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Abstnact An algo::ithm is descr"ibed which deter,nines the median of n

elements using in the worst case a numben of comparisons

asymptotic to 3n.



Introduction

For many p:roblems concerned with order"ing elements thene is onlv a

nanrow gap between rowe:: bounds on the numbe:: of pai::-wise comDanisons

nequired in the worst case and upper bounds pnovided by simple algor"ithms.

For the problem of sorting n totally ordered erements, for example,

rlnnar an'l 'l^r.ron lgsnds as}rrnptotic to nJog.n ane easil-y obtainedsoJ.rrl/LvLf

(see [3], section 5.3.1). In contrast with thiso the pr"oblem of finding

the median (or, when n is even, eithen of the tworrmediansil) has p::oved

much more challenging, and only recently has any upper bound that is O(n)

been obtained. At present the best lower bound knor^rn is l-.75n + o(n) ([ 2],

I t+] ), whil-e the best upper bound. p:reviousry nepor-ted is 5.43n + o(n)

([r], 5'43... = 39L/72). rn this paper we shar-r impnove this upper bound

by giving an algonithm using only 3n + o(n) comparisons.

We may always assume that n

a rr+ @r? or ?r- -rl to the elements

odd, for. if n is even we can adioin

compute either of the two Itmediansil+^

2, Theoretical- fi:amewonk

We suppose that we are Biven a totally ordered set T. The order is

not known initialry and can onry be detenmined by penfonming a sequenc..

of pair-wise comparisons between elements of T. After any such sequence,

the curnent information about the orde:r of T is expressi.ble as a partial-

order Q on the el_ements of T.

Let P be a partially ordered set. A sequence of comparisons between

elements of T is said to produee P in T when the partial order Q

obtainedrrcontains, P, that is, when thene is an onden-preserving embedding

of P into Q. If ltl = n ) lf l, we define B(prn) to be the minimum number

of comparisons required in the wonst case by an optimal algonithm to pnoduce

P in To and tet g(p) denote g(p,lpl).
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The nantial onde:: Sk ot k + m +
m

the eentnc, which is less than each

each of the m r"emaining elements.

thein Hasse diagnams, thus SI by-m

I elements has one particular element,

of k othe:: elements and qreater than

Pantial ou-de::s will be depicted by

The problem of finding the
v,si in T, when lrl = 2k + l-

1-^,,-r c^- -r qk tluullu f v! 5\ek /.

median of n elements is

= n. In this paper we

the pr:oblem of pnoducing

shall denive an upperl

?. Yanrs hvnothesis

It is clean that g(Prn) is a

always ignore any extra elements.

shown when P is

decreasing functiol, .'f n,

That g(Prn) can stri'ri l-y

since one can

decrease is
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can be shown

be embedded

8 (as

P can

by an erlumenation of cases ) but

in thp na*1-ial o?der

r^rhr'nh i< nnndtt.ad ttc.ino 7 qrrmmptnr'n nnmn:niqonq
' eJ """-

Yao conjectuned in[5] that g(Sk,r) = g(sl) forafl.n >k +m+ l--m--m
v n in r.rnndq that extra elements do not help in producing S,-. We know
lll

of no eounter-example, and this hypothesis has a ::emarkabl-e consequence

that stimulated the development of our algorithm.

Theorem 3.1 (Proved in [5] for a bound of 3n.)

Unden Yaots hypothesis, ther.e is a median algor.ithm for n el-ements

that uses at most 2'5n + o(n) comparisons.

Proof. Take 4k + 2 elements and perform 2k f 1 comparisons to obtain

2k + L disjoint pairs. Apply to the lowen 2k + I el_ements an optimal_

='l onrjt-hm J-h:J- -rodu.es SI . The nesult contains the p;rrtial ord.er shor^rno!6v! r L11"' Lrrq L yr vuquso uk.

in figune 1 o which contains t3u*t.
v

f r5. r.
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Thus by Yaors hyPothesis

similarly take 6k * 4 el-ements and perform 3k + 2 companisons to

obtain 3k + 2 disjoint pains. Apply an optimar are;1i.lhm that pnoduces tin*t

to the upper 3k + 2 elements. The::esult contains sjj.*j. Thus by Yaors

hypothes is
, ^2k+L\ / ^2k+t ,, \g(tZt *I ,, = g("2kn]r oK t +J

.<3k+2+c(s;k+I)

