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PREFACE

It is a pleasure to thank everyone who has provided me with_help; encouragement
or ingpiration during the four years of research 1973-77 which have culminated |
in this thesis.

During the first of those four years Christopher Zeeman supervised me. I am
grateful to him for having convinced me that it is both more essemtial and more
rewarding to partiocipate in mathematical research than to remain merely a well~
informed spectator.

Before I went to Cambridge, when I was debating if I should concentrate on
bure mathematics, it was an article by Christopher Zeeman describing the present
time as the " golden age of pure mathematics " which persuaded me to do so.
Another article of his, this time in " Manifold ¥ , tempted me towards topology.
I first heard of the wonders of Catastrophe Theory from him at an evening meeting
of the Archimedeans Society in November 1970 , and interested by this talk, and
drawn by the creatiwe aura emanating from my ocopies of ™ Manifold " , I decided
to come to Warwick.

In my M.Sc. year 1972-73 , I was 1ucky t> have Clint MoCrory as supervisor s
he initiated me into the mecrets of differential topology via the works of John
Milnor, and by running a seminar on Whitney stratifications, helped to determine

the future ocourse of my research.

After my MN.So. dissertation —— a write-up of Zeeman's lecturez on the proof

of Thom's theorem olassifying elementary catastrophes — I was looking for ways of

using stratifications in singularity theory. On learning that Brieskorn was to

&ive a survey talk on complex singularities at the 1974 B.M.C. bheld at Brighton,

I devoured MNilnor's " Singular points of complex hypersurfaces " in the week

before the conference and was well rewarded by Brieskorn's stunning display of

the 1ights and facets oi the jewelled geometry of complex singularities. There was



also a short talk by Jim Timourian describing a oonjecture of.Teissier that

" Nilnor number constant implies Whitney's condition (b) " ( [30] , [1]).

On giscovering that this was part of a theory (equisingularity) which involved a
fine study of Whiiney regularity and both used and produced results about
singularities, I decided to work on  Teissier's oonjecture.* About the same time
Poenaru suggested I go to Orsay, and with Rolph Sohwarzenberger's practiocal
assigtance as Chairman of the Department, I prepared to do so, in the mean time
making contact with the research group at Liverpool, who were studying Whitney
stratifications during 1974-75 as part of the proof of the topological stability
thun([ﬂ).

At Liverpool I was able to discuss with Chris Gibson and Eduard Looijenga,
both of whom provided me with friendly encouragement. Moreover there I had the
opportunity of being directed by Terry Wall, whose oritical advice has been of
great assistance to me throughout these past three years, especially in gauging
the worth of my various ideas and results. I am pleased to be able to present .
here (see §3 and §5 ) proofs of the conjectures concerning geometri’o versions
of Whitney regularity whioh were put forward by him in [43] .

In Orsay I had the good fortune to be offered a teaching post, which although
delaying the completion of my thesis by taking up time and energy, was interesting,
gave me a taste of responsibility, and provided necessary financial support.

With the equisingularity team at the Ecole Polytechnique I have had many
Pleasant and profitable discussions : notably with Jean-Pierre Henry, Jean-Jaoques
Risler, and L& Ding Trang, and especially with Bernard Teissier, whose unfailing f
enthusigsm and willing ear I have much appreciated. |

I thank Tony Iarrobimo for persuading me to give seminars 3 Bob MacPherson
£or discussions about twenty~-first century mathematics 3 and of course Rend Thoa,
without yhom the greater part of the work contained here, and much of the work

of those mathematicians named above, would not ss yet exist, and whose Monday

seminars at the I.H.E.S. are a constant source of delight and insﬁiratiun.

»
Counterexamples were found by Briancon and Speder [2] in January 197%



I am also indebted to my wife, Marie-Héléne, for her patient support, faith,
and understanding.

Finally I acknowledge with thanks the Research Studentiship provided by the
Science Research Council while I was at Warwick, and the French Government

Scholarship which enabled me to vwrite up my results.

June~ July- August 1977

Paris - Alx-en-Provence
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CHAPTER O. INTRODUCTION

Thais work deals with properties of Whitney (a)~ and (b)-regularity. The
regulzarity conditions prescribe thellocal behaviour of limits of tangent spaces
to s=ooth manifolds, which are usually strata of a stratification. So, first,
what is a2 stratification ?

. stratification 2. of a subset V of a C1 manifold M is a partition

o>f ¥ irto connected Cl submanifolds, called the stirata of :E_ . :E_ is locally

®inite if each point.of V° has a neighbourhood meeting only finitely many strata.

Zxeample O.1. V a connected Cl submanifold of M . There is a trivial

stratification of V with just one stratum.

Zxample O0.2. V +the underlying space of a linearly embedded simplicial complex.
‘here is = natural stratification whose strata are the interiors of the simplices

of tze complex.

Zramole 0.3. V an analytic variety in R°. Let S(V) be the set of points
vhere V is not a submanifold of maximal dimension. Yrite sz(v) = S(s(v)) , ete.
Suppose r is the smallest integer such that Sr+1(V) = 9$ . Let (;(A) denote
the set of connected components of a set A . Then

Cv-5(V)) AL G(s (V)57 (v)) ... b G(s™(v)-s7(v)) . GsT(V))

iefires a locally finite stratification of V called the full partition by dimension

{(by whitney in [46] )e



“he Jhitney conditions

Let X, Y be disjoint ¢! submanifolds of a C' manifold M and let y
e a »oint in YNX .

X is (a)-regular over Y at y if,

.2) 3iven a secuence of points {xi} in X tending to y , such that T_X
' i

tends to T , then TyY c T .

[
MRat]

is (b)-regular over Y at y if,

{b) 3>iven secuences . {xi} .in X, {yj} in Y , both tending to y , such that
7, X tends to T , and the unit vector in the direction of xiyi tends

i

20 A, then AC T ,
Taece conditions were first defined by Whitney in [45] and [46] . Accounts
>f them tave been given by Thom in [35] and [36] , by Mather in [21] and

{_22] . by wWall in [43] and [44] , and by Gibson and Wirthmiller in [7] .

Following Thom , we say that X is (b'!)-regular over Y at y if, for

some C' 1local retraction T associated to ¢ Cl tubular neighbourhood of Y

zear y (see 85) ,

\0') Given 2 sequence fxi'ﬁ in X +tending to y , suech that Tx X tends to T

—_— i
and the unit vector in the direction of xi‘rt(xi) tends to A , then A< T,

(p) clearly Limplies (b') for any TC . Also (b) implies (=) , since
Siv’en any vector v in TyY and any sequence f§ xi} in X we can choose fyi}
in Y coming in to y in the direction of v so slowly that f;:;"i/l'x'{?il tends
0 v (see Hather [21]). Conversely, if (a) holds and (b') holds for so>me

R, o arrive at (b) by decomposing the vecior ?\ into the sum of two vectors,.

"



one in TyY snd one in Ty(Tt—l(y)). (Compare Wall [43}) To sum up,

(0.4) (0') + (2) & (b)

e shall make freguent use of this ecuivalence.

A stratification EE is (a)-regular if, for each pair of strata X , Y
and at every point ye INX , X is (a)-regular over Y at y . Similiarly,
we speak of (b)-regular stratifications. We call a locally finite (b)-regular

stratification a Whitney stratification.

-

Example 1. (0.1) is trivially a Whitney stratification since there is only

one stratum, and (a)- and (b)-regularity are conditions on a pair of strata.

Example 2. The stratification in (0.2) defined by a linearly embedded

simplicial complex is a Whitney stratification by the next example.

Example 3. Let X be a 01‘ submanifold-with-boundary of a C1 manifold M ,
with interior X and boundary Y . Then X is (b)-regular over Y , since

{(b)-regularity is invariant under ct diffeomorvhism (see Corollary 5.3) , and

xr

BP x (0,002 x 0° is (b)-regular over &> x oWt ip RPTUT

is far from being a topological invariant.

Pictured is a topological manifold-with-boundaxy X , with interior X =a Cl

manifold and boundary Y a line, such that X is not (b)-reguler over Y at y 3

we say the psir (X,Y) haes a (b)-fault st y (see below). w

. (b)-regularity ”

i
S



Examnle 4. The stratification defined in (0.3) by the full partition by -

dimension of an analytic variety is not necessarily a Whitney stratification.

ie give ihe standard examples.
1) v= {y° - %% + P} ¢ B
Let Y be the t-axisy, and X be V - Y.
Then set Xl = anx) O} ’
X, = knfx<o}n {t>0},

Xy = xafx<ofn f1<o0} .
X; is (b)-regular over ¥ at O , but
X, and X, are not (b)-regular over Y

at O. However all three are (a)-regular
over Y at O. The reader may check that
XlLLXZLLX3nY is the full partition by

dimension of V .
2

2) v={y¥¥ =t C B .
Let Y be the t-axis, and X be V -Y ,
Then set X, = Xafx>0} , X, = Xn{x<o0} .
X, and X, are neither (a)-regular over Y
at O, but are both (b!)-regular over Y .
Again Xll.l X2LLY is the full partition by

dimension of V .

/W

>t

(r

The fact that-we do not get a Whitney stratification from the full partition

by dimansion of an analytic variety is only a minor hasdicap because of the

following theorem.

'

Theorem(Whitney [45],[@6]) : Every anal&tic variety admits an analytic

Jhitney stratification.




This is proved by showing that every locally finite analytic stiratification
{i.e. whose strata are locally analytic manifolds) admits an analytic Whitney
stratification as a refinement : this is because (b)-regularity is generic —
“ne set of voints where (b) fails for a pair (X,Y) of anslytic strata is
contained in the complement of an open dense subset of Y .

The class of sets for which (b)-regularity is generic has been extended by

lojasiewicz [18] and Hironska [12]. See also Hardt[10] and Gabrielov's thesis.

Definition : A subset of 8" which is globally (resp. locally at each point
nf Bn ) 2 finite union of subsets each of the form { fi= o, gj>0 l i=1,..,D3
4=1.....03 where the {fif , fgj} are polynomirl (resp. analytic) functions

on  R°, is czlled semirlgebraic (resp. semianslytic) .

Theorem(Lo jasiewicz [18]) : Every semianalytic set admits an analytic

stratification, and every analytic stratification of a semianalytic set admits

zn analytic Whitney stratification as a refinement.

.4 more accessible proof, for semialgebraic sets, was given by Wall [43].

Definition : A subanalytic set in R® is the image of a semianalytic set

in ®® , SOome m , by a proper analytic map ®" —_ Rr" . -

Theorem(Hironaka [12]) : Every subanalytic set admits an analytic stratificatica,

ind every analytic stratification of a subanalytic set admits an analytioc

ahitney stratification as a refinement.

So far we have discussed the existence of Whitney stratifications. Among the
208t important applications of Whitney regularity are the consequences of the

following results.



Theorem A ¢t Let 2 be a locally finite stratification of a closed subset of

z C1 manifold M . > is (a)-regular ¢€> the set of maps transverse to o

is oven in Cl(N,M) for all C' manifolds X .

See §1 for a precise statement and proof of Theorem A .

Toeorem B ¢ A Whitney stratification is locally topologically trivial.

Tzeorem B was conjectured by Thom and proved by Mether [2i] .

l'either Theorem A nor Theorem B makes use of analyticity. However in most
of tke work done either on the Whitney conditions themselves — as in Speder's
taesis [29], and Teissier's study of the equisingularity of hypersurfaces {30] ,
[Bf], and the equimultiplicity theorem of Hironska [}i] -— or using the Whitney
conditions as tools — as in the proof of the topological stability theorem [7] ’
znd the Lefschetz hyperplane theorems of Hamm and L& [9] s and the extiensions
of characteristic class theory to singular varieties by MacPherson [}9 , 26],
znd X.-H. Schwartz [26 — extensive use of the special properties of analytic

virieties has been made. And it was for complex analytic hypersurfaces that

cariski demanded a theory of eguisingularity [49,5q1 .

This thesis can be thought of as a study of aspects of the theory of -
ezuisingularity of smooth stratified sets, the plans of which were dravn in Thon's
"insembles et morphismes stratifiés" [36] . When there are improvements in the omse
of subanalytic sets we give them; and we‘make special mention of any relations

¥with complex hypersurfaces.

With Theorem B in mind, we make all our counterexamples topological
Fanifolds-with-boundary, hence topologically trivial, whenever possible. This

a0

Toows well the great difference in the nature of tkbe results found herwe, and those



obtained for complex hypersurfaces, for which topological triviality has fairly
strong consequences, including (a)-regularity.

