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Abstract

The limitations of the current 'first-principles' effective medium approach to calcu-

lating the electronic structure of disordered systems are described. These limitations

can be addressed by a cluster theory, and only very recently the first satisfactory clus-

ter theory, the nonlocal coherent potential approximation, has been developed within

a tight-binding framework. However an approach based on KKR multiple scatter-

ing is needed in order to treat the problem from first principles for ab-initio calcu-

lations. In this thesis, these ideas are reformulated in terms of multiple scattering

theory and the Korringa-Kohn-Rostoker non-local coherent potential approximation

(KKR-NLCPA) is introduced for describing the electronic structure of disordered

systems. The KKR-NLCPA systematically provides a hierarchy of improvements

upon the widely used local mean-field KKR-CPA approach and includes nonlocal

correlations in the disorder configurations by means of a self-consistently embedded

cluster. The KKR-NLCPA method satisfies all of the requirements for a successful

cluster generalisation of the KKR-CPA; it determines a site-to-site translationally-

invariant effective medium, it is herglotz analytic, becomes exact in the limit of large

cluster sizes, reduces to the KKR-CPA for a single-site cluster, is straightforward to

implement numerically, and enables the effects of short-range order upon the elec-

tronic structure to be investigated. In particular, it is suitable for combination with

electronic density functional theory to give an ab-initio description of disordered

systems. Future applications to charge correlation and lattice displacement effects

in alloys and spin fluctuations in magnets amongst others are very promising. The

method is illustrated by application to a simple one-dimensional model.
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Chapter 1

Introduction

At high temperatures, metallic liquid mixtures of more than one type of atom often

crystallize into a 'solid solution' alloy in which there remains an underlying regu-

lar lattice, but the atoms occupy these lattice sites in an almost random fashion.

This is known as random substitutional disorder and a simple example is shown in

Fig. 1.1(a). In such systems there is however always some short-range order (SRO)

present i.e. a tendency for atoms to surround themselves with atoms of the same

kind (clustering) e.g. CuNi, or alternatively to surround themselves with atoms of

a different kind (ordering) e.g. CuAu. Upon cooling the solid solution, this SRO be-

comes increasingly more significant. At some critical temperature Te, the alloy will

undergo a phase transition into either an ordered phase or alternatively will phase

separate, illustrated in Fig. 1.1(b) and Fig. 1.1(c) respectively. The properties of an

alloy also depend on its preparation route, for example the disordered phase may

be preserved at room temperature by rapidly quenching from above Te.

There is growing interest in the understanding of these ordering processes due to

the ever increasing technological importance of metallic alloys, for example in the

emerging communications and computer industries. This has led to a need for

much more realistic theoretical models of disorder which can help to interpret the

experimental data and give guidance in developing new alloy systems with properties
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Ca) (b) Cc)

Figure 1.1: Phases of a binary alloy: (a) Disorder (b) Order (c) Segregation

tailored to meet specific requirements [1].

A knowledge of the electronic structure of an alloy is required to calculate observ-

able properties such as photo emission spectra, charge density, magnetic moments,

transport properties etc. Although phenomenological 'pair potential' models [2J are

commonly used to give an account of phase stability, it is also the electronic struc-

ture which ultimately determines the state of compositional order. So to understand

the underlying mechanisms governing the properties and controlling the formation

of alloys, a fully microscopic electronic theory is needed. A major advantage of

such a 'first-principles' electronic approach is that it can be combined with density

functional theory for ab-initio calculations which are material and geometry specific

without the need for adjustable parameters chosen to give the desired behaviour or

fitted from experiment.

Therefore, fundamental to a 'first-principles' theory of the properties and phase

stability of alloys is an accurate description of the electronic structure of the dis-

ordered phase. Currently, one of the most successful theories has proved to be the

Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA) [3, 4, 5J.

However, as a local mean-field theory of disorder, the KKR-CPA is not a fully-

satisfactory theory. In particular it is unable to take into account the effects of

short-range order (SRO) and other short-range effects such as lattice relaxation on

the electronic structure. In other words the KKR-CPA assumes a completely ran-
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dom substitutionally-disordered alloy when calculating the electronic structure and

observable properties. However, this missing physics can have a significant effect on

many physical properties of the alloy. The subject of this thesis is the development

of a theory, the KKR-NLCPA (where NL stands for nonlocal), which provides a hi-

erarchy of improvements upon the conventional KKR-CPA method, systematically

enabling this missing physics to be taken into account for the first time. The devel-

opment of such a theory has been the subject of numerous attempts over the years,

but until now these attempts have not been satisfactory [6].

This thesis begins with a brief introduction to first-principles methods. Central to

this is electronic density functional theory (DFT), which maps the many-electron

Hamiltonian for a metallic system to that of an effective Hamiltonian describing a

single-electron. For ab-initio (parameter-free) calculations, the resulting Kohn-Sham

equations then need to be solved self-consistently, yielding the electronic structure.

A brief review is given of the Korringa-Kohn-Rostoker (KKR) method for solving

the Kohn-Sham equations, which is based on a multiple-scattering description of

a single electron propagating through the array of effective potentials formed by

the nuclei and self-consistently determined electronic density. Although there are

many available methods for solving the Kohn-Sham equations, the KKR multiple-

scattering approach is the only way of dealing with such a realistic Hamiltonian

when we consider disordered systems.

The treatment of disordered systems from first principles is the subject of Chapter

3. The KKR-CPA method is described and then its limitations are discussed in

detail. Considerable effort has been spent in trying to improve upon the CPA by

formulating a 'cluster' generalisation (Chapter 4). This has turned out to be a very

difficult problem [6], and a viable solution has been proposed only recently. The new

method has emerged from the Dynamical Cluster Approximation (DCA) [7, 8, 9]

which was originally directed at describing dynamical spin and charge fluctuations

in simple Hubbard models of strongly-correlated electron systems. Recently, its

static limit has been adapted for a simple tight-binding model of electrons moving
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in a disordered potential [10, 11, 12].

However, an approach based on multiple scattering theory is needed in order to treat

the problem from first principles for ab-initio calculations. Most of the original work

in this thesis is contained in Chapters 5-7, which involves reformulating these ideas

in terms of multiple scattering theory, and combining them with the KKR-CPA. The

resulting KKR-NLCPA (where NL stands for nonlocal) satisfies all the requirements

for a satisfactory cluster theory. The difficulty in reformulating the problem has

been due to the very different nature of the language of multiple scattering theory

to the context in which the DCA is normally applied. The DCA is formulated

in reciprocal space where the main object of interest is the self-energy and the

diagrammatic language of perturbation theory is used. This is not the case in

the real-space formalism of multiple scattering theory, but by introducing a new

reference medium I show that the quantities in multiple scattering theory which play

the role of the self-energy are the effective site scattering amplitudes (t-matrices)

and effective propagator or structure constants.

Chapter 5 contains the formalism for the KKR-NLCPA, explains the algorithm,

shows how to include short-range order, and finally explains how to calculate ob-

servable quantities such as the configurationally-averaged density of states in prepa-

ration for DFT calculations. Chapter 6 illustrates the KKR-NLCPA by application

to a simple one-dimensional model which has the same formal basis as a realistic

model but is computationally much simpler. The purpose of this model is sim-

ply to highlight some of the possible improvements that could be obtained in a

realistic calculation. Chapter 7 goes on to show that the KKR- NLCP A is fully ap-

plicable to realistic systems by describing in detail how to carry out the necessary

'coarse-graining' procedure with reference to simple cubic, body-centered cubic and

face-centered cubic lattices.

Finally, Chapter 8 summarises the main achievements of this thesis and discusses

some future work which arises as a result.
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Chapter 2

First-Principles Methods

2.1 Density Functional Theory

Equilibrium quantities of a material can be considered as functionals of the electron

density n(r), for example the total energy E[n(r)J. The electron density is deter-

mined by llT(rl' ... rN), the total equilibrium wavefunction for all the electrons in

the solid. However, solving the Schrodinger equation for all the electrons in a solid

is an impossible task due to the many interactions involved. The main difficulty

is that the potential felt by each electron depends on the position of all the other

electrons as well as the positions of the atomic nuclei. In order to solve this many

body problem, a way forward is to adopt a single electron approach. This means

that the electrons are treated as independent of each other, each moving in a local

effective potential which, in addition to describing the effect of the ions, must also

somehow attempt to take into account the interactions with all the other electrons.

In this way it would be possible to solve a Schrodinger equation for each electron

separately using the methods of band theory [13J. This transformation of the many-

electron problem into many one-electron problems may be achieved using Density

Functional Theory (DFT). For a thorough review see Refs. [14, 15J. Although this

transformation is exact, in practice an approximation such as the local density ap-
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proximation (LDA) [16, 17] still needs to be made. This generally works very well

for metals and many other systems except for strongly-correlated electron systems.

2.1.1 The Kohn-Sham Equations

The Born-Oppenheimer approximation treats the electrons as moving in an ex-

ternal potential generated by the static nuclei. The N-electron wavefunction

\If (r1'r2,... ,rN) may then be described by the Hamiltonian

N 1i2 N Z 2 lIN 2H = 'L--'V~ - _1_'L'L ne + -- 'L e (2.1)
'-1 2m 411'1:0 '-1 n [r, - Rnl 2411'1:0' '-1 . ·Iri - rjl~- ~- ~,J- ,~-r-J

The first term represents the kinetic energy of the electrons, the second term the

interaction of the electrons with the external potential due to the ions, and the final

term the electron-electron interactions.

Adopting a single-electron approach, Hartree accounted for the final term in Eq. (2.1)

by considering a time averaged smooth electron distribution of density n(r), and

treating the potential felt by an electron at r as being generated by the average

charge distribution of all the other electrons i.e.

V(r) = e2 f dr' n(r')
Ir- r'l

(2.2)

This enables the many body wavefunction to be written in terms of single-electron

wavefunctions. However this many body wavefunction is very complex and requires

a large amount of computational effort for large condensed matter systems. The

Hartree and Hartree- Fock theories also ignore nonlocal correlation effects between

the electrons.

Thomas [18] and Fermi [19] approached the many body problem from a different

point of view, focusing on the electron density for the many body system rather

than the wavefunction. Their ideas were extended by Hohenberg and Kohn [20] into

an exact theory (DFT) based on two theorems;

6



1. The electron density n(r) is uniquely determined by the external potential

Vext(r). It can be shown that it is not possible for two different external

potentials to lead to the same electron density, and this implies that the reverse

is also true, that the external potential is a unique functional of the electron

density. Since the ground state N-electron wavefunction is determined by

"Vext(r), it is also a unique functional of the electron density. This is also true

for the total energy functional which can be written in the form

E[n(r)] = (1f;IHI1f;) = T[n(r)] + f drVext(r)n(r)

e2 f ,n(r)n(r')+- drdr I 'I +Exc[n(r)]2 r-r (2.3)

2. The energy functional above assumes its minimum value, the ground state

energy, for the correct ground state electron density.

In Eq, (2.3), the first term represents the kinetic energy functional, the second term

describes the interaction of the electron gas with the external potential, and the

third term is the Hartree energy due to the Hartree potential. The final term,

known as the exchange-correlation energy, is an unknown functional which contains

all the many body contributions which are not taken into account by the first three

terms.

Since Eq. (2.3) needs to be minimised and Exc is not known, it may appear that we

are no closer to solving the problem. However, Kohn and Sham [16]made use of the

second theorem, and found that minimising Eq. (2.3) with respect to the electron

density, with the condition that the number of particles is kept constant, leads to

an Euler-Lagrange equation

6T[n(r)] + Veff[n(r)] - J.m(r) = 0
6n(r) (2.4)

where

f n(r')dr'veff[n(r)] = Vext[n(r)] + e2 + V
[r - r'l xc (2.5)

and Vxc is the exchange-correlation potential

V _ 6Exc[n(r)]
xc - 6n(r) (2.6)

7



Kohn and Sham showed that Eq. (2.4) could be written as a Schrodinger equation

for non-interacting electrons moving in the external potential given by velI, with

T[n] the kinetic energy functional of the non-interacting electron gas which has

the same electron density as the real interacting system i.e. a set of single-electron

Schrodinger type equations known as the Kohn-Sham equations may be defined by

(2.7)

The electron density can now be defined in terms of single electron states cPn by

N

n(r) =L IcPn(r)12
n=l

(2.8)

Note that the {cPn(r)} and {en} are auxiliary quantities used to construct the elec-

tron density and other observables and are not the wavefunctions and energies of

the real electrons.

The DFT formalism up to now is exact. However in deriving the Kohn-Sham

equations, all the unknown quantities, namely electron-electron correlations due

to Coulomb repulsion and exchange interactions due to the Pauli Exclusion Princi-

ple, are put into the exchange-correlation energy functional. Since these quantities

are nonlocal and would require the use of many body theory, in practice approxi-

mations have to be made. A commonly used approximation is the Local Density

Approximation (LDA) [16, 17] where Exc is assumed to take the form

Exc[n(r)] = J Exc[n(r)]n(r)dr (2.9)

Here Exc[n(r)] is the exchange-correlation energy per electron in a homogeneous

electron gas of density no = n(r). The corresponding exchange-correlation potential

obtained from Eq. (2.6) at a point r thus depends only on the electron density n(r)

at r rather than the functional [n(r)].

Using the LDA exchange-correlation potential, an estimate is made for veIl (r).

Various band structure methods can then be used to solve the Kohn-Sham equations,

for example Augmented Plane Wave (APW), Orthogonalised Plane Wave (OPW),

8



Linear Muffin-Tin Orbitals (LMTO), or Pseudo Potential methods etc. (see for

example Ref. [21]). Once the {4>n (r)} have been calculated, the electron density is

obtained from Eq. (2.8). This is used to derive a new effective potential Veff(r)

and this cycle is repeated until self-consistency is achieved i.e. the input and output

effective potentials are the same to a given tolerance. In this thesis, the Korringa-

Kohn-Rostoker (KKR) method based on multiple scattering theory is used to solve

the Kohn-Sham equations. Rather than finding the single-electron states {4>n(r)},

this method uses the corresponding single-electron Green's function to calculate the

electron density and other observables. An advantage of the KKR method is its

ability to treat disordered systems (see Chapter 3).

2.2 KKR Multiple Scattering Theory

The theory for the multiple scattering of electrons in a solid was first derived by

Korringa [22] in terms of wavefunctions and later by Kohn and Rostoker [23] in

terms of Green's functions. For full details of developments in the KKR method see

Refs. [24, 25].

The aim is to solve the Kohn-Sham equation Eq, (2.7)

(2.10)

where V(r) is the effective potential. As mentioned above, rather than finding

the single-electron states {4>n (r)}, the KKR method calculates the corresponding

single-electron multiple-scattering Green's function G(r, r', E) defined by

(2.11)

From this, observable quantities may be calculated, for example the electron density

1 jEFn(r) = --1m G(r, r, E)dE
11" -00

(2.12)

for reconstructing the effective potential V(r) in the DFT self-consistency loop.

