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Abstract

This thesis captures a numerical study of the interplay between disorder and

electron-electron interactions within the integer quantum Hall effect, a regime where the

presence of a strong magnetic field and two-dimensional confinement of the electrons

profoundly affects the electronic properties. Prompted by recent novel experimental

results, we particularly emphasise the behaviour of the electronic compressibility as a

joint function of magnetic field and electron density, which appears to be insufficiently

accounted for by the widely used independent-particle model. Our treatment of the

electron-electron interactions relies on the Hartree-Fock approximation so as to achieve

system sizes comparable to the experimental situation. We find numerical evidence for

various interaction-mediated effects, such as non-linear screening, local charging, and g-

factor enhancement. Important implications for the phase diagram may arise, although

a study of the scaling of the participation ratio seems to imply a universal critical be-

haviour independent of interactions. Furthermore, we examine the Hall conductivity in

a similar fashion, which also displayed interaction-promoted features in transport mea-

surements. Our mesoscopic simulations only reproduce some of the observed features,

suggesting the presence of effects beyond numerical tractability. Finally, we model scan-

ning tunneling spectroscopy experiments and systematically investigate the influence of

the tip induced potential as well as the interactions among the electrons. Our results

show a strong dependence on the filling factor and may greatly assist the interpretation

of such spectroscopy data.
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Chapter 1

Introduction

The advent of semiconducting devices and their use in integrated circuits was nothing

short of a social revolution and clearly marked the brink of a new era. Transistors

and diodes became indispensable as they made their way into pretty much all areas

of everyday life, opening up a world of instant communication and pervasive access to

information. Solid state physics can certainly be regarded as one key player in the race

for an interconnected, educated society, since technical progress especially in this field

requires a thorough and profound knowledge of the underlying microscopic phenomena.

Indeed, physics has come a long way ever since. Yet, our understanding is still far

from complete. In this work we attempt to contribute a small bit. Using numerical

methods, we focus on one particularly interesting phenomenon which triggered many

new developments in condensed matter physics. In 1980, an altogether unexpected

discovery was made by Klaus von Klitzing and coworkers [1] when carrying out Hall

measurements on a metal-oxide-semiconductor field-effect transistor (MOSFET). They

discovered that for a system of electrons confined to two dimensions and subject to a

strong, perpendicular magnetic field, B, the resistivity tensor, ρ, and the conductivity

tensor, σ, can freeze to the form

ρ =





0 h/e2i

−h/e2i 0



 and σ =





0 −ie2/h
ie2/h 0



 , (1.1)
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Figure 1.1: Schematic sketch of a Hall bar geometry for the measurement of the lon-
gitudinal and the Hall resistance. The current flows from the so-called source to the
drain, indicated by the arrow on the left and on the right, respectively.

with i being an integer. Astonishingly, it turned out that this quantisation holds over a

wide range of B or the applied voltage, forming quantised plateaus, and is completely

independent of the sample geometry and choice of material. A commonly adopted

geometry is, for instance, the Hall bar, as sketched in Figure 1.1. In between those

plateaus, the Hall conductivity, σxy, performs a transition and the longitudinal conduc-

tivity, σxx, assumes a finite value of e2/h, as shown schematically in Figure 1.2. This

was the fruitful discovery of the integer quantum Hall effect (IQHE). Contrary to the

classically expected linear relation between ρxy and B, this quantisation of transport sets

in at very low temperatures and high sample quality. The importance of the discovery

lies in the precision and resilience of the quantisation and allowed for a high precision

determination of the fine structure constant, defined as α = e2/(2ǫ0hc), where c is

the vacuum speed of light and ǫ0 the vacuum permittivity. Ultimately, the IQHE was

adopted as a metrological standard, defining the international reference resistance as

RK−90 = h/e2 = 25812.807Ω , (1.2)

2



Figure 1.2: Schematic sketch of the plateau structure of the Hall conductance as well
as the finite longitudinal resistance at the plateau transitions in the IQHE.

with an absolute error of ±5 · 10−3Ω [2]. For the importance of this discovery von

Klitzing was awarded the Nobel prize in 1985. The original measurements are depicted

in Figure 1.3. The IQHE was soon followed by another unexpected, even more surprising

finding. When carrying out Hall measurements on even cleaner samples, higher fields,

and lower temperatures, Tsui, Störmer, and Gossard discovered in 1982 [3] that the

Hall conductivity becomes quantised also at intermediate magnetic fields or voltages

and acquires certain fractional values of e2/h, such as 1/3, 2/3, 2/5, and so on. Owing

to the logic, this effect was called fractional quantum Hall effect (FQHE) and rewarded

with a Nobel prize in 1998. Whereas the IQHE was soon motivated with a gauge

argument in a non-interacting system of electrons [4], the FQHE turned out to be far

more complicated and could only be explained with correlated many-body states [5] or

collective excitations with fractional charge [6,7], albeit still lacking a firm, microscopic

derivation. The scope of this work will be limited to the IQHE for which single-particle

models [4, 8–16] have successfully been able to reproduce general features such as the

position and height of the plateaus. However, interactions become an essential part

when trying to interpret experimental results such as recently observed patterns in the

3



Figure 1.3: Measurement of the Hall voltage (UH) and longitudinal voltage (UPP) as
a function of applied gate voltage, which is proportional to the electron density [1].
Wherever a plateau is formed by the Hall voltage, the longitudinal voltage drops to
zero.
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compressibility (see Figure 1.4) [17,18] or the conductance [19,20], enhancement of the

g-factor [21], negative compressibility [22], filling factor dependence of the Landau level

width [23], or the Hall insulator [24]. In this work we outline our numerical investigations

of such electron-electron interaction related effects using a mean-field HF-approach and

thereby neglecting higher correlations among the electrons. Since HF accounts for

Thomas-Fermi screening effects while at the same time leading to a critical exponent ν̃

whose value is found to be consistent with results of non-interacting approaches [25,26],

this appears to be a reasonable starting point.

We now outline the structure of this work: In Chapter 2 we review the behaviour of

electrons in the quantum Hall (QH) regime. Chapter 3 gives a brief overview over some

numerical methods which have been very successful in reproducing the main features of

the integer quantum Hall effect, although mostly in a single-particle picture. In Chapter

4, we turn to the derivation and implementation of the HF-approximation. We discuss

convergence properties of three different algorithms. In Chapter 5 we outline important

properties of two-dimensional electron systems and compare numerical results for the

non-interacting and the HF-interacting case. We also touch the question of universality

of the metal-to-insulator transition (MIT). In Chapter 6 we present our numerical results

on the compressibility in the (B,ne)-plane and compare the experimental findings [17,18]

with our non-interacting and HF-interacting simulations. Chapter 7 is dedicated to

further experimental evidence for electron-electron interaction effects in the IQH regime

deduced from transport experiments. We derive an expression for the Hall conductivity of

a HF-interacting system and present simulation results also as a joint function of B and

ne. In Chapter 8 we focus on scanning spectroscopy microscopy (STS) experiments,

where the influence of the scanning tip on the imaging data is unclear. We present a

systematic investigation of how the tip potential and the electron-electron interaction

affect the measured LDOS data. Finally, we summarise our results in Chapter 9.

5



Figure 1.4: Compressibility patterns found by Ilani et al. [17] in SET measurements
on high-mobility samples. The visible lines correspond to charging of strongly localised
states suggesting the relevance of electron-electron interactions also in the IQH regime.
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Chapter 2

The Integer Quantum Hall Effect

2.1 Electrons in a Magnetic Field

The first quantitative investigations on the behaviour of electrons in a magnetic field

were carried out back in the 19th century. Edwin Hall discovered during his dissertation

in 1879 [27] that when he placed a conductor in a magnetic field with a direction per-

pendicular to the flowing current, a voltage drop could be picked up along the direction

perpendicular to both the field and the current. What must have come as a surprise

back then was the discovery of the nowadays well-known classical Hall effect and has

its origin in the Lorentz force, FL, which acts on a moving charge, −e, having velocity

v, subjected to a magnetic field, B, as follows

FL = −ev × B . (2.1)

The carriers that are deflected into the direction of this Lorentz force accumulate at

the edge of the sample and thereby create an induced electric field, EH, perpendicular

to the current and the magnetic field. This field exerts a force, FH = −eEH, on the

carriers which compensates the Lorentz force such that

FL + FH = 0 . (2.2)

7



Hall expected his experiments to reveal a dependence of the resistivity along the current

direction on the magnetic field, which he did not find due to the compensating Hall

field [28]. Along the direction of this Hall field a voltage, UH, could be measured

which displayed an astonishing independence of the experimental set up [29]. How

this comes about becomes clear if we relate this Hall voltage to the geometry and the

applied current as follow. We assume the magnetic field perpendicular to the current

and measure the Hall voltage in the direction of the Hall field, EH = v × B, and our

particular set-up gives |EH| = |v||B|. Now the sample can be viewed as a capacitor

which obeys |EH| = UH/W , where W is the dimension of the sample into the Hall

direction. Assuming the validity of the Drude model [29], we take the current density

to be

j = −enev , (2.3)

where ne is the carrier concentration, and the current I = A|j| with A being the cross-

section of the sample, we finally obtain

UH = −I|B|W
eneA

= AH
I|B|W
A

, (2.4)

with the Hall coefficient for electrons, AH = −(ene)
−1. This coefficient results from

microscopic sample properties and will thus only depend on the chosen material and

not be affected by the experimental set-up. Therefore the Hall effect can be used to

obtain information about charge transport properties such as carrier concentration or

mobility of the carriers in a material. Especially the sign of the Hall coefficient (in our

case a minus sign) can change if holes are involved in charge transport. This is used as

a way of distinguishing electron and hole transport [30]. In electronics, the Hall effect is

exploited in so-called Hall sensors which are used to determine magnetic field strengths,

angles, positions, velocities, or currents [30].

For the following considerations we lift the constraint of the experimental set-up above

and allow for an arbitrary direction of the current, which means that we have to switch

to a tensor description for the transport parameters. We will also drop one dimension,

8



having transport in the two dimensional (x,y)-plane only. This is experimentally realised

for instance in heterostructures, cleaved semiconductor surfaces, MOSFETs, graphene,

just to name a few [31]. Now we define the tensors that link the applied field and the

resulting current. We define a resistivity tensor, ρ, and a conductivity tensor, σ, as

ρ =





ρxx ρxy

ρyx ρyy



 and σ = ρ−1 =





σxx σxy

σyx σyy



 , (2.5)

where σxy = −σyx is the Hall conductivity, ρxy = −ρyx the Hall resistivity, σxx = σyy

the longitudinal conductivity, and ρxx = ρyy the longitudinal resistivity. The conductivity

tensors thereby describes the current response to the field,

j = σE . (2.6)

which is Ohm’s law. Hence we have as

σxx =
ρxx

ρ2
xx + ρ2

xy

and σxy = − ρxy

ρ2
xx + ρ2

xy

. (2.7)

What we have discussed so far are material parameters that are not directly accessible

to measurements. The conversion from the actually measured Hall conductance, GH,

and Hall resistance, RH, involves geometric factors such as the cross-section or the

length of the sample. However, under certain circumstances, two dimensional systems

are a beautiful exception. If we apply an external field E = (Ex, 0), resulting in a

current j = (jx, 0), a Hall field EH = (0, EH) is induced. With UH = EHW and

EH = −ρxyjx = −ρxyI/W obtained through Equation (2.6), we find UH = −ρxyI, and

thus RH = −ρxy, independent of any geometry parameters. However, one assumption

which remains is that the Hall voltage has to be measured precisely on opposite sites of

the sample. In the following we will see under which circumstances even this becomes

irrelevant for the measurement.

2.2 The Quantised Hall Effect

The geometric corrections usually involved in the Hall effect can be eliminated by ap-

plying a strong magnetic field, such that the Hall angle, defined by tan θH = EH/Ex,

9



becomes θH → 90◦. In this case, σxx = 0, and no voltage drops along the sample and

therefore the Hall voltage may be picked up at two arbitrary points on the edges of the

sample. Thereby making true material parameters, namely the ’-ivities’ instead of the

’-ances’, experimentally accessible. The discovery of this exceptional effect, the integer

quantum Hall effect (IQHE), by von Klitzing was awarded with the Nobel prize in 1985.

In this section we will focus on the origin of the IQHE. Therefore we first turn

back to the classical picture for a two-dimensional system with perpendicular magnetic

field B = (0, 0, B). We assume the same set-up as before, where EH = RHjx. Now

plugging in the Drude current density from Equation (2.3), as well as EH = vxB, we

find for the classical Hall resistance

RH =
B

ene
. (2.8)

Thus, for a fixed carrier density, in the classical picture one would expect a linear relation

between the Hall resistance and the magnetic field. It is very instructive to first study

the dynamics of the electrons purely classical before we turn to a quantum mechanical

description. Assuming the magnetic field again in z-direction, the classical equation of

motion (EOM) reads

∂2r

∂t2
=

(

r̈x
r̈y

)

= − e

m∗
(E + v × B) = −ωc

[

E

B
+

(

ṙy
−ṙx

)]

, (2.9)

where we have introduced the frequency ωc = eB/m∗, the meaning of which will

become clear very soon. With a field E = (E, 0), as usual, we find the solution

r(t) =
E

ωcB

(

cosωct

sinωct

)

− E

B

(

0

t

)

+ r0 , (2.10)

with the arbitrary constant of integration r0. As expected, Equation (2.10) describes

a cyclotron motion with angular frequency ωc, which will thus be called cyclotron fre-

quency, superimposed onto a drift motion into y-direction. If the cyclotron motion is

very fast we can take a time average,

〈r〉t = lim
∆→∞

∆−1

∫ ∆/2

−∆/2
dt′r(t+ t′) , (2.11)

10



and only the drift motion will remain. Thus no force is acting on the electrons on

average, i.e. r̈ = 0, and we recover Equation (2.2).

Let’s now turn to a quantum mechanical description. The stability of the plateaus

strongly points to an effect due to the quantisation of the electron movement in the

magnetic field. We will neglect any edge effects and study the bulk Hamiltonian for the

2D electrons, which can be written as

h0 =
1

2m∗
(p − eA)2 =

1

2m∗
π2 , (2.12)

where p is the momentum and A the vector potential of the magnetic field determined

by B = ∇ × A. We have introduced the canonical momentum π = p − eA. The

choice of the vector potential will of course be irrelevant for any observable quantity,

but will make a difference to the symmetry of the eigenfunctions of the Hamiltonian.

For purposes of numerical implementation, a convenient choice should be according to

the geometry. For a square sample with periodic boundary conditions (PBC) the Landau

gauge,

A = B(0, x)T , (2.13)

appears most convenient and will be employed throughout this work. Assuming a similar

behaviour in the quantum case as we found for the classical case, we compute the EOM

as
(

π̇x

π̇y

)

=
ī
h

[h0,π] = ωc

(

πy

−πx

)

, (2.14)

and find an equivalent expression to the classical Equation (2.9). Thus we introduce

the cyclotron coordinate ζ, as well as the guiding centre coordinates R, as

ζ =

(

ξ

η

)

and R =

(

X

Y

)

, (2.15)

respectively. The true electron motion can now be written as r = R + ζ . Integrating

the EOM we find

π = mωc

(

η

−ξ

)

(2.16)
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and we can write the Hamiltonian as

h0 =
h̄ωc

2lc
ζ2 =

h̄ωc

2lc
(η2 + ξ2) . (2.17)

Thus, the clean Hamiltonian commutes with R and therefore does not lead to a drift

motion. The wave functions describing the cyclotron motion can be found from the

Schrödinger equation

h0ϕ(r) = Eϕ(r) . (2.18)

In Landau gauge h0 is independent of y, thus commutes with py = −ih̄∂y which

is therefore conserved. This also implies that h0 and py have common eigenstates and

eigenvalues, which we call ky. Hence for the states we immediately find ϕ(r) = ξ(y)χ(x)

with ξ(y) = exp[(i/h̄)kyy]. Inserting these eigenstates into the Schrödinger equation

we find for the x-dependent part

h0χ(x) =

[

− h̄2

2m∗

∂2

∂x2
− m∗ω2

c

2

(

x− ky

eB

)2
]

χ(x) = Eχ(x) , (2.19)

This is just a 1D harmonic oscillator in a quadratic potential in x-direction around the

guiding centre X = kl2c , where we have introduced k = ky/h̄ and the magnetic length

lc =
√

h̄/eB. The frequency of the oscillation is – just as in the classical case – the

cyclotron frequency ωc. The eigenvalue of the 1D harmonic oscillator are thus the

eigenvalues of our Hamiltonian, which are given by

En = (n+ 1/2)h̄ωc , (2.20)

with n = 0, 1, 2, . . . labeling the number of nodes, called the Landau level. Similarly we

find the eigenstates as

χn(x) =
1

√

2nn!
√
πlc

exp

[

− x2

2l2c

]

Hn

(

x

lc

)

, (2.21)

with χ(x) = χn(x −X) and Hn(x) being the Hermite polynomials. We still have the

freedom to choose the centre coordinate, X, which will finally be determined by the
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requirement of PBCs. In a square geometry of size L×L, the PBC in y-direction require

exp(ikL) = 1 and therefore

k =
2π

L
j , (2.22)

with j being an integer. For the centre coordinate this means X = (2πl2c/L)j, which

has to lie within the geometry, i.e. X ∈ (0, L] and thus j ∈ [1, L2/2πl2c ]. By the above

considerations we found the number of states per Landau level

Nφ =
L2

2πl2c
, (2.23)

which is also the number of magnetic flux quanta, Φ0 = h/e, that penetrate the area L2

at a magnetic field B, as given by Nφ = L2B/Φ0. This is probably not too surprising

since for a spin-polarised system there can be precisely one state per flux quantum in

each Landau level. In summary, the Schrödinger equation (2.18) with the magnetic

Hamiltonian of Equation (2.12) in Landau gauge (2.13) is obeyed by the degenerate

Landau functions [32]

ϕn,k(r) = 〈r|ϕn,k〉 =
1

√

2nn!
√
πlcL

exp

[iky − (x− kl2c)
2

2l2c

]

Hn

(

x− kl2c
lc

)

, (2.24)

with the eigenenergies En = (n + 1/2)h̄ωc , where n labels the Landau level index

and k = 2πj/L with j = 1, . . . , Nφ the momentum. So far we have only taken into

account the periodicity in y-direction. For the torus geometry we will adapt in this work,

another modification will have to be made which we will discuss later. Now that we

have determined the number of states per Landau level, it proves very useful to define

a quantity that characterises the filling of the system, called the filling factor ν, by

ν =
Ne

Nφ
, (2.25)

where Ne is the number of electrons in the system. The spectrum of h0 consists of

a sequence of δ-peaks at energies En, where each energy corresponds to an Nφ-fold

degenerate state.
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2.3 Disorder, Scaling, and Electron-Electron Interactions in

2D

In contrast, real systems will inevitably contain a certain amount of disorder due to,

for instance, impurities, imperfections, or surface contamination. Having disorder in the

system will lift the degeneracy by broadening the δ-peaked Landau levels into bands.

For a smooth disorder potential compared to the magnetic length, especially in the limit

B → ∞, it can be shown [33] that the eigenstates will follow equipotential lines of the

disorder potential at the corresponding eigenenergies and the average density of states

will then equal the overall distribution of energies in the potential, i.e. ρ(E) = P [V ].

The problem of the MIT reduces to a percolation problem and it becomes clear why there

is only a single extended state in a disordered 2D energy landscape [16]. The problem

of whether a state is localised or extended can be captured with the localisation length,

ξ(E), a quantity which characterises the spatial spread of the wave function [33]. It has

been show [34] that at the MIT the localisation length diverges as a power,

ξ(E) = |E − Ec|−ν̃ , (2.26)

where ν̃ is the critical exponent [34]. This exponent characterises the transition and is

believed to be independent of microscopic details of the impurity potential. The idea of

a percolating state has been exploited in the so-called Chalker-Coddington model [14],

which we will briefly review in one of the following sections. Up to today there exists

no perfectly conclusive theory of the MIT in the quantum Hall regime. The existence of

extended states in a 2D system was rather surprising given the fact that using a scaling

theory, Wegner [35, 36] and Abrahams et al. [37] were able to argue convincingly that

all states in 2D are localised. The effect of the magnetic field leads to a delocalisation

at a singular energy in the centre of the Landau band. This is, however, not a true

metallic phase but rather a quantum critical point that exhibits critical fluctuations

[36, 38, 39]. In absence of a rigorous mathematical description of this localisation-

delocalisation transition in more than one dimensions, a wealth of numerical approaches
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have been stressed to provide quantitative results (see, e.g. , [34, 40–45]). However,

recently an perturbative formula for the localisation length for stacked 1D chains (quasi-

1D) has been given [46]. Scaling theory is a powerful tool to extract information about

localisation behaviour in disordered electronic system and gives very strong qualitative

results even with very few and straightforward assumption. The scaling approach for

disordered system is based on the idea that the conductance of a sample, g(L), solely

depends on the conductance of a smaller part of the sample, i.e. g(nL) = f(n, g(L)),

where one usually considers a hypercube in d dimensions with volume Ld [37, 47, 48].