The basic local situation is as follows ¢ let X and Y be Cl submanifolds
(and, vhen appropriate, subanalytio subsets ) of Rn', with Y@ X -X. Y is the

base stratum, and X the attaching stratum. When X is (b)-regular over Y at

Oin Y , we will say that the pair (X,Y) is (b)-regular at O , or that
(X,Y)O is (b)-regular. ihen (X,Y), is not (b)-regular, we say that '(X,Y)o

is a (b)-fault : we justify this term below.

Faults and detectors :

-

’hen some equisingularity condition E is not satisfied at a point of a
stratification, it is natural to call the point an E-fault (so retaining the
geologiwal terminology). Many proofs showing that one equisingularity condition

implies another are by reductio ad absurdum : we suppose that the second condition

fails, and then we show that the first condition necessarily fails as well. When

we can do this we say we have detected the fault (the point where the second

condition fails). In the same way counterexamples to implications between .
equisingularity conditions tend fo bte faults which are not detectable in scame
given way. Most of tie results given in this thesis consist of taking an
equisingularity condition E and deciding whether possible detectors are effectiye
or ineffective in detecting every E-fault. We hope that this will clarify and

motivate the point of view taken throughout.



CHAPTER 1. WHITNEY (a)-REGULARITY

We begin by sikowing that (a)-regularity is precisely the condition to impose
on a stratification in order that the maps transverse to the stratification form
an open set, i.e. that transversality be stable, as well as being generic (the
iransverse maps always form a dense set). (a)-regularity was introduced by
initney in [45] as a sufficient condition for this to be true ; at the time it
Was thought thaat »(ﬁt)—regularity (defined in 8§ 2) was the condition required, and
that (a) was only useful in that it implied (%) (see the introduction to [45]).
“his is true in the analytic case, since then (t) and (a) are equivalent as
>Toved in Theorem 2.5 below (and [37]), but we give examples (2.1 and 2.4)
showing that (%) is in general weaker than (a) . (a) is necessary and
sufficient for ovenness : the sufficiency was proved in detail by E. A. Feldman
in [:5] and we prove necessity here in Theorem l.l. The only difficulty in the
roof is to find a transverse map with a given transverse 1-jet at a given point @
Zor tais we show that in a suitably chosen Baire subspace of the space of maps
Containing the given jet at the given point, transverse maps are dense.

Example 2.1 , showing (t) to be weaker than (a) in the smooth case, has
\a) failing for a sequence on a curve (in the ambient space) tangent to the base
stratum, thus defining an (a)-fault not detectable by transverse submanifolds. To
show that the property that the (a)-fauit be given by sequences tangent to the
%ase stretum does not characterise those (a)-faults vwhich are not detectable by
“ransverse submanifolds, we give a second eiample (2.4) which uses a basic
semialgebraic object called a "barrow', which is defined in 2.3 . e then prove,
in Treorem 2.5 , that (t) is equivalent to (a) when curve selection is
availzble, and obtain as a consequence in this case the conjecture of C. T. C. Wall

[43] that (a)-regularity be equivalentlto the condition that thse fibres of =



~

-Jl retraction onto the base stratum be transverse to the attaching stratum for
211l retractions. We prove this conjecture in general as Theorem 3.3 after
rephrasing the conjecture to read "do transverse C1 foliations detect
(a)-faults ? " Example 3.6 shows, using the barrows of 2.3 , that transverse
®  folistions do not detect all (a)-faults.

To complete §2 we discuss results relating to a theorem of T.-C. Kuo , that
(a)-regularity implies that transversals to the base stratum have germs at O of
their intersection with the attaching stratum, of a single topological type, and
We prove a partial converse to Kuo's theorem.

Finally in §‘4 we describe the analogues of the resulis proved here about

-

(a)-regularity of stratified sets for the (af) condition on stratified morphisms.

1. (a)-regularity and stability of transverse maps

~K .
S topolozies

oriefiy defize the weak and sirTong o< topelngies on thse ssace of

"
'J
H
7]
(3
-t
e
o
[$)

z . L £ f o .
aopings teiwsen two € panifolds (1L kx &™) .

LY
3
i
G
Ty
[
»
¢
U
Uy

4 thorough treatment of these topologies is given in Hirsch's book "Differential
Topology" [13] . Other versions are given by Morlet [24] y Feldman [5] s and
Jolubitsky end Guillemin [8] .

o< . k ) cE :

Let N, P be manifolds. C (N,P) denotes the set of mappings from

i to P, JK(N,P) denotes the bundle of k-jets associated %o such mappimgs,

snd 37 ¢ CHN,P) —> C°(N,37(§,P)) is the =ssociated jet map. The map

"f : N ~——p» JK(N,?) Lis called the k-jet prolongation of £ .

i basis for the weak C- topology on ¢“(N,P) is given by taking all sets

of the form {fe Ck(N,P) s jkf(K)C U}A where K is a compact subset of N ’

and U 1is an open subset of Jk(N,P) .
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A basis for the sirong ck topology (also known as the Whitney ¥ topology)

on Ck(N,P) is given by taking all sets of the form {f € Ck(N,P )t jkf(N)C v
vhere U is an open subset of Jk(N,P) .

If H is compact these topologies are oclearly the same.

Transversality

we shall use the notation d’\ for '"is transverse to" .
If X, Y are Cl submanifolds of a Cl manifold M ,
XA Y at n €& T X+TY = TM
IhY & T AY at n,¥Y nexny
If f:N—> M isa C' map,
f AN X at n & Te(n)
or f(n)€ X
fAh X & £AX at n, ¥Vnoe @)

if ze Jl(N,M) is a 1-jet, and f € Cl(N,M) is a map representing =z (at nel .

X + (df)n(TnN) = Tf(n>M

zMN X & £ A X at n
de say X 1is transverse to a stratification Z , and write X A 3 ,
wveen X A 5 VW strata 3 of X .

we say X 18 transverse to a foliation ’} of M at x , and write

0

I AN F at x, when X is transverse at x to the leaf of } through x .
#ie say a foliation ?r of a submanifold X is transverse at x to a

foliation S of a submanifold Y , and write JF A S at x , when the

leaf of '} +through x is transverse at x to the leaf of 9 through x .

(This requires that X be transverse to Y at x .)

iLow we are in a position to state Theorsm A of the introduction,
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Theorem 1.1 Let 2 be a locally finite syratification of a closed subset

V of a Cl manifold ¥ . Then the following conditions are equivalent :

(1) > is (a)-regular,

z th} is open in Jl(N,M),
f A} is open in Cl(N,M)

(2) for every ¢! manifold N ’ {zeJl(N,M)

(3) for every Cl menifold N, { feci(m,m)

with the strong Cl topology,

(4) there is some integer r , 1< r < max(l,min(dim S)) , and some ¢t
SeZ

manifold N with dim N = dim M - ¢ , for which {fec (N,i) : £ A3} is open

in Cl(N,M) with the strong ct topology.

-

Notes 1.2 (i) (1) &> (2) 1is vroved by Wall [44) . In fact he asserts
that (2) implies that V is closed, which is not quite true. Consider the
case where V = M - pt., and 2 hgps a single stratum.
(i1) (1) =>(3) is implicit in Thom [34] (1964) and explicit in
[35,36] g but see the discussion in §o below. It was proved by Feldman [5], who
describes 2. as cohesive if X is (a)-regular, and now appears as Exercise 15
at the end of Chapter 3 of Hirsch's "Differential Topology" [lﬂ . Feldman's
proof went unnoticed by several specialists in the theory to the extent that a
very short false proof of (1)=>(3) appeared several times (see tihe discussion
and counterexample in $2 ), and in 1975, D. W. Bass [I] wrote "there seems to .
be no published proof of this". This was probably due to Feldman's use of the
term "cohesive" before "(a)-regular® came into common usage j also his proof
apveared as a technical lemma in a papér on immersion theory rather than in a
paper on 'strati:‘f‘ication theory. Observe also that before the term "stratification”
was accepted people talked of 'submanifold complex" .and "manifold collection" .
(iii) vWe have the same theorem replacing ¢l everywhere by C
(l€ k<€ ), as the problem reduces to a study of - 1-jets.

(iv) The set of c* maps transverse to 2 (1£k<oo) 1is dense

17 ’i: & : - 2 ;. ; k i - .
o C(N,k) with the strong C° topology by epplying Thom's iransversaliity
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theorem countably often as in [8] or [13] , even without applying (a)-regularity.
Thus if 2. is (a)-regular, the maps transverse to Z in Ck(N,M) form an
open dense set in the strong ck topology ( Cl-open implies cX_open).

(v) If each stratum is closed, then it follows from the result that
for a closed submanifold W of M, {fe Ck(N,M) : f(I\W} is open (see [8] or [13] )s
that {fe Ck(N,M) : f/hZ} is open. But we do not assume the strata are closed
{only that V = |3| is closed) and in almost every situation of interest they

#1ll not be closed.

Proof of Theorem 1.1 : (2) implies (3) by definition of the strong topology.

-

That (3) implies (4) is immediate. We shall prove that (1) implies (2), and
that (4) implies (1), which will establish the equivalences.

{1) implies (2)

Suprose (2) is not satisfied for some Cl manifold N . Then theres is a 1l-jet
z € Jl(I\I,M), with z A Y and a sequence {znze Jl(N,M) such that z  tends
to  as n tends to o, but for all n , z, is not transverse to 2. . Let
V , [ denote the maps JU(N,M) —> N, J'(N,M) —> M, taking source and
target respectively. Let x = \)(z) )y X =\)(zn) , ¥ = }L(z) y ¥, = \J(zn) .
Since z /N2 and z K> , for all qu.fici'en‘cly large n we heve that y ¥ 7.
ilso clearly yneV for all n . Since V 1is closed, and since ¥, =7 (n = o0)
we have that ye€V . Let S be the stratum of > containing y . Since p2
is locally finite, we can supcose (by taking a subsequence) that for all1 n ,
¥, belongs to the same stiratum S' . S'=% S gince S is a Cl submanifold.
Trus y€ S N(S' - S') and S' is (a}—regular over S by the hypothesis (1).
Zow by means of a chart for M at y we can identify all the tangent spaces
(and their subspaces) to M at pointe near y, with R" (and its subspaces) ,
vhere m = dim N . ’

Let Pn (resp. P ) denote the vector subspace od (Rm determined by the jet

Zn (resp. z ) V n . By choosing a further subsequence we can supnose that the
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dimension of Pn is constant for all n . (It is possible however that the
dimension of P 1is less than that of Pn.) Because grassmannians are compact
we may supvose by taking more subsequences that {Pn} tends to a limit Pc'0 and
{2, 5'] tends to a limit T . Then P P, and, since S' is (a)-regulsr

n

over S , 'I‘yS cT.

z A Y means that PA T,S , and so P AT . Then d & > 0 such that

m

if APy, W)<E (W05, ), end AT,M<E (T Gy i)y then

oM T (transversality is an open condition on vector subspaces). Now choose
n, such thet ¥ n®n , A&P_,P )< E ,and n, such that V¥ n2n,,
a(T ,TynS')<€ f;-hen V nZmex(n,n,), P, A TynS' , icee z M >,

contradicting the choice of fzn} , and proving that (1) implies (2) .

{4) implies (1)

Suppose that J_ is not (a)-regular. Then there is a point y in V

contzined in a stratum Y of Z (dim Y > 1) , and a sequence of points ?xi}

of V in a stratum X of ) such that X, ~>y as i—> o, and

DX —>T as i-—> oo, and there is a vector ve TyI such that v¢ T .
i
Let B bve the 1l-dimensional subspace of TyM spanned by v . Choose a basis

or T K such that

iy

y
TY - EOW,®T
T = 1,871, .
TM - E@W,@W,8T eT,

where 'I'l, T, Hl, W, are vector subgpaces of ‘I'yM and T, , Wl y W, are
perhaps emnpty. Then find a subspace H of TyLI with dinHam=72 (=dim N ),ﬂ
such thet T2, @ W, € H & T, ®T, @ ®W, (this is possible since 1<T&din Y).
Then I + Ty‘I = TyM , tut I+ T £+ Tyiﬂ . Let pelN, and dsfine
1
Dy - {rectu): )=y, (a) @F) -8},

v

Lerma 1,3:. 3 gé@H such that grf\Z-
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Choose a chart (W,$) for N at p such that glw is an embedding (if
g€ ‘%H R (dé)o has maximal rank) , and choose a chart (U,¢) for M at y
such that g(W)€ U . Then it is not hard, since we have reduced the problem to
one for Cl( 8™ ", ") , to construot, for each i such that x € U, an £,
in CY(N,M) such that,

(1) flyy = ey
(ii) filw is an embedding,
(iii) f,(W)c v, £,(p) = T
(iv) (dfi )P(TPN) =< T"ix ewlaa LA
for i sufficiently large, where we have

considered Wl, W, as subspaces of ‘I‘x M.
i

(v) H, —> H (i —» ),

(vi) £, —>g (1 —» o) in the
strong Cl tovology.

