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Abstract

This thesis is about probabilistic simulation techniques. Specifically we consider the exact or perfect

sampling of spatial point process models via the dominated CFTP protocol. Fundamental among

point process models is the Poisson process, which formalises the notion of complete spatial ran-

domness; synonymous with the Poisson process is the Boolean model. The models treated here are

the conditional Boolean model and the area-interaction process. The latter is obtained by weighting

a Poisson process according to the area of its associated Boolean model.

A fundamental tool employed in the perfect simulation of point processes are spatial birth-death

processes. Perfect sampling algorithms for the conditional Boolean and area-interaction models are

described. Birth-death processes are also employed in order to develop an exact omnithermal algo-

rithm for the area-interaction process. This enables the simultaneous sampling of the process for a

whole range of parameter values using a single realization. A variant of Rejection sampling, namely

2-Stage Rejection, and exact Gibbs samplers for the conditional Boolean and area-interaction pro-

cesses are also developed here.

A quantitative comparison of the methods employing 2-Stage Rejection, spatial birth-death pro-

cesses and Gibbs samplers is carried, the performance measured by actual run times of the algo-

rithms. Validation of the perfect simulation algorithms is carried out via χ2 tests.
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Introduction

The huge increase in computing power over the last 25 years has had a profound effect on statistical

methodology and applied probabilistic modelling. There have been numerous developments and

application of simulation methods in various fields. Realistic models for real-world phenomenon

usually involve a wide variety of complexity on high (or even infinite) dimensional state spaces.

Mathematical analysis of such models is therefore difficult, if not impossible. However the onset of

ever more powerful computers has made it possible to examine such models via stochastic simula-

tion: (stochastic) realizations of the models can be obtained and statistical analysis carried out. This

has spurred a whole new generation of stochastic simulation algorithms; one in particular, Markov

Chain Monte Carlo (MCMC), is now widely used and recognized as a powerful tool in the statis-

tics community. Its origins can be traced back to statistical physics (Metropolis et al. 1953), and

concerns the simulation of models via Markov chains or processes.

The essence of MCMC involves the construction of a Markov chain which converges to a stochas-

tic realization of the model being studied. This class of algorithms has had numerous applications

in statistical physics, image analysis, Bayesian statistics and, more recently, spatial modelling and

stochastic geometry. However there is a basic set back with MCMC: in practice one has to settle for

approximate samples, since a priori it is difficult in most cases to determine when the Markov chain

will have converged. However it has been discovered that, for some chains, it is possible to modify

the MCMC algorithm such that it automatically signals when convergence has been achieved.Such

variants, which deliver exact samples, have been coined perfect or exact simulation algorithms.

Indeed a number of models, including the Ising, q-state Potts and random-cluster models from

statistical physics and point process models in stochastic geometry have been treated using perfect

simulation (Propp & Wilson 1996; Fill 1998; Kendall 1997b; Møller 2001). Stochastic geometry,

the roots of which can be traced back to integral geometry and geometrical probability (Stoyan et al.
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1995), concerns the modelling of phenomena that arise as complicated geometrical shapes or pat-

terns. Furthermore, point processes provide plausible models for collections of individuals or events,

such as plants, animals, stars, structure of biological cells and rock sections, disease outbreaks and

earthquakes. For example Figure 1 below depicts the locations of the Redwood seedlings data which

was originally studied by Strauss (1975), and later by Ripley (1977). It is clear from the figure that

there is an underlying ‘clustering’ mechanism generating this data. Therefore a natural way to model

these seedlings would be to assume that there is an unobserved ‘parent’ process which gives rise to

the observed ‘daughter’ process. The objective then would be to sample the parent process given

the observed daughter process.
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8
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0

Redwood Seedlings

Figure 1: Positions of the Redwood seedlings; the data was obtained by kind permission from Peter Diggle’s web page

http://www.maths.lancs.ac.uk/˜diggle/.

Perfect simulation has developed rapidly since its inception. For example Coupling From The

Past (CFTP) is probably the most popular and widely studied perfect simulation algorithm. It was

introduced by Propp & Wilson (1996) for Markov chains on finite state spaces. Within the next

few years it was generalized to continuous and even unbounded state spaces (Murdoch & Green

1998; Kendall 1998; Häggström et al. 1999; Kendall & Thönnes 1999; Green & Murdoch 1999;

Kendall & Møller 2000; Berthelsen & Møller 2002b). It has also been the focus of several doctoral
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theses (Wilson 1996; Thönnes 1998; Dimakos 2000; Ambler 2002). While providing solutions to

problems of convergence and approximates samples, it also poses more challenges to the researcher.

This thesis is another addition to the simulation literature, aiming to introduce and develop more

perfect simulation algorithms for point processes.

Overview of Thesis

This thesis comprises five main chapters, a concluding chapter and two appendices. We consider the

perfect sampling of the conditional Boolean model, area-interaction and conditional area-interaction

process. An investigation of the Van Lieshout & Van Zwet (2001) algorithm for conditional Boolean

models, which concludes that their method is actually biased, is first presented. Following this three

perfect sampling procedures for the conditional Boolean and conditional area-interaction models are

described: a 2-Stage Rejection method, one employing spatial birth-death processes and an exact

Gibbs sampler. For the area-interaction process, several existing algorithms are reviewed and the

possibility of omnithermal sampling for the process is also considered.

The basic theory and foundations for point processes and their simulation is introduced in Chap-

ter 1. A natural way to sample point processes is via spatial birth-death processes, introduced by

Preston (1977); indeed a number of CFTP-based perfect algorithms employ birth-death processes

(Kendall 1998; Kendall & Thönnes 1999; Berthelsen & Møller 2002b; Fernández et al. 2002). A

description of how point processes can be simulated via spatial birth-death processes is given and il-

lustrated by simple examples. Chapter 1 also introduces the ideas behind Markov Chain Monte Carlo

(MCMC) and perfect simulation, including a description of the Coupling From The Past (CFTP) and

Dominated CFTP (domCFTP) protocols.

One of the first simulation algorithms we investigated was that proposed by Van Lieshout & Van

Zwet (2001) for sampling point processes conditioned to satisfy some event. Their method was

intended to be perfect, ie. producing an unbiased sample in finite time. However our investigation

uncovered an error and it was concluded that the method produces biased samples (Shah 2003a; Van

Lieshout & Van Zwet 2003). This motivated the consideration of stochastic domination in a point

process context in order to quantify the nature of the bias. Preston (1977, Theorem 9.1), which uses

coupled birth-death processes in order to provide conditions for stochastic dominance, is extended
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to the case of strict stochastic dominance (Corollary 2.1). This allows the bias of the Van Lieshout

& Van Zwet algorithm to be quantified in some cases.

Chapter 3 then considers various other perfect simulation algorithms for conditional point pro-

cesses. A 2-Stage Rejection algorithm is developed and shown to be more efficient than ordinary Re-

jection. The Cai & Kendall (2002) algorithm is described in Section 3.4.1. The original formulation

employs immigration-death processes on the integers; the description here is phrased, equivalently,

in terms of spatial birth-death processes. Gibbs sampling for conditional point processes has not

been considered before in the literature; therefore Section 3.5 describes a CFTP-based Gibbs sam-

pler. The coupling construction vaguely resembles that of Häggström et al. (1999), as their notion

of quasi-minimal and quasi-maximal elements is employed in order to devise the required coupling

of ‘bounding’ processes. Results of simulation experiments, aimed at comparing the performance

of the 2-Stage Rejection, Cai & Kendall and exact Gibbs algorithms, are presented in Section 3.7.

The basic conclusion is that 2-Stage Rejection is very competitive for moderate parameter values,

whereas the Cai & Kendall algorithm performs well for extreme values. The exact Gibbs sampler,

unfortunately, is always outperformed.

The area-interaction process of Baddeley & Van Lieshout (1995) is the focus of Chapter 4. Rejec-

tion, Gibbs sampling and two methods (Kendall 1998; Fernández et al. 2002), which use birth-death

processes, are reviewed. Simulation via spatial birth-death processes involves computation of areas

of irregular regions in order to determine appropriate acceptance probabilities. Here, we develop the

‘cluster’ trick of Kendall (1997a), yielding the first implementation of the Kendall (1998) algorithm

which employs this trick. The algorithms considered so far sample the area-interaction process for

fixed model parameters. The emphasis in Section 4.6 is on omnithermal sampling, where the pro-

cess is sampled for a whole range of parameter values simultaneously (cf. Propp & Wilson 1996

and the references therein, Wilson 1996, Dimakos 2000 and Grimmett 1995). The area-interaction

process has not been the study of such a sampling procedure; the work here has yielded an exact

omnithermal algorithm for this point process.

Chapter 5 combines the ideas of Chapters 3 & 4 and introduces the ‘conditional area-interaction

process’. We incorporate the Cai & Kendall (2002) and Kendall (1998) algorithms in order to

define a domCFTP construction. In addition a 2-Stage Rejection procedure and an exact Gibbs-

within-Metropolis Hastings sampler are also developed. A quantitative evaluation of the actual run
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times of these three procedures is carried out. The results indicate that the modified Cai & Kendall

algorithm performs well for extreme model parameters, while the 2-Stage and Gibbs algorithms are

competitive for moderate parameter values. It is not the case now that the Gibbs sampler is always

outperformed by the other two; it is as efficient, if not more so, than the 2-Stage algorithm for all

parameter values.

Finally, Chapter 6 summarizes what has been achieved in this thesis and possibilities for further

work are outlined; in particular we comment on the possibility of omnithermal sampling for point

processes in general, as well as multi-parameter omnithermal sampling. The experience with the

Van Lieshout & Van Zwet (2001) algorithm emphasizes the necessity to validate any implemen-

tation of a perfect simulation algorithm, so as to ensure there are no coding errors or theoretical

discrepancies. Therefore the perfect simulation algorithms of Chapters 3 & 5 respectively are vali-

dated via χ2 tests, which are presented in Appendices A & B.

xix





Chapter 1

Mathematical Foundations

1.1 Stochastic Geometry & Point Processes

Stochastic Geometry refers to that area of Mathematical research which provides suitable models

and statistical methods for analyzing data representing complicated geometrical patterns. Examples

of such patterns include the (spatial) distribution of stars and galaxies, locations of trees in a forest,

features of biological tissues, rock sections studied in geology, oil reservoirs and ore deposits. The

modern theory of Stochastic Geometry was initiated by D.G. Kendall, K. Krickeberg and R.E. Miles

(see Stoyan et al. 1995 for a variety of literature on the historical origins and recent advances; D.G.

Kendall’s foreword provides an anecdotal glimpse into the origins of the subject).

The most basic geometrical objects are points, and collections of random point patterns or ‘point

processes’ play a fundamental role in stochastic geometry. More complicated objects can be built

from a collection of points, eg. the Boolean model (Definition 1.10 or 3.1); in addition the theory of

line and surface processes generalizes the notion of point patterns to higher dimensions and is useful

for modelling applications in geology, stereology and medicine (a rigorous treatment is given in

Stoyan et al. 1995). The main aim of this thesis is to present new and existing simulation algorithms

for some point process models.

A spatial point pattern on some space X can be viewed as a finite unordered set or ‘configura-

tion’ of points x = {ξ1, . . . , ξn} for n ∈ N, ξi ∈ X . Point patterns modelling different physical

phenomenon could depict the spatial distribution of either objects (trees, stars, etc) or events (out-

break of disease, earthquakes, etc); however elements of a pattern will simply be referred to as
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either ‘points’ or ‘individuals’. Point processes can also be viewed as random counting measures

or random variables taking values in what is called an Exponential Space (Carter & Prenter 1972).

Rigorous theoretical treatments of point processes have predominantly been made in terms of the

random measure viewpoint (see for example Daley & Vere-Jones 1988, 2003). On the other hand,

it is much more convenient to adopt the random variable viewpoint when considering simulation

algorithms for point processes (Stoyan et al. 1995; Van Lieshout 2000; Møller 1999; Geyer 1999;

Ripley 1977). The treatment via random variables or unordered sequences/sets of points arises more

naturally when modelling interactions between the individuals.

1.1.1 Point Processes & Exponential Spaces

Let X be a complete separable metric space (c.s.m.s.). As noted in the previous section a point

process X on X can be thought of as a random set or unordered sequence of points or individuals

{ξn}, ie. X is a random variable taking values in the Exponential Space of X , denoted by Xe

(Carter & Prenter 1972). Informally speaking, Xe is the space of all finite (Definition 1.2) point

configurations on X . A formal interpretation and construction of Xe is given in Preston (1977): let

Xn denote the n-fold product of X . Identify those points of Xn which can be obtained from each

other by permutation of the co-ordinates and denote the space obtained by this identification as Sn.

Setting Xe =
⊎
n Sn (where the Sn are disjoint) gives us the Exponential Space of X . Let B (X )

denote the Borel σ-algebra on X , B (Sn) the product σ-algebra generated by open sets of Sn and

B (Xe) the σ-algebra generated by the B (Sn). A point process X on some bounded W ⊆ X can

hence be defined as an We-valued random variable:

Definition 1.1. A point process X on some bounded W ⊆ X is a measurable mapping of a proba-

bility space (Ω,=,P) to (We,B (We)).

For a point process X and A ∈ B (Xe) let X (A) be the number of points of X in A. Implicit in the

above definition is that X is finite or locally finite.

Definition 1.2. A point process X is finite if X (X ) <∞.

Definition 1.3. X is locally finite if X (A) <∞ for all bounded A ∈ B (X ).

Definition 1.4. X is simple if X ({ξ}) = 0 or 1 for all ξ ∈ X .
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1.1.2 Point Processes & Random Measures

In this section we follow the treatment of point processes as random counting measures, as presented

in Daley & Vere-Jones (1988, 2003) and Stoyan et al. (1995). For a point process X = {ξn} and

A ∈ B (X ) the mapping X (A) = # {n; ξn ∈ A} counts the number of points of X contained in A.

IfA =
⋃
nAn, with theAn disjoint, thenX (A) =

∑
nX (An) is a countably additive, non-negative,

integer-valued function with X (A) < ∞ for all bounded A. These are exactly the conditions that

make X (·) counting measure (ie. a non-negative integer-valued measure) on B (X ). A measure µ

on X is boundedly finite if µ (A) < ∞ for all bounded Borel sets A. Let MX be the space of all

boundedly finite measures on X and B (MX ) its corresponding Borel σ-algebra.

Definition 1.5. A random measure Y on X is a random element of (MX ,B (MX )), ie. Y is a

measurable mapping of a probability space (Ω,=,P) to (MX ,B (MX )).

A counting measure is a boundedly finite and integer-valued measure. A completely random mea-

sure is a random measure Y such that, for every family of pairwise disjoint bounded Borel sets

A1, . . . , An, the random variables Y (A1) , . . . , Y (An) are independent. Simple counting measures

are such that Y ({ξ}) = 0 or 1 for all ξ ∈ X . Let NX denote the space of counting measures on X ,

B (NX ) its corresponding σ-algebra and N∗X the space of simple counting measures on X , ie. N∗X

constitutes those members of NX which are simple.

Definition 1.6. A point process X on X is a measurable mapping of a probability space (Ω,=,P)

to (NX ,B (NX )). Furthermore, X is simple if P [X ∈ N∗X ] = 1.

“A measurable mapping X from a probability space into NX (or N∗X ) is a point process if and

only if X (A) is a random variable for each Borel set A ⊆ X ” (Daley & Vere-Jones 1988, Propo-

sition 7.1.VIII). A point process X is a random choice of one of the elements of NX ; so it gen-

erates a measure P on (NX ,B (NX )): the distribution of X , defined by P (B) = P [X ∈ B] =

P [{ω; X (ω) ∈ B}], for B ∈ B (NX ). For x ∈ Xe, A ∈ B (X ) let N (A, x) = x (A) =∑
ξ∈x 1{ξ∈A}; then, for fixed A, the mapping N is finite, non-negative, integer-valued and count-

ably additive. Moreover it defines a one-to-one mapping from Xe to NX (Moyal 1962, Theorem

3.1). Thus an element of Xe can be regarded as a finite counting measure and vice versa.
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Definition 1.7. The finite-dimensional (fidi) distributions of a point process X are the joint distri-

butions of the random variables X (A1) , . . . , X (Ak), for all finite collections of bounded Borel sets

A1, . . . , Ak, ie. the family of proper distribution functions

Pk (A1, . . . , Ak; n1, . . . , nk) = P [X (Ai) = ni, i = 1, . . . , k] . (1.1)

Definition 1.8. The void probability (Stoyan et al. 1995) or the avoidance function (Daley & Vere-

Jones 1988) of a point process X gives the probability that there are no points of the process in a

given test set A: v0 (A) ≡ P [X (A) = 0].

“The distribution of a point process is completely specified by the fidi distribution ofX (A) forA in a

countable ring generating the Borel sets” (Daley & Vere-Jones 1988, circa Theorem 7.1.XI). More-

over for simple point processes the distribution is determined by the void probabilities/avoidance

function v0 on compact sets (Stoyan et al. 1995; Daley & Vere-Jones 1988, Theorem 7.3.II).

1.1.3 Characteristics of Point Processes

1. Stationarity & Isotropy: A point process X or its distribution P is stationary if the processes

X = {ξn} and Xξ = {ξn + ξ} have the same distributions for all ξ ∈ X , ie. the distribution

is translation invariant: P (B) ≡ P [X ∈ B] = P [Xξ ∈ B] ≡ P (B−ξ) for all B ∈ B (NX ),

where Bξ = {Y ∈ NX ; Y−ξ ∈ B}. The process is isotropic if it is rotation invariant: if r is

a rotation around the origin then X and rX have the same distribution, ie. P (B) = P (rB)

for all B ∈ B (NX ), where rB = {Y ∈ NX ; r−1Y ∈ B}. Stationarity and isotropy imply

motion invariance: the distribution of X is the same as mX for all Euclidean motions m.

2. Intensity Measure: The intensity measure Λ of X is a characteristic analogous to the mean of

a real-valued random variable. It is defined as the mean number of points in A ∈ B (X ):

Λ (A) = E [X (A)] =

∫
x (A)P (dx) .

For X = Rd, if X is translation invariant then Λ (A) = λ md [A] where md denotes Lebesgue

measure and λ > 0 is referred to as the intensity of X . Choosing A to have d-volume 1 shows

that λ may be interpreted as the mean number of points per unit d-volume. The Campbell
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Theorem (Stoyan et al. 1995) shows that for any non-negative measurable function f :

E

[∑
ξ∈X

f (ξ)

]
=

∫ ∑
ξ∈x

f (ξ)P (dx) =

∫ ∫
f (ξ)x (dξ)P (dx) =

∫
f (ξ) Λ (dξ) ;

and for stationary X : E

[∑
ξ∈X

f (ξ)

]
= λ

∫
f (ξ) dξ.

1.1.4 Construction of Point Processes

A convenient and constructive way to model and simulate point processes on bounded regions is by

means of a “discrete distribution for the number of points and a family of symmetric densities for

the locations” (Van Lieshout 2000; Daley & Vere-Jones 1988, Condition 5.3.I):

• The points are located in a complete separable metric space (c.s.m.s.) X , such as Rd.

• A distribution {pn}n≥0 is given for determining the total number of points in the population.

• For each integer n ≥ 1, a symmetric probability density fn (ξ1, . . . , ξn) is given that deter-

mines the joint distribution of the positions of the n points of the process.

This provides a natural recipe for simulating a point process: first simulate the number of points

N according to the distribution {pn}; given that N = n generate a random vector (ξ1, . . . , ξn)

according to the density fn (·, . . . , ·). As noted in Daley & Vere-Jones (1988), point processes are

unordered sets or sequences of points; therefore it is implicitly assumed that the individuals of the

process are indistinguishable. So the joint densities fn should be indifferent to the order in which the

points are listed, ie. they have to be symmetric so that equal weight is given to all n! permutations

of the points (ξ1, . . . , ξn).

1.1.5 The Poisson Process

This is mathematically the most-tractable and perhaps the most studied point process (Matheron

1975; Diggle 1983; Ripley 1981; Ripley 1988; Daley & Vere-Jones 1988; Kingman 1993; Stoyan

et al. 1995). The process typifies what one means by a ‘completely random’ point pattern and

the first step in analyzing a point configuration is to test it against the Poisson process for spatial

randomness.
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Definition 1.9. Let X be a c.s.m.s. and Λ a Borel measure such that Λ (X ) > 0 and Λ (A) <∞ for

all bounded Borel A; X is a Poisson process with intensity measure Λ if

P1 X (A) is a Poisson random variable with mean Λ (A) for every bounded Borel set A ⊆ X ;

P2 for all disjoint Borel A1, . . . , Ak, the random variables X (A1) , . . . , X (Ak) are independent.

If Λ is atom-less (ie. gives zero measure to singleton sets) then the Poisson process is simple (Def-

inition 1.4). P2 is often interpreted as complete spatial randomness: the process in disjoint regions

behaves independently. If X = Rd and Λ (A) = λ md [A] (cf. Section 1.1.3), for md Lebesgue mea-

sure, then X is referred to as a homogeneous Poisson process with intensity λ > 0, and abbreviated

as X ∼ Poisson(λ). In order to simulate a Poisson(λ) process on W ⊂ Rd: draw a Poisson random

variable N with mean λmd [W ]. If N = 0 set X = ∅; else for each n ∈ {1, . . . , N} draw ξn ∼

Uniform(W ) and set X = {ξ1, . . . , ξN}.

An inhomogeneous Poisson process X ′ is one whose intensity measure is of the form Λ′ (A) =∫
A
λ′ (x) dx. The function λ′ (·) is referred to as the intensity function. The following rejection

technique enables one to draw X ′. Draw X ∼ Poisson(λ) such that λ′ (·) ≤ λ; then X ′ ={
ξ ∈ X; λ′(ξ)

λ
≤ Uniform (0, 1)

}
, ie. each point of X is retained with probability λ′(·)

λ
to yield

an inhomogeneous Poisson process with intensity function λ′ (·). One can also construct random

geometrical shapes/patterns via Poisson processes by defining the Boolean model (Stoyan et al.

1995) of disks of fixed radius r.

Definition 1.10. Let X = {ξn} be a Poisson(λ) process on Rd and Br (ξ) a d-dimensional ball of

radius r and centre ξ. Then the Boolean model of balls associated with X is constructed as

U (X) =
⋃
n≥1

Br (ξn) . (1.2)

The points of X are called germs and the balls Br (·) grains; thus the Boolean model can also be

viewed as a germ-grain random set model.

A more general definition of Boolean models is given in Chapter 3 (Definition 3.1). However the

basic idea of such models is introduced here since Chapter 2 concerns the simulation of conditional

Boolean models.
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1.1.6 Finite Point Processes Specified by a Density

Poisson processes are a useful tool for building more complex point process models, eg. the Poisson

cluster process, which is obtained by independently replacing each point of a Poisson process by a

finite ‘daughter’ process. Special cases are the Neyman & Scott (1958) process, where the daugh-

ters are independent and identically distributed, and the Matérn (1986) cluster process, where each

parent gives rise to a Poisson number of daughters distributed in a ball of radius r around the parent.

Other useful point process models can be obtained by specifying a density with respect to a

‘reference’ Poisson process. Let π denote the distribution of a Poisson process on X with intensity

measure Λ, and f : Xe → [0,∞) be a non-negative measurable function on the exponential space

(space of locally finite point configurations) Xe. If
∫
Xe f (x)π (dx) = 1 then f is a density with

respect to π and defines a point process Xf on X . Thus, given a reference process X (usually

Poisson(1)) with distribution π, a new process Xf ∼ πf can be defined on (Xe,B (Xe)) by means

of a density f such that πf =
∫
f (x) π (dx). Then f (x) is the likelihood that Xf takes on the

realization x compared with X taking on the same realization. The distribution of the number of

points in the new process Xf specified by density f is given by

pn =
e−Λ(X )

n!

∫
X
. . .

∫
X
f ({ξ1, . . . , ξn}) Λ (dξ1) . . .Λ (dξn)

(Van Lieshout 2000). Conditional on the event that Xf has n points, the density (with respect to the

n-fold product measure Λn) of the locations of the points is given by

fn (ξ1, . . . , ξn) =
f ({ξ1, . . . , ξn})∫

X . . .
∫
X f ({ξ1, . . . , ξn}) Λ (dξ1) . . .Λ (dξn)

.

Example 1.1 (The density of a Poisson process). Let X be a Poisson process on Rd with intensity

measure Λ and distribution π. Let fλ (x) = λn(x) e(1−λ), where n (x) denotes the number of points

in x, and πλ (B) =
∫
B
fλ (x) π (dx) forB ∈ B (Xe). Then πλ is the distribution of a Poisson process

with intensity measure λΛ and density fλ.

Definition 1.11. A point process with density f is locally stable if there exists K > 0 such that

f (x ∪ {ξ}) ≤ Kf (x) , for all x ∈ Xe and ξ /∈ x. (1.3)

The density is said to be Ruelle (1969) stable if f (x) ≤ CKn(x) for some positive constants C,K.

A locally stable density is also Ruelle stable, but not the converse.
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Definition 1.12. A density is hereditary if f (x) > 0 ⇒ f (y) > 0 for y ⊂ x; conversely f is

anti-hereditary if f (y) > 0⇒ f (x) > 0 for y ⊂ x.

1.1.7 Marked Point Processes

Suppose that, given the locations of objects or individuals, one wishes to not only model the spa-

tial distribution but also some characteristic of each individual, eg. the diameter or height of trees,

shape, colour, weight of animals, etc. Such information can be modelled by marked point processes:

to each point or individual of the process a ‘mark’ is attached which represents the feature or char-

acteristic. Thus a marked process X on some space X is a random unordered sequence of tuples

X = {(ξn,mn)} such that the {ξn} themselves form a point process on X and mn is the mark

attached to the individual ξn. The structure of the marks may be complicated and it is assumed that

they belong to a given space of marks M. A marked point process X on X can be viewed as a

point process on the product space X ×M; all the theory of point processes extends to marked point

processes (see for example Daley & Vere-Jones 1988 or Stoyan et al. 1995).

Definition 1.13. A marked point process X , with positions in X and marks in M, is a point process

on X ×M with the additional property that {X (A×M) ; A ∈ B (X )}, the marginal process of

locations, is itself a point process.

1.1.8 Interior & Exterior Conditioning

The conditional distribution of a point process X can be defined under two types of conditioning:

Exterior: This type of conditioning concerns the conditional distribution of the point process at

some ξ ∈ X given the configuration on X \ {ξ}, ie. the (conditional) probability that there is

a point in an infinitesimally small region dξ around ξ, given the configuration outside dξ.

Interior: This concerns the conditional distribution of the process on X \ {ξ}, given a point at ξ.

“The two concepts are dual; exterior conditioning is formalized by the Papangelou conditional

intensity, interior conditioning by the Palm distribution” (Van Lieshout 2000). The Papangelou

conditional intensity was introduced by Papangelou (1974) and Palm distributions by Palm (1943).
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Palm Distributions

For a point process X with distribution P a heuristic interpretation of the Palm distribution, Pξ, is

the conditional distribution of X given that X ({ξ}) > 0, ie. palm probabilities are the conditional

probabilities of X given that there is a point at location ξ. For a more rigorous definition, one needs

the concept of Campbell measures (Stoyan et al. 1995):

Definition 1.14. IfX is a simple locally finite point process on a c.s.m.s. X with distribution P then

its Campbell measure is the measure on (X × Xe,B (X )× B (Xe)) such that∫ ∑
ξ∈x

f (ξ, x)P (dx) =

∫
f (ξ, x)C (d (ξ, x)) (1.4)

where f is any non-negative measurable function on X × Xe. If f (ξ, x) = 1{ξ∈A} and A ∈ B (X )

then C (A×B) = E
[
X (A)1{X∈B}

]
, for B ∈ B (Xe).

Definition 1.15. The Reduced Campbell measure C! is such that∫ ∑
ξ∈x

f (ξ, x \ {ξ})P (dx) =

∫
f (ξ, x \ {ξ})C! (d (ξ, x)) (1.5)

Moreover, C! (A×B) = E
[∑

ξ∈X∩A 1{X\{ξ}∈B}

]
.

If the intensity measure Λ of X exists then C(· ×B) is absolutely continuous with respect to Λ,

with Radon-Nikodym derivative P· (B) : X → R, so that

C (A×B) =

∫
A

Pξ (B) Λ (dξ) , for all A ∈ B (X ) . (1.6)

For fixed ξ, Pξ is a distribution function on (Xe,B (Xe)) and is referred to as the Palm distribution

at ξ. Similarly the reduced Palm distribution P!
ξ is related to C! via

C! (A×B) =

∫
A

P!
ξ (B) Λ (dξ) (1.7)

so P!
0 (B) = P [X \ {0} ∈ B | 0] is the conditional distribution of X \ {0} given that X ({0}) > 0.

Papangelou Conditional Intensities

Turning attention to the dual case of exterior conditioning the Papangelou conditional intensity `

associated with a simple point process X can be interpreted as

` (ξ;x) dx = P [X (dξ) = 1 | X ∩ (dξ)c = x ∩ (dξ)c]
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the “infinitesimal probability that there is a point in a region dξ around ξ ∈ X given that the point

process X agrees with the configuration x outside dξ” (Van Lieshout 2000). A more formal def-

inition requires the concept of the reduced Campbell measure C! (Definition 1.15). The reduced

Palm distribution (Eq. 1.7) is the Radon-Nikodym derivative of C! (· ×B) with respect to the in-

tensity measure Λ of the point process X . If C! (A× ·) is absolutely continuous with respect to the

distribution P of X then

C! (A×B) =

∫
B

L (A;x)P (dx) , A ∈ B (X ) (1.8)

for some measurable function L (·;x), which is referred to as the first order Papangelou kernel.

Furthermore if L (·;x) admits a density ` (·;x) with respect to the intensity measure Λ of X , then

` (·; ·) is called the (first order) Papangelou conditional intensity. When X admits a density with

respect to a Poisson process the Papangelou conditional intensity takes a simple form, and provides

a useful way to simulate such processes X (cf. Section 1.3.2).

Theorem 1.1 (Van Lieshout 2000, Theorem 1.6). For X a finite process specified by density f

with respect to a Poisson process the Papangelou conditional intensity is given as

` (ξ;x) =
f (x ∪ {ξ})

f (x)
, for ξ /∈ x ∈ Xe (1.9)

with convention that ` (ξ;x) = 0 if f (x) = 0.

Suppose that a point process X has density f with respect to a Poisson(λ) process, and recall the

notions of local stability and hereditary density (Definitions 1.11 & 1.12). The density f is locally

stable if there exists a constant K > 0 such that f (x ∪ {ξ}) ≤ Kf (x) for all x and all ξ /∈ x; it is

hereditary if f (x) > 0 ⇒ f (y) > 0 for y ⊂ x. It is clear that a locally stable density is hereditary.

Furthermore if the Papangelou conditional intensity of f , defined as in Eq. (1.9), is uniformly

bounded then local stability and the hereditary condition are equivalent (Kendall & Møller 2000).

The density f may also be attractive or repulsive:

attractive: ` (ξ;x) ≥ ` (ξ; y) , whenever ξ /∈ y ⊆ x; (1.10)

repulsive: ` (ξ;x) ≤ ` (ξ; y) , whenever ξ /∈ y ⊆ x. (1.11)
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1.1.9 Operations on Point processes

In this section three fundamental operations on point processes are presented which produce new

processes from old ones. Denote by X0 the basic or reference process to which the operation is

carried out on and X the new process so obtained.

Thinning: Such a operation uses some criterion to delete points of the basic process X0 and yield

a thinned process X . The simplest thinning operation is an independent p-thinning, where

each ξ ∈ X0 is deleted with probability 1 − p, for some p ∈ [0, 1]. Deletion of a point

is independent of its location and of other points in X0. An extension of this is to allow

the retention probability p to depend on the location of the point; thus ξ ∈ X0 is deleted

with probability p (ξ), for some deterministic (or even random) function p (·) defined on X ,

and taking values in [0, 1]. One could also define dependent thinnings where the retention

probability depends on the locations of other points as well.

In the case of independent thinning, if the characteristics of the basic process X0 are known

then it is straightforward to calculate the corresponding characteristics of the thinned process

X . If X0 is a Poisson process with intensity measure Λ0 then an independent p (·)-thinning of

X0 is also a Poisson process, with intensity measure Λ (A) =
∫
A
p (ξ) Λ0 (dξ).

Clustering: In this case every point ξ of the basic process X0 is replaced by a cluster Yξ of points.

X0 is referred to as the parent process and Yξ the daughter process. The union
⋃
ξ Yξ is the

cluster process, with the daughters Yξ themselves being finite point processes.

Such processes have been used to model many natural phenomenon, eg. locations of galax-

ies in space, distribution of larvae in fields, the geometry of bombing (cf. Figure 1). If the

daughters Yξ are independent identically distributed finite point sets then this is called ho-

mogeneous independent clustering; moreover if the parent process X0 is Poisson then the

resulting daughter process is a Poisson cluster process. Important cases are the Neyman &

Scott (1958) model, where daughters are independent and identically distributed; and Matérn

(1986) cluster process, where daughters are distributed in a ball of radius r around the parent.

Superposition: Here a collection of basic processes {X i
0}
k
i=1 are combined to form a single process

X =
⋃k
i=1 X

i
0. If the basic processes are independent then the intensity measure of the super-
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imposed processX is just the sum of the intensity measures of the basic processes. If {X i
0}
k
i=1

are independent Poisson processes (not necessarily with the same intensity measures) then X

is also a Poisson process.

1.1.10 Gibbs Point Processes

There are many different classes or models of point processes that have arisen in the literature

over the years and this section considers the class referred to as Gibbs point processes. They are

a development of the idea in Section 1.1.6: that new point processes can be obtained from old

ones by transforming their distributions via a probability density. Following Daley & Vere-Jones

(1988) and Stoyan et al. (1995) the construction of Gibbs processes is described below. The origins

of such processes stem from statistical physics, being related to the so-called Gibbs distributions

which describe the equilibrium states of subsystems of very large closed physical systems. Such

processes are described by means of forces acting on and between the particles. The total potential

energy of a given configuration of particles or individuals is assumed to be decomposable into terms

representing the interactions between the particles taken in pairs, triples, and so on. First-order terms

representing the presence of an external force can also be included. Thus Gibbs processes can be

thought of as processes generated by interaction potentials.

The fundamental ingredient in specifying a Gibbs process X is an underlying basic or weight

process X0 with distribution Q (this is usually taken to be a Poisson process). The distribution P of

a Gibbs process can then be defined by means of a density f :

P (B) =

∫
B

f (x)Q (dx) , B ∈ B (Xe) . (1.12)

Rather than specifying a distribution P for the Gibbs process and then checking absolute continuity

P� Q, the usual trick is to do the reverse. An integrable function f (with respect to Q) is specified

and the distribution P is then defined via Eq. (1.12). The form of f is often determined by the

field of application: it can be chosen conveniently to model interactions between individuals of the

process. This approach is straightforward if the process contains only finitely many points confined

to a bounded region W . More generally, for point processes in all of X , the density idea must be

applied to conditional distributions confined to bounded regions.
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Gibbs Processes in Bounded Regions

In this section we consider how to define Gibbs point processes in a bounded region W ⊂ X . In

order to do so there are two different cases to consider:

Canonical Ensemble: Here the process contains a fixed number n of particles, all contained in

W . This is of great practical importance since one often conditions on the number of points

observed in some W . The form of f is usually f (x) = f (ξ1, . . . , ξn) = e−U(x)

Z
, where Z is a

normalizing constant called the configurational partition function, and U : Xe → R ∪ {∞}

is the energy function. Frequently U is chosen to have a specialized form: an interaction

potential U (x) =
∑

y⊂x V (y); or a sum of pair potentials U (x) =
∑∑

1≤i,j≤nθ (‖ξi − ξj‖).

The function θ is referred to as the pair potential, in homage to the origins of the subject in

Physics, and ‖ · ‖ is a norm on X .

Grand Canonical Ensemble: Here the total number of points N is random but all assumed to be

within W . One approach is to define a sequence of “conditional densities” fn. The Gibbs

process is then obtained by first arranging N to have some distribution and then (conditional

on the value of N ) using the Canonical Ensemble construction. That is given N = n the n

points are distributed in W using the joint density fn. Another approach is to define a density

directly on B (We), where We is the exponential space (Section 1.1.1) of W .

Stationary Gibbs Processes

When considering Gibbs processes on unbounded spaces X , a more sophisticated method than just

specifying the density on bounded W ⊂ X is required. Additionally, the distribution of the process

restricted to the observation window W must be conditioned on the process outside W .

Formally one considers the family of local specifications πW (· | ·) for bounded Borel W . These

represent the probability that the Gibbs processX onW belongs to the setB ∈ B (Xe), given that the

process takes on some configuration x outsideW , ie. πW (B | x) = P [X ∩W ∈ B | X ∩W c = x],

where x ∈ {y ∈ Xe; y (B) = 0}. Then a point process X with distribution P is said to be a Gibbs

point process with respect to the specification πW if for all bounded Borel W the DLR-equation,
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after Dobrushin, Lanford & Ruelle (Stoyan et al. 1995), holds:

DLR-Equation: P (B) =

∫
πW (B | x ∩W c)P (dx) . (1.13)

Examples of Gibbs Point Processes

Any process with density of the form given in Canonical Ensemble is a Gibbs process; some exam-

ples are given below and several more in Section 1.1.11, as examples of Markov point processes.

1. Hard Core Process: This is a process where no two points are allowed to be within distance

R > 0 of each other, so that the density is given by f (x) ∝ λn(x)
∏
{ξ,η: ξ 6=η} 1{‖ξ−η‖>2R}.

2. Strauss Process: This model has density with respect to a Poisson(1) given by f (x) ∝

λn(x)eβ sR(x). The parameter λ > 0 represents the underlying Poisson intensity and sR (x)

denotes the number of pairs ξ, η ∈ x which are closer than distance R > 0. This is an exam-

ple of a pair-wise interaction Gibbs process, since the density depends only on the number of

R-close pairs. The case when β = 0 corresponds to a Poisson(λ) process; when β → −∞

the Strauss process converges to the hard core model since eβ sR(x) will be non-zero only if

sR (x) = 0. The Strauss process can be considered as a soft core process since the density is

weighted by the number of R-close pairs; the case when the weight is non-zero only for zero

R-close pairs corresponds to a hard core process.

3. Geyer (1999) remarks that in practical applications, “it is likely that no process model in the

existing literature would be of scientific interest and a model specific to the application would

be invented”. Furthermore, he illustrates the ease with which one can ‘invent’ new point

processes and do statistical inference; the triplets and saturation processes are described as

examples of two new point processes.

1.1.11 Ripley-Kelly Markov Point Processes

These are another class of point processes, introduced by Ripley & Kelly (1977), and especially

designed to model inter-point interactions. Let ∼ be a symmetric, reflexive relation on X , eg. if

X = Rd, then ξ ∼ η ⇔ ‖ξ − η‖ ≤ r for some fixed r. Two points ξ, η are said to be neighbours

with respect to ∼ if ξ ∼ η.
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Definition 1.16. The neighbourhood ∂W of W ⊆ X with respect to the relation ‘∼’ is defined as

∂W = {ξ ∈ X ; ξ ∼ η for some η ∈ W}.

Definition 1.17. Let X be a c.s.m.s., Λ a finite non-atomic Borel measure and πΛ the distribution of

a Poisson process on X with intensity measure Λ. LetX be a point process on X specified by means

of a density f with respect to πΛ. Then X is a (Ripley-Kelly) Markov point process with respect to

the symmetric, reflexive relation ∼ on X if for x ∈ B (Xe) such that f (x) > 0

1. f (y) > 0 for all y ⊆ x;

2. for all ξ ∈ X , f(x∪{ξ})
f(x)

depends only on ξ and ∂ξ ∩ x = {η ∈ x; ξ ∼ η}.

Condition 2 above is a local Markov property since it concerns the behaviour of at a single point;

the following spatial Markov property also holds.

Theorem 1.2 (Ripley & Kelly 1977). Let X be a Markov point process with density f on a c.s.m.s.

X and consider a Borel set W ⊆ X . Then the conditional distribution of X∩W , given X∩W c, de-

pends only onX restricted to the neighbourhood ∂W∩W c = {ξ ∈ X \W ; ξ ∼ η for some η ∈ W}.

Ripley & Kelly (1977) show that the density of a Markov point process is of the form

f (x) =
1

Z
exp

(
−
∑
y⊂x

V (y)

)
, for x ∈ Xe. (1.14)

Here V is an interaction potential (cf. Section 1.1.10), so that V (x) 6= 0 implies that y ∼ y′ for

all y, y′ ⊂ x, for some relation ‘∼’. In graph-theoretic language V is non-zero for all cliques of

x. Further specializations of Markov point processes are Markov marked point processes, nearest-

neighbour and connected-component Markov point processes (Van Lieshout 2000, Chapter 2).

Examples of Markov Point Processes

Such processes have been intensively studied as models for pair-wise (and possibly higher order)

interactions (Van Lieshout 2000; Baddeley & Møller 1989; Ripley & Kelly 1977).

1. Hard/soft core processes.

2. Poisson and Poisson cluster process (Sections 1.1.5 & 1.1.9).
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3. Area/Perimeter/Quermass Interaction processes: The area-interaction process is a weighted

Poisson process where the weight factor is a function of the area covered by the Boolean

model (cf. Definition 1.10) associated with the process. The area-interaction process is stud-

ied in Chapter 4. The perimeter-interaction process is a weighted Poisson process but with

the weight depending on the perimeter of Boolean model. The quermass-interaction process

(Kendall et al. 1999) is such that the weight is determined by the area, perimeter and the Euler

characteristic (cf. Stoyan et al. 1995) of the Boolean model. The respective densities are:

area-interaction: f (x) ∝ λn(x)e−β1 m2[U(x)].

perimeter-interaction: f (x) ∝ λn(x)e−β2 p[U(x)].

quermass-interaction: f (x) ∝ λn(x) exp (β1 m2 [U (x)] + β2 p [U (x)] + β3 χ [U (x)]) .

Here m2, p, χ denote Lebesgue measure, perimeter length and Euler characteristic respec-

tively, and U (x) is the Boolean model associated with x. Notice that if β2 = β3 = 0 then the

quermass-interaction process is just an area-interaction process.

4. Continuum Random Cluster model: Suppose ∼ denotes a relation where ξ ∼ η if U (ξ) ∩

U (η) 6= ∅. Furthermore ξ and ξ′ are connected in x if there exist ξ0, . . . , ξn in x such that

ξ = ξ0 ∼ . . . ∼ ξn = ξ′. Such a connected component {ξ0, . . . , ξn} is called a cluster; let

the number of clusters in a point configuration x be C (x). Setting f (x) ∝ λn(x)e−β C(x), for

λ > 0, defines the continuum random cluster model (Møller 1999) with density f .

5. Penetrable Spheres Model: This is a bivariate process obtained by conditioning two Poisson

processes X1, X2 on the event that no point of one process is closer than a distance R > 0

to a point of the other. The process Y = (X1, X2) is called the Widom & Rowlinson (1970)

penetrable spheres model, with density f (y) ∝ λ
n(x1)
1 λ

n(x2)
2 1{d(x1,x2)>R}, where d (x1, x2) is

the smallest distance between a point of x1 and a point of x2.

1.2 Markov Processes

Consider a measurable space (X ,B (X )), where B (X ) is the Borel σ-algebra on X . The aim of this

thesis is to devise sampling schemes for point process models by simulating Markov processes on the
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Exponential spaceXe. In Section 1.4 a description of how to construct such Markov processes whose

equilibrium distributions are exactly those one wishes to sample from is given. In this section some

basic definitions and results for Markov processes on a general state space X are presented. The

treatment here is made via discrete-time processes; however most of the definitions and results apply

to the continuous case as well. Where a distinction is made between the discrete and continuous

cases the process will be indexed by n ∈ N and t ∈ R respectively. For a rigorous study of Markov

processes see, for example, Meyn & Tweedie (1993), Nummelin (1984) or Norris (1997).

Definition 1.18. A Markov or transition kernel is a mapping P : X × B (X )→ [0, 1] such that: (i)

P (ξ, ·) is a probability measure on (X ,B (X )) for each ξ; (ii) P (·, A) is a non-negative measurable

mapping from X to [0, 1] for all A; and (iii) Pn+m = Pn ·Pm for all n,m ∈ N.

Definition 1.19. Let Φ = {Φ (n)} be a sequence of X -valued random variables defined on some

probability space (Ω,=,P) and {Pµ} a family of probability measures, for µ a probability distribu-

tion on B (X ). The sequence Φ is a Markov process if there exists a Markov kernel P s.t.

Pµ [Φ (n) ∈ ·] = µPn =

∫
µ (dξ)Pn (ξ, ·) ;

Markov Property: Pµ [Φ (n+m) ∈ · | Fn] = Pm (Φ (n) , ·) , for all n,m ∈ N. (1.15)

Pµ is the underlying measure for Φ with initial distribution µ and Fn = σ (Φ (i) ; 0 ≤ i ≤ n)

Thus Pn (ξ, A) = P [Φ (n) ∈ A | Φ (0) = ξ] is the probability that the process is inA at time n given

that it was in state ξ at time 0. The Markov property in Eq. (1.15) means that the process is memory-

less: the next transition depends only on the current state and not on the past history, ie. given

the ‘present’ the ‘future’ is (conditionally) independent of the ‘past’. If P [Φ (n) ∈ · | Φ (n− 1)] ≡

P [Φ (1) ∈ · | Φ (0)] is independent of the value of n then the Markov process is said to be time-

stationary or time-homogeneous.

Definition 1.20. A Markov process Φ is irreducible if there exists a measure ϕ on B (X ) such that,

whenever ϕ (A) > 0, P [Φ ever visits A] > 0 (ie. Pn (ξ, A) > 0 for some n > 0) for all ξ ∈ X .

Definition 1.21. A Markov process is recurrent if there exists a measure ϕ on B (X ) such that, for all

A ∈ B (X ) with ϕ (A) > 0, P [Φ (n) ∈ A infinitely often] = 1. This is equivalent to P [τA <∞] =

1, where τA = inf {n > 0; Φ (n) ∈ A} is the first return time to A. Also, if ηA =
∑

n 1{Φ(n)∈A} is
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the occupation time for A and U (ξ, A) =
∑

n P
n (ξ, A) = Eξ [ηA] the mean occupation time, then

Φ is recurrent if U (ξ, A) ≡ ∞ for all ξ, A.

Definition 1.22. A σ-finite measure π on B (X ) with

π (A) =

∫
X
P (ξ, A) π (dξ) , for all A ∈ B (X ) (1.16)

is called an invariant measure. If π is totally finite then it may be normalized to a stationary proba-

bility measure, in which case it is referred to as the equilibrium distribution of P.

An irreducible Markov process which admits an equilibrium distribution is recurrent and vice versa

(Meyn & Tweedie 1993). Equilibrium distributions are important because they not only define the

stationary Markov process Φ but also define its long run or ergodic behaviour.

Definition 1.23. A Markov process Φ with equilibrium distribution π is ergodic if

lim
n→∞

‖Pn (ξ, ·)− π (·) ‖ = 0 (1.17)

where ‖·‖ is the total variation norm (see Eq. 1.22 below). Furthermore Φ is geometrically ergodic if

there exists a non-negative functionM such that Eπ [M (Φ)] <∞ and a positive constant 0 ≤ ρ < 1

such that ‖Pn (ξ, ·)− π‖ ≤ M (ξ) ρn for all ξ ∈ X . The chain is uniformly ergodic if there exists a

finite m ≥M (ξ) for all ξ ∈ X .

