THE UNIVERSITY OF

WARWICK

Original citation:

Schonhage, A., Paterson, Michael S. and Pippenger, N. (1975) Finding the median.
Coventry, UK: Department of Computer Science. (Theory of Computation Report). CS-
RR-006

Permanent WRAP url:
http://wrap.warwick.ac.uk/59399

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/59399
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF
COMPUTATION
REPORT

FINDING THE MEDIAN

A. Schonhage
M. Paterson
N. Pippenger

Department of Computer Science
University of Warwick

COVENTRY CV4 7AL

ENGLAND.

April 1975

FINDING THE MEDIAN-r

by

L A N
w W

A.Schbnhage: M.Paterson and N.Pippenger,

ar,
-

Department of Mathematics, University of Tibingen, Germany.

%% Department of Computer Science, University of Warwick,
Coventry, U.K,

%% Mathematical Sciences Department, IBM Research Center,
Yorktown Heights, N.Y., U.S.A.

+ This research was supported in part by the National
Science Foundation under research grant GJ-34671 to
MIT Project MAC,

Abstract An algorithm is described which determines the median of n
elements using in the worst case a number of comparisons

asymptotic to 3n.

1. Introduction

For many problems concerned with ordering elements there is only a
narrow gap between lower bounds on the number of pair-wise comparisons
required in the worst case and upper bounds provided by simple algorithms,
For the problem of sorting n totally ordered elements, for example,
upper and lower bounds asymptotic to nlog2n are easily obtained
(see [3], section 5.3.1). In contrast with this, the problem of finding
the median (or, when n is even, either of the two "medians') has proved
much more challenging, and only recently has any upper bound that is 0(n)
been obtained. At present the best lower bound known is 1+75n + o(n) ([2],

[u]l), while the best upper bound previously reported is 5+43n + o(n)
([1], 5-43... = 391/72). In this paper we shall improve this upper bound

by giving an algorithm using only 3n + o(n) comparisons.

We may always assume that n is odd, for if n is even we can adjoin

a "+ " or "~ =" to the elements to compute either of the two "medians'.

2. Theoretical framework

We suppose that we are given a totally ordered set T. The order is
not known initially and can only be determined by performing a sequenc-
of pair-wise éomparisons between elements of T, After ény such sequence,
the current information about the order of T is expressible as a partial

order Q on the elements of T.

Let P be a partially ordered set. A sequence of comparisons between
elements of T is said to produce P in T when the partial order Q
obtained "contains" P, that is, when there is an order-preserving embedding
of P into Q. If |T| =n » |P|, we define g(P,n) to be the minimum number
of comparisons required in the worst case by an optimal algorithm to produce

P in T, and let g(P) denote g(P,IPI).

, k .
The partial order Sm on k + m + 1 elements has one particular element,
the ceentre, which is less than each of k other elements and greater than
each of the m vremaining elements. Partial orders will be depicted by

their Hasse diagrams, thus SE by

The problem of finding the median of n elements is the problem of producing

St in T, when ITI = 2k + 1 =n. In this paper we shall derive an upper

bound for g(Si).

3. Yao's hypothesis

It is clear that g(P,n) is a decreasing function of n, since one can
always ignore any extra elements. That g(P,n) can strictly decrease is

shown when P is

for then g(P,7) = 8 (as can be shown by an enumeration of cases) but

g(P,8) = 7, since P can be embedded in the partial order

which is produced using 7 symmetric comparisons.

Yao conjectured in [5] that g(SE,n) = g(Sﬁ) for alln 2k +m+ 1

We know

or, in words, that extra elements do not help in producing S;.

of no counter-example, and this hypothesis has a remarkable consequence

that stimulated the development of our algorithm.

Theorem 3.1 (Proved in [5] for a bound of 3n.)

Under Yao's hypothesis, there is a median algorithm for n elements

that uses at most 2+¢5n + o(n) comparisons.

Proof. Take Uk + 2 elements and perform 2k + 1 comparisons to obtain

2k + 1 disjoint pairs. Apply to the lower 2k + 1 elements an optimal

. k . .
algorithm that produces Sk. The result contains the partial order shown

2k+1
K .

in figure 1, which contains S

fig. 1.

