 1 for all

cones of L. The factor µρσ is the lattice index [Zn : Z〈ρ, σ〉] which can be seen as

the absolute value of the determinant of the n× n matrix M whose rows are given

by ρ and the ei for which ei ∈ A. If the minimal decomposition of ρ is
∑n

i=0 aiei

then as supp(ρ) ⊆ A∪{ej} we can perform row operations on M which do not affect

its determinant to make the row ρ become ajej . This matrix then has determinant

equal to ±aj and so does M .

It then follows that if Σ has rays ρ1, . . . , ρs where ρi has minimal decompo-

sition

ρi =

n∑
j=0

aijej ,
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for 1 ≤ i ≤ s then for all 0 ≤ j ≤ n

deg(trop(C)) =

s∑
i=1

miaij . (2.4)

This gives a combinatorial way to compute the degree of a tropical curve without

having to find a generic u.

Example 2.6.4. Returning to Example 2.6.3, we find the degree of trop(C) using

this combinatorial rule. We first find minimal decompositions for the rays of trop(C).

Let e1 = (1, 0), e2 = (0, 1) be the standard basis vectors of Z2 and e0 = −e1 − e2 =

(−1,−1). Then the minimal decompositions are:

ρ1 = (1, 0) = e1;

ρ2 = (0,−1) = e0 + e1;

ρ3 = (−2, 1) = 2e0 + 3e2,

where ρ1 has multiplicity two and ρ2 and ρ3 both have multiplicity one. Then the

description above tells us that the degree of trop(C) is the total number of rays in

the direction e0, e1, e2 counted with multiplicity. Counting in the direction e0 we

get

deg(trop(C)) = 2 · 0 + 1 · 1 + 1 · 2 = 3.

Notice that counting in the directions e1 or e2 would give us the same answers

deg(trop(C)) = 2 · 1 + 1 · 1 + 1 · 0 = 3

deg(trop(C)) = 2 · 0 + 1 · 0 + 1 · 3 = 3. 3
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Chapter 3

Gröbner Bases Over Fields with

Valuations

3.1 Introduction

Let X be a subvariety of Pn−1 and let X0 = X ∩ Tn. Then by the Fundamental

Theorem 2.1.5, we see that the tropical variety trop(X0) is the closure in Rn of those

w ∈ Γn for which the initial ideal inw(I) 6= 〈1〉. We can use the theory of Gröbner

bases in order to compute these initial ideals, and so construct the tropical variety.

We saw in the Section 2.3.3 that most prior computational work in tropical

geometry has concerned ideals with coefficients in Q with the trivial valuation as this

can be treated using standard Gröbner techniques. In this case (without valuations),

an algorithm for computing Gröbner bases was developed by Bruno Buchberger

[1965] in his PhD thesis. For more general valued fields, such as K = Q with the

p-adic valuation valp, the standard Gröbner algorithms need to be modified. This is

explained in Section 3.2. The main issue is that the standard normal form algorithm

need not terminate. The solution is to replace it by a modification of Mora’s tangent

cone algorithm.

Unlike the standard basis case, we get a strong normal form; see Remark 3.2.7.

In Sections 3.3 and 3.4 we discuss complexity and implementation issues. Degree

bounds are as for usual Gröbner bases (Theorem 3.3.1). While the valuations of

coefficients in a reduced Gröbner basis cannot be bounded by the valuations of the

original generators (Example 3.3.3), for the case K = Q with the p-adic valuation,

we can bound the valuations of coefficients in a reduced Gröbner basis using the val-

uations and absolute values of coefficients of the generators; see Proposition 3.3.4.

A theoretical consequence of these results is that the tropical variety of an
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ideal only depends on the field defined by the coefficients of the generators; see Corol-

lary 3.2.13. We expect these algorithms to also have applications outside tropical

geometry. In particular, they can lead to smaller Gröbner bases. In Section 3.5 we

give a family of ideals in Q[x1, x2, x3] for which the size of the p-adic Gröbner basis

is constant but the smallest size of a traditional Gröbner basis grows unboundedly.

The algorithms described in this Chapter have been implemented in the

computational algebraic geometry software Macaulay2 [Grayson and Stillman] in

the package GroebnerValuations [Chan, 2013a].

The material in this Chapter is joint work with my supervisor Diane Macla-

gan [Chan and Maclagan, 2013].

3.2 Gröbner Theory

Let S be the polynomial ring K[x1, . . . , xn], and fix a weight vector w ∈ Γn. Note

that in this Chapter, our homogeneous polynomial ring S is in the n variables

x1, . . . , xn instead for the n + 1 variables x0, x1, . . . , xn of Chapter 2 for ease of

notation. Recall that for homogeneous ideal I ⊂ S, a finite set G = {g1, . . . , gr} ⊂ S
is called a Gröbner basis for I with respect to w if inw(I) = 〈inw(g1), . . . , inw(gr)〉.
We require the ideal to be homogeneous for it to exhibit the expected properties of

Gröbner bases; see Remark 3.2.12.

In the standard case where we are not considering the valuations, or where

we have the trivial valuation, Buchberger [1965] introduced an algorithm to compute

Gröbner bases. Let B be a generating set for the ideal I. Then for all g, g′ ∈ B,

the S-polynomial S(g, g′) is the sum of g and g′ which cancels their leading terms.

Buchberger showed that B is a Gröbner basis for I if and only if all S-polynomials

have zero remainder on division by B. We can then compute a Gröbner basis by

adding the non-zero remainders of S-polynomials back to B until all S-polynomials

have zero remainder. We shall see Buchberger’s Algorithm in Algorithm 3.2.9.

Lemma 3.2.1. Let I be an ideal in S with ≺ an arbitrary term order and w ∈ Γn.

If G = {g1, . . . , gr} is a generating set for I such that {inw(g) : g ∈ G} is a Gröbner

basis for inw(I) with respect to ≺, then it is a Gröbner basis for I with respect to w.

Proof. As {inw(g) : g ∈ G} is a Gröbner basis for inw(I) with respect to ≺, in

particular it is a generating set. Thus 〈inw(g) : g ∈ G〉 = inw(I), which by definition

tells us that G is a Gröbner basis for I with respect to w.

This result tells us that if we can compute a basis G for an ideal I such that

{in≺(inw(g)) : g ∈ G} generates in≺(inw(I)) then it is automatically a Gröbner basis
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for I with respect to w.

3.2.1 The Modified Normal Form Algorithm

A Gröbner basis for an ideal I over a field with a valuation can be computed by a

modification of the standard Buchberger algorithm as we explain in Section 3.2.2.

The main difference is in the normal form algorithm which computes the remainder

of a polynomial on division by a set of other polynomials. The difficulty is that

a näıve implementation of the normal form algorithm need not terminate, as the

following example shows.

Example 3.2.2. Let K = Q with the 2-adic valuation. Consider the standard

normal form algorithm, where the term to be cancelled at each stage is taken to

be the term whose coefficient has the lowest valuation. Using this to compute the

remainder of x ∈ Q[x, y, z] on division by {x − 2y, y − 2z, z − 2x}, we reduce x by

x− 2y to get 2y. This is then reduced by y− 2z to get 4z, which in turn is reduced

by z − 2x to get 8x. This reduction continues indefinitely. 3

This problem also arises in the theory of standard bases [see Cox, Little,

and O’Shea, 2005, Section 4.3]. The solution in that setting, Mora’s tangent cone

algorithm, is to allow division by previous partial quotients. Termination is assured

by a descending nonnegative integer invariant called the écart which measures the

difference in degrees between two possible initial terms of a polynomial. A difficulty

in generalizing this function to Gröbner bases with valuations is that this difference

must take the valuations of the coefficients into account, so would naturally lie in

the not-necessarily-well-ordered group Γ. Even for the valuation valp on Q, where

Γ = Z, the standard écart function does not work directly.

The following algorithm modifies Mora’s algorithm to take into account the

valuations of the coefficients. It uses a function E(f, g), which takes two homoge-

neous polynomials and returns a nonnegative integer. In Lemma 3.2.6 we give one

option for this function which ensures termination. We present the algorithm with

the function E unspecified as more efficient functions E may exist.

As in all normal form algorithms this is a generalisation of long division,

which works by cancelling the “leading term” of the polynomial f . An added com-

plication is that we do not assume that the weight vector w is generic, so the leading

term inw(f) is not necessarily a monomial. For this reason we also fix an arbitrary

monomial term order ≺ (in the sense of usual Gröbner theory) to determine which

term of inw(f) to cancel. If w is sufficiently generic with respect to the input poly-

nomials ≺ will play no role. For f ∈ K[x1, . . . , xn], in≺(inw(f)) = αxu denotes the
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leading term, including the coefficient. We denote by lm(f) the monomial xu oc-

curring in in≺(inw(f)) and by lc(f) the coefficient of xu in f . Note that lc(f) ∈ K,

not k, and that lc(f) and lm(f) depend on both w and ≺.

We also use the following partial order on polynomials, which plays the role

of comparing initial monomials in usual Gröbner bases.

Definition 3.2.3. Fix homogeneous polynomials f, g ∈ K[x1, . . . , xn], w ∈ Γn, and

a term order ≺. Write lm(f) = xu, lm(g) = xv, lc(f) = a, and lc(g) = b. Then

f < g if val(a) +w · u < val(b) +w · v or val(a) +w · u = val(b) +w · v and xu � xv.
In addition f < 0 for all nonzero f .

For example, if Q has the 2-adic valuation, w = (1, 2) and ≺ is the lexico-

graphic term order with x1 > x2, then x2
1 < x2

2 < x5
1 < 2x2

2. Note that if f ≥ h and

g ≥ h then f ± g ≥ h.

Algorithm 3.2.4. Input: Homogeneous polynomials {g1, . . . , gs}, f in S =

K[x1, . . . , xn], a weight vector w ∈ Γn, and a term order ≺.

Output: Homogeneous polynomials h1, . . . , hs, r ∈ S satisfying

f =
s∑
i=1

higi + r,

where higi ≥ f for 1 ≤ i ≤ s, and r ≥ f . Write r =
∑
bvx

v with bv ∈ K. Then in

addition bv 6= 0 implies xv is not divisible by any lm(gi).

We call r a remainder, or normal form, of dividing f by {g1, . . . , gs}.

1. Initialise: Set T = {g1, . . . , gs}, h10 = · · · = hs0 = 0, q0 = f, r0 = 0. Set

j = 0.

2. Loop: While qj 6= 0 do:

(a) Move to remainder: If there is no g ∈ T with lm(g) dividing lm(qj),

then set rj+1 = rj+lc(qj) lm(qj), qj+1 = qj−lc(qj) lm(qj), and hij+1 = hij

for all i. Set T = T ∪ {qj}.

(b) Divide: Otherwise:

i. Choose g ∈ T such that lm(g) divides lm(qj) with E(qj , g) minimal

among all such choices.

ii. If E(qj , g) > 0 then set T = T ∪ {qj}.
iii. Since lm(g) divides lm(qj) there is a monomial xv with lm(xvg) =

lm(qj). Set cv = lc(qj)/ lc(xvg) ∈ K. Let p = qj − cvxvg.
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iv. If g = gl for some 1 ≤ l ≤ s, then set qj+1 = p, hlj+1 = hlj + cvx
v,

hij+1 = hij for i 6= l, and rj+1 = rj .

v. If g was added to T at some previous iteration of the algorithm,

so g = qm for some m < j, then set qj+1 = 1/(1 − cv)p, hij+1 =

1/(1− cv)(hij − cvhim), and rj+1 = 1/(1− cv)(rj − cvrm) for all i.

(c) j = j + 1.

3. Output: Output hi = hij for 1 ≤ i ≤ s, and r = rj .

Example 3.2.5. Let f = x2 +y2 +z2 ∈ Q[x, y, z] where Q has the 2-adic valuation,

and let g1 = y + 16z. Fix w = (3, 2, 1), and let ≺ be the lexicographic order with

x ≺ y ≺ z. For clarity we underline the term of a polynomial f containing lm(f).

We do not specify the function E(f, g), assuming that it is always positive. Then

the algorithm proceeds as follows.

1. T = {y + 16z}, h10 = 0, q0 = x2 + y2 + z2, r0 = 0, j = 0.

2. T = {y + 16z, x2 + y2 + z2}, h11 = 0, q1 = x2 + y2, r1 = z2, j = 1.

3. T = {y + 16z, x2 + y2 + z2, x2 + y2}, h12 = y, q2 = x2 − 16yz, r2 = z2, j = 2.

4. T = {y+16z, x2+y2+z2, x2+y2, x2−16yz}, h13 = y, q3 = −16yz, r3 = x2+z2,

j = 3.

5. T = {y+16z, x2+y2+z2, x2+y2, x2−16yz,−16yz}, h14 = y−16z, q4 = 256z2,

r4 = x2 + z2, j = 4.

6. T = {y + 16z, x2 + y2 + z2, x2 + y2, x2 − 16yz,−16yz, 256z2}. In this case we

divide by g = x2 + y2 + z2 = q0, so cv = 256. Thus h15 = −1/255(y − 16z),

q5 = 1/255(256x2 + 256y2), r5 = −1/255(x2 + z2), and j = 5.

7. T = {y + 16z, x2 + y2 + z2, x2 + y2, x2 − 16yz,−16yz,−16z2, 256/255x2 +

255/256y2}. Then g = x2+y2 = q1, so cv = 256/255. Thus h16 = 255(1/255(y−
16z)) = y−16z, q6 = 0, r6 = −255(−1/255(x2+z2)−256/255z2) = x2+257z2,

and j = 6.

8. Output h1 = y − 16z and r = x2 + 257z2.

Note that x2 + y2 + z2 = (y − 16z)(y + 16z) + x2 + 257z2 and no term of

x2 + 257z2 is divisible by lm(y + 16z) = y. 3

Proof of correctness. We show correctness assuming termination.

We show that the following properties hold at each stage of the algorithm:
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1. f = qj +
∑s

i=1 hijgi + rj ;

2. hijgi ≥ f ;

3. rj ≥ f ;

4. No term of rj is divisible by any lm(gi);

5. qj ≥ f ;

6. If qj+1 6= 0 then qj+1 > qj .

These properties all hold at the initialization step by construction. We now show

they continue to hold after each of the three types of iteration step. We also

show that in step 2(b)v of the algorithm we have 1 − cv 6= 0. In all cases, write

lc(qj) lm(qj) = cjx
αj . There are three possibilities for the division step, which we

consider separately.

Case 1: Move to remainder. Suppose there is no g ∈ T with lm(g) dividing

lm(qj). Then the only values that change are qj and rj , but we have qj + rj =

qj+1 +rj+1 by construction, so the equality 1 holds. Condition 2 holds at stage j+1

since it held at stage j. Since properties 3 and 5 hold for j, property 3 holds for

j + 1. The term that is added to rj+1 is not divisible by any lm(gi), so property 4

still holds. The term cj+1x
αj+1 is a nonleading term of qj , so property 6 follows,

which also implies property 5.

Case 2: Divide, with g = gm. Suppose the chosen g with lm(g) dividing

lm(qj) is gm for some 1 ≤ m ≤ s. Since qj+hmjgm = qj+1+hmj+1gm by construction,

the equality 1 holds in this case as well. Since hmjgm ≥ f , and qj ≥ f , we have

hmj+1gm ≥ f . As the remainder term does not change, properties 3 and 4 still hold.

Since qj+1 = qj−cvxvgl, we cancel the leading term of qj , so all terms of qj+1 are the

sum of a nonleading term of qj and a term of cvx
vql that is larger than cjx

αj . This

implies that qj ≺ qj+1 (property 6), which implies property 5 for j + 1 as above.

Case 3: Divide, with g = qm. Finally, we consider the case that the chosen

g with lm(g) dividing lm(qj) is qm for some m < j. Since all qi are homogeneous

of the same degree, xv = 1 in this setting and cv = cj/cm. Since property 6 holds

for all smaller values, we have val(cj) +w · αj > val(cm) +w · αm. Thus xαm = xαj

implies val(cv) > 0, so 1− cv 6= 0.

Now f = qm +
∑s

i=1 himgi + rm, so qj+1 = 1/(1 − cv)(qj − cvqm), which

equals 1/(1− cv)((f −
∑s

i=1 hijgi− rj)− cv(f −
∑s

i=1 himgi− rm)). Thus f = qj+1 +∑s
i=1 1/(1− cv)(hij − cvhim)gi + 1/(1− cv)(rj − cvrm) = qj+1 +

∑s
i=1 hij+1gi + rj+1.

This is equality 1.
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Since val(1−cv) = 0, we have val(1/(1−cv)) = 0. Note the following property

of the order < of Definition 3.2.3: if p1 ≥ p2 and c ∈ K satisfies val(c) ≥ 0 then

cp1 ≥ p2. Then properties 2 and 3 for j + 1 follow from the analogous properties

for j and m. No term in either rj or rm is divisible by any lm(gi), so the same is

true for rj+1. Finally p > qj by construction, so qj+1 = 1/(1 − cv)p > qj as above,

so properties 5 and 6 also hold.

Lemma 3.2.6. For homogeneous polynomials f, g ∈ S with f =
∑
cux

u and g =∑
bux

u, set E(f, g) := |{u : bu 6= 0, cu = 0}|. Algorithm 3.2.4 terminates for this

choice of function E.

Proof. There are only a finite number of possible supports supp(qj) = {u : cu 6= 0} of

the polynomials qj =
∑
cux

u, as they all have the same degree. Thus after some step

j no new support will occur, so there will be qm ∈ Tj with supp(qm) ⊆ supp(qj), and

so E(qj , qm) = 0. Since we remove the leading term of qj at the jth step, either by

moving it to the remainder, or by cancelling it, when supp(qm) ⊆ supp(qj) we have

supp(qj+1) ( supp(qj). Since the size of the support cannot decrease indefinitely,

the algorithm must terminate.

Remark 3.2.7. Note that Algorithm 3.2.4 gives a strong normal form (no term of

the remainder is divisible by any of the monomials {lm(gi) : 1 ≤ i ≤ s}), as opposed

to the weak normal form that occurs in the standard basis case. See Greuel and

Pfister [2008, Section 1.6] for details of normal forms in the standard basis case. 3

Remark 3.2.8. Algorithm 3.2.4 also holds, with the same proof in the follow-

ing modified setting. Let K = Q with the p-adic valuation. The valuation valp

restricts to a function, which we also denote by valp, from Z/pmZ to the semi-

group {0, 1, . . . ,m − 1} ∪ ∞, where ∞ acts as an absorbing element. Note that

valp(ab) = valp(a) + valp(b) and valp(a+ b) ≥ min(valp(a), valp(b)) for a, b ∈ Z/pmZ.

We can then define the partial order < on polynomials in Z/pmZ[x1, . . . , xn] in the

same way as in Definition 3.2.3. Also note that in step 2(b)v of the algorithm, since

1− cv has valuation zero (as shown in the proof), it is not divisible by p, so is a unit

in Z/pmZ. This means that the algorithm and its proof go through in this setting.

This variant is used in Section 3.4.2. 3

3.2.2 Buchberger’s Algorithm

As in standard Gröbner theory, we can use the normal form algorithm to com-

pute a Gröbner basis using Buchberger’s algorithm. Let f, g be two polynomials in
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K[x1, . . . , xn]. We define the S-polynomial of f and g to be

S(f, g) := lc(g)
lcm(lm(f), lm(g))

lm(f)
f − lc(f)

lcm(lm(f), lm(g))

lm(g)
g.

Algorithm 3.2.9. Input: A list {f1, . . . , fl} of homogeneous polynomials in S, a

weight-vector w ∈ Γn, and a term order ≺.

Output: A list {g1, . . . , gs} of homogeneous polynomials in S such that {in≺(inw(gi)) :

1 ≤ i ≤ s} generates in≺(inw(I)) for I = 〈f1, . . . , fl〉.

1. Set G = {f1, . . . , fl}. Set P = {(g, g′) : g, g′ ∈ G}.

2. While P 6= ∅:

(a) Pick any (g, g′) ∈ P. Set P = P \ {(g, g′)}.

(b) Let r be the normal form on dividing S(g, g′) by G. If r 6= 0 then set

G = G ∪ {r}, and P = P ∪ {(r, g) : g ∈ G}.

3. Return G.

The proof of the finiteness and correctness of this algorithm is almost the

same as the proof for standard Gröbner bases [see, for example, Cox, Little, and

O’Shea, 2007, Chapter 2]. We will prove it by using a generalisation of the normal

form.

Let f ∈ S be a homogeneous polynomial and G = {g1, . . . , gs} be a finite

subset of S. We say that f has a standard representation with respect to G if it can

be written in the form

f =
s∑
i=1

aigi

such that f ≤ aigi for all i where ai 6= 0.

Remark 3.2.10. Note that if f has zero normal form with respect to G then f also

has a standard representation with respect to G. This follows from Algorithm 3.2.4.

However in general, the converse may be false. This is because Algorithm 3.2.4

depends on the ordering of the polynomials in G. For example, let f = xy2 − xz2

and G = {g1 = xy + z2, g2 = y2 − z2} and w = (1, 10, 100). Then Algorithm 3.2.4

tells us that

f = y · g1 + 0 · g2 + (−x− y)z2

and so f has normal form −x− y with respect to G, which in particular is non-zero.
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However, notice that we can write f as

f = 0 · g1 + x · g2

which is a standard representation for f with respect to G. 3

The following Proposition allows us to prove the correctness and finiteness

of Buchberger’s Algorithm. We do not prove this Proposition here, as it will be a

Corollary of Proposition 3.4.5 in Section 3.4.

Proposition 3.2.11. Let G = {g1, . . . , gs} be a subset of S. If every S-polynomial

S(gi, gj) of elements of G has a standard representation with respect to G then

{in≺(inw(gi)) : 1 ≤ i ≤ s} generates in≺(inw(I)) for I = 〈g1, . . . , gs〉.

In standard Gröbner theory where we are not considering valuations, this

proposition is known as Buchberger’s Theorem and was proved in his thesis [Buch-

berger, 1965]. It allows us to easily check if a generating set is a Gröbner basis

by seeing if all S-polynomials have a standard representation. Note that by Re-

mark 3.2.10, it is sufficient to show that all S-polynomials have zero normal form as

this implies that they have a standard representation. With Proposition 3.2.11, we

can now prove the correctness and finiteness of Algorithm 3.2.9.

