University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/59560

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

```
WHITNEYSTTRATIFICATIONS:
FAULTSANDDENTECTORS
```

B Y

David John Angelo TROTMAN

Thesis submitted for the degree of Doctor of Philosophy University of Werwiok

Department of Mathematios

BEST COPY AVAILABLE

Poor quality text in the original thesis.

PREFACE

It is a pleasure to thank everyone who has provided we with help, encouragement or inspiration during the four jears of research 1973-77 which have oulminated in this thesis.

During the first of those four years Christopher Zeeman supervised me. I am grateful to him for having convinced me that it is both more essential and more rewarding to partioipate in mathematioal research than to remain merely a vellinformed spectator.

Before I vent to Cambridge, when I was debating if I should concentrate on pure mathematics, it was an article by Christopher Zeeman desoribing the present time as the "golden age of pure matheratios" which persuaded me to do so. Another article of his, this time in "Manifold", tempted me tovards topology. I first heard of the wonders of Catastrophe Theory from him at an evening meeting of the Archimedeans Sooiety in November 1970, and interested by this talk, and drawn by the creative aura emanating from my oopies of "Manifold", I decided to come to Warwick.

In my M.So. year 1972-73, I was Lucky to bave Clint MoCrory as supervisor: he initiated me into the secrets of differential topology via the works of John . Milnor, and by running a seminar on Whitney stratifications, helped to determine the future course of my research.

After my Mo. dissertation - a write-up of Zeemen's leotures on the proof of Thon's theorem olassifying elementary catastrophes - I was looking for ways of using stratifioations in singalarity theory. On learning that Brieskorn was to give a survey talk on complex singalarities at the 1974 B.M.C. held at Brighton, I devoured Milnor's "Singular points of complex hypersurfaces" in the week before the conference and was well revarded by Brieskorn's stunning displas of the lights and facets of the fewelled geometry of complex singularities. There was
also a short talk by Jim Timourian describing a conjecture of Teissier that " Minor number constant implies Whitney's condition (b) " ([30], [31]). On discovering that this was part of a theory (equisingularity) which involved a fine study of Whitney regularity and both used and produced results about singularities, I decided to work on Teissier's conjecture." About the same time Poenaru suggested I go to Orsay, and with Rolph Sohwarzenberger's practical assistance as Chairman of the Department, I prepared to do so, in the mean time making contact with the research group at Liverpool, who were studying Whitney stratification during 1974-75 as part of the proof of the topological stability theorem ([7]).

At Liverpool I was able to discuss with Chris Gibson and Eduard Looijenge, both of whom provided me with friendly encouragement. Moreover there I had the opportunity of being directed by Terry Wall, whose critical advice has been of great assistance to me throughout these past three years, especially in gauging the worth of various ideas and results. I am pleased to be able to present here (see $\S 3$ and $\S 5$) proofs of the conjectures concerning geometric versions of Whitney regularity which were put forward by him in [43].

In Orsay I had the good fortune to be offered a teaching post, which although delaying the completion of my thesis by taking up time and energy, was interesting, gave me a taste of responsibility, and provided necessary financial support.

With the equisingularity team at the Ecol Polytechnique I have had many pleasant and profitable discussions : notably with Jean-Pierre Henry, Jean-Jaoques Rifler, and L8 Ding Tràng, and especially with Bernard Teissier, whose unfailing enthusiasm and willing ear I have much appreciated.

I thank Tony Iarrobino for persuading me to give seminars ; Bob Macpherson for discussions about twenty-first century mathematics ; and of course Rene Tho, without whom the greater part of the work contained here, and much of the work of those mathematicians named above, would not as yet exist, and whose Monday seminars at the I.H.E.S. are a constant source of delight and inspiration.

I am also indebted to my wife, Marie-Holdne, for her patient support, faith, and understanding.

Finally I acknowledge with thanks the Researoh Studentship provided by the Science Research Council while I was at Warwick, and the French Government Soholarship whioh enabled me to wite up my reaults.

```
June- July- August 1977
Faris - Aix-en-Provence
```


TABLE OF CONTENTS

CHAPTER O. INTRODUCTION 1
CHAPTER 1. WHITNEI (a)-REGULARITY 8

1. (a)-regularity and stability of transverse maps 9
2. (a)-regularity and transvarse submanifolds 16
3. (a)-regalarity and transverge foliations 32
4. Detecting Thom faults in stratified mappings 42
CHAPTER 2. WHITNEI (b)-REGULARITY 47
5. (b)-regularity and tubular neighbourhoods 48
6. (b)-regularity and generio seotions 57
7. Stronger generic regularity 71
CRAPTEA 3. COMPUTATIORS 79
8. $y^{a}=t^{b} x^{c}+x^{d}$ 79
BIBLIOGRAPHY 87
-his work deals with properties of ihitney (a)- and (b)-regularity. The regul $\exists r i t y$ conditions prescribe the local behaviour of limits of tangent spaces to s.ooth menifolds, which ヨre usually strata of a stratification. So, first, what is a stratification ?
\therefore stratification \sum of a subset V of a C^{1} manifold M is a partition of F into connected C^{1} submanifolds, called the strata of \sum. \sum is locally finite if each point of V^{\prime} has a neighbourhood meeting only finitely many strata.

Exemple 0.1. V a connected C^{1} submanifold of M. There is a trivial stratification of V with just one stratum.

三ramole 0.2. V the underlying space of a linearly embedded simplicial complex. There is =natural stratification whose strata are the interiors of the simplices of tie complex.

Example 0.3. V an analytic variety in \mathbb{R}^{n}. Let $S(V)$ be the set of points. *here V is not a submenifold of maximal dimension. Write $S^{2}(V)=S(S)$, etc. Juppose r is the smallest integer such that $S^{r+1}(V)=\phi$. Let $G(A)$ denote the set of connected components of a set A. Then

$$
G(V-S(V)) \Perp G\left(S(V)-S^{2}(V)\right) \Perp \ldots \Perp G\left(S^{r-1}(V)-S^{r}(V)\right) \Perp G\left(S^{r}(V)\right)
$$

Iefines a locally finite stratification of V callod the full pertition by dimension (by ahitney in [46]).

Let X, Y be disjoint C^{l} submanifolds of a C^{1} manifold M and let y ie a point in $Y \cap \bar{X}$.
\therefore is (a)-regular over Y at y if,
, Z) Given a sequence of points $\left\{x_{i}\right\}$ in X tending to y, such that $T_{x_{i}} X$ tends to T, then $T_{y} Y \subset T$.
\therefore is (b)-regular over Y at y if,
(i) given sequences $\left\{x_{i}\right\}$. in $X,\left\{y_{i}\right\}$ in Y, both tending to y, such that $\overbrace{x_{i}}$ tends to τ, and the unit vector in the direction of ${\overrightarrow{x_{i}}}_{i}$ tends to λ, then $\lambda \subset \tau$.

These conditions were first defined by Whitney in [45] and [46]. Accounts of them Eave been given by whom in [35] and [36], by Mather in [21] and [22] , by Wall in [43] and [44], and by Gibson and Wirthmüller in [7] .

Following Thom, we say that X is (b')-regular over Y at y if, for some C^{i} local retraction T associated to e C^{1} tubular neighbourhood of Y =ear y (see §5),
(b) Given 2 sequence $\left\{x_{i}\right\}$ in X tending to y, such that $T_{x_{i}} X$ tends to C and the unit vector in the direction of $\overrightarrow{x_{i} \pi\left(x_{i}\right)}$ tends to ${ }^{i} \lambda$, then $\lambda \subset C$.
(o) clearly implies (b') for any π. Also (b) implies (a), since given $n_{i j}$ vector v in $T_{y} Y$ and any sequence $\left\{X_{i}\right\}$ in X we can choose $\left\{y_{i}\right\}$ in Y coning in to y in the direction of v so slowly that $\overrightarrow{x_{i}} \vec{y}_{i} /\left|\overrightarrow{x_{i}} \vec{y}_{i}\right|$ tends to v (see mother [21]). Conversely; if (a) holds and (b') holds for some T, in e arrive at (b) by decomposing the vector λ into the sum of two vectors,
one in $T_{y} Y$ and one in $T_{y}\left(\pi^{-1}(y)\right)$. (Compare Wall [43]) To sum up, (0.4)

$$
\left(b^{\prime}\right)+(a) \Longleftrightarrow(b)
$$

Te shall make frequent use of this eouivalence.

A stratification \sum is (a)-regular if, for each pair of strata X, Y and at every point $y \in Y \cap \bar{X}, X$ is (a)-regular over Y at y. Simiiarly, we speak of (b)-regular stratifications. Ne call a locally finite (b)-regular stratification a Whitney stratification.

Example 1. (0.1) is trivially a Whitney stratification since there is only one stratum, and (a)- and (b)-regularity are conditions on a pair of strata.

Example 2. The stratification in (0.2) defined by a linearly embedded simplicial complex is a Whitney stratification by the next example.

Example 3. Let \bar{X} be a C^{1} submenifold-with-boundary of a C^{1} manifold M, with interior X and boundary Y. Then X is (b)-regular over Y, since (b)-regularity is invariant under C^{1} diffeomorohism (see Corollary 5.3), and $\mathbb{R}^{p} \times(0, \infty)^{q} \times 0^{r}$ is (b)-regular over $\mathbb{R}^{p} \times 0^{q+r}$ in \mathbb{R}^{p+q+r}. (b)-regularity is far from being a topological invariant.

Fictured is a topological manifold-with-boundary \bar{X}, with interior X a C^{1} manifold and boundary Y a line, such thet X is not (b)-reguler over Y at y : we say the peir (X, Y) has a (b)-fault at y (see below).

Example 4. The stratification defined in (0.3) by the full partition by dimension of an analytic variety is not necessarily a whitney stratification. de give the standard examples:

1) $V \equiv\left\{y^{2}=t^{2} x^{2}+x^{3}\right\} \subset \mathbb{R}^{3}$.

Let Y be the t-axis, and X be $V-Y$. Then set $X_{1}=X \cap\{x>0\}$,

$$
\begin{aligned}
& x_{2}=x \cap\{x<0\} \cap\{t>0\}, \\
& x_{3}=x \cap\{x<0\} \cap\{t<0\} .
\end{aligned}
$$

X_{1} is (b)-regular over Y at 0 , but X_{2} and X_{3} are not (b)-regular over Y at 0 . However all three are (a)-regular over Y at O. The reader may check that $X_{1} \Perp X_{2} \Perp X_{3} \Perp Y$ is the full partition by
 dimension of V.
2) $V \equiv\left\{y^{2}=t x^{2}\right\} \subset \mathbb{R}^{3}$.

Let Y be the t-axis, and X be $V-Y$. Then set $X_{1}=X \cap\{x>0\}, X_{2}=X \cap\{x<0\}$. X_{1} and X_{2} are neither (a)-regular over Y at 0 , but are both (b')-regular over Y. Again $X_{1}\left\|X_{2}\right\| Y$ is the full partition by dimension of V.

The fact that we do not get a Whitney stratification from the full partition by dimansion of an malytic variety is on'y a micor kandicap because of the following theorem.

Theorem (Whitney [45], [46]) : Every analytic variety admits an analytio Whitney stratification.

This is proved by showing that every locally finite analytic stratification (i.e. whose strata are locally analytic manifolds) admits an analytic Whitney stratification as a refinement : this is because (b)-regularity is generic the set of points where (b) fails for a pair (X,Y) of analytic strata is contained in the complement of an open dense subset of Y.

The class of sets for which (b)-regularity is generic has been extended by -ojasiewicz [18] and Hironaka [12]. See also Hardt[10] and Gabrielov's thesis. Definition : A subset of \mathbb{R}^{n} which is globally (resp. locally at each point of R^{n}) a finite union of subsets each of the form $\left\{f_{i}=0, g_{j}>0 \mid i=1, \ldots, p ;\right.$ $j=1, \ldots, 0\}$ where the $\left\{f_{i}\right\},\left\{E_{j}\right\}$ are polynomiol (resp. enalytic) functions on K^{n}, is colled semi=lgebraic (resp, semianalytic).

Theorem(Lojasiewicz [18]) : Every semianalytic set admits an analytic stratification, and every analytic stratification of a semianalytic set admits三n analytic Whitney stratification as a refinement.
\therefore more accessible proof, for semialgebraic sets, was given by Wall [43].

Definition : A subanalytic set in \mathbb{R}^{n} is the image of a semianalytic set in $\mathbb{R}^{\boldsymbol{m}}$, some \boldsymbol{m}, by a proper analytic map $\mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$.

Sheorem(Hironaka [12]) : Every subanalytic set admits an analytic stratificaticn, and every analytic stratification of a subanalytic set admits an analytic ahitney stratification as a refinement.

So far we have discussed the existence of Whitney stratifications. Among the nost important applications of Whitney regularity are the consequences of the following results.
Theorem A : Let Σ be a locally finite stratification of a closed subset of
三 C^{1} manifold M Σ is (a)-reguler \Longleftrightarrow the set of maps transverse to Σ
is open in $C^{1}(N, M)$ for all C^{1} manifolds N.

See §l for a precise statement and proof of Theorem A.

Theorem B : A Whitney stratification is locally topologically trivial.

Theorem B was conjectured by Thom and proved by Mether [21].
leither Theorem A nor Theorem B makes use of analyticity. However in most OP the work done either on the Whitney conditions themselves - as in Speder's -jesis [29], and Teissier's study of the equisingularity of hypersurfaces [30], [31], and the equimultiplicity theorem of Hironaka [11] - or using the Whitney conditions as tools - as in the proof of the topological stability theorem [7] , and the Lefschetz hyperplane theorems of Hamm and Lê [9], and the extensions of characteristic class theory to singular varieties by MacPherson [19, 20], and K. H. Schwartz [26] - extensive use of the special properties of analytic rarieties has been made. And it was for complex analytic hypersurfaces that Zariski demanded a theory of equisingularity $[49,50]$.

This thesis can be thought of as a study of aspects of the theory of equisingularity of smooth stratified sets, the plans of which were drawn in Thom's "Insembles et morphismes stratifiés" [36]. When there are improvements in the anse of subanalytic sets we give them; and we make special mention of any relations with complex hypersurfaces.

With Theorem B in mind, we make all our counterexamples topological ranifolds-with-boundary, hence topologically trivial, whenever possible. This Fove well the exeet difference in the nature of the results found here, and those
obtained for complex hypersurfaces, for which topological triviality has fairly strong consequences, including (a)-regularity.

The basic local situation is as follows : let X and Y be C^{1} submanifolds (and, when appropriate, subanalytic subsets) of \mathbb{R}^{n}, with $Y \subset \bar{X}-X . Y$ is the base stratum, and X the attaching stratum. When X is (b)-regular over Y at 0 in Y, we will say that the pair (X, Y) is (b)-regular at 0 , or that $(X, Y)_{0}$ is (b)-regular. When $(X, Y)_{0}$ is not (b)-regular, we say that $(X, Y)_{0}$ is a (b)-fault : we justify this term below.

Faults and detectors :

When some equisingularity condition E is not satisfied at a point of a stratification, it is natural to call the point an E-fault (so retaining the geological terminology). Many proofs showing that one equisingularity condition imolies another are by reductio ad absurdum : we suppose that the second condition fails, and then we show that the first condition necessarily fails as well. When we can do this we say we have detected the fault (the point where the second condition fails). In the same way counterexamples to implications between equisinfilarity conditions tend to be faults which are not detectable in some given way. Most of the results given in this thesis consist of taking an equisingularity condition E and deciding whether possible detectors are effectiye or ineffective in detecting every E-fault. We hope that this will clarify and motivate the point of view taken throughout.

CHAPTER 1. WHITNEY (a)-REGULARIIY

We begin by saowing that (a)-regularity is precisely the condition to impose on a stratification in order that the mans transverse to the stratification form an open set, i.e. that transversality be stable, as well as being generic (the transverse maps always form a dense set). (a)-regularity was introduced by initney in [45] as a sufficient condition for this to be true ; at the time it Nas thought that (t)-regularity (defined in § 2) was the condition required, and -hat (a) was only useful in that it implied (t) (see the introduction to [45]). This is true in tine analytic case, since then (t) and (a) are equivalent as roved in Theorem 2.5 below (and [37]), but we give examples (2.1 and. 2.4) showing that (t) is in general weaker than (a). (a) is necessary and sufficient for openness : the sufficiency was proved in detail by E. A. Feldman in [5] and we prove necessity here in Theorem 1.1. The only difficulty in the groof is to find a transverse map with a given transverse l-jet at a given point : For tiois $w e$ show that in a suitably chosen Baire subspace of the space of maps containing the given jet at the given point, transverse maps are dense.

Example 2.1 , showing (t) to be weaker than (a) in the smooth case, has (a) Iailing for a sequence on a curve (in the ambient space) tangent to the base stratum, thus defining an (a)-ffault not detectable by transverse submanifolds. To show that the property that the (a)-fault be given by sequences tangent to the jase stretum does"not characterise those (a)-faults which are not detectable by transterse submanifolds, we give a second example (2.4) which uses a basic semialgebraic object called a "barrow", whioh is defined in 2.3 . We then prove, in ciceorem 2.5, that (t) is equivalent to (a) when curve selection is availeble, and obtain as a consequence in this case the conjectare of C. T. C. Wall [43] that (a)-regularity be equivalent to the condition that the fibres of a
0^{1} retraction onto the base stratum be transverse to the attaching stratum for 3ll retractions. We prove this conjecture in general as Theorem 3.3 after rephrasing the conjecture to read "do transverse C^{I} foliations detect (a)-faults ? " Example 3.6 shows, using the barrows of 2.3 , that transverse a^{2} foliations do not detect all (a)-faults.

To complete § 2 we discuss results relating to a theorem of T.-C. Kuo, that (a)-regularity implies that transversals to the base stratum have germs at 0 of their intersection with the attaching stratum, of a single topological type, and we prove a partial converse to Kuo's theorem.

Finally in ξ_{4} we describe the analogues of the results proved here about (a)-regularity of stratified sets for the $\left(a_{f}\right)$ condition on stratified morphisms.

1. (a)-regularity and stability of transverse maps

$\underbrace{\text { k topologies }}$

\therefore zapones betreen two $u^{i s}$ manifoles ($1 \leqslant x \leqslant \infty$).
A thorough treatment of these topologies is given in Hirsch's book "Differential Popology" [13]. Other versions are given by Morlet [24], Feldman [5], and joluoitsky and Guillemin [8].

Let N, P be C^{k} manifolds. $C^{k}(N, P)$ denotes the set of C^{k} mappings from I to $P, j^{k}(N, F)$ zenotes the bundle of k-jets associated to such mappinsa, snd $j^{k}: C^{k}(N, F) \rightarrow C^{C}\left(N, J^{k}(N, P)\right)$ is the associated jet map. The map $\mathrm{F}_{\mathrm{f}}: \mathrm{V} \rightarrow \mathrm{Jk}(\mathrm{N}, \vec{F})$ is called the $\mathrm{k}-j$ jet orolongation of f .

A basis for the reak C^{k} topolozy on $C^{k}(N, F)$ is given by taking all sets of the form $\left\{f \in C^{k}(N, P): j^{k} f(K) \subset U\right\}$ where K is a compaot subset of N, and U is an open subset of $J^{k}(N, P)$.

A basis for the strong C^{k} topology (also known as the whitney C^{k} topology) on $C^{k}(N, P)$ is given by taking all sets of the form $\left\{f \in C^{k}(N, P): j^{k} f(N) \subset U\right\}$ where U is an open subset of $J^{k}(N, P)$.

If \mathbb{N} is compact these topologies are clearly the same.

Transversality

ie shall use the notation $\$$ for "is transverse to".
If X, Y are C^{I} submanifolds of a C^{l} manifold M,

$$
\begin{aligned}
& X \nrightarrow Y \text { at } m \longleftrightarrow T_{m} X+T_{m} Y=T_{m} M \\
& X \nmid Y X X Y \text { at } m, \forall m \in X \cap Y
\end{aligned}
$$

If $\mathrm{f}: \mathbb{N} \rightarrow \mathrm{M}$ is a $\mathrm{C}^{\mathrm{I}} \mathrm{map}$, or $f(n) \notin X$
$f \nmid x \Longleftrightarrow f\left(x\right.$ at $n, \forall n \in f^{-1}(x)$
If $z \in J^{1}(N, M)$ is a $1-j e t$, and $f \in C^{1}(N, M)$ is a map representing z (at $n \in i$.
$=\boldsymbol{x} \Leftrightarrow \mathrm{f} \boldsymbol{\mathrm { f }} \mathrm{X}$ at n
Ie say X is transverse to a stratification \sum, and write $X \nmid \Sigma$, when x $\boldsymbol{H} \quad \mathrm{S} \forall$ strata S of Σ.
ie say X is transverse to a foliation \mathcal{F} of H at \approx, and wite
$X 风 \mathcal{F}$ at x, when X is transverse at x to the leaf of \mathcal{F} through x 。
ne say a foliation \mathcal{F} of a submanifold X is transverse at x to a foliation \mathcal{G} of a submanifold Y, and write $\mathcal{F} \boldsymbol{G}$ at x, when the leaf of \mathcal{F} through x is transverse at x to the leaf of \mathcal{G} through x. (This requires that X be transverse to Y at X.)

Sow we are in a position to state Theorem A of the introduction.

Theorem 1.1 Let Σ be a locally finite stratification of a closed subset V of a C^{1} manifold M. Then the following conditions are equivalent :
(1) \sum is (a)-regular,
(2) for every C^{l} manifold $N, \quad\left\{z \in J^{l}(N, M): z 小 \Sigma\right\}$ is open in $J^{I}(N, M)$,
(3) for every C^{l} manifold $N,\left\{f \in C^{1}(N, M): f \pitchfork \sum\right\}$ is open in $C^{l}(N, M)$ with the strong C^{l} topology,
(4) there is some integer $r, \quad l \leqslant r \leqslant \max (1, \min (\operatorname{dim} S))$, and some C^{1} manifold N with $\operatorname{dim} N=\operatorname{dim} M-r$, for which $\left\{f \in C^{1}(N, M): £ \pitchfork \Sigma\right\}$ is open in $C^{l}\left(N, N_{1}\right)$ with the strong C^{1} topology.

Notes $1.2(i)(1) \Leftrightarrow(2)$ is proved by Wall [44]. In fact he asserts that (2) implies that V is closed, which is not quite true. Consider the case where $V=M-p t .$, and $\Sigma \quad h_{Q} s$ a single stratum.
(ii) (1) \Longrightarrow (3) is implicit in Thom [34] (1964) and explicit in $[35,36]$, but see the discussion in $\S 2$ below. It was proved by Feldman [5], who describes Σ as cohesive if Σ is (a)-regular, and now appears as Exercise 15 at the end of Chapter 3 of Hirsch's "Differential Topology" [13] . Feldman's proof went unnoticed by several specialists in the theory to the extent that a very short false proof of (1) $\Rightarrow(3)$ appeared several times (see the discussion and counterexample in $\S 2$), and in 1975, D. W. Bass [1] wrote "there seems to be no published proof of this". This was probably due to Feldman's use of the term "cohesive" before "(a)-regular" came into common usage ; also his proof appeared as a technical lemma in a paper on immersion theory rather than in a paper on stratification theory. Observe also that before the term "stratification" was accepted people talked of "submanifold complex" and "manifold collection". (iii) We have the same theorem replacing C^{l} everywhere by c^{k} ($1 \leqslant k \leqslant \infty$), as the problem reduces to a study of 1-jets.
(iv) The set of C^{k} maps transverse to $\sum(1 \leqslant k \leqslant \infty)$ is dense in $C^{j=}(\mathrm{N}, \mathrm{k})$ with the strong a^{k} topology by applying phom's iranovorsaitity
theorem countably often as in [8] or [13] , even without applying (a)-regularity. Thus if \sum is (a)-regular, the maps transverse to \sum in $C^{i k}(N, M)$ form an open dense set in the strong C^{k} topology (C^{l}-open implies C^{k}-open).
(v) If each stratum is closed, then it follows from the result that for a closed submanifold W of $M,\left\{f \in C^{k}(N, M): f N W\right\}$ is open (see [8] or [13]), that $\left\{f \in C^{k}(N, M): f h \Sigma\right\}$ is open. But we do not assume the atrata are closed (only that $V=|\Sigma|$ is closed) and in almost every situation of interest they will not be closed.

Proof of Theorem 1.1: (2) implies (3) by definition of the strong topology. That (3) implies (4) is immediate. We shall prove that (1) implies (2), and that (4) implies (1), which will establish the equivalences.
(1) implies (2):

Suprose (2) is not satisfied for some C^{1} manifold N. Then there is a 1 -jet $z \in \mathcal{J}^{I}(N, N)$, with $z \not \subset \Sigma$ and a sequence $\left\{z_{n}\right\} \in J^{I}(N, M)$ such that z_{n} tends to z as n tends to ∞, but for all n, z_{n} is not transverse to \sum. Let ν, μ denote the maps $J^{l}(N, M) \rightarrow N, J^{l}(N, M) \rightarrow M$, taking source and target respectively. Let $x=\nu(z), x_{n}=\nu\left(z_{n}\right), y=\mu(z), y_{n}=\mu\left(z_{n}\right)$.
 Also clearly $y_{n} \in V$ for all n. Since V is closed, and since $y_{n} \rightarrow y(n \rightarrow \infty)$ wa have that $y \in V$. Let S be the stratum of Σ containing y. Since Σ is localiy finite, we can supose (by taking a subsequence) that for all n, F_{n} belonges to the same stratum $S^{\prime} . S^{\prime} \neq S$ since S is a C^{I} submanifold. Itus $\left.y \in S \cap(\vec{S})^{\prime}-S^{\prime}\right)$ and S^{\prime} is (a)-regular over S by the hypothesis (1).

Now by means of a chart for M at y we can identify all the tangent spaces (and their subspaces) to M at points near y, with \mathbb{R}^{m} (and its subspaces), there $m=\operatorname{dim} \mathrm{H}$.

Let P_{n} (resp. P) denote the vector subspace o \mathbb{R}^{m} determined by the jet z_{n} (resp. z) $\forall n$. By choosing a further subsequence we oan suppose that the
dimension of P_{n} is constant for all n. (It is possible however that the dimension of P is less than that of P_{n}.) Because grassmannians are compact we may suppose by taking more subsequences that $\left\{P_{n}\right\}$ tends to a limit P_{∞} and $\left\{T_{y_{n}} S^{\prime}\right\}$ tends to a limit τ. Then $P \subseteq P_{\infty}$, and, since S^{\prime} is (a)-regular over $S, T_{y} S \subseteq \tau$.
$z \nmid \sum$ means that $P \not \subset T_{y} s$, and so $P_{\infty} \lambda \tau$. Then $\exists \varepsilon>0$ such that if $\quad d\left(F_{\infty}, Q\right)<\varepsilon \quad\left(Q \in G_{d i m}^{M} P_{\infty}\right)$, and $d(\tau, T)<\varepsilon \quad\left(T \in G_{d i m ~}^{m}{ }^{m}\right)$, then \therefore T (transversality is an open condition on vector subspaces). Now choose n_{1} such the $\forall n \geqslant n_{1}, d\left(P_{\infty}, P_{n}\right)<\varepsilon$, and n_{2} such that $\forall n \geqslant n_{2}$, $\mathrm{d}\left(\tau, \mathrm{T}_{\mathrm{y}_{\mathrm{n}}} \mathrm{s}^{\prime}\right)<\varepsilon$. Then $\forall \mathrm{n} \geqslant \max \left(\mathrm{n}_{1}, \mathrm{n}_{2}\right), \mathrm{P}_{\mathrm{n}} \nrightarrow \mathrm{T}_{\mathrm{y}_{\mathrm{n}}} \mathrm{s}^{\prime}$, ie. $\mathrm{z}_{\mathrm{n}} \uparrow \sum \sum$, contradicting the choice of $\left\{z_{n}\right\}$, and proving that (1) implies (2).
14) implies (1):

Suppose that \sum is not (a)-regular. Then there is a point y in V contained in a stratum Y of $\sum(\operatorname{dim} Y \geqslant I)$, and a sequence of points $\left\{x_{i}\right\}$ of V in a stratum X of \sum such that $x_{i} \rightarrow y$ as $i \rightarrow \infty$, and $I_{x_{i}} X \rightarrow \tau$ as $i \longrightarrow \infty$, and there is a vector $v \in T_{y} Y$ such that $\forall \not \subset \tau$. Let E be the 1-dimensional subspace of $T_{y}{ }^{M}$ spanned by V. Choose a basis for $T_{y}{ }^{M}$ such that

$$
\begin{aligned}
\mathrm{T}_{\mathrm{y}} \mathrm{Y} & =E \oplus W_{1} \oplus T_{1} \\
\tau & =T_{1} \oplus T_{2} \\
T_{\mathrm{y}} \mathrm{M} & =E \oplus W_{1} \oplus W_{2} \oplus T_{1} \oplus T_{2}
\end{aligned}
$$

where $T_{1}, T_{2}, W_{1}, W_{2}$ are vector subspaces of $T_{y} M$ and T_{1}, W_{1}, W_{2} are perhaps empty. Then find a subspace H of $T_{y} \mathrm{H}$ with $\operatorname{dim} H=-\boldsymbol{r}(=\operatorname{dim} \mathbb{N})$, such that $\mathrm{T}_{2} \oplus \mathrm{~W}_{2} \subseteq H \subseteq \mathrm{~T}_{1} \oplus \mathrm{~T}_{2} \oplus \mathrm{H}_{1} \oplus \mathrm{~W}_{2} \quad$ (this is possible since $1 \leqslant \mathrm{r} \leqslant \operatorname{dim} \mathrm{Y}$).
Then $E+T_{y} Y=T_{y} M$, but $I+\tau \neq T_{y}$. Let $p \in N$, and define

$$
\mathscr{D}_{H}=\left\{f \in C^{1}(N, M): f(p)=y,(d f)_{D}\left(T_{p} \mathbb{H}\right)=H\right\}
$$

Lemma 1.3: $\exists g \in \mathscr{D}_{H}$ such that $g \pitchfork \Sigma$.

Choose a chart (H, Ψ) for N at p such that $\left.g\right|_{W}$ is an embedding (if $g \in \mathscr{D}_{\mathrm{H}}$, $(\mathrm{dg})_{\mathrm{p}}$ has maximal rank), and choose a chart (U, ϕ) for M at y such that $g\left(\begin{array}{l}\text { (}) \subset U\end{array}\right.$. Then it is not hard, since we have reduced the problem to one for $C^{1}\left(\mathbb{R}^{m-r}, \mathbb{G}^{m}\right)$, to construct, for each i such that $x_{i} \in U$, an f_{i} in $C^{l}(N, M)$ such that,
(i) $\left.f_{i}\right|_{N-W}=\left.g\right|_{N-W}$,
(ii) $\left.f_{i}\right|_{W}$ is an embedding,
(iii) $f_{i}(W) \subset U, f_{i}(p)=x_{i}$,
(iv) $\quad\left(d f_{i}\right)_{p}\left(T_{p} \mathbb{N}\right)=H_{i} \subseteq T_{x_{i}} X \oplus H_{1} \oplus W_{2}$, for i sufficiently large, where we have considered W_{1}, W_{2} as subspaces of $T_{x_{i}}$. .
(v) $\mathrm{H}_{\mathrm{i}} \rightarrow \mathrm{H}(\mathrm{i} \rightarrow \infty)$,

(vi) $f_{i} \rightarrow g(i \rightarrow \infty)$ in the
strong C^{l} topology.
Then for each sufficiently large i, f_{i} is not transverse to X at x_{i}, since $E \notin H_{i}+T_{\mathbf{x}_{i}} X$, i.e. f_{i} is not transverse to \sum. But by the lemma, $\lim f_{i}=g$ is transverse to \sum, thus we have a contradiction to the hypothesis of (4) that the set of maps transverse to \sum is open in $C^{l}(N, M)$, completing the proof that (4) implies (1).