Thus by Yao's hypothesis

2k 2k+1
+l) = (s

g(Sk K

4k + 2)

€2k + 1+ g(SE).

Similarly take 6k + U4 elements and perform 3k + 2 comparisons to

obtain 3k + 2 disjoint pairs. Apply an optimal algorithm that produces S2k+l

k
. 2k+
to the upper 3k + 2 elements. The result contains 82t+i. Thus by Yao's

hypothesis

2k+l) - (02k+l

g(5, 41 “ok+1?

6k + U4)

2k+1

€ 3k + 2+ g(Sk)

Combining these results we obtain
2k+1
2k+1

2k+l)
2k+1

g(s) ¢« 5k + 3 + g(si)

Since g(éi) = 0 and g(Sgt) < g(s , an iteration of this inequality
yields

g(Si) € 5k + 0(log k)
Setting n = 2k + 1 gives the theorem O

The remainder of this paper will be devoted to proving (without using
Yao's hypothesis) that there is a median algorithm for n elements that

uses at most 3n + o(n) comparisons.

4, Factory production

In general to produce m disjoint copies of a partial order P, which
we denote by m x P, may require fewer than m times the number of comparisons
to produce a single P. Tor example, g(Sé,k) = 6 for k » 5, but
g(2 x S;) € 11. A systematic exploitation of this sort of economy is
achieved by "factories'". We shall sustain the metaphor in which we regard

the developing partial order as a graph which is being "assembled" from

component parts by making new comparisons.

A factory for a partial order P is a comparison algorithm with
continual input and output of elements. The input, in the simplest kind
of factory, consists of singleton elements. At intervals a new disjoint
copy of P is output. The vital characteristics of a factory are the
number of compariscns needed to set up the factory, the initial cost I,
the number of comparisons then needed to produce each copy of P, the
wnit cost U, and thirdly the production residue R, which is the maximum
number of elements that can remain in the factory when lack of input
stops production. For allm » O, I + m.,U gives an upper bound on the

number of comparisons required to produce m x P,

An unexpected feature of our median algorithms is that they involve

. . k
the factory production of many copies of S, for some k, where k = of(n).

k
The following theorem is eventually proved in section 9. It is stated

here to provide motivation for the next section.

Theorem 4,1

For any k, there is a factory Fk for Si with characteristics

Ik’ Uk’ Rk as defined above such that
U, ~ 5k, I = 0(k°) = 0(k?)
k > Tk ? Rk
Several stronger results will be given in later sections. At this stage

we shall explain how such factories can be exploited to provide economical

median algorithms,

5. Basic median algorithm
Theorem 5,1

Given factories Fk satisfying Uk ~ Ak for some A > O, Ik = O(k2)

and Rk = O(k2), there is a median algorithm which, for n elements (n odd),

uses at most An + o(n) comparisons.

.
Proof. Given n, let k = Ln*] . The algorithm first sets up the factory Fk

using Ik comparisons. The subsequent operations involve four interconnected

processes.,

(1) Whenever sufficiently many input elements are supplied to Fk a new

copy of Sk

X is produced at cost U

K"
s ko
(ii) The centres of all the Sk which are produced are to be ordered. As

each new Si is completed, its centre is inserted using binary insertion

(see [3]) into an ordered chain of previous centres.

(iii) When no further Si can be produced, i.e., (i) has halted, consider

the two extreme St's of the ordered chain (see figure 2).

eliminated

fig. 2..

eliminated

Suppose the chain is of length t and the total number of elements remaining
in the factory is r. The centre of the upper Si is above each other centre
and above each element in the bottom half of any St. Provided t-1 > r,
this centre and all the elements in the upper half of the upper Si are
above more than half of the total number of elements. Therefore these k+l
elements are above the median, and similarly, the centre and lower half of
the lower St are below the median. All these 2(k+l) elements can be
eliminated from the algorithm, leaving the problem of determining the
median of the remaining elements. The lower half of the upper Si and the
upper half of the lower St are returned to the factory as 2k singleton

elements.