Definition 1.24. Suppose Φ = {Φ (n)} is a Markov process with kernel P. For arbitrary but fixed

N > 0 define the time-reversed process
{

Φ̃ (n) ; 0 ≤ n ≤ N
}

by Φ̃ (n) = Φ (N − n). Furthermore

if π is a stationary distribution for Φ, then Φ is said to be time-reversible (with respect to π) if∫
B

P (ξ, A) π (dξ) =

∫
A

P (ξ, B) π (dξ) , for all A,B ∈ B (X ) . (1.18)

This means that the probability of the process being in A at time n and in B at time m is equal to

the probability of being in B at time n and in A at time m, ie. Φ and Φ̃ ‘look statistically the same’.

Definition 1.25. A Markov process Φ satisfies the equations of detailed balance with respect to a

probability distribution π on X if

π (dξ)P (ξ, dη) = π (dη)P (η, dξ) . (1.19)
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If detailed balance equations are satisfied for some π then it is the unique equilibrium distribution

for the process. Moreover if Φ satisfies detailed balance then it is time-reversible; hence Φ is ergodic

if and only if it satisfies the detailed balance equations and is irreducible. So in order to ensure that

a given Markov process has a unique equilibrium distribution it suffices to check detailed balance

equations; if, additionally, it is also irreducible then this guarantees that the process converges to its

equilibrium distribution. This is the essence MCMC (cf. Section 1.4): an ergodic Markov process

is constructed such that its equilibrium distribution is exactly that which one wishes to sample.

Simulating the process long enough will ensure that its distribution converges to the required one.

1.2.1 The Coupling Method

The coupling technique is originally due to Doeblin (1938), and has a wide range of applications

such as estimation of total variation distances, establishing inequalities, study of Markov and renewal

process asymptotics, Poisson approximations, as well a tool for perfect simulation (see Section 1.4.1

on Coupling From The Past). Furthermore if some sort of “comparison between probability mea-

sures is required then it is often rewarding to construct random variables on a common probability

space, with these measures as distributions, so that the comparison may be carried out in terms of

the random variables” (Lindvall 1992). Loosely speaking, such a construction is referred to as a

coupling; a formal definition is given below. Lindvall presents important results for a wide range

of discrete- and continuous-time processes such as Markov, renewal, birth-death, Poisson and diffu-

sions; inequalities, domination and monotonicity ideas are also dealt with.

Definition 1.26 (Lindvall 1992). A coupling of probability measures P,P′ on some measurable

space (X ,B (X )) is a probability measure P̂ on (X × X ,B (X )× B (X )) such that

P = P̂π−1 and P′ = P̂π′−1 (1.20)

where π (ξ, η) = ξ, π′ (ξ, η) = η for (ξ, η) ∈ X × X .

Definition 1.27. A coupling of random variables X,X ′, defined on underlying probability spaces

(Ω,=,P) and (Ω′,=′,P′) respectively, is a random variable
(
X̂, X̂ ′

)
on a third probability space(

Ω̂, =̂, P̂
)

, such that the laws

L (X) = L
(
X̂
)

and L (X ′) = L
(
X̂ ′
)
. (1.21)
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Hence P̂
(
X̂, X̂ ′

)−1

is a coupling of PX−1 and P′X ′−1 in the sense of Definition 1.26.

The couplings considered here will be of a more restrictive nature: two stochastic processes are

coupled if their paths coincide (or coalesce) after a random time T , which is referred to as the

coupling time. If
(

Φ̂, Φ̂′
)

is a coupling of two processes Φ = {Φ (t)} ,Φ′ = {Φ′ (t)} and T =

inft≥0 {Φ (t) = Φ′ (t)} is almost surely finite then the coupling is called successful. If both processes

have the same equilibrium distribution π and, furthermore if Φ′ is started in equilibrium, then we get

the following coupling inequality:

‖Pt (ξ, ·)− π‖ = 2 sup
A∈B(X )

| P [Φ (t) ∈ A]− P [Φ′ (t) ∈ A] |

= 2 sup
A∈B(X )

| P [Φ (t) ∈ A,Φ (t) 6= Φ′ (t)]− P [Φ′ (t) ∈ A,Φ (t) 6= Φ′ (t)] |

coupling inequality: ≤ 2 P [Φ (t) 6= Φ′ (t)] = 2 P [T > t] . (1.22)

If a coupling of Φ and Φ′ is successful then P [T > t] → 0 as t → ∞; therefore the distribution

of Φ (t) converges to its equilibrium π. The above inequality is useful in showing convergence,

ergodicity of Markov processes and computing convergence rates (cf. Lindvall 1992).

1.2.2 Monotone Transition Kernels & Coupling

Definition 1.28. A Markov/transition kernel P onX , endowed with a partial order 4, is monotone if,

for all ξ1 4 ξ2, P (ξ1, U (ξ1)) ≤ P (ξ2, U (ξ2)) where U (ξ) = {η : ξ 4 η} is called an ‘increasing’

set. Conversely P is anti-monotone if P (ξ1, U (ξ1)) ≥ P (ξ2, U (ξ2)).

In terms of stochastic domination (Kamae et al. 1977), P monotone means that the probability

measures Pi = P (ξi, ·) are such that P2 stochastically dominates P1 (cf. Remark 1.2 and Section

2.2.2). The result below connects the ideas of monotonicity (or stochastic domination) and coupling.

It uses the notion of an upward kernel: a kernel K is upward if K (ξ, U (ξ)) = 1 for all ξ.

Theorem 1.3 (Kamae et al. 1977, Theorem 1). For Markov processes Φ,Φ′ with the same transi-

tion kernel P, ‘4’ a closed partial order and Φ (0) = x 4 x′ = Φ′ (0) the following are equivalent.

(i) P is monotone;

(ii) the probability measure P(x, ·) is stochastically smaller than P(x′, ·);
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(iii) there exists a coupling
(

Φ̂, Φ̂′
)

such that Φ̂ (t) 4 Φ̂′ (t) for all t;

(iv) there exists an upward kernel K such that P (x′, A) =
∫
K (y, A)P (x, dy).

Statement (iii) means that one can simultaneously produce sample paths of Φ,Φ′ such that the path

of Φ is always below (with respect to 4) that of Φ′. Statement (iv) means that given a sample path

of Φ one can construct a sample path of Φ′ such that it is always above that of Φ.

1.2.3 Simulation of Markov Processes

The main task in this thesis is to devise simulation algorithms for point process models via the

construction of Markov processes whose equilibrium distribution is exactly that of the point process

of interest. A natural state space for such processes will be the exponential space Xe, for individuals

lying in some space X . The type of Markov processes dealt with here will either be discrete-time

‘component’ processes or spatial birth-death processes (Preston 1977). A component process with

d-components Φ = (Φ1, . . . ,Φd) is just a d-dimensional process. A spatial birth-death process is a

special kind of continuous-time Markov jump process.

Definition 1.29. A stochastic process on (X ,B (X )) is called a jump process with intensity α and

transition kernel K if, given that the process is currently in state ξ ∈ X , then the waiting time till the

next jump has an exponential distribution with rate α(ξ), independent of the past, and the probability

that the jump leads to a state in A ∈ B (X ) is K (ξ, A).

The intensity and transition kernel of the birth-death process will be defined via birth and death rates.

Furthermore if the birth and death rates of the spatial birth-death process satisfy detailed balance

for some integrable function f (with respect to a measure µ on (Xe,B (Xe))) then the equilibrium

distribution of the process is given by π =
∫
fdµ (see Section 1.3.2 for details). This means that if

the distribution of a point process admits a density then it is possible to define birth and death rates

such that detailed balance is always satisfied; see Example 1.3.

The dynamics of component process will be defined via one step transition probabilities or ker-

nels for each component. These will be chosen in order to ensure that the equilibrium distribution

of the process is exactly that of interest. One way to guarantee this is by updating each component
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according to the (equilibrium) conditional distribution of that component given the other compo-

nents. This is the idea embodying Gibbs sampling described in Section 1.4. For discrete-time or

continuous-time jump processes one can define the notion of a transition function, which essentially

determines the next state of the process.

Definition 1.30. A transition function for a Markov kernel P is a measurable function f : X × · →

X , where · is the state space of some (auxiliary) random variable U , such that the law L (f (ξ, U)) =

P (ξ, ·) for all ξ ∈ X . If X admits a partial order 4 then the transition function f is

monotone: if f (η, U) 4 f (ξ, U) , whenever η 4 ξ; (1.23)

anti-monotone: if f (η, U) < f (ξ, U) , whenever η 4 ξ. (1.24)

Remark 1.1. If P has a monotone transition function then P is monotone; this is referred to as

realizable monotonicity by Fill & Machida (2001), who also show that the converse is not true.

Thus if P has equilibrium distribution π then a transition rule is simply a measurable mapping

which preserves the distribution, ie. if ξ ∼ π then f (ξ, ·) ∼ π. So any mapping which preserves

the equilibrium distribution is a transition function. Therefore simulation of a discrete-time Markov

process Φ reduces to sampling its transition function: initialize Φ (0) at some arbitrary state; for

n ≥ 1 set Φ (n) = f (Φ (n− 1) , ·). A similar set up works for jump processes, but with updates

occurring at ‘jump’ times.

Suppose Ψ is the target process of interest which we wish to sample, but for which direct sam-

pling is generally difficult. Suppose also that its transition function f ′ can be obtained as an adapted

functional of f , the transition function of some easy-to-simulate process Φ. In this case Ψ can be

simulated by coupling its evolution to that of Φ, ie. one can produce a coupling
(

Φ̂, Ψ̂
)

. The transi-

tion function f is used to update Φ̂ and, conditional on such an update, the Ψ̂ component is updated

according to f ′. The process Φ̂ is usually referred to as the dominating or basic or free process since

it is the underlying process upon which the transitions of Ψ̂ depend.

Example 1.2. A simple example of such a coupling is when Ψ is a jump process on some W ⊆ X

with intensity α′ (x) =
∫
b′ (ξ, x)µ (dξ)+D (x), where µ is some measure onX . If

∫
b′ (ξ, x)µ (dξ)

is difficult to compute but b′ (ξ, x) ≤ b, for some constant b, then α (x) = bµ (W ) +D (x) ≥ α′ (x).

Defining Φ as a jump process with intensity α(·) then enables one to simulate Ψ by devising a
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coupling
(

Φ̂, Ψ̂
)

as follows. The processes are initialized at the same state; suppose that the current

state of Φ̂ is x. The next jump time of Φ̂ is simulated as an exponentially distributed random variable

of rate α(x) where bµ (W ), respectively D (x), represent the total birth, respectively death, rates.

With probability bµ(W )
α(x)

a birth ξ is proposed, drawn uniformly on W since the birth rate is constant;

else a death η ∈ x is proposed. Hence Φ̂ has transition function

f (x, U) =

 x ∪ {ξ} ξ ∈ W, ξ /∈ x, if U ≤ bµ(W )
α(x)

;

x \ {η} η ∈ x, else.

So, conditional on a transition in Φ̂, the same transition is considered as a proposed transition in Ψ̂.

Death transitions are always accepted in Ψ, whereas births are accepted with probability b′(ξ,x)
b

. The

transition function f ′ of Ψ̂ then looks like f above but with bµ (X ) replaced by
∫
b′ (ξ, x)µ (dξ);

hence Ψ̂ has the same transition rates as Ψ, as required.

1.3 Spatial Birth-Death Processes

The usual birth-death process is a continuous-time Markov jump process on the non-negative inte-

gers. If the current state is n then the next transitions can only be made to state n+1 (a birth) or state

n− 1 (a death); furthermore the transition rates depend only on the number of individuals alive. For

many models it is reasonable to expect that the transition rates depend on the number of individuals

as well as their locations. Preston (1977) describes a process which takes into account the positions

of the individuals; hence the name ‘spatial birth-death process’. The relevance of these processes

lies in the close relationship to Gibbs processes and especially in the way they provide a means

to simulate such processes, as suggested by Ripley (1977). When the process is time-reversible

(Definition 1.24) then one can find equilibrium distributions (Definition 1.22) for the process; these

actually turn out to be various kinds of Gibbs states or distributions (Preston 1977).

Suppose the individuals {ξ} live in some space X and recall that Xe denotes the Exponential

space (cf. Section 1.1.1) of X . A spatial birth-death process Φ is a continuous-time Markov jump

(cf. Definition 1.29) process taking values inXe. The process has a Markov property: the probability

of the next transition depends only on the current configuration. Following Preston (1977) we now

describe the construction of a spatial birth-death process Φ, which evolves in time with individuals

dying or being born, given by the following recipe:
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1. At any time t there are only a finite number of individuals alive.

2. If at time t the configuration of alive individuals is x = {ξ1, . . . , ξn} then there exists a finite

measure B (x, ·) on (X ,B (X )) such that the probability of an individual being born in some

W ∈ B (X ) in the interval [t, t+ δ] is B (x,W ) δ + o (δ).

3. If at time t the configuration of alive individuals is x = {ξ1, . . . , ξn, ξ} then there exists a

B (X ) measurable function d (x, ·) : X → R+ such that the probability of the individual

ξ dying in the interval [t, t+ δ] is d (x \ {ξ} , ξ) δ + o (δ).

4. The probability that there is more than one transition in [t, t+ δ] is o (δ).

If B (x; ·) is absolutely continuous with respect to some measure µ on (X ,B (X )) then there ex-

ists a positive measurable function b : Xe × X → R+ such that B (x,W ) =
∫
W
b (x, ξ)µ (dξ),

W ∈ B (X ). Refer to b as the birth rate and d the (per capita) death rate; then B (x, ·) denotes

the total birth rate and D (x) =
∑

ξ∈x d (x \ {ξ} , ξ) the total death rate. In the terminology of

Fernández et al. (2002) a spatial birth-death process whose birth and death rates, b (x, ·) and d (x, ·)

respectively, do not depend on the current configuration x is called a free process since then there is

no interactions between the individuals. Conversely if the birth/death rates do depend on the current

configuration, then such a process is referred to as an interacting spatial birth-death process since

there is some kind of interaction.

1.3.1 Simulation of Spatial Birth-Death Processes

Suppose Φ is a spatial birth-death process on some bounded W ∈ B (X ) with birth rate b (·) and

death rate d (·), which may depend on the current state of the process. Therefore in order to simulate

Φ the state of the birth death process outside W must be fixed, and a realization of Φ simulated

conditional on this fixed state outside W (cf. Section 1.1.10). If Φ (t) = x then the time till the

next ‘jump’ or transition is exponentially distributed with rate α (x) = B (x,W ) + D (x), where

B (x,W ) =
∫
W
b (x, ξ)µ (dξ) and D (x) =

∑
ξ∈x d (x \ {ξ} , ξ). With probability B(x,W )

α(x)
the next

transition is a birth, else it is a death. Births are drawn from density b(x,·)
B(x,W )

; deaths are drawn from

density d(x\·,·)
D(x)

. The following describes how to obtain a sample path of Φ on [0, T ].
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Algorithm 1.1 (Simulation of Φ).

Initialize Φ(0) (this can be at any arbitrary configuration); set t = 0.

while t ≤ T :

draw τ ∼ Exponential with rate α (Φ (t)) = B (Φ (t) ,W ) +D (Φ (t)).

draw U ∼ Uniform(0, 1).

if U ≤ B(Φ(t),W )
α(Φ(t))

: draw ξ ∼ b(·)
B(Φ(t),W )

; set Φ (t) = Φ (t−) ∪ {ξ}.

else: draw ξ ∼ d(·)
D(Φ(t))

; set Φ (t) = Φ (t−) \ {ξ}.

set t = t+ τ .

return Φ (T ).

1.3.2 Simulation of Point Processes via Spatial Birth-Death Processes

In this section we look at how one can employ spatial birth-death processes in order to sample

point processes defined by a density, such as Gibbs processes. If a spatial birth-death process is

statistically indistinguishable from its time-reversal then it is time-reversible (Definition 1.24). A

time-reversible process has an equilibrium distribution (Preston 1977, Proposition 8.3), ie. if the

process is started with this distribution then its distribution is preserved for all time. The equilibrium

distributions of spatial birth-death processes are of particular importance, since they represent the

so-called Gibbs states or distributions from statistical physics. Under suitable conditions the spatial

birth-death process will converge to a unique equilibrium distribution (Ripley 1977; Preston 1977,

Theorem7.1). If f is some µ-integrable function such that

b (x, ξ) f (x) = d (x \ {ξ} ; ξ) f (x ∪ {ξ}) , for all ξ /∈ x (1.25)

then b and d satisfy the equations of detailed balance (Definition 1.25) with respect to f . In this case

the process with birth and death rates b and d respectively is time-reversible. Moreover π =
∫
fdµ

is the unique equilibrium distribution of the spatial birth-death process (Preston 1977, Lemma 8.2).

Example 1.3. For constant birth rate b and unit death rate per point, detailed balance calculations

show that the process converges to a Poisson(b) process on some bounded W ⊂ Rd. The density

of a Poisson(b) process (with respect to the distribution of a Poisson(1) process) is given as f (x) =

25



e(1−bmd[W ])bn(x) (cf. Example 1.1). Then for any ξ /∈ x

bf (x) = be(1−bmd[W ])bn(x) = e(1−bmd[W ])bn(x∪{ξ}) = d (x; ξ) f (x ∪ {ξ}) .

Now consider a point process X with density f . Suppose that one can define a birth-death process

Ψ so that its birth and death rates satisfy the detailed balance condition in Eq. (1.25) with respect to

f . Then, provided that Ψ is irreducible, Ψ will be ergodic and hence converge to the point process

X . It is easily shown that if the birth rate of Ψ is equal to the Papangelou conditional intensity of X

(Eq. 1.9) and the death rate per point is one then detailed balance is satisfied.

For most point processes of interest the Papangelou conditional intensity ` (·;x) depends on the

current configuration x. In this case simulating Ψ with birth rate b = ` may pose practical problems

since calculating the total birth rate B (x) =
∫
W
` (ξ;x)µ (dξ) may be difficult, if not impossible.

However if ` is bounded in x so that ` (·;x) ≤ `∗ (·) for all x then it is possible to simulate Ψ without

having to compute B (·). The idea is to define another process Φ with birth rate b∗ = `∗ and unit

death rate per point, so that simulation of Φ is straight forward. A realization of Ψ is obtained by

coupling its evolution to that of Φ: transitions of Φ are considered as ‘proposed’ transitions in Ψ and

accepted so as to ensure the correct transition rates for Ψ. Specifically, since the per capita death rate

for both processes is one, deaths in Φ are always accepted. The birth rate of Φ is higher, so births

need to be censored and accepted with probability `
`∗

(cf. Example 1.2).

Remark 1.2. Suppose X, Y are two point processes with respective distributions πX , πY and Pa-

pangelou conditional intensities `X , `Y . If `X ≥ `Y then it is possible to construct coupled spatial

birth-death processes ΦX ,ΦY with equilibria πX , πY respectively such that ΦX (t) ⊇ ΦY (t) for all

t. Existence of such ΦX and ΦY shows that X is stochastically larger than Y ; cf. Theorem 1.3.

1.4 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) refers to a class of probabilistic simulation techniques for

sampling complex distributions where direct sampling is not feasible or inefficient. For many distri-

butions it is possible to devise an ergodic (ie. aperiodic, irreducible, positive recurrent; see Definition

1.23) Markov chain/process such that its equilibrium distribution is exactly that which one wishes
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to sample from. The essence of an MCMC algorithm is to construct an ergodic Markov chain with

the target equilibrium distribution.

Metropolis et al. (1953) were the first to present a simulation method based on Markov chains;

Hastings (1970) then generalized their methods with a view towards statistical problems. It was not

until the 1980’s that MCMC finally took off in the statistics community, thanks to Geman & Geman

(1984), who introduced the Gibbs Sampler to researchers in image analysis. Bayesian statistics

finally helped establish MCMC firmly in the statistics community (Gelfand & Smith 1990; Besag &

Green 1993); MCMC is nowadays recognized as a powerful and widely used tool.

The MCMC preprint service http://www.statslab.cam.ac.uk/˜mcmc/ provides a list of all

registered papers on MCMC methodology currently submitted for publication. Gilks et al. (1996)

provides a good introduction to MCMC methodology; in addition Geyer (1999) and Møller (1999)

describe MCMC methods and statistical inference for spatial point processes and Besag & Green

(1993) traces the early developments of MCMC in Bayesian statistics and reviews computational

progress in statistical physics. There are various updating schemes or ‘samplers’ one can employ in

order to define transition probabilities/kernels of a Markov chain so that its equilibrium distribution

is the desired target distribution. Some of the more common ones are discussed below.

Gibbs Sampling: If one wishes to sample a random vector (X1, . . . , Xd) ∼ π then it is possible

to use a Gibbs sampler. A d-dimensional Markov chain Φ (n) = (Φ1 (n) , . . . ,Φd (n)) is

initialized arbitrarily. The j-th component Φj is updated by drawing from the conditional

distribution of Xj , given the rest of the d − 1 components Φ−j . The updating order can be

fixed (sequential scan) or random (random scan).

Metropolis-Hastings Samplers: This is useful when it is difficult to sample the full conditional

distributions. The idea is to first choose some mass function or density q which specifies the

transition probabilities of a Markov chain; q should be easy to sample from. If the current state

of the chain is x then a new state y is sampled from q (x, ·); y is referred to as a ‘proposed’

state and q (x, ·) is referred to as the ‘proposal distribution’. The new state y is accepted as the

next state of the chain with probability

α (x, y) = min

{
1,
π (y) q (y, x)

π (x) q (x, y)

}
.
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If y is accepted then the chain moves on to this new state; otherwise it stays at x. If the proposal

distribution is actually the full conditional distribution, then the acceptance probability always

equals 1 and we get a Gibbs sampler. Another choice for q (x, ·) is one which is independent

of the current state x so that q (x, y) = f (y) for some probability mass function f ; in this case

one gets an Independent Sampler. Metropolis et al. (1953) originally proposed a symmetric

q so that q (x, y) = q (y, x), which yields the Metropolis Sampler. Yet another type is the

Random Walk Sampler where q (x, y) = f (y − x) for some probability mass function f . If

f is symmetric around zero then we just get a Metropolis sampler. The name Random walk

sampler is derived from the fact that the proposals are made according to a random walk, ie.

y = x+ z where z is drawn from f .

Spatial Birth-Death Processes: Details of this are discussed in Section 1.3.2. This is essentially a

kind of Gibbs sampling because the next state of the birth-death process is determined by the

Papangelou conditional intensity, which concerns the conditional distribution of the process

at a point ξ, given the rest of the configuration (cf. Section 1.1.8).

Thus given a target π, implementing an MCMC algorithm to sample (approximately) from π is

relatively straightforward: choose an initial state for the chain and update its states according to the

chosen sampling scheme. The difficulty is determining how long the chain should be run so that its

distribution can be deemed ‘close enough’ to π. Three main approaches to this problem are:

1. Convergence Rate Computations: This compares the distribution of the chain at time n with

the equilibrium π; one can then determine a valueM such that the chain is sufficiently close to

equilibrium for all time after M . The advantage of this is that it is an exact method; however

the computations are often difficult and may yield very large values of M .

2. Convergence Diagnostics: Examines output of the chain to check if it has ‘settled down’.

3. Perfect Simulation: These are a class of MCMC algorithms which can automatically detect

when the chain has converged. The obvious advantage is that this is an exact method and the

sample has the required distribution. However, it is usually more computational, complicated

to implement and not applicable to all MCMC problems.
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The purpose of this thesis is to consider existing and develop new perfect simulation algorithms for

various point process models. In the following section an ingenious method called Coupling From

The Past (CFTP), introduced by Propp & Wilson (1996), is presented. This is a perfect simulation

algorithm for sampling Markov chains on finite state spaces. An extension of this to unbounded

spaces, Dominated Coupling From The Past (domCFTP), was introduced by Kendall (1998) and

generalized in Kendall & Møller (2000).

Another perfect simulation algorithm, Fill’s interruptible algorithm, was proposed by Fill (1998)

for finite state spaces. It has the advantage of being interruptible, ie. long runs can be aborted and

a new run can be started without introducing bias in the samples. This is not the case with CFTP,

where the state sampled is dependent on the run time of the algorithm. Fill’s algorithm is based

on accept/reject sampling and requires time-reversibility and monotonicity (Definition 1.28) of the

transition kernel for the target process. The idea of the algorithm is to simulate the target process

Φ with kernel P forwards on {0, . . . , n}. Monotonicity of P means that its time-reversal P̃ is also

monotonic, and this is exploited so as to determine whether Φ(n) can be accepted as an exact sample

from its equilibrium distribution. Thönnes (1999) extends Fill’s algorithm to point processes. The

FMMR algorithm (Fill et al. 2000) extends it to general state spaces where no assumptions on

monotonicity or discreteness are made. Møller & Schladitz (1999) review the algorithm in terms of

stochastic recursive sequences and extend it for general discrete repulsive models.

1.4.1 Coupling From the Past (CFTP)

A main problem with MCMC techniques is determining how long to run the chain/process until it

is deemed to be ‘near’ equilibrium, ie. MCMC algorithms only provide an approximate draw from

the target distribution. In some cases, however, it is possible to devise a clever algorithm which

manages to ‘determine by itself’ when the chain has converged. In this instance one obtains an exact

or perfect sample, ie. an unbiased sample from the target distribution in finite time; such variants

are coined perfect simulation algorithms.

Coupling From the Past (CFTP) is one of the more widely studied and used perfect simulation

protocols. It is a probabilistic algorithm or ‘simulation recipe’ for sampling Markov chains perfectly.

The technique, introduced by Propp & Wilson (1996), was originally proposed for finite chains. It
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has since received much attention in the literature and has been generalized to a variety of chains

and unbounded state spaces including spatial point process models (Murdoch & Green 1998; Foss &

Tweedie 1998; Häggström et al. 1999; Green & Murdoch 1999; Kendall & Møller 2000; Thönnes

2000; Murdoch & Rosenthal 2000; Berthelsen & Møller 2002b). Several primers on CFTP and

perfect simulation for point processes are also available (Thönnes 1997; Møller 2001; Berthelsen &

Møller 2002a); Propp & Wilson (1998) gives a comprehensive overview on applications of CFTP.

An MCMC algorithm for sampling (approximately) from the target distribution π involves the

construction of an ergodic Markov chain whose time-stationary (equilibrium) distribution is π. The

idea then is to initialize the chain at some arbitrary state and simulate it for a ‘long’ time. The

MCMC sampler is constructed so as to ensure the transitions of the chain preserve the distribution

π. An obvious difficulty with this is how ‘long’ should the chain be run in order to ensure that it has

converged or that its distribution is ‘close enough’ to π? If the chain could be started at time −∞

then the state of the chain at time 0 would be an exact draw from π, since the chain is ergodic.

An actual simulation from time −∞ is infeasible; however since the interest lies predominantly

in the state of the chain at time 0, what if the path of the chain in a virtual simulation (Kendall &

Thönnes 1999) from time−∞ could be re-constructed for a finite time interval [−T, 0]? This would

provide a practical way of determining the state of the chain at time 0. This is the essence of CFTP:

it intrinsically determines how far back in the past the chain needs to be started from in order to

reconstruct its infinite-time simulation path on [−T, 0], for some T < ∞. Furthermore the chain

at time 0 is guaranteed to have the same value as would have been obtained in a virtual simulation

from time −∞. So let Φ∞ denote the target chain started at time −∞ whose stationary distribution

is the target distribution π and let {0, . . . , k} represent the finite state space of the chain.

For T > 0 and −T ≤ t ≤ 0, Φ∞ (t) must take on one of the values 0, . . . , k. So, for 0 ≤ i ≤ k,

let ΦT
i denote a chain started at time −T in state i. Suppose

{
ΦT
i

}k
i=0

and Φ∞ are coupled and

evolved using the same randomness on the interval [−T, 0]. If ΦT
i (0) = ΦT

j (0) for all i 6= j then

this is referred to as coalescence, ie. all the chains started in each of the k + 1 possible states have

met and take on a single common value at time 0. In this case it must follow that Φ∞ (0) also has the

same common value since Φ∞ (−T ) is equal to ΦT
i (−T ), for some i, and the coupling ensures this

equality persists for all −T ≤ t ≤ 0. If coalescence is not achieved by time 0, the whole procedure

is started off from time −S < −T . Care must be taken to ensure that the same randomness is used
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over the interval [−T, 0], as failure to do so will introduce bias (Propp & Wilson 1996). Such a

procedure is also called vertical CFTP, since the target chains ΦT
i are started at every state i.

Foss & Tweedie (1998) point out that CFTP can be viewed in the context of “backward couplings

in stochastic recursive sequences theory”; such methods have been around for a while and indeed

Propp & Wilson (1998) comment that “the conceptual ingredients were up in the air even before

the versatility of the method was made clear”. Foss & Tweedie thus attempt to embed CFTP in a

general probabilistic framework by describing the theoretical framework that leads to forward and

backward coupling constructions. Further theory and historical origins can be found in their paper

as well as in Propp & Wilson (1998) who identify some precursors to the ideas behind CFTP.

Vertical CFTP can be employed for any finite ergodic Markov chain. However as the state space

gets larger it becomes impractical and computationally burdensome to keep track of all the ΦT
i

chains. Suppose there exists a partial order 4 on the state space with maximal and minimal elements

1 and 0 respectively. In addition suppose also that the transitions of the target chain Φ preserve the

partial ordering, ie. the transition function is monotone (Definition 1.30). In this case CFTP can

be implemented more efficiently by keeping track of only two chains: ΦT
1 and ΦT

0 . This is because

coalescence of all the ΦT
i chains is equivalent to the coalescence of ΦT

1 and ΦT
0 , since the transitions

of the chain maintain the ordering with respect to 4. This is referred to as Monotone CFTP.

A natural extension is to the case of continuous or even unbounded state spaces. Such a consid-

eration is both natural and important, especially when dealing with point processes since the state

space is unbounded. It turns out that there is a neat extension of CFTP called Dominated CFTP

(domCFTP) developed by Kendall (1998) for the area-interaction point process, and generalized

by Kendall & Møller (2000) for any point process with a locally stable density (Definition 1.11).

Wilson (2000) also use the term Coupling Into And From The Past (CIAFTP) for domCFTP.

Häggström & Nelander (1998) consider perfect sampling of anti-monotone systems, such as

point processes with repulsive densities (cf. Eq. 1.11). Häggström et al. (1999) describe an exact

Gibbs sampler for the bivariate Widom & Rowlinson (1970) penetrable spheres model, employing

quasi-minimal and quasi-maximal states in order to devise a CFTP-based construction. Another

addition, read-once CFTP (Wilson 2000), involves running the Markov chain forwards in time and

never restarting it in the past. It has the advantage of not needing to store random numbers for reuse,

whereas conventional CFTP does. David Wilson’s web site contains an annotated bibliography on
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perfect simulation: http://dimacs.rutgers.edu/˜dbwilson/exact.html/.

1.4.2 Dominated Coupling From the Past (domCFTP)

Foss & Tweedie (1998) point out that the CFTP protocol requires uniform ergodicity (Definition

1.23) of the target process. In unbounded state spaces there is typically no maximal element and

the (crucial) uniform ergodicity of the target chain is the exception rather than the rule. In this

case the standard procedure needs modification. The main idea behind domCFTP is to introduce a

dominating process which acts as a stochastically varying maximum. Perfect simulation will then be

viable if the dominating process can itself be simulated in statistical equilibrium and in reverse-time.

It is assumed that there is a partial order 4 and the state space has a minimal element 0, but no

maximal element. Let Ψ denote the target chain and consider a virtual simulation of Ψ from time

−∞, denoted by Ψ∞. Furthermore suppose that there is a process Φ on the same state space such

that Ψ (t) 4 Φ (t) for all t; then Φ is the dominating process. If Φ can be sampled in stationarity and

in reverse-time, then it is easy to reconstruct a path of Φ∞ in a finite interval [−T, 0]; refer to this

as extending the dominating process backwards on [−T, 0]. Since Ψ∞ is coupled to Φ∞, the path of

Ψ∞ is always bounded by that of Φ∞ on the same interval.

At time −T define upper- and lower-sandwich processes ΨT,max and ΨT,min respectively by

ΨT,max (−T ) = Φ∞ (−T ) and ΨT,min (−T ) = 0. The purpose of these sandwich processes is to

bound the target process Ψ∞ on the interval [−T, 0]. If these processes coalesce by time 0 then their

common value must also be the value of Ψ∞. Dominated CFTP has also been referred to as hor-

izontal CFTP, since it involves starting the bounding processes ΨT,max,ΨT,min further and further

back in time until coalescence at time 0 occurs. The evolution of ΨT,max and ΨT,min (forwards in

time) is coupled to that of Φ∞ on the interval [−T, 0] in such a way so that the following properties

hold for all −S ≤ −T ≤ s ≤ t ≤ 0:

sandwiching: ΨT,min (t) 4 Ψ∞ (t) 4 ΨT,max (t) 4 Φ∞ (t) . (1.26)

coalescence: ΨT,min (t) = ΨT,max (t) if ΨT,min (s) = ΨT,max (s) . (1.27)

funnelling: ΨT,min (t) 4 ΨS,min (t) 4 ΨS,max (t) 4 ΨT,max (t) . (1.28)

It is not required that ΨT,max and ΨT,min typically evolve like Ψ∞ or that they be individually

Markovian. However as soon as they coalesce, ie. ΨT,max = ΨT,min then the above sandwiching,
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coalescence and funnelling properties ensure that their subsequent common evolution follows that

of Ψ∞. Furthermore, conditional upon coalescence, the common value of the sandwich processes

at time 0 will be equal to Ψ∞ (0), and hence an exact draw from the target distribution (Kendall &

Møller 2000, Theorem 2.1).

Time
-T 0-S

Figure 1.1: Illustration of dominated CFTP. The black dashed-dotted line depicts the evolution a dominating process

(eg. immigration-death process on the integers). The solid (resp. dotted) grey line shows the maximal (resp. minimal)

processes started at times −T and −S. The dominating process is extended backwards till time −T . The maximal

process is started in the state of the dominating process at time −T ; the minimal is started in the minimal state. These

bounding processes are evolved forwards in time, coupled to the dominating process. Here coalescence of the maximal

and minimal processes started at time −T does not occur at time 0; so the dominating process is extended further from

time −T to −S. The maximal and minimal process are evolved in a similar fashion as previously; coalescence now

occurs on [−T, 0]. Notice that the same realization of the dominating process on [−T, 0] is used when evolving the

bounding processes started at time −S < −T . The sandwiching, coalescence and funnelling properties are satisfied by

the maximal and minimal processes; hence processes started before time −S will also have coalesced by time 0.
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Chapter 2

Stochastic Domination & Point Processes

2.1 Introduction

This chapter is based on the research report Shah (2003b) and subsequent publication Shah (2003a),

and concerns the idea of stochastic domination and ordering in point processes. The motivation

for this work came from the paper by Van Lieshout & Van Zwet (2001), who propose a simulation

algorithm (which we denote by VLVZ) for obtaining samples from conditional Boolean models. The

algorithm was intended to be perfect and concerns a germ-grain random set model (cf. Definition

1.10) where germs are homogeneous Poisson and grains disks of fixed radius. They considered

sampling a Poisson process conditioned to belong to a conditioning set E with the property that “if

x ∈ E , then for any ξ, x ∪ {ξ} ∈ E ” Van Lieshout & Van Zwet (2001).

Sets E satisfying such a property are referred to as anti-hereditary (Definition 2.4). Incidentally,

Kendall & Møller (2000) present a perfect simulation algorithm for point processes with locally

stable densities (Definition 1.11). This means that their method can be employed to sample point

processes conditioned to belong to hereditary conditioning sets E , ie. if x ∈ E then x \ {ξ} ∈ E

for all ξ ∈ x. Kendall & Thönnes (1999) and Cai & Kendall (2002) present perfect simulation

algorithms for sampling conditional Boolean models where the conditioning event was the coverage

of a finite set of points. As these algorithms cannot be generalized to deal with other anti-hereditary

conditioning events, this spurred an investigation into the VLVZ algorithm.

We implemented their algorithm for the special case of coverage of a singleton set. Validation of

our implementation via χ2 goodness-of-fit tests uncovered a discrepancy between the expected and
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observed counts. A further investigation resulted in the discovery that, unfortunately, there was an

error in their method, ie. it produces biased samples (see Shah 2003a and the correction note Van

Lieshout & Van Zwet 2003). This chapter explores the nature of this bias.

The issue of bias for VLVZ motivates a question concerning stochastic domination and ordering

in a point process context since, in some cases, it produces samples which are strictly stochastically

smaller than the target distribution. The notion of ‘stochastic dominance’ is made precise via the

definition of stochastic orders. Corollary 2.1 extends Theorem 9.1 of Preston (1977), giving condi-

tions when one probability measure strictly dominates another. We have discussed a fix with Van

Lieshout & Van Zwet; both parties agree that this fix would not be any more efficient than direct

Rejection sampling. Thus efficient sampling from Boolean models conditioned to belong to any

anti-hereditary set is “still an open problem” Van Lieshout & Van Zwet (2003).

This chapter is organized as follows: following Shaked & Shanthikumar (1994) & Kamae et al.

(1977) the notion of stochastic dominance is introduced in Section 2.2. We first consider stochastic

orders on totally ordered spaces and establish some domination results for random variables obtained

via accept/reject mechanisms and conditional thinnings (Section 2.2.1). Section 2.2.2 then deals

with partially ordered spaces and in particular, Exponential Spaces (cf. Section 1.1.1), which are a

natural state space for point processes.

Section 2.3.1 describes four algorithms, including VLVZ, that have the objective of sampling

from Boolean models conditioned to belong to some conditioning set E . The distributions of the

outputs of the various algorithms are compared via conditional expectation and the bias of VLVZ is

established. Theorem 2.5 employs Corollary 2.1 to give conditions when VLVZ produces strictly

smaller samples; the case when E consists of all configurations which cover a single point satisfies

these conditions. The coverage of two points is also considered; in this case Examples 2.2 & 2.3

illustrate that VLVZ can produce strictly larger and neither smaller nor larger samples respectively.

2.2 Stochastic Orders & Conditional Thinning

The notion of stochastic domination is now made precise via the definition of stochastic orders.

There are numerous stochastic orders (see for example Shaked & Shanthikumar 1994) which illus-

trates the many different, often inequivalent, ways in which the idea of stochastic domination can
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be defined. The purpose of this section is to derive some domination results for random variables

obtained by conditional thinning procedures, the idea behind which is as follows.

Consider some space X endowed with a partial order 4. Let θ : X → X denote a random

function which maps x ∈ X to some y 4 x, ie. θ (x) ≡ θx 4 x; then θx is referred to as a thinning

of x. Suppose that E ⊂ R+ is some conditioning set, N is a random variable conditioned to belong

to E and X is obtained from a realization of N via the following accept/reject mechanism. The

map θ is applied to N ; if θN ∈ E then X = θN . Otherwise another realization of θN is generated

independently. This iterative procedure is carried on until a θN ∈ E is obtained. Then X is referred

to as a conditional thinning of N since the law of X , L (X) ≡ L
(
θN1{θN∈E}

)
. The motivation

for such an investigation came from the algorithm proposed by Van Lieshout & Van Zwet (2001)

for sampling Boolean models conditioned to belong to some E . The essence of their method is to

generate a process with higher intensity κ > λ and then conditionally thin it to yield a process with

intensity λ.

It was discovered that if E represents those configurations which cover single point, then their

algorithm produces samples whose distribution is ‘smaller’ in some sense than the target. This natu-

rally warranted an investigation as to whether such ‘conditional thinning’ procedures always produce

‘smaller’ samples, ie. for all types of conditioning sets E . The results of such an investigation are

presented here, starting with some domination results on totally ordered spaces (such as R) and then

moving on to partially ordered spaces.

2.2.1 Totally Ordered Spaces

In this section the treatment is made using random variables defined on R, but the ideas and results

generalize trivially to any totally ordered space. Two stochastic orders are defined below and some

domination results on random variables obtained by some conditional accept/reject mechanism are

established. Following Shaked & Shanthikumar (1994) define the usual stochastic order between

random variables on R as:

Definition 2.1. If X and X ′ are two random variables such that P [X ≥ n] ≤ P [X ′ ≥ n] for n ∈

(−∞,∞), thenX is defined to be smaller thanX ′ in the usual stochastic order, written asX 4st X
′.

Also, X is strictly smaller than X ′, written X ≺st X ′, if P [X ≥ n] < P [X ′ ≥ n] for at least one n.
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Definition 2.2. Let X and X ′ be continuous (discrete) random variables with densities (mass func-

tions) f and g, respectively. If f (u) g (v) ≥ f (v) g (u) for all u ≤ v; or equivalently if f(u)
g(u)

decreases over the union of the supports of X and X ′, then X is smaller than X ′ in the likelihood

ratio order, writtenX 4lr X
′. For the strict case, X ≺lr X ′ if f (u) g (v) ≥ f (v) g (u) for all u ≤ v

with strict inequality for at least one {(u, v) ; u < v} with positive measure. In the case when f, g

are mass functions it suffices to check the condition f (u) g (v) > f (v) g (u) for at least one u < v

since this will have positive measure.

Remark 2.1. Shaked & Shanthikumar (1994) deal with weak orders, ie. 4st & 4lr; the strict orders

≺st & ≺lr are defined here since these are required to ensure the existence of a bias. These strict

orders are defined as a natural extensions of the weak ones.

From Definition 2.1 it follows that X 4st (≺st)X ′ ⇔ E [g (X)] ≤ (<)E [g (X ′)] for all increasing

(strictly increasing) measurable functions g for which the expectations exist. Shaked & Shanthiku-

mar show that X 4lr X
′ ⇒ X 4st X

′ so that the likelihood ratio ordering is a stronger form of

stochastic dominance; in fact one can also show that X ≺lr X ′ ⇒ X ≺st X ′.

Lemma 2.1. Let X,X ′ be random variables on R; if X ≺lr X ′ then X ≺st X ′.

Proof. The result holds for both continuous and discrete random variables; however for simplicity

suppose thatX,X ′ are discrete random variables on {0, 1, . . .}with mass functions f, g respectively.

Fix n ≥ 1; then

P [X ≤ n]− P [X ′ ≤ n] =
n∑
i=0

fi −
n∑
i=0

gi =
n∑
i=0

(g0 + g1 + . . .) fi −
n∑
i=0

(f0 + f1 + . . .) gi

=
n∑
j=0

gj (f0 + . . .+ fn) +
∑
j≥n+1

gj (f0 + . . .+ fn)

−
n∑
j=0

fj (g0 + . . .+ gn)−
∑
j≥n+1

fj (g0 + . . .+ gn)

=
∑
j≥n+1

gj (f0 + . . .+ fn)−
∑
j≥n+1

fj (g0 + . . .+ gn) .

Now X ≺lr X ′ implies that f (i) g (j) ≥ f (j) g (i) for all i ≤ j, with a strict inequality for at least

one i < j. Thus P [X ≤ n] − P [X ′ ≤ n] ≥ 0; since n was arbitrary this holds for all n ≥ 0, with

strict inequality for at least one n. Hence X ≺st X ′ by Definition 2.1.
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Some Domination Results

Having set up the basic definitions of stochastic dominance in Definitions 2.1 & 2.2 we are now

ready to look at some domination results for random variables produced by conditional thinning

procedures. Suppose E ⊆ R+ and N is some random variable on R+ conditioned to belong to E .

Recall that θ is a random map which takes some x ∈ R+ and maps it to some y ≤ x. All the results

in this section hold for both discrete and continuous random variables. However, for simplicity,

suppose that N is discrete, with mass function qn; define another discrete random variable N ′ which

is generated via the following mechanism:

Set i = 1.

while i 6= 0:

draw N and sample θN .

if θN ∈ E : set i = 0; else: set i = i+ 1.

return N ′ = N

Let P [θN ∈ E | N ] = wN , so that P [N ′ = n] ∝ qnwn.

Theorem 2.1. Let N be a discrete random variable with mass function qn conditioned to belong to

some conditioning set E , and let N ′ be generated by the above procedure. If the sequence of accep-

tance weights {wn} is increasing (strictly increasing) in n then N 4lr N
′ (N ≺lr N ′). Conversely,

if the sequence is decreasing (strictly decreasing) then N <lr N
′ (N �lr N ′).

Proof. Fix u ≤ v; for an increasing sequence {wn} quwvqv ≥ qvwuqu holds. Definition 2.2 is

satisfied and hence N 4lr N
′. For a strictly increasing sequence, if u < v then quwvqv > qvwuqu,

and hence N ≺lr N ′. The converse result for a decreasing (strictly decreasing) sequence of weights

follows by reversing the inequalities (strict inequalities) above.

Suppose that, for each n, Pn denotes the distribution of θn on {0, 1, . . . , n} conditioned to belong to

E . Define conditionally thinned random variables X and X ′, generated from N and N ′ respectively

as follows: X | N = n ∼ Pn and X ′ | N ′ = n′ ∼ Pn′ . That is, X is a conditional thinning (cf.

Section 2.2) of N and X ′ that of N ′.

Theorem 2.2. Suppose N and N ′ are two random variables conditioned to belong to some E , with

mass functions qn and q′n respectively. For each n, let Pn be the distribution of θn, on {0, . . . , n},
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also conditioned to belong to E . Generate conditionally thinned random variables X and X ′ as

follows: X | N = n ∼ Pn and X ′ | N ′ = n′ ∼ Pn′ . If Pn 4lr Pn′ , for n ≤ n′, and N 4lr N
′ then

X 4lr X
′. Furthermore if Pn ≺lr Pn′ , for n < n′, and N ≺lr N ′ then X ≺lr X ′.

Proof. Let pn,r, for r ∈ {0, . . . , n}, denote the mass function of Pn so that P [X = r] =
∑

n≥r qnpn,r

and similarly for X ′. Fix u ≤ v; if P [X = v]P [X ′ = u] ≤ P [X ′ = v]P [X = u] then X 4lr X
′ by

Definition 2.2. Since Pn is defined on {0, . . . , n}, set pn,r = 0 for r > n and consider

P [X = v]P [X ′ = u] = (qvpv,v + . . .)
(
q′upu,u + . . .+ q′v−1pv−1,u

)
+ (qvpv,v + . . .) (q′vpv,u + . . .)

=
∑
i≥v

v−1∑
j=u

qipi,vq
′
jpj,u +

∑
i≥v

∑
j≥v

qipi,vq
′
jpj,u =

∑
i≥v

v−1∑
j=u

Qij +
∑
i≥v

∑
j≥v

Qij.

P [X ′ = v]P [X = u] = (q′vpv,v + . . .) (qupu,u + . . .+ qv−1pv−1,u) + (q′vpv,v + . . .) (qupv,u + . . .)

=
∑
i≥v

v−1∑
j=u

q′ipi,vqjpj,u +
∑
i≥v

∑
j≥v

q′ipi,vqjpj,u =
∑
i≥v

v−1∑
j=u

Q′ij +
∑
i≥v

∑
j≥v

Q′ij.