This is called the one-parameter scaling assumption. For the analysis it is convenient to

introduce the so-called β-function, essentially defined as the change of the dimensionless

conductance g with changing the sample size L,

β[g(L)] =
L

g(L)

dg(L)

dL
=
d ln g(L)

d lnL
, (2.27)

where the prefactor is introduced such that the β-function becomes dimensionless. Ob-

viously, a metallic system must have β > 0, such that the conductivity does not vanish

for L → 0, whereas insulating behaviour will display β < 0. Contemplating a metallic

system, Ohm’s law can be applied if g ≫ gc with gc ≈ π−2 [47] and the β-function

behaves to leading order as g/(e2/h̄) ≈ σLd−2. Thus for g → ∞, we expect β = d− 2.

In case of an insulator, i.e. g ≪ gc, it seems reasonable to assume an exponential decay,

g ≈ gc exp(−L/ξ), which yields β = ln(g/gc). Hence we find the result that in 1D the

β-function is always smaller than zero and no MIT can exist. For 3D a crossing of zero

does exist and so does the MIT. The 2D case, however, is not so straightforward – even in

this simple picture. For weak disorder, a perturbative expansion of β in 1/g as the small

parameter yields β = (d− 2) − c/g with a negative first order correction [49], implying

that the β-function will not cross zero. Integration of the β-function dg/(d lnL) = −c
yields g = σ−c ln(L/L0), which shows a logarithmic decrease of the conductivity as the

system size increases. By the plausible assumption that the β-function is monotonic,

the β-function can be sketched as in Figure 2.3. Scaling is of course not restricted to

the conductivity. Scaling of the localisation length, the participation ratio, the Thouless
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Figure 2.1: Schematic sketch of the β-function versus ln g for several spatial dimensions
of the system [37]. The dotted line shows the small-gc approximation for d > 2. It is
argued that the dotted line is an unlikely scenario due to the smoothness requirement.

number, or the Chern number is also common practise in obtaining information about

a system [43]. We will numerically investigate the MIT in a later chapter of this work.

The one-parameter scaling assumption implies a single exponent governing the phase

transition [50]. For the IQHE, Levine et al. [51] have show the breakdown of one-

parameter scaling. Instead, a two-parameter scaling arises, where both, σxx and σxy

scale with L. Finally we want to add that in the diffusive regime, delocalisation is

enhanced in the presence of a magnetic field as compared to the B = 0 case. The

reason is the suppression of weak localisation [33, 49]. Considering B = 0, the return

probability of an electron carrying out a diffusive motion in a disordered landscape is

the square of the sum of the probability amplitudes for all possible closed paths re-

turning to the starting point. Classically, all the cross terms between different loops

would average out. In a completely phase coherent environment, however, contributions
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from time-reversed paths will not average to zero but yield a contribution due to the

constructive interference of these paths. Therefore the return probability increases in a

phase coherent system. This effect is known as weak localisation [33]. With a vector

potential present, an electron picks up a path-dependent phase along the way it travels.

A time-reversed path will have a different phase back at the starting point. With this

so-called broken time-reversal-symmetry the return probability is reduced and delocali-

sation enhanced compared to the coherent case without a vector potential. This is also

true for any dephasing process, such as inelastic scattering for instance with phonons,

photons, or other electrons. The question of how electron-electron interactions affect

the electronic properties will be the main subject of this work. Analytical methods are

sparse and usually describe a certain aspect only approximately. Numerical methods,

for instance, can treat disorder and interactions exactly. Some approximations of the

electron system are, however, still required. In our simulation, the underlying crystal

structure will be incorporated as a renormalisation of the electron mass [49] and the

interaction with crystal defects and dopants as a smooth, random disorder potential.

The ions are treated as a smooth background charge providing overall charge neutrality

for the system. Regarding the electron-electron interactions, it has been shown that

by virtue of super universality and F invariance, universality is retained even with in-

teractions present [52–54]. Therefore we expect this universality to also be supported

by our numerical calculations. We will, however, put more emphasis on comparisons

to experimental data and expect to observe distinct differences between interacting and

non-interacting model, for instance due to exchange enhanced spin splitting. In Figure

2.2 we depict the electron density of a HF-interacting system in the weak disorder limit

at half filling. Crystallisation occurs and a square lattice is formed on account of the

periodic boundary conditions.
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Figure 2.2: Spatial distribution of HF-interacting electron density for weak disorder at
ν = 1/2. The 2DEG forms a Wigner lattice which changes from an electron to a hole
lattice. Lighter areas correspond to a high charge density whereas darker areas show
low charge density. The symmetry is determined by the boundary conditions.
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Chapter 3

Modelling the IQHE

The quest for a correct and comprehensive description of IQH physics has led to a

vast number of numerical approaches and model systems. In this Chapter we want to

briefly address a few interesting methods in order to give a brief overview and to explain

some important features about IQH physics. These models have been used extensively

for investigating universality, extracting critical exponents, or conductance distributions

with high accuracy. Knowledge of the existing numerical methods is essential in choosing

the correct model for a particular problem, since each model has its advantages and

disadvantages. Methods that should be mentioned but which will not be discussed

any further are for instance tight binding lattice models [55, 56], the transfer matrix

method [57–61], the recursive Green’s function method [42], level statistics [44,62], or

Monte Carlo [63] approaches.

3.1 Chalker-Coddington Network and RG Approach

Probably one of the most successful numerical schemes for the IQHE is the network

model introduced by Chalker and Coddington [14]. The network model is very simple and

elegant in the respect that it contains only the most necessary ingredients to describe the

localisation-delocalisation transition of non-interacting electrons, namely the quantum
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mechanical tunneling and confinement. The basic form of the network model has a

completely classical interpretation. The idea to map the IQHE onto a network can

be justified most easily in the high-field limit, B → ∞, i.e. lc → 0. In this limit

the cyclotron radius of the electrons vanishes and the centre coordinates take the role

of the ordinary spatial coordinates. In the following we want to briefly sketch the

justification. We assume a Hamiltonian of the form H = h0 + V (r), where V (r) is

a disorder potential due to the electron-impurity interaction. Furthermore, we assume

the eigenstates of this Hamiltonian, φα(r), are linear combinations of Landau states,

i.e. φα(r) =
∑

n,k C
α
n,kϕn,k(r). The coefficients can be found from the Schrödinger

equation, H|φ〉 = E|φ〉, which reads in matrix form

∑

n′k′

〈ϕnk|V |ϕn′k′〉Cα
n′,k′ = E′

αC
α
n,k , (3.1)

and which by virtue of the form of the matrix elements,

〈ϕnk|V |ϕn′k′〉 =

∫

d2rχn

(

x− kl2c
)

V (r)χn′

(

x− k′l2c
)

exp
[

−iy(k − k′)
]

(3.2)

in matrix form
∑

n′k′〈ϕnk|V |ϕn′k′〉Cα
n′,k′ = E′

αC
α
n,k. With the high-field approximation,

the coupling between different Landau levels may be neglected and the problem can

be solved for each level individually, i.e. the n-index can be left out of the discussion.

For easier analytical treatment, the sum will be replaced by an integral, i.e.
∑

k′ =

(L/2π)
∫

dk′, and the coefficient is substituted by its Taylor expansion as C(k′) =

exp[(k − k′)d/dq]C(q)|q=k. With some algebra [16, 64] and the limit lc → 0, one can

state the problem as a differential equation. The solution yields parametrised orbits,

V (X,Y (X)) = E′ along the with equipotential lines of the disorder potential at the

respective eigenenergies E′. In this approximation, it becomes apparent that only states

along percolating equipotential lines will be extended, which for a smooth potential is a

singular energy and thus only a single state will be extended in the limit L → ∞ [16].

Thus, the problem of the IQHE can be mapped to a classical percolation problem [14].

In Figure 3.1 we show the charge density of a single state at the bottom and in

the middle of the band, respectively. Evidentally, the states align along equipotentials
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Figure 3.1: Non-interacting charge density of a single localised (left figure) and delo-
calised (right figure) state for a system of size L = 500nm at B = 6T. States are located
at around ν = 0.1 and ν = 0.5, respectively. The disorder potential is indicated by the
equipotential lines.

of the disorder potential and thus the guiding centre approximation give a good account

of the situation. The difference to the classical problem of percolation is quantum

mechanical tunneling, which may allow transmission through the system away from the

classically critical point. Clearly, tunneling will occur wherever different contour lines

come very close. These points are the saddle points in the potential landscape. The

basic idea of Chalker and Coddington was to map the saddle points of the potential to a

regularly spaced network, shown in Figure 3.2, and account for tunneling by a quantum

mechanical scattering matrix at each node. A clear requirement of the model is a

smoothly varying potential according to |∇V (r)| ≪ h̄ωc/lc. In the original model [14],

each node has two incoming and two outgoing links. The presence of the magnetic

field requires a unique flow direction and thus imposes a certain chirality on the nodes,

depicted on the right hand side of Figure 3.2. The randomness is incorporated as a

random phase the electron acquires when being scattered at a node. This accounts

for the mapping of random distances to the regular network. One can then construct

an overall transfer matrix from the individual nodes. The Chalker-Coddington network
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Figure 3.2: Chalker-Coddington network of saddle points [65]. The black lines indicate
equipotential lines in the disordered landscape. The red circles indicate saddle points
wherever the equipotential lines come close to each other. They are modeled as scatter-
ers connecting two incoming and two outgoing waves. The nodes are eventually linked
up to form a network. Right: Saddle point represented as a scatterer connecting two
incoming with two outgoing channels. Purple and blue circles are potential extrema.

has been successfully employed to determine the localisation length exponent, yielding

a value of ν = 2.5± 0.5 [14], in agreement with other methods [16]. A renormalisation

scheme has moreover been introduced [44, 66], which avoids the computation of the

transfer matrix of the entire network that are replaced by a smaller ensemble of nodes,

called a super node, as depicted in Figure 3.3. This super node is then renormalised

by putting the result back into each of the nodes, thus constructing a new super node,

and the procedure is repeated until the physical quantities have converged. With this

scheme very large system sizes can be achieved conveniently using a few nodes only.

This method yields a very accurate value for the critical exponent of ν = 2.39±0.01 [65].

The idea of tunneling at saddle points remains a useful concept even in the presence

of correlations among the electrons [67], and may for instance be used in an effective

description of highly correlated states, as in the FQHE [68].
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Figure 3.3: Renormalisation-group structure (super node) for the Chalker-Coddington
network [65] consisting of five individual nodes. Blue nodes indicate individual scatterers.
The dotted nodes are neglected such that five super nodes can be joined together.
Dashed lines indicate boundary conditions.

3.2 Random Landau Matrix Model

The random Landau matrix (RLM) method may be classified as a statistical approach

to IQHE physics [34, 69]. It is based on the argument that the full amount of under-

lying microscopic information is inessential for the physics and the observed electronic

behaviour. It is argued that the phase transition associated with the IQHE is captured

by a few statistical properties of the disorder potential only, such as the correlation func-

tion 〈V (r)V (r′)〉ensemble. Then the system is sufficiently described by a matrix obeying

the correct statistics, namely 〈Vk1,n1;k2,n2
Vk3,n3;k4,n4

〉ensemble with the matrix elements

Vk,n;k′,n′ = 〈ϕk,n|V |ϕk′,n′〉. In this approach the correlation between the matrix el-

ements is explicitly computed, and then decomposed such that the individual matrix

elements obey precisely this correlation. The advantage of the method is the restriction
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to the relevant information while at the same time providing access to a whole class

of systems. For instance by introducing a parameter for the correlation length of the

potential, the RLM can be tuned smoothly from a white noise limit to a slowly varying

disorder potential [69]. The construction of the RLM can be very efficient in terms of

computational complexity. However, for the purpose of this work, where sample-specific,

microscopic properties are of importance, this method is unfortunately unsuitable due

to its purely statistical character.

3.3 Hamiltonian Diagonalisation

A diagonalisation of the complete Hamiltonian may be regarded as one of the less

effective method in terms of computational efficiency. On the other hand, very few

assumptions are needed and therefore one usually refers to such calculations as ”ab

initio” calculations. One is, however, faced with the problem of choosing a suitable basis

in which the Hamiltonian has to be represented. After calculating the matrix elements

of the Hamiltonian in these basis states, a diagonalisation is performed, in most cases

numerically. This method offers perhaps the most flexibility. In addition to universal

properties obtained by averaging over different ensemble configurations, one has direct

access to microscopic properties of the 2DES for each disorder realisation. Therefore

this method seems most natural for the purpose of modeling an experimental situation

and will be used in this work. In order to model a high-mobility heterostructure in the

QH regime, we again consider a 2DES in the (x, y)-plane subject to a perpendicular

magnetic field B = Bez. A single electron in such a system can be described by a

Hamiltonian of the form

Hσ
2DES = hσ + VC =

(p − eA)2

2m∗
+
σg∗µBB

2
+ VI(r) + VC(r, r′) , (3.3)

where σ = ±1 is a spin degree of freedom, VI is a smooth random potential modeling the

effect of the electron-impurity interaction, VC represents the electron-electron interaction

term and m∗, g∗, and µB are the effective electron mass, g-factor, and Bohr magneton,
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respectively. In order to avoid edge effects we impose a torus geometry of size L × L

onto the system [70]. The electron-impurity interaction is modeled by an electrostatic

potential due to a remote impurity density separated from the plane of the 2DES by

a spacer-layer of thickness d, as found for instance in modulation-doped GaAs-GaAlAs

heterojunctions [71,72]. Within the plane of the 2DES, this creates a random, spatially

correlated potential with a typical length scale d. We use NI Gaussian-type ”impurities”,

randomly distributed at rs, with random strengths ws ∈ [−W,W ], and a fixed width d,

such that VI(r) =
∑NI

s=1

(

ws/πd
2
)

exp[−(r − rs)
2/d2] =

∑

q VI(q) exp(iq · r) with

VI(q) =

NI
∑

s=1

ws

L2
exp

(

−d
2|q|2
4

− iq · rs

)

, (3.4)

where qx,y = 2πj/L and j = −Nφ,−Nφ − 1, . . . , Nφ. The areal density of impu-

rities therefore is given by nI = NI/L
2. The limit d → 0 yields a potential of δ-

type that would be more adequate for modeling low-mobility structures [31, 73]. The

electron-electron interaction potential has the form VC(r, r′) = γe2/4πǫǫ0|r − r′| =
∑

q VC(q) exp [iq · (r − r′)] , with

VC(q) =
e2

4πǫǫ0lc

γ

Nφ|q|lc
. (3.5)

The parameter γ will allow to continually adjust the interaction strength; γ = 1 corre-

sponds to the bare Coulomb interaction. Choosing the vector potential in Landau gauge,

A = Bxey, the kinetic part of the Hamiltonian is diagonal in the Landau functions [32]

of Equation (2.24), as we derived earlier in Section 2.2. These functions are extended

and L-periodic in y-direction and localised in x direction. In the following chapter we

discuss the treatment of the electron-electron interaction in detail. For completeness we

now briefly focus on the single particle basis states suitable for diagonalising the Hamil-

tonian. The system’s many-body state, |Φ〉, is assumed to be an anti-symmetrised

product of single particle wave-functions ψσ
α(r) (Slater determinant) [74,75], which we

choose as a linear combination of Landau states

ψσ
α(r) =

NLL−1
∑

n=0

Nφ−1
∑

k=0

C
α,σ
n,kχn,k(r), (3.6)
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with NLL being the number of Landau levels and the periodic Landau functions

χn,k(r) =

∞
∑

j=−∞

ϕn,k+jL/l2c
(r), (3.7)

in order to meet the boundary conditions. The number of flux quanta piercing the

2DES of size L×L is given by Nφ = L2/2πl2c , yielding a total number of M = NLLNφ

states per spin direction. The filling of the system is characterised by the filling factor

ν = Ne/Nφ, with Ne being the number of electrons in the system and areal density

ne = Ne/L
2. The total Landau level density is given by n0 = eB/h. One problem arises,

however, when using the bare Coulomb term of Equation 3.5. The Fourier transform

describes an infinitely replicated system whose interaction energy tends to infinity [76].

This effect is condensed in the q = 0 term which leads to a divergence and has to be

handled with care [77]. We can make some progress by investigating the interaction of

the 2DEG with the background. The Hamiltonian is split into a one and a two-electron

part as follows,

H = H0 + H1 . (3.8)

The two-electron part can be further decomposed as

H1 = He−e + He−bg + Hbg−bg , (3.9)

where the electron-background, and the background-background interaction. For the

Hartree case this interaction Hamiltonian can be written as

H1 =
1

2

∫ ∫

d2rd2r′
[

ne(r)ne(r
′)

|r − r′| + 2
ne(r)nbg(r

′)

|r − r′| +
nbg(r)nbg(r

′)

|r − r′|

]

(3.10)

=
1

2

∑

q

v(q) [ne(q)ne(−q) + 2ne(q)nbg(−q) + nbg(q)nbg(−q)] . (3.11)
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Assuming a homogeneous background charge distribution, nbg(r) = −eNe/L
2, with the

Fourier transform nbg(q) = −e2Ne/L
2δq,0, the Hamiltonian becomes

H1 =
1

2

∑

q

v(q)

[

ne(q)ne(−q) − 2ne(q)
eNe

L2
δq,0 +

e2N2
e

L4
δq,0

]

(3.12)

=
1

2

∑

q

v(q)

[

ne(q)ne(−q) − e2N2
e

L4
δq,0

]

(3.13)

=
1

2

∑

q 6=0

v(q)ne(q)ne(−q) . (3.14)

Thus, for a system of interacting electrons the interaction with and among the neutralis-

ing background charge exactly cancels the divergent q = 0 term, which is a consequence

of the Fourier transform that replicates the unit cell infinitely. In conclusion, unless

L → ∞, a neutralising background charge is required to prevent the Coulomb energy

from diverging.
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Chapter 4

Hartree-Fock Approximation

In the following we will introduce the theory of Hartree-Fock (HF) [78], which is an

effective one-particle mean-field approximation to the full many-body problem. In order

to treat interacting electron systems on the mesoscopic or even macroscopic scale,

an approximation to the immensely time-consuming many-body problem is imperative.

Hartree-Fock theory provides such an approximation which allows for reasonable system

sizes and at the same time giving a good quantitative account of most effects due to

the interactions [79–82]. The theory has been reviewed as well as refined as early as

1951 by Roothaan in the article [78]. Up to today HF theory is successfully employed to

numerous problems in solid state physics or quantum chemistry [75,83]. In this Chapter

we will derive the HF-equations adapted to our system, and discuss the questions of

convergence and efficient computation.

4.1 Derivation of the HF Equations

There exist several ways of deriving the HF equation. A very neat and appealing approach

is based on a hierarchical construction of the reduced density matrices of the full many-

body problem [84–87]. We will, however, describe the variational approach which is more

often referred to [28,29,88]. Therefore we start by writing down the exact many-body
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Hamiltonian for the electron-electron interaction V (r, r′) in terms of the field operators,

ψ̂†(r) =
∑

α

ψ∗
α(r)â†α, and ψ̂(r) =

∑

α

ψα(r)âα , (4.1)

where â†α and âα creates and annihilates an electron in state α, respectively. The

interaction Hamiltonian which reads

He−e =
1

2

∫∫

d2rd2r′ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r′)ψ̂(r) (4.2)

can thus be rewritten as

He−e =
1

2

∑

αβϑδ

Fαβϑδâ
†
αâ

†
ϑâδâβ , (4.3)

where we have introduced

Fαβϑδ =

∫∫

d2rd2r′ψ∗
α(r)ψ∗

ϑ(r′)V (r, r′)ψδ(r
′)ψβ(r) . (4.4)

Assuming translational invariance of the interaction, as for the Coulomb interaction,

i.e. V (r, r′) = V (r − r′), we can insert the Fourier transform

V (r − r′) =
∑

q

v(q)eiq(r−r′) , (4.5)

and we get

Fαβϑδ =
∑

q

v(q)〈ψα|eiqr|ψβ〉〈ψϑ|e−iqr|ψδ〉 . (4.6)

In the case of Coulomb interactions, v(q) is given as

v(q) =

∫

d2r

L2
V (r − r′)e−iqr =

c

Nφ|q|lc
, with c =

e2

4πǫǫ0lc
. (4.7)

So far we still have a full many-body problem where the number of possible states with

Ne electrons is
(Nφ

Ne

)

. This means
(

20
5

)

= 15504 many-body states for 5 electrons in a

system with 20 flux quanta. Thus, it is evident that an approximation is needed. For

HF, we assume the system to be in its many-body ground state and thereby reduce the

29



size of the basis to Nφ. We write the many-body state |Φ〉 as a Slater determinant, an

anti-symmetrised product of single particle states,

|Φ〉 =

ǫη≤ǫF
∏

η

â†η|0〉, (4.8)

where |0〉 is the vacuum, and ǫF the Fermi level. Next, we find those wave functions,

ψα(r), which are a minimiser of the total energy in the ground state. This energy is

given as

〈Φ|He−e|Φ〉 = 〈H〉 =
1

2

∑

αβϑδ

Fαβϑδ〈â†αâ†ϑâδâβ〉 (4.9)

=
1

2

∑

αβϑδ

Fαβϑδfαfϑ(δαβδϑδ − δαδδβϑ) (4.10)

=
1

2

∑

αϑ

fαfϑ(Fααϑϑ − Fαϑϑα). (4.11)

where δαβ is the Kronecker delta and fα is the Fermi function. In the following we

will chose a basis in which we expand the eigenstates. The clean Hamiltonian without

interactions is diagonal in the Landau functions |ϕn,a〉 of (2.24) and we choose the

ansatz of linear combinations of Landau states,

|ψα〉 =

NLL−1
∑

n=0

Nφ
∑

a=1

Cα
n,a|ϕn,a〉 and 〈ψα| =

NLL−1
∑

n=0

Nφ
∑

a=1

Cα ∗
n,a 〈ϕn,a| (4.12)

where the normalisation condition implies the unitarity of the matrix C, i.e.