Proof of Algorithm 3.2.9. We first show finiteness. At each pass through the main

while loop, we denote by G′ the updated G. That is, G′ = G ∪ {r}, the union of G
with some possibly non-zero remainder r of an S-polynomial of G. Since G ⊆ G′ we

have that 〈in≺(inw(g)) : g ∈ G〉 ⊆ 〈in≺(inw(g′)) : g′ ∈ G′〉 and in particular if G 6= G′

then the inclusion is strict. Thus the 〈in≺(inw(g)) : g ∈ G〉 form an ascending chain

of ideals which must stabilise as K[x1, . . . , xn] is Noetherian. So after finitely many

steps we must have 〈in≺(inw(g′)) : g′ ∈ G′〉 = 〈in≺(inw(g)) : g ∈ G〉 and so G′ = G
and the algorithm terminates.

For correctness, we first show that at every step of the algorithm G ⊆ I.

Initially this is true as G is a generating set for I so G ⊆ I. As the normal form

of an S-polynomial is also in I it follows that for the updated G, G ⊆ I holds.

Secondly, we show that at every step of the algorithm the S-polynomial S(gi, gj)

has a standard representation for all gi, gj ∈ G with (gi, gj) /∈ P. This means that

we are checking that all S-polynomials S(gi, gj) which have been encountered at

some previous stage of the algorithm have a standard representation. As S(gi, gj)

was encountered at some previous stage of the algorithm, it either has zero normal

form and so by Remark 3.2.10 it has a standard representation, or it has a non-

zero normal form which is added to G. So for G = {g1, . . . , gs}, S(gi, gj) has a
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representation
∑s

i=1 higi + r where S(gi, gj) ≤ higi and S(gi, gj) ≤ r as it is a

normal form. This is a standard representation with respect to G ∪ {r}.
On termination, P = ∅ and so S(gi, gj) has a standard representation for all

gi, gj ∈ G. Thus by Proposition 3.2.11, if G = {g1, . . . , gs} then {in≺(inw(gi)) : 1 ≤
i ≤ s} generates in≺(inw(I)).

After applying Algorithm 3.2.9 we have found a set {g1, . . . , gs} ⊂ I such

that {in≺(inw(gi)) : 1 ≤ i ≤ s} generates in≺(inw(I)). This means that {inw(gi) :

1 ≤ i ≤ s} is a standard Gröbner basis for inw(I) with respect to ≺, so in particular

this set generates inw(I). By Lemma 3.2.1 we thus conclude that the set {g1, . . . , gs}
is a Gröbner basis for I with respect to w. This proof also holds in the variation

discussed in Remark 3.2.8.

Note that Algorithm 3.2.9 is potentially rather complex. The normal form r

of every S-polynomial that is added to the set G enlarges the set of S-polynomials

to consider by S(r, g) for all g ∈ G. We discuss issues of complexity in Section 3.3

and discuss in Section 3.4 how the growth of S-polynomials can be managed by

eliminating unnecessary pairs with no further computation.

This Gröbner theory shares many of the properties of standard Gröbner

bases:

1. The Gröbner basis {g1, . . . , gs} generates I. The proof here is the standard

one: if f ∈ I then the normal form r of f with respect to {g1, . . . , gs} lies in

I, but in≺(inw(r)) 6∈ in≺(inw(I)) unless r = 0.

2. For any homogeneous ideal I, w ∈ Γn, and monomial term order ≺ there is

a unique reduced Gröbner basis. This is a Gröbner basis {g1, . . . , gs} with

the property that the in≺(inw(gi)) minimally generate in≺(inw(I)), and no

monomial in gi except lm(gi) is divisible by any lm(gj). This follows, as in

the standard case, from the existence of a strong normal form. Specifically, if

in≺(inw(I)) = 〈xu1 , . . . , xus〉, then let ri be the remainder on dividing xui by

any Gröbner basis for I with respect to w and ≺. Set gi = xui − ri.

3. The Hilbert function of the two ideals I and inw(I) (which live in different

polynomial rings) agree. While this follows, as in the standard case, from

the existence of a strong normal form, there are other proofs; see, for exam-

ple, [Speyer, 2005, Chapter 2] or [Maclagan and Sturmfels, 2013, Corollary

2.4.7].

Remark 3.2.12. We remark that the assumption that the ideal I, and the Gröbner

basis {g1, . . . , gs}, are homogeneous is necessary for many of these properties of
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Gröbner bases. For example, a finite set {g1, . . . , gs} ⊂ I with the property inw(I) =

〈inw(g1), . . . , inw(gs)〉 need not generate I if it is not homogeneous. A simple example

is given by I = 〈x〉 ⊆ Q[x] with the 2-adic valuation: for w = 0 the set {g1 = x+2x2}
satisfies inw(I) = 〈x〉 = 〈inw(g1)〉, but 〈x〉 6= 〈x+ 2x2〉. 3

This algorithmic approach to these initial ideals also has the following con-

sequence for tropical geometry.

Corollary 3.2.13. Let K be a field with a valuation val for which there is a homo-

morphism φ : Γ → K∗ with val(φ(w)) = w, and for which Γ is a dense subgroup of

R. Let L be an extension field of K with a valuation that restricts to val on K. Let

Y ⊆ (K∗)n, and let YL = Y ×Spec(K) Spec(L). Then trop(Y ) = trop(YL).

Proof. Let I ⊂ K[x±1
1 , . . . , x±1

n ] be the ideal of Y ⊂ (K∗)n. Then the ideal of YL is

given by IL = IL[x±1
1 , . . . , x±1

n ]. Let J be the homogenisation of I ∩K[x1, . . . , xn] in

K[x0, x1, . . . , xn] and JL the homogenisation of IL∩L[x1, . . . , xn] in L[x0, x1, . . . , xn].

This intersection can be calculated by a (standard) Gröbner computation, so the

ideals J and JL have the same generators: JL = JL[x1, . . . , xn]. The definition of

the initial ideal of an ideal taking the valuation of the coefficients into account ex-

tends naturally to the Laurent polynomial ring. By the Fundamental Theorem 2.1.5

w ∈ Γn lies in trop(Y ) if and only if inw(I) 6= 〈1〉, and thus if and only if inw(J) does

not contain a monomial. Since J and JL have the same generators, Algorithm 3.2.9

implies that regarding the elements of a Gröbner basis for J with respect to w as liv-

ing in L[x1, . . . , xn] gives a Gröbner basis for JL with respect to w. The residue field

L of L is an extension field of k, so this means that inw(JL) = inw(J)L[x1, . . . , xn].

An ideal contains a monomial if and only if the saturation by the product of all the

variables is the unit ideal. Since this can be decided by a (standard) Gröbner basis

computation, this means that inw(JL) contains a monomial if and only if inw(J)

does. Since Γ is dense in R, this implies that trop(Y ) = trop(YL).

3.3 Complexity

Given a bound on the degrees of generators for I, it is useful to have a bound on the

degrees of elements in a reduced Gröbner basis. The degree bounds in this context

are the same as for usual Gröbner bases [Möller and Mora, 1984; Dubé, 1990], as

we show below. We also give a bound on the valuations of coefficients occurring in

a reduced Gröbner basis when working over Q with the p-adic valuation. For the

degree bounds we use the formulation of Dubé [1990].
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Theorem 3.3.1. Let I = 〈f1, . . . , fl〉 ⊂ K[x1, . . . , xn] be a homogeneous ideal, with

deg(fi) ≤ d for 1 ≤ i ≤ l. Fix w ∈ Γn. Then there is a Gröbner basis {g1, . . . , gs}
for I with respect to w with deg(gi) ≤ 2(d2/2 + d)2n−2

.

Proof. In Dubé [1990] it is shown that if deg(fi) ≤ d for 1 ≤ i ≤ l, and {g′1, . . . , g′s}
is a standard homogeneous Gröbner basis with respect to some term order ≺, then

the degree of each g′i is bounded by 2(d2/2 +d)2n−2
. The proof given actually shows

more: if M is any monomial ideal whose Hilbert function agrees with that of I, then

M is generated in degrees at most 2(d2/2 + d)2n−2
. Denote by SK the polynomial

ring K[x1, . . . , xn] and by Sk the polynomial ring k[x1, . . . , xn]. By Maclagan and

Sturmfels [2013, Corollary 2.4.7] we have dimk(Sk/ inw(I))δ = dimK(SK/I)δ for all

degrees δ. Since the initial ideal inw(I) is again a homogeneous ideal, all of its

monomial initial ideals have the same Hilbert function, so we have

dimk(Sk/ in≺(inw(I)))δ = dimk(Sk/ inw(I))δ = dimK(SK/I)δ.

Let M be the monomial ideal in SK with the same generators as in≺(inw(I)) ⊂ Sk.

As the Hilbert function of a monomial ideal does not depend on the coefficient field,

M has the same Hilbert function as I, so by Dubé [1990] M is generated in degrees at

most 2(d2/2 + d)2n−2
. Choose homogeneous polynomials {g1, . . . , gs} ⊂ I such that

{in≺(inw(g1)), . . . , in≺(inw(gs))} is a minimal generating set for in≺(inw(I)). Then

inw(I) = 〈inw(g1), . . . , inw(gs)〉 so {g1, . . . , gs} is a Gröbner basis for I with respect

to w. Since we have deg(in≺(inw(gi))) ≤ 2(d2/2 + d)2n−2
by above, we deduce that

{g1, . . . , gs} is a Gröbner basis for I with respect to w with deg(gi) ≤ 2(d2/2+d)2n−2

for 1 ≤ i ≤ s as required.

Remark 3.3.2. For w ∈ Γn, let Jw = inw(I), and let J ′w be standard initial ideal of

I with respect to the weight vector w. For `� 0, and generic w, we have J`w = J ′−`w;

the minus sign is because the initial ideal taking the valuation into account uses min

instead of max. This means that any usual initial ideal, and thus any usual Gröbner

basis, occurs in this setting, so any improvement to Theorem 3.3.1 would also have

to improve the bounds of Möller and Mora [1984] and Dubé [1990]. 3

Since the valuations of coefficients also play an important role in computing

these Gröbner bases, it is also useful to bound the valuations that may occur. This

is not possible in full generality, as the following example shows.

Example 3.3.3. Let K = Q(t) with the valuation of a rational function given

by taking the lowest exponent occurring in a Taylor series for the function. Fix

an integer a � 0 and weight vector w = (1, a, 2a). Let I be the ideal in K[x, y, z]
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generated by the two polynomials f = x+z and g = x2+(1+ta)xz+xy. We compute

a Gröbner basis by looking at the S-polynomial S(f, g) = xf − g = −xy − taxz.
Computing the remainder on division by {f, g} we obtain yz+taz2 which is a nonzero

polynomial with initial term yz. It is added to the Gröbner basis at this stage by

Buchberger’s Algorithm (Algorithm 3.2.9). Notice that we started with polynomials

where the valuations of all the coefficients were zero and we have an element of

the reduced Gröbner basis which has a coefficient with valuation a showing that

unbounded valuations may potentially occur when computing Gröbner bases. The

field K = Q(t) is only chosen for concreteness; such an example exists for any

nontrivially-valued field. 3

When K = Q with the p-adic valuation the valuation of coefficients that can

occur in a reduced Gröbner basis can be bounded in terms of the absolute values of

the original coefficients.

Let I = 〈f1, . . . , fl〉 be a homogeneous ideal in Q[x1, . . . , xn] with deg(fi) ≤ δ
for 1 ≤ i ≤ l. Fix val to be the p-adic valuation on Q. Write fi =

∑
cu,ix

u where

we assume (by clearing denominators or dividing by a common factor) that cu,i ∈ Z
and that for each i we have minu val(cu,i) = 0.

Proposition 3.3.4. Let I = 〈f1, . . . , fl〉 be a homogeneous ideal in Q[x1, . . . , xn]

with assumptions as above. Let C = maxu,i |cu,i|. Fix w ∈ Γn. Then there is a

Gröbner basis {g1, . . . , gs} for I with respect to w with gi =
∑

u bu,ix
u with

val(bu,i) ≤ A/2 logp(C
2A),

where A = dimQ(ID) for D = 2(δ2/2 + δ)2n−2
.

Proof. As the Hilbert functions of I and inw(I) agree [Maclagan and Sturmfels,

2013, Corollary 2.4.7] we have that dimQ Id = dimZ/pZ(inw(I)d) for all d. Fix a

term order ≺ on Z/pZ[x1, . . . , xn]. Let H(d) = dimQ(Id).

For d ≤ D, form an H(d)×
(
n+d−1

d

)
matrix Ad with columns indexed by the

monomials of degree d ordered so that those in in≺(inw(I))d come first. The rows

of Ad correspond to a Q-basis for Id; we may take these to be monomial multiples

of the generators fi, so all entries of Ad have absolute value at most C.

Let the submatrix of Ad indexed by the first H(d) columns be denoted by

Md. Note that Md has full rank; if not since Ad has rank H(d), there would be a

vector in the row-space of Ad with its first H(d) entries zero, and thus there would

be a non-zero polynomial f in Id for which in≺(inw(f)) does not lie in in≺(inw(I)),

which is a contradiction.
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Set Bd = M−1
d Ad. Note that the first H(d) columns of Bd are an identity

matrix, so the minor det((Bd)J) of Bd indexed by the set J := ({1, . . . ,H(d)} ∪
{j})\{i} equals (−1)H(d)−i(Bd)ij . Since (Bd)J = M−1

d (Ad)J ,

valp((Bd)ij) = valp(det((Bd)J))

= valp(det(M−1
d (Ad)J))

= − valp(det(Md)) + valp(det((Ad)J)).

Hadamard’s inequality (see for example [Garling, 2007, Corollary 14.2.1]) states that

if M is an N ×N matrix with the absolute value of the entries bounded by C, then

|det(M)| ≤ CNNN/2. Thus |det((Ad)J)| ≤ CH(d)H(d)H(d)/2. Since det(Ad)J is an

integer, valp(det((Ad)J) ≤ logp(det((Ad)J)). By construction all entries of Md have

nonnegative valuation, so valp(det(Md)) ≥ 0. Thus

valp((Bd)ij)) ≤ logp(C
H(d)H(d)H(d)/2) = H(d)/2 logp(C

2H(d)).

By Theorem 3.3.1 there is a Gröbner basis {g1, . . . , gs} for I with respect to

w with deg(gi) ≤ D, which can be chosen so {inw(g1), . . . , inw(gs)} is a Gröbner

basis for inw(I) with respect to ≺. By construction of the matrix Bd if gi has degree

d then the coefficients of gi form a row of the matrix Bd. Thus the valuation of the

coefficients of gi is bounded as above. Since H(d) is an increasing function of d, the

bound is largest when d = D, so H(d) = A, from which we see that the valuations

of any of the coefficients of any gi is bounded by A/2 logp(C
2A) as required.

3.4 Implementation Issues

Whilst we have proved that Algorithm 3.2.9 terminates correctly in finite time,

we have said nothing about its efficiency. Adding polynomials to G during the

algorithm increases the complexity as we then have many more S-polynomials to

consider before termination. Also the order in which the S-polynomials are selected

can affect whether it can be reduced to zero by G and hence whether its normal form

is added to G or not. Such a selection strategy can drastically alter the complexity of

the algorithm and even for standard Gröbner bases without valuations, no optimal

strategy is known. However, Buchberger [1979] provided criteria in the standard

case for when it is known that we do not need to consider certain S-polynomials in

Buchberger’s Algorithm 3.2.9 as they will a priori have a standard representation.

We investigate these for our Gröbner bases.

Another issue that is common for Gröbner algorithms with coefficients in
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Q is coefficient blow-up. However, we show that for the case K = Q with the p-

adic valuation, we can perform computations over the finite field Z/pmZ for some

suitably large m ∈ N and then lift the results to Q. This helps avoid unboundedly

large coefficients occurring.

The two main ways which we will look at to improve the efficiency of the

Algorithm 3.2.9 are:

1. Using criteria to decide a priori that we do not need to consider certain S-

polynomials;

2. When K = Q with the p-adic valuation, we work over Z/pmZ for some suitably

large m ∈ N.

3.4.1 Choice of S-Polynomials - Buchberger’s Criteria

For standard Gröbner bases, Buchberger [1979] introduced criteria for when it is

known a priori that we do not need to consider certain S-polynomials in Algo-

rithm 3.2.9. We see that these criteria hold true for our Gröbner bases over fields

with valuations.

Suppose we are at some intermediate stage of Buchberger’s Algorithm whereby

we have a set P of critical pairs still to consider and we are about to compute the

S-polynomial of the pair (fi, fj). Then

B1 holds if lcm(lm(fi), lm(fj)) = lm(fi) lm(fj);

B2 holds if there exists some k 6= i, j such that the pairs (fi, fk) and (fj , fk) are

not in P and lm(fk) divides lcm(lm(fi), lm(fj)).

For standard Gröbner bases, Buchberger [1979] showed that if either of these

conditions hold then we know a priori that the S-polynomial has a standard repre-

sentation. The proof in the standard case can be found for example in Cox, Little,

and O’Shea [2007, Section 2.9]: the proof for B1 is Proposition 4, and the proof for

B2 is Proposition 10. The criterion B1 is known as Buchberger’s first criterion and

B2 is known as Buchberger’s second criterion. Before proving that these hold for

Gröbner bases over fields with valuations, we provide an example of its usefulness.

Example 3.4.1. Let K = Q with the 2-adic valuation and let S be the polyno-

mial ring Q[x1, . . . , x9]. Let I be the ideal generated by polynomials {−3x1x4 +

6x3x4 + 3x1x5 + 92x2x5 + 2x3x5 − 23x2x6 − 2x3x6, x1x8 + 7x2x8 − 4x3x8 − 6x1x9 −
3x2x9, x4x8 + 3x5x8 − 3x6x8 − 24x5x9 − 3x6x9,−x2x4 − 4x3x4 + x2x5 + 4x3x5 +
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23x2x6 +2x3x6,−13x1x7−4x3x7 +7x2x8 +28x3x8−65x1x9−3x2x9−32x3x9, x4x7 +

27x5x7 − 9x6x8 + 5x4x9 + 135x5x9 − 9x6x9,−4x2x5 − 16x3x5 + 3x1x6 + x2x6 −
2x3x6, 13x2x7 − 8x3x7 + x2x8 + 4x3x8 + 59x2x9 − 64x3x9, 8x5x7 + x6x7 − 3x6x8 +

40x5x9 +5x6x9, 4x2x5x8 +16x3x5x8 +20x2x6x8−10x3x6x8−24x2x5x9−96x3x5x9−
3x2x6x9 − 12x3x6x9}. This is the general fibre of a Mustafin variety in the sense

of Cartwright, Häbich, Sturmfels, and Werner [2011]. Its special fibre is the initial

ideal with respect to w = (1, . . . , 1).

At some intermediate step of Buchberger’s Algorithm 3.2.9 we compute the

normal form of the S-polynomial 6x3x4x6x7+3x1x5x6x7+24x1x4x5x7+92x2x5x6x7+

2x3x5x6x7 − 23x2x
2
6x7 − 2x3x

2
6x7 − 9x1x4x6x8 + 120x1x4x5x9 + 15x1x4x6x9 of the

polynomials −3x1x4 +6x3x4 +3x1x5 +92x2x5 +2x3x5−23x2x6−2x3x6 and x6x7 +

8x5x7 − 3x6x8 + 40x5x9 + 5x6x9. Notice that the condition B1 holds, so we know a

priori that this S-polynomial will have a standard representation, however when we

try to compute the normal form, after a few divisions we obtain a leading coefficient

of 1.02624 · · ·×1037,746 and after a few more divisions we have exceeded the memory

capabilities of the computer.

By implementing Buchberger’s Criterion, the algorithm no longer considers

this critical pair and we compute the Gröbner basis to be {3x1x4− 6x3x4− 3x1x5−
92x2x5−2x3x5+23x2x6+2x3x6, x1x8+7x2x8−4x3x8−6x1x9−3x2x9, x4x8+3x5x8−
3x6x8−24x5x9−3x6x9, x2x4+4x3x4−x2x5−4x3x5−23x2x6−2x3x6, 13x1x7+4x3x7−
7x2x8−28x3x8+65x1x9+3x2x9+32x3x9, x4x7+27x5x7−9x6x8+5x4x9+135x5x9−
9x6x9,−4x2x5 − 16x3x5 + 3x1x6 + x2x6 − 2x3x6, 13x2x7 − 8x3x7 + x2x8 + 4x3x8 +

59x2x9 − 64x3x9, 8x5x7 − 3x6x8 + 40x5x9 + 5x6x9 + x6x7,−4x2x5x8 − 16x3x5x8 −
20x2x6x8 + 10x3x6x8 + 24x2x5x9 + 3x2x6x9 + 96x3x5x9 + 12x3x6x9}. 3

The following Proposition is the criterion B1, Buchberger’s first criterion for

Gröbner bases over fields with valuations.

Proposition 3.4.2. Suppose that f and g are distinct polynomials in S such that

lcm(lm(f), lm(g)) = lm(f) lm(g). Then S(f, g) has a standard representation with

respect to {f, g}.

Proof. We can write f =
∑k

i=1 aix
ui and g =

∑l
j=1 bjx

vj for ai, bj ∈ K and ui, vj ∈
Nn. We assume that aix

ui ≤ ai+1x
ui+1 and bjx

vj ≤ bj+1x
vj+1 for all 1 ≤ i ≤ k−1 and

1 ≤ j ≤ l−1 and that the ui are distinct, and the vj also distinct. Then lm(f) = xu1

and lm(g) = xv1 . By hypothesis, lcm(lm(f), lm(g)) = lm(f) lm(g) = xu1xv1 , so we
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can write the S-polynomial S(f, g) as

S(f, g) = b1x
v1f − a1x

u1g = b1x
v1

k∑
i=2

aix
ui − a1x

u1

l∑
j=2

bjx
vj . (3.1)

We first claim that these two sums have no terms in common. For a contradic-

tion, suppose that for some 2 ≤ i ≤ k and 2 ≤ j ≤ l we have that xv1xui =

xu1xvj . Then both xu1 and xv1 divide xv1xui = xu1xvj and so it follows that

lcm(lm(xu1), lm(xv1)) = xu1xv1 divides xv1xui . This means that xu1 divides xui .

As f is homogeneous, xu1 and xui have the same degree and so xu1 = xui . This

contradicts the assumption that the ui are distinct.