For n ≤ n′, N 4lr N
′ and Pn 4lr Pn′ imply qiq′j ≤ q′iqj and pn,ipn′,j ≤ pn′,ipn,j for j ≤ i ≤ n′

(with strict inequalities for at least one j < i if N ≺lr N ′ and Pn ≺lr Pn′ for n < n′). Thus for

i ≥ v and u ≤ j ≤ v − 1 : Qij −Q′ij = pi,vpj,u
(
qiq
′
j − q′iqj

)
≤ 0;

i = j ≥ v : Qij −Q′ij = 0;

i > j ≥ v ≥ u : Qij +Qji −Q′ij −Q′ji = pi,vpj,u
(
qiq
′
j − q′iqj

)
− pj,vpi,u

(
qiq
′
j − q′iqj

)
= (pi,vpj,u − pj,vpi,u)

(
qiq
′
j − q′iqj

)
≤ 0

where the last inequality follows since i > j ≥ v ≥ u implies (pi,vpj,u − pj,vpi,u) ≥ 0 and(
qiq
′
j − q′iqj

)
≤ 0 (with strict inequality for at least one j < i in the case when N ≺lr N ′ and

Pn ≺lr Pn′ for n < n′). So

P [X = v]P [X ′ = u] =
∑
i≥v

v−1∑
j=u

Qij +
∑
i=j≥v

Qij +
∑
i>j

∑
j≥v

Qij +Qji; (2.1)

P [X ′ = v]P [X = u] =
∑
i≥v

v−1∑
j=u

Q′ij +
∑
i=j≥v

Q′ij +
∑
i>j

∑
j≥v

Q′ij +Q′ji. (2.2)

Therefore (2.1) − (2.2) ≤ 0; X 4lr X
′ follows from Definition 2.2. If N ≺lr N ′ and Pn ≺lr Pn′ ,

for n < n′, then the above inequality will be strict for at least one u < v; so X ≺lr X ′ follows.
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In the case when N,N ′ and Pn, Pn′ , for n ≤ n′, are not ordered with respect to the likelihood order

but are ordered with respect to the usual stochastic order then the thinned random variables X,X ′

are also ordered with respect to the usual stochastic order.

Theorem 2.3. Suppose that N,N ′, Pn and X,X ′ are defined as in the statement of Theorem 2.2. If

the family {Pn} is such that Pn 4st Pn′ , for n ≤ n′, and N 4st N
′ then X 4st X

′. Furthermore if

Pn ≺st Pn′ , for n < n′, and N ≺st N ′ then X ≺st X ′.

Proof. For fixed n let Xn be a random variable with distribution Pn so that n ≤ n′ implies Xn 4st

Xn′; equivalently, for an increasing function g, E [g (Xn)] ≤ E [g (Xn′)]; so E [g (Xn)] is increasing

in n. Now N 4st N
′ and E [g (Xn)] increasing implies ENE [g (XN)] ≤ EN ′E [g (XN ′)]; moreover

E [g (X)] = ENE [g (X) | N ] = ENE [g (XN)]

≤ EN ′E [g (XN ′)] = EN ′E [g (X ′) | N ′] = E [g (X ′)]

so that X 4st X
′; X ≺st X ′ also follows, but with strict inequalities and g strictly increasing.

So if two random variables N,N ′ conditioned to belong to some E are such that N ≺st N ′ and

Pn ≺st Pn′ , for n < n′, then their respective conditional thinnings X,X ′ are also ordered, ie.

X ≺st X ′ for any E . Thus if the map θ respects the ordering between N and N ′ (ie. if Pn ≺st Pn′

for n < n′) then, for totally ordered spaces, “the conditional thinning of a (stochastically) smaller

process is always (stochastically) smaller”. This is quite an intuitive result which, however, does not

always hold in partially ordered spaces. For the analogous result to hold in such spaces an additional

lattice structure on E is required (Definition 2.5).

2.2.2 Partially Ordered Spaces

In this section we generalize the definition of stochastic dominance to partially ordered spaces and,

in particular, to Exponential Spaces (cf. Section 1.1.1). The ultimate objective of this chapter is

to investigate conditional thinning simulation algorithms for point processes (Section 2.3.1). The

definition of stochastic domination is given below, which is the analogue of that in Definition 2.1.

Suppose that X is some Polish space endowed with a closed partial order ‘4’ and P1, P2 are two

probability measures on X . Following Kamae et al. (1977) define the notion of stochastic domina-

tion between the Pi:
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Definition 2.3. For X , P1 and P2 as defined above P1 is stochastically smaller than P2, written

P1 4st P2, if and only if
∫
g dP1 ≤

∫
g dP2 for all bounded increasing (with respect to 4) functions

g defined on X . We also define P1 to be strictly stochastically smaller than P2, written P1 ≺st P2, if

and only if
∫
g dP1 ≤

∫
g dP2 for all bounded increasing g, with strict inequality for at least one g.

Recall the notion of a ‘coupling’ from Section 1.2.1. A stochastic ordering between two probability

measures is equivalent to the existence of a coupling of random variables which are ordered and

have distributions given by the two probability measures. This result of Kamae et al. (1977) (a

special case of Strassen 1965, Theorem 11) is stated as Theorem 1.3 of Chapter 1.

Exponential Spaces & Point Processes

The notion of an ‘Exponential Space’ was introduced by Carter & Prenter (1972) as the underlying

state space for counting or point processes. For some space X the construction of its exponential

space, Xe, is given in Section 1.1.1, following Preston (1977). A point process on X is defined to be

an Xe-valued random variable (cf. Definition 1.1). Endow Xe with the inclusion order ‘⊆’, where

y ⊆ x if there exists z ∈ Xe such that y ∪ z = x, ie. y ⊆ x if y is a sub-configuration of x.

Proposition 2.1. The inclusion order ⊆ is closed with respect to the metric in Carter & Prenter.

Proof. Carter & Prenter (1972) define a metric δ onXe by: for x =
{
ξ1, . . . , ξn(x)

}
, y =

{
η1, . . . , ηn(y)

}
δ (x, y) =

 |n (x)− n (y) | if n (x) 6= n (y) or n (x) = n (y) = 0;

infσ supi d
(
ξi, ησ(i)

)
else.

Here d is the metric on X , σ is a permutation on {1, . . . , n} and n (x) is the number of points in

x. It is required to show that if {xn} and {yn} are sequences in Xe tending to x and y respectively,

such that yn ⊆ xn for each n, then y ⊆ x. For each n let the xn =
{
ξn1 , . . . , ξnn(x)

}
and yn ={

ηn1 , . . . , ηnn(y)

}
.

So suppose y * x; then ∃ ηj∗ ∈ y such that ηj∗ /∈ x. Let ε∗ = infi d (ηj∗ , ξi) > 0 since

ηj∗ /∈ x, and choose ε < ε∗. If xn → x and yn → y then, for sufficiently large n, it must be

the case that n (xn) = n (x) and n (yn) = n (y). Thus there exists Ny
ε such that n ≥ Ny

ε ⇒

δ (yn, y) < ε, ie. there exists some ηni∗ ∈ yn such that d (ηni∗ , ηj∗) < ε. Also, yn ⊆ xn

means that ηni∗ ≡ ξni∗ ∈ xn. Since xn → x then there exists Nx
ε such that n ≥ Nx

ε ⇒
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δ (xn, x) < ε. So, for n ≥ Nx
ε ∨ Ny

ε , consider δ (xn, x) = infσ supi d
(
ξni , ξσ(i)

)
. For any per-

mutation σ, d
(
ηj∗ , ξσ(i∗)

)
≤ d (ηj∗ , ξni∗ ) + d

(
ξni∗ , ξσ(i∗)

)
, as d is a metric. From above we have

that d
(
ξni∗ , ξσ(i∗)

)
≥ d

(
ηj∗ , ξσ(i∗)

)
− d (ηj∗ , ξni∗ ) > ε∗ − ε. But this implies that δ (xn, x) =

infσ supi d
(
ξni , ξσ(i)

)
≥ infσ d

(
ξni∗ , ξσ(i∗)

)
> ε∗ − ε > 0, contradicting xn → x. Hence the

assumption that y * x must be wrong and the result follows.

Definition 2.3 and Theorem 1.3 hence enable the following equivalence:

(i) P1 4st P2, where the Pi are probability measures on Xe.

(ii) There exist Xe-valued random variables (ie. point processes) Xi ∼ Pi such that X1 ⊆ X2 a.s.

2.2.3 Coupled Birth-Death Processes & Stochastic Domination

In light of Theorem 1.3 from Chapter 1 and statements (i) & (ii) above, a natural way to show

(stochastic) ordering between two probability measures is to construct Markov processes with these

measures as equilibrium distributions such that the processes are ordered for all time. If the two

probability measures admit densities with respect to some fixed measure then Preston (1977, The-

orem 9.1) gives sufficient conditions for the densities in order to ensure that their corresponding

probability measures are stochastically ordered.

The proof of this Theorem employs spatial birth-death processes (Section 1.3) in order to es-

tablish the domination result. The purpose of this section is to describe Preston’s construction; the

reason for presenting it explicitly is because we will refer to the construction in later parts of the

thesis and so it proves convenient to state it separately. In addition, conditions guaranteeing strict

stochastic dominance are also developed here (Corollary 2.1), and used in Section 2.3.2 in order to

establish some domination results.

Suppose that X is some space and Xe its exponential space, endowed with the inclusion order

‘⊆’. For i = 1, 2 let µi denote a probability measure on Xe with density fi with respect to some

fixed measure ω̃ on Xe. Let Φi be a spatial birth-death process with birth rate bi (x, ξ) = fi(x∪{ξ})
fi(x)

(with convention that 0
0

= 0) and unit death rate per point. Detailed balance equations (Eq. 1.25)

show that the equilibrium distribution of Φi is µi. Furthermore let Φ̃ be a spatial birth-death process

on Xe × Xe with equilibrium distribution µ̃ such that, for B ∈ B (Xe), µ̃ (B ×Xe) = µ1 (B) and
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µ̃ (Xe ×B) = µ2 (B). Denote the transition kernel of Φ̃ by K̃. Suppose the following condition

holds for all x, y ∈ Xe, ξ ∈ X such that y ⊆ x but y ∪ {ξ} * x:

f1 (x ∪ {ξ})
f1 (x)

≥ f2 (y ∪ {ξ})
f2 (y)

, with convention
0

0
= 0. (2.3)

That is b1 (x, ξ) ≥ b2 (y, ξ) for all y ⊆ x. Then, for y ⊆ x, K̃ (x, y;T ) = 1 where T =

{(x, y) ; y ⊆ x}. This means that if Φ̃ =
(

Φ̃1, Φ̃2

)
and Φ̃1 (0) ⊇ Φ̃2 (0) then Φ̃1 (t) ⊇ Φ̃2 (t)

for all t ≥ 0. Furthermore the equilibrium distribution of Φ̃i is µi, hence µ2 is stochastically smaller

than µ1 (Preston 1977, Theorem 9.1)

Remark 2.2. The requirement that f1 (x ∪ {ξ}) f2 (y) ≥ f1 (x) f2 (y ∪ {ξ}) is the partially-ordered-

space-analogue of the requirement in Definition 2.2 for likelihood ratio ordering; see also Shaked &

Shanthikumar (1994) for a description of the multivariate likelihood ratio order.

It is natural to want conditions which guarantee strict dominance between probability measures since

only then can one guarantee the existence of a bias. So suppose that, in addition to Eq. (2.3) holding,

the set S ′ =
{

(x, y) ; f1(x∪{ξ})
f1(x)

> f2(y∪{ξ})
f2(y)

}
has positive µ̃-measure, where µ̃ is the equilibrium

distribution of the coupled process Φ̃. So for (x, y) ∈ S ′, we have that b1 (x, ξ) > b2 (y, ξ); hence

K̃ (x, y;T ′) > 0 where T ′ = {(x, y) ; y ⊂ x}. Moreover µ̃ (T ′) =
∫
S′
K̃ (x, y;T ′) dµ̃ (x, y) > 0; so

for all strictly increasing measurable functions g : Xe → R

∫
gdµ1 =

∫
T

g (x) dµ̃ (x, y) =

∫
{(x,y);x=y}

g (x) dµ̃ (x, y) +

∫
T ′
g (x) dµ̃ (x, y)

>

∫
{(x,y);x=y}

g (y) dµ̃ (x, y) +

∫
T ′
g (y) dµ̃ (x, y) =

∫
T

g (y) dµ̃ (x, y) =

∫
gdµ2.

Thus µ2 is strictly stochastically smaller than µ1, in the sense of Definition 2.3. This then proves the

following Corollary to (Preston 1977, Theorem 9.1).

Corollary 2.1. Let µi be a probability measure on Xe and fi its density with respect to some fixed

measure ω̃, for i = 1, 2. Suppose that, for all x, y ∈ Xe, ξ ∈ X such that y ⊆ x but y∪{ξ} * x, Eq.

(2.3) holds. Suppose also that µ̃ is a measure on Xe×Xe with marginals µ̃ (B ×Xe) = µ1 (B) and

µ̃ (Xe ×B) = µ2 (B). If µ̃ puts positive measure on the set S ′ =
{

(x, y) ; f1(x∪{ξ})
f1(x)

> f2(y∪{ξ})
f2(y)

}
then for all strictly increasing measurable functions g on Xe

∫
gf1dω̃ >

∫
gf2dω̃, ie. µ2 ≺st µ1.
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2.3 Conditional Point Processes

In Section 2.2.2 the notion of an exponential space was introduced and a point process is simply

a random variable taking values in an exponential space (Definition 1.1). Thus a point process on

some X is a finite unordered set of points x = {ξ1, . . . , ξn} ∈ Xe, for n ∈ {0, 1, . . .} and ξi ∈ X .

The task now is to consider the simulation of point processes which are conditioned to belong to

some set E . Van Lieshout & Van Zwet (2001) proposed a perfect simulation algorithm for sampling

a Poisson process conditioned to belong to an anti-hereditary conditioning set E (cf. Definition 2.4).

In what follows, the algorithm of Van Lieshout & Van Zwet, denoted here by VLVZ, is briefly

summarized and three other simulation algorithms are also presented. The objective of these algo-

rithms is to sample a conditional Poisson process. A comparison of the distribution of the output

of the four procedures is carried out and it is shown that VLVZ generally produces biased samples.

The nature of this bias is explored via the notion of stochastic dominance introduced in Section

2.2.2. Theorem 2.5 gives conditions on E when VLVZ produces strictly stochastically smaller sam-

ples than the target distribution. Finally, Example 2.2 illustrates a simple case when VLVZ actually

outputs strictly stochastically larger samples.

2.3.1 Sampling Algorithms for Conditional Poisson Processes

VLVZ was proposed for any anti-hereditary conditioning set E , defined as.

Definition 2.4. E is anti-hereditary if x ∈ E ⇒ x ∪ {ξ} ∈ E , for any ξ /∈ x.

Definition 2.5. E is lattice (or has the lattice property) if x, y ∈ E ⇒ x ∩ y ∈ E and x ∪ y ∈ E .

This lattice structure becomes crucial when employing Corollary 2.1 in order to establish strict

stochastic dominance (cf. Theorem 2.4 & Lemma 2.6). Let θ be a random map θ : R2
e → R2

e which

takes x ∈ R2
e and returns some (random) sub-configuration of x. For x ∈ R2

e refer to θx ≡ θ (x) as

a thinning of x since θx ⊆ x. Henceforth θ will represent an independent p-thinning (cf. Section

1.1.9), so that θx is the configuration obtained by independently retaining each point of x with

probability p. Let n (x) be the number of points in x and πEλ the distribution of a Poisson(λ) which

is conditioned to belong to some E .
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A number of algorithms are now presented that have the objective of sampling from πEλ , for

some λ > 0 and E a lattice anti-hereditary conditioning set. The basis of all the algorithms is the

generation first of a dominating process of a higher intensity κ > λ, which is then thinned in some

way to obtain a process of lower intensity. Processes of higher intensity are more likely to belong to

E (see the discussion in Van Lieshout & Van Zwet 2001); hence let κ be large enough so that it is

feasible to use Rejection sampling to draw from πEκ and set p = λ
κ

. Define two dominating processes

D and D′ by: D ∼ πEκ and D′ is obtained via:

Set i = 1.

while i 6= 0:

draw D ∼ πEκ and sample θD.

if θD ∈ E : set i = 0; else: set i = i+ 1.

return D′ = D.

Thus the distribution of D′ is a weighted version of πEκ since we accept D′ = D ∼ πEκ with proba-

bility P [θD ∈ E | D], which is given by:

P [θD ∈ E | D] =
∑
x⊆d

P [θD = x | D = d]1{x∈E} =
∑
x⊆d

pn(x) (1− p)n(d)−n(x) 1{x∈E}

since θ is an independent p-thinning. Three algorithms, which are variants of the same basic idea (a

two-step rejection sampling), and the VLVZ algorithm are now described below:

Algorithm 2.1 (Rejection/Thinning (RT)).

Set i = 1.

while i 6= 0:

draw D ∼ πEκ and sample θD.

if θD ∈ E : set i = 0; else: set i = i+ 1.

return XRT = θD.

Algorithm 2.2 (Iterated Rejection/Thinning (IRT)).

Set i = 1; draw D ∼ πEκ .

while i 6= 0:

sample θD.
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if θD ∈ E : set i = 0; else: set i = i+ 1.

return XIRT = θD.

Algorithm 2.3 (Modified Iterated Rejection/Thinning (Mod)).

Set i = 1; draw D′.

while i 6= 0:

sample θD′ .

if θD′ ∈ E : set i = 0; else: set i = i+ 1.

return XMod = θD′ .

Algorithm 2.4 (VLVZ).

Draw D ∼ πEκ .

Define a conditional spatial birth-and-death process Φ̃ with the following dynamics:

the birth rate is p
1−p for each point in D \ Φ̃;

unit death rate per point in Φ̃;

births are generated from D \ Φ̃ and always accepted;

deaths are accepted only if E is not violated.

Apply CFTP to obtain an exact sample from the equilibrium distribution of Φ̃.

return XV LV Z , the output of the CFTP procedure.

Remark 2.3. Observe the analogy between the random variablesN,N ′ (X,X ′) of Section 2.2.1 and

the processes D,D′
(
XIRT , XMod

)
. In Section 2.2.1 N ′ is obtained from N via an accept reject

mechanism where the acceptance probability is P [θN ∈ E | N ]; here D′ is similarly obtained from

D with acceptance probability P [θD ∈ E | D]. Moreover X,X ′ are conditional thinnings of N,N ′

and XIRT , XMod are those of D,D′ respectively.

The difference between IRT and modified IRT is in the generation of the dominating processes D

and D′ respectively. Except for trivial E implementation of modified IRT will be computationally

burdensome; however the principle of the algorithm enables derivation of some distributional re-

sults. The difference between RT and IRT is that in RT a new dominating process is generated at

every iteration, while in IRT θ is applied to same dominating process. Thus the output of IRT is

a conditional thinning of the dominating process D. For VLVZ the equilibrium distribution of the
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conditional process Φ̃ depends on D and detailed balance calculations (cf. Eq. 1.25) show that the

equilibrium (conditional) distribution of Φ̃, given a realization of D, is that of θD but conditioned to

belong to E , ie. P
[
XV LV Z = x | D

]
∝ P [θD = x | D]1{x∈E}.

Remark 2.4. Only the RT and modified IRT algorithms actually produce samples from the required

target distribution πEλ ; the other two will generally not, as the following Lemmas show.

Lemma 2.2. The modified IRT algorithm is equivalent to the RT algorithm, in that they output

samples with the same distribution.

Proof. This can be seen via conditional expectation; suppose g is a measurable function. For RT D

is the dominating process, θD the process produced by applying θ to D and XRT the output. Then

E
[
g
(
XRT

)]
=
E
[
g (θD)1{θD∈E}

]
P [θD ∈ E ]

(2.4)

where P [θD ∈ E ] =
∫
d
P [θD ∈ E | D = d] dπEκ (d). If f and f ′ are the densities (with respect to a

unit rate Poisson) of D and D′ respectively, then f ′ ∝ f P [θD ∈ E | D], as the distribution of D′ is

that ofD but weighted by P [θD ∈ E | D]. ThusE [E [g (θD′) | D′]] = E
[
E [g (θD) | D]× P[θD∈E|D]

P[θD∈E]

]
.

Since the output of modified IRT, XMod, is a conditional thinning of D′, obtained by iteratively

sampling θD′ until it satisfies E :

P
[
XMod = x | D′

]
=
P [θD′ = x | D′]
P [θD′ ∈ E | D′]

1{x∈E};

so that E
[
g
(
XMod

)]
= E

[
E
[
g
(
XMod

)
| D′

]]
= E

[
E
[
g (θD′)1{θD′∈E} | D

′]
P [θD′ ∈ E | D′]

]

= E

[
E
[
g (θD)1{θD∈E} | D

]
P [θD ∈ E | D]

× P [θD ∈ E | D]

P [θD ∈ E ]

]

=
E
[
E
[
g (θD)1{θD∈E} | D

]]
P [θD ∈ E ]

=
E
[
g (θD)1{θD∈E}

]
P [θD ∈ E ]

. (2.5)

The third equality follows as D′ is a weighted realization of D. Now compare Eqs. (2.4 & 2.5).

Lemma 2.3. The IRT and RT do not, in general, produce samples from the same distribution.

Proof. This can also be seen via conditional expectation. If XIRT is the output of IRT, then the

distribution of XIRT given D is that of θD but weighted so that

P
[
XIRT = x | D

]
=
P [θD = x | D]

P [θD ∈ E | D]
1{x∈E}

thus E
[
g
(
XIRT

)]
= E

[
E
[
g
(
XIRT

)
| D
]]

= E

[
E
[
g (θD)1{θD∈E} | D

]
P [θD ∈ E | D]

]
. (2.6)
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Comparing Eqs. (2.4 & 2.6) one can see that the difference lies in the outermost expectation: in

IRT one takes the outer expectation of the ratio while in RT it is the ratio of the outer expectations.

The two expressions will only be equal if P [θD ∈ E | D] does not depend on D; but D ∈ E by

construction, so that P [θD ∈ E | D] will generally depend on D (unless p = 1 in which case it

would be a very trivial thinning!).

Lemma 2.4. The VLVZ algorithm is equivalent to the IRT algorithm.

Proof. Let XV LV Z denote the output from VLVZ and XIRT that from IRT. The dominating process

for either is D, and θD is obtained by applying θ to D. Detailed balance calculations (Van Lieshout

& Van Zwet 2001) show that the distribution of XV LV Z , given D, is simply that of θD conditioned

to belong to E . The distribution of XIRT , given D, is that of θD but conditioned to belong to E .

Since XV LV Z | D and XIRT | D agree in distribution, so will XV LV Z and XIRT .

Thus VLVZ produces biased samples as XV LV Z and XRT do have the same distribution.

2.3.2 Domination Results for the VLVZ Algorithm

The previous section showed that the VLVZ algorithm generally outputs biased samples; however

the nature of the bias is not clear. In this section the ideas of stochastic dominance and condi-

tions yielding such ordering, as presented in Section 2.2.2, are employed in order to explore this

bias. Corollary 2.1 enables one to conclude that if the conditioning event has the lattice property

(Definition 2.5) then VLVZ produces strictly stochastically smaller samples than RT.

Recall the procedures RT, IRT, modified IRT & VLVZ (Algorithms 2.1, 2.2, 2.3 & 2.4 respec-

tively). Their objective is to sample from πEλ , the distribution of a Poisson(λ) conditioned to belong

to some anti-hereditary E . The basis of RT, IRT & modified IRT is the generation of a dominating

process of higher intensity which is then conditionally thinned in order to produce a process of lower

intensity. In a totally ordered space it was shown that the analogous conditional thinning procedures

to IRT and modified IRT produced random variables X and X ′ respectively such that X ≺st X ′

for all E (Theorem 2.3). The question whether this also holds in a partially ordered space is now

answered here. The dominating process of RT & IRT is D ∼ πEκ , for some κ > λ. That of modified

IRT, D′, is obtained via an accept/reject mechanism from D with the acceptance probability being

P [θD ∈ E | D] (where θ represents an independent p-thinning with p = λ
κ

).
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Lemma 2.5. Let E be some anti-hereditary conditioning event such that ∅ /∈ E , where ∅ is the

configuration with no points. If θD represents an independent p-thinning of D then P [θD ∈ E | D]

is strictly increasing in D, in the sense P [θD ∈ E | D = d ∪ {ξ}] > P [θD ∈ E | D = d], for ξ /∈ d.

Proof. P [θD ∈ E | D = d] =
∑

x⊆d P [θd = x]1{x∈E}; hence

P [θD ∈ E | D = d ∪ {ξ}] =
∑

y⊆d∪{ξ}

P
[
θd∪{ξ} = y

]
1{y∈E}

=
∑
x⊆d

P
[
θd∪{ξ} = x

]
1{x∈E} +

∑
x⊆d

P
[
θd∪{ξ} = x ∪ {ξ}

]
1{x∪{ξ}∈E}

= (1− p)
∑
x⊆d

P [θd = x]1{x∈E} + p
∑
x⊆d

P [θd = x]1{x∪{ξ}∈E}

= (1− p)P [θD ∈ E | D = d] + p
∑
x⊆d

P [θd = x]1{x∪{ξ}∈E}

> P [θD ∈ E | D = d] .

Anti-hereditary E implies 1{x∪{ξ}∈E} ≥ 1{x∈E} for all x ⊆ d; moreover since ∅ /∈ E implies that

there must exist x ⊂ d such that x /∈ E but x ∪ {ξ} ∈ E . Hence the inequality follows.

Theorem 2.4. If D and D′ are the dominating processes in IRT (Algorithm 2.2) and modified IRT

(Algorithm 2.3) respectively and E is lattice anti-hereditary then D ≺st D′.

Proof. Let f, f ′ denote the densities (with respect to a unit rate Poisson) of D and D′ respec-

tively. Since D is a conditioned Poisson process of intensity κ, f (d) ∝ κn(d)1{d∈E}; and f ′ (d) ∝

κn(d) P [θd ∈ E ]1{d∈E} from the definition of D′. Let y ⊆ x and ξ be such that y∪{ξ} * x; consider

f ′ (x ∪ {ξ}) f (y) = α α′ κn(x∪{ξ})κn(y) P
[
θx∪{ξ} ∈ E

]
1{x∪{ξ}∈E}1{y∈E}

f ′ (x) f (y ∪ {ξ}) = α α′ κn(x)κn(y∪{ξ}) P [θx ∈ E ]1{x∈E}1{y∪{ξ}∈E}

where α, α′ are the respective normalizing constants for f and f ′. If y /∈ E , then either x ∈ E

and y ∪ {ξ} /∈ E or x /∈ E , since otherwise we would have y = x ∩ (y ∪ {ξ}) ∈ E , as E is

lattice. Conversely if both x ∈ E and y ∪ {ξ} ∈ E then both x ∪ {ξ} and y must also belong to

E . Thus f (y) = 0 (ie. if y /∈ E) implies that either f ′ (x) or f (y ∪ {ξ}) must also be zero; and

f ′ (x) f (y ∪ {ξ}) 6= 0 implies that f ′ (x ∪ {ξ}) f (y) is also non-zero. Finally, Lemma 2.5 yields

P
[
θx∪{ξ} ∈ E

]
> P [θx ∈ E ].

50



Thus Eq. (2.3) of Section 2.2.3 is satisfied. Denote the distributions corresponding to f, f ′

by µ, µ′ respectively, and let µ̃ be the measure with respective marginals µ′ and µ. The con-

struction of Section 2.2.3 shows that µ̃ (T ) = 1, where T = {(x, y) ; y ⊆ x}. Now let S ′ ={
(x, y) ; f ′(x∪{ξ})

f ′(x)
> f(y∪{ξ})

f(y)

}
; it needs to be shown that µ̃ (S ′) > 0. Notice that if, for some ξ,

y ⊆ x and x, y ∈ E then either y ∪ {ξ} ∈ E (⇒ x ∪ {ξ} = x ∪ (y ∪ {ξ}) ∈ E), or x ∪ {ξ} ∈ E .

Following the coupling construction in Section 2.2.3, let Φ̃ be a spatial birth-death process with

equilibrium µ̃. If y ⊆ x then the only ξ that will have non-zero birth-rates in Φ̃ are those for which

either x∪ {ξ} ∈ E or y ∪ {ξ} ∈ E . Hence any (x, y) with y ⊆ x is contained in S ′, so the set S ′ has

positive µ̃-measure. The conditions of Corollary 2.1 are satisfied and the result follows.

Denote byXIRT the output of IRT andXMod that of modified IRT.XIRT is obtained as a conditional

thinning of D andXMod as that ofD′. Section 2.3.1 established that L
(
XIRT

)
6= L

(
XMod

)
, where

L (X) denotes the law of X . Theorem 2.5 now shows that, for lattice E , XIRT ≺st XMod.

Lemma 2.6. Let E be lattice anti-hereditary and θ an independent p-thinning. For a configura-

tion d let Xd denotes its conditional thinning, ie. the random configuration obtained by iteratively

generating θd until θd ∈ E , and Pd its respective distribution. Then, for d ⊂ d′, Xd ≺st Xd′ .

Proof. P [Xd = x] = pn(x) (1− p)n(d)−n(x) 1{x⊆d}1{x∈E}. Thus for y ⊆ x such that y ∪ {ξ} * x:

P [Xd′ = x ∪ {ξ}]P [Xd = y] = pn1 (1− p)n2 1{x∪{ξ}⊆d′; x∪{ξ}∈E}1{y⊆d; y∈E}; (2.7)

P [Xd′ = x]P [Xd = y ∪ {ξ}] = pn1 (1− p)n2 1{x⊆d′; x∈E}1{y∪{ξ}⊆d; y∪{ξ}∈E}; (2.8)

where n1 = n (x ∪ {ξ}) + n (y) = n (x) + n (y ∪ {ξ}) ;

and n2 = n (d′)− n (x ∪ {ξ}) + n (d)− n (y) = n (d′)− n (x) + n (d)− n (y ∪ {ξ}) .

Since E is lattice, y /∈ E means that either x /∈ E or y ∪ {ξ} /∈ E . If x ∪ {ξ} * d′ then either x ⊆ d′

and ξ /∈ d′ ⊇ d (which implies that y ∪ {ξ} * d) or x * d′. Finally, y * d implies y ∪ {ξ} * d;

therefore (2.7) = 0⇒ (2.8) = 0. Conversely, if y ∪{ξ} * d then it does not necessarily follow that

either y * d or x ∪ {ξ} * d′; so (2.8) = 0 ; (2.7) = 0. This yields (2.7) ≥ (2.8).

Xd is defined only on those subsets of d which belong to E ; if µ̃ (cf. Section 2.2.3) denotes the

measure with marginals Pd′ and Pd, then its support {(x, y) ; y ⊆ d, x ⊆ d′, y ⊆ x and x, y ∈ E} is

finite. Now, for any ξ /∈ x such that ξ ∈ d′ \ d, (2.7) is positive but (2.8) is always zero. Thus the set
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S ′ = {(x, y) ; P [Xd′ = x ∪ {ξ}]P [Xd = y] > P [Xd′ = x]P [Xd = y ∪ {ξ}]} must have positive

measure, since µ̃ has finite support and d ⊂ d′. Corollary 2.1 now completes the proof.

Theorem 2.5. Let U and U ′ be any processes which are conditioned to belong to some lattice anti-

hereditary E and θ be an independent p-thinning. Denote the conditional thinning of U by X and

that of U ′ by X ′. If U ≺st U ′ then X ≺st X ′.

Proof. For a configuration u let Xu ∼ Pu be its conditional thinning; from Lemma 2.6 u ⊂ u′

implies Pu ≺st Pu′ . For g a strictly increasing function E [g (Xu)] < E [g (Xu′)], hence E [g (Xu)] is

also strictly increasing. Thus, for U ≺st U ′, EUE [g (XU)] < EU ′E [g (XU ′)] (Definition 2.3), and

E [g (X)] = EUE [g (X) | U ] = EUE [g (XU)]

< EU ′E [g (XU ′)] = EU ′E [g (X ′) | U ′] = E [g (X ′)] .

That X ≺st X ′ now follows from Definition 2.3.

So for a lattice E , Theorem 2.4 yields D ≺st D′ and Theorem 2.5 yields XIRT ≺st XMod.

Coverage of a Single Point

Suppose that, for c ∈ R2, Br (c) denotes a disk with centre c and fixed radius r. If E is the set of

all point configurations on Br (c) whose Boolean model covers {c} then any x ∈ E has at least one

point inBr (c) and vice versa. So ifX is a homogenous Poisson process onBr (c), then conditioning

it to belong to E is equivalent to conditioning X to have a positive number of points.

Recall that D,D′ are the dominating processes, and XV LV Z , XMod the output, of the VLVZ and

modified IRT algorithms respectively; and let D (Br (c)) denote the number of points of D con-

tained in Br (c). The results of Section 2.2.1 enable one to conclude that D (Br (c)) ≺st D′ (Br (c))

and XIRT (Br (c)) ≺st XMod(Br(c)). This is because D is a Poisson(κ) process on Br (c) con-

ditioned to belong to E , and so D (Br (c)) is a Poisson random variable conditioned to be posi-

tive. D′ is obtained from D via an accept/reject mechanism where the acceptance probability is

P [θD ∈ E | D] ≡ P [θD (Br (c)) > 0 | D]. The map θ is an independent p-thinning; therefore the

distribution of θD (Br (c)), given D, is a Binomial(D (Br (c)) , p) random variable. The accep-

tance weight P [θD (Br (c)) > 0 | D] thus becomes P [Binomial(D (Br (c)) , p) > 0 | D], which is
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strictly increasing in D (Br (c)). The outputs XV LV Z (Br (c)) and XMod (Br (c)) are conditional

thinnings of D (Br (c)) and D′ (Br (c)) respectively. Moreover, since θD (Br (c)) is a Binomial

random variable, the conditional thinning procedure respects the ordering between D (Br (c)) and

D′ (Br (c)). Theorems 2.1 & 2.3 hence show thatD (Br (c)) ≺st D′ (Br (c)) andXIRT (Br (c)) ≺st

XMod (Br (c)).

Since the distributions of the processes D,D′, XV LV Z and XMod depend only on the number of

points and not their locations within Br (c), samples can be generated by first sampling the number

of points and then distributing them uniformly on Br (c). Therefore D (Br (c)) ≺st D′ (Br (c))

implies that there exist
(
D̂, D̂′

)
such that: L

(
D̂
)

= L (D), L
(
D̂′
)

= L (D′) and D̂ ⊆ D̂′

almost surely. The inclusion is strict with positive probability; hence D ≺st D′. A similar argument

establishes XV LV Z ≺st XMod.

Coverage of Two Points

Suppose now E is the set of all configurations whose Boolean models cover two points {c1, c2},

with Br (c1)∩Br (c2) 6= ∅; then E is not lattice. Examples 2.1 & 2.2 show, via explicit calculations,

that in certain cases the ordering between D & D′ and XIRT & XMod is reversed, in the sense

D (W ) �st D′ (W ) and XIRT (W ) �st XMod (W ), for some region W . Furthermore Example 2.3

also illustrates that in some cases neither XIRT nor XMod dominates the other.

Let A = Br (c1) \ Br (c2) , B = Br (c1) ∩ Br (c2) , C = Br (c2) \ Br (c1); so a point in A (C)

covers only {c1} ({c2}) while a point in B covers {c1, c2}. For m2 denoting Lebesgue measure, let

β = m2[B]
m2[A∪B∪C]

> 0 denote the ‘overlap proportion’ and m2 [A] = m2 [C] = (1−β)
2
m2 [A ∪B ∪ C].

Suppose N is a Poisson(κ) and N (W ) the number of points falling in some bounded region W . Let

pn = P [N (A ∪B ∪ C) = n] =
(κm2 [A ∪B ∪ C])n

n!
e−κm2[A∪B∪C];

pN (nA, nB, nC) = P [N (A) = nA, N (B) = nB, N (C) = nC ] ≡ P [N (A,B,C) = (nA, nB, nC)]

= pn ×
n!

nA!nB!nC !
βnB

(
1− β

2

)nA+nC

where n = nA + nB + nC . (2.9)

D, the dominating process of IRT is Poisson process of intensity κ conditioned to belong to E ; so
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pD (nA, nB, nC) =
pN (nA, nB, nC)

P [N ∈ E ]
1{nA+nB≥1, nB+nC≥1}; (2.10)

where P [N ∈ E ] =
∑
n≥1

P [N (A ∪B ∪ C) = n,N (A) +N (B) ≥ 1, N (B) +N (C) ≥ 1]

=
∑
n≥1

∑
nA,nB,nC ;

nA+nB+nC=n

pN (nA, nB, nC)1{nA+nB≥1, nB+nC≥1}. (2.11)

For D′ the dominating process of modified IRT:

pD′ (nA, nB, nC) = P [D (A,B,C) = (nA, nB, nC) | accept D]

=
pD (nA, nB, nC)P [θD ∈ E | D]

P [θD ∈ E ]
(2.12)

=
pN (nA, nB, nC)P [θN ∈ E | N ]

P [θN ∈ E ]
1{N∈E}; (2.13)

where P [θN ∈ E ] =
∑

nA,nB ,nC

P [θN ∈ E | N ] pN (nA, nB, nC)

and P [θN ∈ E | N ] ≡ P [θN ∈ E | N (A,B,C) = (nA, nB, nC)]

=
∑
iA≤nA

∑
iB≤nB

∑
iC≤nC

P [θN (A,B,C) = (iA, iB, iC) | N ]1{iA+iB≥1, iB+iC≥1}

=
∑
iA≤nA

∑
iB≤nB

∑
iC≤nC

(
nA
iA

)(
nB
iB

)(
nC
iC

)
pi (1− p)n−i 1{iA+iB≥1, iB+iC≥1}. (2.14)

Here i = iA + iB + iC and n = nA + nB + nC for each term in the summand. We now consider the

respective probabilities for XIRT and XMod:

P
[
XIRT (A,B,C) = (iA, iB, iC) | D

]
= P [θD (A,B,C) = (iA, iB, iC) | D, θD ∈ E ]

=
P [θD (A,B,C) = (iA, iB, iC) | D]

P [θD ∈ E | D]
1{iA+iB≥1,iB+iC≥1}

=

(
nA
iA

)(
nB
iB

)(
nC
iC

)
pi (1− p)n−i

P [θD ∈ E | D]
1{iA+iB≥1,iB+iC≥1} (2.15)

where we implicitly have D (A,B,C) = (nA, nB, nC), n = nA + nB + nC and i = iA + iB + iC ; a

similar expression holds for XMod but with D′ instead of D. Thus the marginal for XIRT is

P
[
XIRT (A,B,C) = (iA, iB, iC)

]
=

∑
nA≥iA
nB≥iB
nC≥iC

P
[
XIRT (A,B,C) = (iA, iB, iC) | D

]
pD (nA, nB, nC)1{iA+iB≥1,iB+iC≥1}. (2.16)
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The marginal of XMod is given by a similar expression but with D′ replacing D. For a lattice E , D

is always strictly stochastically smaller than D′ (Theorem 2.4), which in turn implies that XIRT is

also always strictly stochastically smaller than XMod (Theorem 2.5). However the coverage of two

points is not a lattice event and the following examples show that when the dominating intensity κ is

low then the above ordering can either be reversed or not hold at all.

Example 2.1. For the overlap proportion β ∈
(
0,
√

2− 1
)

and the dominating Poisson inten-

sity κ small enough so that pn = P [N (A ∪B ∪ C) = n] = o (κn−1) for n ≥ 3, ie. for low

enough intensity κ so that the probability that N has three or more points in A ∪ B ∪ C is neg-

ligible, D (A ∪B ∪ C) �st D′ (A ∪B ∪ C). Furthermore, for β ∈
(√

2− 1, 1
)

and κ as above

D (A ∪B ∪ C) ≺st D′ (A ∪B ∪ C).

This is seen as follows. The requirement on κ yields Eq. (2.11) as

P [N ∈ E ] =
2∑

n=1

P [N (A ∪B ∪ C) = n,N (A) +N (B) ≥ 1, N (B) +N (C) ≥ 1] + o
(
κ2
)

= pN (0, 1, 0) + pN (1, 0, 1) + pN (1, 1, 0) + pN (0, 1, 1) + pN (0, 2, 0) + o
(
κ2
)

= p1β + p2
(1− β)2

2
+ 2p2β (1− β) + p2β

2 + o
(
κ2
)

= K (2.17)

since for n = nA + nB + nC = 1 the only triple (nA, nB, nC) which satisfies nA + nB ≥ 1 and

nB + nC ≥ 1 is (0, 1, 0); while for n = 2 there are four which belong to the conditioning set:

(1, 0, 1), (1, 1, 0), (0, 1, 1) and (0, 2, 0). Using Eq. (2.10), the corresponding probabilities for D are

pD (0, 1, 0) = p1β
K

; pD (1, 0, 1) =
p2

(1−β)2
2

K
; pD (1, 1, 0) = p2β(1−β)

K
;

pD (0, 1, 1) = p2β(1−β)
K

; pD (0, 2, 0) = p2β2

K
; pD (nA, nB, nC) = o (κ2) , nA + nB + nC ≥ 3.

Similarly, for the D′ we have

P [θN ∈ E ] =
∑

nA,nB,nC ;
nA+nB+nC≥1

P [θN ∈ E | N ] pN (nA, nB, nC)

=
∑

nA,nB,nC ;
1≤nA+nB+nC≤2

P [θN ∈ E | N ] pN (nA, nB, nC) + o
(
κ2
)

= p1βp+ p2
(1− β)2

2
p2 + 2p2β (1− β) p+ p2β

2p (2− p) + o
(
κ2
)

= K ′. (2.18)

Eqs. (2.14 & 2.9) are used to get the last line; Eq. (2.13) then yields:

pD′ (0, 1, 0) = p1βp
K′

; pD′ (1, 0, 1) =
p2

(1−β)2
2

p2

K′
; pD′ (1, 1, 0) = p2β(1−β)p

K′
;

pD′ (0, 1, 1) = p2β(1−β)p
K′

; pD′ (0, 2, 0) = p2β2p(2−p)
K′

; pD′ (nA, nB, nC) = o (κ2) , nA + nB + nC ≥ 3.
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Now consider P [D (A ∪B ∪ C) = 1]− P [D′ (A ∪B ∪ C) = 1] = p1β
KK′

(K ′ − pK)+o (κ2), where

K ′ − pK = p2
(1− β)2

2

(
p2 − p

)
+ p2β

2 (p (2− p)− p) + o
(
κ2
)

= p2p (1− p)

{
β2 − (1− β)2

2

}
= p2p (1− p)

{
β2 + 2β − 1

2

}
+ o

(
κ2
)
.

The roots of β2 + 2β − 1 = 0 are −1±
√

2; so β ∈
(
0,
√

2− 1
)

implies P [D (A ∪B ∪ C) = 1] <

P [D′ (A ∪B ∪ C) = 1], since the contribution from o (κ2) is negligible; but this means that

P [D (A ∪B ∪ C) ≥ 2] > P [D′ (A ∪B ∪ C) ≥ 2] .

Now P [D (A ∪B ∪ C) ≥ 1] = P [D′ (A ∪B ∪ C) ≥ 1] = 1; for n ≥ 3, P [D (A ∪B ∪ C) ≥ n] =

P [D′ (A ∪B ∪ C) ≥ n] = o (κ2). Thus for β ∈
(
0,
√

2− 1
)

and κ small enough we have

D (A ∪B ∪ C) �st D′ (A ∪B ∪ C). Conversely, β ∈
(√

2− 1, 1
)
⇒ β2 + 2β − 1 > 0 ⇒

P [D (A ∪B ∪ C) ≥ 2] < P [D′ (A ∪B ∪ C) ≥ 2]; hence D (A ∪B ∪ C) ≺st D′ (A ∪B ∪ C).

Intuitively, a small value of the overlap proportion β means that there is a low probability of getting

a configuration with a point in B; thus for the 2-point configurations, (1, 0, 1) is more likely than the

others while (0, 1, 0) is the only 1-point configuration. This then reduces to choosing between these

two configurations when generating D′ from D. Since since the acceptance probability for (1, 0, 1)

is p2 and that for (0, 1, 0) is p, the 1-point configuration is more likely to be accepted than the 2-point

one. The stochastic ordering between D and D′ is hence reversed.

Remark 2.5. The case when β = 0 means that no single point can simultaneously cover both con-

ditioning points and the issue reduces to requiring that D (A) ≥ 1 and D (C) ≥ 1. The problem

then simplifies to the case of coverage of a single point and the results of the previous section

yield D (A) ≺st D′ (A) and D (C) ≺st D′ (C). Since A and C are disjoint (ie. β = 0) we have

D (A ∪ C) ≺st D′ (A ∪ C).

Example 2.2. For the overlap proportion β ∈
(
0,
√

2− 1
)

and the dominating intensity κ small

enough so that pn = P [N (A ∪B ∪ C) = n] = o (κn−1), for n ≥ 3, then XIRT (A ∪B ∪ C) �st

XMod (A ∪B ∪ C).

This can be seen in a similar manner to Example 2.1. The thinned processes will have negligible
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probability of having three or more points given the restriction on κ; thus Eqs. (2.16 & 2.15) yield

P
[
XIRT (A,B,C) = (0, 1, 0)

]
=
p1β + 2p2β (1− β) (1− p) + 2p2β

2 1−p
2−p

K
+ o

(
κ2
)

;

P
[
XIRT (A,B,C) = (1, 0, 1)

]
=
p2

(1−β)2

2

K
+ o

(
κ2
)

;

P
[
XIRT (A,B,C) = (1, 1, 0)

]
=
p2β (1− β) p

K
+ o

(
κ2
)

;

P
[
XIRT (A,B,C) = (0, 1, 1)

]
=
p2β (1− β) p

K
+ o

(
κ2
)

;

P
[
XIRT (A,B,C) = (0, 2, 0)

]
=
p2β

2 p
2−p

K
+ o

(
κ2
)

;

P
[
XIRT (A,B,C) = (iA, iB, iC)

]
= o

(
κ2
)
, for iA + iB + iC ≥ 3.

Similarly, for XMod:

P
[
XMod (A,B,C) = (0, 1, 0)

]
=
p1βp+ 2p2β (1− β) p (1− p) + 2p2β

2p (2− p) 1−p
2−p

K ′
+ o

(
κ2
)

;

P
[
XMod (A,B,C) = (1, 0, 1)

]
=
p2

(1−β)2

2
p2

K
+ o

(
κ2
)

;

P
[
XMod (A,B,C) = (1, 1, 0)

]
=
p2β (1− β) p2

K ′
+ o

(
κ2
)

;

P
[
XMod (A,B,C) = (0, 1, 1)

]
=
p2β (1− β) p2

K ′
+ o

(
κ2
)

;

P
[
XMod (A,B,C) = (0, 2, 0)

]
=
p2β

2 (2− p) p2

2−p

K ′
+ o

(
κ2
)

;

P
[
XMod (A,B,C) = (iA, iB, iC)

]
= o

(
κ2
)
, for iA + iB + iC ≥ 3.

Here K and K ′ are given in Eqs. (2.17 & 2.18) respectively. Now consider

P
[
XIRT (A ∪B ∪ C) = 1

]
− P

[
XMod (A ∪B ∪ C) = 1

]
=
K ′ − pK
KK ′

{p1β + 2p2β (1− β) (1− p)}+
K ′ − p (2− p)K

KK ′

{
2p2β

2 (1− p)
2− p

}
+ o

(
κ2
)
.

(2.19)

For β ∈
(
0,
√

2− 1
)
, Example 2.1 shows K ′ < pK and, since 2− p ≥ 1, K ′ < p (2− p)K. Thus

for β ∈
(
0,
√

2− 1
)

and κ small enough P
[
XIRT (A ∪B ∪ C) = 1

]
< P

[
XMod (A ∪B ∪ C) = 1

]
(and hence P

[
XIRT (A ∪B ∪ C) ≥ 2

]
> P

[
XMod (A ∪B ∪ C) ≥ 2

]
) since the contribution from

o (κ2) is negligible. For n ≥ 3 the probability that XIRT or XMod has n points in A ∪ B ∪ C is

negligible. The desired result XIRT (A ∪B ∪ C) �st XMod (A ∪B ∪ C) follows.
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So for κ, β smallD (A ∪B ∪ C) �st D′ (A ∪B ∪ C),XIRT (A ∪B ∪ C) �st XMod (A ∪B ∪ C);

for β largeD (A ∪B ∪ C) ≺st D′ (A ∪B ∪ C). The example below shows thatXIRT (A ∪B ∪ C)

need not always stochastically dominate or be dominated by XMod (A ∪B ∪ C).

