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Abstract 2-Opt is probably the most basic local search heuristic for the TSP. This
heuristic achieves amazingly good results on “real world” Euclidean instances both
with respect to running time and approximation ratio. There are numerous exper-
imental studies on the performance of 2-Opt. However, the theoretical knowledge
about this heuristic is still very limited. Not even its worst case running time on
2-dimensional Euclidean instances was known so far. We clarify this issue by present-
ing, for every p ∈N, a family of Lp instances on which 2-Opt can take an exponential
number of steps.

Previous probabilistic analyses were restricted to instances in which n points are
placed uniformly at random in the unit square [0,1]2, where it was shown that the
expected number of steps is bounded by Õ(n10) for Euclidean instances. We con-
sider a more advanced model of probabilistic instances in which the points can be
placed independently according to general distributions on [0,1]d , for an arbitrary
d ≥ 2. In particular, we allow different distributions for different points. We study the
expected number of local improvements in terms of the number n of points and the
maximal density φ of the probability distributions. We show an upper bound on the
expected length of any 2-Opt improvement path of Õ(n4+1/3 · φ8/3). When starting
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with an initial tour computed by an insertion heuristic, the upper bound on the ex-
pected number of steps improves even to Õ(n4+1/3−1/d · φ8/3). If the distances are
measured according to the Manhattan metric, then the expected number of steps is
bounded by Õ(n4−1/d · φ). In addition, we prove an upper bound of O( d

√
φ) on the

expected approximation factor with respect to all Lp metrics.
Let us remark that our probabilistic analysis covers as special cases the uniform

input model with φ = 1 and a smoothed analysis with Gaussian perturbations of stan-
dard deviation σ with φ ∼ 1/σd .

Keywords TSP · 2-Opt · Probabilistic analysis

1 Introduction

In the traveling salesperson problem (TSP), we are given a set of vertices and for each
pair of distinct vertices a distance. The goal is to find a tour of minimum length that
visits every vertex exactly once and returns to the initial vertex at the end. Despite
many theoretical analyses and experimental evaluations of the TSP, there is still a
considerable gap between the theoretical results and the experimental observations.
One important special case is the Euclidean TSP in which the vertices are points
in R

d , for some d ∈ N, and the distances are measured according to the Euclidean
metric. This special case is known to be NP-hard in the strong sense [15], but it admits
a polynomial time approximation scheme (PTAS), shown independently in 1996 by
Arora [1] and Mitchell [13]. These approximation schemes are based on dynamic
programming. However, the most successful algorithms on practical instances rely
on the principle of local search and very little is known about their complexity.

The 2-Opt algorithm is probably the most basic local search heuristic for the TSP.
2-Opt starts with an arbitrary initial tour and incrementally improves this tour by
making successive improvements that exchange two of the edges in the tour with
two other edges. More precisely, in each improving step the 2-Opt algorithm selects
two edges {u1, u2} and {v1, v2} from the tour such that u1, u2, v1, v2 are distinct and
appear in this order in the tour, and it replaces these edges by the edges {u1, v1} and
{u2, v2}, provided that this change decreases the length of the tour. The algorithm
terminates in a local optimum in which no further improving step is possible. We
use the term 2-change to denote a local improvement made by 2-Opt. This simple
heuristic performs amazingly well on “real-life” Euclidean instances like, e.g., the
ones in the well-known TSPLIB [17]. Usually the 2-Opt heuristic needs a clearly
subquadratic number of improving steps until it reaches a local optimum and the
computed solution is within a few percentage points of the global optimum [7].

There are numerous experimental studies on the performance of 2-Opt. However,
the theoretical knowledge about this heuristic is still very limited. Let us first discuss
the number of local improvement steps made by 2-Opt before it finds a locally opti-
mal solution. When talking about the number of local improvements, it is convenient
to consider the state graph. The vertices in this graph correspond to the possible tours
and an arc from a vertex v to a vertex u is contained if u is obtained from v by per-
forming an improving 2-Opt step. On the positive side, van Leeuwen and Schoone
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consider a 2-Opt variant for the Euclidean plane in which only steps are allowed that
remove a crossing from the tour. Such steps can introduce new crossings, but van
Leeuwen and Schoone [20] show that after O(n3) steps, 2-Opt finds a tour without
any crossing. On the negative side, Lueker [12] constructs TSP instances whose state
graphs contain exponentially long paths. Hence, 2-Opt can take an exponential num-
ber of steps before it finds a locally optimal solution. This result is generalized to
k-Opt, for arbitrary k ≥ 2, by Chandra, Karloff, and Tovey [3]. These negative re-
sults, however, use arbitrary graphs that cannot be embedded into low-dimensional
Euclidean space. Hence, they leave open the question as to whether it is possible to
construct Euclidean TSP instances on which 2-Opt can take an exponential number
of steps, which has explicitly been asked by Chandra, Karloff, and Tovey. We resolve
this question by constructing such instances in the Euclidean plane. In chip design
applications, often TSP instances arise in which the distances are measured accord-
ing to the Manhattan metric. Also for this metric and for every other Lp metric, we
construct instances with exponentially long paths in the 2-Opt state graph.

Theorem 1 For every p ∈ {1,2,3, . . .} ∪ {∞} and n ∈ N = {1,2,3, . . .}, there is
a two-dimensional TSP instance with 16n vertices in which the distances are mea-
sured according to the Lp metric and whose state graph contains a path of length
2n+4 − 22.

For Euclidean instances in which n points are placed independently uniformly at
random in the unit square, Kern [8] shows that the length of the longest path in the
state graph is bounded by O(n16) with probability at least 1 − c/n for some con-
stant c. Chandra, Karloff, and Tovey [3] improve this result by bounding the expected
length of the longest path in the state graph by O(n10 logn). That is, independent
of the initial tour and the choice of the local improvements, the expected number of
2-changes is bounded by O(n10 logn). For instances in which n points are placed
uniformly at random in the unit square and the distances are measured according to
the Manhattan metric, Chandra, Karloff, and Tovey show that the expected length of
the longest path in the state graph is bounded by O(n6 logn).

We consider a more general probabilistic input model and improve the previously
known bounds. The probabilistic model underlying our analysis allows different ver-
tices to be placed independently according to different continuous probability dis-
tributions in the unit hypercube [0,1]d , for some constant dimension d ≥ 2. The
distribution of a vertex vi is defined by a density function fi : [0,1]d → [0, φ] for
some given φ ≥ 1. Our upper bounds depend on the number n of vertices and the
upper bound φ on the density. We denote instances created by this input model as
φ-perturbed Euclidean or Manhattan instances, depending on the underlying met-
ric. The parameter φ can be seen as a parameter specifying how close the analysis
is to a worst case analysis since the larger φ is, the better can worst case instances
be approximated by the distributions. For φ = 1 and d = 2, every point has a uni-
form distribution over the unit square, and hence the input model equals the uniform
model analyzed before. Our results narrow the gap between the subquadratic num-
ber of improving steps observed in experiments [7] and the upper bounds from the
probabilistic analysis. With slight modifications, this model also covers a smoothed
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analysis, in which first an adversary specifies the positions of the points and after that
each position is slightly perturbed by adding a Gaussian random variable with small
standard deviation σ . In this case, one has to set φ = 1/(

√
2πσ)d .

We prove the following theorem about the expected length of the longest path in
the 2-Opt state graph for the three probabilistic input models discussed above. It is
assumed that the dimension d ≥ 2 is an arbitrary constant.

Theorem 2 The expected length of the longest path in the 2-Opt state graph

(a) is O(n4 · φ) for φ-perturbed Manhattan instances with n points.
(b) is O(n4+1/3 · log(nφ) · φ8/3) for φ-perturbed Euclidean instances with n points.

Usually, 2-Opt is initialized with a tour computed by some tour construction
heuristic. One particular class is that of insertion heuristics, which insert the vertices
one after another into the tour. We show that also from a theoretical point of view,
using such an insertion heuristic yields a significant improvement for metric TSP
instances because the initial tour 2-Opt starts with is much shorter than the longest
possible tour. In the following theorem, we summarize our results on the expected
number of local improvements.

Theorem 3 The expected number of steps performed by 2-Opt

(a) is O(n4−1/d · logn · φ) on φ-perturbed Manhattan instances with n points when
2-Opt is initialized with a tour obtained by an arbitrary insertion heuristic.

(b) is O(n4+1/3−1/d · log2(nφ) · φ8/3) on φ-perturbed Euclidean instances with n

points when 2-Opt is initialized with a tour obtained by an arbitrary insertion
heuristic.

In fact, our analysis shows not only that the expected number of local improve-
ments is polynomially bounded but it also shows that the second moment and hence
the variance is bounded polynomially for φ-perturbed Manhattan instances. For the
Euclidean metric, we cannot bound the variance but the 3/2-th moment polynomially.

In [5], we also consider a model in which an arbitrary graph G = (V ,E) is given
along with, for each edge e ∈ E, a probability distribution according to which the
edge length d(e) is chosen independently of the other edge lengths. Again, we restrict
the choice of distributions to distributions that can be represented by density functions
fe : [0,1] → [0, φ] with maximal density at most φ for a given φ ≥ 1. We denote
inputs created by this input model as φ-perturbed graphs. Observe that in this input
model only the distances are perturbed whereas the graph structure is not changed
by the randomization. This can be useful if one wants to explicitly prohibit certain
edges. However, if the graph G is not complete, one has to initialize 2-Opt with a
Hamiltonian cycle to start with. We prove that in this model the expected length of
the longest path in the 2-Opt state graph is O(|E| · n1+o(1) · φ). As the techniques for
proving this result are different from the ones used in this article, we will present it
in a separate journal article.

As in the case of running time, the good approximation ratios obtained by 2-Opt
on practical instances cannot be explained by a worst-case analysis. In fact, there are
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quite negative results on the worst-case behavior of 2-Opt. For example, Chandra,
Karloff, and Tovey [3] show that there are Euclidean instances in the plane for which
2-Opt has local optima whose costs are Ω(

logn
log logn

) times larger than the optimal
costs. However, the same authors also show that the expected approximation ratio of
the worst local optimum for instances with n points drawn uniformly at random from
the unit square is bounded from above by a constant. We generalize their result to our
input model in which different points can have different distributions with bounded
density φ and to all Lp metrics.

Theorem 4 Let p ∈ N ∪ {∞}. For φ-perturbed Lp instances, the expected approxi-
mation ratio of the worst tour that is locally optimal for 2-Opt is O( d

√
φ).

The remainder of the paper is organized as follows. We start by stating some basic
definitions and notation in Sect. 2. In Sect. 3, we present the lower bounds. In Sect. 4,
we analyze the expected number of local improvements and prove Theorems 2 and 3.
Finally, in Sects. 5 and 6, we prove Theorem 4 about the expected approximation
factor and we discuss the relation between our analysis and a smoothed analysis.

2 Preliminaries

An instance of the TSP consists of a set V = {v1, . . . , vn} of vertices (depending on
the context, synonymously referred to as points) and a symmetric distance function
d : V ×V →R≥0 that associates with each pair {vi, vj } of distinct vertices a distance
d(vi, vj ) = d(vj , vi). The goal is to find a Hamiltonian cycle of minimum length. We
also use the term tour to denote a Hamiltonian cycle. We define N = {1,2,3, . . .},
and for a natural number n ∈N, we denote the set {1, . . . , n} by [n].

A pair (V ,d) of a nonempty set V and a function d : V × V → R≥0 is called a
metric space if for all x, y, z ∈ V the following properties are satisfied:

(a) d(x, y) = 0 if and only if x = y (reflexivity),
(b) d(x, y) = d(y, x) (symmetry), and
(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If (V ,d) is a metric space, then d is called a metric on V . A TSP instance with vertices
V and distance function d is called metric TSP instance if (V ,d) is a metric space.

A well-known class of metrics on R
d is the class of Lp metrics. For p ∈ N, the

distance dp(x, y) of two points x ∈ R
d and y ∈ R

d with respect to the Lp met-
ric is given by dp(x, y) = p

√|x1 − y1|p + · · · + |xd − yd |p . The L1 metric is often
called Manhattan metric, and the L2 metric is well-known as Euclidean metric. For
p → ∞, the Lp metric converges to the L∞ metric defined by the distance function
d∞(x, y) = max{|x1 − y1|, . . . , |xd − yd |}. A TSP instance (V ,d) with V ⊆ R

d in
which d equals dp restricted to V is called an Lp instance. We also use the terms
Manhattan instance and Euclidean instance to denote L1 and L2 instances, respec-
tively. Furthermore, if p is clear from context, we write d instead of dp .

A tour construction heuristic for the TSP incrementally constructs a tour and stops
as soon as a valid tour is created. Usually, a tour constructed by such a heuristic



Algorithmica (2014) 68:190–264 195

is used as the initial solution 2-Opt starts with. A well-known class of tour con-
struction heuristics for metric TSP instances are so-called insertion heuristics. These
heuristics insert the vertices into the tour one after another, and every vertex is in-
serted between two consecutive vertices in the current tour where it fits best. To make
this more precise, let Ti denote a subtour on a subset Si of i vertices, and suppose
v /∈ Si is the next vertex to be inserted. If (x, y) denotes an edge in Ti that minimizes
d(x, v)+d(v, y)−d(x, y), then the new tour Ti+1 is obtained from Ti by deleting the
edge (x, y) and adding the edges (x, v) and (v, y). Depending on the order in which
the vertices are inserted into the tour, one distinguishes between several different in-
sertion heuristics. Rosenkrantz et al. [18] show an upper bound of �logn� + 1 on the
approximation factor of any insertion heuristic on metric TSP instances. Furthermore,
they show that two variants which they call nearest insertion and cheapest insertion
achieve an approximation ratio of 2 for metric TSP instances. The nearest insertion
heuristic always inserts the vertex with the smallest distance to the current tour (i.e.,
the vertex v /∈ Si that minimizes minx∈Si

d(x, v)), and the cheapest insertion heuristic
always inserts the vertex whose insertion leads to the cheapest tour Ti+1.

3 Exponential Lower Bounds

In this section, we answer Chandra, Karloff, and Tovey’s question [3] as to whether
it is possible to construct TSP instances in the Euclidean plane on which 2-Opt can
take an exponential number of steps. We present, for every p ∈ N ∪ {∞}, a family
of two-dimensional Lp instances with exponentially long sequences of improving
2-changes. In Sect. 3.1, we present our construction for the Euclidean plane, and in
Sect. 3.2 we extend this construction to general Lp metrics.

3.1 Exponential Lower Bound for the Euclidean Plane

In Lueker’s construction [12] many of the 2-changes remove two edges that are far
apart in the current tour in the sense that many vertices are visited between them.
Our construction differs significantly from the previous one as the 2-changes in our
construction affect the tour only locally. The instances we construct are composed of
gadgets of constant size. Each of these gadgets has a zero state and a one state, and
there exists a sequence of improving 2-changes starting in the zero state and even-
tually leading to the one state. Let G0, . . . ,Gn−1 denote these gadgets. If gadget Gi

with i > 0 has reached state one, then it can be reset to its zero state by gadget Gi−1.
The crucial property of our construction is that whenever a gadget Gi−1 changes its
state from zero to one, it resets gadget Gi twice. Hence, if in the initial tour, gadget
G0 is in its zero state and every other gadget is in state one, then for every i with
0 ≤ i ≤ n − 1, gadget Gi performs 2i state changes from zero to one as, for i > 0,
gadget Gi is reset 2i times.

Every gadget is composed of 2 subgadgets, which we refer to as blocks. Each
of these blocks consists of 4 vertices that are consecutively visited in the tour. For
i ∈ {0, . . . , n − 1} and j ∈ [2], let Bi

1 and Bi
2 denote the blocks of gadget Gi and

let Ai
j , Bi

j , Ci
j , and Di

j denote the four points Bi
j consists of. If one ignores cer-

tain intermediate configurations that arise when one gadget resets another one, our
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Fig. 1 In the illustration, we use m to denote n − 1. Every tour that occurs in the sequence of 2-changes
contains the thick edges. For each block, either both solid or both dashed edges are contained. In the former
case the block is in its short state; in the latter case the block is in its long state

construction ensures the following property: The points Ai
j , Bi

j , Ci
j , and Di

j are al-

ways visited consecutively in the tour either in the order Ai
jB

i
jC

i
jD

i
j or in the or-

der Ai
jC

i
jB

i
jD

i
j .

Observe that the change from one of these configurations to the other corresponds
to a single 2-change in which the edges Ai

jB
i
j and Ci

jD
i
j are replaced by the edges

Ai
jC

i
j and Bi

jD
i
j , or vice versa. In the following, we assume that the sum d(Ai

j ,B
i
j )+

d(Ci
j ,D

i
j ) is strictly smaller than the sum d(Ai

j ,C
i
j )+d(Bi

j ,D
i
j ), and we refer to the

configuration Ai
jB

i
jC

i
jD

i
j as the short state of the block and to the configuration

Ai
jC

i
jB

i
jD

i
j as the long state. Another property of our construction is that neither the

order in which the blocks are visited nor the order of the gadgets is changed during the
sequence of 2-changes. Again with the exception of the intermediate configurations,
the order in which the blocks are visited is B0

1B0
2B1

1B1
2 · · ·Bn−1

1 Bn−1
2 (see Fig. 1).

Due to the aforementioned properties, we can describe every non-intermediate
tour that occurs during the sequence of 2-changes completely by specifying for every
block if it is in its short state or in its long state. In the following, we denote the state
of a gadget Gi by a pair (x1, x2) with xj ∈ {S,L}, meaning that block Bi

j is in its short
state if and only if xj = S. Since every gadget consists of two blocks, there are four
possible states for each gadget. However, only three of them appear in the sequence
of 2-changes, namely (L,L), (S,L), and (S,S). We call state (L,L) the zero state
and state (S,S) the one state. In order to guarantee the existence of an exponentially
long sequence of 2-changes, the gadgets we construct possess the following property.

Property 5 If, for i ∈ {0, . . . , n − 2}, gadget Gi is in state (L,L) (or (S,L), respec-
tively) and gadget Gi+1 is in state (S,S), then there exists a sequence of seven con-
secutive 2-changes terminating with gadget Gi being in state (S,L) (or state (S,S),
respectively) and gadget Gi+1 in state (L,L). In this sequence only edges of and
between the gadgets Gi and Gi+1 are involved.

We describe in Sect. 3.1.1 how sequences of seven consecutive 2-changes with the
desired properties can be constructed. Then we show in Sect. 3.1.2 that the gadgets
can be embedded into the Euclidean plane such that all of these 2-changes are im-
proving. If Property 5 is satisfied and if in the initial tour gadget G0 is in its zero state
(L,L) and every other gadget is in its one state (S,S), then there exists an exponen-
tially long sequence of 2-changes in which gadget Gi changes 2i times from state
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Fig. 2 This figure shows an example with three gadgets. It shows the 15 configurations that these gadgets
assume during the sequence of 2-changes, excluding the intermediate configurations that arise when one
gadget resets another one. Gadgets that are involved in the transformation from configuration i to configu-
ration i + 1 are shown in gray. For example, in the step from the first to the second configuration, the first
block B0

1 of gadget G0 resets the two blocks of gadget G1. That is, these three blocks follow the sequence
of seven 2-changes from Property 5. On the other hand, in the step from the third to the fourth config-
uration only the first block B2

1 of gadget G2 is involved. It changes from its long state to its short state
by a single 2-change. As this figure shows an example with three gadgets, the total number of 2-changes
performed according to Lemma 6 is 23+3−0 − 14 = 50. This is indeed the case because 6 of the 14 shown
steps correspond to sequences of seven 2-changes while 8 steps correspond to single 2-changes

zero to state one, as the following lemma shows. An example with three gadgets is
also depicted in Fig. 2.

Lemma 6 If, for i ∈ {0, . . . , n − 1}, gadget Gi is in the zero state (L,L) and all
gadgets Gj with j > i are in the one state (S,S), then there exists a sequence of
2n+3−i − 14 consecutive 2-changes in which only edges of and between the gadgets
Gj with j ≥ i are involved and that terminates in a state in which all gadgets Gj

with j ≥ i are in the one state (S,S).

Proof We prove the lemma by induction on i. If gadget Gn−1 is in state (L,L),
then it can change its state with two 2-changes to (S,S) without affecting the
other gadgets. This is true because the two blocks of gadget Gn−1 can, one
after another, change from their long state An−1

j Cn−1
j Bn−1

j Dn−1
j to their short

state An−1
j Bn−1

j Cn−1
j Dn−1

j by a single 2-change. Hence, the lemma is true for

i = n − 1 because 2n+3−(n−1) − 14 = 2.
Now assume that the lemma is true for i + 1 and consider a state in which gadget

Gi is in state (L,L) and all gadgets Gj with j > i are in state (S,S). Due to Prop-
erty 5, there exists a sequence of seven consecutive 2-changes in which only edges
of and between Gi and Gi+1 are involved, terminating with Gi being in state (S,L)

and Gi+1 being in state (L,L). By the induction hypothesis there exists a sequence
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of (2n+2−i − 14) 2-changes after which all gadgets Gj with j > i are in state (S,S).
Then, due to Property 5, there exists a sequence of seven consecutive 2-changes in
which only Gi changes its state from (S,L) to (S,S) while resetting gadget Gi+1

again from (S,S) to (L,L). Hence, we can apply the induction hypothesis again,
yielding that after another (2n+2−i − 14) 2-changes all gadgets Gj with j ≥ i are
in state (S,S). This concludes the proof as the number of 2-changes performed is
14 + 2(2n+2−i − 14) = 2n+3−i − 14. �

In particular, this implies that, given Property 5, one can construct instances con-
sisting of 2n gadgets, i.e., 16n points, whose state graphs contain paths of length
22n+3 − 14 > 2n+4 − 22, as desired in Theorem 1.

3.1.1 Detailed Description of the Sequence of Steps

Now we describe in detail how a sequence of 2-changes satisfying Property 5 can
be constructed. First, we assume that gadget Gi is in state (S,L) and that gadget
Gi+1 is in state (S,S). Under this assumption, there are three consecutive blocks,
namely Bi

2, Bi+1
1 , and Bi+1

2 , such that the leftmost one Bi
2 is in its long state, and

the other blocks are in their short states. We need to find a sequence of 2-changes in
which only edges of and between these three blocks are involved and after which Bi

2
is in its short state and the other blocks are in their long states. Remember that when
the edges {u1, u2} and {v1, v2} are removed from the tour and the vertices appear in
the order u1, u2, v1, v2 in the current tour, then the edges {u1, v1} and {u2, v2} are
added to the tour and the subtour between u1 and v2 is visited in reverse order. If,
e.g., the current tour corresponds to the permutation (1,2,3,4,5,6,7) and the edges
{1,2} and {5,6} are removed, then the new tour is (1,5,4,3,2,6,7). The following
sequence of 2-changes, which is also shown in Fig. 3, has the desired properties.
Brackets indicate the edges that are removed from the tour.

Long state ACBD Short state ABCD Short state ABCD

(1) [Ai
2 Ci

2] Bi
2 Di

2 Ai+1
1 Bi+1

1 Ci+1
1 Di+1

1 Ai+1
2 Bi+1

2 [Ci+1
2 Di+1

2 ]
(2) Ai

2 Ci+1
2 [Bi+1

2 Ai+1
2 ] Di+1

1 Ci+1
1 Bi+1

1 Ai+1
1 [Di

2 Bi
2] Ci

2 Di+1
2

(3) Ai
2 Ci+1

2 [Bi+1
2 Di

2] Ai+1
1 Bi+1

1 [Ci+1
1 Di+1

1 ] Ai+1
2 Bi

2 Ci
2 Di+1

2

(4) Ai
2 Ci+1

2 Bi+1
2 Ci+1

1 [Bi+1
1 Ai+1

1 ] Di
2 Di+1

1 Ai+1
2 Bi

2 [Ci
2 Di+1

2 ]
(5) [Ai

2 Ci+1
2 ] Bi+1

2 Ci+1
1 Bi+1

1 Ci
2 [Bi

2 Ai+1
2 ] Di+1

1 Di
2 Ai+1

1 Di+1
2

(6) Ai
2 Bi

2 Ci
2 Bi+1

1 [Ci+1
1 Bi+1

2 ] Ci+1
2 Ai+1

2 Di+1
1 Di

2 [Ai+1
1 Di+1

2 ]
(7) Ai

2 Bi
2 [Ci

2 Bi+1
1 ] Ci+1

1 Ai+1
1 [Di

2 Di+1
1 ] Ai+1

2 Ci+1
2 Bi+1

2 Di+1
2

Ai
2 Bi

2 Ci
2 Di

2 Ai+1
1 Ci+1

1 Bi+1
1 Di+1

1 Ai+1
2 Ci+1

2 Bi+1
2 Di+1

2

Short state ABCD Long state ACBD Long state ACBD

Observe that the configurations 2 to 7 do not have the property mentioned at the
beginning of this section that, for every block Bi

j , the points Ai
j , Bi

j , Ci
j , and Di

j are

visited consecutively either in the order Ai
jB

i
jC

i
jD

i
j or in the order Ai

jC
i
jB

i
jD

i
j . The
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Fig. 3 This figure shows the sequence of seven consecutive 2-changes from Property 5. In each step the
thick edges are removed from the tour, and the dotted edges are added to the tour. It shows how block
Bi

2 switches from its long to its short state while resetting the blocks Bi+1
1 and Bi+1

2 from their short to
their long states. This figure is only schematic and it does not show the actual geometric embedding of the
points into the Euclidean plane

configurations 2 to 7 are exactly the intermediate configurations that we mentioned
at the beginning of this section.