Combining these results we obtain

. 2k+1 .^k,
s(s;; -) .. sk + 3 + s(s;)

n )k. )v+1
since c(s;) - o and s(s;;) < e(t;;;;), an iteration of this inequalitv

yields

c(sl) .< 5k + o(roe k)

Setting n = 2k + I gives the theonem n

The remainder of this papen wil-I be devoted to proving (without using

yaof s hypothesis) that there is a median algonithm for n e-Lements tha't:

uses at most 3n + o(n) compar^isons.

+. Factory Pnoduction

Tn ceneral f o npndll.'F m 6] jginr'n+ n^nr'aq n"F : n=nf i:1 '\r'1er. P, wbiCh
-- Lv yt uuuus rrr \rroJvrrrL vvl/r!e

we denote by m x P, may require fewer than m times the number of comparisons
'l

tn nr.odrrr'e a single P. For example, g(Sirk) = 6 fon k > 5, but

E(2 x Sl) -. ff. A systematic exploitation of this sort of ecr:nomy is

achieved by trfactoniestt. We shalt sustain the metaphon in which we negand

the devetoping partial orden as a gl:aph which is being rrassembled'r fnom

component pants by making new comparisons.

Dtz+.I ,u*rr;+r<, 
f 2)s(s-"'-) = c(s;

.< 2k + r + e(sl:).
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A faetory for a partial- order P is a comparison algorithm with

continual input and output of el-ements. Th. input, in the simplest kind

of factory, consists of singleton elements. at intenvals a new disjoint

copy of P is output. The vital character.istics o.1 ,r factory are the

number of comparisons needed to set up the factony, the initial eost I,

the nunrben of compar^isons then needed to produce each copy of P, the

un'f t eost U, and thildly the pr.oduetion yesidu.e R, which is the maximum

tirlmber of elements that can r"emain in the factony when tack of input

stops pnoduction. Fon al-l m > 0, I * m.U gives an upper bound on the

number of comparisons required to pnoduce m x P.

An unexpected featur:e of our median algorithms is that they involve
v

the factory production of many copies of Sl for some kr where k = o(n).

The following theor"em is eventual-l-y proved in section 9, It is stated

here to provide motivation fon the next section.

Theonem 4.1

Fo:: any k, there is a factony F,- for" Sl with characteristics'KK

r Il P :c ,r^fined above SuCh that-k' "k' 'k *" *"

u. - 5k, r. = o(k2)" R = o(t 2)
K-K-K

fjeveraf stronger resu.l-ts witl- be given in l-ater sections. At this stage

we shall explain how such factories can be exploited to provide economical-

median algorithms.
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5. Basic median algonithm

Theonem 5.l-

Given factonies FU satisfying UU - Ak for some A r Oo Ik = O(t<2)

and \ : o(k'), thene is a median algonithm which, for n elements (n od,1),

uses at most An + o(n) companisons.

Proof- Given n let k = Lr,$ I . The algonithm finst sets up the facto'y F,t +eL r\ - Lrr J . rrrE qr6vI'rLllu -LII.!'L seLU up rng - k

using I, comparisons. The subsequent openations involve foun interconnectedK-
p L"CCeSSeS .

(i) wheneven sufficiently many input erements ane supplied to F. a new
J(v

copy of S,' is produced at cost U,--rJ -k -- . "k.

(ii) The centres of atr tire s| which a::e pnoduced ane to be ordened. As

each new sf :-s completed, its cent:re is insented using binany insention

(see I S] ) into an ond.ered chain of pnevious centnes.

( iii ) V{hen no fu -krthen Sl can be produced, i.e. (i) has halted, consider

the two extneme ^k'Slrs of the ondened chain (see figune 2J.

€.'- .r rl5. z.