(iv) When none of (i), (ii) or (iii) can proceed we must have r < R
(from (i)) and t ¢ r+1 (from (iii)). Thus the total number m of remaining

elements must satisfy
- . - 3
m = t(2k+l) + r € (Rk+1) (2k+1) + Rk = 0(x7)

by the conditions of the theorem. The median of these m elements, which
is the median of the original set, can be found by any linear median
algorithm or, as we prefer here for simplicity, by sorting them using

O(ks.log k) comparisons.

The total number of Si's produced in Fi is precisely (n-m)/(k+1) + t,
where m,t are the numbers used in (iv). For each, the binary insertion
in (ii) requires at most rlog2 (n/(2k+1)) 1 comparisons. The number of

comparisons used by the complete algorithm is therefcre at most

Ik + ((n~-m)/(k+1) + t) (Uk + |’1og2 (n/(2k+1)) D+ O(ks.log k)

< (n/k)Uk + 0((n log n)/k) + O(k3 log k)
~ An

1
since t € v+l = O(kz),k"“n”,and Uk ~ pk O

Using Theorem 4,1 we immediately have

Corollary 5.2

There is a median algorithm for n elements which requires at most

5n + o(n) comparisons.

6. Hyperpairs

The proof of Theorem 3,1 led us to the partial orders we define
here as '"hyperpairs', which are an important product of the factories

we shall describe.

A hyperpair PW, where w is a binary string, is a finite partial

order with a distinguished element, the centre,defined recursively by :
(i) P, (A is the empty string) is a single element, and

(ii) Pwl or Pwo is obtained from two disjoint copies of Pw by
comparing the centres and taking the higher or lower of these

respectively as the new centre.

Examples of hyperpairs, with the centres, are

Theorem 6.1
Suppose |w] = m and Pw has centre c.

m m . .
(1) Pw has 2 elements,and exactly 2 -1 comparisons are required to

produce 1it.

(ii) If w has h ones and m-h zeroes then c together with those elements
greater than (less than)c in the partial order are 2h elements (Qm—h
elements) forming a Poh (le_h) with centre c¢. The elements greater

than ¢ form a disjoint set of hyperpairs Px, PO’ POO""POh'l’ and the

elements less than ¢ form a disjoint set of hyperpairs PA’ Pl’ Pll,...le_h_l

(iii) If w has h zeroes and h ones then Pw contains Si with centre ¢ for

any k g Qh-l.
Proof. (i) and (ii) may be proved by induction on m. (iii) follows

from (ii) O

This theorem is illustrated by figure 4, in which w = 011010, h = 3, and

k = 7. The elements of the 87 contained in the hyperpair are drawn boldly.

7

fig. 4.

POllOlO

7. Accounting principles

We have been representing partial orders by their Hasse diagrams.

It happens that the partial orders which we need to describe are
representable by acyclic diagrams.Each comparison performed combines two
acyclic components into one. For ease of description we sometimes ignore

parts of the partial order by removing edges from the diagram.

To assess the total number of comparisons used by an algorithm we
have found it convenient to count the number of edges, r, removed in this
way. Initially there are no edges, and finally, if we have preserved
acyclicity,there will be n-1, thus the number of comparisons made must
be n-l+r. The suitability of this convention depends on the special

nature of our algorithms,

8. Pruning

P . . . k
In Theorem 6.1 (iii) we showed that suitable hyperpairs contain Sk
In order to separate the subgraph containing just these 2k+l elements
from the rest, some of the edges must be broken. In figure 4 we find that

15 edges need to be removed. This operation is called pruning.

Let prl(w), the wpward—-pruning cost for P . be the number of edgr-
that must be broken to remove all elements except the centre and those
greater than the centre. The downward-pruning cost for P pro(w) is
defined similarly. In figure 4 we can count prl(011010} = 10 and

pr_(011010) = 11.

..lo..,

The special hyperpairs Hr for r 2 0 are defined by

HO = PA
Hl = PO
H2 = Pol
and Hor 5 Poraoytt
fore1 © Foro)™1 for £ 21
Thus |Hr| = 2, Note the curious initial irregularity of the binary

sequences used., The effect of this will be to equalize upward- and

downward—pruning costs.