By the ordering on the aix
ui and bjx

vj , the smallest term of S(f, g) is either

a2b1x
u2xv1 or a1b2x

u1xv2 . We assume that a1b2x
u1xv2 is the smaller and so is the

lead term of S(f, g). Notice that we can write b1x
v1 = g −

∑l
j=2 bjx

vj and a1x
u1 =

f −
∑k

i=2 aix
ui . Then

S(f, g) = b1x
v1f − a1x

u1g

=

g − l∑
j=2

bjx
vj

 f −

(
f −

k∑
i=2

aix
ui

)
g

= gf −

 l∑
j=2

bjx
vj

 f − fg +

(
k∑
i=2

aix
ui

)
g

= −
l∑

j=2

bjx
vjf +

k∑
i=2

aix
uig. (3.2)

We claim that (3.2) is a standard representation of S(f, g) with respect to {f, g}. For

this, we need to show that S(f, g) ≤ bjxvjf for all 2 ≤ j ≤ l and that S(f, g) ≤ aixuig
for all 2 ≤ i ≤ k. By the ordering of the bjx

vj the smallest term of bjx
vjf for

all 2 ≤ j ≤ l is a1b2x
u1xv2 . As the sums in (3.1) have no terms in common, it

follows that xv2xu1 and xu2xv1 are distinct and so do not cancel. As a1b2x
u1xv2 ≤

bjx
vjg for 2 ≤ j ≤ l and a1b2x

u1xv2 ≤ aix
uif for 2 ≤ i ≤ k, it follows that

S(f, g) = −
(∑l

j=2 bjx
vj
)
f +

(∑k
i=2 aix

ui
)
g is a standard representation of S(f, g)

with respect to {f, g}.

In order to prove criterion B2, we need to introduce the notion of a T -

representation. Let f ∈ S be a homogeneous polynomial and let G = {g1, . . . , gs}
be a finite subset of S. Fix some T ∈ S. We say that f has a T -representation with
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respect to G if it can be written in the form

f =

s∑
i=1

aigi

such that T ≤ aigi for all i where ai 6= 0. A T -representation is a measure of how

far the representation is from being a standard representation. Due to the definition

of the order ≤ of Definition 3.2.3, we may take T to be a monomial term should we

require. Notice that if f has an f -representation, or an lc(f) lm(f)-representation,

then it has a standard representation.

Proposition 3.4.3. Let G = {g1, . . . , gs} be a finite set such that there exist distinct

elements g1, g2, f ∈ G where

1. lm(f) divides lcm(lm(g1), lm(g2));

2. For some T1 ∈ S such that T1 > lc(g1) lc(f) lcm(lm(g1), lm(f)), S(g1, f) has a

T1-representation with respect to G;

3. For some T2 ∈ S such that T2 > lc(g2) lc(f) lcm(lm(g2), lm(f)), S(g2, f) has a

T2-representation with respect to G.

Then for some T ∈ S such that T > lc(g1) lc(g2) lcm(lm(g1), lm(g2)), S(g1, g2) has

a T -representation with respect to G.

Proof. As K is a field, we can assume for simplicity that lc(f) = lc(g1) = lc(g2) = 1.

By assumption, for some T1 > lcm(lm(g1), lm(f)), S(g1, f) has a T1-representation:

S(g1, f) =

s∑
i=1

hi1gi

with respect to G where T1 ≤ hi1gi for all 1 ≤ i ≤ s. Similarly, for some T2 >

lcm(lm(g2), lm(f)), S(g2, f) has a T2-representation:

S(g2, f) =
s∑
i=1

hi2gi

with respect to G where T2 ≤ hi2gi for all 1 ≤ i ≤ s.
By assumption we have that lm(f) divides lcm(lm(g1), lm(g2)). By the defini-

tion of lcm, both lm(g1) and lm(g2) also divide lcm(lm(g1), lm(g2)). It follows that

lcm(lm(g1), lm(f)) and lcm(lm(g2), lm(f)) both divide lcm(lm(g1), lm(g2)). This
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means that we can find monomials s1, s2 ∈ S such that

s1 lcm(lm(g1), lm(f)) = lcm(lm(g1), lm(g2));

s2 lcm(lm(g2), lm(f)) = lcm(lm(g1), lm(g2)),

and so we also can find monomials u1, u2, v1, v2 ∈ S such that

lcm(lm(g1), lm(f)) = u1 lm(g1) = v1 lm(f);

lcm(lm(g2), lm(f)) = u2 lm(g2) = v2 lm(f).

Then

s1S(g1, f)− s2S(g2, f) =s1(u1g1 − v1f) + s2(v2f − u2g2)

=s1u1g1 − s2u2g2

=S(g1, g2)

where the second equality holds as s1v1 = s2v2. Then we can write S(g1, g2) as

S(g1, g2) = s1

s∑
i=1

hi1gi + s2

s∑
i=1

hi2gi (3.3)

which we claim is a T -representation for S(g1, g2) for some T > lcm(lm(g1), lm(g2)).

By the choice of the representation for S(g1, f) we have

s1hi1gi ≥ s1T1 > s1 lcm(lm(g1), lm(f)) = lcm(lm(g1), lm(g2))

for all 1 ≤ i ≤ s where hij 6= 0 and by the choice of the representation for S(g1, f)

we have

s2hi2gi ≥ s2T2 > s2 lcm(lm(g2), lm(f)) = lcm(lm(g1), lm(g2))

Thus choosing T to be the minimum over all s1hi1gi for 1 ≤ i ≤ s where hi1 6= 0

and all s2hi2gi for 1 ≤ i ≤ s where hi2 6= 0, we see that (3.3) is a T -representation

for S(g1, g2) for some T > lcm(lm(g1), lm(g2)).

In order to prove that we can use Buchberger’s Criteria B1 and B2 in algo-

rithms to compute Gröbner bases over a field with valuations, we need to show that

if for all gi, gj ∈ G, the S-polynomials S(gi, gj) have a T -representation for some

T > lc(gi) lc(gj) lcm(lm(gi), lm(gj)) then G is a Gröbner basis for I. To show this,
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we require the following preparatory lemma.

Lemma 3.4.4. Fix v1, . . . , vm ∈ Kn and ω1, . . . , ωm ∈ R. For λ ∈ Km, write

s(λ) = min(val(λi) + ωi). Then for fixed v ∈ span(v1, . . . , vm) there is a choice of

λ ∈ Km with
∑
λivi = v that maximizes s(λ) among all such choices.

Proof. We first show that for any λ with
∑
λivi = v there is a λ′ with

∑
λ′ivi = v,

{vi : λ′i 6= 0} linearly independent, and s(λ′) ≥ s(λ). Indeed, if {vi : λi 6= 0} is

linearly dependent, then there is c 6= 0 with
∑
civi = 0 and ci 6= 0 only when λi 6= 0.

After relabelling and rescaling we may assume that val(c1) +ω1 = min(val(ci) +ωi),

and c1 = λ1. Let λ′ = λ− c. Then for every i

val(λ′i) + ωi = val(λi − ci) + ωi

≥ min(val(λi), val(ci)) + ωi

= min(val(λi) + ωi, val(ci) + ωi)

≥ min(val(λi) + ωi, val(λ1) + ω1)

≥ s(λ),

so s(λ′) ≥ s(λ). Since {i : λ′i 6= 0} ⊆ {i : λi 6= 0}, after iterating a finite number

of times {vi : λ′i 6= 0} is linearly independent. The lemma then follows from the

observation that if {vi : λi 6= 0} is linearly independent, then the λi are determined,

so the maximum s(λ) is achieved at one of these finitely many choices.

Proposition 3.4.5. Let G = {g1, . . . , gs} be a subset of S. If every S-polynomial

S(gi, gj) of elements of G has a T -representation with respect to G for some T >

lc(gi) lc(gj) lcm(lm(gi), lm(gj)) then {in≺(inw(gi)) : 1 ≤ i ≤ s} generates in≺(inw(I))

for I = 〈g1, . . . , gs〉.

Proof. Let f ∈ I be a non-zero polynomial for which in≺(inw(f)) /∈ 〈in≺(inw(gi)) :

1 ≤ i ≤ s〉. We aim for a contradiction. As f ∈ I, we can write f =
∑s

i=1 higi for

some homogeneous polynomials hi ∈ S. Write lm(higi) = xui . We may assume that

min(val(lc(higi)) + w · ui) is maximal over all choices of description f =
∑s

i=1 higi.

That a maximum exists follows from Lemma 3.4.4 applied to the vector space Sdeg(f),

with the vi all polynomials of the form xugj where xu is a monomial of degree

deg(f)− deg(gj), and ωi = w · u′ for lm(xugj) = xu
′
.

After renumbering if necessary, we may assume that min(val(lc(higi)) + w ·
ui) = val(lc(hjgj)) + w · uj for 1 ≤ j ≤ d, and that in addition xu1 = xui for

1 ≤ i ≤ d′ ≤ d with xu1 the largest xui among those i ≤ d. We may further

assume that d′ is as small as possible among descriptions achieving the maximum.
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Since in≺(inw(higi)) = in≺(inw(hi)) in≺(inw(gi)) ∈ 〈in≺(inw(g1)), . . . , in≺(inw(gs))〉,
xu1 6= lm(f). This means that lm(

∑d′

i=1 higi) 6= lm(f), so val(
∑d′

i=1 lc(higi)) >

min(val(lc(higi))), and so in particular d′ ≥ 2. By hypothesis the S-polynomial

S(g1, g2) has a T -representation for some T > lc(g1) lc(g2) lcm(lm(g1), lm(g2)) and so

we can write S(g1, g2) =
∑s

i=1 h
′
igi where h′igi ≥ T > lc(g1) lc(g2) lcm(lm(g1), lm(g2)).

Then

f =

s∑
i=1

higi

=

s∑
i=1

higi −
lc(h1g1)xu1

lc(g1) lc(g2) lcm(lm(g1), lm(g2))

(
S(g1, g2)−

s∑
i=1

h′igi

)

=

(
h1 −

lc(h1g1)xu1

lc(g1) lm(g1)
+

lc(h1g1)xu1

lc(g1) lc(g2) lcm(lm(g1), lm(g2))
h′1

)
g1

+

(
h2 −

lc(h1g1)xu1

lc(g2) lm(g2)
+

lc(h1g1)xu1

lc(g1) lc(g2) lcm(lm(g1), lm(g2))
h′2

)
g2

+

s∑
i=3

(
hi +

lc(h1g1)xu1

lc(g1) lc(g2) lcm(lm(g1), lm(g2))
h′i

)
gi

=

s∑
i=1

h̃igi,

where h̃i is defined to be the polynomial multiplying gi in the previous line. By

construction h̃1 > h1 and h̃i ≥ hi for all i ≥ 2. Write xũi for lm(h̃igi). Thus

we have a new expression for f with either min(val(lc(h̃igi)) + w · ũi) larger or

this minimum the same and d′ smaller, which contradicts our assumptions on the

respective maximality and minimality of these quantities. We thus conclude that f

does not exist and so in≺(inw(I)) = 〈in≺(inw(g1)), . . . , in≺(inw(gs))〉 as required.

Recall that the key result in order to prove Algorithm 3.2.9 was Proposi-

tion 3.2.11 which said that for G = {g1, . . . , gs}, if all the S-polynomials S(gi, gj)

have a standard representation with respect to G, then {in≺(inw(gi)) : 1 ≤ i ≤ s}
generates in≺(inw(I)) for I = 〈g1, . . . , gs〉. We can now prove this result as it is a

corollary of the previous proposition.

Proof of Proposition 3.2.11. By assumption, each S-polynomial S(gi, gj) has a stan-

dard representation with respect to G. As S(gi, gj) > lc(gi) lc(gj) lcm(lm(gi), lm(gj)),

if we set T = S(gi, gj) then this standard representation is a T -representation for

some T > lc(gi) lc(gj) lcm(lm(gi), lm(gj)). By Proposition 3.4.5, {in≺(inw(gi)) : 1 ≤
i ≤ s} generates in≺(inw(I)) for I = 〈g1, . . . , gs〉, and the result follows.
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We now incorporate Buchberger’s first criterion B1 of Proposition 3.4.2 and

Buchberger’s second criterion B2 of Proposition 3.4.3 into Algorithm 3.2.9

Algorithm 3.4.6. Input: A list {f1, . . . , fl} of homogeneous polynomials in S, a

weight-vector w ∈ Γn, and a term order ≺.

Output: A list {g1, . . . , gs} of homogeneous polynomials in S such that the set

{in≺(inw(gi)) : 1 ≤ i ≤ s} generates in≺(inw(I)) for I = 〈f1, . . . , fl〉.

1. Set G = {f1, . . . , fl}. Set P = {(g, g′) : g, g′ ∈ G}.

2. While P 6= ∅:

(a) Pick (g, g′) ∈ P. Set P = P \ {(g, g′)}.

(b) If lcm(lm(g), lm(g′)) 6= lm(g) lm(g′) and CriterionB2(g, g′,P) is false then

let r be the normal form on dividing S(g, g′) by G. If r 6= 0 then set

G = G ∪ {r}, and P = P ∪ {(r, g) : g ∈ G}.

3. Return G.

where CriterionB2(g, g′,P) is Buchberger’s second criterion of Proposition 3.4.3 and

so it is true if there exists p 6= fi, fj in G such that lm(p) divides lcm(lm(fi), lm(fj))

and where pairs (fi, p), (fj , p) are not in P.

Proof. The termination of Algorithm 3.4.6 follows from the termination of Algo-

rithm 3.2.9 as if Algorithm 3.4.6 had an infinite loop, then so would Algorithm 3.2.9.

For correctness, note that as in Algorithm 3.2.9, at every step of the al-

gorithm G ⊆ I. By Proposition 3.4.5, to show that the output G = {g1, . . . , gs}
has the property that {in≺(inw(gi)) : 1 ≤ i ≤ s} generates in≺(inw(I)) we need

to verify that every S-polynomial S(gi, gj) has a T -representation for some T >

lc(gi) lc(gj) lcm(lm(gi), lm(gj)). We check that at every step of the algorithm, the

S-polynomial S(gi, gj) for gi, gj ∈ G, (gi, gj) /∈ P has a T -representation for some

T > lc(gi) lc(gj) lcm(lm(gi), lm(gj)).

By Remark 3.2.10 if S(gi, gj) has zero normal form with respect to G, then it

has a standard representation with respect to G. Further, as S(gi, gj) has a standard

representation and S(gi, gj) > lc(gi) lc(gj) lcm(lm(gi), lm(gj)), then this standard

representation is a T -representation for some T > lc(gi) lc(gj) lcm(lm(gi), lm(gj)).

Thus, if S(gi, gj) has a zero normal form, then it has a suitable T -representation.

Similarly, if S(gi, gj) has a non-zero normal form with respect to G then it can be

written as
∑s

i=1 higi+r which as in the proof of Algorithm 3.2.9 we saw was a stan-

dard representation with respect to G ∪{r} and so is a suitable T -representation. If
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lcm(lm(gi), lm(gj)) = lm(gi) lm(gj), then by Proposition 3.4.2, S(gi, gj) has a stan-

dard representation with respect to {gi, gj} and so it has a suitable T -representation.

We can then deduce that (gi, gj) satisfies Buchberger’s second criterion B2

and so S(gi, gj) was tested out in step 2(b) of the Algorithm 3.4.6. This means that

there exists p 6= gi, gj in G such that lm(p) divides lcm(lm(gi), lm(gj)) and where

pairs (fi, p) and (fj , p) are not in P at that step of the algorithm. Thus, for some T1 ∈
S such that T1 > lc(g1) lc(f) lcm(lm(g1), lm(f)), S(g1, f) has a T1-representation

with respect to G, and for some T2 ∈ S such that T2 > lc(g2) lc(f) lcm(lm(g2), lm(f)),

S(g2, f) has a T2-representation with respect to G. Then, by Proposition 3.4.3,

there is a T ∈ S such that T > lc(g1) lc(g2) lcm(lm(g1), lm(g2)) and S(g1, g2) has a

T -representation with respect to G.

At termination, P = ∅ and so every S-polynomial S(gi, gj) has a suitable T -

representation, and so by Proposition 3.4.5 we have that {in≺(inw(gi)) : 1 ≤ i ≤ s}
generates in≺(inw(I)) as required.

3.4.2 Working over Z/pmZ

While it is sometimes unavoidable to get large coefficients when computing a Gröbner

basis over Q, these coefficients do not always have large p-adic valuation. This mo-

tivates working in Z/pmZ via the method suggested in Remark 3.2.8.

This requires the following subroutine, which details how to compute a

Gröbner basis for I given generators for in≺(inw(I)).

Algorithm 3.4.7. Input: Homogeneous generators {f1, . . . , fl} for an ideal I ⊆
Q[x1, . . . , xn]. A weight vector w ∈ Zn and a term order ≺. Generators I =

{xu1 , . . . , xus} for in≺(inw(I)).

Output: A reduced Gröbner basis for I with respect to w and ≺.

1. G = ∅.

2. For each degree d of a monomial xui ∈ I do:

(a) Let h = dimQ Id. Form the h ×
(
n+d−1

d

)
matrix Ad whose rows are the

coefficients of a Q-basis for Id. The columns of Ad are indexed by the

monomials of degree d, and we assume that the monomials in in≺(inw(I))d

come first in the ordering. The rows can be taken to be monomial mul-

tiples of the fi.

(b) Let Bd be the result of multiplying Ad by the inverse of the first h × h
submatrix of Ad. This submatrix is invertible by the argument of the

proof of Proposition 3.3.4.
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(c) For each xui ∈ I of degree d, let gi be the polynomial corresponding to

the row of Bd that contains a 1 in the column corresponding to xui . Add

gi to G.

3. Output G.

Proof of correctness of algorithm 3.4.7. The chosen polynomials have the property

that no monomial other than xui lies in in≺(inw(I)), so in≺(inw(gi)) = xui . Thus

the initial ideal in≺(inw(I)) equals 〈in≺(inw(g1)), . . . , in≺(inw(gr))〉, so the output is

a reduced Gröbner basis as required.

We incorporate this into the following algorithm, which computes a Gröbner

basis modulo pm for large m.

Algorithm 3.4.8. Input: A list {f1, . . . , fl} of homogeneous polynomials in

Q[x1, . . . , xn], a prime p, a weight-vector w ∈ Γn, and a term order ≺.

Output: A Gröbner basis for 〈f1, . . . , fl〉.

1. Let I = 〈f1, . . . , fl〉. Let fwi = fi(p
w1x1, . . . , p

wnxn) for 1 ≤ i ≤ l. Clear

denominators in the fwi , and saturate the resulting ideal in Z[x1, . . . , xn] by

〈p〉. Let Ĩw be the image of this ideal in Z/pmZ[x1, . . . , xn].

2. Compute in≺(in0(Ĩw)) using Algorithm 3.2.9.

3. Lift the resulting initial ideal to a Gröbner basis for I using Algorithm 3.4.7.

Note that the fact Algorithm 3.2.9 does compute in≺(inw(Ĩ)) follows from

Remark 3.2.8. The following lemma shows that for m sufficiently large this initial

ideal equals in≺(inw(I)), so Algorithm 3.4.7 will terminate with the correct answer.

Lemma 3.4.9. For m� 0 Algorithm 3.4.8 terminates with the correct answer.

Proof. We first show that for m � 0 we have in≺(in0(Ĩw)) = in≺(inw(I)). Note

that if f =
∑
cux

u with cu ∈ Z with val(cu) < m, then the image f̃ of f in

Z/pmZ[x1, . . . , xn] satisfies in≺(in0(f̃)) = in≺(in0(f)). Let Iw = 〈fwi 〉 ⊆ Q[x1, . . . , xn],

so inw(I) = in0(Iw). By Proposition 3.3.4 there is a bound in terms of the ab-

solute value of the coefficients of the generators of I on the maximum valuation

that occurs in a reduced Gröbner basis. For m larger than this bound we have

in≺(inw(I)) ⊆ in≺(in0(Ĩw)).

For the reverse inclusion, fix xu ∈ in≺(in0(Ĩw)). Choose f ∈ Ĩw with

in≺(in0(f)) = xu. By the definition of Ĩw there is g ∈ Iw with f = g̃. By con-

struction in0(g) = in0(f), so xu = in≺(in0(g)) ∈ in≺(in0(Iw)) = in≺(inw(I)).

55



In the first step of the algorithm, note that generators of the ideal obtained

by clearing denominators and saturating by 〈p〉 generate Iw ∩Z〈p〉[x1, . . . , xn]. Since

the image of an ideal J ⊂ Z[x1, . . . , xn] in Z/pm[x1, . . . , xn] equals the ideal ob-

tained by first taking the image of J in Z〈p〉[x1, . . . , xn] and then taking the im-

age in Z/pmZ[x1, . . . , xn] (using that Z〈p〉/〈pm〉 ∼= Z/pmZ), Ĩw is the image of

Iw ∩ Z[x1, . . . , xn] in Z/pmZ[x1, . . . , xn]. The second step computes in≺(in0(Ĩw))

by Remark 3.2.8. The equality in≺(in0(Ĩw)) = in≺(inw(I)) then guarantees that we

have the correct input for Algorithm 3.4.7, so the algorithm terminates correctly.

The bound on m to guarantee that we are in the situation given in Proposi-

tion 3.3.4, may be ridiculously large, and not tight. If instead one uses an ad hoc

choice for m, step 3 of Algorithm 3.4.8 will fail if the bound chosen was too low. We

can thus iterate, repeating the computation with a larger value of m. This is often

the best choice in practice.

3.5 Cardinality

In this section we give an example which shows that a p-adic Gröbner basis may be

significantly smaller than any standard Gröbner basis. This gives another motivation

to study such Gröbner bases.

Recall that a monomial ideal M is strongly stable, or Borel fixed, if for all

xu ∈ M with uj > 0 and i < j we have xi/xjx
u ∈ M . Our construction requires a

special case of the following elementary lemma.

Lemma 3.5.1. Fix degrees d1, . . . , dl, and let P =
∏l
i=1 P

(di+n−1
di

)−1
be the parameter

space for sequences of homogeneous polynomials f1, . . . , fl ⊂ K[x1, . . . , xn] of degrees

d1, . . . , dl, where K has characteristic zero. Then there is a Zariski-open set U ⊆ P
for which if p ∈ U then the ideal I = 〈f1, . . . , fl〉 generated by the polynomials

corresponding to p has the property that in≺(I) is strongly stable for all term orders

≺. There are points in U with any prescribed valuations.