$r
eliminated

eliminated

t;
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Suppose the chain is of length t and the tc-rtal number of elements remaining

in the factory is r. The centre of the upper Sf is above each other centre

and above each erement in the bottom harf or any Sf. Prouid.ed' t-l > r,

this centre and all- the elements in the upper iralf of the uPper Sf an"
K

above more than half of the total numben of efeniel'Its ' Therefore these k+l

elements are above the mediano and similarly, the centre and l-owen half of

the lower Sl a::e below the med.ian. All- these 2(k+I) elements can be
N

eliminated from the algorithm, leaving the problem of detenmining the

rnedian of the remaining elements. The lower half of the upper s]l and the
J<

^k
upper half of the lower Si are returrled to the factor:y as 2k singleton

el-ements.

(iv) When none of (i), (ii) or (iii) can proceed we must have n < \

(fr:om (i)) and t -< r+1 (fnom (iii)). Thus the total- nuinber m of remaining

elements must satisfY

m = t(zt+r) + r .< (Rk+l) (zt+r) n \ = o(k")

by the conditions of the theonem. The median of these m elements, which

isthemed.ianoftheor.iginalset'canbefoundbyanylinearmedian

algorithm or, as we prefer hese fon simplicity' by sorting them using

o(k".1og k) comparisons.

The total- number of SIrs p::oduced in Fn is pnecisely (n-m)7(k+:-) + t'

where mrt are the nwrbens used in (iv). Fon each, the binany insertion

in (ii) requires at most ftoe, (n/(2k+f)) I comparisons' The number of

comparisons used by the camplete algolrithm is ther:efore at most

e

rk * ((n-m)/(t+r) + t) (uu + fLoz' (n/(2k+r))-)+ o(t"'tog lc)

-< (n/k)ut n O((n 1og n)/k) + o(k3 rog k)

-An 
n l

since t -< r+l = o(k')rk-rorand u.l- - Ak n

-7-



Using Theonem 4.1 we immediately have

Co::ollary 5.2

There is a median algonithm fon n elements which nequines at most

5n + o(n) comparisons.

6. Hypenpairs

The proof of Theonem 3.1 red us to the partiar o:rders we define

hene as rfhypenpair.srr, which ane an impontant product of the factories

we shall descnibe.

A hyperpair P*, whe::e w is a binany string, is a finite partial

onden with a distinguished element, the eentre rdefined reeu::sively by :

(i) Pr (f is the empty stning) is a single el-ement, and
A

(ii) P--, or P is ntrtar'nod fr:i-.m two disjoint nnn'ieq nf p by.w1-..w0*-vruJvf,^rLvvy4.

companing the centnes and taking the highen on lower^ of these

respectively as the new centne.

Examples of hypenpains, with the centnes, ane :

',,0= \,P'= \ , Porr= 
d

-B-



Theonem 6. I

Suppose l"l = m and P-- has centre c'

l'i \ p hae ?m elementsrand exactly 2*-l- .ornparisons ar^e required to
\!/

produce it.

(ii) If w has h ones and m-h zeroes then c togethen with those efements

h m-h
greater than (l-ess than)c in the partial- orden are 2" el-ements Q""'

e_l-ements) forming . Pnh (Prm-n) with centre c. The elements gneater

than c form a aisjoint set of hyperpair" P)., PO, POO'...POh-l, and the

elements less than c fonm a disjoint set of hyperpairs P^, PIr trrr...Prm-h-l

I r r 1 | IT-

:nrr k

has h zeroes

h
\<

and h ones then P* contains

figure 4,

contained

with centre c for

which w = 0IIOIO, h = 3, and

the hypenpair ane drawn boldlY.

k
D,

K

Pr:oof. (i) and (ii) may be proved by induction on m. (iii) follows

rr'om (1t-l r-J

This theonem is illustrated

k = 7. The slsments of the

r r5. T .

1n

1n

by

^7::-1

-nr"tntn
vffvrv



I . Accounting princip.les

We have been ::epnesenting pa::tial orders by their: Hasse diagrams.

It happens that the pantial- onders which we need to descr"ibe are

nepresentable by acyclic diag::ams.Each compar:ison performed combines twcr

acyclic components into one. For ease of description we sometimes ignore

parts of the partial onder by removing edges fnom the diagram.