NLL−1
∑

n=0

Nφ
∑

a=1

Cα ∗
n,a Cβ

n,a = δα,β . (4.13)

Using the expansion we find for the ground state energy

〈He−e〉 =
1

2

∑

αϑ

∑

n,m,n′,m′

∑

k,l,k′,l′

fαfϑC
α ∗
n,k Cα

n′,k′C
ϑ ∗
m,lC

ϑ
m′,l′

(

Gm,l;m′,l′

n,k;n′,k′ −Gm,l;n′,k′

n,k;m′,l′

)

(4.14)

where

Gm,l;m′,l′

n,k;n′,k′ =
∑

q

v(q)〈ϕn,k|eiqr|ϕn′,k′〉〈ϕm,l|e−iqr|ϕm′,l′〉. (4.15)
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The basic idea of HF is now to find expansion coefficients which minimise the total

energy. By applying the variational principle, we can find an eigenvalue equation to

determine the matrix C. Thereby the orthonormality, i.e.
∑

n C∗
µnCµn = 1 has to be

taken care of as a constraint in the optimisation procedure. For the sake of clarity we

will omit the Landau level indices in the further derivation and use the Latin indices as

double-indices to indicate both momentum and level index. The variational equation

now reads

∑

µm

δ

δCµ
m

[

〈He−e〉 − λµ

(

∑

n

Cµ ∗
n Cµ

n − 1

)]

δCµ
m = 0 . (4.16)

The coefficients and their complex conjugates can thereby be treated as independent

variables, which follows from the independence of the real and imaginary parts. Therefore

we focus on one of the two,

∑

µm

[

1

2

∑

αϑ

fαfϑ

∑

abcd

Cα ∗
a Cϑ ∗

c

(

δµαδmbC
ϑ
d + δµϑδmdC

α
b

)(

Gc;d
a;b −Gc;b

a;d

)

− λµC
µ ∗
m

]

δCµ
m = 0 . (4.17)

The complex conjugate is derived in the same way. The two terms in the first bracket

are equal and by summing over ϑ and d we get

∑

µm

[

∑

α

fα

∑

abc

Cα ∗
a Cα

b C
µ ∗
c

(

Gc;m
a;b −Gc;b

a;m

)

− λµC
µ ∗
m

]

δCµ
m = 0, (4.18)

which can only hold if the terms in angular brackets vanish identically. From here

onwards we will not use double-indices anymore and write out the Landau level explicitly.

Introducing the density matrix

Dn,a;m,b =
∑

α

fαC
α
n,aC

α ∗
m,b (4.19)

we find the HF equations which determine the matrix C optimally with respect to the

total ground state energy as

∑

n′,k′

∑

l′,m′,l,m

Dσ′

m,l;m′,l′

(

Gm,l;m′,l′

n,k;n′,k′ −Gm,l;n′,k′

n,k;m′,l′

)

C
µ ∗
n′,k′ = λµC

µ ∗
n,k . (4.20)
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This equation is a self-consistent eigenvalue equation for determining C, which thus has

to be solved iteratively until convergence. However, the problem of constructing the

matrix according to this equation is the memory requirement as well as the complexity.

The complexity of constructing G is O(NLLN
4
φ) or O(NLLL

8) in terms of the system

size, which is rather impractical if Nφ becomes much bigger than 100. Therefore we

have to simplify the evaluation of G, which can be done using the knowledge of the

basis functions as follows. The Landau states are again given by Equation 2.24. For

simplicity we will work in magnetic units from here onwards, i.e. lc = 1. Thus, any

length is given in units of lc and any momentum in l−1
c . The matrix elements of the

plane waves hence read

〈ϕn,i| exp(iq · r)|ϕm,j〉 =
1

L
√

2n+mn!m!π
×

∫

d2r exp

[iq · r + i(kj − ki)y −
1

2
(x− ki)

2 − 1

2
(x− kj)

2

]

Hn(x− ki)Hm(x− kj) .

(4.21)

After carrying out the Fourier transform in y-direction and substitution of x = z +K+

where K± = (ki ± kj)/2 we find

〈ϕn,i| exp(iq · r)|ϕm,j〉 =
1√

2n+mn!m!π
δ′qy,2K−

exp

(

−K2
− + iqxK+ − q2x

4

)

× (4.22)

∫ ∞

−∞

dz exp

[

−
(

z − iqx
2

)2
]

Hn(z −K−)Hm(z +K−)

(4.23)

where the δ′-function is a periodic Kronecker delta function as given in Appendix E.

With the substitution x = z + iqx/2 this yields a standard integral (see Formula 7.377

in [89]) that can be solved analytically. After some manipulation we find for m ≤ n

〈ϕn,i| exp(iq · r)|ϕm,j〉 =δ′qy,ki−kj

√

2nm!

2mn!
exp

[

−q2

4
+

i
2
qx(ki + kj)

]

× (4.24)

(iqx − qy
2

)n−m

Ln−m
m

(

q2

2

)

, (4.25)
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and for m > n,

〈ϕn,i| exp(iq · r)|ϕm,j〉 =δ′qy,ki−kj

√

2mn!

2nm!
exp

[

−q2

4
+

i
2
qx(ki + kj)

]

× (4.26)

(iqx + qy
2

)m−n

Lm−n
n

(

q2

2

)

, (4.27)

where La
n(x) is the generalised Laguerre polynomial. Now we can simplify the compu-

tation of the spinless Fock matrix, F, which reads as

Fn,k;n′,k′ =
∑

l,m,l′,m′

(

Gm,l;m′,l′

n,k;n′,k′ −Gm,l;n′,k′

n,k;m′,l′

)

Dm′,l′;m,l , (4.28)

where the first term (Hartree term) corresponds to the classical Coulomb repulsion and

the second (Fock term) to the quantum mechanical exchange interaction, the only other

two-particle correlation effect. Using Equation (4.25) we can introduce

Mn,n′,m,m′

K (qy) =
∑

qx

v(q)

√

2nn′!

2n′n!

√

2mm′!

2m′m!
exp

(

−q2

2
+

i
2
qxK

)

×

(iqx − qy
2

)n−n′ (−iqx + qy
2

)m−m′

Ln−n′

n′

(

q2

2

)

Lm−m′

m′

(

q2

2

)

(4.29)

where due to the exponential decay we can restrict the sum over qx as

q2x < max[0,−2 ln(ǫ) − qy], with an accuracy ǫ. Now we can write the Hartree term as

∑

l,m,l′,m′

Gm,l;m′,l′

n,k;n′,k′Dm′,l′;m,l (4.30)

=
∑

l,m,l′,m′

Dm′,l′;m,l

∑

qy

δ′qy,k−k′δ′qy ,l′−lM
n,n′,m,m′

k+k′−l−l′(qy) (4.31)

=
∑

l,m,m′

Dm′,l+k−k′;m,lM
n,n′,m,m′

2(k′−l) (k − k′) , (4.32)

and the exchange term as

−
∑

l,m,l′,m′

Gm,l;n′,l′

n,k;m′,k′Dm′,l′;m,l (4.33)

= −
∑

l,m,m′

Dm′,l+k−k′;m,lM
n,m′,m,n′

2(k−k′) (k − l′) . (4.34)
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The field M can be precomputed prior to the iteration and by putting the terms together

we efficiently compute the Fock matrix as

Fn,k;n′,k′ =
∑

l,m,m′

[

Mn,n′,m,m′

2(k′−l) (k − k′) −Mn,m′,m,n′

2(k−k′) (k − l′)
]

Dm′,l+k−k′;m,l . (4.35)

The storage requirements for M are only of the order O(N4
LLN

2
φ) and the constructing

of the full Fock matrix O(N4
LLN

3
φ), or O(N4

LLL
6) in terms of the system size.

So far we derived the HF equations for spinless electrons. In order to incorpo-

rate spin one can now adapt either of the two most common procedures, the restricted

Hartree-Fock (RHF) and the unrestricted Hatree-Fock (UHF) method [83]. In quan-

tum chemistry, these different approaches are also called closed-shell and open-shell

calculations, respectively. The electron states are constructed with a spatial and a spin

part. Thereby the RHF method is the more straightforward approach by suggesting a

double-occupation for each state with a spin up and a spin down electron. The spatial

component is now independent of spin and will be equal in each doubly-occupied state.

Clearly, for a spin-dependent Hamiltonian this is a severe simplification. The interac-

tion of the electrons with the magnetic field, which leads to a spin-dependent Zeemann

energy, will not be treated correctly. More realistically, one assumes the total indepen-

dence of electrons with different spin, leading to the UHF procedure. The system will

consist of two different species of electrons, with up spin (σ = 1/2) and down spin

(σ = −1/2). Hence, the number of electrons is Ne = N↑
e +N↓

e . The spatial component

of a state, ψσ
α(r), is assumed to also depend on the spin. The expansion in terms of

Landau functions now reads

ψσ
α(r) =

∑

n,a

Cα,σ
n,aϕn,a(r) , (4.36)

with spin-dependent expansion coefficients. Using the spin-dependent states, a variation

of the total energy just as for spineless electrons (Section 4.1) will yield the intuitive

result [90] that different spin states interact only via the Coulomb interaction. Therefore

the UHF equations, sometimes called Pople-Nesbet equations, are two self-consistent
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eigenvalue problems, one for each spin, which are coupled through the Coulomb inter-

action. The exchange interaction is restricted to electrons of equal spin, which has the

physically plausible explanation that a particular state of spin σ cannot exchange with

an electron of spin −σ and will therefore not feel an energy reduction if such an unoc-

cupied state should exists. In the following Chapters we will adapt the UHF procedure

and introduce the respective spin-dependent equations.

Finally we want to mention one disadvantage of the UHF procedure which might

lead to problems in quantitative considerations regarding the spin. The UHF method

cannot guarantee the orthonormality between states of different spin. Such a restriction

would in fact yield RHF states [91]. The states are no proper eigenfunctions of the total

spin operator which leads to so-called spin contamination [92, 93]. The quality of the

result can be checked after the calculation by computing the expectation value of the

total spin operator. However, we do not expect relevant deviations in quantities such

as charge density or compressibility, which we are going to investigate. Therefore, we

neglect the time-consuming additional corrections and checks associated with this issue.

4.2 Solving the HF Equations with Spin

This chapter will be dedicated to the numerical solution of the HF problem. We will

discuss the algorithms, issues of convergence and reliability, as well as their implemen-

tation. Clearly, the solver has to be efficient and give correct results under any setting

of parameters. However, this turns out to be far from trivial. Turning back to the HF

problem, we are now left with finding the correct spin-dependent expansion coefficients

C
α,σ
n,k [74, 75, 94, 95]. The spin-dependent Hamiltonian is represented in matrix form

using the periodic Landau states |nk〉 and we have

Hσ
n,k;n′,k′ = 〈ϕn,k|Hσ

2DES|ϕn′,k′〉

=

(

n+
1

2
+
σg∗

4

m∗

me

)

h̄ωcδn,n′δk,k′ + Vn,k;n′,k′ + Fσ
n,k;n′,k′ ,(4.37)
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with the cyclotron energy h̄ωc = h̄eB/m∗. The disorder matrix elements are given

by Vn,k;n′,k′ =
∑

q VI(q)Sn,k;n′,k′(q), where mixing of Landau levels is included. The

explicit form of the plane wave matrix elements Sn,k;n′,k′(q) = 〈ϕnk| exp(iq · r)|ϕn′k′〉
is computed in Appendix E. The elements of the Fock matrix F are

Fσ
n,k;n′,k′ =

∑

σ′

∑

l,m,l′,m′

(

Gm,l;m′,l′

n,k;n′,k′ − δσ,σ′Gm,l;n′,k′

n,k;m′,l′

)

Dσ′

m′,l′;m,l , (4.38)

where the first term is the Hartree and the second the Fock contribution. The bi-

electronic integrals Gm,l;m′,l′

n,k;n′,k′ =
∑

q 6=0 VC(q)Sn,k;n′,k′(q)Sm,l;m′,l′(−q) can be further

simplified as also given in Appendix E. A homogeneous, positive background is assumed

that neutralises the charge of the electrons and thereby prevents the Coulomb term from

diverging as |q| → 0. In fact, this interaction with the background can be shown to

cancel with the term |q| = 0 in F up to a contribution of the order of L−1 due to the

finite system size [77]. The density matrix is given by

Dσ
m,l;m′,l′ =

M
∑

α=1

f(ǫσα)Cασ
m,l(C

α,σ
m′,l′)

∗ , (4.39)

with Tr(D) = Ne and DσDσ = Dσ. Here f(ǫ) denotes the Fermi function. A variational

minimization of 〈Ψ|H2DES|Ψ〉 with respect to the coefficients as presented earlier yields

the Hartree-Fock-Roothaan equation [78], a self-consistent, coupled eigenvalue problem

which in compact form can be written as

HσCσ = CσEσ, (4.40)

with Cσ = (Cσ
1 , . . . ,C

σ
M ) being the matrix of eigenvectors and Eσ = diag(ǫσ1 , ..., ǫ

σ
M )

the diagonal matrix of the eigenvalues ǫσ1 ≤ ǫσ2 ≤ · · · ≤ ǫσM . The equations are cou-

pled through the Hamiltonian which depends on the electron densities of both spins.

Following the aufbau principle [96], the density matrix is constructed starting from the

energetically lowest lying state up to the Fermi level ǫF. In our calculations, we keep Ne

fixed and compute ǫF as the energy of the highest occupied state afterwards. Since the

Fock matrix depends on the density matrix, which in turn depends on the full solution
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of the problem, (4.40) has to be calculated self-consistently which is numerically quite

challenging. In the first step we use the solution of the non-interacting Hamiltonian

hσ = 〈ϕn,k|hσ |ϕn′,k′〉 as a starting guess for the coefficients Cσ. From this solution,

C(0), we construct the density and Fock matrices and finally the full Hamiltonian. Diag-

onalisation yields an improved solution, C(1). The process continues until convergence

of the density matrix has been achieved. In practice, we compute the norm of the dif-

ference between successive density matrices ||D(n+1) − D(n)|| < ε. Here || · || denotes

the Hilbert-Schmidt norm defined as ||A|| = Tr(AA∗)1/2.

In each HF step, assembling the dense Fock matrix Fσ scales as O(N4
LLN

3
φ) and is

clearly very time-consuming. Any improvement, even though generally possible, is of

little advantage since the diagonalisation is of similar complexity. Algorithms have been

suggested to circumvent the costly diagonalisation [97,98]. For the calculation of a par-

ticular disorder configuration and magnetic field, a self-consistent run has to be made

for each of the M possible filling factors. Hence, the complexity of a complete HF calcu-

lation is of the order O(2KN5
LLN

4
φ) with K the number of iterations until convergence.

The dependence on the system size is therefore O(L8). For system sizes of L ∼ 300nm,

we find K ∼ 100 − 1000. In all results presented here, convergence of the HF scheme

is assumed for ε ≤ 10−6.

4.3 Calculation of the Total HF Energy

After having obtained the HF states, we need to calculate the total energy, which

is the expectation value of the Hamiltonian of Equation (4.37) in the ground state,

|Φ〉. Splitting the Hamiltonian into a one-electron part, h, and a two-electron part,

F , we calculate this expectation value individually. We can write for the one-electron

Hamiltonian

h =
∑

σ

∑

α,β

〈ψσ
σ |hσ |ψσ

β〉â†α,σ âβ,σ . (4.41)
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With the expectation value of the one-electron operator, 〈φ|â†α,σ âβ,σ|φ〉 = fαδα,β , as

well as the expansion of the wave functions, the one-electron energy reads

E1e = 〈φ|h|φ〉 =
∑

σ

∑

α,β

∑

k,n,k′,n′

(Cα,σ
n,k )∗Cβ,σ

n′,k′〈ϕn,k|hσ|ϕn′,k′〉〈φ|â†σ,αâσ,β|φ〉 (4.42)

=
∑

σ

∑

α,β

∑

k,n,k′,n′

(Cα,σ
n,k )∗Cβ,σ

n′,k′〈ϕn,k|hσ|ϕn′,k′〉fαδα,β (4.43)

=
∑

σ

∑

n,k,n′,k′

〈ϕn,k|hσ|ϕn′,k′〉Dσ
n′,k′;n,k . (4.44)

The two electron part of the Hamiltonian can be written as

F =
1

2

∑

σ,σ′

∑

α,β,ϑ,δ

〈ψσ
αψ

σ′

ϑ |F σ,σ′ |ψσ′

δ ψ
σ
β〉â†α,σ â

†
ϑ,σ′ âδ,σ′ âβ,σ . (4.45)

With the usual expansion as well as the expectation value of the two electrons operator,

〈φ|â†σ,αâ
†
σ′,ϑâσ′,δâσ,β |φ〉 = fαfϑ(δα,βδϑ,δ − δσ,σ′δα,δδβ,ϑ) , (4.46)

the two electron energy yields

E2e = 〈φ|F |φ〉 (4.47)

=
1

2

∑

σ

∑

k,n,k′,n′

Dσ
n′,k′;n,k

∑

σ′

∑

l,m,l′,m′

(

Gm,l;m′,l′

n,k;n′,k′ − δσ,σ′Gm,l;n′,k′

n,k;m′,l′

)

Dσ′

m′,l′;m,l ,

(4.48)

where G is the bielectronic integral. Putting both together, we obtain the result for the

total HF energy as

Etot
HF =

1

2

∑

σ

∑

n,k;n′,k′

(

2hσ
n,k;n′,k′ + Fσ

n,k;n′,k′

)

Dσ
n′,k′;n,k , (4.49)

where h is the sum of all one-particle terms in the Hamiltonian in Landau basis, and F

the two particle term, respectively.

4.4 The Roothaan Algorithm

The Roothaan algorithm is the simplest fixed point iteration scheme for the solution

of the self-consistent HF eigenvalue problem. Unlike iterative subspace methods [99],
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for the following algorithms we only need to keep track of two consecutive matrices

during the iteration procedure. Therefore we will apply the subindices old and new to

the matrices. First, we will briefly recall the set of equations in question.

Hσ(D)Φσ = ΦσEσ , (4.50)

(Φσ)†Φσ = IM , (4.51)

Dσ = ΦσΩσ(Φσ)† , (4.52)

with Φσ = (Cσ
1 , . . . ,C

σ
M ) being the matrix of eigenvectors with the corresponding

matrix Eσ = diag(ǫσ1 , ..., ǫ
σ
M ) of eigenvalues in ascending order, belonging to the linear

eigenvalue equation

Hσ(D)Cσ
α = ǫσαCσ

α , (4.53)

and the occupation matrix {Ωσ}α,β = δα,βf(ǫσα), where f(ǫ) is the Fermi function.

The density matrix is thus constructed from the Ne energetically lowest eigenvector.

This scheme is known as the aufbau principle. For notational convenience we use the

notation D = (D↑,D↓) and F = (F↑,F↓) .

Convergence is established if the difference between two consecutive density matrices is

smaller than a specified threshold, i.e.

||Dσ
new − Dσ

old|| < ǫconv. (4.54)

We sketch the Roothaan algorithm now in Algorithm 1 (∀σ ∈ {↑, ↓} is understood in

each line). Thus, we use the non-interacting density matrix as our initial guess.

As a matter of fact convergence of the Roothaan algorithm [78] is rather poor. In most

cases it runs into an oscillating limit cycle. We will briefly sketch the proof now with a

plausibility argument using Figure 4.4. It can be shown [83] that the Roothaan algorithm

converges to a critical point (Dσ
new,D

σ
old) → (D∞,D

′
∞), where the density matrices are

mutual solutions of each others HF eigenproblem. Now if this point lies on the diagonal,

i.e. D∞ = D′
∞, the iteration will converge in the sense that ||Dσ

new −Dσ
old|| → 0. More

often, however, this point will not lie on the diagonal and the difference between the
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Algorithm 1 Roothaan Algorithm (Initialisation and iteration)

1: AssembleSingleParticleMatrix(σ) → hσ

2: Solve hσΦσ = ΦσEσ

3: AssembleOccupationMatrix(Eσ) → Ωσ

4: ΦσΩσ(Φσ)† → Dσ
old

5: AssembleFockMatrix(Dold) → Fσ
old

6: h + Fold → Hold

7: 0 → k
8: loop

9: Solve Hσ
oldΦ

σ = ΦσEσ

10: AssembleOccupationMatrix(Eσ) → Ωσ

11: ΦσΩσ(Φσ)† → Dσ
new

12: AssembleFockMatrix(Dnew) → Fσ
new

13: h + Fnew → Hnew

14: if max(||D↑
new −D

↑
old||, ||D

↓
new − D

↓
old||) < ǫconv OR k > Nmax then

15: EXIT
16: end if

17: Dnew → Dold

18: Hnew → Hold

19: k + 1 → k
20: end loop
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Figure 4.1: Oscillatory behaviour of the Roothaan algorithm [96]. Left: Critical point
lies on the diagonal and the iteration converges without oscillations. Right: Critical
point lies on the off-diagonal which leads to oscillations of the algorithm. The two
density matrices are mutually solutions to the respective HF-problem.

consecutive density matrices converges to a finite constant. This behaviour is mainly

observed with filling factors close to an integer value and is due to the mixing of occupied

and unoccupied states. More specifically, neglecting the divergent q = 0 term in the

Coulomb potential can lead to a situation where an unoccupied states has lower energy

than the occupied state. Therefore, in course of the iteration and by virtue of the aufbau

principle, an electron would try to occupy the energetically lower state. However, the

old, now unoccupied site, has in turn a lower energy and will be favoured by the electron.