9



In this section, the multiple scattering equations are derived in operator form. In

subsequent sections, this formalism is put into a coordinate representation, which is

what is required to solve Eq. (2.7) with a potential of the form V(r). Furthermore,

for computational purposes it will also be necessary to expand in terms of partial

waves (angular momentum representation).

First consider the Kohn-Sham equation in operator form

(E - if) I¢» = 0 (2.13)

where if is the Hamiltonian operator if = -;~ '\72 + V(r). The retarded Green's

function operator corresponding to if is defined as

G(E) = (E - if)-l (2.14)

where the energy E is assumed to have an infinitesimal positive imaginary part.

Eq. (2.14) is the operator form of Eq. (2.11).

Similarly, in the absence of any potential, the free-electron Schrodinger equation

and corresponding free-electron Green's function operator may be defined as

(2.15)

and

(2.16)

In the following all quantities are in operator form but the circumflex symbol is

dropped for clarity. Expressing the full Hamiltonian operator as H = Ho + V and

combining Eq. (2.14) and Eq. (2.16) yields the Dyson equation

(2.17)

Now defining the transition operator T such that

(2.18)

means that Eq. (2.17) becomes

(2.19)

10



The transition operator T describes all possible scattering in the system as it relates

the free-particle Green's function to the full scattering Green's function. This may

be seen explicitly by rewriting in terms of wavefunctions, yielding the Lippmann-

Schwinger equation

I¢) = I~) + GoVI¢) (2.20)

or

(2.21)

which relates the outgoing scattered wave to the incoming wave.

The idea of multiple scattering theory is to represent the multiple-scattering problem

in terms of the scattering properties of the individual sites.

The first step is to decompose the potential V into a sum of non-overlapping con-

tributions Vi associated with each site i. This ensures that a scattering event due

to a given potential Vi ends before another begins.

In a coordinate representation, V(r) is decomposed into a sum of non-overlapping

spherical contributions Vi(r - ~) centred at each site Ri, and is set equal to zero

or a constant in the interstitial region outside the muffin-tin spheres i.e.

{
Vi(rd for Iril < rrT

Vi(r - Rd = Vi(ri) =
o otherwise

(2.22)

This is the famous muffin-tin potential illustrated in Fig. 2.1.

Returning to operator form [25, 26], by using Eq. (2.18) the transition operator T

can now be written as

T = V + VGoT = 'L)Vi + ViGoT) = 2:Ti
i i

(2.23)

with

~=Vi+Vi~T=Vi+Vi~~+2:Vi~~
#i

(2.24)

Eq, (2.24) may be manipulated into the form

Ti = [1 - ViG~irlVi(l +2:G~Tj)
#i

(2.25)
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Figure 2.1: Cross-section of a muffin-tin potential

Now consider a single potential associated with a site i. In an analogous fashion to

Eq. (2.23), the single-site transition matrix or t-matrix may be defined as

(2.26)

or

(2.27)

It can be seen that ti describes all possible scatterings due to the single site i. The

single site Green's function may be defined in analogy to Eq, (2.19) by

(2.28)

Substituting Eq. (2.27) into Eq. (2.25) yields

Ti = ti +L tiGijTj

j:j:i
(2.29)

In order to write the solution of the multiple scattering problem in terms of the

single-site scattering problem, the next step is to introduce the scattering path

operator Tij of Gyorffy and Stott [27J

Tij = ti8ij +L tiG~kTkj

k=j:i
(2.30)
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It can be shown that t: = L:j Tij and so the transition operator T may therefore

be written in the form

T = I:Ti = I:Tij
ij

(2.31)

In order to see explicitly the meaning of the scattering path operator, it is convenient

to expand it in a Born series:

(2.32)

It is evident that Tij gives the scattered wave from site j due to a wave incident

upon site i, taking into account all possible scatterings in between. For example,

the third term in Eq. (2.32) represents a wave incident upon site iwhich is scattered

and propagates to site k via the free-particle Green's function a~k,and is scattered

again at site k, then propagates to site j where the final scattering occurs. The sum

over all intermediate sites k ensures that this term represents all possible scatterings

from i to j which involve a single intermediate site. By considering each term in

this way, summing the scattering path operator itself over all sites i and j means all

waves incident at all scattering sites are being transformed into the outgoing waves

from all scattering sites, which is the definition of the transition operator T.

Note that the total multiple-scattering Green's function operator may now be writ-

ten in terms of the single site Green's function of Eq. (2.28), en [28]

(2.33)

where T?" contains all scatterers except the nth site. In terms of the scattering path

operator Eq. (2.33) becomes

a = an + anI: I: Tijan

i¥:n j¥:n
(2.34)

where

Tnn = I: I:Tij
i¥:n j¥:n

(2.35)
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2.2.1 Single-Site Scattering

For a thorough review of single-site scattering see Refs. [29, 30]. In brief, consider a

single muffin-tin potential Vi{r) illustrated in Fig. 2.1. As mentioned earlier, for com-

putational purposes it is necessary to go into an angular momentum representation.

Since the muffin-tin potential is spherically-symmetric, the Schrodinger equation

involving the single potential Vi{r) may be written in spherical polar coordinates,

and the Laplacian operator may be separated into a radial and an angular part.

The angular momentum of an electron is conserved in a central potential and so the

solutions for a particular value of the orbital angular momentum 1 and azimuthal

angular momentum m can then be written in the form

(2.36)

where Rl{r) satisfies the radial equation

[
1i2 1 0 ( 0) 1i

2 1- 2m r2 or r2 or + 2mr2l{l + 1) + Vi{r) Rl{r) = ERI{r) (2.37)

and the Yim{f) are spherical harmonics. Inside the muffin-tin sphere (r ::; rMT)

Eq. (2.37) needs to be solved numerically. The solution that is regular at the origin,

denoted by ZL(r, E), must join smoothly to a linear combination of free-particle

solutions (for r > rMT) at the muffin-tin boundary. Using the normalisation of

Faulkner and Stocks [28], this linear combination is taken to be

ZL(r, E) = h{r, E)tll{E) - ikHL(r, E) (2.38)

where k = V2mE/1i2. Here a notation has been used such that h{r, E)

jl{r, E)Yim{f), and L denotes the angular momentum quantum numbers l, m.

til (E) is the single-site scattering matrix t in an angular momentum representation,

and is related to the phase-shift 01(E) by

1 '8tl{E) = - VB sinOI{E)et I (2.39)

The phase shift and in turn the t-matrix contains all the information about the scat-

tering properties of the single-site potential. For a spherically symmetric potential

the t-matrix is diagonal in angular momentum.

14



The solution that is irregular at the origin, denoted by JL(r, E), must join smoothly

to the free particle solution h(r, E) at the muffin-tin boundary.

In a coordinate representation the single site Green's function Eq. (2.28) becomes

G(r,r',E) = Go(r,r',E) + / / Go(r, r", E)t(r", r"', E)Go(r"',r', E)dr"'dr" (2.40)

with the free-particle Green's function corresponding to Eq, (2.16) defined as

[E - Ho(r)]Go(r, r', E) = 6(r - r') (2.41 )

Eq. (2.41) has plane wave solutions
1 eiklr-r'l

Go(r, r', E) = --4 I 'I
1[" r - r (2.42)

which, using Bauer's identity, may be expanded in terms of spherical functions

Go(r,r',E) = -ik LHL(r>,E)h(r<,E)
L

where > and < denote the larger and smaller value of rand r' respectively. Substi-

(2.43)

tuting into Eq. (2.40) and using the normalisation of Eq. (2.38) yields the single-site

Green's function

Gi(ri' r'i, E) = L ZL(ri' E)t1(E)ZL(r'i, E) - L ZL(r;-, E)JL(r;, E)
L L

with the angular momentum elements of the single-site t-matrix defined as

t1(E) = / / dridr'ih(ri, E)ti(ri' r'i, E)JL' (r'i, E)

(2.44)

(2.45)

These may be determined by matching solutions at the muffin-tin boundary via

Eq. (2.38). Because of the matching, this equation is valid for r both in the inter-

stitial region and inside the muffin-tin sphere at site i.

2.2.2 Multiple-Site Scattering

In order to derive the multiple scattering Green's function, first consider the scat-

tering path operator Eq, (2.30) in a coordinate representation

rij(ri,r'j,E) = ti(ri' r'i, E)6ij + L//{ti(ri,r'i,E)
kof-i

Go(r'i +n., rk + Rk, E)rkj (rk' r'j, E)drkdr'i} (2.46)
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Here r, and r'j are local coordinates relative to the centres of the muffin-tin spheres

positioned at R, and Rj. Using translational invariance the free particle Green's

function may be written as

Go(r'i, rk + Rk -~, E)

Go(r'i, rk - Rib E) (2.47)

where ~k = R, - Rk. Note that Ir'il < Irk - Rikl for i f:. k. The free particle

Green's function Eq. (2.43) becomes

Go(r'i, rk - ~k, E) = -ik L h(r'i, E)HL(rk - Rik, E)
L

(2.48)

The spherical Hankel function may be expanded about Rik in terms of spherical

Bessel functions

-ikHL(rk - Rik, E) = LGtv(Rik,E)h(rk,E)
L

(2.49)

Substituting Eq. (2.49) into Eq. (2.48) yields

Go(r'i,rk -~k,E) = -ik L h(r'i,E)GtV(~k,E)Jv(rk,E)
L,L'

(2.50)

The expansion coefficients Gtv (~k' E) are the matrix elements of the free-particle

Green's function in a coordinate and angular momentum representation. They de-

pend only on the relative distance between the centres of the scatterers positioned

at sites i and k, being independent of the potentials at these sites, and are therefore

referred to as the free-space structure constants. They are given by

Ok ""' I I'+1" L" --GLV(~k,E) = -47rik ~ i - eLL,hl" (klRi - Rkl) YV,(Rik)
L"

(2.51)

where the C£~,are integrals over spherical harmonics

(2.52)

known as the Gaunt coefficients (see for example Ref. [29]).
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The matrix elements of the scattering path matrix Eq. (2.46) in an angular momen-

tum representation may be defined as

(2.53)

Substituting Eq, (2.46) with Eq. (2.50) into Eq. (2.53) leads to

Tfv (E) = tt (E) Oij0LV + L L tt (E) GifL" (Rik' E) T21,L' (E)
k:f.i L"

(2.54)

Now together with the single-site Green's function Eq. (2.44), using the operator

equation Eq. (2.34) leads to the multiple scattering Green's function in the form

(2.55)

where r = ri +R, is restricted to lie in the ith bounding sphere and r' = r'j + Rj

to lie in the lh sphere. The expression is also valid for i = j.

2.2.3 Calculating the Scattering Path Matrix

In order to calculate the multiple scattering Green's function Eq. (2.55), the remain-

ing quantities to be determined are the scattering path matrix elements Tfv.

Eq. (2.54) may be written as a super-matrix equation

(2.56)

which has site matrix elements

r_ij(E) = ti(E)Oij + Lti(E)G(Rik,E)r_kj(E)
k:f.i

(2.57)

These site matrix elements are themselves matrices in angular momentum space

given by Eq. (2.54). Therefore they may be determined by

.. [( 1 )_l]ijTiv = c -G LV (2.58)
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where the notation implies taking the {ij}th and {LL'}th element of the super-

matrix on the right-hand side. However, for a real system with N '" 1023 scattering

centres, this requires the inversion of a huge matrix.

Fortunately, for an ordered system, use may be made of the fact that in the limit

N --+ 00 the quantities in Eq. (2.57) are translationally-invariant Le. depend only

on the difference i - j rather than the absolute positions of sites i and j. Such

quantities are diagonal in reciprocal space where they are periodic, and so Eq. (2.54)

may instead be solved via a lattice Fourier transform. For the path matrix and the

structure constants these are defined as

TLL'(k,E) = ~ ~TtL'(E)e-ik(Ri-Rj)
1)

(2.59)

GLLI(k,E) = ~ ~GZL'(Ri - Rj,E)e-ik(Ri-Rj)
1)

(2.60)

where N is the number of lattice sites. The t-matrix is diagonal in the site indices

and is therefore independent of k. The path matrix elements TtL' are now given by

the inverse Fourier transform of Eq. (2.59), which as N --+ 00 is given by

(2.61)

where nBZ is the volume of the first Brillouin zone. The Fourier transform of

Eq. (2.57) is

(2.62)

and so finally

(2.63)

This Brillouin zone integral is computationally the most demanding task in calcu-

lating the single-electron Green's function Eq, (2.55). In practice, it is a reasonable

approximation to truncate the angular momentum expansion at 1 = 2 or 1 = 3.
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2.2.4 Calculating ObservableQuantities

In a spectral decomposed form the total Green's function Eq. (2.14) in a coordinate

representation can be written as

G( , E) = " 4>n(r)4>h(r')
r,r, L...J E-E

n n
(2.64)

The En are the energy eigenvalues and 4>n(r) are the normalised eigenvectors of

Eq. (2.10) which form a complete basis set.

It can be seen that the energy eigenvalues occur at the poles of the Green's function,

and hence from Eq. (2.55) at the poles of the scattering path matrix. Therefore a

way to determine the electronic bandstructure or dispersion relation E(k) is to find

the poles of the scattering path matrix. From Eq. (2.62) these occur when

Ilc1(E) - G(k, E)II = 0 (2.65)

The KKR determinant Eq. (2.65) may be solved as a function of E for a fixed value

of k or vice-versa, referred to as the "E-search" or "k-search" modes respectively.

This method of determining the bandstructure is computationally convenient due to

the complete separation between the potential and the structural aspects of the scat-

tering problem, which are contained within the t-matrix and the structure constants

respectively.

Single-particle observable quantities such as the density of states, charge density,

magnetic moments etc. can be calculated from the single-electron Green's function

(2.55). For example, it can be shown that the electron density is given by

1 JEFn(r) = --1m G(r, r, E)dE
IT -00

(2.66)

where the integral is from the lowest eigenvalue up to the Fermi energy EF. The

charge density is then simply given by p(r) = en(r). The density of states per site

is given by

n(E) = -~Im !G(r, r, E)dr (2.67)

where the integral is over r within a single site.
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This section has explained how to calculate observable quantities for an ordered

system. However for a random system where there is no longer any periodicity,

Eq. (2.56) cannot be solved using a lattice Fourier transform, and so a different

approach is required. The approach to dealing with substitutionally-disordered sys-

tems is the subject of the next chapter.
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Chapter 3

Disordered Systems

The obvious difficulty in dealing with random substitutionally-disordered systems

described in Chapter 1 is the absence of translational invariance (see Fig. 1.1(a))

Le. Bloch's theorem no longer holds. For comparison with experiment, properties

in principle need to be calculated for every possible disorder configuration and then

averaged according to the probability of occurrence of each configuration. This is

obviously not feasible in practice, and clearly an alternative route must be sought.

One approach is to average over configurations of repeating 'supercells' [31]. This

however does not allow disorder effects to be treated beyond the scale of the su-

percell, and is also a very computationally demanding method. An alternative and

widely used approach is to determine an effective medium [32, 33] which aims to

mimic as closely as possible the properties of the configurationally-averaged alloy.

By definition the effective medium is translationally-invariant, and hence Bloch's

theorem holds. Techniques such as the lattice Fourier transform used in calculating

the properties of pure ordered systems now become valid.