Proof of lemme 1.3: Choose charts (U, ϕ) for M at $y,(W, \psi)$ for N at p, and a $C^{l} \operatorname{map} h: N \rightarrow M$ such that $h(W) \subset U,\left.h\right|_{W}$ is an embedding, $h(p)=y$, and $(d h)_{p}\left(T_{p} I V\right)=H$. Let $W^{\prime} \subset W$ be an open set containing p, with
 is $\left\{f \in i^{i}(N, H): f^{2} f(x)-j^{i}(x) \mid<\delta \forall x \in \bar{X}\right\}$, then $\left.f\right|_{i n}$ is an embedding (see [13], apter 2, Lemma 1.3). Let $\mathcal{F}_{\delta, \bar{W}},(\bar{T})$ denote the weak C^{1} closure of the weakly open set $\vartheta_{\delta, \bar{H}^{\prime}}(h)$, and let $\mathcal{E}_{H}=D_{H} \cap \overline{\mathcal{U}_{\delta / 2, \bar{W}(h)}}$. Then \mathcal{E}_{H} is weakly C^{1} closed in $C^{1}(N, M)$. For, consider any limit point f_{0} of a convergent sequence in \mathscr{D}_{H} with the weak C^{1} topology. Clearly $f_{0}(p)=y$
and $\left(d f_{0}\right)_{p}\left(T_{p} N\right) \subseteq H$; however the inclusion can be strict : the rank of f can drop at p. But if $f_{0} \in V_{\delta / 2, \bar{W}^{\prime}}(h) \subset V_{\delta, \bar{W}^{\prime}}(h), f_{Q}$ has maximal rank at p since $f_{0} \|_{W}$ is an embedding by choice of δ. Thus $\left(d f_{0}\right)_{p}\left(T_{p} N\right)=H$, and $f_{O} \in \mathcal{O}_{H}$. Hence ε_{H} is weakly C^{1} closed. Now we quote

Theorem 1.4: Any weakly C^{k} closed subspace of $C^{k}(N, M)$ is a Baire space in the strong c^{k} topology $(1 \leq k \leq \infty)$.

Proof. See [13], Chapter 2, Theorem 4.4, or [24].

Using this result we can now apply the usual procedure of the whom transversality theorem (as in [3], or [13]) to prove that $\left\{f \in \mathcal{E}_{H}: f \pitchfork \Sigma\right\}$ is strongly dense in \mathcal{E}_{H}. Cover each stratum S of \sum by countably many compact coordinate discs $\left\{K_{\alpha}^{S}\right\}_{\alpha \in A}^{S \in E}$ such that if $y \in K_{\alpha(y)}^{Y}$ then no other K_{α}^{Y} contains y, and if $f \in \mathcal{E}_{H}$, then $f\left(\bar{W}^{\prime}\right) \cap K_{\alpha(y)}^{Y}=y$. Now verify that for each S and each $\alpha,\left\{f \in \mathcal{E}_{H}: f \not \subset S\right.$ on $\left.K_{\alpha}^{S}\right\}$ is open and dense in \mathcal{E}_{H} with the strong c^{1} topology. The proof of this is a local argument near K_{α}^{S} and goes through as for the standard proof in $C^{l}(N, M)$ by the choice of $K_{\alpha(y)}^{Y}$. (Given $f \in E_{a}, f$ not transverse to Y on $K_{\alpha(y)}^{Y}$, we can find an arbitrarily small perturbation of f to a map $g \in \mathcal{E}_{H}$ winch is transverse to Y on $K_{X(y)}^{Y}$, and such that $\left.g\right|_{\bar{W}}=\left.f\right|_{\bar{W}}$, .) Because there are countably many strata (\sum being assumed locally finite), and because ε_{H} is a Baire space in the strong C^{1} topology (Theorem 1.4), we deduce that

$$
\left\{f \in E_{H}: f \neq s \text { on } K_{\alpha}^{S}, \forall \alpha, \forall s\right\}=\left\{f \in \mathcal{E}_{H}: f \nmid \Sigma\right\}
$$ is strongly dense in \mathcal{E}_{H}. Since $\mathcal{E}_{\mathrm{H}} \neq \varnothing$, as $\mathrm{h} \in \mathcal{E}_{\mathrm{H}}$, we have shown the existence of some g in ε_{H}, and hence in D_{H}, with $g h \sum$. This completes the proof of Lemma 1.3 .

Notes on the proof : 1. It is not clear if D_{H} is a Bare space. This is the reason for introducing E_{a} in the roof of Leman 1.3 . certainly \mathcal{O}_{H} is
not weakly closed, since the rank at p of a limit map may be less than the rank of the mans of a sequence in \mathscr{D}_{H}, convergent in $C^{l}(N, N)$.
2. The proof of (4) implies (1) shows that if there is a C^{1} manifold N with $\left\{f \in C^{1}(N, M): f \not \subset \Sigma\right\}$ open, then \sum is (a)-regular over the strata of dimension $\geqslant \operatorname{dim} M-\operatorname{dim} N$.

2. (a)-regularity and transverse submanifolds

Consider the following condition on a pair of adjacent strata (X,Y) at a point $\quad 0 \in Y \cap(\bar{X}-X)$, with $X, Y \quad C^{l}$ submanifolds of \mathbb{R}^{n}.
(t) Given a C^{1} submanifold S of \mathbb{R}^{n} transverse to Y at 0 , there is a neighbourhood U of 0 in \mathbb{R}^{n} such that S is trensverse to X in U.

If (t) is satisfied for $(X, Y)_{0}$ we say X is (t)-regular over Y at 0 . If X is (t)-reguler over Y for each point in $Y \cap(\bar{X}-X$) we say X is (t)-regular over Y. If each pair of adjecent strata of a stratification are (t)-regular, then \sum is a (t)-repular stratification.

Since spanning is an open condition, it follows at once that (a) implies (t). The false argument referred to above to prove (1) implies (3) of Theorem 1.1 is

(1)
(3)

Wis sugfests that (t) implias the openness of iransuerse naps, which is false in serear, blthough true in the care of subanalytic strath for eny situation where tio curve selection lemal is available), as proved in Theorem 2. 5 below. Thom, in [34] mentioned that (t) implied that the transverse maos formed an ooen set in the semialgebric cese. In $[35]$ he used this to deduce that (a) implies that the transverse mavs aro oven, again using onelyticity,. The
mistake first occurs in [36] where he repeats the argument, but does not assume analyticity. The error was then copied by Wall [41], Trotman [37], and Chenciner [4] Although [37] contains an example showing that (t) does not imply (a), I did not then realise that (a) was equivalent to the openness of transverse maps, and missed the fact that the example there was actually a counterexample to (t) implies openness. A fortuitous remark by E. Bierstone at Oslo in August 1976 led to the recognition of the counterexample which follows.

Example 2.1. A (t)-regular stratification which is not (a)-regular [39]. Let (x, y, z) be coordinates in \mathbb{R}^{3}. Take Y to be the y-axis, and let $X=\left(\bigcup_{n=1}^{\infty}\left\{f_{n}=0, g_{n} \leqslant 0\right\}\right) \cup\left(\bigcap_{n=1}^{\infty}\left\{x=0, g_{n} \geqslant 0, z>0\right\}\right)$ where $\left\{g_{n} \leqslant 0\right\}$ defines the cylinder G_{n} of radius $1 / 3 n(n+1)$ with axis the line $\{y=1 / n, z=1 /$. and where $\left\{f_{n}=0\right\}$ defines the surface F_{n} obtained from $\left\{x=\left(\left(y^{2}+z^{2}\right)-\frac{1}{2}\right)^{2}\right\}$ by translating the origin to $\left(0,1 / n, 1 / n^{2}\right)$ and reducing by a factor of $3 n(n+1) / \sqrt{2}$ so that F_{n} intersects ∂G_{n} exactly where $\{x=0\}$ is tangent to F_{n}. Figure: $\left.x=0,1 /(n+1)^{2}\right)$
π is a C^{1} submanifold and is semialgebraic on the complement of the origin. The normal vector to X at the point

$$
x_{n}=\left(1 / 24 \sqrt{2} n(n+1),(1 / n)+1 / 3 \sqrt{2} n(n+1), 1 / n^{2}\right)
$$

2 : 1: -
站
for all

$$
r
$$

ace the limit as

$$
\therefore \text { tends to } \infty \text { is" }(2: 1: 0)
$$

and (a) fails. (For (a) to hold, all limits of normals would have to be of the form $\left(c_{1}: 0: c_{2}\right)$, where c_{1}, c_{2} are not both zero.)

Figure: $z=1 / n^{2}$
(t) holds since any submanifold transverse to Y will intersect X near Y only at points near which X is defined by $\{x=0\}$. Hence the stratification \sum of \mathbb{R}^{3} defined by $\left\{Y, X, \mathbb{R}^{3}-(X U Y)\right\}$ is (t)-regular.

Now we verify explicitly that the set of maps transverse to \sum is not open. The mapping h in $C^{1}\left(S^{2}, \mathbb{R}^{3}\right)$ defined by inclusion of the sphere of radius 1 and tangent $\{2 x+y=0\}$ at 0 and with centre at $(-1 / \sqrt{5},-2 / \sqrt{5}, 0)$ is transverse to the stratification, but for each n the mapping h_{n} defined by inclusion of the unit sphere with tangent at x_{n} the plane

$$
\{2 x+y=(5+12 \sqrt{2}(n+1)) /(12 \sqrt{2} n(n+1))\}
$$

ara with 0 in the bounded component of $E^{3}-n_{r} s^{2}$, is not transverse to X at x_{n}. Since $\left\{h_{n}\right\}$ tends to h in the weak c^{l} topology, which is also the strong C^{I} topology (since S^{2}. is compact), the set of mappings transverse to \sum is not open in $C^{l}\left(S^{2}, \mathbb{R}^{3}\right)$.
in is (t) cannot replace (a) in the statement of Theorem l. ul.
iote that by smoothing near each circle $\left\{x=0, g_{n}=0\right\}, X$ can be made into a \mathbb{C}^{∞} submanifold of \mathbb{R}^{3}, with the normal vector to X at each x_{n} as before, for all n, thus producing a c^{∞} counterexample.

Construction 2.2 (Hills, or Round Barrows)

The example above used a simple construction of a C^{I} semialgebraic hill which will prove useful as a building block for both examples and proofs of theorems. Consider the curve $\left\{x=\left(y^{2}-1\right)^{2}\right\}$ in \mathbb{R}^{2} : it has tangent parallel to the y-axis for $y= \pm 1$.

Figure : Hill of dimendion one

Rotating in \mathbb{R}^{3} about the x-axis, and cuting sround the circle $\left\{y^{2}+z^{2}=1, x=0\right\}$ and then inserting in the plane $\{x=0\}$ with the disc. $\left\{y^{2}+z^{\hat{c}} \leqslant 1, x=0\right\}$ removed, gives a C^{1} semialgebraic manifold. The vital property of the curve $\left\{x=\left(y^{2}-1\right)^{2}\right\}$ which will be used again and again is that in the region $\left\{y^{2} \leqslant 1\right\}$ the tangent to the curve is furthest from $\{x=0\}$ wea $y= \pm \sqrt{3}$, and at the points $(4 / 9, \pm i \sqrt{3})$ ine nomen $i=(1: \pm 3 / 2 \sqrt{3})$.

Construction 2.3 (Long Barrows)

Consider the surface in \mathbb{R}^{3} with coordinates x, y, z,

$$
m^{7} r^{3} x=\left(m^{2}-z^{2}\right)^{2}\left(m^{2} r^{2}-y^{2}\right)^{2}
$$

where $m, r \in[0, \infty)$. The normal to the surface at $\left(x, y, z_{n}\right)$ is

$$
\left(m^{7} r^{3}: 4\left(m^{2}-z^{2}\right)^{2}\left(m^{2} r^{2}-y^{2}\right) y: 4\left(m^{2} r^{2}-y^{2}\right)^{2}\left(m^{2}-z^{2}\right) z\right)
$$

on $\left\{z^{2}=m^{2}, x=0\right\}$ and $\left\{y^{2}=m^{2} r^{2}, x=0\right\}$ the normal is ($\left.1: 0: 0\right)$, and thus we can cut along these lines to obtain the surface

$$
B(m, r) \equiv\left\{m^{7} r^{3} x=\left(m^{2}-z^{2}\right)^{2}\left(m^{2} x^{2}-y^{2}\right)^{2}, z^{2} \leqslant m^{2}, y^{2} \leqslant m^{2} r^{2}\right\}
$$

and we can insert $B(m, r)$ in the plane $\{x=0\}$ with a rectangle $\left\{x=0, z^{2} \leqslant m^{2}, y^{2} \leqslant m^{2} r^{2}\right\}$ removed, to give a C^{I} semialgebraic mamifold.

At (mrx, mry, mz) for $z^{2} \leqslant 1, y^{2} \leqslant 1$, the normal is now ($\left.1: 4 y\left(1-z^{2}\right)^{2}\left(1-y^{2}\right): 4 r z\left(1-z^{2}\right)\left(1-y^{2}\right)^{2}\right)$. Thus as m varies $B(\mathbf{m}, r)$ varies in size, but the tangent structure (that is the set of points in $F^{2}(\mathbb{R})$ defined by the normals or tangents to the surface) remains the same. But as \dot{I} varies the normals change, and as r tends to 0 the
 We call thic surface $B(m, r)$ a (lone) hrorow of meniture in, atio i with axis $O z$, and centre 0 , and base $y 0 z$. The axis, centre, and base will always be specified. Calculation shows that for $r<\sqrt{3} / 4$, the normal to the

and at these points , ($4 \mathrm{mr} / 9, \pm \mathrm{mr} / \sqrt{3}, 0$), the normal is ($1: \pm 8 / 3 \sqrt{3}: 0)$. (Compare Construction 2.2)

Linguistic fote : The term barrow is used because of the resemblance of the surface to the ancient burial mounds called by that name in England, when r is small.

Example 2.4 : This will show that the phenomenon that (t) be strictly weaker than (a) is not solely due to the possibility of (a)-faults given by sequences tangent to the base stratum as in Example 2.1 : that is, it is not true that (a) holds for those sequences on curves with limiting direction not tangent to the base stratum.

In \mathbb{R}^{3} with coordinates (x, y, z) let Y be the y-axis, and let x be $\left(\bigcup_{n=1}^{\infty}\left\{f_{n}=0, g_{n} \leqslant 0\right\}\right) \cup\left(\bigcap_{n=1}^{\infty}\left\{x=0, g_{n} \geq 0, z>0\right\}\right)$ where $\left\{f_{n}=0\right\}$ is the equation defining the barrow $B\left(m_{n}, r_{n}\right)$ with centre ($\left.0,1 / n, 1 / n\right)$ and axis $\{x=0, z+y=2 / n\}$., with base in the plane $\{x=0\}$, and $\left\{\tilde{x}_{n} \leqslant 0\right\}$ defines the interior of the rectanguler base of the barrow. X is a C^{2} manifold, and is semialgebraic on the complement of the origin in \mathbb{R}^{3}. We choose $\left\{\left(m_{n}, r_{n}\right)\right\}_{n=1}^{\infty}$ such that,
(1) r_{n} tends to 0 as n tends to ∞,
(2) the barrows are pairwise diajoint (in particular m_{n} tends to 0),
(3) m_{n} tends to 0 fast enough so that the $n^{\text {th }}$ barrow $B\left(m_{n}, r_{n}\right)$ is contained in the 2 -sphere with centre ($0,1 / n, 1 / n$) and radius $1 / 2 n^{2}$ (so $m_{n}=1 / 4 n^{2}$ will do).
3y (1) the set of limiting normis is exactly $\{(2:(4 \sqrt{2} / 3 \sqrt{3}) \lambda:(4 \sqrt{2} / 3 \sqrt{3}) \lambda)$: $0 \leqslant|\lambda| \leqslant 1\}$. (cf. Construction 2.3) Thus (a) dails, since for (a) to hold all limiting normals must be of the form $\left(c_{1}, 0, c_{2}\right)$.

By (3) the set of barrows is contained in the horn which is tangent to $\{z=y, x=\}$, a which intersects the nlono $\{z+y=2+\}$ in a sirole of
radius t^{2}. Hence a C^{1} submanifold S transverse to Y at 0 intersects infinitely many barrows only if $\{z=y, x=0\} \subset T_{0} S$. But then S will be transverse to all barrows in some neighbourhood of 0 . For, suppose S were nontraneverse to infinitely many barrows ; then ${ }^{15} O^{S}$ would be one of the limiting ($1:(4 \sqrt{2} / 3 \sqrt{3}) \lambda:(4 \sqrt{2} / 3 \sqrt{3}) \lambda)$. But $\{z=y, x=0\} \subset T_{0} S$, and S is transverse to $\{x=0, \pi=0\}$ at 0 , thus $N_{0} S$ is of the form $(\mu: \nu:-\nu)$ with $\nu \neq 0$, which is not a limiting normal to X.

Thus we have shown that (t) holds and that (a) fails along sequences which are not tencent to Y.

As in example 2.1, by smoothing near the base of each barrow we obtain a c^{∞} exemple.

Figure : $\mathbf{x}=0$.

Now we shall prove that (t) and (a) are equivalent in the subanalytic case. Preoisely, we have the following result.

Theorem 2.5: Let X, Y be C^{1} submanifolds of \mathbb{R}^{n} and let $0 \in Y \cap(\bar{X}-X$;
 and only if for every semianalytic C^{1} submanifold S transverse to Y at 0 there is some neighbourhood U of 0 in which S is transverse to X.

The proof will depend upon two technical lemmas which we display for future reference.

Curve Selection Lemma 2.6 : Let U be a subanalytic subset of the analytic space A, and let $0 \in \bar{U}$. Then there is an analytic arc

$$
\alpha:[0,1] \rightarrow A
$$

such that $\alpha(0)=0, \alpha(t) \in U$ if $t \neq 0$.

Froofs of Lemma 2.6 : (1) Subanalytic U : Hironaka [12, Proposition 3.9].
(2) Semianalytic U : Lojasiewicz [10, page 103].
(3) Semialgabraic U : ivilnor $[23$, Chapter 2].
(Of course, (1) implies (2), and (2) implies (3).)

Lemma 2.7: Let X^{m} be a C^{I} submanifold of \mathbb{R}^{n}, and a subanalytic subset of \mathbb{R}^{n}. When $\{(x, T X): x \in X\}$ is a subanalytic subset of $\mathbb{R}^{n} \times G_{m}^{n}(\mathbb{R}) \cdot$ Froof : See Verdier [40, Lemma 1.6].

Lemma 2.7 , with semianalytic replacing subanalytic each time, follows after partition into real analytic manifolds from the proof of Whitney [47] for complex analytic varieties. A short proof of Lemma 2.7 , with semialgebraic replacing subanalytic each time, appears in Gibson $[6$, page 30].

Froof of Theorem 2.5: Only if - this is immediate since spanning (and hence. transversality) is an open condition.

If - Suppose (a) fails. Thus there is a unit vector $v \in T_{0} Y$, a sequence $\left\{x_{i}\right\} \in X$ such that x_{i} tends to 0 , and $T_{x_{i}} X$ tends to a limit C. and $v+$ t.
 where $Q(v, P)$ denotes the distance between $P \in G_{m}^{n}(R)$ and the endpoint of the unit vector \mathbf{v}, both considered as subspaces of \mathbb{R}^{n} at 0 .

$$
\begin{aligned}
\text { Define } \quad V_{1} & =\mathbb{R}^{n} x\left\{P \in G_{m}^{n}(R): d(v, P)>\varepsilon\right\} \subset \mathbb{R}^{n} \times G_{m}^{n}(\mathbb{R}) \\
V_{2} & =\left\{\left(x, x_{x}\right): x \in \lambda\right\} \quad \in \mathbb{R}^{n} \times G_{m}^{n}(R)
\end{aligned}
$$

V_{1} is semialgebraic, and V_{2} is subanalytic by Lemma 2.7 , since X is assumed to be subamalytic. Semialgebraic sets are subanalytic, and the finite intersection of subanalytic sets is suhanalytic (by Hironaka [12]). Hence $V_{1} \cap V_{\hat{R}}$ is subanalytic and $(0, \tau) \in{\overline{V_{1}} \cap V_{2}}$ satisfies the hypotheses of the curve selection lemma 2.6. Thus there is an analytic arc in $\mathbb{R}^{n} \times G_{m}^{n}(\mathbb{R})$ (which is an analytic, even algebraic, manifold),

$$
\mathcal{\alpha}:[0,1] \longrightarrow \mathbb{R}^{n} \times G_{m}^{n}(\mathbb{R})
$$

with $\alpha(0)=(0, C)$ and $\alpha(t) \in V_{1} \cap V_{2}$ if $t>0$.
write $\alpha_{1}(t)$ for the \mathbb{R}^{n}-component of $\alpha(t)$; the $G_{\mathbb{m}}^{n}(\mathbb{R})$-component is ${ }^{T} \alpha_{1}(t)^{x}$. Let $\mathbb{N}_{t} \in G_{n-1}^{n}(\mathbb{R})$ denote the normal space at $\alpha_{1}(t)$ to the C^{1} manifold-with-boundary $\alpha_{1}([0,1])$, and let the vector v_{t} be the projection of v into i_{t} spanning $\left\langle v_{t}\right\rangle \in G_{1}^{n}(\mathbb{R})$.

He shall define an analytic arc $\sigma:[0,1] \longrightarrow G_{n-2}^{n}(\mathbb{R})$ such that

$$
\begin{equation*}
\sigma(t) \oplus\left\langle v_{t}\right\rangle=N_{t} \tag{*}
\end{equation*}
$$

Then the union of the $\{\sigma(t)\}$, considered as embedded ($n-2$)-planes in \mathbb{R}^{n} passing through the points $\alpha_{1}(t)$ defines an analytic manifold-withboundary S^{\prime} of dimension $(n-1)$. Reflection in N_{O} extends S^{\prime} to a C^{1} manifold S which is a semianalytic subset of \mathbb{R}^{n}, and which is transverse to Y at 0 by (*). However we shall show that no neighbourhood U of 0 exists within which S is transverse to X.
Construction of σ :
Let $P_{t}=N_{t} \cap T_{\alpha_{1}}(t)^{X \in} \in G_{m-1}^{n}(R)$. Then $0 \neq v_{t} \notin P_{t}$ by definition of $V_{1} \cap V_{2}$. Let $\sigma(t)=P_{t} \oplus\left(P_{t} \oplus\left\langle v_{t}\right\rangle\right)^{\perp} \in G_{n-2}^{n}(\mathbb{R})$, where ()$^{\perp}$ denotes orthogonal complement in \tilde{H}_{+}.

Figure : $N_{t}(n=4, m=2)$.

σ satisfies (*) by construction, and so it only remains to show that S fails to be transverse to X in any given neighbourhood U of 0 . Now there exists some $t_{0} \in(0,1]$ such that $U \cap \alpha_{1}(0,1] \supset \alpha_{1}\left(0, t_{0}\right]$. But S^{\prime} (and hence S) is not trensverse to X at any point of $\alpha_{1}(0,1]$. For, if A_{t} denotes the t_{a} ngent space to the curve $\alpha_{1}(0,1]$ at $\alpha_{1}(t)$,

$$
T \alpha_{1}(t)^{X}=P_{t} \oplus A_{t} \subset \sigma(t) \oplus A_{t}=T \alpha_{1}(t)^{S}
$$

lhis completes the proof of Theorem 2.5.

Note 2.8: Even if X and Y are \mathcal{C}^{∞} submanifolds we cannot restrict to C^{∞}, or even C^{2}, semianalytic submanifolds S, since (a) may fail only near a. cusp of type $" y^{2}=x^{3} 1$, each branch of which is a C^{1} manifold-withboundary, but not a C^{2} manifold-with-boundary. The same type of example excludes restricting to analytic submanifolds S, although by the proof of 2.5 we can restrict to analytic submanifolds-with-boundary S, since the statement that S be transverse to Y at 0 still makes sense if $0 \in Y \cap \partial S$. The proof of 2.5 also shows that we can restrict to those S which are "ruled submanifolds ", that is a differentiable one-dimensional family of planes of codimension 2 in \mathbb{R}^{n}. horsover it suffices to sonsider all sucmanifoids of
 small adjustment in the proof (choose $\sigma_{1}(t) \subset \sigma(t)$, where $\sigma_{1}(0)+\mathbb{T}_{0} Y=N_{0}$, $\sigma_{1}(t) \in_{G_{c-1}}^{n}(\mathbb{R})$, and $\left.c \geqslant \operatorname{codim} Y\right)$.
T.-C. Kuo has recently proved the following result, which is related to the cuestions already treated in this section.

Theorem 2.9 (Kuo) : Let X, Y be C^{∞} submanifolds of $\mathbb{R}^{n}, Y=X-X$ in some neighbourhood of Y. Suppose X is (a)-regular over Y at $0 \in Y$. Let S_{1}, S_{2} be C^{∞} submanifolds transverse to Y at 0 , with $\operatorname{dim} S_{i}=n-\operatorname{dim} Y_{i}$ (i = I.) . Whon the grme of $S_{1} \cap K$ and $S_{2} \cap \alpha$ t 0 nehomenmorphic.

Froof $: \operatorname{In}[15]$.

Whis is an attractive result since it parallels the Thom-Nather theorem (Theorem B of the introduction) that (b)-regularity implies topologioal triviality. Explicitly, if X is (b)-regular over Y and S_{1} and S_{2} are tro suomanifolds transverse to Y at points y_{1} and y_{2} in Y (with $y_{1} \neq y_{2}$ alloned), then the germs of $S_{1} \cap X$ at y_{1} and $S_{2} \cap X$ at y_{2} are homeomorphic. This follows from Corollary 10.6 of $[21]$. (a)-regularity is deiinitely insufficient for the latter property as shown by the figure below.

germ of $S_{1} \cap X$ きt \exists

$/ 1$
germ of $S_{2} \cap X$ at 0

Conjecture $2.10:$ Theorem 2.9 is true with the weaker hypothesin that X

O'oserve that the hypothesis $Y=\bar{X}-X \quad$ rather than $Y C \bar{X}-X$ is essential. in $z . y$ and 2.10 , as shown by the next figure.

He might also ask if the converse of Theorem 2.9 is true. However examples 2.1 and 2.4 show that this is not so. In both examples X is not (a)-regular

X in a topological open half-line near 0 . We do though have a converse to 2.9 if we replace (a)-regularity by (t)-regularity as in Theorem 2.11 below.

Definition : Let X, Y be C^{l} submanifolds of \mathbb{R}^{n}, and $O \in Y \subset \bar{X}-X$. The pair (X, Y) is said to have homeomorphic C^{k} transversals of dimension s at $0(1 \leqslant \hbar \leqslant \infty, \operatorname{codim} Y \leqslant s \leqslant n) i f$,
$\left(h_{s}^{k}\right)$ Given a C^{k} submanifold S of dimension s transverse to Y at 0 , the topological type of the germ of $S \cap X$ at 0 is independent of S.

Theorem 2.9 says that (a) implies ($h_{\text {cod } Y}^{\infty}$). From the proof of 2.9 [15], one sees that (a) implies $\left(h_{c o d}^{2}\right)$, but it is left in doubt whether (a) implies $\left(h_{c o d}^{l}\right)$ since the proof makes use of a (tangent) vector field in a blowing-up.

Write $\left(t_{s}^{i z}\right)$ for condition (t) restricted to those C^{1} submanifolds S of class $C^{k}(l \leqslant k \leqslant \infty)$ and dimension $s(\operatorname{codim} Y \leqslant s \leqslant n)$. Then we have ,
 $j \in \operatorname{I} \cap \bar{K}$, with $1 \leqslant k \leqslant \infty$. Then

$$
\left(h_{s}^{k}\right) \text { implies }\left(t_{s}^{k}\right) \text { if }\left\{\begin{array}{l}
k=1 \\
o r \\
k>1 \text { and } s>n-\operatorname{dim} X .
\end{array}\right.
$$

(David Epstein has given a counterexample showing that the restriction on s when $k>1$ is necessary.)

Proof : Suppose X is not $\left(t_{s}^{k}\right)$-regular over Y at 0 . Then there is some C^{k} submanifold S of dimension s, transverse to Y at O, and an infinite sequence of noints x_{i} in X, tending to 0 , such that S and X are not transverse at x_{i}, for ali i.

We are working locally at O, so we can suppose that S is the image of a $\mathbb{C}^{\mathbf{k}}$ embedding $\mathrm{i}_{\mathrm{S}}:\left(\mathbb{R}^{\mathbf{s}}, 0\right) \longrightarrow(\mathrm{s}, 0) \subset\left(\mathbb{R}^{\mathrm{n}}, 0\right)$.

Choose a sequence of pairwise disjoint balls B_{i} of radius r_{i} and centre X_{i}, which are contained in coordinate charts for X, such that $i_{S}^{-1}\left(S \cap B_{i}\right)=D_{i}$ is an open subset of \mathbb{R}^{s}, and diffeomorphic to \mathbb{R}^{s}. Let $s_{i}=i_{S}^{-1}\left(x_{i}\right)$. We shall show the existence of a c^{k} embedding $g=\left(\mathbb{R}^{3}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ such that,
(I) $E=i_{S}$ off $\bigcup_{i=1}^{\infty} D_{i}$,
(II) for all i, $g\left(\mathbb{R}^{s}\right) \cap X \cap B_{i}$ is not homeomorphic to a manifold of dimension $(s+\operatorname{dim} X-n)$, and is nonempty.

From (I) it follows that i_{S} and g have the same k-jet at 0 , so that in particular $E\left(\mathbb{R}^{\mathbf{S}}\right)=S^{\prime}$ is transverse to Y at 0 .

Existence of K when $k=1$:
Finding such a E is particularly simple when $k=1$.
Fix i, and let \boldsymbol{S}_{i} be a C^{1} diffeomorphism of B_{i}, fixing x_{i}, so that $\phi_{i}\left(X \cap B_{i}\right)$ is affine. By an arbitrarily small C^{l}-perturbation of i_{z} near s_{i} we can change $i_{S} \mid D_{i}$ to a c^{1} embedding $g_{i}:\left(D_{i}, s_{i}\right) \rightarrow\left(B_{i}, x_{i}\right)$, such that there are open neighbourhoods N_{i} and L_{i} of s_{i} in \mathbb{R}^{s} with $X_{i} \subset \bar{N}_{i} \subset L_{i} \subset \bar{L}_{i} \subset D_{i}$, and $\left.g_{i}\right|_{D_{i}-L_{i}}=\left.i_{S}\right|_{D_{i}-L_{i}}$, and $\left.\phi_{i} \circ g_{i}\right|_{N_{i}}=\left.d\left(\phi_{i} \circ i_{S}\right)\left(s_{i}\right)\right|_{N_{i}}$. (We have pushed $\phi_{i}(S)$ onto $i t s$ tangent space near x_{i}.)