If gadget Gi is in state (L,L) instead of state (S,L), a sequence of steps that
satisfies Property 5 can be constructed analogously. Additionally, one has to take into
account that the three involved blocks Bi

1, Bi+1
1 , and Bi+1

2 are not consecutive in the
tour but that block Bi

2 lies between them. However, one can easily verify that this
block is not affected by the sequence of 2-changes, as after the seven 2-changes have
been performed, the block is in the same state and at the same position as before.
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3.1.2 Embedding the Construction into the Euclidean Plane

The only missing step in the proof of Theorem 1 for the Euclidean plane is to find
points such that all of the 2-changes that we described in the previous section are
improving. We specify the positions of the points of gadget Gn−1 and give a rule
as to how the points of gadget Gi can be derived when all points of gadget Gi+1

have already been placed. In our construction it happens that different points have
exactly the same coordinates. This is only for ease of notation; if one wants to obtain
a TSP instance in which distinct points have distinct coordinates, one can slightly
move these points without affecting the property that all 2-changes are improving.

For j ∈ [2], we choose An−1
j = (0,0), Bn−1

j = (1,0), Cn−1
j = (−0.1,1.4),

and Dn−1
j = (−1.1,4.8). Then An−1

j Bn−1
j Cn−1

j Dn−1
j is the short state and

An−1
j Cn−1

j Bn−1
j Dn−1

j is the long state because

d
(
An−1

j ,Cn−1
j

)+ d
(
Bn−1

j ,Dn−1
j

)
> d

(
An−1

j ,Bn−1
j

)+ d
(
Cn−1

j ,Dn−1
j

)
,

as

d
(
An−1

j ,Cn−1
j

)+ d
(
Bn−1

j ,Dn−1
j

)=
√

0.12 + 1.42 +
√

2.12 + 4.82 > 6.64

and

d
(
An−1

j ,Bn−1
j

)+ d
(
Cn−1

j ,Dn−1
j

)=
√

12 + 02 +
√

12 + 3.42 < 4.55.

We place the points of gadget Gi as follows (see Fig. 4):

1. Start with the coordinates of the points of gadget Gi+1.
2. Rotate these points around the origin by 3π/2.
3. Scale each coordinate by a factor of 3.
4. Translate the points by the vector (−1.2,0.1).

Fig. 4 This illustration shows the points of the gadgets Gn−1 and Gn−2. One can see that Gn−2 is a
scaled, rotated, and translated copy of Gn−1
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For j ∈ [2], this yields An−2
j = (−1.2,0.1), Bn−2

j = (−1.2,−2.9), Cn−2
j = (3,0.4),

and Dn−2
j = (13.2,3.4).

From this construction it follows that each gadget is a scaled, rotated, and trans-
lated copy of gadget Gn−1. If one has a set of points in the Euclidean plane that
admits certain improving 2-changes, then these 2-changes are still improving if one
scales, rotates, and translates all points in the same manner. Hence, it suffices to show
that the sequences in which gadget Gn−2 resets gadget Gn−1 from (S,S) to (L,L)

are improving because, for any i, the points of the gadgets Gi and Gi+1 are a scaled,
rotated, and translated copy of the points of the gadgets Gn−2 and Gn−1.

There are two sequences in which gadget Gn−2 resets gadget Gn−1 from (S,S) to
(L,L): in the first one, gadget Gn−2 changes its state from (L,L) to (S,L), in the
second one, gadget Gn−2 changes its state from (S,L) to (S,S). Since the coordi-
nates of the points in both blocks of gadget Gn−2 are the same, the inequalities for
both sequences are also identical. The following inequalities show that the improve-
ments made by the steps in both sequences are all positive (see Fig. 3 or the table in
Sect. 3.1.1 for the sequence of 2-changes):

(1) d
(
An−2

2 ,Cn−2
2

) + d
(
Cn−1

2 ,Dn−1
2

) − d
(
An−2

2 ,Cn−1
2

) − d
(
Cn−2

2 ,Dn−1
2

)
> 0.03,

(2) d
(
Bn−1

2 ,An−1
2

) + d
(
Dn−2

2 ,Bn−2
2

) − d
(
Bn−1

2 ,Dn−2
2

)− d
(
An−1

2 ,Bn−2
2

)
> 0.91,

(3) d
(
Bn−1

2 ,Dn−2
2

)+ d
(
Cn−1

1 ,Dn−1
1

) − d
(
Bn−1

2 ,Cn−1
1

) − d
(
Dn−2

2 ,Dn−1
1

)
> 0.06,

(4) d
(
Bn−1

1 ,An−1
1

) + d
(
Cn−2

2 ,Dn−1
2

) − d
(
Bn−1

1 ,Cn−2
2

) − d
(
An−1

1 ,Dn−1
2

)
> 0.05,

(5) d
(
An−2

2 ,Cn−1
2

) + d
(
Bn−2

2 ,An−1
2

) − d
(
An−2

2 ,Bn−2
2

) − d
(
Cn−1

2 ,An−1
2

)
> 0.43,

(6) d
(
Cn−1

1 ,Bn−1
2

) + d
(
An−1

1 ,Dn−1
2

) − d
(
Cn−1

1 ,An−1
1

) − d
(
Bn−1

2 ,Dn−1
2

)
> 0.06,

(7) d
(
Cn−2

2 ,Bn−1
1

) + d
(
Dn−2

2 ,Dn−1
1

)− d
(
Cn−2

2 ,Dn−2
2

)− d
(
Bn−1

1 ,Dn−1
1

)
> 0.53.

This concludes the proof of Theorem 1 for the Euclidean plane as it shows that all
2-changes in Lemma 6 are improving.

3.2 Exponential Lower Bound for Lp Metrics

We were not able to find a set of points in the plane such that all 2-changes in
Lemma 6 are improving with respect to the Manhattan metric. Therefore, we modify
the construction of the gadgets and the sequence of 2-changes. Our construction for
the Manhattan metric is based on the construction for the Euclidean plane, but it does
not possess the property that every gadget resets its neighboring gadget twice. This
property is only true for half of the gadgets. To be more precise, we construct two dif-
ferent types of gadgets which we call reset gadgets and propagation gadgets. Reset
gadgets perform the same sequence of 2-changes as the gadgets that we constructed
for the Euclidean plane. Propagation gadgets also have the same structure as the gad-
gets for the Euclidean plane, but when such a gadget changes its state from (L,L) to
(S,S), it resets its neighboring gadget only once. Due to this relaxed requirement it
is possible to find points in the Manhattan plane whose distances satisfy all necessary
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inequalities. Instead of n gadgets, our construction consists of 2n gadgets, namely n

propagation gadgets GP
0 , . . . ,GP

n−1 and n reset gadgets GR
0 , . . . ,GR

n−1. The order in
which these gadgets appear in the tour is GP

0 GR
0 GP

1 GR
1 . . .GP

n−1G
R
n−1.

As before, every gadget consists of two blocks and the order in which the blocks
and the gadgets are visited does not change during the sequence of 2-changes. Con-
sider a reset gadget GR

i and its neighboring propagation gadget GP
i+1. We will embed

the points of the gadgets into the Manhattan plane in such a way that Property 5 is
still satisfied. That is, if GR

i is in state (L,L) (or state (S,L), respectively) and GP
i+1

is in state (S,S), then there exists a sequence of seven consecutive 2-changes reset-
ting gadget GP

i+1 to state (L,L) and leaving gadget GR
i in state (S,L) (or (S,S),

respectively). The situation is different for a propagation gadget GP
i and its neigh-

boring reset gadget GR
i . In this case, if GP

i is in state (L,L), it first changes its state
with a single 2-change to (S,L). After that, gadget GP

i changes its state to (S,S)

while resetting gadget GR
i from state (S,S) to state (L,L) by a sequence of seven

consecutive 2-changes. In both cases, the sequences of 2-changes in which one block
changes from its long to its short state while resetting two blocks of the neighboring
gadget from their short to their long states are chosen analogously to the ones for
the Euclidean plane described in Sect. 3.1.1. An example with three propagation and
three reset gadgets is shown in Fig. 5.

In the initial tour, only gadget GP
0 is in state (L,L) and every other gadget is in

state (S,S). With similar arguments as for the Euclidean plane, we can show that
gadget GR

i is reset from its one state (S,S) to its zero state (L,L) 2i times and that
the total number of steps is 2n+4 − 22.

3.2.1 Embedding the Construction into the Manhattan Plane

As in the construction in the Euclidean plane, the points in both blocks of a re-
set gadget GR

i have the same coordinates. Also in this case one can slightly move
all the points without affecting the inequalities if one wants distinct coordinates
for distinct points. Again, we choose points for the gadgets GP

n−1 and GR
n−1 and

describe how the points of the gadgets GP
i and GR

i can be chosen when the
points of the gadgets GP

i+1 and GR
i+1 are already chosen. For j ∈ [2], we choose

An−1
R,j = (0,1), Bn−1

R,j = (0,0), Cn−1
R,j = (−0.7,0.1), and Dn−1

R,j = (−1.2,0.08). Fur-

thermore, we choose An−1
P,1 = (−2,1.8), Bn−1

P,1 = (−3.3,2.8), Cn−1
P,1 = (−1.3,1.4),

Dn−1
P,1 = (1.5,0.9), An−1

P,2 = (−0.7,1.6), Bn−1
P,2 = (−1.5,1.2), Cn−1

P,2 = (1.9,−1.5),

and Dn−1
P,2 = (−0.8,−1.1).

Before we describe how the points of the other gadgets are chosen, we first show
that the 2-changes within and between the gadgets GP

n−1 and GR
n−1 are improving.

For j ∈ [2], An−1
R,j Bn−1

R,j Cn−1
R,j Dn−1

R,j is the short state because

d
(
An−1

R,j ,Cn−1
R,j

)+ d
(
Bn−1

R,j ,Dn−1
R,j

)− (
d
(
An−1

R,j ,Bn−1
R,j

)+ d
(
Cn−1

R,j ,Dn−1
R,j

))

= (0.7 + 0.9) + (1.2 + 0.08) − (0 + 1) − (0.5 + 0.02) = 1.36.
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Fig. 5 This figure shows an
example with three propagation
and three reset gadgets. It shows
the first 16 configurations that
these gadgets assume during the
sequence of 2-changes,
excluding the intermediate
configurations that arise when
one gadget resets another one.
Gadgets that are involved in the
transformation from
configuration i to
configuration i + 1 are shown in
gray. For example, in the step
from the first to the second
configuration, the first block

BP,0
1 of the first propagation

gadget GP
0 switches from its

long to its short state by a single
2-change. Then in the step from
the second to the third
configuration, the second block

BP,0
2 of the first propagation

gadget GP
0 resets the two blocks

of the first reset gadget GR
0 .

That is, these three blocks
follow the sequence of seven
2-changes from Property 5

In the 2-change in which GP
n−1 changes its state from (L,L) to (S,L) the

edges An−1
P,1 ,Cn−1

P,1 and Bn−1
P,1 ,Dn−1

P,1 are replaced with the edges An−1
P,1 ,Bn−1

P,1 and

Cn−1
P,1 ,Dn−1

P,1 . This 2-change is improving because

d
(
An−1

P,1 ,Cn−1
P,1

)+ d
(
Bn−1

P,1 ,Dn−1
P,1

)− (
d
(
An−1

P,1 ,Bn−1
P,1

)+ d
(
Cn−1

P,1 ,Dn−1
P,1

))

= (0.7 + 0.4) + (4.8 + 1.9) − (1.3 + 1) − (2.8 + 0.5) = 2.2.

The 2-changes in the sequence in which GP
n−1 changes its state from (S,L) to (S,S)

while resetting GR
n−1 are chosen analogously to the ones shown in Fig. 3 and in

the table in Sect. 3.1.1. The only difference is that the involved blocks are not Bi
2,

Bi+1
1 , and Bi+1

2 anymore, but the second block of gadget GP
n−1 and the two blocks of

gadget GR
n−1, respectively. This gives rise to the following equalities that show that
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the improvements made by the 2-changes in this sequence are all positive:

(1) d
(
An−1

P,2 ,Cn−1
P,2

) + d
(
Cn−1

R,2 ,Dn−1
R,2

) − d
(
An−1

P,2 ,Cn−1
R,2

) − d
(
Cn−1

P,2 ,Dn−1
R,2

) = 0.04,

(2) d
(
Bn−1

R,2 ,An−1
R,2

) + d
(
Dn−1

P,2 ,Bn−1
P,2

) − d
(
Bn−1

R,2 ,Dn−1
P,2

)− d
(
An−1

R,2 ,Bn−1
P,2

) = 0.4,

(3) d
(
Bn−1

R,2 ,Dn−1
P,2

)+ d
(
Cn−1

R,1 ,Dn−1
R,1

) − d
(
Bn−1

R,2 ,Cn−1
R,1

) − d
(
Dn−1

P,2 ,Dn−1
R,1

)= 0.04,

(4) d
(
Bn−1

R,1 ,An−1
R,1

) + d
(
Cn−1

P,2 ,Dn−1
R,2

) − d
(
Bn−1

R,1 ,Cn−1
P,2

) − d
(
An−1

R,1 ,Dn−1
R,2

) = 0.16,

(5) d
(
An−1

P,2 ,Cn−1
R,2

) + d
(
Bn−1

P,2 ,An−1
R,2

) − d
(
An−1

P,2 ,Bn−1
P,2

) − d
(
Cn−1

R,2 ,An−1
R,2

) = 0.4,

(6) d
(
Cn−1

R,1 ,Bn−1
R,2

) + d
(
An−1

R,1 ,Dn−1
R,2

) − d
(
Cn−1

R,1 ,An−1
R,1

) − d
(
Bn−1

R,2 ,Dn−1
R,2

) = 0.04,

(7) d
(
Cn−1

P,2 ,Bn−1
R,1

) + d
(
Dn−1

P,2 ,Dn−1
R,1

)− d
(
Cn−1

P,2 ,Dn−1
P,2

)− d
(
Bn−1

R,1 ,Dn−1
R,1

) = 0.6.

Again, our construction possesses the property that each pair of gadgets GP
i and

GR
i is a scaled and translated version of the pair GP

n−1 and GR
n−1. Since we have

relaxed the requirements for the gadgets, we do not even need rotations here. We
place the points of GP

i and GR
i as follows:

1. Start with the coordinates specified for the points of gadgets GP
i+1 and GR

i+1.
2. Scale each coordinate by a factor of 7.7.
3. Translate the points by the vector (1.93,0.3).

For j ∈ [2], this yields An−2
R,j = (1.93,8), Bn−2

R,j = (1.93,0.3), Cn−2
R,j = (−3.46,

1.07), and Dn−2
R,j = (−7.31,0.916). Additionally, it yields An−2

P,1 = (−13.47,14.16),

Bn−2
P,1 = (−23.48,21.86), Cn−2

P,1 = (−8.08,11.08), Dn−2
P,1 = (13.48,7.23), An−2

P,2 =
(−3.46,12.62), Bn−2

P,2 = (−9.62,9.54), Cn−2
P,2 = (16.56,−11.25), and Dn−2

P,2 =
(−4.23,−8.17).

As in our construction for the Euclidean plane, it suffices to show that the se-
quences in which gadget GR

n−2 resets gadget GP
n−1 from (S,S) to (L,L) are im-

proving because, for any i, the points of the gadgets GR
i and GP

i+1 are a scaled and
translated copy of the points of the gadgets GR

n−2 and GP
n−1. The 2-changes in these

sequences are chosen analogously to the ones shown in Fig. 3 and in the table in
Sect. 3.1.1. The only difference is that the involved blocks are not Bi

2, Bi+1
1 , and Bi+1

2
anymore, but one of the blocks of gadget GR

n−2 and the two blocks of gadget GP
n−1,

respectively. As the coordinates of the points in the two blocks of gadget GR
n−2 are

the same, the inequalities for both sequences are also identical. The improvements
made by the steps in both sequences are

(1) d
(
An−2

R,2 ,Cn−2
R,2

) + d
(
Cn−1

P,2 ,Dn−1
P,2

)− d
(
An−2

R,2 ,Cn−1
P,2

)− d
(
Cn−2

R,2 ,Dn−1
P,2

)= 1.06,

(2) d
(
Bn−1

P,2 ,An−1
P,2

) +d
(
Dn−2

R,2 ,Bn−2
R,2

) −d
(
Bn−1

P,2 ,Dn−2
R,2

)−d
(
An−1

P,2 ,Bn−2
R,2

) =1.032,

(3) d
(
Bn−1

P,2 ,Dn−2
R,2

)+d
(
Cn−1

P,1 ,Dn−1
P,1

) −d
(
Bn−1

P,2 ,Cn−1
P,1

) −d
(
Dn−2

R,2 ,Dn−1
P,1

)=0.168,

(4) d
(
Bn−1

P,1 ,An−1
P,1

) + d
(
Cn−2

R,2 ,Dn−1
P,2

)− d
(
Bn−1

P,1 ,Cn−2
R,2

)− d
(
An−1

P,1 ,Dn−1
P,2

)= 1.14,
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(5) d
(
An−2

R,2 ,Cn−1
P,2

) + d
(
Bn−2

R,2 ,An−1
P,2

) − d
(
An−2

R,2 ,Bn−2
R,2

)− d
(
Cn−1

P,2 ,An−1
P,2

) = 0.06,

(6) d
(
Cn−1

P,1 ,Bn−1
P,2

) + d
(
An−1

P,1 ,Dn−1
P,2

)− d
(
Cn−1

P,1 ,An−1
P,1

)− d
(
Bn−1

P,2 ,Dn−1
P,2

)= 0.4,

(7) d
(
Cn−2

R,2 ,Bn−1
P,1

)+d
(
Dn−2

R,2 ,Dn−1
P,1

)−d
(
Cn−2

R,2 ,Dn−2
R,2

)−d
(
Bn−1

P,1 ,Dn−1
P,1

) =0.012.

This concludes the proof of Theorem 1 for the Manhattan metric as it shows that all
2-changes are improving.

Let us remark that this also implies Theorem 1 for the L∞ metric because dis-
tances with respect to the L∞ metric coincide with distances with respect to the
Manhattan metric if one rotates all points by π/4 around the origin and scales every
coordinate by 1/

√
2.

3.2.2 Embedding the Construction into General Lp Metrics

It is also possible to embed our Manhattan construction into the Lp metric for p ∈N

with p ≥ 3. For j ∈ [2], we choose An−1
R,j = (0,1), Bn−1

R,j = (0,0), Cn−1
R,j = (3.5,3.7),

and Dn−1
R,j = (7.8,−3.2). Moreover, we choose An−1

P,1 = (−2.5,−2.4), Bn−1
P,1 =

(−4.7,−7.3), Cn−1
P,1 = (−8.6,−4.6), Dn−1

P,1 = (3.7,9.8), An−1
P,2 = (3.2,2), Bn−1

P,2 =
(7.2,7.2), Cn−1

P,2 = (−6.5,−1.6), and Dn−1
P,2 = (−1.5,−7.1). We place the points of

GP
i and GR

i as follows:

1. Start with the coordinates specified for the points of gadgets GP
i+1 and GR

i+1.
2. Rotate these points around the origin by π .
3. Scale each coordinate by a factor of 7.8.
4. Translate the points by the vector (7.2,5.3).

For j ∈ [2], this yields An−2
R,j = (7.2,−2.5), Bn−2

R,j = (7.2,5.3), Cn−2
R,j = (−20.1,

−23.56), and Dn−2
R,j = (−53.64,30.26). Additionally, it yields An−2

P,1 = (26.7,24.02),

Bn−2
P,1 = (43.86,62.24), Cn−2

P,1 = (74.28,41.18), Dn−2
P,1 = (−21.66,−71.14), An−2

P,2 =
(−17.76,−10.3), Bn−2

P,2 = (−48.96,−50.86), Cn−2
P,2 = (57.9,17.78), and Dn−2

P,2 =
(18.9,60.68).

It needs to be shown that the distances of these points when measured according to
the Lp metric for any p ∈ N with p ≥ 3 satisfy all necessary inequalities, that is, all
16 inequalities that we have verified in the previous section for the Manhattan metric.
Let us start by showing that for j ∈ [2], An−1

R,j Bn−1
R,j Cn−1

R,j Dn−1
R,j is the short state. For

this, we have to prove the following inequality for every p ∈N with p ≥ 3:

dp

(
An−1

R,j ,Cn−1
R,j

)+ dp

(
Bn−1

R,j ,Dn−1
R,j

)− (
dp

(
An−1

R,j ,Bn−1
R,j

)+ dp

(
Cn−1

R,j ,Dn−1
R,j

))
> 0

⇐⇒ p
√

3.5p + 2.7p + p
√

7.8p + 3.2p − p
√

0p + 1p − p
√

4.3p + 6.9p > 0.

(3.1)

For p = ∞, the inequality is satisfied as the left side equals 3.4 when distances are
measured according to the L∞ metric. In order to show that the inequality is also
satisfied for every p ∈ N with p ≥ 3, we analyze by how much the distances dp

deviate from the distances d∞. For p ∈N with p ≥ 3, we obtain
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p
√

4.3p + 6.9p − 6.9 = 6.9 ·
(

p

√

1 +
(

4.3

6.9

)p

− 1

)

≤ 6.9 ·
(

3

√

1 +
(

4.3

6.9

)3

− 1

)
< 0.52. (3.2)

Hence,

p
√

3.5p + 2.7p + p
√

7.8p + 3.2p − p
√

0p + 1p − p
√

4.3p + 6.9p

≥ 3.5 + 7.8 − 1 − 6.9 − 0.52 > 0,

which proves that An−1
R,j Bn−1

R,j Cn−1
R,j Dn−1

R,j is the short state for every p ∈ N with p ≥ 3.

Next we argue that also the 2-change in which GP
n−1 changes its state from (L,L)

to (S,L) is improving. For this, the following inequality needs to be verified for
every p ∈N with p ≥ 3:

d
(
An−1

P,1 ,Cn−1
P,1

)+ d
(
Bn−1

P,1 ,Dn−1
P,1

)− (
d
(
An−1

P,1 ,Bn−1
P,1

)− d
(
Cn−1

P,1 ,Dn−1
P,1

))
> 0

⇐⇒ p
√

6.1p + 2.2p + p
√

8.4p + 17.1p − p
√

2.2p + 4.9p − p
√

12.3p + 14.4p > 0.

As before, we obtain for p ∈N with p ≥ 3

p
√

2.2p + 4.9p − 4.9 = 4.9 ·
(

p

√

1 +
(

2.2

4.9

)p

− 1

)

≤ 4.9 ·
(

3

√

1 +
(

2.2

4.9

)3

− 1

)
< 0.15

and

p
√

12.3p + 14.4p − 14.4 = 14.4 ·
(

p

√

1 +
(

12.3

14.4

)p

− 1

)

≤ 14.4 ·
(

3

√

1 +
(

12.3

14.4

)3

− 1

)
< 2.53.