Some simple effective medium approaches, the Virtual Crystal Approximation

(VCA) [34], and the Average t-matrix Approximation (ATA) [35] are described

below. However, over the past 30 years or so the coherent potential approximation
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(CPA) [36,37] has proved to be the most successful effective medium theory [38, 39].

Within the context of KKR multiple scattering theory, the KKR-CPA [3, 5, 4] de-

termines an effective medium consisting of an ordered array of effective scatterers

described by the same t-matrix I. The scattering amplitude describing these effective

scatterers is determined using the self-consistency condition that excess scattering

off a single-site impurity embedded in such a medium should be zero on the av-

erage. However being in essence a single-site mean-field theory [40], the CPA is

not a fully-satisfactory theory of disorder and leaves much important physics out of

consideration. In this Chapter, the KKR-CPA is described in more detail, some of

its successful applications outlined, and then its limitations are explained.

3.1 Effective Medium Theories

When faced with the task of constructing an effective medium, perhaps the most

obvious way to proceed would be to attempt to construct some kind of average

muffin-tin potential. For example one could simply place the same average poten-

tial vVCA(r) on each site, obtained by averaging the potentials associated with the

constituent atoms of type a Le.

vVCA(r) =L P(a)va(r)
a

(3.1)

where P(a) is the concentration of sites of type a in the alloy. This is known as

the Virtual Crystal Approximation (VCA). The potential vVCA(r) is real and its

scattering properties are described by the matrix IVCA which is placed on every site.

This translational-invariance means that the scattering path matrix may now be

calculated through the Brillouin zone integral

(3.2)

in analogy to Section 2.2.3. However the VCA is based upon a perturbation theory

argument, and can be shown to be mathematically wrong. The energy eigenvalues of

an alloy are fundamentally different from those of the pure constituents and therefore
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perturbation theory cannot lead from one set of states to another [6]. The VCA

can however give reasonable results for a very dilute alloy or when the constituent

potentials are similar.

Another way to proceed would be to average the scattering matrices associated with

each atomic species a i.e.

tATA(r) =L P(a)tet(r)
et

(3.3)

and place this average t-matrix on each site. Translational invariance means that

the scattering path matrix may be calculated by

(3.4)

The ATA is an improvement over the VCA, yielding impurity bands and momentum

states with finite lifetimes, but it is incapable of correctly reproducing band edges [6].

3.1.1 Korringa-Kohn-Rostoker Coherent-Potential Approximation

(KKR-CPA)

The best and most sophisticated effective medium theory has proved to be the

Coherent Potential Approximation (CPA) [36,37]. The CPA is a vast improvement

over the VCA and ATA approaches described in Section 3.1, and is derived within

the KKR framework in this section. Many different methods can be used to derive

the KKR-CPA equations, but here the 'renormalised interactor' approach [6, 41] is

used, as this is the formalism that will be used in Chapter 5 to derive the nonlocal

version (KKR-NLCPA).

We begin by considering the usual expression for the scattering path matrix Eq. (2.57)

(3.5)

Now consider the (as of yet undetermined) KKR-CPA effective medium comprising

of identical effective scatterers t. The scattering path matrix y!j describing such a
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medium is given by

'Fij =r0" +"r G{"D "k)'Fkj- - tJ L...J _ _.L"t -

k:;i:i
Now consider a site i. Eq. (3.6) for all paths starting and ending on site i becomes

(3.6)

(3.7)

This may be rewritten as

(3.8)

or

( 1 "")-1"" -c: .-u
f..u = t. - b. (3.9)

where the renormalised interactor -;s!i is given by the expansion

-;s!i = LQo{~k)1k Qo{Rki) + L L Qo{Rik)1k Qo{Rkl)II GO{Rli) +... (3.10)
k:;i:i k:;i:il#,i

It can be seen from Eq. (3.10) that the renormalised interactor describes the in-

teraction of site i with the rest of the KKR-CPA medium i.e. describes all paths

starting and ending on site i which avoid site i at all intermediate steps. b.ii is

therefore independent of the nature of the potential at site i. This means that if the

scatterer at site i is replaced with a real t-matrix of type a (e.g. A or B), then the

path matrix for paths starting and ending on this impurity site embedded in the

KKR-CPA medium is given by

Tii = (ti -1 _ -;s!i)-1
.!....Q -Cl( - (3.11)

or
Tii = ['Fii-1 + ti -1 _ r-1]-1
.!....Q - -Cl( -

by substituting for b.ii using Eq, (3.9).

(3.12)

We are now in a position to determine the effective medium. The KKR-CPA requires

that excess scattering off this impurity site be zero on the average (Le. when averaged

over the probability of the impurity site being an A or a B site). Formally, the KKR-

CPA self-consistency condition requires that

L P(a).ti:: = f..ii
o

(3.13)
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I.e. consider the path matrix for paths starting and ending on the impurity site in

the KKR-CPA medium (fa on site i and I on every other site), and demand that

on the average this be equal to the path matrix with no impurity present (i.e. with

I placed on all sites).

Since we require the KKR-CPA effective medium to be translationally-invariant, f!i
must also satisfy the Brillouin zone integral

(3.14)

which follows by applying a lattice Fourier transform (see Section 2.2.3) to Eq. (3.6)

and then considering the iith matrix element.

Therefore in order to determine the KKR-CPA effective medium, Eq. (3.13) and

Eq. (3.14) must both be satisfied simultaneously. There is one unknown matrix

parameter I, and so in practice a guess must first be made for I for example by

using the ATA, and then the equations are solved by iteration until self-consistency

is achieved (so that the output I is the same as the input I to within the desired

accuracy).

In order to calculate observable quantities, an expression is needed for the

configurationally-averaged multiple-scattering Green's function calculated within

the KKR-CPA. The correct way of performing this averaging has been given by

Faulkner and Stocks [28]. How to obtain the site-diagonal configurationally-averaged

Green's function for a binary alloy is briefly described here.

The expression for the Green's function before averaging is given by Eq. (2.55).

G{E,ri,rj) = LZ1{E,rdTi!L'Zi,{E,rj)
LL'

-LZl(E, rdJl{E, ri)oij
L

(3.15)

where L{= I,m) is an angular momentum index and ri(rj) lies within the unit cell

centered at site i(j). Zi(E, ri) and liCE, rd are the regular and irregular solutions

respectively of the single-site problem at site i (see Section 2.2.1).
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Now consider a site i so that rand r' lie in the neighbourhood of i. The first step is

to average Eq. (3.15) over the subset of possible disorder configurations that leave

the potential in site i fixed:

(G(E,ri,rD) = LZi(E,rd(TEL')iZi,(E,rD
LL'

- L Zi(E, ri)Ji(E, rD
L

(3.16)

where (TEL')i is the path matrix for paths starting and ending at site i conditionally

averaged so that the potential on site i is known (to either be of type A or B). The

final step is to average over the possible occupants of site i itself:

(G(E, ri, rD) = L [P(A)Zt(E, ri)(TliL' )AZl, (E, rD
LL'

+p(B)Zf(E, ri)(TliL' )BZi,(E, rD]

- L [P(A)Zt(E,ri)Jt(E, rD + p(B)Zf(E, rdJf(E,rD]
L

The above expression is still exact at this stage, but now an approximation has to be

made. In the KKR-CPA, (TiiL')A and (TEL')B are constructed using an 'impurity'

(3.17)

site of type A or B embedded in the KKR-CPA effective medium. From Eq, (3.12),

this is given by

(3.18)

where a denotes a site of type A or B. The resulting KKR-CPA approximation to

the exact configurationally-averaged Green's function is denoted by G(E, ri, rD.

Site-diagonal observable quantities can now be calculated from G(E, ri, rD in anal-

ogy to Section 2.2.4 for pure ordered systems. Furthermore, 'site-restricted-averaged'

quantities may also be defined. For example, site-restricted charge densities

(3.19)

and component densities of states

(3.20)
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Here GcAE, ri, ri) is the site-restricted-averaged Green's function which has an atom

of type a residing on site i i.e.

Go:{E, ri, rD = P{a)L Zi{E, rd(TEv )iZi,(E, rD
LV

-P(a) L Zi(E, rdJi(E, rD
L

(3.21)

3.1.2 Charge Self-Consistency

The self-consistent field {SCF)-KKR-CPA [42, 43, 44, 45] combines density func-

tional theory (DFT) compatibly with the approximations made in treating the dis-

order by the KKR-CPA, and has been widely used for calculating the equilibrium

properties of disordered phases of alloys. In principle the total energy of an alloy as

a functional of the charge density (Eq. (2.3)) should be minimised for each possi-

ble disorder configuration individually and then an average taken over all disorder

configurations. This is clearly not computationally feasible, and so in the spirit of

mean-field theory the SCF-KKR-CPA bypasses these computational difficulties by

reversing the order of the minimisation and the configurational averaging.

In brief, the strategy of the SCF-KKR-CPA is to minimise a functional

n[PA{r),PB{r)] with respect to site-restricted-average charge densities PA{r) and

PB{r). The functional n[PA{r),PB{r)] is known as the electronic Grand Potential

and is the configurationally-averaged total energy functional with the number of

electrons constrained according to the electronic chemical potential J.1, [46, 2]. For a

binary AcBl-c alloy, PA(r) and PB{r) are the average of the charge densities aris-

ing from all disorder configurations that have either an A-type or a B-type atom

respectively fixed on one site. This maps the many electron problem to that of

a single electron moving through disordered arrangements of single site effective

potentials Vlff (r - Ri) and V~ff(r - Ri), which may be solved self-consistently us-

ing the KKR-CPA. For a binary alloy, the main steps involved in obtaining charge

self-consistency are briefly described below.
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1. First assume some input effective single-site potentials VA(r-~) and VB(r-

~). These are taken to depend only on the charge density in the unit cell

centred at R, and on the average charge density everywhere else i.e. in the

spirit of a mean-field theory intersite charge correlations are neglected. From

these potentials calculate the single-site t-matrices i.A and i.B·

2. Use the KKR-CPA to determine the effective t-matrix f and place this on

every site. Instead of using f!i to determine the average single-site charge

density Pi' do the following:

3. Place at-matrix i.A or i.B on an impurity site i (with f remaining on every

other site) and hence determine the impurity path matrix L~ or LiJJ respec-

tively from Eq. (3.12) for paths starting and ending on the impurity site.

4. Use L~ and LiJJ to calculate the site-restricted-average charge densities PA(r)

and PB(r) via Eq, (3.19) i.e. approximate site-restricted-average quantities by

using a single-site impurity embedded in the KKR-CPA effective medium.

Note that P(A)i.A +P(B)i.B i- f in general, however P(A)L~ + P(B)LiJJ = f!i
and hence the average single-site charge density is given by P = P(A)PA +
P(B)PB'

5. Place the average single-site charge density P on every site except at site i

place PA or PB' New single site potentials VA(r - Ri) and VB(r - Ri) may

now be constructed since they only depend on the charge density at site i and

the average charge density everywhere else.

6. Iterate to self-consistency so that the output potentials equal the input po-

tentials to the desired accuracy, thus making them consistent with the site-

restricted-average charge densities PA and PB'

7. Once self-consistency is achieved, calculate suitable equilibrium properties

such as the total energy, momentum density etc.
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Figure 3.1: Density of states for CUo,77Nio,23. Full line, KKR-CPA results.
Dashed line, model calculations by G. M. Stocks, R. W. Williams, J. S. Faulkner,
Phys. Rev. B 4, 4390 {1971}. Dotted line, experimental photo emission data by
N. J. Shevshik and C. M. Penchina, Phys. Status Solidi (b) 70, 619 {1975}. Figure
reproduced from G. M. Stocks, W. M. Temmerman, B. L. Gyorffy, Phys. Rev. Lett.
41, 339 (1978)

3.1.3 Successful Applications of the KKR-CPA

There have been numerous successful applications of the KKR-CPA. As a few ex-

amples, Fig. 3.1 shows the density of states of CuNi, one of the first realistic density

of states calculations for an alloy, reproducing a Ni impurity band near the Fermi

energy seen in photo emission experiments. Fig. 3.2 shows one of the first SCF-

KKR-CPA calculations, giving good agreement with experiment for the calculation

of the lattice constant for CuZn alloys. Fig. 3.3 shows the density of states of N iPt,

predicting the well known low temperature ordered structure in agreement with ex-

periment [47]. More recently the KKR-CPA has given results in good agreement

with the first high resolution experimental determination of the Fermi surface of an

alloy, CuPd, shown in Figs. 3.4 and 3.5.
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line is the average with the dashed lines showing contributions on the Pt and Ni
sites. Figure reproduced from F. J. Pinski et. al., Phys. Rev. Lett. 66, 766 (1991)

30



Figure 3.4: The Fermi surface of CUO.6Pd0.4, reconstructed from positron anni-
hilation (2D-ACAR) projections. Figure reproduced from 1. Wilkinson et. al.,
Phys. Rev. Lett. 87, 216401 (2001)
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Figure 3.5: (100) (left hand side) and (110) (right hand side) planes through the
Fermi surface of CUO.72PdO.28 (top) and CUO.6PdO.4 (bottom). The solid lines rep-
resent the experimental data and the dashed lines the KKR-CPA calculation; the
boundary and selected symmetry points of the first BZ are also shown. Figure
reproduced from 1. Wilkinson et. al., Phys. Rev. Lett. 87, 216401 (2001)
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3.2 Limitations of the KKR-CPA

Although over the past 30 years or so the KKR-CPA has proved to be a generally

reliable first principles method for dealing with disordered systems, it is by no means

a fully satisfactory theory due to its single-site nature. The KKR-CPA treats a

single site exactly but the effects of the surrounding sites in an averaged, mean-field

manner. This means that statistical fluctuations in the environment of a site due to

the disorder configurations are not taken into account and hence much important

physics is left out of consideration. This includes:

1. Nonlocal scattering correlations Le. the effect on the single-electron wave-

function due to multiple scattering off a disordered configuration of a cluster

of sites, for example. It is these correlated scatterings which are responsible

for band tailing and sharp structure in the density of states [6].

2. Short-range-order effects on the electronic structure. An alloy with short-

range order present means that the atoms are not distributed completely ran-

domly in the lattice. Atoms of a given kind either tend to surround themselves

with atoms of the same kind, which is known as short-range clustering, or with

atoms of a different kind, which is known as short-range ordering. This situa-

tion always occurs in the disordered phase of real alloys, which are in principle

completely random only at an infinite temperature. A single-site theory has

only a single-site probability distribution and therefore cannot describe the

effects of short-range order.

3. Nonlocal charge correlations. The local environment of a site affects the

charge density and therefore the potential on that site. Although charge

self-consistency for the KKR-CPA is achieved by combination with density

functional theory (see SCF-KKR-CPA above), the effects of nonlocal intersite

charge-correlations are neglected. Within the SCF-KKR-CPA, charge neu-

trality requires the average net charge on a single site to vanish. Therefore,

the intersite electrostatic energy formed from these single-site charges also
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vanishes. This missing 'charge-correlation' or Madelung contribution to the

total energy can be substantial [48, 49, 50], and subsequently attempts have

been made to find a way of including it approximately within the single-site

framework [45, 51].