Near x_{i} Ne now have two affine subspaces $\phi_{i}\left(X \cap B_{i}\right)$ and $\left(\phi_{i} \circ g_{i}\right)\left(N_{i}\right)$ which intersect"at x_{i}, but are not transverse at x_{i}, and hence intersect in an affine subspace of dimension greater than $d=\max (-1, s+$ dim $X-n)$. Thus $\operatorname{dim}\left(\phi_{i}\left(X \cap B_{i}\right) \cap\left(\phi_{i} \circ g_{i}\right)\left(D_{i}\right)\right)$ is greeter than d, and hence (*) $\quad \operatorname{dim}\left(X \cap g_{i}\left(D_{i}\right)\right)>d$.
In particular $X \cap \varepsilon_{i}\left(D_{i}\right)$ is nonempty.
Now define $z:\left(\mathbb{R}^{5}, 0\right) \rightarrow\left(\operatorname{Ha}^{n}, 0\right)$ by setting $\left.E\right|_{i}=g_{i,}$ bor all i, att 8 gruel to i_{5} elsewhere.

For g to be a C^{1} embedding, it suffices to choose $\left[g_{i}\right\}$ such that $\left|j^{1}\left(i_{S}\right)(s)-j^{l}\left(g_{i}\right)(s)\right|<r_{i} / 2^{i}$ for all $s \in D_{i}$, for all i.

Then (I) is satisfied by construction, and (*) gives (II).

Existence of g when $k>1$, and $s>(n-\operatorname{dim} X)$:
Fix 1 . We shall change $\left.i_{S}\right|_{D_{i}}$ to a c^{k} embedding $g_{i}:\left(D_{i}, s_{i}\right) \longrightarrow\left(B_{i}, x_{i}\right)$ by an arbitrarily small C^{k}-perturbation (less than $r_{i} / 2^{i}$, say) near s_{i}, so that there are open neighbourhoods N_{i} and L_{i} of s_{i} in R^{s} with $\overline{\mathbb{N}}_{i} \subset L_{i}$, and $\bar{L}_{i} \subset D_{i}$ such that $\left.g_{i}\right|_{D_{i}-L_{i}}=i_{S} \mid D_{i}-L_{i}$, and such that $g_{i}^{-1}(X) \cap N_{i}$ is homeomorphic to a cone in \mathbb{R}^{s}, of the form

$$
\sum_{j=1}^{s+\operatorname{dimX}-n+1} \varepsilon_{j} z_{j}{ }^{2}=0, \text { where } \varepsilon_{j}= \pm 1
$$

hence $g_{i}^{-l}(X) \cap N_{i}$ is not homeomorphic to a topological manifold of dimension ($s+\operatorname{dim} X-n$), and is nonempty.

The existence of such a g_{i} follows from the Perturbation Lemma of May (Lemma 1A of his thesis [53]; Damon has given a detailed proof of a more precise perturbation in Lemma 3.1 of [51]) applied to the C^{k} embedding i_{S} at 0 , using the hypothesis $s>n$ - dim X. The Perturbation Lemma is stated for C^{∞} maps and uses the C^{∞} Morse Lemma, however the proof works for C^{k} maps ($k \geqslant 2$),
 provide different proofs). Note that the classical proof of the Morse Lemma is only valid for C^{3} functions (see [13], Chapter 6, Section 1).
(I) and (II) now follow for the C^{k} embedding g defined in terms of i_{S} and $\left\{g_{i}\right\}$, as in the case of $k=1$. This completes our proof of the exister of g.

Lemma 2.12: here is sone C^{k} submanifold $S^{\prime \prime}$ of dimension s, with $0 \in S^{\prime \prime}$, transverse to Y at 0 anjtransverse to X year 0 .

Proof : This proof will be similar to that of Lemma 1.3.
Let $\varepsilon_{S}=\left\{f \in C^{k}\left(S, \mathbb{R}^{n}\right): f(0)=0\right\} . \mathcal{E}_{S}$ is weakly closed in the d^{k} topology, and this, y meorem $1.4, E_{S}$ is a zaire space in the strong
c^{k}
topology. Now we apply the standard proceciure of covering X by countably many coordinate discs $\left\{K_{\alpha}\right\}$, and proving that $\left\{f \in \mathcal{E}_{S}: f \alpha X\right.$ on $\left.K_{\alpha}\right\}$ is open and dense in \mathcal{E}_{S} in the strong C^{k} topology, for each α, to deduce that $\left\{f \in \mathcal{E}_{S}: f \mathbb{A X}\right\}$ is dense in \mathcal{E}_{S}.

Choose a weak c^{k} neighbourhood $V_{\delta, \bar{V}}\left(i_{S}\right)$ of the $\left(c^{k}\right)$ mapping i_{S} defined by inclusion of S in R^{n}, where δ is a positive real number, V is a neighbourhood of 0 in S, with compact closure \bar{V}, and if $f \in \mathcal{V}_{\delta, \bar{V}}\left(i_{S}\right)$, $\left.{ }^{f}\right|_{V}$ is a C^{k} embedding transverse to Y at 0 (Lemma 1.3 in Chapter 2 of Hirsch [13] gives δ, V for such a C^{l} neighbourhood, and the same. δ, V provide an adequate C^{k} neighbourhood). Then the strong C^{k} neighbourhood $\mathcal{U}_{\delta, S}\left(i_{S}\right)$ has $\mathcal{U}_{\not}=\mathcal{U}_{\delta, S}\left(i_{S}\right) \cap\left\{f \in \mathcal{E}_{S}: f \nrightarrow x\right\}$ as a strongly c^{k} dense subset. For any f in $V_{h}, S^{\prime \prime}=f(V)$ satisfies the requirements of Lema 2.12 .
(Recall that $\left.\mathcal{V}_{\left.\delta, \bar{V}^{\left(i_{S}\right.}\right)}=\left\{f \in C^{k}\left(S, \mathbb{R}^{n}\right):\left|j^{k_{I}(z)}-j^{k_{i}}(z)\right|<\delta, \forall z \in \bar{V}\right\}.\right)$

Let $S^{\prime \prime}$ be given by Lemma 2.12. Then $S^{\prime \prime} \cap X$ is either empty in some neighbourhood of 0 , or is a topological manifold of dimension ($s+\operatorname{dim} X-n$). Let S^{\prime} be given as the imags of the embedding g constructed above. Then the corns at 0 of $S^{\prime} \cap X$ and $S^{\prime \prime} \cap X$ are of aistinct opological types, by (II), and so $\left(h_{s}^{k}\right)$ is not satisfied, thus proving Theorem 2.11.

Corollary 2.13: If X is subanalytic and the pair (X, Y) has homeomorphio C^{1} transversals of dimension s at 0 for some $s, n-1 \geqslant s \geqslant \operatorname{codim} Y$, then X is (a)-regular over Y at 0 .

E№of: Combine Theorem 2.11 with Theoren 2.5, using the remark at the end of Ńote 2.8 that for any $s, n-1 \geqslant s \geqslant \operatorname{codim} Y,\left(t_{s}^{1}\right)$ implies (a).

Remark : Conjecture 2.10 and Theorem 2.11 are in accord with the general principle of Thom that instability of topologioal type corresponds to a lack of transversality.

One of the original motivations for this work was the hope of generalising the theorems about equisingularity of families of complex hypersurfaces achieved by Zariski and the French School (led by Teissier). We now explain how the results just described fit in with this idea.

Let $F:\left(c^{n+1} \times c^{k}, 0 \times c^{k}\right) \longrightarrow(\mathbb{C}, 0)$ be a complex analytic function such that $Y=0 \times \mathbf{c}^{k}$ contains the singular set of F. Let $r: \mathbb{c}^{n+1} \times \mathbb{c}^{k} \longrightarrow Y$ be an analytic retraction. In $[30]$ we find the following implications :-
(T.E) topological type of $F^{-1}(0) \cap r^{-1}(y)$ is constant as y varies in Y $\sqrt{1}$
$(\mu) \quad$ the Milnor number $\mu\left(F^{-1}(0) \cap r^{-1}(y)\right)$ is constant as y varies in Y
(a) $\quad\left(F^{-1}(0)-Y\right)$ is (a)-regular over Y
(The first implication is (0.1.4) of $[30]$, and is also sketched on page 68 of [23]. The second implication is (II.3.10) of [30] ; a different proof appears in [16].)

In [31], Teissier denotes by (S.T.E) the condition that ('T.EH) nold for all suoh retractions r. Corollary 2.13 can now be thought of as a generalisation of the implication: (S.T.E) implies (a). Also Kuo's Theorem 2. 9 has as a direct consequance that (T.E) implies (S.T.E), a resilit left
unsettled in [31].
The example given by Teissier in the postscript to [31] is instructive. Consider $V \equiv\left\{y^{3}=t x^{2}+x^{5}\right\}$ in \mathbb{R}^{3} and let Y be the t-axis, and $X=V-Y$. Then X is topologically trivial over Y, and the topological type of the intersection of X with each plane $\{t=$ constant $\}$ is constant, so that (T.E) holds for $r: \mathbb{R}^{3} \longrightarrow Y$ defined by $(x, y, t) \longmapsto t$. However X is not (a)-regular over Y at O, and (X, Y) does not have homeomorphic c^{1} transversal of dimension 2 at 0 as is seen from the figure.

Figure : $y^{3}=t x^{2}+x^{5}$.

3. (a)-regularity and transverse foliations

In his paper "Regular Stratification " [43] C. T. C. Wall noted that if a pair of adjacent strata (X, Y) in \mathbb{R}^{n} ans (a)-regular at 0 in Y then,
(a_{s}) Given a C^{1} local retraction, π onto Y defined near 0 , then there is a neighbourhood U of 0 in \mathbb{R}^{n} such that $\left.\pi\right|_{X \cap U}$ is a submersion.

He suggested that the converse was also true, and this will be the main result of this section.

First note that $\left.\pi\right|_{X \cap U}$ is a submersion if and only if the fibres of π are transverse to X in U. Then we see that (a_{s}) implies (t). For, given a C^{1} submanifold S transverse to Y at O we can choose a chart at O in which S and Y become linear and then take a linear retraction T whose fibres lie in S. If the fibres of T are transverse to X, S will be transverse to x. Thus we obtain,

Corollary 3.1: Let X^{*}, Y be C^{1} submanifolds of \mathbb{R}^{n} and let $0 \in Y \subset \bar{X}-X$ and let X be a subanalytic set. Then X is (a)-regular over Y at O if and only if x is $\left(a_{s}\right)$-regular over Y at 0 .

Proof : As above, (a) implies ($\mathrm{a}_{\mathbf{s}}$), and (a_{s}) implies (t) . Now apply Theorem 2.5 .

Clearly if Y is an analytic manifold we can restrict to C^{1} local retractions π whose fibres are semianalytic : further improvements on

Remark 3.2 : In both examples 2.1 and 2.4 we can choose a (linear) retraction π whose fibres are translates (over Y) of a limiting tangent plane for which (a) fails, and these fibres fail to be transverse to X at each point of a sequence tending to 0 .

Before we prove that (a_{s}) implies (a), we give a helpful reformulation of (a_{s}) suggested by Dennis Sullivan.
(\mathcal{F}^{k}) Given a C^{k} foliation \mathcal{F} transverse to Y at 0 , there is a roo hhourhocd J of 0 in n^{n} such that j iztransrense io A in U.

It is clear that $\left(a_{s}\right)$ is equivalent to $\left(\mathcal{F}^{l}\right)$. Given $\left(\mathcal{F}^{l}\right)$, (a_{s}) follows since the fibres of a C^{1} local retraction define a foliation transverse to Y of codimension the dimension of Y. Given $\left(a_{s}\right),\left(\mathcal{F}^{1}\right)$ follows by choosing a retraction whose fibres are contained in the leaves of the foliation.

So the question of whether $\left(a_{s}\right)$ implies (a) can be formulated as : do transverse C^{1} foliations detect (a)-faults ?

Theorem 3.3 ("Transverse C^{1} foliations detect (a)-faults ")
Let X, Y be C^{l} submanifolds of \mathbb{R}^{n}, and let $0 \in Y \subset \bar{X}-X$. Then X is (a)-regular over Y at 0 if and only if X is (\mathcal{Y}^{I})-regular over Y at 0 Proof : We have already established that (a) implies (\mathcal{F}^{1}). So suppose that there is an (a)-fault at 0 given $b y$ a sequence $\left\{x_{i}\right\} \in X$ tending to 0 , within $C=\lim T_{x_{i}} X$, and $T_{0} Y \notin C$.
ire shall adjust a codimension 1 foliation by hyperplanes parallel to a hyperplane containing τ so as to be nontransverse to X at infinitely many x_{i}.

Construction 3.4 (Ripples)

Given a hyperplane $H \in G_{n-1}^{n}(\mathbb{R})$, a real number $s \in\left[0, \frac{1}{2}\right]$, and a real umber $r>0$, we construct a \mathbb{S}^{1} foliation \hat{F}_{H}^{s} of codimension 1 of the ball B_{r}^{n} of radius r with centre 0 in \mathbb{R}^{n} such that
(1) for all $x \in B_{r}^{n}-B_{\frac{1}{2} x}^{n}, T_{x} \mathcal{H}_{H}^{S}=H$,
(2) for all $x \in B_{\frac{1}{2}}^{n} x, d\left(H, T_{x} y_{H}^{s}\right) \leqslant s$,
(3) for all. $K \in G_{n-1}^{n}(\mathbb{R})$ such that $a(K, F)=s$, there is a unique $x_{K} \in B_{\frac{1}{2}}^{n} T$ such that $T_{X_{K}} \mathcal{F}_{H}^{s}=K$,
(4) there is a C^{1} diffeomorphism $\phi_{H}^{S}: E_{r}^{n} \longrightarrow B_{r}^{n}$ such that $\phi_{H}^{s}\left(\mathcal{F}_{H}^{s}\right)$ is the trivial foliation \mathcal{Y}_{H}^{0} by hyperplanes parallel to H, and such that $\left.\phi_{H}^{s}\right|_{B_{r}} ^{n}-B_{\frac{1}{2} r}^{n}=\left.i d\right|_{B_{r}^{n}} ^{n}-B_{3 r}^{n}$, and $d \phi_{H}^{s}$ tends to the identity uniformly as s tends to 0 , i.e. $\forall \varepsilon>0, \exists s_{\varepsilon}>0$ " such that
$s<s_{\varepsilon}$ implies $\left|d \phi_{H}^{s}(x)-I\right|<\varepsilon$ for all $x \in B_{r}^{n}$.

Figure : Foliation with a ripple.

(We shall postpone the verification of Construction 3.4 until after the proof of Theorem 3.3 . The reader may in any case prefer to admit the verification as geometrically evident.)

Choose a one-dimensional subspace $V \subset T_{0} Y$ such that $V \notin \tau$. Define a hyperplane H by $\tau \oplus(\tau \oplus V)^{\perp}$, where ()$^{\perp}$ denotes orthogonal complement $i_{n} \mathrm{~g}^{\mathrm{n}}$.

Since $T_{x_{i}} X$ tends to T as i tends to ∞, there is some i_{0} such that $i \geqslant i_{0}$ implies $V \notin T_{x_{i}} X$. Then for all $i \geqslant i_{0}$ define a hyperplane H_{i} by $T_{x_{i}} X \oplus\left(T_{x_{i}} X \oplus V\right)^{\perp} \subset T_{x_{i}} \mathbb{R}^{n}$. Then H_{i} tends to H as i tends, to ∞. Pick $i_{1} \geqslant i_{0}$ such that $\left|H_{i}-H\right|<\frac{1}{2}$ for $i \geqslant i_{1}$.

Now pick an infinite sequence of pairwise disjoint balls $B_{r_{i}}\left(x_{i}\right)$ with radius r_{i} and centre x_{i}. This is possible since 0 is the only accumulation point of $\left\{x_{i}\right\}_{i=1}^{\infty}$. Then for all i, 0 中 $_{I_{r_{i}}}\left(x_{i}\right)$.

For all $i \geqslant i_{1}$, place inside $B_{r_{i}}\left(x_{i}\right)$ a " ripple" : a foliated ball $B_{i}=B_{\frac{1}{2} r_{i}}\left(y_{i}\right)$ with radius $\frac{1}{2} r_{i}$, centre y_{i}, and the foliation $\mathcal{F}_{i}=\mathcal{F}_{H^{i}}^{|H|}$ given by Construction 3.4 such that $x_{i}=x_{H_{i}}$, ie. $T_{x_{i}} \mathcal{F}_{i}=H_{i}$. (There are two possible positions for the ripple.) Define a foliation \mathcal{F} on \mathbb{R}^{n} by the
trivial foliation \mathcal{F}_{H} by hyperplanes parallel to H on $\mathbb{R}^{n}-\left(\bigcup_{i \geqslant 1} B_{i}\right)$, together with \mathcal{F}_{i} on B_{i} for all $i \geqslant i_{1}$. \mathcal{F} will be a c^{1} foliation if we can define a c^{1} diffeomorphism $\phi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ taking \mathcal{F} onto \mathcal{F}_{H}. Let $\left.\phi\right|_{R^{n}-\left(\bigcup_{i} \bigcup_{i_{1}} B_{i}\right)}=$ identity, and $\left.\phi\right|_{B_{i}}=\phi_{H}^{\left|\mathbb{H}_{i}-H\right|}$ as defined in Construction 3.4. To check that ϕ is a C^{1} diffeomorphism it is enough to check that $d \phi(x)$ is continuous at 0 and equal to the identity at 0 .

Given $\varepsilon>0$, (4) of Construction 3.4 gives us an ${ }^{s} \varepsilon>0$. Pick $i_{2} \geqslant i_{1}$ suck the $\left|H_{i}-H\right|<s \varepsilon$ for all $i \geqslant i_{2}$. Let $\delta=\min _{x \in \bar{B}_{i}}\{|x|\}$. δ is rell-defined and nonzero since $0 \notin \bigcup_{i=i_{l}}^{i_{2}^{-1}} \bar{B}_{i} \subset \bigcup_{i=i_{l}}^{i_{2}-1} B_{r_{i}}\left(x_{i}\right)$. Then $|x|<\delta$ implies $x \notin \bigcup_{i=i_{1}}^{i_{2}-1} B_{i}$, so

$$
\begin{aligned}
|\mathrm{d} \phi(x)-I| & \leqslant \max _{\substack{x^{\prime} \in B_{i} \\
i \geqslant i_{i}}}^{\left\{\left|d \phi_{H}^{\left|H_{i}-H\right|}\left(x^{\prime}\right)-I\right|\right\}} \\
& <\varepsilon \quad \text { by (4) of Construction } 3.4,
\end{aligned}
$$

and tie e choice of s_{ε}, i_{2}.
Thus $d \phi(x)$ is continuous near 0 , and $d \phi(0)=I$ (the identity matrix). Fence \mathcal{F} is a C^{1} foliation and $T_{0} \mathcal{F}=H$, so that. \mathcal{F} is transverse to Y. at $\partial\left(V \notin H\right.$ by definition of H). But for all $i \geqslant i_{1}, T_{x_{i}} \mathcal{F}=T_{x_{i}} \mathcal{F}_{i}=H_{i}$ and $T_{x_{i}} X^{K} \subseteq H_{i}$, so that \mathcal{F} is nontransverse to X at x_{i}. This shows that x is not (\mathcal{F}^{1}-regular over Y at 0 , proving Theorem 3.3.
verification of Construction 3.4 : It suffices to taka $H=\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^{n}$ and $n=2$. For $n>2$ the calculations are similar.

$$
\text { Consider, } \begin{cases}y=\lambda+\left(1-\lambda^{2}\right)^{2}\left(x^{2}-a^{2}\right)^{2} & \lambda^{2} \leqslant 1, x^{2} \leqslant a^{2} \\ y=\lambda & \lambda^{2} \leqslant 1, a^{2} \leqslant x^{2} \leqslant 1\end{cases}
$$

with the constant a in $(0,1)$ to be chosen shortly.

We sail prove that this defines a C^{1} foliation of $[-1,1]^{2}$ of codimension 1, with the leaves corresponding to fixed values of λ. (If $n>2$, take $x_{n}=\lambda+\left(1-\lambda^{2}\right)^{2}\left(\sum_{i=1}^{n-1} x_{i}^{2}-a^{2}\right)^{2}$, et cetera.)

Finultiplying by $r / 4$ gives a foliation of $[-r / 4, r / 4]^{2}$ which fits into the ball ${B_{\frac{1}{2}} r}(0)$ and extends trivially to a foliation \mathcal{F}_{a} of $B_{r}(0)$ which satisfies (1). The leaf with normal vector furthest from ($0: 1$) is clearly given by $\lambda=0$, and this normal is (1: $\mp\left(8 a^{3}\right) /(3 \sqrt{3})$) at the points ($\left.(4 / 9) a^{4}, \pm a / \sqrt{3}\right)$. (Compare Construction 2.2)

Write $\nu_{a}=\left(8 a^{3}\right) /(3 \sqrt{3})$. Then $\left|\left(1: V_{a}\right)-(1: 0)\right|=\left(\nu_{a}\right) /\left(1+V_{a}^{2}\right)^{\frac{1}{2}}$. So , given s, choose a such that

$$
\begin{aligned}
\frac{\nu_{a}^{2}}{1+\nu_{a}^{2}} & =s^{2}, \\
\text { i.e. } \quad \nu_{a}^{2} & =\frac{s^{2}}{1-s^{2}} . \\
\text { Then } \quad a^{6} & =\frac{27 s^{2}}{64\left(1-s^{2}\right)} .
\end{aligned}
$$

Within this choice of a, (2) and (3) of 3.4 are satisfied.
rote that for $s \in\left[0, \frac{1}{2}\right]$ we have : $a^{6} \leq 9 / 64(*)$.
Define $\phi_{e}:[-1,1]^{2} \rightarrow[-1,1]^{2} \quad \mathrm{kj}$

$$
\phi_{a}(x, y)= \begin{cases}(x, y) & a^{2} \leqslant x^{2} \leqslant 1 \\ \left(x, y+\left(1-y^{2}\right)^{2}\left(x^{2}-a^{2}\right)^{2}\right) & x^{2} \leqslant a^{2}\end{cases}
$$

ϕ_{a} is then a C^{l} map. Elementary calculation using (*) shows that ϕ_{a} is infective. Non

$$
\dot{z} \phi_{a}(x \cdot y)=\left(\begin{array}{cc}
1 & 0 \\
4 x\left(x^{2}-a^{2}\right)\left(1-y^{2}\right)^{2} & 1-4 y\left(1-y^{2}\right)\left(x^{2}-a^{2}\right)^{2}
\end{array}\right) \text { ir } x^{2} \leqslant a^{2}
$$

$$
\text { end } \quad \text { d } \phi_{a}(x, y) \text { is the identity matrix if } a^{2} \leqslant x^{2} \leqslant 1
$$

Calculation using $(*)$ shows that ${ }^{d} \phi_{a}(x, y)$ is always nonsingular. Thus ϕ_{a} is $\equiv C^{1}$ diffeomorpisisn of $[-1,1]^{2}$, which after scalar multiplication by r/4
as described above may be extended by the identity to a C^{l} diffeomorphism of $B_{r}(0)$ since $d \phi_{a}(x, \pm 1)$ is the identity matrix. It defines the foliation.
$\phi_{\text {II }}^{s}$ will be the inverse of the resulting diffeomorphism. It only remains to verify (4) of Construction 3.4 , ie. to show that $d\left(\phi_{a}^{-1}\right)$ tends uniformly to the identity matrix as a tends to 0 ; but this follows from the some result for $d \phi_{2}$, and this in turn follows from the expression above. Thus we have verified conditions (1) - (4) of Construction 3.4.

Corollary 3.5 : (a)-regularity is a C^{1} diffeomorphism invariant . Proof : $\left(\mathcal{F}^{1}\right)$ is clearly C^{1} diffeomorphism invariant.

Fiaving shown that transverse $C^{\mathcal{I}}$ foliations detect (a)-faults, we give an example of an (a)-fault which is not detectable by transverse C^{2} foliations, showing that Theorem 3.3 is sharp. The details of this example were worked out with the help of Anne Kambouchner.

Example $3.6:$ An (a)-fault not detectable by transverse C^{2} foliations.
In \mathbb{R}^{3} let (x, y, z) be coordinates, and let Y be the y-axis, and let x be $\left(\bigcap_{n=1}^{\infty}\left\{x=0, g_{n} \geqslant 0, z>0\right\}\right) \cup\left(\bigcup_{n=1}^{\infty}\left\{f_{n}=0, \tilde{g}_{n} \leqslant 0\right\}\right)$, where g_{n} is a function of y and z and $\left\{g_{n} \leq 0\right\}$ intersects $\{x=0\}$ in a rectangle of length m_{n}, width $m_{n} r_{n}$, and $\left\{f_{n}=0\right\}$ defines the barrow B_{n} of magnitude m_{n}, ratio r_{n}, axis $\left\{x=0, y+\tan \left(\theta_{n}\right) z=(1 / 2 n)+\left(\tan \theta_{n}\right) / 2 n\right\}$, and centre $p_{n}=(0,1 / 2 n, 1 / 2 n)$ with base in the plane $\{x=0\} .(C f .2 .3$.

First choose a monotonic decreasing sequence $\left\{m_{n}\right\}$ such that for any choice of θ_{n}, and any $r_{n} \leqslant 1$, the barrows are pairwise disjoint (and do not intersect T). Now let δ_{n} be the radius of the largest 2 -sphere $S_{\delta}^{2}(0)$ such that $S_{\delta}^{2}(0) \cap B_{n} \neq \phi$ when $r_{n}=1$ and θ_{n} takes all values in $[-\pi / 2, \pi / 2]$. Then set $r_{n}=(3 \sqrt{3} / 8) \delta_{n}^{\frac{2}{3}}$ and $\theta_{n}=\sin ^{-1}\left((3 \sqrt{3} / 8)\left(\delta_{n}^{\frac{2}{3}}+\delta_{n}^{\frac{2}{3}}\right)\right)$ ", so defining
B_{n} completely, and hence specifying X.
(Note that $(3 \sqrt{3} / 4) \delta_{n}^{\frac{1}{3}}<1$, i.e. $\delta_{n}<64 / 81 \sqrt{3}$, and so this choice of θ_{n} is possible for all $n \geqslant 1$, by the choice of the centre $p_{1}=\left(0, \frac{1}{2}, \frac{1}{2}\right)$ of B_{1}.)

Figure : $x=0$

Since $\left\{\delta_{n}\right\}$ is a monotonic decreasing sequence, tending to 0 , both $\left\{r_{n}\right\}$ and $\left\{\theta_{n}\right\}$ are monotonic decreasing to 0 . Thus (cf. Construction 2.3) the set of limiting normals to X at 0 is $\{(1: \lambda: 0):-8 / 3 \sqrt{3} \leqslant \lambda \leqslant 8 / 3 \sqrt{3}\}$ Hence (a) fails at 0 for the pair (X, Y).

Suppose $\left(y^{2}\right)$ does not hold at 0 for (X, Y). Then there is a c^{2} foliation \mathcal{F} which is transverse to Y at 0 and which is not transverse to x in any neighbourhood of 0 . Necessarily \mathcal{F} is of codimension 1 and $T_{0} \mathcal{F}$ (the tangent at 0 to the leaf of \mathcal{F} passing through 0) must be of the form $(1: \alpha: 0)$ where $0<|\alpha| \leqslant 8 / 3 \sqrt{3}$.
"ie call show that there is a constant $c>0$ and an no such that for all $n \geqslant n_{0}$ and for all $p \in B_{n}$,

$$
\begin{equation*}
\left|n_{p} x-(1: \alpha: 0)\right|>c \delta_{n}^{\frac{3}{3}} \tag{*}
\end{equation*}
$$

($\mathrm{in}_{\mathrm{p}} \mathrm{X}$ is the normal space to X 'at, p.) The proof of (*) will be given later. Let $\phi:\left(\mathbb{R}^{3}, 0\right) \longrightarrow\left(\mathbb{R}^{3}, 0\right)$ denote the C^{2} diffeomorphism defining
\mathcal{F} so that the leaves of \mathcal{F} are the images of $\left\{\mathbb{R}^{2} \times w\right\}_{w \in \mathbb{R}}$. Then $a \phi(0)\left(\mathbb{R}^{2} \leq 0\right)$ is the plane with normal ($\left.1: \alpha: 0\right)$.

Since ϕ is c^{2}, the map $\left(\mathbb{R}^{3}, 0\right) \longrightarrow\left(G I_{3}(\mathbb{R}), d \phi(0)\right)$ is c^{1} and $p \longmapsto d \phi\left(\phi^{-1}(p)\right)$
thus there exist $\varepsilon>0$ and $M>0$ such that

$$
\left|\mathrm{d} \phi\left(\phi^{-1}(p)\right)-\mathrm{d} \phi(0)\right|<m|p| \quad, \text { for all } p \in B_{\varepsilon}(0)
$$

It follows at once that

$$
\left|\left(d \phi\left(\phi^{-1}(p)\right)-d \phi(0)\right)\right|_{\mathbb{R}^{2} x 0}|<M| p \mid \text {, for all } p \in B_{\mathcal{C}}(0) \text {, }
$$ or in other words that

$$
\left|T_{0} \mathcal{F}-T_{0} \mathcal{F}\right|<\mathrm{k}|\mathrm{p}|, \text { for all } p \in B_{\varepsilon}(0)
$$

ow, by hypothesis, \mathcal{F} is nontransverse to x at some point of B_{n}, for infinitely many n, ie. for infinitely many n, there exists $p \in B_{n}$ such that $T_{p} \mathcal{F}=T_{p} X$. Let $n_{1} \geqslant n_{0}$ be such that for all $n \geqslant n_{1}$, if $p \in B_{n}$, then $|p|<\varepsilon$. Then for infinitely many $n \geqslant n_{1}$, there exista $p \in B_{n}$ such that $M|p|>\left|N_{p} X-(1: \alpha: 0)\right|$. But assuming (*) and using the choice of δ_{n}, we know that for all $n \geqslant n_{0}$, and for all $p \in B_{n}$, $\left|N_{Y} X-(1: \propto: 0)\right|>c|p|^{\frac{1}{3}}$. These last two inequalities are absurd, since there is some n_{2} such that for all $n \geqslant n_{2}$, and for all $p \in B_{n}$, $|p|<(c / M)^{3 / 2}$, i.e. $M|p|<c|p|^{\frac{1}{3}}$. Thus we obtain a contradiction, showing that $\left(\mathcal{F}^{2}\right)$ holds, and that transverse C^{2} foliations cannot detect this (a)-fault.