This implies for p ∈N with p ≥ 3

p
√

6.1p + 2.2p + p
√

8.4p + 17.1p − p
√

2.2p + 4.9p − p
√

12.3p + 14.4p

≥ 6.1 + 17.1 − 4.9 − 0.15 − 14.4 − 2.53 > 0,

which proves that the 2-change in which GP
n−1 changes its state from (L,L) to (S,L)

is improving for every p ∈N with p ≥ 3.
Next we show that the improvements made by the 2-changes in the sequence in

which GP
n−1 changes its state from (S,L) to (S,S) while resetting GR

n−1 are positive.
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For this we need to verify the following inequalities for every p ∈N with p ≥ 3 (ob-
serve that these are exactly the same inequalities that we have verified in Sect. 3.2.1
for the Manhattan metric):

(1) dp

(
An−1

P,2 ,Cn−1
P,2

)+ dp

(
Cn−1

R,2 ,Dn−1
R,2

)− dp

(
An−1

P,2 ,Cn−1
R,2

)− dp

(
Cn−1

P,2 ,Dn−1
R,2

)
> 0

⇐⇒ p
√

9.7p + 3.6p + p
√

4.3p + 6.9p − p
√

0.3p + 1.7p − p
√

14.3p + 1.6p > 0,

(2) dp

(
Bn−1

R,2 ,An−1
R,2

)+ dp

(
Dn−1

P,2 ,Bn−1
P,2

)− dp

(
Bn−1

R,2 ,Dn−1
P,2

)− dp

(
An−1

R,2 ,Bn−1
P,2

)
> 0

⇐⇒ p
√

0.0p + 1.0p + p
√

8.7p + 14.3p − p
√

1.5p + 7.1p − p
√

7.2p + 6.2p > 0,

(3) dp

(
Bn−1

R,2 ,Dn−1
P,2

)+ dp

(
Cn−1

R,1 ,Dn−1
R,1

)− dp

(
Bn−1

R,2 ,Cn−1
R,1

)− dp

(
Dn−1

P,2 ,Dn−1
R,1

)
> 0

⇐⇒ p
√

1.5p + 7.1p + p
√

4.3p + 6.9p − p
√

3.5p + 3.7p − p
√

9.3p + 3.9p > 0,

(4) dp

(
Bn−1

R,1 ,An−1
R,1

)+ dp

(
Cn−1

P,2 ,Dn−1
R,2

)− dp

(
Bn−1

R,1 ,Cn−1
P,2

)− dp

(
An−1

R,1 ,Dn−1
R,2

)
> 0

⇐⇒ p
√

0.0p + 1.0p + p
√

14.3p + 1.6p − p
√

6.5p + 1.6p − p
√

7.8p + 4.2p > 0,

(5) dp

(
An−1

P,2 ,Cn−1
R,2

)+ dp

(
Bn−1

P,2 ,An−1
R,2

)− dp

(
An−1

P,2 ,Bn−1
P,2

)− dp

(
Cn−1

R,2 ,An−1
R,2

)
> 0

⇐⇒ p
√

0.3p + 1.7p + p
√

7.2p + 6.2p − p
√

4.0p + 5.2p − p
√

3.5p + 2.7p > 0,

(6) dp

(
Cn−1

R,1 ,Bn−1
R,2

)+ dp

(
An−1

R,1 ,Dn−1
R,2

)− dp

(
Cn−1

R,1 ,An−1
R,1

)− dp

(
Bn−1

R,2 ,Dn−1
R,2

)
> 0

⇐⇒ p
√

3.5p + 3.7p + p
√

7.8p + 4.2p − p
√

3.5p + 2.7p − p
√

7.8p + 3.2p > 0,

(7) dp

(
Cn−1

P,2 ,Bn−1
R,1

)+ dp

(
Dn−1

P,2 ,Dn−1
R,1

)− dp

(
Cn−1

P,2 ,Dn−1
P,2

)− dp

(
Bn−1

R,1 ,Dn−1
R,1

)
> 0

⇐⇒ p
√

6.5p + 1.6p + p
√

9.3p + 3.9p − p
√

5.0p + 5.5p − p
√

7.8p + 3.2p > 0.

These inequalities can be checked in the same way as Inequality (3.1). Details can
be found in Appendix A.

It remains to be shown that the sequences in which gadget GR
n−2 resets gadget

GP
n−1 from (S,S) to (L,L), are improving. As the coordinates of the points in the

two blocks of gadget GR
n−2 are the same, the inequalities for both sequences are also

identical. We need to verify the following inequalities:

(1) dp

(
An−2

R,2 ,Cn−2
R,2

)+ dp

(
Cn−1

P,2 ,Dn−1
P,2

)− dp

(
An−2

R,2 ,Cn−1
P,2

)− dp

(
Cn−2

R,2 ,Dn−1
P,2

)
> 0

⇐⇒ p
√

27.3p + 21.06p + p
√

5.0p + 5.5p − p
√

13.7p + 0.9p − p
√

18.6p + 16.46p > 0,

(2) dp

(
Bn−1

P,2 ,An−1
P,2

)+ dp

(
Dn−2

R,2 ,Bn−2
R,2

)− dp

(
Bn−1

P,2 ,Dn−2
R,2

)− dp

(
An−1

P,2 ,Bn−2
R,2

)
> 0

⇐⇒ p
√

4.0p + 5.2p + p
√

60.84p + 24.96p − p
√

60.84p + 23.06p − p
√

4.0p + 3.3p > 0,

(3) dp

(
Bn−1

P,2 ,Dn−2
R,2

)+ dp

(
Cn−1

P,1 ,Dn−1
P,1

)− dp

(
Bn−1

P,2 ,Cn−1
P,1

)− dp

(
Dn−2

R,2 ,Dn−1
P,1

)
> 0

⇐⇒ p
√

60.84p + 23.06p + p
√

12.3p + 14.4p − p
√

15.8p + 11.8p − p
√

57.34p + 20.46p >0,

(4) dp

(
Bn−1

P,1 ,An−1
P,1

)+ dp

(
Cn−2

R,2 ,Dn−1
P,2

)− dp

(
Bn−1

P,1 ,Cn−2
R,2

)− dp

(
An−1

P,1 ,Dn−1
P,2

)
> 0

⇐⇒ p
√

2.2p + 4.9p + p
√

18.6p + 16.46p − p
√

15.4p + 16.26p − p
√

1.0p + 4.7p > 0,
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(5) dp

(
An−2

R,2 ,Cn−1
P,2

)+ dp

(
Bn−2

R,2 ,An−1
P,2

)− dp

(
An−2

R,2 ,Bn−2
R,2

)− dp

(
Cn−1

P,2 ,An−1
P,2

)
> 0

⇐⇒ p
√

13.7p + 0.9p + p
√

4.0p + 3.3p − p
√

0.0p + 7.8p − p
√

9.7p + 3.6p > 0,

(6) dp

(
Cn−1

P,1 ,Bn−1
P,2

)+ dp

(
An−1

P,1 ,Dn−1
P,2

)− dp

(
Cn−1

P,1 ,An−1
P,1

)− dp

(
Bn−1

P,2 ,Dn−1
P,2

)
> 0

⇐⇒ p
√

15.8p + 11.8p + p
√

1.0p + 4.7p − p
√

6.1p + 2.2p − p
√

8.7p + 14.3p > 0,

(7) dp

(
Cn−2

R,2 ,Bn−1
P,1

)+ dp

(
Dn−2

R,2 ,Dn−1
P,1

)− dp

(
Cn−2

R,2 ,Dn−2
R,2

)− dp

(
Bn−1

P,1 ,Dn−1
P,1

)
> 0

⇐⇒ p
√

15.4p + 16.26p + p
√

57.34p + 20.46p − p
√

33.54p + 53.82p − p
√

8.4p + 17.1p >0.

These inequalities can be checked in the same way as Inequality (3.1) was checked;
see the details in Appendix A.

4 Expected Number of 2-Changes

We analyze the expected number of 2-changes on random d-dimensional Manhat-
tan and Euclidean instances, for an arbitrary constant dimension d ≥ 2. One possible
approach for this is to analyze the improvement made by the smallest improving
2-change: If the smallest improvement is not too small, then the number of improve-
ments cannot be large. This approach yields polynomial bounds, but in our analysis,
we consider not only a single step but certain pairs of steps. We show that the smallest
improvement made by any such pair is typically much larger than the improvement
made by a single step, which yields better bounds. Our approach is not restricted to
pairs of steps. One could also consider sequences of steps of length k for any small
enough k. In fact, for general φ-perturbed graphs with m edges, we consider se-
quences of length

√
logm in [5]. The reason why we can analyze longer sequences for

general graphs is that these inputs possess more randomness than φ-perturbed Man-
hattan and Euclidean instances because every edge length is a random variable that
is independent of the other edge lengths. Hence, the analysis for general φ-perturbed
graphs demonstrates the limits of our approach under optimal conditions. For Man-
hattan and Euclidean instances, the gain of considering longer sequences is small due
to the dependencies between the edge lengths.

4.1 Manhattan Instances

In this section, we analyze the expected number of 2-changes on φ-perturbed Manhat-
tan instances. First we prove a weaker bound than the one in Theorem 2 in a slightly
different model. In this model the position of a vertex vi is not chosen according
to a density function fi : [0,1]d → [0, φ], but instead each of its d coordinates is
chosen independently. To be more precise, for every j ∈ [d], there is a density func-
tion f

j
i : [0,1] → [0, φ] according to which the j th coordinate of vi is chosen.

The proof of this weaker bound illustrates our approach and reveals the problems
one has to tackle in order to improve the upper bounds. It is solely based on an
analysis of the smallest improvement made by any of the possible 2-Opt steps. If with
high probability every 2-Opt step decreases the tour length by an inverse polynomial
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amount, then with high probability only polynomially many 2-Opt steps are possible
before a local optimum is reached. In fact, the probability that there exists a 2-Opt
step that decreases the tour length by less than an inverse polynomial amount is so
small that (as we will see) even the expected number of possible 2-Opt steps can be
bounded polynomially.

Theorem 7 Starting with an arbitrary tour, the expected number of steps performed
by 2-Opt on φ-perturbed Manhattan instances with n vertices is O(n6 · logn · φ) if
the coordinates of every vertex are drawn independently.

Proof We will see below that, in order to prove the desired bound on the expected
convergence time, we only need two simple observations. First, the initial tour can
have length at most dn as the number of edges is n and every edge has length at
most d . And second, every 2-Opt step decreases the length of the tour by an inverse
polynomial amount with high probability. The latter can be shown by a union bound
over all possible 2-Opt steps. Consider a fixed 2-Opt step S, let e1 and e2 denote the
edges removed from the tour in step S, and let e3 and e4 denote the edges added to
the tour. Then the improvement Δ(S) of step S can be written as

Δ(S) = d(e1) + d(e2) − d(e3) − d(e4). (4.1)

Without loss of generality let e1 = (v1, v2) be the edge between the vertices v1 and v2,
and let e2 = (v3, v4), e3 = (v1, v3), and e4 = (v2, v4). Furthermore, for i ∈ {1, . . .4},
let xi ∈ R

d denote the coordinates of vertex vi . Then the improvement Δ(S) of step
S can be written as

Δ(S) =
d∑

i=1

(∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣).

Depending on the order of the coordinates, Δ(S) can be written as some linear com-
bination of the coordinates. If, e.g., for all i ∈ [d], x1

i ≥ x2
i ≥ x3

i ≥ x4
i , then the im-

provement Δ(S) can be written as
∑d

i=1(−2x2
i + 2x3

i ). There are (4!)d such orders

and each one gives rise to a linear combination of the x
j
i ’s with integer coefficients.

For each of these linear combinations, the probability that it takes a value in the
interval (0, ε] is bounded from above by εφ. To see this, we distinguish between
two cases: If all coefficients in the linear combination are zero then the probability
that the linear combination takes a value in the interval (0, ε] is zero. If at least one
coefficient is nonzero then we can apply the principle of deferred decisions (see,
e.g., [14]). Let x

j
i be a variable that has a nonzero coefficient α and assume that

all random variables except for x
j
i are already drawn. Then, in order for the linear

combination to take a value in the interval (0, ε], the random variable x
j
i has to take a

value in a fixed interval of length ε/|α|. As the density of x
j
i is bounded from above

by φ and α is a nonzero integer, the probability of this event is at most εφ.
Since Δ(S) can only take a value in the interval (0, ε] if one of the linear combi-

nations takes a value in this interval, the probability of the event Δ(S) ∈ (0, ε] can be
upper bounded by (4!)dεφ.
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Let Δmin denote the improvement of the smallest improving 2-Opt step S, i.e.,
Δmin = min{Δ(S) | Δ(S) > 0}. We can estimate Δmin by a union bound, yielding

Pr[Δmin ≤ ε] ≤ (4!)dεn4φ

as there are at most n4 different 2-Opt steps. Let T denote the random variable de-
scribing the number of 2-Opt steps before a local optimum is reached. Observe that T

can only exceed a given number t if the smallest improvement Δmin is less than dn/t ,
and hence

Pr[T ≥ t] ≤ Pr
[
Δmin ≤ dn

t

]
≤ d(4!)dn5φ

t
.

Since there are at most n! different TSP tours and none of these tours can appear
twice during the local search, T is always bounded by n!. Altogether, we can bound
the expected value of T by

E[T ] =
n!∑

t=1

Pr[T ≥ t] ≤
n!∑

t=1

d(4!)dn5φ

t
.

Since we assumed the dimension d to be a constant, bounding the n-th harmonic
number by ln(n) + 1 and using ln(n!) = O(n logn) yields

E[T ] ≤ d(4!)dn5φ
(
ln(n!) + 1

)= O
(
n6 · logn · φ). �

The bound in Theorem 7 is only based on the smallest improvement Δmin made
by any of the 2-Opt steps. Intuitively, this is too pessimistic since most of the steps
performed by 2-Opt yield a larger improvement than Δmin. In particular, two consec-
utive steps yield an improvement of at least Δmin plus the improvement Δ′

min of the
second smallest step. This observation alone, however, does not suffice to improve the
bound substantially. Instead, we show in Lemma 8 that we can regroup the 2-changes
to pairs such that each pair of 2-changes is linked by an edge, i.e., one edge added
to the tour in the first 2-change is removed from the tour in the second 2-change.
Then we analyze the smallest improvement made by any pair of linked 2-Opt steps.
Obviously, this improvement is at least Δmin + Δ′

min but one can hope that it is much
larger because it is unlikely that the 2-change that yields the smallest improvement
and the 2-change that yields the second smallest improvement form a pair of linked
steps. We show that this is indeed the case and use this result to prove the bound on
the expected length of the longest path in the state graph of 2-Opt on φ-perturbed
Manhattan instances claimed in Theorem 2.

4.1.1 Construction of Pairs of Linked 2-Changes

Consider an arbitrary sequence of length t of consecutive 2-changes. The following
lemma guarantees that the number of disjoint linked pairs of 2-changes in every such
sequence increases linearly with the length t .
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{
S1︷ ︸︸ ︷

(·, ·) → (e1, e2),

S2︷ ︸︸ ︷
(·, ·) → (e3, e4),

S3︷ ︸︸ ︷
(e1, e3) → (·, ·),

S4︷ ︸︸ ︷
(e2, ·) → (·, ·),

S5︷ ︸︸ ︷
(e4, ·) → (·, ·)}

unprocessed 2-changes list of disjoint pairs
(0) S1, S2, S3, S4, S5 L = ∅
(1) S2, S5 L = {(S1, S3)}
(2) L = {(S1, S3), (S2, S5)}

Fig. 6 This figure shows an example of how the list L is generated. The considered sequence consists of
the five 2-changes S1, S2, S3, S4, S5, where · is used as placeholder for mutually different edges that are
different from all the ei . First all 2-changes are unprocessed. Then S1 gets processed (i = 1). According to
the definitions, we have j = 3 and j ′ = 4. Hence, we add the pair (S1, S3) to the list L and remove S1, S3,
and S4 from the sequence of 2-changes, leaving only the steps S2 and S5. Then we process S2 for which
j is undefined and j ′ = 5

Lemma 8 In every sequence of t consecutive 2-changes, the number of disjoint pairs
of 2-changes that are linked by an edge, i.e., pairs such that there exists an edge
added to the tour in the first 2-change of the pair and removed from the tour in the
second 2-change of the pair, is at least t/3 − n(n − 1)/4.

Proof Let S1, . . . , St denote an arbitrary sequence of consecutive 2-changes. The se-
quence is processed step by step and a list L of disjoint linked pairs of 2-changes
is created. Assume that the 2-changes S1, . . . , Si−1 have already been processed and
that now 2-change Si has to be processed. Assume further that in step Si the edges
e1 and e2 are exchanged with the edges e3 and e4 (for the following argument it is
not important which of the two incoming edges we call e3 and which we call e4).
Let j denote the smallest index with j > i such that edge e3 is removed from the
tour in step Sj if such a step exists, and let j ′ denote the smallest index with j ′ > i

such that edge e4 is removed from the tour in step Sj ′ if such a step exists. If the
index j is defined, the pair (Si, Sj ) is added to the constructed list L. If the index j

is not defined but the index j ′ is defined, the pair (Si, Sj ′) is added to the constructed
list L. After that, both steps Sj and Sj ′ (if defined) are removed from the sequence of
2-changes, that is, they are not processed in the following in order to guarantee dis-
jointness of the pairs in L. Also step Si is removed from the sequence of 2-changes
as it is completely processed. See Fig. 6 for an example of this process.

If one 2-change Si is processed, it excludes at most two other 2-changes from
being processed (Sj and Sj ′ ). Hence, the number of pairs added to L is at least t/3 −
n(n − 1)/4 because there can be at most �(n2

)
/2� = �n(n − 1)/4� steps Si for which

neither j nor j ′ is defined. �

Consider a fixed pair of 2-changes linked by an edge. Without loss of generality
assume that in the first step the edges {v1, v2} and {v3, v4} are exchanged with the
edges {v1, v3} and {v2, v4}, for distinct vertices v1, . . . , v4. Also without loss of gen-
erality assume that in the second step the edges {v1, v3} and {v5, v6} are exchanged
with the edges {v1, v5} and {v3, v6}. However, note that the vertices v5 and v6 are
not necessarily distinct from the vertices v2 and v4. We distinguish between three
different types of pairs.
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– pairs of type 0: |{v2, v4} ∩ {v5, v6}| = 0. This case is illustrated in Fig. 7.
– pairs of type 1: |{v2, v4} ∩ {v5, v6}| = 1. We can assume w.l.o.g. that v2 ∈ {v5, v6}.

We have to distinguish between two subcases: (a) The edges {v1, v5} and {v2, v3}
are added to the tour in the second step. (b) The edges {v1, v2} and {v3, v5} are
added to the tour in the second step. These cases are illustrated in Fig. 8.

– pairs of type 2: |{v2, v4} ∩ {v5, v6}| = 2. The case v2 = v5 and v4 = v6 cannot
appear as it would imply that in the first step the edges {v1, v2} and {v3, v4} are ex-
changed with the edges {v1, v3} and {v2, v4}, and that in the second step the edges
{v1, v3} and {v2, v4} are again exchanged with the edges {v1, v2} and {v3, v4}.
Hence, one of these 2-changes cannot be improving, and for pairs of this type
we must have v2 = v6 and v4 = v5.

When distances are measured according to the Euclidean metric, pairs of type 2
result in vast dependencies and hence the probability that there exists a pair of this
type in which both steps are improvements by at most ε with respect to the Euclidean
metric cannot be bounded appropriately. In order to reduce the number of cases we
have to consider and in order to prepare for the analysis of φ-perturbed Euclidean
instances, we exclude pairs of type 2 from our probabilistic analysis by leaving out
all pairs of type 2 when constructing the list L in the proof of Lemma 8.

We only need to show that there are always enough pairs of type 0 or 1. Consider
two steps Si and Sj with i < j that form a pair of type 2. Assume that in step Si the
edges {v1, v2} and {v3, v4} are replaced by the edges {v1, v3} and {v2, v4}, and that in
step Sj these edges are replaced by the edges {v1, v4} and {v2, v3}. Now consider the
next step Sl with l > j in which the edge {v1, v4} is removed from the tour, if such
a step exists, and the next step Sl′ with l′ > j in which the edge {v2, v3} is removed
from the tour if such a step exists. Observe that neither (Sj , Sl) nor (Sj , Sl′) can be a
pair of type 2 because otherwise the improvement of one of the steps Si , Sj , and Sl ,
or of one of the steps Si , Sj , and Sl′ , respectively, must be negative. In particular, we
must have l �= l′.

Fig. 7 A pair of type 0

Fig. 8 Pairs of type 1
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If we encounter a pair (Si, Sj ) of type 2 in the construction of the list L, we
mark step Si as being processed without adding a pair of 2-changes to L and without
removing Sj from the sequence of steps to be processed. Let x denote the number of
pairs of type 2 that we encounter during the construction of the list L. Our argument
above shows that the number of pairs of type 0 or 1 that are added to L is at least
x − n(n − 1)/4. This implies t ≥ x + (x − n(n − 1)/4) and x ≤ t/2 + n(n − 1)/8.
Hence, the number of relevant steps reduces from t to t ′ = t − x ≥ t/2 − n(n − 1)/8.
Using this estimate in Lemma 8 yields the following lemma.

Lemma 9 In every sequence of t consecutive 2-changes the number of disjoint pairs
of 2-changes of type 0 or 1 is at least t/6 − 7n(n − 1)/24.

4.1.2 Analysis of Pairs of Linked 2-Changes

The following lemma gives a bound on the probability that there exists a pair of type 0
or 1 in which both steps are small improvements.

Lemma 10 In a φ-perturbed Manhattan instance with n vertices, the probability that
there exists a pair of type 0 or type 1 in which both 2-changes are improvements by
at most ε is O(n6 · ε2 · φ2).

Proof First, we consider pairs of type 0. We assume that in the first step the edges
{v1, v2} and {v3, v4} are replaced by the edges {v1, v3} and {v2, v4} and that in the
second step the edges {v1, v3} and {v5, v6} are replaced by the edges {v1, v5} and
{v3, v6}. For j ∈ [6], let x

j
i ∈ R

d , i = 1,2, . . . , d , denote the d coordinates of ver-
tex vj . Furthermore, let Δ1 denote the (possibly negative) improvement of the first
step and let Δ2 denote the (possibly negative) improvement of the second step. The
random variables Δ1 and Δ2 can be written as

Δ1 =
d∑

i=1

(∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣)

and

Δ2 =
d∑

i=1

(∣∣x1
i − x3

i

∣
∣+ ∣

∣x5
i − x6

i

∣
∣− ∣

∣x1
i − x5

i

∣
∣− ∣

∣x3
i − x6

i

∣
∣).

For any fixed order of the coordinates, Δ1 and Δ2 can be expressed as linear
combinations of the coordinates with integer coefficients. For i ∈ [d], let σi denote an
order of the coordinates x1

i , . . . , x6
i , let σ = (σ1, . . . , σd), and let Δσ

1 and Δσ
2 denote

the corresponding linear combinations. We denote by A the event that both Δ1 and
Δ2 take values in the interval (0, ε], and we denote by Aσ the event that both linear
combinations Δσ

1 and Δσ
2 take values in the interval (0, ε]. Obviously A can only

occur if for at least one σ , the event Aσ occurs. Hence, we obtain

Pr[A] ≤
∑

σ

Pr
[
Aσ

]
.



214 Algorithmica (2014) 68:190–264

Since there are (6!)d different orders σ , which is constant for constant dimension d ,
it suffices to show that for every tuple of orders σ , the probability of the event Aσ

is bounded from above by O(ε2φ2). Then a union bound over all possible pairs of
linked 2-changes of type 0 (there are fewer than n6 of them) and all possible orders σ

(there is a constant number of them) yields the lemma for pairs of type 0.
We divide the set of possible pairs of linear combinations (Δσ

1 ,Δσ
2 ) into three

classes. We say that a pair of linear combinations belongs to class A if at least one of
the linear combinations equals 0, we say that it belongs to class B if Δσ

1 = −Δσ
2 , and

we say that it belongs to class C if Δσ
1 and Δσ

2 are linearly independent. For tuples of
orders σ that yield pairs from class A, the event Aσ cannot occur because the value
of at least one linear combination is 0. For tuples σ that yield pairs from class B , the
event cannot occur either because either Δσ

1 or Δσ
2 = −Δσ

1 is at most 0. For tuples
σ that yield pairs from class C, we can apply Lemma 20 from Appendix B, which
shows that the probability of the event Aσ is bounded from above by (εφ)2. Hence,
we only need to show that every pair (Δσ

1 ,Δσ
2 ) of linear combinations belongs either

to class A, B , or C.
Consider a fixed tuple σ = (σ1, . . . , σd) of orders. We split Δσ

1 and Δσ
2 into d

parts that correspond to the d dimensions. To be precise, for j ∈ [2], we write Δσ
j =

∑
i∈[d] X

σi,i
j , where X

σi,i
j is a linear combination of the variables x1

i , . . . , x6
i . As an

example let us consider the case d = 2, let the first order σ1 be x1
1 ≤ x2

1 ≤ x3
1 ≤ x4

1 ≤
x5

1 ≤ x6
1 , and let the second order σ2 be x6

2 ≤ x5
2 ≤ x4

2 ≤ x3
2 ≤ x2

2 ≤ x1
2 . Then we get

Δσ
1 =

2∑

i=1

(∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣)

=
X

σ1,1
1︷ ︸︸ ︷((

x2
1 − x1

1

)+ (
x4

1 − x3
1

)− (
x3

1 − x1
1

)− (
x4

1 − x2
1

))

+
X

σ2,2
1︷ ︸︸ ︷((

x1
2 − x2

2

)+ (
x3

2 − x4
2

)− (
x1

2 − x3
2

)− (
x2

2 − x4
2

))

and

Δσ
2 =

2∑

i=1

(∣∣x1
i − x3

i

∣∣+ ∣∣x5
i − x6

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x3
i − x6

i

∣∣)

=
X

σ1,1
2︷ ︸︸ ︷((

x3
1 − x1

1

)+ (
x6

1 − x5
1

)− (
x5

1 − x1
1

)− (
x6

1 − x3
1

))

+
X

σ2,2
2︷ ︸︸ ︷((

x1
2 − x3

2

)+ (
x5

2 − x6
2

)− (
x1

2 − x5
2

)− (
x3

2 − x6
2

))
.