Example 2.3. For the set up as in Example 2.2 but with β >
√

2− 1 ' 0.4 then XIRT (A ∪B ∪ C)

need not always stochastically dominate or be dominated by XMod (A ∪B ∪ C).

Since pi is a Poisson probability with mean κ, we have that p1 = 2p2
κ

. Substituting this and

explicit expressions for K ′ − pK and K ′ − p (1− p)K into Eq. (2.19), we have

P
[
XIRT (A ∪B ∪ C) = 1

]
− P

[
XMod (A ∪B ∪ C) = 1

]
=
p2

2βp (1− p)
KK ′

M̃ + o
(
κ2
)

;

M̃ =
(3p− 2) β2 + 2 (2− p) β − (2− p)

κ (2− p)
+ (1− β) (1− p) −pβ

2 + 2 (1− p) β − (2− p)
2− p

.

For p = β = 0.5, M̃ is strictly negative; so in this case XIRT (A ∪B ∪ C) �st XMod (A ∪B ∪ C)

(arguing as in Example 2.2). However, for p = 0.5 and β = 0.9

(3p− 2) β2 + 2 (2− p) β − (2− p) + (1− β) (1− p)
{
−pβ2 + 2 (1− p) β − (2− p)

}
> 0.

Since we require κ to be small enough so that pn = o (κ2), for n ≥ 3, κ must be less than 1. This

yields P
[
XIRT (A ∪B ∪ C) = 1

]
> P

[
XMod (A ∪B ∪ C) = 1

]
; so that for this p and β the or-

dering between XIRT (A ∪B ∪ C) and XMod (A ∪B ∪ C) is reversed, ie. XIRT (A ∪B ∪ C) ≺st

XMod (A ∪B ∪ C).

Remark 2.6. From Example 2.1 β >
√

2 − 1 ' 0.4 implies D (A ∪B ∪ C) ≺st D′ (A ∪B ∪ C);

thus even though for we have the above ordering between the dominating processes, the same is not

necessarily true for the conditionally thinned processes. Only under conditioning by a lattice E may

one guarantee that the conditional thinning of a stochastically larger process is stochastically larger.

In this chapter it is shown that the Van Lieshout & Van Zwet (2001) algorithm (VLVZ) generally

outputs biased samples; in some cases strictly smaller while in others strictly larger samples. The

comment by Van Lieshout & Van Zwet (2003) that efficient sampling of conditional Boolean models

is still an open problem hence motivates further exploration of perfect sampling for such models.

In the following chapter we introduce other simulation algorithms for Boolean models conditioned

to cover a finite set; in addition the relative performance of the perfect simulation algorithms is

evaluated in order to determine the most efficient algorithm for such Boolean models.
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Chapter 3

Conditional Boolean Models

3.1 Introduction

Applications arising in microscopy, materials science, mining and oil industries, geology, forestry,

ecology, physics and biology often involve modelling collections of randomly distributed compact

sets in the plane. Examples include complicated geometric patterns depicting vegetation cover,

oil/ore deposits, collection of cells and particles. Effective models for such purposes are ‘Boolean

Models’. This is a basic model in stochastic geometry and stereology; it has received much attention

as a natural model for systems of randomly distributed particles and irregular patterns observed in

nature (Matheron 1975; Hall 1988; Stoyan et al. 1995; Serra 1982; Molchanov 1996). A Boolean

model is the union of independent (ie. non-interacting), randomly placed, non-empty, compact

subsets of Rd. The location of each such set is determined by the points of a Poisson process; thus a

Boolean model formalizes the notion of ‘independent and randomly distributed sets’:

Definition 3.1. Let X = {ξn}n≥0 be a Poisson(λ) process on Rd and Ξ0,Ξ1, . . . independent iden-

tically distributed random compact sets in Rd satisfying E [md [Ξo ⊕K]] < ∞ for all compact K.

Here md denotes Lebesgue measure on Rd and Ξ0 ⊕ K = {x+ y; x ∈ Ξ0, y ∈ K} Minkowski-

addition (Stoyan et al. 1995). The Boolean model U (X) of germs {ξn} and grains {Ξn} is con-

structed as

U (X) =
⋃
n≥1

(ξn ⊕ Ξn) . (3.1)
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The underlying germ process of a Boolean model is a Poisson point process, which is mathemat-

ically quite tractable and has been immensely studied (Section 1.1.5). Nevertheless inference for the

Boolean model is far from trivial (Molchanov 1996). The occlusion caused by observing only the

union of the grains rather than the individual germ-grain pairs poses difficulties in trying to estimate

both macroscopic and microscopic features. Such characteristics include the volume or perimeter

of the grains, number of overlapping/connected grains, contact distributions and intensity of the un-

derlying Poisson process. Hence it may be worthwhile trying a Monte Carlo simulation procedure.

In many instances experimental data is often available for the physical phenomenon being studied.

For example, one may know that certain locations are covered (or uncovered) by the grains, or that

a given set of points are connected by the grains, etc. “Simulations that respect these experimental

data are desirable because they will have a reduced variability, which may considerably speed up the

Monte Carlo procedure. Such simulations are called conditional simulations” (Lantuéjoul 1997).

In this chapter the exact sampling of a conditional Boolean model is considered for the case when

the germs are homogeneous Poisson, grains are circular disks of fixed radius and the conditioning

event is the coverage of a finite set; each element of the conditioning set being referred to as a node

(cf. Section 3.2). Suppose that the unconditional Boolean model can be generated as the equilibrium

state of an ergodic, time-reversible Markov jump process. If the transitions of the process which

violate the conditioning are not allowed then the restricted process will still satisfy detailed balance

equations (Eq. 1.19). Furthermore if the restricted process is also irreducible then its equilibrium

distribution will be that of the conditional Boolean model (Lantuéjoul 1997). For example, if a

Metropolis-Hastings sampler (Section 1.4) is employed to sample the conditional Boolean model,

then any transition violating the conditioning will have zero acceptance probability. The sampler is

still irreducible, so the process converges to the conditional Boolean model.

This idea was implemented by Kendall & Thönnes (1999) who use spatial birth-death processes

to construct the first perfect simulation algorithm for conditional Boolean models. They employ the

method of dominated Coupling form the Past (domCFTP) which was developed by Kendall (1998),

following on from the seminal work of Propp & Wilson (1996) who first proposed Coupling From

The Past (CFTP) as a tool for perfect simulation. CFTP and domCFTP are introduced in Sections

1.4.1 & 1.4.2 respectively. An alternative perfect simulation algorithm for conditional Boolean

models was developed by Cai & Kendall (2002); here the set up of the algorithm is in terms of
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random variables rather than spatial point processes. Their simulation algorithm is a generalization

of dominated CFTP, which they call Extended State-Space CFTP. Thönnes (2000) also presents a

review of other simulation algorithms for this model.

Section 3.3 briefly presents the simplest simulation procedure for conditional Boolean models,

namely Rejection sampling. The efficiency of the Rejection algorithm is inversely proportional to the

acceptance probability. For extreme model parameters (such as low intensity λ or large conditioning

set) the acceptance probability can be very low, and Rejection sampling may prove inefficient. In

Section 3.3.1 we introduce a variant of Rejection Sampling, namely 2-Stage Rejection. Simple yet

logical modifications are made to the usual Rejection algorithm in order to produce the 2-Stage Re-

jection algorithm. It turns out that this variant is much more efficient than straightforward Rejection

(Lemma 3.1). Section 3.4 then introduces the idea of using spatial birth-death processes to simulate

conditional Boolean models; the algorithm of Cai & Kendall (2002) is described in Section 3.4.1. In

Section 3.5 yet another CFTP-based simulation algorithm, which employs a Gibbs updating scheme,

is presented. The exact Gibbs sampler described uses the ideas of Häggström et al. (1999), who

consider perfect simulation of the penetrable spheres model and the area-interaction point process

(see Section 1.1.11 and Chapter 4 for details on these point process models).

For any simulation algorithm it is important to validate it in order to ensure that there are no

coding errors, or indeed even theoretical inconsistencies. Therefore the Cai & Kendall and exact

Gibbs algorithms are validated via χ2 tests in Appendix A. The final part of this chapter presents

some results of simulation experiments carried out in order to quantitatively evaluate the efficiency

of the 2-Stage, Cai & Kendall and exact Gibbs algorithms. The performance is measured in terms

of actual run times (in seconds). At first glance the results are quite striking: Figures 3.3 & 3.4

depict how the run times of Rejection sampling compare with the above three algorithms. The 2-

Stage algorithm is seen to have much lower run times than Rejection, making the former much more

competitive to the Cai & Kendall and exact Gibbs algorithms.

More rigorous simulation experiments (Sections 3.7.3 & 3.7.4) also suggest that the 2-Stage

method is very competitive for moderate intensity λ and number of conditioning nodes k. As λ de-

creases or k increases the relative performance of the Cai & Kendall method is better than 2-Stage

Rejection and exact Gibbs. The exact Gibbs algorithm is, unfortunately, always outperformed by

either of the other two. This is however not the case when interactions are introduced; see Chapter
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5 where a 2-Stage Rejection, modified Cai & Kendall and exact Gibbs algorithm for the conditional

area-interaction process are compared in terms of relative efficiency.

3.2 Notation

Let C = {c1, . . . , ck} denote the finite conditioning set and U (x) the Boolean model of disks as-

sociated with a point configuration x, defined by the union U (x) =
⋃
ξ∈xBr (ξ), where Br (ξ)

is a disk of radius r and centre ξ (Definition 3.1). For λ > 0 let πCλ denote the distribution of a

Poisson(λ) process which is conditioned so that its associated Boolean model covers the set C, and

read “U (x) ⊃ C” as “U (x) covers C”.

The set C can be viewed as a graph with nodes {c1, . . . , ck} and edges determined as follows.

Two nodes ci and cj are connected (ie. there is an edge between them) if U (ci)∩U (cj) 6= ∅, written

ci ∼r cj since the radius r essentially governs whether two points are connected. Similarly, ci and

cj are disconnected if U (ci) ∩ U (cj) = ∅. To avoid confusion between the points ξn of X and

conditioning points ci of C, the {ξn} will be referred to as germs, {U (ξn)} as grains and {ci} as

(conditioning) nodes. Figure 3.1 below shows a realization of a Boolean model conditioned to cover

a part of the Redwood seedlings data (Figure 1).

3.3 Rejection Sampling

This is the simplest sampling algorithm for sampling from πCλ . The idea is straightforward: draw an

unconditional Boolean model. If it covers the set C then it has the desired distribution; else discard it

and draw another one independently. Continue in this fashion until the required sample is obtained.

Algorithm 3.1 (Rejection: Conditional Boolean Model).

Set T = 1.

while T > 0:

draw X ∼ Poisson(λ).

if U (X) ⊃ C: set T = −1.

else: set T = T + 1.

return X .
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Figure 3.1: Sample of a conditional Boolean model. The conditioning nodes (solid dots) are a part of the Redwood

seedlings data set (Figure 1). The underlying Poisson intensity λ = 40 and disk radius r = 0.05.

Algorithm 3.1 samples a Poisson(λ) process restricted to those realizations whose associated Boolean

model covers C, so the distribution of the output is πCλ . The expected number of iterations of the Re-

jection algorithm is equal to the inverse of the probability that the Boolean model associated with

a Poisson(λ) covers C. This probability becomes very low as λ decreases or k increases, hence

Rejection becomes inefficient. Figures 3.3 & 3.4 in Section 3.7, compare the empirical run times

of Rejection sampling against the algorithms described in the following sections. It is seen that the

Rejection algorithm does slow down as λ decreases or k increases. In the next section a more effi-

cient variant of Rejection, namely the 2-Stage Rejection, is introduced. The results of Section 3.7

indicate that 2-Stage Rejection is very competitive for moderate parameter values to the relatively

more complicated algorithms presented in Sections 3.4.1 & 3.5.1.

3.3.1 2-Stage Rejection

The Rejection Algorithm 3.1 of Section 3.3 can be viewed as a one-off accept/reject mechanism for

drawing from πCλ , the distribution of a Poisson(λ) process conditioned to cover C. An unconditional

Poisson(λ) process is drawn; it is accepted if its associated Boolean model covers C; else it is
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discarded and another one is independently drawn. This is carried out until a sample is accepted.

When the conditioning set C gets large Rejection sampling can be quite inefficient, in terms of

either the run-time (in seconds) or the number of iterations required before a sample is accepted

(see Figures 3.3 & 3.4 for an illustration). Indeed the acceptance probability decreases monoton-

ically as more and more nodes are added to C: if X ∼ Poisson(λ) process then P [U (X) ⊃ C] ≥

P [U (X) ⊃ C ∪ {ξ}], for ξ /∈ C. Thus, for A ⊆ C, the number of iterations required to draw from

πAλ will be (stochastically) less than those required to draw from πCλ; moreover, if Y ∼ πAλ then

P [U (Y ) ⊃ C] > 0. Therefore, in order to draw from πCλ it will be just as efficient, if not more so (in

terms of number of iterations), to sample from πAλ and then check if the sample also covers C. This

is the idea behind the 2-Stage Rejection algorithm.

Recall, from Section 3.2, that C can be viewed as a graph with nodes {c1, . . . , ck}. Two condi-

tioning nodes ci and cj are connected, written ci ∼r cj if U (ci) ∩ U (cj) 6= ∅, where U (c) is a disk

of fixed radius r centred at c. Similarly ci and cj are disconnected if U (ci) ∩ U (cj) = ∅.

Definition 3.2. Define A∗ to be a subset of C that has the maximum number of disconnected nodes.

Let A∗ ⊆ C be as defined above and X an unconditional Poisson(λ) process on U (C). If Xc denotes

the process X restricted to U (c) then the {Xc; c ∈ A∗} are independent Poisson(λ) processes since

nodes in A∗ are disconnected. Moreover, if X̃ ∼ πA
∗

λ is a Poisson(λ) process whose associated

Boolean model covers A∗, then
{
X̃c; c ∈ A∗

}
are independent Poisson(λ) processes, each contain-

ing a positive number of germs. A Rejection algorithm to sample from πA
∗

λ would involve drawing

an unconditional Poisson process and checking if the number of germs in U (c) is positive for all

c ∈ A∗. The expected number of iterations required such a procedure is
(
1− e−λm2[U(c)]

)−|A∗|,
where |A∗| is the number of nodes in A.

However the observation that
{
X̃c; c ∈ A∗

}
are independent Poisson processes provides a more

efficient way to sample from πA
∗

λ . For each c ∈ A∗ sample X̃c ∼ π
{c}
λ independently; this is

straightforward since X̃c is a Poisson(λ) process on U (c) conditioned to have at least one germ.

Setting X̃ =
⋃
{c∈A∗} X̃c yields the desired sample with distribution πA∗λ . The expected number of

iterations for this is |A∗|
(
1− e−λm2[U(c)]

)−1. For reasonably sized A∗ this value will be much lower

than the corresponding one for Rejection.
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Algorithm 3.2 (2-Stage Rejection: Conditional Boolean Model).

Choose A∗ ⊆ C as in Definition 3.2; set T = 1.

while T > 0:

for each c ∈ A∗: draw X̃c ∼ π
{c}
λ .

draw X ∼ Poisson(λ) process on U (C) \ U (A∗).

set X̃ =
⋃
{c∈A∗} X̃c.

if U
(
X̃ ∪X

)
⊃ C: set T = −1.

else: set T = T + 1.

return X̃ ∪X .

By independence, X̃ ∪ X is a Poisson(λ) process on U (C) conditioned to cover A∗; the above

algorithm therefore outputs a Poisson(λ) process restricted to those realizations which cover C,

as required. For A ⊆ C, let τrej (A) denote the (random) number of iterations in the Rejection

Algorithm 3.1 required to obtain a sample from πAλ . Then τrej (A) can take values in {1, 2, . . .}

and has a Geometric distribution with success probability p (A) = P [U (X) ⊃ A] and expectation

E [τrej (A)] = p (A)−1. Set p = P [U (X) ⊃ {c}] =
(
1− e−λm2[U(c)]

)
, the probability that U (X)

covers a single conditioning node c. Define also p (C | A) = P [U (X) ⊃ C | U (X) ⊃ A], as the

(conditional) probability that U (X) covers C given that it covers some A ⊆ C, and τ (C | A) a

Geometric random variable with success probability p (C|A).

Suppose A∗ is as in Definition 3.2; in order to sample from πCλ the 2-Stage algorithm involves

two stages of iteration steps. One implicit in the rejection step where a sample from πA
∗

λ is drawn;

the other explicitly in the number of times a sample from πA
∗

λ must be drawn before it also covers C.

Denote by τ2Stg (A∗) the total number of iterations required by the 2-Stage algorithm. Let τ ′ (A∗) be

a sum of |A∗| independent and identically distributed Geometric random variables each with success

probability p. Then E [τ ′ (A∗)] = |A∗|p−1; furthermore if τ ′i (A∗) are a sequence of independent and

identically distributed random variables then

τ2Stg (A∗) =

τ(C|A∗)∑
i=1

τ ′i (A∗) . (3.2)

E [τ2Stg (A∗)] = E

E
τ(C|A∗)∑

i=1

τ ′i (A∗)

∣∣∣∣∣∣ τ (C | A∗)

 = E [τ (C | A∗)] |A
∗|
p
. (3.3)
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Lemma 3.1. Given A∗ (definition 3.2) let τ2Stg (A∗) be defined by Eq. (3.2) above and τrej (C) the

number of iterations of the Rejection Algorithm 3.1. Set p =
(
1− e−λm2[U(c)]

)
and let |A∗| denote

the number of conditioning nodes in A∗. If |A
∗|
p
< 1

p|A∗|
then E [τ2Stg (A∗)] < E [τrej (C)].

Proof. From Eqs. (3.2 & 3.3) we have that E [τ2Stg (A∗)] = E [τ (C | A∗)] |A
∗|
p

. Now τrej (C) is a

Geometric random variable with success probability p (C) = P [U (X) ⊃ C]. Given A∗, this proba-

bility can be decomposed as P [U (X) ⊃ C] = P [U (X) ⊃ C | U (X) ⊃ A∗]×P [U (X) ⊃ A∗]; thus

p (C) = p (C | A∗) p (A∗). Since A∗ contains only disconnected nodes p (A∗) = p|A
∗|. Thus p (C) =

p (C | A∗) p|A∗|; so E [τrej (C)] = p (C)−1 =
(
p (C | A∗) p|A∗|

)−1. But p (C | A∗) is the success proba-

bility of the Geometric random variable τ (C | A∗); therefore E [τrej (C)] = E [τ (C | A∗)] 1
p|A∗|

. The

result hence follows if |A
∗|
p
< 1

p|A∗|
.

This Lemma thus proves that the 2-Stage Rejection algorithm is more efficient than its Rejection

counterpart. In Section 3.7 results of simulation experiments are presented, with the objective of

quantitatively comparing the performance of the algorithms described in this chapter. One of the

experiments involves comparing the actual run times (in seconds) of the Rejection and 2-Stage algo-

rithms. The increase in efficiency by adopting the 2-stage sampling procedure is quite striking. It is

seen that for low λ and/or large C the Rejection Algorithm 3.1 becomes quite inefficient. However

the run times of the 2-Stage Algorithm 3.2 are much lower than those of Rejection; moreover it

also fares well against the more complex perfect simulation algorithms presented in the following

sections. More details and discussions are postponed till Section 3.7.

3.4 Simulation via Spatial Birth-Death Processes

A spatial birth-death process (Section 1.3) is a continuous-time Markov jump process taking values

in an Exponential Space (space of locally finite point configurations; see Section 1.1.1). The only

transitions are births (where a germ or individual is added to the current configuration) or deaths

(where a germ is deleted). Birth incidents are controlled by the birth rate b and deaths by the

per capita death rate d. For a constant birth rate b and unit per capita death rate the equilibrium

distribution of the spatial birth-death process is that of a Poisson(b) process (Example 1.3).

Lantuéjoul (1997, 2002) presents an algorithm of Matheron which employs this result: that the
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stationary distribution of a spatial birth-death process is an unconditional Poisson process. He shows

that forbidding those transitions (ie. births or deaths) that violate the given conditioning (eg. cov-

erage, connectivity) yields a conditional process whose limiting distribution is that of a conditional

Poisson process. This provides a dynamic sampling algorithm for the conditional Boolean model

via a spatial birth-death process Φ:

Algorithm 3.3 (Lantuéjoul (1997)).

Set Φ (0) = ∅, t = 0.

while t ≤ T :

simulate the next incident time τ of Φ; set t = t+ τ .

if next incident is a birth ξ:

if addition of ξ does not disrupt the conditioning: set Φ (t) = Φ (t−) ∪ {ξ}.

else: set Φ (t) = Φ (t−).

else if next incident is a death ξ:

if removal of ξ does not disrupt the conditioning: set Φ (t) = Φ (t−) \ {ξ}.

else: set Φ (t) = Φ (t−).

return Φ (T ).

This algorithm yields an approximate sample from a conditional Boolean model, where T is set

by the user. However, after the inception of Coupling From the Past (CFTP) by Propp & Wilson

(1996), there has been much research on the possibility of perfectly simulating point processes

(Kendall 1998; Kendall & Møller 2000; Häggström et al. 1999; Fernández et al. 2002; Thönnes

2000). Indeed, Kendall & Thönnes (1999) were the first to present a perfect simulation algorithm for

the conditional Boolean model, where the conditioning event considered was the coverage of a finite

set of nodes. Subsequent algorithms have also been presented and we now describe the sampling

scheme proposed by Cai & Kendall (2002).

3.4.1 The Cai & Kendall Algorithm

The Cai & Kendall procedure perfectly samples a collection of correlated Poisson random variables

conditioned to be positive. Such a collection can then be converted into a sample of a conditional
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Boolean model. Their perfect simulation algorithm is a variant of dominated CFTP, namely Ex-

tended State-Space CFTP.

Let C = {c1, . . . , ck} be the set of conditioning nodes andX an unconditional Poisson(λ) process

on R2. Denote a disk of fixed radius r and centre ξ by Br (ξ); the Boolean model (Definition 3.1) of

disks associated with X is then given by U (X) =
⋃
ξ∈X Br (ξ). For each non-empty A ⊆ C define

EA =

(⋂
x∈A

Br (x)

)
\

 ⋃
y∈C; y/∈A

Br (y)

 . (3.4)

So a germ in EA will cover exactly those conditioning nodes in A and no others. Note that even if

A 6= ∅ but EA = ∅, the dynamics of the algorithm are unaffected by this; see the comment at the

end of this section. An illustration of these regions is given by Figure 3.2 in Section 3.7.

LetXA denote the restriction ofX toEA and, for c ∈ C, letX{c} ≡ Xc =
⋃
{A; c∈A}XA represent

those germs of X which cover the conditioning node {c}, ie. those germs contained in Br (c). Then

{Xci}
k
i=1 is a collection of correlated Poisson processes. Equivalently, since the number of germs of

a Poisson process covering a given node is a Poisson random variable, {n (Xci)}
k
i=1 is a collection of

correlated Poisson random variables, where n (X) denotes the number of germs in X . Conditioning

X to cover C is equivalent to conditioning the processes {Xci}
k
i=1 each to have at least one germ;

thus “conditional Boolean models can be viewed as arising from correlated conditioned Poisson

random variables” (Cai & Kendall 2002).

Let
{
X̃ci

}k
i=1

be a collection of correlated Poisson processes each conditioned to have at least

one germ; then X̃ =
⋃k
i=1 X̃ci is a sample of a Poisson process which covers C, with distribution

denoted by πCλ . Cai & Kendall employ immigration-death processes in order to carry out MCMC for

a collection of correlated Poisson random variables conditioned to be positive; such a sample can

then be converted into a conditional Boolean model. In the spirit of their construction, described

below is a conditional simulation algorithm via spatial birth-death processes for sampling directly

from πCλ . The essence of the construction below is very similar to (and indeed motivated by) that of

Cai & Kendall. Differences in certain aspects of the formulation arise due to the fact that they use

immigration-death processes on N whereas spatial birth-death processes on R2
e are used here.

Let Φ denote a spatial birth death process with birth rate λ and unit death rate per germ. Detailed

balance calculations show that the equilibrium distribution of Φ is that of a Poisson(λ) process (cf.

Example 1.3). So ΦA, the restriction of Φ to EA, converges to a Poisson(λ) process on EA; and
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Φci (t) =
⋃
{A; ci∈A}ΦA (t) converges to Xci defined above. This enables one to sample the col-

lection of correlated Poisson processes {Xci}
k
i=1 given a realization of the {ΦA; A ⊆ C} processes.

Births are generated uniformly and assigned to the relevant ΦA process according to which region

EA the new germ falls in; deaths are chosen uniformly at random from the set of alive individuals

since each has unit death rate.

There are more efficient ways of simulating unconditional Poisson processes than via spatial

birth-death processes (eg. direct sampling); however the dynamic nature of spatial birth-death pro-

cesses enables one to modify the construction in order to incorporate conditioning. The conditioning

event considered is the coverage of the finite set C. The birth of a germ never disrupts the condi-

tioning, so there are no changes required for birth transitions. On the other hand, suppose that one

of the ΦA processes experiences a death transition. If deletion of this germ would uncover one or

more of the conditioning nodes in A, ie. causes at least one of the Φci processes, for ci ∈ A, to

become empty, then this transition is disallowed. Such a germ is referred to as a perpetuated germ

(Kendall & Thönnes 1999; Cai & Kendall 2002); it is granted an additional unit-rate Exponentially

distributed lifetime, after which its deletion decision is re-evaluated.

In order to prescribe replacement death times for potential death times which are prevented from

becoming actual, introduce independent unit-rate Poisson processes ZA, one for each non-empty

A ⊆ C; define also a virtual process VA which will be used to keep track of perpetuated germs.

So, if a death in some ΦA is disallowed, the perpetuated germ is deleted from ΦA and stored in VA.

The next incident time t̂ > t of ZA determines a new potential death time for the perpetuated germ.

Refer to such incidences as perpetuation incidents and t̂ as the perpetuation time of VA.

Each virtual process VA is initialized so as to contain a single germ in the respective region EA.

If, for some A 6= ∅, EA = ∅ then this will not affect the dynamics of the sampling procedure. The

reason being that EA empty implies that there exists B ⊃ A with non-empty EB. So as soon as a

germ is born inEB then bothA andB are covered. The initializing and updating scheme ensures that

Φ̃ci =
⋃
{A; ci∈A}ΦA ∪ VA always contains at least one germ for each i. Thus the virtual processes

essentially supply extra individuals to ensure that the conditioning is always satisfied; furthermore

each VA process contains at most one perpetuated germ. Detailed balance shows that the equilibrium

distribution of
{

Φ̃ci

}k
i=1

is that of
{
X̃ci

}k
i=1

(Cai & Kendall 2002), where
⋃k
i=1 X̃ci ∼ πCλ is a

Poisson(λ) process conditioned to cover C.
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3.4.2 Dominated CFTP Construction

In this section a perfect variant of the MCMC algorithm described above is presented. The tar-

get distribution is πCλ , the distribution of a Poisson(λ) process conditioned to cover the finite set

C = {c1, . . . , ck}. The essence of any CFTP-based algorithm is the “construction of interleaved

sequences of upper- and lower-sandwich processes, bounding intermediate Markov processes which

actually have the required equilibrium distribution” (Cai & Kendall 2002). The basis of the con-

struction described below is, to a large extent, borrowed from the Extended State-Space CFTP con-

struction of Cai & Kendall (2002). In their method the original un-ordered state-space is inserted as

a subset of a bigger ordered space, thereby allowing a description of the sandwich processes which

bound (in the larger ordered space) the target process.

A modification of their formulation yields an equivalent coupling construction where there is no

need to extend the state space; this alternative formulation is therefore described here. Recall that the

target processes of the MCMC procedure are
{

Φ̃ci

}k
i=1

, defined in terms of the spatial birth-death

processes {ΦA} and virtual processes {VA}. In order to define upper and lower bounding processes,

let ‘⊆’ denote the usual inclusion ordering between two processes so that y ⊆ x means that every

germ in y is also contained in x. For T > 0 and non-empty A let V T,max
A (t), V T,min

A (t) denote the

maximal, respectively, minimal virtual processes started at time −T , for t ∈ [−T, 0]. Define also

Φ̃T,min
c (t) =

⋃
{A; c∈A}

ΦA (t) ∪ V T,min
A (t) . (3.5)

Φ̃T,max
c (t) =

⋃
{A; c∈A}

ΦA (t) ∪ V T,max
A (t) . (3.6)

The recursive updating scheme has to maintain the monotonicity between the maximal and mini-

mal processes with respect to the partial order ‘⊆’. So initialize the bounding processes such that

V T,min
A (−T ) ⊆ V T,max

A (−T ). Employing the ‘cross-over’ trick described in Kendall (1998) en-

sures that the required ordering between these two processes is maintained: the upper process is

updated according to the state of the lower one and vice versa. Furthermore recall the unit-rate

Poisson processes {ZA} from the previous section which supply additional death-times for perpetu-

ated individuals stored in the virtual processes. Simulation of {ΦA} and {ZA} backwards in time is

straightforward since their equilibrium distributions are Poissonian. Let bT
2
c denote the integer part

of T
2

; the domCFTP construction can be summarized as follows:
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Algorithm 3.4 (domCFTP: Conditional Boolean Model).

Fix T > 0.

while T > 0:

Extend {ΦA; A ⊆ C}, {ZA; A ⊆ C} backwards on the interval
[
−T,−bT

2
c
)
.

Initialize V T,min
A (−T ) = ∅, V T,max

A (−T ) = {ξ}, where ξ ∈ EA, for each A ⊆ C.

for t ∈ [−T, 0]:

if t is the birth time of ξ ∈ EA: set ΦA (t) = ΦA (t−) ∪ ξ.

else if t is the death time of ξ ∈ ΦA (·):

set ΦA (t) = ΦA (t−) \ ξ.

if Φ̃T,min
ci

(t−) = {ξ} for some ci ∈ A: set V T,max
A (t) = {ξ}.

if Φ̃T,max
ci

(t−) = {ξ} for some ci ∈ A: set V T,min
A (t) = {ξ}.

else if t is a perpetuation time for VA (·) process (ie. incident time of ZA):

if Φ̃T,min
ci

(t−) ⊃ V T,min
A (t−) for all ci ∈ A: set V T,max

A (t) = ∅.

if Φ̃T,max
ci

(t−) ⊃ V T,max
A (t−) for all ci ∈ A: set V T,min

A (t) = ∅.

if V T,min
A (0) = V T,max

A (0) for all A: set T = −1.

else: set T = 2T .

return
{

Φ̃T,min
ci

(0)
}k
i=1

.

Note that when extending the {ΦA} and {ZA} processes backwards over some interval in one it-

eration of the algorithm, it is vital to re-use the same realizations over the same interval for all

subsequent iterations. Otherwise a bias is introduced; see the original formulation of CFTP in Propp

& Wilson (1996).

Properties of the domCFTP Algorithm

Cai & Kendall (2002) show that the above Algorithm 3.4 satisfies the following Lemmas; brief

proofs are given here since the arguments of the proofs will be referred to later in Chapter 5. The

Lemmas outline the relationships which the maximal and minimal virtual processes must satisfy

in order to ensure that the output of the algorithm has the required target distribution (Theorem

3.1). Kendall & Møller (2000) show that any CFTP-based construction satisfying the sandwiching,

coalescence and funnelling properties, introduced in Section 1.4.2, must output samples from the
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required target distribution. Thus these relationships between the maximal and minimal processes

serve as a basis for validating any CFTP-based construction. Analogous results for the Exact Gibbs

sampler (Algorithm 3.7) of Section 3.5 also hold, ensuring its correctness.

Lemma 3.2 (Sandwiching). The virtual processes V T,min
A and V T,max

A of Algorithm 3.4 satisfy

V T,min
A (t) ⊆ V T,max

A (t) , for all A ⊆ C,−T ≤ t ≤ 0. (3.7)

Proof. The key argument of the proof is that the ‘cross-over’ trick ensures that V T,min
A (t) will be

non-empty only if V T,max
A (t) also is, following a death or perpetuation incident. The initial values

of the virtual processes satisfies Eq. (3.7); the result then follows by induction along the sequence

of incidents of over the time interval [−T, 0].

Lemma 3.3 (Coalescence). If V T,min (t∗) = V T,max (t∗) then V T,min (t) = V T,max (t) for all t ≥ t∗.

Proof. At time t∗ the maximal and minimal virtual processes coalesce, and hence so will Φ̃T,min
ci

(t∗)

and Φ̃T,max
ci

(t∗) for all ci ∈ C. There is no longer any distinction between the minimal and maximal

processes; thus from time t∗ the transitions for V T,min
A and V T,max

A will be the same for all A.

Lemma 3.4 (Funnelling). For all −S ≤ −T ≤ t ≤ 0 and A ⊆ C

V T,min
A (t) ⊆ V S,min

A (t) ⊆ V S,max
A (t) ⊆ V T,max

A (t) . (3.8)

Proof. The key point here is that the ‘cross-over’ trick ensures that if Eq. (3.8) holds at time −T

then it will persist for all t ∈ [−T, 0]. So suppose the relationship holds up to some time t > −T ;

then Φ̃T,min
ci

(t−) ⊆ Φ̃S,min
ci

(t−) ⊆ Φ̃S,max
ci

(t−) ⊆ Φ̃T,max
ci

(t−) for all ci ∈ C. Following a death or

perpetuation event at time t, V T,min
A (t) will only be non-empty if V S,min

A (t) also is, and V S,max
A (t)

will only be non-empty if V T,max
A (t) also is. Induction along the sequence of incidents on [−T, 0]

completes the proof.

Lemma 3.5. For sufficiently large T , the virtual processes V T,min and V T,max coalesce on [−T, 0].

Proof. For i = 1, . . . , k let Di =
{

Φ̃T,max
ci

experiences a birth in the time interval [t, t+ δ]
}

. Cai

& Kendall (2002) show that, conditional on
⋂k
i=1Di occurring at time t+ δ, coalescence of V T,min

A

and V T,max
A will occur with a conditional probability (given

⋂
iDi) greater than

(1− P [Poisson (δ) = 0])(2k−1) × P
[
Exponential

(
2k − 1

)
> 2δ

]
= ρ1 > 0.
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Let Ct be the event that coalescence occurs on [t, t+ 2δ]. The second Borel-Cantelli Lemma shows

that C2sδ occurs for infinitely many s, hence coalescence is almost sure to happen.

Theorem 3.1. Algorithm 3.4 terminates in finite time, and the output of the algorithm has distribu-

tion πCλ , the distribution of a Poisson process of intensity λ conditioned to cover the set C.

Proof. Lemma 3.5 establishes that Algorithm 3.4 terminates almost surely in finite time. Let the

target processes be denoted by
{

Φ̃ci

}k
i=1

and consider a virtual simulation of these processes from

time−∞, with Φ̃T
ci

denoting the process on [−T, 0]. Furthermore, for a given T , couple the evolution

of
{

Φ̃T
ci

}k
i=1

to the realizations of {ΦA} and {ZA} on the interval [−T, 0].

By construction of the lower and upper virtual processes V T,min
A and V T,max

A , the following holds

at time T for all i: Φ̃T,min
ci

(−T ) ⊆ Φ̃T
ci

(−T ) ⊆ Φ̃T,max
ci

(−T ). Lemmas 3.2 & 3.4 then ensure that

Φ̃T,min
ci

(t) ⊆ Φ̃S,min
ci

(t) ⊆ Φ̃T
ci

(t) ⊆ Φ̃S,max
ci

(t) ⊆ Φ̃T,min
ci

(t)

holds for all −S ≤ −T ≤ t ≤ 0 and i.

A virtual simulation of
{

Φ̃ci

}k
i=1

from time −∞ must mean that at time 0 the processes are

in equilibrium. Set T ∗ = inf
{
T ≥ 1; Φ̃T,min

ci
(0) = Φ̃T,max

ci
(0) for all i

}
; hence, for T ≥ T ∗,

Φ̃T (0) = Φ̃T ∗,min (0) = Φ̃T ∗,max (0). Thus Φ̃T ∗,min (0) = limT→∞ Φ̃T (0) exists almost surely and

has required distribution, since Φ̃T (0) converges to the target distribution πCλ as T →∞.

3.5 Gibbs Sampling

In the previous section we saw how continuous-time spatial birth-death processes can be employed

to sample conditional Boolean models. It turns out that one can also use a discrete-time Gibbs sam-

pler for the same sampling problem. To the best of our knowledge a Gibbs sampler for conditional

Boolean models has not yet been considered in the simulation literature. The exact coupling con-

struction presented here bears a loose resemblance to the Häggström et al. (1999) algorithm for the

bivariate penetrable spheres model. Their method (Algorithm 4.5) is described in Section 4.4, and

can be used to perfectly sample the area-interaction process. For point processes there is atypically

no maximal state; however they introduce quasi-minimal and quasi-maximal elements in order to

carry out perfect sampling via Monotone CFTP.

73



Recall that C = {c1, . . . , ck} denotes the finite set of conditioning nodes and for each non-empty

A ⊆ C the region EA, defined by Eq. (3.4), is such that a germ in EA covers only those conditioning

nodes in A and no others. The (conditional) distribution of the conditional Boolean model on some

EA, given the process in the other regions {EB; B 6= A}, is just Poissonian. Hence devising Gibbs

sampler for the conditional Boolean model is straightforward. Due to the sequential nature of a

Gibbs updating scheme it is convenient to consider the set {A; A ⊆ C, A 6= ∅} as an ordered set

{A1, . . . , AN} so that each i ∈ {1, . . . , N} corresponds uniquely to some A, where N is the number

of non-empty A ⊆ C.

If X ∼ Poisson(λ), Xi its restriction to EAi and X̃ =
(
X̃1, . . . , X̃N

)
a collection of Poisson

processes with U
(
X̃
)
⊃ C, then X̃ ∼ πCλ . Consider a discrete-time component process Φ̃ =(

Φ̃0, . . . , Φ̃N

)
with equilibrium distribution πCλ . Let the updating order of the components Φ̃i be

{1, . . . , N} and define

Φ̃−i (n) =
⋃
j<i

Φ̃j (n)
⋃
j>i

Φ̃j (n− 1) ; χi (n) = 1{U(Φ̃−i(n))⊃Ai}.

Denote the distribution of an unconditional Poisson(λ) process by πλ and that conditioned to have

at least one germ by π′λ. The density of a Poisson(λ) process conditioned to cover C is given

by f (x) ∝ λn(x)1{U(x)⊃C}. So the density of the process restricted to the ‘cell’ EAi is given by

fi (x) ∝ λn(x)1{U(x)⊃Ai}, since a germ in EAi only covers Ai and the processes in distinct regions

EAi and EAj are independent. Therefore, given
{

Φ̃−i

}
, the conditional density of Φ̃i is given by

fi

(
· | Φ̃−i

)
∝

 λn(·) if χi = 1{U(Φ̃−i)⊃Ai} = 1;

λn(·)1{n(·)>0} if χi = 0.
(3.9)

Thus, given Φ̃−i, the next update of Φ̃i is (i) Xi ∼ πλ on EAi if χi = 1; or (ii) X ′i ∼ π′λ if χi = 0.

The Gibbs sampler for the
{

Φ̃i

}N
i=1

with updating order {1, . . . , N} is summarized as follows.

Algorithm 3.5 (Gibbs: Conditional Boolean Model).

for i = 1, . . . , N : initialize Φ̃i (0) = {ξi}, where ξi ∈ EAi .

for n = 1, 2, . . .:

for i = 1, . . . , N :

if χi (n) = 1: draw Xi ∼ πλ on EAi; set Φ̃i (n) = Xi.

else if χi (n) = 0: draw X ′i ∼ π′λ on EAi; set Φ̃i (n) = X ′i.
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3.5.1 Exact Gibbs Sampler

In this section a perfect variant of the Gibbs sampler (Algorithm 3.5) is presented. The construction

here has been motivated by that of Häggström et al. (1999) who present an exact 2-component Gibbs

sampler for the bivariate penetrable spheres model. In order to devise a CFTP-based procedure one

requires maximal and minimal elements of the state space to exist. For point processes a maximal

element does not exist since the state space is uncountable. However Häggström et al. (1999)

go round this problem by defining quasi-minimal and quasi-maximal elements in order to carry

out perfect sampling via Monotone CFTP. In the spirit of this we define such quasi-minimal and

-maximal elements for each of the N regions or cells EAi , and devise a CFTP-based construction

that outputs samples with the required target distribution.

Consider anN -tuple of spatial point configurations x = (x1, . . . , xN), where xi is a configuration

on cell EAi . Define Ix =
(
1{x1 6=∅}, . . . ,1{xN 6=∅}

)
and a relation 4 by x 4 y if Ix ≤ Iy, where the

inequality is interpreted component-wise. Let x = (∅, . . . , ∅) be an N -tuple of empty configura-

tions, so that Ix = (0, . . . , 0); and x = ({ξ1} , . . . , {ξN}), with ξi ∈ EAi , so that Ix = (1, . . . , 1).

Refer to x and x as quasi-minimal and quasi-maximal elements respectively. Denote by Φ̃T,min =(
Φ̃T,min

1 , . . . , Φ̃T,min
N

)
and Φ̃T,max =

(
Φ̃T,max

1 , . . . , Φ̃N
T,max

)
the minimal, respectively, maximal

processes started at time −T ; set

Φ̃T,min
−i (n) =

⋃
j<i

Φ̃T,min
j (n)

⋃
j>i

Φ̃T,min
j (n− 1) ; χT,mini (n) = 1{U(Φ̃T,min−i (n))⊃Ai}. (3.10)

Φ̃T,max
−i (n) =

⋃
j<i

Φ̃T,max
j (n)

⋃
j>i

Φ̃T,max
j (n− 1) ; χT,maxi (n) = 1{U(Φ̃T,max−i (n))⊃Ai}. (3.11)

Furthermore for n = 0,−1,−2, . . . and i = 1, . . . , N let (X (n, i) , X ′ (n, i)) denote a tuple of Pois-

son processes on EAi such that X ′ (n, i) is conditioned to contain at least one germ and X (n, i) ⊆

X ′ (n, i). It is relatively straightforward to simulate such a tuple:

Algorithm 3.6 (Simulation of (X (n, i) , X ′ (n, i))).

Set t = 1; draw Yi ∼ Poisson(λ) on EAi .

if Yi 6= ∅: set X (n, i) = X ′ (n, i) = Yi; t = 0

else: set X (n, i) = ∅.

while t 6= 0:

draw Yi ∼ Poisson(λ) on EAi .
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if Yi 6= ∅: set X ′ (n, i) = Yi; t = 0.

else: set t = t+ 1.

return (X (n, i) , X ′ (n, i)).

Denoting the integer part of T
2

by bT
2
c, the exact Gibbs sampler is summarized below.

Algorithm 3.7 (Exact Gibbs: Conditional Boolean Model).

Fix T > 0.

while T > 0:

for i = 1, . . . , N :

construct realizations of (X (n, i) , X ′ (n, i)) for n ∈
{
−T + 1, . . . ,−bT

2
c
}

.

Initialize Φ̃T,min (−T ) = x, Φ̃T,max (−T ) = x.

for n ∈ {−T + 1, . . . , 0}:

for i ∈ {1, . . . , N}:

if χT,maxi (n) = 1: set Φ̃T,min
i (n) = X (n, i).

else: set Φ̃T,min
i (n) = X ′ (n, i).

if χT,mini (n) = 1: set Φ̃T,max
i (n) = X (n, i).

else: set Φ̃T,max
i (n) = X ′ (n, i).

if Φ̃T,min
i (0) = Φ̃T,max

i (0) for all i ∈ {1, . . . , N} (ie. coalescence): set T = −1.

else: set T = 2T .

return Φ̃T,min (0)

As noted in Algorithm 3.4, when extending the (X (n, i) , X ′ (n, i)) backwards over some interval in

one iteration of the algorithm, it is vital to re-use the same realizations for all subsequent iterations.

Properties of the Exact Gibbs Sampler

Algorithm 3.7 is now shown to satisfy the following relationships, which are analogues of the results

for the Cai & Kendall Algorithm 3.4. The following Lemmas will be used to prove that its output is

indeed a conditional Boolean model (Theorem 3.2).

Lemma 3.6 (Sandwiching). The processes Φ̃T,min and Φ̃T,max of Algorithm 3.7 satisfy

Φ̃T,min
i (n) 4 Φ̃T,max

i (n) , for all i ∈ {1, . . . , N} , n ∈ {−T, . . . , 0} . (3.12)
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Proof. The initialization procedure ensures that Eq. (3.12) holds at time −T . Suppose that this

relationship holds at some time n− 1 > −T . The tuple (X (n, i) , X ′ (n, i)) is such that X (n, i) ⊆

X ′ (n, i) for all i = 1, . . . , N and n = 0,−1, . . . (cf. Algorithm 3.6). The update at time n for the

upper process is determined by the current state of the lower process and vice versa; this ‘cross-over’

ensures that: Φ̃T,max
i is set equal to X (n, i) only if Φ̃T,min

i is; and Φ̃T,min
i is set equal to X ′ (n, i)

only if Φ̃T,max
i is. The result then follows via induction along the sequence of times {−T, . . . , 0},

since the maximal and minimal processes are initialized so as to satisfy Eq. (3.12).

Lemma 3.7 (Coalescence). If Φ̃T,min (n∗) = Φ̃T,max (n∗) then Φ̃T,min (n) = Φ̃T,max (n) for all

n ∈ {n∗, . . . , 0}.

Proof. At time n∗ there is no longer any distinction between the upper and lower processes. So from

time n∗ the updates for Φ̃T,min and Φ̃T,max will be identical for each of the N components.

Lemma 3.8 (Funnelling). For all −S ≤ −T ≤ n ≤ 0 and i = 1, . . . , N

Φ̃T,min
i (n) 4 Φ̃S,min

i (n) 4 Φ̃S,max
i (n) 4 Φ̃T,max

i (n) . (3.13)

Proof. By definition of ‘4’, if x = (x1, . . . , xN), y = (y1, . . . , yN) and xi ⊆ yi for all i = 1, . . . , N

then x 4 y. The initializing procedure ensures that Eq. (3.13) holds at time −T . Suppose that this

relationship holds up time n− 1 > −T ; consider updating the first component at time n.

By virtue of Eq. (3.13) holding at time n − 1, Φ̃T,min
i (n− 1) ⊆ Φ̃S,min

i (n− 1). Therefore if

χT,min1 (n) = 1 then χS,min1 (n) = 1, hence the ‘cross-over’ trick ensures that Φ̃T,max
1 (n) will be

set equal to X (n, 1) only if Φ̃S,max
1 (n) also is. Similarly, Φ̃T,min

1 (n) is set equal to X ′ (n, 1) only if

Φ̃S,min
1 (n) also is. Either way

Φ̃T,min
1 (n) ⊆ Φ̃S,min

1 (n) ⊆ Φ̃S,max
1 (n) ⊆ Φ̃T,max

1 (n)

where Φ̃T,min
1 (n) ⊆ Φ̃T,max

1 (n) is established by Lemma 3.6. Induction along i = 1, . . . , N gives

Φ̃T,min
i (n) ⊆ Φ̃S,min

i (n) ⊆ Φ̃S,max
i (n) ⊆ Φ̃T,max

i (n) , for all i = 1, . . . , N.

The results follows by induction along the sequence of times {−T, . . . , 0}.

Lemma 3.9. For all sufficiently large T , Φ̃T,min and Φ̃T,max coalesce on {−T, . . . , 0}.