Proof of (*): A short calculation shows that for all n the set of normals to B_{n} (rotated back through θ_{n}), is contained in

$$
\left\{(1: \lambda: \mu): \lambda \in[-8 / 3 \sqrt{3}, 8 / 3 \sqrt{3}], \mu \in\left[-8 \mathbf{r}_{n} / 3 \sqrt{3}, 8 \mathbf{r}_{n} / 3 \sqrt{3}\right]\right\}
$$

It will suffice to establish (*) in the euclidean norm $\left|\left.\right|_{\theta}\right.$ in the usual chart for $P^{2}(R)$ centred at ($1: 0: 0$) given by the homogeneous coordinates $(\nu: \lambda: \mu) \longmapsto(\lambda / \nu, \mu / \nu)$, since this norm is equivalent to the anonard one. $\left(\left|\left(1: \lambda^{\prime}: \mu^{\prime}\right)-\left(1: \lambda^{\prime \prime}: \mu^{\prime \prime}\right)\right|_{\theta}=\left(\lambda^{\prime}-\lambda^{\prime \prime}\right)^{2}+\left(\mu^{\prime \prime}-\mu^{\prime \prime}\right)^{2} j^{\frac{2}{2}}.\right)$

It is evident from the figure above and the choice of r_{n} and θ_{n} that there exists n^{\prime} such that for all $n \geqslant n^{\prime},(1: \alpha: 0)$ is outside the shaded region which contains the normals to B_{n}. We calculate the minimal distance of ($1: \alpha: 0$) from a normal of B_{n}. This is clearly $\left(\alpha \sin \theta_{n}-8 r_{n} / 3 \sqrt{3}\right)$. Thus for all $n \geqslant n^{\prime}$ and all $p \in B_{n}$,

$$
\begin{aligned}
\left|N_{p} X-(1: \alpha: 0)\right|_{e} & \geqslant \alpha \sin \theta_{n}-8 r_{n} / 3 \sqrt{3} \\
& =\alpha(3 \sqrt{3} / 8)\left(\delta_{n}^{\frac{1}{3}}+\delta_{n}^{\frac{2}{3}}\right)-\delta_{n}^{\frac{2}{3}} \\
& =\delta_{n}^{\frac{1}{3}}\left((3 \sqrt{3} \alpha / 8)-\delta_{n}^{\frac{1}{3}}(1-(3 \sqrt{3} \alpha / 8))\right)
\end{aligned}
$$

since δ_{n} tends to 0 as n tends to ∞, there exists $n_{0} \geqslant n^{\prime}$ such that for all $n \geqslant n_{0}$, and all $p \in B_{n}$,

$$
\left|N_{p} X-(1: \alpha: 0)\right|_{e}>(3 \sqrt{3} \alpha / 16) \delta_{n}^{\frac{7}{3}}
$$

Thus we obtain (*).

Note 3.1 : Wee have in fact proved slightly more by the above example. Namely that a transverse foliation, with C^{1} leaves, which is C^{l} with a Lipschitz derivative in the direction transverse to the leaves, cannot detect this (a)-fault. If $\left(\mathcal{F}^{1, p}\right)$ denotes the condition similar to $\left(\mathcal{F}^{1}\right)$ but restricting to foliations defined by a C^{\perp} diffeomorpinism C^{l} along the leaves and C^{P} transverse to the leaves, then clearly $\left(\mathcal{F}^{1, p}\right)$ implies ($\mathcal{F}^{1, q}$) if $p<q$ (and ($\exists^{1, p}$) implies (t) for all $p \leqslant \infty$). Also it is (now) easy to construct naples showing $\left(7^{l, q}\right)$ does not imply $\left(7^{1, p}\right)$ when $p<q$. Simply set

$$
\begin{aligned}
\theta_{n} & =\sin ^{-1}\left(3 \sqrt{3}\left(\delta_{n}^{p-\frac{2}{3}}+\delta_{n}^{2 p-\frac{4}{3}}\right) / 8\right) \\
r_{n} & =\left(3 \sqrt{3} \delta_{n}^{2 p-\frac{4}{3}}\right) / 8
\end{aligned}
$$

and repeat the argument of 3.6 .

4. Detecting Thom faults in stratified mappings.

Since the regularity condition imposed on a stratified morphism is formally very similar to (a)-regularity we note here the analogues of the results we have proved about (a)-regularity in $\$ \S 1-3$.

Following $[6]$, let $f: N \rightarrow P$ be a C^{1} map, between C^{1} manifolds N and P, and let X and Y be C^{I} submanifolds of N such that $f \mid X$ and $\left.{ }^{\prime}\right|_{Y}$ have constant rank, and let $O E Y \subset \bar{X}-X$. We say that X is (a_{f})-regular over Y at 0 (in the terminology of Gibson [6], X is Thom regubar over Y att O relative to f) if,
(a_{f}) Given a sequence $\left\{x_{i}\right\}$ in X, such that x_{i} tends to 0 as i tends to ∞, and $\operatorname{ker} d_{X_{i}}\left(\left.f\right|_{X}\right)$ converges to a plane τ, then ger $d_{0}\left(\left.f\right|_{Y}\right) \subseteq \tau$.

Since $\left.f\right|_{X}$ is of constant rank, the fibres of $\left.f\right|_{X}$ form the leaves of a foliation \mathcal{F}_{X}^{f} of X, and similarly for Y. Thus $\left(a_{f}\right)$ may be stated,
(a_{f}) Given a sequence $\left\{x_{i}\right\}$ in X, such that X_{i} tends to 0 as i tends to ∞, and $T_{X_{i}}\left(\mathcal{F}_{X}^{f}\right)$ converges to a plane τ, then $T_{0}\left(\mathcal{F}_{Y}^{f}\right) \subseteq \tau$.

Here $T_{0}\left(\mathcal{F}_{Y}^{f}\right)$ denotes the tangent space at 0 to the leaf of \mathcal{F}_{Y}^{f} passing through 0 .

The natural analogue of (t)-regularity is,
$\left(t_{f}\right)$ Given a C^{1} submanifold S such that S is transverse to \mathcal{J}_{Y}^{f} at 0 , there is a neighbourhood of 0 in which S is transverse to \mathcal{H}_{X}^{f}.

Similarly the analogue of $\left(\mathfrak{F}^{k}\right)$ is,
$\left(\mathcal{H}_{f}^{k}\right)$ Given a c^{k} foliation \mathcal{F} of N transverse to \mathcal{F}_{Y}^{f} at 0 , there is a neighbourhood of 0 in which \mathcal{F} is transverse to \mathcal{F}_{X}^{f}.

Mote 4.1 : (i) Another way to say that S is transverse to \mathcal{F}_{Y} at 0 is to say that the rank of $\left.f\right|_{S \cap Y}$ at 0 equals the rank of $\left.f\right|_{Y}$. (ii) If f has rank zero on X and Y then $\left(a_{f}\right),\left(t_{f}\right),\left(\mathcal{J}_{f}^{k}\right)$ become $(a),(t),\left(7^{k}\right)$ respectively.

With these definitions all of the results proved in $\oint 2$ and $\$ 3$ have corresponding versions, with just some nuances.

Thus, $\quad\left(a_{f}\right) \Longleftrightarrow\left(\mathcal{F}_{f}^{l}\right) \Longrightarrow\left(t_{f}\right)$ by merely mimicking the proofs that $(a) \longleftrightarrow\left(\exists^{1}\right) \Longrightarrow(t)$.

Example $4.2:$ Take Example 2.1 and define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $(x, y, z) \longmapsto z,\left(a_{f}\right)$ fails since the tangent to \mathcal{J}_{X}^{f} at x_{n} will be . the vector $(2,1,0)$ for all n. $\left(t_{f}\right)$ holds since no submanifold transverse to Y intersects the horn containing the sequences on which (a_{f}) fails. (\mathcal{F}_{Y}^{f} is the trivial foliation with one leaf.) Thus (t_{f}) does not imply (a_{f}).

Example $4.3:$ If we define $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ by $(x, y, z) \longmapsto z$ and examine Example 2.4 we find that X is not $\left(t_{I}\right)$-regular over Y at 0 : it is easy to find a C^{l} submanifold, with tangent plane at the origin spanned by the lines $\{z=y, x=0\}$ and $\{z=0, y=x\}$, which is not transverse to \mathcal{H}_{X}^{f} on a sequence of points in X tending to 0 .

To obtain an example with $\left(t_{f}\right)$ and not $\left(a_{f}\right)$ we can either take f to be the constant map (see Note 4.1 (ii)), or add a fourth variablew, and consider $X_{1}=X \times \mathbb{R}, Y_{I}=Y \times \mathbb{R} \subset \mathbb{R}^{3} \times \mathbb{R}$ and let $f: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{R}$ be projeotion $(x, y, z, w) \longmapsto w$. Then X_{1} is $\left(t_{f}\right)$-regular over Y_{1} at 0 , but not $\left(a_{f}\right)$-regular.

Example 4.4 : As in Example 4.3 we take Example 3.6 , let $X_{1}=X \times \mathbb{R}$, $Y_{I}=Y \times \mathbb{R} \subset \mathbb{R}^{3} X \mathbb{R}$, and take $f: \mathbb{R}^{3} x \mathbb{R} \longrightarrow \mathbb{R}$ to be projection $(x, y, z, w) \nmid w$. Then X_{1} is $\left(\mathcal{F}_{f}^{2}\right)$-regular over Y_{1} at 0 , but not (a_{f})-regular. (X is neither (\mathcal{H}_{f}^{2})-regular nor (a_{f})-regular over Y at 0 .) Thus (\mathcal{F}_{f}^{2})-regularity does not imply (a_{f})-regularity.

The next result is an analogue of Theorem 2.5.

Theorem 4.5: Let X, Y be C^{1} submanifolds of \mathbb{R}^{n}, and let $0 \in Y \subset \bar{X}-X$, and let X be a subanalytic set. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a subanalytic map (i.e. the graph of f is subanalytic in $\left.\mathbb{R}^{n} \times \mathbb{R}^{p}\right)$, such that $\left.f\right|_{X}$ and f / Y are of
 seminaiotic c^{i} suimanifold S transvarse to \mathcal{V}_{Y}^{f} at 0 , there is some neighbourhood of 0 in which S is transverse to $\mathcal{F}_{\mathrm{X}}^{\mathrm{f}}$.

Proof : The proof is similar to that of Theorem 2.5 , save that instead of proving that $\left\{\left(X, T_{X} X\right): X \in X\right\}$ is subanalytic, we must prove that $\left\{\left(x, T_{X}\left(\exists_{X}^{f}\right): x \in \mathbb{X}\right\}\right.$ is subanalytic. But this reduces to proving that

 a linear projection, since f is the composition of an embedding onto its graph followed by a linear projection (cf., page 30 of [6]). Theorem 4.5 follows.
and $f: N \rightarrow P$ be C^{1} maps between C^{1} manifolds, and X a submanifold of N. Then,
ghker $d_{x}\left(\left.f\right|_{X}\right)$ for all $x \in X \Longleftrightarrow g \not \mathcal{F}_{X}^{f}$
$\Leftrightarrow g h$ fibres of $\left.f\right|_{X}$
$\left.\Longleftrightarrow f\right|_{X} \circ g: M \longrightarrow f(X)$ is a submersion.
Then the analogue of Theorem 1.1 is as follows, writing "g \mathcal{H}_{Σ}^{f} " for $" g \nexists_{X}^{f}$ for all x in $\Sigma "$.

Hypothesis 4.6: Let \sum be a locaily finite stratifioation of a closed subset V of a C^{1} manifold M, and let $f: M \longrightarrow P$ be a C^{1} map, P a C^{1} manifold, such that for each stratum X of $\sum,\left.f\right|_{X}$ has constant rank. Then the following conditions are equivalent :
(1) \sum is $\left(a_{f}\right)$-regular,
(2) for every C^{l} manifold $N,\left\{z \in J^{l}(N, M): z \not \subset \mathcal{Z}^{f}\right\}$ is open in $J^{1}(N, M)$,
(3) for every C^{1} manifold $N,\left\{g \in C^{l}(N, M): g \notin \mathcal{F}^{\frac{f}{2}}\right\}$ is open in $C^{1}(N, M)$ with the strong C^{1} topology,
(4) there is some integer $r, 1 \leqslant r \leqslant \max \left(1, \min _{X \in \Sigma}\left(\right.\right.$ rank $\left.\left.f\right|_{X}\right)$), and some C^{I} manifold N with $\operatorname{dim} N=\operatorname{dim} M-r$, for which $\left\{E \in C^{1}(N, M): g h \nmid \frac{f}{\Sigma}\right\}$ is open in $C^{l}(N, M)$ with the strong C^{I} topology.

One can prove $(1) \Longleftrightarrow(2) \Longrightarrow(3) \Longrightarrow(4)$ without much difficulty, by copying the proof of Theorem 1.1 . To make Hypothesis 4.6 into a theorem we must prove (4) implies (1). If we try to copy the proof that (4) implies (1) in Theorem"1.1 we arrive at,

Question 4.7 : If X is a C^{1} submanifold of $\mathbb{R}^{m}, 0 \in \bar{X}-X$, and $\mathbf{P}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{P}$ is a C^{l} map such that $\left.f\right|_{X}$ has constant rank, then given a plane H and a C^{I} manifold 7 with dim $N=\operatorname{dim} H$, and $n \in i v$, is $\left\{g \in C^{l}\left(N, \mathbb{R}^{m}\right): g \nmid \mathcal{F}_{X}^{f}, g(n)=0, d_{n} g\left(T_{n} N\right)=H\right\}$ nonempty ? ${ }^{*}$

A positive answer to viuestion 4.7 would suffice to prove Hypothesis 4.6 . To prove that (3) implies (1) it suffices to answer question 4.8 , which is a priori weaker than 4.7 .

Question 4. $\overline{3}$: Is there some C^{1} manifold N for which: Question 4.7 has a positive response ? ${ }^{*}$

Note 4.9: The proof of Lemma 1.3 made use of the local transversality lemina : the set of C^{1} mans transverse to a submanifold on a compact coordinate disc is open and dense. The corresponding statement that C^{1} maps transverse to the leaves of a foliation on a compact coordinate disc be dense is clearly false (although openness is easy). (Cf. page 193 of [42].)

Consider

So another method of proof is required to attack (3) implies (1) of Hypothesis 4.6 .

Observe also that the figures above show that the set of C^{1} maps transverse to $\mathcal{F}_{\frac{\mathrm{f}}{\mathrm{L}}}$ is not dense (cf. Note 1.2 (iv)).

Finally we remark that the results of $\oint \oint 1-3$ could also be extended to the "generalised condition (a) for o-bundies" of. M.-n. Schwartz in [27].

* An example of David Epstein shows that the answer to Questions 4.7 and 4.8 is no. However Hypothesis 4.6 is still undecided : a finer study is nesded.

CHAFTER 2. WHITNEY (b)-REGULARITY

In this chapter we consider various natural ways of detecting (b)-faults. The most striking property of (b)-regularity in the theory of smooth stratified objects is that a (b)-regular stratification is locally topologically trivial, as proved by Mather in [21]. The proof shows en route that (b)-regularity implies a condition we have called (b_{s}) in [38], namely that for any C^{1} tubular neighbourhood of the base stratum, associated to which are a retraction π and a distance function P, the fibres of ($\pi \times P$) (winich are embedded spheres) are transverse to the attaching stratum. This has an exact counterpart in the implication (a) implies (a_{s}) (see §3). In [43] C. T. C. Wall conjectured that $\left(a_{s}\right)$ implied (a) and that (b_{s}) implied (b); we proved these implications in the semianalytic case in $[37]$ and $[38]$. In. Chapter 1 (Theorem 3.3) we have shown that (a_{s}) implies (a) in general, by Derturbing a transverse foliation with an infinite sequence of ripplea so as to 2etect a given (a)-fault. Mhe same idea will be used in $\} 5$ to prove that $\therefore \hat{H}^{\prime} j$ impies (b); this time we use the ripnies (of 3.4) to perturb a ioliation by spheres (the fibres of $\pi_{x} \rho$) of the complement of the base stratum, so as . to detect a given (b)-fault.

In $\S 6$ we study how (b)-regularity behaves with respect to generic sections. We show that, if Y is linear, and if, for a generic set of linear spaces H
 0 camot be zoo "deep". Conversely, we shon that if (X, Y) is (b)-regular at 0 , then for generic such $H,(X \cap H, Y)$ is (b)-regular at 0 .

Inowing that (b)-regularity is generic for subanalytic sets - see the introduction - it is natural to ask what are the strongest generic .regularity Donditions. In [40] J.-L. Verdier introduced (w)-regularity, groved that it
implied (b)-regularity, and showed that it was generic (and also that it gave local trivialisations by integrating continuous vector fields tangent to the strata, whereas the vector fields resulting from (b)-regularity may theoretically be discontinuous). (w)-regularity is easily seen to imply Ko's ratio test (r), and hence (r) too is generic. In $\S 7$ we give examples which show that even for semialgebraic strata, (b), (r) and (w) are distinct, and that (r) and (w) are not invariant under C^{1} diffeomorphisms, although they are preserved by c^{2} diffeomorphisms.
5. (b)-regularity and tubular neighbourhoods.

Following Mather in [22], we first define what is meant by a C^{1} tubular neighbourhood.

Definition 5.1 : Let X be a C^{1} submanifold of a C^{l} manifold M. A C^{\perp} tubular neighbourhood T of \bar{X} in M is a quadruple (p, E, ε, ϕ) where $p: E \longrightarrow X$ is an inner product bundle of class $i^{l}, \mathcal{E}: X \rightarrow \mathbb{R}^{+}$is a positive C^{l} function on X, and ϕ is a C^{I} diffeomorphism of $3_{\mathcal{E}}=\{\theta \in \mathbb{E}:\|e\|<\varepsilon(\pi(\theta))\}$ onto an open subset of M which commutes with the zero section ζ of $E:$

ie set $|T|=\phi\left(B_{\varepsilon}\right)$. The map $\pi_{T}=p \circ \phi^{-1}:|T| \longrightarrow X$ will be called the $C^{\text {I }}$ retraction T_{r} sscosiated to T, and the non-nogative function $\rho_{T}=\rho_{E} \circ \phi^{-1}:\|i\| \longrightarrow \mathbb{R}$, where $\rho_{E}(e)=\|e\|^{2}$ for $\theta \in \mathbb{E}$, will be called the C^{l} distance function ρ_{T} associated to T.
(We have, similarly, C^{r} tubular neighbourhoods.)
It is clear that tho map $\left(N_{\mathrm{T}}, \rho_{\mathrm{T}}\right):|-|-X \longrightarrow X X R$ is a submersion.

As what follows will be entirely local, we can restrict to the situation of adjacent strata in \mathbb{R}^{n}.

Let X, Y be C^{l} submanifolds of R^{n} and let $0 \in Y \subset \bar{X}-X$. We say that X is $\left(b_{s}\right)$-regular over Y if for all C^{1} tubular neighbourhoods T of Y, there is a neighbourhood N of Y in $|T|$ such that $\left.\left(\pi_{T}, P_{T}\right)\right|_{X \cap N}$ is a submersion.

Given a C^{l} chart for Y at 0 , $\phi:(U, U \cap Y, O) \longrightarrow\left(\mathbb{R}^{n}, \mathbb{R}^{m} \times 0^{n-m}, 0\right)$, the standard tubular neighbourhood of $\mathbb{R}^{m} \times 0^{n-m}$ in \mathbb{R}^{n} provides a retraction $\pi_{\phi}=\phi^{-1} \circ \pi_{\mathrm{m}} 0 \phi: U \longrightarrow Y \cap U$, where $\pi_{m}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \times 0^{n-m}$ is linear projection taking $\left(x_{1}, \ldots, x_{n}\right)$ to $\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$, and a distance function $\rho \phi=\rho \circ \phi: U \rightarrow \mathbb{R}^{+}$, where $\rho: \mathbb{R}^{\mathbf{n}} \longrightarrow \mathbb{R}^{+}$ is the function $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=\mathbb{m}+1}^{n} x_{i}{ }^{2}$. We refer to the tubular neighbourhood T_{ϕ} of $U \cap Y$ in U.

We say X is $\left(b_{s}\right)$ regular over Y at 0 when,
$\left(b_{s}\right)$ Given a C^{1} chart (U, ϕ) at 0 for Y as a C^{1} submanifold of \mathbb{R}^{n}, there is a neighbourhood U^{\prime} of $0, U^{\prime} \subset U$, such that $\left.\left(\pi_{\phi}, p_{\phi}\right)\right|_{X \cap U}$ is a submersion.

The following lemma justifies our use of the term (b_{s})-regularity in the local and global cases.

Lemma $5.2: \bar{X}$ is (b_{s})-regular over Y if and only if X is (b)-regular over Y at y, for all $y \in Y$.

Proof: " If " : Given a sequence of points on X tending to Y, at which $\left(\pi_{T}, \rho_{T}\right) \|_{X}$ is not submersive, there must be some convergent subsequence with a limit y_{0} in Y. The implication follows.
"Only if ": Given a point y_{0} of Y and a C^{1} tubular neighbourhood ${ }^{T} \phi$ of a neighbourhood $U \cap Y$ of y_{0} in Y defined by a C^{1} chart (U, ϕ)
for Y at y_{0}, it will suffice to find a C^{I} tubular neighbourhood T of Y and a neighbourhood U^{\prime} of y_{0}, $U^{\prime} C U$, such that $T U_{U \prime \cap}=T_{\phi} \|_{U} \cap Y$. This follows from the Tubular Neighbourhood Theorem of $[22]$, which is proved in $[21]$.

For a simpler proof, let ψ be a C^{l} diffeomorphism of \mathbb{R}^{n} which is the identity outside some neighbourhood of y_{0}, and such that there is a smaller neighbourhood W of $y_{0}, W C U$, such that the fibres of the retraotion $\Psi \circ \cdot \pi_{\phi} \circ \Psi^{-1}$ intersect $\psi(W)$ in a c^{1} field of planes transverse to $\Psi(Y)$, and such that $\rho_{\phi} \circ \Psi^{-1}$ is the square of the function measuring distance from $\psi(Y)$ in R^{n}. Extend this local C^{l} field to a globally defined (over.$\Psi(Y)$) C^{1} field of planes (whose dimension is the codimension of Y) transverse to $\Psi(Y)$ In Theorem 4.5.1 of [13] Hirsch shows how to obtain a tubular neighbourhood of $\psi(Y)$, so that the transverse planes contain the fibres of the associated retraction. There is also a very careful proof of this fact by Munkres on page 51 of [54]. Pulling back by Ψ^{-1} we have a tubular neighbourhood T of Y with the required properties. This completes the proof of Lemma 5.2.

In [43] C. T. C. Wall conjectured that (b_{s})-regularity is a necessary and sufficient condition for (b)-regularity. Applying Lemma 5.2, together with tins convention that X is (b)-regular over Y when X is (b)-regular over Y at y for all y in Y, we see that the looal and global versions of the conjectrere are equivalent. We now prove the local version.

Thoorem 5.3": Let X, Y be disjoint C^{1} submanifolds of \mathbb{R}^{n}, and let $0 \in Y$. Then X is (b)-regular over Y at 0 if and only if X is $\left(b_{s}\right)$-regular ovez I at 0 .

Proof : "Only if " was proved by Mather as Lemma 7.3 in [21], and in fact in 1964 by Thom on page 10 of [35]. For another published proof see Lemma 2.3 of [A8].

Suppose X is (b_{s})-regular over Y at 0 . It follows at once that X is (a_{s})-regular over Y at 0 (see $\S 3$), so that we can apply Theorem 3.3 to show that (a) holds. Suppose (b) fails : we shall derive a contradiction. By (0.4), (b^{\prime}) must fail for every c^{1} retraction onto Y.

Let π_{1} (resp. π_{2}) be the local linear retraction defined near 0 of $\mathbb{R}^{\mathbf{n}}$ onto Y (resp. $T_{0} Y$) orthogonal to $T_{0} Y$. Then (b^{\prime}) fails for π_{1}, and there is a sequence $\left\{x_{i}\right\}$ in X tending to 0 such that $\lambda_{i}=\frac{x_{i} \pi_{1}\left(x_{i}\right)}{\frac{x_{i} \pi_{1}\left(x_{i}\right\rangle}{}}$ tends to a limit λ, and $T_{x_{i}} X$ tends to a limit τ, and $\lambda \notin \tau$. The C^{1} diffeomorphism defined near 0 ,

$$
\begin{aligned}
\alpha: \mathbb{R}^{n^{*}} & \longrightarrow \mathbb{R}^{n} \\
p & \longmapsto p+\left(\pi_{2}(p)-\pi_{1}(p)\right)
\end{aligned}
$$

preserves $\left\{\lambda_{1}\right\}, \lambda$ and τ, and sends Y onto $T_{0} Y$, hence we may identify Y with $\mathbb{R}^{m} \times 0^{n-m}$ in \mathbb{R}^{n}. Write $\pi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{\text {m }} \times 0^{n-m}$ for the projection mapping $\left(x_{1}, \ldots, x_{n}\right)$ to $\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$. Then, continuing to write $\left\{x_{i}\right\}$ and X for their images by α, we have that $\lambda_{i}=\frac{x_{i} \pi\left(x_{i}\right)}{\left|x_{i} \pi\left(x_{i}\right)\right|}$ tends to λ, which is not contained in $\quad \tau=\lim T_{X_{i}} X$.

Now let A be a linear automorphism of $0^{m} \times \mathbb{R}^{n-\mathbb{m}}$ such that $A(\lambda)$ and

 function measuring distance from Y is $\rho: \mathbb{R}^{n} \longrightarrow \mathbb{R} \geqslant 0$, taking $\left(x_{1}, \ldots, x_{n}\right)$ to $\sum_{i=m+1}^{n} x_{i}{ }^{2}$. We shall construct a c^{1} diffeomorphism ϕ of
 sontaired in the tangent space to the fibre of $\rho_{\phi}=$ pop on an infinite subsequence of the sequence $\left\{x_{i}\right\}$, so that $\left(b_{3}\right)$ fails for (X, Y) at 0 .

As in the proof of Theorem 3.3, pick an infinite sequence of pairwise disjoint balls $B_{r_{i}}\left(x_{i}\right)=B_{i}$ with centre x_{i} and of radius r_{i}. Then 0 \& B_{i} for all i. We shall obtain ϕ by perturbing the foliation of $\mathbb{R}^{\boldsymbol{n}}-\left(\mathbb{R}^{\mathbb{m}} \times 0^{\boldsymbol{n}} \boldsymbol{m}\right.$; y the level hypersurfaces of ρ, witinin each 3_{i}.

Let $H=\lambda^{\perp} \in G_{n-1}^{n}(\mathbb{R})$, and note that $H=\tau \oplus(\tau \oplus \lambda)^{\perp}$ because τ and λ have been assumed orthogonal. since $T_{i} X$ tends to τ, and λ_{i} tends to λ, as i tends to ∞, there is some i_{0} such that $i \geqslant i_{0}$ implies $\lambda_{i} \notin T_{x_{i}} X$. Then for all $i \geqslant i_{0}$ we define a hyperplane

$$
H_{i}=T_{x_{i}} X \oplus\left(T_{x_{i}} X \oplus \lambda_{i}\right)^{\perp} \subset T_{x_{i}} \mathbb{R}^{n}
$$

H_{i} tends to H as i tends to ∞. Pick $i_{1} \geqslant i_{0}$ such that $\left|H_{i}-H\right|<1 / 4$ for $i \geqslant i_{1}$.

Let $\delta_{1}>0$. Then it is clear that we can find a c^{l} diffeomorphism $\Psi_{i}:\left(B_{i}, x_{i}\right) 乌$, equal to the identity near ∂B_{i}, such that $d \Psi_{i}\left(x_{i}\right)=I_{n}$ (the identity matrix), $\mid j^{I}\left(\Psi_{i}\right)(p)-j^{I}\left(\right.$ id $\left._{\mathbb{R}^{n}}\right)(p) \mid<\delta_{i}$ and $\left|j^{1}\left(\psi_{i}^{-1}\right)(p)-j^{1}\left(i d \mathbb{R}^{n}\right)(p)\right|<\delta_{i}$ for all $p \in B_{i}$, and such that for some $t_{i}, 0<t_{i}<r_{i}$, the image by Ψ_{i} of the foliation of $B_{t_{i}}\left(x_{i}\right)$ by the level hypersurfaces of ρ is the trivial foliation by hyperplanes parallel with $K_{i}=T_{x_{i}}\left(\rho^{-1}\left(\rho\left(x_{i}\right)\right)\right.$. Now $K_{i}=\lambda_{i}^{\perp}$, by definition of λ_{i}, and so K_{i} tends to $H=\lambda^{\perp}=\left(1 i m \lambda_{i}\right)^{\perp}$ as i tends to ∞. Pick $i_{2} \geqslant i_{1}$ such that $\left|K_{i}-H\right|<1 / 4$ for all $i \geqslant i_{2}$. Then $\left|K_{i}-H_{i}\right| \leqslant 1 / 2$ for $i \geqslant i_{2}$, by our choice of i_{1} and i_{2}.

For all $i \geqslant i_{2}$ we now perturb the trivial foliation of $B_{t_{i}}\left(x_{i}\right)$ by planes parallel with K_{i} by placing inside $B_{t_{i}}\left(x_{i}\right)$ a "ripple" : a foliated ball $\mathrm{B}_{\frac{1}{2} t_{i}}\left(y_{i}\right)$ of radius $\frac{1}{2} t_{i}$, centre y_{i}, with the foliation $\mathcal{F}_{K_{i}}^{\| H_{i}-K_{i} \mid}$ given by Construction 3.4 , such that $x_{i}=x_{H_{i}}$ (the tangent at x_{i} to the leaf of the foliation passing through X_{i} is H_{i}). In the notation of $3.4, \phi_{K_{i}}^{\left|H_{i}-K_{i}\right|}$ is the C^{1} diffeomorphism defining the resulting foliation of $B_{t_{i}}\left(x_{i}\right)$, and we may extend $\phi_{\mathrm{K}_{i}}^{\left.\mid \mathrm{H}_{\mathrm{i}}-\mathbb{K}_{j}\right\rfloor}$ by the identity to the rest of B_{i}.

$$
\text { Set } \phi_{1}=\psi_{i}^{K_{i}} \circ \phi_{K_{i}}^{\left|\mathrm{H}_{i}-\mathrm{K}_{i}\right|} \circ \psi_{i}^{-1}=3_{i} S \cdot \phi_{i}{ }^{1} \text { a } c^{1} \text { diffeoworphism, }
$$

and the tangent space at x_{i} to $\left(\rho \circ \phi_{i}\right)^{-1}\left(\rho\left(\phi_{i}\left(x_{i}\right)\right)\right.$ is H_{i} which contains $T_{x_{i}} X$ by definition (we have used here for the second time that $\mathrm{d} \Psi_{i}\left(x_{1}\right)=I_{n}$). Compare the figure overleaf.

Fixure: Donstruction of ϕ_{i}.

We have yet to fix δ_{i}. It is easy to verify that $\sup _{p \in B_{i}}\left|d \phi_{i}(p)-I_{n}\right|$ may be set as near as we please to $\sup _{p \in B_{i}}\left|d \phi_{K_{i}}^{\mid H_{i}-K_{i}}(p)-I_{n}\right|$, by choosing δ_{i} small.