Proof. Fix a term order ≺. Note that G = PGL(n,K) acts on P by change of coor-

dinates on each factor. There is a nonempty open set V ⊂ G× P for which in≺(gI)

is constant for all (g, p) ∈ V . Denote this initial ideal by M≺. The existence of this

open set V follows from the theory of comprehensive Gröbner bases [Weispfenning,

2006]. For a fixed p ∈ P, there is an open set V ′ ⊂ G for which the initial ideal

in≺(gI) equals the generic initial ideal gin≺(I), which is strongly stable [see Eisen-

bud, 1995, Theorem 15.23]. By considering any p ∈ P for which there is some g ∈ G
with (g, p) ∈ V , we see that the initial ideal M≺ is strongly stable.
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Since V is open in G×P, the set U≺ = {p ∈ P : (id, p) ∈ V } is open in P, and

in≺(I) = M≺ for all p ∈ U≺. The group G acts on G× P by h · (g, p) = (gh−1, hp).

Note that the set V ⊂ G×P is invariant under this action. This means that the set

U≺ is nonempty, as given any (g, p) ∈ V , we also have (id, g−1p) ∈ V . If M≺ = M≺′

for two different term orders ≺,≺′, then we can take U≺ = U≺′ , as the two term

orders agree on the initial terms of a reduced Gröbner basis of any I = I(p) with

p ∈ U≺. The first part of the lemma then follows from the observation that the

Hilbert functions of all initial ideals M≺ agree and there are only a finite number of

strongly stable ideals with a given Hilbert function, so there are only a finite number

of open sets U≺ to intersect to obtain an open set U ⊂ P with in≺(I) strongly stable

for any p ∈ U and any term order ≺.

Since U ⊂ P is open, so is its intersection with an affine chart A
∑l
i=1 (di+n−1

di
)−l

.

This contains the complement of a hypersurface V (f) where f ∈ K[x1, . . . , xN ] for

N =
∑l

i=1

(
di+n−1

di

)
− l. We now show by induction on N that the valuations of

a point outside V (f) can be prescribed. When N = 1, V (f) is a finite set, so the

base case follows from the fact that there are infinitely many elements of K with

a given valuation. Now assume that the claim is true for smaller N , and write

f = gxm1 + lower order terms, where g ∈ K[x2, . . . , xN ]. Then by induction there

is x′ = (x2, . . . , xN ) with g(x′) 6= 0 and with val(x′) prescribed. By the base case

there is x1 with prescribed valuation for which the univariate polynomial f(x1, x
′)

is nonzero. Then (x1, x
′) ∈ U is the desired point.

The other ingredient needed for the construction is the notion of a Stanley

decomposition for a monomial ideal M ⊆ K[x1, . . . , xn]. For σ ⊆ {1, . . . , n} and a

monomial xu we denote by (xu, σ) the set of monomials {xu+v : vi = 0 for i 6∈ σ}. A

Stanley decomposition for M is a union {(xui , σi) : 1 ≤ i ≤ s} such that every mono-

mial in M lies in a unique set (xui , σi). The key fact about Stanley decompositions

is that the Hilbert function dimK It of I is the sum
∑s

i=1

(t−|ui|+|σi|−1
|σi|−1

)
.

Theorem 3.5.2. Fix an even integer d = 2e. Let I = 〈f, g〉 ⊆ Q[x1, x2, x3] be

two generic polynomials of degree d where every coefficient of f except xd1 and every

coefficient of g except xe2x
e
3 has positive 2-adic valuation, and the remaining two

coefficients have valuation zero. Then in0(I) = 〈xd1, xe2xe3〉 with the 2-adic valuation,

but any standard initial ideal in≺(I) has at least 1/2(d+ 3) generators.

Proof. Note first that the existence of f, g satisfying these conditions follows from

Lemma 3.5.1, from which it also follows that every standard initial ideal in≺(I) is

Borel-fixed. That {f, g} is a 2-adic Gröbner basis for I with respect to w = 0 follows

from Buchberger’s criterion B1.
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Fix a term order ≺, and let in≺(I) = 〈xu1 , . . . , xus〉. Write {1, 2, 3} =

{i1, i2, i3} so that xi1 � xi2 � xi3 . For u ∈ N3, denote by m(u) the index

m(u) = max(j : uij 6= 0) ∈ {1, 2, 3}. Then since in≺(I) is Borel-fixed, the de-

composition {(xui , {im(ui), . . . , i3}) : 1 ≤ i ≤ s} is a Stanley decomposition for

in≺(I). This means that dimQ(in≺(I)t) =
∑s

i=1

(t−|ui|+3−m(ui)
3−m(ui)

)
. Without loss of

generality we may assume that xu1 = xdi1 , and m(ui) ≥ 2 for i ≥ 2. Since I is

generated in degree d, |ui| ≥ d for all i. Since the Hilbert function of I and any

initial ideal (standard or 2-adic) agree, the fact that the 2-adic initial ideal of I is

〈xd1, xe2xe3〉 implies that dimQ(It) = 2
(
t−d+2

2

)
for d ≤ t < 2d. Thus for d ≤ t < 2d we

have

2

(
t− d+ 2

2

)
=

s∑
i=1

(
t− |ui|+ 3−m(ui)

3−m(ui)

)
≤
(
t− d+ 2

2

)
+ (s− 1)

(
t− d+ 1

1

)

so

1/2(t− d+ 2)(t− d+ 1) ≤ (s− 1)(t− d+ 1).

Then setting t = 2d− 1 we see that s ≥ 1/2(d+ 3), as required.

3.6 A Macaulay2 package to Compute Gröbner bases

over fields with valuations

Consider K = Q with the p-adic valuation for some prime p. The algorithms in

this Chapter are implemented in the package GroebnerValuations [Chan, 2013a]

for the computational algebraic geometry system Macaulay2 [Grayson and Stillman]

to compute these Gröbner bases with coefficients in the rational numbers with the

p-adic valuation. The package GroebnerValuations has been submitted to “The

Journal of Software for Algebra and Geometry”. GroebnerValuations allows com-

putation of:

1. the Gröbner basis of an ideal with groebnerVal;

2. the initial ideal of an ideal with leadForm;

3. the normal form of a polynomial with respect to a set of polynomials with

normalForm.
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It was in using this package that we encountered problems with the blow-up of

coefficients that we needed to utilise the improvements and alterations discussed in

the Section 3.4.

We demonstrate usage in by first installing the package then specifying the

polynomial ring Q[x1, x2, x3, x4] and a polynomial f = 2x1 + x2 + 8x3 − 2x4:

i1 : installPackage "GroebnerValuations"

i2 : R = QQ[x_1..x_4];

i3 : f = 2*x_1+x_2+8*x_3-2*x_4

o3 = 2x + x + 8x - 2x

1 2 3 4

o3 : R

Considering the 2-adic valuation, we compute the initial form of f with

respsect to the weight vectors (1, 1, 1, 1) and (1, 3, 7, 1):

i4 : leadForm(f,{1,1,1,1})

o4 = x

2

ZZ

o4 : --[x , x , x , x ]

2 1 2 3 4

i5 : leadForm(f,{1,3,7,1})

o5 = x + x

1 4

ZZ

o5 : --[x , x , x , x ]

2 1 2 3 4

So with respect to the 2-adic valuation, in(1,1,1,1)(f) = x2 and in(1,3,7,1)(f) =

x1 + x4. Consider the ideal I = 〈2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉 in

S and compute the initial ideal with respect to 2-adic valuation for weight vector

(1, 1, 1, 1) and with respect to the 3-adic valuation for weight vector (1, 11, 3, 19):

i6 : I=ideal(2*x_1^2+3*x_1*x_2+24*x_3*x_4,8*x_1^3+x_2*x_3*x_4+18*x_3^2*x_4)

2 3 2

o6 = ideal (2x + 3x x + 24x x , 8x + x x x + 18x x )

1 1 2 3 4 1 2 3 4 3 4

o6 : Ideal of R

i7 : leadForm(I,{1,1,1,1})
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o7 = | x_1x_2 x_2x_3x_4 x_1^2x_3x_4+x_1x_3^2x_4 |

ZZ 1 ZZ 3

o7 : Matrix (--[x , x , x , x ]) <--- (--[x , x , x , x ])

2 1 2 3 4 2 1 2 3 4

i8 : leadForm(I,{1,11,3,19},Prime=>3)

o8 = | x_1^2 x_1x_3x_4 x_1x_2^2x_3 x_1x_2^4 x_3^4x_4^2 |

ZZ 1 ZZ 5

o8 : Matrix (--[x , x , x , x ]) <--- (--[x , x , x , x ])

3 1 2 3 4 3 1 2 3 4

We have computed that in(1,1,1,1)(I) = 〈x1x2, x2x3x4, x
2
1x3x4〉 with respect

to the 2-adic valuation and in(1,11,3,19)(I) = 〈x2
1, x1x3x4, x1x

2
2, x

4
3x

2
4〉 with respect to

the 3-adic valuation. We now compute the Gröbner basis with respect to the 2-adic

valuation and the 3-adic valuations for weight vector (1, 1, 1, 1):

i9 : groebnerVal(I,{1,1,1,1})

o9 = | 2/3x_1^2+x_1x_2+8x_3x_4 8x_1^3+x_2x_3x_4+18x_3^2x_4

----------------------------------------------------------------------

-12x_1^4+x_1^2x_3x_4-27x_1x_3^2x_4+12x_3^2x_4^2 |

1 3

o9 : Matrix R <--- R

i10 : groebnerVal(I,{1,1,1,1},Prime=>3)

o10 = | x_1^2+3/2x_1x_2+12x_3x_4

---------------------------------------------------------------------

18/145x_1x_2^2-96/145x_1x_3x_4+x_2x_3x_4+18/145x_3^2x_4 |

1 2

o10 : Matrix R <--- R

We see that {2/3x2
1 +x1x2 +8x3x4, 8x

3
1 +x2x3x4 +18x2

3x4,−12x4
1 +x2

1x3x4−
27x1x

2
3x4 + 12x2

3x
2
4} is a Gröbner basis for I with respect to the 2-adic valuation

and {x2
1 + 3/2x1x2 + 12x3x4, 18/145x1x

2
2 − 96/145x1x3x4 + x2x3x4 + 18/145x2

3x4}
is a Gröbner basis for I with respect to the 3-adic valuation. Finally we compute

the normal form of x3
1 + x3

2 + x3
3 + x3

4 with respect to polynomials {x1 + 12x4, x2 −
8x1, x3 − 128x1} and weight vector (1, 3, 2, 1):

i11 : g = x_1^3+x_2^3+x_3^3+x_4^3;

i12 : normalForm(g,{x_1+12*x_4,x_2-8*x_1,x_3-128*x_1},{1,3,2,1})

2 2 2 2

o12 = (1, {x + 8x + 128x - 12x x - 768x x - 196608x x + 302063760x ,

1 2 3 1 4 2 4 3 4 4

---------------------------------------------------------------------

2 2 2 2 3
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x - 96x x + 9216x , x - 1536x x + 2359296x }, -3624765119x )

2 2 4 4 3 3 4 4 4

o12 : Sequence

We see that x3
1 + x3

2 + x3
3 + x3

4 = (x2
1 + 8x2

2 + 128x2
3 − 12x1x4 − 768x2x4 −

196608x3x4 + 302063760x2
4)(x1 + 12x4) + (x2

2 − 96x2x4 + 9216x2
4)(x2 − 8x1) + (x2

3 −
1536x3x4 + 2359296x2

4)(x3 − 128x1)− 3624765119x3
4.

Recall that the two main ways to improve the speed and efficiency of the

algorithms are

1. Using criteria to decide a priori that certain S-polynomials reduce to zero;

2. By working over Z/pmZ for some suitably large m ∈ N.

These two improvements are implemented in the package, with the second as an

option. We demonstrate how this works by computing the special fibre of a Mustafin

variety [Cartwright, Häbich, Sturmfels, and Werner, 2011, Definition 1.1] in the case

where p = 2. The following code computes the Mustafin variety as in Example 2.2

of Cartwright, Häbich, Sturmfels, and Werner [2011]. In our example we replace the

matrices g1, g2, g2 from Example 2.2 with the matrices A,B,C below.

i13 : R = QQ[x_1..x_9];

i14 : y1 = matrix{{x_1},{x_2},{x_3}};

i15 : y2 = matrix{{x_4},{x_5},{x_6}};

i16 : y3 = matrix{{x_7},{x_8},{x_9}};

i17 : A = matrix{{1,8,16},{2,1,32},{4,1,4}};

i18 : B = matrix{{19,3,7},{5,8,1},{2,64,3}};

i19 : C = matrix{{1,12,8},{11,1,6},{1,9,5}};

i20 : A1 = flatten entries(A*y1);

i21 : B1 = flatten entries(B*y2);

i22 : C1 = flatten entries(C*y3);

i23 : M = matrix{A1,B1,C1};

i24 : J = minors(2,M);

The special fibre of the Mustafin variety is the initial ideal with respect to

the weight vector (1, . . . , 1). When computing this example, the coefficients grow

very large and we are unable to complete the computation using the memory space

of the computer and so we need to work over Z/pmZ:

i25 : leadForm(J,{1,1,1,1,1,1,1,1,1},ModPn=>true)

o25 = | x_4x_8+x_5x_9 x_1x_7+x_2x_7+x_1x_8 x_5x_7+x_5x_8+x_6x_8+x_5x_9

---------------------------------------------------------------------

x_4x_7+x_4x_9+x_5x_9+x_6x_9 x_2x_9 x_1x_9 x_1x_4 x_2x_4

---------------------------------------------------------------------

x_2x_5+x_1x_6+x_2x_6 |
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In Theorem 3.5.2 we saw a family of ideals which have small 2-adic Gröbner

basis but where all other standard Gröbner bases are large and grow linearly with

the degrees of the generators. Consider the case of degree 30 polynomials. We

start by finding two random polynomials f and g which satisfy the hypotheses and

forming the ideal 〈f, g〉:

i23 : S = ZZ[x_1,x_2,x_3];

i24 : T1 = S/((x_1)^30);

i25 : use S;

i26 : T2 = S/((x_2)^15*(x_3)^15);

i27 : use S;

i28 : f = x_1^30+2*(lift(random(30,T1),S));

i29 : g = x_2^15*x_3^15+2*(lift(random(30,T2),S));

i30 : U = QQ(monoid S);

i31 : h = map(U,S);

o31 : RingMap U <--- S

i32 : K = h ideal(f,g);

o32 : Ideal of U

We now compute the in(1,1,1)(〈f, g〉) with respect to the 2-adic valuation to

show that it has only 2 elements, and as a demonstration show that the Gröbner

basis with respect to the graded reverse lexicographic ordering has 61 elements.

i33 : leadForm(K,{1,1,1})

o33 = | x_1^30 x_2^15x_3^15 |

ZZ 1 ZZ 2

o33 : Matrix (--[x , x , x ]) <--- (--[x , x , x ])

2 1 2 3 2 1 2 3

i34 : #(flatten entries gens gb K)

o34 = 61
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Chapter 4

Tropical Curves from

Coordinate Projections

4.1 Introduction

Let K be an algebraically closed field equipped with the trivial valuation. Denote

by Pn the n-dimensional projective space over the field K with n-dimensional al-

gebraic torus Tn and S = K[x0, x1, . . . , xn] the homogeneous coordinate ring of

Pn. Let X be an irreducible m-dimensional subvariety of Tn with defining ideal

I ⊆ K[x±1
1 , . . . , x±1

n ]. As we saw in Chapter 2, the tropicalisation of X is defined to

be trop(X) =
⋂
f∈I trop(V (f)) and by the Structure Theorem 2.2.5 it has the sup-

port of a balanced weighted rational m-dimensional polyhedral complex Σ that is

connected through codimension one. A fundamental question in tropical geometry

is how to find this polyhedral complex Σ.

In Section 2.3.3, we saw that a first answer was given by Bogart, Jensen,

Speyer, Sturmfels, and Thomas [2007] in the paper “Computing Tropical Vari-

eties”. They provided algorithms to compute tropical varieties which have been

implemented in the computer software package gfan [Jensen]. These algorithms use

the fact that trop(X) is connected through codimension one. The idea is to ‘walk’

from one maximal dimensional cone to another by passing through a facet. We find

these neighbouring maximal dimensional cones by computing a tropical curve which

has a ray passing in the direction of each neighbouring maximal dimensional cone.

If u is a generic relative interior point of a facet of some maximal dimensional cone

then, we saw in Section 2.3.3 that V (inu(I)) = C × (K∗)dim I−1 for some curve C.

As the initial complex associated to the initial ideal is connected [Kalkbrener and

Sturmfels, 1995, Theorem 2], this tells us that C is connected. The tropicalisation
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trop(C) defines a tropical curve which has a ray pointing in the direction of each

neighbouring maximal dimensional cone. So the construction of tropical curves is

a key step of these algorithms to construct tropical varieties. Any improvements in

the algorithm for computing a tropical curve would result in improvements to the

algorithms for constructing arbitrary dimensional tropical varieties. In particular,

this is a bottleneck in the algorithms and we present examples in Section 4.3 of a

curve for which we cannot compute its tropicalisation using gfan.

Let C ⊆ Tn be a curve with defining ideal I ⊆ K[x±1
1 , . . . , x±1

n ]. We saw in

Section 2.5 that Bieri and Groves [1984] showed that there is a dense open set in

the set of all projections such that for n of these projections π1, . . . , πn : Rn → R2

we have that

trop(C) =
n⋂
i=1

π−1
i πi(trop(C)). (4.1)

In fact, π−1π(trop(C)) is a tropical hypersurface and we can compute the equation

for this hypersurface by changing coordinates so that the projection is a coordi-

nate projection before using elimination theory, as described in Section 2.4, to find

an equation for the projection. Combining these two results, we see that we can

find suitably generic geometrically regular projections, such that (4.1) holds and

π−1
i πi(trop(C)) = trop(V (gi)) for some gi ∈ I. Thus {g1, . . . , gn} is a tropical basis

for I and we find trop(C) by intersecting all of the tropical hypersurfaces trop(V (gi))

as we saw in Section 2.3.2. We demonstrate how we can recover the support of a

one-dimensional tropical variety from suitably generic projections with an example.

Example 4.1.1. Let I = 〈xz + 4yz − z2 + 3xw − 12yw + 5zw, xy − 4y2 + yz +

xw+ 2yw− zw, x2− 16y2 + 8yz− z2 + 14xw− 8yw+ 2zw〉 be a homogeneous ideal

in C[x, y, z, w] where C is equipped with the trivial valuation. Then I defines a

curve in P3. Let C = V (I) ∩ Tn. Then trop(C) is a one-dimensional tropical curve

in R4/R(1, 1, 1, 1). We consider the tropicalisations as fans living in R3 after we

quotient out by the lineality space (1, 1, 1, 1) so that the w coordinate is zero. We

see that trop(C) has four rays spanned by

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

In Figure 4.1 we see trop(C) as the rays passing through alternate vertices of a cube

in R3 with vertices at (±1,±1,±1).

By the discussion above, we can find three geometrically regular projections

which recover the tropical curve. We consider projections onto the planes defined

by y = 0, x = 0 and x+ 2z = 0 as shown in Figure 4.2.
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Figure 4.1: A tropical curve as the alternate vertices of a cube

Figure 4.2: A tropical curve in R3 with three generic projections

We recover the rays of trop(C) from these three projections starting with

the projection to y = 0. This has image spanned by positive multiples of four rays

generated by (1, 1), (1,−1), (−1, 1) and (−1,−1) in the xz-plane. Thus we see that

the points in R3 that project to this projection can have any y-coordinate with the x

and z coordinates positive multiples of the rays of the projected curve. That is, the

points of R3 which project to the y = 0 projection are of the form (a, b, a), (a, b,−a),

(−a, b, a) and (−a, b,−a) for a ≥ 0 and any b ∈ R. This is shown in Figure 4.3.

Then we look to see which of those points project to the x = 0 projection.

We now recover eight rays which can be seen as those passing through all vertices

of the cube. This is shown in Figure 4.4.

Finally, we see that of these eight rays, only four project on our third projec-

tion and we have recovered the tropical curve trop(C). This is shown in Figure 4.5

3
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Figure 4.3: The points in R3 which project to the y = 0 projection

Figure 4.4: The points in R3 which project to the y = 0 and x = 0 projection

In order to use these techniques to computationally find trop(C), we need

to be able to find suitably generic projections. However, it is difficult to check if a

set of projections is generic or not. Additionally, projections other than coordinate

projections are often difficult to compute and the degree of polynomials involved may

grow extremely large. Thus the key idea in this Chapter is that we shall restrict

our attention to coordinate projections. These are usually easier to compute, but

in general they will not be generic enough for the results of Bieri and Groves [1984]

and Hept and Theobald [2009]. So even if we consider all coordinate projections,

we may not have a tropical basis with which we can recover trop(C). We see one

such example in Example 4.2.11.

In this Chapter, we explain methods to be able to reconstruct trop(C) from

its coordinate projections. The reconstruction has three main steps:
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Figure 4.5: A tropical curve in R3 recovered from three generic projections

1. Find the image of the tropical curve under two-dimensional coordinate pro-

jections. In general these coordinate projections may not be geometrically

regular but are easier to compute by elimination theory. This is discussed in

Section 4.2.1.

2. Find the set of rays which project to the projected tropical curves found in

Step 1. In general, this will form a finite superset of the rays in the tropical

curve trop(C). We provide algorithms to determine this superset of rays in

Section 4.2.2.

3. Determine which of the rays from the superset found in Step 2 are rays of the

tropical curve trop(C) and find their multiplicities in trop(C). The algorithms

we provide for this in Section 4.2.3 use the multiplicity equation (2.2) from

Tropical Elimination Theory, equations from the degree of the curve C which

we saw in Section 2.6, and equations which come from the balancing condition.

This limits the number of additional initial ideals that we need to compute.

In Section 4.3 we examine an example of a tropical curve which cannot be

computed using gfan but which can be computed using these coordinate projection

techniques. In Section 4.4 we see some implementation issues and ways in which

our algorithms can be optimised. Finally, we introduce the Macaulay2 [Grayson and

Stillman] package TropicalCurves [Chan, 2013b] in Section 4.5 which implements

these algorithms to compute tropical curves from coordinate projections.
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4.2 Reconstructing Tropical Curves from Coordinate

Projections

Let I ⊆ S be a homogeneous prime ideal defining an irreducible curve in Pn. Let

C = V (I) ∩ Tn. Recall from Section 2.3.3 that a key step in the construction of a

tropical variety is to construct the tropicalisation of a connected curve. Thus, we

will assume here that C is connected. In this section, we explain how to reconstruct

the tropicalisation of C from its projections to coordinate planes. This procedure

has three main steps. In the first we find equations for the projections and then

tropicalise them. In the second we find a superset of the rays in trop(C), and in the

third we determine which rays in the superset are rays of the tropical curve.