If, for one i ∈ [d], the pair (X
σi,i
1 ,X

σi,i
2 ) of linear combinations belongs to class C,

then also the pair (Δσ
1 ,Δσ

2 ) belongs to class C because the sets of variables occurring
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in X
σi,i
j and X

σi′ ,i′
j are disjoint for i �= i′. If for all i ∈ [d] the pair of linear combi-

nations (X
σi,i
1 ,X

σi,i
2 ) belongs to class A or B , then also the pair (Δσ

1 ,Δσ
2 ) belongs

either to class A or B . Hence, the following lemma directly implies that (Δσ
1 ,Δσ

2 )

belongs to one of the classes A, B , or C.

Lemma 11 For pairs of type 0 and for i ∈ [d], the pair of linear combinations
(X

σi,i
1 ,X

σi,i
2 ) belongs either to class A, B , or C.

Proof Assume that the pair (X
σi,i
1 ,X

σi,i
2 ) of linear combinations is linearly depen-

dent for a fixed order σi . Observe that this can only happen if the sets of variables
occurring in X

σi,i
1 and X

σi,i
2 are the same. Hence, it can only happen if the following

two conditions occur.

– X
σi,i
1 does not contain x2

i or x4
i . If x3

i ≥ x4
i , it must be true that x2

i ≥ x4
i in order for

x4
i to cancel out. Then, in order for x2

i to cancel out, it must be true that x2
i ≥ x1

i .
If x3

i ≤ x4
i , it must be true that x2

i ≤ x4
i in order for x4

i to cancel out. Then, in order
for x2

i to cancel out, it must be true that x2
i ≤ x1

i .
Hence, either x3

i ≥ x4
i , x2

i ≥ x4
i , and x2

i ≥ x1
i , or x3

i ≤ x4
i , x2

i ≤ x4
i , and x2

i ≤ x1
i .

– X
σi,i
2 does not contain x5

i or x6
i . If x5

i ≥ x6
i , it must be true that x3

i ≥ x6
i in order

for x6
i to cancel out, and it must be true that x5

i ≥ x1
i in order for x5

i to cancel out.
If x5

i ≤ x6
i , it must be true that x3

i ≤ x6
i in order for x6

i to cancel out, and it must be
true that x5

i ≤ x1
i in order for x5

i to cancel out.
Hence, either x5

i ≥ x6
i , x3

i ≥ x6
i , and x5

i ≥ x1
i , or x5

i ≤ x6
i , x3

i ≤ x6
i , and x5

i ≤ x1
i .

Now we choose an order such that x2
i , x4

i , x5
i , and x6

i cancel out. We distinguish
between the cases x1

i ≥ x3
i and x3

i ≥ x1
i .

x1
i ≥ x3

i : In this case, we can write X
σi,i
1 as

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣

= ∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− (
x1
i − x3

i

)− ∣∣x2
i − x4

i

∣∣.

Since we have argued above that either x3
i ≥ x4

i , x2
i ≥ x4

i , and x2
i ≥ x1

i , or
x3
i ≤ x4

i , x2
i ≤ x4

i , and x2
i ≤ x1

i , we obtain that either

X
σi,i
1 = (

x2
i − x1

i

)+ (
x3
i − x4

i

)− (
x1
i − x3

i

)− (
x2
i − x4

i

)= −2x1
i + 2x3

i

or

X
σi,i
1 = (

x1
i − x2

i

)+ (
x4
i − x3

i

)− (
x1
i − x3

i

)− (
x4
i − x2

i

)= 0.

We can write X
σi,i
2 as

X
σi,i
2 = ∣∣x1

i − x3
i

∣∣+ ∣∣x5
i − x6

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x3
i − x6

i

∣∣

= (
x1
i − x3

i

)+ ∣∣x5
i − x6

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x3
i − x6

i

∣∣.
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Since we have argued above that either x5
i ≥ x6

i , x3
i ≥ x6

i , and x5
i ≥ x1

i , or
x5
i ≤ x6

i , x3
i ≤ x6

i , and x5
i ≤ x1

i , we obtain that either

X
σi,i
2 = (

x1
i − x3

i

)+ (
x5
i − x6

i

)− (
x5
i − x1

i

)− (
x3
i − x6

i

)= 2x1
i − 2x3

i

or

X
σi,i
2 = (

x1
i − x3

i

)+ (
x6
i − x5

i

)− (
x1
i − x5

i

)− (
x6
i − x3

i

)= 0.

In summary, the case analysis shows that X
σi,i
1 ∈ {0,−2x1

i + 2x3
i } and

X
σi,i
2 ∈ {0,2x1

i − 2x3
i }. Hence, in this case the resulting pair of linear com-

binations belongs either to class A or B .
x3
i ≥ x1

i : In this case, we can write X
σi,i
1 as

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣

= ∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− (
x3
i − x1

i

)− ∣∣x2
i − x4

i

∣∣.

Since we have argued above that either x3
i ≥ x4

i , x2
i ≥ x4

i , and x2
i ≥ x1

i , or
x3
i ≤ x4

i , x2
i ≤ x4

i , and x2
i ≤ x1

i , we obtain that either

X
σi,i
1 = (

x2
i − x1

i

)+ (
x3
i − x4

i

)− (
x3
i − x1

i

)− (
x2
i − x4

i

)= 0

or

X
σi,i
1 = (

x1
i − x2

i

)+ (
x4
i − x3

i

)− (
x3
i − x1

i

)− (
x4
i − x2

i

)= 2x1
i − 2x3

i .

We can write X
σi,i
2 as

X
σi,i
2 = ∣∣x1

i − x3
i

∣∣+ ∣∣x5
i − x6

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x3
i − x6

i

∣∣

= (
x3
i − x1

i

)+ ∣∣x5
i − x6

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x3
i − x6

i

∣∣.

Since we have argued above that either x5
i ≥ x6

i , x3
i ≥ x6

i , and x5
i ≥ x1

i , or
x5
i ≤ x6

i , x3
i ≤ x6

i , and x5
i ≤ x1

i , we obtain that either

X
σi,i
2 = (

x3
i − x1

i

)+ (
x5
i − x6

i

)− (
x5
i − x1

i

)− (
x3
i − x6

i

)= 0

or

X
σi,i
2 = (

x3
i − x1

i

)+ (
x6
i − x5

i

)− (
x1
i − x5

i

)− (
x6
i − x3

i

)= −2x1
i + 2x3

i .

In summary, the case analysis shows that X
σi,i
1 ∈ {0,2x1

i − 2x3
i } and

X
σi,i
2 ∈ {0,−2x1

i +2x3
i }. Hence, also in this case the resulting pair of linear

combinations belongs either to class A or B . �
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Now we consider pairs of type 1(a). Using the same notation as for pairs of type 0,
we can write the improvement Δ2 as

Δ2 =
∑

i∈[d]

(∣∣x1
i − x3

i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x2
i − x3

i

∣∣).

Again we write, for j ∈ [2], Δσ
j =∑

i∈[d] X
σi,i
j , where X

σi,i
j is a linear combination

of the variables x1
i , . . . , x6

i . Compared to pairs of type 0, only the terms X
σi,i
2 are

different, whereas the terms X
σi,i
1 do not change.

Lemma 12 For pairs of type 1(a) and for i ∈ [d], the pair (X
σi,i
1 ,X

σi,i
2 ) of linear

combinations belongs either to class A, B , or C.

Proof Assume that the pair (X
σi,i
1 ,X

σi,i
2 ) is linearly dependent for a fixed order σi .

Observe that this can only happen if the sets of variables occurring in X
σi,i
1 and X

σi,i
2

are the same. Hence, it can only happen if the following two conditions occur.

– X
σi,i
1 does not contain x4

i . If x3
i ≥ x4

i , it must be true that x2
i ≥ x4

i in order for x4
i

to cancel out. If x3
i ≤ x4

i , it must be true that x2
i ≤ x4

i in order for x4
i to cancel out.

Hence, either x3
i ≥ x4

i and x2
i ≥ x4

i , or x3
i ≤ x4

i and x2
i ≤ x4

i .

– X
σi,i
2 does not contain x5

i . If x2
i ≥ x5

i , it must be true that x1
i ≥ x5

i in order for x5
i

to cancel out. If x2
i ≤ x5

i , it must be true that x1
i ≤ x5

i in order for x5
i to cancel out.

Hence, either x2
i ≥ x5

i and x1
i ≥ x5

i , or x2
i ≤ x5

i and x1
i ≤ x5

i .

Now we choose an order such that x4
i and x5

i cancel out. We distinguish between
the following cases.

x1
i ≥ x3

i : In this case, we can write X
σi,i
1 as

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣

= ∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− (
x1
i − x3

i

)− ∣∣x2
i − x4

i

∣∣.

Since we have argued above that either x3
i ≥ x4

i and x2
i ≥ x4

i , or x3
i ≤ x4

i

and x2
i ≤ x4

i , we obtain that either

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ (
x3
i − x4

i

)− (
x1
i − x3

i

)− (
x2
i − x4

i

)

= ∣∣x1
i − x2

i

∣∣+ 2x3
i − x1

i − x2
i ∈ {2x3

i − 2x2
i ,2x3

i − 2x1
i

}
.

or

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ (
x4
i − x3

i

)− (
x1
i − x3

i

)− (
x4
i − x2

i

)

= ∣∣x1
i − x2

i

∣∣− x1
i + x2

i ∈ {0,−2x1
i + 2x2

i

}
.

We can write X
σi,i
2 as
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X
σi,i
2 = ∣∣x1

i − x3
i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x2
i − x3

i

∣∣

= (
x1
i − x3

i

)+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x2
i − x3

i

∣∣.

Since we have argued above that either x2
i ≥ x5

i and x1
i ≥ x5

i , or if x2
i ≤ x5

i

and x1
i ≤ x5

i , we obtain that either

X
σi,i
2 = (

x1
i − x3

i

)+ (
x2
i − x5

i

)− (
x1
i − x5

i

)− ∣∣x2
i − x3

i

∣∣

= x2
i − x3

i − ∣∣x2
i − x3

i

∣∣ ∈ {0,2x2
i − 2x3

i

}

or

X
σi,i
2 = (

x1
i − x3

i

)+ (
x5
i − x2

i

)− (
x5
i − x1

i

)− ∣∣x2
i − x3

i

∣∣

= 2x1
i − x2

i − x3
i − ∣∣x2

i − x3
i

∣∣ ∈ {2x1
i − 2x2

i ,2x1
i − 2x3

i

}
.

In summary, the case analysis shows that X
σi,i
1 ∈ {0,−2x1

i + 2x2
i ,

−2x1
i + 2x3

i ,−2x2
i + 2x3

i } and X
σi,i
2 ∈ {0,2x1

i − 2x2
i ,2x1

i − 2x3
i ,

2x2
i − 2x3

i }. Hence, in this case the resulting pair of linear combinations
belongs either to class A, B , or C.

x1
i ≤ x3

i : In this case, we can write X
σi,i
1 as

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ ∣∣x3
i − x4

i

∣∣− ∣∣x1
i − x3

i

∣∣− ∣∣x2
i − x4

i

∣∣

= ∣∣x1
i − x2

i

∣∣+ ∣∣x3
i − x4

i

∣∣− (
x3
i − x1

i

)− ∣∣x2
i − x4

i

∣∣.

Since we have argued above that either x3
i ≥ x4

i and x2
i ≥ x4

i , or x3
i ≤ x4

i

and x2
i ≤ x4

i , we obtain that either

X
σi,i
1 = ∣

∣x1
i − x2

i

∣
∣+ (

x3
i − x4

i

)− (
x3
i − x1

i

)− (
x2
i − x4

i

)

= ∣∣x1
i − x2

i

∣∣+ x1
i − x2

i ∈ {0,2x1
i − 2x2

i

}
.

or

X
σi,i
1 = ∣∣x1

i − x2
i

∣∣+ (
x4
i − x3

i

)− (
x3
i − x1

i

)− (
x4
i − x2

i

)

= ∣∣x1
i − x2

i

∣∣+ x1
i + x2

i − 2x3
i ∈ {2x1

i − 2x3
i ,2x2

i − 2x3
i

}
.

We can write X
σi,i
2 as

X
σi,i
2 = ∣∣x1

i − x3
i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x2
i − x3

i

∣∣

= (
x3
i − x1

i

)+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x5

i

∣∣− ∣∣x2
i − x3

i

∣∣.

Since we have argued above that either x2
i ≥ x5

i and x1
i ≥ x5

i , or x2
i ≤ x5

i

and x1
i ≤ x5

i , we obtain that either
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X
σi,i
2 = (

x3
i − x1

i

)+ (
x2
i − x5

i

)− (
x1
i − x5

i

)− ∣∣x2
i − x3

i

∣∣

= −2x1
i + x2

i + x3
i − ∣∣x2

i − x3
i

∣∣ ∈ {−2x1
i + 2x3

i ,−2x1
i + 2x2

i

}

or

X
σi,i
2 = (

x3
i − x1

i

)+ (
x5
i − x2

i

)− (
x5
i − x1

i

)− ∣
∣x2

i − x3
i

∣
∣

= −x2
i + x3

i − ∣∣x2
i − x3

i

∣∣ ∈ {0,−2x2
i + 2x3

i

}
.

In summary, the case analysis shows that X
σi,i
1 ∈ {0,2x1

i − 2x2
i ,

2x1
i − 2x3

i ,2x2
i − 2x3

i } and X
σi,i
2 ∈ {0,−2x1

i + 2x2
i ,−2x1

i + 2x3
i ,

−2x2
i + 2x3

i }. Hence, in this case the resulting pair of linear combinations
belongs either to class A, B , or C. �

Finally we consider pairs of type 1(b). Using the same notation as before, we can
write the improvement Δ2 as

Δ2 =
d∑

i=1

(∣∣x1
i − x3

i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x2

i

∣∣− ∣∣x3
i − x5

i

∣∣).

Again we write, for j ∈ [2], Δσ
j =∑

i∈[d] X
σi,i
j , where X

σi,i
j is a linear combination

of the variables x1
i , . . . , x6

i . And again only the terms X
σi,i
2 are different from before.

Lemma 13 For pairs of type 1(b) and for i ∈ [d], the pair of linear combinations
(X

σi,i
1 ,X

σi,i
2 ) belongs either to class A, B , or C.

Proof Using the same notation as for pairs of type 0, we can write the improvement
Δ2 as

Δ2 =
d∑

i=1

(∣∣x1
i − x3

i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x2

i

∣∣− ∣∣x3
i − x5

i

∣∣).

Assume that the pair (X
σi,i
1 ,X

σi,i
2 ) is linearly dependent for a fixed order σi . Ob-

serve that this can only happen if the sets of variables occurring in X
σi,i
1 and X

σi,i
2

are the same. Hence, it can only happen if the following two conditions occur.

– X
σi,i
1 does not contain x4

i . We have considered this condition already for pairs of
type 1(a) and showed that either x3

i ≥ x4
i and x2

i ≥ x4
i , or x3

i ≤ x4
i and x2

i ≤ x4
i .

– X
σi,i
2 does not contain x5

i . If x2
i ≥ x5

i , it must be true that x3
i ≥ x5

i in order for x5
i

to cancel out. If x2
i ≤ x5

i , it must be true that x3
i ≤ x5

i in order for x5
i to cancel out.

Hence, either x2
i ≥ x5

i and x3
i ≥ x5

i , or x2
i ≤ x5

i and x3
i ≤ x5

i .

Now we choose an order such that x4
i and x5

i cancel out. We distinguish between
the following cases.
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x1
i ≥ x3

i : We have argued already for pairs of type 1(a) that in this case X
σi,i
1 ∈

{0,−2x1
i + 2x2

i ,−2x1
i + 2x3

i ,−2x2
i + 2x3

i }.
We can write X

σi,i
2 as

X
σi,i
2 = ∣∣x1

i − x3
i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x2

i

∣∣− ∣∣x3
i − x5

i

∣∣

= (
x1
i − x3

i

)+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x2

i

∣∣− ∣∣x3
i − x5

i

∣∣.

Since we have argued above that either x2
i ≥ x5

i and x3
i ≥ x5

i , or x2
i ≤ x5

i

and x3
i ≤ x5

i , we obtain that either

X
σi,i
2 = (

x1
i − x3

i

)+ (
x2
i − x5

i

)− ∣∣x1
i − x2

i

∣∣− (
x3
i − x5

i

)

= x1
i + x2

i − 2x3
i − ∣∣x1

i − x2
i

∣∣ ∈ {2x2
i − 2x3

i ,2x1
i − 2x3

i

}

or

X
σi,i
2 = (

x1
i − x3

i

)+ (
x5
i − x2

i

)− ∣∣x1
i − x2

i

∣∣− (
x5
i − x3

i

)

= x1
i − x2

i − ∣∣x1
i − x2

i

∣∣ ∈ {0,2x1
i − 2x2

i

}
.

In summary, the case analysis shows that X
σi,i
1 ∈ {0,−2x1

i + 2x2
i ,

−2x1
i + 2x3

i ,−2x2
i + 2x3

i } and X
σi,i
2 ∈ {0,2x1

i − 2x2
i ,2x1

i − 2x3
i ,

2x2
i − 2x3

i }. Hence, in this case the resulting pair of linear combinations
belongs either to class A, B , or C.

x1
i ≤ x3

i : We have argued already for pairs of type 1(a) that in this case X
σi,i
1 ∈

{0,2x1
i − 2x2

i ,2x1
i − 2x3

i ,2x2
i − 2x3

i }.
We can write X

σi,i
2 as

X
σi,i
2 = ∣∣x1

i − x3
i

∣∣+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x2

i

∣∣− ∣∣x3
i − x5

i

∣∣

= (
x3
i − x1

i

)+ ∣∣x2
i − x5

i

∣∣− ∣∣x1
i − x2

i

∣∣− ∣∣x3
i − x5

i

∣∣.

Since we have argued above that either x2
i ≥ x5

i and x3
i ≥ x5

i , or x2
i ≤ x5

i

and x3
i ≤ x5

i , we obtain that either

X
σi,i
2 = (

x3
i − x1

i

)+ (
x2
i − x5

i

)− ∣∣x1
i − x2

i

∣∣− (
x3
i − x5

i

)

= −x1
i + x2

i − ∣∣x1
i − x2

i

∣∣ ∈ {0,−2x1
i + 2x2

i

}

or

X
σi,i
2 = (

x3
i − x1

i

)+ (
x5
i − x2

i

)− ∣∣x1
i − x2

i

∣∣− (
x5
i − x3

i

)

= −x1
i − x2

i + 2x3
i − ∣

∣x1
i − x2

i

∣
∣ ∈ {−2x1

i + 2x3
i ,−2x2

i + 2x3
i

}
.

In summary, the case analysis shows that X
σi,i
1 ∈ {0,2x1

i − 2x2
i ,

2x1
i − 2x3

i ,2x2
i − 2x3

i } and X
σi,i
2 ∈ {0,−2x1

i + 2x2
i ,−2x1

i + 2x3
i ,
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−2x2
i + 2x3

i }. Hence, in this case the resulting pair of linear combinations
belongs either to class A, B , or C. �

We have argued above that for tuples σ of orders that yield pairs from class A

or B , the event Aσ cannot occur. For tuples σ that yield pairs from class C, we can
apply Lemma 20 from Appendix B, which shows that the probability of the event Aσ

is bounded from above by (εφ)2. As we have shown that every tuple yields a pair
from class A, B , or C, we can conclude the proof of Lemma 10 by a union bound
over all pairs of linked 2-changes of type 0 and 1 and all tuples σ . As these are O(n6),
the lemma follows. �

4.1.3 Expected Number of 2-Changes

Based on Lemmas 9 and 10, we are now able to prove part (a) of Theorem 2.

Proof of Theorem 2(a) Let T denote the random variable that describes the length
of the longest path in the state graph. If T ≥ t , then there must exist a sequence
S1, . . . , St of t consecutive 2-changes in the state graph. We start by identifying a set
of linked pairs of type 0 and 1 in this sequence. Due to Lemma 9, we know that we
can find at least z = t/6 − 7n(n − 1)/24 such pairs. Let Δ∗

min denote the smallest
improvement made by any pair of improving 2-Opt steps of type 0 or 1. If T ≥ t ,
then Δ∗

min ≤ dn
z

as the initial tour has length at most dn and every linked pair of
type 0 or 1 decreases the length of the tour by at least Δ∗

min. For t > 2n2, we have
z = t/6 − 7n(n − 1)/24 > t/48 and hence due to Lemma 10,

Pr[T ≥ t] ≤ Pr
[
Δ∗

min ≤ dn

z

]
≤ Pr

[
Δ∗

min ≤ 48dn

t

]
= O

(
n8φ2

t2

)
.

Using the fact that probabilities are bounded from above by one, we obtain

Pr[T ≥ t] = O

(
min

{
n8φ2

t2
,1

})
.

Since T cannot exceed n!, this implies the following bound on the expected num-
ber of 2-changes:

E[T ] ≤ 2n2 +
n!∑

t=2n2+1

O

(
min

{
n8φ2

t2
,1

})

= 2n2 + O

(
n4φ∑

t=2n2+1

1

)

+ O

(
n!∑

t=n4φ+1

n8φ2

t2

)

= O
(
n4 · φ).

This concludes the proof of part (a) of the theorem. �

Chandra, Karloff, and Tovey [3] show that for every metric that is induced by a
norm on R

d , and for any set of n points in the unit hypercube [0,1]d , the optimal tour
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visiting all n points has length O(n(d−1)/d). Furthermore, every insertion heuristic
finds an O(logn)-approximation [18]. Hence, if one starts with a solution computed
by an insertion heuristic, the initial tour has length O(n(d−1)/d · logn). Using this
observation yields part (a) of Theorem 3:

Proof of Theorem 3(a) Since the initial tour has length O(n(d−1)/d · logn), we obtain
for an appropriate constant c and t > 2n2,

Pr[T ≥ t] ≤ Pr
[
Δ∗

min ≤ c · n(d−1)/d · logn

t

]

= O

(
min

{
n8−2/d · log2 n · φ2

t2
,1

})
,

where the equality follows from Lemma 10. This yields

E[T ] ≤ 2n2 +
n!∑

t=2n2+1

O

(
min

{
n8−2/d · log2 n · φ2

t2
,1

})

= O
(
n4−1/d · logn · φ). �

4.2 Euclidean Instances

In this section, we analyze the expected number of 2-changes on φ-perturbed Eu-
clidean instances. The analysis is similar to the analysis of Manhattan instances in
the previous section; only Lemma 10 needs to be replaced by the following equiva-
lent version for the L2 metric, which will be proved later in this section.

Lemma 14 For φ-perturbed L2 instances, the probability that there exists a pair of
type 0 or type 1 in which both 2-changes are improvements by at most ε ≤ 1/2 is
bounded by O(n6 · φ5 · ε2 · log2(1/ε)) + O(n5 · φ4 · ε3/2 · log(1/ε)).

The bound that this lemma provides is slightly weaker than its L1 counterpart,
and hence also the bound on the expected running time is slightly worse for L2 in-
stances. The crucial step to proving Lemma 14 is to gain a better understanding of
the random variable that describes the improvement of a single fixed 2-change. In
the next section, we analyze this random variable under several conditions, e.g., un-
der the condition that the length of one of the involved edges is fixed. With the help
of these results, pairs of linked 2-changes can easily be analyzed. Let us mention
that our analysis of a single 2-change yields a bound of O(n7 · log2(n) · φ3) for the
expected number of 2-changes. For Euclidean instances in which all points are dis-
tributed uniformly at random over the unit square, this bound already improves the
best previously known bound of O(n10 · logn).

4.2.1 Analysis of a Single 2-Change

We analyze a 2-change in which the edges {O,Q1} and {P,Q2} are exchanged with
the edges {O,Q2} and {P,Q1} for some vertices O , P , Q1, and Q2. In the input
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model we consider, each of these points has a probability distribution over the unit
hypercube according to which it is chosen. In this section, we consider a simplified
random experiment in which O is chosen to be the origin and P , Q1, and Q2 are
chosen independently and uniformly at random from a d-dimensional hyperball with
radius

√
d centered at the origin. In the next section, we argue that the analysis of

this simplified random experiment helps to analyze the actual random experiment
that occurs in the probabilistic input model.