Then for each sufficiently large i , fi is not transverse to X at X;
Bince E ¢Hi + Tx.X y i.e. £, is not iransverse to S . But by the lemma,
lim fi =g is tra:lsverse to ), thus we have a contradiction o the hypothesis

of (4) that the set of maps transverse to >  is open in Cl(N,M) , completing

the proof that (4) implies (1) .

Proof of lemma 1.3 & Choose charts (U,p) for M at y, (W,\P)' for N

at p, and a ¢l map h : N —> M such that h(W)c U, h\ is an embedding,

W
h(p) =y , and (dh)p(TpN) = H.Let W!'c W be an open set containing p , with.

compact clgsure 4'C W . Then d 5> O such trat if f& _U'S —,{(h) , which
}H

. S B AP L1 | - X

‘s Jfe€ CH(H,H) s 'g f{x) - 3 n(x)l <8 ¥Yxe :J'},then f!,;c is an embadding

[}

(see [13], Caapter 2, Lemma 1.3). Let :‘?6 -,3,(5) denote the weak C' closure
b

of the weakly open =et j\3’5 W'(h) , and let 81{ - @H ﬂvg/z :i,(h) . Then EE
’ ' 9

is wealkly Cl closed in Cl(N,M) » For, consider any limit point fo of a

convergent sequence in $H with the weak C' topology. Clearly ‘fo(’) =¥



15

and (dfo)p(TDN)gl_ H ;5 however the inclusion can be strict : the rank of f can

drop at p . But if fj e TFJ/?_,W,Ih) c U'é-’-ﬁ-,(h) , £, has maximal rark at p

since fO,N'

is an embedding by choice of & , Thus (ag,) (T ¥) = B , and
foe 'ﬁH . Hence EH is weakly Cl closed. Now we quote v

Theorem 1.4 $ Any weakly o closed subspace of Ck(N,M) is a Baire

space in the strong ck topology (L £ k< o ).

Proof. See [13] s Chapter 2, Theorem 4.4 , or [24] .

Using this result we can now apply the usual procedure of the Thom
transversality theorem (as in [8] , or [13] ) to prove that {fe EH s £ fhz‘?

is strongly dense in 5 q Cover each stratum S of Z by countably many

compact coordinate discs {Kﬁ 32% such that if ye€ Ki.(y) then no other Ké
contains 'y , and if f & EH , then £(W')N Ki(y) = ¥ o Now verify that for

each S and each ™ , {fe ’é’H : £ AS on Ki} is open and dense in EH
with the strong C1 torology. The proof of this is a local argument near Ki
and goes through as for the standard proof in Cl(N,M) by the choice of K;Ic( 7)*
(Gi » e trn » X - 3
. Given f¢& C oo £ not transverse to Y on Ra{(y) y We can find an
arbitrarily small perturbation of £ to a map g € g H which is transverse to
Y

Y on KO((y) , and such that g‘W' = fIW' .) Because there are coumtably many .
strata ( > being assumed locally finite) , and because EH is a Baire space in
the strong ¢t topology (Theorem 1.4) , we deduce that

S .

fre& :ths on Ky,Vu,V¥s}- fre& 5 ASS

is strongly dense in E q° Since E H—* i) s 8 h e{f_ q s Ve have shown the
existence of some g in E g v and hence in @ q? with g A S . This completes
the proof of Lemma 1.3 .

’

Lotes on the nroof : 1. It is not clear if EH is & Baire space . This is

. . ) © . ; . : .
the reason for introducing <y in the rroof of Lemusa 1.3 . Certainly ‘95 is
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not wegkly closed, since the rank at p of a limit map may be less than the
rank of the mans of a sequence in.*i)H , convergent in Cl(N,M) .

2. The proof of (4) implies (1) shows that if there is a ¢t manifold
N with {f € Cl(N,M) : £ A\Z} open, then Z is (a)-regular over the

strata of dimension =2 dim M - dim N .

2. (a)-regularity and transverse submanifolds

Consider the following condition on a pair of adjacent strata (X,Y) at

-

apoint 0€YN (X-X), with X , Y C' submanifolds of &" .

(t) Given a ¢' submanifold S of R® transverse to Y at O , there is a

neighbourhood U of O 1in ®" such that S is trensverse to X in U,

If (t) is satisfied for (K,Y)O we say X is (t)-regulsr over Y at O .

If 7 is (%t)-regulsr over Y for each point in YO (X - X) we say X is
(t)-regular over Y . If each pair of adjecent strata of a stratification

~re (%)-regular, then Z: is a (t)-Tregular stratification.

Since spanning is an open condition. it follows at once that (a) implies (f) .
The false argument referred to above to prove (1) implies (3) of Theorem 1.1 is
[ﬂa) implies (tf] implies [(a) implies openness of transverse EEE%]
' _
(‘1|) (3)

"his sugrgests that {(t) impliss the openness of transverse maps, which is false

in zereral, alithougn true in the care of subanalytic strata {(or srny situation

Y

wiere ti» curve selection lemma is availavle), es proved in Theorem 2.5 below.
Thom, in [34] mentioned.thaf"(t) implied that the transverse mavs formed an
oven set in the semialgebr:ic case. In [35] he used this to deduce that (a)

implies that the transverse mans arc oven, again using =znzlyticity. The
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mistake first occurs in [36] where he repeats the argument, but does not assume
" analyticity. The error was then copied by Wall [4i] s Trotman [37] , and
Chenciner [4] « Although [37] contains an example showing that (t) does not
imply (a) , I did not then realise that (a) was equivalent to the openmness of
transverse maps, and missed the fact that the example there was actually a
counterexample to (t) implies openness. A fortuitous remark by E. Bierstone at

0Uslo in August 1976 led to the recognition of the counterexample which follows.

Hxample 2.1. A (%)-regular stratification which is not (a)-regulsr |39] .
Let ( x, y, z) be coordinates in B3 . Take Y to be the y-zxis, and let
Q;{fn: y 8,5 O})U(R {x: - ,z>0}) where %gnQO}
defines the cylinder G = of radius 1/3n(n+l) with axis the line {y 1/n , z = 1/:
and where {fn = O} defines the surface F = obtained from {x = ((y + zz) - %)2:)
by translating the origin to ( 0, 1/n , l/n2) and reducing by a factor of
3n(n+l)MWd?2 so that F, intersects aGh_ exactly where {x = O} is tangent to F .

A® 2

z =y

(o, l/nz) S

Figure: x = 0O I .
(0 ,1/(n+1)?) — ¢ n {x = a}-

Gn+lr1{x = 0}

| l
L NS

0 (1/n+1,0) (1/n,057

X is a Cl subtmanifold and is semialgebraic on thke complement of the origir.
The normal vector to X at the point

x. = ( 1/244Zn(n+l) , (1/n) + 1/3d2n(n+1) , 1/n2 )

n

L ]

{2 110 0) farall n . .ence tos limit as » <snds to oo is « (2 ¢ 1: 0)
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and (a) fails. (For (a) to hold, all limits of .ormals would have to be of

the form ( c, + 01lc, ) , where ¢, » ¢, are not both zero. )

N

W2/12n(n+1), 0)

Figure: z = 1/n2

(t) holds since any submanifold transverse to Y will intersect X near

Y only at points near which X is defined by {x = O} . Hence the

3

t s ps R . . g -3 v ; 7
stratification 2;; of R defined by iY’, X, R° - (XuY) is (t)-regular .

Now we verify explicitly that the set of maps transverse to ;E: is not
open. The mapping h in Cl(Sz, m?) defined by inclusion of the sphere of -
radius 1 and tangent §h2x +y = 0} at O and with centre at (-1/45,-2/{5, 0)
is transverse to the stratification, but for each n the mapping hn defined
by inclusion of the unit sphere with fangent at x the plane
' { 2x +y = (5 + 12J§(n+1))/(1245h(n+1)5}

ard with 0O in the tounded com-onent of EB - h ‘37, i3z not trarsverse
2 TR

to X at x_ . Since {'hn‘f tends to h in the weak C° topology, which is
also the strong ct topology (since S2A is compact) , the set of mappings
transverse to 2. is not open in Cl(Sz,IR3).

Ty

aus (%) canrot replace (a) in the =tatement »f ‘Fhreozem 1lul.
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tiote that by smoothing near each circle {x =0, 8, = O} s X ocan be

3

made into a C% submanifold of R s with the normal vector to X at each

x, as before, for all n , thus producing a c® counterexample.

Construction 2.2 (Hills, or Round Barrows)

The example above used a simple construction of a C1 semialgebraic hill
which will prove useful as a building block for both examples and vroofs of
theorems. Consider the curve {x = (y2 - 1)£} in IR2 ¢ it has tangent parallel

to the y-axis for y =%1 .

X
‘ . A
(0,1)
/ x = (55 - 1)
4 ' S,
(-1,0) 0 (1,0) -

Figure : Hill of dimendion one

Rotating in [R3 about the x-axis, and cutting around the circle

{y‘ A T o} and then inserting in the plane jx = O} with the disc .
2

y +z‘él,x

0} removed, gives a C' semialgebraic manifold. The vital
broverty of the curve fx = (y2 - 1)2} which will be used again and again is
that in the region {yzé l’f the tangent to the curve is furthest from fx = O}

dhen 7 o= 2143

. . - R, \
and at the voints ( 4/9 , £i,N3) -he normal 13 (1 $X3/243 ).
b Y b 7 /

Construction 2.3 (Long Barrows)

3

Congider the surface in R
7.3

m'p

#ith coordirnates x , y , z ,
-8
t = (nf - 22)2(m2r2 -y2)2

Where m, r € [0, 00) . The normal to the surface at (x,5, 2.) is
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(e 3. 4 - 22)2(0® - )y ¢ 4(nfr? - y?)P(nf - 2B)z ) .

~ ~ ~ E
On {22=mc,x=0} and {yc=m£r2,x=03 the normal is (18 03 0),

and thus we can cut along these lines to obtain the surface
B(m,r) = {m7r3x = (m2- 22 )2(m2r2- y2 )2 , 2 & o ’ yzé 22r?
and we can insert B(m,r) in the plane {x = O} with a rectangle

{x =0, zdé m2 ’ y2$ m2r2} removed, to give a C:L semialgebraic manifold.

At (mrx , mry , mz ) for 2221 ’ yzé 1 , the normal is now .
(13: 4y(1 - z2)2(l - y2) s 4rz(l - 22)(1 - y2)2). Thus as m varies
B(n,r) varies in size, but the tangent structure (that is the set of points
in Pz( R) defined by the normals or tangents to the surface) remains the

same. But as r varies the normals change, and as r +tonds to O the

2 + . . e KRR PN 7 ¢ . YN, Y. Ry '
4anr w ls »,\:Ild 4;0 i.e L t&e arc /f Lles g,\ K 1 . 4..'-»'-.; . ‘} ) s h A:- L"' 1 » 1]}
aAS

We call this surface B{m,r) a (leng) berrow of mocnitude m , Tatio :

¥ith ayis 9z , 2nd centre O, 2nd base yOz . ‘he axis, centre, and base will
always be specified. Calculation shows that for =r < {3/4 , the normal to the

SUrfaice in furthest Srosm (1t D : O ) when J = im‘/‘rj ande oz o= O,
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and at these points , ( 4mr/9 , ¥ ur/d3,0) , the normal is ( 1 ;18/343 :.O ) .

~ (Compare Construction 2.2)

Linguistic liote : The term barrow is used because of the resemblance of

the surface to the ancient burial mounds called by that name in England, when

Tr is small.

Example 2.4 : This will show that the phenomenon that (t) be strictly
weaker than (a) is not solely due to the possibility of (a)-faults given by
sequences tangent to the base stratum as in Example 2.1 : that is, it is not
true that (a) holds for those sequences on curves with limiting direction not
tangent to the base stratum.