By the Structure Theorem 2.2.5, trop(C) has the support of a weighted

balanced Γ-rational one-dimensional fan in Rn+1/R(1, . . . , 1). This can be thought

of as a fan in Rn after we identify Rn+1/R(1, . . . , 1) with Rn. Algebraically, this

corresponds to looking at a coordinate slice of the fan. We look at the slice of the

fan where x0 = 0 which corresponds to dehomogenising with respect to x0. If ρ is a

ray of trop(C), then the first lattice point of ρ is called the primitive generator of

ρ. By abuse of notation, we shall let ρ denote a ray of trop(C) as well its primitive

generator.

4.2.1 Finding the Projections

Let πij : Pn 99K P2 be the projection map to coordinates x0, xi, xj . As C ⊆ Pn is

one-dimensional, its image Cij := πij(C) ⊆ P2 is then either one-dimensional or

zero-dimensional. Suppose that the image is zero-dimensional. This means that

Cij is a finite set of points. As we are assuming that C is connected, the image

under projection is also connected and so is a single point. Thus C is contained in a

hyperplane. When this happens, the defining ideal I of C will contain a linear form

in x0, xi, xj . We require that C and its image Cij under the projection πij to have

the same dimension, so we will thus assume that I does not contain such a linear

form and that Cij is then one-dimensional so that it is a curve in P2. It is then

given by a single homogeneous polynomial in K[x0, xi, xj ].

Fix a monomial ordering � where xk � x0, xi, xj for all k 6= i, j, 1 ≤ k ≤ n,

and let G be a Gröbner basis for I with respect to �. Then, in Section 2.4 we saw

that by Elimination Theory, G ∩K[x0, xi, xj ] is a Gröbner basis for I ∩K[x0, xi, xj ].

Geometrically I ∩K[x0, xi, xj ] is the ideal defining the Zariski closure of the image

Cij in P2.

As the curve C is connected, irreducible and is not contained in any linear
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hyperplane of the form ax0 + bxi + cxj , each fibre of the projection map cannot be

a component of the curve. Thus fibres cannot be one-dimensional and so must be

a finite set of zero-dimensional points. Thus the projection map πij : C → Cij is a

surjective map generically finite of some degree δ. We denote the tropicalisations

of C and Cij by trop(C) and trop(Cij) respectively. We choose identifications of

Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) which send the first coordinates to

zero. Then abusing notation, we let x1, . . . , xn be the coordinates of Rn and xi, xj

the coordinates of R2. Thus, trop(C) is a one-dimensional fan in Rn and trop(Cij)

is a one-dimensional fan in R2. We also denote by πij : Rn → R2 the projection

map onto the coordinates xi, xj induced from πij : C → Cij and so sends trop(C)

to trop(Cij). By Tropical Elimination Theory [Sturmfels and Tevelev, 2008], which

we saw in Section 2.4, the following diagram commutes:

C trop(C)

Cij trop(Cij).

trop

πij πij

trop

Additionally, if σ is a ray of trop(Cij) then its multiplicity is given by

mσ =
1

δ

∑
ρ∈trop(C):σ⊆πij(ρ)

mρ · index(ρ, σ)

where this sum is over all rays ρ ∈ trop(C) which project to σ. Here index(ρ, σ)

denotes the index of the lattice generated by πij(ρ) inside the lattice generated by

σ. The index of a sublattice L′ in L is given by the determinant of the matrix

which sends the generators of the sublattice L′ to the generators of the lattice L.

The image of ρ is πij(ρ) = (ρi, ρj) where ρi is the xi coordinate of ρ, and ρj is

the xj coordinate of ρ. As the image of ρ under πij is σ = (σi, σj) we must have

that (ρi, ρj) = a · (σi, σj), where gcd(σi, σj) = 1 as it is a primitive ray generator,

and so it follows that a = gcd(ρi, ρj). Thus where we are considering coordinate

projections, we can write the multiplicity formula as:

mσ =
1

δ

∑
ρ∈trop(C):σ⊆πij(ρ)

mρ · gcd(ρi, ρj). (4.2)

Remark 4.2.1. It follows from (4.2) that for any ρ ∈ trop(C) such that σ ⊆ πij(ρ)
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the multiplicity mρ can be bounded above by

mρ ≤
δ ·mσ

gcd(ρi, ρj)
(4.3)

which means that the maximum possible multiplicity of ρ in trop(C) such that it

still projects to σ is ⌊
δ ·mσ

gcd(ρi, ρj)

⌋
as it must be a positive integer. 3

Let π : Pn 99K P2 be a coordinate projection. If C is a curve in Pn and L a

hyperplane in Pn such that C is not contained in L then C ∩L is zero-dimensional.

We denote by m the number of points, counted with multiplicity, in C ∩ L that do

not map to π(C).

Lemma 4.2.2. Let C ⊆ Pn be an irreducible connected curve of degree d1 and let

π : C ⊆ Pn 99K π(C) ⊆ P2 be a coordinate projection to x0, x1, x2 which is generically

finite of degree δ. Suppose that C is not contained in any hyperplane of x0, x1, x2

and that π(C) is a curve in P2. Let L be a generic hyperplane in Pn defined by a

polynomial l = ax0 + bx1 + cx2 which projects to a line π(L) in P2. Suppose that

π(C ∩ L) has degree d2 and let m be defined as above. Then d1 = δ · d2 +m.

Proof. We first note that as C is not contained in any hyperplane, it is not contained

in L. Thus C ∩ L is zero-dimensional and so is a finite set of points. We can also

choose L generically so that it does not intersect π(C)\π(C). This is because there

are only finitely many points in π(C)\π(C).

We count the points in C ∩ L in two different ways. Firstly the degree of C

can be defined as the number of points in C ∩ C ′ for a complementary dimensional

subspace C ′. As C is a curve, this means considering a hyperplane so we can take

C ′ = L as C is not contained in L. Thus the number of points in C ∩ L counted

with multiplicity is d1, the degree of C.

Secondly, these points are either points which do not map to points in P2

under the projection π, or they are points in the pre-image of π. By the hypothesis,

there are m points, counted with multiplicity, in C∩L that do not map to π(C). For

the points in the pre-image of π, we count the points in π(C ∩ L). Then as π is of

degree δ, this will correspond to δ times this number of points. As π(C∩L) is a zero-

dimensional ideal, the number of points counted with multiplicity will generically

equal the degree d2. Thus there are δ · d2 points which map to π(C), and this point

count gives δ · d2 +m points in C ∩ L.

70



Combining these two ways of counting the points of C ∩ L we have

d1 = δ · d2 +m

as required.

Remark 4.2.3. In Lemma 4.2.2, it is possible to choose the line l = ax0 + bx1 +

cx2 generically so that π(C ∩ L) = π(C) ∩ π(L). In fact, the inclusion π(C) ∩
π(L) ⊇ π(C ∩ L) always holds. Let I be the defining ideal of C and J = 〈l〉 the

defining ideal of L. Then the condition π(C ∩ L) = π(C) ∩ π(L) is equivalent to

showing that (I + J) ∩K[x0, xi, xj ] = (I ∩K[x0, xi, xj ]) + (J ∩K[x0, xi, xj ]). Let

{f1, . . . , fs} be an elimination Gröbner basis for I with respect to a monomial term

order where x0, xi, xk > xl for all 1 ≤ l ≤ n where l 6= i, j, and let fs be the defining

equation for I ∩ K[x0, xi, xj ]. The ideal J ∩ K[x0, xi, xj ] is defined by l so that

(I∩K[x0, xi, xj ])+(J∩K[x0, xi, xj ]) = 〈fs, l〉 ⊆ 〈f1, . . . , fs, l〉 ⊆ (I+J)∩K[x0, xi, xj ].

Thus π(C) ∩ π(L) ⊇ π(C ∩ L) always holds.

For the reverse inclusion, we need the linear polynomial l to be chosen such

that (I + J) ∩K[x0, xi, xj ] ⊆ (I ∩K[x0, xi, xj ]) + (J ∩K[x0, xi, xj ]). Suppose that

I is generated in degree d, then we need to show that (I + J)d ∩ K[x0, xi, xj ] ⊆
(Id∩K[x0, xi, xj ])+(Jd∩K[x0, xi, xj ]). That is, we cannot have any polynomials in

(I + J)d ∩K[x0, xi, xj ] which are not contained in 〈fs, l〉. This is an open condition

on the coefficients of l.

In the case where π(C ∩ L) = π(C) ∩ π(L), it follows that deg(π(C ∩ L)) =

deg(π(C)) which is the degree of the polynomial defining the hypersurface π(C). In

practice, it appears that finding such a generic line is computationally time consum-

ing and that it is in fact easier to simply compute the degree of π(C ∩ L). 3

Algorithm 4.2.4. Input: An ideal I ⊆ S defining a connected irreducible curve

C in Pn and a projection map π : C 99K π(C) to P2.

Output: The degree δ of the projection map π.

1. Let d1 = deg(C) .

2. For J = 〈ax0 + bx1 + cx2〉 ⊆ S defining a hyperplane L = V (J) ⊆ Pn, set

d2 = deg(π(C ∩ L)).

3. Let P = 〈x0, x1, x2〉 then define M1 = (I + J) : P∞ and M2 = (I + J) : M∞1 .

4. Let m = degM2.

Output δ = (d1 −m)/d2.

71



Proof of Algorithm. The ideal M2 is the saturation of I+J with respect to the ideal

M1 and so M2 defines the variety of points in V (I+J) which are not in V (M1). The

ideal M1 is the saturation of I + J with respect to P thus M1 defines the variety of

points in V (I + J) which are not in P . Then, the ideal M2 is the ideal of points in

V (I+J) which are also in V (P ), and thus corresponds to the points in C ∩L which

do not map to P2. As M2 is a zero-dimensional ideal, its degree counts these points

with multiplicity. By Lemma 4.2.2, d1 = δd2 +m and so the result follows.

For a given homogeneous ideal I in S, the following algorithm computes the

tropical curves which are the projections of trop(V (I)) to two dimensional coordi-

nate hyperplanes. It first finds equations for the projection of I to those coordinates,

then constructs the tropical curve from the normal fan of its Newton polygon. We

equip each projected tropical curve with a positive integer which is the degree of

the algebraic projection map as this will be required to determine multiplicities

using (4.2) in future steps of the reconstruction process.

Algorithm 4.2.5. Input: A homogeneous ideal I ⊆ S defining an irreducible

connected curve C ⊆ Pn.

Output: A set P = {Cij} of tropical curves where Cij ⊆ R2 is the projection

of trop(C) ⊆ Rn to the coordinate plane with coordinates xi, xj , and a set D = {δij}
where δij is the degree of the projection map πij : C ⊆ Pn 99K P2.

Initialisation: P = ∅, D = ∅, T = {(xi, xj) : 1 ≤ i < j ≤ n}
For all (xi, xj) in T do:

1. Compute the elimination ideal Iij which eliminates variables xk for all k 6=
0, i, j.

2. Compute the degree δij of the projection map π : Pn → P2 by Algorithm 4.2.4.

3. If I does not contain a linear form in x0, xi, xj then πij(C) is one-dimensional.

Let Iij = 〈fij〉 be the defining ideal of πij(C) and compute Cij = trop(V (fij))

by Algorithm 2.3.3.

4. P = P ∪ {Cij}, D = D ∪ {δij}.

Output P,D.

4.2.2 Reconstructing the pre-image rays

Consider the tropical curve trop(C) in Rn+1/R(1, . . . , 1) ∼= Rn and let πij : trop(C) ⊆
Rn → R2 be the coordinate projection to the coordinates xi, xj . The image of the

tropical curve trop(C) under this projection is denoted by Cij := πij(trop(C)).
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In this section, we explain how to find the points in Rn which under co-

ordinate projections project to our collection of tropical plane curves {Cij}(i,j)∈P
where the set P indexes our projections. A primitive vector ρ ∈ Rn with associ-

ated multiplicity bound mρ is called an (i, j)-candidate for trop(C) if either πij(ρ)

spans a ray σ ∈ Cij with multiplicity mσ where by Remark 4.2.1 we require that

mρ · gcd(ρi, ρj) ≤ δij ·mσ, or πij(ρ) = (0, 0). It is called a candidate for trop(C) if it

is an (i, j)-candidate for all (i, j) ∈ P . That is ρ is an (i, j)-candidate for trop(C) if

it projects to Cij and is a candidate for trop(C) if it projects to Cij for all (i, j) ∈ P .

In this language, the aim of this section is to find a set of all candidates for trop(C).

We partially reconstruct candidates for trop(C) by building up rays con-

sidering one new projection at a time. Suppose we have partially reconstructed a

candidate ρ and we are considering a projected curve Cij . Then we are looking to

find the points which agree with ρ on the coordinates already reconstructed and

which are additionally (i, j)-candidates for trop(C).

Example 4.2.6. Suppose that we have partially reconstructed a candidate ρ =

(1, 0, 3, ∗, ∗, ∗) ∈ R6 which has been reconstructed to coordinates x1, x2, x3 where

the ∗s in position x4, x5, x6 indicate that these coordinates have yet to be recon-

structed. Suppose that we are considering the projection π45 to coordinates x4, x5

with C45 having rays (1, 0), (0, 1), (−1,−1). Then (1, 0, 3, 1, 0, ∗), (1, 0, 3, 0, 1, ∗) and

(1, 0, 3,−1,−1, ∗) all agree with ρ on coordinates x1, x2, x3 and are additionally

(4, 5)-candidates for the tropical curve. 3

The multiplicity bound (4.3) also gives a bound on the different rays which we

can reconstruct. However, as we see in the following example, where the projection

map has large degree, or the ray in the projected tropical curve has large multiplicity,

we can combine these rays multiple times.

Example 4.2.7. As in Example 4.2.6, suppose that we have a partially recon-

structed a candidate ρ = (1, 0, 3, ∗, ∗, ∗) ∈ R6 which has been reconstructed to

coordinates x1, x2, x3 and that we are considering the projection π45 to coordinates

x4, x5. Suppose that ray σ = (−1,−1) is in C45 which we are attempting to combine

with ρ. If σ has a high multiplicity, then we can combine it with ρ in multiple ways.

For example, suppose that mσ = 5, then we can combine ρ with σ to form the

partially reconstructed candidate (1, 0, 3,−1,−1, ∗), ρ with 2σ to form the partially

reconstructed candidate (1, 0, 3,−2,−2, ∗), ρ with 3σ to form the partially recon-

structed candidate (1, 0, 3,−3,−3, ∗), ρ with 4σ to form the partially reconstructed

candidate (1, 0, 3,−4,−4, ∗) and ρ with 5σ to form the partially reconstructed can-

didate (1, 0, 3,−5,−5, ∗). These are all valid (4, 5)-candidates which extend ρ on
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the coordinates already reconstructed. 3

For a fixed partially reconstructed candidate ρ, consider the projected trop-

ical curve Cij so that we are looking for those rays which agree with ρ on the

coordinates already reconstructed and which are additionally (i, j)-candidates for

trop(C). How we extend ρ with the rays of Cij depends on i and j, and on whether

ρ has been partially reconstructed to xi or xj or both or neither. There are three

cases that we need to consider.

Projections of Type 0. In this case, xi and xj have already been reconstructed

in the partially reconstructed candidate ρ. We then have to check to see if ρ is

an (i, j)-candidate for trop(C). If not, then it is discarded as it not possible to

extend to a candidate for trop(C) whilst also agreeing on the coordinates already

reconstructed.

Projections of Type 1. In this case, only one of the xi and xj have been recon-

structed in the partially reconstructed candidate ρ. After relabelling coordinates

if necessary, we can assume that the xi-coordinate has been reconstructed in the

partially reconstructed candidate ρ and that the xj-coordinate has not. Let ρi be

the xi-coordinate of ρ. This case splits into two subcases.

Projections of Type 1(a). In this subcase, ρi is non-zero. Here, we extend ρ by

combining with the rays of Cij whose xi-coordinate has the same sign as ρi. For

example, consider again the partially reconstructed candidate ρ = (1, 0, 3, ∗, ∗, ∗)
from Example 4.2.6 which has been partially reconstructed to coordinates x1, x2, x3

and suppose that this time we are considering the projected tropical curve C14 to

coordinates x1, x4 which has rays (1, 0), (0, 1), (−1,−1). Then we can only combine

ρ with the ray (1, 0) to form (1, 0, 3, 0, ∗, ∗) which is also a (1, 4)-candidate which

extends ρ.

Projections of Type 1(b). In this subcase, ρi is zero. Here, we extend ρ by com-

bining with the rays of Cij whose xi-coordinate is also zero. For example, consider

again the partially reconstructed candidate ρ = (1, 0, 3, ∗, ∗, ∗) from Example 4.2.6

which has been partially reconstructed to coordinates x1, x2, x3 and suppose that

this time we are considering the projected tropical curve C24 to coordinates x2, x4

which has rays (1, 0), (0, 1), (−1,−1) this time all with multiplicity two. Then we

can combine ρ only with the ray (0, 1). Notice that the ray (0, 1) has multiplicity

two which means that we can think of it as the ray (0, 1) with multiplicity two or

as the ray (0, 2) with multiplicity one. In this way ρ can be combined with (0, 1) to

form two new partially reconstructed candidates (1, 0, 3, 1, ∗, ∗) and (1, 0, 3, 2, ∗, ∗)
which are both (2, 4)-candidates which extend ρ.

Projections of Type 2. In this case, both xi and xj have not been reconstructed
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in the partially reconstructed candidate ρ. Thus we can extend ρ with each ray of

Cij . We saw this case in Example 4.2.6.

The numbering of these projections refers to the number of new coordinates

that they would add to the partially reconstructed candidate. That is, a projection

of Type 0 would not add any new coordinates, a projection of Type 1 would add

one new coordinate and a projection of Type 2 would add two new coordinates.

We now explain the algorithm which allows the reconstruction of all candi-

dates given a set of two-dimensional coordinate projections. We first set up some

notation.

Consider a partially reconstructed candidate ρ which has been partially re-

constructed to coordinates x1, . . . , xr where we have considered projections indexed

by a set P . To each such ρ we associate a multiplicity bound mρ. This encodes the

greatest multiplicity with which the partially reconstructed candidate ρ can occur in

order to still be an (i, j)-candidate for all (i, j) ∈ P . So if the partially reconstructed

candidate ρ = (1, 0, 3, ∗, ∗, ∗) from Example 4.2.6 occurred with multiplicity bound

mρ = 2 then 2ρ = (2, 0, 6, ∗, ∗, ∗) is an equally valid partially reconstructed candi-

date that we need to consider. Suppose as in Example 4.2.6 that we are combining

ρ with the ray (1, 0) with multiplicity 1 of the projected tropical curve C45. Then

ρ can be extended to form (1, 0, 3, 1, 0, ∗) and (2, 0, 3, 1, 0, ∗) both with multiplicity

bound 1 which both agree with ρ on the coordinates already reconstructed and are

additionally (4, 5)-candidates for trop(C).

We also encode each partially reconstructed candidate ρ with an index set

Qρ which indexes the projections that are still remaining to consider in the recon-

struction of the partially reconstructed candidate, and index set Yρ which indexes

the coordinate variables which have already been reconstructed in ρ.

The following algorithm reconstructs all candidates for trop(C) from a set

of projected tropical curves indexed by elements of the set P . The ‘if’ loop takes

a partially reconstructed candidate and extends it by combining it with the rays

of a projected tropical curve which we have not yet considered. How the partially

reconstructed candidate is extended depends on the type of the projection we are

adding. After considering all projected tropical curves in P , we have then recovered

a candidate for trop(C). As another piece of notation, we let ∗+ a = a for all a.

Algorithm 4.2.8. Input: An index set P which indexes the projected tropical

curves {Cij : (i, j) ∈ P} where each Cij comes with a positive integer δij .

Output: The set T of all candidates for trop(C).

Initialisation: T = ∅, S = {ρ = (∗, . . . , ∗)} where mρ = ∞, Qρ = P and

Yρ = ∅.
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While S 6= ∅ do:

I. Choose any ρ ∈ S. Set S = S − {ρ}

II. If Qρ = ∅ and ρ 6= (0, . . . , 0) then T = T ∪ {ρ}. If Qρ = ∅ and ρ = (0, . . . , 0)

then T = T . Otherwise do:

(a) Choose any (i, j) ∈ Qρ.

(b) Updating S. This depends on {i, j} ∩ Yρ.

1. Case 0: If |{i, j} ∩ Yρ| = 2 then πij is a projection of Type 0.

(i) If (ρi/ gcd(ρi, ρj), ρj/ gcd(ρi, ρj)) is equal to a ray σ of Cij where

in addition gcd(ρi, ρj) ≤ δijmσ, then we define θ = ρ. Set mθ =

min(mρ, bδijmσ/ gcd(ρi, ρj)c), Qθ = Qρ − {(i, j)} and Yθ = Yρ.

Let S = S ∪ {θ}
(ii) If (ρi, ρj) = (0, 0) then set S = S ∪ {ρ} where mρ = mρ, Qρ =

Qρ − {(i, j)} and Yρ = Yρ.

2. Case 1(a): If |{i, j} ∩ Yρ| = 1 and ρi 6= 0, where after relabelling

if necessary, we assume that {i, j} ∩ Yρ = {i}, then πij is a pro-

jection of Type 1(a).

This splits into two subcases depending on the sign of ρi.

(i) If ρi > 0 then set U = {σ : σ is a ray of Cij and σi > 0}. For

all σ ∈ U with multiplicity mσ define a := lcm(ρi, σi)/ρi and

b := lcm(ρi, σi)/σi. Then when a ≤ mρ and b ≤ δijmσ, define

θ = (θ1, . . . , θn) where θl = aρl for l 6= j and θj = bσj . Set

mθ = bmin(mρ/a, δijmσ/b)c, Qθ = Qρ−{(i, j)} and Yθ = Yρ∪{j}.
Let S = S ∪ {θ}

(ii) If ρi < 0 then set U = {σ : σ is a ray of Cij and σi < 0}. For

all σ ∈ U with multiplicity mσ define a := lcm(ρi, σi)/|ρi| and

b := lcm(ρi, σi)/|σi|. Then when a ≤ mρ and b ≤ δijmσ, let

θ = (θ1, . . . , θn) where θl = aρl for l 6= j and θj = bσj . Set

mθ = bmin(mρ/a, δijmσ/b)c, Qθ = Qρ−{(i, j)} and Yθ = Yρ∪{j}.
Let S = S ∪ {θ}.