Due to the rotational symmetry of the simplified model, we assume without loss of
generality that P lies at position (0d−1, T ) for some T ≥ 0. For i ∈ [2], Let Zi denote
the difference d(O,Qi) − d(P,Qi). Then the improvement Δ of the 2-change can
be expressed as Z1 −Z2. The random variables Z1 and Z2 are identically distributed,
and they are independent if T is fixed. We denote by fZ1|T =τ,R=r the density of
Z1 conditioning on the fact that d(O,Q1) = r and T = τ . Similarly, we denote by
fZ2|T =τ,R=r the density of Z2 conditioning on the fact that d(O,Q2) = r and T = τ .
As Z1 and Z2 are identically distributed, the conditional densities fZ1|T =τ,R=r and
fZ2|T =τ,R=r are identical as well. Hence, we can drop the index in the following and
write fZ|T =τ,R=r .

Lemma 15 For τ, r ∈ (0,
√

d], and z ∈ (−τ,min{τ,2r − τ }),

fZ|T =τ,R=r (z) ≤
⎧
⎨

⎩

√
2

τ 2−z2 if r ≥ τ,
√

2
(τ+z)(2r−τ−z)

if r < τ.

For z /∈ [−τ,min{τ,2r − τ }], the density fZ|T =τ,R=r (z) is 0.

Proof We denote by Z the random variable d(O,Q) − d(P,Q), where Q is a point
chosen uniformly at random from a d-dimensional hyperball with radius

√
d centered

at the origin. In the following, we assume that the plane spanned by the points O , P ,
and Q is fixed arbitrarily, and we consider the random experiment conditioned on
the event that Q lies in this plane. To make the calculations simpler, we use polar
coordinates to describe the location of Q. Since the radius d(O,Q) = r is given, the
point Q is completely determined by the angle α between the y-axis and the line
between O and Q (see Fig. 9). Hence, the random variable Z can be written as

Z = r −
√

r2 + τ 2 − 2rτ · cosα.

It is easy to see that Z can only take values in the interval [−τ,min{τ,2r − τ }], and
hence the density fZ|T =τ,R=r (z) is 0 outside this interval.

Fig. 9 The random variable Z

is defined as r − d(P,Q)
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Since Q is chosen uniformly at random from a hyperball centered at the origin,
rotational symmetry implies that the angle α is chosen uniformly at random from the
interval [0,2π). For symmetry reasons, we can assume that α is chosen uniformly
from the interval [0,π). When α is restricted to the interval [0,π), there exists a
unique inverse function mapping Z to α, namely

α(z) = arccos

(
τ 2 + 2zr − z2

2rτ

)
.

For |x| < 1, the derivative of the arc cosine is

(
arccos(x)

)′ = − 1√
1 − x2

≤ 0.

Hence, the density fZ|T =τ,R=r can be expressed as

fZ|T =τ,R=r (z) = fα

(
α(z)

) ·
∣∣
∣∣

d

dz
α(z)

∣∣
∣∣= − 1

π
· d

dz
α(z) ≤ − d

dz
α(z),

where fα denotes the density of α, i.e., the density of the uniform distribution over
[0,π). Using the chain rule, we obtain that the derivative of α(z) equals

r − z

rτ
· −1
√

1 − (τ 2+2zr−z2)2

4r2τ 2

= 2(z − r)√
4r2τ 2 − 4r2z2 − 4rτ 2z + 4rz3 − τ 4 + 2τ 2z2 − z4

.

In order to prove the lemma, we distinguish between the cases r ≥ τ and r < τ .
First case: r ≥ τ .
In this case, it suffices to show that

4r2τ 2 − 4r2z2 − 4rτ 2z + 4rz3 − τ 4 + 2τ 2z2 − z4 ≥ 2(z − r)2(τ 2 − z2), (4.2)

which is implied by

4r2τ 2 − 4r2z2 − 4rτ 2z + 4rz3 − τ 4 + 2τ 2z2 − z4 − 2(z − r)2(τ 2 − z2)

= 2r2(τ 2 − z2)− τ 4 + z4 ≥ 2τ 2(τ 2 − z2)− τ 4 + z4 = (
τ 2 − z2)2 ≥ 0.

This proves the lemma for r ≥ τ because

− d

dz
α(z) = − 2(z − r)√

4r2τ 2 − 4r2z2 − 4rτ 2z + 4rz3 − τ 4 + 2τ 2z2 − z4

≤ − 2(z − r)
√

2(z − r)2(τ 2 − z2)
= − 2(z − r)

|z − r|√2(τ 2 − z2)
=
√

2

τ 2 − z2
,

where we have used (4.2) for the inequality.
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Second case: r < τ .
In this case, it suffices to show that

4r2τ 2 − 4r2z2 − 4rτ 2z + 4rz3 − τ 4 + 2τ 2z2 − z4 ≥ 2(z − r)2(τ + z)(2r − τ − z),

which is implied by

4r2τ 2 − 4r2z2 − 4rτ 2z + 4rz3 − τ 4 + 2τ 2z2 − z4

− 2(z − r)2(τ + z)(2r − τ − z) ≥ 0

⇐⇒ (−2r + z + τ)(τ + z)
(
z2 + 2τz − 2rz + 2r2 − τ 2 − 2τr

)≥ 0

⇐⇒ z2 + 2τz − 2rz + 2r2 − τ 2 − 2τr ≤ 0, (4.3)

where the first equivalence follows because the left hand sides of the first and
second inequality are identical and where the last equivalence follows because
(−2r + z + τ) < 0 and (τ + z) > 0. Both these inequalities are true because z ∈
(−τ,min{τ,2r − τ }). Inequality (4.3) follows from

z2 + 2τz − 2rz + 2r2 − τ 2 − 2τr

= z2 + 2z(τ − r) + 2r2 − τ 2 − 2τr

≤ (2r − τ)2 + 2(2r − τ)(τ − r) + 2r2 − τ 2 − 2τr

= 2
(
r2 − τ 2)≤ 0,

where the first inequality follows because z ≤ 2r − τ . �

Based on Lemma 15, the density of the random variable Δ = Z1 − Z2 under the
conditions R1 := d(O,Q1) = r1, R2 := d(O,Q2) = r2, and T := d(O,P ) = τ can
be computed as the convolution of the densities of the random variables Z1 and −Z2.
The former density equals fZ|T =τ,R=r and the latter density can easily be obtained
from fZ|T =τ,R=r .

Lemma 16 Let τ, r1, r2 ∈ (0,
√

d], and let Z1 and Z2 be independent random vari-
ables drawn according to the densities fZ|T =τ,R=r1 and fZ|T =τ,R=r2 , respectively.
For δ ∈ (0,1/2] and a sufficiently large constant κ , the density fΔ|T =τ,R1=r1,R2=r2(δ)

of the random variable Δ = Z1 − Z2 is bounded from above by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ
τ

· ln(δ−1) if τ ≤ r1, τ ≤ r2,

κ√
r1r2

· (ln(δ−1) + ln
∣∣2(r1 − r2) − δ

∣∣−1
) if r1 ≤ τ, r2 ≤ τ, δ �= 2(r1 − r2),

κ√
τr1

· ln(δ−1) if r1 ≤ τ ≤ r2,

κ√
τr2

· (ln(δ−1) + ln
∣∣2(τ − r2) − δ

∣∣−1
) if r2 ≤ τ ≤ r1, δ �= 2(τ − r2).

The simple but somewhat tedious calculation that yields Lemma 16 is deferred
to Appendix C.1. In order to prove Lemma 14, we need bounds on the densities of
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the random variables Δ, Z1, and Z2 under certain conditions. We summarize these
bounds in the following lemma.

Lemma 17 Let τ, r ∈ (0,
√

d], δ ∈ (0,1/2], and let κ denote a sufficiently large
constant.

(a) For i ∈ [2], the density of Δ under the condition Ri = r is bounded by

fΔ|Ri=r (δ) ≤ κ√
r

· ln
(
δ−1).

(b) The density of Δ under the condition T = τ is bounded by

fΔ|T =τ (δ) ≤ κ

τ
· ln

(
δ−1).

(c) The density of Δ is bounded by

fΔ(δ) ≤ κ · ln
(
δ−1).

(d) For i ∈ [2], the density of Zi under the condition T = τ is bounded by

fZi |T =τ (z) ≤ κ√
τ 2 − z2

if |z| < τ . Since Zi takes only values in the interval [−τ, τ ], the conditional
density fZi |T =τ (z) is 0 for z /∈ [−τ, τ ].

Lemma 17 follows from Lemmas 15 and 16 by integrating over all values of the
unconditioned distances. The proof can be found in Appendix C.2.

4.2.2 Simplified Random Experiments

In the previous section we did not analyze the random experiment that really takes
place. Instead of choosing the points according to the given density functions, we
simplified their distributions by placing point O in the origin and by giving the other
points P , Q1, and Q2 uniform distributions centered around the origin. In our input
model, however, each of these points is described by a density function over the unit
hypercube. We consider the probability of the event Δ ∈ [0, ε] in the original input
model as well as in the simplified random experiment. In the following, we denote
this event by E . We claim that the simplified random experiment that we analyze
is only slightly dominated by the original random experiment, in the sense that the
probability of the event E in the simplified random experiment is smaller by at most
some factor depending on φ.

In order to compare the probabilities in the original and in the simplified random
experiment, consider the original experiment and assume that the point O lies at
position x ∈ [0,1]d . Then one can identify a region Rx ⊆ R

3d with the property that
the event E occurs if and only if the random vector (P,Q1,Q2) lies in Rx . No matter
how the position x of O is chosen, this region always has the same shape, only its
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position is shifted. That is, Rx = {(x, x, x) + R0d }. Let V = supx∈[0,1]d Vol(Rx ∩
[0,1]3d). Then the probability of E can be bounded from above by φ3 · V in the
original random experiment because the density of the random vector (P,Q1,Q2) is
bounded from above by φ3 as P , Q1, and Q2 are independent vectors whose densities
are bounded by φ. Since Δ is invariant under translating O , P , Q1, and Q2 by the
same vector, we obtain

Vol
(
Rx ∩ [0,1]3d

)= Vol
(
R0d ∩ ([−x1,1 − x1] × · · · × [−xd,1 − xd ])3)

≤ Vol
(
R0d ∩ [−1,1]3d

)
,

where the equality follows from shifting Rx ∩ [0,1]3d by (−x,−x,−x). Hence,
V ≤ V ′ := Vol(R0d ∩ [−1,1]3d). In the simplified random experiment, P , Q1,
and Q2 are chosen uniformly from the hyperball centered at the origin with ra-
dius

√
d . This hyperball contains the hypercube [−1,1]d completely. Hence, the re-

gion on which the vector (P,Q1,Q2) is uniformly distributed contains the region
R0d ∩ [−1,1]3d completely. As the vector (P,Q1,Q2) is uniformly distributed on a
region of volume Vd(

√
d)3, where Vd(

√
d) denotes the volume of a d-dimensional

hyperball with radius
√

d , this implies that the probability of E in the simplified ran-
dom experiment can be bounded from below by V ′/Vd(

√
d)3. Since a d-dimensional

hyperball with radius
√

d is contained in a hypercube with side length 2
√

d , its vol-
ume can be bounded from above by (2

√
d)d = (4d)d/2. Hence, the probability of E in

the simplified random experiment is at least V ′/(4d)3d/2, and we have argued above
that the probability of E in the original random experiment is at most φ3 ·V ≤ φ3 ·V ′.
Hence, the probability of E in the simplified random experiment is smaller by at most
a factor of ((4d)d/2φ)3 compared to the original random experiment.

Taking into account this factor and using Lemma 17(c) and a union bound over
all possible 2-changes yields the following lemma about the improvement of a single
2-change.

Lemma 18 The probability that there exists an improving 2-change whose improve-
ment is at most ε ≤ 1/2 is bounded from above by O(n4 · φ3 · ε · log(1/ε)).

Proof As in the proof of Theorem 7, we first consider a fixed 2-change S, whose im-
provement we denote by Δ(S). For the simplified random experiment, Lemma 17(c)
yields the following bound on the probability that the improvement Δ(S) lies in
(0, ε]:

Pr
[
Δ(S) ∈ (0, ε

]] = κ

∫ ε

0
ln
(
δ−1)dδ = [

δ ln
(
δ−1)+ δ

]ε
0

= ε ln ε−1 + ε ≤ 3ε ln ε−1,

where we used ε ≤ 1/2 for the last inequality.
We have argued that the probability of the event Δ(S) ∈ (0, ε] in the simplified

random experiment is smaller by at most a factor of ((4d)d/2φ)3 compared to the
original random experiment. Together with the factor of at most n4 coming from a
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union bound over all possible 2-changes S, we obtain for the original random exper-
iment

Pr
[∃S : Δ(S) ∈ (0, ε

]] ≤ 3ε ln ε−1 · ((4d)d/2φ
)3 · n4,

which proves the lemma because d is regarded as a constant. �

Using similar arguments as in the proof of Theorem 7 yields the following upper
bound on the expected number of 2-changes.

Theorem 19 Starting with an arbitrary tour, the expected number of steps performed
by 2-Opt on φ-perturbed Euclidean instances is O(n7 · log2 (n) · φ3).

Proof As in the proof of Theorem 7, let T denote the longest path in the state graph.
Let Δmin denote the smallest improvement made by any of the 2-changes. Then, as in
the proof of Theorem 7, we know that T ≥ t implies that Δmin ≤ (

√
dn)/t because

each of the n edges in the initial tour has length at most
√

d . As T cannot exceed n!,
we obtain with Lemma 18

E[T ] =
n!∑

t=1

Pr[T ≥ t] ≤
n!∑

t=1

Pr
[
Δmin ≤

√
dn

t

]

= O

(
n!∑

t=1

n5 · φ3 · √d

t
· log

(
t√
dn

))

= O

(
n!∑

t=1

n5 · φ3 · √d

t
· ln t

)

= O

(
n5 · φ3 · √d ·

∫ n!

t=1

ln t

t
dt

)

= O

(
n5 · φ3 · √d ·

[
1

2
ln2 t

]n!

t=1

)

= O
(
n7 · φ3 · √d · ln2 n

)
,

which proves the lemma because d is regarded as a constant. �

Pairs of Type 0 In order to improve upon Theorem 19, we consider pairs of linked
2-changes as in the analysis of φ-perturbed Manhattan instances. Since our analysis
of pairs of linked 2-changes is based on the analysis of a single 2-change that we
presented in the previous section, we also have to consider simplified random exper-
iments when analyzing pairs of 2-changes. For a fixed pair of type 0, we assume that
point v3 is chosen to be the origin and the other points v1, v2, v4, v5, and v6 are
chosen uniformly at random from a hyperball with radius

√
d centered at v3. Let E

denote the event that both Δ1 and Δ2 lie in the interval [0, ε], for some given ε. With
the same arguments as above, one can see that the probability of E in the simplified
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random experiment is smaller compared to the original experiment by at most a factor
of ((4d)d/2φ)5. The exponent 5 is due to the fact that we have now five other points
instead of only three.

Pairs of Type 1 For a fixed pair of type 1, we consider the simplified random ex-
periment in which v2 is placed in the origin and the other points v1, v3, v4, and v5
are chosen uniformly at random from a hyperball with radius

√
d centered at v2. In

this case, the probability in the simplified random experiment is smaller by at most a
factor of ((4d)d/2φ)4. The exponent 4 is due to the fact that we have now four other
points.

4.2.3 Analysis of Pairs of Linked 2-Changes

Finally, we can prove Lemma 14.

Proof of Lemma 14 We start by considering pairs of type 0. We consider the simpli-
fied random experiment in which v3 is chosen to be the origin and the other points
are drawn uniformly at random from a hyperball with radius

√
d centered at v3. If

the position of the point v1 is fixed, then the events Δ1 ∈ [0, ε] and Δ2 ∈ [0, ε] are
independent as only the vertices v1 and v3 appear in both the first and the second step.
In fact, because the densities of the points v2, v4, v5, and v6 are rotationally symmet-
ric, the concrete position of v1 is not important in our simplified random experiment
anymore; only the distance R between v1 and v3 is of interest.

For i ∈ [2], we determine the conditional probability of the event Δi ∈ [0, ε] under
the condition that the distance d(v1, v3) is fixed with the help of Lemma 17(a), and
obtain

Pr
[
Δi ∈ [0, ε] | d(v1, v3) = r

]

=
∫ ε

0
fΔ|Ri=r (δ) dδ ≤

∫ ε

0

κ√
r

ln
(
δ−1)dδ

= κ√
r

· [δ(1 + ln
(
δ−1))]ε

0 = κ√
r

· ε · (1 + ln(1/ε)
)

≤ 3κ√
r

· ε · ln(1/ε), (4.4)

where the last inequality follows because, as ε ≤ 1/2, 1 ≤ 2 ln(1/ε). Since for fixed
distance d(v1, v3) the random variables Δ1 and Δ2 are independent, we obtain

Pr
[
Δ1,Δ2 ∈ [0, ε] | d(v1, v3) = r

]≤ 9κ2

r
· ε2 · ln2(1/ε). (4.5)

For r ∈ [0,
√

d], the density fd(v1,v3) of the random variable d(v1, v3) in the simplified
random experiment is rd−1/dd/2−1. In order to see this, remember that v3 is chosen to
be the origin and v1 is chosen uniformly at random from a hyperball with radius

√
d

centered at the origin. The volume Vd(r) of a d-dimensional hyperball with radius
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r is Cd · rd for some constant Cd depending on d . Now the density fd(v1,v3) can be
written as

fd(v1,v3)(r) =
d
dr

Vd(r)

Vd(
√

d)
= Cd · d · rd−1

Cd · dd/2
= rd−1

dd/2−1
.

Combining this observation with the bound given in (4.5) yields

Pr
[
Δ1,Δ2 ∈ [0, ε]]≤

∫ √
d

0

(
9κ2

r
ε2 ln2(1/ε)

)(
rd−1

dd/2−1

)
dr

= O
(
ε2 · ln2(1/ε)

)
,

where the last equation follows because d is assumed to be a constant. There are
O(n6) different pairs of type 0; hence a union bound over all of them concludes
the proof of the first term in the sum in Lemma 14 when taking into account the
factor ((4d)d/2φ)5 that results from considering the simplified random experiment
(see Sect. 4.2.2).

It remains to consider pairs of type 1. We consider the simplified random experi-
ment in which v2 is chosen to be the origin and the other points are drawn uniformly
at random from a hyperball with radius

√
d centered at v2. In contrast to pairs of

type 0, pairs of type 1 exhibit larger dependencies as only 5 different vertices are
involved in these pairs. Fix one pair of type 1. The two 2-changes share the whole
triangle consisting of v1, v2, and v3. In the second step, there is only one new vertex,
namely v5. Hence, there is not enough randomness contained in a pair of type 1 such
that Δ1 and Δ2 are nearly independent as for pairs of type 0.

We start by considering pairs of type 1(a) as defined in Sect. 4.1.1. First, we an-
alyze the probability that Δ1 lies in the interval [0, ε]. After that, we analyze the
probability that Δ2 lies in the interval [0, ε] under the condition that the points v1,
v2, v3, and v4 have already been chosen. In the analysis of the second step we cannot
make use of the fact that the distances d(v1, v3) and d(v2, v3) are random variables
anymore since we exploited their randomness already in the analysis of the first step.
The only distances whose randomness we can exploit are the distances d(v1, v5) and
d(v2, v5). We pessimistically assume that the distances d(v1, v3) and d(v2, v3) have
been chosen by an adversary. This means the adversary can determine an interval of
length ε in which the random variable d(v2, v5) − d(v1, v5) must lie in order for Δ2

to lie in [0, ε].
Analogously to (4.4), the probability of the event Δ1 ∈ [0, ε] under the condition

d(v1, v2) = r can be bounded by

Pr
[
Δ1 ∈ [0, ε] | d(v1, v2) = r

]≤ 3κ√
r

· ε · ln(1/ε). (4.6)

Due to Lemma 17(d), the conditional density of the random variable Z = d(v2, v5)−
d(v1, v5) under the condition d(v1, v2) = r can be bounded by

fZ|d(v1,v2)=r (z) ≤ κ√
r2 − z2
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for |z| < r . Note that Lemma 17(d) applies if we set O = v2, P = v1, and Qi = v5.
Then T = d(O,P ) = d(v1, v2).

This upper bound on the density function fZ|d(v1,v2)=r (z) is symmetric around
zero, it is monotonically increasing for z ∈ [0, r), and it is monotonically decreas-
ing in (−r,0). This implies that the intervals the adversary can specify that have the
highest upper bound on the probability of Z falling into them are [−r,−r + ε] and
[r − ε, r]. Hence, the conditional probability of the event Δ2 ∈ [0, ε] under the con-
dition d(v1, v2) = r and for fixed points v3 and v4 is bounded from above by

∫ r

max{r−ε,−r}
κ√

r2 − z2
dz,

where the lower bound in the integral follows because Z can only take values in
[−r, r]. This can be rewritten as

κ ·
∫ r

max{r−ε,−r}
1√

r + |z| · 1√
r − |z| dz ≤ κ√

r
·
∫ r

max{r−ε,−r}
1√

r − |z| dz.

For ε ≤ r , we have r − ε ≥ 0 ≥ −r and hence,

κ√
r

·
∫ r

max{r−ε,−r}
1√

r − |z| dz = κ√
r

·
∫ r

r−ε

1√
r − z

dz = 2κ
√

ε√
r

≤ 4κ
√

ε√
r

.

For ε ∈ (r,2r], we have 0 ≥ r − ε ≥ −r and hence,

κ√
r

·
∫ r

max{r−ε,−r}
1√

r − |z| dz = κ√
r

·
(∫ r

0

1√
r − z

dz +
∫ 0

r−ε

1√
r + z

dz

)

≤ κ√
r

·
(

2
√

r +
∫ 0

−r

1√
r + z

dz

)

= 4κ
√

r√
r

≤ 4κ
√

ε√
r

,

where we used ε > r for the last inequality. For ε > 2r , we have r − ε ≤ −r and
hence,

κ√
r

·
∫ r

max{r−ε,−r}
1√

r − |z| dz = κ√
r

·
∫ r

−r

1√
r − |z| dz = 2κ ≤ 2κ

√
ε√

r
≤ 4κ

√
ε√

r
,

where we used ε > r for the penultimate inequality. Altogether this argument shows
that

Pr
[
Δ2 ∈ [0, ε] | v1, v2, v3, v4 fixed arbitrarily with d(v1, v2) = r

]≤ 4κ
√

ε√
r

. (4.7)

Since (4.7) uses only the randomness of v5 which is independent of Δ1, we can
multiply the upper bounds from (4.6) and (4.7) to obtain

Pr
[
Δ1,Δ2 ∈ [0, ε] | d(v1, v2) = r

]≤ 12κ2

r
ε3/2 · ln(1/ε).
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In order to get rid of the condition d(v1, v2) = r , we integrate over all possible values
the random variable d(v1, v2) can take, yielding

Pr
[
Δ1,Δ2 ∈ [0, ε]]=

∫ √
d

0

rd−1

dd/2−1
· Pr

[
Δ1,Δ2 ∈ [0, ε] | d(v1, v2) = r

]
dr

≤
∫ √

d

0

12κ2 · rd−2

dd/2−1
· ε3/2 · ln(1/ε) dr = O

(
ε3/2 · ln(1/ε)

)
,

where the last equation follows because d is assumed to be constant. Applying a
union bound over all O(n5) possible pairs of type 1(a) concludes the proof when one
takes into account the factor ((4d)d/2φ)4 due to considering the simplified random
experiment (see Sect. 4.2.2).

For pairs of type 1(b), the situation looks somewhat similar. We analyze the first
step and in the second step, we can only exploit the randomness of the distances
d(v2, v5) and d(v3, v5). Due to Lemma 17(b) and similarly to (4.4), the probability of
the event Δ1 ∈ [0, ε] under the condition d(v2, v3) = τ can be bounded by

Pr
[
Δ1 ∈ [0, ε] | d(v2, v3) = τ

]≤ 3κ

τ
· ε · ln(1/ε). (4.8)

The remaining analysis of pairs of type 1(b) can be carried out completely analo-
gously to the analysis of pairs of type 1(a). �

4.2.4 The Expected Number of 2-Changes

Based on Lemmas 9 and 14, we are now able to prove part (b) of Theorem 2,
which states that the expected length of the longest path in the 2-Opt state graph
is O(n4+1/3 · log(nφ) · φ8/3) for φ-perturbed Euclidean instances with n points.

Proof of Theorem 2(b) We use the same notation as in the proof of part (a) of the
theorem. For t > 2n2, we have t/6−7n(n−1)/24 > t/48 and hence using Lemma 14

with ε = 48
√

dn
t

yields

Pr[T ≥ t] ≤ Pr
[
Δ∗

min ≤ 48
√

dn

t

]

= O

(
min

{
n8 · log2(t) · φ5

t2
,1

})

+ O

(
min

{
n13/2 · log(t) · φ4

t3/2
,1

})
.