To assess the total numben of comparisons used by an algonithm we

have found it convenient to count the number. of edgesr fr r:emoved in ttr,is

way. Initially thene are no edges, and finally, if we have preserved

acyclicityrthere will be n-I, thus the number of companisons made must.

be n-I+n. The suitabitity of this convention depends r:n the special

nature of our aleorithms.

Pnuning

In Theonem 6.1

In order to separ:ate

fr'nm fhe npst some

15 edges need to be

(iii) we showed that suitable hyperpaj rs contain

the subgnaph containing -jusl.; tirese 2k+I elements

of the edges must be broken. In figure 4 we fjnd that

nemoved. Ttris operation is call-eel ptwning.

ST

Let pr" (w) n the tpuard-pmtning eost for P--, be the n'-rmber of eCF. -,' l- - lj'

that must be b::oken to nemove all el-ements except the eerrtr:e and those

greater than the centne. The doumuardnruning eost J'r,7 P.r, pou(w) js

defined similarly. In figur:e 4 we can count pr"(0110J"0,r :10 and

pr^(011010) = 11.

-1{l*



The special hyperpairs H- for r ) C ane Cefined by :

n-r.o 
H-p"l - '0
H-p"2 - '0r

and H^. - D +-fzr ot(ro) "

H = P t-l"2t+l- 0r(r0)' -r for t >, 1

r,. | ^rThus I H"l - 2' . Note the curious initial inregularity of the binarv

sequences used. The effect of this will be to equalize upward- and

downward-pnuning costs .

Lemma l

(i) pr- (olt) = 2 , Dr- (01) = 2'IO

(ii) For all w, pr, (wOI) = 2pnr(w) + f

and Dr (w]0) = 2p::o(w) t 1

(iii) For: al-l t > or Dr. (Orr(Or)t) = e.zt-t-_L

and pr (or(ro)t) = 3.21-r-o

Proof. (i) By inspection

(ii) In figur:e 5 we show a PwOI pansed into fou:: connected cop.ies

of P*. It is evident that to upwa:rd-prune P*0, we must

upward-prune two of these copies and renil ,.e one further edge.

The nesult for downwand-pnuning of Purl_O is by a symmetnic

argument.

(iii) This fol]ows from (i) ana (ii) by induction on t u

-11 -



__-"!Y:d:tTlu_*p

upward-prune

nemove edge

€.'a q llnt,r:nJ-nnrtn 
"-a 

n€ Pr 16. J. \rPwor u yr urlrtrtS ". .,n] .
wvI

Some useful

Iater reference

Theorem 8.l-

(i) If any edge

the centre is

properties

AS:

of the H structures aren coller.:ted for

nf an H-^ is l:en',')-r-'do the component no'L {:onta.irii:rgr
H for" some s < l?.

S

(li) For: h >- I, H2h can be pansed into itn len'i:re C:.nd a.lisjoint

set {H^, Hr H2,,,.,H2h_l_} where the ceritr"es of
v Jt

Ho, H3o H5, HTt...'il2h-j_ are above C and the eer:rtres ol-

Hl' H2' Iq n H6 , . . . 'H2h-2 
ane ]relcv"' C 

"

(iii) When H,- is upwand-prune<1 fon :. : 0, 3, S , '7 r..,r
lr/) |

or downward-pruned for r = f., 2, 4, 6r... the::e remain 2''-'-'
- t-t. Jelements, and the number lf edges br:.t^n ; s at n'c'' t/, .2rL r 

z

Proof . ( i. ) and ( ii ) are prcvt'.l by i.ndrrc*-:i':n 
"

Lemma I (iii) and Theorem 6"i (ii) If

( i-ii ) f r:-l.l ows f r'nm

-12*'