3

In R’ with coordinates ( x,y , z ) let Y be the y-axis, and let

- oo 00
X be (anjl {£. =0, ¢<0})u (nQL{x -0, g 20, z>0}) where {f_ = oj
is the eguation defining the barrow B,(mn,rn) with centre ( 0, 1/n, 1/n )
and axis {‘x =0, z+y = 2/nz, y With base in the plane ?x = O?, and
{gn$ 0}7 defines the interior of the rectangular base of the barrow. X is a
C™ manifold, and is semialgebraic on the complement of the origin in £R3 . We
, oo .
Choose g(mn,rn)} ne] Such that,
(1) r tends to O as n tends to oo, v
(2) the barrows are pairwise disjoint (in particular m  tends to O )

(3) m_tends to O fast enough so that the nth

barrow B(mn,rn) is
contained in the 2-sphere with centre ( O , 1/n, 1/n ) and radius
1/2n® (s0 m_ = 1/4n° will do).
3y (1) the =set of limiting normals is exactly {( 3.:(4;(?.'_/3!\"3)?\:(4«2/347)}\) :
0 él)\\élz . (Cf. Construction 2.3) Taus (a) <ails, since for (a) %o
h°ldg_3;_2_l_ limiting normals must be of the form ( ¢ O, c,) e
By (3) the set of barrows is contained in the horn which is tangent to

=¥ 5 % = } - 4 woich infersecis the nlana {z + ¥ = ‘7"? in a sircle of



radius’ t2 . Hence a C1 submanifold S +transverse to Y at O intersects
infinitely many barrows only if {z =y 4 X = QZC:TOS o« But then S will be
transverse to all barrows in some neighbourhood of O . For, suppose S5 were
nontrancverse to infinitely many barrows 3§ then NOS would be one of the limiting
(1 2(4V2/303)A:3(4Z/303)N) - But §z =y, x=0Jc TS, and S is transverse
to {x=0,72-0} at O, thus NS is of the form (i V¢ =Y ) with
V ¥ 0, which is not a limiting normal to X .

‘"hus we have shown that (t) holds and that (a) fails along sequences
which are not tangent to Y .

As in example 2.1 , by‘smoothing near the base of each barrow we obtain a

c® exzmple.

Now we shall prove that (t) and (a) are equivalent in the subanalytioc

L 4

case. Preoisely, we have the following result.

Theorem 2.5 s Let X , Y be C' submanifolds of R® and let 0eYN(X - X,

—

And et (Y8 oa ~wianalitic nit, Then { is (ajersulaz osver ¥oat O if

Y S A PO R BRIEA i 4 -
omasmeen

and only if for every semianalytic C1 submanifold S transverse to Y at O

there is some neighbourhood U of O in which S is transverse to X .

The proof will depend upon two technical lemmas which we display for future

reference.
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Curve Selection Lemma 2.6 ¢ Let U be a subanalytic subset of the analytic

svace A , and let O € U . Then there is an analytic arc

X [O,l] —> A
such that X (0) =0, «K(t)€U if t=0.

Proofs of Lemma 2.6 3 (1) Subanalytic U : Hironaka [12, Proposition 3.9] .

(2) semianalytic U s Lojasiewicz E.B, page 103] .
(3) Semialgebraic U : kilnor [23, Chapter 2] .
(Of course, (1) implies (2) , and (2) implies (3). )

-

Lemma 2.7 : Let " be a Cl submanifold of R" , and a subanalytic subset

of R™ . Then {( x ., TX ) s x€ X} is a subanalytic subset of Rr"” x GE( R) «

Proof : See Verdier EA,O, Lemma 1.6] .

Lemma 2.7 , with semianalytic replacing subanalytic each time, follows after
partition into real analytic manifolds from the proof of Whitney [47] for
complex analytic varieties. A4 short proof of Lemma 2.7 , with semialgebraic

replacing subanalytic each time, appears in Gibson [6, vage BO] .

Froof of Theorem 2.5 : Only if - this is immediate since spanning (and hence.

transversality) is an open condition.

If - Suppose (a) fails. Thus there is a unit vector V&€ T , a

sequence fxi} € X such that x, tends to O, and T X tends %o a limit T .
y i

and v £ T .,

-

("

- - s e , \ N TS V. . FoN =
Jhoc:ze >0 a2rd i€ 4§ guch dhat v L L. iUvo, [T, Sy
. 4 -

where 4&( v, P ) denotes the distance between P & G;:;( () and the endpoint
of the unit vector v , both considered as subspaces of R" at 0.
Define V]_ - n.{n x ZP & }E(R) H d(V,P) > 83 < Rn X Gg( (R)

. . '2 — b R 3
\/E = i‘:( X, T E X } Fal ! k4 Jm(‘ KL) -

L
*

S
oo

x
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Vl is semialgebraic, and V2 is subanalytic by Lemma 2.7 , since X is
assuned to be subamalytic. Semialgebraic sets are subanalytic, and the finite
intersection of subanalytic sets is subanalytic ( by Hironaka [1?.'] ). Hence
V., AV, is subanalytic and ( O ,7T)€E V;NV, satisfies the hypotheses of the
curve selection lemma 2.6. Thus there is an analytic arc in &" x Gg( R) (which
is an analytic, even algebraic, manifold) ,

oz [0, 1] — B xc(R)
with ®&(0)=( 0,T ) and d(t)evlr\ vV, if t>0.

Write 'Xl(t) for the R"-component of ®((t) ; the Gz( iR )-component is

1

T (t)x . Let I ec; (,[R) denote the normal space at 0(1(t) to the C
1

nanifold-with-boundary ul( [o, 1:’ ) , and let the vector v, be the
projection of v into N, spanning <vt> c G;_I(IR) .
e shall define an analytic arc & : [O,l] —_— GE_QGR) such that
S(t) @ <vy> = W, (*)
Then the union of the {(5‘ (t)} , considered as embedded (n—2)-planes in IR"

passing through the points O(I(t) defines an analytic manifold~-with—

1

boundary S' of dimension (n—l) . Reflection in N extends S*' toa C

0
manifold S which is a semianalytic subset of 8" , and which is transverse to
Y at O by (#*) . However we shall show that no neighbourhood U of O exists

within which § is transverse to X .

Construction of G :

Let P, = N, AT (t)x eGm_l(R) . Then O =% vt¢ P, by definition of

VOV, . Let G(t) = @(PtQ (v) )‘LeG _o(R) , where ( ) denotes

orthogonzl comolnment in W, .

AN

Figure : Ny (n=4,m=2).
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@ satisfies (*) by construction, and so it only remains to show that S
falls to be transverse to X in any given neighbourhood U of O . Now there
exists some t,€ (0,1] such that U N a;(0,1] 2 o(1(0,t,] « But S* (and
hence S ) is not transverse to X at any point of <x1(o,i] . For, if At
denotes the tangent space to the curve 0(1(0,1] at 0(1(1;) y

Tul(t)x = P, @A < 0‘(1;)eAt = Tul(t)s .

''his completes the proof of Theorem 2.5.

lote 2.8 :+ Even if X and Y are CF submanifolds we camnot restrigt to
COO, or even CZ:, semiznalytic submanifolds S , since (a) may fail only near
a cusp of ty»e "y2‘= x3" s, each branch of which is a C1 manifold-with-
boundary, but not a 02 manifold-with-boundary. The same type of example excludes
restricting to analytic submanifolds S , although by the proof of 2.5 we
can restriect to analytic submaﬁifolds—with—boundary S , since the statement
that S be transverse to Yb at O still makes sense if O € YN 8S . The
vroof of 2.5 also shows thagt we can restrict to those S which are " ruled
submanifolds " , that is a differentiable one-dimensional family of planes of
codimension 2 in R” . loTsovsr it suffices 4o consider all sutmanifclids of
Iome fined dimensicn grester than ar equal to tiie codizension of Y, Uy a2
small adjustment in the proof (choose Cfl(t)<: & (t) , where 01(0) + T ¥ =Ny,

G,(t) eGg_l(lR) , and ¢ codim Y ).

Te=C. Kuo has recently proved the following result, which is related to the

“uestions already treated in this section.

Theorem 2.9 (Kuo) ¢ Let X , Y be ¢® submanifolds of R", Y =X - X in

Some neighbourhood of Y . Suppose X is (a)-regular over Y at O €Y . Let

L

submanifolds transverse to Y at 0, with dim S; =n- dim Yi

S; + 5, be ¢®

E  ——

N X =t 2 ~re homeamorphic.

LI’J

‘1l = 1, ', Thon the -erms of 5;MN & 2nd 5,
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Froof : In [-15] .

This is an attractive result since it parallels the Thom-Mather theorem
(Theorem B of the introduction) that (b)-regularity implies tovological
triviality. Explicitly, if X is (b)-regular over Y and 5, and S, are
two submanifolds transverse to Y at points y, and y, in Y (with Y%7,
allosved) , then the germs of 5,nX at y; and 5,NX at y, are
noneomorphic. This follows from Corollary 10.6 of EZI] . (a)-regularity is

derinitely insufficient for the latter property as shown by the figure belowv.

\/
/\

gernm of Sl N X

2t ¥ : at O

/\

germ of 52 NnX

Conjecture 2,10 : Theorem 2.9 is true with the weaker hypothesis that X

r"_ A . — - 4 -
(b ~ramular over Y 2% O .
T —timan e e

2
[b]

i

Otserve that the hypothesis Y = X - X rather than YC X - X is essential .

in 2.5 and 2.10 s as shown by the next figure.

«e might also ask if the converse of .Theorem 2.9 is true. However examples

t

2.1 and 2.4 show that this is not so. In both examples X is not (a)-regular

SVeTr Y - - . ST & U . . Y
T Y ot U, but oany c 0T suluanifold tTansverse o Y [at Q) Interssots



X in a topological open half-line near O . We do though have a converse to

2.9 if we replace (a)-regularity by (t)-regularity as in Theorem 2.11 below.

Definition : Let X , Y be Cl submanifolds of & y and O€ YCX-X.

The pair ( X, Y ) is said to have homeomorphic Ck transversals of dimension

s at 0{1&kx<Lw, codinY<s<n ) if,

(hs) Given a C© submanifold S of dimension s +transverse to Y at O,

the topological type of the germ of SN X at O is independent of S .

-

Theorem 2.9 says that (a) implies (h:;d Y) . From the proof of 2.9 ['15—),

one sees that (a) implies (hzod Y) , but it is left in doubt whether (a)

implies (hiod Y) since the proof makes use of a (tangent) vector fiéld in a

blowing-up.
Write (t:) for condition (t) restricted to those ¢! submanifolds S
of class CX (1€£k< o) and dimension s ( codimY <s< n ) . Then we have ,

¢ -

[ - e . T - a4 = " 2 - L
reamer 2,71 ¢ Tavw X T te dis-toint

e

SE€ETIN L, with 1£k<£ o « Then

Kk k k=1
(hj) implies (%)) if or ,
k>1 2nd s >»n -~ dim X .

( David Epstein has given a counterexample showing that the restriction on

s vhen k D>»1 is necessary.)

Proof : Sunpose X 1is not (tg)-regular over Y at O . Then there is some

1

c* subrﬁanifold S of dimension s transverse to Y at O, and an infinite

Sequence of noints x, in X , tending to O , such that S and X are not

TY e - b - 2 .
rangverge adv x, , for all 1,

1
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We are working locally at O , so we can suprose that S is the image of a
¢ embedding ig : (R%, 0) —> (s, 0) c (R 0).
Choose 2 sequence of pairwise disjoint balls Bi of radius T, and centre
x, , which are contained in coordinate charts for X , such that iS-l(SnBi) = D,

is an open subset of R° , and diffeomorphic to R> , Let s; = is_l(xi) .

We shall show the existence of a C~ embedding g = ( R®, 0) —>» ( R", 0)

such that,
0o
(1) g = ig off ik—JlDi,

(II) for a1l i, g(®%)n XnB, is not homeomorphic to a manifold of
dimension (s + dim X -~ n) , and is nonempty.

From (I) it follows that i, and g have the same k-jet at O , so that

S

in particular g(®®) = S' is transverse to Y at O .