4. Lattice displacement effects. Disordered arrangements of atoms cause

the nuclei to be displaced from their perfect lattice positions. This effect is

intertwined with charge correlations and is particularly prominent when there

is a notable size difference between the constituent atomic species e.g. alloys

comprising 3d and 5d transition metals such as CuAu, N iPt, Cr W etc. Lattice

displacements can playa significant role in determining properties, but in all

SCF-KKR-CPA calculations to date it has been necessary to assume a rigidly

fixed lattice [52].

In addition to the significant impact of the above missing physics upon many cal-

culated physical properties of the material (e.g. formation of magnetic moments,

resistivity etc.), an electronic description of the disordered phase is also used as

a basis for a first-principles theory [5, 53, 52] of the statistical mechanics of the

compositional fluctuations in terms of 'concentration waves' [54]. By considering

the linear response of the electronic Grand potential to concentration waves as the

temperature is lowered, a measure of the short-range order in the system at a tem-

perature T (above Tc) can be determined and compared with data obtained from

X-ray diffuse scattering experiments. Unlike other approaches such as the cluster

variational method [55] or Monte Carlo simulations [56], a mean-field theory is able

to treat both short and long range interactions. However its accuracy comes into

question when fluctuations about such a local mean field are significant. In this case

calculations for the transition temperature Tc are often inaccurate and incorrect low

temperature behaviour can be predicted. The underlying reason for this is the single-

site mean-field nature of the SCF-KKR-CPA description of the electronic structure

used to calculate the configurational energies. For example, the concentration-wave

theory currently determines a measure of short-range order based upon a descrip-
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tion of the electronic structure in which no short-range order can be included at the

outset. This is described in more detail in Chapter 8.

In order to improve upon the KKR-CPA, it is clearly necessary to go beyond a single-

site local mean-field theory and develop a multi-site or cluster theory. However, this

has turned out to be a very difficult problem, and the development of a satisfactory

cluster theory is discussed in detail in the next chapter.
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Chapter 4

Cluster Theories

The KKR-CPA described in Chapter 3 is universally accepted as the best single-site

approximation for calculating the properties of substitutionally-disordered alloys [6].

However, the limitations of the KKR-CPA have been discussed in Section 3.2 and

it is evident that these limitations can only be addressed by considering a multi-site

or cluster theory.

This chapter briefly reviews some attempts at a satisfactory cluster theory. First

a brief description is given of the embedded cluster method (KKR-ECM), [6, 41]

which is to my knowledge the only first principles cluster method which has been

successfully applied to realistic systems, for example AgPd alloys [57]. However,

as a non self-consistent theory, it is not fully satisfactory and the requirements

for a satisfactory cluster theory are given. A recent theory within a tight-binding

description, the NLCPA (nonlocal coherent potential approximation), is the first to

satisfy all these requirements and it is described together with the MCPA (molecular

coherent potential approximation), an earlier cluster theory which highlights some

problems overcome by the NLCPA.
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4.1 Embedded Cluster Method (KKR-ECM)

The KKR-ECM is concerned with the treatment of a cluster of impurity potentials

embedded in the predetermined KKR-CPA medium.

The first step is to view the lattice as being made up of a collection of non-

overlapping clusters {G} and to rewrite the KKR-CPA path matrix equation Eq. (3.6)

in the form of a cluster equation

- CC' - Cs:'" - C G CC" - C" C'~ =~cl UCC' + L.J ~cl = ~
C"=f.C

(4.1)

Here the double underscores denote super-matrices in both angular momentum space

and cluster-site space. In this way, the site-matrix elements are themselves matrices

in angular momentum space i.e.

[
~C']ij _ ..
T = T~J= - , i E G, j E G' (4.2)

[GCC'r = G{~j), i E C, j E G', G t= G'

{[~~r1fj = { n-1}-. i = j, i E G
-G{Rij), i t= i, i E G, j E G

The cluster t-matrix ~~ describes the total scattering from a cluster and GCc'

(4.3)

(4.4)

describes the propagation between clusters. If we consider the cluster-diagonal part

of the path matrix ~CC, then it can be shown [6] that

L GCc'~c'c = D. c~cc
C'=f.C

with the cluster renormalised interact or D. C given by the expansion

(4.5)

[D. crj =L G{~kHG{Rkj) + L G{RikHG{RkIHG{Rlj) +... (4.6)
kf/.C kf/.C,lf/.C

The cluster-diagonal part of Eq. (4.1) can then be written in the form

(4.7)

From the expansion in Eq. (4.6), it can be seen that D. C describes all paths from

the cluster site i to the cluster site j which only involve intermediate sites outside
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of the cluster. It is independent of the contents of the cluster and can be viewed as

describing the KKR-CPA effective medium from which the cluster has been removed

Le. replaced by a cavity. Therefore this 'renormalisation' of Eq. (4.1) enables us to

define an 'impurity cluster' embedded in the effective medium simply by filling up

this cavity with a particular configuration of real site potentials.

It follows from Eq. (4. 7) that the path matrix for such an impurity cluster is given

by

cc c 6 tC ~ c cc
;!;,imp = ~cl,imp cc' + =cl,imp= ;!;,imp (4.8)

Using Eq. (4.7) to eliminate the cluster renormalised interactor yields

cc [( C )-1 (-C)-1 (_CC)-I]-1
;!;,imp = ~cl,imp - ~ cl +;!;, (4.9)

For a particular impurity cluster configuration, the impurity cluster path matrix

;!;,~ describes all paths starting and ending on the sites of an impurity cluster

of real potentials embedded in the KKR-CPA effective medium. The KKR-CPA

effective medium cluster path matrix has cluster-site matrix elements given by the

usual Brillouin zone integration

[~CC] ij = _1_ r dk (rl _ G{k)) -1 eik(Ri-Rj)
nBZ inEZ

for sites i,j within the cluster C. The Green's function associated with any sites

(4.10)

i,j in the cluster for any particular cluster configuration may now be obtained from

Eq. (3.15). Therefore observable quantities such as the density of states for a partic-

ular site (usually taken to be the central site) with any given cluster configuration

can be obtained. The density of states for the material is then usually approximated

by taking the configurational average of this over all the cluster configurations.

The KKR-ECM does give analytic results which take into account local environment

effects involving the cluster sites (such as scattering correlations) and is able to

take into account the effects of short-range order, albeit non self-consistently [57].

The major limitation of the KKR-ECM is that as a non self-consistent theory, it

does not yield a new translationally-invariant effective medium determined self-

consistently with respect to the cluster. This is insufficient for describing many

37



systems since the effects of cluster self-consistency can have a significant effect on

the properties. This lack of cluster self-consistency also restricts possible future

developments such as combining with density functional theory and obtaining charge

self-consistency. However, the development of a satisfactory self-consistent cluster

theory has remained a long standing problem.

4.2 A Satisfactory Cluster Theory

The requirements for a successful cluster theory have been described by Gonis [6].

In particular, such a theory should:

• yield herglotz analytic results

• take account of local environment effects in a self-consistent way

• yield an effective medium which possesses the translational-invariance of the

original lattice

• become exact in all physical limits

• allow the treatment of the effects of short-range order

• be computationally feasible

Since the CPA was first formulated [36, 37], many attempts were made to develop

a successful cluster generalisation. The first attempts (collectively known as CPAn)

were based on diagrammatic methods but unfortunately were found to lead to non-

analytic results [58]. Most other attempts have mainly been within the framework

of a simple tight-binding description of the Hamiltonian. Unfortunately none of

these theories satisfy all of the requirements for a successful cluster theory described

above. Indeed, while most could be derived within a first-principles framework

by formal analogy, only the KKR-ECM described above has found application to

realistic systems, mainly due to the physically unsatisfactory or computationally
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prohibitive nature of these theories even within a tight-binding description. The

Traveling Cluster Approximation (TCA) [59] based on diagrammatic methods and

the Cluster CPA (CCPA) [60] based on the Augmented Space Formalism [61] do

retain herglotz analytic properties but have proved to be computationally tractable

only for pair clusters.

The development of a successful cluster theory has thus remained a long-standing

problem, however what appears to be a viable solution within a tight-binding de-

scription has been proposed very recently. The new method has emerged from the

Dynamical Cluster Approximation [7, 8, 9] (DCA) which was originally invented to

describe dynamical short-range correlations within the framework of the Dynamical

Mean Field Theory [62] (DMFT) of spin and charge fluctuations in simple Hub-

bard models of strongly-correlated electron systems. Since DMFT can be regarded

as the dynamical generalisation of the CPA for the Hubbard 'alloy analogy' prob-

lem [63, 64], it is natural to investigate the static limit of the DCA as a generalisation

of the CPA which includes a description of short-range order. Indeed, its static limit

has recently been adapted by Jarrell and Krishnamurthy for a simple tight-binding

model of electrons moving in a disordered potential [10]. The same problem was

investigated by Moradian et al. [11, 12] and the theory was named the nonlocal

coherent potential approximation (NLCPA). Unlike previous attempts, the NLCPA

does satisfy all of the requirements for a satisfactory cluster theory listed above, and

is described shortly.

4.2.1 The Tight-Binding Formalism

The tight-binding Hamiltonian operator may be expressed as

(4.11)
i,a i,j,a,{3

where ctr and Cia are the creation and annihilation operators for state vectors asso-

ciated with 'orbitals' a centred on site i. The {tOi} are the 'site energies' and {Wij}
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the hopping terms. In a basis labelled by the sites of the direct lattice this becomes

(4.12)

Defining the Green's function operator by G{E) = (E - H)-I, with E assumed to

have an infinitesimal positive imaginary part, from Eq. (4.12) we obtain the 'locator'

equation of motion

Gij{E) = gi6ij + giL WikGkj{E),
k#i

with the bare locator gi for site i defined as

(4.13)

(4.14)

Eq. (4.13) can also be put into the form of a Dyson equation or 'propagator' equation

of motion

Gij{E) = Gg{E) +L Gi~{E)EkGkj{E), (4.15)
k

where the free-particle Green's function Gg{E) is the solution of Eq. (4.13) for all

site energies {Ed set to zero. Eq. (4.15) can be iterated to yield the multi-site

expansion

Gij{E) = Gg(E) +L Gi~(E)EkG~j(E) +L Gi~{E)EkG~I{E)EIGg{E) + ... (4.16)
k k,l

We are interested in the case of a substitutionally disordered alloy where the site

energies {Ed vary from site to site in a random fashion, and the evaluation of (G),

the ensemble average of G over all possible disorder configurations. To do this, we

define the exact self-energy ~ such that the ensemble averaged Green's function in

Eq. (4.16) can be written in the form

(Gij(E)) = Gi~(E) +L Gi~(E)~kl{E) (Glj{E))
k,l

(4.17)

i.e. the translationally-invariant configurationally-averaged medium described by

(G) is characterised by the translationally-invariant self-energy E. Therefore ef-

fective medium theories within the tight-binding formalism are concerned with the

approximate evaluation of the exact self-energy. For example, the coherent po-

tential approximation (CPA) yields a site-diagonal self-energy ~i6ij, the 'coherent
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potential', which is analogous to the effective single-site t-matrix in the KKR-CPA

(Section 3.1.1). This is a consequence of its failure to take into account local envi-

ronment effects as described in Section 3.2, a problem which can be addressed by a

cluster theory.

4.2.2 Molecular Coherent Potential Approximation (MCPA)

The MCPA [65, 2] is a self-consistent and analytic (though unsatisfactory) cluster

theory, and it is described here because it highlights some important problems which

are overcome by the NLCPA (Section 4.2.3), in particular the problem of obtaining

translational invariance.

The CPA and cluster extensions can be derived in many different ways within the

tight-binding framework, for example the 'locator' or 'propagator' methods. Here I

rederive the MCPA in terms of the 'cavity Green's function' (or 'cluster excluded

propagator') formalism in order for comparison to be made with the NLCPA which

has been derived using this approach [10, 11, 12].

In the MCPA, the lattice is viewed as being made up of a collection of identical

non-overlapping clusters, a 'superlattice', and the electron wave as being the sum of

scattering contributions from these clusters. The main assumption made is that the

self-energy is cluster-diagonal, and for each cluster C it may be written as a matrix

in cluster-site space as 'Y:,COCC' with matrix elements

I,JE C (4.18)

It follows from Eq. (4.17) that the Green's function G for this MCPA effective

medium may also be written in terms of cluster quantities as

(4.19)

with matrix elements of the form

(4.20)
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and

[G~clj = G?j' i E C, j E C'

For clarity, the explicit dependence on energy E has been dropped.

(4.21)

A cluster-diagonal self-energy means that there are no self-energy terms relating sites

in different clusters, and hence the medium only has the translational invariance of

the super-lattice. This means that the cluster dependence of the above quantities

may be removed by defining Fourier transforms of the form

GCc(q) =L:Gccleiq.Rccl
C'

(4.22)

with Rccl the vector distance between the centres of clusters C and C', and q

a vector in the Brillouin zone of the super-lattice (which will clearly be a smaller

Brillouin zone than that of the original lattice). The self-energy is unaffected as it

is cluster-diagonal. Eq. (4.19) now becomes

(4.23)

or

(4.24)

with free-particle Green's function

(4.25)

It follows that the real-space Green's function for the cluster sites is given by

(4.26)

where the integral is over the first Brillouin zone of the super-lattice.

The question now arises as to how this effective medium is determined. This may

be done by considering a cluster C, and from Eq. (4.19) the cluster-diagonal part of

the Green's function is given by

(4.27)
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This may be rewritten as

Gee = flee + fleeL.eGee (4.28)

where the sum over all clusters has been removed, and these neglected terms have

been replaced by introducing the 'cavity Green's function' flee in place of the free-

particle Green's function. The cavity Green's function, in a similar fashion to the

cluster renormalised interactor within the KKR framework, describes the effective

medium from which the cluster sites have been removed, in other words replaced by

a cavity. Since Eq. (4.28) only involves matrices in the space of the sites belonging

to the cluster C, it is convenient to label the site matrix elements by capital letters

Le.

GIJ = QIJ +L QlKL.KLGLJ
K,L

(4.29)

An impurity cluster embedded in the effective medium may now be defined by filling

up the cavity with a particular configuration of site energies {El} Le.

G imp r: "" f? G implJ = '::IIJ+ ~ '::IlKEK KJ
K

(4.30)

The MCPA self-consistency condition now follows by demanding that the average

of the Green's function over all impurity cluster configurations be equal to that for

the effective medium itself Le.

/ imp) -\GIJ =GlJ (4.31)

The matrix elements G1J must also of course be matrix elements of Gee defined in

Eq. (4.26), and so this process is iterated until Eq. (4.26) and Eq. (4.31) are satisfied

simultaneously so that self-consistency is achieved.

As a cluster theory, the MCPA has two major disadvantages. Firstly, it yields an

effective medium which does not possess the site-to-site translational invariance of

the underlying lattice. Sites in different clusters are not explicitly connected (al-

though interactions between different clusters are treated at a mean-field level) and

so there are no self-energy terms relating sites in different clusters. The introduction
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of these artificial boundaries can affect the calculation of transport properties etc.