77



Proof. IfX (n, i) = X ′ (n, i), for all i and some n < 0, then, for T > −n, Φ̃T,min
i (n) = Φ̃T,max

i (n);

moreover Φ̃T,min
i (0) = Φ̃T,max

i (0) for all i and hence the algorithm terminates. The event that

X (n, i) = X ′ (n, i) has probability
(

1− e−λm2[EAi ]
)

(cf. Algorithm 3.6), with m2 denoting

Lebesgue measure. Thus

P [X (n, i) = X ′ (n, i) for all i] =
∏
i

(
1− e−λm2[EAi ]

)
> 0

and independent of n. The event {X (n, i) = X ′ (n, i) for all i} is independent of events in the

past. So, applying the second Borel-Cantelli Lemma, {X (n, i) = X ′ (n, i) for all i} happens al-

most surely for infinitely many n. The algorithm hence terminates in finite time.

Theorem 3.2. Algorithm 3.7 terminates in finite time, and the output of the algorithm has distribu-

tion πCλ , the distribution of a Poisson process of intensity λ conditioned to cover the set C.

Proof. Lemma 3.9 establishes the first part. Lemmas 3.6, 3.7 & 3.8 and the arguments of Theorem

3.1 then completes the proof.

3.6 Implementational Issues

In light of the simulation results presented in Section 3.7 the exact Gibbs Algorithm 3.7 is always

outperformed by either the 2-Stage Algorithm 3.2 or the Cai & Kendall Algorithm 3.4. This poses

a natural question as to whether the implementation of the Gibbs algorithm could be made more

efficient. That is, is the relative poor performance due to the way it is implemented or is the algorithm

intrinsically inefficient? The purpose of this exposition is to describe the implementation of the

Gibbs algorithm, and to show that any avoidable computational costs have been dealt with, hence

suggesting that its performance is intrinsically poor. Recall the details of Algorithm 3.7 from Section

3.5. The main stages of the algorithm can be summarized as follows.

Given T > 0 the first stage involves extending the basic driving processes (X (n, i) , X ′ (n, i))

for n ∈
{
−T + 1, . . . ,−bT

2
c
}

and i = 1, . . . , N . Here X (n, i) is an unconditional Poisson(λ)

process on EAi and X ′ (n, i) is one conditioned to contain a positive number of germs, such that

X (n, i) ⊆ X ′ (n, i). Simulation of the (X (n, i) , X ′ (n, i)) is unavoidable since they are the basic

driving processes. The easiest way to sample {X (n, i)}Ni=1 is to sample a Poisson(λ) process X on
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U (C) and set X (n, i) = {ξ ∈ X; ξ ∈ EAi}. If X (n, i) 6= ∅ then setting X ′ (n, i) = X (n, i) yields

the required tuple. Conversely ifX (n, i) = ∅ then the objective is to sample a non-empty Poisson(λ)

process on EAi . Rather than doing this (as it is much likely to be computationally burdensome) set

X ′ (n, i) equal to a ‘dummy’ non-empty configuration. The dynamics of the algorithm will not be

affected by this, since all that matters is that the number of germs in X ′ (n, i) is positive rather than

their locations.

The next stage involves initializing the maximal and minimal processes ΦT,max,ΦT,min and

evolving them forwards in time, coupled to realizations of the (X (n, i) , X ′ (n, i)) processes. For

each n and i the algorithm has to determine which of the processes X (n, i) or X ′ (n, i) will be

the next update for the maximal and minimal processes. This stage is going to be computationally

quite expensive; however this cost is unavoidable since the ΦT,max and ΦT,min must be updated se-

quentially up to time 0. Finally, after coalescence has occurred, it needs to be determined which

of the processes ΦT,min
i (0) (or equivalently, ΦT,max

i (0) since coalescence has occurred) take on the

‘dummy’ configurations. For all such processes realizations of non-empty Poisson(λ) processes

must be simulated. However this is a one-off expense which will not affect the run times signif-

icantly. Therefore, stage-by-stage, any computational costs have been minimized and the current

implementation of Algorithm 3.7 is as efficient as possible.

3.7 Simulation Results

In this section we present some simulation results, the objective of which is to compare the per-

formance of the three perfect simulation algorithms: 2-Stage Rejection (Algorithm 3.2), the Cai &

Kendall (Algorithm 3.4) and Exact Gibbs (Algorithm 3.7). The performance will be measured by

the actual run times (in seconds) of the algorithms. A series of simulation experiments is carried out

and the log mean empirical run times are plotted against the parameters λ (intensity) and k (number

of conditioning nodes).

It is vital to carefully design the experiments in order to ensure that the comparisons made are

meaningful. For example, when comparing how run times vary with the intensity λ, the ‘structure’

of the conditioning set C will play an important role. By ‘structure’ of C we refer to, among other

aspects, the spatial distribution or ‘spread’ of the conditioning nodes, eg. randomly/regularly dis-
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tributed, close/far apart, etc. In order to formalize this structure some notation is first introduced;

description of the experiments will then use this to enable a realistic evaluation of the algorithms.

The simulations were carried out on a PC (Pentium 4 2.67GHz, 248MB RAM) running Windows

XP; the implementations of the algorithms were programmed in Python (version 2.3).

3.7.1 Notation

The conditioning set C = {c1, . . . , ck} consists of k nodes in R2. The Boolean model U (x) asso-

ciated with a point configuration x on R2 is obtained as U (x) =
⋃
ξ∈xBr (ξ) the union of disks of

radius r centred at each point ξ ∈ x. Let ci = (c1
i , c

2
i ) and [w1

lo, w
1
hi] × [w2

lo, w
2
hi] be the smallest

rectangle that covers C; then

wjlo = min
1≤i≤k

{
cji
}

and wjhi = max
1≤i≤k

{
cji
}
.

Define Wδ = [w1
lo − δ, w1

hi + δ]× [w2
lo − δ, w2

hi + δ]. It follows that Wr is the smallest rectangle that

covers U (C). In all the simulations, the sampling window is taken to be Wr. As noted in Section

3.2, for fixed radius r, the set C can be viewed as a graph with nodes ci and edges determined as:

Definition 3.3. Two conditioning nodes ci and cj are connected, ie. there is an edge between nodes

ci and cj if U (ci) ∩ U (cj) 6= ∅, written ci ∼r cj; ci and cj are disconnected if U (ci) ∩ U (cj) = ∅.

Definition 3.4. A cluster or connected component of C is a subset C ⊆ C such that every node in C

is connected to at least one other node in C.

If Ci and Cj are two distinct clusters of C then U (Ci)∩U (Cj) = ∅. Moreover if C is partitioned into

clusters C1, . . . ,Cn then U (C) can be partitioned into U (C1) , . . . ,U (Cn). Suppose X = {ξn} is a

Poisson process on U (C) and U (X) its associated Boolean model. If Ci and Cj are two connected

components of C then the germs of X (or equivalently, the grains of U (X)) will be independent

in either of the disjoint regions U (Ci) and U (Cj). Moreover, if C = C1 ∪ . . . ∪ Cn and X̃ is a

Poisson process whose associated Boolean model covers C, then U
(
X̃
)

can be partitioned into an

irreducible collection of Boolean models U
(
X̃i

)
, each covering the respective cluster Ci of C. This

means that if C consists of several clusters then it would be logical and more efficient to draw a

conditional Boolean model for each cluster independently and then take the union in order to obtain
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a conditional Boolean model for C (cf. Section 3.3.1). Therefore it suffices to restrict attention to

the case when C constitutes a single cluster.

Definition 3.5. A clique of the graph C is a subset A ⊆ C containing the maximum number of nodes

which are all connected to each other. Furthermore, if |A| denotes the number of nodes in A, then

define I (C) = max{cliques A⊆C} |A| to be the maximum clique size.

Abbreviate the 2-Stage Rejection Algorithm 3.2 by ‘2Stg’, the Cai & Kendall Algorithm 3.4 by

‘CK’ and the Exact Gibbs Algorithm 3.7 by ‘Gibbs’ for convenience. The dynamics of both CK

and Gibbs depend on the regions {EA1 , . . . , EAN}, since these determine the number of upper and

lower processes in either algorithm. High values of N will affect coalescence time, and hence the

empirical run times. Moreover the maximum clique size I (C) affects the value of N ; the higher

I (C) is the larger the value of N will be and vice versa (cf. Figure 3.2 below). More is said about

this in Experiment 2 (Section 3.7.4).
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Figure 3.2: Illustration of the maximum clique size and how it influences the value of N . Suppose that C =

{c1, c2, c3, c4}, where cj is the centre of the disk labelled j, for j = 1, 2, 3, 4. Left: Nodes {c1, c2, c3} are all con-

nected to each other and so form a clique; similarly {c3, c4} form another clique. Therefore I (C) = 3. The regions

{A, . . . , I} represent the cells {EA1 , . . . , EAN
}. For example the cell E{c2,c3} is represented by F and E{c1,c2,c3} by

C. In this case N = 9. Right: Here C still consists of k = 4 conditioning nodes. The cliques in this case are {c1, c3},

{c2, c3} and {c3, c4}; so I (C) = 2 and N = 7. Thus, for fixed number of conditioning nodes k, a higher value of I (C)

corresponds to a higher value of N and vice versa.

81



3.7.2 Simulation Experiments

In Section 3.3.1 it was commented that 2Stg was much more efficient that ordinary Rejection sam-

pling (Algorithm 3.1). Therefore a simple illustration of this is first presented below; it is hoped

to convince the reader that the modifications made to the Rejection algorithm which yield 2Stg do

indeed improve the run times. Figures 3.3 & 3.4 below depict the evolution of the run times for

2Stg, Rejection, CK and Gibbs as the intensity λ and number of nodes k vary. Rejection performs

quite poorly compared to CK and Gibbs as λ decrease and k increases. However 2Stg remains com-

petitive to both CK and Gibbs. The basic conclusions of these two illustrations is that 2Stg is a great

improvement on Rejection sampling; therefore an investigation on the extent to which 2Stg remains

comparable to CK and Gibbs now follows.
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Figure 3.3: Empirical log mean run times for Rejection (*), 2Stg (solid dots), CK (solid triangles) and Gibbs (solid

squares). The conditioning set C = {(0, 0), (0.15, 0), (0.3, 0), (0.45, 0), (0.6, 0), (0.75, 0), (0.9, 0), (1.05, 0), (1.2, 0)},

radius r = 0.1. The x-axis represents the intensity λ.
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Figure 3.4: Empirical log mean run times for Rejection (*), 2Stg (solid dots), CK (solid triangles) and Gibbs (solid

squares). The conditioning set C comprises of a single cluster of k randomly placed nodes. The intensity λ = 20 and

radius r = 0.1. The x-axis represents k, the size of C.

Remark 3.1. In Figure 3.4 the run times for 2Stg do not necessarily increase with k. The set A∗,

consisting of the maximum number of disconnected nodes, is determined for each k. Therefore as

new conditioning nodes are added to C the size of A∗ may also increase. This in turn may actually

lead to lower run times for 2Stg since the probability that Boolean model covers C, given that it

covers A∗, is not necessarily decreasing in k.

Remark 3.2. CK is a local change algorithm, in the sense that the only transitions are births or

deaths; so the current pattern only changes ‘locally’ at each transition. On the other hand 2Stg and

Gibbs are global change algorithms, since a completely different pattern on the whole sampling

window (or some sub-region) is proposed at each iteration. Intuitively one would expect a local

change algorithm to outperform global change ones for very extreme model parameters. The reason

being that for extreme parameter values (low λ and/or large k) the density of the conditional Boolean

model becomes highly concentrated at certain configurations. Thus the acceptance probability for
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global changes is likely to be very low. Conversely, CK involves addition/deletion of single germs

only. The birth and death rates are balanced and such local changes are more likely to be accepted.

Indeed the following empirical results support this: the CK algorithm performs better than the other

two for extreme parameter values. For moderate model parameters, 2Stg does better than CK and

Gibbs. The results also indicate that Gibbs is outperformed by either 2Stg or CK for all parameter

values. This is however not the case for the conditional area-interaction process, where the Gibbs

sampler is just as efficient as a 2-Stage Rejection procedure (cf. Chapter 5, Section 5.7).

3.7.3 Experiment 1: Run Times Versus Intensity λ

In this experiment the conditioning set C is fixed and the empirical run times of the three algorithms

2Stg, CK and Gibbs are compared as the underlying Poissonian intensity λ changes. Two cases are

considered: when (i) C is a lattice of k regularly spaced nodes; and (ii) C consists of k randomly

distributed nodes. The radius r of the disks consisting the Boolean model is fixed and the sampling

window is Wr (cf. Section 3.7.1). Recall the discussion about considering only those C which

consists of a single cluster of k nodes. For the lattice case, the distance between each node is fixed

so that the whole grid is a single cluster. In the case of randomly placed conditioning nodes, an

accept/reject mechanism produces k uniformly drawn nodes which form a single cluster. For large

λ an unconditional Poisson(λ) process is quite likely to cover C, hence 2Stg should have relatively

lower run times. As λ decreases the conditioning becomes increasingly stringent, and therefore CK

should do better as λ decreases.

Figures 3.5 & 3.6 show the evolution of run times when C is a lattice of k = 16 and k = 36 nodes

respectively, while Figure 3.7 depicts the case when C is a single cluster of k = 15 randomly dis-

tributed nodes. The CK algorithm is fairly complex and the majority of its run time is accounted for

by this complexity. However this means that the extra computational effort incurred as λ decreases

is likely to be lower for CK than 2Stg or Gibbs. So as λ decreases this added complexity of CK

becomes worthwhile to implement. Notice also that Gibbs is always outperformed by the other two

algorithms. In fact in all three Figures 3.5, 3.6 & 3.7 the Gibbs algorithm failed to output a single

sample in around 7-10 hours for some values of λ. Therefore the respective run times of Gibbs are

truncated at some λ due to lack of sufficient samples.
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Figure 3.5: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C is a grid of k = 16 regularly placed nodes and the

radius r = 0.12. The x-axis represents the intensity λ. It took the Gibbs algorithm about 7 hours to output a single

sample for λ = 10; therefore the run times corresponding to Gibbs are plotted only for values down to λ = 11.
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Figure 3.6: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C is a grid of k = 36 regularly placed nodes and the

radius r = 0.12. The x-axis represents the intensity λ. It took the Gibbs algorithm about 10 hours to output a single

sample for λ = 18; therefore the run times corresponding to Gibbs are plotted only for values down to λ = 19.
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Figure 3.7: Empirical log mean run times for 2Stg (solid line), Gibbs (dashed line) and CK (dashed-dotted line). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C comprises of a single connected component of k = 15

randomly placed nodes; the radius r = 0.1. The x-axis represents the intensity λ. It took the Gibbs algorithm about 10

hours to output one sample for λ = 1, so the run times for Gibbs are plotted only for values down to λ = 3.
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3.7.4 Experiment 2: Run Times Versus k

In this experiment we look at how run times change with k the size of C. Recall the discussion in

Section 3.7.1 that the run times of CK and Gibbs are dependent onN , the number of the EA regions,

where EA (defined by Eq. 3.4) is that region where a germ covers only those nodes in A and no

others. The value of N is in turn affected by I (C), the maximum clique size (Definition 3.5, cf.

Figure 3.2). It is expected that, for fixed k, the run times for CK and Gibbs should be higher for

those C with higher values of I (C).

For a more realistic comparison evaluation of the run times is restricted, as k varies, to those

C which have the same value of I (C). The value of I (C) is fixed at I∗ for all values of k; as k

increases randomly drawn nodes are added so as to maintain I (C) = I∗. As k increases the coverage

of C becomes increasingly rare and so the run times of 2Stg should steadily increase with k. Hence

2Stg should perform well for low k whereas CK should fare well as k increases. Figures 3.8 & 3.9

illustrate the run times for I∗ = 2 & 3 respectively. For small k 2Stg is much more competitive than

CK and Gibbs and for larger k CK does better than the other two. In addition observe also that the

run times of Gibbs are always higher than either 2Stg or CK.
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Figure 3.8: Empirical log mean run times for 2Stg (solid line), Gibbs (dashed line) and CK (dashed-dotted line). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k nodes, with I (C)

fixed for all k at I∗ = 2. The radius r = 0.08 and intensity λ = 20. The x-axis represents k, the size of C.
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Figure 3.9: Empirical log mean run times for 2Stg (solid line), Gibbs (dashed line) and CK (dashed-dotted line). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k nodes, with I (C)

fixed for all k at I∗ = 3. The radius r = 0.08 and intensity λ = 20. The x-axis represents k, the size of C.
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3.8 Conclusions & Further Work

This chapter has considered the perfect simulation of Boolean models conditioned to cover a finite

set C. Three algorithms for sampling from πCλ have been described: the 2-Stage Rejection Algorithm

3.2, the Cai & Kendall Algorithm 3.4 and the exact Gibbs Algorithm 3.7. 2-Stage Rejection is

a more efficient variant of ordinary Rejection sampling (Lemma 3.1), and illustrated by Figures

3.3 & 3.4. The description of the Cai & Kendall method is given here in terms of spatial birth-

death processes rather than in its original formulation in terms of immigration-death processes on

the natural numbers. The Gibbs algorithm was developed in this chapter, where the idea of quasi-

minimal and -maximal elements (Häggström et al. 1999) permit an exact CFTP-based construction.

An evaluation of the three algorithms is carried out by comparing the respective run times against

λ or k. The results suggest that for extreme values (low λ, large C) the Cai & Kendall method fares

best, while for moderate values 2-Stage Rejection proves most competitive.

An extension to the work here is sampling from πCλ for uncountable C. The dynamics of the Cai

& Kendall and Gibbs algorithms rely on partitioning U (C) into the disjoint regions {EA; A ⊆ C},

which in turn enables the construction of appropriate upper and lower sandwich processes that bound

the target process. For uncountable C, this is not possible; however the principle of the coupling

construction still works for such C. The challenge then is to cleverly define/devise maximal and

minimal processes that would efficiently bound the target process. The 2-Stage Rejection method

also has potential here. The idea would be to choose a finite set A and sample from πAλ ; if the

sample also covers C, then it has the required distribution. Nevertheless this also poses some serious

questions such as the ‘best’ or most efficient choice of A.

An even more difficult task would be the sampling of Boolean models conditioned to satisfy some

connectivity (Lantuéjoul 1997) or disconnectivity constraints. Such conditioning arises when mod-

elling oil reservoirs, where preliminary drilling indicates which sites are covered and also connected

by the oil deposit. Finding a feasible and efficient way of devising the bounding processes in order

to deliver perfect samples poses quite a challenge, since a priori there is no bound on the size of a

connected component of the Boolean model. In case of disconnectivity constraints the density of

the Boolean model is locally stable and so one can employ the standard dominated CFTP protocol.

Nevertheless implementing an efficient algorithm may not be as straightforward.
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Chapter 4

Area-Interaction Point Process

4.1 Introduction

The area-interaction process was briefly introduced in Sections 1.1.10 & 1.1.11 as an example of a

Gibbs and Markov point process. It was introduced as a model for both clustering and orderliness by

Baddeley & Van Lieshout (1995). However it is related to the penetrable spheres model of Widom &

Rowlinson (1970) which was introduced much earlier (Section 4.4 discusses the relation between the

two models). Pairwise-interaction models have received much attention since they provide a “large

variety of complex patterns” (Mase 1990). Nevertheless they do not seem to produce sufficient

variety of clustering. The Strauss (1975) model (Section 1.1.10) was introduced as a model for

clustering; however Kelly & Ripley (1976) showed that this model is non-integrable for parameter

values that correspond to the desired clustering. Moreover simulations by Møller (1993) suggest

that the Strauss model does not exhibit ‘moderate’ clustering; there is an abrupt transition from

‘Poisson-like’ patterns to tightly clustered ones. The area-interaction process exhibits both moderate

clustering (attraction) and orderliness (repulsion). Baddeley & Van Lieshout (1995) show that it is

a Ripley-Kelly Markov point process (cf. Section 1.1.11) with interactions of infinite order.

Markov point processes provide useful models for individuals or particles exhibiting some sort

of interaction. If, in addition, the interaction between individuals depends not only on the location

but also on some region around the individual then the area-interaction process is a plausible model

for such instances. This region, ‘the region of influence’, can be a disk of fixed radius centred on the

location of the individual. For example, competition for food and resources may cause a repulsion
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effect between individual animals or plants as each tries to maximize its region of influence (the

“selfish herd”, Hamilton 1971). Conversely if the individuals are being hunted by a predator then

they would try and minimize their ‘region of vulnerability’; so an attractive area-interaction process

is a plausible model (Baddeley & Van Lieshout 1995; Kendall 1997a).

This Chapter describes how the area-interaction process can be simulated on some bounded re-

gion W ⊂ R2. The process is defined via specifying its density (Eq. 4.1) with respect to a unit rate

Poisson process. The density of a realization depends on the positions of the germs, hence the pro-

cess in disjoint regions is not independent. Therefore a realization of the process on some bounded

W is given conditionally on the process outside W , ie. conditional on the ‘boundary conditions’

(see Section 4.2.1). In Section 4.3 Rejection sampling is outlined and some comments about its

limitations made. The two-component Gibbs sampler of Häggström et al. (1999) for the penetrable

spheres model is described in Section 4.4. The penetrable spheres model is a bivariate point process

model and it is seen how a realization of this model can be used to obtain an area-interaction process.

Section 4.5 introduces two methods which employ spatial birth-death process: the dominated

CFTP algorithm of Kendall (1998) and the ‘Clan of Ancestors’ algorithm of Fernández et al. (2002).

The description in Fernández et al. (2002), though general, requires further work in order to practi-

cally implement. We present a specialization of their Clan algorithm to the area-interaction process,

but with explicit details on practical implementation. The implementation involves censoring births

in order to generate the required interaction, where the acceptance probability depends on the area

of irregular regions. Kendall (1997a) describes a ‘cluster’ trick which allows correct censoring with-

out having to explicitly compute the acceptance probabilities. This trick has not been implemented

before; therefore it is developed here and incorporated into the set up.

These procedures so far sample the area-interaction process for fixed values of the model param-

eters. In many instances it may be worthwhile to consider a procedure that simultaneously samples

the process for a whole range of parameter values, ie. an omnithermal sampling scheme. To the

best of our knowledge such an algorithm for the area-interaction process has not appeared in the

literature; therefore in Section 4.6 we consider such an algorithm. The Clan algorithm of Fernández

et al. (2002) is extended in order to define an exact omnithermal algorithm. Finally some concluding

remarks and directions for further work are discussed in Section 4.7.
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4.2 Definition of the Area-Interaction Process

As is usual with Gibbs point processes, the area-interaction process is specified by a density with

respect to a unit rate Poisson process on a bounded region W ⊂ R2. The process on bounded

regions is referred to as the ‘standard area-interaction’ process (Baddeley & Van Lieshout 1995).

They also show that the standard area-interaction process can be “considered as the restriction to

a bounded sampling window of a stationary point process on the whole of Rd”. So the standard

process is a realization of a stationary process on a bounded window W ⊂ Rd, with specified

boundary conditions representing the stationary process on W c = Rd \W .

Definition 4.1. The standard area-interaction point process in a compact region W ⊂ Rd is a point

process specified via the (conditional) density with respect to a unit rate Poisson:

f (x | y) = αβλ
n(x)e−β m2[U(x)\U(y)]. (4.1)

where y represents the state of the process outside W , ie. the boundary conditions. The parameter

λ > 0 is the underlying Poissonian intensity, β is the interaction parameter, αβ the normalizing

constant, md Lebesgue measure and U (x) =
⋃
ξ∈xBr (ξ) the Boolean model (cf. Definition 3.1) of

d-dimensional disks of fixed radius, Br (·), associated with x.

Thus the area-interaction process can be thought of as a weighted Poisson process (Kendall 1997a).

Henceforth refer to a process that has density of the form in Eq. (4.1) as an area-interaction process

with underlying intensity λ and parameter β. The above definition can be generalized by replacing

Lebesgue measure with any “totally finite, Borel regular measure on a locally compact complete

separable metric space”, and U (·) replaced by a “myopically continuous function” (Baddeley &

Van Lieshout 1995). For the purposes here, attention is restricted to the standard case on R2. Eq.

(4.1) is integrable for all values of λ and β; if β < 0 the process exhibits orderliness or repulsion; if

β = 0 the process is just an unconditional Poisson and for β > 0 it exhibits clustering or attraction.

The density (Eq. 4.1) is attractive for β > 0 and repulsive for β < 0 (cf. Eqs. 1.10 & 1.11):

attractive: ` (ξ;x) ≥ ` (ξ; y) , whenever ξ /∈ y ⊆ x; (4.2)

repulsive: ` (ξ;x) ≤ ` (ξ; y) , whenever ξ /∈ y ⊆ x. (4.3)

The Papangelou conditional intensity ` is defined as ` (ξ;x) = f(x∪ξ)
f(x)

(cf. Section 1.1.8, Eq. 1.9).
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4.2.1 Boundary Conditions

In this chapter the simulation of the standard area-interaction process on some bounded window

W ⊂ R2 is considered. Let X denote a stationary area-interaction process on R2 and XW its

restriction to W . As is the case with Gibbs processes in bounded regions, the distribution of XW

must be defined conditional on the configuration outsideW . Thus the density of a realization ofXW

given XW c is then given by f (x | XW c) ∝ λn(x)e−β ψ(x|XWc ), where ψ (x | y) = m2 [U (x) \ U (y)];

e−βψ will be referred to as the ‘weight factor’. There are various ‘boundary conditions’ one can

assume when simulating such a process:

Zero (‘minimal’) boundary conditions: The stationary process on W c is empty, ie. XW c = ∅.

Rectangular (‘maximal’) boundary conditions: XW c is such that (W ⊕Br (0) \W ) ⊆ U (XW c),

where W ⊕Br (0) = {ξ ∈ R2; Br (ξ) ∩W 6= ∅} is the ‘dilation’ of W .

Toroidal/Periodic boundary conditions: Here W is assumed to be the centre of a 3 × 3 grid of

identical sampling windows. Given a configuration on W , the process on W c is the union of

the same configuration in each of the other eight sampling windows.

The simulation algorithms considered here will assume zero boundary conditions and XW will be

denoted simply as X; non-trivial boundary conditions can be dealt with by simple modifications.

4.3 Rejection Sampling

An area-interaction process is a weighted Poisson process with weight e−βψ. This suggests a simple

accept/reject procedure for sampling such a weighted process. The parameter β denotes the interac-

tion parameter of an area-interaction process (Eq. 4.1); β > 0 produces clustered or attractive point

patterns while β < 0 yields ordered or repulsive patterns. The Rejection algorithm for simulating

a realization of an area-interaction process X on a bounded region W ⊂ R2 involves drawing an

unconditional Poisson process, which is then accepted with probability proportional to the weight

factor e−βψ. Computation of ψ may be difficult; so the following algorithm enables one to correctly

determine whether a realization of a Poisson(λ) process can be accepted with the correct probability.

Let X ∼ Poisson(λ) and Y ∼ Poisson(|β|) processes on W .
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Figure 4.1: Sample of an attractive and repulsive area-interaction process. The perfect simulation procedure of Section

4.5.4 was used to produce these realizations. As discussed in that section, the area-interaction process can be thought

of as a dependent thinning of an underlying Poisson process (referred to as the ‘free’ process). The pictures on the left

show realizations of the free process and those on the right their respective dependent thinnings, ie. the area-interaction

processes. Top: Attractive case; the underlying Poisson intensity λ = 30, interaction parameter β = 100, radius

r = 0.07 and sampling window W = [0, 2]
2. Bottom: Repulsive case; λ = 5, β = −100, r = 0.07 and W = [0, 2]

2.
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Algorithm 4.1 (Rejection: Attractive Case).

Set T = 1.

while T > 0:

Draw X and Y independently.

if Y ∩ U (X) = ∅: set T = 0.

else: set T = T + 1.

return X .

Algorithm 4.2 (Rejection: Repulsive Case).

Set T = 1.

while T > 0:

Draw X and Y independently.

if Y ⊆ U (X): set T = 0.

else: set T = T + 1.

return X .

Lemma 4.1 (Baddeley & Van Lieshout 1995, Lemma 5). Let X, Y be as above. For β > 0

(β < 0) the conditional distribution of X , given {Y ∩ U (X) = ∅} ({Y ⊆ U (X)}), is that of an

attractive (repulsive) area-interaction process with parameter β.

The performance of Rejection sampling will be directly influenced by factors affecting the accep-

tance probability. As the underlying Poissonian intensity λ and/or the size of the sampling window

W increases the acceptance probability becomes very low, and so Rejection is likely to be ineffi-

cient. One solution whenW is large is to split it into smaller sub-windows and use a Gibbs sampling

approach; Section 5.5 describes such a procedure for the conditional area-interaction process. In the

next section a different type of Gibbs sampling approach is described.

4.4 Gibbs Sampling

In this section the two-component Gibbs sampler presented in Häggström et al. (1999) for the area-

interaction process is described. They consider a bivariate process (X, Y ) where X and Y refer to

two different types of point configurations on W . This mixture model is related to the Widom &

Rowlinson (1970) penetrable spheres model introduced in Section 1.1.11. The density of (X, Y )

with respect to the product measure of two independent unit rate Poisson processes is given by

f (x, y) ∝ λ
n(x)
1 λ

n(y)
2 1{d(x,y) > R}. (4.4)

Here λi, R > 0 are model parameters and d (x, y) is the shortest distance between x and y. Thus the

interaction is only between points of different types and is such that a point in X is not allowed to

be within distance R of a point in Y .
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Häggström et al. (1999) show that the marginal distribution of X (Y ) is an attractive area-

interaction process with underlying intensity λ1 (λ2) and interaction parameter λ2 (λ1). Further-

more, the conditional distribution of X (Y ) given Y (X) is a Poisson process of intensity λ1 (λ2)

on W \ U (Y ) (W \ U (X)). These conditional distributions are easy to sample from; therefore a

Gibbs sampler can be employed to sample (X, Y ), and hence an area-interaction process.

4.4.1 Gibbs Sampling: Attractive Case

Let (Φ,Ψ) be a discrete-time bivariate Markov process. The following Gibbs sampler updates each

component so as to ensure that the limiting distribution of (Φ,Ψ) has density given by Eq. (4.4).

Algorithm 4.3 (Gibbs: Attractive Area-Interaction).

Initialize Φ (0) ∼ Poisson(λ1), Ψ (0) ∼ Poisson(λ2) on W .

for n = 1, 2, . . . update:

Φ (n) ∼ Poisson(λ1) on W \ U (Ψ (n− 1)); Ψ (n) ∼ Poisson(λ2) on W \ U (Φ (n)).

4.4.2 Gibbs Sampling: Repulsive Case

Häggström et al. (1999) also define a bivariate process (X ′, Y ′) such that the marginal distribution

of X ′ is a repulsive area-interaction process. Let the joint density at (x, y) be given by

f ′ (x, y) ∝ λ
n(x)
1 λ

n(y)
2 1{y ⊆ U(x)}. (4.5)

In Section 4.4.1 the marginal distribution of either components with joint density given by Eq. (4.4)

was that of an attractive area-interaction process. For the process with joint density given by Eq.

(4.5), the marginal distribution of only theX ′-component is a repulsive area-interaction process with

intensity λ1 and parameter λ2. The conditional distribution of X ′, given Y ′, is that of a Poisson(λ1)

process on W conditioned so that U (X ′) ⊇ Y ′; that of Y ′ given X ′ is a Poisson(λ2) on U (X ′).

Algorithm 4.4 (Gibbs: Repulsive Area-Interaction).

Initialize Φ′ (0) ∼ Poisson(λ1), Ψ′ (0) ∼ Poisson(λ2) on W .

for n = 1, 2, . . . update:

Φ′ (n) ∼ Poisson(λ1) conditioned so that U (Φ′ (n)) ⊇ Ψ′ (n− 1).

Ψ′ (n) ∼ Poisson(λ2) on U (Φ′ (n)).
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4.4.3 Exact Gibbs Sampler: Attractive Case

Häggström et al. (1999) combine the Coupling From The Past (CFTP) idea of Propp & Wilson

(1996) with the two-component Gibbs sampler of Algorithm 4.3 in order to devise an exact sim-

ulation algorithm for the (attractive) area-interaction process. The idea of Propp & Wilson (1996)

requires that the state space of the Markov process be finite, and that there is a maximal and minimal

state (cf. Section 1.4.1). The state space of point processes is unbounded and there is no maximal

element; however Häggström et al. (1999) point out that the fact that the state space is uncountable

is “inconsequential” and introduce the notion of a quasi-maximal and quasi-minimal elements in

order to construct the required coupling.

Let 4 be a partial order on the space of mixed configurations defined by (x, y) 4 (x′, y′) if

x ⊆ x′ and y ⊇ y′. Call an element (x, y) quasi-maximal if U (x) ⊇ W and y = ∅; similarly (x, y)

is quasi-minimal if x = ∅ and U (y) ⊇ W . A random element (X, Y ) is stochastically dominated

by (X ′, Y ′), written (X, Y ) 4st (X ′, Y ′), if there exist couplings
(
X̃, Ỹ

)
and

(
X̃ ′, Ỹ ′

)
of (X, Y )

and (X ′, Y ′) respectively such that
(
X̃, Ỹ

)
4
(
X̃ ′, Ỹ ′

)
almost surely (cf. Section 1.2.1 for more

on coupling and stochastic domination).

Lemma 4.2 (Häggström et al. 1999, Lemma 2). Fix (x, y) 4 (x′, y′). Let, for n = 0, 1, . . .,

(Φ (n) ,Ψ (n)) be the random element obtained by starting with (Φ (0) ,Ψ (0)) = (x, y) and running

n iterations of the two-component Gibbs sampler in Algorithm 4.3. Similarly define (Φ′ (n) ,Ψ′ (n)),

with (Φ′ (0) ,Ψ′ (0)) = (x′, y′). Then (Φ (n) ,Ψ (n)) 4 (Φ′ (n) ,Ψ′ (n)) for all n.

Lemma 3 in Häggström et al. (1999) then shows that if (Φ,Ψ) is initialized in a quasi- maxi-

mal state and (Φ′,Ψ′) in an arbitrary state, then (Φ (n) ,Ψ (n)) < (Φ′ (n) ,Ψ′ (n)) for all n; con-

versely if (Φ,Ψ) is initialized in a quasi-minimal state and (Φ′,Ψ′) in an arbitrary state, then

(Φ (n) ,Ψ (n)) 4 (Φ′ (n) ,Ψ′ (n)) for all n. Thus the Gibbs sampler has the required monotonicity

properties necessary in order to employ a Monotone CFTP construction (cf. Section 1.4.1).

Algorithm 4.5 (Exact Gibbs: Attractive Area-Interaction).

For i = 0, 1, . . ., let Z1 (−i) ∼ Poisson(λ1) and Z2 (−i) ∼ Poisson(λ2) on W .

Choose an increasing sequence of positive integers {ki; i = 0, 1, . . .}; set I = −1, i = 0.

Let (x, y) and (x, y) be quasi-maximal and quasi-minimal elements respectively.
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while I < 0:

Initialize:


(
Φki,max (−ki) ,Ψki,max (−ki)

)
= (x, y).(

Φki,min (−ki) ,Ψki,min (−ki)
)

= (x, y).

for n ∈ {−ki + 1, . . . , 0}:

Φki,max (n) = Z1 (n) \ U
(
Ψki,max (n− 1)

)
.

Ψki,max (n) = Z2 (n) \ U
(
Φki,max (n)

)
.

Φki,min (n) = Z1 (n) \ U
(
Ψki,min (n− 1)

)
.

Ψki,min (n) = Z2 (n) \ U
(
Φki,min (n)

)
.

if
(
Φki,max (0) ,Ψki,max (0)

)
=
(
Φki,min (0) ,Ψki,min (0)

)
: set i = I .

else: set i = i+ 1.

return
(
ΦkI ,min (0) ,ΨkI ,min (0)

)
.

I = inf
{
i ≥ 0;

(
Φki,max (0) ,Ψki,max (0)

)
=
(
Φki,min (0) ,Ψki,min (0)

)}
< ∞ a.s., ie. Algorithm

4.5 terminates in finite time, and the distribution of the output
(
ΦkI ,min (0) ,ΨkI ,min (0)

)
has density

given by Eq. (4.4) (Häggström et al. 1999, Theorem 3). Thus ΦkI ,min (0) is an exact draw from

an attractive area-interaction process with underlying intensity λ1 and parameter λ2. The Gibbs

sampler for the repulsive case (Algorithm 4.4) does not preserve the partial ordering between two

elements. This monotonicity is vital in order to employ CFTP on unbounded state spaces; thus an

exact Gibbs sampling scheme for the repulsive does not seem possible.

4.5 Simulation via Spatial Birth-Death Processes

The area-interaction process is specified via the density in Eq. (4.1) with respect to a unit rate

Poisson process. This section details how spatial birth-death processes can be used to sample the

area-interaction process on W ⊂ R2. The main idea is to devise a coupling of spatial birth-death

processes, where one process can be simulated relatively easily and a realization of the other can be

obtained by coupling its evolution to that of the first (see Example 1.2 for a simple illustration).

Kendall (1998) first used birth-death processes in order to describe a dominated CFTP algorithm

for both the attractive and repulsive area-interaction processes. Fernández et al. (2002) later on

proposed a perfect simulation algorithm which could be used to sample any process whose distribu-
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tion is absolutely continuous with respect to that of a Poisson process. In this section we describe

the construction of a birth-death process whose equilibrium distribution is that of an area-interaction

process. The birth rate of the process involves calculating areas of complicated geometrical patterns.

Kendall (1998) uses a discretized approximation of these areas while the description in Fernández

et al. (2002) lacks details on practical implementation. Here we develop a ‘cluster’ trick where the

idea is to construct an observable event which would correctly implement the birth rate.

A spatial birth-death process (Section 1.3) on W ⊂ R2 is a continuous-time Markov jump pro-

cess, taking values in the Exponential Space (Section 1.1.1) of W . The only transitions that occur

are births and deaths. The birth times {tξ} are determined by the birth rate b and the lifetimes {sξ}

by the death rate d. Refer to a spatial birth-death process as free (Fernández et al. 2002) if its birth

and death rates do not depend on the current configuration, ie. there is no interaction between the

individuals ξ, which therefore has a Poissonian equilibrium distribution. Conversely if the birth or

death rate does depend on the current configuration, then we have an interacting spatial birth-death

process since there is some kind of interaction between the individuals.

If the birth rate b and death rate d satisfy detailed balance (Eq. 1.25) for some density f :

f (x) b (x, ξ) = f (x ∪ {ξ}) d (x, ξ) (4.6)

then the spatial birth-death process is time-reversible and f is the density of the unique stationary

distribution of the birth-death process (Preston 1977; Kendall & Møller 2000). Setting b (x, ξ) =

` (ξ;x) and d (x, ξ) = 1 shows that detailed balance is trivially satisfied; process with these birth

and death rates will converge to a unique stationary distribution with density f . The density of an

area-interaction process is attractive for β > 0 and repulsive for β < 0 (cf. Eqs. 4.2 & 4.3). Its

Papangelou conditional intensity, given by ` (ξ;x) = f(x∪{ξ})
f(x)

(cf. Eq. 1.9), is uniformly bounded:

f (x ∪ {ξ})
f (x)

= λ e−β m2[U(ξ)\U(x)] ≤ λ, for β > 0; (4.7)

f (x ∪ {ξ})
f (x)

= λ e−β m2[U(ξ)\U(x)] ≤ λ e−β m2[U(ξ)], for β < 0 (4.8)

since m2 [U (ξ)] is constant for all ξ. Eq. (4.7) shows that the conditional intensity of an attrac-

tive area-interaction process is uniformly bounded by λ; thus a Poisson(λ) stochastically dominates

an attractive area-interaction process. Eq. (4.8) shows that a Poisson
(
λ e−β m2[U(ξ)]

)
stochastically
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dominates a repulsive area-interaction process (cf. Remark 1.2). We use these observations to con-

struct an attractive (respectively, repulsive) interacting birth-death process by coupling its transitions

to those of a free process with birth rate λ (respectively, λ e−β m2[U(ξ)]).

4.5.1 The Free Process

A free spatial birth-death process onW with birth rate b experiences births {ξ} at random times {tξ}

which are Exponentially(b m2 [W ]) distributed; unit per capita death rate yields Exponentially(1)

distributed lifetimes {sξ}. The number of transitions in a finite time interval are almost surely

finite. The countable family {(ξ, tξ, sξ)} constitute the free process, which can thus be regarded as a

Poisson process on W × R× (0,∞) with intensity measure

(
be−s 1{x ∈ W}

)
m2 (dx)m1 (dt)m1 (ds)

where md denotes Lebesgue measure on Rd. The intensity measure factorizes as a product of the

uniform measure of intensity b on W × R and the Exponential(1) distribution for the lifetime s

(Kendall 1998). Recall that U (x) denotes the Boolean model of disks of fixed radius associated

with x, ie. U (x) =
⋃
ξ∈xBr (ξ), where Br (ξ) is a disk of fixed radius r centred on ξ. The

construction in Kendall (1998) and Fernández et al. (2002) is based on the free cylinder process

{(U (ξ)× [tξ, tξ + sξ])}; however we will work with the free process {(ξ, tξ, sξ)} itself.

The birth rate of an interacting spatial birth-death process is of the form bρ (ξ | x), where x

denotes the current configuration. “The first factor (b) is the basic birth rate due to an “internal”

Poissonian clock, and ρ acts as an un-normalized probability for the individual ξ to be actually born

once the internal clock has rung” (Fernández et al. 2002). For the area-interaction process:

attractive (β > 0) : b = λ; ρ (ξ | x) = e−β m2[U(ξ)\U(x)] ≤ 1. (4.9)

repulsive (β < 0) : b = λ e−β m2[U(ξ)]; ρ (ξ | x) = eβ m2[U(ξ)∩U(x)] ≤ 1. (4.10)

In order to implement the correct birth rates for the interacting process, an additional piece of ran-

domness is required. The construction in Kendall (1998) and Fernández et al. (2002) employ a

Uniform(0, 1) random variable Zξ to do this: a birth ξ in the free process is accepted in the interact-

ing process if Zξ < ρ (ξ | x).
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A more complicated piece of randomness is employed here, the reason being twofold: (i) it

will enable implementation of the correct birth rates for the interacting process without having to

compute the birth-acceptance probabilities in Eqs. (4.9 & 4.10) (the ‘cluster’ trick described in

Section 4.5.2 below); (ii) it will enable an omnithermal construction for the area-interaction process

(Section 4.6). Specifically, to each triplet (ξ, tξ, sξ) attach a Poisson process Zξ on U (ξ)×(0, 1) with

intensity measure |β|m2 (dy)m1 (du) (cf. Algorithm 4.6 below). The construction of the attractive

(respectively, repulsive) interacting process will be based on the marked free process Φ with birth

rate b given by Eq. (4.9) (respectively, Eq. 4.10):

Φ = {(ξ, tξ, sξ, Zξ)} ; (4.11)

Φ (t) = {(ξ, tξ, sξ, Zξ) ; tξ ≤ t ≤ tξ + sξ} . (4.12)

Thus Φ(t) has a Poissonian distribution for all t. For an individual ξ let ξ̃ = (ξ, tξ, sξ, Zξ) and use

the notation “
{
ξ; ξ̃ ∈ Φ (t)

}
” to mean “{ξ; (ξ, tξ, sξ, Zξ) ∈ Φ (t)}”.

Simulation of Φ

A free process Φ onW with birth rate b is such that the collection of individuals
{
ξ; ξ̃ ∈ Φ (t)

}
alive

at time t are a realization of a Poisson(b) process on W . It is straightforward to draw a Poisson(b)

process on W (cf. Section 1.1.5). The mark process Zξ is constructed as follows:

Algorithm 4.6 (Construction of Zξ).

Draw Yξ ∼ Poisson(|β|) process on U (ξ); set Uξ = ∅.

for each ykξ ∈ Yξ: draw Uk
ξ ∼ Uniform(0, 1); set Uξ = Uξ ∪

{
Uk
ξ

}
.

return Zξ = (Yξ, Uξ) =
{(
ykξ , U

k
ξ

)
; k = 0, . . . , n (Yξ)

}
.

Algorithm 4.7 (Simulation of Φ(0)).

Set Φ (0) = ∅; draw X ∼ Poisson(b) on W .

for ξ ∈ X:

set tξ = 0; draw sξ ∼ Exponential(1); construct Zξ as in Algorithm 4.6.

set ξ̃ = (ξ, tξ, sξ, Zξ); Φ (0) = Φ (0) ∪
{
ξ̃
}

.

return Φ(0).

A realization of Φ on a finite time interval, say [0, T ], is now described below.
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Algorithm 4.8 (Forward Simulation of Φ).

Draw Φ(0); set t = 0.

while t ≤ T :

Draw τbirth ∼ Exponential(b m2 [W ]); this yields the next birth time.

Set τ = min
{
τbirth, inf

{
tξ + sξ; ξ̃ ∈ Φ (t)

}}
; this yields the next incident time of Φ.

if τ = τbirth:

draw ξ Uniformly on W ; sξ ∼ Exponential(1); construct Zξ; set tξ = t+ τ .

update Φ (t+ τ) = Φ (t) ∪
{
ξ̃
}

, where ξ̃ = (ξ, tξ, sξ, Zξ).

else if τ = tξ + sξ for some ξ̃ ∈ Φ (t):

update Φ (t+ τ) = Φ (t) \
{
ξ̃
}

.

update t = t+ τ .

return Φ(T ).

It is worthwhile at this point to mention that Φ is time-reversible so one can simulate it forwards

as well as backwards in time. For an individual ξ, tξ represents its forward birth time. So in order

to simulate Φ backwards from time 0 to −T it suffices to simulate it forwards on [0, T ] and then

reflect in the time axis at t = 0. Thus a forward birth becomes a backward death and vice versa. If a

forward birth ξ occurs at time tξ and dies at time tξ + sξ then in the backwards evolution ξ is born at

time − (tξ + sξ) and dies at time −tξ, since forward births become backward deaths and vice versa.

4.5.2 The Interacting Process

Let Ψ denote an interacting spatial birth-death process on W such that the equilibrium distribution

of Ψ is an area-interaction process with parameter β. Simulation of Ψ is carried out by coupling its

evolution to that of Φ. Deaths in Φ are always accepted in Ψ, if present, so that each individual has

unit death rate. At the birth time tξ of individual ξ in the free process Φ, its corresponding birth rate

in the Ψ process is given by b ρ (ξ | Ψ (tξ−)), where b and ρ are given by Eq. (4.9) if β > 0 and

by Eq. (4.10) if β < 0. Detailed balance (Eq. 4.6) calculations show that accepting the proposed

birth ξ in Ψ(tξ−) with probability ρ (ξ | Ψ (tξ−)) ensures that the limiting distribution of Ψ(t) is an

area-interaction process with parameter β.

The idea behind the ‘cluster’ trick (Kendall 1997a) is to construct an observable event which has
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occurrence probability ρ; the proposed birth is then accepted if the event occurs and not otherwise.

For the attractive case (β > 0) the event {Yξ ∩ (U (ξ) \ U (Ψ (tξ−))) = ∅} occurs with probability

e−β m2[U(ξ)\U(Ψ(tξ−))] = ρ (ξ | Ψ (tξ−)) in Eq. (4.9)

since Yξ ∼ Possion(|β|). For β < 0, {Yξ ∩ (U (ξ) ∩ U (Ψ (tξ−))) = ∅} occurs with probability

e−|β| m2[U(ξ)∩U(Ψ(tξ−))] = eβ m2[U(ξ)∩U(Ψ(tξ−))] = ρ (ξ | Ψ (tξ−)) in Eq. (4.10).