Clearly this situation will not lead to convergence. We have illustrated that behaviour

in the top row of Figure 4.2 by showing the HF-potential along the x-axis, UHF(x),

resulting from the two electrons, for two subsequent steps of the iteration. The system

has a size of L = 400nm and is periodic in x-direction. The broken lines are periodic

reproductions of the full line (calculated potential). Initially, the two electrons are sitting

close to each other around x = L/2 and the system has a corresponding density matrix

Dold. The left column shows UHF(x) according to this initial density matrix Dold, and

the right column according to the subsequent density matrix Dnew of the Roothaan
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Figure 4.2: Cross-section of the HF-potential due to two close-by electrons before and
after the first iteration of the Roothaan, the LS, and LS + ODA (different rows). The
left column shows the initial state, the right shows the state after one step of iteration
of the respective algorithm.

iteration. After this first iteration, the electrons have adapted their states according to

the aufbau principle and populated the lowest two states around x = 0. By virtue of the

PBC, the distribution has mapped back into itself. A following iteration will then restore

the initial Dold state. Thus, the electrons will not become separated. They move in

synch during the iterator process and we cannot achieve convergence for this system.

We will discuss a remedy in the following section.
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4.5 The Level Shifting Algorithm

A natural attempt to avoid the oscillations in the Roothaan algorithm is to introduce an

energy penalty for the aforementioned off-diagonal fixpoints by minimising a penalised

energy functional

E′(Dold,Dnew) = E(Dold,Dnew) + b||Dold − Dnew||2 , (4.55)

instead of the actual HF energy functional. The corresponding HF eigenproblem now

changes in a way that not F is diagonalised but rather F′ = F − bD. By doing so, the

eigenvalues shift by ǫσi → ǫσi − b ∀ ǫσi ≤ ǫF, but the eigenstates remain unaffected.

This can be seen as follows. Writing the eigenvalue equation as

C∗
βH

′Cβ =
∑

c,d

hcdC
∗
cβCdβ +

∑

c,d

F′
cdC

∗
cβCdβ = ǫ′β (4.56)

and

ǫ′β = ǫβ − b
∑

c,d

DcdC
∗
cβCdβ (4.57)

= ǫβ − b
∑

α

fα

∑

c,d

CcαC
∗
dαC∗

cβCdβ (4.58)

= ǫβ − bfβ . (4.59)

Hence, by subtracting the density matrix with a prefactor b, all the occupied eigenvalues

(below ǫF) shift by b. This algorithm favours already occupied states and for a big enough

parameter b, oscillations are successfully suppressed. Interestingly, quite a different

approach has also led to this algorithm [100] which is called the Level-Shifting-Algorithm

(LS) and b the level-shift parameter. As we have seen in the previous section, the

shortcoming of the Roothaan algorithm is a mixing of occupied and unoccupied states.

The initial idea behind the LS algorithm was simply to separate the so called real and

virtual orbitals energetically to avoid this behaviour. Subtracting a small multiple of

the density matrix off the Fock matrix accomplishes this trick. It can be shown that

the LS algorithm converges for b ≥ b0. However, there exists no rigorous value for
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b0. Moreover, even if b is chosen generously large, it turns out that in some cases

this trick still does not yield a physical solution. In the middle row of Figure 4.2 we

have illustrated this effect of the level shifting. Again, the left figure shows the initial

configuration corresponding to Dold. If b is chosen too small, we recover the situation

of the Roothaan algorithm. In the middle row we have chosen a large b. In the right

column we depicted the potential after one iteration of the LS algorithm, i.e. according

to Dnew. Due to the level shifting, the electrons are already in the lowest state and

the aufbau principle does not change the occupation. The level shifting has pinned the

states. Thus, we have found a converged solution which is, however, unphysical. The

two electrons are still too close to each other.

4.6 The Optimal Damping Algorithm

The two algorithms detailed above proofed rather inadequate. The Roothaan algorithm

tends to run into oscillations and the LS algorithm yields unphysical solutions. Another

promising class of algorithms are the relaxed constraints algorithms. The naming is

due to the non-linear constraint DD = D being relaxed during the iteration to the

inequality DD ≤ D. Upon convergence the equality is recovered [96]. According to the

authors, this algorithm is not based on any physical arguments but rather comes from

empirical studies to force convergence. The algorithm we want to discuss in this section

is called the Optimal Damping Algorithm (ODA). The iteration is carried out just as in

the Roothaan algorithm, only that the new density matrix is a mixture of the old and

the new density matrix, i.e.

D = (1 − λ)Dold + λDnew , (4.60)

with a damping parameter λ which is chosen optimally according to the direction of

steepest descent in the total HF energy. Now we will demonstrate how to derive the

optimal λ in a generalisation of the RHF ODA approach [96], applicable for the UHF

procedure. Recall that in the UHF approach, electrons of different spin are treated
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separately, yielding separate density matrices which we label with σ. Thus, we will have

spin dependent damping parameters and the new density matrices are constructed as

the convex linear combination

Dσ = Dσ
old + λσ(Dσ

new − Dσ
old) . (4.61)

For reasons of notational convenience we adapt the abbreviation D = {D↑,D↓}. With

those notational conventions we write the total energy functional as

Etot[D] =
∑

σ

Tr

[

hσDσ +
1

2
Fσ(D)Dσ

]

, (4.62)

where the trace is excluding the spin. Moreover we define a partial Fock matrix, P, by

Fσ(D) =
∑

σ′ P
σ,σ′

(Dσ′

), where we can later make use of the symmetry property

Tr[Pσ,σ′

(Dσ′

)Dσ] = Tr[Pσ,σ′

(Dσ)Dσ′

] . (4.63)

The new energy with the density matrix of Equation (4.61) reads

Etot[D] =
∑

σ

{Tr[hσDσ
old] + λσTr[hσ(Dσ

new −Dσ
old)]}+ (4.64)

1

2

∑

σ,σ′

Tr{Pσ,σ′

(Dσ′

old + λσ′

[Dσ′

new − Dσ′

old]) [Dσ
old + λσ(Dσ

new − Dσ
old)]} .

(4.65)

With the total Hamiltonian matrix H = h + F, this can be rewritten as

Etot[D] =Etot[Dold] +
∑

σ

λσTr[Hσ(Dσ
new − Dσ

old)]+ (4.66)

1

2

∑

σ,σ′

λσλσ′

Tr[Pσ,σ′

(Dσ′

new − Dσ′

old) (Dσ
new − Dσ

old)] . (4.67)

This quadratic form is our main result of the ODA for UHF and can be conveniently

written as

Etot[D] =Etot[Dold] + ~λ ·~s +
1

2
~λ

T · c · ~λ , (4.68)
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where we have defined

~λ =

(

λ↑

λ↓

)

(4.69)

and

~s =

(

Tr[H↑(D↑
new − D

↑
old)]

Tr[H↓(D↓
new − D

↓
old)]

)

(4.70)

and the 2 × 2 matrix c with the matrix elements

cσ,σ′

= Tr[Pσ,σ′

(Dσ′

new − Dσ′

old) (Dσ
new − Dσ

old)] . (4.71)

The problem which has to be solved is finding the optimal ~λODA that yields the lowest

energy for the next iteration step, i.e.

~λODA = arg inf
{

Etot(D), ~λ ∈ [0, 1] ⊗ [0, 1]
}

. (4.72)

Equation (4.68) therefore has a non-trivial minimum only if the quadratic form is posi-

tive semi-definite. Otherwise, if the extremum is a saddle point the solution has to lie

at the border of the constraint region [0, 1] ⊗ [0, 1], and is readily found.

In the following we schematically sketch the full ODA procedure, where ∀σ, σ′ ∈ {↑, ↓}
is understood in each line where the indices appear. The ODA ensures by construction

that a decrease of the total HF energy is realised in each step, since we are searching in

the direction of steepest descent. However, there are some issues with ODA, too. Under

certain conditions the decrease in energy can switch from being linear in the smallest

level spacing to being quadratic [83]. Clearly, with a quadratic dependence, the decrease

becomes rather unnoticeable for small level spacings. Moreover, we found cases of os-

cillatory behaviour of the ODA. The ODA will oscillate with a cycle of four iterations.

The problem can be understood by treating the physics with a bit more care. In Section

3.3 we established that the divergent q = 0 term in the Hamiltonian cancels with the

neutralising background charge, which is indeed true for Hartree-interacting electrons.

Now one might be tempted to assume a similar situation for the HF Hamiltonian (4.37).
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Algorithm 2 ODA (Initialisation and iteration)

1: AssembleSingleParticleMatrix(σ) → hσ

2: Solve hσΦσ = ΦσEσ

3: AssembleOccupationMatrix(Eσ) → Ωσ

4: ΦσΩσ(Φσ)† → Dσ
old

5: AssembleFockMatrix(Dold) → Fσ
old

6: AssemblePartialFockMatrix(Dσ′

old, σ) → P
σ,σ′

old
7: hσ + Fσ

old → Hσ
old

8: 0 → k
9: loop

10: Solve Hσ
oldΦ

σ = ΦσEσ

11: AssembleOccupationMatrix(Eσ) → Ωσ

12: ΦσΩσ(Φσ)† → Dσ
new

13: AssembleFockMatrix(Dnew) → Fσ
new

14: AssemblePartialFockMatrix(Dσ′

new, σ) → P
σ,σ′

new

15: hσ + Fσ
new → Hσ

new

16: if max(||D↑
new −D

↑
old||, ||D

↓
new − D

↓
old||) < ǫconv OR k > Nmax then

17: EXIT
18: end if

19: Tr[Hσ
old(D

σ
new −Dσ

old)] → sσ

20: Tr[(Pσ,σ′

new − P
σ,σ′

old )(Dσ
new − Dσ

old)] → cσ,σ′

21: OptimizeQuadraticForm(c, s)→ λ

22: (1 − λσ)Dσ
new + λσDσ

old → Dσ
old

23: AssembleFockMatrix(Dold) → Fσ
old

24: AssemblePartialFockMatrix(Dσ′

old, σ) → P
σ,σ′

old

25: hσ + Fσ
old → Hσ

old

26: k + 1 → k
27: end loop
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However, as we can easily verify, that is not the case for a system of finite size. Since we

assume overall charge neutrality, an electron interacts with Ne positive charges of the

homogeneous background, but only with Ne − 1 electrons. Let us turn to the HF case

now. The matrix elements of the electron-electron part of the HF Hamiltonian without

the q = 0 part are

〈ϕc|He−e|ϕd〉 = Fcd =
∑

α

fα

∑

q 6=0

v(q)
[

〈α|eiqr|α〉〈ϕc|e−iqr′|ϕd〉−

〈α|eiqr|ϕd〉〈ϕc|e−iqr′ |α〉
]

. (4.73)

We rewrite the eigenvalue equation as

C∗
βHCβ =

∑

c,d

hcdC
∗
cβCdβ +

∑

c,d

FcdC
∗
cβCdβ = ǫβ, (4.74)

and find that by including the q = 0 term, ǫβ changes to ǫ̃β as follows

ǫ̃β = ǫβ + v(0)
∑

α

fα [〈α|α〉〈β|β〉 − 〈α|β〉〈β|α〉] (4.75)

= ǫβ + v(0)
∑

α

fα(1 − δα,β) (4.76)

= ǫβ + v(0)(Ne − fβ). (4.77)

As again easily verified, the contribution of the background interaction is precisely

∑

c,d

〈ϕc|Hel−bg + Hbg−bg|ϕd〉C∗
cβCdβ = −v(0)Ne (4.78)

and thus we find for the correct eigenvalues,

ǫ̃β = ǫβ − v(0)fβ . (4.79)

The interpretation of this result is, that interaction takes place only with electrons below

ǫF. Thereby an occupied state, ǫβ ≤ ǫF, interacts with all other electrons apart from

itself, whereas an unoccupied state, i.e. ǫβ > ǫF, interacts with all electrons and therefore

has a correspondingly higher energy. The energy shift for a square system of size L×L
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can be found by integrating over the area,

v(0) =
e2

4πǫǫ0

∫

L×L

d2r

L2

1

|r| ≈
1.76

L

e2

4πǫǫ0
. (4.80)

For an infinite system, this correction goes to zero. In our finite size case, however, we

need to take care of this expression. We can identify Equation (4.79) with Equation

4.59, the LS algorithm. Thus, v(0) takes on the role of the level-shifting parameter. As

it turns out in our numerical calculations, this is precisely the correct value of the shift-

parameter to prevent occupied and unoccupied states from mixing together or likewise

prevents electrons from getting pinned down. Thus by combining the ODA with the

LS algorithm, we have found a stable scheme which converges in any case. In the

bottom row of Figure 4.2 we depict two subsequent iteration steps of a combined ODA

+ LS algorithm. The two charge densities of the close-by electrons separates with the

correct distance of L/2. In conclusion, combining the ODA and the LS algorithm with a

level shift parameter of v(0) seems to guarantee convergence under any circumstances.

It might be an interesting mathematical issue whether there exists a more rigorous

derivation of this empirical observation.

4.7 Convergence

In general it is very difficult to prove convergence properties for those algorithms [83].

Therefore numerical checks are useful for establishing a performance evaluation. As it

turns out the performance also depends strongly on the interaction strength and the

position of the Fermi level. For some filling factors and choices of parameters, we

might find fast convergence with one of the algorithms described above. However, over

the whole range of filling factors only a combination of ODA and LSA can give good

convergence. In Figure 4.3 we have depicted the convergence behaviour for a typical

HF run at four different filling factors. Note, that we have plotted the convergence

precision as defined by Equation (4.54), rather than the total HF energy, which is also

sometimes used as a measure. In comparison to the energy which acquires a finite value
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Figure 4.3: Convergence behaviour of the three algorithms during the first 500 itera-
tions. Almost similar behaviour is found for other configurations (system size, magnetic
field, disorder strength). The combined ODA + LS algorithm shows overall the best
convergence properties.

at convergence, the precision should always converge to zero.

4.8 Further Improvements

A possible further improvement of convergence can be achieved when considering not

only the previous density matrix but also density matrices before that. This scheme is

called direct inversion in the iterative subspace (DIIS) algorithm [96, 99]. The idea is

to construct the new density matrix Dnew = Dk+1 as a convex linear combination of

several previous density matrices, Di, i.e.

Dnew =

k+1
∑

i=0

ciDi, (4.81)
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with the constraint 0 ≤ ci ≤ 1 and
∑

i ci = 1. Similarly to the ODA, an optimal set of

ci’s can be found. Moreover there exist quadratically convergent algorithms [96] that

might accelerate convergence towards the end of the iteration. However, the extra effort

and the increased memory requirements might not outweigh the performance gain in

our case. Other so-called linear scaling approaches have been proposed [97, 98] that

replace the time consuming construction and diagonalisation of the Fock matrix, such

as conjugate gradient search or polynomial expansion. They seem to work best for large

molecules and no effort has been made in this work to verify performance gain for our

system. This could be a starting point for further research.
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Chapter 5

Properties of the 2DEG

5.1 Density of States and Mobility

The term density of states is usually used in two different contexts. One has to specify

whether the single-particle property, the tunneling density of states (DOS) or the ther-

modynamic density of states (TDDOS) is meant. The former is related to the tunneling

probability of a single electron into the 2DEG, without allowing for redistribution of the

charge density. The latter, on the other hand, is a property obtained after the collective

relaxation and is related to the electronic compressibility, which is discussed in the next

section [28,29]. In this section we focus on the tunneling DOS defined as

ρ(E) =
∑

α

δ(E −Eα) . (5.1)

Evidently, knowledge of the distribution of energy levels is required. This is intimately

related to the electron-impurity interaction and thus the electron lifetime. We start

by tuning our parameters for the electron-impurity interaction to realistic values by

estimating the zero field mobility, defined as µ0 = eτ/m∗, with τ being the trans-

port scattering time [28, 29]. The mobility is experimentally determined by constant

source-drain-voltage conductance measurements using the relation σSD = neeµ0 [29] or

theoretically calculated via the Boltzmann transport equation [28,29]. Generally speak-
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ing it is desirable to have samples with low effective mass and high mobility, since the

observability of quantisation requires

h̄ωc =
h̄eB

m∗
> kBT (5.2)

which be satisfied at much lower magnetic fields. For a short-range δ-impurity potential,

τ is identical to the single-particle momentum relaxation time, τs, which determines the

level broadening, (Γ/2)2 = h̄ωch̄/2πτs [31]. For a long-range potential, however, these

two times can be very different [101] and knowledge about the level broadening does

not necessarily imply knowledge about the mobility and vice versa. In fact, for a smooth

potential with d ≫ lc we have (Γ/2)2 =
〈

[VI(r) − 〈VI(r)〉r]2
〉

r
, which does not

depend on B. In that case, we can determine the mobility from the transport cross-

section calculated in Born approximation [31,32]. Since the transport scattering time is

momentum dependent, we take the low temperature limit, where the relevant scattering

time is the one for electrons having Fermi momentum kF = (2πne)
1/2. With a radially

symmetric electron-impurity interaction potential for a single scatterer, u(r), we obtain

for the transport scattering time (see Appendix B)

τ−1 =
nIm

∗

2πh̄3

∫ 2π

0
dθ [1 − cos(θ)] |ũ(2kF sin(θ/2))|2 , (5.3)

with the Fourier transform u(k) =
∫

d2ru(r) exp(−ir · k) and ũ(k) = u(|k|). In case

of δ-interaction and uniformly distributed strengths, we simply have ũ(k) = W/
√

3 and

the cos(θ) term in (5.3) vanishes. Without it (5.3) becomes the expression for τs which

proves the equivalence of τ and τs for short-range potentials. For long-range potentials,

however, forward (small θ) scattering receives less weight since it hardly impairs the

electron movement and τ/τs ≫ 1. In order to model a situation comparable to the

experiments of [17], we use material parameters for GaAs [102–104] (g∗ = −0.44 for

the effective g-factor, m∗ = 0.067me for the effective mass) and impurity parameters

of W/nm2 ≃ 4eV with a concentration of nI = 3.2 · 1011cm−2 (e.g. NI = 288 for

L = 300nm or NI = 392 for L = 350nm). Assuming ne ≈ nI, for the δ-potential this

yields a mobility of µ0 ≃ 103cm2/Vs, whereas for d = 40nm (≈ spacer layer thickness)
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we get µ0 ≃ 106cm2/Vs — a value which is reasonable for a high mobility sample

such as a GaAs-GaAlAs heterojunction. The effect on the DOS and in particular the

broadening of the lowest Landau levels is readily computed when having several additive

scatterers, and thus a potential of the form

V (r) =

S
∑

i=1

Vi(r) , (5.4)

yielding an impurity concentration of nI = S/L2. In self-consistent Born approximation

one finds for the width of the LL [73,105]

Γ2
0 =

2nIVar(Vi)

π(d2 + l2c )
, (5.5)

where Var(Vi) is the variance of the distribution of impurity strengths. For predominantly

short-range scattering, i.e. δ-impurities, one can take the limit d→ 0, whereas for long-

range scattering, i.e. a very smooth potential, we find the limit lc → 0, confirming

the previous statement that the LL width becomes B independent. In the following

we present calculations of the tunneling DOS in the lowest Landau level by averaging

over at least 1000 samples in the non-interacting and the interacting system. In Figure

5.1 we show results for Gaussian and δ-impurities for three system sizes L = 400, 500,

and 600nm for the non-interacting case as well as the interacting case. Within the

accuracy of the calculation, we find the DOS to be independent of the system size,

irrespective of interactions, as one would expected for such a disorder model as ours.