This also means that different sites in a cluster give different results when calculat-

ing properties. Secondly, the theory is computationally very demanding, mainly due

to the integration in Eq. (4.26) which involves matrices in cluster-site space which

increase in dimension with increasing cluster size. These drawbacks have prevented

the MCPA from being generally applied to realistic systems.

4.2.3 Nonlocal Coherent Potential Approximation (NLCPA)

The NLCPA satisfies all of the requirements for a satisfactory cluster theory de-

scribed in Section 4.2, and a brief review is given in this section. As the static

limit of the DCA, the NLCPA was first derived by Jarrell and Krishnamurthy using

the diagrammatic language of perturbation theory [10], however the derivation pre-

sented here is consistent with the usual approach of effective medium theories given

by Moradian et. al. [11, 12].

First note that the exact self-energy defined in Eq. (4.17) is translationally-invariant

and may be represented in reciprocal space by the function ~(k). Applying a lattice

Fourier transform to Eq. (4.17) gives

(G(k)) = GO(k) + GO(k)~(k) (G(k)) (4.32)

The self-energy ~(k) defined in Eq. (4.32) is the static limit of the self-energy central

to the Dynamical Cluster Approximation introduced by Hettler et al. [7, 8, 9].

In this context, the idea is to sample ~(k) at a finite number of points {Kn} in

the first Brillouin zone so that ~(k) -+ {~(Kn)}. This means that the range of

nonlocal correlations treated exactly in the self-energy is reduced, but importantly

the translational invariance of the medium is retained. This means that the problem

can be mapped to that of a self-consistently embedded finite-sized cluster problem.

In more detail, the idea is to divide or 'coarse-grain' the first Brillouin zone into

tiles centred at the points {Kn}, and to approximate the self-energy ~(k) by the

set of coarse-grained values ~(Kn), each of which are defined to be the average of
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~(k) over the momenta lying within the tile centred at Kn. Consistent with this

approximation, the corresponding averaged Green's function (G{k)) is approximated

by the set of coarse-grained values G{Kn}, each of which are defined as

(4.33)

where GO{k) = {E - W{k))-l, and the integral is over the reciprocal space tile

surrounding Kn. Here Ne is the number of tiles or Kn values. Note that these

integrals are straightforward since the self-energy is constant within each tile.

As has already been mentioned, approximating the self-energy in reciprocal space in

this manner has the effect of reducing the range of the nonlocal correlations treated

exactly in real space. In particular, coarse-graining reciprocal space into tiles may be

interpreted as coarse-graining real space into tiles Le. a set of periodically repeating

clusters. The set of Kn values are related to a set of cluster sites {I, J} in real space

by the Fourier transformation

__!__ L eiKn(R/-RJ) = flu.
Ne x,

(4.34)

Ne is the number of sites in a cluster, and is the same as the number of Kn values

and tiles in reciprocal space. The shape of the reciprocal space tiles corresponds

to the reciprocal space of the shape of the real space tiles or clusters. However a

restriction is that the real space tiles and corresponding reciprocal space tiles must

preserve the point-group symmetry of the lattice. This is to ensure that equivalent

momenta are mapped to the same tile.

In Ref. [10], the self-energy is only considered as a function in coarse-grained recip-

rocal space, and the problem is Fourier transformed to real space for the impurity

problem. Moradian et al. [11, 12] used the Fourier transformation Eq. (4.34) to

consider the self-energy and Green's function in real space, which is more consistent

with the usual approach of effective medium theories and aids physical interpretation

of the theory. The self-energy is given by

~IJ = __!__ L ~(Kn)eiKn(R/-RJ)
Ne x,

(4.35)
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and the Green's function by

(4.36)

It might appear that representing the self-energy in this way is equivalent to the

MCPA (Section 4.2.2) in assuming it to be cluster diagonal, however this is not the

case. Coarse-graining the self-energy in reciprocal space does not destroy the trans-

lational invariance. Unlike the MCPA, sites in different clusters are connected and

hence the self-energy is independent of the origin of the set of clusters in real space.

~IJ depends only on the difference between the cluster sites I and J, irrespective of

which site in the lattice is chosen to be site I. It may be interpreted as a nonlocal

coherent potential, an idea which was first suggested in the 1970s [33], but at the

time it was not realised how to treat the problem consistently in reciprocal space.

The next step is to determine the NLCPA effective medium, which may be achieved

in a similar manner to the MCPA. We consider a cluster C with sites labelled by

capital letters, and consider the cavity Green's function OIJ defined by Eq. (4.29)

CIJ = OIJ +L OIK~KLCLJ
K,L

(4.37)

which describes a cavity at the cluster sites. An impurity cluster embedded in the

effective medium may be defined by filling up the cavity with a particular configu-

ration of site energies {El} i.e.

Cimp 0 '" 0 errIJ = IJ + L._; IKEK KJ
K

(4.38)

In the same way as the MCPA, the NLCPA self-consistency condition now follows

by demanding that the average of the Green's function over all impurity cluster

configurations be equal to that for the effective medium itself

(imp) -CIJ = CIJ (4.39)

However, as has been described, the treatment of the problem by the two approx-

imations is very different in reciprocal space. In the NLCPA, the matrix elements
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GIJ must also satisfy Eq. (4.36) through Eq. (4.33), and the averaging over impu-

rity clusters is continued until Eq. (4.33) and Eq. (4.39) are satisfied simultaneously

so that self-consistency is achieved. Unlike the MCPA, integrating over tiles in

Eq. (4.33) and then summing over the tiles means that an integral is essentially

performed over the whole Brillouin zone in analogy to the conventional single-site

CPA. Furthermore, since this Brillouin zone integration does not involve matrices

in cluster-site space, it is no more computationally demanding than the CPA. Fi-

nally, note that the NLCPA becomes exact for an infinite cluster and reduces to the

CPA for a single-site cluster, in which case the self-energy reduces to the single-site

coherent potential.

In order to illustrate some of the improvements of the NLCPA over the conventional

CPA, Moradian [11] used a simple one-dimensional tight-binding model to investi-

gate the onset of split-band behaviour. Here I use a similar model with slightly

different parameters in order to compare to exact numerical results (histograms)

obtained by Gonis [6]. Fig. 4.1 shows the exact density of states results for two

pure one-dimensional materials described by nearest neighbour hopping W = 1.0

and random site energies EA = +2.0 and EB = -2.0. Fig. 4.2 shows exact results

for an A50B50 alloy together with the CPA results. Although the CPA correctly

separates the density of states into two subbands, the gap at E = 0.0 should be just

vanishing. However the contributions near band edges are due to large clusters of

like atoms which are not described by the single-site CPA. Figs. 4.3 and 4.4 show

four-site and eight-site NLCPA calculations respectively for the same parameters.

It is clear that the result gets closer to the exact result as the cluster size increases.

The band gap at E = 0.0 is gradually filled in, and the increasing structure in the

density of states arises from statistical fluctuations in the local environment of a site

which are smoothed out by the single-site mean-field CPA.

However, in order to carry out first-principles ab-initio calculations, an approach

compatible with density functional theory (Chapter 2) is required i.e. a method for

solving the Kohn-Sham equations (Eq. 2.7) rather than solving a Schrodinger equa-
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Figure 4.1: Exact density of states histogram for two pure one-dimensional materials
described by a nearest neighbour tight-binding Hamiltonian with EA = -EB = 2.0
and W = 1.0. Figure reproduced from 'Green Functions for Ordered and Disor-
dered Systems' Vol. 4 of Studies in Mathematical Physics (North Holland, 1992) by
A. Gonis

tion for the tight-binding model Hamiltonian Eq. (4.11). For disordered systems,

this means an approach based on multiple-scattering theory (Chapter 2). The re-

formulation of the NLCPA in terms of multiple scattering theory is the subject of

the next chapter.
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Figure 4.2: Exact density of states histogram together with the CPA results (solid
line) for an A50B50 alloy of the two pure materials shown in Fig. 4.1. Figure repro-
duced from' Green Functions for Ordered and Disordered Systems' Vol. 4 of Studies
in Mathematical Physics (North Holland, 1992) by A. Gonis
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Figure 4.3: A four site NLCPA calculation for the density of states of an AsoBso
alloy of the two pure materials shown in Fig. 4.1
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Figure 4.4: An eight site NLCPA calculation for the density of states of an AsoBso
alloy of the two pure materials shown in Fig. 4.1
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Chapter 5

KKR-NLCPA Formalism

The aim of this chapter is to derive the nonlocal coherent-potential approximation

(NLCPA) (Section 4.2.3) within the framework of KKR multiple scattering the-

ory [24, 25]. Much of the work in this chapter and the following two chapters has

been published in Ref. [66].

Because the language of multiple scattering theory is so different from the context in

which the NLCPA originates (i.e. static limit of the Dynamical Cluster Approxima-

tion), here some of the principal differences between the treatment of the problem

in this chapter and that of Ref. [10] are given. First note that use is not made of a

tight-binding model Hamiltonian. Instead a Schrodinger equation is solved numeri-

cally in each unit cell and the 'out-going wave' solution is matched to the incoming

waves from all the other unit cells. This is known as the multiple scattering ap-

proach [24, 25] to the problem of electronic structure in solids and is the foundation

of the Korringa-Kohn and Rostoker (KKR) band theory method described in Chap-

ter 2. Consequently, the principal virtue of the formalism presented in this chapter,

as opposed to those based on tight-binding model Hamiltonians, is that it prepares

the ground for first-principles calculations based on density-functional theories [15].

In multiple scattering theories the object of interest is not the self-energy and the

diagrammatic language of perturbation theory is not used. In this chapter it will be
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shown that the quantities that play the role of the self-energy in multiple scattering

theory are the effective scattering amplitudes I and effective structure constants

G(Rii). These formal reasons fully account for the fact that the arguments are not

based on restoring momentum conservation and introducing approximate Laue func-

tions to renormalise diagrams as in Ref. [10], but the theory is constructed in terms

of real and reciprocal space clusters. Nevertheless, the final algorithm described in

Sec. 5.2 is equivalent to that investigated by Jarrell and Krishnamurthy [10]. The

aim in reformulating the problem is for the purpose of carrying out a first-principles

calculation, in other words to develop a non-local KKR-CPA [3]. This opens up

a way of treating SRO and other short-range effects on the electronic structure of

realistic parameter-free models of alloys.

5.1 Derivation

5.1.1 Screening of the Structure Constants

An idea for the way to include nonlocal scattering correlations into the KKR frame-

work is given by considering the molecular coherent potential approximation (Sec-

tion 4.2.2), and in particular Eq. (4.26). The off-diagonal cluster-site matrix ele-

ments of the self-energy ~c may be interpreted as modifying the hopping terms

within each cluster, but not between clusters as the self-energy is cluster diagonal.

In the limit of an infinitely large cluster however, the exact self-energy defined in

Eq. (4.17) relating all the sites of the lattice would be obtained, which may be in-

terpreted as modifying the hopping terms between all the sites of the lattice. Note

that unlike the hopping terms in tight-binding models, the structure constants in

KKR theory are not potential dependent, and furthermore they are always deter-

mined to all orders in the lattice. In KKR theory, charge self-consistency is achieved

through combination with density functional theory, and so for disordered systems

concepts such as off-diagonal disorder required for tight-binding models are auto-

matically taken into account. However, the analogue of the above idea within the
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KKR framework is to screen the structure constants. We assume that the exact

configurationally-averaged medium may be represented by a new effective medium

with scattering path matrix

rY = 18ij + LIG(Rik)fkj
ki:=i

(5.1)

Here a circumflex symbol denotes an effective medium quantity, and in addition to

effective local t-matrices I,we have a new effective propagator defined by

(5.2)

This is composed of the usual free-space KKR structure constants G(Rij) which

account for the lattice structure plus a translation ally-invariant effective disorder

term W ij (== W ttn,l'rn' (R ij)). The matrix W ij takes into account, in an aver-

aged manner, the effect of all nonlocal scattering correlations on the propagation due

to the disorder configurations. Note that nonlocal charge correlations may be taken

into account later by combination with density functional theory (see Chapter 8).

Since the effective medium is translationally-invariant, we may solve in reciprocal

space by applying a lattice Fourier transform to Eq. (5.1) and obtain

f(k) =I+I(G(k)+W(k)) f(k) (5.3)

Therefore the real-space matrix elements are given by the Brillouin zone integral

The aim is to develop a cluster theory which systematically determines approxima-

tions to the above exact effective medium. However unlike the MCPA, we require

this site-to-site translational invariance to be retained. Clearly, the problem with

developing such a theory is dealing with the effective disorder term in both real

space, W ij, and reciprocal space, W(k).
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5.1.2 Treatment in Real Space

To treat the problem in real space, the first step is to divide the lattice up into a

set of periodically repeating clusters. These clusters must be chosen to preserve the

point-group symmetry of the lattice, which is described in detail in Section 5.3. The

next step is to generalise the KKR-CPA method [3, 5] by considering configurations

of an impurity cluster embedded in the effective medium described by Eq, (5.1).

To do this, we follow the approach of the embedded cluster method (KKR-ECM)

(Section 4.2), but with the effective medium given by Eq. (5.1).

Eq, (5.1) for sites i,j belonging to a cluster C can be written in the form

i ij = IOij + L IG{Rik)i kj + L IG{Rik)i kj
kEG k¢G

(5.5)

where the sum over all sites k has been split into those involving sites k within the

cluster and sites k outside of the cluster. It can be shown [6] (see Eq. (4.5) that

L G(Rik)i kj = L Li ililj
k¢G lEG

(5.6)

with the cluster renormalised interactor Li ij given by the expansion

Li ij = L G{Rik)IG(Rkj) + L G(Rik)IG(Rkl)IG(Rlj) +... (5.7)
k¢G k¢G,I¢G

Inserting Eq. (5.6) into Eq. (5.5) and using the notation that sites belonging to the

cluster are denoted by capital letters gives

i IJ = IOIJ + LI (G(RIK) + Li IK) i KJ
K

(5.8)

Eq. (5.8) can be re-arranged in the form

(5.9)

to include the effective cluster t-matrix defined by

(5.10)
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Eq. (5.9) is simply a re-arrangement or 'renormalisation' of Eq. (5.1) so that the

site matrix elements of all matrices involve the cluster sites only. The cluster t-

matrix ~ IJ describes the scattering within the cluster, and all scatterings outside

of the cluster are taken into account by the effective medium cluster renormalised

interactor L5. IJ. The cluster renormalised interact or describes all paths from the

cluster site I to the cluster site J which only involve intermediate sites outside of

the cluster. It is independent of the contents of the cluster and can be viewed

as describing the effective medium from which the cluster has been removed i.e.

replaced by a cavity. An 'impurity cluster' embedded in the effective medium may

be defined simply by filling up this cavity with a particular configuration of site

potentials. Clearly, the path matrix for sites I, J belonging to such an impurity

cluster is given by
I J I J ~ I K A K L LJ

Limp = icl,imp + ~ icl,imp g Limp
K,L

(5.11)

with the impurity cluster t-matrix defined by

tIJ - t , ~ IG(RIK) KJ~l,imp - t. UIJ + ~ t. _ icl,imp
K#

(5.12)

For a cluster containing Ne sites each scattering according to t.A or t.B, there are 2Nc

possible impurity cluster configurations.