{l ,. ,r*;3I.r i: ,2

hIf k.< 2"--l , Hrn can be pruned to a:subgraph with 2l<+J- elemeli-s

. ^lccontaining S;. The pnuning cost is at mcrst 3l + 2h and the cc-npon{'nt. r

d*'t.lr:hed are o.f the form H , s < 2h.
s

r;,13i)r1 . {Jsing the Cecompcsiti"on of (ii) of lhe iheor"ern, we uprrlar'-}-p:'r:r,

a sui"Lable subl.;i-'; of rhe upper hype::pairs lo yielc a tc"t;:t,L qrf k gf,::li',.:'.-:

ancl ,r,:tach the :"enaining upper hyperpairs. A similar operation is

, ,.'*rrmed on Lhe lover hypenpains. It fc:Ilcws fpom (iii) cf ii:e !l'r"1 : ' "'

i::rat this is possible and that the cost is bounded as claimed I

9. Simple factories for sl

We desc:ribe a factonY FU which produces partiat orders with 2k+1

el-ernents containing SI. Any such partial- onden wiII be denoted by
-K

-r. h-l hail. Let h satisfl'r 2" -.s k -< 2"-1. Fr- use:" the following pair of
J<' - K

r nf er"r'e I ated nrocesses .t v+\r uvg r- v

Hyperpairing. Whenever there is a pair of H"'s in the fac.tory i-o:t,

srome r < 2h- their centres are compar"ed to prodrice a new !{'^,r. l{hent "s',"' n*l

:n H io nnnrirrned it iS Sent tO the pnuning prOCeSS.or. ,,2h ro }/! vuuL

-Lpruning, Each Hrn is pnuned to an Sn as dei;cnibed in Cor':l-lary 8.2"

The detaeherl hvnerDairs H with s < 2h a::e::eturned to the hyperpair':Lng...tE,. E _ 
S

-vprocess. The S]' is output from the factory.
-f

Vlleen F. comes to a halt thene can be at mos+ ^''^ ^^^'lr 'r€ u fr.-'r
,a 

,*o LL' d ll.dl-L Lllelc uqll us q L lllvo L vrrc --yJ "- t'I'

.Jach r < 2h in the factorY and so

)h2R =2'"-L <4k--k

-k
To produce m ?utputs of Sir.rt most (31: + 2ir):n edges are broken ti:L."i.rrf;

-v ')

,,',,iiingo 2km edges are outpr-rt in tlLe Si's and at most 4l'-- edges ft:'' "'

.i rt 't:lie r'el siri.,r,ri 1l-r'apits iir tlit* f ;rct.c-rl'y. "lltul; the totai irurnber' {-r f

-13-



companisons is at most

(5k+2h)m+I+k2

and so Uk : 5k and

This specification of

a
.< 4k

proves Theonem 4.I as prrrTl'-sed.

I
k

F-k

1n Improvements

The first, and most obvLous, impnovement to the l:asic algorithn

c..,f section 5 anises fnom the obsenvation that the elements returned from

the top on bottom halves of the -Sl-<ts efiminated at the ends of the chain
k

can be broken into (k-1)/2 pairs and one singleton. Whenever a pair'

instead of two singletons, is input to the hypenpair"ing pnocess of FU,

one comparison is saved. The total numben of comparisons thus saved iri

ti:e basic algor"ithm is ]n + o(n), which yields a median algor:ithm witir

only 4.5n + o(n) comParisons.

A second more fundamental improvemerrt comes by the new pllocess of

t'graftingtt. When an Hrn has been completed by the hyperpairing pr"ocess'

instead of p::uning it immediately, we compal?e new singteton elements with

its centre, at the cost of only one per element, until k of the new

elements are alf above o:: all below the centne. The new elements mav be

used in the fina]- 5f urro*ing more of the hvpenpairs attached to ttre:

centne to be simply detached, breaking just one edge, instead of being

upwa::d- or downwand-pruned which bneaks many edges. Fo::' simplicity we can

dr.op the first improvement descnibed above so that the iactory input

consists just of singletons. The number of edges bnoken in the

constnuction of eacn sf using g::afting is at nosty'zk + 2h (see Theorem B'l)

instead of approximately 3k. This saving a}l.ows a median algonithm rrsing

at most 3.5n * o(n) companisons. though in this ease the more signifir:ant

nesult is the following :

-14-



Theorem 10.I

For any k, there is a factony F, fon Sf with U,- - 3'5k.-KKK

This is o11r best upper bound on the unit cost when pr"oducing lange numbers

vof Sl's. It coincides remankably with the Louet bound pnoved in [ 3]

fon the production of a single S'f,.