Furthermore, in the interacting case, we find a strong suppression of the DOS at the

Fermi level. The formation of this Coulomb gap and its non-criticality has been studied

previously [25,26,77,106]. In case of Gaussian-type impurities we also observe a strong

reduction of the band broadening due to screening of the impurity potential, while the

bandwidth in systems with δ-type impurities is hardly affected by interactions.
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Figure 5.1: DOS at B = 3T for the lowest Landau level in a non-interacting (top
row, γ = 0) and a HF-interacting (bottom row, γ = 0.3 at ν = 1/2) QH system
for 3 system sizes as a function of energy ǫα, centred around the critical energy ǫcrit
(centre of the band). The left column shows results for δ-type impurities (d = 0)
with W/nm2 = 2eV, the right column corresponds to Gaussian-type impurities with
d = 40nm and W/nm2 = 4eV (W/d2 = 2.5meV). The results in all cases are averaged
over at least 1000 samples. Error bars are less than the symbol sizes. Note the strong
Coulomb reduction of the DOS at the critical energy (ǫα = ǫcrit) in the interacting
cases.
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5.2 Local Density of States

The local density of states (LDOS) is an interesting property since it is directly experi-

mentally accessible via STS. The differential tunneling current between the STS tip and

the sample is proportional to the density of existing states at a certain energy [107].

The LDOS is defined as the DOS weighted with the charge density at a spatial position

r, which reads as

LDOS(E, r) =
∑

α

|ψα(r)|2δ(E − Eα) , (5.6)

which indeed obeys
∫

d2rLDOS(E, r) =
∑

α δ(E − Eα) = ρ(E), where ρ(E) is the

tunneling DOS as introduced in the previous section. In practice, however, the measured

LDOS is broadened by temperature as well as an AC modulation voltage applied when

using the lock-in technique in order to eliminate noise in the image [108]. The energy

window can then be described by a semi-circle around E [108] with the broadening ∆E,

which is usually of the order of 1meV. Thus, the LDOS can be regarded as the charge

density in a small energy interval and allows to study the charge distribution in the three

dimensions (two spatial plus energy) experimentally and theoretically [108], as depicted

in Figure (5.2).

5.3 Chemical Potential and Compressibility

The electronic compressibility κ = (∂ne/∂µ)/n2
e reflects the ability of the 2DES to

absorb electrons when changing the chemical potential. With µ = ∂Etot/∂Ne, we find

∂µ/∂ne = L2(∂2Etot/∂N
2
e ). Hence, for finite sample calculations, we can obtain κ

from Etot(Ne) using

∂µ

∂ne
≈ L2 [Etot(Ne + 1) − 2Etot(Ne) + Etot(Ne − 1)] . (5.7)

Alternatively, at T = 0, we can compute the change in the chemical potential for Ne

electrons by noting that the Fermi energy ǫF(Ne) = µ(Ne). Thus we immediately have

∂µ

∂ne
= L2 [ǫF(N + 1) − ǫF(N)] . (5.8)
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Figure 5.2: LDOS of non-interacting electrons at B = 5T as a function of position and

energy for a system of size L = 300nm. The filling factor at the top corresponds to
ν ≈ 3. White areas indicate high values of the LDOS.

This turns out to be numerically more stable than (5.7) and shall be used in the following.

We would like to remark that for obvious reasons the measurement of the electronic

compressibility is experimentally realised by changing the chemical potential instead of

changing the electron number density. In our calculation, changing the number density

is easier to control and therefore we make use of the inverse relation between the two

functions.

As pointed out in Section 3.1 the distribution of levels for non-interacting elec-

trons in a smooth potential can be approximately described by the distribution of energies

in the disorder potential, which for a smooth potential must fall off in the tails. Since

the compressibility is proportional to the tunneling DOS [28], in the region of highly

localised states, it takes more energy to accommodate a new electron, and thus the

compressibility is low. On the other hand, in a region of delocalised states where the
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levels are more dense, a newly added electron is much more easily ’absorbed’ and κ

is high. At best we expected κ to exhibit a fan-like structure in the (B,ne) diagram.

In fact, the resonances visible in κ need not align with slopes equal to integer filling

factors [109].

In the interacting case, κ is proportional to the TDDOS and the inverse screening

length, and is associated with the collective relaxation after adding a new electron.

Similar to the non-interacting case, we anticipate the highest κ in the band tails and

lowest in the regime of extended states. We expect the neutralisation of the constant

background to be more effective for a homogenously distributed charge, i.e. if the Fermi

level lies in the regime of extended states. We finally note that experimentally the

change of the chemical potential is detected when changing the back gate voltage and

hence the electron density at constant B [17,18].

5.4 Participation Ratio

The participation ratio Pα is defined as the inverse of the variance of the charge density

in the state α,

Pα =

(

L2

∫

d2r|ψα(r)|4
)−1

. (5.9)

Large values of Pα correspond to spatially extended states, while low values indicate a

confined state [38,39]. This is intuitively understood by the fact that the density of an

extended state varies much less over space than a highly localised one. Thus Pα is a

measure of the degree of localization and may be computed in our system as

Pα =
l2c
L2

∑

n,n′,m,m′

k,k′,l,l′

∑

q

(Cα
n,k)

∗Cα
n′,k′(Cα

m,l)
∗Cα

m′,l′Sn,k;n′,k′(q)Sm,l;m′,l′(−q). (5.10)

It has been shown that unscreened HF-interactions do not alter the critical exponent

ν̃ while renormalising the dynamical scaling exponent to z = 1 [25, 26, 110], which

for instance characterises the scaling of the conductivity tensor in an applied AC field.

The former has led to the conclusion that the HF theory should be within the same
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universality class as the non-interacting theory. In fact, the reason for that has been

well explained [111] with an additional global symmetry named F invariance which is

absent in case of short-ranged interactions and non-interacting electrons. As a check to

our HF results, we calculate Pα of spinless electrons in the lowest Landau level for the

same samples as in Section 5.1. The participation ratio is expected to obey the single

parameter scaling form [112]

Pα = LD(2)−2Π
(

L1/ν̃ |ǫα − ǫcrit|
)

, (5.11)

with the anomalous diffusion coefficient D(2) ≈ 1.6 — related to the multifractal

character of the critical states [45, 113, 114] — and the critical exponent ν̃ ≈ 2.3 [42].

Figure 5.3 shows the scaling function for the non-interacting and an interacting system at

filling factor ν = 1/2. The scaling function collapses reasonably well onto a single curve

for both non-interacting and HF-interacting systems. We find D(2) = 1.62 ± 0.10 as

typical average over both HF- and non-interacting systems as shown in Figure 5.4. This

demonstrates the irrelevance of interactions and the type of disorder for the multifractal

dimension of the critical state in very good agreement with previous results [26,45,115].

We note that this result might be limited to HF interactions. Multifractality has been

argued to be absent (i.e. D(2)=2) in case of spinless electrons with Coulomb interactions

[116]. A similar fit in the tails of Pα is numerically less accurate but still yields estimates

for ν̃ between 2 and 2.4, compatible with the expected value 2.34 ± 0.04 [34,42].

5.5 Screening

The probably most important manifestation of electron-electron interactions for our

system is the screening of the impurity potential. A positive charge placed in the

electron gas attracts the negatively charged electrons which in turn reduce the field of

the positive test charge. Similarly for a negative charge, electrons will be pushed away

from it leaving a hole which is then positively charged, compared to the average charge

density in the system. The electrons themselves can also be regarded as negative test
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Figure 5.3: Scaling functions of the participation ratio Pα at B = 3T for the non-
interacting (top row, γ = 0) and the HF-interacting (bottom row, γ = 0.3 at ν = 1/2)
systems averaged over at least 1000 samples and using D(2) = 1.62, ν̃ = 2.34. The
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charges, hence the density will acquire a certain ’self-consistent’ distribution. For a free

electron gas which can adapt to any such test charge, this compensation process will

continue until the field of test charges plus the field of the electrons completely cancels

each other. This is often called perfect screening. The condition for the charge density,

ne(r), to perfectly screen an impurity potential is an electrostatic problem. The charge

density is the source of a field φ(r), which is given by

φ(R) = e

∫

d3R′ ne(x
′, y′)δ(z′)

4πǫǫ0|R − R′| . (5.12)

The potential due to the impurities on the other hand is given by V (r) and shall be

canceled by the electrons. Thus, the perfect screening condition is

V (r) = −eφ(x, y, 0) = − e2

4πǫǫ0

∫

d2r′
n(r′) − nB

|r′ − r| (5.13)

where nB is a constant background charge which in the following shall guarantee overall

charge neutrality in the system, i.e. we choose nB = 〈ne(r)〉. Splitting the charge

density into two parts, a mean density and the fluctuations around the mean, ne(r) =

〈ne(r
′)〉r′+δne(r), the background charge cancels away and only the fluctuations remain

important for screening. A Fourier transform now yields

V (q) =

∫

d2r

L2
e−iq·rV (r) = − e2

4πǫǫ0

∫∫

d2rd2r′e−iq·r δne(r
′)

L2|r′ − r| (5.14)

= − e2

4πǫǫ0

∫∫

d2ud2r′e−iq·(u+r′) δne(r
′)

L2|u| = − e2

2ǫǫ0|q|
δne(q) , (5.15)

where q 6= 0 due to the background charge, avoiding a divergence on the right hand

side. The 1/q can be brought over to the other side, giving an explicit expression for

the charge density obeying the perfect screening condition. In contrast to the 2D result,

a Fourier transform of the 3D Coulomb potential yields 1/q2, and the inverse Fourier

transform of the above equation is the Laplace equation, n3D
e (R) ∝ ∆V (R). In 2D,
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however, the 3D Laplace equation does not hold. Instead we find

δne(r) =
∑

q

eiq·rδne(q) = −2ǫǫ0
e2

∑

q

eiq·r|q|V (q) = −2ǫǫ0
e2

∑

q

eiq·r q2

|q|V (q) (5.16)

= − 2ǫǫ0
e2

∑

q,q′

eiq′·r q2

|q′|V (q)δq,q′ = −2ǫǫ0
e2

∑

q,q′

eiq′·r

|q′|

∫

d2r′∆r′V (r′)e−iq·r′δq,q′

(5.17)

= − 2ǫǫ0
e2

∫

d2r′
∑

q

eiq·(r−r′)

|q| ∆r′V (r′) = −4πǫǫ0
e2

∫

d2r′
∆r′V (r′)

|r− r′| . (5.18)

This expression may be defined as δne(r) = ∆̃rV (r), with a redefined Laplace operator

which we will pick up on in a later section. In summary, in the presence of a poten-

tial V (r), an interacting, unrestricted 2DEG will adapt according to the quasi-Laplace

equation. In presence of a magnetic field this cannot always be satisfied due to the

quantising nature of the magnetic field, as we will see in the following chapters.

63



Chapter 6

Electronic Compressibility

6.1 Compressibility Patterns

In this chapter we address single electron transistor (SET) electrometer measurements

on 2DEGs in high mobility QH samples [17,18]. The results from theses experiments tell

a very convincing story about the relevance of electron-electron interaction effects and

hence question the widely used simplified single particle description of the IQHE. After

an account of the experimental results and explanation, we will present our numerical

calculations and show that the experimental features can be well-reproduced within

a model of HF-interacting electrons. Thereby we give strong theoretical support for

Coulomb blockade effects as well as linear and non-linear screening within the IQHE.

The compressibility measurements are carried out with an SET tip hovering over

the 2DEG. A back gate voltage, VBG, is applied to the sample and by varying VBG the

authors of [17] were able to detect the local change of the chemical potential, δµ/δVBG.

The measurements were done over a wide range of magnetic fields, B, and carrier

densities, ne. The measured change of the chemical potential, which is proportional

to the inverse electronic compressibility, κ−1, as shown in Section 5.3, provides direct

information about the degree of localization of QH states. As we demonstrate in the

following chapters, single particle models fail to describe the results obtained from theses
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Figure 6.1: Measurement of the inverse electronic compressibility (δµ/VBG) at an arbi-
traryposition above the 2DEG as a function of magnetic field and carrier density [17].
For a detailed discussion see text.

measurements. Electron-electron interaction effects have to be considered in order to

account for the observed effect. This might bear implications for the phase diagram of

the IQH regime and will be put on a theoretical and numerical footing in the sections

to follow. In Figure 6.1 we show the compressibility measurements of Ilani et al. [17].

Figures 6.1(a), 6.1(b), 6.1(c), and 6.1(e) show results from the SET compressibility

measurements as a function of magnetic field and carrier density. The characteristic

compressibility patterns around integer filling factors are believed to be due to charging

of localised states at the Landau band edges. Figure 6.1(d) is a transport measurement

of the longitudinal resistivity, ρxx, in the same parameter range and provides evidence

that the compressibility patterns appear in fact only where localised states exist. Let us
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recall the core results of [17] most relevant to our investigation. The compressibility in

the (B,ne)-plane

(i) exhibits only little variation in regions close to the QH transitions at half-

integer filling factors,

(ii) show a strong variation between Landau bands at integer fillings which by

virtue of the relation ne = νeB/h correspond to lines of constant slope,

(iii) these regions of strong variation seem to have a width which is B and

Landau level index independent,

(iv) within these stripes, thin lines of equal slope jeB/h, j = 0, 1, . . . can be

identified,

(v) similar patterns are found for any position of the SET tip within the sample

area.

Ilani and coworkers [17] argued that each of the small lines surrounding the integer filling

factors reflects one particular localised state within the sample. Therefore it has been

concluded from the measurements that above a certain minimal magnetic field, where

the 2DEG is mostly interaction dominated, there exist a fixed number of localised states

independent of magnetic field or Landau level index. This number of localised states only

depends on the strength of the impurity potential within the plane of the 2DEG. In the

following sections we will investigate whether such patterns can be reproduced by taking

into account the electron-electron interactions in a mean-field approach. Moreover, we

try to describe this effect more quantitatively.

6.2 Coulomb Blockade

In order to understand the experimental results we need to focus on the physics of the

2DEG near the Landau band edges. As opposed to the band centre, in this regime
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Figure 6.2: Spatial compressibility scans visualising localised states [17]. Dark regions
correspond to low compressibility, bright regions show high compressibility. For a detailed
discussion see text.

the measured compressibility exhibits very strong fluctuations as a function of electron

density which is due to sharp jumps in the chemical potential upon varying the carrier

density. A clearer picture of what the microscopic situation is can be obtained by a

spatially resolved scan of κ−1. Unlike the fixed-position (B,ne)-scans, the SET tip will

thereby pick up the spatial variations of the chemical potential change. In Figure 6.2 we

present cross-section scans of the inverse electronic compressibility through the sample as

measured by Ilani and coworkers. The measurement shows the compressibility κ−1 as a

function of x-coordinate and carrier density, ne. Spatially localised jumps of the chemical

potential can be clearly identified which form bent segments within the (x, ne)-plane.

It is argues that these jumps are fingerprints of local charge accumulation and allow

to conclude that quantum-dot-like structures [117] of electrons (near an empty Landau

band) or holes (near a full Landau band) must be formed within the sample. A quantum

dot (QH) is a structure of spatially confined electronic states. The multitude of lines
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in the compressibility originating from the dots are indications of Coulomb blockade

effects and provide information on the position, charging as well as spatial extent of

the dots. Since the charge is confined to a small region within the sample, Coulomb

repulsion amongst the particles requires a comparably large amount of energy for adding

or removing an electron to or from the dot. An increase in the number of electrons is

thus accompanied by equidistant jumps in the chemical potential. The bending of the

compressibility patterns is a feature of the SET tip bias which acts as an additional

potential at the tip site. As the tip scans across a particular dot, it affects its charging

condition as a function of distance to the centre which results in the observed arc-like

distortions.

Now we want to investigate whether our model is capable of producing dot

spectra as found in the experiment. The change of the local chemical potential with

respect to the electron density can be computed for our system by noting that the local

chemical potential is the functional derivative of the total energy with respect to the

electron density as a function of position

µ(r) =
δEtot[n]

δne(r)
, (6.1)

where the total energy functional reads

Etot[n] =

∫∫

d2rd2r′
ne(r)ne(r

′)

|r − r′| . (6.2)

Thus, the local chemical potential yields

µ(r) =

∫

d2r′
ne(r

′)

|r − r′| . (6.3)

We check the result by writing nα(r) for the charge density of state α and integrate over

space which yields the expected result
∫

d2rµ(r)nα(r) = µα = ǫα . Hence, we identify

the local chemical potential with the electrostatic potential due to the electrons in the

2DES at the position r. The expression for the electrostatic potential of the 2DES reads

φ(r) = L−2
∑

σ

∑

n,k,n′,k′

∑

q

VC(q)Dσ
n,k;n′,k′Sn,k;n′,k′(q) exp(−iqr) (6.4)
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and the local inverse electronic compressibility can be evaluated as

κ−1(r) ∝ µN+1(r) − µN (r) ∝ φN+1(r) − φN (r). (6.5)

We have calculated κ−1(r) for the lowest two Landau levels for a system of size L =

500nm without spin as a function of position and carrier density at magnetic field

B = 2T. The SET tip potential, Vtip(r), has been approximated by a Gaussian function

Vtip(r) =
wtip

πd2
tip

exp[−(r− Rtip)2/d2
tip] (6.6)

with wtip/nm2 = 6meV and dtip = 5nm. The sample is then ”probed” along the x-

axis at Rtip = (i/50)L, where i = 1, . . . , 50. For each position of the tip the total

potential has to be evaluated and a complete HF run is carried out since the tip affects

the electron density at each position differently. The results are presented in Figure 6.3.

We find remarkable agreement with the experimental results as shown in Figure 6.2.

Distinct charging patterns appear at the Landau band edges, whereas in the centre of

the bands the features are weaker. Thus, we have shown that our model 2DEG is able to

exhibit Coulomb blockade patterns and therefore we also expect the (B,ne)-calculations

to carry charging patterns similar to the experimental results.

6.3 Numerical Results in the (B, ne)-Plane

In what follows, we present our numerical results on the electronic compressibility in the

(B,ne)-plane as outlined in Chapter 5.5. We are using a sample of size L = 300nm at

magnetic fields between B = 0.2T and B = 6T and take into account the two lowest,

spin-split Landau levels. In the next section, we present the results obtained for a system

of non-interacting electrons. After that, we switch on Coulomb interactions. We will

discuss the differences between the two cases and compare with the experimental results.

Then we will put the focus on the underlying screening mechanism. We investigating

the charge distribution and how the electron-electron interactions affect the effective
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Figure 6.3: Inverse electronic compressibility κ−1 for a HF-interacting system of size
L = 500nm as a function of position x and electron density ne in the two lowest Landau
levels without spin. The y coordinate has been fixed at 250nm. The patterns correspond
to jumps in the chemical potential due to charging of local charge puddles (see text for
further details).

potential felt by the individual electrons. The Coulomb and the exchange term will be

discussed individually.

Figure 6.4 shows our results for the inverse compressibility κ−1 of non-interacting

(γ = 0) electrons in the two lowest orbital Landau levels, including spin. Darker areas

in the plot reflect states of higher compressibility, hence a more delocalised regime.

Lighter areas are more strongly localised states. Due to the weak Zeemann splitting,

we do not observe the two spin bands separately. Rather, both bands remain nearly

degenerate and lie almost on top of each other. Hence, we only find a single, very

strongly incompressible region between the first and the second orbital Landau level at

ν = 2. This broad line is due to the band gap and the highly localised states at the band
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Figure 6.4: Inverse electronic compressibility κ−1 for a non-interacting system of size
L = 300nm with disorder strength W/d2 = 2.5meV in the (B,ne)-plane. The color
scale spans two standard deviations around the average of κ−1. The inset shows more
detailed results for the region marked by a black rectangle.

edges. Other less pronounced lines are visible along different filling factors, seemingly

mostly emanating from (0, 0). Some lines even appear to have a varying slope as shown

in the inset of Figure 6.4. We interpret these features as the aforementioned fingerprints

of scattering resonances in the disorder potential [109] which do not necessarily need to

align with constant filling factors. Moreover, we clearly observe an increasing number of

those lines with increasing magnetic field. At ν = 0 and 4, the compressibility is again

low.

We next include interaction with γ = 0.3. This is not yet the full γ = 1

Coulomb term, but the results are numerically more stable while at the same time not

being dramatically different from γ = 1. Furthermore, γ < 1 is essentially equivalent
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Figure 6.5: Inverse electronic compressibility κ−1 for a HF-interacting system of size
L = 300nm with disorder strength W/d2 = 1.25meV in the (B,ne)-plane. The dotted
lines show estimates based on a perfect screening condition (see text for details). The
color scale spans two standard deviations around the average of κ−1. The inset shows
more detailed results for the region marked by a black rectangle.

to increased disorder with the full Coulomb interaction present. Figures 6.5, 6.6, and

6.7 show results in the (B,ne)-plane for an interacting system of size L = 300nm

with disorder strengths W/d2 = 1.25, 2.5, and 3.75meV, respectively, at fixed impurity

range d = 40nm. We observe that the exchange interaction results in an effective g-

factor substantially enhanced from its bare value [118–120], leading to a clear separation

of the two spin bands. This yields two additional strongly incompressible stripes at

ν = 1 and ν = 3, indicated by particularly high κ−1 values. Quite different from the

non-interacting case, we find that most of the incompressible lines form groups which

align parallel in the (B,ne)-plane along integer filling factors. Above a certain minimal
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Figure 6.6: Inverse electronic compressibility as in Figure 6.5 but with W/d2 = 2.5meV.

magnetic field, the width of these groups — the number of the lines — is independent

of the magnetic field and Landau level, forming incompressible stripes of constant width

around integer filling factors. Overall, this behaviour is strikingly similar to the effects

observed in the experiments of [17,18]. Outside the stripes, there is hardly any feature

in the compressibilities except directly at the QH plateau-to-plateau transitions at half-

integer fillings where a small increase in compressibility is discernible. In these areas

between incompressible stripes, the inverse compressibility tends to have a very low

or even negative value, which relates to a very high or negative TTDOS, respectively.