The usual KKR-CPA self-consistency condition may now be generalised in an anal-

ogous manner to the MCPA (Section 4.2.2), i.e. consider paths starting and ending

on the impurity cluster sites and demand that the average over all configurations

be equal to the path matrix for the effective medium itself:

(5.13)

In principle, if this process were to be carried out self-consistently, we would deter-

mine an effective cluster t-matrix 11 IJ and hence generate effective disorder terms

fG IJ for the cluster sites i.e.

fG =1-1 - i1 - G= = =cl = (5.14)
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which follows by rearranging Eq, (5.10). Here the double underscores denote ma-

trices in cluster site space and angular momentum space, and 1-1 is the diagonal
~ 1part of t:l - .

To develop such a self-consistent algorithm however, the problem needs to be treated

consistently in reciprocal space. In contrast to the MCPA, here T_ IJ , i, and 8a IJ
correspond to an effective medium which we require to be invariant under translation

from site to site. To preserve this periodicity, during each self-consistency cycle we

must have

(5.15)

This follows by applying a lattice Fourier transform to Eq. (5.1) and then considering

the cluster sites I, J. Clearly, to carry out the above integration numerically, we

must have a specific representation of the function 8a(k) which is consistent with

our real space treatment of the problem.

The way forward is to use the coarse-graining idea from the nonlocal coherent po-

tential approximation (Section 4.3.3) and apply it to the effective disorder matrix,

i.e. proceed by coarse-graining 8a{k) over the Brillouin zone. Unlike many other

attempts at the problem [6], this coarse-graining approach has been shown to yield

herglotz analytic results [8].

5.1.3 Treatment in Reciprocal Space

Dividing the lattice into tiles (periodically repeating clusters) of Ne sites in real

space may be interpreted as dividing or 'coarse-graining' the first Brillouin zone in

reciprocal space into Ne tiles centred at the cluster momenta {Kn}. The set of

Kn values are related to a set of cluster sites {I, J} in real space by the Fourier

transformation [10, 11, 12]

(5.16)
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The fundamental assumption we make is to approximate the effective medium dis-

order matrix W(k) by the set of Ne values W(Kn), each of which is formally

defined to be the average of W(k) over the momenta k lying within the tile centred

at Kn Le.

W(Kn)=~~W(Kn+k) (5.17)
k

Consistent with this approximation, the corresponding effective medium path matrix

defined in Eq. (5.3) is approximated by the coarse-grained values {i.(Kn)}, each of

which are defined as

(5.18)

Each integral is over the reciprocal space tile OKn of volume Ne/OBz surrounding

the point Kn. These integrals are straightforward since each W{Kn) is constant

within its coarse-graining tile.

Eq. (5.16) may be used to consider a real space representation of the coarse-grained

effective disorder matrix and path matrix defined above. The real and reciprocal

space effective disorder matrix elements are related by

(5.19)

W(Kn) =L W IJ e-iKn(R/-RJ)
J#

and the real and reciprocal space path matrix elements are related by

TIJ = __!_ "T(K )eiKn(R/-RJ)- N LJ- n
e Kn

(5.20)

(5.21)

i.(Kn) = Li.IJe-iKn(R/-RJ)
J

Clearly, the effect of this coarse-graining is to reduce the range of the nonlocal

(5.22)

scattering correlations that are treated exactly in real space. However, since the

coarse-graining does not destroy the translational invariance, W IJ depends only

on the difference between the cluster sites I and J, irrespective of which site in the

lattice is chosen to be site I. In other words, the real space clusters are connected

and WI J and i.l J are independent of the origin of the clusters.
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Inserting Eq, (5.18) into Eq, (5.21) means that the real space effective medium path

matrix for sites I, J within a cluster is now given by

(5.23)

This equation is used to replace Eq, (5.15), and we are now able to iterate to self-

consistency until Eq, (5.13) and Eq. (5.23) are satisfied simultaneously. For clarity

the full KKR-NLCPA algorithm is summarised in Section 5.2.

5.2 Algorithm

All real space matrices in the algorithm are super-matrices (denoted by double

underscores) in cluster-site and angular momentum space. For a particular energy

E,

1. Make a guess for the effective cluster t-matrix 11IJ (Eq. (5.10)) for the first

iteration. Do this by placing an average t-matrix (ATA), 1= P{A)t.A+P(B)t.B

(where P(A) is the probability of a site being occupied by an A atom) on each

cluster site, and for the site to site propagation terms the free-space structure

constants Le. set W IJ = 0 .

2. Calculate W IJ using Eq. (5.10) Le.

ta =1-1- 1 -1 - G= = =cl =

where I-I is the diagonal part of 11 -1. For the first iteration WIJ will of

course be zero.

3. Convert the matrix elements WI J to coarse-grained reciprocal space using

Eq. (5.20).

4. Calculate the coarse-grained matrix elements f(Kn) using Eq. (5.18) and

convert them to real space using Eq. (5.21).
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5. Calculate LS. IJ by solving Eq. (5.9) i.e.

LS. = t -1 - 7'-1
= =cl =

6. Calculate Limp IJ for each impurity cluster configuration using Eq. (5.11) and

average over all 2Nc configurations to obtain a new effective path matrix at

the cluster sites f_ IJ .

7. Calculate the new cluster t-matrix 11IJ by solving Eq. (5.9) using f_IJ above

and LS. IJ from step 5 i.e.

t = (7' -1 + LS.) -1
=cl = =

8. Compare the new cluster t-matrix elements 11IJ with those in step 1. If they

are not equal to within the desired accuracy, repeat as necessary steps 2 -t 8

using the new cluster t-matrix until convergence within the desired accuracy

is achieved.

Note that the integrations over the reciprocal space tiles in step 4 only involve the

inversion of a matrix in angular momentum space and therefore computational time

is not increased over the conventional KKR-CPA regardless of cluster size. This is

in contrast to many other cluster methods such as the MCPA where the integration

over the Brillouin zone requires the inversion of a super-matrix in cluster-site and

angular momentum space for each value of k. Furthermore, for computational

purposes it is not actually necessary to include the free-space structure constants in

the impurity cluster t-matrix; these may be left inside the cavity.

5.3 Cluster Momenta {Kn}

The method for finding a suitable set of cluster sites {I, J} and the corresponding

set of cluster momenta {Kn} satisfying Eq, (5.16) has been described in Ref. [10]

for a simple two-dimensional square lattice (see Chapter 7 for a generalisation to

the case of three-dimensional cubic lattices).
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Figure 5.1: Real-space tiling (dashed lines) for a four-site cluster (filled circles) on
a two-dimensional square lattice. The linear size L of the tile is 2a where a is the
lattice constant.

Firstly, a suitable real space cluster must be chosen. As has already been described,

coarse-graining reciprocal space into tiles centred at the cluster momenta {Kn} may

be interpreted as coarse-graining real space into a set of periodically repeating clus-

ters i.e a superlattice. Therefore, a real space cluster must have periodic boundary

conditions. Moreover, as explained in Ref. [10], in order to obtain suitable recip-

rocal space tiles about the cluster momenta, the cluster must also preserve the full

point-group symmetry of the lattice. A suitable real space cluster for a given lattice

is therefore chosen by surrounding its sites with a 'tile' which preserves the point-

group symmetry and can be periodically repeated to fill out the entire lattice. In

other words, we have a consistent coarse-graining of real and reciprocal space into

tiles. A simple example of a four-site cluster for a two-dimensional square lattice is

shown in Fig. 5.1.

For a set of cluster sites {I, J}, the next step is to find the corresponding set of

cluster momenta {Kn} satisfying Eq. (5.16). Note that if a Fourier transform is

taken with respect to the differences in distance between the centres of the tiles,

then a 'reduced' first Brillouin zone of a superlattice is obtained (see for example

the molecular coherent potential approximation, Section 4.2.2). Higher Brillouin
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zones of the superlattice are centred at its reciprocal lattice vectors, and it is clear

that a set of Ne of these vectors will be contained within the first Brillouin zone of

the original lattice. It is this set of vectors which correspond to the differences in

distance between the sites of the real space cluster via Eq. (5.16).

For a two-dimensional lattice such as the simple square lattice shown in Fig. 5.1, to

find these vectors we may use the usual reciprocal space transformations of the form

hi = 271"Ri/lal x a21 where lal + ma2 for integers l, m map out the centres of the

real space tiles, and lhl +mh2 for integers l, m give the reciprocal lattice vectors

of this superlattice. Ne vectors of this form within the first Brillouin zone may be

taken to be our set of cluster momenta {Kn} and these will satisfy Eq. (5.16). Note

that care must be taken to ensure the chosen vectors are not equivalent i.e. do not

differ by a reciprocal lattice vector of the original lattice.

The reciprocal space tiles surrounding the cluster momenta {Kn} correspond to the

reciprocal space of the real space tiles. Using the example of the four-site cluster

for a two-dimensional square lattice, the real space tiles are squares of size L2 where

L = 2a. The reciprocal space tiles are therefore squares of size {271"/ L)2 which

together will fill out an area the size of the first Brillouin zone. Integrating over

these tiles is equivalent to integrating over the first Brillouin zone of the lattice. This

is because parts of tiles lying outside of the first Brillouin zone can be translated

through reciprocal lattice vectors to lie within the first Brillouin zone. This is

illustrated for the four-site cluster in Fig. 5.2.

5.4 Correlation Length

The range of nonlocal correlations that are accurately treated in real space as a result

of the coarse-graining in reciprocal space has been described in Refs. [7, 8, 9, 10].

In the context of the KKR-NLCPA, first note that after self-consistency has been

achieved, the path matrix for any sites i, j in the lattice may be obtained through
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Figure 5.2: Reciprocal-space tiles (dashed lines) of linear size 27f/ L where L = 2a
surrounding the cluster momenta (filled dots) for the four-site real-space cluster
shown in Fig. 5.1. The shaded regions may be translated through reciprocal lattice
vectors to lie within the first Brillouin zone (solid line).

the Brillouin zone integral

i ij = ~ L (1 dk (1-1 - W(Kn) - G(k)) -1 eik(Ri-Rj))
BZ x, flKn

(5.24)

where the function W(Kn) can be interpolated in order to obtain smooth spectral

densities in analogy to Ref. [67].

The KKR-NLCPA reduces to the KKR-CPA for Ne = 1 since in this limit the

W(Kn) vanish, and the KKR-NLCPA effective t-matrix is the same as the usual

KKR-CPA effective t-matrix. Here a single site is treated exactly with all nonlo-
I

cal correlations at mean-field level. As the cluster size Ne is increased, nonlocal

scattering correlations are systematically included in the effective medium. To see

this, consider a real space cluster of linear size L (see Section 5.3). Sampling the

first Brillouin zone of the lattice at the cluster momenta {Kn} means sampling at

intervals of 27f/ L, and according to Nyquist's sampling theorem [68], this means

that correlations of a finite range ~ L/2 only are accurately treated in real space,

which is proportional to the cluster size. Therefore the 8dj
which modify the prop-

agation are cut off if the distance between i and j is outside the range of the cluster
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size. The KKR-NLCPA becomes exact as Ne -+ 00 where Kn -+ k, recovering the

exact medium expressed by Eq. (5.1).

5.5 Short-Range Order

One of the main advantages of the KKR-NLCPA over the conventional KKR-CPA

is that it can be implemented for alloys in which short-range ordering or clustering

is present. To deal with this situation one must include an appropriate weighting

for each of the 2Nc impurity cluster configurations in step 6 of the algorithm. Note

that such short-range order will not destroy the translational invariance because it

will be restored by the configurational averaging. Clearly the amount of short-range

order that can be included into the electronic structure is limited in range by the

cluster size and hence correlation length. Indeed in a fully self-consistent calculation

in which a measure of short-range order determined through linear-response theory

is input into the electronic structure, the short-range order parameter would also

need to be coarse-grained.

5.6 Calculating Observables

Observables such as the configurationally-averaged density of states may be calcu-

lated from the configurationally-averaged Green's function, and so in this section an

expression for the configurationally-averaged Green's function is derived within the

KKR-NLCPA.

5.6.1 Site-Diagonal Green's Function

The expression for the Green's function before averaging is given by Eq, (3.15)

G(E, ri, rj) =L Zi(E, ri)r2vZ{, (E, rj)
LL'
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- LZi(E,ri)Ji(E,rD8ij (5.25)
L

where L(= [,m) is an angular momentum index and ri(rj) lies within the unit cell

centred at site i(j). Zi(E, ri) and Ji(E, rd are the regular and irregular solutions

respectively of the single-site problem at site i [28].

Consider rand r' in the neighbourhood of a cluster site I. Denoting a configuration

of the remaining cluster sites by 'Y, as a generalisation of Ref. [28] and Section 3.1.1

the first step is to average over the subset of possible lattice structures that leave

the potential in site I fixed:

(G(E,r,r')h = LZi(E,rl) (LP('Y11)(Tii/)I.'Y) Zi,(E,r~)
LL' 'Y

'"' 1 -I,- ~ZL(E,rl)h(E,rl)
L

where (Tii/h.'Y is the path matrix for paths starting and ending at site I condi-

(5.26)

tionally averaged so that the potential on site I is known (to either be of type A or

B for a binary alloy) and the configuration of the remaining sites in the cluster is

known to be 'Y. P(fII) is the probability that the configuration 'Y of the remaining

cluster sites occurs given the type of potential at site I. The final step is to average

over the possible occupants of site I itself:

(G(E,r,r')) = L [P(A)zt(E,rl) (LP(fIA)(Tii/)A.'Y) Zt(E,r~)
LV 'Y

+p(B)Zf(E,rl) (~P(fIB)(Tii/)B.'Y) zf,(E,r~)]

- L [P(A)Zt(E,rl)Jt(E,r~) + p(B)Zf(E,rl)Jf(E,r~)] (5.27)
L

where P(A) and P(B) are the probabilities that site I is an A atom or B atom

respectively (i.e. the concentrations of A and B atoms in the lattice). This can be

rewritten as

(G(E,r,r')) = L [LP(A''Y)zt(E,rl)(Tii/)A''Yzt(E,r~)
LV 'Y

+~ P(B, 'Y)Zf(E, rl)(Tii, )B.'YZf,(E, r~)]
- L [P(A)Zt(E,rl)Jt(E,r~) + P(B)Zf(E,rl)Jf(E,r~)] (5.28)

L
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where (A, 'Y) and (B, 'Y) denote cluster configurations with an A atom and B atom

on site I respectively.

Eq. (5.28) is still exact at this stage, but now an approximation needs to be made. In

the KKR-NLCPA, the cluster-restricted-averaged quantity (TFL' )I,/, is constructed

using an 'impurity' cluster of configuration (I, 'Y) embedded in the KKR-NLCPA

effective medium. By using Eq. (5.9) to eliminate the cluster renormalised interactor

from Eq, (5.11), this is given by

(II) [(~T-1+ t-1 _ t:1) -1] IITLL' I,/, = I I I= =c, ,/, =c LL'
(5.29)

where f I I is an impurity cluster t-matrix fl' with configuration (I, 'Y), and=c, ,/, =c ,~mp

the notation implies taking the {I I}th site and {LL'} th angular momentum element

of the super-matrix on the right hand side.