Let $\boldsymbol{\delta}_{i}$ be chosen such that,

$$
\begin{equation*}
\sup _{p \in B_{i}}\left|d \phi_{i}(p)-I_{n}\right| \leqslant \sup _{p \in B_{i}}\left|d \phi_{K_{i}}^{H_{i}}-K_{i}\right|(p)-I_{n} \mid . \tag{*}
\end{equation*}
$$

Define $\phi: \mathbb{R}^{n} S$ by setting $\left.\phi\right|_{\mathbb{R}^{n}-\left(\bigcup_{i \geqslant i_{2}} B_{i}\right)}=$ identity, and $\left.\phi\right|_{B_{i}}=\phi_{i}$ for $i \geqslant i_{2}$. To verify that ϕ is a c^{1} diffeomorphism it is enough to check that $d \phi(p)$ is continuous at 0 , and that $d \phi(0)=I_{n}$. Given $\varepsilon>0$, (4) of Construction 3.4 gives an $s_{\frac{1}{2} \varepsilon}>0$. Pick $i_{3} \geqslant i_{2}$ such that $\left|H_{i}-H\right|$ and $\left|X_{i}-H\right|$ are each less than $\frac{1}{2} s_{\frac{1}{2}} \varepsilon$ for all $i \geqslant i_{3}$. Then $\left|H_{i}-K_{i}\right|<s_{\frac{1}{2} \varepsilon}$ for all $i \geqslant i_{3}$. Let $\delta=\min _{p \in B_{i}}\{|p|\}$.

Then δ is well-defined and nonzero since $0 \notin \bigcup_{i=1}^{i_{2}-1} B_{i}$.

$$
\begin{aligned}
& \text { Lat } p \in \mathbb{A}^{n} \text { bo such that }|p|<S \text {. inst } p \sum_{i=1}^{i} \bigcup_{i}^{1} B_{i} \text {, and tons } \\
& \left|d \phi(p)-I_{n}\right| \leqslant \max _{p \prime \in B_{i}}\left\{\left|d \phi_{i}\left(p^{\prime}\right)-I_{n}\right|\right\} \\
& 1 \geqslant 1_{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \geqslant i_{3} \\
& \leqslant \text { 2. } \frac{1}{2} \varepsilon \quad \text { (by choice of } i_{3} \text { and } s_{\frac{1}{2}} \varepsilon \text { - see 3.4) } \\
& =\varepsilon \text {. }
\end{aligned}
$$

Hence $d \phi(p)$ is continuous at 0 , and $d \phi(0)$ is the identity matrix.

By construction, the fibre of $\rho_{\phi}=\rho \circ \phi$ is not transverse to X at x_{i}, and hence neither is the fibre of $\left(\pi_{\phi}, \rho_{\phi}\right)=\left(\pi_{0} \phi, \rho \cdot \phi\right)$, so that $\left.\left(\pi_{\phi}, P_{\phi}\right)\right|_{X}$ is not a submersion near x_{i}. Hence we have shown that X fails to be $\left(b_{s}\right)$-regular over Y at 0 , using the hypothesis that X is not (b)-regular over Y at 0 .

This completes the proof of Theorem 5.3.

Corollary 5.4 : (b)-regularity is a C^{1} invariant.

Example 5.5 : Theorem 5.3 is sharp : C^{2} tubular neighbourhoods do not detect all (b)-faults. Consider once again Example 3.6. There we have a (b)-fault, since it is an (a)-fault. However for all C^{l} distance functions ρ (associated to a C^{I} tubular neighbourhood), the fibres of P are transverse to X near 0 . For, ail limiting tangent planes to X at 0 sontinin the z-axiz, and seaz 0 ail points (x, y, z) on π dave $x_{i}^{\prime} z$ swall, and at such points the normal to the pibre of P will be close to ($0: 0: 1$) . (To see that near 0 , if (x, y, z) is on X, then x / z is small, notice that the x-coordinate of the points in each barrow B_{n} is bounded above by $m_{n} r_{n}$, while the z-coordinate is bounded below by m_{n}, and r_{n} tends to 0 as n tends to ∞ and we approach 0.)

Since we have shom in 3.6 that all c^{2} retractions have their fibres transverse to X near 0 , it follows that for all C^{2} tubuarar neighbourhoods T of Y, the fibres of $\left(\pi_{T}, \rho_{T}\right)$ are transverse to X near 0 .

Note 5.6 : A semianalytic version of 5.3.
We refer to $[38]$ for a proof that $\left(b_{s}\right)$ implies (b) when X and Y
are semianalytic. A careful reading of the proof in $[38]$ shows that semianalytic (b)-faults can be detected by C^{1} semianalytic tubular neighbourhoods, i.e. we can suppose the maps in the definition of tubular neighbourhood to have semienalytic graphs.

Note 5.1: On μ-constant imolies topological triviality.
In [17] Lè Dưng Tràng and Ramanujam prove that for a family of complex hypersurfaces (with isolated singularity) defined by

$$
F:\left(c^{n+1} x \cdot \mathbb{c}^{k}, 0 \times \mathbb{c}^{k}\right) \longrightarrow(\mathbb{C}, 0)
$$

with $F(z, t)=F_{t}(z)$, that $\mu\left(F_{t}\right)$ constant implies that the topological type of $\mathrm{F}_{\mathrm{t}}{ }^{-1}(0)$ is constant, provided $\mathrm{n} \neq 2$. Timourian has proved further that the family is topologically trivial (see [33]).

If one could prove that $\mu\left(F_{t}\right)$ constant implied the existence of a c^{l} tubular neighbourhood T of $0 \times c^{k}$ with the fibres of $\left(\pi_{T}, P_{T}\right)$ transverse to $F^{-1}(0)$ near 0 , one could then apoly the proof of Mather in $[21]$ to give topological triviality, so removing the restriction $n \neq 2$. Applying Theorem 5.3, we know from the counterexamples of Briancon and Speder in [2]
 (b)-resular, and jence does not im-ly $\left(b_{s}\right)$, and indeed following the proof in [38] that (b_{s}) implies (b) it is easy to construct explicit semianalytic tubular neighbourhoods T with the fibres of $\left(\pi_{T}, \rho_{T}\right)$ nontransverse to $\mathrm{F}^{-1}(0)$ along the curve through 0 for which (b) fails. There are though Soce tubular neighbourhoods T for which the fibres of (π_{T}, ρ_{T}) are transverse to $F^{-1}(0)$ in their examples, since in each case $F(z, i)$ is reighted homogeneous in z, and so the standard spheres cut $\mathrm{F}^{-1}(0)$ transversally. Thus, even though $n=2$, we can derive topological triviality from [21].

A more promising way of removing the restriction that $n \neq 2$ looks to be a new theorem of Kuo (Theorem 2 in [15]) which may give topological triviality directly from the hypothesis that $\mu\left(F_{t}\right)$ be constant. l'his depends
on whether $\mu\left(F_{t}\right)$ constant implies that there is some constant $C<1$ and a neighbourhood U of 0 such that $(\partial F / \partial t(z, t)) /|\operatorname{grad} F|<C|z| /|t|$ whenever $(z, t) \in U \cap F^{-1}(0)$. We shall leave this question for the present.

6. (b)-regularity and generic sections

Part I - Detecting (b)-faults with generic sections.
The work in this section was motivated by the result of Teissier in . [30] that " $\mu^{*-c o n s t a n t ~ " ~ i m p l i e s ~(b)-r e g u l a r i t y ~ f o r ~ a ~ f a m i l y ~ o f ~ c o m p l e x ~}$ hypersurfaces. Using the converse result (proved by Briançon and Speder in [3]) we find that if we have topological triviality, and (b) for generic hyperplane sections, then (b) follows. That this result does not generalise to real semialgebraic strata is shown by the next example.

Example 6.1 : In the open subset of \mathbb{R}^{3} (with (x, y, z) as coordinates) where $y^{2}<1$, let Y be the y-axis, and let X be

$$
\left\{x=1,\left(z-y^{2}\right)^{2} \geqslant y^{6}, z>0\right\} \cup\left\{y^{7} x=\left(\left(z-y^{2}\right)^{2}-y^{6}\right)^{2},\left(z-y^{2}\right)^{2} \leqslant y^{5}, z>0\right\}
$$ $x \quad i \approx a \quad i^{1}$ anifold, and a semialgeinaic set.

Then X is topologically trivial along Y and, since the non-linear part of X is contained in a horn tangent to Y, X is (a)regular over Y.

But X is not (b)-regular over Y at 0 : on the curve

$$
\gamma(t)=\left(9 t^{3} / 16, t, t^{2}+\frac{1}{2} t^{3}\right)
$$

which lies in X, the normal tends to $(1,0,3 / 2)$, so that the limiting tangent space does not contain O_{2}, which is the limit of $\frac{x_{i} \pi\left(x_{i}\right)}{\mid x_{i} \pi\left(x_{i}\right)}$ for all sequences $\left\{x_{i}\right\}$ on X tending to 0 , since the radius (y^{3}) of the horn tends to 0 fester than the height (y^{2}) above Y of the centre of the horn.

Also if $x=\alpha_{z}$ defines the plane H_{α}, which contains Y, then H_{α} intersects X near 0 only if $\alpha=0$. Thus $\left(X \cap H_{\alpha}, Y\right)$ is not a (b)-fault (by default) for generic sections H_{α} containing Y.

Notation : Let (X,Y) be a pair of adjacent strata, and let $0 \in Y \subset \bar{X}-X$. Suppose Y is a linear space, and that T is orthogonal projection onto Y. We let $\mathcal{K}_{0}(X, Y)$ (resp. $\Lambda_{0}(X, Y)$) denote the set of limit vectors for which (b) (resp. (b')) fails.

$$
\begin{aligned}
& \tilde{K}_{0}(X, r)=\left\{\lambda: \exists\left\{x_{i}\right\} \in X,\left\{y_{2}\right\} \in Y, \lambda=\lim \frac{x_{i} y}{y_{i} y_{i} \mid} \notin \tau=\lim T_{x_{i}} x\right\} \\
& \Lambda_{0}(X, Y)=\left\{\lambda: \exists\left\{x_{i}\right\} \in X, \lambda=\lim \frac{x_{i} \pi\left(x_{i}\right)}{\mid x_{i} \pi\left(x_{i}\right)} \notin \tau=\lim T_{x_{i}} X\right\}
\end{aligned}
$$

In Example .6.1, $\Lambda_{0}(X, Y)=\{(0: 0: 1)\}, \mathcal{K}_{0}(X, Y)=\{(0:$ a: $b): b \neq 0\}$.
It is easy to see that (when din $\Lambda_{0}(X, Y)$ is defined),

$$
\operatorname{dim} \Lambda_{0}(X, Y)+\operatorname{dim} Y \leqslant \operatorname{dim} \mathcal{K}_{0}(X, Y)
$$

if $K_{0}(X, Y) \neq \varnothing$.
If X is (a)-regular over Y at 0 , then by the proof of (0.4) that
(b) is equivalent to (a) $+\left(b^{\prime}\right)$,

$$
K_{0}(X, Y) \subset \Lambda_{0}(X, Y) \oplus \quad T_{0} Y
$$

and hence,

$$
\operatorname{dim} \mathcal{K}_{0}(X, Y) \leq \operatorname{dim} \Lambda_{0}(X, Y)+\operatorname{dim} Y .
$$

Thus if (a)-regularity holds and $\Lambda_{0}(x, Y) \neq \varnothing$ (or, equivalently, $\mathcal{K}_{0}(x, Y) \neq \varnothing$),

$$
\operatorname{dim} K_{0}(X, Y)=\operatorname{dim} \Lambda_{0}(X, Y)+\operatorname{dim} Y .
$$

That is, the dimension of $\Lambda_{0}(X, Y)$ determines the dimension of $\mathbb{K}_{0}(X, Y)$, so that we can restrict our attention to $\Lambda_{0}(x, y)$.

We say that X is $\left(b_{\operatorname{cod} k}\right)$-regular over Y at 0 for $0 \leqslant k \leqslant \operatorname{cod} Y-1$, when Y is linear (as it will be throughout this first part of $\S 6$), if
(bcod k) There is an open dense subset \mathcal{L} of the set of linear subspaces of codimension k containing Y, such that if $L \in \mathcal{L}, L \notin X$ near 0 , and $X \cap L$ is (b)-regular over Y at 0 in L.

We must suppose $L \backslash X$ to be able to talk of (b)-regularity of $X \cap L$ over Y. In the case where X is the nonsingular part of a family of complex analytic hypersurfaces with singular locus Y, there is a Zariski open dense subset of the set of linear subspaces of (complex) codimension k containing Y, consisting of subspaces transverse to X (moreover the topological type of their intersection with X is well-defined : see Chapter 1, §1 of [30]). It was this situation which motivated the work in this section : see Note 6.9. -

The following theorem says that $\left(b_{c o d}\right)$ implies that $\operatorname{dim} \Lambda_{0}(X, Y)<k$. Here dim $\Lambda_{0}(X, Y)$ is the maximal integer $r,-1 \leqslant r \leqslant \operatorname{cod} Y-1$, for which $\Lambda_{0}(X, Y)$ has a point near which it is a differentiable sunmanifold of $G_{2}{ }_{Y}(\mathbb{R})$ of dimension r. This is the same as the usual dimension of $\Lambda_{0}(X, Y)$ when X is subanalytic, for then $\Lambda_{0}(X, Y)$ is the union of countably many compact manifolds-with-boundary of varying dimensions, the largest of whioh being the dimension of $\Lambda_{0}(X, Y)$; this will follow from the proof of the theorem.

We point out that a section of a pair (X, Y), as in the title of $\$ 6$, is a linear subspace of \mathbb{R}^{n} containing Y, which is assumed to be linear. Thus Theorem 6.2 describes the extent to which generic sections detect (b)-faults.

Theorem 6.2: Let Y be a linear subspace of \mathbb{R}^{n} containing 0 , and let X be a C^{2} submanifold (resp. and a subanalytio subset) of \mathbb{R}^{n} such that $Y \subset \bar{X}-X$. Suppose there is an open dense (resp. dense) subset \mathcal{L}_{k} ' of the set \mathcal{L}_{k} (of linear subspaces of codimension k in \mathbb{R}^{n} which contain Y) such that $L \in \mathcal{X}_{k}^{\prime}$ implies $L \not \subset X$ near 0 and $X \cap L$ is (b)-regular over Y at 0 .

Then $\operatorname{dim} \Lambda_{0}(X, Y)<k$.

Proof: We first state two assertions which we shall prove once we have shown how they give the theorem.

Assertion 6.3: Let $Y \subset \mathbb{R}^{n}$ be linear, $0 \in Y$, and X a C^{2} subranifold of $\mathbb{R}^{n}, Y \subset \bar{X}-X$, such that $\operatorname{dim} \Lambda_{0}(X, Y)=i \geqslant k$.

Then there is a dense subset \mathcal{L}_{k}^{d} of a nonempty open subset \mathcal{L}_{k}^{0} of \mathcal{L}_{k}, such that if $L \in \mathcal{L}{ }_{k}^{d}$, there is a sequence $\left\{x_{i}\right\}$ in $X \cap L$ such that x_{i} tends to 0 as 1 tends to ∞, and $\lim \frac{x_{i} \pi\left(x_{i}\right)}{x_{i} \pi\left(x_{i}\right)} \notin \lim T_{x_{i}} X$.

Assertion 6.4: In Assertion 6.3, if X is also a subanalytic subset of \mathbb{R}^{n}, we may take $\mathcal{L}_{k}^{d}=\mathcal{L}_{k}^{0}$.
(The conclusion of Assertion 6.4 is that there is a nonempty subset of \mathcal{L}_{k} consisting of linear sections containing "bad" sequences, and that this subset may be taken to be open, not merely dense in some open set.)..

Suppose that Theorem 6.2 is false.
Take I and X which satisfy the hypotheses of Theorem 6.2, and yet

$$
\operatorname{dim} \Lambda_{0}(X, Y)=1 \geqslant k
$$

Assume for the moment that X is not subanalytic, and apply Assertion 6.3.
Assertion 6.3 gives $\mathcal{L}_{k}^{\mathbf{d}}$, which is dense in the nonempty open subset \mathcal{L}_{k}^{0} of \mathcal{L}_{k}, and hence meets the open dense subset \mathcal{L}_{k}^{\prime} of \mathcal{L}_{k} described in the hypotheses of Theorem 6.2.

Take $L \in \mathcal{L}_{k}!\cap \mathcal{L}_{k}^{d}$., Then $L \notin X$ near 0 and $(X \cap L, Y)_{O}$ is (b)-regular. Hence for all sequences $\left\{x_{i}\right\}$ in $X \cap L$ tending to 0 ,

$$
\lim \frac{x_{i} \pi\left(x_{i}\right)}{x_{i} \pi\left(x_{i}\right)} \subset \lim T_{x_{i}}(X \cap L)
$$

But $T_{x_{i}}(X \cap L) \subset T_{x_{i}} X$ for all i, and so $\lim T_{x_{i}}(X \cap L) \subset \lim T_{x_{i}} X$. Thus,

$$
\lim \frac{x_{i} \pi\left(x_{i}\right)}{x_{i} \pi\left(x_{i}\right)} \Leftarrow \lim T_{x_{i}} X
$$

However this is not true for all $\left\{x_{i}\right\}$ in $X \cap L$ since $L \in \mathcal{L}_{k}^{d}$, by Assertion 6.3. Thus we find a contradiction, showing that Theorems 6.2 is Valid when X is not subanalytic so long as Assertion 6.3 is true.

The argument for subanalytic X is similar : the dense subset \mathcal{L}_{k}, of \mathcal{L}_{k} must meet the open subset \mathcal{L}_{k}^{0} of \mathcal{L}_{k} given by Assertion 6.4.

Ge shall have to prove Assertions 6.3 and 6.4 separately, but we first eat up the situation which is common to bots.

Rotate the coordinate axes so that $Y=\mathbb{R}^{n-m} \times 0^{m}$. Let dim $X=d \cdot$

Define $X: X \rightarrow G_{1}^{m} \times G_{d}^{n}$ and let G denote the closure of the graph of $x \longmapsto\left(\frac{x \pi(x)}{|x \pi(x)|}, T_{x}\right)$
γ in $\mathbb{R}^{n} \times G_{1}^{m} \times G_{d}^{n}$ (we write G_{I}^{m} for $G_{1}^{m}(R)$, etc.). Since X is C^{2}, γ is a C^{l} map. Let p and q denote the projections from $\mathbb{R}^{n} \times G_{1}^{m} \times G_{d}^{n}$ onto \mathbb{R}^{n} and $G_{1}^{\text {m }}$ respectively. $\left.p\right|_{\gamma(X)}$ is a c^{1} diffeomorphism.

If ℓ is a line through 0 in \mathbb{R}^{m}, let \hat{l} denote the line in \mathbb{R}^{n} given by the inclusion $0^{n-m} \times \mathbb{R}^{m} \longleftrightarrow \mathbb{R}^{n}$. Then $B=\left\{(\ell, \tau) \in G_{1}^{m} \times G_{d}^{n}: \hat{l} \notin \tau\right\}$ is an open subset of $G_{l}^{m} x G_{d}^{n}$.

From now on we write Λ for $\Lambda_{0}(X, Y)$. Observe that

$$
\Lambda=q\left(G \cap p^{-1}(0) \cap\left(\mathbb{R}^{n} \times 3\right)\right)
$$

Given a subspace L in \mathcal{L}_{k} we can write $L=Y \times \tilde{L}$ where $\tilde{L} \in G_{m-k}^{m}$. Given $A \in G_{m-k}^{m}$, write $A^{*}=\left\{\ell \in G_{1}^{m}: \ell \subset A\right\} \subset G_{1}^{m}$.

Let D_{0} be a compact coordinate disc (of dimension $\mathbb{m}-1$) for Λ as a C^{I} submanifold of G_{I}^{m} of dimension i. D_{0} exists by hypothesis on dim Λ.

Proof of Assertion 6.3:

Lemma 6.5 : ${ }^{\text {? here }}$ is a dense subset \mathcal{L}_{k}^{d} of the open set

$$
\mathcal{L}_{\mathrm{k}}^{\circ}=\left\{\mathrm{L} \in \mathcal{L}_{\mathrm{k}}:(\tilde{\mathrm{L}}) * \lambda \Lambda \text { on } \Lambda \cap \mathrm{D}_{0}\right\}
$$

such that for all $L \in \mathcal{Q}_{k}^{d}$, $L \not \subset X$ near 0 and there is an open ball B_{L} such that (i) $\bar{B}_{L} \subset \mathbb{R}^{n} \times B$ and $q\left(B_{L}\right) \subset D_{0}$,
(ii) if $F_{L}=q^{-1}(\tilde{L}) * \cap G \cap B_{L} \cap p^{-1}(X) \cap\left\{z \in G: G \not \subset q^{-1}(\tilde{L}) *\right.$ at $\left.z\right\}$, then $q^{-1}(\tilde{L}) * \cap G \cap B_{L} \cap p^{-1}(0)$ has nonempty intersection with \bar{F}_{L}.

Assuming Lemma 6.5, let $L \in \mathcal{L}_{k}^{d}$, and let $\left\{z_{j}\right\}$ be a sequence of points in F_{L} tending to a limit z_{0} in $q^{-1}(\tilde{L}) * \cap G \cap B_{L} \cap p^{-1}(0)$. Let $x_{i}=p\left(z_{i}\right)$ for all i. Then $\left\{x_{i}\right\}$ is a sequence of points in X tending to $" p\left(z_{0}\right)=0$. In:ofor all $i, z_{i} \in L$ since $q\left(\gamma\left(x_{i}\right)\right) \in(\tilde{L})$. Finally
$\lim \frac{x_{i} \pi\left(x_{i}\right)}{\left|x_{i} \pi\left(x_{i}\right)\right|}=\hat{l}+C=\lim T_{x_{i}} X \operatorname{since}(0, Q, \tau) \in \bar{F}_{L} \subset \bar{B}_{L} \subset \mathbb{R}^{n} \times B$, by (i) and (ii) of Lemma 6.5 , and so $(\boldsymbol{l}, C) \in B$, i.e. $\hat{l} \notin \mathbb{C}$. This completes the proof of Assertion 6.3.

Proof of Lemma 6.5:

Sublemra 6.6: Given a C^{1} retraction $r: D_{0} \rightarrow \Lambda \cap D_{0}$, there is a derse subset H of $\Lambda \cap D_{0}$ such that if $l \in W,(r \circ q)^{-1}(l)$ contains a sequence $\left\{a_{i}\right\}$ in $p^{-1}(X) \cap G \cap\left(\mathbb{R}^{n} \times B\right)$ tending to a point in $p^{-1}(0) \subset q^{-1}\left(D_{0}\right)$ sucn that $(r \circ q)^{-1}(\ell)$ is transverse to G at a_{i} for all i.

Proof (after L. Siebenmann) :
Let $W_{i N}=\left\{l \in \Lambda \cap D_{0}: \exists a_{l}^{N} \in G \cap(r \circ q)^{-1}(l)\right.$ with $(r \circ q)^{-1}(l) \boldsymbol{A} G$ at a_{l}^{N} and $\left.0<\left|\pi\left(p\left(a_{l}^{N}\right)\right)\right|<1 / N\right\}$, for N a positive integer. a_{l}^{N} is inside a region R_{i} of radius $1 / N$ around $p^{-1}(0) \cdot W_{N}$ is open since transversality is an open condition. W_{N} is dense (and hence nonempty) by Sard's theorem applied to the $\left.C^{1} \operatorname{map}(r \circ q)\right|_{G \cap R_{N i} \cap q^{-1}\left(D_{0}\right)}$. Note that $G \cap R_{N N} \cap q^{-1}\left(D_{O}\right)$ is noremety since,

$$
\left(A \cap D_{0}\right) \in Q\left(p^{-1}\left(0 \cap\left(\bar{Q} \cap R_{N} \cap \mathrm{a}^{-1}\left(D_{0}\right)\right)\right)\right.
$$

Because $\Lambda \cap D_{0}$ is a C^{1} manifold, it is locally compact and Hausdorff, and hence is a Daire space. Thus if $=\bigcap_{N=1}^{\infty} H_{N}$ is dense in $\Lambda \cap D_{O}$. Given $l \in W$, there is, a limit point of $\left\{a_{l}^{N}\right\}$ in $p^{-1}(0)$ since $p^{-1}(0)$ is compact $\left(p^{-1}(0) \approx G_{1}^{m} x G_{d}^{n}\right)$. This limit point will be in $q^{-1}\left(D_{0}\right)$ since D_{0} is

Now we can prove Lemme 6.5.
Given L in \mathcal{L}_{k}^{0} with $(\tilde{L})^{*} h \Lambda$ at l in $\Lambda \cap D_{0} \cap(\tilde{L})^{*}$, there is a neighbourhood U of L in the k-dimensional family in \mathcal{L}_{k}^{0} whioh is defined by tine $(k+1)$-dimensional linear subspace orthogonal to L and containing the Iise ℓ, such that if $L^{\prime} \in U,(\tilde{U}) * A \Lambda$ in $\Lambda \cap D_{0} .\left\{\left(\tilde{\tilde{L}}^{3}\right) *: L \in U\right\}$
defines a foliation of codimension k transverse to Λ near l.
Choose a C^{l} retraction $r: D_{0} \longrightarrow \Lambda \cap D_{0}$ such that $r^{-1}(\ell) \subset(\tilde{L}) *$ and for all l^{\prime} in some neighbourhood of l in $\Lambda \cap D_{0}, r^{-1}\left(\ell^{\prime}\right) \subset\left(\tilde{L}^{i}\right)^{*}$, where L^{\prime} is the element of U such that $l^{\prime} \in\left(\hat{L}^{\prime}\right) *$. By Sublemma 6.6, arbitrarily near l there is some $l^{\prime} \in W$. Hence arbitrarily near L in \mathscr{L}_{k}^{0} there is some $L^{\prime}(i n U)$ with $(\tilde{L}) * \lambda \Lambda$ in D_{0} and such that $\left.q^{-1}\left(i \tilde{L}^{1}\right)^{*}\right)$ contains a sequence of points $\left\{z_{j}\right\}$ in $G \cap\left(\mathbb{R}^{n} \times B\right)$ tending to a limit a_{0} in $G \cap p^{-1}(0) \cap q^{-1}\left(\left(\tilde{L^{1}}\right)^{*}\right)$ such that for all $i, q^{-1}\left(\left(\tilde{L^{1}}\right)^{*}\right)$ is transverse to G at a_{i}. Choose an open ball B_{L}, around a_{0} such that $q\left(B_{L},\right) \subset D_{0}$ and $\bar{B}_{L}, \subset \mathbb{R}^{n} \times B$. Then (i) and (ii) of Lemma 6.5 are satisfied since $a_{0} \in \bar{F}_{\mathrm{L}}, \cap q^{-1}\left(\left(\tilde{L}^{1}\right) *\right) \cap G \cap B_{\mathrm{L}}, \cap \underline{D}^{-1}(0)$. This completes the proof of Lemma 6.5.

proof of Assertion 6.4:

Lemma 6.7: There is a compact coordinate disc D for Λ as a submenifold of dimension i in G_{1}^{m}, with $D \subset \operatorname{Int} D_{0}$, such that if T is a C^{1} sub-
 then there is an open ball $B_{T} \in \mathbb{R}^{n} \times 3$ such that,
(i) $\bar{B}_{T} \subset \mathbb{R}^{n} \times B$ and $q\left(B_{T}\right) \subset D$,
(ii) $F_{T}=q^{-1}(T) \cap G \cap p^{-1}(X) \cap B_{T}$ is a C^{1} submanifold of G of codimension k.'

$$
\begin{equation*}
\phi \neq q^{-1}(T) \cap \cap \cap p^{-1}(0) \cap B_{T} \subset \bar{F}_{T} \tag{iii}
\end{equation*}
$$

ie leave the proof of Lemma 6.7 for the moment.
set $\mathscr{L}_{k}^{o}=\left\{L \in \mathcal{L}_{k}:(\widetilde{L}) * \lambda \Lambda\right.$ on $\left.D\right\}$. Let $y_{L}=p\left(F_{(\widetilde{I}) *}\right)$ for L in \mathcal{L}_{k}°. By Lemma 6.7(ii) and the fact that $p \mid \gamma(x)$ is a $c^{l} \quad$ diffeomorphism, E_{L} is a C^{1} submanifold of X of codimension k , and $0 \in \bar{k}_{L}$ by (iii). : i fo if $x \in M_{工}$ then $q(X(x)) \in(\tilde{i}) *$ by definition of $H_{工}$, and hence
$q(\gamma(x)) \subset \widetilde{L}$ by definition of ()*, so that $x \in \pi(x) \times \tilde{L} \subset Y \times \tilde{L}=I$. Thus $M_{L} \subset L$ for $L \in \mathcal{L}_{k}^{0}$.

Let $\left\{x_{i}\right\}$ be a sequence in M_{L} tending to 0 as i tends to ∞. To complete the proof of Assertion 6.4 we must show that

$$
\hat{l}=\lim \frac{x_{i} \pi\left(x_{i}\right)}{\left|x_{i} \pi\left(x_{i}\right)\right|} \notin \lim T_{x_{i}} x=\tau
$$

How for all $i \quad\left(x_{i}, \gamma\left(x_{i}\right)\right) \in F_{(L) *}$, by (ii) of Lemma 6.7 and the definition of M_{L}. Hence $\left(0, \lim \gamma\left(x_{i}\right)\right)=(0, l, \tau) \in \bar{F}_{(\tilde{L}) *} \subset \bar{B}_{(\tilde{L}) *} \subset \mathbb{R}^{n} \times B$ using (i) and (ii) of Lemma 6.7. Thus $(\ell, \tau) \in B$, i.e. $\hat{l} \notin \tau$, by the definition of B. This completes the proof of Assertion 6.4.

Proof of Lemma 6.7 : First, G is subanalytic in $\mathbb{R}^{n} \times G_{1}^{m} \times G_{d}^{n}$. For we can partition X into a locally finite set of real analytic submanifolds by [12] (See also [10] and [40]), then complexify each real analytic part, apoly the argument of \S_{17} in [46], take real parts, and finally take closures, using that the closure of a subanalytic set is subanalytic [12]. The closures match up since X is c^{2}.

Tben noply iema 4.3 .3 or $[12]$ to g to gite a (b)-resuler
 union of strata of \mathcal{G}. Since $\Lambda=q\left(G \cap p^{-1}(0) \cap\left(\mathbb{R}^{n} \times B\right)\right)$ has dimension i there is some stratum S of \mathcal{G} contained in $G \cap p^{-1}(0)$ such that dim $\left(q(S) \cap D_{0}\right)=i$. By the implicit function theorem there is an open subset V of S contained in $\mathbb{R}^{n} \times B$ such that $q(V) \subset \Lambda \cap D_{0}$ is a C^{1} submanifold of dimension i, and $\left.q\right|_{V}$ has rank i. Let D be a compact coordinate disc

Suppose T is a C^{1} submanifold of dimension ($M-k-1$) in G_{1}^{m}, transverse to Λ on $D \cap \Lambda$. Then $q^{-1}(T)$ is transverse to S on V since q / v has constant rank. Let $z \in V \cap q^{-1}(T)$. By (a)-regularity of \mathcal{G} there" is an open ball B_{T} in $\mathbb{R}^{n} \times B$ such that $z \in\left(B_{T} \cap S\right) \subset V$ and such that $q^{-1}(T)$ is
transverse to every stratum of G within B_{T}. We may further suppose that $q\left(B_{i f}\right) \subset D$, proving (i) of Lemma 6.7.

By definition of G, there is a stratum S_{1} of G, not meeting $p^{-1}(Y)$, such that $z \in \bar{S}_{1}$, i.e. $S \cap \bar{S}_{1} \neq \varnothing$. Then by 10.4 of [21],
$\left.q^{-1}(T) \cap S \cap B_{T} \in T\right) \cap S_{1} \cap B_{T}$.