It is easy to check whether any points of Yξ fall in the appropriate region. Furthermore, if the set of

neighbours of ξ in Ψ(tξ−) is denoted by Nβ
ξ = {η ∈ Ψ (tξ−) ; U (η) ∩ U (ξ) 6= ∅}, then

{Yξ ∩ (U (ξ) \ U (Ψ (tξ−))) = ∅} ≡
{
Yξ ∩

(
U (ξ) \ U

(
Nβ
ξ

))
= ∅
}
. (4.13)

{Yξ ∩ (U (ξ) ∩ U (Ψ (tξ−))) = ∅} ≡
{
Yξ ∩

(
U (ξ) ∩ U

(
Nβ
ξ

))
= ∅
}
. (4.14)

So acceptance of ξ depends only on Zξ = (Yξ, Uξ) and Nβ
ξ ; Figure 4.2 below illustrates these rules.

+

+ +

+

+ +

+

+ +

+

+ +

Attractive Case

Repulsive Case

Figure 4.2: Illustration of the ‘cluster’ trick. The birth-acceptance events are given by Eqs. (4.13 & 4.14). The

unfilled disk represents a birth ξ in the free process Φ, the filled disks its neighbours Nβ
ξ in the interacting process

Ψ. The crosses (+) represent the mark process Yξ. Top (Attractive case): ξ will be accepted if none of the crosses fall

outside the filled region. Bottom (Repulsive case): ξ will be accepted if none of the crosses fall within the shaded region.

In either case ξ will favour the pattern of filled grains on the right to those on the left.
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Algorithm 4.9 (Simulation of Ψ: Finite Time Construction).

Draw Φ(0); set the birth rate b to λ (if β > 0) or λ e−β m2[U(ξ)] (if β < 0).

Initialize Ψ (0) ⊆
{
ξ; ξ̃ ∈ Φ (0)

}
; set t = 0.

while t ≤ T :

Simulate the next incident time τ of Φ; update t = t+ τ .

if τ is the birth time of individual ξ:

update Φ (t) = Φ (t−) ∪ {ξ}.

for β > 0 (attractive case):

if Yξ ∩
(
U (ξ) \ U

(
Nβ
ξ

))
= ∅: update Ψ (t) = Ψ (t−) ∪ {ξ}.

else: update Ψ (t) = Ψ (t−).

for β < 0 (repulsive case):

if Yξ ∩
(
U (ξ) ∩ U

(
Nβ
ξ

))
= ∅: update Ψ (t) = Ψ (t−) ∪ {ξ}.

else: update Ψ (t) = Ψ (t−).

else if τ is the death time of ξ:

update Φ (t) = Φ (t−) \ {ξ}; Ψ (t) = Ψ (t−) \ {ξ}.

return Ψ(T ).

Theorem 4.1. The limiting distribution of Ψ(T ) as T →∞ is that of an attractive area-interaction

process with parameter β.

Proof. The birth rate b (x, ξ) of Ψ is λ ρ (ξ | x) (ρ is defined in Eqs. 4.9 & 4.10) and death rate is one

per point. Detailed balance (Eq. 4.6) holds with respect to the density of an area-interaction process.

Furthermore Ψ is irreducible since the process can go from one configuration to any other via the

addition and deletion of individuals. Thus the process converges to an area-interaction process.

4.5.3 Simulation of Ψ: Time Stationary Construction

In the following sections two perfect simulation algorithms for sampling exactly from the time-

stationary distribution of Ψ are discussed. A virtual simulation of Ψ started from time −∞ would

result in Ψ(0) being an exact draw from the required distribution, ie. an area-interaction point

process with parameter β. Simulation from time −∞ is sufficient but not necessary in order to
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obtain Ψ(0). This is because Algorithm 4.9 ensures that Ψ (t) ⊆
{
ξ; ξ̃ ∈ Φ (t)

}
for all t (where

Φ has birth rate λ if β > 0 and λ e−β m2[U(ξ)] if β < 0). So one needs only to determine which

individuals in the set
{
ξ; ξ̃ ∈ Φ (0)

}
would also be alive in Ψ(0).

Kendall (1998) describes a dominated CFTP algorithm involving the construction of upper- and

lower-sandwich processes which coalesce in finite time and whose common value at time 0 is guar-

anteed to be a perfect draw from an area-interaction process. An alternative perfect simulation

algorithm is presented in Fernández et al. (2002), namely the Clan of Ancestors algorithm. Since

Ψ (0) ⊆
{
ξ; ξ̃ ∈ Φ (0)

}
, it follows that Ψ(0) can be obtained by a dependent thinning of the larger

set of individuals (cf. Figure 4.1). Their algorithm is based on the notion of ancestors, which are

those individuals in Φ born before time 0 that would influence the birth rates of those alive at time

0. Once all the relevant information about the ancestors is obtained, it is then possible to determine

which of the individuals in
{
ξ; ξ̃ ∈ Φ (0)

}
would also be alive in Ψ(0).

4.5.4 Dominated CFTP Construction

Kendall & Møller (2000) present a general recipe, Dominated Coupling From The Past (domCFTP),

for perfect simulation of locally stable point processes (Definition 1.11). A full description of

domCFTP is given in Section 1.4.2. In this section the specific construction relating to the area-

interaction process (as described in Kendall 1998) is discussed. The essence of dominated CFTP

is the construction of upper- and lower-sandwich processes which bound the target process. As the

name suggests, one requires a dominating process which serves as a stochastically varying maximal

process; the evolution of the upper and lower bounding processes is then coupled to that of the dom-

inating process. If coalescence of the bounding processes occurs in finite time, then their common

value will also be the value of the target process. If one can arrange such a construction it would

then be possible to obtain a perfect sample from the target distribution.

We first describe the construction for the attractive case (β > 0); the repulsive case (β < 0)

can be dealt with by a simple modification, which is discussed at the end of this section. Let the

target process Ψ be an interacting birth-death process whose stationary distribution is an attractive

area-interaction process. Algorithm 4.9 shows that Ψ (t) ⊆
{
ξ; ξ̃ ∈ Φ (t)

}
for all t. The free

process Φ thus serves as the ‘dominating’ process. Consider a virtual simulation of the free process
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Φ backwards from time 0 to time −∞. If Ψ is initialized at time −∞ and coupled to the forwards

evolution of the free process then Ψ would be in equilibrium at time 0. So, for T > 0, let ΨT,max

and ΨT,min denote the upper and lower sandwich process started at time −T , initialized as:

ΨT,max (−T ) =
{
ξ; ξ̃ ∈ Φ (−T )

}
; ΨT,min (−T ) = ∅. (4.15)

These sandwich processes are coupled the free process on [−T, 0] such that the sandwiching, coa-

lescence and funnelling properties (cf. Eqs. 1.26, 1.27 & 1.28) hold:

ΨT,min (t) ⊆ Ψ (t) ⊆ ΨT,max (t) ⊆
{
ξ; ξ̃ ∈ Φ (t)

}
, −T ≤ t ≤ 0. (4.16)

ΨT,min (t) = ΨT,max (t) if ΨT,min (s) = ΨT,max (s) , −T ≤ s ≤ t ≤ 0. (4.17)

ΨT,min (t) ⊆ ΨS,min (t) ⊆ Ψ (t) ⊆ ΨS,max (t) ⊆ ΨT,max (t) , −S ≤ −T ≤ t ≤ 0. (4.18)

These are necessary conditions to ensure that once the bounding processes have coalesced their

common value is also the value of the target process Ψ (Kendall & Møller 2000, Theorem 2.1), so

that their common value at time 0 has the required distribution. The following algorithm describes

how to update these bounding processes in order to ensure Eqs. (4.16, 4.17 & 4.18) hold.

Algorithm 4.10 (domCFTP: Attractive Area-Interaction).

Fix T = 1.

while T > 0:

Extend Φ backwards on
[
−T,−bT

2
c
)

with birth rate λ.

Initialize ΨT,max(−T ) and ΨT,min(−T ) as in Eq. (4.15).

for t ∈ [−T, 0]:

if t is the birth time of ξ in Φ:

set ΨT,max (t) = ΨT,max (t−) ∪ {ξ} if Yξ ∩
(
U (ξ) \ U

(
ΨT,max (t−)

))
= ∅.

set ΨT,min (t) = ΨT,min (t−) ∪ {ξ} if Yξ ∩
(
U (ξ) \ U

(
ΨT,min (t−)

))
= ∅.

else if t is the death time of ξ in Φ:

set ΨT,max (t) = ΨT,max (t−) \ {ξ}; ΨT,min (t) = ΨT,min (t−) \ {ξ}.

if ΨT,max (0) = ΨT,min (0): set T = −1.

else: set T = 2T .

return ΨT,min(0).
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Note that when extending the free process Φ on
[
−T,−bT

2
c
)

and coupling the bounding processes

to the realization of Φ on [−T, 0], it is vital to re-use the same realization of Φ on
[
−bT

2
c, 0
]

as

that obtained in the previous iteration of the algorithm. Algorithm 4.10 does ensure that Ψ·,max and

Ψ·,min satisfy the sandwiching, coalescence and funnelling properties in Eqs. (4.16, 4.17 & 4.18),

and so the distribution of the output is that of an attractive area-interaction with parameter β (Kendall

1998; Kendall & Møller 2000). The key observation from which these properties follow is that the

acceptance probability for a given birth is monotonic in the current configuration since the density of

the process is attractive (Eq. 4.2). Hence any birth that is accepted in ΨT,min will also be accepted in

ΨT,max whereas the converse does not necessarily hold. Moreover the algorithm terminates almost

surely, because whenever the dominating process Φ hits the empty configuration ∅, Ψ·,max and Ψ·,min

coalesce and the algorithm consequently terminates. Since ∅ is an ergodic atom for Φ, the process

hits ∅ inifinitely often with probability one.

For a repulsive area-interaction process, the density is repulsive (Eq. 4.3) and the above con-

struction does not ensure the required properties in Eqs. (4.16, 4.17 & 4.18) hold. However “there

is a remarkably simple modification of the algorithm which is effective in determining equilibrium

in the repulsive case” (Kendall 1998). The only change to implement in Algorithm 4.10 is to set the

birth rate of Φ to λ e−β m2[U(ξ)] (cf. Eq. 4.10) and at the birth of an individual ξ at time tξ:

set ΨT,max (tξ) = ΨT,max (tξ−) ∪ {ξ} if Yξ ∩
(
U (ξ) ∩ U

(
ΨT,min (tξ−)

))
= ∅.

set ΨT,min (tξ) = ΨT,min (tξ−) ∪ {ξ} if Yξ ∩
(
U (ξ) ∩ U

(
ΨT,max (tξ−)

))
= ∅.

This ‘cross-over’ trick now ensures that whenever a birth is accepted in the minimal process it is

also accepted in the maximal process. This is because the birth-acceptance probability ρ (ξ | x) in

Eq. (4.10) is anti-monotonic in x, ie. ρ (ξ | x) ≤ ρ (ξ | y) for y ⊆ x. These changes ensure that

births maintain the inclusion ordering between the maximal and minimal processes. The output of

the modified algorithm is a perfect sample from a repulsive area-interaction process with parameter

β. The perfect sampling of such anti-monotone systems has also been studied by Häggström &

Nelander (1998) who present a general protocol for anti-monotone CFTP based on the ‘cross-over’

trick of Kendall (1998).
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4.5.5 The Clan of Ancestors Algorithm

In this section we consider another perfect variant of Algorithm 4.9. In Section 4.5.3 it was seen

that a realization of an area-interaction process can be obtained as a dependent thinning of a Poisson

process. Dominated CFTP (Algorithm 4.10) uses the idea of going back further and further in time

in order to obtain such a dependent thinning. The method in this section is based on the notion of an-

cestors, which are simply those births in the past that would affect the birth rates of the individuals in

the present. This perfect simulation algorithm, introduced by Fernández et al. (2002), “is applicable,

in principle, to any distribution that is absolutely continuous with respect to a Poisson process and

which can be obtained as the equilibrium distribution of an interacting spatial birth-and-death pro-

cess”. Examples considered by Fernández et al. (2002) include the area- and perimeter-interaction

process, low temperature Ising model, the random cluster model and equilibrium measures of loss

networks. Their description is very general and conceptual, but practical implementation requires

further work. The procedure described below is specialized to the area-interaction process, but with

an explicit description of how to implement it in practice.

Recall from Section 4.5.3 that a virtual simulation of the interacting birth-death process Ψ yields

Ψ (0) ⊆
{
ξ; ξ̃ ∈ Φ (0)

}
(where Φ has birth rate λ if β > 0 and λ e−β m2[U(ξ)] if β < 0). So Ψ(0) can

be obtained as a dependent thinning of the individuals in Φ(0). Given all the relevant information

about those births that could influence the birth rates of the individuals alive in Φ(0), it is then

possible to determine which individuals in
{
ξ; ξ̃ ∈ Φ (0)

}
would also be alive in Ψ(0).

Definition 4.2. For an individual ξ, let Nξ denote its set of neighbours in Φ, defined as

Nξ = {η; η̃ ∈ Φ (tξ−) and U (η) ∩ U (ξ) 6= ∅} = {η; (η × [tη, tη + sη]) ∩ (ξ × [tξ, tξ + sξ]) 6= ∅}.

Definition 4.3. For an individual ξ, let A1
ξ denote its set of first generation ancestors, defined as

A1
ξ = {η ∈ Nξ; Yξ ∩ U (η) 6= ∅}, where Yξ is a Poisson(|β|) process on U (ξ) attached to ξ (circa

Eq. 4.12 and Algorithm 4.6). Individuals in A1
ξ are the first generation ancestors of ξ, and ξ is a first

generation descendant of the individuals in A1
ξ .

Definition 4.4. An individual ξ is trivial if Yξ = ∅; else it is non-trivial.

Remark 4.1. A trivial individual ξ is always accepted in Ψ, regardless of whether β > 0 or β < 0

since the events in Eqs. (4.13 & 4.14) occur trivially. Furthermore, by definition, ξ will have no
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first generation ancestors. A non-trivial individual, on the other hand, has positive (free-process)

probability of having first generation ancestors; hence the decision to accept such an individual will

also depend on which of its neighbours are alive in Ψ.

Remark 4.2. An individual ξ will have no first generation ancestors if it is trivial or it is non-trivial

and Nξ = ∅. The decision to accept an individual with no first generation ancestors is then:

if β > 0: accept if it is trivial; reject if it is non-trivial.

if β < 0: accept in either case, since the event {Yξ ∩ (U (ξ) ∩ U (Ψ (tξ−))) = ∅} always occurs.

To determine whether a non-trivial ξ is accepted in Ψ(tξ−) one requires the set of first generation

ancestors of ξ which are alive in Ψ(tξ−), K1
ξ =

{
η ∈ A1

ξ ; η ∈ Ψ (tξ−)
}

. Once this is known then:

if β > 0: ξ is accepted if Yξ ∩
(
U (ξ) \ U

(
K1
ξ

))
= ∅, and not otherwise.

if β < 0: ξ is accepted if Yξ ∩
(
U (ξ) ∩ U

(
K1
ξ

))
= ∅, and not otherwise.

However determining K1
ξ may require information about the first generation ancestors of the indi-

viduals in A1
ξ , ie. the second generation ancestors of ξ. Working recursively, one has to deal with

all generations of ancestors of ξ, ie. the ‘Clan of Ancestors’ of ξ, denoted by Aξ. Implicit in the

clan algorithm is the requirement that all the clansAξ “are finite with (free-process) probability one”

(Fernández et al. 2002). A sufficient condition for this is presented in Section 4.5.6.

Constructing the Clan of Ancestors

If the conditions set out in Section 4.5.6 hold, so that the clan of any individual is almost surely

finite, then the following explicitly details how to construct the clan of a given individual. Suppose

Algorithm 4.9 is started from time −∞ and Ψ coupled to the forward evolution of Φ till time 0

(bearing in mind that the birth rate is λ for β > 0 and λ e−β m2[U(ξ)] for β < 0). If ξ is an individual

alive at time 0, its ancestors are those individuals born (in the forward evolution of Φ) before time 0

which influence the birth rate of ξ. Time reversibility of Φ means that one could evolve the process

backwards from time 0; forward births become backward deaths and vice versa. The first generation

ancestors of ξ are determined at its (forwards) birth incident; therefore in the backwards simulation

the ancestors will be determined at its death incident.
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Algorithm 4.11 (Clan Construction).

Set Aξ = ∅; Bξ = {ξ}

while Bξ 6= ∅:

Simulate the next backwards incident time of Φ.

if a death is proposed:

if the individual to be deleted is in Bξ:

if it has any first generation ancestors in Φ: add them to Aξ and Bξ.

delete the individual from Φ and Bξ if present.

return Aξ.

Time

0

A

B

E

C

D

t_A

Figure 4.3: An illustration of the clan construction (Algorithm 4.11). The figure represents the evolution of the free

process Φ with the rectangles representing the individuals. The end points of the rectangles denote the birth and death

times; for example tA is the forward birth (or equivalently, backward death) time of individualA. The shaded rectangles

{A,D} are those individuals alive in Φ(0); thus one needs to determine their respective clans. Individual A has only

one neighbour, B. If B is not a first generation ancestor of A (cf. Definition 4.3) then the procedure stops there and the

clan of A is {A}; else B is added to the clan and the procedure propagates further backwards. B has one neighbour, E;

if E is a first generation ancestor of B then it is also added to the clan of A. If not, procedure stops and the clan of A

is {A,B}. Since D,E have no neighbours then neither has any ancestors. Therefore the whole clan construction ends

there and the Cleaning Algorithm 4.12 determines which of {A,D} will be alive in the area-interaction process.

If Aξ is finite then the set {η ∈ Aξ; η has no first generation ancestors} is non-empty and the deci-

sion to accept any η in this set only depends on its mark process Yη (cf. Remark 4.2). The following

Cleaning Algorithm (Fernández et al. 2002) now describes how, given this set, to determine exactly
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which of the other individuals in Aξ would also be alive in Ψ.

Algorithm 4.12 (Cleaning Algorithm).

Set Kξ = ∅ and Hξ = Aξ ∪ {ξ}.

for each individual in {η ∈ Aξ; η has no first generation ancestors}:

if η is allowed to be born in Ψ (as determined by Remark 4.2): update Kξ = Kξ ∪ {η}.

update Hξ = Hξ \ {η}.

Order the remaining individuals in Hξ by time of birth, with the oldest first.

while Hξ 6= ∅:

let the first individual in Hξ be ζ , and A1
ζ ⊆ Aξ its first generation ancestors.

compute its set of alive first generation ancestors K1
ζ =

{
η ∈ A1

ζ ; η ∈ Kξ

}
.

if β > 0:

if Yζ ∩
(
U (ζ) \ U

(
K1
ζ

))
= ∅: update Kξ = Kξ ∪ {ζ}.

else if β < 0:

if Yζ ∩
(
U (ζ) ∩ U

(
K1
ζ

))
= ∅: update Kξ = Kξ ∪ {ζ}.

update Hξ = Hξ \ {ζ}.

return Kξ.

So, for each ξ such that ξ̃ ∈ Φ (0), applying the above procedure yields the set Kξ of individuals in

Aξ ∪ {ξ} that are allowed to be born in Ψ. The set
{
ξ; ξ̃ ∈ Φ (0) , ξ ∈ Kξ

}
≡ Ψ (0) must hence be

a perfect draw from an attractive area-interaction process with parameter β.

4.5.6 A Space-Time Percolation Problem

Fernández et al. (2002) point out that “the relation “being an ancestor of” gives rise to a model

of oriented-percolation”, or more specifically “backward oriented-percolation” since the clans are

defined only by looking into the past. Such a percolation is the space-time analogue of the ‘Snails

on a Lily Pond’ model discussed in Grimmett (1989, Section 10.5); see also the references therein

for results on percolation in space and a general theory of coverage processes (eg. Hall 1988).

A description of the percolation event runs as follows, following the basic notation of Grimmett

(1989). For ξ̃ = (ξ, tξ, sξ, Zξ) define ξ̃ to be adjacent to η̃, written ξ̃ ∼ η̃, if η is a first gener-

ation ancestor of ξ. Furthermore ξ̃ is connected to η̃, written ξ̃ ↔ η̃, if there exists a sequence
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{
ξ̃k; 1 ≤ k ≤ n

}
such that ξ̃1 = ξ̃, ξ̃n = η̃ and ξ̃k+1 ∼ ξ̃k for all k ∈ {1, . . . , n− 1}. A cluster is a

set
{
ξ̃i; 1 ≤ i ≤ n

}
which is maximal with the property that ξ̃i ↔ ξ̃j for all i, j ∈ {1, . . . , n}. Let

C0 denote the cluster containing some ξ̃ ∈ Φ (0); C0 extends or propagates backwards to time t < 0

if t > inf
{
tξ; ξ̃ ∈ C0

}
. The validity of time-stationary clan construction for the area-interaction

process requires “the absence of a cluster extending back to time −∞” (Fernández et al. 2002). We

use branching process theory in order to get a sufficient condition which guarantees this.

Consider individual ξ, which by space-time invariance of the free process, can be assumed to be

born at time 0 at the origin. Looking backwards into the past of the free process Φ, this individual

will have (or ‘give rise to’) a random number of first generation ancestors. Each of these first

generation ancestors will, in turn, give rise to a random number of first generation ancestors and

so on. From Remark 4.1 it is seen that only non-trivial individuals have positive probability of

having first generation ancestors themselves; if an individual is trivial (so that it will have no first

generation ancestors) then that branch of the process will not propagate any further and will die out

at that trivial individual. Therefore it suffices to consider the branching process of non-trivial first

generation ancestors, since the difference will involve at most a finite number of trivial individuals.

A sufficient condition to ensure certain extinction is that the branching process is sub-critical, ie.

the expected number of non-trivial first generation ancestors is less that one. For an individual ξ let

∂U (ξ) = {η ∈ R2; U (η) ∩ U (ξ) 6= ∅} = B2r (ξ), where U (ξ) = Br (ξ) is a disk of fixed radius r

centred at ξ. The expected non-trivial first generation ancestors of ξ is then∫
B2r(ξ)

λ
(
1− e−β m2[U(ξ)]

)
dξ

∫ 0

−∞
dt

∫ ∞
t

e−sds = λ
(
1− e−β m2[U(ξ)]

)
m2 [B2r (ξ)] (4.19)

where m2 is Lebesgue measure on R2. So for λ
(
1− e−β m2[U(ξ)]

)
m2 [B2r (ξ)] < 1 the almost sure

finiteness of the clan of ancestors (of any individual) is guaranteed.

4.6 Omnithermal Sampling

The simulation algorithms considered so far sample the area-interaction process for fixed values of

the model parameters. In this section a different type of sampling scheme is considered. An om-

nithermal sampling scheme is whereby a model or system is sampled simultaneously for a whole

range of parameter values. That is, a single simulation which depicts the state of the system simul-
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taneously at a range of parameter values. Such a procedure would prove very useful in estimating

certain model/system characteristics or critical parameter values, since only a single (omnithermal)

sample would be required as opposed to a “large number of samples at different values of the pa-

rameters” (Propp & Wilson 1996).

For example, an omnithermal sample of an Ising system was used by Propp & Wilson in or-

der to illustrate how the internal energy and spontaneous magnetization of the system varies with

temperature. This then enabled the estimation of the ‘critical temperature’; “other macroscopically-

defined quantities may also be graphed as a monotone function of the temperature”. This idea of

simultaneously sampling a system has been used in the theory of random graphs and percolation;

see for example Propp & Wilson (1996) (and the references therein), Dimakos (2000) and Grimmett

(1989). The work of Dimakos (2000) on omnithermal sampling for the random-cluster and Ising

models proved very helpful and informative in understanding the concept. To the best of our knowl-

edge an omnithermal algorithm for the area-interaction process has not appeared in the literature;

therefore such a procedure is presented here.

Specifically, we consider sampling the process for a range of values of the interaction parameter

β. It turns out that omnithermal sampling is only possible for the attractive case (β > 0) (see Remark

4.4 below). Let β be some large positive value and, for p ∈ [0, 1], let Ψp denote an (attractive)

interacting spatial birth-death process which converges to an attractive area-interaction process with

parameter β = pβ > 0. Thus Ψp is viewed as a function of p and the objective then is to simulate

a realization of Ψp for all values of p given a single realization of the free process Φ. Algorithm

4.9 describes how the simulation of Ψ is carried out by coupling its evolution to that of the free

process Φ. A birth in Φ is considered a proposed birth in Ψ and an additional (stochastic) test

determines whether it is accepted, so as to ensure the correct birth rates for the interacting process.

In an omnithermal sampling scheme, the idea is to keep track of the range of values of p for which

the birth would have been accepted in the corresponding Ψp process.

Before proceeding, some modifications to the construction of the free process Φ (cf. Eqs. 4.11

& 4.12) have to be made. Recall from Section 4.5.1 that (ξ, tξ, sξ) represents an individual ξ, its

birth time tξ and its lifetime sξ. Each such triplet is marked with a Poisson process Zξ = (Yξ, Uξ)

on U (ξ) × (0, 1), where U (ξ) is a disk of fixed radius centred at ξ. The intensity measure of

Zξ is |β| m2 (dy)m1 (du). This thus enables the simulation of an area-interaction process with
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parameter β. For an omnithermal construction the intensity measure of Zξ must be changed to

β m2 (dy)m1 (du), since the idea is to simulate the process for all β ∈
[
0, β
]
. The mark Zξ can be

constructed as described in Algorithm 4.6.

Let θp denote a random mapping which takes a point configuration x and maps it to some subset

y ⊆ x by independently retaining each point of x with probability p. So for the Poisson pro-

cess Zξ = (Yξ, Uξ) and p = β

β
, θp (Yξ) ∼ Poisson(β) using the thinning property of Poisson pro-

cesses. Such a thinning of Yξ is obtained by θp (Yξ) =
{
ykξ ∈ Yξ; Uk

ξ < p
}

. For an individual ξ its

neighbours in Φ (Definition 4.2) are Nξ = {η; η̃ ∈ Φ (tξ−) , U (η) ∩ U (ξ) 6= ∅}; for a given p let

Np
ξ = {η ∈ Ψp (tξ−) ; U (η) ∩ U (ξ) 6= ∅} denote the neighbours of ξ in the corresponding Ψp pro-

cess. The following Lemma establishes a monotonicity result between the Ψp processes for different

values of p, which is a fundamental requirement for omnithermal sampling (Remark 4.3).

Lemma 4.3. Let 0 ≤ p ≤ p′ ≤ 1 and initialize Ψp (0) = Ψp′ (0). Couple the two processes to the

same realization of the free process Φ as in Algorithm 4.9. Then Ψp (t) ⊇ Ψp′ (t) for all t ≥ 0.

Proof. The result follows by induction on the sequence of transitions in the free process. Death

transitions are accepted in all the Ψp processes, so it needs to be shown that birth transitions maintain

the inclusion ordering. Initially Ψp (0) = Ψp′ (0); let ξ1 denote the first birth in Φ after time 0.

Then Ψp (tξ1−) = Ψp′ (tξ1−) and hence Np
ξ1

= Np′

ξ1
. The random function θp is monotonic in p:

∅ = θ0 (Yξ1) ⊆ θp (Yξ1) ⊆ θp′ (Yξ1) ⊆ θ1 (Yξ1) = Yξ1 , 0 ≤ p ≤ p′ ≤ 1; so

{
θp (Yξ1) ∩

(
U (ξ1) \ U

(
Np
ξ1

))}
⊆
{
θp′ (Yξ1) ∩

(
U (ξ1) \ U

(
Np
ξ1

))}
⇒
{
θp (Yξ1) ∩

(
U (ξ1) \ U

(
Np
ξ1

))
= ∅
}
⊇
{
θp′ (Yξ1) ∩

(
U (ξ1) \ U

(
Np′

ξ1

))
= ∅
}

since Np
ξ1

= Np′

ξ1
. So ξ1 is accepted in Ψp(tξ1−) whenever it is accepted in Ψp′(tξ1−), but not

necessarily the converse; hence Ψp (tξ1) ⊇ Ψp′ (tξ1).

Now suppose that after the n-th birth ξn, Ψp (tξn) ⊇ Ψp′ (tξn). At the next birth ξn+1, Np
ξn+1
⊇

Np′

ξn+1
implying

(
U (ξn+1) \ U

(
Np
ξn+1

))
⊆
(
U (ξn+1) \ U

(
Np′

ξn+1

))
. Again, monotonicity of θp

then implies that ξn+1 will be accepted in Ψp whenever it is accepted in Ψp′ , but not necessarily the

converse; so Ψp

(
tξn+1

)
⊇ Ψp′

(
tξn+1

)
. The induction goes through since only finitely many births

are proposed in finite time, and the ordering between Ψp and Ψp′ persists after every birth in Φ.
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Remark 4.3. Lemma 4.3 above implies that, for any ξ, {p ∈ [0, 1] ; ξ is accepted in Ψp} is an interval

of the form [0, rξ] ⊆ [0, 1]. The upper limit rξ is referred to as the omnithermal threshold for ξ, ie.

the real number in [0, 1] such that ξ is alive in Ψp process for all p ≤ rξ and not for p > rξ.

Remark 4.4. If we consider sampling Ψp for the repulsive case, with parameter β = pβ < 0, then

the monotonicity between Ψp and Ψp′ , for p ≤ p′, does not always hold: consider a birth proposal ξ.

It will be accepted in Ψp(tξ−) if θp (Yξ) ∩ (U (ξ) ∩ U (Ψp (tξ−))) = ∅ (cf. Eq. 4.14). This event is

monotonic in p but anti-monotonic in the configurations: for y ⊆ x and p ≤ p′

{θp (Yξ) ∩ (U (ξ) ∩ U (x))} ⊆ {θp′ (Yξ) ∩ (U (ξ) ∩ U (x))} ;

{θp (Yξ) ∩ (U (ξ) ∩ U (x))} ⊇ {θp (Yξ) ∩ (U (ξ) ∩ U (y))} .

So it is not possible to determine the inclusion ordering between {θp (Yξ) ∩ (U (ξ) ∩ U (x))} and

{θp′ (Yξ) ∩ (U (ξ) ∩ U (y))}. Thus the analogous result to Lemma 4.3 may not necessarily hold for

all −1 ≤ −p′ ≤ −p ≤ 0 in the repulsive case. For the attractive case the acceptance event (Eq.

4.13) is such that

{θp (Yξ) ∩ (U (ξ) \ U (x))} ⊆ {θp′ (Yξ) ∩ (U (ξ) \ U (x))} ;

{θp (Yξ) ∩ (U (ξ) \ U (x))} ⊆ {θp (Yξ) ∩ (U (ξ) \ U (y))} .

This hence gives {θp (Yξ) ∩ (U (ξ) ∩ U (x))} ⊆ {θp′ (Yξ) ∩ (U (ξ) ∩ U (y))}.

4.6.1 Computing the Omnithermal Threshold

Recall individual ξ is marked by a Poisson process Zξ = (Yξ, Uξ) on U (ξ) × (0, 1), where Yξ ∼

Poisson
(
β
)

on U (ξ) and Uξ =
{
Uk
ξ ; ykξ ∈ Yξ

}
is the collection of Uniform(0, 1) marks attached to

each point ykξ of Yξ. For a subset M ⊆ Nξ of the neighbours of ξ in Φ define

Eξ (M) = {p; all η ∈M are alive in Ψp}
⋂
{p; θp (Yξ) ∩ (U (ξ) \ U (M)) = ∅} . (4.20)

wξ (M) = inf
{
Uk
ξ ; ykξ ∈ (U (ξ) \ U (M))

}
, for non-empty M ⊆ Nξ. (4.21)

wξ (∅) = inf
{
Uk
ξ ; ykξ ∈ Yξ

}
.

vξ (M) = inf {rη; η ∈M} , with the convention that inf {∅} = 1. (4.22)

If omnithermal thresholds of the neighbours of ξ are {rη; η ∈ Nξ} then, for M ⊆ Nξ:
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{p : all η ∈M are alive in Ψp} =
⋂
η∈M

[0, rη] = [0, vξ (M)] ; (4.23)

and {p; θp (Yξ) ∩ (U (ξ) \ U (M)) = ∅} = [0, wξ (M)] . (4.24)

Eq. (4.24) holds since θp (Yξ) =
{
ykξ ∈ Yξ; Uk

ξ < p
}

; so for p ≤ wξ (M) none of the points of

θp (Yξ) will fall in U (ξ) \ U (M). If p > wξ (M) then at least one point of Yξ must fall in U (ξ) \

U (M) (else wξ (M) would be 1!); furthermore at least one of these points will be retained in θp (Yξ).

Eqs. (4.23 & 4.24) imply that Eξ (M) = [0,min {vξ (M) , wξ (M)}].

Theorem 4.2. Suppose that at the birth time of individual ξ in Φ the thresholds for all its neighbours

η ∈ Nξ are {rη; η ∈ Nξ}. Then the threshold for ξ is given by

rξ = max
M⊆Nξ

{min {vξ (M) , wξ (M)}} . (4.25)

Proof. rξ is the upper limit of the set {p : ξ is accepted in Ψp}; this is equal to

{p; ∃ at least one M ⊆ Nξ with all η ∈M alive in Ψp and θp (Yξ) ∩ (U (ξ) \ U (M)) = ∅}

=
⋃

M⊆Nξ

Eξ (M) =
⋃

M⊆Nξ

[0,min {vξ (M) , wξ (M)}] =

[
0, max

M⊆Nξ
{min {vξ (M) , wξ (M)}}

]
.

For implementation purposes Eq. (4.25) may be computationally burdensome as the maximum has

to be taken over all subsets of Nξ; however the following Corollary shows that one needs only to

take the maximum over a much smaller set of subsets.

Corollary 4.1. For an individual ξ let Nξ denote its neighbours in the free process Φ, A1
ξ its first

generation ancestors (Definition 4.3) and {rη; η ∈ Nξ} the thresholds for neighbours of ξ. Order

the individuals in A1
ξ as {η1, . . . , ηn} so that rη1 ≤ rη2 ≤ . . . ≤ rηn . For 1 ≤ i ≤ n define Mi ⊆ A1

ξ

by Mi = {ηn, ηn−1, . . . , ηi} and M0 = ∅. Then

rξ = max
M⊆Nξ

{min {vξ (M) , wξ (M)}} = max
M⊆A1

ξ

{min {vξ (M) , wξ (M)}}

= max
0≤i≤n

{min {vξ (Mi) , wξ (Mi)}} . (4.26)
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Proof. Any M ⊆ Nξ can be expressed as a disjoint union M = Q1 ∪Q2 where Q1 ⊆ A1
ξ and Q2 ⊆

Nξ \ A1
ξ . By Definition 4.3 any η ∈ Nξ \ A1

ξ must have Yξ ∩ U (η) = ∅, where Yξ is the Poisson
(
β
)

process on U (ξ) attached to the individual ξ. Furthermore U (ξ) \ U (M) = U (ξ) \ U (Q1 ∪Q2) =

(U (ξ) \ U (Q1)) ∩ (U (ξ) \ U (Q2)). Since Q2 ⊆ Nξ \ A1
ξ then Yξ ∩ U (Q2) = ∅, or equivalently,

Yξ∩ (U (ξ) \ U (Q2)) = Yξ. Therefore Yξ∩ (U (ξ) \ U (M)) = Yξ∩ (U (ξ) \ U (Q1)) and Eq. (4.21)

then yields wξ (M) = wξ (Q1). Since M ⊇ Q1, Eq. (4.22) implies vξ (M) ≤ vξ (Q1); therefore

max {min {vξ (M) , wξ (M)} ,min {vξ (Q1) , wξ (Q1)}}

= max {min {vξ (M) , wξ (Q1)} ,min {vξ (Q1) , wξ (Q1)}} = min {vξ (Q1) , wξ (Q1)} .

Since this holds for any M ⊆ Nξ it follows that

max
M⊆Nξ

{min {vξ (M) , wξ (M)}} = max
Q⊆A1

ξ

{min {vξ (Q) , wξ (Q)}} .

Now suppose Q ⊆ A1
ξ , where A1

ξ = {η1, . . . , ηn} is ordered such that rη1 ≤ rη2 ≤ . . . ≤ rηn . Let

the individual in Q with the lowest threshold be denoted by ηi∗ . By definition, Q ⊆ Mi∗ where Mi

is defined above; hence vξ (Q) = vξ (Mi∗) and wξ (Q) ≤ wξ (Mi∗) (cf. Eq. 4.21). Therefore

max {min {vξ (Q) , wξ (Q)} ,min {vξ (Mi∗) , wξ (Mi∗)}}

= max {min {vξ (Mi∗) , wξ (Q)} ,min {vξ (Mi∗) , wξ (Mi∗)}} = min {vξ (Mi∗) , wξ (Mi∗)} .

The choice of Q was arbitrary, hence the above holds for all Q ⊆ A1
ξ and Eq. (4.26) follows.

Corollary 4.2. If wξ (∅) = wξ (Nξ) (cf. Eq. 4.21) then rξ = wξ (∅).

Proof. By definition, wξ (∅) ≤ wξ (M) ≤ wξ (Nξ) for any M ⊆ Nξ. Thus if wξ (∅) = wξ (Nξ)

then wξ (∅) = wξ (M) for all M . The value of the threshold rξ is given by Eq. (4.25); since

wξ (M) = wξ (∅) for all M then rξ = maxM⊆Nξ {min {vξ (M) , wξ (∅)}}. Now vξ (∅) = 1

from Eq. (4.22); hence min {vξ (∅) , wξ (∅)} = wξ (∅). Moreover, for any non-empty M ⊆ Nξ,

max {wξ (∅) ,min {vξ (M) , wξ (∅)}} = wξ (∅); so rξ = wξ (∅) as required.

4.6.2 The Omnithermal Process

Let Υ denote the omnithermal process which keeps track of the omnithermal thresholds of the indi-

viduals in the free process Φ, ie. Υ (t) =
{
rξ; ξ̃ ∈ Φ (t)

}
. Following Dimakos (2000, Chapter 5) we
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Figure 4.4: Computing the omnithermal threshold. Suppose the unfilled disk represents the individual ξ whose

omnithermal threshold rξ is required. The neighbours of ξ are Nξ = {A,B,C}, with the numbers in the brackets

denoting their respective thresholds. Zξ = (Yξ, Uξ) is given as follows: the three crosses represent Yξ =
{
y1ξ , y

2
ξ , y

3
ξ

}
and the numbers in the brackets Uξ =

{
U1
ξ , U

2
ξ , U

3
ξ

}
. Eq. (4.25) or (4.26) gives rξ = 0.3.

describe some properties Υ must satisfy. For fixed p let Ψomni
p (t) = {ξ; rξ ∈ Υ (t) and p ≤ rξ} be

the collection of individuals obtained by thresholding Υ(t). If we initialize Υ(0) at some ‘valid’

omnithermal state (ie. at a collection of thresholds so that the configuration Ψomni
p (0), for any

p ∈ [0, 1], has positive probability under the corresponding area-interaction distribution), then

Ψomni
p (t) ≡ Ψp (t) must hold for all t ≥ 0 and p ∈ [0, 1]. Thus thresholding Υ at some p must yield

the same process as that obtained by simulating the Ψp process initialized at Ψomni
p (0) and using the

same realization of Φ. This ensures that the omnithermal updates produce a proper Markov process;

furthermore since, for any p, Ψp converges to the right distribution then Υ must also converge.

4.6.3 Omnithermal Sampling: Finite Time Construction

In order to simulate the omnithermal process Υ on a finite time interval, say [0, T ], simulate a real-

ization of the free process Φ on the same interval and update the Υ process at each transition accord-

ingly. Choose a ‘valid’ starting state for the omnithermal process, eg. let Υ (0) =
{
uξ; ξ̃ ∈ Φ (0)

}
where the uξ ∼ Uniform(0, 1). Such a collection is a valid initial value since, for any p ∈ [0, 1],

Ψomni
p (0) = {ξ; rξ ∈ Υ (0) and p ≤ uξ} is an independent p-thinning of

{
ξ; ξ̃ ∈ Φ (0)

}
, which has
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a positive probability under the corresponding area-interaction process.

Algorithm 4.13 (Omnithermal Sampling: Finite Time Construction).

Draw Φ(0); initialize Υ (0) =
{
uξ; ξ̃ ∈ Φ (0)

}
, where uξ ∼ Uniform(0, 1); set t = 0.

while t ≤ T :

Simulate the next incident time τ of Φ.

if next incident is a birth ξ: compute rξ; update Υ (τ) = Υ (τ−) ∪ {rξ}.

else if next incident is a death ξ: update Υ (τ) = Υ (τ−) \ {rξ}.

update t = t+ τ .

return Υ (T ).

The omnithermal construction Algorithm 4.13 is non-trivial. The omnithermal process Υ must be

consistent with the construction in Algorithm 4.9. That is, thresholding Υ(T ) at some p ∈ [0, 1]

must yield the same collection of individuals as would have been obtained via Algorithm 4.9 with

β = pβ and using the same realization of the free process Φ. The key point to note is that Theorem

4.2 establishes an equivalence between rξ and {p; ξ is accepted in Ψp}: ξ ∈ Ψp (tξ) if and only

if p ≤ rξ. This ensures that Algorithm 4.13 above produces a proper Markov process Υ which

converges to the required target distribution.

Theorem 4.3. Suppose that Υ(T ) is obtained by Algorithm 4.13 via a single realization of Φ. Let

Ψp(T ), for p ∈ [0, 1], be obtained via Algorithm 4.9, with Ψp (0) = Ψomni
p (0) and using the same

realization of Φ as in the construction of Υ. Then Ψomni
p (T ) ≡ Ψp (T ), for all T ≥ 0. Furthermore

Ψomni
p (T ) converges to an (attractive) area-interaction process with parameter β = pβ.

Proof. For fixed p, Ψp (0) = Ψomni
p (0) by construction. If, prior to a birth ξ, Ψomni

p (tξ−) = Ψp (tξ−)

then Theorem 4.2 ensures Ψomni
p (tξ) = {η; η̃ ∈ Φ (tξ) , p ≤ rη} ≡ Ψp (tξ). The same argument

shows that this relation is maintained after all consecutive birth incidents. If there is a death incident

in Φ, then the appropriate individual is deleted from Ψp, while its corresponding threshold is deleted

from Υ. Thus deaths do not change the relation between Ψomni
p and Ψp; hence Ψomni

p (t) = Ψp (t) for

all t ≥ 0, and in particular for t = T . Theorem 4.1 shows that Ψp(T ) converges, as T → ∞, to an

area-interaction process with parameter β = pβ; thus Ψomni
p (T ) = Ψp (T ) must also converge to the

same limit. Since the choice of p was arbitrary, the above holds for any p ∈ [0, 1].
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4.6.4 Omnithermal Sampling: Time Stationary Construction

In this section exact sampling of the omnithermal process Υ is tackled, via the Clan Algorithm

(Section 4.5.5) of Fernández et al. (2002). If, for some individual ξ, the conditions of Corollary 4.2

are satisfied, ie. wξ (∅) = wξ (Nξ), then in order to compute rξ one does not require the respective

thresholds for the neighbours of ξ. So for omnithermal sampling, one can interpret ξ as having no

first generation ancestor since it is possible to exactly determine rξ only from the associated marks{
ykξ , U

k
ξ

}
of ξ (compare to Remark 4.2).

Thus the only alteration in computing the clan of ancestors (via Algorithm 4.11) is that the defini-

tion of a first generation ancestor is re-expressed in terms of the omnithermal notation. Hence, given

a set of individuals
{
ξ; ξ̃ ∈ Φ (0)

}
, one obtains the clan Aξ for each individual via Algorithm 4.11.

If, for each individual ξ,Aξ is finite then the set {η ∈ Aξ; η has no first generation ancestors} is non-

empty and the thresholds for the individuals in this set can be obtained by Corollary 4.2. A sufficient

condition for finiteness of Aξ in the omnithermal setting is given by Eq. (4.19) with β = β. Further-

more, given {η ∈ Aξ; η has no first order ancestors}, it is then possible to determine the thresholds

for all the other individuals in Aξ via Eq. (4.25). In order to determine Υ (0) =
{
rξ; ξ̃ ∈ Φ (0)

}
a

variant of the Cleaning Algorithm 4.12 needs to be employed.

Algorithm 4.14 (Omnithermal Thresholding Algorithm).

Set Rξ = ∅ and Hξ = Aξ ∪ {ξ}.

for each individual in {η ∈ Aξ; η has no first generation ancestors}:

compute its corresponding threshold rη; update Rξ = Rξ ∪ {rη}; Hξ = Hξ \ {η}.

Order the remaining individuals in Hξ by time of birth, with the oldest first.

while Hξ 6= ∅:

let the first individual in Hξ be ζ and A1
ζ its set of first generation ancestors.

(by construction, Rξ contains the thresholds for all individuals in A1
ζ).

compute rζ via Eq. (4.25 or 4.26); update Rξ = Rξ ∪ {rζ}; Hξ = Hξ \ {ζ}.

return Rξ.

The thresholds of the individuals in {η ∈ Aξ; η has no first generation ancestors} are determined

exactly by Corollary 4.2. Given these, Theorem 4.2 ensures that the use of Eq. (4.25) gives the

correct thresholds for any descendant. So Υ (0) =
{
rξ ∈ Rξ; ξ̃ ∈ Φ (0)

}
must be an exact draw

123



from the equilibrium distribution of Υ. Alternatively the distribution of Ψomni
p (0), for any p, must be

that of an area-interaction process with parameter β = pβ.

4.7 Conclusions & Further Work

This chapter concerned the perfect simulation of the area-interaction process, introduced by Badde-

ley & Van Lieshout (1995) as a model for both clustering (attraction) and orderliness (repulsion).

Various algorithms for this process are described; in the case of the Kendall (1998) Algorithm 4.10

and Fernández et al. (2002) Clan Algorithm 4.11 explicit details on practical implementation are

also discussed. An important contribution of this chapter is the omnithermal sampling of the area-

interaction process. It is seen how spatial birth-death processes allow sampling the process, not

only at fixed parameters, but also simultaneously for a whole range of values of the interaction pa-

rameter β. Moreover Lemma 4.3 and subsequent Remark 4.4 show that omnithermal sampling is

possible only for the attractive case (β > 0). A variant of the Clan Algorithm 4.11 enabled an exact

omnithermal construction (Algorithm 4.14). The following section discuss various possibilities for

extending and generalizing the ideas in this chapter.

4.7.1 Perfection in Space

The perfect simulation algorithms introduced in this chapter sample the ‘standard’ area-interaction

process on some bounded region W ⊂ R2, conditional on the assumed boundary conditions (cf.

Section 4.2.1). Baddeley & Van Lieshout (1995) show that the standard process can be viewed as

the restriction to W of a stationary point process on the whole of R2. A natural extension of the

work presented here would be to consider sampling the stationary process on W . Kendall (1997b)

calls this “perfect simulation in space”; Fernández et al. (2002) use the term “sampling the infinite-

volume measure”. Indeed the Clan algorithm, as presented in Fernández et al. (2002), can be

employed to sample the infinite volume measure directly.

The description given by Kendall (1997b) involves the construction of upper and lower pro-

cesses which are extended not only backwards in time but in space as well. The basic idea is as

follows. Choose a sequence of ever increasing sampling windows Wn ⊃ W for all n ≥ 0. For
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n = 0, 1, . . . sample the standard area-interaction process on Wn subject to (i) zero (‘minimal’);

and (ii) rectangular (‘maximal’) boundary conditions (Section 4.2.1), but using the same realization

of the dominating marked free process (cf. Section 4.5). If both samples agree then the common

configuration is a sample of the stationary process. If not set n = n+ 1 and carry out the procedure

again. This procedure will terminate almost surely in finite time if the underlying marked free pro-

cess of space-time Boolean model “does not percolate to infinity, since then for large enough n the

boundary conditions cannot affect the pattern in W ” (Kendall 1997a; Kendall 1997b).

It would be interesting not only to carry out such an implementation of ‘perfection in space (and

time)’ but also to combine it with the omnithermal sampling ideas of Section 4.6 in order to draw

omnithermally from the stationary process. Indeed it may be possible to incorporate the dynamics of

the Omnithermal Thresholding Algorithm 4.13 with the Clan algorithm, as presented in Fernández

et al. (2002), in order to do so.