This effect has been predicted [121] and observed experimentally [22, 122] and is a

signature of the exchange interaction. From the proportionality between compressibility

and the screening length, we can conclude to observe strong overscreening in the areas

of negative compressibility. We attribute this to the tendency of the HF-interacting
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Figure 6.7: Inverse electronic compressibility as in Figure 6.5 but withW/d2 = 3.75meV.

2DES to form a charge density wave [94, 123]. Furthermore, when comparing Figures

6.5, 6.6, and 6.7 we find that the width of the incompressible stripes increases with

increasing disorder strength W/d2.

6.4 Charge Density Distribution and Screening

We will now focus on the behaviour of the electron density in presence of electron-

electron interactions and study the screening effect outlined in Section 5.5 numerically.

The spatial distribution of the total electronic density

n(r) =
∑

σ

M
∑

α=1

|ψσ
α(r)|2 (6.7)

= L−2
∑

σ

∑

n,k,n′,k′

∑

q

Dσ
n,k;n′,k′Sn,k;n′,k′(q) exp(−iqr) (6.8)
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Figure 6.8: Spatial distribution of non-interacting electron density n(r)/n0 at B = 4T,
γ = 0 and ν = 1/2 as indicated by the color scale. Solid contour lines show the
equipotential lines of the VI(r). The thick solid lines corresponds to ǫF.

is readily calculated in our system. It details the screening mechanism by providing direct

insight into the interplay of disorder and interaction. Let us start at the QH transition.

Figure 6.8 depicts the critical charge density at ν = 1/2 for a non-interacting system

in units of n0. The contour lines show the impurity potential VI(r) where the critical

energy VI(r) = ǫF is highlighted by a thick line. The charge density evidently behaves

according to the semiclassical approximation [34] and follows the equipotential lines of

VI(r). For the interacting case, however, we expect Thomas-Fermi screening theory to

apply [71,124–126]. This approximation is appropriate for an impurity potential smooth

on the scale of the magnetic length as well as a sufficient separation of the Landau bands,

characterised by the condition h̄ωc/lc >
√

〈|∇VI(r)|2〉. The electrostatic potential of
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the charge density

φ(r) =
e

4πǫǫ0

∫

d2r′
n(r′) − n̄

|r′ − r| (6.9)

and the impurity potential VI(r) form a screened potential Vscr(r) = VI(r)+eφ(r). Here,

n̄ accounts for the positive background. Since a flat screened potential is energetically

most favourable, one expects to find Vscr(r) = ǫF for the case of perfect screening.

However, since fluctuations of the density, δn(r) = n(r) − n̄, are restricted between

an empty and a full Landau level, i.e. 0 < δn(r) < n0, the screening is not always

perfect but depends on the fluctuations in the impurity potential as well as on the filling

factor [71, 124, 125]. The plane can be divided into fully electron or hole depleted,

insulating regions — where n(r) = 0 or n(r) = n0, respectively — and metallic regions

— where n(r) lies in between. Depending on the filling factor, the extent of those

regions varies. Close to the band edge, insulating regions dominate (cf. Figures 6.9

and 6.10). Screening is highly non-linear and transport virtually impossible. On the

other hand, if disorder is weak enough, there exists a finite range of filling factors in

the centres of each band where metallic regions cover most of the sample, percolate

and render the whole system metallic. The disorder is effectively screened and transport

greatly enhanced. In that case, the charge density nscr(r) can be obtained by Fourier

transforming the screened potential. In 3D, this simply leads to the Laplace equation.

For 2D, however, one obtains [127]

nscr(q) = −2ǫǫ0
e2

|q|VI(q) + νn0δq,0, (6.10)

where the |q| = 0 term is ”perfectly screened” by the positive background and thus does

not contribute to screening of the impurity potential. In other words, in our system only

the fluctuations δn(r) are essential for screening. Hence, in 2D, a perfectly screening

charge density would obey

nscr(r) = −4πǫǫ0
e2

∫

d2r′
∆2DVI(r

′)

|r− r′| + νn0. (6.11)

Clearly, the actual charge density is expected to deviate from nscr(r) for several reasons.

Firstly, the fluctuations of n(r) are restricted as discussed above. Secondly, (6.11) is
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Figure 6.9: Spatial distribution of HF-interacting electron density n(r)/n0 at B = 4T,
γ = 0.3 and ν = 0.1 as indicated by a color scale. Solid contour lines show the
equipotential lines of (6.11). The broken lines indicate unscreenable (insulating) regions.

valid for the Hartree case only. For comparison, in Figure 6.11 we have depicted the

charge density of a Hartree-calculation. The density displays purely classical behaviour

and fits the contour lines, Equation (6.11), perfectly. Taking the Fock contribution

into account will introduce short wavelength fluctuations due to the tendency for crys-

talisation. However, we still expect the charge density to follow (6.11) in the limit of

|q| → 0. Figure 6.12 shows results for the charge density of interacting electrons at

ν = 1/2. Broken lines indicate the regions where nscr(r) exceeds the range for δn(r)

either below or above, i.e. areas that cannot be screened at all and thus exhibit insulat-

ing behaviour. Otherwise, we find the charge density to follow nscr(r) very closely. In

this regime, the density is well described by (6.11) and the screening is very effective.

Metallic regions dominate over insulating ones and transport is expected to be good.
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Figure 6.10: Spatial distribution of HF-interacting electron density n(r)/n0 at B = 4T,
γ = 0.3 and ν = 0.9 as indicated by a color scale. Solid contour lines show the
equipotential lines of (6.11). The broken lines indicate unscreenable (insulating) regions.

In contrast, if the filling factor is close to an integer value, the charge density cannot

provide sufficient fluctuations in order to screen effectively. We have depicted this situ-

ation for ν = 0.1 in Figure 6.9 and for ν = 0.9 in Figure 6.10. In Figure 6.13 we depict

cross-sectional plots of n(r) and nscr(r) for the sample of Figure 6.12 at x = 100nm

and three different filling factors, demonstrating the discussed effects again very clearly.

6.5 Breakdown of Linear Screening

Thus far we have shown that our results can qualitatively reproduce the structures

observed in the (B,ne) plots of the compressibility. We find stripes of constant width
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Figure 6.11: Spatial distribution of Hartree-interacting electron density n(r)/n0 at B =
4T, γ = 0.3 and ν = 1/2 as indicated by the color scale. Contour lines show (6.11).
Evidently, the charge density behaves completely classical and provides perfect screening
for the impurity potential.

with very similar characteristics as in the experiments. Furthermore, we show that

within HF, the impurity potential in the band centre can be quite effectively screened

by the charge density. Let us now turn our attention to the stripes. The screening of

the impurity potential is non-linear near the edges of the Landau bands. Most of the

sample is thus covered by insulating regions where the Landau band is either completely

depleted or completely filled. We will now derive an estimation for the cross-over to

the linear screening regime, which can be found by very general considerations [67]. An

insulating island where n(r) = n0 is confined by the force of the impurity potential,

∇VI(r), around its edge. Thereby, the Coulomb interactions opposing this force making

the edge of the full region metallic. The size of the edges, i.e. the size of the metallic
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Figure 6.12: Spatial distribution of HF-interacting electron density n(r)/n0 at B = 4T,
γ = 0.3 and ν = 1/2 as indicated by the color scale. Contour lines show (6.11).
The broken lines indicate unscreenable (insulating) regions. The thick solid line shows
nscr(r) = n̄scr = 0.

region, is then determined by the Coulomb force n0e
2/(2πǫǫ0). Only if the Coulomb

force acquires a magnitude comparable to the typical confining potential force, the

metallic edges of the full islands will connect and dominate over the insulating regions.

The typical force of our impurity potential is given by 〈|∇VI(r)|2〉 = nI〈ws
2〉s/(πd4).

We would like to remark that with NI = 288, the expected standard deviation of 〈ws
2〉s

is ∼ 2%, which makes the typical force a reliable characteristic of VI for finite sample

calculations. From equating the typical force with the Coulomb force we can derive

an expression for the minimal required density n0 which corresponds to a minimum

magnetic field Bmin = n0h/e below which linear screening breaks down for any density.
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Therefore, n0 determines the width of the charging stripes ∆n and we find

∆n = n0 =
2πǫǫ0
γe2

√

〈|∇VI(r)|2〉 =
2πǫǫ0
γe2

√

nI

3π

W

d2
. (6.12)

Note that ∆n is indeed independent of B and ne as observed in the experiments. In

Figures 6.5, 6.6, and 6.7, we have indicated the breakdown of the linear screening

regime by dashed white lines. The points at which the lines merge indicate Bmin.

Evidently, (6.12) nicely estimates the widths of the observed stripes for all three disorder

configurations used. Furthermore, we have tested the criterion for breakdown by plotting

compressibilities as a function of ne and disorder strength W/d2. Figure 6.14 shows the

result for W/d2 between 1meV and 3meV at B = 3.5T. The dashed white lines again
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Figure 6.14: Inverse electronic compressibility κ−1 for a HF-interacting system (γ = 0.3)
of size L = 300nm in the (W/d2, ne)-plane. Dashed white lines indicate expected
boundaries of linear screening as calculated from (6.12), dashed black lines show integer
filling factors.
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indicate (6.12). In order to confirm the dependence of the stripes on the ratio between

W and d2 only, the plot has been divided into two regimes. Between 1meV and 2meV,

we kept d = 40nm as a constant and varied W , and between 2meV and 3meV we kept

W/nm2 = 3.2meV constant whilst varying d, accordingly. The results confirm (6.12).

Deviations from the expected behaviour can be explained with the proximity to the

disorder dominated regime for higher values of W/d2 where B ≃ Bmin. This regime is

strongly disorder dominated and charging effects become much less pronounced at the

band edges.

Eventually, we would like to mention a similar numerical study on compressible

edge channels in split-gate quantum wires [128]. Although edges are absent in our

model, extrema in the impurity potential lead to an edge-like situation in the vicinity.

Therefore, we can relate the width of the compressible edge channels to the width of

our linear screening regime. The authors find an increase in the width of the compress-

ible channels upon increasing the magnetic field. This is in good agreement with our

findings (cf. Figures 6.5, 6.6, and 6.7). We do, however, also find good agreement with

(6.12), which has been derived in Hartree approximation. We ascribe this discrepancy

to the rather different systems under study. An investigation of the explicit effect of the

exchange interaction in our model could be worthwhile.

6.6 Compressibility Patterns in the FQHE

Similar compressibility patterns have also been observed around fractional filling factors

ν = 1/3, 2/5, and 2/3 [18]. Energy gaps at fractional filling, e.g. ν = p/(2p + 1),

with p being an integer, are a consequence of electron correlations which are absent in

HF approximation. However, with the formal analogy [129] between IQHE and FQHE

put forward by the composite fermion (CF) model [130, 131], let us venture a few

statements about compressibility patterns around those fractional fillings. It is argued

that the FQHE can be regarded as a manifestation of the IQHE for CFs in an effective

magnetic field B∗ = Bν − Bν=1/2 [132, 133]. If we pretend to have obtained results
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for CFs in an (B∗, nCF) plane, a transformation back to electrons yields an increase

in the density of charging lines (per ne) by a factor of 2p + 1. Indeed, in the above

mentioned experiment an increase of 3 has been found for ν = 1/3. Furthermore, such

a transformation predicts a dependence of the width of the incompressible stripes on the

filling factor as well as a strong increase of Bmin when fractional filling factors approach

ν = 1/2. This remains yet to be explored in detail.

6.7 Conclusion

We investigated the compressibility patterns observed in recent imaging experiments

[17, 18]. Our numerical simulations confirmed the suggestion that these patterns are

due to linear and non-linear screening of the impurity potential by the electrons. More

precisely, the breakdown of the ability of the 2DEG to screen the impurity potential

completely. In the centre of the Landau band, at half integer filling factors, the electron

density is free to fluctuate and due to energy minimisation will adapt to the impurity

potential. This screening effect can be near to perfect given that the potential of the

impurities to be screened lies within an empty and a full Landau band. Due to the energy

gap between the Landau bands, the charge density is restricted to lie within this band

and cannot screen stronger fluctuations. A certain finite range of filling factors exist in

the middle of the Landau bands where near-to-perfect screening can be achieved. At

filling factors close to an integer value the restriction of the band edges becomes relevant

and the sample will contain incompressible charge density patches of a completely full or

empty Landau band, respectively. The charge density becomes torn apart more and more

strongly and screening will be highly non-linear. The remaining compressible regions are

spatially confined which is reminiscent of quantum dots and holes. Eventually, any new

charge entering the sample in this regime will trigger Coulomb blockade effects within

the sample, leading to a jump of the chemical potential, and hence the compressibility.

The experimentally observed patterns around integer filling factor are fingerprints of

precisely those charging effects. As long as the Fermi level lies in the non-linear regime,
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the screening is ineffective and the addition of a new electron results in a compressibility

jump, independent of the nature or the width of the gap. In fact, the energy width of

the first and the second gap in the regime of our calculation differ by about a factor

five. Strikingly similar patters have been found around fractional filling factors in an

experiment by [18], indicating the importance of screening as well as charging effects

even for quasi-particles.
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Chapter 7

Conductivity

In the preceding Chapter we have focussed our attention on interaction driven com-

pressibility patterns in the localised regime. The results were successfully compared to

imaging experiments. We were able to explain those patterns in terms of linear and

non-linear screening and found a formula to discriminate between the two regimes. The

derived formula based on a force-balance argument fitted the numerical results very well.

One may now want to argue that the numerical support provided by the compressibility

results might be limited to the localised regime. Therefore we will now focus on how

transport coefficients are affected by the mutual interactions and whether the above

arguments also hold in the delocalised regime. The compressibility patterns found in

the experiments discussed above were in fact preceded by transport experiments that

revealed patters in the conductance, also apparently interaction mediated [19,20]. Refer-

ence [19] reported on Hall conductance measurements on mesoscopic MOSFET devices

in the (Vg, B)-plane, where Vg is the gate voltage. The results were different to the

expectations deduced from a single-particle model [109]. The gate voltage Vg can be

linked to the electron number density as ne = (C/e)Vg, where C is a material specific

constant. Similar to the experiments of Ilani et al. [17], a line in the (Vg, B)-plane can

thus be labeled by a certain filling factor, ν.

In Figure 7.1 we show the Hall conductance measured by Cobden et al. [19] The
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Figure 7.1: Hall conductance in the (Vg, B)-plane, where the gate voltage Vg is propor-
tional to ne. The plateau values have been subtracted for clarity [19]. Light areas show
low conductance. Alignment of conductance minima with integer filling factors can be
seen, thereby leading to plateaus with constant width.

fluctuations around the plateau transitions at half integer filling factor are apparently

correlated over a large interval of the magnetic field. Surprisingly, however, the lines

formed by the conductance extrema in the (Vg, B)-plane evidently align with integer

filling factors. In a simplified model, such resonances can be thought of as bound states

around potential extrema. The quantisation condition for such bound states requires an

integral number of flux quanta to be encircled. Thus, the encircled area is proportional

to the magnetic field. When the flux is increased by one flux quantum, the bound

state expands accordingly, thereby increasing or decreasing its energy when bound to a
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potential minima or maxima, respectively. A change in magnetic field thereby entails a

change in energy of a resonance dependent on the specific form of the potential extrema.

Thus it is not obvious why peaks in the conductance should align with an integer filling

factor in the (Vg, B)-plane. In fact, considering electron-electron interactions offers a

much more convincing explanation. Cobden et al. [19] suggested the following scenario.

The charge density in the sample can be divided into compressible and incompressible

regions. Wherever the density is free to fluctuate, i.e. where the local filling 2πl2cne(r)

lies well away from an integer value, the 2DES exhibits metallic behaviour. Wherever the

density fills a whole LL, i.e. 2πl2cne(r) is close to an integer, the density is incompressible

and thus insulating. In the spatial density profile, the metallic regions form puddles that

are enclosed by insulating boundaries where the density corresponds to a full LL. With

electron-electron interactions present, transport through the sample is now influenced

by tunneling through the metallic puddles that are always surrounded by an insulating,

incompressible density strip. The conductance peaks can then be associated with the

charging condition of the puddles and therefore with the shape of the puddles. It is

reasonable to assume that a particular density profile does not change along lines of

constant filling factor in the (Vg, B)-plane, only the average density as ne = νeB/h.

Thus it is clear that along lines where ν is an integer, the shape of the incompressible

puddles (contours where 2πl2cne(r) is an integer) remains roughly constant, therefore

its charging condition and hence the conductance extrema.

7.1 Linear Response: The Kubo Formula

The Kubo formula is based on a fluctuation-dissipation theorem linking the imaginary

part of a response function to an equilibrium expectation value. A small, time-dependent

perturbation of the Hamiltonian is assumed and the response only taken to linear order

[134]. We will be interested in the conductivity, σαβ , which is the response of the current

due to an externally applied electric fields. The linear response is the microscopic version
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of Ohm’s law and reads

jα(r) =
∑

β

σαβE
ext
β (r) , with α, β ∈ {x, y}. (7.1)

This can be integrated over the whole area to yield the total current as J =
∫

d2rj(r).

The scope of this thesis will be restricted to the static off-diagonal part of the conduc-

tivity tensor. For this Hall conductivity one finds the well-know expression [105,135]

σxy = −nec
B

+
2e2h̄

L2

(<ǫF)
∑

α

(>ǫF)
∑

β

Im
〈ψα|Ẋ |ψβ〉〈ψβ |Ẏ |ψα〉

(ǫα − ǫβ)2
, (7.2)

where the first term on the right hand side is the classical contribution from the cyclotron

motion and the second can be regarded as the quantum mechanical correction. A

detailed derivation of the above Kubo formula is lengthly [134] and will not be revised in

this work. We rather turn to the problem of numerically evaluating the Hall conductivity

for an HF-interacting system.

7.2 Periodic Boundary Conditions, Berry Phase, and Con-

ductivity

For a single-particle system, an expression for the guiding centre velocity required to

compute the above Kubo formula is easily found and given in Appendix D. However,

in a HF-interacting system, where a non-local exchange term is involved, the procedure

is much less trivial. In fact, the evaluation of the non-local exchange-velocity is usually

limited to a perturbative treatment in the short or long-wavelength limit of the electro-

magnetic field [136], both of which do not apply for a spatially varying vector potential.

We can, however, make headway by noting that the two terms on the right hand side

of Equation (7.2) are just the result of splitting up the spatial coordinates x and y into

cyclotron and guiding centre coordinates. Rewinding this step in the derivation of the

Kubo formula, we can write

〈ψα| ˙̂x|ψβ〉 =
ī
h
〈ψα|Hx̂− x̂H|ψβ〉 = (ǫα − ǫβ)

ī
h
〈ψα|x̂|ψβ〉 , (7.3)
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instead of the velocity matrix elements, and we find the following expression for the

conductivity

σxy =
2e2

h̄L2

∑

α

∑

β

fα(1 − fβ)Im〈ψα|x̂|ψβ〉〈ψβ |ŷ|ψα〉 . (7.4)

At first sight, this expression seems to avoid the complicated non-local commutators

and should therefore be easier to handle. This is indeed true for a non-periodic system.

However, one realises rather quickly that the PBC, which are essential in order to obtain

useful results from finite-sized numerical simulations, will cause serious problems. The

reason is that a non-periodic position operator is ill-defined in the Hilbert space of

periodic wave functions, and we therefore have

〈ψα|r̂|ψβ〉 6= 〈ψα|r|ψβ〉 . (7.5)

This is easily rationalised by considering the position expectation of a localised state

at the cell boundary. By virtue of the PBC, the state is replicated onto the other side

of the cell and a naive evaluation of the expectation value will yield anything but the

true centre of mass of the localised state. The solution to this problem is the definition

of a periodic position operator [137–141]. An expectation value could then be defined

as [138,140]

〈ψα|x̂|ψα〉 =
L

2π
Im log〈ψα| exp

(i2π
L
x

)

|ψα〉, (7.6)

which is an admissible expression because ψ∗
α(r)ψα(r) is a real valued. For any off-

diagonal matrix element, however, such an expression fails and instead we have to

define the position operator as

〈ψα|r̂|ψβ〉 = −i〈ψα|e−ikr∇ke
ikr|ψβ〉

∣

∣

∣

k=0
= −i〈ψk

α|∇k|ψk
β 〉
∣

∣

∣

k=0
(7.7)

where we introduce an additional phase-factor, k = (kx, ky)
T, into the wave functions

as

|ψk
β 〉 = eikr|ψβ〉 . (7.8)
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These wave functions are not eigenstates of the original Hamiltonian, but of a parametrised

Hamiltonian, Hk|ψk
β〉 = ǫk|ψk

β 〉 , which in our case reads

Hk =
1

2m∗
(p− eA + h̄k)2 + V . (7.9)

Since we are working in terms of basis functions that are eigenfunctions of the clean, ki-

netic part of this Hamiltonian, we derive the new k-dependent basis functions, ϕn,k(k, r),

for which we find

〈r|ϕn,k(k)〉 = e−ikyy−ikx(x−kl2c)ϕn,k+ky
(r) = (7.10)

1
√

2nn!
√
πlcL

exp

[ikx(x− kl2c) + iky − (x− (k + ky)l
2
c )

2

2l2c

]

Hn

[

x− (k + ky)l
2
c

lc

]

.