3. Case 1(b): If |{i, j} ∩ Yρ| = 1 and ρi = 0, where after relabelling

if necessary, we assume that {i, j} ∩ Yρ = {i}, then πij is a pro-

jection of Type 1(b).

(i) Set U = {σ : σ a ray of Cij and σi = 0}. For all σ ∈ U with multi-

plicity mσ let J = {(u, v) : 1 ≤ u ≤ mρ, 1 ≤ v ≤ δijmσ, gcd(u, v) =

1}. Then for all (u, v) ∈ J let θ = (θ1, . . . , θn) where θl = uρl for
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l 6= j and θj = vσj . Set mθ = bmin(mρ/u, δijmσ/v)c, Qθ =

Qρ − {(i, j)} and Yρ = Yρ ∪ {j}. Let S = S ∪ {θ}.
(ii) Let θ = (θ1, . . . , θn) where θl = ρl for l 6= j and θj = 0. Set

mθ = mρ, Qθ = Qρ−{(i, j)} and Yθ = Yρ ∪ {j}. Let S = S ∪ {θ}.
4. Case 2: If |{i, j} ∩ Yρ| = 0 then πij is a projection of Type 2.

(i) Let U be the set of rays of Cij . For all σ ∈ U with correspond-

ing multiplicity mσ let J = {(u, v) : 1 ≤ u ≤ mρ, 1 ≤ v ≤
δijmσ, gcd(u, v) = 1}. Then for all (u, v) ∈ J let θ = (θ1, . . . , θn)

where θl = uρl for l 6= i, j and θi = vσi and θj = vσj . Set mθ =

bmin(mρ/u, δijmσ/v)c, Qθ = Qρ − {(i, j)} and Yθ = Yρ ∪ {i, j}.
Let S = S ∪ {θ}

(ii) Let θ = (θ1, . . . , θn) where θl = ρl for l 6= i, j and θi = θj = 0. Set

mθ = mρ, Qθ = Qρ−{(i, j)} and Yθ = Yρ∪{i, j}. Let S = S∪{θ}.

Return T .

The steps 1(ii), 3(ii) and 4(ii) of Algorithm 4.2.8 are the situations where the

partially reconstructed candidate ρ does not project to a one-dimensional ray of Cij ,
but it projects to the origin. For example, consider the partially reconstructed can-

didate ρ = (1, 0, 3, ∗, ∗, ∗) from Example 4.2.6 which has been partially reconstructed

to coordinates x1, x2, x3 and suppose that we are considering the projected tropical

curve C45 to coordinates x4, x5. Then Step 4(i) deals with combining ρ with the rays

of C45. However, we need to deal with the case where ρ projects to the point (0, 0)

in C45. Thus, we form the partially reconstructed candidate (1, 0, 3, 0, 0, ∗) which is

a (4, 5)-candidate (as it projects to the point (0, 0) ∈ C45) which extends ρ.

Before proving that this algorithm does give the desired result, we first con-

sider an example of constructing a one-dimensional fan in R3 from coordinate pro-

jections.

Example 4.2.9. Suppose that we have a projected tropical curve to coordinates

x1, x2 with rays {(1, 0), (0, 1), (1, 2), (−2,−3)} all with multiplicity 1, to coordi-

nates x1, x3 with rays {(1, 3), (1,−1), (0,−1), (−1, 0)} with multiplicities 1, 1, 2, 2 re-

spectively, and to coordinates x2, x3 with rays {(0, 1), (−1, 0), (2,−1), (1,−2)} with

multiplicities 3, 3, 1, 1 respectively. In all cases, the degree of the projection map

is 1. In the language of Algorithm 4.2.8 we have P = {(1, 2), (1, 3), (2, 3)} and

δ12 = δ13 = δ23 = 1. Initialising, we have T = ∅, S = {ρ} where ρ = (∗, ∗, ∗),
mρ =∞ and Qρ = P .

1. Choose ρ = (∗, ∗, ∗) and set S = S − {ρ}. As Qρ = P , we choose (1, 2) ∈ Qρ
where π12 is a projection of Type 2 for ρ so we are in Case 2. We can combine
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ρ with every ray of C12 and so S = S ∪ {(1, 0, ∗), (0, 1, ∗), (1, 2, ∗), (−2,−3, ∗)}
with multiplicity bound 1 = bmin(∞, 1 · 1/1)c and Q = {(1, 3), (2, 3)} for

each of these new partially reconstructed candidates added to S. Adding

the rays which extend ρ and project to the point (0, 0) in C12, we set S =

S ∪ {(0, 0, ∗)} with multiplicity bound ∞ and Q = {(1, 3), (2, 3)} for the new

partially reconstructed candidate added to S

2. Choose ρ = (1, 0, ∗) and set S = S − {ρ}. As Qρ = {(1, 3), (2, 3)}, we choose

(1, 3) ∈ Qρ where π13 is a projection of Type 1(a) for ρ so we are in Case

1(a). We can combine ρ with the rays (1, 3) and (1,−1) of C13 and so S =

S ∪ {(1, 0, 3), (1, 0,−1)} with multiplicity bound 1 = bmin(1/1, 1 · 1/1)c and

Q = {(2, 3)} for each of these new partially reconstructed candidates added

to S.

3. Choose ρ = (1, 0, 3) and set S = S − {ρ}. As Qρ = {(2, 3)}, we choose

(2, 3) ∈ Qρ where π23 is a projection of Type 0 for ρ so we are in Case 0. Then

as π23(ρ) ∈ C23 and Qρ = ∅, we set T = T ∪ {(1, 0, 3)}.

4. Choose ρ = (1, 0,−1) and set S = S − {ρ}. As Qρ = {(2, 3)}, we choose

(2, 3) ∈ Qρ where π23 is a projection of Type 0 for ρ so we are in Case 0. But

as π23(ρ) /∈ C23 we are done.

5. Choose ρ = (0, 1, ∗) and set S = S − {ρ}. As Qρ = {(1, 3), (2, 3)}, we decide

to choose (2, 3) ∈ Qρ where π23 is a projection of Type 1(a) for ρ so we are

in Case 1(a). We explain why it is a sensible choice to choose (2, 3) instead

of (1, 3), as we did in previous steps, in Section 4.4. We can combine ρ with

the ray (1,−2) of C23 and so S = S ∪ {(0, 1,−2)} with multiplicity bound

1 = bmin(1/1, 1 · 1/1)c and Q = {(2, 3)} for the new partially reconstructed

candidates added to S.

6. Choose ρ = (0, 1,−2) and set S = S − {ρ}. As Qρ = {(1, 3)}, we choose

(1, 3) ∈ Qρ where π13 is a projection of Type 0 for ρ so we are in Case 0. Then

as π13(ρ) ∈ C13 and Qρ = ∅, we set T = T ∪ {(0, 1,−2)}.

7. Choose ρ = (1, 2, ∗) and set S = S − {ρ}. As Qρ = {(1, 3), (2, 3)}, we choose

(2, 3) ∈ Qρ where π23 is a projection of Type 1(a) for ρ so we are in Case

1(a). We can combine ρ with the ray (2,−1) of C23 and so S = S ∪{(1, 2,−1)}
with multiplicity bound 1 = bmin(1/1, 1 · 1/1)c and Q = {(1, 3)} for the new

partially reconstructed candidates added to S. Note that we cannot combine

ρ with the ray (1,−2) of the projected tropical curve C24 as b = lcm(1, 2)/1 =
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2 < 1 = m(1,−2). We would be able to perform such a combination if (1,−2)

has multiplicity greater than one.

8. Choose ρ = (1, 2,−1) and set S = S − {ρ}. As Qρ = {(1, 3)}, we choose

(1, 3) ∈ Qρ where π13 is a projection of Type 0 for ρ so we are in Case 0. Then

as π13(ρ) ∈ C13 and Qρ = ∅, we set T = T ∪ {(1, 2,−1)}.

9. Choose ρ = (−2,−3, ∗) and set S = S−{ρ}. As Qρ = {(1, 3), (2, 3)}, we choose

(1, 3) ∈ Qρ where π13 is a projection of Type 1(a) for ρ so we are in Case 1(a).

We can combine ρ with the ray (−1, 0) of C13 as it occurs with multiplicity 2,

and so S = S ∪ {(−2,−3, 0)} with multiplicity bound 1 = bmin(1/1, 1 · 2/2)c
and Q = {(2, 3)} for the new partially reconstructed candidates added to S.

10. Choose ρ = (−2,−3, 0) and set S = S − {ρ}. As Qρ = {(2, 3)}, we choose

(2, 3) ∈ Qρ where π23 is a projection of Type 0 for ρ so we are in Case 0. Then

as π23(ρ) ∈ C23 and Qρ = ∅, we set T = T ∪ {(−2,−3, 0)}.

11. Choose ρ = (0, 0, ∗) and set S = S − {ρ}. As Qρ = {(1, 3), (2, 3)}, we choose

(1, 3) ∈ Qρ where π13 is a projection of Type 1(b) for ρ so we are in Case 1(b).

We can combine ρ with the ray (0,−1) of C13 and so S = S ∪{(0, 0,−1)} with

multiplicity bound 2 = bmin(∞, 2·1/1)c and Q = {(2, 3)} for the new partially

reconstructed candidate added to S. We also have to add the rays which

extend ρ and project to the point (0, 0) in C13. We set S = S ∪{(0, 0, 0)} with

multiplicity bound ∞ and Q = {(2, 3)} for the new partially reconstructed

candidate added to S.

12. Choose ρ = (0, 0,−1) and set S = S − {ρ}. As Qρ = {(2, 3)}, we choose

(2, 3) ∈ Qρ where π23 is a projection of Type 0 for ρ so we are in Case 0. But

as π23(ρ) /∈ C23 we are done.

13. Choose ρ = (0, 0, 0) and set S = S − {ρ}. As Qρ = {(2, 3)}, we choose

(2, 3) ∈ Qρ where π23 is a projection of Type 0 for ρ so we are in Case 0. But

as π23(ρ) = (0, 0) so we set S = S ∪ {(0, 0, 0)} with multiplicity bound ∞ and

Q = ∅ for the new partially reconstructed candidate added to S.

14. Choose ρ = (0, 0, 0) and set S = S − {ρ}. As Qρ = ∅ we are done.

Now as S = ∅, we output T = {(1, 0, 3), (0, 1,−2), (1, 2,−1), (−2,−3, 0)}. 3

Proof of Algorithm 4.2.8. At each pass through the algorithm, we replace a partially

reconstructed candidate ρ with a finite collection of partially reconstructed candi-

dates θ1, . . . , θs. Thus, at each stage the set S is finite. As there are only finitely
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many projections in P , we only have finitely many projections of Type 0. If we

consider a projection of Type 0, then |Yθi | = |Yρ| and the set of projections of Type

0 cannot increase. Thus at some point we will have to add a projection of Type 1(a),

1(b) or 2. If we consider a projection of Type 1(a), 1(b) or 2, then |Yθi | > |Yρ|. As

|Yρ| cannot increase indefinitely (it is bounded above by the number of variables n),

at some point of the algorithm we will only have projections of Type 0 left to add.

For each remaining candidate ρ ∈ S, it now remains to check those finite number

of projections in (i, j) ∈ Qρ to see if ρ is an (i, j)-candidate for trop(C). We have

a finite number of projections to check for a finite number of rays and termination

follows.

For correctness, we need to show that each ray in T is indeed a candidate

for trop(C). To do this, we show that after considering projected tropical curve Cij
the newly added rays are (i, j)-candidates for trop(C) as well as still being (k, l)-

candidates for all the tropical curves Ckl already considered. We consider each case

separately, corresponding to the different types of projections that we are adding.

In each case, we need to check that the rays added to S are (i, j)-candidates for

trop(C) and that they remain (k, l)-candidates for trop(C) for all projected tropical

curves Ckl which we have already considered at some previous stage.

In Case 0, we are considering projections of Type 0 where both xi and xj

are already reconstructed in the partially reconstructed candidate ρ. When ρ is

not deleted from S, we verify first that ρ is an (i, j)-candidate for trop(C). As

(ρi/ gcd(ρi, ρj), ρj/ gcd(ρi, ρj)) is equal to a ray σ of Cij it follows that πij(ρ) gen-

erates a ray of Cij . From Remark 4.2.1, it follows that the multiplicity bound has

maximal possible value
⌊

δij ·mσ
gcd(ρi,ρj)

⌋
in order to still be an (i, j)-candidate. In order

to remain a (k, l)-candidate for all previously considered (k, l) ∈ P , we require the

multiplicity bound also to be smaller than mρ.

In Case 1(a), we are considering projections of Type 1(a) where only one of

xi and xj are reconstructed in the partially reconstructed candidate ρ. We assume

that after relabelling if necessary that xi has been reconstructed and that xj has

not been reconstructed. In Case 1(a), we additionally have that ρi is non-zero. We

consider only the case where ρi > 0 as the other case is analogous. In order to

be able to extend ρ using σ, we require that their xi coordinates are equal. For

a = lcm(ρi, σi)/ρi and b = lcm(ρi, σi)/σi we have that (aρ)i = (bσ)i and so we can

combine ρ and σ to get new ray θ = (θ1, . . . , θn) where θl = aρl for l 6= j and θj = bσj .

The factors of a and b serve to increase the corresponding lattice indices, and so

from Remark 4.2.1, the multiplicity bound has maximal possible value
⌊
δij ·mσ
b

⌋
in

order to still be an (i, j)-candidate. In order to remain a (k, l)-candidate for all
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previously considered (k, l) ∈ P , again from Remark 4.2.1 the multiplicity bound

has maximum possible value
⌊mρ
a

⌋
.

In Case 1(b), we are considering projections of Type 1(b) where only one of

xi and xj are reconstructed in the partially reconstructed candidate ρ. We assume

that after relabelling if necessary that xi has been reconstructed and that xj has

not been reconstructed. In Case 1(b), we additionally have that ρi is equal to zero.

In order to be able to extend ρ using σ, we require that σi is also zero. In such a

case, for all 1 ≤ u ≤ mρ and 1 ≤ v ≤ δijmσ we can form θ = (θ1, . . . , θn) where

θl = uρl for l 6= j and θj = vσj . The factors of u and v serve to increase the

corresponding lattice indices, and so from Remark 4.2.1, the multiplicity bound has

maximal possible value
⌊
δij ·mσ
v

⌋
in order to still be an (i, j)-candidate. In order

to remain a (k, l)-candidate for all previously considered (k, l) ∈ P , again from

Remark 4.2.1, the multiplicity bound has maximum possible value
⌊mρ
v

⌋
.

In Case 2, we are considering projections of Type 2 where both of xi and

xj have not been reconstructed in the partially reconstructed candidate ρ. For any

σ ∈ Cij for all 1 ≤ u ≤ mρ and 1 ≤ v ≤ δijmσ we can form θ = (θ1, . . . , θn) where

θl = uρl for l 6= i, j and θi = vσi and θj = vσj . The factors of u and v serve to

increase the corresponding lattice indices, and so from Remark 4.2.1, the multiplicity

bound has maximal possible value
⌊
δij ·mσ
v

⌋
in order to still be an (i, j)-candidate.

In order to remain a (k, l)-candidate for all previously considered (k, l) ∈ P , again

from Remark 4.2.1 the multiplicity bound has maximum possible value
⌊mρ
v

⌋
.

It remains to show that the algorithm recovers a superset of the rays of

trop(C). That is, all the rays of trop(C) are also candidates for trop(C) and so will

be recovered by the algorithm. Suppose not, and let σ be a non-zero ray of trop(C)

which is not a candidate for trop(C) and so is not reconstructed by the algorithm.

This means that there is some (i, j) ∈ P such that πij(σ) is not in the tropical curve

Cij . However, this contradicts that Cij is the image of trop(C) under the projection

map πij and so no such ray σ can exist.

Lemma 4.2.10. Let P be a set indexing coordinate projections πij : Rnx1,...xn →
R2
xi,xj whose image is the tropical curve Cij and P ′ = {i : ∃j such that (i, j) ∈

P or (j, i) ∈ P}. Then the set of points in the pre-image of these projections forms

a one-dimensional fan in Rn if and only if P ′ = {1, . . . , n}.

Proof. Suppose that P ′ = {1, . . . , n}. Thus for each coordinate xi for 1 ≤ i ≤ n

we can find a projection in P projecting to xi. Using the set P and the associated

projected tropical curves as input to Algorithm 4.2.8, we output a set of candidates

which all project to the Cij for all (i, j) ∈ P . Thus they are all contained in the
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pre-images of all these projections. Further, as we have projections in P which

projects to each coordinate x1, . . . , xn, each candidate has been reconstructed in

all coordinates and so spans a one-dimensional ray in Rn. Thus they form a one-

dimensional fan in Rn.

Now suppose that P indexes projections where P ′ 6= {1, . . . , n}. After rela-

belling the variables if necessary, we can assume that we do not have any projections

to xn. Using the set P and the associated projected tropical curves as input to Al-

gorithm 4.2.8, we output a set S of candidates which project to Cij for all (i, j) ∈ P .

By the first part of the lemma, this is a one-dimensional fan in the coordinates in P ′.

However, as there is no projection in P to xn, this coordinate is not reconstructed

and so we can set the xn-coordinate to be any value in R and the ray would still

project to all projected tropical curves indexed by P . In particular, this ray is not

one-dimensional.

4.2.3 Finding the tropical curve

In the previous section we saw how given a set of coordinate projections of a tropical

curve trop(C) onto all variables x1, . . . , xn, we can find a set T containing all one-

dimensional candidates for trop(C). In this section we determine how to find which

of these candidates are actual rays of trop(C). Recall from the Fundamental Theo-

rem 2.1.5 that w ∈ Rn is in the tropical curve trop(C) if and only if inw(I) 6= 〈1〉.
A näıve algorithm would be to compute inρ(I) for all ρ ∈ T and note that ρ is in

trop(C) if and only if inρ(I) 6= 〈1〉. However, even though this gives us a solution

to the problem of finding the rays of trop(C), in practice we may have to compute

many Gröbner bases. This turns out not to be ideal as many of these Gröbner bases

can be difficult to compute. Instead, we try to determine the rays of trop(C) from

this list of candidates by computing as few Gröbner bases as possible.

A natural question to ask is: If we use all the coordinate projections, are all

the candidates we have recovered actually rays in the tropical curve trop(C)? This

would mean that in this case, this step of the reconstruction procedure would be

trivial. It turns out that this is unfortunately not true. The following example gives

two different tropical curves both of which have the same coordinate projections

to two-dimensional planes. This example demonstrates how coordinate projections

are in general not generic enough to apply the results of Bieri and Groves [1984]

and Hept and Theobald [2009].

Example 4.2.11. Recall from Example 4.1.1 that the tropicalisation of the curve

defined by I = 〈xz + 4yz − z2 + 3xw − 12yw + 5zw, xy − 4y2 + yz + xw + 2yw −
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zw, x2 − 16y2 + 8yz − z2 + 14xw − 8yw + 2zw〉 ⊆ C[x, y, z, w] is a one-dimensional

fan in R3 with four rays spanned by

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

Consider now the curve defined by J = 〈xy− 3xz+ 3yz−w2, 3xz2− 12yz2 +xzw+

4yzw+5zw2−w3, 4y2z−9yz2 +2yzw−yw2 +4zw2, x2z−36yz2 +11xzw+12yzw−
xw2 + 16zw2 − 3w3〉 ⊆ C[x, y, z, w]. This defines a tropical curve trop(V (J)) with

four rays spanned by

(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1).

Then as shown in Figure 4.6, trop(V (I)) and trop(V (J)) have the same coordinate

projections to all three planes given by {x = 0}, {y = 0} and {z = 0}. We see

that the rays of trop(V (I)) and trop(V (J)) correspond to rays passing through the

alternate vertices of the cube with vertices at {(±1,±1,±1)}. The fan for trop(V (I))

is given by the red rays and the fan for trop(V (J)) given by the blue rays. This

means that given these projections as input into Algorithm 4.2.8 we would recover

both the rays for trop(V (I)) and trop(V (J)) as candidates. 3

Figure 4.6: Two tropical curves in R3 with the same coordinate projections

Suppose that after passing through Algorithm 4.2.8 we have a set T =

{ρ1, . . . , ρs} of candidates for trop(C). We want to find non-negative integers
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m1, . . . ,ms such that ρi appears in trop(C) with multiplicity mi and if ρi does

not appear in trop(C) then mi equals zero. The idea is to use conditions coming

from the projection multiplicity equation (4.2) and balancing. We illustrate this by

continuing Example 4.2.11.

Example 4.2.12. Continuing Example 4.2.11, suppose that we are attempting to

reconstruct trop(V (I)) and so after passing through Algorithm 4.2.8 we have a set of

candidates T = {ρ1 = (1, 1, 1), ρ2 = (−1, 1, 1), ρ3 = (1,−1, 1), ρ4 = (1, 1,−1), ρ5 =

(−1,−1, 1), ρ6 = (−1, 1,−1), ρ7 = (1,−1,−1), ρ8 = (−1,−1,−1)}, We are trying

to find the non-negative multiplicities mi with which they occur in trop(V (I)). We

show that we can find these multiplicities by computing only one additional Gröbner

basis. We compute a Gröbner basis for ρ3 = (1,−1, 1) and see that inρ3(I) contains

a monomial and so ρ3 cannot be in our tropical curve. Consider the projection

to {x = 0} and we see that now the only ray projecting onto (−1, 1) is ρ5 =

(−1,−1, 1) so this must be a ray of the tropical variety with multiplicity 1, equal

to the multiplicity of the projected ray as the projection map here has degree 1.

Using similar arguments on the projections to {y = 0} and {z = 0} we see that

ρ1 = (1, 1, 1) and ρ7 = (1,−1,−1) must both live in the tropical curve. Looking

again at the projection to {x = 0} we see that rays ρ1 = (1, 1, 1) and ρ2 = (−1, 1, 1)

both project to the ray (1, 1). The multiplicity equation 4.2 tells us thatm1+m2 = 1.