Lemma 1

(i) pry (011) = 2, pr, (01) = 2

(ii) TFor all w, pry (wOl) = 2prl(w) + 1
and pr_ (w10) = 2pro(w) + 1
(iii) TFor all t > O, pry (o11(01)%) = 3.2%1
and pY (Ol(lO)t) = 3,251

Proof. (i) By inspection
(ii) In figure 5 we show a PwOl parsed into four connected copies
of Pw. It is evident that to upward-prune Pwol we must

upward-prune two of these copies and remcwve one further edge.

The result for downward-pruning of Pw is by a symmetric

10

argument .

(iii) This follows from (i) and (ii) by induction on t O

ll

upward-prune

fig.5. Upward-pruning of P

wOl"

Some useful properties of the Hr structures are collected for

later reference as
Theorem 8.1

(i) If any edge of an Hr is remnved, the component not containing

the centre is an Hs for some s < r,

(ii) For h » 1, H,, can be parsed into its czentre C aAnd a disjeint

2h

set {HO, H. H } where the centres of

1, 2""’H2h—l

H, Hys He, H

7""’H2h—l are above ¢ and the centres of

H H H H are helow C.

1?22 Ty? 6""’H2h—2

(iii) When H_ is upward-pruned for v =0, 3, 5, 7,.
" T

Slr/2.

or downward-pruned for r = 1, 2, 4, 6,... there remain 2

. ; r/2
elements, and the number of edges broken is at mo«: y&.QL /2 .

Proof. (i) and (ii) are proved by indurtion. (iii) fellows from

Lemma 1 (iii) and Theorem 6.1 (ii) O

.,.12 .

LTI

- o
et O
sllary 8,2

h A .
If kg 2-1, H?h can be pruned to a subgraph with 2+l elements

k

containing S The pruning cost is at most 2k + 2h and the componentr
k D

detached are ¢of the form H , s < 2h,
3

Proof. Using the decomposition of (ii) of the Theorem, we upward-po.

a suitable subset of the upper hyperpairs to yileld a tetal of k elemont:

and detach the remaining upper hyperpairs. A similar operation 1is
~*crmed on the lover hyperpairs. It fellews from (iii) of the Thac: v

tnat this is possible and that the cost is bounded as claimed 0O

9. Simple factories for Sk

k
We describe a factory Fk which produces partial orders with 2k+1
- k . .
elements containing Sk' Any such partial order will be denoted by
=k . - h-1 h B - . . -
e Let h satisfy 2 < ks 2°-1. Fk uses the following pair of

interrelated processes.

Hyperpairing. Whenever there is a pair of Hr's in the factory for

some r < 2h, their centres are compared to prodiuce a new HP Whenewver

+1°

an th is produced it is sent to the pruning process.

is pruned to an §t

The detached hyperpairs Hs with s < 2h are returned to the hyperpairing

Pruning. Each H2 as described in Corsllavy 8.Z.

h

process. The §t is output from the factory.

When Fk comes to a halt there can be at most one copy of Hr for

zach r < 2h in the factory and so

R_= 22y 2

-k . .
To produce m outputs of Sk9 at most (3k + 2h)n edges are broken during

. . =k .
vruning, 2km edges are output in the Dk'S and at most ukz edges Tewsin

in the residnes graphs in the factory. Thus the total number of

la

comparisons is at most
(5k + 2h)m + uk?

and so Uk < 5k and Ik‘s 4k2.

This specification of F, proves Theorem 4,1 as promised.

k

10. Improvements

The first, and most obvious, improvement to the basic algorithm
of section 5 arises from the observation that the elements returned from
the top or bottom halves of the Ei's eliminated at the ends of the chain
can be broken into (k-1)/2 pairs and one singleton. Whenever a pair,
instead of two singletons, is input to the hyperpairing process of Fk’
one comparison is saved. The total number of comparisons thus saved in
the basic algorithm is #n + o(n), which yields a median algorithm with

only u4¢5n + o(n) comparisons.