Note that it does not matter which cluster site is chosen to be site I in all the

above formulae as G(E, r, r'), the resulting approximation to (G(E, r, r')), is a

translationally-invariant quantity. This is because site-to-site translational invari-

ance is restored once the averaging has been performed over the impurity cluster

configurations.

Site-diagonal observable quantities may now be defined as in Section 2.2.4 and Sec-

tion 3.1.1. For example, the configurationally-averaged density of states per site is

given by

1 Ir ~p(E) = --1m G(E, r, r)dr
7r o[

where the integral is over 01, the volume of site I.

(5.30)

The new theory that has been presented in this chapter needs to be illustrated

with a computationally simple test case before applying to realistic systems. For

this purpose, the next chapter illustrates the KKR-NLCPA with calculations for

the configurationally-averaged density of states for a simple one-dimensional model,

which is formally identical to the KKR-NLCPA for realistic systems but is compu-

tationally much simpler.
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Chapter 6

ID Results

KKR theory in three dimensions deals with three-dimensional potential wells of

finite range surrounding the atomic nuclei, the famous muffin-tin potential shown

in Fig. 2.1. A very useful caricature of this realistic situation can be constructed

in one dimension. In this case the unit cell is a line segment and the potential

wells are described by a function V (x) of one spatial variable only. Interestingly,

one may regard the sign of x as an angle and develop an analogue of the three-

dimensional angular momentum expansion of the usual KKR theory. Since it was

first formulated by Butler [69] it has been made good use of by a number of authors,

for example see Refs. [70, 71, 72]. While it is computationally simple, as one might

expect, it is formally identical to KKR in three dimensions. For example there are

two 'angular momentum' values L = 0,1 (and hence all real space super-matrices in

the KKR-NLCPA algorithm have dimension 2Nc) and there is an explicit expression

for the structure constants. See the Appendix for details.

Results obtained for the configurationally-averaged density of states using the KKR-

NLCPA for such a one-dimensional model alloy are presented in this chapter. It

should be stressed that the purpose of using this model is to demonstrate that

a realistic three-dimensional calculation is feasible, and to demonstrate possible

improvements that could be obtained over the existing KKR-CPA approach.
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Figure 6.1: Potential wells of depth VA and VB for a one-dimensional KKR-NLCPA
model. Also shown are the lattice constant a and the muffin-tin radius rMT for a
potential of type VA.

6.1 The Model

In Section 6.2 results are given for a one-dimensional KKR-NLCPA model for a

random substitutional binary alloy, comprised of A sites with concentration c and

B sites with concentration (1 - c). The corresponding potentials are taken to be

square wells of depth VA and VB. This is illustrated in Fig. 6.1. For details of the

corresponding phase shifts see the Appendix.

In order to illustrate the coarse-graining in one dimension, Fig. 6.2(a) shows an

example of a 'one-dimensional tile' for a one-dimensional four site (Ne = 4) cluster.

Its length L is 4a, where a is the lattice constant. The corresponding set of cluster

momenta (denoted by dots) and reciprocal space tiles of length 27r/ L in relation to

the first Brillouin zone are shown in Fig. 6.2(b).
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Figure 6.2: Real and reciprocal space tiling for a four site cluster in one dimension.

6.2 Results

Extensive numerical calculations of the configurationally-averaged density of states

have been carried out for the one-dimensional alloy described in Section 6.1 over a

wide range of parameters. In all cases it is found that the KKR-NLCPA system-

atically improves the density of states with increasing cluster size compared to the

conventional KKR-CPA.

As a simple illustration, the following parameters are used:

VA = -1.2 Ry (depth of potential well for an A site)

VB = -0.6 Ry (depth of potential well for a B site)

c = 0.8 (concentration of A potentials)

a = 6.00 a.u. (lattice constant)

rMT = 2.25 a.u. (muffin-tin radius for both VA and VB)

The density of states for the electrons in lattices of purely A sites and purely B

sites together with the KKR-CPA result for the AsoB20 alloy is shown in Fig. 6.3.
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Figure 6.3: Density of states for a one-dimensional model. Results shown are for a
pure A lattice, a pure B lattice and a KKR-CPA calculation for an A80B20 alloy.

The KKR-CPA result gives a very smooth density of states with an impurity band

centred at f"V 0.2 Ry with band gaps either side.

For comparison, Figs. 6.4 and 6.5 show the results for four site and eight site super-

cell calculations. These are obtained by considering an infinite periodic supercell

containing four or eight sites of a particular configuration respectively and then

averaging over all 24 or 28 possible configurations respectively. The structure con-

stants for the one-dimensional supercell in real and reciprocal space are derived in

the Appendix. Although the supercell calculation converges towards the exact re-

sult as the supercell gets larger, it is not the exact result due to the finite size of

the supercell, but it gives an indication of the type of structure to expect if we are

to improve upon the KKR-CPA. For example, the sharp structure in the density of

states and filling in of the band gaps arise from scattering from particular disorder

configurations of the supercell.

A KKR-NLCPA calculation with a cluster size of four is shown in Fig. 6.6. It is
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Figure 6.4: An four site (Ne = 4) supercell calculation for the AsoB20 alloy obtained
by averaging over all 24 possible configurations of an infinite periodic supercell con-
taining four sites.

evident that much of the structure missing from the KKR-CPA calculation which

can be associated with energy bands of particular configurations of the supercell is

reproduced here. States also appear in the band gaps either side of the impurity

band centered at 0.2 Ry which are absent in the KKR-CPA calculation. This is

because the states near the band edges are the contributions of large clusters of like

atoms and these cannot be dealt with by a single-site theory such as the KKR-CPA.

To investigate this further, an eight site calculation is shown in Fig. 6.7. Clearly

with increasing cluster size more and more states enter the band gaps.

6.2.1 Short-Range Order

Finally, the ability of the KKR-NLCPA to take into account the effects of short-range

order is illustrated. As mentioned earlier, the KKR-NLCPA can be implemented

for arbitrary ensembles including those in which the occupancy of a site by an A or
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Figure 6.5: An eight site (Ne = 8) supercell calculation for the A80B20 alloy ob-
tained by averaging over all28 possible configurations of an infinite periodic supercell
containing eight sites.

B atom is correlated to that of neighbouring sites.

In order to illustrate short-range order for this one-dimensional model, the simple

example of a Markov chain is used i.e. it is assumed that the probability of finding

an atom of type A or B at a site in the chain only depends on the occupancy

of the previous site. The probability of an atom occupying a site is increased by

a parameter a if it follows a like atom and its probability is decreased by a if

it follows an unlike atom in the chain. Thus positive values of a correspond to

short-range clustering and negative values of a correspond to short-range ordering.

As an example, for a four site impurity cluster of configuration ABBA we have

P(ABBA) = (P(A) + a) (P(B) - a) (P(B) + a) (P(A) - a). Note that a Markov

chain satisfies the requirement that the probability distribution be periodic in order

to preserve translational invariance when averaging.

In Fig. 6.8 a four site KKR-NLCPA calculation for the density of states is shown
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Figure 6.6: A four site (Ne = 4) KKR-NLCPA calculation for the AsoB20 alloy.
Notice the improved structure and the partial filling in of the band gaps compared
with the KKR-CPA calculation in Fig. 6.3.
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Figure 6.7: An eight site (Ne = 8) KKR-NLCPA calculation for the AsoB20 alloy.
Notice the increasing density of states inside the KKR-CPA band gaps.
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Figure 6.8: Effects of short-range ordering (a = -0.1) and clustering (a = +0.1) on
the four site (Ne = 4) KKR-NLCPA calculation for the AsoB20 alloy.

using the same parameters as before along with short-range order parameter values

a = -0.1, a = 0.0 and a = +0.1. Peaks which increase or decrease can be identified

with specific cluster configurations and the increases or decreases in the amplitude

of the peaks are consistent with the increased or decreased cluster probabilities.

To summarise this chapter, KKR-NLCPA results have been presented for a one-

dimensional model which show filling in of KKR-CPA band gaps and increasing

structure in the configurationally-averaged density of states as the cluster size in-

creases due to nonlocal scattering correlations, and also a simple example of the

ability of the KKR-NLCPA to model the effects of short-range order. The next

step is to examine the feasibility of carrying out similar calculations for a realistic

three-dimensional system, which is the subject of the next chapter.
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Chapter 7

3D Feasibility

The aim of this chapter is to show that the KKR-NLCPA formalism is fully appli-

cable and computationally feasible for three-dimensional simple cubic (se), body-

centered cubic (bee), and face-centered cubic (fcc) lattices commonly found in real

disordered alloys. Clearly this is an extremely important aspect of the theory, since

application to realistic systems has been the problem for many other cluster the-

ories which otherwise satisfy all the requirements for a satisfactory cluster theory

(see Chapter 4).

Real-Space Tiling

Firstly, it must be shown that suitable real space clusters exist for these cubic

lattices. As has already been described in Section 5.3, a real space cluster must

be chosen so that its sites can be surrounded by a tile (or rather a 'block' in three

dimensions) which preserves the point-group symmetry of the lattice and can be

periodically repeated to fill out all space. Denoting the number of sites in a cluster

by Ne, for the trivial case of Ne = 1, the real space tiles with the required symmetry

would simply be Wigner-Seitz cells surrounding each lattice point for each of the

se, bee and fcc lattices. For larger cluster sizes we may take the tiles to be simple
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Figure 7.1: Cross-section of the real-space tiling for a two-site cluster on a bee
lattice. The shaded atoms lie out of the page and a is the lattice constant.

cubes of volume L3 for each of these lattices. The smallest possible cluster sizes are

given by considering L = a (where a is the lattice constant) and this yields Ne = 1

for se (trivial), Ne = 2 for bee, and Ne = 4 for fcc lattices. The next set of allowed

cluster sizes is given by considering L = 2a and this yields Ne = 8, Ne = 16, and

Ne = 32 for se, bee and fcc lattices respectively. Examples of this real space tiling

for bee and fcc lattices are shown in Figs. 7.1 and 7.2.

Cluster Momenta

For a set of cluster sites {I, J}, the next step is to find the corresponding set of

cluster momenta {Kn} satisfying Eq. (5.16). Following Section 5.3, in this case we

require three-dimensional reciprocal space transformations of the form

271" (a2 x a3) b _ 271" (a, x a.) 271" (a; x a2)
bl = {al' (a2 x a3))' 2 - {al' (a2 x a3))' b3 = {al' (a2 x a3)) (7.1)

where lal + rna2 + na3 for integers l, m, n map out the centres of the real space

tiles, and lbl + rnb2 + nb3 for integers l, m, n give the reciprocal lattice vectors

of this superlattice. Since the {al,a2,a3} are simple cubic, the {hI, b2, b3} will

also be simple cubic. We take Ne vectors of this form within the first Brillouin zone
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Figure 7.2: Cross-section of the real-space tiling for a four-site cluster on an fcc
lattice. The shaded atoms lie out of the page and a is the lattice constant.

of the original lattice to be the set of cluster momenta {Kn} and these will satisfy

Eq. (5.16). Care must be taken to ensure the chosen vectors are not equivalent i.e.

do not differ by a reciprocal lattice vector of the original lattice. As an example,

considering a four site cluster for an fcc lattice, the set of cluster momenta can

be chosen as the r point and three of the X points of the first Brillouin zone.

This is illustrated in Fig. 7.3. Table 7.1 gives some examples of sets of {RI} and

corresponding {Kn} values obtained using this method.

Reciprocal-Space Tiling

Since the real space clusters are cubes of volume L3, the reciprocal space tiles sur-

rounding these cluster momenta will be simple cubes of volume (27r/ L)3. These

tiles will together fill out a volume the size of the first Brillouin zone i.e. (27r/ a)3

for se, 2(27r/a)3 for bee, and 4(27r/a)3 for fcc lattices respectively. An example for a

four-site cluster on an fcc lattice is shown in Fig. 7.3. Integrating over these tiles is

equivalent to integrating over the first Brillouin zone of the lattice. This is because

parts of tiles lying outside of the first Brillouin zone can be translated through re-

ciprocal lattice vectors (of the original se, bee, or fcc lattice as appropriate) to lie
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Figure 7.3: Cross-section of the reciprocal-space tiling for a four-site cluster on the
fcc lattice shown in Fig. 7.2. The fourth tile is centred at the X point situated out
from the page Le. {Kn} points are (0,0), e;,O,O), (0, 2;,0), (0,0, 2;). Note that
parts of tiles which lie outside of the first Brillouin zone may be translated through
reciprocal lattice vectors to lie within the first Brillouin zone (solid line)

within the first Brillouin zone.

Computational Feasibility

In the KKR-NLCPA algorithm (Section 5.2), real space quantities such as the path

matrix and cluster t-matrix are super-matrices in cluster site and angular momentum

space, and increase in size as the cluster size Ne increases. For the algorithm to be

computationally feasible, it is crucial that clusters of a reasonable size are possible

for realistic three-dimensional lattices. Fortunately, it has been shown above that

such clusters exist (see Table 7.1).

The major computational step in the algorithm is the integration over the first

Brillouin zone. As mentioned in Section 5.2, the fact that this integration is simply

split into integrating over "tiles" means that computational time for integrating

over the Brillouin zone is not increased over the conventional KKR-CPA regardless
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of cluster size. This is in contrast to many other cluster methods such as the

molecular coherent potential approximation (Section. 4.2.2) where the integration

over the Brillouin zone would require the inversion of a super-matrix in cluster-site

and angular momentum space for each value of k. However, computational time

for the standard KKR-CPA can be decreased further using symmetry so that it is

only necessary to integrate over the irreducible 1/48th part of the Brillouin zone. It

is likely that symmetry can also be used to decrease computational time further for

the KKR-NLCPA in a similar fashion.
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Chapter 8

Conclusions and Future Work

In this thesis I have presented the Korringa-Kohn-Rostoker nonlocal coherent po-

tential approximation (KKR-NLCPA), a new method for describing the electronic

structure of disordered metallic systems based upon a first-principles description of

the crystal potential. The theory is a reformulation in terms of multiple scattering

theory of the nonlocal coherent potential approximation which has recently been de-

veloped for a simple tight-binding model. The KKR-NLCPA provides a hierarchy of

improvements over the conventional mean-field KKR-CPA approach, the limitations

of which I have discussed. To illustrate this I have demonstrated the KKR-NLCPA

with a one-dimensional model, with the emphasis on the improved structure in the

density of states with increasing cluster size due to nonlocal scattering correlations,

and a simple example of its ability to model the effects of compositional short-range

order. Importantly, I have shown that a realistic three-dimensional calculation is fea-

sible by illustrating in detail the necessary coarse-graining procedure for real three-

dimensional lattices. Finally, I have shown how to calculate site-diagonal observable

quantities using the KKR-NLCPA, establishing the fact that once the averaging has

been performed over the cluster configurations, single-site translational invariance

is restored. This is crucial as it establishes a means of combining the KKR-NLCPA

with density functional theory for ab-initio calculations in an analogous fashion to
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the conventional KKR-CPA.