Repeating +1 argument given above for S for each stratum of C in $p^{-1}(0)$ adjacent to S we find that $q^{-1}(T) \cap G \cap p^{-1}(0) \cap B_{T}$ is nonempty and contained in \bar{F}_{T}, where $\mathrm{F}_{\mathrm{T}}=\mathrm{q}^{-1}(\mathrm{~T}) \cap \mathrm{G} \cap \mathrm{p}^{-1}(\mathrm{X}) \cap \mathrm{B}_{\mathrm{T}}$, and that F_{T} is a C^{1} submenifold of G of codimension k. This proves (ii) and (iii) and. completes the proof of Lemma 6.7.

We have now completed tine proof of Theorem 6.2.
1.0te 6. 6 : (1) In the proof of Lemma 6.7 we cited the result of Mather (10.4 of $[21]$) that if X is (b)-regular over Y in \mathbb{R}^{n} and S is a suomanifold of $\mathbb{R e}^{n}$ transverse to Y then $S \cap Y \subset \overline{S \cap X}$. It is amusing that for complex analytic X, Y, and S, this follows from (a)-regularity : see the appendix of [25].

$$
\text { (2) If } X \text {, } Y \text { sre complex snelytic in } x^{n} \text { he outain the same }
$$

tieorem, but involving complex linear subspaces of complex codimension k, and with the conclusion that $\operatorname{din}_{\mathbb{C}} \Lambda_{O}(X, Y)<k$.

Note 6.9: In the context of a family of complex hypersurfaces with isolated singularity, if one could prove that $\mu\left(F_{t}\right)$ constant implies that

$$
i \mathrm{im}_{\mathrm{s}} \Lambda_{0}\left(7^{-1}(0)-\left(0 \times c^{k}\right), 0 \times c^{k}\right) \neq 0
$$

then using Theorem 6.2 we would obtain an inductive proof of the result of Teissier that μ^{*}-constant implies (b)-regularity for the pair $\left(\mathrm{P}^{-1}(0)-\left(0 \times c^{k}\right), 0 \times c^{k}\right)([30])$.

In the only known examples of a μ-constant family whioh is not (b)-regular (due to Briançon and Speder), $\operatorname{dim}_{c} \Lambda_{0}\left(F^{-1}(0)-\left(0 x c^{k}\right), 0 \times c^{k}\right)>0$.

For example, consider $F(x, y, z, t)=x^{3}+t x y^{3}+y^{4} z+z^{9}$ (due to Soeder. Cf. [2]) Analogous to the calculation in [2] we find that (b) fails on a curve $\gamma(u)=\left(\beta u^{5}, \alpha u^{3}, h\left(\alpha u^{3}\right) \alpha u^{3}, u\right)$ where $h: c \rightarrow c$ satisfies $h(0)=1$ and $h(y) y^{5}+(h(y) y)^{9}=y^{5}(h$ exists by the implicit function theorem), and α, β are complex numbers defined by the equations $\beta^{3}+\alpha^{3} \beta+\alpha^{5}=0,3 \beta^{2}+\alpha^{3}=0$. The limit of orthogonal secant vectrons λ is ($0: 1: 1$) and the limit of normal vectors ν is $\left(0: 3 \beta+4 \alpha^{2}: \alpha^{2}\right) \cdot \lambda$ is not contained in the limiting tangent space ortiogonal to ν since $3 \beta+5 \alpha^{2} \neq 0$.

Now consider the curve $\gamma_{\theta}(u)=\left(\beta_{\theta} u^{5}, \alpha_{\theta} u^{5}, h_{\theta}\left(\alpha_{\theta} u^{3}\right) \alpha_{\theta} u^{3}(1+\theta), u\right)$ where $\theta \in \mathbb{C},|\theta|<\varepsilon$ for some positive $\varepsilon<1$, and $h_{\theta}: \mathbb{C} \longrightarrow \mathbb{C}$ satisfies $h_{\theta}(0)=1$ and $h_{\theta}(y) y^{5}(1+\theta)+\left(h_{\theta}(y) y(1+\theta)\right)^{9}=y^{5}(1+\theta)$, and $\alpha_{\theta}, \beta_{\theta}$ are complex numbers defined by the equations $\beta_{\theta}^{3}+\alpha_{\theta}^{3} \beta_{\theta}+(1+\theta) \alpha_{\theta}^{5}=0,3 \beta_{\theta}^{2}+\alpha_{\theta}^{3}=0$. Then $\lambda_{\theta}=(0: 1: 1+\theta)$. and $\quad V_{\theta}=\left(0: 3 \beta_{\theta}+4(1+\theta) \alpha_{\theta}{ }^{2}: \alpha_{\theta}{ }^{2}\right) \cdot \lambda_{\theta}$ is not contained in the limiting tangent space orthogonal to γ_{θ} since $3 \beta_{\theta}+5(1+\theta) \alpha_{\theta}^{2} \neq 0$ for small θ, i.e. for ε sufficiently small. As θ varies we obtain a complex
 $\operatorname{dim}_{c} \Lambda_{0}(X, Y)=1$ here since the family is equimultiple (with multiplicity 3), which is the same as saying that ($\mathrm{X} \cap \mathrm{L}, \mathrm{Y}$) is (b)-regular for generic complex linear subspaces L of codimension 2 containing Y, or again that $X \cap L=\varnothing$ for generic L. (Recall $X=F^{-1}(0)-(0 \times C)$, and $Y=0 \times($, the t-axis $)$

Pemari 6.10 : It would be interesting to have a converse to Theorem 6.2, i.e. a proof that $\operatorname{dim} \Lambda<k$ implies ($b_{c o d k}$), when generic linear subspaces of codimension k are transverse to X. We consider a weak form of such a converse in the second part of $\S 6$.

Part II. Preservation of (b)-regularity under generic sections.

Let X, Y be C^{I} submanifolds of \mathbb{R}^{n}, and $0 \in Y \subset \bar{X}-X$. We call a C^{1} submanifold of dimension ($n-k$) containing Y a seotion of codimension k ($\operatorname{cod} Y<k \leqslant 0$). (This term was reserved for linear subspaces in Part I.) Denote the set of germs at 0 of sections of codimension k by \mathcal{S}_{k}. In the notation of Whitney [46] [47], the set of limits of tangent planes to X given by sequences on X tending to 0 is $T(X, 0) \subset G_{\operatorname{dim} X}^{n}(R)$. Let \mathcal{S}_{k}^{*} denote the subset of \mathcal{S}_{k} consisting of germs at 0 of sections S of. codimension k such that $T_{0} S$ is transverse to every element of $\tau(X, 0)$ in $T f^{n}$. We give \mathcal{S}_{k} the tonology induced from the topology on $G_{n-k}^{n}(\mathbb{R})$ by the map $\sigma \longmapsto \mathrm{P}_{0} \sigma$.

Theorem 6.11 : Let X be (b)-regular over Y at 0 , and let S be a renresentative of $\sigma \in \mathcal{S}_{k}^{*}$. Then s N X near 0 and $X \cap S$ is (b)-regular over Y at 0 .

Eroof : It suffices to prove the result for $k=1$, since we may consider 3 section of codimension k as the intersection of k sections of codimension 1. Let $\sigma \in \rho_{1}^{*}$, and let S be a representative of σ. It is clear that S 内 X near 0 , so that it makes sense to test for (b)-regularity.

Let $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ be sequences in $X \cap S$ and Y tending to 0 so that $\frac{x_{i} y_{i}}{\left|x_{i} y_{i}\right|}$ tends to $\lambda, T_{x_{i}}(X \cap S)$ tends to τ_{S} and $T_{x_{i}} X$ tends to τ. $T_{0} \pitchfork \uparrow$ since $s \in \mathcal{J}_{1}^{*}$, and clearly $\tau_{S} \subset \subset \cap T_{0} S$. Thus $\tau_{S}=\tau \cap T_{O_{0}}$. Since X is (b)-regular over Y at $0, \lambda=\tau$. But S is a C^{1} submanifold, and thus $\lambda \subset T_{S} S$, and $\lambda \subset T_{S}$, showing that $X \cap S$ is (b)-regular over Y at 0 , and completing the proof of the theorem.
at 0), we would have proved that (b) implies ($b_{c o d k}$). Our next result describes sufficient conditions for this to be so.

Theorem 6.12 : Let X be (a)-regular over Y at 0 in \mathbb{R}^{n}, and let $\tau(x, 0)$ have a finite partition into C^{I} submanifolds of dimension less than or equal to $\operatorname{dim} X-\operatorname{dim} Y-1$. Then \mathcal{S}_{k}^{*} is open and dense in \mathcal{S}_{k}.

Eroof : It suffices to prove the theorem when $k=1$.
Let $\operatorname{codim} Y=m, \operatorname{dim} X-\operatorname{dim} Y=p$. By definition of the topology on S_{k}, it suffices to show that $\left\{P \in G_{n-1}^{n}(R): T_{0} Y \subset P, P \not \subset T, \forall T \in \tau(X, 0)\right\}$ is open and dense in $\left\{P \in G_{n-1}^{n}(\mathbb{R}): T_{0} Y \subset P\right\}$.

Lemma 6.13: Let K be a compact set in $G_{p}^{m}(\mathbb{R})$ partitioned into a finite number of C^{1} submanifolds of dimension $\leq(p-1)$. Then $\left\{Q \in G_{m-1}^{\mathrm{m}}(\mathbb{R}): Q \mathbb{K} K, \forall K \in \mathbb{K}\right\}$ is open and dense in $G_{m-1}^{\mathrm{II}}(\mathbb{R})$.

Assuming Lemna 6.13 we obtain the required result since if $T \in T(X, 0)$ then $T_{O} Y \subset T$ by (a)-regularity of X over Y at 0 , and since $\tau(X, 0)$ is compact, being a closed subsot or a compact space.

Froof of Lemma 6.13 : We assert that if X_{I} is a C^{1} submanifold of $G_{p}^{m}(\mathbb{R})=G_{p}^{m}$ of dimension $\leqslant(p-1)$, and we are given $K \in K_{1}$ and a compact coordinate neighbourhood N of K in K_{I} then $\left\{Q \in G_{m-1}^{m}: Q \not Q K^{\prime}, \forall K^{\prime} \in N\right\}$ is open and dense in G_{m-1}^{m}. For $\left\{Q \in G_{m-1}^{m}: K<Q\right\}$ has dimension ($m-p-1$), since it is isomorphic to G_{1}^{2-p}. Thus $\left\{Q \in G_{m-1}^{n}: \exists K^{\prime} \in N\right.$ with $\left.K^{\prime} \subset Q\right\}$ has dimension $(m-p-1)+\operatorname{dim} X_{1} \leqslant(m-p-1)+(p-1)=m-2$, and is closed. Hence its complement, which is $\left\{Q \in G_{m-1}^{m}: Q \not \subset K^{\prime} \forall K^{\prime} \in N\right\}$, is open and dense in G_{m-1}^{m}.

Now cover \mathcal{K} by a countable number of compact coordinate disca for each submanifold of the finite partition. Since G_{m-1}^{m} is a Baire space we deduce
thet $\left\{Q \in G_{m-1}^{m}: Q K K \forall K \in \mathcal{K}\right\}$ is dense. Since \mathcal{K} is assumed to be compact it is also open. This completes the proof of Lemma 6.13 and hence of Theomem 6.12.

Note 6.14 : If X is subanalytic, $\tau(X, 0)$ is also subanalytic. (Intersect the closure of $\left\{\left(x, T_{x} X\right): x \in X\right\}$, in $\mathbb{R}^{n} x G_{\operatorname{dim} X}^{n}$, which is subanalytic by Lemma 2.7 , with $0 \times G_{d i m ~}^{n} X^{\text {. }}$) Then $\tau(X, 0)$ has a locally finite partition into C^{1} submanifolds by $[12]$, and the partition will be finite since $C(X, 0)$, a closed subset of a compact space, is compact.

Examples 6.15 : In Example 6.1, $1=\operatorname{dim} \tau(X, 0)>\operatorname{dim} X-\operatorname{dim} Y-1=0$. For an algebraic example consider Example 4 (1) on page 4 of the introduction. Acain $I=\operatorname{dim} \tau(X, 0)>\operatorname{dim} X-\operatorname{dim} Y-1=0$. In both cases \mathcal{J}_{1}^{*} is not dense in S_{1}. However $\left(b_{\operatorname{cod} 1}\right)$ does hold, so that the following result, which is a consequence of Theorems 6.11 and 6.12 , is not sharp.

Corollary 6.16 If Y is linear, X is (b)-regular over Y at 0 , and $\tau(X, 0)$ has a finite partition into $C^{\mathcal{I}}$ submanifolds of dimension at most

iroof : Apply Theorems 6.11 and 6.12, and note that the topology on ρ_{k} was that induced from $G_{n-k}^{n}(\mathbb{R})$.

Remark 6.17: In [3], Briançon and Speder prove that (b)-regularity implies μ^{*}-constant for a family of complex hypersurfaces with isolated singuiarity. They show that (oj-rogularity impies that μ^{n+1} is constani, then, essentially, that \mathcal{S}_{k}^{*} is open and dense in S_{k}, so that applying Theorem 6.11, one obtains the constancy of the rest of the μ^{i}.

7. Stronger generic regularity.

Let X be a C^{I} submanifold of R^{n}, and a subanalytic set. Let Y be an analytic submanifold of R^{n} such that $0 \in Y \subset \bar{X}-X$.

According to Verdier [40], X is (w)-regular over Y at 0 if,
(w) There is a constant $C>0$ and a neighbourhood U of 0 in \mathbb{R}^{n} such that if $x \in U \cap X, y \in U \cap Y$, then $d\left(T_{x} X, T_{y} Y\right) \leqslant C\|x-y\|$.

Verdier proves that (w) implies (b) . Here we give an example showing that (b) does not imply (w), even for algebraic strata.

Example 7.1 : In \mathbb{R}^{3} with (x, y, t) as coordinates, let V be $\left\{y^{4}=t^{4} x+x^{3}\right\}$. Let Y be the t-axis, and X be $(V-Y)$.

Figure : $t=0$.

Figure: $t \neq 0$.

From the figures it is clear that V is a topological manifold near 0 , and in particular that X is topolocically trivial along Y. It will follow from the calculations of $\S 8$ that X is (b)-regular over Y at 0 . In fact in this example X is C^{l} trivial along $Y: V$ is a C^{l} suomanifold. We show that at O there is a unique limiting tangent plane, with normal ($1: 0: 0$) - a chart for V at 0 follows easily.

The normal to x at $(x, y, t)=\left(x,\left(t^{4} x+x^{3}\right)^{1 / 4}, t\right)$ is

$$
\begin{equation*}
\left(3 x^{2}+t^{4}:-4\left(t^{4} x+x^{3}\right)^{3 / 4}: 4 t^{3} x\right) \tag{7.2}
\end{equation*}
$$

Since X is algebraic it suffices to consider curves on X through 0 defined by an analytic arc $\gamma(s)=(x(s), t(s)), s \in[0,1]$. If $|t(s) / x(s)|$ is bounded as s tends to 0 , the normal is

$$
\left(3+t^{2}(t / x)^{2}:-4\left(t^{4 / 3}(t / x)^{8 / 3}+x^{1 / 3}\right)^{3 / 4}: 4 t^{2}(t / x)\right)
$$

and tends to (1:0:0). If $|t(s) / x(s)|$ is not bounded as s tends to 0 we set $x=c t^{1+\theta}+$ (higher terms in t), $\theta>0$. The normal becomes

$$
\left(3 c^{2} t^{2+2 \theta}+t^{4}:-4\left(c t^{5+\theta}+c^{3} t^{3+3 \theta}\right)^{3 / 4}: 4 c t^{4+\theta}\right)
$$

disregarding higher terms.

$$
\theta \geqslant 1: 4<18 / 4=\min ((15 / 4)+(38 / 4),(9 / 4)+(98 / 4))<5 \leqslant 4+\theta
$$ hence the normal tends to ($1: 0: 0$).

$$
\underline{\theta<1}: 2+2 \theta<(9 / 4)+(9 \theta / 4)<(15 / 4)+(3 \theta / 4) \text {, and so once }
$$ again we find ($1: 0: 0$).

Figure : Justification of the inequalities when $\theta<1$.
(s) fails : Consider the curve $f(s)=\left(s^{2},\left(2 s^{6}\right)^{1 / 4}, s\right)$ on $x, r o m$ (7.2) we find that the normal to x at $\gamma(s)$ is ($\left.4 s^{4}:-4\left(2 s^{6}\right)^{3 / 4}: 4 s^{5}\right)$ and hence that $d\left(T X(s)^{X, T} O^{Y}\right)=4 s^{5} /\left(\left(4 s^{4}\right)^{2}+\ldots\right)^{\frac{1}{2}} \sim s$. Now $\left\|\gamma(s)-\pi_{r}(\gamma(s))\right\|=\left\|\left(s^{2},\left(2 s^{6}\right)^{1 / 4}, 0\right)\right\| \sim s^{3 / 2}$. Hence X fails to be (w)-regular over I at 0 .

As a consequence (w)-regularity is not a C^{1} diffeomorphism invariant. Honever it is olear from the definition of (w) that it is a C^{2} diffeomorphism inva=iant, or more precisely that it is invariant under a C^{l} diffeomorphism witis a Lipschitz derivative.
dote 7.3 : No example has been found so far of complex analytic strata for whici (b) inolds and (w) fails. In the special case of a fanily of complex aypersurfaces with isolated singularity parametrised by Y it is known that (b) and (w) are qquivalent. This is because (w) is a trivial consequence of (c)-cosecance as defined by Teissier in [32]. It follows from [3] and $[31]$ tieat (b) implies (c)-cosecance.

Now we suppose that Y is linear (apoly a local analytic isomorphism at 0 to \mathbb{R}^{n}). Let π denote orthogonal projection onto Y.
\therefore e can reformulate (w) by saying that for x, y near $0, \frac{d\left(T_{x} X, T_{y} Y\right)}{\|x-y\|}$
is counded, and so in particular $\frac{d\left(T_{X} X, T_{0}\right)}{\|x-\pi(x)\|}$ is bounded for x near 0 .
Iner it is clear that if X is (w)-regular over Y at 0 then $(X, Y)_{0}$ satisfies the ratio test (x) of Kuo (defined in [14]) :
(r) Given any vector $v \in \Gamma_{0} Y, \lim _{x \rightarrow 0} \frac{\left|\pi_{x}(v)\right|\|x\|}{\|x-\pi(x)\|}=0$.
zere π_{x} denotes orthogonal projection onto the normal space to X at x , so tiat $\left|\pi_{x}(v)\right|=d\left(T_{x} X, v\right)$.
isuo proved in [14],
heoram 7.4 (Kuo) : (1) (r) implies (b),
(z) (b) implies (C) if Y is of dimension one.

Eroof : In each case the proof in [14] uses the curve selection lemma with the assumption that X be a semianalytic set. Using Lemma 2.6 we can use the same proof when X is a subanalytic set.

Corollary 7.5 : (w) implies (b).

Example 7.6 : For an example showing that (r) does not imply (w) apply Theorem 7.4 (2) to Example 7.1.

Actually we can make more precise what was proved in [14]. It is shown there that (b) is equivalent to the conjunction of (a) and
(I^{\prime}) If $\gamma(t)$, $t \in[0,1]$, is an analytic arc on X with $\gamma(0)=0$, then $\lim _{t \rightarrow 0} \frac{\mid \pi_{t}(v)\| \| \gamma(t) \|}{\| \gamma(t)-\pi(\gamma(t) \|}=0$, where v is the tangent at 0 to the arc in Y defined by $\pi \circ \gamma(t)$ (when nonzero) and π_{t} is projection onto the normal space to X at $\gamma(t)$.

It is obvious that ((x) implies $(a)+\left(r^{\prime}\right)$, and that $(a)+\left(r^{\prime}\right)$ implies (r) when Y is of dimension one. With this in mind we now give an example of a pair of semialgebraic strata, with Y of dimension two, X (b)-regular over Y, and where (r) fails to hold for a curve $\gamma(t)$ and a vector v spanning the orthogonal complement in $T_{O} Y$ to the subspace spanned by the tangent at 0 to the curre in F Eefined by $\pi \cdot \gamma(t)$.

This example, discovered at 0slo in August 1976 (see [39] , gives the first (b)-regular pair of subanalytic strata which fail the ratio test (r) (introduced in 1970). It is an open question whether real al gebraic or complex analytic examples exist, although from the argument for (w) in Note 7.3 we see that (b) is equivalent to (r) when X is the nonsingular part of a complex hypersurface.

Example 7.7 : Let (x, y, z, w) be coordinates in \mathbb{R}^{4}, and let Y be the plane $\{z=w=0\}$. Define the semialgebraic set,

$$
\begin{aligned}
X= & \left\{w=0,2\left(x^{2}+\left(z-y^{p}\right)^{2}\right) \geqslant y^{2 p}, z>0\right\} \\
& \cup\left\{y^{q} w=\left(x^{2}+\left(z-y^{p}\right)^{2}-y^{2 p} / 2\right)^{2}, 2\left(x^{2}+\left(z-y^{p}\right)^{2}\right) \leqslant y^{2 p}, z>0\right\}
\end{aligned}
$$

where p and q are positive integers satisfying

$$
\begin{equation*}
2 \mathrm{p}<\mathrm{q}<3 \mathrm{p} \tag{7.8}
\end{equation*}
$$

(For examole let $p=2, q=5$.)
Observe that because the algebraic variety defined by the equality in the second part of the expression for X has $\{W=0\}$ as tangent space at every point of its intersection with $\left\{2\left(x^{2}+\left(z-y^{p}\right)^{2}\right)=y^{2 p}\right\}$, X is a c^{1} suomanifold of \mathbb{R}^{4} (compare Construction 2.2).

Figure : ' $\mathrm{w}=0$.
horn

五

Assertion 7.9: (b) holds.
Proof : We show that there is a single limiting tangent 3-plane for sequences on x tending to 0 , namely $\{W=0\}$. It suffices to consider the points on $\left\{y^{9} w=\left(x^{2}-y^{20} / 2\right)^{2}\right\}$ (with y fixed) where $d^{2} w / d x^{2}=0$, since at these points the normal is furthest from the (w)-direction (cf. 2.2).

Figure : $z=y^{p}$, y fixed.
$d^{2} w / d x^{2}=0$ when $6 x^{2}=y^{2 p}$, and the normal vector is $\left(\pm(4 / 3 \sqrt{6}) y^{3 p}:-y^{q}\right)$ which tends to ($0: 1$) as y tends to 0 since $q<3 p$ by (7.8). Hence $\{w=0\}$ is the unique limiting tangent plane.

At the points on X where the secant vector defined by orthogonal projection onto Y is furthest from the z-direction, the secant vector is contained in the tangent space to X. Hence $O z$ is the unique limit of tangent vectors, and (bl) holds. (E) holds (since $\{w=0, z=0\} \subset\{w=0\}$), so we can apply the result that (a) $\left(b^{\prime}\right)$ is equivalent to (b) (0.4) to show that (b) holds, proving the assertion.

Assertion 7.10 : (r) fails to hold.
Proof : Consider the curve $\gamma(t)=\left(t^{p} / \sqrt{6}, t, t^{p}, t^{4 p-q} / 9\right)$ which lies on X. The normal vector to K at $\gamma(t)$ is,

$$
\left((4 / 3 \sqrt{6}) t^{3 p}:((2 p / 3)-(q / 9)) t^{4 p-1}: 0:-t^{q}\right) .
$$

Let π_{t} denote projection onto this normal space. Then

$$
\left|\pi_{t}(0 x)\right| \sim \frac{t^{3 p}}{\left\|\left(t^{3 p}, t^{4 p-1}, 0, t^{q}\right)\right\|} \sim \frac{t^{3 p}}{t^{q}}
$$

since, by (7.8), $q<3 p$.
$\left\|\frac{\|\gamma(t)\|}{\| \gamma(t)-\pi(\gamma(t) \|}=\right\|\left(t^{p} / 6, t, t^{p}, t^{4 p-q} / 9\right) \| \frac{t}{\left.\|, 0, t^{p}, t^{4 p-q} / 9\right) \|} \sim \frac{t}{t^{p}}$.
Hence the ratio (as in the definitior of (r)) becomes $t^{2 p-q+1}$, which does not tend to zero since $2 p<q$ by (7.8). This proves Assertion 7.10.

Finally we check that (w) fails to hold.

$$
\begin{gathered}
\left.d(T) \gamma(t)^{X, T} \pi(\gamma(t))^{Y}\right) \sim t^{3 p-q}, \\
\alpha(\gamma(t), \pi(\gamma(t))) \sim t^{p},
\end{gathered}
$$

so that (w) fails exactly when $2 p<q$.

10te 7.11 : The proof of Assertion 7.9 gives in fact that \bar{X} is a C^{1} manifold-with-boundary. Basing the construction on $\left\{w=\left(x^{2 k}-1 / 2\right)^{2}\right\}$, $l<k<\infty$, instead of $k=1$ as here, we can build similar examples with X a C^{k} submanifold and semialgebraic subset of \mathbb{R}^{4}. However \bar{X} will still be a submanifold-with-boundary of class C^{1}, not $C^{2} .(r)$, like (w), is a C^{2} diffeomorphism invariant, but not a C^{I} diffeomorphism invariant. In this context note that there is no C^{2} version of the lemma showing that wings are generically submanifolds-with-boundary of class C^{1} (see [43]). Eence tie proof in [43] that (b) is generic does not apply directly to (r) or (w). (As a counterexample to a C^{2} version it suffices to take the product of IR and a semi-cubical cusp in \mathbb{R}^{3}.)

Note 7.12: In [14] there is an example of Kuo showing that (r) does not imply (b) if X is merely smooth. Kuo has also an example where Y is l-dimensional, (b) holds, and (r), fails, and of course X merely smooth (grivate commanication). This is why we assumed subanalyticity of X from the becinning of $\$ 7$.

Addendum 7.13. If A, B are vector subspaces of \mathbb{R}^{n}, let

$$
\begin{aligned}
& d(A, B)=\sup _{b \in B}\left|b-\pi_{A}(b)\right| \\
& |b|=1
\end{aligned}
$$

where π_{A} is orthogonal projection onto A. This is not symmetric in A and B - Clearly $d(A, B)=0$ if and only if $A \geq B$.
(Compare [14], [40], [46], [47] in all of which the order is the reverse of the above.)

CHAPTER 3. COMPUTATIONS

During a talk delivered at the Göttingen Catastrophe Theory Conference in October 1973, C. T. C. Wall suggested that it would be useful to determine Whitney regularity in the following case : $x \equiv\left\{y^{a}=t^{b} x^{c}+x^{d}\right\}-\{t$-axis $\}$ in \mathbb{R}^{3} or $\mathbb{C}^{3}, Y \equiv\{$ t-axis $\}$, with a, b, c, d positive integers.
ife determine (a)- and (b)-regularity completely in the complex case and record this tocether wih the calculations for the real case that have been made. These calculations have proved useful in providing Examole 7.1 (showing (b) to ce strictly weaker than (w) even for algebraic strata), and in answering several uestions posed by J.-J. Risler concerning algebraic stratifications not regular over \mathbb{C}, yet regular over \mathbb{R}.

$$
\text { 3. } y^{a}=t^{b} x^{c}+x^{d} \text {. }
$$

The tables below collect the results which are obtained.
Key : \checkmark - regularity holds ; X - there is a fault at 0 ; ? undecided..

Lable 8.1 : (a)-regularity over c.
$a=1 \checkmark(8.6)$

Table 8.2: (a)-regularity over \mathbb{R}.

Table 8. 3 : (b)-regularity over \mathbf{C}.

$$
\begin{aligned}
& a=1 \quad(8.16) \\
& z>1\left\{\begin{array}{lll}
d \leq c & \checkmark & (8.17) \\
c<d & x & (8.18)
\end{array}\right.
\end{aligned}
$$

Table 3.4 : (b')-regularity over \mathbb{R}. (Not (b))

$$
\begin{aligned}
& a=1 \quad \checkmark \text { (} 8.16 \text {) }
\end{aligned}
$$

lite 0.5 : It is easy to show that if (a) (resp (b'), resp. (b)) holds over \mathbb{C}, then (a) (resp. (bl), resp. (b)) holds over \mathbf{R}.

Write $f(x, y, t)=-y^{a}+t^{b} x^{c}+x^{d}$. Then (a) holds at 0 if and only if $\frac{\partial f / \partial t(x, y, t)}{|\operatorname{Gradf}(x, y, t)|}$ tends to 0 as (x, y, t) tends to 0 on x, i.e. if and only if at least one of $\frac{\partial f / \partial t}{\partial f / \partial x}$ and $\frac{\partial f / \partial t}{\partial f / \partial y}$ tend to 0 . We have that grad $f=(\partial f / \partial x, \partial f / \partial y, \partial f / \partial t)$

$$
=\left(d x^{d-1}+c x^{c-1} t^{b},-a y^{a-1}, b t^{b-1} x^{c}\right)
$$

3.6: (a) holds if $a=1$.

$$
\frac{\partial f / \partial t}{\partial f / \partial y}=\frac{b t^{b-1} x^{c}}{-1} \longrightarrow 0 \text { as } x \longrightarrow 0
$$

8.7: (a) holds if $d \leq c$.

We may suppose $\partial f / \partial x \not \equiv 0$, for $\partial f / \partial x$ is identically zero only on $\left\{d x^{d-c}+c t^{b}\right\}=0$, and since $d \leq c$, this surface intersects X in an isolated point at 0 . Then $\left|\frac{\partial f / \partial t}{\partial f / \partial x}\right| \sim \frac{t^{b-1} x^{c}}{d x^{d-1}+c x^{c-1} t^{b}}=\frac{t^{b-1} x^{c-d+1}}{d+c x^{c-d} t^{b}} \rightarrow 0$ as x tends to 0 if $d \leqslant c$.

Consider the curve on which $\partial f / \partial y \equiv 0$, i.e. $y=0=x^{c}\left(t^{b}+x^{d-c}\right)$.
Let $t^{b}=-x^{d-c}$. Then $\frac{\partial f / \partial t}{\partial f / \partial x}=\frac{b t^{b-1} x^{c}}{d x^{d-1}+c x^{c-1} t^{b}} \sim \frac{x^{c+(d-c)(b-1) / b}}{d x^{d-1}-c x^{d-1}}$

$$
\sim x^{c-d+1+(d-c)(b-1) / b}
$$

$$
=x^{(b+c-d) / b} \rightarrow 0
$$

if $d \geqslant b+c$. Hence if $d \geqslant b+c$, (a) fails on $\left\{y=0=t^{b}+x^{d-c}\right\}$.
8.9: (a) fails over R if $d \geqslant b+c, \exists>1$ and either $b \equiv 1$ ($\bmod 2$) or $(1-c) \equiv 1(\bmod 2)$, or both .