A second more fundamental improvement comes by the new process of
"grafting". When an H2h has been completed by the hyperpairing process,
instead of pruning it immediately, we compare new singleton elements with
its centre, at the cost of only one per element, until k of the new
elements are all above or all below the centre., The new elements may be
used in the.final §i allowing more of the hyperpairs attached to the
centre to be simply detached, breaking just one edge, instead of being
upward- or downward-pruned which breaks many edges. For simplicity we can
drop the first improvement described above so that the lactory input
consists just of singletons. The number of edges broken in the
construction of each §t using grafting is at most 2k + 2h (see Theorem 8.1)
instead of approximately 3k. This saving allows a median algorithm using

at most 3¢5n + o(n) comparisons, though in this case the more significant

result is the following

- 14 -

Theorem 10.1

For any k, there is a factory Fk for St with Uk ~ 35k,

This is our best upper bound on the unit cost when producing large numbers
of St's. It coincides remarkably with the lower bound proved in [3]

for the production of a single SE.

Qur final task is to combine the ideas of the two improvements

described above and to give the resulting algorithm in greater detail.

11. The final algorithm

We find it natural to describe the algorithm in terms of
interconnecting processes with "pipelines" conveying partially ordered
sets from the output of one process to the input of another., There are
also two reservoirs, one containing singletons and the other containing
pairs. A flow-diagram illustrating the interconnections is given in

figure 7.
Initially all n elements are in the singleton reservoir.

(i) Pairing.
Singletons are input from the singleton reservoir whenever

possible, compared in disjoint pairs and output to the pair reserv.ir.

(ii) Hyperpairing.
If no other process is active, this process attempts to produce
one new th as described in section 9. If necessary a pair may be

input from the pair reservoir. Any new H2h is output to the grafting

process.

ls

(iii) Grafting.
This process is applied to each H . from (ii)., It uses a
supply of pairs input from the pair reservoir., At any stage of the

grafting of an H the centre has edges tc a number of singletons and

2h

pairs as shown in figure 6.

fig. 6.

Initially, s = p; =p, = O. As long as s + 2 max {pl, po} <k -2,

. 1P
a new pair Ia is compared with the centre c¢ in the following way :

If Py > Py then
(A) compare c with a, and if ¢ > a compare ¢ with b,
otherwise

(B) compare ¢ with b, and if ¢ < b compare c with a.

The result of these comparisons is

b b
(1) , (2) or (3) c
a c b
c
a a
pl:2p1+l S:=8+1 pO::po+l

..16_

In case (2), the edge ab has been broken and s has been increased by one,
In case (Bl) the edge cb, and in case (A3) the edge ca, has been broken.
The number of edges broken up to a given stage is at most

s + min{pl, po} + min{pl + 1, po}.

When s + 2 max{pl, po} = k or k-1, the resulting partial order is

passed to the pruning process.

(iv) Pruning.

When an input is received from (iii) it is to be pruned to an
§§ in such a way that as many as possible of the hyperpairs attached to
the centre are detached intact., Thus k - (s+2pl) elements need to be
produced by upward-pruning from the upper half of the H2h’ and k - (s+2po)
by downward-pruning from the lower half, From Theorem 8.1 (ii) and (iii)
we see that, by pruning an appropriate subset of the sub~hyperpairs of
which H2h is composed, any such numbers of elements may be obtained
precisely. By Theorem 8.1 (iii) the total of upward- and downward-pruning
costs is bounded above by ¥ x (total number of elements produced). 1In

addition at most 2h edges are broken to detach complete sub-hyperpairs,

The number of edges broken during grafting and pruning varies with
different §t's. The accounting is made easier if we also assess at +his

1

point the number of edges which may be broken when and if such an 5; is
ultimately destroyed at one end of the chain. Either the upper or lower
half must be decomposed into pairs and singletons for recycling to the
reservoirs. The number of edges broken consists of one to detach each
pair and one to detach each singleton, and this is bounded above by

3(k=-s=1) + s+1 = 3(k+s+1), since there will be at most s+l singletons in
g

the half of this §t which is recycled.

.._1_7_.