Existence of o when %k = 1 3

Finding such a g 1is particularly simple when k =1 .,
Fix 1, and let ¢, bea C' diffeomorphism of B, , fixing x, , 8o that

. .) is affine. By an arbitrarily smal ~perturbation o near s,
¢, (xa3,) is affine. B bitrari 1 cloperturbation of iy s

1

we can change ig ‘ Di to a C° embedding g; 3 (Di’si) -_> (Bi’xi) s such

that there are open neighbourhoods Ni and Li of s, in R® with

H.C T e T E = i
1SN, L, CL,eD, , and g ‘ D,-L, ISI D,-L, ’ and

¢’io g; 'Ni = d(4>io is)(si) l N, * (We have pushed ¢oi(S) onto its tangemt

-

Space near xi.)

Near x, we now have two affine subsraces 4>l(x a) Bi) and (¢i° g )(Hi)
which intersect at x; , but are not iransverse at x; 5 2nd hence intersect in
an affine subspace of dimension greater than d = max ( =1 y 8 +dim X = n ) .
Thus im (« ) ig . ha: h

dim («:}>i(x 2 Bi) fa) ((bio gi,(Di)) is greater than d , and hence
(%) dim (X ngi(Di)) > d.

In particular X N gi(Di) is nbnempty.

@ g equsl to i, =lzewhere.
[~



For g tobea Cl embedding, it suffices to choose {gﬁ such that
’31(13)(8) - jl(gi)(s)l < ri/2i for all seD, , forall 1.

Then (I) is satisfied by construction, and (*) gives (II) .

Existence of g when kx>1 , and 8 >(n -~ dim X) :

Fix 1 . We shall change iS'Di to a CF embedding g, 3 (Di’si) — (Bi,xi)‘

by an arbitrarily small ck-perturbation (less than ri/2i , 88Y) near 8, » 8O

that there are open neighbourhoods Ni and Li of 8y in R® with N, C Li ’
- -1
and L, € D; such that gilDi_Li = is\ DL, and such that g, (X)n N, is
homeomorphic to a cone in R° s of the form
s+dimX-n+1 2
: E.2z.° = 0, where £, =%13
i1 33 J

hence gi-l(X) N Ni is not homeomorphic to a topological manifold of dimension
(s + dim X - n) , and is nonempty.

The existence of such a 8 follows from the Perturbation Lemma of May
(Lemma 1A of his thesis [53] $ Damon has given a detailed proof of a more precise

perturvation in Lemma 3.1 of [ 51] ) applied to the ck embedding i, at O,

3
using the hypothesis s > n - dim X . The Perturbation Lemma is stated for C%

maps and uses the C° Morse Lemma, howsver thé proof works for Ck maps (k22),
taing <ha -’32 Vnrss Lexme due to Xuiper ( [‘52] 3 Cstrouskl [55] znd Takans [56}
Provide different proofs) . Note that the classical proof of the Morse Lemma is
only valid for C> functions (=oe [13], Chapter 6, Section 1) . ' .

(I) and (II) now follow for the ck embedding g defined in terms of
iS and '{gi} , as in the case of k = 1 . This completes our proocf of the existent.

of g.

e a5 . . k . . . .
Lemma 2,12 : ‘here is some C submanifold S" of dimension s , with

O€ s" , transverse to Y a2t O a:: transverse to X rear O .

Proof : This proof will be similar to that of Lemma 1.3 .

let €.-¢rec(s,r?): £0) - 0§. & is weakly oclosed in the
,
o
v "ovology. and thus, Ly Theorem 1.4 £ is a Taire szpace in fthe streng

b 2 vs



m .

Ck topology. Now we apply the standard procedure of covering X by countably
many coordinate discs fK“§ , and proving that {f Gfs : fAX on Ko(} is
open and dense in & g in the strong Ck topology, for each & , to deduce
that {fe E 1 £4 x} is dense in & .

Choose & weak C° neighbourhood v&v(is) of the (Ck) mapping ig
defined by inclusion of S in Bn s Where cS is a positive real number, V 1is
a neighbourhood of O in S , with compact closure V , and if fe€ l\j’d' ,'\T(iS) ’
f|v is a C° embedding transverse to Y at O (Lemma 1.3 in Chapter 2 of
Hirsch [‘133 gives Cg sy V for such a ct neighbourhood, and the same. d ’
V  vorovide an adequate C]S neighboﬁrhood). Then the stirong Ck neighbourhood
foé,s(is) has UA\ = 'Ud’s(is)nffef g ¢ £ A x} as 5 strongly ck
dense subset. For any f in Uff\ , S" = £(V) satisfies the requirements of
Lemia 2,12 .

(Recall that ’1}6’7(18) -fre (s ,r?) + |Fe(a) - jkis(z)lz.é,‘dzeV}.)

Let S" be given by Lemma 2.12, Then S"A X is either empty in some .
neighbourhood of 0 , or is a topological manifold of dimension (s + dim X - n) .
Let S' be given as the imags of the exbedding z constructed above. Then the
£3rms at O of S'A X and 3"N X are of distinct ‘opological iypes, by (II),

and so (h’:) is not satisfied, thus proving Theorem 2.1l . .

Corollary 2.13 + If X is subanalytic and the pair ( X, Y) has homeomorphic’

l . .
C transversals of dimension s a8t O for some s, n-12>s > codim Y ,

then X is (a)-regular over Y at O,

£ro0f ¢+ Combine Theorem 2.11 with Theorem 2.5 , using the remark at the

S ——

end of Note 2.8 that forany s, n-13s>codinY , (ti) implies (a) .
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Remark : Conjecture 2.10 and Theorem 2,11 are in accord with the general
principle of Thom that instability of topological type corresponds to a lack

of transversality.

One of the original motivations for this work was the hope of generalising
the theorems about equisingularity of families of complex hypersurfaces
achieved by Zariski and the French School (led by Teissier). We now explain
how the results:jugt desgribed fit in with this idea.

Let F : ( ¢l ¢ oF , O x fk) —>» (¢, 0) be a complex analytic
function such that Y = 0 x Ck contains the singular set of F . Let
r: gl g gk -3 Y be an analytic retraction. In 36] we find the

following implications :-

(T.E) +topological type of F-l(O)l\ r_l(y) is constant as y varies in Y

l

(JA)  the Milnor mumber }l(p'l(o) nrL(y)) is constant as y varies in ¥
(2) (F—l(o) -Y) is (a)-regular over Y v

(The first implication is (0.1.4) of [30] , and is also sketched on page 6¢
of [?3] » The second implication is (I1.3.10) of [Bd] $ a different proof

appears in [16] .)

In [}i] , Teissier denotes by (S.T.%) the condition tnat (r.%) hold
for gli'such retractions r . Corollary 2.13 can now be thought of as a
generalisation of the implication : (S.T.E) implies (a) . Also Kuo's Theorem 2.%

. “

8 23 a dirsct consequence that (T.E) imnliss (3.T.2) , a result 1

3

ha £3

il



unsettled in [éi) .

The examnle given by Teissier in the post-script to [3i] is instructive .
Consider V = €y3 = tx2 + x5’5 in R3
Then X is topologically trivial over Y , and the topological type of the
intersection of X with each plane {t = Oonstant}' is constant, so that
(TeE) holds for r : R3 —> Y defined by (x,y, t )F—> t . However

Z is not (a)-regular over Y at O, and (X,Y) does not have homeomorphic

~L
¢ transversals of dimension 2 at O as is seen from the figure.

3. (a)-regularity and transverse foliations

In his paper " Regular Stratifications " [43] C. T. C. Wall noted that

2 oa o has _y , . n , .
2 a pair of adjazcent strata (X,¥Y) in R ars (a)-regular a2t O in Y then,

kas) Given a C1 local retraction T onto Y defined near O , then therp is

& neighbourhood U of O in R"™ . such that ™ XAUY is a submersion.

and let Y be the t-axis, and X =V -Y .
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He suggested that the converse was also true, and this will be the main result
of this section.

First note that T is a submersion if and only if the fibres of T¥

XU
are transverse to X in U . Then we see that (as) implies (t) . For , given
a C1 submanifold S +transverse to Y at O we can choose a chart at O in
which S and Y ©become linear and then take a linear retraction ‘T whose

fivres lie in S . If the fibres of 4t are “ransverse to X , S will be

transverse to X . Thus we obtain,

Corollary 3.1 : ket X , Y be C' submanifolds of R" and let Oe Y<TX - X

2nd let X be a subanalytic set. Then X is (a )-regular over Y at O if

and only if X is (as)—regular over Y at O.
Proof : As above, (a) implies (as) , and (as) implies (t) . Now apply

Theorem 2.5 .

Clearly if Y is an analytic manifold we can restrict to C1 local

Tetractions U whose fibres are semianalytic : further improvements on

Jersllany 3,1 -ay be culled frem Date 2.8 .
Remark 3.2 : In both examples 2.1 and 2.4 we can choose a (linear) .

retraction T whose fibres are translates (over Y) of a limiting tangent
blane for which (a) fails, and these fibres fail to be transverse to X at

each point of a sequence “ending to O .

Before we prove that (as) implies (a) , we give a helpful reformulation

of (as) suggested by Dennis Sullivan.

¢

(Eﬂ ) Given a Ck foliation i;— transverse to Y at O , there is a

»
e
\i2
+
5
fo
s
L]
-t
(0]
by
¢
@
[
(&)
I
e
=]
[en]

re’ hhourhocd U of O in &Y such that
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follows since the fibres of a CJl local retraction define a foliation transverse

It is clear that (a;s) is equivalent to (31) . Given (31) ’ (aa.’5

to Y of codimension the dimension of Y . Given (as) y (3—1) follows by

choosing a retraction whose fibres are contained in the leaves of the foliation.
So the question of whether (as) implies (a) can be formulated as : do

transverse C* foliations detect (a)-faults ?

Theorem 3.3 (" Transverse Cl foliations detect (a)-faults ")

Let X, Y DYe Cl submanifolds of tRn , and let 0€Y<c X - X . Then X

Iroof : ile have already established that (a) imvplies ('}1) . So suppose
that there is an (a)-fault at O given by a seguence fxiz € X tending to O,
with T = 1lim T, %X ,and TYET.

i

we shall adjust a codimension 1 foliation by hyperplanes parallel 1o a

hyvervlane containing T so as to be nontransverse to X at infinitely many X,

Construction 3.4 (Ripples)

Given a hyperplane H € Gﬁ_l([R) s a real number se[O,{] , and a real

oy 1 . s ~8 o . . A
umber r >0, we construct a O foliation gy of codimension 1 oI the
+.

ball Bg of radius r with centre O in (Rn such that

xYH
(2) for all x eB_f,;,r , d(H,Tx:};)‘ <s,

(1) for all xeB?_Bg—r’ T '3'S=H,
(3) for all. X € Gﬁ_l((R) such that d(K,H) = 5, thers is a unique x € 3_2;
r 8 - |
such that rxxaH K,

( there is s -4 o - s s 5B Y s s
(4) there is ¢* diffeomorphism ¢H 5% —> B such that ¢H(3H)

is the trivial foliation 3-3 by hyperplanes parallel to H , and such

s o ' s ine 4 :
that ¢>H|B§f— lefr = ld(B: _ Br;r sy and d¢H tends to *‘he identity

uniformly as s tends to O, i.e. ¥ & >0 , 3 sg > 0 " such that

is (a)-regular over Y ’_23 0 if and only if X is (3—1)-regu1ar over Y at O .
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s <sc implies |dd3(x) -I|< & forall xe By .

— T ——

N

N\

e
y
Y
Figure : Foliation with a ripple. / \

-
. /
L

(Ve shall vostpone the verification of Constructison 3.4 until after the proof

of Theorem 3.3 . The reader may in any case prefer to admit the verification as

geometrically evident. )

Choose a one-dimensional subspace V C:TOY such that V¢ T . Define a

hyperplane H by T %(’C@V)‘L , where ( )‘L denotes orthogonal complement

in 7 d"[{n -

Since T X tends to T as i tends to oo , there is some i, such
i
o implies V4 T, X . Then for all 1i>. iy

i

H, by T XQ(‘I‘x XQV)’LC T, ®" . Then H; tends to H as i tends to o.
i i i

Pick i) > i, such that |H, - H|< % for iZi .