4.7.2 Omnithermal Sampling

Although explicit details of implementing the exact omnithermal algorithm of Section 4.6.4 are

given, practical implementation has not been carried out. Therefore this presents another viable

direction for further work. In addition it seems to us that it may also be possible to devise a CFTP-

based construction for the same sampling procedure. Another generalization would be to sample the

process simultaneously for any single (or even multiple) parameter(s). The parameter considered

here was the interaction parameter β; it seems relatively straightforward to do this for different values

of the underlying intensity λ and, possibly, the radius r of the disks which define the Boolean model.

Some additional thoughts on the possibility of omnithermal sampling for two or more parameters

are discussed in Section 6.1.

125





Chapter 5

Conditional Area-Interaction Point Process

5.1 Introduction

In Chapters 3 & 4 perfect simulation algorithms for conditional Boolean models and the area-

interaction point process were presented. In this chapter we consider a natural extension of the

two models: the conditional area-interaction point process. The only other reference to an area-

interaction process required to cover a given set of nodes is found in McKeague & Loizeaux (2002).

They consider Bayesian cluster models for disease outbreaks. It turns out that for a class of cluster

models the posterior distribution is an area-interaction process, conditioned to cover the locations of

disease outbreak. Their simulation method involved straightforward Rejection sampling; moreover

they comment on the inefficiency of such an accept/reject mechanism based on their simulations.

We have found no other literature mentioning the conditional area-interaction process; therefore the

task of developing perfect simulation algorithms for this model is tackled here.

There are numerous applications for both the conditional Boolean model and area-interaction

process. Hence it is reasonable to expect that the conditional area-interaction process itself has

an equally broad range of applicability. For example the area-interaction process is a plausible

model for the “selfish herd” (cf. Section 4.1). Water particles in clouds may be attracted to re-

gions of higher concentration of cloud cover, hence an attractive area-interaction process may serve

as a useful model. As noted in Section 3.1 there is often experimental data available for the phe-

nomenon being studied. This may include information on which regions are covered/uncovered or

connected/disconnected by the regions of influence of the individuals. For example regions where
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food/water or other resources are quite likely to be covered by the “selfish herd” above. It is both

natural and logical to incorporate such information, which thus leads to conditional models. For the

purposes here we consider the area-interaction process conditioned to cover a finite set of nodes.

This chapter concerns the perfect simulation of the conditional area-interaction process on a

bounded window W ⊂ R2. The aim here is two-fold: firstly, to introduce three perfect simulation

algorithms for this model; and secondly to evaluate the algorithms by comparing their empirical run

times. Rejection sampling for this process is briefly introduced; a 2-Stage Rejection algorithm is

described for the conditional area-interaction process. In Section 5.4 Algorithm 5.1, which employs

spatial birth-death processes, is presented. The method is a hybrid between the Cai & Kendall (2002)

and Kendall (1998) procedures.

In Section 5.5 a Gibbs-within-Metropolis Hastings sampler (Algorithm 5.4) is proposed and it

is shown that its output is a perfect sample of a conditional area-interaction process. As noted in

Section 3.1 it is important to validate any simulation algorithm, even though in theory it outputs

samples with the required distribution. There may be programming bugs which need to be checked;

in addition theoretical discrepancies, if any, may also be uncovered. In Appendix B the modified

Cai & Kendall and exact Gibbs algorithms are validated via χ2 tests.

In Section 5.7 a quantitative evaluation between the 2-Stage Rejection, modified Cai & Kendall

and exact Gibbs algorithms is carried. The objective is the same as in the experiments of Section 3.7:

the actual run times of the three algorithms are compared for various model parameters. The basic

conclusion is that the modified Cai & Kendall procedure is more efficient for extreme parameter

values (high λ, β, large window and conditioning set size). The other two algorithms fare well for

moderate values; the exact Gibbs sampler seems just as efficient as, if not more efficient than 2-Stage

Rejection.

5.2 Notation

Let W ⊂ R2 be a bounded sampling window and C = {c1, . . . , ck} be the finite conditioning set

such that U (C) ⊂ W . Here U (C) =
⋃
{c∈C} U (c), where U (ξ) denotes a disk of fixed radius r and

centre ξ (Definition 3.1). Let X denote an area-interaction process on W conditioned to cover the

set C. As noted in Section 3.2 points ξn of X will be referred to as germs, {U (ξn)} as grains and
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{ci} as (conditioning) nodes. As with the area-interaction process (and, in general, Gibbs processes

on bounded regions), the distribution of X on W must be specified conditional on the configuration

outside W (cf. Sections 1.1.10 & 4.2.1). Let y denote the point configuration outside W ; the density

of X with respect to a unit rate Poisson process, given the boundary condition y, is

f (x | y) ∝ λn(x)e−β ψ(x|y)1{U(x)⊃C}, where ψ (x | y) = m2 [U (x) \ U (y)] . (5.1)

It is assumed here that the process y on W c = R2 \ W is empty, ie. ‘zero’ boundary conditions

(cf. Section 4.2.1). Thus Eq. (5.1) simplifies to f (x) ∝ λn(x)e−β m2[U(x)]1{U(x)⊃C}. The parameter

β is referred to as the area-interaction parameter; β = 0 corresponds to a Poisson(λ) process while

β > 0 (β < 0) produces clustered (regular) patterns. Figure 5.1 below shows a realization of a

conditional attractive area-interaction process. The conditioning set (part of Redwood seedlings

data, Figure 1) is the same as that used in Figure 3.1.
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Conditional Attractive Area−Interaction

Figure 5.1: Sample of a conditional attractive area-interaction process. The conditioning nodes (solid dots) are a part

of the Redwood seedlings data set (Figure 1). The underlying Poisson intensity λ = 40, interaction parameter β = 25,

disk radius r = 0.05 and W = [−0.5, 0.5]× [−0.7, 0.3].
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5.3 Rejection Sampling

Rejection sampling for this model is straightforward. One can employ the Rejection procedures

(Algorithms 4.1 & 4.2) in order to draw a sample of an area-interaction process. If it covers C then it

has the required distribution; otherwise the sample is discarded and another is drawn independently.

This procedure is carried out until one obtains the desired sample. Alternatively, a Poisson process

conditioned to cover C can first be drawn and then accepted with the correct weight; algorithms

4.1 & 4.2 describe how to obtain such a weighted Poisson process. Moreover the sample from the

conditional Poisson process can be obtained via the 2-Stage procedure (Algorithm 3.2), since this is

going to be much more efficient that ordinary Rejection sampling. For purposes of practical imple-

mentation, we choose this latter variant of Rejection sampling: the 2-Stage Rejection algorithm is

employed to sample conditional Boolean model, which is then accepted with the correct probability.

5.4 Simulation via Spatial Birth-Death Processes

In Sections 3.4 & 4.5.4 spatial birth-death processes were used to sample the conditional Boolean

model and area-interaction process respectively. The idea being to set the birth rate equal to the

Papangelou conditional intensity of the point process and unit death rate per point. These birth and

death rates automatically satisfy detailed balance (Eq. 1.25) with respect to the density of the point

process; the birth-death process hence converges to the required point process.

Simulation of the conditional Boolean model (Section 3.4) involves forbidding deaths which

violate the conditioning; the constraint so imposed applies only to death incidences. Simulation of

the area-interaction process (Section 4.5) involves censoring birth transitions in order to generate

the required birth rates; the constraint so imposed applies only to birth incidences. Therefore there

is no conflict between the respective censoring rules generating the two models. This suggests that

censoring deaths and births accordingly would produce an interacting spatial birth-death process

which converges to the conditional area-interaction process. The Cai & Kendall (2002) and Kendall

(1998) constructions are briefly summarized below and Section 5.4.1 then explicitly details how to

obtain a perfect simulation recipe for the conditional area-interaction process (Algorithm 5.1).
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Review of Perfect Simulation: Conditional Boolean Model

Algorithm 3.4 of Cai & Kendall (2002), as presented in Section 3.4.1, is reviewed here. The set

C = {c1, . . . , ck} denotes the conditioning nodes; for non-empty A ⊆ C, EA defined by Eq. (3.4)

represents the region such that any germ in EA covers all the nodes in A and no others. Let Φ denote

a spatial birth-death process with birth rate λ and unit death rate per germ. Denote by ΦA the

restriction of Φ to EA; then the basic processes which will drive the simulation are {ΦA; A ⊆ C},

which converge to Poisson(λ) processes on EA. Death transitions in the ΦA which uncover any

conditioning node are disallowed. Such transitions are called perpetuated germs and stored in a

respective virtual process VA; hence the virtual processes essentially supply extra individuals to

ensure that the conditioning is always maintained. The exact coupling construction defines upper

and lower virtual processes
{
V T,max
A

}
and

{
V T,min
A

}
. Given transitions of the driving processes

{ΦA}, these bounding virtual processes are updated accordingly in order to ensure that they satisfy

the sandwiching, coalescence and funnelling properties (Lemmas 3.2, 3.3 & 3.4).

Review of Perfect Simulation: Area-Interaction

The density of the area-interaction process is locally stable (see Section 4.5.4) and therefore the

dominated CFTP recipe (Section 1.4.2) of Kendall & Møller (2000) can be used to sample the

process perfectly. An unconditional Poisson process stochastically dominates an area-interaction

process. Hence it is possible to define coupled spatial birth-death processes (Φ,Ψ) such that Φ(t)

is a Poisson(λ) process, Ψ(t) an area-interaction process and Φ (t) ⊇ Ψ (t) for all t. Births of the

‘basic’ process Φ have appropriate marks attached which allow the correct censoring of births in the

‘interacting’ process Ψ. Deaths in Φ are always accepted in Ψ, if present. A perfect variant of this

method is devised via dominated CFTP (cf. Section 1.4.2).

5.4.1 Dominated CFTP Construction

The algorithms reviewed above employ spatial birth-death processes in order to sample the respec-

tive distributions. In either case, transitions of the underlying driving process (an unconditional

spatial birth-death process with Poissonian equilibrium) were censored accordingly in order to gen-

erate the appropriate equilibrium. As noted in Section 5.4 there is no conflict between the censoring
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rules which generate the conditional Boolean model and the area-interaction process. Therefore

accepting births with the correct probability and restricting those deaths which uncover the condi-

tioning set will yield an interacting spatial birth-death process that converges to an area-interaction

process conditioned to cover C.

Recall from Eq. (5.1) that the density of a conditional area-interaction processX onW , with zero

boundary conditions, is given by f (x | ∅) ≡ f (x) ∝ λn(x)e−βψ(x|∅)1{U(x)⊃C}, where ψ (x | y) =

m2 [U (x) \ U (y)]. The Papangelou conditional intensity of X is

` (ξ;x) = λ e−β ψ(ξ|x)1{U(x)⊃C} = λ e−β m2[U(ξ)\U(x)]1{U(x)⊃C}.

In Section 1.3.2 it was seen that spatial birth-death processes can be employed to sample point

process specified by density with respect to a Poisson process. Therefore a birth-death process

Ψ̃ with birth rate b (x, ξ) = λ e−β ψ(ξ|x)1{U(x)⊃C} and unit death rate per point satisfies detailed

balance Eq. (1.25) with respect to the density f . If the process is irreducible then Ψ̃ converges

to a conditional area-interaction process. Irreducibility follows since the state space of Ψ̃ is all

configurations which cover C and the process can go from any configuration x to another y via birth

incidents of germs in y followed by death incidents of germs in x.

In order to devise an exact coupling we combine the constructions in Algorithms 3.4 & 4.10 as

follows. Attention here is restricted to the attractive conditional area-interaction process (β > 0);

minor changes required for the repulsive case (β < 0) are discussed in Remark 5.1. A simple mod-

ification of Algorithm 3.4 will yield exactly what we want. Specifically, censoring births with the

correct acceptance probability will ensure the correct transition rates for the target process. Births

need to be accepted with some non-trivial probability which involves computing the area of compli-

cated regions. Sections 4.5 & 4.5.4 describe how to implement the required censoring via observable

events that have the same occurrence probability.

Other modifications to Algorithm 3.4 involve defining extra maximal and minimal processes and

initializing these. For a given A ⊆ C recall that EA ⊆ W is such that any germ in this region

covers only those conditioning nodes in A and no others. Let 4 be a partial order on the space

of point patterns defined by x 4 x′ if U (x) ⊆ U (x′). Define xA as a collection of germs such

that U (xA) ⊃ U (EA), where U (EA) = {η ∈ R2; η ∈ U (ξ) for some ξ ∈ EA}. This implies that

for any configuration y in EA: y 4 xA; moreover
⋃
{A⊆C} xA covers C. The driving processes in
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Algorithm 3.4 are the spatial birth-death processes {ΦA} (birth rate λ, unit per capita death rate) and

the unit-rate Poisson processes {ZA} on R+. Let ΨT,max
A , ΨT,min

A denote the bounding interacting

and V T,max
A , V T,min

A the bounding virtual processes. Define the target processes by:

Ψ̃T,min
c (t) =

⋃
{A; c∈A}

Ψ̃T,min
A (t) =

⋃
{A; c∈A}

ΨT,min
A (t) ∪ V T,min

A (t) . (5.2)

Ψ̃T,max
c (t) =

⋃
{A; c∈A}

Ψ̃T,max
A (t) =

⋃
{A; c∈A}

ΨT,max
A (t) ∪ V T,max

A (t) . (5.3)

Algorithm 5.1 (domCFTP: Attractive Conditional Area-Interaction).

Fix T > 0.

while T > 0:

Extend {ΦA; A ⊆ C}, {ZA; A ⊆ C} backwards on the interval
[
−T,−bT

2
c
)
.

for each non-empty A initialize:

ΨT,min
A (−T ) = V T,min

A (−T ) = ∅.

ΨT,max
A (−T ) = {ξ; ξ ∈ ΦA (−T )}; V T,max

A (−T ) = xA.

for t ∈ [−T, 0]:

if t is the birth time of ξ ∈ EA:

set ΦA (t) = ΦA (t−) ∪ {ξ}.

set ΨT,min
A (t) = ΨT,min

A (t−) ∪ {ξ} with probability e−β ψ(ξ|Ψ̃T,minA (t−)).

set ΨT,max
A (t) = ΨT,max

A (t−) ∪ {ξ} with probability e−β ψ(ξ|Ψ̃T,maxA (t−)).

else if t is a death time of ξ ∈ ΦA (·):

set ΦA (t) = ΦA (t−) \ {ξ}.

set ΨT,min
A (t) = ΨT,min

A (t−) \ {ξ}; ΨT,max
A (t) = ΨT,max

A (t−) \ {ξ}.

if Ψ̃T,min
ci

(t−) = {ξ} for some ci ∈ A: set V T,max
A (t) = {ξ}.

if Ψ̃T,max
ci

(t−) = {ξ} for some ci ∈ A: set V T,min
A (t) = {ξ}.

else if t is a perpetuation time for VA (·) (ie. incident time of ZA):

if Ψ̃T,min
ci

(t−) ⊃ V T,min
A (t−) for all ci ∈ A: set V T,max

A (t) = ∅.

if Ψ̃T,max
ci

(t−) ⊃ V T,max
A (t−) for all ci ∈ A: set V T,min

A (t) = ∅.

if Ψ̃T,min
ci

(0) = Ψ̃T,max
ci

(0) for all i = 1, . . . , k: set T = −1.

else: set T = 2T .

return
{

Ψ̃T,min
ci

(0)
}k
i=1

.
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Lemma 5.1 (Sandwiching). For non-empty A ⊆ C let Ψ̃A = ΨA ∪ VA denote a process started

at time −∞ and, for each T > 0, coupled to the evolution of {ΦA} and {ZA} on [−T, 0]. The

equilibrium distribution of the target process Ψ̃ =
⋃
{ci∈C} Ψ̃ci is an area-interaction process, with

parameters λ and β > 0, conditioned to cover C. Let the bounding interacting processes ΨT,min
A ,

ΨT,max
A and virtual processes V T,min

A , V T,max
A be defined recursively as in Algorithm 5.1. Further-

more if, for all T > 0, the evolution of
{

Ψ̃A

}
,
{

ΨT,min
A ,ΨT,max

A

}
and

{
V T,min
A , V T,max

A

}
is coupled

to the same realizations of {ΦA} and {ZA} on [−T, 0] then, for all A and −T ≤ t ≤ 0:

ΨT,min
A (t) ⊆ ΨA (t) ⊆ ΨT,max

A (t) ⊆ ΦA (t) ; (5.4)

V T,min
A (t) ⊆ VA (t) ⊆ V T,max

A (t) ; (5.5)

and hence Ψ̃T,min
A (t) ⊆ Ψ̃A (t) ⊆ Ψ̃T,max

A (t) . (5.6)

Proof. The result is shown by induction along the sequence of birth, death and perpetuation incidents

on the time interval [−T, 0]. By construction, ∅ = ΨT,min
A (−T ) ⊆ ΨA (−T ) ⊆ ΨT,max

A (−T ) =

ΦA (−T ) and ∅ = V T,min
A (−T ) ⊆ VA (−T ) ⊆ V T,max

A (−T ) = xA for all A. Note the VA (−T ),

by definition, can have at most one perpetuated germ (cf. Section 3.4.1). Now suppose that Eqs.

(5.4 & 5.5) hold up to some t > −T .

Suppose that time t is a birth time in some ΦA of individual ξ. The virtual processes are unaf-

fected by births so Eq. (5.5) persists at time t. Since β > 0 the acceptance probability for ξ in a

configuration x is monotonic in x, ie. e−βψ(ξ|y) ≤ e−βψ(ξ|x) for y ⊆ x, hence Eq. (5.4) will also

hold at time t. Death transitions and perpetuation incidents (ie. incidents of the ZA processes) affect

only the virtual processes. The ‘cross-over’ trick (cf. Lemma 3.2) ensures that both death and per-

petuation incidents maintain the ordering between the virtual processes. Thus the result follows by

induction along the sequence of transitions on [−T, 0].

Lemma 5.2 (Coalescence). If ΨT,min (t∗) = ΨT,max (t∗) and V T,min (t∗) = V T,max (t∗), for some

t∗ > −T , then these equalities persist over all [t∗, 0].

Proof. At time t∗ the upper and lower processes all coalesce so that there is no longer any distinction

between upper and lower processes at the next birth, death or perpetuation incident. Consequently

the transitions for both the upper and lower processes will be identical.
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Lemma 5.3 (Funnelling). Let ΨT,min
A ,ΨT,max

A and V T,min
A , V T,max

A be defined as in Lemma 5.1 and

updated according to Algorithm 5.1; then for all A and −S ≤ −T ≤ t ≤ 0

ΨT,min
A (t) ⊆ ΨS,min

A (t) ⊆ ΨS,max
A (t) ⊆ ΨT,max

A (t) ; (5.7)

V T,min
A (t) ⊆ V S,min

A (t) ⊆ V S,max
A (t) ⊆ V T,max

A (t) . (5.8)

Proof. The proof follows by induction along the sequence of transitions on [−T, 0]. By construction

the relationships hold at time t = −T . So suppose Eqs. (5.7 & 5.8) hold up to some time t > −T . If

t is the birth time of ξ in some ΦA, then by virtue of the monotonicity of the acceptance probability

(cf. proof of Lemma 5.1) the ordering in Eq. (5.7) persists at time t. Furthermore, the arguments

in the proof of Lemma 3.4 ensure that deaths or perpetuation incidents also maintain the ordering in

Eq. (5.8). The result hence follows.

Lemma 5.4. For all sufficiently large T the upper and lower target processes Ψ̃T,min
ci

and Ψ̃T,max
ci

coalesce for all ci ∈ C at some time in the interval [−T, 0].

Proof. The result follows, by virtue of Eqs. (5.2 & 5.3), if both the bounding interacting ΨT,max
A ,

ΨT,min
A and virtual processes V T,max

A , V T,min
A coalesce for sufficiently large T . The argument follows

similar lines as the proof of Lemma 3.5: it is shown that coalescence of the two sets of upper and

lower processes occurs with a fixed positive probability; the second Borel-Cantelli Lemma then

shows that coalescence happens infinitely often.

Fix −T ≤ t ≤ 0 and δ > 0; let B = {all ΦA processes hit ∅ on [t, t+ δ]}. Since ∅ is an ergodic

atom of each ΦA processes, which are restricted to a bounded region EA ⊆ W , it follows that each

ΦA hits ∅ infinitely often. Thus P [B] = ρ1 > 0, independent of t. Births in each ΦA process are

censored in the corresponding ΨT,max
A and ΨT,min

A processes so that

ΨT,min
A (t) ⊆ ΨT,max

A (t) ⊆ ΦA (t) , for all A, t.

Therefore, conditional on B occurring at time t+ δ, ΨT,min
A (t+ δ) = ΨT,max

A (t+ δ) = ∅ for all A.

Set Di =
{

Φci experiences a birth in [t+ δ, t+ 2δ] which is accepted in ΨT,min
ci

and ΨT,max
ci

}
. The

birth-acceptance probability of ξ in a given pattern x is e−βψ(ξ|x) ≥ e−βψ(ξ|∅) = e−β m2[ξ] since β > 0.

Therefore P [Di] ≥ e−β m2[ξ] × P [all the ΦA experience a birth in [t+ δ, t+ 2δ]]. The arguments in

the proof of Lemma 3.5 thus show that P
[⋂k

i=1Di

]
= ρ2 > 0, independent of t.
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Now, conditional on
⋂k
i=1Di occurring at time t + 2δ, the V T,max

A processes will vanish if all

the ZA processes experience an incident and none of the ΦA experience a death incident in the time

interval [t+ 2δ, t+ 3δ]. This is because all the ΨT,min
ci

and ΨT,max
ci

will then be non-empty when

the incidents of the ZA processes occur. Again the arguments in the proof of Lemma 3.5 show

that (given
⋂
iDi) the V T,max

A all vanish with some probability ρ3 > 0. Putting all this together, if

Ct = B
⋂
iDi

⋂{
all the V T,max

A vanish
}

, then P [Ct] > 0. Moreover Ct is independent of events

that occur before time t. The second Borel-Cantelli Lemma then ensures that infinitely many of the

C3sδ (for s = 1, 2, . . .) occur. Hence coalescence of the target processes Ψ̃T,min
A and Ψ̃T,max

A is almost

sure to happen in finite time.

Theorem 5.1. Algorithm 5.1 terminates almost surely in finite time and the distribution of the output

is that of an (attractive) area-interaction processes conditioned to cover the set C.

Proof. The Theorem follows as a consequence of Lemmas 5.1, 5.2, 5.3 & 5.4. By virtue of Eq. (5.6),

conditional upon coalescence, the common value of Ψ̃T,min
A (0) and Ψ̃T,max

A (0) must be equal to that

of Ψ̃A (0) for all A. But
{

Ψ̃ci

}k
i=1

are the target processes started at time −∞; hence
⋃k
i=1 Ψ̃ci (0)

must be a perfect draw from an attractive area-interaction process conditioned to cover C.

Remark 5.1. For the repulsive case (β < 0) the birth rate of the ΦA has to be changed to λ e−βm2[U(ξ)].

Birth acceptance decisions for the lower process are made according to the state of the upper and

vice versa (cf. Section 4.5.4). This ‘cross-over’ trick ensures the sandwiching, coalescence and

funnelling properties (cf. Lemmas 5.1, 5.4 & 5.3) hold for the repulsive case.

5.5 Gibbs Sampling

In the previous section continuous-time spatial birth-death processes were employed to sample a

conditional area-interaction process. It is also possible to devise a Gibbs sampler for this model; it

can be thought of as a Gibbs-within-Metropolis Hastings sampler. Each component, given the others,

is updated from the conditional distribution; sampling the conditional distribution itself involves a

proposal and an accept/reject step.

The set of conditioning nodes to be covered is denoted by C = {c1, . . . , ck} . For each A ⊆ C

the region EA defined in Eq.(3.4) is such that a germ in EA covers only those conditioning nodes in
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A and no others. Due the sequential nature of the Gibbs updating scheme, it is convenient to con-

sider the set {A; A ⊆ C} as an ordered set {A0, . . . , AN} so that each i ∈ {0, . . . , N} corresponds

uniquely to some A ⊆ C, with A0 = ∅. Here N is the number of non-empty subsets of C. Consider

a discrete-time random process Ψ̃ =
(

Ψ̃0, . . . , Ψ̃N

)
, where Ψ̃i is a random point configuration on

cell EAi . Let the stationary distribution of Ψ̃ be that of an attractive area-interaction point process

conditioned to cover the set C. The underlying Poisson intensity is λ, the area-interaction parameter

is β and the density of Ψ̃ on some bounded W ⊂ R2 is given by Eq. (5.1). It is assumed that the

pattern outside W is empty. We first consider simulation of the attractive process (β > 0). Minor

adjustments are required for the repulsive case (β < 0); these are discussed in section 5.5.2.

Consider a virtual simulation of the Ψ̃ started at time −∞ via Gibbs sampling. For each n ∈ Z−

and i ∈ {0, . . . , N}, Ψ̃i (n) is updated by drawing from the conditional distribution of the process

on cell i given the processes in the other cells, Ψ̃−i (n) =
⋃
j<i Ψ̃j (n)

⋃
j>i Ψ̃j (n− 1). The

conditional density fi of Ψ̃i, given Ψ̃−i (n) = x, is just the density of an area-interaction process on

EAi conditioned to cover Ai ⊆ C with boundary conditions x (cf. Eq. 5.1); hence

fi (· | x) ∝

 λn(·)e−β ψ(·|x) if U (x) ⊃ Ai;

λn(·)e−β ψ(·|x)1{n(·)>0} else;
(5.9)

where ψ (· | x) = m2 [U (·) \ U (x)] .

For j = 1, 2, . . . let
(
Xj (n, i) , X ′j (n, i)

)
denote a tuple of marked Poisson(λ) processes at time n

on EAi such that Xj (n, i) ⊆ X ′j (n, i) and n
(
X ′j (n, i)

)
> 0. The mark of Xj (n, i), Yj (n, i), is

a Poisson(β) process on U (Xj (n, i)). Similarly X ′j (n, i) is marked by a Poisson(β) process on

U
(
X ′j (n, i)

)
, denoted by Y ′j (n, i); furthermore Yj (n, i) ⊆ Y ′j (n, i). Notice that

P
[
Yj (n, i)

⋂(
U (Xj (n, i)) \ U

(
Ψ̃−i (n)

))
= ∅
]

= e−βm2[U(Xj(n,i))\U(Ψ̃−i(n))]

= e−β ψ(Xj(n,i)|Ψ̃−i(n))

and similarly for Y ′j (n, i). Algorithm 3.6 can be employed to generate the sequence of tuples(
Xj (n, i) , X ′j (n, i)

)
j≥1

; we use these marked processes in order to draw from the conditional den-

sity fi (· | x) (cf. the ‘cluster’ trick, Section 4.5.2).
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Algorithm 5.2 (Sampling fi: Attractive Case).

Set j = 1; jt,i = 0; compute χi (n) = 1{U(Ψ̃−i(n))⊃Ai}.

if χi (n) = 1:

while jt,i 6= j:

if Yj (n, i)
⋂

(U (Xj (n, i)) \ U (x)) = ∅ (ie. if Xj (n, i) ∼ fi (· | x)): set jt,i = j.

else: set j = j + 1.

return Xjt,i (n, i).

else if χi (n) = 0:

while jt,i 6= j:

if Y ′j (n, i)
⋂(
U
(
X ′j (n, i)

)
\ U (x)

)
= ∅ (ie. if X ′j (n, i) ∼ fi (· | x)): set jt,i = j.

else: set j = j + 1.

return X ′jt,i (n, i).

Thus, given Ψ̃−i (n) = x, if χi (n) = 1 then U (x) ⊃ Ai; so the conditional distribution of the

i-th component Ψ̃i (n) is a weighted Poisson(λ) process with weight e−β ψ(·|x). The probability that

Yj (n, i) has no germs contained in U (Xj (n, i)) \ U (x) is e−β ψ(Xj(n,i)|x). Conversely if χi (n) = 0

then U (x) does not coverAi. So the conditional distribution of Ψ̃i (n) is a weighted Poisson process

conditioned to contain at least one germ. Since any germ in EAi covers all the nodes in Ai, requiring

that Ψ̃i (n) has a positive number of germs ensures that Ai is covered after the update of the i-th

component. The acceptance probability for X ′j (n, i) is also equal to the weight, therefore the output

of the algorithm has the correct weighted Poissonian distribution.

So the relevant process (as determined by χi (n)) in each tuple
(
Xj (n, i) , X ′j (n, i)

)
is proposed

as a draw from the conditional distribution, and accepted with the correct probability. If the proposal

is rejected then the relevant process in the next tuple
(
Xj+1 (n, i) , X ′j+1 (n, i)

)
is proposed. This

procedure is continued sequentially in j until a proposal is accepted. So, given n and i, none of

the
(
Xj (n, i) , X ′j (n, i)

)
, for j < jt,i, are a draw from fi

(
· | Ψ̃−i (n)

)
; jt,i is the first index such

that the relevant of the two (as determined by χi (n)) is a draw from the desired conditional density

fi

(
· | Ψ̃−i (n)

)
. Observe that the use of the mark processes

(
Yj (n, i) , Y ′j (n, i)

)
provides a means

to check whether the relevant process in the corresponding tuple
(
Xj (n, i) , X ′j (n, i)

)
is a draw from

fi. Thus given a sequence of Poisson processes
(
Xj (n, i) , X ′j (n, i)

)
j≥1

, the objective of an exact
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coupling construction is to ‘pick’ the indices j0,i so as to sample an area-interaction point process

conditioned to cover the finite set C.

5.5.1 Exact Gibbs Sampler: Attractive Case

In the previous section a virtual simulation of the target process
(

Ψ̃0, . . . , Ψ̃N

)
from the indefinite

past was considered. Furthermore Algorithm 5.2 described the Gibbs update for each component,

along with explicit details on how to sample the conditional distribution. In this section we consider

how to produce an exact coupling for this Gibbs sampler.

A priori we do not know what Ψ̃ looks like; thus there could be a whole range/continuum

of processes from which to simulate. Therefore the sandwich processes must be defined so as

to bound the whole range of processes which are a candidate draw from the required distribu-

tion. To formalize the notion of ‘sandwich’ or ‘bounding’ processes, introduce a partial order

4 on the space of point configurations defined as: x 4 y if U (x) ⊆ U (y). For a given cell

EAi , define a quasi-maximal (Häggström et al. 1999) element xi if U (xi) ⊃ U (EAi). Here

U (EAi) =
⋃
ξ∈EAi

U (ξ) = {η ∈ R2; η ∈ U (ξ) for some ξ ∈ EAi}. Similarly, xi is quasi-minimal

if U (xi) = ∅, ie. xi = ∅. Thus for any point configuration x on cell EAi: xi 4 x 4 xi.

Lemma 5.5. LetX be a Poisson(λ) process on cellEAi , ϕ
min
−i =

⋃
j 6=i xj and ϕmax−i =

⋃
j 6=i xj where

xj and xj are quasi-minimal, respectively, quasi-maximal elements on cellEAj . IfX ∼ fi
(
· | ϕmin−i

)
and X ∼ fi

(
· | ϕmax−i

)
then X ∼ fi (· | ϕ−i) for any point configuration ϕ−i outside EAi .

Proof. For a given configuration ϕ−i outside EAi , a Poisson(λ) process X on EAi will be accepted

as a draw from the conditional density fi (· | ϕ−i) with probability e−β ψ(X|ϕ−i) (cf. Eq. 5.9 and

Algorithm 5.2). Since β > 0 the acceptance probability is monotonic in ϕ−i, so that x 4 y implies

e−β ψ(X|x) ≤ e−β ψ(X|y). By definition of ϕmin−i and ϕmax−i we have ϕmin−i 4 ϕ−i 4 ϕmax−i ; hence

e−β ψ(X|ϕmin−i ) ≤ e−β ψ(X|ϕ−i) ≤ e−β ψ(X|ϕmax−i ). Therefore if X is accepted as a draw from both

fi
(
· | ϕmin−i

)
and fi

(
· | ϕmax−i

)
then it must also be accepted as a draw from fi (· | ϕ−i).

Corollary 5.1. For the setup as in Lemma 5.5 above, if X � fi
(
· | ϕmax−i

)
then X � fi (· | ϕ−i).

Proof. This follows directly from the monotonicity of the acceptance probability. Since ϕ−i 4 ϕmax−i

it follows that e−β ψ(X|ϕ−i) ≤ e−β ψ(X|ϕmax−i ). Thus if X is not accepted as a draw from fi
(
· | ϕmax−i

)
then it will not be accepted as one from fi (· | ϕ−i).
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The above results provide conditions to determine whether or not a proposed Poisson process is a

draw from the required conditional distribution. There could be a whole range of processes that are

a candidate for the required sample; the lemma signals when a process has the required distribution

while the corollary when it does not. For T > 0 let Ψ̃T,max
i and Ψ̃T,min

i denote the maximal and

minimal target processes respectively started at time −T . Define

Ψ̃T,min
−i (n) =

⋃
l<i

Ψ̃T,min
l (n)

⋃
l>i

Ψ̃T,min
l (n− 1) and χT,mini (n) = 1{U(Ψ̃T,min−i (n))⊃Ai}.

Ψ̃T,max
−i (n) =

⋃
l<i

Ψ̃T,max
l (n)

⋃
l>i

Ψ̃T,max
l (n− 1) and χT,maxi (n) = 1{U(Ψ̃T,max−i (n))⊃Ai}.

Furthermore assume that for each n ∈ {−T, . . . , 0} and i ∈ {0, . . . , N} the sequence of marked

Poisson processes
(
Xj (n, i) , X ′j (n, i)

)
j≥1

can be generated as needed (cf. Algorithm 3.6). Then the

exact Gibbs coupling construction for the conditional area-interaction process proceeds as follows.

The basic idea is that the sandwich processes Ψ̃T,min, Ψ̃T,max are defined in such a way that they

bound (with respect to 4) any and all configurations in the corresponding cell. For each n and i the

procedure first determines χT,mini (n) and χT,maxi (n). Depending on this, it then checks whether the

appropriate proposed process in the tuple
(
Xj (n, i) , X ′j (n, i)

)
is a sample from f

(
· | Ψ̃T,max

−i (n)
)

and f
(
· | Ψ̃T,min

−i (n)
)

. If so then Lemma 5.5 ensures that process has the desired conditional dis-

tribution. If not then either it is a sample from f
(
· | Ψ̃T,max

−i (n)
)

only or not. In the latter case

Corollary 5.1 allows the procedure to set j = j + 1. In the former case it is not certain whether the

process has the required conditional distribution; so the sandwich processes are updated to the quasi-

minimal and -maximal elements respectively. The next_update procedure takes arguments i, the

component to be updated, the current index Ji (n) of the tuple of marked Poisson processes and the

minimal and maximal components in the other cells Ψ̃T,min
−i (n) , Ψ̃T,max

−i (n). It returns the updates

for the minimal and maximal components and index Ji (n).

Algorithm 5.3 (next_update
(
i, Ji (n) , Ψ̃T,min

−i (n) , Ψ̃T,max
−i (n)

)
).

Set I = 1; j = Ji (n).

Compute
(
χT,mini (n) , χT,maxi (n)

)
.

while I > 0:

if
(
χT,mini (n) , χT,maxi (n)

)
= (0, 1) :

if Xj (n, i) = X ′j (n, i):
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if Xj (n, i) ∼ fi

(
·
∣∣∣Ψ̃T,max
−i (n)

)
:

if Xj (n, i) ∼ fi

(
·
∣∣∣Ψ̃T,min
−i (n)

)
:

set min_update = max_update = Xj (n, i); j_update = j; I = −1.

else: set min_update = xi; max_update = xi; j_update = j; I = −1.

else: set j = j + 1.

else: set min_update = xi; max_update = xi; j_update = j; I = −1.

else if
(
χT,mini (n) , χT,maxi (n)

)
= (1, 1) :

if Xj (n, i) ∼ fi

(
·
∣∣∣Ψ̃T,max
−i (n)

)
:

if Xj (n, i) ∼ fi

(
·
∣∣∣Ψ̃T,min
−i (n)

)
:

set min_update = max_update = Xj (n, i); j_update = j; I = −1.

else: min_update = xi; max_update = xi; j_update = j; I = −1.

else: set j = j + 1.

else if
(
χT,mini (n) , χT,maxi (n)

)
= (0, 0) :

if X ′j (n, i) ∼ fi

(
·
∣∣∣Ψ̃T,max
−i (n)

)
:

if X ′j (n, i) ∼ fi

(
·
∣∣∣Ψ̃T,min
−i (n)

)
:

set min_update = max_update = X ′j (n, i); j_update = j; I = −1.

else: min_update = xi; max_update = xi; j_update = j; I = −1.

else: set j = j + 1.

return (min_update,max_update,j_update).

Algorithm 5.4 (Exact Gibbs: Conditional Area-Interaction: Attractive Case).

Set T = 1.

while T > 0:

for n ∈
{
−T + 1, . . . ,−bT

2
c
}

and i ∈ {0, . . . , N}: set Ji (n) = 1.

Initialize Ψ̃T,max (−T ) = (x0, . . . , xN); Ψ̃T,min (−T ) = (x0, . . . , xN).

for n ∈ {−T + 1, . . . , 0}:

for i ∈ {0, . . . , N}:

compute next_update
(
i, Ji (n) , Ψ̃T,min

−i (n) , Ψ̃T,max
−i (n)

)
.

set Ψ̃T,min
i (n) = min_update; Ψ̃T,max

i (n) = max_update.

reset Ji (n) = j_update.
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if Ψ̃T,max (0) = Ψ̃T,min (0): set T = −1; else: set T = 2T .

return Ψ̃T,min (0) =
(

Ψ̃T,min
0 (0) , . . . , Ψ̃T,min

N (0)
)

.

Lemma 5.6 (Sandwiching). Suppose Ψ̃ =
(

Ψ̃0, . . . , Ψ̃N

)
is the target process started from time

−∞ and evolved so that its equilibrium distribution is that of an area-interaction process with

parameters λ and β > 0 and conditioned to cover C. Let the bounding processes Ψ̃T,min =(
Ψ̃T,min

0 , . . . , Ψ̃T,min
N

)
and Ψ̃T,max =

(
Ψ̃T,max

0 , . . . , Ψ̃T,max
N

)
be defined recursively as in Algorithm

5.4. Furthermore, for each n and i, let Ψ̃i (n), Ψ̃T,min
i (n) and Ψ̃T,max

i (n) be updated by the same

realization of the sequence of tuples
(
Xj (n, i) , X ′j (n, i)

)
j≥1

. Then for all n and 0 ≤ i ≤ N

ΨT,min
i (n) 4 Ψi (n) 4 ΨT,max

i (n) . (5.10)

Proof. The relationship holds at time −T by construction. Suppose that it also holds up to some

time n − 1 > −T and consider the update at time n. For any i there are only two possibilities for

the values the sandwich processes can take:

(i) Ψ̃T,min
i (n) = xi, Ψ̃T,max

i (n) = xi; or

(ii) Ψ̃T,min
i (n) = Ψ̃T,max

i (n) =


Xj (n, i)

 if χmini (n) = χmaxi (n) = 1 or

Xj (n, i) = X ′j (n, i) ;

X ′j (n, i) if χmini (n) = χmaxi (n) = 0.

In case (i) Eq. (5.10) still persists; in case (ii) Lemma 5.5 ensures that Ψ̃i (n) must also be updated

to the same value as the bounding processes, hence Eq. (5.10) is maintained. The result now follows

by induction along the sequence of times n ∈ {−T, . . . , 0}.

Lemma 5.7. Define

jt,i = inf

j ≥ 1;
Xj (n, i) ∼ fi

(
· | Ψ̃−i (n)

)
if χi (n) = 1{U(Ψ̃−i(n))⊃Ai} = 1;

X ′j (n, i) ∼ fi

(
· | Ψ̃−i (n)

)
else.

For all n and i let Ji (n) be defined recursively as in Algorithm 5.4. Then Ji (n) ≤ jt,i; moreover if

Ψ̃T,min
i (n) = Ψ̃T,max

i (n) then Ji (n) = jt,i.

Proof. For a given n and i the initial value of Ji (n) is 1; so Ji (n) ≤ jt,i initially. Suppose that

before the update of the i-th component at time n, Ji (n) ≤ jt,i. In order to determine the update for

the bounding processes the algorithm sets j = Ji (n) ≤ jt,i and computes
(
χT,mini (n) , χT,maxi (n)

)
.
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Suppose this is (1, 1); the algorithm then checks whether Xj (n, i) ∼ fi

(
· | Ψ̃T,max

−i (n)
)

. If

not then, since Ψ̃−i (n) 4 Ψ̃T,max
−i (n), it follows by Corollary 5.1 that Xj (n, i) is also not a draw

from fi

(
· | Ψ̃−i (n)

)
. So it cannot be the case that j = jt,i; hence j < jt,i. The value of j is

increased by one and the above procedure repeated. On the other hand if Xj (n, i) is a draw from

fi

(
· | Ψ̃T,max

−i (n)
)

then either (i) it is also a draw from fi

(
· | Ψ̃T,min

−i (n)
)

; or (ii) not. In case (i)

Lemma 5.5 yields that Xj (n, i) must also be a draw from fi

(
· | Ψ̃−i (n)

)
and hence j = jt,i. In

case (ii) the algorithm leaves the value of j unchanged. In any case j ≤ jt,i; since Ji (n) is reset to

j it follows that Ji (n) ≤ jt,i after the update of the i-th component, with equality only if (i) is true.

Now if
(
χT,mini (n) , χT,maxi (n)

)
= (0, 0) then the same argument as above (but with Xj (n, i)

replaced byX ′j (n, i)) shows that the inequality is maintained. Finally if
(
χT,mini (n) , χT,maxi (n)

)
=

(0, 1) then the algorithm only proceeds if Xj (n, i) = X ′j (n, i), and similar arguments as above

establish the inequality. Thus Ji (n) ≤ jt,i after the update of the i-th component, with equality if

and only if the bounding processes take on the same value. Induction along the sequence of times n

and components i completes the proof.

Lemma 5.8 (Coalescence). For the setup as in Lemma 5.6 the bounding processes Ψ̃T,max, Ψ̃T,min

coalesce for sufficiently large T .

Proof. Suppose that, for some n > −T , X1 (n, i) = X ′1 (n, i) and their respective mark processes

Y1 (n, i) = Y ′1 (n, i) = ∅ for all i. In this case X1 (n, i) will be a draw from both fi
(
· | Ψ̃T,max

−i (n)
)

and fi

(
· | Ψ̃T,min

−i (n)
)

for all i, since its mark process contains no germs. Thus Ψ̃T,max
i (n) =

Ψ̃T,min
i (n) for all i and hence coalescence of the upper and lower processes occurs. Since the

processes are Poisson, P [X1 (n, i) = X ′1 (n, i)] = P [X1 (n, i) 6= ∅] > 0 and P [Y1 (n, i) = ∅] >

0 for all i; moreover they are independent of n, and {X1 (n, i) = X ′1 (n, i) and Y1 (n, i) = ∅} are

independent for each i. Thus
⋂
i {X1 (n, i) = X ′1 (n, i) and Y1 (n, i) = ∅} occurs infinitely often

(second Borel-Cantelli Lemma); so coalescence is almost sure to happen.

Lemma 5.9 (Funnelling). For the setup as in Lemma 5.6, for all −S ≤ −T ≤ t ≤ 0

Ψ̃T,min
i (n) 4 Ψ̃S,min

i (n) 4 Ψ̃S,max
i (n) 4 Ψ̃T,max

i (n) . (5.11)

Proof. By construction the relationship holds at time −T ; assume it also holds up to time n − 1 >

−T for all i and consider the update of the first component i = 0. Now there are two possibilities for
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the values Ψ̃T,min
0 (n) , Ψ̃T,max

0 (n) can take: either (i) Ψ̃T,min
0 (n) = x0 and Ψ̃T,max

0 (n) = x0; or (ii)

Ψ̃T,min
0 (n) = Ψ̃T,max

0 (n). In case (i) Eq. (5.11) still persists. For case (ii) it needs to be shown that

Ψ̃S,min
0 (n) = Ψ̃S,max

0 (n) = Ψ̃T,min
0 (n). By assumption Ψ̃T,min

−0 (n) 4 Ψ̃S,min
−0 (n) 4 Ψ̃S,max

−0 (n) 4

Ψ̃T,max
−0 (n) holds. Therefore if Ψ̃T,min

0 (n) = Ψ̃T,max
0 (n) then Lemma 5.5 ensures that Ψ̃S,min

0 (n)

and Ψ̃S,max
0 (n) must also take the same value as Ψ̃T,min

0 (n). Eq. (5.11) persists and the result now

follows by induction along the sequence of components i and times n.

Theorem 5.2. Suppose that the processes defined in Lemma 5.6 are evolved as in Algorithm 5.4.

Then the algorithm terminates almost surely in finite time and the distribution of the output is a

perfect draw of an attractive area-interaction point process conditioned to cover C.

Proof. Lemma 5.8 shows that the algorithm terminates in almost sure finite time. Consider a virtual

simulation of the target process Ψ̃ =
(

Ψ̃0, . . . , Ψ̃N

)
from time −∞ which, for each T , is coupled

to the same random sequences
(
Xj (n, i) , X ′j (n, i)

)
j≥1

as the bounding processes on {−T, . . . , 0}.

The equilibrium distribution of Ψ̃ is that of an attractive conditional area-interaction process and

Ψ̃(0) is a draw from equilibrium. Now Lemmas 5.6, 5.7 & 5.9 ensure that if the upper and lower pro-

cesses have coalesced then their common value must also be that of the target process, ie. conditional

on coalescence, Ψ̃T,min = Ψ̃T,max = Ψ̃. Thus Ψ̃T,min (0) = Ψ̃ (0) has the required distribution.

5.5.2 Exact Gibbs Sampler: Repulsive Case

In the previous section a Gibbs sampler for the attractive conditional area-interaction process was

introduced. Sampling the desired conditional distribution (Algorithm 5.2) and the exact coupling

construction (Algorithm 5.4) were described. In this section a Gibbs sampler for the repulsive pro-

cess (β < 0) is considered. The sampler is similar to that for the attractive case; however some

modifications to Algorithms 5.2 & 5.4 need to be made.

First consider sampling from the conditional distribution. Recall that Ψ̃ =
(

Ψ̃0, . . . , Ψ̃N

)
de-

notes the target process and in order to update the i-th component the Gibbs sampler draws from

the conditional density fi given the process outside EAi . Suppose that, for some n and i, Ψ̃−i (n)

is the collection of processes outside cell EAi . Then, given Ψ̃−i (n) = x, the form of the con-

ditional density on cell EAi is given by Eq. (5.9): fi (· | x) ∝ λn(·)e−βψ(·|x)1{U(x∪·)⊃Ai} where
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ψ (· | x) = m2 [U (·) \ U (x)]. For β > 0 the weight factor e−βψ is bounded by one; for the repulsive

case, β < 0, so the weight factor is no longer bounded by one.

However in order to draw from fi (· | x) it suffices to draw Poisson(λ) process X and accept it

with probability proportional to e−βψ(X|x)1{U(x∪X)⊃Ai}. The alternative to computing this expression

is to construct an observable event that has a probability of occurring which is proportional to this

expression. So consider a Poisson(|β|) process Y on U (EAi); then, letting A = U (X) \ U (x)

P [Y ⊆ A] = e−|β|m2[U(EAi)\A] = eβm2[U(EAi)\A] ∝ e−βm2[A] = e−βm2[U(X)\U(x)].