Our" final task is to combine the ideas of the two impnovements

oe:scnibed above and to give the nesulting algor:ithm in gneaten detail.

lI. The final- algorithm

We find it natur^al to descnibe the algo:rithm in terms of

interconnecting processes with ttpipelines" conveying pantially ordered

sets from the output of one process to the input of anothen. There are

also two :resenvoirs, one containing singletons and the othen containing

pair"s. A flow-diagram il-Iustnating the intenconnections is given in

figune 7.

Initia[y all n elements ane in the singleton t-eser"voin.

(i) Pairing.

Singletons ane input from the singleton reservoi:: whenever

possible, compared in disjoint pairs and output to the pair reser' -"'

(i-i) HAperpair+ng.

If no other process is active, this process c':t€mpts to produ,:e

one new H^, as descnibed in section 9. If necessary a pair may be
'zn

innur from the pain reservoir. Any new H.L is output to the graftingrrv...--.vr-------J.-2n

nn^^6qQ

-15-



t'i-i.'\ Cpnffa'nn\ rrf /

T?ris nroness is annl icd

errnn'lrr nf nainc r'nnttt fnnm tha-- r**-

snefi r'no nf en H the nenJ-r'p
-- s- ! r^ro v- .- --2h

pairs as shown in figune 6.

to each ll " fr^om (ii).
ZN

n= i n noq r. rrnr'Yt Al- :nrrysfr

has edges tc a numben of

It uses a

^€ 
!]. ^D LdEe Vr Llrs

singletons and

p-

r r5.

ihaf 1 t I l\t+rrf L4s!!J t

a new pair

If o- 4D

othenwise

The resul-t of

=D- =D -0. As

is compared with
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In case (2), the edge ab has been bnoken and s

In case (ef) the edge cb, and in case (as) tne

The nunrben of edges broken up to a given stage

s + min{pl, poi + min{pl + l, po}.

has been increased b;" one 
"

edge ca o has been bnoken 
"

is at most

When s + 2 max{pl, Po} = k on k-l-r the nesulting partial onder" is
passed to the p::uning process.

(iv) Pruning.

When an input is necej,ved fnom (iii) it is to be pruned to.trr
-Lc" .i -- ^.. ^L5k ln such a way that as many as possible of the hypenpains attachecj t.o

the centne ane detached intact. Thus k - (s+2pr) elements need to he

pnoduced by upward-pr:uning from the uppen har-f of the Hrn, and k - (s+2po)

by dor"rnwar"d-pruning from the r-owen harf . Fnom Theor.em B,r (ii) anri {i; i j

t^re see that, by pnuning an appropniate subset of the sub_hlperpairs of
which nrh i" composed, any such numbers of el.ements may be obtaj.neC

r\nanr'earrr Rrr Tlggpgm g.l_ (iii) thp toi_al nf rrnvt suroErJ ' uJ r rreorelll tt. l- ( llf J LrrE Lv Lar ur upward- and downwand -prrrrr ine

costs is bounded above by % x (total numben of elements produced). In

addition at most 2h edges ane broken to detacli complete sub-hyperpaips"

The nurnben of edges bnoken duning gr.afting and pr"uning varies vrith
-vdifferent Sit". The accounting is made easier if we a;-so assess at thi.s

point trr" ,,.,nlur of edges which may be b::oken when and if such an ij. i s

ultimately destroyed at one end of the chain, Eithen the upper or lrr^rer

hal-f must be decomposed into pains and singletons fon recycling to t-fr.r

resenvoins. The nurnber" of edges bnoken consists of onc-: to detach each

pain and one to detach each singfeton, and. this is bounde<l abov6 5,7

l(t-s-r) + s+l = ](k+s+t), since thene will be at most s+l singfetons in
the half of this Sf wfricfr is necyclecl.

- J-I "



The total- of edges broken duning graftingr pruning and the final-

destruction of tfre Sl is at most
K

s+2 min{pl_, po} + f + 3/z .(2k-2s-2Pt-2po) + 2h + }(k+s+t)

-( 11"k + 2h + t/, - Tr,(s + 2 max{pr, Po}) -< 2k + 2h + 3

since s + 2 max {p-, p } >. k-1.--L -O

(v) Inserting.