(7.11)

In the previous Chapters we have formulated most of the expressions in terms of plane-

wave matrix elements, Sn,k;n′,k′(q), instead of working with the basis function directly.

Thus, by changing the plane-wave matrix elements to their general, k-dependent form,

we can reuse the hitherto derived expressions and have readily access to k-dependent

wave functions and thus the matrix elements of the PBC-compatible position operator.

After some algebra we find for the new general plane-wave matrix elements

Sn,k;n′,k′(q,k) = 〈ϕn,k(k)| exp(iq · r)|ϕn′,k′(k)〉 = exp
[il2c(q × k)z

]

Sn,k;n′,k′(q) .

(7.12)

With this minor change we are now able to compute position expectation values and thus

the Kubo formula for the conductivity. One little drawback, however, is that the matrix

elements of the gradient with respect to k must be evaluated numerically. The reason

is that both the basis states and the expansion coefficients depend on the additional

parameter, and the coefficients can only be obtained through diagonalisation of the

Hamiltonian. The derivative of the basis states, however, can be carried out analytically
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and we find for the matrix elements of the position operator

−i〈ψk
α|∇k|ψk

β 〉
∣

∣

∣

k=0
(7.13)

= −i ∑

a,b,n,m

Cα∗
n,a(k)〈ϕn,a(k)|∇kC

β
m,b(k)|ϕm,b(k)〉

∣

∣

∣

k=0
(7.14)

= −i ∑

a,b,n,m

Cα∗
n,a〈ϕn,a|ϕm,b〉∇kC

β
m,b(k)

∣

∣

∣

k=0
(7.15)

− i ∑

a,b,n,m

Cα∗
n,aC

β
m,b〈ϕn,a|∇k|ϕm,b(k)〉

∣

∣

∣

k=0
(7.16)

= −i∑
a,n

Cα∗
n,a∇kC

β
n,a(k)

∣

∣

∣

k=0
(7.17)

− i ∑

a,b,n,m

Cα∗
n,aC

β
m,b

( −i〈ϕn,a|x− kbl
2
c |ϕm,b〉

〈ϕn,a|x− kbl2c |ϕm,b〉 − lc
√

2m〈ϕn,a|ϕm−1,b〉

)

(7.18)

The second term can be further simplified using the relations Equation (E.2) from the

Appendix and we find

〈ϕn,a|(x− kbl
2
c)|ϕm,b〉 = lc

√

m

2
δn,m−1δa,b + lc

√

m+ 1

2
δn,m+1δa,b (7.19)

and for the position operator

−i〈ψk
α|∇k|ψk

β 〉
∣

∣

∣

k=0

= −i∑
a,n

Cα∗
n,a∇kC

β
n,a(k)

∣

∣

∣

k=0

+ ilc ∑

a,b,n,m

Cα∗
n,aC

β
m,b

(i [√m
2 δn,m−1 +

√

m+1
2 δn,m+1

]

√

m
2 δn,m−1 −

√

m+1
2 δn,m+1

)

δa,b. (7.20)

The derivative in the first term on the right hand side of Equation (7.20) will be evaluated

numerically by a simple two-point formula. Especially in a self-consistent HF calcula-

tion, the result will be very sensitive to the choice of the step-width for the numerical

derivative. Choosing too small a step size will introduce errors due to the machine

precision, whereas too big a choice might cause the self-consistent scheme to conver-

gence into different ground states. For our simulations we used a step-width of 10−8 in

magnetic units. We have to point out that by numerically evaluating Equation (7.20),
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an arbitrary phase occurs in the expansion coefficients due to the numerical diagonalisa-

tion [142]. When multiplying coefficients, this phase normally cancels given it is equal

for both coefficients. However, this phase may differ when numerically diagonalising the

Hamiltonian for different k values. Evaluating the matrix element at several discrete

values of k, this arbitrary phase can be eliminated [142], thereby yielding a fully gauge

invariant result. Unfortunately, such a procedure increases the computational cost by at

least an order of magnitude for each direction of k. However, when comparing results

using Equation (7.20) with results obtained from the guiding centre velocity formula of

Equation (D.23), we do not observe any deviation between the two approaches in terms

of σxy. Therefore we conclude that this phase doe not influence our results greatly.

Thus, we have found a way of avoiding the evaluation of the the non-local

exchange velocity as well as the ill-defined position operator. In fact, the additional

parameter which can be interpreted as an abstract vector potential in parameter space

is a very useful concept that for instance has opened up the link between the quantum

Hall effect and topology [12,13,143]. Namely, the surface integral over what is known

as the Berry connection (or single-point Berry phase), χ(k) = i〈ψk|∇k|ψk〉, yields

the so-called Berry phase [141,144,145], an observable that cannot be expressed as an

expectation value of any Hermitian operator. Such a geometric phase is observed in a

multitude of physical systems [146–151]. In the IQHE, in particular, the Berry phase

can be interpreted as a topological quantum number, namely the first Chern class,

that assumes integer values only [34, 152]. In this abstract topological interpretation,

the quantisation of the IQHE in multiples of e2/h has a well-defined mathematical

foundation.

7.3 Numerical Results

In this Section we present our numerical results obtained by the method detailed above.

We note that for the single-particle case the results of the above approach are in perfect

agreement with results obtained by the ’standard’ guiding centre velocity formula of
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Figure 7.2: Hall conductivity, σxy, for a spinless non-interacting system of size L =
300nm with disorder strength W/d2 = 2.5meV in the (B,ne)-plane. The two lowest
orbital Landau levels are included and integer filling factors are indicated by black broken
lines. Due to the neglect of spin, the plateaus appear at 0, 1, and 2 e2/h.

Equation (D.23), i.e. yielding the same σxy. We have calculated the Hall conductance

in the (B,ne)-plane for different parameters.

Figure 7.2 shows the lowest two orbital Landau levels for a system of non-

interacting, spinless electrons of size L = 300nm. The disorder strength is chosen as

W/d2 = 2.5meV with an impurity range of d = 40nm. We have indicated the integer

filling factors by black broken lines. The first three plateaus with σxy = 0, 1, and

2 e2/h are clearly visible. The widths of the plateaus as well as the plateau-to-plateau

transitions are proportional to the applied magnetic field B. Having a B-independent

DOS, this implies a constant width of the plateau and transition regions in energy, which

is expected from a single-particle calculation since they are determined by the particular
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Figure 7.3: Hall conductivity, σxy, for the lowest two spin levels of a HF-interacting
system of size L = 300nm with disorder strength W/d2 = 2.5meV in the (B,ne)-plane.
The two spin levels are well separated by virtue of the exchange enhancement of the
spin splitting. Integer filling factors are indicated by the black broken lines, whereas the
grey broken lines indicate boundaries between linear and non-linear screening as obtained
from Equation (6.12).

disorder configuration.

In Figure 7.3 we have depicted the lowest two spin levels of a system of HF-

interacting electrons for the same disorder configuration as in Figure 7.2. The spin

levels are well separated by the exchange enhanced spin splitting. We observe stable

plateaus around integer filling factors, which are indicated by the black broken lines.

Figure 7.4 shows the first orbital transition (no spin) of the same system but for a

different disorder configuration. In Figure 7.5 we depict the spin-transition of Figure 7.3

with a lower disorder strength of W/d2 = 1.25meV. And Figure 7.6 shows the orbital

transition (no spin) of Figure 7.5 for a different disorder configuration. In each figure
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Figure 7.4: Hall conductivity σxy for the lowest two Landau levels of a spinless HF-
interacting system of size L = 300nm with disorder strength W/d2 = 2.5meV in the
(B,ne)-plane. The two lowest orbital Landau levels are included and integer filling
factors are indicated by the grey broken lines. The black broken lines indicate the
boundary between linear and non-linear screening as obtained from Equation (6.12).
Due to the neglect of spin, the plateau values are 0, 1, and 2e2/h, respectively.

we have indicated the integer filling factors by black, and the boundary between the

non-linear and the linear screening regime by grey broken lines. From our simulations

we can conclude to observe the same behaviour for the spin and the orbital transition,

both having similar wide, stable plateaus at the integer filling factors. In contrast to the

single-particle calculation, having electron-electron interactions present the widths of the

plateaus remain constant when B is varied. Similarly to the compressibility calculations,

the estimation of the cross-over between the non-linear and linear screening appears to

describe the competition between disorder and interactions well. The constant width

of the plateau is in agreement with the experimental findings of Reference [19] and
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Figure 7.5: Hall conductivity, σxy, as in Figure 7.3 but with disorder strength W/d2 =
1.25meV and for a different disorder configuration. The black broken lines are again
obtained from Equation (6.12).

Reference [17]. The expected alignment of conductance peaks along integer filling factor

are, however, absent in our calculations. Instead, we observe rather random conductance

jumps in the centre of the bands. We attribute this behaviour to the strong exchange

correlation in this regime, which was also predominant in the previous chapter, where

the compressibility became strongly negative in the centre of the bands. Therefore we

conclude that exchange induced effects dominate over charging and Coulomb blockade

effects. The experimentally observed features might be related to an effect beyond

numerical tractability. Finally, in Figure 7.7 we show cross-sectional cuts of the previous

figures. The left column shows cuts at B = 4T, the right column shows B = 6T.

Figures 7.7(a) and (b) correspond to Figure 7.2, Figures 7.7(c) and (d) to Figure 7.3,

Figures 7.7(e) and (f) to Figure 7.4, Figures 7.7(g) and (h) to Figure 7.5, and Figures
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Figure 7.6: Hall conductivity, σxy, as in Figure 7.4 but with disorder strength W/d2 =
1.25meV and for a different disorder configuration.. The black broken lines are again
obtained from Equation (6.12).

7.7(i) and (k) to Figure 7.6. Again, we have indicated the boundaries between linear

and non-linear screening by vertical grey broken lines. The plateau regions of localised

electrons align well with the estimation formula Equation (6.12) and, to the accuracy of

this simulation, their width is indeed independent of the magnetic field. The delocalised

regime of the plateau-to-plateau transitions on the other hand increases strongly. This is

in contrast to the single particle result, where both the plateau and the transition region

increases with the magnetic field. Whereas the compressibility stripes are fingerprints of

the non-linear screening, i.e. the insulating regime, the increasing width of the plateau

transition demonstrates interaction promoted delocalisation. We regard this behaviour

as another important manifestation of the competing interplay between disorder and

electron-electron interactions even in the integer quantum Hall effect.
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Figure 7.7: Hall conductivity, σxy, as a function of ne for B = 4T (left column) and
B = 6T (right column). Figures (a),(b) show the orbital transition without interactions
and spin (cf. Figure 7.2), Figures (c),(d) show lowest spin transition with interactions
(cf. Figure 7.3), Figures (e),(f) show lowest orbital transition with interactions (cf. Figure
7.4), Figures (g),(h) same as (c),(d) for weaker disorder (cf. Figure 7.5), and Figures
(i),(k) same as (e),(f) for weaker disorder (cf. Figure 7.6). Broken grey lines indicate
boundary between non-linear and linear screening regime. For further details see text.
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Chapter 8

Interaction Effects in STS

Measurements

8.1 Probing a 2DEG

Scanning tunneling spectroscopy (STS) measurements constitute a tool for directly

imaging electrons in a 2D plane [153, 154]. In contrast to compressibility measure-

ments information obtained from STS imaging can be linked to the charge density and

thereby provide a way of visualising them spatially [107]. The sample surface which

contains the 2DEG is approached by a very narrow tip consisting of a few atoms only.

When a potential, U , is applied between tip and sample and their distance becomes as

low as a few Å, the wave functions overlap and a tunneling current flows. Following the

standard model of Tersoff and Hamann [107,155], which calculated the current from a

rate equation, it can be seen that at T = 0 the current is related to the LDOS in the

following way (given U > 0)

I(U, r, z) ∝
∫ eU

0
LDOS′

sample(Esample + E, r, z) · LDOStip(Etip − eU + E)dE ,

(8.1)
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where the energies Esample and Etip are the Fermi energies in the sample and in the tip,

respectively, and U is the potential drop between the sample and the tip. The LDOS in

the integrant is, however, not the true sample LDOS, but also depends on the distance

and work functions of tip and sample. How these influences are eliminated from the data

are experimental details which will be omitted here. The integral is eliminated simply by

measuring the differential conductivity, dI/dU , which is, up to some corrections, directly

proportional to the LDOS. Since the LDOS of the tip will not change whilst moving

across the sample, the LDOS of the sample can eventually be extracted. The LDOS is

thereby defined as the charge density at a particular energy, as given in Equation (5.6).

The measurement is, however, subject to a finite energy resolution. The energy window

can be modeled as a semi-ellipse around the Fermi energy [108], thus the measured local

density of states, LDOS∆E, is calculated as

LDOS∆E(E, r) =

∫

dE′LDOS(E′, r) cos

[

arcsin

(

E −E′

∆E

)]

, (8.2)

where ∆E is governed by temperature and a AC modulation voltage of the order of

1mV, leading to an energy window of ∆E ≃ 2.5meV. The AC modulation voltage is the

main contributor to the broadening of the window, but necessary in order to suppress

unwanted noise which would render the STS image unusable [108]. Therefore one has

to compromise between energy resolution and noise. For completeness it should be

mentioned that another feature of the STS experiment is the exponential dependence

of the current on the distance, d, from the surface, i.e. I ∝ exp(−d), making the

current very sensitive to the distance and therefore allows for a spatial resolution to

a few picometer. The experiments which will be referred to in this work, and which

serve as a comparison for our numerical simulations, are measurements on the surface

of cleaved n-type InSb (110) crystals [156, 157]. Thereby, the sample energy, Esample,

is held constant at 0meV, whereas Etip is varied by the voltage drop between tip and

sample. A change in Esample will only take place locally due to the QD potential of

the STS tip. Further away from the tip Esample remains a constant. Since Etip is

typically below 0meV, electrons are ejected from the filled states of the sample into
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Figure 8.1: The energy scheme of an STS measurement. Left: DOS and filled states
in the sample, the Fermi energy is fixed. Middle: DOS and filled states in the tip with
negative bias (eU < 0). Electrons tunnel from the tip to the sample, indicated by the
arrow. Right: DOS and Fermi energy of a tip with positive bias. Electrons tunnel from
the sample into the tip.

empty states in the tip, as indicated in Figure 8.1. We also indicated the situation

when Etip > Esample, where electrons are injected from the tip into the sample. If the

two Fermi levels coincide, i.e. if states around the Fermi level of the sample are probed,

interaction effects may become relevant, since the DOS at the Fermi level is significantly

altered (see Section 5.1). In the following, we will derive an expression for the potential

experienced by the 2DEG and investigate the effect of the tip potential as well as mutual

interactions between the electrons in the sample.

8.2 The Donor Potential

We model the InSb structure as a 3D distribution of donor atoms with a 2DEG sitting on

top at the cleaved surface at z = 0. We take the z-direction pointing downwards. The
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donor density in the 3D region of the experimentally used sample is n3D = 1.7·1016/cm3

[157]. The electrostatic potential at R = (r, z) of a single donor atom sitting at

R0 = (r0, z0) below the 2DEG (z0 ≥ 0) has the screened form [158]

V3D(r, z) = − V0
√

(r− r0)2 + (z − z0)2
exp

[

−q3D
√

(r − r0)2 + (z − z0)2
]

, (8.3)

with the parameters V0 = e2/(4πǫInSbǫ0) = 81nm·meV where we have used ǫInSb =

17.7, and q3D = (24nm)−1 [104], being the appropriate screening length for the relevant

3D density. We take the finite thickness of the 2DEG into account by assuming the

z-part of the wave function as

ne(z) =
q3z
2
z exp (−qzz) , (8.4)

where qz = (4.5nm)−1 [159, 160]. The effective potential experienced by the 2DEG at

z = 0 can eventually be determined by the convolution [31,160]

V2D(r) =

∫ ∞

0
dzne(z)V3D(r, z) . (8.5)

Fourier Transform

For the numerical implementation we are interested in the Fourier transform of the

effective donor potential, ṽ2D(q) = L−2
∫

d2r exp(−iqr)V2D(r). Therefore we place

the donor atom at R0 = (0, z0) and we compute the 2D Fourier transform of Equation

(8.3) first, yielding

Ṽ2D(q, z) = − 2πV0

L2
√

q2 + q23D

exp

(

−|z − z0|
√

q2 + q23D

)

. (8.6)

The Fourier transform of the effective potential can now be computed straightforwardly

from

ṽ2D(q) =

∫ ∞

0
dzne(z)Ṽ2D(q, z) , (8.7)

which gives

ṽ2D(q) = − πV0q
3
ze

−z0qz

L2
√

q2 + q23D

[

(1 + z0q+)2 + 1

q3+
− (1 + z0q−)2 + 1 − 2ez0q−

q3−

]

, (8.8)
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where we have used the abbreviation

q± = qz ±
√

q2 + q23D . (8.9)

The second term on the right hand side of Equation (8.8) even though being mathe-

matically well defined, suffers from numerical instability whenever q− → 0. Therefore

we expand this term to fourth order and use

ṽ2D(q) = − πV0q
3
ze

−z0qz

L2
√

q2 + q23D

[

(1 + z0q+)2 + 1

q3+
+
z3
0

3

(

1 +
z0q−

4

)

]

, (8.10)

whenever |z0q−| < ǫ instead of Equation (8.8). The value of ǫ depends on the machine

precision but appears to be reasonable as ǫ = 10−3. We finally like to add that after a

careful study of the n-type crystal used in the experimental LDOS measurements, our

experimental collaborators found a certain amount of acceptors and thus we decided to

do the calculations with both donors and acceptors, and chose the densities as nD =

9 · 1021m−3 and nA = 5 · 1021m−3. In Figure 8.2 we have depicted the effective

potential of a distribution of impurities in an area of size 350nm. The dark spots are

donor impurities, whereas the white spots are acceptors.

8.3 The Tip Potential

The tip will be modeled as an additional potential acting in the plane of the 2DEG.

The tip shape and strength are very hard to estimate [156]. Therefore we will assume

a Gaussian shape and a width of 25nm. The strength will be varied in the range

Vtip = −20meV to Vtip = 20meV which can be regarded as worst case scenarios [156].

We emphasise that its effect on imaging data is hitherto unclear. The numerical effort

increases considerably by introducing the tip potential since for each spatial position of

the tip the (self-consistent) eigenvalue problem has to be solved independently.
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Figure 8.2: Effective impurity potential at z = 0nm for a distribution of donors and
acceptors situated 50nm < z < 0nm below the 2DEG. Dark spots are donor impurities,
white sports show acceptors.

8.4 Numerical Results

The following results are calculated using an effective g-factor as g∗ = 28, effective

mass as m∗ = 0.02, and a dielectric constant ǫ = 17.7 [104]. The g-factor obtained

from the experimental data was slightly lowered from its bulk value, most likely due

to stress and confinement effects [161], and has been adjusted accordingly in the cal-

culation. Moreover, the experimentally determined minimum of the conduction band

of ECBM = −100meV [162] due to the surface potential has been subtracted. The

energy window, i.e. the energy resolution is chosen as ∆E = 2.5meV. In Figure 8.3 we

show a comparison between a measured and a calculated LDOS for a non-interacting
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Figure 8.3: Comparison between the measured (left) and calculated (right) LDOS for
the lowest four spin-split LL. The tip strength is chosen as VTIP = −20meV.

system at B = 6T with Vtip = −20meV . The left figure shows the measurement, the

right is the corresponding non-interacting calculation. Lighter areas correspond to a

high LDOS, whereas darker areas correspond to a low LDOS. The visible features thus

correspond to different Landau levels which vary as a function of position due to the

locally varying disorder potential. The position as well as the fluctuations of the LDOS

is in good agreement with the experimental data, supporting the adequacy of our nu-

merical model. Slight deviations in the positions of the Landau levels can be attributed

to the non-parabolicity of the conduction band, leading to an energy dependence of the

effective mass [157, 161], which is not accounted for in our calculations. Even though

the impurity density in the calculation has been chosen carefully, it is not completely

clear as to why the experimental LDOS exhibits slightly more features than the simu-

lation. This could be related to an amount of Cs atoms which has been detected on

the surface of the sample and those might lead to an increased impurity potential [157].

This is, however, hard to determine experimentally and not particularly relevant for this

investigation. Therefore we now turn to the effect of the QD tip potential strength and

the electron-electron interactions. The sample Fermi energy in the experiment is held

constant at Esample = 0meV, which resides inside the fifth orbital LL when B = 6T. In
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our simulation, however, we may analyse different fillings as well. Due to our numerical

scheme, the filling of the sample has to be determined by the electron density rather

than the Fermi energy. Fixing the Fermi energy leads to unphysical jumps in the LDOS.

In Figure 8.4 we have plotted the LDOS for a HF-interacting system at different filling

factors of the sample and different tip strengths. We show the lowest two spin-split

Landau levels which we label from the lowest to the highest with LL1 through LL4. The

three columns correspond to Vtip = −20, 0, and 20meV, and the four rows are sample

fillings of ν = 0, 0.5, 1.0, and 2.5, as given in the caption of Figure 8.4.