Thus in order to sample from fi: compute χi (n) = 1{U(Ψ̃−i(n))⊃Ai}. If χi (n) = 1 then draw X ∼

Poisson(λ) process on EAi and its associated mark Y ∼Poison(|β|) process on U (EAi). Accept X

if Y is contained in U (X) \ U
(

Ψ̃−i

)
. If χi (n) = 0 draw X ′ ∼ Poisson(λ) conditioned to contain

at least one germ and its associated mark Y ′. Accept X ′ if Y ′ is contained in U (X ′) \ U
(

Ψ̃−i

)
.

We now consider modifications required to devise an exact coupling for the repulsive process. In

the attractive case the weight factor is monotonic in Ψ̃−i; for the repulsive case it is anti-monotonic:

x 4 y implies e−βψ(·|x) ≥ e−βψ(·|y) since β < 0. Therefore, for any configurations x−i 4 y−i out-

side EAi , if a given Poison process X is not a draw from fi (· | x−i) then it is also not a draw from

fi (· | y−i). This is seen by considering the mark process Y ∼ Poisson(|β|). Since X � fi (· | x−i),

then Y * (U (X) \ U (x−i)) and so Y * (U (X) \ U (y−i)). In light of this anti-monotonicity mod-

ifications also need to be made to the coupling construction. Specifically, Algorithm 5.4 first checks

whether the relevant candidate process Xj (n, i) or X ′j (n, i) is a draw from fi

(
· | Ψ̃T,max

−i (n)
)

and

then from fi

(
· | Ψ̃T,min

−i (n)
)

. For the repulsive case this order needs to be reversed, ie. first check

whether the candidate process is a draw from fi

(
· | Ψ̃T,min

−i (n)
)

and then from fi

(
· | Ψ̃T,max

−i (n)
)

.

The results of Lemmas 5.5, 5.6, 5.7, 5.8 & 5.9 still hold true, so that the modified coupling construc-

tion yields a perfect sample of a repulsive area-interaction process conditioned to cover C.

5.6 Implementational Issues

5.6.1 Large Sampling Window

If the sampling window W is large, so that the region EA0 ≡ E∅ is also large, then Algorithm 5.2

may be quite inefficient since the acceptance probability will be low (cf. Section 4.3). A solution
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is to further divide EA0 into smaller cells E1
A0
, . . . , Em

A0
and carry out the Gibbs sampling on the

cells
(
E1
A0
, . . . , Em

A0
, EA1 , . . . , EAN

)
. This should improve the efficiency of the algorithm without

increasing the complexity, since additional cells can be easily incorporated into the sampler.

5.6.2 Implementation via 2-Stage Procedure

When C consists of connected nodes (cf. Section 3.7.1) the regions {EAi ; i = 1, . . . , N} may be

geometrically quite irregular. Therefore even though the conditional distribution on each cell is rel-

atively straightforward (density given by fi in Eq. 5.9), the irregular shape of the cells may pose

implementational difficulties. Drawing from the density fi via Algorithm 5.2 would require addi-

tional (geometric) tests, which may be both difficult to implement and computationally burdensome.

On the other hand if the regions EAi are disks of radius r, then U (EAi) is just a disk of radius 2r.

In this case it is relatively straightforward to sample from fi. Therefore the practical implementation

of the exact Gibbs Algorithm 5.4 is carried out via a 2-Stage procedure: a subset A∗ ⊆ C (cf.

Definition 3.2) which contains the maximum number of disconnected nodes is chosen. Algorithm

5.4 is applied to A∗; if the output also covers C then this sample is returned. If not then another

sample is drawn independently via Algorithm 5.4 applied to A∗. This is continued until a sample

which covers C is returned. For similar implementational reasons the implementation of the modified

Cai & Kendall Algorithm 5.1 is also carried out via the above 2-Stage procedure.

5.7 Simulation Results

In this section the simulation results for the conditional (attractive) area-interaction process are pre-

sented. The experiments aim to evaluate the performance (in terms of actual run times in seconds)

of the three perfect algorithms: 2-Stage Rejection (cf. Section 5.3), the modified Cai & Kendall Al-

gorithm 5.1, and the Gibbs Algorithm 5.4. Recall from Section 3.7.1 that C can be viewed as a graph

where two nodes ci and cj are connected if U (ci) ∩ U (cj) 6= ∅. The sampling window is Wδr, for

some δ, and A∗ is as in Definition 3.2. Recall from Section 5.6.2 above that all three algorithms are

implemented via a 2-Stage procedure. For convenience abbreviate the 2-Stage Rejection algorithm

by ‘2Stg’, the modified Cai & Kendall algorithm by ‘CK’ and the exact Gibbs algorithm by ‘Gibbs’.
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In the experiments for the conditional Boolean model (Section 3.7.2) the sampling window was

always taken to be Wr. The reason being that the germs of the Boolean model are independent in

disjoint regions. Therefore, as long as U (C) ⊂ W , the size of the sampling window W does not

matter. However for the area-interaction model the presence of interactions between the germs vio-

lates this independence property. In this case the size of W influences the strength of the interaction.

Therefore run times are compared against size of W , underlying Poissonian intensity λ, interaction

parameter β and size of the conditioning set k.

Remark 3.2 in Section 3.7.2 comments about the notion of local change and global change algo-

rithms. CK is a local change algorithm since it employs birth-death processes while 2Stg and Gibbs

are global change algorithms. The pros and cons of either type of algorithm are also discussed in

Remark 3.2. For extreme model parameters (eg. high λ, β, k or a large W ) local change algorithms

are expected to perform better; for moderate parameters global ones are. The simulation results sup-

port this intuition. As parameter values get extreme, CK performs better than the other two, while

for moderate parameters 2Stg and Gibbs do well. Notice also that Gibbs here is very competitive to

2Stg for all parameter values, unlike in the case of the conditional Boolean model (cf. Section 3.7).

The simulations were carried out on a PC (Pentium 4 2.67GHz, 248MB RAM) running Windows

XP; the implementations of the algorithms were programmed in Python (version 2.3).

5.7.1 Experiment 1: Run Times Versus Intensity λ

The evolution of run times as the underlying intensity λ varies is first explored. Holding the other

model parameters fixed, as λ decreases the coverage conditioning becomes increasingly stringent.

On the other hand as λ decreases so does the mean number of germ-grain pairs; for 2Stg and Gibbs

this means that global moves are more likely to be accepted since the acceptance weight e−βψ in-

creases as λ decreases. The computational burden of 2Stg and Gibbs should nevertheless increase

as λ decreases since coverage of C will still be a rare event. The results of Experiment 3.7.3 suggest

that the Cai & Kendall algorithm performs better than 2Stg and Gibbs as λ decreases. Whether sim-

ilar results should hold here requires some careful thought. The modified Cai & Kendall algorithm

(CK) involves, additionally, censoring birth transitions. Moreover there is an extra computational

burden: that of simulating the marks Zξ attached to each birth ξ which enable the correct censoring
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of births. A priori it was difficult to predict the relative behaviour of the respective run times as

λ gets smaller, except that those for 2Stg and Gibbs should increase.

As λ increases the coverage conditioning will be easily satisfied. On the other hand the area-

interaction between the germs will increase and so global moves in 2Stg and Gibbs are less likely to

be accepted. Therefore their respective run times will also increase with λ; thus the graphs for these

two should look somewhat like parabolas. Moreover single births would be readily accepted in CK

since the acceptance probability increases with the number of germ-grain pairs. Thus CK should

have lower run times for high λ.

Figures 5.2 & 5.3 depict the run times for two different simulations. The results do illustrate

parabolic-like curves for 2Stg and Gibbs and support the expectation that CK is more efficient for

large λ. For small λ, it appears that the added complexity of CK (as compared to the Cai & Kendall

algorithm for conditional Boolean models) means that its runs times get very large as λ decreases.

5.7.2 Experiment 2: Run Times Versus Intensity Window Size

This experiment explores the evolution of run times as the size of the sampling window W changes.

The size of the regions {EA; A 6= ∅} remains constant as W gets larger; hence E∅ also gets larger.

Rejection sampling for the area-interaction process becomes inefficient as the window size increases

(cf. Section 4.3) since global changes will have low acceptance probabilities. On the other hand the

dynamics of a local change algorithm will be less affected by changes in the size of W . This is

because the births and deaths are proposed at rates which satisfy the equations of detailed balance

(Eq. 1.25); therefore local changes are more readily accepted. Hence CK should to do well for large

W while 2Stg/Gibbs for small to moderate W . Given C, the sampling window W is taken to be

Wδr, defined in Section 3.7.1. In Figure 5.4 the run times of the three algorithms are plotted against

various values of δ: for small δ 2Stg and Gibbs do well while for large δ CK does better.
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Figure 5.2: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k = 5 randomly placed

nodes, radius r = 0.1, interaction parameter β = 15 and sampling window W = W3r. The x-axis represents the

intensity λ.
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Figure 5.3: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k = 10 randomly

placed nodes, radius r = 0.1, interaction parameter β = 10 and sampling window W = W3r. The x-axis represents the

intensity λ.
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Figure 5.4: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k = 5 randomly placed

nodes, radius r = 0.1, interaction parameter β = 10 and intensity λ = 10. The sampling window W is taken to be Wδr,

with the x-axis representing different values of δ.
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5.7.3 Experiment 3: Run Times Versus Interaction Parameter β

In this experiment the interaction parameter β is varied. The experiment considers only the case

when β > 0, ie. an attractive area-interaction process. The value of β controls the interaction

between the germs. The acceptance probability for both local and global moves monotonically

decreases as β increases; however acceptance of global moves will be more dependent on changes

in β than that of local moves. Thus one expects a similar behaviour in run times as in the previous

experiments: 2Stg and Gibbs should perform better for low β, while CK becomes more competitive

as β increases. The respective run times are depicted by Figure 5.5.

5.7.4 Experiment 4: Run Times Versus k

The number of upper and lower bounding processes in both CK and Gibbs is determined by the

number of non-empty regions EA. This in turn is affected by I (C), the maximum clique size (cf.

Definition 3.5 & Figure 3.2). Therefore, for similar reasons as in Section 3.7.4, I (C)is fixed at

some I∗ for all k. As the size of C increases, both the coverage requirement and the area-interaction

become stringent. The reason being that the probability of coverage decreases as k increases. More-

over as C gets larger, the mean number of germ-grain pairs also increases; this then increases the

area-interaction between them. So CK should do relatively better as k increases. Figures 5.6 & 5.7

depict the respective graphs of the run times. The difference in the graphs is not as clear cut for this

experiment. The mean run times do evolve as expected: for small k the graphs for 2Stg and Gibbs

are lower than those for CK; as k increases, 2Stg becomes less competitive compared to Gibbs and

CK. The performance of Gibbs and CK is much closer; however the figures do suggest that CK

becomes relatively more efficient as k increases. It took about 30-60 hours to obtain the required

samples for the largest value of k in both Figure 5.6 & 5.7.
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Figure 5.5: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k = 5 randomly placed

nodes, radius r = 0.1, the intensity λ = 20 and the sampling window W = W3r. The x-axis representing different

values of the interaction parameter β.
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Figure 5.6: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k nodes, with I (C)

fixed for all k at I∗ = 2. The radius r = 0.1, the interaction parameter β = 10, intensity λ = 10 and the sampling

window W = W4r. The x-axis represents k, the size of C. The 2Stg algorithm failed to output suitable number of

samples for k = 19; therefore the run times corresponding to 2Stg are plotted only for values up to k = 18.
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Figure 5.7: Empirical log mean run times for 2Stg (solid dots), CK (solid triangles) and Gibbs (solid squares). The

solid (2Stg), dashed-dotted (CK) and dashed (Gibbs) lines represent the upper and lower simulation envelopes computed

at the 90% and 10% quantiles respectively. The conditioning set C consists of a single cluster of k nodes, with I∗ = 2.

The radius r = 0.1, the interaction parameter β = 5, intensity λ = 20 and the sampling window W = W2r. The x-axis

represents k, the size of C.
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5.8 Conclusions & Further Work

In this chapter the conditional area-interaction process was introduced and various perfect simu-

lation algorithms described. The 2-Stage Rejection method (Section 5.3) is likely to be a more

efficient variant of Rejection sampling for this process. It was also seen how the Cai & Kendall

(2002) Algorithm 3.4 for conditional Boolean models and the Kendall (1998) Algorithm 4.10 for

the area-interaction process can be combined in order to obtain a perfect simulation algorithm for

the conditional area-interaction process. The exact Gibbs-within-Metropolis Hastings Algorithm 5.4

was developed here for the same sampling task. A comparison of these three algorithms in Section

5.7 indicates that the modified Cai & Kendall algorithm is favourable for extreme model parameters

(high λ, β, large W and C), while 2-Stage Rejection or the Gibbs-Metropolis sampler are preferable

for moderate values. The latter seems just as efficient, if not more so, than 2-Stage Rejection. How-

ever the results presented here are only for the attractive case. Therefore a complete evaluation of

the algorithms calls for simulations results for the repulsive case as well

5.8.1 Omnithermal Sampling

Thönnes (2000) describes an implementation of the Clan algorithm of Fernández et al. (2002) for

the conditional Boolean model. In Section 4.6 an exact omnithermal sampling algorithm for the

area-interaction process using the Clan construction of Fernández et al. (2002) was described. It

may hence be worthwhile exploring the possibility of using the clan construction in order to devise

an omnithermal algorithm for the conditional area-interaction process.

5.8.2 Bayesian Cluster Modelling

McKeague & Loizeaux (2002) consider the perfect simulation of Bayesian cluster models, intro-

duced by Baddeley & Van Lieshout (1993). Cluster models (cf. Sections 1.1.6 & 1.1.9) assume

that the ‘observed’ pattern is generated as the daughter process of an ‘unobserved’ parent process.

A Bayesian treatment defines the posterior density of the unobserved parents in terms of the prior

density of the parents and the likelihood. The cluster processes considered are the Neyman & Scott

(1958) process and pure silhouette models. The latter require that the observed daughter process
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must be covered by the posterior parent process. Moreover under certain priors the posterior distri-

bution turns out to be an area-interaction process (conditioned to cover the observed data points).

They apply the pure silhouette model to a test data set and use a combination of the Kendall &

Møller (2000) algorithm and Rejection sampling in order to draw from the posterior distribution.

As an illustration of the applicability of the algorithms developed in this chapter we sample an area-

interaction process considered to cover a similar test data set. The 2-Stage Rejection algorithm is

used to produce 2000 exact samples. The results are shown in Figure 5.8 below, which is in the same

format as presented by McKeague & Loizeaux (2002): histograms of the number of individuals in

the posterior process are illustrated on the left; contour plots of the posterior intensity on the right.

McKeague & Loizeaux (2002) report that they obtained 500 exact samples in 72 hours on a Sil-

icon Graphics workstation. In addition they comment that their simulations took long because of

the “difficulty of covering the data by the posterior”, since they employed Rejection sampling in

order to obtain coverage. No rigorous comparison of the run times can be made here. However

the 2000 exact samples used to produce Figure 5.8 above took under 1 minute, on a PC (Pentium 4

2.67GHz, 248MB RAM) running Windows XP. The implementations of the algorithms were pro-

grammed in Python (version 2.3). Thus the algorithms in this chapter can be employed for such

Bayesian cluster modelling. The Redwood seedlings data (Figure 1) was also studied by McKeague

& Loizeaux (2002) using the Neyman & Scott model. A treatment via the pure silhouette model can

also me be made using the algorithms developed here. Indeed Figure 5.1 depicts a realization of an

area-interaction process conditioned to cover part of the seedlings data.
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Figure 5.8: Features of the posterior (conditional area-interaction). Left: histograms of the number of individuals in

the posterior process; Right: contour plots of the posterior intensity. Model parameters: β = 3, r = 0.15, W = [0, 1]
2

and the test data set is represented by the solid dots. Top: λ = 0.693; middle: λ = 2; Bottom: λ = 3. The plots are

based on 2000 exact samples using 2-Stage Rejection for the conditional area-interaction.
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Chapter 6

Conclusions & Further Work

Our objective has been to introduce the ideas of stochastic simulation and explore how this can

be used to examine mathematically intractable models. The emphasis here was on point process

models and their ‘perfect’ simulation, so that an unbiased sample can be obtained in finite time.

An important point to note is the necessity of validating any perfect simulation algorithm in order

to protect against coding errors as well as theoretical discrepancies (cf. Chapter 2). An obvious

direction for further work is using such perfect samples in order to carry out statistical inference;

Murdoch & Rosenthal (2000) record some progress towards that end.

It is hoped that the importance of spatial birth-death processes has been highlighted here, since

they provide a very useful way of simulating point processes. Moreover the general dominated

CFTP recipe (Kendall & Møller 2000) allows, at least in principle, the perfect simulation of locally

stable point processes. For point processes which are not locally stable (such as the conditional

Boolean model) exact sampling may still be possible: Cai & Kendall (2002) define virtual processes

in order to construct an exact algorithm via Monotone CFTP.

The class of point processes specified by a density with respect to the Poisson process are par-

ticularly amenable to simulation via birth-death processes, as detailed by Section 1.3.2. For such

processes the Papangelou conditional intensity (defined by Eq. 1.9) plays a significant role, since it

provides a means to construct a birth-death process that converges to the point process in question.

If the Papangelou conditional intensity is bounded and has the necessary monotonicity properties

then perfect sampling of the point process may be feasible.

Obviously whether a practical implementation is possibly will depend on the context. Inevitably
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one may require auxiliary simulation strategies (‘clever tricks’) which would enable implementa-

tion. For example the ‘cluster’ trick (Section 4.5.2) involving the construction of observable events

provides a means to implement perfect simulation of the area-interaction process. The ‘cross-over’

trick (Sections 3.4.2 & 4.5.4) allows the perfect sampling of anti-monotone systems such as the re-

pulsive area-interaction process. The use of quasi-minimal and -maximal elements (Sections 4.4.3 &

5.5.1) enabled implementation of exact Gibbs samplers. We hope that such ideas will promote and

inspire practical implementations of other processes which, in principle, can be perfectly simulated.

The work on omnithermal sampling (Section 4.6) also suggests that, under suitable monotonicity

conditions on the Papangelou conditional intensity, such sampling may be feasible. The omnither-

mal results of Propp & Wilson (1996) show that a single omnithermal sample may provide more

information than a number of samples at different parameter values. Thus omnithermal sampling

for various models is a possibility worth considering.

Thus birth-death processes are very useful in simulating processes absolutely continuous with

respect to a Poisson process. This is not to undermine the importance of discrete-time Gibbs (and

more generally Metropolis-Hastings) samplers. However the key point is that spatial birth-death

processes provide both a natural and powerful means for simulating point process models (includ-

ing omnithermal sampling). Moreover the simulation results of Sections 3.7 & 5.7 suggest that

algorithms employing birth-death processes may be more efficient for extreme model parameters

than those employing a Gibbs sampler (cf. Remark 3.2).

6.1 Further Work: Omnithermal Sampling

In Section 4.7 some comments on further possibilities for omnithermal sampling were given. This

section records some further thoughts.

Indeed one can phrase the whole omnithermal description for any locally stable point process

X , specified by a density with respect to, say, the unit rate Poisson process. Let ` (ξ;x) denote the

Papangelou conditional intensity of X; furthermore write ` (ξ;x) = h (θ; ξ, x) as some functional

of model parameters θ. For example in the case of the area-interaction process, θ = (λ, β, r) and

h (θ) = λe−βm2[U(ξ)\U(x)]. If ` is uniformly bounded then it is possible to define coupled spatial

birth-death processes (Φ,Ψ) such that the equilibrium distribution of Ψ is that of X . The process
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Φ has a Poissonian distribution with intensity equal to the uniform bound on ` (cf. Section 1.3.2).

If omnithermal sampling with respect to parameter θi is to be possible, h (θ1, . . . , θn; ξ, x) must be

monotonic in θi and anti-monotonic in x (or vice versa, cf. Lemma 4.3):

h (θi; ξ, x) ≤ (≥)h (θ′i; ξ, x) , for θ′i ≤ θi; (6.1)

and h (θi; ξ, x) ≥ (≤)h (θi; ξ, y) , for y ⊆ x. (6.2)

This then enables a comparison of h (θi; ξ, y) and h (θ′i; ξ, x): h (θi; ξ, y) ≤ (≥)h (θ′i; ξ, x). In turn

this ensures that if a birth ξ is accepted in a process with parameter θi then it would also be accepted

in any process with parameter less (greater) than θi. Such monotonicity would hence guarantee the

existence of an omnithermal threshold for the parameter θi (cf. Remark 4.3).

As an illustrative simple example, consider sampling the attractive area-interaction process for a

range of intensities and interaction parameter values. Fix λ, β > 0 and suppose that Φ is a spatial

birth-death process with birth rate λ and unit per capita death rate. Let Ψλ,β denote an interacting

birth-death process with stationary distribution an area-interaction process with intensity λ and inter-

action parameter β. For 0 ≤ λ′ ≤ λ ≤ λ and 0 ≤ β′ ≤ β ≤ β, if the processes Ψλ′,β,Ψλ,β′ are cou-

pled to the same realization of Φ then the analogue of Lemma 4.3 would be that Ψλ′,β (t) ⊆ Ψλ,β′ (t)

for all t. Here h (λ, β; ξ, x) = λe−βm2[U(ξ)\U(x)]; so for y ⊆ x, β′ ≤ β and λ′ ≤ λ:

h (λ, β; ξ, x) ≤ h (λ, β′; ξ, x) ; h (λ, β; ξ, x) ≥ h (λ, β; ξ, y) .

h (λ, β; ξ, x) ≥ h (λ′, β; ξ, x) .

Therefore Eqs. (6.1 & 6.2) are satisfied and the required inclusion Ψλ′,β (t) ⊆ Ψλ,β′ (t) for all t

follows. Thus there exists an omnithermal region Rξ ⊂
[
0, λ
]
×
[
0, β
]

in (λ, β)-space such that

ξ is accepted in Ψλ,β for any (λ, β) ∈ Rξ. As a concluding note we conjecture that Rξ is given as

follows. Recall from Section 4.6 that Nξ denotes the neighbours of ξ in Φ and, for M ⊆ Nξ, the

quantity wξ (M) is computed via Eq. (4.21). Suppose the respective regions Rη for η ∈ Nξ are

known; if RM =
⋂
η∈M Rη and lξ ∼ Uniform

(
0, λ
)

then

Rξ =
⋃

M⊆Nξ

([
lξ, λ

]
× [0, wξ (M)] ∩RM

)
. (6.3)
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Appendix A

χ2 Tests: Conditional Boolean Model

This appendix presents the results of χ2 goodness-of-fit tests, the objective of which is to validate

the Cai & Kendall Algorithm 3.4 and exact Gibbs Algorithm 3.7 for conditional Boolean models.

Theorems 3.1 & 3.2 ensure that the output of the two algorithms respectively does indeed have the

required distribution. However it is still important to validate these procedures in order to guard

against programming errors.

The conditioning set C = {c1, . . . , ck} contains k nodes and let Xci denote the number of germ-

grain pairs of the Boolean model which cover the conditioning node ci. Given C, the idea behind a

χ2 goodness of fit test is to compare the bin counts for (Xc1 , . . . , Xck), where the bins represent the

possible joint values (Xc1 , . . . , Xck) can take. In the following cases a fixed number of samples are

drawn for each of the two algorithms. We abbreviate the Cai & Kendall algorithm by ‘CK’ and the

exact Gibbs algorithm by ‘Gibbs’. The respective bin counts of CK and Gibbs are compared with

the expected counts from the target distribution. The χ2 test statistic s is computed as follows.

s =
∑
bin

(Ebin −Obin)
2

Ebin
∼ χ2

C−1 (A.1)

where the sum is taken over the bins, Ebin denotes the expected bin counts, Obin the observed ones

and C denotes the number of bins. In cases where expected counts are too difficult to compute the

counts obtained from the Rejection Algorithm 3.1, which we denote by Rejbin, will be used instead.

Denote the respective bin counts for CK and Gibbs by CKbin and Gibbsbin. In order to test the null

hypothesis that the observed counts from Rejection and, say, CK have the same distribution we use

the theory of χ2 Tests of Homogeneity (DeGroot & Schervish 2002) to compute the test statistic.
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χ2 Tests of Homogeneity

Suppose that random samples are taken from R different populations, each observation being clas-

sified into C different categories or bins. For i = 1, . . . , R and j = 1, . . . , C let Nij denote the

observed counts from the i-th population and j-th bin; furthermore let Ni+ denote the total number

of counts from the i-th population and N+j that from the j-th bin. Then the test statistic

s =
R∑
i=1

C∑
j=1

(
Nij − Êij

)2

Êij
∼ χ2

(R−1)(C−1); (A.2)

where Êij =
Ni+N+j

n
and n =

∑
i

Ni+.

For the purposes here R = 2, since the objective is to test whether the counts from the Rejection and

either the CK or Gibbs algorithms have the same distribution. Since the number of samples for each

algorithm are the same, n = 2Ni+; denoting N1j by Rejbin and N2j by Obin we have

s =
∑
bin

(Rejbin − Obin)
2

Rejbin + Obin
∼ χ2

C−1. (A.3)

In order to compute the statistic the observed counts Obin are taken to be either CKbin or Gibbsbin.

The null hypothesis is that the test statistic s ∼ χ2
C−1 has a Chi-squared distribution on C − 1

degrees of freedom, where C is the total number of bins. We consider four cases, with different

model parameters and determine whether any of the test statistic values are significant, in which

case the null hypothesis is rejected and one can conclude that the observed counts do not have

the same distribution as those from the expected (or Rejection) counts. None of the values here

are significant at the 5% level, therefore the null hypothesis is accepted and the CK and Gibbs

algorithms validated. The observed counts and test statistics are given in the following tables, with

model parameters stated in the caption.
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(n (Xc1) , n (Xc2) , n (Xc3)) Expected CK Gibbs (Expected−CK)2

Expected
(Expected−Gibbs)2

Expected

(≤ 1,≤ 1,≤ 1) 135 145 149 1.452 0.741

(≤ 1,≤ 1, 2) 107 112 106 0.009 0.234

(≤ 1,≤ 1,≥ 3) 74 70 84 1.351 0.216

(≤ 1, 2,≤ 1) 107 115 95 1.346 0.598

(≤ 1, 2, 2) 105 94 88 2.752 1.152

(≤ 1, 2,≥ 3) 94 87 96 0.043 0.521

(≤ 1,≥ 3,≤ 1) 74 58 89 3.041 3.459

(≤ 1,≥ 3, 2) 94 105 108 2.085 1.287

(≤ 1,≥ 3,≥ 3) 124 124 119 0.202 0.000

(2,≤ 1,≤ 1) 107 98 100 0.458 0.757

(2,≤ 1, 2) 105 105 120 2.143 0.000

(2,≤ 1,≥ 3) 94 86 104 1.064 0.681

(2, 2,≤ 1) 105 111 103 0.038 0.343

(2, 2, 2) 127 135 137 0.787 0.504

(2, 2,≥ 3) 144 148 154 0.694 0.111

(2,≥ 3,≤ 1) 94 85 76 3.447 0.862

(2,≥ 3, 2) 144 148 135 0.562 0.111

(2,≥ 3,≥ 3) 250 247 246 0.064 0.036

(≥ 3,≤ 1,≤ 1) 74 77 79 0.338 0.122

(≥ 3,≤ 1, 2) 94 91 101 0.521 0.096

(≥ 3,≤ 1,≥ 3) 124 123 137 1.363 0.008

(≥ 3, 2,≤ 1) 94 69 93 0.011 6.649

(≥ 3, 2, 2) 144 158 126 2.250 1.361

(≥ 3, 2,≥ 3) 250 258 238 0.576 0.256

(≥ 3,≥ 3,≤ 1) 124 108 123 0.008 2.065

(≥ 3,≥ 3, 2) 250 255 255 0.100 0.100

(≥ 3,≥ 3,≥ 3) 761 788 739 0.636 0.958

s 27.34114 23.22761

Table A.1: Bin counts for the CK and Gibbs algorithms compared against the expected. Model parameters are:

λ = 8, r = 0.3 and C = {c1, c2, c3} =
{

(0.5, 0.375) ,
(
0.5− r

2 , 0.375 +
√

3 r2
)
,
(
0.5 + r

2 , 0.375 +
√

3 r2
)}

. The null

hypothesis is that the test statistics s ∼ χ2
26. The respective p-values for CK and Gibbs are 0.392 and 0.620; therefore

neither test statistic is significant at the 5% level.
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(n (Xc1) , n (Xc2) , n (Xc3) , n (Xc4)) Rej CK Gibbs Uncond

(≤ 1,≤ 1,≤ 1,≤ 1) 494 496 527 1322

(≤ 1,≤ 1,≤ 1,≥ 2) 164 177 174 157

(≤ 1,≤ 1,≥ 2,≤ 1) 166 174 169 126

(≤ 1,≤ 1,≥ 2,≥ 2) 51 66 61 17

(≤ 1,≥ 2,≤ 1,≤ 1) 227 215 233 126

(≤ 1,≥ 2,≤ 1,≥ 2) 111 100 92 14

(≤ 1,≥ 2,≥ 2,≤ 1) 119 129 103 10

(≤ 1,≥ 2,≥ 2,≥ 2) 41 45 37 0

(≥ 2,≤ 1,≤ 1,≤ 1) 162 165 174 95

(≥ 2,≤ 1,≤ 1,≥ 2) 59 56 54 33

(≥ 2,≤ 1,≥ 2,≤ 1) 61 49 50 25

(≥ 2,≤ 1,≥ 2,≥ 2) 12 16 16 8

(≥ 2,≥ 2,≤ 1,≤ 1) 158 145 163 42

(≥ 2,≥ 2,≤ 1,≥ 2) 85 70 66 10

(≥ 2,≥ 2,≥ 2,≤ 1) 72 72 59 13

(≥ 2,≥ 2,≥ 2,≥ 2) 18 25 22 2

s 9.234685 11.96706

Table A.2: Bin counts for the CK and Gibbs algorithms compared against those from the Rejection algorithm (Rej).

Model parameters are: λ = 5, r = 0.19, C = {(0, 0) , (0,−0.2) , (0.2, 0.2) , (−0.2, 0.2)}. The null hypothesis is that

the test statistics s ∼ χ2
15. The respective p-values for CK and Gibbs are 0.865 and 0.682; therefore neither test statistic

is significant at the 5% level. The observed counts from an unconditional Poisson process (Uncond) have been included

to illustrate that these are markedly different to those from the conditional process.
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(n (Xc1) , n (Xc2) , n (Xc3) , n (Xc4)) Rej CK Gibbs Uncond

(≤ 1,≤ 1,≤ 1,≤ 1) 267 244 256 446

(≤ 1,≤ 1,≤ 1,≥ 2) 197 189 167 223

(≤ 1,≤ 1,≥ 2,≤ 1) 115 118 118 133

(≤ 1,≤ 1,≥ 2,≥ 2) 72 75 70 67

(≤ 1,≥ 2,≤ 1,≤ 1) 110 131 131 129

(≤ 1,≥ 2,≤ 1,≥ 2) 77 70 66 66

(≤ 1,≥ 2,≥ 2,≤ 1) 94 114 113 116

(≤ 1,≥ 2,≥ 2,≥ 2) 63 55 54 36

(≥ 2,≤ 1,≤ 1,≤ 1) 86 102 82 91

(≥ 2,≤ 1,≤ 1,≥ 2) 108 122 140 124

(≥ 2,≤ 1,≥ 2,≤ 1) 118 91 111 81

(≥ 2,≤ 1,≥ 2,≥ 2) 104 107 106 81

(≥ 2,≥ 2,≤ 1,≤ 1) 90 75 97 55

(≥ 2,≥ 2,≤ 1,≥ 2) 111 116 112 64

(≥ 2,≥ 2,≥ 2,≤ 1) 185 198 198 162

(≥ 2,≥ 2,≥ 2,≥ 2) 203 193 179 126

s 13.84165 14.55589

Table A.3: Bin counts for the CK and Gibbs algorithms compared against those from

the Rejection algorithm (Rej). Model parameters are: λ = 8, r = 0.3 and C ={
(0.5, 0.375) ,

(
0.5− r

2 , 0.375 +
√

3 r2
)
,
(
0.5 + r

2 , 0.375 +
√

3 r2
)
, (0.91, 0.91)

}
. The null hypothesis is that the

test statistics s ∼ χ2
15. The respective p-values for CK and Gibbs are 0.538 and 0.484; therefore neither test statistic is

significant at the 5% level. The observed counts from an unconditional Poisson process (Uncond) have been included

to illustrate that these are markedly different to those from the conditional process.
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(n (Xc1 ) , n (Xc2 ) , n (Xc3 ) , n (Xc4 ) , n (Xc5 )) Rej CK Gibbs Uncond

(≤ 1,≤ 1,≤ 1,≤ 1,≤ 1) 39 47 47 177

(≤ 1,≤ 1,≤ 1,≤ 1,≥ 2) 41 34 30 70

(≤ 1,≤ 1,≤ 1,≥ 2,≤ 1) 24 27 27 67

(≤ 1,≤ 1,≤ 1,≥ 2,≥ 2) 37 43 31 46

(≤ 1,≤ 1,≥ 2,≤ 1,≤ 1) 27 34 26 73

(≤ 1,≤ 1,≥ 2,≤ 1,≥ 2) 31 25 28 41

(≤ 1,≤ 1,≥ 2,≥ 2,≤ 1) 18 22 23 18

(≤ 1,≤ 1,≥ 2,≥ 2,≥ 2) 29 31 34 14

(≤ 1,≥ 2,≤ 1,≤ 1,≤ 1) 30 33 32 69

(≤ 1,≥ 2,≤ 1,≤ 1,≥ 2) 25 18 30 30

(≤ 1,≥ 2,≤ 1,≥ 2,≤ 1) 38 38 33 18

(≤ 1,≥ 2,≤ 1,≥ 2,≥ 2) 38 34 31 17

(≤ 1,≥ 2,≥ 2,≤ 1,≤ 1) 38 29 38 18

(≤ 1,≥ 2,≥ 2,≤ 1,≥ 2) 32 19 29 8

(≤ 1,≥ 2,≥ 2,≥ 2,≤ 1) 37 23 33 1

(≤ 1,≥ 2,≥ 2,≥ 2,≥ 2) 24 27 32 7

(≥ 2,≤ 1,≤ 1,≤ 1,≤ 1) 26 32 38 38

(≥ 2,≤ 1,≤ 1,≤ 1,≥ 2) 23 21 21 10

(≥ 2,≤ 1,≤ 1,≥ 2,≤ 1) 34 28 16 30

(≥ 2,≤ 1,≤ 1,≥ 2,≥ 2) 18 20 27 11

(≥ 2,≤ 1,≥ 2,≤ 1,≤ 1) 30 48 37 34

(≥ 2,≤ 1,≥ 2,≤ 1,≥ 2) 41 41 44 17

(≥ 2,≤ 1,≥ 2,≥ 2,≤ 1) 25 20 34 19

(≥ 2,≤ 1,≥ 2,≥ 2,≥ 2) 35 37 34 14

(≥ 2,≥ 2,≤ 1,≤ 1,≤ 1) 18 28 20 50

(≥ 2,≥ 2,≤ 1,≤ 1,≥ 2) 11 19 7 21

(≥ 2,≥ 2,≤ 1,≥ 2,≤ 1) 24 30 19 29

(≥ 2,≥ 2,≤ 1,≥ 2,≥ 2) 19 17 23 6

(≥ 2,≥ 2,≥ 2,≤ 1,≤ 1) 44 38 32 21

(≥ 2,≥ 2,≥ 2,≤ 1,≥ 2) 46 38 31 12

(≥ 2,≥ 2,≥ 2,≥ 2,≤ 1) 54 43 57 7

(≥ 2,≥ 2,≥ 2,≥ 2,≥ 2) 44 56 56 7

s 28.54307 28.57248

Table A.4: Bin counts for the CK and Gibbs algorithms compared against those from the Rejection algorithm (Rej).

Model parameters are: λ = 10, r = 0.19 and C = {(0, 0) , (0,−0.2) , (0.2, 0.2) , (−0.2, 0.2) , (0, 0.4)}. The null

hypothesis is that the test statistics s ∼ χ2
31. The respective p-values for CK and Gibbs are 0.593 and 0.591; therefore

neither test statistic is significant at the 5% level. The observed counts from an unconditional Poisson process (Uncond)

have been included to illustrate that these are markedly different to those from the conditional process.
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Appendix B

χ2 Tests: Conditional Area-Interaction

This appendix presents the results of χ2 goodness-of-fit tests, the objective of which is to validate

the modified Cai & Kendall Algorithm 5.1 and the exact Gibbs Algorithm 5.4 for the conditional

area-interaction process. The goodness of fit tests were carried out only for the attractive conditional

area-interaction process (β > 0). As noted in Appendix A validation of these perfect simulation

algorithms is important and necessary in order to protect against coding errors. The test statistic

is computed as in Eq. (A.3), since calculating the expected counts is not possible. The Rejection

algorithm described in Section 5.3 will be used as a basis for validating the two algorithms. For a

conditioning node ci ∈ C recall that Xci denotes the number of germ-grain pairs covering the node

ci; for the conditional area-interaction process we also include the counts for the germs covering

none of the conditioning nodes, denoted by X0 ≡ X∅, since the process does not have the indepen-

dence property. We abbreviate the modified Cai & Kendall algorithm as ‘CK’ and the exact Gibbs

algorithm as ‘Gibbs’. The same notation for the bins and bin counts set up in Appendix A will be

used here. In addition the observed bin counts from the conditional Boolean model (denoted by

‘CondBM’) are presented in order to illustrate that the conditional area-interaction does not ’look’

like the conditional Boolean model.

169



(n (X0) , n (Xc1) , n (Xc2) , n (Xc3)) Rej CK Gibbs CondBM

(≤ 1,≤ 1,≤ 1,≤ 1) 482 487 491 122

(≤ 1,≤ 1,≤ 1,≥ 2) 112 105 98 57

(≤ 1,≤ 1,≥ 2,≤ 1) 115 113 112 45

(≤ 1,≤ 1,≥ 2,≥ 2) 25 26 22 11

(≤ 1,≥ 2,≤ 1,≤ 1) 103 100 111 63

(≤ 1,≥ 2,≤ 1,≥ 2) 32 25 21 23

(≤ 1,≥ 2,≥ 2,≤ 1) 23 24 28 24

(≤ 1,≥ 2,≥ 2,≥ 2) 7 5 8 7

(≥ 2,≤ 1,≤ 1,≤ 1) 559 587 593 628

(≥ 2,≤ 1,≤ 1,≥ 2) 147 147 137 226

(≥ 2,≤ 1,≥ 2,≤ 1) 150 144 137 234

(≥ 2,≤ 1,≥ 2,≥ 2) 33 32 41 103

(≥ 2,≥ 2,≤ 1,≤ 1) 154 125 117 216

(≥ 2,≥ 2,≤ 1,≥ 2) 32 34 41 96

(≥ 2,≥ 2,≥ 2,≤ 1) 19 38 32 105

(≥ 2,≥ 2,≥ 2,≥ 2) 7 8 11 40

s 11.84425 17.55983

Table B.1: Bin counts for the CK and Gibbs algorithms compared against those from the Rejection algorithm (Rej).

Model parameters are: λ = 5, β = 10, r = 0.19,W = [0, 1]
2 and C = {(0.25, 0.25) , (0.75, 0.25) , (0.7, 0.7)}. The null

hypothesis is that the test statistics s ∼ χ2
15. The respective p-values for CK and Gibbs are 0.691 and 0.287; therefore

neither test statistic is significant at the 5% level. The observed counts from the conditional Boolean model (CondBM)

have been included to illustrate that these are markedly different to those from the conditional area-interaction.
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(n (X0) , n (Xc1) , n (Xc2) , n (Xc3)) Rej CK Gibbs CondBM

(≤ 11,≤ 1,≤ 1,≤ 1) 149 183 183 96

(≤ 11,≤ 1,≤ 1,≥ 2) 151 131 149 109

(≤ 11,≤ 1,≥ 2,≤ 1) 166 140 131 94

(≤ 11,≤ 1,≥ 2,≥ 2) 115 115 129 109

(≤ 11,≥ 2,≤ 1,≤ 1) 140 147 132 97

(≤ 11,≥ 2,≤ 1,≥ 2) 110 136 107 103

(≤ 11,≥ 2,≥ 2,≤ 1) 125 102 134 115

(≤ 11,≥ 2,≥ 2,≥ 2) 87 81 73 105

(≥ 12,≤ 1,≤ 1,≤ 1) 153 133 146 123

(≥ 12,≤ 1,≤ 1,≥ 2) 117 120 133 158

(≥ 12,≤ 1,≥ 2,≤ 1) 112 127 115 140

(≥ 12,≤ 1,≥ 2,≥ 2) 90 117 105 132

(≥ 12,≥ 2,≤ 1,≤ 1) 125 124 118 165

(≥ 12,≥ 2,≤ 1,≥ 2) 123 123 126 145

(≥ 12,≥ 2,≥ 2,≤ 1) 138 108 111 160

(≥ 12,≥ 2,≥ 2,≥ 2) 99 113 108 149

χ2
15 23.05972 16.17581

Table B.2: Bin counts for the CK and Gibbs algorithms compared against those from the Rejection algorithm (Rej).

Model parameters are: λ = 20, β = 6, r = 0.2, W = [0, 1]
2 and C = {(0.25, 0.25) , (0.75, 0.25) , (0.7, 0.7)}. The null

hypothesis is that the test statistics s ∼ χ2
15. The respective p-values for CK and Gibbs are 0.083 and 0.370; therefore

neither test statistic is significant at the 5% level. The observed counts from the conditional Boolean model (CondBM)

have been included to illustrate that these are markedly different to those from the conditional area-interaction.
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(n (X0) , n (Xc1) , n (Xc2) , n (Xc3)) Rej CK Gibbs CondBM

(≤ 3,≤ 2,≤ 2,≤ 2) 116 128 137 46

(≤ 3,≤ 2,≤ 2,≥ 3) 53 55 57 39

(≤ 3,≤ 2,≥ 3,≤ 2) 48 52 53 33

(≤ 3,≤ 2,≥ 3,≥ 3) 54 63 49 43

(≤ 3,≥ 3,≤ 2,≤ 2) 53 60 53 36

(≤ 3,≥ 3,≤ 2,≥ 3) 59 54 62 45

(≤ 3,≥ 3,≥ 3,≤ 2) 47 40 56 39

(≤ 3,≥ 3,≥ 3,≥ 3) 114 104 116 129

(≥ 4,≤ 2,≤ 2,≤ 2) 76 88 67 70

(≥ 4,≤ 2,≤ 2,≥ 3) 35 30 44 46

(≥ 4,≤ 2,≥ 3,≤ 2) 38 39 45 37

(≥ 4,≤ 2,≥ 3,≥ 3) 55 47 45 45

(≥ 4,≥ 3,≤ 2,≤ 2) 50 46 38 70

(≥ 4,≥ 3,≤ 2,≥ 3) 38 45 39 69

(≥ 4,≥ 3,≥ 3,≤ 2) 50 41 44 62

(≥ 4,≥ 3,≥ 3,≥ 3) 114 108 95 191

χ2
15 6.868712 10.19867

Table B.3: Bin counts for the CK and Gibbs algorithms compared against those from the Rejection al-

gorithm (Rej). Model parameters are: λ = 10, β = 7, r = 0.3, W = [0, 1]
2 and C ={

(0.5, 0.375) ,
(
0.5− r

2 , 0.375 +
√

3 r2
)
,
(
0.5 + r

2 , 0.375 +
√

3 r2
)}

. The null hypothesis is that the test statistics s ∼

χ2
15. The respective p-values for CK and Gibbs are 0.961 and 0.8074; therefore neither test statistic is significant at the

5% level. The observed counts from the conditional Boolean model (CondBM) have been included to illustrate that

these are markedly different to those from the conditional area-interaction.

172



(n (X0) , n (Xc1 ) , n (Xc2 ) , n (Xc3 ) , n (Xc4 )) Rej CK Gibbs CondBM

(≤ 6,≤ 1,≤ 1,≤ 1,≤ 1) 159 176 178 29

(≤ 6,≤ 1,≤ 1,≤ 1,≥ 2) 36 19 17 6

(≤ 6,≤ 1,≤ 1,≥ 2,≤ 1) 45 47 41 20

(≤ 6,≤ 1,≤ 1,≥ 2,≥ 2) 15 14 15 2

(≤ 6,≤ 1,≥ 2,≤ 1,≤ 1) 53 38 37 11

(≤ 6,≤ 1,≥ 2,≤ 1,≥ 2) 6 5 4 6

(≤ 6,≤ 1,≥ 2,≥ 2,≤ 1) 14 14 23 3

(≤ 6,≤ 1,≥ 2,≥ 2,≥ 2) 7 4 5 3

(≤ 6,≥ 2,≤ 1,≤ 1,≤ 1) 58 56 54 15

(≤ 6,≥ 2,≤ 1,≤ 1,≥ 2) 40 23 35 10

(≤ 6,≥ 2,≤ 1,≥ 2,≤ 1) 74 66 57 18

(≤ 6,≥ 2,≤ 1,≥ 2,≥ 2) 51 53 55 18

(≤ 6,≥ 2,≥ 2,≤ 1,≤ 1) 26 18 17 6

(≤ 6,≥ 2,≥ 2,≤ 1,≥ 2) 8 10 11 4

(≤ 6,≥ 2,≥ 2,≥ 2,≤ 1) 30 32 25 9

(≤ 6,≥ 2,≥ 2,≥ 2,≥ 2) 24 35 23 11

(≥ 7,≤ 1,≤ 1,≤ 1,≤ 1) 104 109 109 197

(≥ 7,≤ 1,≤ 1,≤ 1,≥ 2) 11 20 14 64

(≥ 7,≤ 1,≤ 1,≥ 2,≤ 1) 28 27 35 49

(≥ 7,≤ 1,≤ 1,≥ 2,≥ 2) 3 7 11 16

(≥ 7,≤ 1,≥ 2,≤ 1,≤ 1) 29 26 33 68

(≥ 7,≤ 1,≥ 2,≤ 1,≥ 2) 6 9 10 18

(≥ 7,≤ 1,≥ 2,≥ 2,≤ 1) 11 8 13 28

(≥ 7,≤ 1,≥ 2,≥ 2,≥ 2) 5 0 2 8

(≥ 7,≥ 2,≤ 1,≤ 1,≤ 1) 21 24 25 53

(≥ 7,≥ 2,≤ 1,≤ 1,≥ 2) 25 21 17 52

(≥ 7,≥ 2,≤ 1,≥ 2,≤ 1) 29 39 39 63

(≥ 7,≥ 2,≤ 1,≥ 2,≥ 2) 35 35 40 83

(≥ 7,≥ 2,≥ 2,≤ 1,≤ 1) 7 18 16 21

(≥ 7,≥ 2,≥ 2,≤ 1,≥ 2) 5 6 6 23

(≥ 7,≥ 2,≥ 2,≥ 2,≤ 1) 20 29 16 43

(≥ 7,≥ 2,≥ 2,≥ 2,≥ 2) 15 12 17 43

χ2
31 38.00843 35.89669

Table B.4: Bin counts for the CK and Gibbs algorithms compared against those from the Rejection al-

gorithm (Rej). Model parameters are: λ = 5, β = 7, r = 0.2, W = [−0.75, 0.75]
2 and C =

{(0, 0) , (0.1,−0.1) , (−0.1,−0.1) , (0.25, 0.12)}. The null hypothesis is that the test statistics s ∼ χ2
31. The respective

p-values for CK and Gibbs are 0.180 and 0.250; therefore neither test statistic is significant at the 5% level. The observed

counts from the conditional Boolean model (CondBM) have been included to illustrate that these are markedly different

to those from the conditional area-interaction.
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