I now discuss possible future work which arises from this thesis. [73]

3D Implementation: The first step will be to implement the KKR-NLCPA for

a realistic three-dimensional system. The main part of this will be to develop a

routine to carry out the integration of the multiple scattering path matrix over the

reciprocal space patches which coarse-grain the first Brillouin zone for fcc and bee

lattices. The code could then be straightforwardly adapted to model the effects of

short-range order on the electronic structure of a realistic system by introducing a

short-range order (SRO) parameter. An ideal first system to investigate would be

CuPd. Recently, dramatic improvements in the resolving power of X-ray diffuse

scattering measurements [74] have uncovered remarkable and possibly technologi-

cally important ordering processes in CUI-ePde which have not been observed be-

fore [75]. Occurring in the concentration range 0.21 < c < 0.28 at a temperature

200K above the order-disorder transition temperature Te, these ordering processes

are likely to have a direct electronic origin. As a result, high resolution Positron

Annihilation experiments [76] on the Fermi Surface are being planned in this con-

centration range in order to examine the connection between these novel ordering

processes and the electronic structure, and the KKR-NLCPA code could be used to

help interpret these experiments.

Transport Properties

A further development would be to use a KKR- NLCPA electronic structure cal-

culation to examine the effects of SRO on transport properties, for example the

electronic structure information around the Fermi energy could be used to calculate

the resistivity from the Kubo-Greenwood formula [77, 78, 79, 80]. Indeed resistiv-

ity measurements are actually used in industry to control physical properties by

monitoring the changes in SRO which occur in annealing processes. An example of

an alloy which could be used as an illustrative case study is AgeZnl-e [81], which

follows the expected trend of decreasing resistivity with increasing SRO. However
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there are a set of alloys where the opposite trend occurs, which is known as a 'kom-

plex' state [82]. This occurs when a late transition metal is alloyed with a mid-row

element. The KKR-NLCPA could be used to find a first-principles electronic expla-

nation of this phenomenon, for example using N isoM 020 as a case study.

Combination with DFT: In order for first-principles ab-initio (parameter-free)

calculations to be carried out for disordered materials, the KKR-NLCPA needs to

be combined compatibly with density functional theory. The conventional KKR-

CPA has been successfully combined with density functional theory, however the

limitations of the resulting theory have been described in Chapter 3. The imple-

mentation requires the solution of the Kohn-Sham equations for electrons moving

in the disordered arrays of the effective potentials associated with A and B sites

which are insensitive to their environments. Therefore nonlocal charge correlations

and lattice displacement effects are neglected. However, combination of the KKR-

NLCPA with DFT provides a natural and systematic way of taking these effects

into account accurately.

A scheme could be formulated in which the total energy becomes a functional of par-

tially averaged cluster charge densities for the possible cluster configurations. This

would probably need to be minimised with respect to these partially averaged cluster

charge densities, which can be calculated by combination with the KKR-NLCPA.

Thus charge correlations would be taken into account naturally in accordance with

the size of the cluster. In order to deal with lattice displacements, mechanical equi-

librium needs to be achieved. The theory above could be adapted so that the total

energy also becomes a functional of the displaced nuclear positions in the cluster

configurations, and then minimised with respect to these displaced nuclear posi-

tions. In order to combine with the KKR-NLCPA, the multiple scattering theory

basis of the KKR-NLCPA needs to be adapted to deal with displaced atoms. Sim-

ilar developments for lattice displacements have already been made in the context

of supercell calculations which will be helpful in developing the SCF-KKR-NLCPA

theory.
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An example of a system that could be used as an illustrative case study is CuAu,

which is the archetypal example of a big-atom/small-atom system. The current

SCF-KKR-CPA method gives qualitatively reasonable results but is unsatisfactory

quantitatively, and this is likely to be due to the neglect of lattice displacements on

the magnitude of nesting pieces of the Fermi surface. Another example of an iso-

electronic big-atom/small-atom system is CrW, where applying concentration-wave

theory (see below) using electronic structure determined by the SCF-KKR-CPA cur-

rently leads to an incorrect prediction for the low temperature phase stability. This

arises from the SCF-KKR-CPA requiring the average net charge on a single site

to vanish, and at the same time being incapable of dealing with the size difference

between Wand Cr atoms. Charge is thus assumed to spill over from the large W

to the small Cr atoms leading to the prediction that the alloy will order at a high

Te. However, experimentally the alloy is found to phase separate. An SCF-KKR-

NLCPA description of the disordered phase of these systems could be used to explain

the electronic reasons for the behaviour described above from first principles.

Statistical Mechanics: To go further and examine the compositional fluctua-

tions as the temperature is lowered and to attempt to predict the low temperature

behaviour, the corresponding statistical mechanics theory needs to be developed.

Atomic ordering in alloys can be described in terms of 'concentration waves' [54].

As the atoms begin to arrange themselves as the alloy cools, the probability of

finding a particular atomic species occupying a lattice site (the site dependent con-

centration Ci) va.ries from site to site and traces out a static concentration wave,

with a wavevector characteristic of the low temperature behaviour. The main result

of concentration-wave theory as shown by Gyorffy and Stocks [5] is that 8(2) (q, T),

the lattice Fourier transform of the direct correlation function

8~i)= 8
2
n{ Ci} I

J 8cj8ck {ei=c}

provides direct information on the stability of the disordered alloy to concentration

fluctuations at a given temperature T [5]. Here n is the averaged electronic Grand

Potential for an inhomogeneous concentration distribution {e.}. However the role
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of the inhomogeneous concentration distribution is purely formal since the result is

evaluated for a homogeneous concentration distribution c, and hence all information

required may be obtained from a standard SCF-KKR-CPA electronic structure cal-

culation for the disordered phase. From this, a measure of the short-range order in

the system can be determined via the Warren-Cowley short-range-order parameter

o.(q, T) = c(l - c)/(l - ,Bc(l - c)S(2)(q, T))

where c is the concentration of one of the constituents and ,B = (kBT)-l. This

can be compared with data obtained from X-ray diffuse scattering experiments [1].

After the development of the SCF-KKR-NLCPA, the next step will be to address

the generalisation of this mean-field concentration-wave theory to the nonlocal case.

This means addressing the non-trivial idea of a 'nonlocal' inhomogeneous concen-

tration distribution with the averaged electronic Grand Potential provided by an

SCF-KKR-NLCPA calculation. Such a theory would have a significant impact on

understanding alloy phase diagrams from first-principles.

Itinerant Magnetism: Metallic magnets at finite temperature provide other inci-

dences of disorder. The 'disordered local moment' (DLM) [83, 84] picture of finite

temperature metallic magnetism is based on the assumption that it is possible to

separate fast and slow motions in the interacting electron gas. On a time scale T,

long in comparison with an electronic hopping time, but short when compared to

a typical spin fluctuation time, the spin orientations of the electrons leaving a site

are sufficiently correlated with those arriving such that a non-zero magnetisation

exists when the appropriate quantity is averaged over T. These are the 'local mo-

ments' which can change their orientations, {(\}, on the longer time scale while

their magnitudes fluctuate rapidly on the time scale T. The spin polarised version

of DFT can be adapted to describe the states of the system for each orientational

configuration {(\}. The role of a classical 'spin' (local moment) Hamiltonian, al-

beit a highly complicated one, is played by the electronic Grand Potential for the

constrained system O{ei}. The first-principles DLM theory of itinerant magnetism

was constructed by combining a mean-field theory for the statistical mechanics of
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the 'spins' and the spin-polarised SCF-KKR-CPA to describe the electronic struc-

ture. However, the DLM theory currently fails for systems such as nickel, and it is

thought that this may be due to the fact that the DLM theory is currently unable

to describe short-range correlations between the orientations of the local moments

because of its single site mean-field nature. This problem could be investigated by

using a spin polarised SCF-KKR-NLCPA as the electronic structure basis since this

would be capable of describing these short-range correlations.
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Appendix A

A.I KKR Theory in One Dimension

The problem is to solve the one-dimensional Schrodinger equation

(- (d~r+ V(X)) ¢(x) = E¢(x) (A.I)

where V can be written as a sum of symmetric and non-overlapping contributions

Vi which vanish outside a 'one-dimensional muffin-tin' radius rMT about each site

i. In Eq. (A.I) the units of energy are Rydbergs and the units of length are atomic

units.

Writing a general point x in the form

(A.2)

where ri = Ix - ~I is the distance and Xi = (x - ~)/ri the direction with respect

to a potential centre ~, then 'one-dimensional spherical harmonics' may be defined

as

Yi (A ) 1 Y (A ) Xi
o xi = J2' 1 Xi = J2

along with one-dimensional Bessel and Neumann functions

(A.3)

io (v'Er) = cos(v'Er), i1(v'Er) = sin( v'Er) (A.4)

and

no(v'Er) = sin( v'Er), nl (v'Er) = - cos( v'Er) (A.5)
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Using these coordinates and basis functions, KKR theory in one dimension can be

derived in complete analogy to the three-dimensional case. For a detailed review of

KKR theory in one dimension see Refs. [69, 70].

Note that the Green's function is given by the expression

Gij(x,x'jE) = "L,{ZI(XijE) T1if,(E)ZI'(XjjE) - 8ijl511'ZI(X<jE)JI(X>jE)} (A.6)
u'

and the density of states per site by

1 f ..n(E) = -;Im dxGU(x,x,E) (A.7)

For a symmetric potential Vi, the t-matrix takes the form

-1
til (E) = iyE(1 + icot c51(E))

where 81(E) is the phase shift.

(A.8)

Finally, the real space structure constants are given by the expression

(A.9)

where a is the lattice constant and ~j = a(j - i). This is a 2x2 matrix because of

the two values of angular momentum l. In reciprocal space this becomes

(

(
ei(cI>+6) ei(cI>-8) )

(k) = _1_ l-ei(t/>+9} + l-ei(t/> 8}
9 iyE _ (ei(t/>+6) _ ei(t/>-8) )

l-ei(c!>+8) l_ei(t/>-8)

(A.1O)

1
(
( 1+ i sin 1> )= __ - cos O-cos ¢

iyE (sinO)- cosB-cos¢

( sinO ) )cos O-cos ¢
isin 1>(-1+ cos O-cos ¢)

(A.11)

where ¢= yEa and ()= ka.

A.I.! Phase Shifts

Following Section 2.2.1, the phase shifts for this model may be determined by con-

sidering the Schrodinger equation written in spherical polar coordinates for a single
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potential Vi, and matching at the muffin-tin boundary rMT the solutions and their

derivatives for the radial part Le.

(A.12)

for the solutions, and

(A.13)

for the derivatives. Here

(A.14)

and Vi may take the form VA or VB. From Eqs. (A.12) and (A.13), using the

normalisation tan81(E) = -CdBI leads to the phase shifts

8
o
(E) = cot-1 (k + qtan(qrMT) tan(krMT))

q tan(qrMT) - k tan(krMT)
(A.15)

(A.16)

These satisfy the requirement that 8o(E = 0) = ~ and 81(E = 0) = 0 in one dimen-

sion.

A.1.2 SuperceUStructure Constants

In order to aid the interpretation of the comparison between the results for the KKR-

CPA and KKR-NLCPA, in Section 6.2 results are also given for a supercell calcula-

tion. This requires an expression for the structure constants for a one-dimensional

supercell both in real and reciprocal space, which I derive in this section.

The expression for the usual real space structure constants in one dimension is given

by Eq. (A.9)

(A.17)

where a is the lattice constant and R-i,j = a(j - i).
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For a supercell containing a particular configuration of Ne sites, a lattice Fourier

transform must be performed which takes into account its periodicity. This may be

defined by
n=+Ns" (q) = L gl(J+nNc)eiq(nNca)

n=-N
(A.18)

with n an integer and q a 'vector' in the first Brillouin zone of the superlattice.

The site indices have been denoted with capital letters to avoid confusion with the

complex number i.

First consider the angular momentum matrix element gfirJ. Applying Eq, (A.18)

yields

(A.19)

where n has been relabelled -n in the final term. The (1 - 8IJ) is needed in the

first term since the structure constants are defined to be zero when I = J.

Note that IJ - II < InNel for n ~ 1. Therefore,

IJ - I + nNe! = (J - I) + InNel for n ~ 1

IJ - I - nNe! = -(J - I) + InNel for n ~ 1 (A.20)

Eq. (A.19) becomes

= _1_ {eiv'EaIJ-II(1 _ 8 )
i..fE IJ

n=+N+ L eiv'Ea(J-I)eiv'EalnNcI eiqa(nNc)

n=l

n=+N }+ L e-iv'Ea(J-I)eiv'EalnNcI e-iqa(nNc)

n=l
(A.21)
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Letting <p = VBa and ()= qa, Eq. (A.2I) may be arranged in the form of geometric

sums

g6c{(q) = i~{eir/>IJ-II(1-0IJ)

n=+N
+ L eir/>(J-I) [eiNc(rt>+9)r

n=l

Finally, letting n -t 00 yields

IJ() _goo q - i~ (eir/>IJ-II(I - OIJ)

eir/>(J-I) eiNc (r/>+9) e-ir/>(J-I) eiNc (r/>-9))
+ 1- eiNc(r/>+9) + 1- eiNc(r/>-9)

(A.22)

(A.23)

Now consider the angular momentum matrix element g[eJ. Applying the Fourier

transform Eq. (A.I8) gives

1 n=+N
g[eJ (q) = - L sgn(J - 1+ nNe)eiv'EaIJ-I+nNcleiqa(nNc)

VB n=-N

= _1_ sgn(J _ I)eiv'EaIJ-II(I_ OIJ)
VB

1 n=+N+- L sgn(J - I +nNe)eiv'EaIJ-I+nNcleiqa(nNc)
VB n=l
1 n=l+- L sgn(J - I - nNe)eiv'EaIJ-I-nNcle-iqa(nNc) (A.24)
VB n=+N

Letting <p = VBa and () = qa, and using Eq. (A.20), this may be arranged in the

form of geometric sums

g[t (q) = _1_ {sgn(J - I)eir/>IJ-II(I - OIJ)
VB

n=+N
+ L sgn(J - 1+ nNe)eir/>(J-I) [eiNc(r/>+9)r

n=l
n=+N }+ ~ sgn(J - I - nNe)e-ir/>(J-I) [eiNc(r/>-9)r

Since IJ - II < InNel for n ~ 1 then

sgn(J - I + nNe) = +1

sgn(J - I - nNe) -1
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Finally, letting n -+ 00 yields

gft (q) =

(A.27)

Using the fact that gM = g{{ and g[5 = -gM leads to the final expression for the

supercell structure constants in reciprocal space

1 ( ei4>IJ-II(l - aIJ)

iVE isgn(J - I)ei4>IJ-I1(l- aIJ)

(A.28)

This expression reduces to Eq. (A.lO) for a single-site supercell (Ne = 1 and I = J),

and can be manipulated into various simpler forms in analogy to Eq. (A.11).
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