This implies that the expected length of the longest path in the state graph is bounded
from above by
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2n2 +
n!∑

t=2n2+1

(
O

(
min

{
n8 · log2(t) · φ5

t2
,1

})

+ O

(
min

{
n13/2 · log(t) · φ4

t3/2
,1

}))
. (4.9)

In the following, we use the fact that, for a > 0,

∫ ∞

a

ln2(x)

x2
dx =

[
− ln2(x) + 2 ln(x) + 2

x

]∞

a

= O

(
ln2(a)

a

)
.

For tA = n4 · log(nφ) · φ5/2, the first sum in (4.9) can be bounded as follows:

n!∑

t=2n2+1

O

(
min

{
n8 · log2(t) · φ5

t2
,1

})

≤ tA + O

(∫ ∞

t=tA

n8 · log2(t) · φ5

t2
dt

)

= tA + O

([
−n8 · log2(t) · φ5

t

]∞

t=tA

)

= tA + O

(
n8 · log2(tA) · φ5

tA

)

= tA + O

(
n8 · log2(nφ) · φ5

tA

)
= O(tA).

In the following, we use the fact that, for a > 0,

∫ ∞

a

ln(x)

x3/2
dx =

[
−2 ln(x) + 4√

x

]∞

a

= O

(
ln(a)√

a

)
.

For tB = n13/3 · log2/3(nφ) ·φ8/3, the second sum in (4.9) can be bounded as follows:

n!∑

t=2n2+1

O

(
min

{
n13/2 · log(t) · φ4

t3/2
,1

})

≤ tB + O

(∫ ∞

t=tB

n13/2 · log(t) · φ4

t3/2
dt

)

= tB + O

([
−n13/2 · log(t) · φ4

√
t

]∞

t=tB

)

= tB + O

(
n13/2 · log(tB) · φ4

√
tB

)
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= tB + O

(
n13/2 · log(nφ) · φ4

√
tB

)
= O(tB).

Together this yields

E[T ] = O
(
n4 · log(nφ) · φ5/2)+ O

(
n13/3 · log2/3(nφ) · φ8/3),

which concludes the proof of part (b) of the theorem. �

Using the same observations as in the proof of Theorem 3(a) also yields part (b):

Proof of Theorem 3(b) Estimating the length of the initial tour by O(n(d−1)/d · logn)

instead of O(n) improves the upper bound on the expected number of 2-changes by
a factor of Θ(n1/d/ logn) compared to Theorem 2(b). This observation yields the
bound claimed in Theorem 3(b). �

5 Expected Approximation Ratio

In this section, we consider the expected approximation ratio of the solution found by
2-Opt on φ-perturbed Lp instances. Chandra, Karloff, and Tovey [3] show that if one
has a set of n points in the unit hypercube [0,1]d and the distances are measured ac-
cording to a metric that is induced by a norm, then every locally optimal solution has
length at most c · n(d−1)/d for an appropriate constant c depending on the dimension
d and the metric. Hence, it follows for every Lp metric that 2-Opt yields a tour of
length O(n(d−1)/d) on φ-perturbed Lp instances. This implies that the approximation
ratio of 2-Opt on these instances can be bounded from above by O(n(d−1)/d)/Opt,
where Opt denotes the length of the shortest tour. We will show a lower bound on
Opt that holds with high probability in φ-perturbed Lp instances. Based on this, we
prove Theorem 4.

Proof of Theorem 4 Let v1, . . . , vn ∈ R
d denote the points of the φ-perturbed in-

stance. We denote by k the largest integer k ≤ nφ that can be written as k = d for
some  ∈ N. We partition the unit hypercube into k smaller hypercubes with volume
1/k each and analyze how many of these smaller hypercubes contain at least one of
the points. Assume that X > 3d of these hypercubes contain a point; then the optimal
tour must have length at least

⌈
X

3d

⌉
· 1

d
√

k
. (5.1)

In order to see this, we construct a set P ⊆ {v1, . . . , vn} of points as follows: Consider
the points v1, . . . , vn one after another, and insert a point vi into P if P does not
contain a point in the same hypercube as vi or in one of its 3d − 1 neighboring
hypercubes yet. Due to the triangle inequality, the optimal tour on P is at most as
long as the optimal tour on v1, . . . , vn. Furthermore, P contains at least �X/3d� ≥ 2
points and every edge between two points from P has length at least 1/

d
√

k since P

does not contain two points in the same or in two neighboring hypercubes. Hence, it
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remains to analyze the random variable X. For each hypercube i with 1 ≤ i ≤ k, we
define a random variable Xi which takes value 0 if hypercube i is empty and value
1 if hypercube i contains at least one point. The density functions that specify the
locations of the points induce for each pair of hypercube i and point j a probability
p

j
i such that point j falls into hypercube i with probability p

j
i . Hence, one can think

of throwing n balls into k bins in a setting where each ball has its own probability
distribution over the bins. Due to the bounded density, we have p

j
i ≤ φ/k. For each

hypercube i, let Mi denote the probability mass associated with hypercube i, that is

Mi =
n∑

j=1

p
j
i ≤ nφ

k
.

We can write the expected value of the random variable Xi as

E[Xi] = Pr[Xi = 1] = 1 −
n∏

j=1

(
1 − p

j
i

)≥ 1 −
(

1 − Mi

n

)n

as, under the constraint
∑

j (1 − p
j
i ) = n − Mi , the term

∏
j (1 − p

j
i ) is maximized

if all p
j
i are equal. Due to linearity of expectation, the expected value of X is

E[X] ≥
k∑

i=1

(
1 −

(
1 − Mi

n

)n)
= k −

k∑

i=1

(
1 − Mi

n

)n

.

Observe that
∑

i Mi = n and hence, also the sum
∑

i (1 − Mi/n) = k − 1 is fixed.
As the function f (x) = xn is convex for n ≥ 1, the sum

∑
i (1 − Mi/n)n becomes

maximal if the Mi ’s are chosen as unbalanced as possible. Hence, we assume that
�k/φ� of the Mi ’s take their maximal value of nφ/k and the other Mi ’s are zero.
This yields, for sufficiently large n,

E[X] ≥ k −
(⌈

k

φ

⌉(
1 − φ

k

)n

+
(

k −
⌈

k

φ

⌉))

=
⌈

k

φ

⌉
−
⌈

k

φ

⌉
·
(

1 − φ

k

)n

≥ k

φ
− 2k

φ

(
1 − φ

k

)n

≥ k

φ

(
1 − 2

(
1 − 1

n

)n)
≥ k

φ

(
1 − 2

e

)
≥ k

4φ
.

For the second inequality we have used that k
φ

≥ 1 for sufficiently large n and

hence � k
φ
� ≤ 2k

φ
. For the third inequality we have used that n ≥ k

φ
, which follows

from the definition of k as the largest integer k ≤ nφ that can be written as k = d for
some  ∈N. This definition also implies

nφ < ( + 1)d = ( d
√

k + 1
)d ≤ (

2 d
√

k
)d = 2dk
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and hence, E[X] ≥ n/2d+2.
Next we show that X is sharply concentrated around its mean value. The random

variable X is the sum of k 0-1-random variables Xi . If these random variables were
independent, we could simply use a Chernoff bound to bound the probability that
X takes a value that is much smaller than its mean value. Intuitively, whenever we
already know that some of the Xi ’s are zero, then the probability of the event that
another Xi also takes the value zero becomes smaller. Hence, intuitively, the depen-
dencies can only help to bound the probability that X takes a value smaller than its
mean value.

To formalize this intuition, we use the framework of negatively associated ran-
dom variables, introduced by Dubhashi and Ranjan [4]. In Appendix D, we repeat
the formal definition and we show that the Xi are negatively associated. Dubhashi
and Ranjan show (Proposition 7 of [4]) that in the case of negatively associated ran-
dom variables, one can still apply a Chernoff bound. The Chernoff bound from [14]
implies that, for any δ ∈ (0,1),

Pr
[
X ≤ (1 − δ) · E[X]]≤ exp

(
−E[X] · δ2

2

)
.

This yields

Pr
[
X ≤ n

2d+3

]
≤ Pr

[
X ≤ E[X]

2

]
≤ exp

(
−E[X]

8

)
≤ exp

(
− n

2d+5

)
, (5.2)

where we used E[X] ≥ n/2d+2 for the first and last inequality.
In order to bound the expected approximation ratio of any locally optimal solution,

we distinguish between two cases:

– If X ≥ n

2d+3 , then, assuming that n is large enough, we have that X > 3d and hence,
(5.1) implies that

Opt ≥
⌈

X

3d

⌉
· 1

d
√

k
≥ X

3d d
√

k
≥ n

2d+33d d
√

k
= Θ

(
n(d−1)/d

d
√

φ

)
,

where we used that k = Θ(nφ) for the last equation. Combining this with Chandra,
Karloff, and Tovey’s [3] result that every locally optimal solution has length at most
O(n(d−1)/d) yields an approximation ratio of

O(n(d−1)/d)

Θ(n(d−1)/d

d
√

φ
)

= O
(

d
√

φ
)
.

– If X < n

2d+3 , then we use n as an upper bound on the approximation ratio of any
locally optimal solution. This bound holds in fact for any possible tour, as the
following argument shows: The length of every tour is bounded from above by n

times the length α of the longest edge. Let u and v be the vertices that this edge
connects. Then every tour has to contain a path between u and v. Due to the triangle
inequality, this path must have length at least α.
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We have seen in (5.2) that the event X < n

2d+3 occurs only with exponentially
small probability. This implies that it adds at most

exp

(
− n

2d+5

)
· n = o(1)

to the expected approximation ratio.

This concludes the proof as the contribution of both cases to the expected approxi-
mation ratio is O( d

√
φ). �

6 Smoothed Analysis

Smoothed Analysis was introduced by Spielman and Teng [19] as a hybrid of worst
case and average case analysis. The semi-random input model in a smoothed analysis
is designed to capture the behavior of algorithms on typical inputs better than a worst
case or average case analysis alone as it allows an adversary to specify an arbitrary
input which is randomly perturbed afterwards. In Spielman and Teng’s analysis of
the Simplex algorithm the adversary specifies an arbitrary linear program which is
perturbed by adding independent Gaussian random variables to each number in the
linear program. Our probabilistic analysis of Manhattan and Euclidean instances can
also be seen as a smoothed analysis in which an adversary can choose the distributions
for the points over the unit hypercube. The adversary is restricted to distributions that
can be represented by densities that are bounded by φ. Our model cannot handle
Gaussian perturbations directly because the support of Gaussian random variables is
not bounded.

Assume that every point v1, . . . , vn is described by a density whose support is
restricted to the hypercube [−α,1 + α]d , for some α ≥ 1. Then after appropriate
scaling and translating, we can assume that all supports are restricted to the unit
hypercube [0,1]d . Thereby, the maximal density φ increases by at most a factor of
(2α + 1)d . Hence, after appropriate scaling and translating, Theorems 2, 3, and 4 can
still be applied if one takes into account the increased densities.

One possibility to cope with Gaussian perturbations is to consider truncated Gaus-
sian perturbations. In such a perturbation model, the coordinates of each point are
initially chosen from [0,1]d and then perturbed by adding Gaussian random vari-
ables with mean 0 and with some standard deviation σ to them that are conditioned
to lie in [−α,α] for some α ≥ 1. The maximal density of such truncated Gaussian
random variables for σ ≤ 1 is bounded from above by

1/(σ
√

2π)

1 − σ · exp(−α2/(2σ 2))
. (6.1)

This is shown by the following calculation in which we denote by X a Gaussian
random variable with mean 0 and standard deviation σ , by f (z) = exp(−z2/(2σ 2))/

(σ
√

2π) its density function and by fX|X∈[−α,α] the density of X conditioned on the
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fact that X ∈ [−α,α]:

fX|X∈[−α,α](z) ≤ f (z)

Pr[X ∈ [−α,α]] = exp(−z2/(2σ 2))

σ
√

2π · Pr[X ∈ [−α,α]]

≤ 1/(σ
√

2π)

Pr[X ∈ [−α,α]] = 1/(σ
√

2π)

1 − Pr[X /∈ [−α,α]]

≤ 1/(σ
√

2π)

1 − σ · exp(−a2/(2σ 2))
,

where we used the following bound on the probability that X does not lie in [−α,α]:

Pr
[
X /∈ [−α,α]]=

∫ ∞

α

f (z) dz +
∫ −α

−∞
f (z) dz

= 2
∫ ∞

α

f (z) dz =
√

2

σ
√

π

∫ ∞

α

exp
(−z2/

(
2σ 2))dz

≤
√

2

σ
√

π

∫ ∞

α

z · exp
(−z2/

(
2σ 2))dz

=
√

2

σ
√

π

[−σ 2 exp
(−z2/

(
2σ 2))]∞

α

= σ
√

2√
π

exp
(−α2/

(
2σ 2))≤ σ · exp

(−α2/
(
2σ 2)), (6.2)

where the inequality follows from α ≥ 1.
After such a truncated perturbation, all points lie in the hypercube [−α,1 + α]d .

Hence, one can apply Theorems 2, 3, and 4 with

φ = (2α + 1)d

(σ
√

2π − σ 2
√

2π exp(−α2/(2σ 2)))d
= O

(
αd

σd

)
,

where the first equality follows from (6.1) and the observation that shifting and scal-
ing the hypercube [−α,1 + α]d to [0,1]d leads to densities that are larger than the
original densities by at most a factor of (2α + 1)d . The second equality follows be-
cause the term σ 2

√
2π exp(−α2/(2σ 2)) is in o(σ ) if σ goes to 0.

It is not necessary to truncate the Gaussian random variables if the standard de-
viation is small enough. For σ ≤ min{α/

√
2(n + 1) lnn + 2 lnd,1}, the probability

that one of the Gaussian random variables has an absolute value larger than α ≥ 1 is
bounded from above by n−n. This follows from a union bound over all dn Gaussian
variables and (6.2):

dn · Pr
[
X /∈ [−α,α]] ≤ exp

(
ln(dn)

)(
σ · exp

(−α2/
(
2σ 2)))

≤ exp
(
ln(dn) − α2/

(
2σ 2))

≤ exp
(
ln(dn) − (n + 1) lnn − lnd

)= n−n.
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We have used σ ≤ 1 for the second inequality. In this case, even if one does not trun-
cate the random variables, Theorems 2, 3, and 4 can be applied with φ = O(αd/σd).
To see this, it suffices to observe that the worst-case bound for the number of
2-changes is n! and the worst-case approximation ratio is O(logn) [3]. Multiply-
ing these values with the failure probability of n−n adds less than 1 to the expected
values. In particular, this implies that the expected length of the longest path in the
state graph is bounded by O(poly(n,1/σ)).

7 Conclusions and Open Problems

We have shown several new results on the running time and the approximation ratio
of the 2-Opt heuristic. However, there are still a variety of open problems regarding
this algorithm. Our lower bounds only show that there exist families of instances
on which 2-Opt takes an exponential number of steps if it uses a particular pivot
rule. It would be interesting to analyze the diameter of the state graph and to either
present instances on which every pivot rule needs an exponential number of steps or to
prove that there is always an improvement sequence of polynomial length to a locally
optimal solution. Also the worst number of local improvements for some natural
pivot rules like, e.g., the one that always makes the largest possible improvement
or the one that always chooses a random improving 2-change, is not known yet.
Furthermore, the complexity of computing locally optimal solutions is open. The
only result in this regard is due to Krentel [9] who shows that it is PLS-complete
to compute a local optimum for the metric TSP for k-Opt for some constant k. It is
not known whether his construction can be embedded into the Euclidean metric and
whether it is PLS-complete to compute locally optimal solutions for 2-Opt. Fischer
and Torenvliet [6] show, however, that for the general TSP, it is PSPACE-hard to
compute a local optimum for 2-Opt that is reachable from a given initial tour.

The obvious open question concerning the probabilistic analysis is how the gap
between experiments and theory can be narrowed further. In order to tackle this ques-
tion, new methods seem to be necessary. Our approach, which is solely based on
analyzing the smallest improvement made by a sequence of linked 2-changes, seems
to yield too pessimistic bounds. Another interesting area to explore is the expected
approximation ratio of 2-Opt. In experiments, approximation ratios close to 1 are ob-
served. For instances that are chosen uniformly at random, the bound on the expected
approximation ratio is a constant but unfortunately a large one. It seems to be a very
challenging problem to improve this constant to a value that matches the experimental
results.

Besides 2-Opt, there are also other local search algorithms that are successful for
the traveling salesperson problem. In particular, the Lin–Kernighan heuristic [11] is
one of the most successful local search algorithm for the symmetric TSP. It is a vari-
ant of k-Opt in which k is not fixed and it can roughly be described as follows: Each
local modification starts by removing one edge {a, b} from the current tour, which
results in a Hamiltonian path with the two endpoints a and b. Then an edge {b, c} is
added, which forms a cycle; there is a unique edge {c, d} incident to c whose removal
breaks the cycle, producing a new Hamiltonian path with endpoints a and d . This
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operation is called a rotation. Now either a new Hamiltonian cycle can be obtained
by adding the edge {a, d} to the tour or another rotation can be performed. There are
a lot of different variants and heuristic improvements of this basic scheme, but little
is known theoretically. Papadimitriou [16] shows for a variant of the Lin–Kernighan
heuristic that computing a local optimum is PLS-complete, which is a sharp contrast
to the experimental results. Since the Lin–Kernighan heuristic is widely used in prac-
tice, a theoretical explanation for its good behavior in practice is of great interest. Our
analysis of 2-Opt relies crucially on the fact that there are only a polynomial num-
ber of different 2-changes. For the Lin–Kernighan heuristic, however, the number of
different local improvements is exponential. Hence, it is an interesting question as
to whether nonetheless the smallest possible improvement is polynomially large or
whether different methods yield a polynomial upper bound on the expected running
time of the Lin–Kernighan heuristic.
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Appendix A: Inequalities from Sect. 3.2.2

Inequalities corresponding to the improvements made by the 2-changes in the se-
quence in which GP

n−1 changes its state from (S,L) to (S,S) while resetting GR
n−1:

Inequality 1:

p
√

9.7p + 3.6p + p
√

4.3p + 6.9p − p
√

0.3p + 1.7p − p
√

14.3p + 1.6p > 0

For p ≥ 3, we obtain

p
√

0.3p + 1.7p = 1.7 · p

√

1 +
(

0.3

1.7

)p

≤ 1.7 · 3

√

1 +
(

0.3

1.7

)3

< 1.71

and

p
√

14.3p + 1.6p = 14.3 · p

√

1 +
(

1.6

14.3

)p

≤ 14.3 · 3

√

1 +
(

1.6

14.3

)3

< 14.31.

Hence, for p ≥ 3,

p
√

9.7p + 3.6p + p
√

4.3p + 6.9p − p
√

0.3p + 1.7p − p
√

14.3p + 1.6p

≥ 9.7 + 6.9 − 1.71 − 14.31 > 0.

Inequality 2:

p
√

0.0p + 1.0p + p
√

8.7p + 14.3p − p
√

1.5p + 7.1p − p
√

7.2p + 6.2p > 0
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For p ≥ 4, we obtain

p
√

1.5p + 7.1p = 7.1 · p

√

1 +
(

1.5

7.1

)p

≤ 7.1 · 4

√

1 +
(

1.5

7.1

)4

< 7.11

and

p
√

7.2p + 6.2p = 7.2 · p

√

1 +
(

6.2

7.2

)p

≤ 7.2 · 4

√

1 +
(

6.2

7.2

)4

< 8.04.

Hence, for p ≥ 4,

p
√

0.0p + 1.0p + p
√

8.7p + 14.3p − p
√

1.5p + 7.1p − p
√

7.2p + 6.2p

≥ 1.0 + 14.3 − 7.11 − 8.04 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in
the appropriate values.

Inequality 3:

p
√

1.5p + 7.1p + p
√

4.3p + 6.9p − p
√

3.5p + 3.7p − p
√

9.3p + 3.9p > 0

For p ≥ 4, we obtain

p
√

3.5p + 3.7p = 3.7 · p

√

1 +
(

3.5

3.7

)p

≤ 3.7 · 4

√

1 +
(

3.5

3.7

)4

< 4.29

and

p
√

9.3p + 3.9p = 9.3 · p

√

1 +
(

3.9

9.3

)p

≤ 9.3 · 4

√

1 +
(

3.9

9.3

)4

< 9.38.

Hence, for p ≥ 4,

p
√

1.5p + 7.1p + p
√

4.3p + 6.9p − p
√

3.5p + 3.7p − p
√

9.3p + 3.9p

≥ 7.1 + 6.9 − 4.29 − 9.38 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in
the appropriate values.

Inequality 4:

p
√

0.0p + 1.0p + p
√

14.3p + 1.6p − p
√

6.5p + 1.6p − p
√

7.8p + 4.2p > 0

For p ≥ 3, we obtain

p
√

6.5p + 1.6p = 6.5 · p

√

1 +
(

1.6

6.5

)p

≤ 6.5 · 3

√

1 +
(

1.6

6.5

)3

< 6.54
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and

p
√

7.8p + 4.2p = 7.8 · p

√

1 +
(

4.2

7.8

)p

≤ 7.8 · 3

√

1 +
(

4.2

7.8

)3

< 8.19.

Hence, for p ≥ 3,

p
√

0.0p + 1.0p + p
√

14.3p + 1.6p − p
√

6.5p + 1.6p − p
√

7.8p + 4.2p

≥ 1.0 + 14.3 − 6.54 − 8.19 > 0.

Inequality 5:

p
√

0.3p + 1.7p + p
√

7.2p + 6.2p − p
√

4.0p + 5.2p − p
√

3.5p + 2.7p > 0

For p ≥ 7, we obtain

p
√

4.0p + 5.2p = 5.2 · p

√

1 +
(

4.0

5.2

)p

≤ 5.2 · 7

√

1 +
(

4.0

5.2

)7

< 5.32

and

p
√

3.5p + 2.7p = 3.5 · p

√

1 +
(

2.7

3.5

)p

≤ 3.5 · 7

√

1 +
(

2.7

3.5

)7

< 3.58.

Hence, for p ≥ 7,

p
√

0.3p + 1.7p + p
√

7.2p + 6.2p − p
√

4.0p + 5.2p − p
√

3.5p + 2.7p

> 1.7 + 7.2 − 5.32 − 3.58 = 0.

For the remaining cases p ∈ {3,4,5,6}, the inequality can simply be checked by
plugging in the appropriate values.

Inequality 6:

p
√

3.5p + 3.7p + p
√

7.8p + 4.2p − p
√

3.5p + 2.7p − p
√

7.8p + 3.2p > 0

For p ≥ 5, we obtain

p
√

3.5p + 2.7p = 3.5 · p

√

1 +
(

2.7

3.5

)p

≤ 3.5 · 5

√

1 +
(

2.7

3.5

)5

< 3.68

and

p
√

7.8p + 3.2p = 7.8 · p

√

1 +
(

3.2

7.8

)p

≤ 7.8 · 5

√

1 +
(

3.2

7.8

)5

< 7.82.

Hence, for p ≥ 5,
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p
√

3.5p + 3.7p + p
√

7.8p + 4.2p − p
√

3.5p + 2.7p − p
√

7.8p + 3.2p

> 3.7 + 7.8 − 3.68 − 7.82 = 0.

For the remaining cases p ∈ {3,4}, the inequality can simply be checked by plugging
in the appropriate values.

Inequality 7:

p
√

6.5p + 1.6p + p
√

9.3p + 3.9p − p
√

5.0p + 5.5p − p
√

7.8p + 3.2p > 0

For p ≥ 3, we obtain

p
√

5.0p + 5.5p = 5.5 · p

√

1 +
(

5.0

5.5

)p

≤ 5.5 · 3

√

1 +
(

5.0

5.5

)3

< 6.63

and

p
√

7.8p + 3.2p = 7.8 · p

√

1 +
(

3.2

7.8

)p

≤ 7.8 · 3

√

1 +
(

3.2

7.8

)3

< 7.98.

Hence, for p ≥ 3,

p
√

6.5p + 1.6p + p
√

9.3p + 3.9p − p
√

5.0p + 5.5p − p
√

7.8p + 3.2p

≥ 6.5 + 9.3 − 6.63 − 7.98 > 0.

Inequalities corresponding to the improvements made by the 2-changes in the se-
quence in which gadget GR

n−2 resets gadget GP
n−1 from (S,S) to (L,L):

Inequality 1:

p
√

27.3p + 21.06p + p
√

5.0p + 5.5p − p
√

13.7p + 0.9p − p
√

18.6p + 16.46p > 0

For p ≥ 10, we obtain

p
√

13.7p + 0.9p = 13.7 · p

√

1 +
(

0.9

13.7

)p

≤ 13.7 · 10

√

1 +
(

0.9

13.7

)10

< 13.71

and

p
√

18.6p + 16.46p = 18.6 · p

√

1 +
(

16.46

18.6

)p

≤ 18.6 · 10

√

1 +
(

16.46

18.6

)10

< 19.09.