Now pick an infinite sequence of pairwise disjoint balls Br (xi) with

that 12> 1 define a hyperplane

-

Tadius T, and centre X, e This is possible since O is the only accumulg®imn

. a . fe 2 .
voint of §x3.% . Then for all i, O £3, (x;) .
L
For all i21i, , place inside B, (x,) a " ripple " : a foliated ball
B . . i c {5, -Hl
i = B%r (yi) with radius #r, , centre y, , and the foliation F, = Foi
N i i i H
g€iven by Construction 3.4 such that X, = xHi , i.e4 Txig'i = H, . (rhere are

t¥o possible vositions for the ripple.) Define a foliation F on’ B" vy the



trivial foliation 31:1 by hyperplanes parallel to H on - (Ui By )
i>
together with G on B, forall i=i . J- willbea C folia%lon if

we can cefine a Cl diffeomorphism CP : & —_— Rn taking 3 onto 3‘ .

H
: s —H
Let Cb,(( (U B) = identity , and CfblBi = Cbﬂ;l ’as defined in

i>zi
1

Construction 3.4 . To check that ci:. is a Cl diffeomorphism it is enough to
check that dc#)(x) is continuous at O and equal to the identity at O .
Given & > 0, (4) of Construction 3.4 gives us an gg > 0. Pick i, >4,

suck thet |H, - H| < 8. forall izi,.lLet & = mnf{ix(3 . & is
“ XE B. ’

i <1<1

r 2
i=-1 i, -
z 2
well-defined and nonzero since O & u B U Br.(xi) .
i=i i=i
1
1 -1
Then |x|\<§& implies x ¢ U By 4 S0
5, -~
ld(b(x) - Il <  max ‘d (x') - IB
x! E.Bl
1>12
< & by (4) of Construction 3.4 ,
and tae choice of Se :i.2 .
Thus ddp(x) is continuous near 0, and ddh(0) = I (the identity matrix).

dence 3‘ is a C1 foliation and TO’& = H, so that G is transverse to Y

at 2 (V4 H by definition of H). But for all i >/-il ’ Tx I = Tx 3’1 = H
i i
and Tx 1c Hi y So that 3‘ is nontransverse to X at X e This shows that
i .
X is not (5_1 )-regular over Y at O, proving Theorem 3.3 .

isrification of Construction 3.4 : It suffices to take H = RS T x 0c g"

and n=2 ., For n »2 the caloculations are similar.
2.2, 2 2.2 2
A+ (1-A7)(x°-a") A

y = A ‘ " Azél,a

IN

Consider, y 1

n

Vith the constant a in (0,1) to be chosen skortly. "
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We snall prove that this defines a Cl foliation of E—l,i}z of codimension
1, with the leaves corresponding to fixed values of A . (If n> 2, take
n—1
2 2.2
x, = N+ (1—;\2)2(; x,"-a )" , et cetera.)

Multiplying by T/4 gives a foliation of [-x/4 , r/4] 2 yhich fits into
the ball By (0) and extends trivially to a foliation 'B-a of B,(0) which
satisfies (1) . The leaf with normal vector furthest from (O : 1) is clearly
giventy A = O, and this normal is (1 : :(8a3 )/(343) ) at the points
( (4/9)a4 , a3 ). (Compare Construction 2.2)

~ 2
drite ), =.. (3a3)/(303) . Then |(2 v,) - (1: o) = (WY, ®.

So 4, given s , choose a such that

L 1]

2
__;.\)_é_. . &€
= ’
1 +V 2
a
2.
ioeo Va2 = __S___z_ .
l -8
2
Then a6 _ 21s
64(1 - 82)

With this choice of a , (2) and (3) of 3.4 are satisfied.

Note that for s € [0,3] we have & a® < 9/64 (*) .

Jeiire 4% : [—1.1]2 — —1,1]2 o4

(x,5) & x <1 -
(x, v + (15 P (x%- &)%) & &

¢p is then a ct map. Elementary calculation using (*) shows that ¢a

P, (x,y) = |

is injective. Yow

-~
Y

/1

2P ix.y) = ( 5 2., 2.2 2., 2 2.2
A 4x(z“~ a“ ){(1-v) 1 - 4y{1-y" Hx = 2a")

Lo ~
<

2nd dq)p(x.y) is the identity matrix if 2" € x* < 1.

Calculation using (%) shows that 'dd}a(x,y) ig always nonsingular. Thus (ba

is 2 ¢t diffeomorp.ism of t—l,l]'< , which after scalar multiplicaztion by r/4



1 . .
as described above may be extended by the identity to a C diffeomorphism of
Br(o) since d(ba(x,:!:l) is the identity matrix. It defines the foliation.
q}f} will be the inverse of the resulting diffeomorphism. It only remains
. . . -1
to verify (4) of Construction 3.4 , i.e. to show that d(¢a ) tends
uniformly to the identity matrix as a tends to O 3 but this follows from

the same result for d(b((3 , and this in turn follows from the expression above.

Thus we have verified conditions (1) - (4) of Construction 3.4 .

Corollary 3.5 : (a)-regularity is a Cl diffeomorohism invariant .

Froof (3—1) is clearly ¢t diffeomorphism invariant .

Eaving shown that transverse Cl foliations detect (a)-faults, we give an
example of an (a)-fault which is not detectable by transverse 02 foliations,
showing that Theorem 3.3 is sharp. The details of this example were worked out

with the help of Anne Kambouchner.

Erample 3.6 : An (a)-fault not detectable by transverse ¢? foliations.
3

In R

x|, o
i e (Q{x: 0, 20, z>O})U(L{Tfn= o, gni()}) , whers g is a
N= n=

let ( %, y, z) be coordinates, and let Y be the y-axis, and let

function of y and z and ?gné O} intersects gx = O} in a rectangle of
lengtz mo width mrTos and ffn = O} defines the barrow Bn of magnitude
m, s Tatio r , axis {x =0,y + tan(en)z =A(1/2n) + (tanen)/Zn} , and
centre p = ( 0y 1/2n, 1/2n ) with base in the piane f'x = o} (Cf. 2.3.)

First choose a monotonic decreasing seguence {mn} such that for any choice
of 8n , and any rn$ 1 , the barrows arc pairwise disjoint (e22:d do not intersect
T ). Zow let ‘Sn be the radius of the largest <2-sphere sg(o-) such that
552(0)(\ B # # vhen T

Then set T, - (343/8) 8

=1 and en’ takes all values in [—1‘/2 , TV?] .

and Bn = sin_l((3ﬁ/8)( CS;%: + 61% )) ", so defining

oo i3

3
n



Bn completely, and hence specifying X .
(Tote that (3(3/4)6§<1 , i.e. én< 64/8143 , and so this choice of

Bn is possible for all n 21, by the choice of the cemtre p; = ( 0, %, %)

of Blo) Z2 =Y
N
Bn N mn\
\
\ ! | N
\ 2]
N\
n4l | g% AN ;
/ \ | nn
m
) j o+l \Ill+1, AN
\ I
! n+1\L\/mn+lrn+l
f—"
AN
0 > 7
Ficure : x = O

Since fén? is a monotonic decreasing seaguence, tending to O , both
{ rn} and ienz are monotonie decreasing to O . Thus (cf. Construction 2.3)
the set of limiting normals to X at O is {( 1:A:0): -8/3[3EAE 8/3,1'3}
Hence (a) fails at O for the pair (X,Y) .
Suppose (32) does not hold at O for (X,Y) . Then there is a ¢?
foliation :} which is transverse to Y at O and which is not transverse
to A in any neighbourhood of 0 . Nlecessarily 3“ is of codimension 1
and T, F (the tangent at O to the leaf of J passing through O0) must be
£ the form ( L :O: O ) wnere 0< |0(,\£~8/3f_“?.

=nd . such that oo

B w1 - FA) S T e 7 3. o oy e
49 cnall chow tkat there is a ceoastant S0 =n 9

all n>,no and for all pe B, »
|]px-(l:o(:-0)_|> Cé.i (*)
( i X is the normal space to X ‘at ' p.) The proof of (*) will be given later.

&

Let ¢ : (@, 0) —> (&%, 0) denote the C° diffeomorphisn defining
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1 ' . 2
'3: so what the leaves of 3" are the images of gﬁ x w} weR ° Then

dcb(o)(nzx 0) 1is the plane with normal (1 s : O ) .
1

Since ¢ is C° , the map ( &>, 0) —> (6Ly(R) 5 ap(0) ) 1s C' and
P > ap(dH(e)) |
thus there exist &> 0 and M >0 such that |
|ab(d7 (0)) - ad(0)] < Hlpl , for a1l pe3Bg (0) .
It follows at once that '

(ad (b (p)) - d<b<o>>| » | < M\, forall peB.(0) ,
. R°x O

or in other words that -
1.3 - 7,3 < u\pl, for a1l pede (0) .

low, by hypothesis, :} is nontransverse to X at some point of Bn , for
infinitely many n , i.e. for infinitely many n , there exists p G_Bn such
that Tp‘} = TPX . Let n, Zn, be such that for all n> n, , if p€ B,
then ipl £ & . Then for infinitely many n anl , there exista p eBn such
that Mlp| > Ipr - (1:0:0)| . But assuning (*) and using the
choice of 5n s we know that for all n>/nO sy and for all pe Bn ’
lNUK - (1 :X:0 )\ > ¢ p\% . These last two inecqualities are absurd,
since there is some 1, such that for all n 2> n, , and for all p € Bn ’
Izl < (c/M)3/ 2 , .. M|pl<LC \p\% . Thus we obtain a contradiction,
showing that (F°) holds, and that transverse C° foliations cannot - detect
this (a)-fault.

Proof of (%) : A short calculation shows that for all n the set of

normals to B, (rotated back through 8 ), is contained in
(LA p) s he[8a53, 6/303] , peler,/aB e, /303] €
It will suffice to establish (*) in the euclidean norm | \e in the
usual chart for P2( R) centred at (1:0&0) ‘given by the homogeneous
Coordinates (V:At N) > ( 7\/;) sV ) , since this norm is equivalent to

the ztendard ome. ( \(13?\”}1\') - (1=?\"=‘,%")! s = LA N+ ‘W" -‘)."}“}% .)
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(-1:-8/313:0})

norinals to Bn contained in

shaded region

Figure : Chart for Pz([R) at (1:0:0) .

It is evident from the figure above and the choioce of T and 9n that
there exists n' such that for all n>n' , (1:0:0) is outside the shaded
region which contains the normals to B, . We calculate the minimal distance
of (1:X:0) from a normal of B, . This is clearly (Xsin Gn - 8rn/3f5).
Thus for all n=2n' and 8ll p € B, »

‘NPX - (l:M:O)' o > o(sinen - 8rn/35
«(353/8)(83 + §8) - 4%
§3 Bws) - $Ea - 3Bws)) ) .

U

Since én tends to O as n +tends to oo , there exists no> n' such
that for all n=> ng and 2ll p eBn ’

‘pr - (1=o(:o)|e > (3,{3‘»(/16)6“% .

Thus we obtain (*) .

tote 3.7 : We have in fact proved slightly more by the above example. Namely
that a transverse foliation, with Cl leaves, which is Cl with a Lipschitz
derivative in the direction transverse to the leaves, cannot detect this
(a)-fault. If (Gl’p) denotes the condition similar to (31) but restricting
to foliations defined by a Cl diffeomorpinism Cl along the leaves and c?
transverse to the leaves, then clearly (3’1’p) ~implies (3_1,q) if p<a
(ana (3"1’p) implies (t) for all‘ p <00 ). Also it is (now) easy to.construot

T2 s PN N — 3 l . - ’ .
“tadvles showing (3‘ ,q) dzes net imcly \al,p) when 1» £ q . Simply set
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sin-l(m( ég-% + éip—% )/8) ’
582 Eys

and repeat the argument of 3.6 .

Q.

I
n

4. Detecting Thom faults in stratified mappings.

Since the regularity condition imposed on a stratified morphism is formally
very similar to (a)-regularity we note here the analogues of the results we
have proved aboui;. (a )—reéularity in $§81-3.

Following [6] y let £ : N ~—>P bea C1 map, between C:L manifolds

N and P, and let X and Y Dbe C1 submanifolds of N such that fx and

f|y have constant rank, and let O €Y CX - X . We say that X is

(af)-—regular over Y at O (in the terminology of Gibson [6], X is Thom

Tegudbar over Y at O relative to f ) if,

(af) Given a sequence fxi} in X , such that x; tends to O as i tends
to o, and ker dxi(fIX) converges to a plane T , then ker do(f'Y)Q’C .
Since f|X is of constant rank, the fibres of fIX form the leaves of a

foliation 3; of X, and similarly for Y . Thus (af) may be stated,

(af) Given a seguence fxi} in X , such that x5 tends to O as i tends

£
to o, and Tx (,};) converges to a plane T , then TO(:}Y)Q T.
i

Here T 3’,;) denotes the tangent space at O to the leaf of 3’; passing

through 0,

[

The natural analogue of (t)-regularity is,
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(tf) Given a Cl submanifold S such that S is transverse to 3:5 at O,

there is a neighbourhood of O in which S is transverse to 3{ .
Similarly the analogue of (H—k) is,

(3—?) Given a C° foliation F of N transverse to 3§ at O, there is

a neighbourhood of O in which 3’ is transverse to 3-;5 .