This process receives the new par"tial- order" sf foot (iv) and

inserts its centne into the totally ordened chain of centres of previous

par"tial ordens, using a binary insention algorithm. The numben of edges

br^oken during insertion is one fess than the nunber of compar:isons made

and so is at most logr(n/k) since the::e are nevelr more than n/(2k+f)

centnes in the chain.

( vr .1 It LLmLnat1-ng.

This process is invoked only when none of the pnevious pnocesses

can continue, therefore we can assune that these processes are netaining

at most the following elements :

in (i) a singleton

in (ii) one each of HIr H2'...rH2h-l_

in (iii) one Hrn and 2k-4 other eLenents

in (iv) none,

and both reservoirs are empty' This makes a totaf of at most

,>hrl ? h-]
2zILiL - r + 2k-4 -< 8k'+ 2k - 5 since 2"'-< k.

Suppose the chain of centres maintained by process (v) is of length t

at this time. Then, as argued in the proof of Theorem 5'I' if
):kt-I > gkz + 2k - 5 the centne of the highest Si in the chain must be above

the median. Ther:efo::e this centre and all el-ements in the upper half of

-t-8-



:kthis Sf may be eliminated from the algon:'.titm" Similari"v the eent::e an,l

Iower ha.l-f of the l-owest 5f in the chain may be el-iminated. The etip.^i

connecting the eliminatea "f"*"nts to the main component wiII be

counted later".

The lowe:: hal-f of the highest SX ancl the uppe:r half of the fcwest if'

ar^e broken down into pairs and singletons and recycled to the restrrel:ti.ve

reservoins. The edees bnoken in the course of this have been counte(l

'i-l.readv in ( iv ) .

(vii) Coda.

This finishing pnocess is invoked when no other process can

continue, so at most 8k2 + 2k - 5 elements are netained by pnocesses

(i)-(iv), and the chain maintained by (v) and (vi) is of length
a

t.< 1+ 8k'+ 2k - 5. The total numben of el-ements nemaining is thenefr-rr:p

0(k"). The median of the oniginal net is the median of this remairiins
e

set, which may be for.rnd using O(k") comparisons.

l'2. Final- account

The numbe:: of edges bnoken dur.ing the constructi.on, -lnsertiorrltd

destruction of o"" Sf, plus the number of edges connecting the k+.1

elements which are eliminated is at most

2k+2b+3+logrb/k)+k+t

which gives a nurnben of 3 + 0((1og n)/k) per element e ii.minated, Sin,'o

?1
n-O(k") elements are eliminated in this way and the e.:oCa uses O(k )

further companisons the total fo:: the whole atgonithm is at most

3n + o((n log n)/t< + i<3)
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Choosing

we reach

,l

- \!K - tn log^ n,
z

or.:r final- uppen bound of

3

3n + O((n log n)q) - :n.

aa a a Q

aa a a a a

singletons

(i) paining

pa]-rs

IIIII

hyperpairing

( iii ) gr"afting

(iv) pruning

(rr) r'n<ani-r'ns+.rvv- L4lro

vi ) elirninating

(vii) coda

f rE;. t.

-20-



Acknowledgements

We were encouraged and suppor:ted in this work by useful-

conversations with Michael Rabin and severa-l members of the

Theory of Computation Group at Pr"oject MAC.

Referelrces

t fl BIumrM., FloydrR., PrattrV., RivestrR. and TarjanrR.,

"Time bounds for selectionr', JCSS , Z (I973 ) 448-461.

i21 KirkpatrickrD., trTopics in the complexity of combinatorial
algorithms'rn Tech. Report No. 74 (Dec. 1974), Dept. of
Comp. Sci., LJniv. of Toronto.

t 3l KnuthrD., rrThe Art of Computer Programming", Vol.3,
(Addison-Wes1ey, 1973 ) .

t 4] PrattrV., and YaorF.o "On lowen bounds for computing the
r-th largest element", Proc. l-4th Ann. IEEE Symp.on

Switching and Automata Theory, (fgZS) ZC-gf.

t 5l YaorF., rrOn lower bounds fo:r selection pr:oblems",

MAC TR-121, Project MAC, Mass. fnst. of Technology.

-2r-