Hence, for p ≥ 10,

p
√

27.3p + 21.06p + p
√

5.0p + 5.5p − p
√

13.7p + 0.9p − p
√

18.6p + 16.46p

> 27.3 + 5.5 − 13.71 − 19.09 = 0.
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For the remaining cases p ∈ {3,4,5,6,7,8,9}, the inequality can simply be checked
by plugging in the appropriate values.

Inequality 2:

p
√

4.0p + 5.2p + p
√

60.84p + 24.96p − p
√

60.84p + 23.06p − p
√

4.0p + 3.3p > 0

For p ≥ 4, we obtain

p
√

60.84p + 23.06p = 60.84 · p

√

1 +
(

23.06

60.84

)p

≤ 60.84 · 4

√

1 +
(

23.06

60.84

)4

< 61.16

and

p
√

4.0p + 3.3p = 4.0 · p

√

1 +
(

3.3

4.0

)p

≤ 4.0 · 4

√

1 +
(

3.3

4.0

)4

< 4.4.

Hence, for p ≥ 4,

p
√

4.0p + 5.2p + p
√

60.84p + 24.96p − p
√

60.84p + 23.06p − p
√

4.0p + 3.3p

≥ 5.2 + 60.84 − 61.16 − 4.4 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in
the appropriate values.

Inequality 3:

p
√

60.84p + 23.06p + p
√

12.3p + 14.4p − p
√

15.8p + 11.8p

− p
√

57.34p + 20.46p > 0

For p ≥ 4, we obtain

p
√

15.8p + 11.8p = 15.8 · p

√

1 +
(

11.8

15.8

)p

≤ 15.8 · 4

√

1 +
(

11.8

15.8

)4

< 16.91

and

p
√

57.34p + 20.46p = 57.34 · p

√

1 +
(

20.46

57.34

)p

≤ 57.34 · 4

√

1 +
(

20.46

57.34

)4

< 57.58.

Hence, for p ≥ 4,

p
√

60.84p + 23.06p + p
√

12.3p + 14.4p − p
√

15.8p + 11.8p − p
√

57.34p + 20.46p

≥ 60.84 + 14.4 − 16.91 − 57.58 > 0.
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For the remaining case p = 3, the inequality can simply be checked by plugging in
the appropriate values.

Inequality 4:

p
√

2.2p + 4.9p + p
√

18.6p + 16.46p − p
√

15.4p + 16.26p − p
√

1.0p + 4.7p > 0

For p ≥ 5, we obtain

p
√

15.4p + 16.26p = 16.26 · p

√

1 +
(

15.4

16.26

)p

≤ 16.26 · 5

√

1 +
(

15.4

16.26

)5

< 18.22

and

p
√

1.0p + 4.7p = 4.7 · p

√

1 +
(

1.0

4.7

)p

≤ 4.7 · 5

√

1 +
(

1.0

4.7

)5

< 4.71.

Hence, for p ≥ 5,

p
√

2.2p + 4.9p + p
√

18.6p + 16.46p − p
√

15.4p + 16.26p − p
√

1.0p + 4.7p

≥ 4.9 + 18.6 − 18.22 − 4.71 > 0.

For the remaining cases p ∈ {3,4}, the inequality can simply be checked by plugging
in the appropriate values.

Inequality 5:

p
√

13.7p + 0.9p + p
√

4.0p + 3.3p − p
√

0.0p + 7.8p − p
√

9.7p + 3.6p > 0

For p ≥ 3, we obtain

p
√

9.7p + 3.6p = 9.7 · p

√

1 +
(

3.6

9.7

)p

≤ 9.7 · 3

√

1 +
(

3.6

9.7

)3

< 9.87.

Hence, for p ≥ 3,

p
√

13.7p + 0.9p + p
√

4.0p + 3.3p − p
√

0.0p + 7.8p − p
√

9.7p + 3.6p

≥ 13.7 + 4.0 − 7.8 − 9.87 > 0.

Inequality 6:

p
√

15.8p + 11.8p + p
√

1.0p + 4.7p − p
√

6.1p + 2.2p − p
√

8.7p + 14.3p > 0

For p ≥ 7, we obtain

p
√

6.1p + 2.2p = 6.1 · p

√

1 +
(

2.2

6.1

)p

≤ 6.1 · 7

√

1 +
(

2.2

6.1

)7

< 6.11
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and

p
√

8.7p + 14.3p = 14.3 · p

√

1 +
(

8.7

14.3

)p

≤ 14.3 · 7

√

1 +
(

8.7

14.3

)7

< 14.37.

Hence, for p ≥ 7,

p
√

15.8p + 11.8p + p
√

1.0p + 4.7p − p
√

6.1p + 2.2p − p
√

8.7p + 14.3p

≥ 15.8 + 4.7 − 6.11 − 14.37 > 0.

For the remaining cases p ∈ {3,4,5,6}, the inequality can simply be checked by
plugging in the appropriate values.

Inequality 7:

p
√

15.4p + 16.26p + p
√

57.34p + 20.46p − p
√

33.54p + 53.82p − p
√

8.4p + 17.1p > 0

For p ≥ 4, we obtain

p
√

33.54p + 53.82p = 53.82 · p

√

1 +
(

33.54

53.82

)p

≤ 53.82 · 4

√

1 +
(

33.54

53.82

)4

< 55.75

and

p
√

8.4p + 17.1p = 17.1 · p

√

1 +
(

8.4

17.1

)p

≤ 17.1 · 4

√

1 +
(

8.4

17.1

)4

< 17.35.

Hence, for p ≥ 4,

p
√

15.4p + 16.26p + p
√

57.34p + 20.46p − p
√

33.54p + 53.82p − p
√

8.4p + 17.1p

≥ 16.26 + 57.34 − 55.75 − 17.35 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in
the appropriate values.

Appendix B: Some Probability Theory

Lemma 20 Let X1, . . . ,Xn ∈ [0,1]d be stochastically independent d-dimensional
random row vectors, and, for i ∈ [n] and some φ ≥ 1, let fi : [0,1]d → [0, φ] denote
the joint probability density of the entries of Xi . Furthermore, let λ1, . . . , λk ∈ Z

dn

be fixed linearly independent row vectors. For i ∈ [n] and a fixed ε ≥ 0, we denote
by Ai the event that λi · X takes a value in the interval [0, ε], where X denotes the
vector X = (X1, . . . ,Xn)T. Under these assumptions,

Pr

[
k⋂

i=1

Ai

]

≤ (εφ)k.
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Proof The main tool for proving the lemma is a change of variables. Instead of us-
ing the canonical basis of the dn-dimensional vector space R

dn, we use the given
linear combinations as basis vectors. To be more precise, the basis B that we use
consists of two parts: it contains the vectors λ1, . . . , λk and it is completed by some
vectors from the canonical basis {e1, . . . , edn}, where ei denotes the i-th canonical
row vector, i.e., ei

i = 1 and ei
j = 0 for j �= i. That is, the basis B can be written as

{λ1, . . . , λk, eπ(1), . . . , eπ(dn−k)}, for some injective function π : [dn − k] → [dn].
Let Φ : Rdn → R

dn be defined by Φ(x) = Ax, where A denotes the (dn) × (dn)-
matrix

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

λ1

...

λk

eπ(1)

...

eπ(dn−k)

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since B is a basis of Rdn, the function Φ is a bijection. We define Y = (Y1, . . . , Ydn)
T

as Y = Φ(X), and for i ∈ [n], we denote by Y i the vector (Yd(i−1)+1, . . . , Ydi).
Let f : Rdn → R denote the joint density of the entries of the random vectors
X1, . . . ,Xn, and let g : Rdn → R denote the joint density of the entries of the random
vectors Y 1, . . . , Y n. Due to the independence of the random vectors X1, . . . ,Xn, we
have f (x1, . . . , xdn) = f1(x1, . . . , xd) · · · · · fn(xd(n−1)+1, . . . , xdn). We can express
the joint density g as

g(y1, . . . , ydn) = ∣∣det
∂

Φ−1(y1, . . . , ydn)
∣∣ · f (Φ−1(y1, . . . , ydn)

)
,

where det∂ denotes the determinant of the Jacobian matrix of Φ−1 (see, e.g., [19]).
The matrix A is invertible as B is a basis of R

dn. Hence, for y ∈ R
dn,

Φ−1(y) = A−1y and the Jacobian matrix of Φ−1 equals A−1. Thus, det∂ Φ−1 =
detA−1 = (detA)−1. Since all entries of A are integers, also its determinant must be
an integer, and since it has rank dn, we know that detA �= 0. Hence, |detA| ≥ 1 and
|detA−1| ≤ 1. For y ∈ R

dn, we decompose Φ−1(y) ∈ R
dn into n subvectors with d

entries each, i.e., Φ−1(y) = (Φ−1
1 (y), . . . ,Φ−1

n (y)) with Φ−1
i (y) ∈ R

d for i ∈ [n].
This yields

g(y) = ∣∣detA−1
∣∣ · f (Φ−1(y)

)≤ f1
(
Φ−1

1 (y)
) · · ·fn

(
Φ−1

n (y)
)
,

where we used that |detA−1| ≤ 1 and that the vectors X1, . . . ,Xn are stochastically
independent.

The probability we want to estimate can be written as

Pr

[
k⋂

i=1

Ai

]

=
∫ ε

y1=0
· · ·

∫ ε

yk=0

∫ ∞

yk+1=−∞
· · ·

∫ ∞

ydn=−∞
g(y1, . . . , ydn) dydn · · ·dy1.

(B.1)



248 Algorithmica (2014) 68:190–264

Since all entries of the vectors X1, . . . ,Xn take only values in the interval [0,1] and
since for i ∈ {k + 1, . . . , dn}, the random variable Yi coincides with one of these
entries, (B.1) simplifies to

Pr

[
k⋂

i=1

Ai

]

=
∫ ε

y1=0
· · ·

∫ ε

yk=0

∫ 1

yk+1=0
· · ·

∫ 1

ydn=0
g(y1, . . . , ydn) dydn · · ·dy1. (B.2)

By the definition of π , the basis B consists of the vectors λ1, . . . , λk and the
canonical vectors ei for i ∈ Π = { | ∃j ∈ [dn − k] : π(j) = }. We divide the vec-
tors e1, . . . , edn into n groups of d vectors each, i.e., the first group consists of the
vectors e1, . . . , ed , the second group consists of the vectors ed+1, . . . , e2d , and so
on. The set of vectors ei with i /∈ Π , i.e., the vectors from the canonical basis that
are replaced by the vectors λ1, . . . , λk in basis B, can intersect at most k of these
groups. In order to simplify the notation, we reorder and rename the groups such that
only vectors from the first k groups are replaced by the vectors λ1, . . . , λk . As every
group consists of d vectors, we can assume that, after renaming, [dn] \ Π ⊆ [dk],
i.e., only vectors ei from the canonical basis with i ≤ dk are replaced by the vec-
tors λ1, . . . , λk in the basis B. After that, we can reorder and rename the groups
k + 1, . . . , n such that π(i) = i, for i > dk. This implies, in particular, that for i > k

we have Φ−1
i (y) = (ydi+1, . . . , yd(i+1)). Under these assumptions, the density g can

be upper bounded as follows:

g(y1, . . . , ydn) ≤ φk · fk+1(ydk+1, . . . , yd(k+1)) · · ·fn(yd(n−1)+1, . . . , ydn), (B.3)

where we bounded each of the densities f1, . . . , fk from above by φ and used that
Φ−1

i (y) = (ydi+1, . . . , yd(i+1)) for i > k.
Putting together (B.2) and (B.3) yields

Pr

[
k⋂

i=1

Ai

]

≤ (εφ)k ·
(∫ 1

ydk+1=0
· · ·

∫ 1

yd(k+1)=0
fk+1(ydk+1, . . . , yd(k+1))

. . .

∫ 1

yd(n−1)+1=0

∫ 1

ydn=0
fn(yd(n−1)+1, . . . , ydn) dydn · · ·dydk+1

)

= (εφ)k,

where the last equation follows because fk+1, . . . , fn are density functions. The oc-
currence of εk is due to the first k integrals in (B.2) because each of the variables
y1, . . . , yk is integrated over an interval of length ε and none of them appears in the
integrand coming from (B.3). �
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Appendix C: Proofs of Some Lemmas from Sect. 4.2

C.1 Proof of Lemma 16

Let a, c ∈ (0,C] for some C > 0. In the following proof, we use the following two
identities (see [2]):

∫ c

0

1√
z(c − z)

dz =
[

arctan

(
z − c/2√
z(c − z)

)]c

0

=
(

lim
x→∞ arctan(x)

)
−
(

lim
x→−∞ arctan(x)

)
= π

2
−
(

−π

2

)
= π

and

∫ a

0

1√
z(z + c)

dz =
[

ln

(
c

2
+ z +√

z(z + c)

)]a

0

= ln

(
c

2
+ a +√

a(a + c)

)
− ln

(
c

2

)

≤ ln

(
c

2
+ a +√

(a + c)(a + c)

)
+ ln

(
2

c

)

= ln

(
3

2
c + 2a

)
+ ln

(
2

c

)
≤ ln(4C) + ln

(
2

c

)
.

Since in both identities the integrands are non-negative, the following inequalities
are true for any [α1, α2] ⊆ [0, c] and [β1, β2] ⊆ [0, a]:

∫ α2

α1

1√
z(c − z)

dz ≤ π (C.1)

and
∫ β2

β1

1√
z(z + c)

dz ≤ ln(4C) + ln

(
2

c

)
. (C.2)

We will frequently use these inequalities in the following.

Proof of Lemma 16 The conditional density of Δ can be calculated as convolution of
the conditional densities of Z1 and Z2 as follows:

fΔ|T =τ,R1=r1,R2=r2(δ) =
∫ ∞

−∞
fZ|T =τ,R=r1(z) · fZ|T =τ,R=r2(z − δ) dz.

In order to estimate this integral, we distinguish between several cases. In the follow-
ing, let κ denote a sufficiently large constant.
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First case: τ ≤ r1 and τ ≤ r2.
Since Zi takes only values in the interval [−τ, τ ], we can assume 0 < δ ≤

min{1/2,2τ } and

fΔ|T =τ,R1=r1,R2=r2(δ) =
∫ τ

−τ+δ

fZ|T =τ,R=r1(z) · fZ|T =τ,R=r2(z − δ) dz.

Due to Lemma 15, we can estimate the densities of Z1 and Z2 by

fZ|T =τ,R=ri (z) ≤
√

2

τ 2 − z2
≤
√

2

τ(τ − |z|) ≤
√

2

τ

(
1√

τ − z
+ 1√

τ + z

)
. (C.3)

For δ ∈ (0,min{1/2,2τ }], we obtain the following upper bound on the density of Δ:

fΔ|T =τ,R1=r1,R2=r2(δ)

≤ 2

τ

∫ τ

−τ+δ

(
1√

τ − z
+ 1√

τ + z

)(
1√

τ − z + δ
+ 1√

τ + z − δ

)
dz

= 2

τ

(∫ τ

−τ+δ

1√
(τ − z)(τ − z + δ)

dz +
∫ τ

−τ+δ

1√
(τ + z)(τ − z + δ)

dz

+
∫ τ

−τ+δ

1√
(τ − z)(τ + z − δ)

dz +
∫ τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

)

= 2

τ

(∫ 2τ−δ

0

1√
z′(z′ + δ)

dz′ +
∫ 2τ

δ

1√
z′(2τ + δ − z′)

dz′

+
∫ 2τ−δ

0

1√
z′(2τ − δ − z′)

dz′ +
∫ 2τ−δ

0

1√
z′(z′ + δ)

dz′
)

.

For the four integrals, we used the substitutions z′ = τ − z, z′ = τ + z, z′ = τ − z, and
z′ = τ − δ + z, respectively. Using (C.1) and (C.2) and the fact that 2τ − δ ≤ 2

√
d =

O(1) yields that the previous term is bounded from above by

2

τ

((
ln
(
4(2

√
d)
)+ ln

(
2δ−1))+ π + π + (

ln
(
4(2

√
d)
)+ ln

(
2δ−1)))

= 2

τ

(
2π + 2 ln(8

√
d) + 2 ln

(
2δ−1))= O(1) + 4 ln(δ−1)

τ
.

Since we assume that δ ≤ 1/2, the logarithm ln(δ−1) is bounded from below by the
constant ln(2). Using this observation, we can absorb the O(1) term and bound the
previous expression from above by

κ

τ
· ln

(
δ−1)

if κ is a large enough constant.
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Second case: r1 ≤ τ and r2 ≤ τ .
Since Zi takes only values in the interval [−τ,2ri − τ ], we can assume 0 < δ ≤

min{1/2,2r1} and

fΔ|T =τ,R1=r1,R2=r2(δ) =
∫ min{2r1−τ,2r2−τ+δ}

−τ+δ

fZ|T =τ,R=r1(z)·fZ|T =τ,R=r2(z−δ) dz.

The limits of the integral follow because fZ|T =τ,R=r1(z) is only nonzero for z ∈
[−τ,2r1 − τ ] and fZ|T =τ,R=r2(z − δ) is only nonzero for z ∈ [−τ + δ,2r2 − τ + δ].
The intersection of these two intervals is [−τ + δ,min{2r1 − τ,2r2 − τ + δ}].

Due to Lemma 15, we can estimate the densities of Z1 and Z2 by

fZ|T =τ,Ri=ri (z) ≤
√

2

(τ + z)(2ri − τ − z)
≤
⎧
⎨

⎩

√
2

ri (τ+z)
if z ≤ ri − τ

√
2

ri (2ri−τ−z)
if z ≥ ri − τ

≤
√

2

ri

(
1√

τ + z
+ 1√

2ri − τ − z

)
. (C.4)

Case 2.1: δ ∈ (max{0,2(r1 − r2)},2r1].
We obtain the following upper bound on the density of Δ:

fΔ|T =τ,R1=r1,R2=r2(δ)

≤ 2√
r1r2

∫ 2r1−τ

−τ+δ

(
1√

τ + z
+ 1√

2r1 − τ − z

)

×
(

1√
τ + z − δ

+ 1√
2r2 − τ − z + δ

)
dz

= 2√
r1r2

(∫ 2r1−τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

+
∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(τ + z − δ)

dz

+
∫ 2r1−τ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz

+
∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(2r2 − τ − z + δ)

dz

)

= 2√
r1r2

(∫ 2r1−δ

0

1√
(z′ + δ)z′ dz′ +

∫ 2r1−δ

0

1√
(2r1 − δ − z′)z′ dz′

+
∫ 2r1

δ

1√
z′(2r2 + δ − z′)

dz′ +
∫ 2r1−δ

0

1√
z′(2(r2 − r1) + δ + z′)

dz′
)

.

For the four integrals, we used the substitutions z′ = z + τ − δ, z′ = z + τ − δ,
z′ = z + τ , and z′ = 2r1 − τ − z, respectively. Using (C.1) and (C.2) and the facts
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that 2r1 − δ ≤ 2
√

d and 2(r2 − r1) + δ ≤ 2r2 ≤ 2
√

d yields that the previous term is
bounded from above by

2√
r1r2

((
ln
(
4(2

√
d)
)+ ln

(
2δ−1))+ π + π

+ (
ln
(
4(2

√
d)
)+ ln

(
2
(
2(r2 − r1) + δ

)−1)))

= 2√
r1r2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1)+ ln

(
2
(
2(r2 − r1) + δ

)−1))

≤ 2√
r1r2

(
ln
(
δ−1)+ ln

((
2(r2 − r1) + δ

)−1)+ O(1)
)

≤ κ√
r1r2

(
ln
(
δ−1)+ ln

((
2(r2 − r1) + δ

)−1))
,

where the last inequality assumes that κ is a large enough constant.
Case 2.2: δ ∈ (0,max{0,2(r1 − r2)}).
We obtain the following upper bound on the density of Δ:

fΔ|T =τ,R1=r1,R2=r2(δ)

≤ 2√
r1r2

∫ 2r2−τ+δ

−τ+δ

(
1√

τ + z
+ 1√

2r1 − τ − z

)

×
(

1√
τ + z − δ

+ 1√
2r2 − τ − z + δ

)
dz

= 2√
r1r2

(∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

+
∫ 2r2−τ+δ

−τ+δ

1√
(2r1 − τ − z)(τ + z − δ)

dz

+
∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz

+
∫ 2r2−τ+δ

−τ+δ

1√
(2r1 − τ − z)(2r2 − τ − z + δ)

dz

)

= 2√
r1r2

(∫ 2r2

0

1√
(z′ + δ)z′ dz′ +

∫ 2r2

0

1√
(2r1 − δ − z′)z′ dz′

+
∫ 2r2

0

1√
(2r2 + δ − z′)z′ dz′ +

∫ 2r2

0

1√
(2(r1 − r2) − δ + z′)z′ dz′

)

≤ 2√
r1r2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1)+ ln

(
2
(
2(r1 − r2) − δ

)−1))

≤ κ√
r1r2

(
ln
(
δ−1)+ ln

((
2(r1 − r2) − δ

)−1))
.
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For the four integrals, we used the substitutions z′ = z + τ − δ, z′ = z + τ − δ,
z′ = 2r2 − τ + δ − z, and z′ = 2r2 − τ + δ − z, respectively. Using (C.1) and (C.2)
and the facts that δ ≤ 2(r1 − r2) ≤ 2

√
d and 2(r1 − r2) − δ ≤ 2(r1 − r2) ≤ 2

√
d

yields the penultimate inequality. The last inequality follows for the same reasons as
in Case 2.1.

Third case: r1 ≤ τ ≤ r2.
Since Z1 takes only values in the interval [−τ,2r1 −τ ] and Z2 takes only values in

the interval [−τ, τ ], the random variable Δ = Z1 − Z2 takes only values in the inter-
val [−2τ,2r1]. For δ /∈ [−2τ,2r1], the density of Δ is trivially zero. As additionally,
by definition, δ ∈ (0,1/2], we can assume 0 < δ ≤ min{1/2,2r1} and

fΔ|T =τ,R1=r1,R2=r2(δ) =
∫ 2r1−τ

−τ+δ

fZ|T =τ,R=r1(z) · fZ|T =τ,R=r2(z − δ) dz.

Using (C.3) and (C.4), we obtain the following upper bound on the density of Δ for
δ ∈ (0,min{1/2,2r1}]:

fΔ|T =τ,R1=r1,R2=r2(δ)

≤ 2√
τr1

∫ 2r1−τ

−τ+δ

(
1√

τ + z
+ 1√

2r1 − τ − z

)

×
(

1√
τ − z + δ

+ 1√
τ + z − δ

)
dz

= 2√
τr1

(∫ 2r1−τ

−τ+δ

1√
(τ + z)(τ − z + δ)

dz

+
∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(τ − z + δ)

dz

+
∫ 2r1−τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

+
∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(τ + z − δ)

dz

)

= 2√
τr1

(∫ 2r1

δ

1√
z′(2τ + δ − z′)

dz′ +
∫ 2r1−δ

0

1√
z′(2(τ − r1) + δ + z′)

dz′

+
∫ 2r1−δ

0

1√
(z′ + δ)z′ dz′ +

∫ 2r1−δ

0

1√
(2r1 − δ − z′)z′ dz′

)

≤ 2√
τr1

(
2π + 2 ln(8

√
d) + ln

(
2δ−1)+ ln

(
2
(
2(τ − r1) + δ

)−1))

≤ κ√
τr1

· ln
(
δ−1).

For the four integrals, we used the substitutions z′ = z + τ , z′ = 2r1 − τ − z, z′ =
z + τ − δ, and z′ = z + τ − δ, respectively. Using (C.1) and (C.2) and the facts that
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2(τ − r1)+ δ ≤ 2τ ≤ 2
√

d and δ ≤ 2r1 ≤ 2
√

d yields the penultimate inequality. The
last inequality follows for the same reasons as in Case 2.1.

Fourth case: r2 ≤ τ ≤ r1.
Since Z1 takes only values in the interval [−τ, τ ] and Z2 takes only values in

the interval [−τ,2r2 − τ ], the random variable Δ = Z1 − Z2 takes only values in
the interval [−2r2,2τ ]. For δ /∈ [−2r2,2τ ], the density of Δ is trivially zero. As
additionally, by definition, δ ∈ (0,1/2], we can assume 0 < δ ≤ min{1/2,2τ } and

fΔ|T =τ,R1=r1,R2=r2(δ) =
∫ min{2r2−τ+δ,τ }

−τ+δ

fZ|T =τ,R=r1(z) · fZ|T =τ,R=r2(z − δ) dz.

The limits of the integral follow because fZ|T =τ,R=r1(z) is only nonzero for z ∈
[−τ, τ ] and fZ|T =τ,R=r2(z − δ) is only nonzero for z ∈ [−τ + δ,2r2 − τ + δ]. The
intersection of these two intervals is [−τ + δ,min{2r2 − τ + δ, τ }].