As in $8.8\left\{t^{b}=-x^{d-c}\right\} \cap x$ has a branch through 0.
c.10: (a) fails over k if $b+c \leqslant a, b+c \leq d, b \equiv 0(\bmod 2)$ and $d \equiv c(\bmod 2)$.
$\partial f \partial y \neq 0$ since $\left\{t^{b}=-x^{d-c}\right\} n X$ has no branches near 0 . Let $x=\lambda t$, $\lambda \neq 0$. Then $\frac{\partial f / \partial t}{\partial f / \partial y} \sim \frac{x^{b+c-1}}{\left(x^{b+c}+x^{d}\right)^{(a-1) / a}} \sim x^{b+c-1-(b+c)(a-1) / a}$
$=x^{(b+c-a) / a}$.
Thus $\frac{\partial f / \partial t}{\partial f / \partial y} \rightarrow 0$ along $\{x=\lambda t\}$ if $a>b+c$.
Also $\frac{\partial f / \partial t}{\partial f / \partial x} \sim \frac{x^{b+c-1}}{d x^{d-1}+c x^{b+c-1}}$ on $\{x=\lambda t\}$

$$
\begin{aligned}
& \sim \frac{x^{b+c-1}}{c x^{b+c-1}} \text { since } d \geqslant b+c \\
& \leftrightarrow 0
\end{aligned}
$$

Hence (a) fails along $\{x=\lambda t\}$.
$3.11:(a)$ holds over R if $a \leqslant b, b \equiv 0(\bmod 2)$, and $d \equiv c(\bmod 2)$. $\partial_{f / \partial y} \neq 0$ since $\left\{t^{0} x^{c}+x^{d}\right\} \neq 0$ except at 0 if b and ($d-c$) are even. $\begin{aligned} \frac{\partial f / \partial t}{\partial f / \partial y} & \frac{t^{b-1} x^{c}}{\left(t^{b} x^{c}+x^{d}\right)^{1-1 / a}} \leqslant \frac{t^{b-1} x^{c}}{\left(t^{b} x^{c}\right)^{1-1 / a}}\end{aligned}=t^{b-1-b(a-1) / a x^{c / a}}=t^{(b-a) / a} x^{c / a}$ $\rightarrow 0$ if $a \leqslant b$.
8.12 : Let $c<d<b+c$. Then (a) holds over c if and only if either $a \leqslant b$ or, $a>b$ and $d<a c /(a-b)$.

After curve selection (2.6) we can reduce to the case of curves along which $|t / x|$ is bounded or unbounded as x and t tend to 0 .
(i) $|t / x|$ is bounded. Then $\partial f / \partial x \not \equiv 0$ and
$\frac{\partial f / \partial t}{\partial f / \partial x} \sim \frac{t^{b+c-d}(t / x)^{d-c-1}}{d+c t^{b+c-d-1}(t / x)^{d-c}} \rightarrow 0$, if $c<d<b+c$.
(ii) $|x / t|$ tends to 0 .
$\frac{\partial f / \partial t}{\partial f / \partial x} \sim \frac{(x / t)}{c+d x^{d-c} / t^{b}} \rightarrow 0$ if $d x^{d-c} / c t^{b} \rightarrow-1$.

Let $d x^{d-c} / c t^{b} \rightarrow-1$.
Then $\frac{\partial f / \partial t}{\partial f / b y} \sim \frac{t^{b-1} x^{c}}{\left(t^{b} x^{c}+x^{d}\right)^{1-1 / a}} \sim \frac{x^{c+(d-c)(b-1) / b}}{\left((1-d / c) x^{d}\right)^{1-1 / a}}$ $\sim x^{c+(d-c)(b-1) / b-d(a-1) / a}$ since $d>c$
$\sim x^{(a c-d(a-b)) / a b} \quad$ which
$\rightarrow 0$ if $d(a-b)<a c$
$\rightarrow 0$ if $d(a-b) \geqslant a c$, when (a) fails
along $\quad d x^{d-c}+c t^{b}=0$.
3.13: (a) fails over R if $c<d<b+c, a>b, d \geqslant a c /(a-b)$ and either $3 \equiv 1(\underline{\bmod 2)}$ or $\mathrm{d} \equiv \mathrm{c}+1(\bmod 2)$, or both.
\therefore in 3.12 , (a) fails along $d x^{d-c}+c t^{b}=0$.
o. 14 : (a) holds over \mathbb{R} if $c<d<b+c, b \equiv 0(\bmod 2), d \equiv c(\bmod 2)$. 0.12 shows that (a) fails only for curves on which $d x^{d-c} / \mathrm{ct}^{\mathrm{b}} \rightarrow-1$, and these curves have no points on X near 0 if b and d-c are even.
0.15: (z) holds oren R if $b \leqslant a<b+c=d, b \equiv 0(\bmod 2), d \equiv c(\bmod 2)$. (i) $|x / i|$ bounded near 0 .
$\frac{\partial_{f} \Delta t}{\partial f / \partial y} \sim t^{b-1-b(a-1) / a} x^{c-c(a-1) / a}=t^{(b-a) / a} x^{c / a}$ $=x / t^{(a-b) / a} x^{(b+c-a) / a}$ $\rightarrow 0$ if $b \leqslant a<b+c$.
(ii) $|t / x|$ tends to 0 .

Suppose t tends to $x^{8}, \theta>1$.

$$
\begin{aligned}
\frac{\partial f / d t}{\partial f / \partial x}=\frac{b t^{b-1} x^{c}}{d x^{d-1}+c x^{c-1} t^{b}} \sim x^{c+b \theta-\theta-d+1} & =x^{(b-1)(\theta-1)} \text { if } a=b+c . \\
& \rightarrow 0
\end{aligned}
$$

This completes our calculations of (a)-regularity - the inquisitive reader can work out for himself the remaining cases of (a)-regularity over $\mathbb{R}^{\prime \prime}$: when $b<a<b+c<d$ and $b \equiv 0(\bmod 2), d \equiv c(\bmod 2)$.
(b') holds at 0 if and only if $\frac{x(\partial f / \partial x)+y(\partial f / \partial y)}{T(x, y)\|.(\partial f / \partial x, \partial f / \partial y, \partial f / \partial t)\|} \quad$ tends to 0 as (x, y, t) tends to $(0,0,0)$.
8.16: (b) holds if $a=1$.

$$
\begin{aligned}
\frac{x(\partial f / \partial x)+y(\partial f / \partial y)}{\sqrt{(x, y)|. \partial(\partial f / \delta x, \partial f / \partial y, \partial f / \partial t)|}} & =\frac{(d-1) x^{d}+(c-1) t^{b} x^{c}}{\|(x, y)|\cdot|(\partial f / \partial x, 1, \partial f / \partial t) \mid} \\
& =\frac{(d-1) x^{d-1}+(c-1) t^{b} x^{c-1}}{|(1, y / x)| \cdot|(\partial f / \partial x, 1, \partial f / \partial t)|} \\
& \rightarrow 0 .
\end{aligned}
$$

Now use (8.6) and (0.4)..
3.17 : (b) holds if $d \leq c$.

Since by (3.7) (a) holds, by (0.4) it is enough to show that $\frac{x(\partial f \partial x)+y(\partial f A y)}{K(x, y)|\cdot| \partial f \partial x, \partial f \partial y) \mid}$ tends to 0 , i.e. $\frac{(c-a) t^{b} x^{c}+(d-a) x^{d}}{|\cdots||\cdots \cdots \cdot|}$ tends to 0 . Since $d \leqslant c$, it is enough to show that $\frac{x^{d}}{1 \cdot 1.1 \cdot 0 d}$ tends to 0 when $d \neq a$, and $\frac{t^{b} x^{c}}{|.|1 \ldots|}$ tends to 0 when $d=a$.
(i) $\frac{d>a}{} \cdot \frac{x^{d}}{|(x, y)| .|(\partial f / \lambda x, \partial f / \partial y)|}=\frac{x^{d-1}}{|(1, y / x)|\left|\left(c x^{c-1} t^{b}+d x^{d-1},-a\left(t^{b} x^{c}+x^{d}\right)^{1-1 / a}\right)\right|}$

$$
\begin{aligned}
& \sim \frac{x^{(d / a)-1}}{|(1, y / x)| \cdot\left|\left(\ldots,-a\left(t^{b} x^{c-d}+1\right)^{1-1 / a}\right)\right|} \\
& \rightarrow \quad 0 \text { as } d>a, \text { unless }
\end{aligned}
$$

$t^{b} x^{c-d}+1$ tends to 0 , but there are no such points near 0 as $d \leqslant c$.
(ii) $\frac{d<a}{} \frac{x^{d}}{|(x, y)| T(\partial f / \partial x, \partial f / \partial y) \mid}=\frac{x}{\left|\left(x,-\left(t^{b} x^{c}+x^{d}\right)^{1 / a}\right)\right|\left|\left(d+c x^{a-d} t^{b}, \ldots\right)\right|}$

$$
\begin{aligned}
& =\frac{x^{1-d / a}}{\left|\left(x,-\left(t^{b} x^{0-d}+1\right)^{1 / a}\right)\right| \cdot\left|\left(d+c x^{0-d} t^{b}, \ldots\right)\right|} \\
& \rightarrow 0 \text { since } d<a, \text { and } d \leqslant c .
\end{aligned}
$$

(iii) $\underline{d}=a \cdot \frac{t^{b} x^{c}}{\mid\left(x, y| |\left|\left(c x^{c-1} t^{b}+d x^{d-1}, \partial f / \partial y\right)\right|\right.}=\frac{t^{b} x^{c-d}}{|(1, y / x)|\left|\left(c t^{b}+d, \ldots 0^{\prime}\right)\right|}$
3.18: (b^{\prime}) fails over C if $a<d$ and $a>1$, and (a) holds. $y=0$ and $\partial f / \partial y \equiv 0$ on $t^{b} x^{c}+x^{d}=0$. Then
$\frac{x(\partial f / \partial x)+y(\partial f / \partial y)}{|(x, y) \| \cdot|(\partial f / \partial x, \partial f / \partial y) \mid}=\frac{(d-c) x^{d}}{\left.|(x, 0)| \cdot K \operatorname{ct}^{b} x^{c-1}+d x^{d-1}, 0\right) \mid}$

$$
\begin{aligned}
& =\frac{(d-c) x^{d-1}}{|(1,0)|\left|\left((d-c) x^{d-1}, 0\right)\right|} \\
& \rightarrow 0 \text {, so (b') fails, and hence (b) fails. }
\end{aligned}
$$

0.19: (b^{\prime}) fails over \mathbb{R} if $a>1, c<d$ and either $b \equiv 1$ (mod 2)
or $d \equiv c+1(\bmod 2)$ or both.
$x \cap\left\{t^{b} x^{c}+x^{d}=0\right\}$ has real branches through 0 if b or ($d-c$) is odd.
3.20: (b^{\prime}) holds over \mathbb{R} if $d<a, b \equiv 0(\bmod 2)$ and $d \equiv c(\bmod 2)$. $\frac{x(\partial f / \partial x)+y(\partial f / \partial y)}{|(x, y)| \mid \partial f / \partial x, \partial f / \partial y, \partial f / \partial t) \mid}=\frac{(d-a) x^{d}+(c-a) t^{b} x^{c}}{\left|\left(x,\left(t^{b} x^{c}+x^{d}\right)^{1 / 2}\right)\right| \cdot\left|\left(c t^{b} x^{c-1}+d x^{d-1}, \ldots, \ldots\right)\right|}$

$$
\begin{aligned}
& =\frac{(d-a) x^{1-d / a}}{\left|\left(x^{1-d / a},\left(t^{b} x^{c-d}+1\right)^{1 / a}\right)\right|\left|\left(c t^{b} x^{c-d}+d, \ldots, \ldots\right)\right|} \\
& +\frac{(c-a) x^{1-d / a}}{\left|\left(x^{1-1 / a},\left(t^{b} x^{c-d}+1\right)^{1 / a}\right)\right|\left|\left(c+d x^{d-c} t^{-b}, \ldots, \ldots\right)\right|} \\
& \rightarrow 0 \text { if } d<a .
\end{aligned}
$$

This completes our calculations of (b') and (b)-regularity save for the case $1<a \leqslant d, c<d, b \equiv 0(\bmod 2), d \equiv c(\bmod 2)$, over \mathbb{R}.

Example 8.21 : J. J. Risler asked for an example which was (a)-regular over \boldsymbol{R}, but not over \mathbf{c}. By 8.11 and 8.8 it suffices that $a \leqslant b \leqslant d-c$, $b \equiv 0(\bmod 2)$ and $d \equiv c(\bmod 2) \cdot F \operatorname{comane}\left\{y^{2}=t^{2} x+x^{3}\right\}$.

Example 8.22 : For an example which is (b)-regular over \mathbb{R} but not over \mathbf{c}, $3.12,3.13$, and 3.20 give $c<d<a \leq b$ (or $c<d<a, b<a, d<a c /(a-b)$) $b \geqslant 0(\bmod 2), d=0(\bmod 2)$. For example $\left\{y^{4}=t^{4} x+x^{3}\right\}$ or $\left\{y^{5}=t^{4} x+x^{3}\right\}$.

Example 3.23: If an equimultiple example is demanded, satisfying the requirements of 8.22 , consider $\left\{y^{2}=t^{2} x^{2}+x^{4}\right\}$. By 8.8 (a) fails over c, and by 8.11 (a) holds over \mathbb{R}. It remains to check that (b') holds over \mathbb{R}, using (0.4).
$\frac{x(\partial f \partial x)+y(\partial f(\partial y)}{|(x, y)||(\partial f \partial x, \partial f / \partial y)|}=\frac{2 x^{4}}{\left|\left(x,\left(t^{2} x^{2}+x^{4}\right)^{\frac{1}{2}}\right)\right| \cdot\left|\left(4 x^{3}+2 t^{2} x,-2\left(x^{4}+t^{2} x^{2}\right)^{\frac{1}{2}}\right)\right|}$

$$
\begin{aligned}
& =\frac{2 x}{\left|\left(1,\left(t^{2}+x^{2}\right)^{\frac{1}{2}}\right)\right| \cdot\left|\left(4 x+2 t^{2} / x,-2\left(1+(t / x)^{2}\right)^{\frac{1}{2}}\right)\right|} \\
& \rightarrow 0 \text { as } \quad(x, t) \text { tends to } 0 \text { since } x \cap\left\{t^{2}+x^{2}=0\right\}
\end{aligned}
$$

ias no branches passing through 0 . Hence (b) holds over \mathbb{R}.

Note 3.24 : Table 8.3 corresponds with the known $f_{2} c t$ that for families of glare curves, " μ-constant " is equivalent to (b)-regularity ([30]).

1. Bass, D. W. Topological classification of endomorphisms of line bundles, Tarwick University preprint, 1975 .
2. Briançon, J. \& Speder, J.-P. La trivialité topologique n'implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, tome 280, р. 365-367, 1975 .
3. Briançon, J. \& Speder, J.-P. Les conditions de Whitney impliquent μ^{*}-constant, Annales de 1'Institut Fourier de Grenoble, 26(2), p. 153-163, 1976 .
4. Chenciner, A. Hanoi notes, 1975 .
5. Feldman, E. A. The geometry of immersions. I , Trans. Amer. Math. Sog. 120, p. 185-224, 1955 .
6. Gibson, C. G. Construction of canonical stratifications, in Topological stability of smooth mappings, by C. G. Gibson et al., Soringer lecture notes 552, Berlin, p. 8-34, 1975 .
7. Gibson, C. G., Wirthmüller, K., du Plessis, A. A., Looijenga, E. J. N., Tovological stability of smooth mappings, Soringer lecture notes 552, Berlin, 1976 .

```
Springer-Verlag, New York, 1974 .
```

9. Hamm, H. A. \& Lê Dữh Tràng, Un théoreme de Zariski du type de Lefschetz, Ann. Sci. Ec. Norm. Sup. 4ème série, t.6, p. 317-366, 1973 .
10. Hardt, R., Stratification of real analytic mappings and images, Inventiones 28, p. 193-208, 1975 •
11. Hironaka, H., Normal cones in analytic Whitney stratifications, Publ. Math. I. H. E. S. 36, 1969 .
12. Aironaka, H. Subanalytic sets, in Number Theory, Algebraic Geometry end Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo, p. 453-493, 1973 .
13. Hirsch, N. Differential topology, Springer-Verlag, New York, 1976 .
14. Kuo, T.-C. The ratio test for analytic Whitney stratifications, Liverpool singularities symosium I. Sorinrov lecture notes 192, Eerlin, p. 141-149, 1971 .
15. Kuo, T.-C. On Thom-Whitney stratifioation theory, preprint, 1976 .
16. Lê Di̛ng Tràng \& Saito, K. La constance du nombre de Milnor donne des bonnes stratifications, C. R. Acad. Sci. Paris, t. 277 (22 0ct. 1973), ․ 793-795, 1973 .
17. Lê Lưng Trìng \& Ramanujam, C. P. The invariance of Milnor's number implies the invariance of topological type, Amer. J. Math. 98 , p. 67-78, 1976 .
18. Lojasiewicz, S. Ensembles semi-analytiques, I. H. E. S. notes, 1965 .
19. MacFherson, R. D. Chern classes for singular algebraic varieties, Ann. of Math. 100 , p. 423-432, 1974 .
20. MacPherson, R. Characteristic classes for singular varieties, preprint, 1976 。
21. Iather, J. Notes on topological stability, Harvard University, 1970 .

Éc. Nather, J. Stratifications and mappings, in Dynamical Systems (ed. M. M. Peixoto), Academic Iress, p. 195-223, 1971 .
23. Milnor, J. Sirgular points of complex hypersurfaces, Ann. of hath. Studies 61, Princeton, 1968 .
č4. Forlet, C. Le lemme de Thom et les théorèmes de plongement de Whitney I : les topologies des especes a'applications, Éminaine Jenvi Cartan (Tovologie différentielle), 4, 1961-62.
25. Fham, F. \& Teissier, B. Fractions lipschitziennes d'une algebre analytique complexe et saturation de Zariski, Ecole Polytechnique notes, 1969 .
26. Schwartz, M.-H. Classes caractéristiques définies par une stratification d'une variété analytique complexe, C. R. Acad. Soi. Paris, t. 260, p. 3262-3264, 3535-3537, 1965 .
27. Schwartz, M.-H. Sections holomorphes des espaces lineaires et autres
28. Speder, J.-P. Equisingularits et conditions de Whitney, Amer. J. Math. 97(3), p. 571-538, 1975 •
29. Speder, J.-P. Equisingularite et conditions de Whitney, Thèse d'Etat, Université de Nice, 1976 .
30. Teissier, B. Cycles evanescents, sections planes, et conditions de Whitney, in Singularités à Cargèse, Astérisque 7-8, Societé Mathématique de France, p. 235-362, 1973 .
31. Teissier, B. Introduction to equisingularity problems, A. M. S. Algebraic peometry symnosium, Arcata 1974, Providence, Rhode Island, p. 593-632, 1975 •
32. Teissier, B. Variétés polaires I : invariants polaires des singularités d'hypersurfaces, Inventiones Math. 40, p. 267-292, 1977 .
33. Tinourien, J. The invariance of Nilnor's number implies topological triviality, Amer. J. Math. 99, p. 437-446, 1977 .
34. l'hom, i. Local topological properties of differentiable mappings, in Differential analysis, Oxford University Press, London, 2. 191-202, 1964 .
35. शhom, R. Propriétés differentielles locales des ensembles analytiques, Seminaire Bourbaki no. 231, 1964-65.
36. Thom, R. Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 , p. 240-284, 1969 .
37. 'rotman, D. J. A. A transversality pronerty weaker than whitney (a)regularity, Bull. London Matì. Soc., 8, ․ 225-2モó, 1976 .
38. Irotman, D. J. A. Geometric versions of Whitney regularity, Math. Eroc. Camb. Phil. Soc. 00, 1. 99-101, 1976 .
39. Irotmen, D. J. A. Counterexamples in stratification theory : two discordant horns, in Sinularities of real and compley meninss, iroc. Fordic Sumer School in hath., Oslo 1975, to apear, 1977 .
40. Vercier, J.-I. Stratifications de Thitney et théorème de Bertini-Sard, Inventiones isath. 36, 2. 295-312, 1976 .
41. Well, C. T. C. Stratified sets : a survey, Liver ool Singularities Eymosium I, Sorincer lecture notes 192, Berlin, p. 133-140, 1971
42. A2ll, C. T. C. Lectures on \mathbb{C}^{∞} stability and clessification, Livernool Einguarities Byaposium I, Surincer Zecture notes 192, Berlin, 2. 170-206, 1971.
43. Nall, C. T. C. Recular stratifications, Dynamical Systems - iarwick 1974, Suringer lecture notes 463 , D. 332-344, 1975 .
44. Nell, C. i. C. Geometric nroperties of generic differentiable manifolds, mrenrint, 1977 •
45. Whitney, A. Local proverties of analytic varieties, Diff. and comb. tonoioy (sd. J. C-irns), Princeton, n. $205-44,1965$.

47. aitney, H. Commex anslytic varieties, Addison-iesley, Heacina, inss , iy-
40. :irthmüler, K. Stratifications and flows, in Pooolorical stability of smootin manoings, C. G. Gibson et al. Sinrincer lecture isotes 552, Berlin, p. 35-63, 1976 .
49. Cariskj, 0. Contributions to the problen of éuisineulsritu, C. I. i. . . . Vereme 156才: Eicisioni Cremonese some, $1=70$.
50. Zarishi, O. Jome onen cuestions in the theory of sirmularities, Bull. -er. iath. Eoc. 77 (4), 12. 401-491, 1971.
51. Damon, J. Topological stability in the nice dimensions, preprint, 1977 .
52. Kuiper, N.H. C^{l}-equivalence of functions near isolated critical points, Symposium on infinite-dimensional topology, Baton Rouge 1967. edited by R. D. Anderson, Annals Study 69, Frinceton, 1972 .
53. May, R. D. Transversality properties of topologically stable mappings, Harvard doctoral thesis, 1973 .
54. Munkres, J. R. Elementary differential topology, Annals Study 54, Princeton, 1968 .
55. Ostrowski, A. On the Morse-Kuiper theorem, Aequationes Math. 1, p:66-76,196:
56. Takens, F. A note on suffioiency of jets, Inventiones Math. 13,p.225-231,19

STPptidmat?

1. Reference $\lceil 37\rceil$.
2. Reference $\left\lceil 38^{7}\right.$.
3. Reference [39].

A TRANSVERSALITY PROPERTY WEAKER THAN WHITNEY (A)-REGULARITY

D. J. A. TROTMAN

Let X and Y be C^{∞} manifolds embedded in \mathbb{R}^{n}, and let $x \in X \subset Y$. The (a)regularity condition due to Whitney is,
(a) Given $\left\{y_{i}\right\} \in Y$ such that $y_{i} \rightarrow x$ and $T_{y}, Y \rightarrow \tau$ as $i \rightarrow \infty$, then $T_{x} X \subseteq \tau$.

Since spanning is an open property, (a) implies,
(t) Given a C^{1} submanifold S of \mathbb{R}^{n} meeting X transversely at x, \exists a neighbourhood U of x such that S is transverse to Y in $Y \cap U$.

Conversely, (t) implies (a) if Y is semianalytic. This we prove using the curve selection lemma, and we give an example where Y is a C^{∞} manifold and (t) holds at a point x where (a) fails.

The importance of (t) follows from,
Theorem. Let N, P be C^{∞} manifolds, with P partitioned into finitely many submanifolds \mathscr{P}, such that
(i) if $X, Y \in \mathscr{P}$, and $X \cap Y \neq \varnothing$, then $X \subset F, \quad$ (frontier property)
(ii) if $X, Y \in \mathscr{P}$, and $x \in X \subset Y$, (t) is satisfied at x.

Then the set of C^{∞} mappings $f: N \rightarrow P$ which are transverse to the members of \mathscr{P} is open and dense in $C^{\infty}(N, P)$ with the Whitney C^{∞} topology.

The remark above that (a) implies (t) enables us to restate the theorem with (a) replacing (t). See for example [2, 3].

1. The semianalytic case

Proposition. (t) implies (a) if Y is a semianalytic manifold.
Proof. Suppose (a) fails at $x \in X \subset \bar{Y}$.
Choose a unit vector $v \in T_{x} X$ and a sequence $\left\{y_{i}\right\} \in Y$ such that $y_{l} \rightarrow x$ and $T_{y_{i}} Y \rightarrow \tau$ as $i \rightarrow \infty$, and $v \notin \tau$. Then $\exists \varepsilon>0$ and $i_{0} \in \mathbb{N}$ such that,

$$
\forall i \geqslant i_{0}, \quad d\left(v, T_{y_{t}} Y\right)>\varepsilon,
$$

where $d\left(v, T_{y_{i}} Y\right)$ denotes the distance between $T_{y_{t}} Y$ and the endpoint of the translation of v from x to y_{i}. Suppose $\operatorname{dim} Y=m$, and let

$$
\begin{gathered}
V_{1}=\mathbb{R}^{n} \times\left\{P \in G_{m, n-m}: d(v, P)>\varepsilon\right\} \subset \mathbb{R}^{n} \times G_{m, n-m}, \\
V_{2}=\bigcup_{y \in Y}\left(y, T_{y} Y\right) \subset \mathbb{R}^{n} \times G_{m, n-m} .
\end{gathered}
$$

Here $G_{m, n-m}$ denotes the grassmann manifold of m-places in n-space. V_{1} is semialgebraic, and V_{2} is semianalytic (since Y is assumed semianalytic); hence $V_{1} \cap V_{2}$ is semianalytic and $(x, \tau) \in \overline{V_{1} \cap V_{2}}$ satisfies the hypotheses of the curve selection lemma. See [1; p. 103].

Thus \exists an analytic arc in $\mathbb{R}^{n} \times G_{m, n-m}, \alpha:[0,1] \rightarrow \overline{V_{1} \cap V_{2}}$ with $\alpha(0)=(x, \tau)$ and $\alpha(t) \in V_{1} \cap V_{2}$ if $t \neq 0$. Write $\alpha_{1}(t)$ for the \mathbb{R}^{n}-component of $\alpha(t)$; the $G_{m, n-m^{-}}$ component is $T_{\alpha_{1}(t)} Y$. Let $N_{t} \in G_{n-1,1}$ be the normal space at $\alpha_{1}(t)$ to the C^{1} manifold-with-boundary $\alpha_{1}([0,1])$, and let the vector v_{t} be the projection of v into N_{t} spanning $\left\langle v_{t}\right\rangle \in G_{1, n-1}$.

We shall define a C^{1} arc $\sigma:[0,1] \rightarrow G_{n-2,2}$ such that

$$
\begin{equation*}
\sigma(t) \oplus\left\langle v_{t}\right\rangle=N_{r} . \tag{1}
\end{equation*}
$$

Then the union of the $\sigma(t)$, considered as embedded ($n-2$)-planes in \mathbb{R}^{n} passing through the points $\alpha_{1}(t)$, defines a C^{1} manifold-with-boundary S^{\prime} of dimension $n-1$. Reflection in N_{0} extends S^{\prime} to a $C^{1}(n-1)$-manifold S, which is transverse to X at $x \in \operatorname{Int} S$ by (1). However, we shall show that no neighbourhood U of x exists within which S is transverse to Y; so (t) fails as required.

Construction of σ :

Let $P_{t}=N_{t} \cap T_{\alpha_{1}(t)} Y \in G_{m-1, n-m+1}$. Then $0 \neq v_{t} \notin P_{t}$ (definition of $V_{1} \cap V_{2}$).
Let $\sigma(t)=P_{t} \oplus\left(P_{t} \oplus\left\langle v_{t}\right\rangle\right)^{\perp} \in G_{n-2,2}$,
where ()$^{\perp}$ denotes the orthogonal complement in N_{i}.

σ satisfies the required properties and so it remains to show S fails to be transverse to Y at some point in any given neighbourhood U of x. Given $U \exists$ some $s \in(0,1]$ such that $U \cap \alpha_{1}(0,1] \supset \alpha_{1}(0, s]$; but S^{\prime} (and hence S) is not transverse to Y at any point of $\alpha_{1}(0,1]$. The proof is complete.

2. Counterexample in the non-semianalytic case

We construct a pair of C^{∞} manifolds X and $Y, X \subset Y$ such that at a point $x \in X$ (t) is satisfied, yet (a) is not.

Let x, y be co-ordinates for \mathbb{R}^{2} and let X be the x-axis. Y will be the union of a countable sequence of C^{∞} curves $\left\{Y_{n}\right\}_{n=1}^{\infty}$ which tend to X as $n \rightarrow \infty$. Let $E=\left\{(x, y) \in R^{2}: x \geqslant 0, y \geqslant 0, x^{4} \leqslant y \leqslant x^{2}\right\}$.

We shall define Y so that (i) the tangents to Y outside E are parallel to X.
Assertion. If (i) is true then (t) holds at $(0,0)$.
Proof. Let S be a C^{1} submanifold of \mathbb{R}^{2} transverse to the x-axis at 0 . We may suppose S is 1 -dimensional. Then in a neighbourhood U of the origin, S does not intersect E, and so $S \cap U$ meets $Y \cap U$ only at points p of Y where $T_{p} Y$ is parallel to X. By continuity and transversality \exists a neighbourhood V of 0 in which the tangent to S has gradient strictly nonzero. Hence S is transverse to Y in $V \cap U$.

The sequence for which (a) fails will lie inside E.
Let $0<a<1$, and let $r_{n}=a^{2^{n}}$, so that $r_{n+1}=r_{n}{ }^{2} \forall n \geqslant 0$.
If $E_{n}=\left\{(x, y) \in E: y \leqslant r_{n}, x \geqslant r_{n-1}\right\}$, then $E_{n} \cap E_{n+1}$ is the single point $\left(r_{n-1}, r_{n+1}\right)$.

Let $\left(s_{n}, s_{n}^{4}\right)$ be the point of intersection in E_{n+1} of $y=x^{4}$ and $y+x=r_{n}+r_{n+1}$, so in particular $s_{n}>r_{n}$. Let Y_{n} be the graph of a smooth decreasing function of x such that $y=r_{n+1}$ if $x \leqslant r_{n}, y=s_{n}{ }^{4}$ if $x \geqslant s_{n}$, and Y_{n} includes a segment with gradient -2 and mid-point m_{n} half way between ($r_{n}, r_{n}{ }^{2}$) and ($s_{n}, s_{n}{ }^{4}$). Then (i) holds.

Clearly $m_{n} \rightarrow(0,0)$ as $n \rightarrow \infty$. And $T_{m_{n}} Y=T_{m_{n}} Y_{n}$ is a line of gradient $-2 \forall n$, and so tends to $y=-2 x$ as $n \rightarrow \infty$; thus (a) fails.

Further examples. A counterexample with Y 2-dimensional is obtained at once by rotating about X in \mathbb{R}^{3}.

With a little more effort we can produce an example of a 2-dimensional connected Y so that the triple $\left(\mathbb{R}^{3}, \bar{Y}, X\right)$ is homeomorphic to $\left(\mathbb{R}^{3}, \mathbb{R}^{2}, 0 \times \mathbb{R}\right)$ and \bar{Y} is the
plane $z=0$ outside a 3 -dimensional "dart" which intersects $z=0$ in the E given above. Inside the dart Y contains a decreasing sequence of hemispheres so that we also have a counterexample to the implication corresponding to $(t) \Rightarrow$ (a) for (b)-regularity. Details of this and its semi-analytic case will appear in [4].