But as we already know that m1 = 1, we deduce that m2 = 0. We can similarly

exclude the rays ρ4 and ρ8. 3

The idea in general is to find and solve a system of equations in the unknowns

mi, from the projection multiplicity equation (4.2), the balancing condition, and

from the degree of the tropical curve. We see the equations we get in general by

first considering the balancing condition. If ρi is a candidate for trop(C), then let

ρi,j denote the xj-coordinate of ρi. Then, the balancing condition says that for all

1 ≤ j ≤ n we have
s∑

k=1

mkρk,j = 0 (4.4)

which gives n equations in the variables m1, . . . ,ms. In the case of Example 4.2.11

this gives us three equations one for each coordinate of R3:

m1 −m2 +m3 +m4 −m5 −m6 +m7 −m8 = 0;

m1 +m2 −m3 +m4 −m5 +m6 −m7 −m8 = 0;

m1 +m2 +m3 −m4 +m5 −m6 −m7 −m8 = 0,

(4.5)

for which there are clearly still infinitely many solutions.
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So we secondly consider the equations from the projection multiplicity equa-

tion 4.2. Consider the projection πij to coordinates xi, xj where Cij is the projected

tropical curve in these coordinates and let σ be a primitive ray generator of a ray

of Cij . Then its multiplicity is given by

mσ =
1

δ

∑
ρk∈S:σ⊆πij(ρk)

mk · gcd(ρk,i, ρk,j). (4.6)

This gives one equation in terms of the variables m1, . . . ,ms for each ray of each

projected tropical curve. Note however that these equations will in general not be

linearly independent. Returning again to Example 4.2.11, we recover equations

m1 +m2 = 1,m3 +m5 = 1,m4 +m6 = 1,m7 +m8 = 1;

m1 +m3 = 1,m2 +m5 = 1,m4 +m7 = 1,m6 +m8 = 1;

m1 +m4 = 1,m2 +m6 = 1,m3 +m7 = 1,m5 +m8 = 1,

(4.7)

from the projection to {x = 0}, {y = 0} and {z = 0} respectively.

Finally, we consider equations from the degree of the tropical curve. We

saw in Theorem 2.6.1 that the algebraic curve and its tropicalisation have the same

degree. Thus, as we know the degree of the algebraic curve, for example from its

Hilbert polynomial, we also know the degree of the tropical curve. Further, we saw

in Section 2.6 how we can compute the degree of the tropical curve combinatorially

from tropical intersection theory. Let e1, . . . , en be the standard basis vectors of

Zn and e0 = −e1 − · · · − en. If ρ1, . . . , ρr are the rays of trop(C) with multiplicity

m1, . . . ,mr and for all 1 ≤ i ≤ r we have minimal decomposition

ρi =
n∑
j=0

aijej ,

then for all 0 ≤ j ≤ n, if trop(C) is of degree D, by (2.4) we have that

r∑
i=1

aijmi = D.

So if ρ1, . . . , ρs is our collection of candidates and we have minimal decompositions

ρi =
∑n

j=0 aijej , then we have n+ 1 equations for the degree

s∑
i=1

aijmi = D (4.8)
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one equations for each 0 ≤ j ≤ n, in the variables m1, . . . ,ms. In the case of

Example 4.2.11, for e0 = (−1,−1,−1), e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)

we have minimal decompositions:

ρ1 = e1 + e2 + e3;

ρ2 = e0 + 2e1 + 2e3;

ρ3 = e0 + 2e1 + 2e3;

ρ4 = e0 + 2e1 + 2e2;

ρ5 = e0 + 2e3;

ρ6 = e0 + 2e2;

ρ7 = e0 + 2e1;

ρ8 = e0.

As V (I) has degree 3 in P2, we get the following 4 equations from computing the

degree:

m2 +m3 +m4 +m5 +m6+m7 = 3;

m1 + 2m3 + 2m4 + 2m7 = 3;

m1 + 2m2 + 2m4 + 2m6 = 3;

m1 + 2m2 + 2m3 + 2m5 = 3.

(4.9)

Thus we have three linear systems of equations (4.4), (4.6) and (4.8) coming

from the balancing condition, multiplicity equations and degree calculations respec-

tively. Combining these sets of equations we then have a system of linear equations

in the mi to solve which can be written in matrix form Am = b for some matrix A

where we are solving for the unknowns m = (m1, . . . ,ms). Returning again to Ex-

ample 4.2.11, we combine the three linear system of equations (4.5), (4.7) and (4.9)
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and written in matrix form becomes

1 −1 1 1 −1 −1 1 −1

1 1 −1 1 −1 1 −1 −1

1 1 1 −1 1 −1 −1 −1

1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 1

1 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 1

0 1 1 1 1 1 1 1

1 0 2 2 0 0 2 0

1 2 0 2 0 2 0 0

1 2 2 0 2 0 0 0





m1

m2

m3

m4

m5

m6

m7

m8


=



0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3



.

Reducing this by row operations, we get the equivalent system

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





m1

m2

m3

m4

m5

m6

m7

m8


=



1

0

0

0

1

1

1

0


.

And so using the multiplicity equation, balancing condition and equations from the

degree of the curve, we have found a unique solution

m = (1, 0, 0, 0, 1, 1, 1, 0),

which was obtained without having to compute any further initial ideals. We thus
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conclude that the tropical curve consists of one-dimensional rays ρ1 = (1, 1, 1),

ρ5 = (−1,−1, 1), ρ6 = (−1, 1,−1) and ρ7 = (1,−1,−1) each of which appears with

multiplicity one.

Remark 4.2.13. We saw in Example 4.2.12 that the balancing and multiplicity

conditions alone do not distinguish these two fans which have the same projections

to two-dimensional coordinate planes. However, they can be distinguished by con-

sidering degrees. This is because V (I) has degree 3 but V (J) has degree 4. In the

first case, we add equations (4.9) to our matrix system and in the second case we

add the equations:

m2 +m3 +m4 +m5 +m6+m7 = 4;

m1 + 2m3 + 2m4 + 2m7 = 4;

m1 + 2m2 + 2m4 + 2m6 = 4;

m1 + 2m2 + 2m3 + 2m5 = 4,

to our matrix system. In each case, these extra equations differentiate the two

tropical curves.

However, there are further examples where the cube configuration is not

centred on the origin for which both tropical curves have the same projections

to two-dimensional coordinate planes and both curves have the same degree. For

example, consider the two fans Σ1,Σ2 in R3 where Σ1 has rays generated by rays

(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1)

with multiplicities 2, 2, 2, 2 and 4 respectively and Σ2 has rays generated by

(1, 1, 0), (1, 0, 1), (0, 1, 1), (−1,−1,−1)

with multiplicities 2, 2, 2 and 4 respectively. Then Σ1 and Σ2 have the same

projection to two-dimensional coordinate planes and they are both the support

of tropical curves of degree four. Thus they cannot be differentiated using the

equations from the degree and so we would need to compute some initial ide-

als in order to differentiate between the two possible tropical curves. The rays

(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 0), (1, 0, 1), (0, 1, 1) are the vertices of the

cube from Example 4.2.11 translated by (1, 1, 1) so that the cube is not longer cen-

tred on the origin. We then need to include the ray (−1,−1,−1) in order to ensure

that the fans are balanced. 3
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The following algorithm outlines how to compute the rays of trop(C) given

a set of candidates. It uses equations (4.4), (4.6) and (4.8) to limit the number of

further initial ideal computations that we need to perform.

Algorithm 4.2.14. Input: A set T = {ρ1, . . . , ρs} of candidates for trop(C)

containing trop(C) where C = V (I), and an index set P which indexes the projected

tropical curves {Cij : (i, j) ∈ P} where each Cij come with a positive integer δij .

Output: A set R of rays trop(C) where each ray ρ ∈ R comes with a

positive integer mρ.

1. To each ρk in T we associate variable mk. Let ρk,i denote the i-th coordinate

of ρk.

2. To each (i, j) ∈ P and for each ray σ in Cij with multiplicity mσ we have the

multiplicity equation δijmσ =
∑

k:πij(ρk)⊇σmk gcd(ρk,i, ρk,j) in the unknowns

mk.

3. For all 1 ≤ j ≤ n we have an equation from balancing
∑s

k=1mkρk,j .

4. (a) Let e1, . . . , en be the standard basis vectors for Rn and e0 = −e1−· · ·−en.

(b) For all 1 ≤ k ≤ s, write ρk =
∑n

l=0 aklel where akl ≥ 0 for all 0 ≤ l ≤ n

and where at least one akl is zero.

(c) Add n+ 1 equations of the form
∑s

k=1 aklmk = D for all 0 ≤ l ≤ n.

5. Write the equations in row reduced matrix form Am = b by performing integer

Gaussian elimination.

6. While A has fewer than s non-zero rows, do:

(a) Choose 1 ≤ α ≤ |rows(A)| such that row α of A has more than one

non-zero entry. Suppose that the l-th entry of the row α is non-zero.

(b) Let J = inρl(I). If (J : (x1 . . . xn)∞) = 〈1〉 then add equation ml = 0 to

the system of equations, otherwise, add the equationml = dim(S/ inρl(I)).

(c) Let Am = b be this new system of equations after reducing to row reduced

form.

7. Return R = {ρk : bk 6= 0} where the ray ρi has multiplicity bi.

Proof. We first show termination by showing that in the ‘while’ loop, at worst, we

have to add s equations to the matrix system Am = b. If a row of A has more

than one non-zero entry, then as the matrix system is in row reduced form, the
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multiplicities of the rays corresponding to the non-zero entries have not yet been

determined. Thus, we add an equation ml = bl which determines one of them. Then

after reducing the new system to row reduced form, the only equation involving ml

is the one we have added. So A is of the form
0

∗
... ∗
0

0 . . . 0 1 0 . . . 0


and in particular, the only row whose l-th entry is non-zero is the one we have just

added. Then at future steps, we will never add any new equations involving ml. As

we start with s candidates for trop(C) and at each step we either exclude one from

being in trop(C) or determine its multiplicity, then as we are always analysing new

candidates, after at most s steps, the first s rows of A is the s× s identity matrix,

and and in particular A has exactly s non-zero rows.

To show correctness we show that all equations we add to the system are

satisfied. Firstly, the balancing and multiplicity equations hold from the balancing

condition of the Structure Theorem 2.2.5 and the multiplicity equation 4.2 of Sturm-

fels and Tevelev [2008]. The equations from the degree of the curve hold from the

discussion in Section 2.6. Consider the equations we add in Step 6 of the algorithm.

If (J : (x1 . . . xn)∞) = 〈1〉 then the initial ideal J contains a monomial and so ρα is

not contained in the tropical curve. We set mα = 0. If not, then we set mα to be

the multiplicity of ρα in trop(C).

4.3 Application and Examples

The key application of computing tropical curves by coordinate projections is as a

potential replacement for the subroutine in gfan [Jensen] which computes tropical

curves. This is because, as we saw in Section 2.3.3 the construction of tropical

curves plays a key role in their algorithms and is often a bottleneck in computations.

This means that any improvements in the tropical curves algorithm would result in

potential improvements in the algorithms used in gfan. In this section, we look at

an example which cannot be computed using gfan but which can be computed using

the coordinate projection reconstruction methods as described in this chapter.

Example 4.3.1. Let R = C[x0, x1, . . . , x11] be the polynomial ring in 12 variables

where C is equipped with the trivial valuation. Let I = 〈x4
1 − x3

0x11 + 2x2
0x1x11 −
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x0x
2
1x11, x

4
2 − x3

0x11 + 2x2
0x2x11 − x0x

2
2x11, x

4
3 − x3

0x11 + 2x2
0x3x11 − x0x

2
3x11, x

4
4 −

x3
0x11 + 2x2

0x4x11 − x0x
2
4x11, x1 − x2 + x5, x1 − x3 + x6, x1 − x4 + x7, x2 − x3 +

x8, x2 − x4 + x9, x3 − x4 + x10〉 be a homogeneous ideal defined by 10 equations.

Then I defines a curve in P11 whose tropicalisation is trop(V (I)). As trop(V (I)) is

a tropical curve in R11 ∼= R12/R(1, . . . , 1), by the Structure Theorem 2.2.5 it has the

support of a weighted balanced one-dimensional fan in R11. Thus it can be given

as a finite collection of weighted rays in R11. Computations were carried out on a

MacBook Air with an Intel i5 processor and 8Gb of RAM. When input into gfan

to try and compute these rays, the computations do not complete despite being

left to run overnight. When using the algorithms from Section 4.2 which computes

trop(V (I)) from its coordinate projections, the computations terminate after one

minute. We see that trop(V (I)) has the support of a one-dimensional fan in R11

with ray generators the columns of the matrix

M =



−4 2 2 2 2 2 2 0 0 0 0 0 0

−3 1 1 1 2 2 2 0 0 0 0 0 0

−3 2 2 1 1 2 1 0 0 0 0 0 0

−3 1 2 2 1 1 2 0 0 0 0 0 0

−3 2 1 2 2 1 1 0 0 0 0 0 0

−3 1 1 1 1 3 1 0 0 1 0 0 0

−3 1 1 1 1 1 3 1 0 0 0 0 0

−3 1 1 1 3 1 1 0 0 0 0 1 0

−3 1 3 1 1 1 1 0 0 0 0 0 1

−3 3 1 1 1 1 1 0 0 0 1 0 0

−3 1 1 3 1 1 1 0 1 0 0 0 0


with multiplicities given by m = (6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) where the ray gener-

ated by the ith column of M has multiplicity mi. 3

4.4 Implementation Issues

The reconstruction discussed in the previous section has three main steps for re-

constructing the tropical curve trop(C). In the first, we recover the projections of

trop(C) to two-dimensional coordinate planes by finding an equation for the pro-

jected algebraic curve by elimination theory. The tropical curve is then the tropical

hypersurface defined by that equation. This is Algorithm 4.2.5. The second step

is to find a set of candidate rays for trop(C) which project to the projections de-

termined in the first step. We do this by building up coordinates to the partially
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reconstructed candidate one by one. This is in Algorithm 4.2.8. The final step is

to determine which of the candidate rays from the previous step are rays of the

tropical curve. In Algorithm 4.2.14 we use the multiplicity equation of Sturmfels

and Tevelev [2008], the balancing condition and equations from the degree of the

curve to minimise the number of initial ideals we need to compute.

In this section, we look at ways in which we can implement these algorithms

for computational efficiency. We start by determining that we need not have all

projections to two-dimensional coordinate planes as input to Algorithm 4.2.8 in

order to have a finite collection of one-dimensional candidates as output. This

allows a more efficient use of Algorithm 4.2.5 as we know that we do not need all of

these projections and so we can abort those which are computationally expensive.

We then look at ways in which Algorithm 4.2.8 can be implemented more

efficiently. The main way in which we do this is in the choice of projection to

consider at each step of the algorithm. Choosing a different selection can lead to

many more partially reconstructed candidates at each step, although the final output

will always be the same. We discuss one strategy in Section 4.4.2, and another less

efficient strategy in Section 4.4.3. Finally, in the work so far, we have only considered

projections to x0, xi, xj for all 1 ≤ i < j ≤ n as we are considering the tropical curve

after we we quotient by the lineality space so that x0 = 0. In Section 4.4.4 we

consider how we can adapt what we have done so that we use all projections to

xi, xj , xk for all 0 ≤ i < j < k ≤ n.

4.4.1 Number of Projections needed

In an ideal world, we would have all projections to coordinate planes as input to

Algorithm 4.2.8. However, the projections are constructed by computing elimination

Gröbner bases which in practice may be time consuming [see Bayer and Mumford,

1993, pp.11-12]. However, it follows from Lemma 4.2.10 that we only require a

minimum of dn2 e projections, so that we have a projection to each xi for all 1 ≤ i ≤ n,

in order to recover finitely many one-dimensional candidates for trop(C). Explicitly,

if n is even we can choose projections to

x1x2, x3x4, . . . , xn−1xn,

and if n is odd then we can choose projections to

x1x2, x3x4, . . . , xn−2xn−1, xn−1xn.

On the other hand, considering extra projections, for example the projection
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to x1x3, would eliminate those candidates which are not in the pre-image of the

extra projections. Further, they provide additional multiplicity equations for use in

Algorithm 4.2.14 which restricts the number of initial ideal computations required

in Step 6. Thus, we need a compromise between the number of projections we have

whilst weighing up the fact that we will not require all of them for our reconstruc-

tion techniques to work. After ensuring that we have sufficient projections for the

hypotheses of Lemma 4.2.10, we can time out any subsequent elimination Gröbner

basis computations which take too long, say longer than one second. We will then

know that Algorithm 4.2.8 will return a finite set of one-dimensional candidates

which can be checked with Algorithm 4.2.14 to determine trop(C).

4.4.2 Choosing the Projection to Add

The choice of the projected tropical curve to add at each stage of the algorithm

makes a considerable difference to the complexity of the algorithm. We examine

this by considering how the type of projection that we are adding affects the set S
of partially reconstructed candidates. Suppose that we have some partially recon-

structed candidate ρ ∈ S and we are combining this with the rays of some projected

tropical curve Cij .
If πij is a projection of Type 0, then this corresponds to the case where

xi and xj have already been reconstructed in ρ. If πij(ρ) spans a ray of Cij , or if

πij(ρ) = (0, 0), then it is retained as it is an (i, j)-candidate for trop(C). If not,

then it is discarded. Thus in this case, we simply remove the rays from S which are

not (i, j)-candidates for trop(C) and so the size of S does not grow.

If πij is a projection of Type 1(a), then this corresponds to the case where

only one of xi and xj are reconstructed in the partially reconstructed candidate ρ.

We assume that after relabelling if necessary, that xi has been reconstructed and

that xj has not been reconstructed. In Case 1(a), we additionally have that ρi is

non-zero. In order to combine ρ with a ray σ of Cij we saw that we need to find

multiples of ρ and σ such that their xi coordinates to agree. This happens when

they have the same sign and when lcm(ρi, σi)/ρi ≤ mρ and lcm(ρi, σi)/σi ≤ δijmσ.

In this case, the rays ρ and σ can be combined uniquely. We thus only add one ray

to S for each compatible ray of Cij .
If πij is a projection of Type 1(b), then this corresponds to the case where

only one of xi and xj are reconstructed in the partially reconstructed candidate ρ.

We assume that after relabelling if necessary, that xi has been reconstructed and

that xj has not been reconstructed. In Case 1(b), we additionally have that ρi

equals zero. In order to combine ρ with a ray σ of Cij we require that σi is also zero.
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Thus only rays (0, 1) and (0,−1) can be combined with ρ, if they are also rays of Cij .
However, they can be both combined multiple times according to the multiplicity

bounds.

If πij is a projection of Type 2, then this corresponds to the case where both

of xi and xj have not been reconstructed in the partially reconstructed candidate

ρ. Here, we can combine ρ with every ray σ of Cij multiple times according to

multiplicity bounds.

So in order to reduce the number of rays we need to consider, we should

consider projections in the following order:

1. Projections of Type 0;

2. Projections of Type 1(a);

3. Projections of Type 1(b);

4. Projections of Type 2.

This motivates the following variant of Algorithm 4.2.8 where we always choose

projections in that ordering.

Algorithm 4.4.1. Input: An index set P which indexes the projected tropical

curves {Cij : (i, j) ∈ P}.
Output: A set T of candidates for trop(C).

Initialisation: T = ∅, X = {1, . . . , n}, S = {ρ = (∗, . . . , ∗)} where

mρ =∞, Qρ = P and Yρ = ∅.
While S 6= ∅ do:

1. Choose any ρ ∈ S. Let Zρ = X − Yρ and set S = S − {ρ}.

2. Choose any j ∈ Zρ. Set W = ∅.

(a) If there exists i ∈ Yρ such that (i, j) ∈ P and ρi 6= 0 then πij is a

projection of Type 1(a) and follow Case 1(a) of Algorithm 4.2.8. Let U

denote the set of rays added to S and set W = {i}.

(b) If not, then if there exists i ∈ Yρ such that (i, j) ∈ P and ρi = 0 then πij

is a projection of Type 1(a) and follow Case 1(b) of Algorithm 4.2.8.

Let U denote the set of rays added to S and set W = {i}.

(c) If not then there are no i ∈ Yρ such that (i, j) ∈ P and so choose any

j 6= i ∈ Zρ and then πij is a projection of Type 2 and follow Case 2

of Algorithm 4.2.8. Let U denote the set of rays added to S and set

W = {i, j}.
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3. For all τ ∈ U and all (w, k) ∈ P such that w ∈ W and k ∈ Yρ then πwk is a

projection of Type 0 and follow Case 0 of Algorithm 4.2.8.

Return T .

Proof. Correctness and termination of this algorithm is the same as Algorithm 4.2.8

as here we have simply changed the order with which we are looking at projections.

After adding coordinates to a partially reconstructed candidate in Step 3, we then

consider all Type 0 projections which involve those added coordinates.

4.4.3 Alternative Solutions which were not Improvements

In our algorithms, we reconstruct all candidates for trop(C). We do this by building

up the coordinates of a partially reconstructed candidate with compatible rays of a

projected tropical curve until all coordinates have been reconstructed. We select a

partially reconstructed candidate and then combine it with projected tropical curves

until it is fully reconstructed. An alternative would be to select a projected tropical

curve and reconstruct all partially reconstructed candidates in the set S with this

same projected tropical curve. One advantage of this strategy is that as we are

adding the same projection simultaneously to each of the partially reconstructed

candidates. Thus these computations can be done more efficiently as we are doing

them to all partially reconstructed candidates at once. However, we have seen

in Section 4.4.2 that the choice of projection make a difference to the number of

partially reconstructed candidates in S which we have to consider. We wish to

consider projections in the order Type 0 then Type 1(a) then Type 1(b) then Type

2. However, when we are combining each partially reconstructed candidate in S with

the same projection, its type will depend on the individual partially reconstructed

candidate. So even it if is of Type 1(a) for one partially reconstructed candidate,

then it may be of Type 1(b) for another. Then we would add many more partially

reconstructed candidates to S than if we had chosen a different projection.