Lote 4.1 : (i) Another way to say that S is transverse to 3;‘ at -0 is

to say that the rank of f'SnY at O equals the rank of f'Y .
k
(ii) If £ has rank zero on X and Y then (ag), (t;), (}f)

become (a) , (t) , (F) respectively.

With these definitions all of the results proved in 82 and ®3 have
Corresponding versions, with just some nuances.

Thus, (a f) =4 (3-]:&):—_—?(1; f) by merely mimicking the proofs that
(a)&=(F) =) .

3

Example 4.2 : Take Example 2.1 and define f : R —>» R by

(%, 5, 2) b2 . (af) fails since the tangent to 3—;‘ at x  will be

the vector ( 2, 1, 0) for all n . (tf) holds since no submanifold transverse

, f
to Y intersects the horn containing the sequences on which (af) fails. (3’Y

is the trivial foliation with one leaf.) Thus (tf) does not imply (af) .

Example 4.3 : If we define f : w3 —>R by (x,y, 2) —>2z and
examine . Example 2.4 we find that X is not (%t;)-regular over Y at O
it is easy to find a ¢t submanifold, with tangent plene at the origin spanned
by the lines {z =y , x = O? and {z} 0,y = x?, which is not transverse

o 3; on a sequence of points in X +tendingto O .

L 4
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To obtain an example with (% f) and not (af) we can either take f to be

the constant map (see Note 4.1 (ii)), or add a fourth variable w , and

3 3

consider X. =X xR, Y. « Y xR C R xR and let f s R’ xR —>R be

1 1
projeotion ( x, y, z, w) b—> w . Then X, is (tf)-regular over ’Yl at 0,

but not (a £ )-regular.

Example 4.4 : As in Example 4.3 we take Example 3.6 , let X
3 3

1=XI[R,

Y, =Tx®R <R xR, and take f : R° xR —=> R to be projection
( x, v, 3z, W) > W . Then X, is (3‘?)—regular over Y, at O, but not
(= f)—regular. ( X ie neither (3%)-regular nor (ag)-regular over Y ab O .)

Thus (3’?)-regularity does not imply (af)-regularity.
The next result is an analogue of Theorem 2.5 .

Theorem 4.5 ¢+ Let X , Y bYe Cl submanifolds of (Rn s and let Oe Y<X-X .
n

and let X be a subanalytic set. Let f : R —> B” be a subanalytic map (i.e.

the graph of f is subanalytic in R x RF), such that f ¢ &and f{Y are of

-~ Qs - . / \ . . P .
Sonstent Tanlk, Them X i3 (z_j-rs-ular svsp ¥ T 0 17 =rd anlw if for avery
=20 == e/ TEE AT S == .
i = £
semizne vtic C7 sutmanifeold S transverse 4o Jy at O, there is some
AL St A E R =2

neighbourhood of O in which S is transverse to 3‘£ .

Proof : The proof is similar to that of Theorem 2.5 , save that instead of
Proving that {(x,‘l‘xx) 1 X € X? is sﬁbe.nalytic,, we must prove that
E(X,TK(Ji) t X'¢ K3 is subanalytic. But this reduces %o proving that
{’;X,"P X)) 1 x€ .z} is szubanaly*ic. Jor, T,{(}i) = ker ix{i’zx) = xer 4 £ ND X,
and ker d_f is 3 tixed suuspace of i@? if we suppose (as we can) that f is
& linear projection, since f is the coqposition of an embedding onto its graph
followed by a linear projection (of. page 30 of (6] ). Theorem 4.5 follows.

Finally we consider a possitle analogue of Theorem 1,1 « Let g ¢ M —=ed N
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and f :+t N =% P be Cl maps between Cl manifolds, and X a submanifold
of N . Then,

g ker d (£],) for all xex &> gA F
x* X X
& gr\ fivres of f,X
& flxog : M—y f(X) is a submersion.
Then the analogue of Theorem 1.1 is as follows, writing " g\ 3; " for

" g/]\ 3-; for all X in<= ", ’

Hypothesis 4.6 s Let Z be a locaily finite stratification of a closed

subset V of a ;Cl manifold M, and let f : N ——>» P be a Cl map, P a

1 . ) _ .
C” manifold, such that for each stratum X of T, f}x has constant rank.

Then the following conditions are euuivalent :

(1) % is (ap)-regular,
(2) for every ot manifold N , {zeJl(N,M)

2k 325} is open in JL(N,M),
grh Fo{ 18 open in CL(N,H)

(3) for every ¢’ panifold N , {gecl(N,M)

with the strong Cl topology,

(4) there is some integer r , 1< r< max(1l,min (rank flx)) , and some
1 Xex
C” manifold N with dim N = dim M - r , for which {g € Cl(N,M) t gA 3§z

is open in Cl(N,M) with the strong ct topology.

One can prove (1)<&E>(2) —= (3)==(4) without much difficulty, by v
Copying the proof of Theorem 1.1 . To make Hypothesis 4.6 into a theoren
we must prove (4) implies (1) . If we try to copy the proof that (4) implies
(1) in Thaorem'1.1 we arrive at,

Yuestion 4.7 s+ If is a C'1 submanifold of R" , 06X -X, and

X
N ke ~p RP ig g ot map such that fl}( has constant rank, then given a
Plane H ang a Cl manifeld 7 with dim N =dim H, and n € i , is

ig < Cl(N,Rm) : g A 3§ , g(n) =0, & g(TN) = H’} nonempty ? X

¥ See over.



46

A positive answer to «<uestion 4.7 would suffice to prove Hypothesis 4.6.
To prove that (3) implies (1) it suffices to answer <SQuestion 4.8 , which

is a priori weaker than 4.7 .

wuestion 4.3 : Is there some Cl manifold N for which . Question. 4.7 has

a positive response ?a*

Note 4.9 : The proof of Lemma 1.3 made use of the local transversality
lemma : the set of C1 mans transverse to a submanifold on a compact
coordinate disc is open and dense. The corresponding statement that C1 maps

transverse to the leaves of a foliation on a commact coordinate disc be dense

is clearly false (although ovenness is easy). (Cf. page 193 of [42] .)

Consider
- /
N [
2N\ /[ £
' P [
= or 7 N7
4 / = A
\ / N 7 L
N /
N compact /' N non-compact
So another method of proof is required to attack (3) implies (1) of .

Hypothesis 4.6 .

Observe also that the figures above show that the set of Cl maps iransverse
to Gﬁé. is not dense (cf. Note 1.2 (iv));
Finally we remark that the results of §§1-3 could also be extended to the

"generalised condition (a) for O-bundles” of  M,-3. Schwartz in [?7] .

% An example of David Epstein shows that the answer to Questions 4.7 and 4.8

is no. However Hypothesis 4.6 is still undecided s a finer study is rssded.
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CHAPTER 2. WHITNEY (b )-REGULARITY

In this chapter we consider various natural ways of detecting (b)-faults.

The most siriking property of (b)-regularity in the theory of smooth
stratified objects is that a (b)-regular stratification is locally topologically
trivial, as proved by Mather in [21] . The proof shows en route that
(b)-regularity implies a condition we have called (bs) in [38] , namely
that for any Cl. tﬁbular‘neighbourhood of the base stratum, associated to
which are a retraction TV and a distance function f) , the fibres of (" x P)
(which are embedded spheres) are transverse to the attaching stratum. This has
an exact countervart in the implication (a) implies (as) (see &3). In [43]

Ce To C. Wall conjectured that (as) implied (a) and that (bs) implied (b);
we oroved these implications in the semianalytic case in [37] and [38] « In
Chapter 1 (Theorem 3.3) we have shown that (as) implies (a) in general, by
verturbing a transverse foliation with an infinite sequence of ripvles so as to
letect a given (a)-fauli. The same idea will be used in £5 to prove that

w5 implies (%) 3 *hiz time we use the riprlss (of 3.4) io veriurd a foliation
by soheres (the fibres of 1Tx‘) ) of the complement of the base stratum, so as
to detect a given (b)-fault.

In 86 we study how (b)-regularity behaves with respect to generic sections..
Je show that, iff Y is linear, and if, for a generic set of linear spaces H
sontidning Y, (InH, T}, iz (d)-regular, then any (3)-fault of {(%,¥) at
9 cannot be too "dseo'. Conversely, we show that if (X,Y) i3 (b J-Tegular
at 0, then for generic such H , (XAH, Y) is (b)-regular at O .

xnowing that (b)-regularity is generic}for subanalytic sets — see the
introduction — it is natural to ask what are the strongest generic regularity

Soncitions. In [46} J.-L. Verdier introduced (w)-regularity, »sroved that it




48

implied (b)-regularity, and showed that it was generic (and also that it gave
local trivialisations by integrating continuous vector fields tangent to the
strata, whereas the vector fields resulting from (b)-regularity may theoretically
be discontinuous). (w)-regularity is eassily seen to imply Kuo's ratio test (r),
and hence (r) too is generic. In 87 we give examples which show that even

for semialgebraic strata, (b) , (r) and (w) are distinct, and that (r) and

(w) are not invariant under Cl diffeomorphisms, although they are preserved

~

by C‘ diffeomorphisms.

5. (b)-regularity and tubular neighbourhoods.

following MNMather in [22] s we first define what is meant by a C:L

tubular neighbourhood.

Definition 5.1 : Let X be a C' submanifold of a O  manifold M . A C

tubular neighoourhood T of X in M is a guadruple (p,E,€,¢) where

v s . o 1 + .
D 3 B —>  1is an inner »roduct bundle of class 7, &£ : X —>R is

o

vositive Cl function on X , and 4) is a C1 diffeomorphism of

3 = {; €EE :lell¢ &£ ('T\'(e))} onto an open subset of M which commutes with

N

X<—>u

the zero section ; of B :

e set \T\ = ct)(BQ) e The map T, = podD-l: |T] == X will be called

T
1 A , . .
“he ¢ refractica T\, =scoooiated to T , znd the non-nsgative funciicn

-

Pop = (7Eo¢_1 : il —> @’ , where (')E(e) = ﬂe||2 for e ¢ B , will be called

the Cl distance function ()‘I‘ associated to T .

(We have, similarly, C° tubular neighbourhoods. )

3
“

I

1 o o 7 % ! ~p . N
18 clear that tae map (TT’PT) t .| =X ~—>» X xR is a submersion .
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As what follows will be entirely local, we can restrict to the situation of
ad jacent strata in R .
Let X, Y be Cl submanifolds of R" and let Oé YcX-X.We say that

1 tubular neighbourhoods T of Y ,

X is (bs)—regular over Y if for all C
there is a neighbourhood N of Y in |T| such that ('TI‘T, PT)'XI\N is a
submersion.
Given a C1 chart for Y at O,
b:(vu,unt,0)—> (& ,R"x0"™,0) ,
the standard tubular neighbourhood of " x 0®™ in R" provides a retractimn

T(¢= ¢°1°T\‘mo¢ U —> Y NU , where T, : BT — R™ x o™ e linear

-

projection taking ( Xy s eee 5 X ) to ( Xy g eee 3 X 5 0, 000, O )
and a distance function = © t U ——==> R+ , Where ] an  — IR+
o = PoPr U e

is the function F( Xy oy ene s X ) = E 112

. We refer to the tubular
i=m+l :

neighbourhood T¢ of UnY in U.

We say X is (bs)—regular over Y at O when,
(bs) Given a Cl chart (U,$p) at 0 for Y asa ¢! submanifold of R®" ,

there is a neighbourhood U' of 0, U'C U, such that (Tg, Pp )|xnys

is a submersion.

The following lemma justifies our use of the term (bs )-regularity in the

local and global cases.

Lemma 5.2 3+ "X is (bs)-regular over Y if and only if X is (bs)-regglar

over Y at y, forall yevY.