We will analyse Figure 8.4 from the bottom row to the top row, always starting

without a tip potential (middle column), then discuss the effects of applying a negative

(left column) and a positive bias (right column) bias, respectively. Starting at ν = 0,

the Fermi level lies below LL1 and the system does not contain filled states. Thus the

LDOS is equivalent to the single-particle case. With a negative bias, the LDOS is shifted

down in energy about the amount of the tip potential, whereas a positive bias shifts the

LDOS similarly upwards in energy. This is due to a tip induced states residing at the

bottom or the top of the tip potential, respectively. The effect of the QD tip can thus

be summarised as a rigid energy shift of the LDOS proportional to the tip strength.

In the second row from the bottom we place the Fermi level at ν = 0.5, i.e. in the

centre of LL1. Without a QD tip present, the LDOS of LL1 fluctuates strongly whereas

LL2 through LL4, away from the Fermi level, exhibit less structure than at ν = 0. This

effect can be identified as the screening mechanism, where electrons close to the Fermi

level in LL1 redistribute whilst far away from it an effectively screened potential remains,

leading to a narrower LDOS. We note here that the fluctuating LDOS of LL1 seems

to split into two bands, developing a gap exactly at the Fermi level which gives rise to

the DOS gap as reported on in Section 5.1. If the tip bias is negative, we find strong

exchange enhanced spin splitting between the different spin levels, LL1 and LL2. Since

the probed states of LL1 are situated below the Fermi level, the LDOS features in LL1

are due to ejected electrons from filled states, which are pushed downwards in energy.
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Therefore we observe direct spin splitting enhancement between states of different spin

below and above the Fermi level, i.e. of LL1 and LL2. Moreover, we also observe indirect

splitting enhancement between LL3 and LL4, the next orbital Landau level. We would

like to mention very recent spectroscopy experiments [21] with similar findings in support

of our results. For positive tip bias, all the probed states are located above the Fermi

level and the observed features can be attributed to injecting electrons into the higher

band tails. Those states are empty and basically unaffected by interactions.

Having a completely filled LL1, i.e. ν = 1, the spin splitting is predicted to be

highest [21,121], which can be seen clearly without a QD tip present. Adding a negative

tip bias to the calculation will cause the probed states of the lowest two Landau levels,

LL1 and LL2, to also lie below the Fermi surface and distinctly separate in energy from

LL3 and LL4. In case of a positive bias, the LDOS again corresponds to injecting

electrons into empty states which are unaffected by the exchange splitting. We note

that the abrupt jumps of the LDOS visible for ν = 1 are numerical instabilities due to

the HF-convergence scheme.

Finally, at filling factor ν = 2.5, where all the states up to the centre of LL3 are

filled, we find a similar situation as for ν = 0.5, only with the Fermi level in LL3. The

spin shifts due to the exchange correlation can be understood accordingly. In view of

the recent high-resolution experiments by Dial et al. [21], a more quantitative analysis of

the enhancement of spin splitting due to the exchange correlation could be a worthwhile

task.

Eventually we present some real-space imaging results of the LDOS. The two top

rows of Figure 8.4 show the experimentally obtained LDOS. The top row corresponds to

the real-space data in an square area of length L = 350nm and the second row shows

the respective Fourier transforms. The images are taken in LL1 through LL4. The two

bottom rows show the corresponding calculation results without a QD tip, whereby the

second row from the bottom are the real-space result and the bottom row the Fourier

transforms. We observe ring structures in k-space with the number of rings equal to
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the orbital Landau level. These rings can be linked to the number of peaks in a Landau

state, which is equal to the Landau level index. They can be traced back to the effective

harmonic confinement due to the magnetic field, as seen in Equation (2.19). In fact, the

striking similarity between experiment and simulation can be regarded as the the first

experimental verification of the spatial structure of higher Landau level wave functions,

which even survives the influence of the QD potential.

In summary, we have investigated the influence of a tip potential and electron-

electron interactions on spatially resolved measurements of the LDOS by comparison

with numerical calculations. We found a minor influence of the QD tip potential, mainly

leading to a rigid shift in energy. Regarding the electron-electron interactions, we de-

scribed the relevance of the position of the Fermi level on the interpretation of the

results. In view of the data of our experimental collaborators [157], the influence of

electron-electron interactions is negligible since the sample Fermi level is fixed in the

fifth orbital level, far away from the more interesting lower levels. Finally, we would

like to acknowledge the contributions of Katsushi Hashimoto and Markus Morgenstern,

providing the experimental LDOS data.
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Figure 8.4: Calculated LDOS for the two lowest, spin-split Landau levels. Light areas
correspond to high LDOS, whereas dark areas correspond to low LDOS. The QD tip
strength is Vtip = −20meV in the left column, 0meV in the middle column, and 20meV
in the right column. The filling factor is ν = 0, 0.5, 1, and 2.5, starting from the bottom
row.
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Figure 8.5: Upper two rows: Measured LDOS images (first row) in an area of 350 ×
350nm, in the lowest four spin down Landau levels and the respective Fourier transforms
(second row). Lower two rows: Simulation result of the above LDOS images. The orbital
level is indicated with LL1 through LL4. Lighter areas correspond to high LDOS and
high Fourier intensity, respectively, whereas dark areas correspond to low LDOS and low
Fourier intensity, respectively. Arrows indicate ring structures in the FT images of the
experimental data.
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Chapter 9

Summary and Conclusion

We have investigated numerically how the interplay of electron-electron interactions

and disorder affect the localization properties of electrons in the integer quantum Hall

effect with regard to recent imaging and transport experiments. We diagonalised the

Hamiltonian for electrons confined to two dimensions and subject to a perpendicular

magnetic field in the suitable basis of Landau functions and treated interactions in an

effective, self-consistent Hartree-Fock mean-field approximation.

The introductory part of this work established the basic fundamentals for describ-

ing electrons in the IQH regime using numerical methods. We outlined the characteristic

electronic properties and their microscopic explanation, and introduced the Hartree-Fock

approximation for treating the electron-electron interactions in systems of mesoscopic

length scale. Throughout this work we put strong emphasis on comparing the behaviour

of non-interacting and interacting systems. We concluded the first part by testing the

universality of the MIT by calculating the participation ratio in the centre of the low-

est Landau band for different system sizes, in the non-interacting and HF-interacting

case, respectively. To the accuracy of our numerical calculations, we can conclude that

the critical properties of the extended states remain unaltered whether interactions are

taken into account or not, consistent with previous numerical [26, 115] and analytical

work [111]. In particular, we found the correlation dimension as D(2) = 1.62 ± 0.10 in
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both cases. Similarly, we obtained a critical exponent ν̃ between 2 and 2.4, compatible

with the expected value 2.34 ± 0.04 [34, 42]. However, we add that at the magnetic

fields studied, the system is still not in the fully interaction-dominated regime. Studying

the critical properties at higher fields might reveal so far unnoticed deviations from this

behaviour.

In Chapter 6 we then turned to recent experimental results on the compressibility

for high-mobility samples pointing to strong interaction-mediated effects even in the

integer QH regime. Our calculations revealed substantial differences in the electronic

compressibility between non-interacting and interacting systems when viewed as a joint

function of magnetic field and carrier density. For interacting systems, we found strongly

incompressible stripes of constant width around integer filling factors. We showed the

dependence of the width of the stripes on the disorder configuration and computed the

width based on a force balance argument. These results are in very good agreement with

recent imaging experiments. Moreover, we observed strong g-factor enhancement as well

as negative compressibility in the band centres, also consistent with experiments. We

demonstrated that the incompressible patterns can be attributed to non-linear screening

effects in the tails of the Landau bands. For magnetic fields larger than Bmin, the

effects of linear screening — and hence interactions — dominate in the (B,ne)-plane.

Thus, our results support the existence of a greater variety of transport regimes due to

electron-electron interactions in the integer quantum Hall effect.

Chapter 7 was dedicated to the investigation of transport behaviour when electron-

electron interactions are present. We discussed problems in evaluating the Kubo formula

for the conductivity due to the presence of the non-local exchange potential. We de-

rived an alternative expression to the usual velocity form which makes use of the position

expectation values. In order to evaluate them for a system with PBC, we used an expres-

sion similar to evaluating the single-point Berry phase. Finally, we outlined the results

of our calculations for the Hall conductivity in the (B,ne)-plane. Our single-particle

calculations show a linear relation between the width of the plateau transition and the
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magnetic field. In contrast, when taking interactions into account, we find a strong

dependence of the width of the plateau-transition on the interaction. In the interac-

tion dominated regime as defined by the linear screening criterion of Equation 6.12, the

quantises plateaus show a constant width as a function of magnetic field, leading to an

increasing width of the plateau transition. We interpret this behaviour similarly to the

constant-width compressibility patterns and attribute it to the onset of linear screening.

In this regime the electronic properties are strongly interaction dominated. Therefore our

results do not display conductivity peaks aligning with integer filling factor, as observed

experimentally [19]. Rather, the conductivity jumps irregularly strongly influenced by the

exchange interaction. We argue that such patterns might become visible in simulations

of larger systems which, however, is beyond our numerical capabilities.

Finally, in Chapter 8 we investigate interaction effects in STS imaging experi-

ments. Tunneling of electrons between the sample and the STS tip allows to image the

LDOS as a function of energy and tip position. The electrostatic potential of the STS

tip leads to a local change of the effective potential felt by the 2DEG and induces states

underneath. Introducing an additional QD-like potential into the simulation, we find

good qualitative and quantitative agreement of a non-interacting calculation with the

experimental data. Then, we systematically investigated how the measurements might

be affected by the presence of both, the electrostatic STS tip potential and the induced

states. For the non-interacting case, the effect can be summarised as constant energy

shift of the LDOS, proportional to the tip strength. With electron-electron interactions

present, the interpretation of the data, especially the position of the Landau levels, is

more complicated and strongly depends on the sample Fermi level and the position of the

tip-induced states. This combination complicates the analysis of STS data. Therefore

our results may assist in the interpretation of experimental data.

We conclude this work with some final remarks. Whereas disorder is usually

associated with a reduction of signal quality, in the IQHE the concurrence of a magnetic

field, reduced dimensionality, and disorder leads to a remarkable resilience of quantised
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transport. While the critical behaviour at the transition appears unaffected, localisation

in the band tails is changed by interactions, yielding a significant change in the widths

of the plateau regions. Although single-particle models can well describe many aspects

of quantum Hall physics, only by taking interactions into account the whole spectrum

of experimentally observed features can be satisfactorily understood. As a long-term

goal, it would certainly be desirable to model the IQHE in a full many-body descrip-

tion. However, at present, the mesoscopic scale appears simply inaccessible to an exact

treatment.
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Appendix A

Calculation of Periodic Matrix

Elements

Care has to be taken when computing matrix elements of periodic operators in a periodic

basis, 〈ϕ̃n,k|Ṽ |ϕ̃n′,k′〉, where the ϕ̃n,k(r) and Ṽ (r) are L-periodic. We can write the

wave functions as replicated Landau functions in x-direction of the form

ϕ̃n,k(r) = lim
P→∞

1√
2P + 1

P
∑

s=−P

ϕn,k+sL/l2c
(r) (A.1)

which is properly normalised as 〈ϕ̃n,k|ϕ̃n′,k′〉 = 1. The matrix element now reads

〈ϕ̃n,k|Ṽ |ϕ̃n′,k′〉 = lim
P→∞

1

2P + 1

P
∑

s=−P

P
∑

t=−P

∫

d2rϕ∗
n,k+sL/l2c

(r)Ṽ (r)ϕn′,k′−tL/l2c
(r) .

(A.2)

This can be rewritten as

∫

d2rϕ∗
n,k+sL/l2c

(r)Ṽ (r)ϕn′,k′−tL/l2c
(r) =

∫

d2rϕ∗
n,k+(s+t)L/l2c

(r)Ṽ (r)ϕn′,k′(r) ,

(A.3)

which is also valid for the case of general boundary conditions. The potential Ṽ (r)

thereby remains unaffected due to its periodicity. The double sum can then be expressed
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as a single sum by noting that (s+ t) ∈ [−2P, 2P ], where each value has a degeneracy

of 2P + 1 − (s+ t). We can write

〈ϕ̃n,k|Ṽ |ϕ̃n′,k′〉 = lim
P→∞

2P
∑

u=−2P

2P + 1 − u

2P + 1

∫

d2rϕn,k+uL/l2c
(r)V (r)ϕn′,k′(r) (A.4)

=

∞
∑

u=−∞

∫

d2rϕn,k+uL/l2c
(r)V (r)ϕn′,k′(r) (A.5)

where the u-sum only needs to be taken to the neighbouring cells due to the exponential

decay of the wave functions. Thus, we eventually obtain

〈ϕ̃n,k|Ṽ |ϕ̃n′,k′〉 ≈
1
∑

u=−1

〈ϕn,k+uL/l2c
|Ṽ |ϕn′,k′〉. (A.6)

117



Appendix B

Mobility

The differential scattering cross-section in 2D is given by (see Equation 126.9 in [32])

dwp′,p =
4πm∗

h̄vp
|up′−p|2δ(p′2 − p2)

d2p′

(2πh̄)2
(B.1)

where uk =
∫

d2ru(r) exp−ik · r is the Fourier transform of the electron-impurity

interaction potential. With k = p/h̄, the mean free path λk = vkτk, the impurity

density in the plane, nI, as well as

λ−1
k = nI

∫

[1 − cos(φ)]dwk′,k (B.2)

we get

1

τk
=
m∗nI

πh̄3

∫

d2k′[1 − cos(θ)]|uk′−k|2δ(k′2 − k2) (B.3)

where θ is the angle between k and k′.

If the electron-impurity interaction depends on the magnitude of k′ − k only, we can

make the replacements d2k′ = k′dk′dθ and d(k′2)/dk′ = 2k′ and get

1

τk
=
m∗nI

2πh̄3

∫∫

dθd(k′2)[1 − cos(θ)]|ũ(2k sin(θ/2))|2δ(k′2 − k2) (B.4)

=
m∗nI

2πh̄3

∫

dθ[1 − cos(θ)]|ũ(2k sin(θ/2))|2 (B.5)

where ũ(|k′ − k|) = uk′−k since k′2 = k2 leading to (k′ − k)2 = 2k sin(θ/2).
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In order to evaluate the mobility for a potential built up of many different scatter-

ers, with each radially symmetric, we make use of that the total scattering cross-section

is the sum of the individual scattering cross-sections, σ =
∑

i σi. The scattering rate in

an area L2 is

rscatt(k) =
∑

i

σi(k)

L2
, (B.6)

which is the sum of the individual scattering areas (or cross-sections). Now the σi can

be evaluated individually for each radially symmetric scatter. Especially, if the scatterers

are the same with an areal density of nI, then rscatt = nIσ0(k).
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Appendix C

Commutators

Separating the coordinates into guiding centre and drift motion,

(

x

y

)

=

(

ξ

η

)

+

(

X

Y

)

, (C.1)

we have the following commutators among each other (zeros on the diagonal omitted

for clarity):

[↓,→] x y ξ η X Y

x 0 0 il2c 0 −il2c
y 0 −il2c 0 il2c 0
ξ 0 il2c il2c 0 0
η −il2c 0 −il2c 0 0
X 0 −il2c 0 0 −il2c
Y il2c 0 0 0 il2c

Table C.1: Table of commutators between total, guiding centre, and drift motion coor-
dinates.
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Appendix D

Guiding Centre Velocity

For a clean system the Hamiltonian reads

H0 =
1

2m
(p− eA)2 =

1

2m

(

px

py − eBx

)2

≡ 1

2m
π2 (D.1)

where π is the canonical momentum. Evaluating the EOM,

π̇x =
ī
h

[H0, πx] =
i

2mh̄
[p2

x + p2
y − eBpyx− eBxpy + e2B2x2, px] (D.2)

= ωc(py − eBx) = ωcπy, (D.3)

π̇y =
ī
h

[H0, πy] =
i

2mh̄
[p2

x + p2
y − eBpyx− eBxpy + e2B2x2, py − eBx] (D.4)

= −ωcpx = −ωcπx, (D.5)

clearly reveals the cyclotron motion of the electrons and with x = ξ+X and y = η+Y

we find

πx = −π̇y/ωc = mξ̇, (D.6)

πy = π̇x/ωc = mη̇ (D.7)

and

ξ = − πy

mωc
, (D.8)

η =
πx

mωc
. (D.9)
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With the following commutation relations

[πx, πy] = [px, py − eBx] = ih̄eB = ih̄mωc, (D.10)

[πx, x] = [πy, y] = −ih̄, (D.11)

[ξ, η] =
ih̄

mωc
= il2c , (D.12)

[H0, πx] =
1

2m
[π2

x + π2
y, πx] =

1

2m
(πyπyπx − πxπyπy) = −ih̄ωcπy (D.13)

[H0, πy] =
1

2m
[π2

x + π2
y, πy] =

1

2m
(πxπxπy − πyπxπx) = ih̄ωcπx (D.14)

we can find the EOM for a Hamiltonian of the form

H = H0 + V. (D.15)

With pµ = h̄i ∂µ and [V, xµ] = 0, we have the commutators

[V, πx] = ih̄∂xV, (D.16)

[V, πy] = ih̄∂yV, (D.17)

and find for the EOM

ξ̇ =
ī
h

[H, ξ] = − i
mh̄ωc

[H0 + V, πy] =
πx

m
+
l2c
h̄
∂yV, (D.18)

η̇ =
ī
h

[H, η] =
i

mh̄ωc
[H0 + V, πx] =

πy

m
− l2c
h̄
∂xV, (D.19)

ẋ =
ī
h

[H,x] =
i

2mh̄
(πxπxx− xπxπx) =

πx

m
, (D.20)

ẏ =
ī
h

[H, y] =
i

2mh̄
(πyπyy − yπyπy) =

πy

m
, (D.21)

and thus

Ẋ = ẋ− ξ̇ = − l
2
c

h̄
∂yV, (D.22)

Ẏ = ẏ − η̇ =
l2c
h̄
∂xV, (D.23)

which reflects the drift motion of the guiding centres along equipotential lines of the

disorder potential.
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Appendix E

Formulas Involving Landau

Functions

The following useful expressions are utilised in this work. Landau function have the

properties

(x− kbl
2
c )ϕm,b(r) = lc

[

√

m

2
ϕm−1,b(r) +

√

m+ 1

2
ϕm+1,b

]

(E.1)

∂xϕm,b(r) = l−1
c

[
√

m

2
ϕm−1,b(r) −

√

m

2
ϕm+1,b(r)

]

(E.2)

ϕm,b(r,k) =
exp

[ikx(x− kbl
2
c )
]

√

2mm!
√
πlcL

exp

[ikby −
(x− (kb + ky)l

2
c)

2

2l2c

]

×

Hm

[

x− (kb + ky)l
2
c

lc

]

. (E.3)

The plane wave matrix elements for PBC are

Sn,k;n′,k′(q) = 〈ϕn,k| exp(iq · r)|ϕn′,k′〉 =

δ′qy ,k−j

√

2nm!

2mn!
exp

(

−q2

4
+

i
2
qx(k + j)

)(iqx − qy
2

)n−m

Ln−m
m

(

q2

2

)

, (E.4)
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if n ≥ n′ and La
n(x) are the generalised Laguerre polynomials. For periodic boundaries,

the delta function is defined with modulus, i.e.

δ′a,b =







1 if mod(a− b,Nφ) = 0,

0 otherwise.
(E.5)

Thus the bielectronic integrals

Gm,l;m′,l′

n,k;n′,k′ =
∑

q 6=0

v(q)Sn,k;n′,k′(q)Sm,l;m′,l′(−q) (E.6)

simplify to (if n ≥ n′ and m ≥ m′)

Gm,l;m′,l′

n,k;n′,k′ =
∑

qy
δqy ,k−k′δl′,l+k−k′

∑

qx
v(q)

√

2nn′!
2n′n!

√

2mm′!
2m′m!

e−
q
2

2
+iqx(k′−l)

×
( iqx−qy

2

)n−n′ (

qy−iqx

2

)m−m′

Ln−n′

n′

(

q2

2

)

Lm−m′

m′

(

q2

2

)

. (E.7)

The plane wave matrix elements for general boundary conditions read

Sn,k;n′,k′(q,k) = 〈ϕn,k(k)| exp(iq · r)|ϕn′,k′(k)〉 = exp
[il2c(q × k)z

]

Sn,k;n′,k′(q)

(E.8)

The derivatives with respect to the phase shift read

∂kx
ϕm,b(r,k)|

k=0 = −i(x− kbl
2
c )ϕm,b(r) = −ilc [√m+ 1

2
ϕm+1,b +

√

m

2
ϕm−1,b(r)

]

(E.9)

and

∂ky
ϕm,b(r,k)

∣

∣

k=0
= lc

[

√

m+ 1

2
ϕm+1,b −

√

m

2
ϕm−1,b(r)

]

(E.10)
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[65] P. Cain and R. A. Römer, Int. J. Mod. Phys. B 19, 2085 (2005).
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