Another improvement is to use the polynomials encountered at all steps of

the algorithm in order to eliminate candidates which we know cannot be in the

tropical curve. For example when computing the elimination Gröbner bases in

Algorithm 4.2.5 to find the equation of the projected curve, we computed many

polynomials which live in our ideal. We can use them to check whether candidates

are rays of the tropical curve or not. That is, for candidate ρ, we can compute inρ(f)

for all polynomials in I that we have encountered. If any inρ(f) is a monomial then

inρ(I) would contain a monomial and so ρ cannot be in the tropical variety by the

Fundamental Theorem 2.1.5.
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For example, in Example 4.3.1 we have 1196 different polynomials which are

in the ideal that we can use to successfully cut down the number of rays in the

superset from 177 to 18. In this case, we now have a unique solution to the equa-

tions determining the multiplicity meaning no further Gröbner basis calculations

are necessary as we do not need to compute any initial ideals. However, in practice,

this is not an efficient solution as it is actually quicker to simply check if each of the

rays live in the tropical curve or not by the computation of initial ideals.

4.4.4 Other Two-Dimensional Coordinate Projections

In our algorithms, we recover the rays of the tropical curve together with their multi-

plicities. As C is a curve in Pn, the tropical curve trop(C) lives in Rn+1/R(1, . . . , 1).

We can consider its lift to Rn+1 where trop(C) is a two-dimensional fan with a

one-dimensional lineality space spanned by (1, . . . , 1). We consider the projec-

tion πij : Rn+1 → R3 to coordinates x0, xi, xj . The tropical curves trop(C) and

Cij = πij(trop(C)) have one-dimensional lineality spaces spanned by (1, . . . , 1) and

(1, 1, 1) respectively. After quotienting out by this lineality space, we think of them

as living in Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) respectively. So far in

this Chapter, we have chosen identifications which send the x0-coordinate to zero,

and crucially this means that the map πij : Rn → R2 is still a projection.

The key point that we need for the map πij : Rn → R2 to still be a projection,

is that the identifications Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) are the

same. For the work thus far in this Chapter, this has always been the case as we have

chosen the identification which sends x0 to zero. This allows us to easily combine

rays in Algorithm 4.2.8 as we are looking at the same slice of the tropical curve.

However, this choice was arbitrary and we could have chosen identifications sending

any xi to zero instead. Algebraically, this would correspond to dehomogenising the

equations with respect to xi. We can now consider the projections to xi, xj , xk for

0 ≤ i < j < k ≤ n and then choose an identification which sends xk to zero.

Let πijk : trop(C) ⊆ Rn+1 → R3 be a coordinate projection where R3 has

coordinates xi, xj , xk for some 0 ≤ i < j < k ≤ n. The image of trop(C) under the

projection map πijk is the tropical curve denoted by Cijk.
Recall that in Section 4.2, we reconstructed tropical curves in three steps.

We explain the main changes to these steps in order to accommodate these extra

two-dimensional coordinate projections.

1. Algorithm 4.2.5 found the projected tropical curves Cij which are the coor-

dinate projections of trop(C) to x0, xi, xj for 1 ≤ i < j ≤ n. The modified
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algorithm would now find the projected tropical curves Cijk to xi, xj , xk for

0 ≤ i < j < k ≤ n.

2. Algorithm 4.2.8 recovered a superset of the rays in trop(C) by reconstructing

candidates. Now, in order to combine a partially reconstructed candidate ρ in

Rn+1 with a ray of the projected tropical curve σ in R3, we first need to choose

the same identification for Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1)

which sets the xk-coordinate to zero. (In Algorithm 4.2.8, we always set the

x0-coordinate to zero as all of our projections project to x0.) This ensures

that the induced map Rn → R2 is still a projection. We see these changes and

how they affect the results in Algorithm 4.4.3.

3. Algorithm 4.2.14 determined which of the candidates in the superset are rays

of the tropical curve. This used notions of multiplicity, balancing and degree

of the tropical curve. For this, we need all rays to have the same identification.

Thus at the end of the new Algorithm 4.4.3, we choose the identification which

sends the x0-coordinate to zero for all candidates and Algorithm 4.2.14 follows

through to find the rays of trop(C).

As we are now looking at projections to coordinates xi, xj , xk for all 0 ≤
i < j < k ≤ n we can use these extra projections to differentiate between the two

tropical curves in Example 4.2.11. However, there are new examples of two different

tropical curves which have the same projections to all xi, xj , xk.

Example 4.4.2. Consider the two-dimensional fans in R4 which both have a one-

dimensional lineality space spanned by (1, 1, 1, 1). They have rays spanned by

(1, 1,−1,−1), (1,−1,−1, 1), (1,−1, 1,−1),

(−1,−1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1,−1),

and

(1, 1, 1,−1), (1, 1,−1, 1), (1,−1, 1, 1), (−1, 1, 1, 1),

(−1,−1,−1, 1), (−1,−1, 1,−1), (−1, 1,−1,−1), (1,−1,−1,−1),

respectively, each ray with multiplicity one. Let R4 have coordinates x0, x1, x2, x3,

and consider the coordinate projection to xi, xj , xk for 0 ≤ i < j < k ≤ 3. We then

see that both fans above have the same image under this coordinate projections

after we have quotiented out by the lineality space spanned by (1, 1, 1). Notice that
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as for Example 4.2.11 this corresponds to the alternative vertices of a hypercube in

R4 centred on the origin with vertices at (±1,±1,±1,±1).

This example can be generalised to Rn in the following way. Consider the

hypercube in Rn which is centred on the origin and has vertices at (±1, . . . ,±1) and

let Σ0 and Σ1 be one-dimensional fans with rays passing through alternate vertices.

That is, Σ0 consists of rays passing through vertices the product of whose entries

is equal to 1, and Σ1 consists of rays passing through vertices the product of whose

entries is equal to −1. Then Σ0 and Σ1 agree on coordinate projections. Notice

that the tropical curves which have support Σ0 and Σ1 respectively have different

degrees and so can be differentiated using the methods of Section 4.2.3. However,

as in Remark 4.2.13 there are also examples of tropical curves with the same degree

which have the same projections to coordinate planes, for example by translating

one of the cube configurations away from the origin. As an example, consider two

fans in R4, the first with rays generated by

(1, 1, 1, 1), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),

(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (−1,−1,−1,−1),

where (−1,−1,−1,−1) has multiplicity eight and all other rays have multiplicity

two, and the second with rays generated by

(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1),

(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (−1,−1,−1,−1)

where (−1,−1,−1,−1) has multiplicity eight and all other rays have multiplicity

two. Both of these tropical curves have degree eight and so cannot be differentiated

using the equations from the degree. This corresponds to translating the hypercube

with vertices (±1,±1,±1,±1) from the beginning of this example by (1, 1, 1, 1),

where we include the rays (−1,−1,−1,−1) for balancing. 3

A further advantage of using these extra projections is that we have more

equations in the multiplicities of the candidates which helps limit the number of

initial ideal computations in Step 6 of Algorithm 4.2.14.

We first review some notation. Let ρ be a partially reconstructed candidate,

with associated multiplicity bound mρ. Suppose that we are trying to reconstruct

ρ to variables x0, x1, . . . , xn. In this setting the definition of a candidate naturally

extends. We call ρ an (i, j, k)-candidate for trop(C) if, after choosing identifications

for Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) which sets the xk-coordinate
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to zero, either πijk(ρ) spans a ray σ ∈ Cij with multiplicity mσ and mρ ≤ mσ, or

πijk(ρ) = (0, 0). It is called a candidate for trop(C) if it is an (i, j, k)-candidate for

all (i, j, k).

Suppose that we are trying to extend ρ with the rays of the projected tropical

curve Cijk. Recall from Section 4.2.2 that Cijk can be of Type 0, Type 1(a) or 1(b),

or Type 2, which affects how it interacts with the partially reconstructed candidate

ρ. These follow through to similar cases as we explain below. Before we can combine

a partially reconstructed ray with the rays of a projected tropical curve, we need

to choose identifications for Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1). Recall

that we need to choose the same identification for both. This equates to adding

multiples of the lineality space to rays so that some chosen xi-coordinate equals

zero. There is also now an additional type of projection which we shall encounter

which will be a projection of Type 3.

Projections of Type 0. In this case, xi, xj and xk have already been recon-

structed in the partially reconstructed candidate ρ. Choose identifications for Rn ∼=
Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) which sets the xk-coordinate to zero. We

then have to check to see if ρ is an (i, j, k)-candidate for trop(C).

Projections of Type 1. In this case, two of the xi, xj and xk have been recon-

structed in the partially reconstructed candidate ρ. After relabelling coordinates if

necessary, we can assume that the xi and xk coordinates have been reconstructed in

the partially reconstructed candidate ρ and that xj has not. Choose identifications

for Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) which sets the xk-coordinate to

zero. Then analogously to the projection of Type 1 from Section 4.2.2 this splits

into projections of Type 1(a) and 1(b) depending on the value of ρi.

Projections of Type 2. In this case, only one of xi, xj and xk have been recon-

structed in the partially reconstructed candidate ρ. After relabelling coordinates if

necessary, we can assume that the xk-coordinate has been reconstructed in the par-

tially reconstructed candidate ρ. Choose identifications for Rn ∼= Rn+1/R(1, . . . , 1)

and R2 ∼= R3/R(1, 1, 1) which sets the xk-coordinate to zero. We can then extend ρ

with each ray of Cijk analogously to projections of Type 2 from Section 4.2.2.

Projections of Type 3. In this case, none of xi, xj and xk have been reconstructed

in the partially reconstructed candidate ρ and so theoretically we can combine ρ with

each ray of Cijk multiple times as for projections on Type 2. However, as both the

partially reconstructed candidate ρ and the rays of Cijk can have any multiple of

the lineality space added to them, there are infinitely many partially reconstructed

candidates which are (i, j, k)-candidates and which agree with ρ on coordinates

already reconstructed.
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The following algorithm reconstructs all candidates from a set {Cijk} of pro-

jected tropical curves. As when considering a projection of Type 3 there are infinitely

many suitable reconstructions, such projections are avoided. We give conditions in

Proposition 4.4.4 for when we have enough projections so that we never have to

add projections of Type 3. To partially reconstructed candidate ρ we assign a set

Yρ which indexes the variables already reconstructed in ρ. We then only extend

the partially reconstructed candidate ρ with a projected tropical curve Cijk where

{i, j, k} ∩ Yρ 6= ∅, which ensures that Cijk is not a projection of Type 3.

Algorithm 4.4.3. Input: An index set P which indexes the projected tropical

curves {Cijk : (i, j, k) ∈ P}. The set P satisfies the hypotheses of Proposition 4.4.4

so that we do not have to consider Projections of Type 3.

Output: The set T of all candidates for trop(C).

Initialisation: Set T = ∅ and S = ∅. Choose any (i, j, k) ∈ P . Let U be

the set consisting of rays of Cijk and ρ = (0, 0, 0) where mρ =∞. For all σ ∈ U with

corresponding multiplicity mσ let θ = (θ0, θ1, . . . , θn) where θl = ∗ for l 6= i, j, k,

θi = σi, θj = σj and θk = σk. Set mθ = mσ, Qθ = P − {(i, j, k)} and Yθ = {i, j, k}.
Set S = S ∪ {θ}.
While S 6= ∅ do:

I. Choose any ρ ∈ S. Set S = S − {ρ}.

II. If Qρ = ∅ and ρ 6= (0, . . . , 0) then T = T ∪ {ρ}. Otherwise, while Qρ 6= ∅ do:

(a) Choose any (i, j, k) ∈ Qρ such that {i, j, k} ∩ Yρ 6= ∅. After relabelling if

necessary, we can assume that k ∈ {i, j, k} ∩ Yρ. Choose identifications for

Rn ∼= Rn+1/R(1, . . . , 1) and R2 ∼= R3/R(1, 1, 1) so that ρ and the rays of

Cijk have xk-coordinate equal to zero. We do this by adding multiples of

the lineality space (1, . . . , 1).

(b) Updating S. This depends on {i, j, k} ∩ Yρ.

1. Case 0: If |{i, j, k} ∩ Yρ| = 3 then πijk is a projection of Type 0.

Follow Case 0 of Algorithm 4.2.8.

2. Case 1(a): If |{i, j, k}∩Yρ| = 2 and ρi 6= 0, where after relabelling

if necessary we assume that {i, j, k} ∩ Yρ = {i, k}, then πijk is a

projection of Type 1(a).

Follow Case 1(a) of Algorithm 4.2.8.

3. Case 1(b): If |{i, j, k}∩Yρ| = 2 and ρi = 0, where after relabelling

if necessary we assume that {i, j, k} ∩ Yρ = {i, k}, then πijk is a
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projection of Type 1(b).

Follow Case 1(b) of Algorithm 4.2.8.

4. Case 2: If |{i, j, k} ∩ Yρ| = 1 then πijk is a projection of Type 2.

Follow Case 2 of Algorithm 4.2.8.

Scale all rays in T with (1, . . . , 1) so that the x0-coordinate is zero.

Return T .

Proof. The proof of correctness and termination follows directly from the corre-

sponding proof of Algorithm 4.2.8.

We define a hypergraph GP associated to a set P which indexes the projec-

tions which we use as input to Algorithm 4.4.3. We call this the graph of projections

for P . The set of vertices of GP is {v0, v1, . . . , vn} where the vertex vi indexes the

xi-coordinate. We have an edge {vi, vj , vk} for every triple (i, j, k) in P .

The idea of the algorithm from this graph point of view is that we start at

a vertex and walk to all other vertices by passing along edges. For example, we

could start at v0 and use edge {v0, v1, v2} to walk to vertices v1, v2 then by edge

{v1, v2, v3} walk to vertex v3, and so on. We use conditions on the hypergraph GP
to give conditions on the set of projections P to ensure that we will have finitely

many one-dimensional candidates for trop(C).

Proposition 4.4.4. Let P be a set indexing coordinate projections πijk : Rn+1
x0,x1,...xn →

R3
xi,xj ,xk

whose image is the tropical curve Cijk which has a one-dimensional lineal-

ity space spanned by (1, 1, 1). Let GP be the graph of projections for P and T a set

of rays which are (i, j, k)-candidates for trop(C) for all (i, j, k) ∈ P . Then GP is

connected if and only if T is a finite set of two-dimensional rays in Rn+1 each with

a one-dimensional lineality space spanned by (1, . . . , 1).

Proof. Suppose that GP is connected. Consider reconstructing candidates by Al-

gorithm 4.4.3. As GP is connected, at every step we can choose a projection in

P such that P is not of Type 3 until we have recovered all vertices of GP . By

the proof of Algorithm 4.2.8, it follows that we have recovered a finite collection of

two-dimensional candidates each with one-dimensional lineality space.

Conversely suppose that GP is not connected. Using P as input to Algo-

rithm 4.4.3 notice that when considering projections of Type 0, 1 or 2 we share at

least one coordinate with those already reconstructed. This means that the graph

GP is connected. As GP is not connected, at some point, we must have to consider a

projection of Type 3. From the discussion before Algorithm 4.4.3, we see that adding

a projection of Type 3 gives infinitely many partially reconstructed candidates.
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Remark 4.4.5. The implementation issues from previous subsections can also be

implemented in this reworking of the reconstruction algorithm. For example, when

we have a choice of projection to consider we do so in preference order: Type 0,

as they remove partially reconstructed candidates from S, then Type 1(a), as they

add a unique partially reconstructed candidate to S for each compatible ray of the

projected tropical curve, then Type 1(b), as we can only combine with the rays

(0, 1) and (0,−1) if they occur in the projected tropical curve but multiple times

according to multiplicity bounds, then finally Type 2, as we add multiple partially

reconstructed candidates to S for each ray of the projected tropical curve. 3

Remark 4.4.6. When we have decided which is the optimal projection to add

as explained in Section 4.4.2 we may have still have a choice of which of these

projections of a certain type to add. It appears heuristically that we should add

the projection which adds coordinate xi for which the corresponding vertex in the

graph of projection has the highest valency. This would mean that there is a greater

choice of projections to add at the next step and so a greater likelihood of finding

one of Type 0 then one of Type 1 and then one of Type 2. 3

4.5 A Macaulay2 package to Compute Tropical Curves

from Coordinate Projections

Let K = Q with the trivial valuation. In this case, the algorithms in this Chap-

ter are implemented in the package TropicalCurves [Chan, 2013b] for the com-

puter algebraic geometry system Macaulay2 [Grayson and Stillman]. The package

TropicalCurves allows the computation of tropical curves from coordinate projec-

tions. The main function of this package is tropicalCurve which takes a homoge-

neous ideal I defining a curve in Pn and outputs the rays and multiplicities of the

one-dimensional fan in Rn ∼= Rn+1/R(1, . . . , 1) whose support is the tropical curve

trop(V (I)).

We demonstrate usage by first installing the package then specifying the

polynomial ring Q[x, y, z] and ideal I = 〈x+ y + z〉

i1 : installPackage "TropicalCurves";

i2 : QQ[x,y,z];

i3 : I = ideal(x+y+z);

Then using tropicalCurves we find the rays and multiplicities of trop(V (I))

i4 : tropicalCurve I
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o4 = (| 1 0 -1 |, {1, 1, 1})

| 0 1 -1 |

o4 : Sequence

The output comes in the form (A,m) for some matrix A with integer entries

and a list m with positive integer entries. The columns of A are minimal ray gen-

erators of trop(V (I)) and the ray spanned by the i-th column of A has multiplicity

the i-th entry in the list m. In this example, we see that trop(V (I)) consists of three

rays spanned by (1, 0), (0, 1) and (−1,−1) each with multiplicity one, which agrees

with the calculations in Example 2.1.6.

We next compute Example 4.2.11 which is the example where there are two

tropical curves with the same projections to coordinate planes. Here we have an

ideal I = 〈xz+ 4yz− z2 + 3xw− 12yw+ 5zw, xy− 4y2 + yz+ xw+ 2yw− zw, x2−
16y2 + 8yz − z2 + 14xw − 8yw + 2zw〉 in the ring Q[x, y, z, w] and we find the rays

of the tropical curve using tropicalCurve.

i5 : f_1 = x*z+4*y*z-z^2+3*x*w-12*y*w+5*z*w;

i6 : f_2 = x*y-4*y^2+y*z+x*w+2*y*w-z*w;

i7 : f_3 = x^2-16*y^2+8*y*z-z^2+14*x*w-8*y*w+2*z*w;

i8 : I = ideal(f_1,f_2,f_3);

i9 : tropicalCurve I

o9 = (| -1 -1 1 1 |, {1, 1, 1, 1})

| -1 1 -1 1 |

| 1 -1 -1 1 |

o9 : Sequence

As expected, we see the tropical curve has four rays spanned by (−1,−1, 1),

(−1, 1,−1), (1,−1,−1) and (1, 1, 1) each with multiplicity one. This agree with

earlier calculations. Recall that the reconstruction step recovers eight rays spanned

and using the equations from the multiplicity condition, the balancing condition,

and the degree of the curve, we can recover the rays in the tropical curve.

Consider the ideal I = 〈a2 + 2bc+ ad+ e2, ab+ bc+ cd+ de, ac+ bd+ ce〉 in

Q[a, b, c, d, e]. Then using tropicalCurve we compute the tropical curve trop(V (I)):

i10 : QQ[a,b,c,d,e];

i11 : I = ideal(a^2+2*b*c+a*d+e^2,a*b+b*c+c*d+d*e,a*c+b*d+c*e);

i12 : tropicalCurve I

o12 = (| 1 0 0 0 -2 1 -1 1 0 |, {3, 1, 1, 2, 1, 1, 3, 1, 1})
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| 0 1 1 1 -1 -1 -1 1 0 |

| 0 0 -1 2 -1 1 -1 0 0 |

| 0 0 1 1 -2 2 -1 -1 1 |

o12 : Sequence

We end with the example in Section 4.3 which was the example which

could not be computed using gfan. We have ideal I = 〈x4
1 − x3

0x11 + 2x2
0x1x11 −

x0x
2
1x11, x

4
2 − x3

0x11 + 2x2
0x2x11 − x0x

2
2x11, x

4
3 − x3

0x11 + 2x2
0x3x11 − x0x

2
3x11, x

4
4 −

x3
0x11 +2x2

0x4x11−x0x
2
4x11, x1−x2 +x5, x1−x3 +x6, x1−x4 +x7, x2−x3 +x8, x2−

x4 + x9, x3 − x4 + x10〉 in Q[x0, . . . , x11].

i13 : QQ[X_0..X_11];

i14 : g_1 = X_1^4-X_0^3*X_11+2*X_0^2*X_1*X_11-X_0*X_1^2*X_11;

i15 : g_2 = X_2^4-X_0^3*X_11+2*X_0^2*X_2*X_11-X_0*X_2^2*X_11;

i16 : g_3 = X_3^4-X_0^3*X_11+2*X_0^2*X_3*X_11-X_0*X_3^2*X_11;

i17 : g_4 = X_4^4-X_0^3*X_11+2*X_0^2*X_4*X_11-X_0*X_4^2*X_11;

i18 : g_5 = X_1-X_2+X_5;

i19 : g_6 = X_1-X_3+X_6;

i20 : g_7 = X_1-X_4+X_7;

i21 : g_8 = X_2-X_3+X_8;

i22 : g_9 = X_2-X_4+X_9;

i23 : g_10 = X_3-X_4+X_10;

i24 : I = ideal(g_1,g_2,g_3,g_4,g_5,g_6,g_7,g_8,g_9,g_10);

and we compute the tropical curve with tropicalCurve.

i25 : C = tropicalCurve I;

i26 : A = C#1

o26 = | -4 2 2 2 2 2 2 0 0 0 0 0 0 |

| -3 1 1 1 2 2 2 0 0 0 0 0 0 |

| -3 2 2 1 1 2 1 0 0 0 0 0 0 |

| -3 1 2 2 1 1 2 0 0 0 0 0 0 |

| -3 2 1 2 2 1 1 0 0 0 0 0 0 |

| -3 1 1 1 1 3 1 0 0 1 0 0 0 |

| -3 1 1 1 1 1 3 1 0 0 0 0 0 |

| -3 1 1 1 3 1 1 0 0 0 0 1 0 |

| -3 1 3 1 1 1 1 0 0 0 0 0 1 |

| -3 3 1 1 1 1 1 0 0 0 1 0 0 |

| -3 1 1 3 1 1 1 0 1 0 0 0 0 |

11 13

o26 : Matrix ZZ <--- ZZ
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i27 : m = C#2

o27 = {6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}

o27 : List

The output tells us that trop(V (I)) consists of 13 one-dimensional rays in R11

spanned by the columns of the matrix A where the multiplicity of the ray spanned

by the ith column of A has multiplicity mi.
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Thomas W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J.
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