The total of edges broken during grafting, pruning and the final

destruction of the §i is at most

S+2 min{pl, po} +1 4 72.(2k—23—2pl-2po) + 2h + 3(k+s+l)

§ Tk +2n+ 72 - % (s + 2max{p, p }) ¢ 2k + 2h + 3

since s + 2 max {pl, po} > k-1.

(v) Inserting.

This process receives the new partial order §t from (iv) and
inserts its centre into the totally ordered chain of centres of previous
partial orders, using a binary insertion algorithm, The number of edges
broken during insertion is one less than the number of comparisons made
and so is at most logQ(n/k) since there are never more than n/(2k+1)

centres in the chain,

(vi) Eliminating.

This process is invoked only when none of the previous processes
can continue, therefore we can assume that these processes are retaining
at most the following elements

in (i) a singleton

in (ii) one each of Hl, HQ""’HQh—l

in (iii) one H2h and 2k-4 other elements

in (iv) none,
and both reservoirs are empty. This makes a total of at most

22h+l - 1 + 2k-4 g 8k2 + 2k - 5 since Qh—l < k.

Suppose the chain of centres maintained by process (v) is of length t
at this time. Then, as argued in the proof of Theorem 5.1, if
t-1 > 8k2 + 2k - 5 the centre of the highest §§ in the chain must be above

the median. Therefore this centre and all elements in the upper half of

- 18 -

. Tk N . s
this Sk may be eliminated from the algorithm. Similarly the centre and

lower half of the lowest §i in the chain may be eliminated. The edgesn
connecting the eliminated elements to the main component will be

counted later.

. = =)

The lower half of the highest Si and the upper half of the lcwest h;

o

are broken down into pairs and singletons and recycled to the respective

reservoirs. The edges broken in the course of this have been counted

already in (iv).

(vii) Coda.

This finishing process is invoked when no other process can
continue, so at most 8k2 + 2k - 5 elements are retained by processes
(i)-(iv), and the chain maintained by (v) and (vi) is of length
t< 1+ 8k2 + 2k = 5. The total number of elements remaining is therefore
0(k3). The median of the original =set is the median of this remaining

set, which may be found using O(ks) comparisons.

12. Final account

The number of edges broken during the construction, insertion =nd
. =k .
destruction of one Sk’ plus the number of edges connecting the k+l

elements which are eliminated is at most
2k + 2h + 3 + 1og2(n/k) + ktl

which gives a number of 3 + 0((log n)/k) per element e!iminated, Since
3
n-O(k3) elements are eliminated in this way and the coda uses 0(k)

further comparisons the total for the whole algorithm is at most

3n + 0((n log n)/k + k3)

- 19 -

1
Choosing k ~ (n log, n)*

we reach our final upper bound of

3
3n + 0((n log n)*) ~ 2n,

- singletons
’
(i) pairing
y .
. y

(ii) hyperpairing\\\\>k\
AN

@ O Grp O Puead)

(iii) grafting

k(- (iv) pruning

Y

(v) inserting

/
y

(vii) coda

g & G OGoud

\<—fvi) eliminating

fig. 7.

- 20 -~

Acknowledgements

We were encouraged and supported in this work by useful
conversations with Michael Rabin and several members of the

Theory of Computation Group at Project MAC.

References

[1] Blum,M., Floyd,R., Pratt,V., Rivest,R. and Tarjan,R.,
"Time bounds for selection', JCSS, 7 (1873) 4u8-461.

e
N
[

Kirkpatrick,D., '"Topics in the complexity of combinatorial
algorithms'", Tech. Report No. 74 (Dec. 1974), Dept. of

Comp. Sci., Univ, of Toronto.

[3] Knuth,D., "The Art of Computer Programming", Vol.3,
(Addison-Wesley, 1973).

[4] Pratt,V., and Yao,F., "On lower bounds for computing the
i-th largest element'", Proc. 1l4th Ann., IEEE Symp. on
Switching and Automata Theory, (1973) 70-81.

[5] Yao,F., "On lower bounds for selection problems',

MAC TR-121, Project MAC, Mass. Inst. of Technology.

21