3. Further properties

Consider, for $x \in X \subset Y$,
$\left(\mathrm{t}^{\prime}\right)$ Given an r-plane P meeting X transversely at x, \exists a neighbourhood U of x in which P is transverse to Y.
(t) implies (t^{\prime}), but a counterexample to the converse is obtained by defining X and Y as in $\S 2$, except this time keeping the "bad" points of Y in between $x=y^{2}$ and $x=y^{4}$. A counterexample in the algebraic case is given by

$$
V \equiv\left\{(x, y, z): y^{5}=z^{3} x+x^{3}\right\} \text { in } \mathbb{R}^{3}
$$

with X the z-axis, $Y=V-\{z$-axis $\}$, and x the origin. A sequence of points along a branch of $V \cap\left\{3 x^{2}+z^{3}=0\right\}$ contradicts (a) (and hence (t) by our proposition) but (t^{\prime}) is satisfied.

Consider also for $x \in X \subset Y$, with X and Y embedded in \mathbb{R}^{n},
(a) Given a smooth local retraction $\pi_{X}: \mathbb{R}^{n} \rightarrow X, x$ has a neighbourhood U such that $\pi_{x} \mid(Y \cap U)$ is a submersion.
$\left(a_{s}\right)$ implies (t) since we can choose a chart at x in which X and S are both linear, and use a linear retraction. C. T. C. Wall has conjectured in [5] that (a_{s}) implies (a) ; our proposition shows this to be so if Y is semi-analytic. (A result also obtained by C. G. Gibson and E. Looijenga.) Note that for the counterexamples in \S_{2} it is easy to find smooth retractions π_{X} for which (a_{s}) fails, so the conjecture stands.

References

1. S. Lojasiewicz, Ensembles semi-analytiques, I.H.E.S. Lecture-notes, 1965.
2. R. Thom, " Ensembles et morphismes stratifiés", Bull. Amer. Math. Soc., 75 (1969), 240-284.
3. D. J. A. Trotman and E. C. Zeeman, "Classification of elementary catastrophes of codimension $\leqslant 5$ ", Warwick Lecture Notes, 1974.
4. D. J. A. Trotman, Ph.D. Thesis (Warwick University).
5. C. T. C. Wall, "Regular stratifications", Dynamical Systems-Warwick 1974, Springer Lecture Notes 468 (1975), 332-344.

University of Warwick, Coventry CV4 7AL.

Geometric versions of Whitney regularity

By D. J. A. TROTMAN
University of Warwick, Coventry

(Received 16 June 1975)
Let X^{m} and Y^{n} be C^{1} manifolds embedded in $\mathbb{R}^{p}, m<n<p$, and $\operatorname{let} x \in X \subset \bar{Y}-Y$. In (4) C.T.C. Wall considered the following conditions:
(a_{s}) For any local C^{1} retraction at $x, \pi: \mathbb{R}^{p} \rightarrow X, x$ has a neighbourhood U such that $\left.\pi\right|_{Y \cap U}$ is a submersion.
$\left(b_{s}\right)$ For any local C^{1} tubular neighbourhood of X at x, given by $\pi: \mathbb{R}^{p} \rightarrow X$ and $\rho: \mathbb{R}^{p} \rightarrow \mathbb{R}_{+} \cup\{0\}$, where $\rho^{-1}(0)=X, x$ has a neighbourhood U such that $\left.(\pi, \rho)\right|_{Y \cap U}$ is a submersion.

Wall conjectured that $\left(a_{s}\right)$ and $\left(b_{s}\right)$ are respectively equivalent to Whitney's conditions (a) and (b):
(a) Given $y_{i} \in Y$ so that, as $i \rightarrow \infty, y_{i} \rightarrow x$ and $T_{y_{i}} Y \rightarrow \tau$, then $T_{x} X \subset \tau$.
(b) Given $y_{i} \in Y$ and $x_{i} \in X$ so that, as $i \rightarrow \infty, y_{i} \rightarrow x, x_{i} \rightarrow x, T_{y_{i}} Y \rightarrow \tau$ and $y_{i}-x_{i}| | y_{i}-x_{i} \mid=\lambda_{i} \rightarrow \lambda$, then $\lambda \subset \tau$.

It is not difficult to show that (a) implies (a_{s}). See (2), p. 35, for a proof that (b) implies $\left(b_{s}\right)$; this enabled Mather to show that if X is a stratum of a (b)-regular stratification Σ, then Σ is locally topologically trivial over X. In (3), § 3 , it is proved that (a_{s}) implies (a) if Y is semianalytic. Here we prove the following,

Theorem. (b_{s}) implies (b) if X and Y are semianalytic. (C. G. Gibson has also obtained this result.)

Note. The conjectured equivalences have been verified in exactly the cases where the curve selection lemma is applicable. It would be interesting to know if they are true in the general, i.e. non-semianalytic, case, so as to have geometric versions of the regularity conditions available, avoiding sequences.

Proof of the theorem. Suppose (b) fails; we shall show that $\left(b_{s}\right)$ fails.
We have sequences $x_{i} \in X, y_{i} \in Y$ tending to $x, T_{\nu_{i}} Y \rightarrow \tau$, and $y_{i}-x_{i}| | y_{i}-x_{i} \mid=\lambda_{i} \rightarrow \lambda$. Since $\lambda \not \ddagger \tau$ we may suppose that $d(\lambda, \tau)>\epsilon>0$ for some ϵ, with distance $d($,) defined appropriately. Then, for some $i_{0}, d\left(\lambda_{i}, T_{\nu_{i}} Y\right)>\epsilon$ when $i \geqslant i_{0}$.

Let G_{s}^{r} denote the Grassmannian of s-planes in \mathbb{R}^{r}, a compact analytic manifold. Set

$$
V_{1}=\left\{(v, P) \in G_{1}^{p} \times G_{n}^{p}: d(v, P)>\epsilon\right\}
$$

and

$$
V_{2}=\left\{\left(x, y, y-x /|y-x|, T_{y} Y\right): x \in X, y \in Y\right\} .
$$

Then V_{1} is semialgebraic, and V_{2} is semianalytic since both X and Y are semianalytic by hypothesis. Hence

$$
V=\left(X \times Y \times V_{1}\right) \cap V_{2}
$$

is a semianalytic subset of $\mathbb{R}^{p} \times \mathbb{R}^{p} \times G_{1}^{p} \times G_{n}^{p}$, and $(x, x, \lambda, \tau) \in \overline{\bar{V}}$ satisfies the hypotheses of the curve selection lemma. See (1), p. 103. This provides an analytic curve

$$
\begin{aligned}
\alpha:[0,1] & \rightarrow X \times \bar{Y} \times G_{1}^{p} \times G_{n}^{p}, \\
t & \mapsto\left(x_{t}, y_{t}, \lambda_{t}, T_{y_{t}} Y\right),
\end{aligned}
$$

where $\lambda_{t}=y_{t}-x_{t}| | y_{t}-x_{t} \mid, y_{t} \in Y$ if $t \neq 0$, and $d\left(\lambda_{t}, T_{y_{t}} Y\right)>\epsilon$.
Write η for the C^{1} manifold-with-boundary $\bigcup_{t} y_{t}$, and ξ for $\bigcup_{t} x_{t}$, contracting the domain of α if necessary.
Since we are trying to show that $\left(b_{s}\right)$ fails, and $\left(b_{s}\right)$ implies $\left(a_{s}\right)$, we may assume that $\left(a_{8}\right)$ holds. Then by (3); §3, since Y is semianalytio,'(a) holds. This implies that

For, suppose not. Then

$$
\begin{equation*}
T_{x} \eta=T_{x} \xi \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
\lambda & \subset T_{x} \xi \oplus T_{x} \eta \\
& \subset T_{x} X+T_{x} \eta \\
& \subset \tau
\end{aligned}
$$

using (a). But $\lambda \notin \tau$ by hypothesis, giving (*).
Notation. Given distinct lines $\lambda, \lambda^{\prime}$ in the plane meeting at a point q, and a point q^{\prime} on λ^{\prime} at unit distance from q, consider the circles with tangent λ at q which contain q^{\prime} in their interior. If $\varepsilon=d\left(\lambda, \lambda^{\prime}\right)$ let r_{e} denote the lower limit of the radii of these circles.

Lemma. There exists a local C^{1} retraction defined on a neighbourhood U of x in \mathbb{R}^{p}, $\pi: U \rightarrow X$, such that for each $t, \pi^{-1}\left(x_{t}\right)$
(i) is the intersection with U of $a(p-m)$-plane containing λ_{t},
(ii) is transverse to Y in U,
(iii) contains $a(p-m)$-disc D_{t} of radius $r_{\varepsilon}\left|y_{t}-x_{t}\right|$ with $y_{t} \in \partial D_{t}, x_{t} \in \operatorname{Int} D_{t}$, and

$$
T_{y_{t}}\left(Y \cap \pi^{-1}\left(x_{t}\right)\right) \subset T_{y_{t}}\left(\partial D_{t}\right),
$$

(iv) intersects η only at y_{t}.

Proof. Because (b) fails and (a) holds, $\lambda \not \ddagger T_{x} X$. Thus there exists a ($p-m$)-plane transverse to X at x, and containing λ. Using (*) and the analytic dependence of y_{t}, λ_{t}, and $T_{y_{t}} Y$ upon t, we can find an analytic, and hence a C^{1}, fibre bundle over ξ, restricting α if necessary, so that the fibre over x_{t} is a $(p-m)$-plane containing λ_{t}. Choose a C^{1} diffeomorphism ϕ of an open neighbourhood U of x in \mathbb{R}^{p}, so that $\phi(X \cap U)$ is affine and $\phi(\xi \cap U)$ is a line. Extend the fibration over $\phi(\xi)$ to the rest of $\phi(X \cap U)$ by parallel translation, and pull back by ϕ^{-1} to give a C^{1} retraction $\pi: U \rightarrow X$ with each fibre C^{1} diffeomorphic to \mathbb{R}^{p-m}, and which satisfies (i).
For (ii) use (a_{s}), shrinking U if necessary, and observe that $\left.\pi\right|_{F}$ is a submersion at y if and only if $\pi^{-1}(\pi(y))$ is transverse to Y at y. (ii) tells us that $Y \cap \pi^{-1}\left(x_{t}\right)$ is a C^{1} ($n-m$)-manifold.
Let D_{t} be a disc of radius $r_{\epsilon}\left|y_{t}-x_{t}\right|$ in the $(p-m)$-plane of (i), with y_{t} on its boundary and so that

$$
T_{y_{t}}\left(Y \cap \pi^{-1}\left(x_{t}\right)\right) \subset T_{y_{t}}\left(\partial D_{t}\right) .
$$

Because $d\left(\lambda_{t}, T_{\nu_{t}} Y\right)>\epsilon$ and r_{σ} is a decreasing function of ϵ, x_{t} belongs to the interior of D_{t}. For sufficiently small $t, D_{t} \subset \pi^{-1}\left(x_{t}\right)$, giving (iii).

Finally use (*), restricting α if necessary, to ensure that $\eta \cap \pi^{-1}\left(x_{t}\right)=y_{t}$. This proves (iv) and completes the proof of the lemma.

Project λ_{t} onto $N_{y_{t}}\left(\partial D_{t}\right)$ to give $\mu_{t} \in G_{1}^{p}$. By (iii) each μ_{t} is non-zero and

$$
\mu_{t} \subset N_{v_{t}}\left(Y \cap \pi^{-1}\left(x_{t}\right)\right) .
$$

Now we construct a tubular function ρ so that $\rho\left(y_{t}\right)=\boldsymbol{t}$ and

$$
\mu_{t} \subset N_{\nu_{t}}\left((\pi, \rho)^{-1}\left(x_{t}, t\right)\right) .
$$

This will show that Y is not transverse to the fibre of (π, ρ) at y_{t}, for each t, which is the same as saying that $\left.(\pi, \rho)\right|_{F}$ is not a submersion at y_{t}, for each t, so that $\left(b_{s}\right)$ fails.

It suffices then to find ρ so that

$$
\partial D_{t}=(\pi, \rho)^{-1}\left(x_{t}, t\right)
$$

for each t. Let ϕ be as in the proof of the lemma, and for each $t>0 \operatorname{let} P_{t}$ be obtained by first translating $\phi\left(\partial D_{t}\right)$ along $\phi(\xi)$, using (iv), and then over $\phi(X \cap U)$ orthogonal to $\phi(\xi)$. Shrink U so that

$$
\bigcup_{t>0} \phi^{-1}\left(P_{t}\right)=U \backslash(X \cap U) .
$$

Then we have a C^{1} fibration

$$
\rho: U \backslash(X \cap U) \rightarrow(0,1],
$$

with $\rho^{-1}(t)=\phi^{-1}\left(P_{t}\right)$ a C^{1} manifold C^{1} diffeomorphic to $S^{p-m-1} \times \mathbb{R}^{m}$. Setting $\left.\rho\right|_{X^{\prime} U} \equiv 0$ extends ρ to be C^{1} on U, and ρ is the required tubular function. This completes the proof of the theorem.

REFERENCES

(1) Lojasiewicz, S. Ensembles semianalytiques (I.H.E.S. notes, 1965).
(2) Mather, J. N. Notes on topological stability (Harvard notes, 1970).
(3) Trotman, D. J. A. A transversality property weaker than Whitney (a)-regularity. Bull. London Math. Soc. (to appear).
(4) Wall, C. T. C. Regular stratifications. Dynamical Systems-Warwick 1974 (Springer Lecture Notes 468 (1975), Berlin), 332-344.

OFFPRINT FROM

Real and complex singularities, Oslo 1976

Proceedings of the Nordic Summer School/NAVF
Symposium in Mathematics
Oslo, August 5-25, 1976
P. Holm, editor

University of Oslo, Institute of Mathematics, Oslo, Norway

COUNTEREXAMPLES IN STRATIFICATION THEORY: TWO DISCORDANT HORNS*

D. J. A. Trotman

One of the useful properties of Whitney's (a)-regularity condition (as defined in [13]) is that the set of mappings transverse to the strata of an (a)-regular stratification is open and dense. That this set is open has often been justified by remarking that (a)-regularity implies that a submanifold transverse to a stratum at a given point is transverse to all other strata in some neighborhood of the point, a condition I have called (t)-regularity in [10]. Our first example shows that this reasoning is wrong: transversality to a (t)-regular stratification need not be open. However we verify directly that transversality to an (a)-regular stratification is open.

Our second example is that of a pair of real semialgebraic strata which are (b)-regular (as defined in [13]) but which fail Kuo's ratio test ([4], where Kuo proved that no such example exists when the smaller stratum has dimension one), and hence do not satisfy the property (w) used by Verdier in [12], where it was remarked that such an example was not known.

1. (a)-regularity and transversality

Let X, Y be C^{1} submanifolds of \mathbb{R}^{n} and let $0 \in Y \subset \bar{X}-X$. Consider the following regularity conditions for the pair (X, Y) at 0 .
(a) Given x_{i} in X tending, to 0 , if $T_{x_{1}} X$ tends to τ, then $T_{0} Y \subset \tau$.
(t) Given a C^{1} submanifold S meeting Y transversely at 0 , then there is a neighborhood U of 0 in \mathbb{R}^{n} such that S is transverse to X within U.

Call a stratification (a)-regular if each pair of strata (X, Y) satisfies (a) at each point of Y. Similarly for a (t)-regular stratification.

Note 1.1. That (a) implies (t) is immediate.
Note 1.2. It is not a consequence of 1.1 that mappings transverse to each of the strata of an (a)-regular stratification form an open set, as suggested for example in [8], [9], [10], [11]. It is in fact a direct consequence of (a)-regularity.

[^0]Proposition 1.3. Let N, P be C^{∞} manifolds. Let P contain a closed subset Q partitioned into a locally finite union of submanifolds forming an (a)regular stratification \mathscr{P}, i.e. if X, Y are strata of \mathscr{P}, then at each point of $Y \cap \bar{X}$, condition (a) is satisfied. Then $T_{\mathscr{S}}=\left\{f \in C^{\infty}(N, P): f\right.$ is transverse to each stratum of $\mathscr{P}\}$ is open in $C^{\infty}(N, P)$ with the Whitney C^{1} topology (and hence with the Whitney C^{∞} topology).

Proof*. Suppose that $T_{\mathscr{S}}$ is not open, so that there exists f in $T_{\mathscr{S}}$, a sequence $\left\{g_{i}\right\}$ tending to f in $C^{\infty}(N, P)$ with $g_{i} \notin T_{\mathscr{G}}$, a stratum X, and a sequence $\left\{a_{i}\right\}$ tending to a_{0} in N such that g_{i} is not transverse to X at a_{i}. It is clear that $f\left(a_{0}\right) \notin X$, since X is a smooth submanifold. So let Y be the stratum containing $f\left(a_{0}\right) .(d f)_{a_{0}}\left(T_{a_{0}} N\right)$ and $T_{f\left(a_{0}\right)} Y$ span $T_{f\left(a_{0}\right)} P$, and so for i sufficiently large $\left(d g_{i}\right)_{a_{1}}\left(T_{a_{1}} N\right)$ and $T_{g_{1}\left(a_{1}\right)} X$ span $T_{g_{1}\left(a_{1}\right)} P$, by (a) and the assumption that g_{i} tends to f. This gives a contradiction, proving the proposition.

Note 1.4. (i) When W is a submanifold of P, it is a corollary of Thom's Transversality Theorem that $T_{W}=\left\{f \in C^{\infty}(N, P): f\right.$ is transverse to $\left.W\right\}$ is dense in $C^{\infty}(N, P)$ with the Whitney C^{∞} topology. (See for example [2].) Hence T_{s} is both open and dense in $C^{\infty}(N, P)$ with the Whitney C^{∞} topology.
(ii) If W is closed, T_{W} is open, as proved in [2], but here the strata of \mathscr{S} are not assumed to be closed.
(iii) It is easily verified that \mathscr{S} is (a)-regular if and only if the set of jets transverse to \mathscr{S} is open. This observation is due to C. T. C. Wall.

In [10] the curve selection lemma is used to prove that (t) implies (a) if X is semianalytic. It is equally true if X is subanalytic for Hironaka proved a curve selection lemma for subanalytic sets in [3] (proposition 3.9. See [5] for a proof for semialgebraic sets). Hence if the strata are subanalytic the transversal mappings to a (t)-regular stratification do form an open set.

In the next section we shall give an example of a finite (t)-regular stratification for which the set of transversal mappings is not open, and so in particular it is not (a)-regular. This is an explicit version of an example mentioned in [10].

I stress this point at length because I had mistakenly thought that proposition 1.3 was true with (a) replaced by (t). Thus in [11] (t) is used in the definition of stratification given in chapter 8 . There the strata are semialgebraic (corollary 3.6 of [11]), so we could use the result of [10] mentioned above to give (a), and then apply proposition 1.3. Alternatively

[^1]

Figure 1. $x=0$.
one can use the following elementary formulation suggested by E . C . Zeeman.
Proposition 1.5. Let X, Y be C^{1} submanifolds of a C^{1} manifold P, and suppose that $\phi: M \rightarrow C^{1}(N, P)$ is continuous, M is a topological space, N is a C^{1} manifold, $Y=\phi(m)(N)$ for some $m \in M$, and for all open sets $U \subset M$ containing m, there is an $m^{\prime} \in U$ such that $\phi\left(m^{\prime}\right)(N) \subset X$. Then the pair (X, Y) satisfies (a) at each point of Y.

The proof is left as an exercise.

2. The first horn

Let (x, y, z) be coordinates in \mathbb{R}^{3}. Take Y to be the y-axis, and let $X=\left(\cup_{n=1}^{\infty}\left\{f_{n}=0, g_{n} \leqq 0\right\}\right) \cup\left(\bigcap_{n=1}^{\infty}\left\{x=0, g_{n} \geqq 0\right\}\right)$, where $g_{n} \leqq 0$ defines the cylinder G_{n} of radius $1 / 3 n(n+1)$ with axis the line $y=1 / n, z=1 / n^{2}$, and where $f_{n}=0$ defines the surface F_{n} obtained from $x=\left(y^{2}+z^{2}\right)^{2}-\left(y^{2}+z^{2}\right)+\frac{1}{4}$ by translating the origin to ($0,1 / n, 1 / n^{2}$) and reducing by a factor of $3 n(n+1) / \sqrt{2}$ so that F_{n} intersects ∂G_{n} exactly where $x=0$ is tangent to F_{n}. See figures 1 and 2.

Figure 2. $z=1 / n^{2}$.
X is a C^{1} submanifold and is semialgebraic on the complement of the origin.
The normal vector to X at the point

$$
x_{n}=\left(1 / 24 \sqrt{2} n(n+1),(1 / n)+1 / 3 \sqrt{2} n(n+1), 1 / n^{2}\right)
$$

is $(2,1,0)$ for all n. Hence the limit as n tends to ∞ is $(2,1,0)$ and (a) fails. (t) holds since any submanifold transverse to Y will intersect X near Y only at points near which X is defined by $x=0$. Hence the stratification of \mathbb{R}^{3} defined by $\left\{Y, X, \mathbb{R}^{3}-(X \cup Y)\right\}$ is (t)-regular. Now the mapping h in $C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$, defined by inclusion of the plane $2 x+y=0$, is transverse to the stratification, but for each n the mapping h_{n} defined by inclusion of the plane

$$
2 x+y=(5+12 \sqrt{2}(n+1)) /(12 \sqrt{2} n(n+1))
$$

is not transverse to X at x_{n}. Since h_{n} tends to h as n tends to ∞, mappings transverse to the stratification are not open in $C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$.
Note that by smoothing near each circle $\left\{x=0, g_{n}=0\right\}, X$ can be made into a C^{∞} submanifold of \mathbb{R}^{3}, with normal vector at x_{n} as before, for each n. Hence proposition 1.3 with (\mathbf{t}) replacing (a) is false.

3. (b)-regularity and the ratio test

Let X be a C^{1} submanifold and a semianalytic (or subanalytic) set in \mathbb{R}^{n}. Let $Y \subset \bar{X}-X$ be an analytic submanifold of \mathbb{R}^{n}. The pair (X, Y) are (b)-regular at $0 \in Y$ if,
(b) Given x_{i} in X and y_{i} in Y tending to 0 , if $T_{x_{i}} X$ tends to τ, and the unit vector in the direction $x_{i} y_{i}$ tends to λ, then $\lambda \subset \tau$.
Apply a local analytic isomorphism at 0 to \mathbb{R}^{n} so that, near $0, Y$ becomes affine. Let π denote orthogonal projection onto Y and define,
(b^{\prime}) Given x_{i} in X tending to 0 , if $T_{x_{i}} X$ tends to τ, and the unit vector in the direction $x_{i} \pi\left(x_{i}\right)$ tends to λ, then $\lambda \subset \tau$.
Lemma 3.1. (a) $+\left(b^{\prime}\right) \Leftrightarrow(b)$.
In [4] T.-C. Kuo introduced the following condition, which he called the ratio test.
(r) Given x_{i} in X tending to 0 , and any vector $v \in T_{0} Y$,

$$
\lim _{i \rightarrow \infty} \frac{\left|\pi_{i}(v)\right| \cdot\left|x_{i}\right|}{\left|x_{i}-\pi\left(x_{i}\right)\right|}=0
$$

Here π_{i} denotes orthogonal projection onto the normal space to X at x_{i}. Kuo proved two theorems in [4]:

Theorem 3.2. (r) \Rightarrow (b).
Theorem 3.3. (b) \Rightarrow (\mathbf{r}) if \boldsymbol{Y} is 1-dimensional.
In each case the proof uses the curve selection lemma with the assumption that X is a semianalytic set. As remarked in $\S 1$, by [3] we know that the same proof can be used if X is a subanalytic set.

In the next section we give an example with Y 2-dimensional where (b) holds and (r) fails to hold. X will be a semialgebraic C^{1} submanifold of dimension 3 in \mathbb{R}^{4}. I do not know of such an example where X is the smooth part of an algebraic variety. In the special case of a family of complex hypersurfaces with isolated singularity parametrized by Y it is known that (b) and (r) are equivalent, for Y of arbitrary dimension. This is because (r) is a trivial consequence of (c)-cosécance as defined by Teissier in [7] and discussed by him in this volume. It follows from [1] and [6] that (b) implies (c)-cosécance.

Verdier has introduced the following condition in [12],
(w) There is a constant $C>0$ and a neighborhood U of 0 in \mathbb{R}^{n} such that if $x \in U \cap X$, and $y \in U \cap Y, d\left(T_{x} X, T_{y} Y\right) \leqq C d(x, y)$.

This is just (c)-cosécance restricted to X, so that it makes sense when X is not a variety. (w) trivially implies (\mathbf{r}), hence (b) does not imply (\mathbf{w}), when the dimension of Y is greater than 1, by the example in the next section. Even when Y is 1 -dimensional, (b) can hold and yet (w) fail: in \mathbb{R}^{3} let X be $\left\{x=0, z>0, z^{2} \leqq y^{2}\right\} \cup\left\{z^{5} x^{2}=\left(y^{2}-z^{2}\right)^{4}, x \geqq 0, z>0, z^{2} \geqq y^{2}\right\}$, let Y be $\{x=$ $z=0\}$, and consider the curve $X \cap\left\{z^{2}=3 y^{2}\right\}$. Thus (w) is strictly stronger than (r) by theorem 3.3.

4. The second horn

Let (x, y, z, w) be coordinates in \mathbb{R}^{4}, and let Y be the plane $z=w=0$. Define the semialgebraic set,

$$
\begin{gathered}
X=\left\{w=0,2\left(x^{2}+\left(z-y^{p}\right)^{2}\right) \geqq y^{2 p}, z>0\right\} \\
\cup\left\{y^{q} w=\left(x^{2}+\left(z-y^{p}\right)^{2}\right)^{2}-y^{2 p}\left(x^{2}+\left(z-y^{p}\right)^{2}\right)+y^{4 p} / 4,\right. \\
\left.2\left(x^{2}+\left(z-y^{p}\right)^{2}\right) \leqq y^{2 p}, z>0\right\}
\end{gathered}
$$

where p and q are positive integers satisfying,

$$
\begin{equation*}
2 p<q<3 p . \tag{4.1}
\end{equation*}
$$

For example let $p=2, q=5$.

Figure 3. $w=0$.
Observe that because the algebraic variety defined by the equality in the second part of the expression for X has $w=0$ as tangent space at every point of its intersection with $2\left(x^{2}+\left(z-y^{p}\right)^{2}\right)=y^{2 p}, X$ is a C^{1} submanifold of \mathbb{R}^{4}.

Assertion 4.2. (b) holds.
Proof. We show that there is a single limiting tangent 3-plane for sequences on X tending to 0 , namely $w=0$. It suffices to consider the points on $y^{q} w=x^{4}-y^{2 p} x^{2}+y^{4 p} / 4$ (with y fixed) where $d^{2} w / d x^{2}=0$, since at these points the normal is furthest from the w-direction.
$d^{2} w / d x^{2}=0$ when $6 x^{2}=y^{2 p}$, and the normal vector is $\left(\pm\left(\frac{4}{3} \sqrt{6}\right) y^{3 p},-y^{q}\right)$ which tends to $(0,1)$ as y tends to 0 since $q<3 p$ by (4.1). Hence $w=0$ is the unique limiting tangent plane.

At the points on X where the sécant vector defined by orthogonal projection to Y is furthest from the z-direction, the sécant vector is contained in the tangent space to X. Hence $0 z$ is the unique limit of sécant

Figure 4. $z=y^{p}, y$ fixed.
vectors, and (b^{\prime}) holds. (a) holds (since $\{w=0, z=0\} \subset\{w=0\}$), so we can apply lemma 3.1 to show that (b) holds, proving the assertion.

Assertion 4.3. (r) fails to hold.
Proof. Consider the curve $\gamma(t)=\left(t^{p} / 6, t, t^{p}, t^{4 \mathrm{p}-q} / 9\right)$ which lies on X. The normal vector to X at $\gamma(t)$ is,

$$
\left(\left(\frac{4}{3} \sqrt{6}\right) t^{3 p},((2 p / 3)-(q / 9)) t^{4 p-1}, 0,-t^{4}\right)
$$

Let π_{t} denote projection onto this normal space. Then,

$$
\left|\pi_{t}(0 x)\right| \sim \frac{t^{3 p}}{\left|\left(t^{3 p}, t^{4 p-1}, 0, t^{q}\right)\right|} \sim \sim \frac{t^{3 p}}{t^{q}},
$$

since by (4.1) $q<3 p$.

$$
\frac{|\gamma(t)|}{|\gamma(t)-\pi(\gamma(t))|}=\frac{\left|\left(t^{p} / \sqrt{6}, t, t^{p}, t^{4 p-q} / 9\right)\right|}{\left|\left(0,0, t^{p}, t^{4 p-q} / 9\right)\right|} \sim \frac{t}{t^{p}} .
$$

Hence the ratio (as in the definition of (r)) becomes $t^{2 p-q+1}$, which does not tend to zero since $2 p<q$ by (4.1). This proves assertion 4.3.

Finally we check that Verdier's condition (w) fails to hold.

$$
\begin{gathered}
d\left(T_{\gamma(t)} X, T_{\pi(\gamma(t))} Y\right) \sim t^{3 p-q} \\
d(\gamma(t), \pi(\gamma(t))) \sim t^{p}
\end{gathered}
$$

hence (w) fails exactly when $2 p<q$.
Note 4.4. Basing the construction on $w=x^{4 k}-x^{2 k}+\frac{1}{4}, 1<k<\infty$ (instead of $k=1$ as here), we can build similar examples with $X a C^{k}$ submanifold.

REFERENCES

[1] J. Briançon and J.-P. Speder, Les conditions de Whitney impliquent $\boldsymbol{\mu}^{*}$-constant, Annales de l'Institut Fourier de Grenoble 26(2) (1976), 153-163.
[2] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, SpringerVerlag, New York, 1974.
[3] H. Hironaka, Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo, 1973, 453-493.
[4] T.-C. Kuo, The ratio test for analytic Whitney stratifications, Liverpool Singularities Symposium I, Springer Lecture Notes 192, Berlin (1971), 141-149.
[5] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies No. 61, Princeton (1968).
[6] B. Teissier, Introduction to equisingularity problems, A.M.S. Algebraic Geometry Symposium, Arcata 1974, Providence (1975), 593-632.
[7] B. Teissier, Variétés polaires I: Invariants polaires des singularités d'hypersurfaces, Publication M242.0376 du Centre de Math. de l'Ecole Polytechnique, 1976.
[8] R. Tном, Propriétés differentielles locales des ensembles analytiques, Séminaire Bourbaki 1964-65, exposé no. 281.
[9] R. Tном, Ensembles et morphismes stratifiés, Bull. Am. Math. Soc. 75 (1969), 240-284.
[10] D. J. A. Trotman, A transversality property weaker than Whitney (A)-regularity, Bull. Lond. Math. Soc. 8 (1976), 225-228.
[11] D. J. A. Trotman and E. C. Zeeman, Classification of elementary catastrophes of codimension $\$ 5$, Structural stability, the theory of catastrophes, and applications in the sciences, Springer Lecture Notes No. 525 (1976), 263-327.
[12] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math. (1976), 36, 295-312.
[13] H. Whitney, Local properties of analytic varieties, Diff. and Comb. Topology, edited by S. Cairns, Princeton (1965), 205-244.
D. J. A. Trotman

Université de Paris-Sud
Faculté des Sciences
91405 Orsay, France

[^0]: * The title was suggested by Tony Iarrobino.

[^1]: * A detailed proof appears as Proposition 3.6 in E. A. Feldman, The geometry of immersions, I, Trans. Amer. Math. Soc. 120 (1965), 185-224.