Case 4.1: δ ∈ (0,2(τ − r2)).
Using (C.3) and (C.4), we obtain the following upper bound on the density of Δ:

fΔ|T =τ,R1=r1,R2=r2(δ)

≤ 2√
τr2

∫ 2r2−τ+δ

−τ+δ

(
1√

τ − z
+ 1√

τ + z

)

×
(

1√
τ + z − δ

+ 1√
2r2 − τ − z + δ

)
dz

= 2√
τr2

(∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

+
∫ 2r2−τ+δ

−τ+δ

1√
(τ − z)(τ + z − δ)

dz

+
∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz

+
∫ 2r2−τ+δ

−τ+δ

1√
(τ − z)(2r2 − τ − z + δ)

dz

)

= 2√
τr2

(∫ 2r2

0

1√
(z′ + δ)z′ dz′ +

∫ 2r2

0

1√
(2τ − δ − z′)z′ dz′

+
∫ 2r2

0

1√
(2r2 + δ − z′)z′ dz′ +

∫ 2r2

0

1√
(2(τ − r2) − δ + z′)z′ dz′

)

≤ 2√
τr2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1)+ ln

(
2
(
2(τ − r2) − δ

)−1))

≤ κ√
τr2

(
ln
(
δ−1)+ ln

((
2(τ − r2) − δ

)−1))
.

For the four integrals, we used the substitutions z′ = z + τ − δ, z′ = z + τ − δ,
z′ = 2r2 − τ −z+ δ, and z′ = 2r2 − τ −z+ δ, respectively. Using (C.1) and (C.2) and
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the facts that δ ≤ 2r2 ≤ 2
√

d and 2(τ − r2) − δ ≤ 2τ ≤ 2
√

d yields the penultimate
inequality. The last inequality follows for the same reasons as in Case 2.1.

Case 4.2: δ ∈ (2(τ − r2),2τ ].
Using (C.3) and (C.4), we obtain the following upper bound on the density of Δ:

fΔ|T =τ,R1=r1,R2=r2(δ)

≤ 2√
τr2

∫ τ

−τ+δ

(
1√

τ − z
+ 1√

τ + z

)(
1√

τ + z − δ
+ 1√

2r2 − τ − z + δ

)
dz

= 2√
τr2

(∫ τ

−τ+δ

1√
(τ − z)(τ + z − δ)

dz +
∫ τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

+
∫ τ

−τ+δ

1√
(τ − z)(2r2 − τ − z + δ)

dz

+
∫ τ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz

)

= 2√
τr2

(∫ 2τ−δ

0

1√
(2τ − δ − z′)z′ dz′ +

∫ 2τ−δ

0

1√
(z′ + δ)z′ dz′

+
∫ 2τ−δ

0

1√
z′(2(r2 − τ) + δ + z′)

dz′ +
∫ 2τ

δ

1√
z′(2r2 + δ − z′)

dz′
)

≤ 2√
τr2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1)+ ln

(
2
(
2(r2 − τ) + δ

)−1))

≤ κ√
τr2

(
ln
(
δ−1)+ ln

((
2(r2 − τ) + δ

)−1))
.

For the four integrals, we used the substitutions z′ = τ + z − δ, z′ = τ + z − δ,
z′ = τ − z, and z′ = τ + z, respectively. Using (C.1) and (C.2) and the facts that
δ ≤ 2τ ≤ 2

√
d and 2(r2 − τ)+ δ ≤ 2r2 ≤ 2

√
d yields the penultimate inequality. The

last inequality follows for the same reasons as in Case 2.1.
Altogether, this yields the lemma. �

C.2 Proof of Lemma 17

First, we derive the following lemma, which gives bounds on the conditional density
of the random variable Δ when only one of the radii R1 and R2 is given.

Lemma 21 Let r1, r2, τ ∈ (0,
√

d) and δ ∈ (0,1/2]. In the following, let κ denote a
sufficiently large constant.

(a) The density of Δ under the conditions T = τ and R1 = r1 is bounded by

fΔ|T =τ,R1=r1(δ) ≤
⎧
⎨

⎩

κ√
τr1

· ln(δ−1) if r1 ≤ τ,

κ
τ

· ln(δ−1) if r1 ≥ τ.
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(b) The density of Δ, under the conditions T = τ and R2 = r2, is bounded by

fΔ|T =τ,R2=r2(δ) ≤
⎧
⎨

⎩

κ√
τr2

· (ln(δ−1) + ln
∣∣2(τ − r2) − δ

∣∣−1
) if r2 ≤ τ,

κ
τ

· ln(δ−1) if r2 ≥ τ.

Proof (a) We can write the density of Δ under the conditions T = τ and R1 = r1 as

fΔ|T =τ,R1=r1(δ) =
∫ √

d

0
fR2(r2) · fΔ|T =τ,R1=r1,R2=r2(δ) dr2, (C.5)

where fR2 denotes the density of the length R2 = d(O,Q2). The point Q2 is chosen
uniformly at random from a hyperball with radius

√
d centered at the point O . The

volume of a d-dimensional hyperball of radius r ≥ 0 is Vd(r) = αrd for α = πd/2

Γ (d/2+1)

(see [2]). The probability distribution FR2(r) of R2 is, for r ∈ [0,
√

d], proportional
to Vd(r). Let FR2(r) = βαrd for some β ≥ 0. Since FR2(

√
d) = 1, it must be true

that β = 1
αdd/2 . This yields, for r ∈ [0,

√
d],

fR2(r) = d

dr
FR2(r) = βαdrd−1 = rd−1

dd/2−1
.

Together with (C.5) this implies

fΔ|T =τ,R1=r1(δ) =
∫ √

d

0

rd−1
2

dd/2−1
· fΔ|T =τ,R1=r1,R2=r2(δ) dr2.

We use Lemma 16 to bound this integral. For r1 ≤ τ , we obtain

fΔ|T =τ,R1=r1(δ)

≤
∫ τ

0

rd−1
2

dd/2−1
· κ√

r1r2

(
ln
(
δ−1)+ ln

∣∣2(r1 − r2) − δ
∣∣−1)

dr2

+
∫ √

d

τ

rd−1
2

dd/2−1
· κ√

τr1
· ln

(
δ−1)dr2

= κ ln(δ−1)

dd/2−1√r1

∫ τ

0
r
d−3/2
2 dr2 + κ

dd/2−1√r1

∫ τ

0
r
d−3/2
2 ln

∣∣2(r1 − r2) − δ
∣∣−1

dr2

+ κ ln(δ−1)

dd/2−1√τr1

∫ √
d

τ

rd−1
2 dr2.

The integral in the second line corresponds to the case r1 ≤ τ and r2 ≤ τ of Lemma 16
and the integral in the third line corresponds to the case r1 ≤ τ ≤ r2. Using the fact
that τ ≤ √

d = O(1) and ln(δ−1) ≥ ln(2) = Ω(1), the density fΔ|T =τ,R1=r1(δ) can
be bounded from above by
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κ ln(δ−1)

dd/2−1√r1

∫ τ

0
(
√

d)d−3/2 dr2 + κ

dd/2−1√r1

∫ τ

0
(
√

d)d−3/2 ln
∣∣2(r1 − r2) − δ

∣∣−1
dr2

+ κ ln(δ−1)

dd/2−1√τr1

∫ √
d

τ

(
√

d)d−1 dr2

= O(1)√
r1

· ln
(
δ−1)+ O(1)√

r1
·
∫ τ

0
ln
∣∣2(r1 − r2) − δ

∣∣−1
dr2 + O(1)√

τr1
· ln

(
δ−1).

(C.6)

In order to bound the integral in the second term, we use the following lemma.

Lemma 22 Let f : R → R be a linear function of the form f (x) = ax + b for arbi-
trary a, b ∈ R with |a| ≥ 1. Furthermore, let c ∈R and ε > 0 be arbitrary. Then

∫ c+ε

c

ln

(
1

|f (x)|
)

dx ≤ ε

(
ln

(
2

ε

)
+ 1

)
.

Proof First we substitute z for ax + b in the integral:

∫ c+ε

c

ln

(
1

|f (x)|
)

dx =
∫ c+ε

c

ln

(
1

|ax + b|
)

dx = 1

a

∫ a(c+ε)+b

ac+b

ln

(
1

|z|
)

dz.

(C.7)
We first consider the case a > 0. In this case, the integral

∫ B+aε

B
ln(1/|z|) dz is max-

imized for B = −aε/2 because ln(1/|z|) is symmetric around 0 and monotonically
decreasing for z > 0. This yields

1

a

∫ a(c+ε)+b

ac+b

ln

(
1

|z|
)

dz ≤ 1

a

∫ aε/2

−aε/2
ln

(
1

|z|
)

dz = 2

a

∫ aε/2

0
ln

(
1

z

)
dz

= 2

a

[
z
(
ln(1/z) + 1

)]aε/2
0 = 2

a
· aε

2

(
ln

(
2

aε

)
+ 1

)
= ε

(
ln

(
2

aε

)
+ 1

)
.

For a < 0, the last integral in (C.7) can be rewritten as follows:

1

a

∫ a(c+ε)+b

ac+b

ln

(
1

|z|
)

dz = 1

|a|
∫ ac+b

a(c+ε)+b

ln

(
1

|z|
)

dz.

In this case the integral
∫ B

B+aε
ln(1/|z|) dz is maximized for B = −aε/2 be-

cause ln(1/|z|) is symmetric around 0 and monotonically decreasing for z > 0. This
yields

1

|a|
∫ ac+b

a(c+ε)+b

ln

(
1

|z|
)

dz ≤ 1

|a|
∫ −aε/2

aε/2
ln

(
1

|z|
)

dz = 2

|a|
∫ |a|ε/2

0
ln

(
1

z

)
dz

= 2

|a|
[
z
(
ln(1/z) + 1

)]|a|ε/2
0 = 2

|a| · |a|ε
2

(
ln

(
2

|a|ε
)

+ 1

)
= ε

(
ln

(
2

|a|ε
)

+ 1

)
.

Altogether this proves the lemma because |a| ≥ 1. �
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The previous lemma and (C.6) imply that the density fΔ|T =τ,R1=r1(δ) is bounded
from above by

O(1)√
r1

· ln
(
δ−1)+ O(1)√

r1
· τ
(

ln

(
2

τ

)
+ 1

)
+ O(1)√

τr1
· ln

(
δ−1)

= O(1)√
r1

· ln
(
δ−1)+ O(1)√

r1
+ O(1)√

τr1
· ln

(
δ−1),

where we used τ ≤ √
d = O(1) (which implies τ ln(2/τ) = O(1)) for the equality.

For a sufficiently large constant κ ′ we can bound the previous term from above by

κ ′
√

τr1
· ln

(
δ−1),

where we used ln(δ−1) ≥ ln(2) = Ω(1) and τ ≤ √
d .

For τ ≤ r1 we obtain

fΔ|T =τ,R1=r1(δ) ≤
∫ τ

0

rd−1
2

dd/2−1
· κ√

τr2

(
ln
(
δ−1)+ ln

∣
∣2(τ − r2) − δ

∣
∣−1)

dr2

+
∫ √

d

τ

rd−1
2

dd/2−1
· κ

τ
· ln

(
δ−1)dr2,

where the integral in the first line corresponds to the case r2 ≤ τ ≤ r1 of Lemma 16
and the integral in the second line corresponds to the case τ ≤ r1 and τ ≤ r2. Anal-
ogously to the case r1 ≤ τ , this implies that the density fΔ|T =τ,R1=r1(δ) is bounded
from above by

κ

dd/2−1
√

τ

∫ τ

0
r
d−3/2
2

(
ln
(
δ−1)+ ln

∣∣2(τ − r2) − δ
∣∣−1)

dr2

+ κ

dd/2−1τ
·
∫ √

d

τ

rd−1
2 ln

(
δ−1)dr2

≤ κ

dd/2−1
√

τ

∫ τ

0
(
√

d)d−3/2(ln
(
δ−1)+ ln

∣∣2(τ − r2) − δ
∣∣−1)

dr2

+ κ

dd/2−1τ
·
∫ √

d

τ

(
√

d)d−1 ln
(
δ−1)dr2

= O(1)√
τ

· ln
(
δ−1)+ O(1)√

τ
·
∫ τ

0
ln
∣∣2(τ − r2) − δ

∣∣−1
dr2 + O(1)

τ
· ln

(
δ−1).

By Lemma 22 this is bounded from above by

O(1)√
τ

· ln
(
δ−1)+ O(1)√

τ
· τ
(

ln

(
2

τ

)
+ 1

)
+ O(1)

τ
· ln

(
δ−1)≤ κ ′

τ
ln
(
δ−1),

for a sufficiently large constant κ ′.
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(b) We can write the density of Δ under the conditions T = τ and R2 = r2 as

fΔ|T =τ,R2=r2(δ) =
∫ √

d

0

rd−1
1

dd/2−1
· fΔ|T =τ,R1=r1,R2=r2(δ) dr1. (C.8)

For r2 ≤ τ and sufficiently large constants κ ′ and κ ′′, we obtain

fΔ|T =τ,R2=r2(δ) ≤
∫ τ

0

rd−1
1

dd/2−1
· κ√

r1r2

(
ln
(
δ−1)+ ln

∣∣2(r1 − r2) − δ
∣∣−1)

dr1

+
∫ √

d

τ

rd−1
1

dd/2−1
· κ√

τr2

(
ln
(
δ−1)+ ln

∣∣2(τ − r2) − δ
∣∣−1)

dr1.

The integral in the first line corresponds to the case r1 ≤ τ and r2 ≤ τ of Lemma 16
and the integral in the second line corresponds to the case r2 ≤ τ ≤ r1. Using that τ ≤√

d = O(1) and ln(δ−1) ≥ ln(2) = Ω(1) yields that the density fΔ|T =τ,R2=r2(δ) is
bounded from above by

O(1)√
r2

ln
(
δ−1)+ O(1)√

r2

∫ √
d

0
ln
∣
∣2(r1 − r2) − δ

∣
∣−1

dr1

+ O(1)√
τr2

(
ln
(
δ−1)+ ln

∣∣2(τ − r2) − δ
∣∣−1)

≤ O(1)√
τr2

(∫ √
d

0
ln
∣∣2(r1 − r2) − δ

∣∣−1
dr1 + ln

(
δ−1)+ ln

∣∣2(τ − r2) − δ
∣∣−1

)
.

Together with Lemma 22 the previous formula implies the following upper bound on
the density fΔ|T =τ,R2=r2(δ):

O(1)√
τr2

(√
d

(
ln

(
2√
d

)
+ 1

)
+ ln

(
δ−1)+ ln

∣
∣2(τ − r2) − δ

∣
∣−1

)

≤ κ ′
√

τr2

(
ln
(
δ−1)+ ln

∣∣2(τ − r2) − δ
∣∣−1)

,

for a sufficiently large constant κ ′.
For τ ≤ r2 and a sufficiently large constant κ ′, we obtain by (C.8) and Lemma 16

fΔ|T =τ,R2=r2(δ) ≤
∫ τ

0

rd−1
1

dd/2−1
· κ√

τr1
· ln

(
δ−1)dr1

+
∫ √

d

τ

rd−1
1

dd/2−1
· κ

τ
· ln

(
δ−1)dr1.

The first integral corresponds to the case r1 ≤ τ ≤ r2 of Lemma 16 and the second
integral corresponds to the case τ ≤ r1 and τ ≤ r2. Using that τ ≤ √

d = O(1) yields
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that the previous term is bounded from above by

κ

dd/2−1
√

τ
· ln

(
δ−1)

∫ τ

0
r
d−3/2
1 dr1 + κ

dd/2−1τ
· ln

(
δ−1)

∫ √
d

τ

rd−1
1 dr1

κ

dd/2−1
√

τ
· ln

(
δ−1)

∫ τ

0
(
√

d)d−3/2 dr1 + κ

dd/2−1τ
· ln

(
δ−1)

∫ √
d

τ

(
√

d)d−1 dr1

≤ κ ′

τ
· ln

(
δ−1),

for a sufficiently large constant κ ′. �
Now we are ready to prove Lemma 17.

Proof of Lemma 17(a) In order to prove part (a), we integrate fΔ|T =τ,R1=r (δ) over
all values τ that T can take. We denote by fT the density of the length T = d(O,P ).
We have argued in the proof of Lemma 21 that, for τ ∈ [0,

√
d], fR2(τ ) = fT (τ) =

τd−1

dd/2−1 . We obtain, for a sufficiently large constant κ ′,

fΔ|R1=r (δ) =
∫ √

d

0
fT (τ) · fΔ|T =τ,R1=r (δ) dτ

=
∫ √

d

0

τd−1

dd/2−1
· fΔ|T =τ,R1=r (δ) dτ

≤
∫ r

0

τd−1

dd/2−1
· κ

τ
· ln

(
δ−1)dτ +

∫ √
d

r

τ d−1

dd/2−1
· κ√

τr
· ln

(
δ−1)dτ

≤
∫ √

d

0

κ(
√

d)d−2

dd/2−1
· ln

(
δ−1)dτ +

∫ √
d

0

(
√

d)d−3/2

dd/2−1
· κ√

r
· ln

(
δ−1)dτ

≤ O(1) · ln
(
δ−1)+ O(1)√

r
ln
(
δ−1)≤ κ ′

√
r

· ln
(
δ−1),

where we used Lemma 21(a) for the first inequality, and 0 ≤ r ≤ √
d = O(1)

and ln(δ−1) ≥ ln(2) = Ω(1) for the other inequalities.
Furthermore, we integrate fΔ|T =τ,R2=r (δ) over all values τ that T can take:

fΔ|R2=r (δ) =
∫ √

d

0

τd−1

dd/2−1
· fΔ|T =τ,R2=r (δ) dτ ≤

∫ r

0

τd−1

dd/2−1
· κ

τ
· ln

(
δ−1)dτ

+
∫ √

d

r

τ d−1

dd/2−1
· κ√

τr

(
ln
(
δ−1)+ ln

∣∣2(τ − r) − δ
∣∣−1)

dτ

≤ O(1) · ln
(
δ−1)+ O(1)√

r
· ln

(
δ−1)+ O(1)√

r

√
d

(
ln

(
2√
d

)
+ 1

)

≤ κ ′
√

r
· ln

(
δ−1),
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where we used Lemma 21(b) for the first inequality, and Lemma 22, 0 ≤ r ≤ √
d =

O(1), and ln(δ−1) ≥ ln(2) = Ω(1) for the second and third inequalities.

(b) Let fR1(r) = rd−1

dd/2−1 denote the density of the length R1 = d(O,Q1). For a
sufficiently large constant κ ′,

fΔ|T =τ (δ) =
∫ √

d

0
fR1(r) · fΔ|T =τ,R1=r (δ) dr

=
∫ √

d

0

rd−1

dd/2−1
· fΔ|T =τ,R1=r (δ) dr

≤
∫ τ

0

rd−1

dd/2−1
· κ√

τr
· ln

(
δ−1)dr +

∫ √
d

τ

rd−1

dd/2−1
· κ

τ
· ln

(
δ−1)dr

≤ O(1)√
τ

· ln
(
δ−1)+ O(1)

τ
· ln

(
δ−1)≤ κ ′

τ
· ln

(
δ−1).

For the penultimate inequality we used 0 ≤ τ ≤ √
d = O(1) and ln(δ−1) ≥ ln(2) =

Ω(1).
(c) Using part (b), for a sufficiently large constant κ ′,

fΔ(δ) =
∫ √

d

0
fT (τ) · fΔ|T =τ (δ) dτ

≤
∫ √

d

0

τd−1

dd/2−1
· κ

τ
· ln

(
δ−1)dτ ≤ κ ′ · ln

(
δ−1).

(d) Let fRi
denote the density of Ri . Using Lemma 15, we obtain

fZi |T =τ (z) =
∫ τ

r=0
fRi

(r) · fZ|T =τ,R=r (z) dr

≤
∫ τ

r= z+τ
2

rd−1

dd/2−1

√
2

(τ + z)(2r − τ − z)
dr +

∫ √
d

r=τ

fRi
(r)

√
2

τ 2 − z2
dr.

The lower limit of the first integral follows from the fact that, according to Lemma 15,
z always takes a value in the interval (−τ,min{τ,2Ri − τ }). Since z ≤ 2Ri − τ is
equivalent to Ri ≥ z+τ

2 , we can bound fZi |T =τ (z) from above by

√
2

τ + z
d1/2

∫ τ

r= z+τ
2

√
1

2r − τ − z
dr +

√
2

τ 2 − z2

∫ √
d

r=τ

fRi
(r) dr

≤
√

2

τ + z
d1/2

∫ τ

r= z+τ
2

√
1

2r − τ − z
dr +

√
2

τ 2 − z2
,
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where we used rd−1 ≤ τd−1 ≤ (
√

d)d−1 and the fact that the integral over a density
is at most 1. Because

∫ τ

z+τ
2

√
1

2r − τ − z
dr = 1

2

∫ τ−z

x=0

√
1

x
dx ≤ 1

2

∫ √
d

0

√
1

x
dx

= [√x]
√

d
0 = d1/4 = O(1),

we can bound the conditional density of Zi from above by

fZi |T =τ (z) ≤
√

2

τ + z
d1/2 · O(1) +

√
2

τ 2 − z2

= O(1)√
τ + z

+ O(1)√
τ 2 − z2

≤ κ ′
√

τ 2 − z2
,

for a large enough constant κ ′, where we used

τ + z = τ 2 − z2

τ − z
≥ τ 2 − z2

√
d

for the last inequality, which holds because τ ≤ √
d and z ≥ 0. �

Appendix D: Negatively Associated Random Variables

Dubhashi and Ranjan [4] define negatively associated random variables as follows.

Definition 23 ([4], Definition 3) The random variables X1, . . . ,Xn are negatively
associated if for every two disjoint index sets I, J ⊆ [n],

E
[
f (Xi, i ∈ I ) · g(Xj , j ∈ J )

]≤ E
[
f (Xi, i ∈ I )

] · E
[
g(Xj , j ∈ J )

]
,

for all functions f : R|I | → R and g : R|J | → R that are both non-decreasing or both
non-increasing.

In Sect. 5, we used the following result from Dubhashi and Ranjan’s paper.

Lemma 24 ([4], Proposition 6) The Chernoff–Hoeffding bounds are applicable to
sums of random variables that satisfy the negative association condition.

It remains to show that the random variables X1, . . . ,Xk defined in Sect. 5 satisfy
the negative association condition. Remember that these variables come from a balls-
into-bins process in which n balls are put independently into k bins. Each ball has its
own probability distribution on the k bins and the 0-1-variable Xi indicates whether
bin i contains at least one ball.

In order to show that the variables X1, . . . ,Xk are negatively associated, we follow
the same line of arguments as Lenzen and Wattenhofer [10], who showed the same
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statement for a balls-into-bins process in which the balls are put uniformly at random
into the bins. The proof is based on the following statements proven in [4].

Lemma 25

(a) If X1, . . . ,Xn are 0-1-random variables with
∑

Xi = 1, then X1, . . . ,Xn are
negatively associated.

(b) If X and Y are sets of negatively associated random variables and if the random
variables in X and Y are mutually independent, then X ∪ Y is also negatively
associated.

(c) Assume that the random variables X1, . . . ,Xn are negatively associated and, for
some k ∈ N, let I1, . . . , Ik ⊆ [n] be mutually disjoint index sets. For j ∈ [k], let
hj : R|Ij | → R be functions that are all non-decreasing or all non-increasing,
and define Yj = hj (Xi, i ∈ Ij ). Then the random variables Y1, . . . , Yk are also
negatively associated.

Based on this lemma, we prove the theorem about the balls-into-bins process.

Theorem 26 Consider a balls-into-bins process in which n balls are put indepen-
dently into k bins. Each ball has its own probability distribution on the k bins and
the 0-1-variable Xi indicates whether bin i contains at least one ball. The random
variables X1, . . . ,Xk are negatively associated.

Proof First we define for each bin i ∈ [k] and each ball j ∈ [n] a 0-1-variables X
j
i

indicating whether ball j ends up in bin i. For a ball j ∈ [n], the random variables
X

j

1 , . . . ,X
j
k are negatively associated according to Lemma 25(a). Since the balls are

put independently into the bins, all random variables X
j
i for i ∈ [k] and j ∈ [n] are

negatively associated according to Lemma 25(b).
Now we define for each bin i ∈ [k] the set Ii = {X1

i , . . . ,X
n
i } and the function

hi

(
X1

i , . . . ,X
n
i

)=
⎧
⎨

⎩

1 if X1
i + · · · + Xn

i ≥ 1,

0 if X1
i + · · · + Xn

i = 0.

Observe that Xi = hi(X
1
i , . . . ,X

n
i ). As these functions are non-decreasing

Lemma 25(c) implies that the random variables X1, . . . ,Xk are negatively associ-
ated. �
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