Proof ¢+ " If " 1 Given a sequence of points on X tending to Y , at which

(‘WT , f‘l‘ )‘X is not submersive, there must be some convergent subsequence with

8 limit Y, in Y . The implication follows.

1

" Only if " ¢ Given a point v, of Y anda C tubular neighbourhood

Tg ©of a neighbourhood UNY of ¥  in Y defined by s C! chart (U )
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for Y at Yo * it will suffice to find a C1 tubular neighbourhood T of Y
and a neighbourhood U' of y_ , U'C U, such that TlU'(’\Y = T¢‘U'n¥ .
This follows from the Tubular Neighbourhood Theorem of '[22] , which is proved
in [21] . | |

For a simpler proof, let t}’ be a C1 diffeomorphism of ®" which is the
identity outside some neighbourhocod of Vo o and such that there is a smaller
neighbourhood W of Yo 0 WC U , such that the fibres of the reiraotion
b4 °'W¢°\P_l intersect \P(W) in a ¢l field of planes transverse to y(x) ,
and such that f%bc>q/-l is the square of the function measuring distance from
Vy(@I) in R" . Extend this local ¢l rield to a globally defined (over \P(Y))
¢l fiela of planes-(whose dimension is the codimension of Y) transverse to (J(Y)
‘In Theorem 4.5.1 of [15] Hirsch shows how to obtain a tubular neighbourhood
of \J(Y) , so that the transverse planes contain the fibres of the associatei
retraction. There is also a very careful proof of this fact by Munkres on page 51

of [:54] . Pulling back by \P-l we have a tubular neighbourhood P of Y with

the required properties. This completes the proof of Lemma 5.2.

In [43] C. P. C. Wall conjectured that (l:os )-regularity is a necessary
and sufficient condition for ,(b)—regularity. Applying Lemma 5.2 , together with
ths convention that X is (b)-regular over Y w«hen X is (b)-rsgular over Y
at y for all y in Y , we see that the local and global versions of the -

conjecture are squivalent. We now prove the local version.

Theorem 5.3h: Let X , Y be disioint Cl submanifolds of mn , and let

e iastoninell. ntmshateSuy

0eY.Then X is (b)-regular over Y at O if and only if X is

(bs )-regular over Y at O.

Proof : “ Only if " was proved by Mather as Lemma 7.3 in [21] , and in fact
in 1964 by Thom on page 10 of [35] . For another published proof see Lemma 2.3
of 48] . | .

It is left to prove ™ if n ,
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Suppose X is (bs )-regular over Y at O . It follows at once that X is
(as )-regular over Y at O (ses &3) , so that we oan apply Theorem 3.3 to
show that (a) holds. Suppose (b) fails : we shall derive a contradiction,

By (0.4), (b') must fail for every ¢l retraction onto Y .

Let ‘Wl (resp. ‘Kz) be the local linear retraction defined near O of R"

Y . Then (b') fails for T\'l , and there

0
is a segquence {xig in X tending to O such that Ai = xiﬂl(xi)
EFNER

onto Y (resp. TOY) ’oér:thogonal to' T

tends

to a limit A , and T_X tends to a limit T , anda A T.
The C* diff_‘eomorphism defined near O ,
o mn‘-—> e"

P > p+ (T(p) - T, (p))

preserves { {\ i} ’ }\ and T , and sends Y onto T.7 , hence we may identify

0
Y with B%x 0"™ in R". Write T: RBR® —> &B" x 0™ for the projection
mapping ( X)geeey xn) to | xl,...,xm,O,...,O) . Then, continuing to write {xi}

and X for their images by OK , we have that >\i = xi“(xi) tends to A ’
[xi]ﬂxi”

which is not contained in T = lim T X .
i
Now let A be a linear automorphism of 0" x B™™™ such that A( ) and

. L A=
MTNAE )

srihogoals By applying tihs linsar chance of colrdinatzs

ar

W

(Im ,A) t R ®Y "D we uay supposs that N\ and T are erthogonﬁl. The

function measuring distance from Y is ? : B —p II{a o °? taking -
n

(!1,---,In) to 12 112 . We shall construct a Cl diffeomorphism 4) of
=m+1

B® with 4),8-; ™ = identity , such that the tangent space to X is

sontaired in the tangent space to the fibrs of O<b = Pofb on an infinite
L]

\
subsgquence of the sequsnucs {xi} , S0 that (bs) fails for ( X, Y) at 0.

48 in the proof of Tkeorsm 3.3 , pick an infinite sequence of pairwise

disjointA balls B (xi) = B, with centre x, and of radius r, . Then O ¢Bi
i

1
for all i . We shall obtain (d by perturbing the foliation of RB" - ( B"x 0*";

“7 the level hypersurfazes of () , within each 3, .
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Let H = A’L € Gﬁ__l( R) , and note that H = T®(Te® A)'L because T

and A bave been assumed orthogonal. Since T_X tends to T , and ?si
' i
tends to /\ , 88 1 tends to oo, there is some io such that i2 io implies

A i <. T X . Then for all i 2 21 ve define a hyperplane
i :

Hi-Txe(TxeA)CTm
Xy X
H; tends to H as i tends to . Pick i, 21 such that ‘H -Hl< 1/4
for i?il.

Let & ,> 0. Then it is clear that we can find a ¢! diffeomorphism

WY, + (3, xi)";) 4 equal to the identity near 3B, , suoh that dW,(x;) = I,

(the identity matriz), |3T(W,)(p) - 5114 gu)(p)|< &, ana
\jl(\yi-l)(p) - jl(id IRn)(p)l < (Si for all pe€ B, , and such that for some

ti ’ 0<ti< T,

the image by \J/; of the foliation of B, (xi) by the level
i - ‘
hypersurfaces of P is the trivial foliation by hyperplanes parallel with

= T_ (() (P(xi))) - Novw K, = >\ , by definition of }\i , and so K,

tends to H = >\'L = (1im A ) as 1 +tends to oo. Pick 1 >’11 "such that

2

|k, -8l< 1/4 for a1l 1=i, . Then |k, -H |<1/2 for 13>1,, by

2

our choice of il and 12 .

For all i 7/’12 we now periurb the trivial foliation of Bti(xi) by planes
parallel with K, by piaci‘ng inside B i(xi) a "ripple" : a foliated ball
ﬁt (y,) of radius %ti , centre yi , with the foliation 3"112-1{1' given .
by Construction 3.4, such that x, = xHi (the tangent at x, to the leaf of
the foliation passing through x, is "H ) « In the notation of 3.4, 4;'3;."1(1‘
is the CV diffeomorphism defining the reeulting foliation of B, (x ) , and

ve may extend d)mi K3l by the identity to the rest of Bi .

Set ‘bi = ¢lHl"Kl’ L‘/i"l L > . ;bi is a Cl diffeomorphiam,
-1
and the tangent space at x, to (P q?i) (() (¢1(xi))) is H, vhich

" contains 'I‘x X by definition (we have used here for the second time that
1 .
dy, (x,) = I_ ). Compare the figure overleaf.






54

We have yet to fix 51 « It is easy to verify that sup ldtb (p) - 1I | may

pe B:l
be set as near as we please to sup ld(blﬂi Kl'(p) I s by choosing Ji
PeB
small.
Let & . be chosen such that,
sup |d,(p) -1 | & 2 sup |d¢m1 il (p) - 1 - (*)
peBi peBi

Define @ 1+ BR® © by setting Cblﬁ _(UJ B, ) = identity , and

- i>i2

qD‘B = C‘bi for 1 =i, . To verify that Cb‘isa ¢l
i

diffeomorphism it

is enough to check that d¢(p) is continuous at O , and that d4¢(0) = I -

Given € >0, (4) of Construction 3.4 gives an Sie > 0. Pick

13 > 12 such that ’Hi - H| and 'Ki - H| are each less than isﬁi for
all 124 . Then |[H -Kj| < sy¢ forall 134, . Let d = min §(p/§.
PE Bi
- izé i<i3
Then & is well-defined and nonsero since 0 ¢ QJ B, -
1-12
a iy-1
et p € B bs such tkat Jpl< 8§ . Then o £ By, » and tuus
i=i
2
lade) - 1,1 < max $]ad, (') - 1.(}
L}
P'eB;
>
1,13 .
-K
& 2 max {\a¢\ﬂz SCORRA) (by (*))
IeB
>
1,13
£ 2. 3¢ (by choice of 1; and 3¢ - see 3.4)
= € L)

Hence d¢(p) is continuous at 0, and d$h(0) is the identity matrix.
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By construction, the fibre of €¢ = eocb is not transverse to X at
x; , and hence neither is the fibre of (1\'¢ R ()Cb ) = (o, 9.4:« ) , B0 that
(XT¢,, P¢ )lx is not a submersion near I Hence we have shown that X fails
to be (bs)—regular over Y at O, using the hypothesis that X is not
(b)~regular over Y at O .

This completes the proof of Theorem 5.3 .

Corollary 5.4 : (b)-regularity is a ¢! invariant.

-~

Example 5.5 : Theorem 5.3 is sharp : ¢® tubular neighbourhoods do not
detect all (b)-faults. Consider once again Example 3.6 . There we have a

1 distance functions

(p)-fault, since it is an (a)-fault. However for all C
P {associated to a ¢t tubular neighbourhood ), the fibres of () are
transverse to X near O . For, all limiting tangent planes to X at O
cornizin she z—axisz , gnd 22ar O all soints (%, v, z) on L 1ave X'z
small, and at such points the normal to the fitre of V will be clcse to
(0:0:1). (Toseéthatnear 0, if (=x,y, z) ison X , then x/z is ~
small, notice that the x-coordinate of the points in each barrow B_ is
bounded above b_y mTo while the 2z-coordinate is bounded below by mo o
and T, tends to O as n tends to o and we apprsach O .)

Since we have shown in 3.6 +that all C2 retractions have their fibres

o)
transverse to X near 0O, it follows that for all C~ tubul:zxr neighbourhoods

T of Y , the fibres of (T\'T, ()T) are trensverse to X near O,

Yote 5.6 : A semianalytic version of 5.3 . n

We refer to %[38.] for a nroof that (bs) implies (b) wheﬁ X and Y



are semianalytic. A careful reading of the proof in [38] shows that
semianalytic (b)-faults can be detected by ct semianalytic tubular
neighbourhoods, i.e. we can suppose the maps in the definition of tubular

neighbourhood to have semianalytic graphs.

Note 5.7 : On }1-constant imolies tovological triviality.

In [17] L8 Ding Tring and Ramanujam prove that for a family of complex
hypersurfaces (with isolated singularity) defined by
<, 0% ¢ )—> (¢, 0)

with F( z, t) = Ft(z) , that }x(Ft) constant implies that the topological

F“:(Cnd x. C

tyse of F,"-(0) is constant, provided n=2 . Timourian has proved further
that the family is topologically trivial (see [33] ).

If one could prove that \,\(Ft) constant implied the existence of a ct
tubular neighbourhood T of O x ¢© with the fibres of (’WT,
to F-l(O) near O , one could then apyly the proof of Mather in [21] to

F D ) transverse

give tovological triviality, so removing the restriction n+ 2 . Applying
Theorem 5.3 , we know from the counterexamples of Brian_gon and Speder in [2]

nat imply <aat \F—I(O) - {0 x ck), Ix ET) i3

[

That ;“\(?'c senstant Aoe:
{0 )-regular, and sencs does ot imnly (bs) , and indeed following the proof

in (38._] that (bs) implies (b) it is easy to construct explicit semianalyticq
tubular neighbourhoods T with the fibres of (T\'T, (JT) nontransverse to

F1(0) along the curve through O for which (b) fails. There are though

some tu‘oulér neighbourhoods T for which the fibres of ('\TT,FT) are ‘%ransverse

E S

to FL(0 )

L9 in their examples, since in each caze F( z, ) 13 weighted
homogeneous in z , and so the standard spheres cut F’l(O) transversally.
Thus, even though 'n ‘= 2 , we can derive topological triviality from [21] .

A more promizing way of removing the restriction that n¥ 2 looks to be
a new théorem of Kuo (Theorem 2 in [15] ) which may give tovological

triviality directly from the hypothesis that P*(?t) be constant. This depends
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on whether }A(Ft) constant implies that there is some constant C <1 and a

neighbourhood U of O such that (F/dt (z,1))/|erad F| < C |z /|t|

whenever (z,t)€ U N F-l(O) . We shall leave this question for the present.

6. (b)-regularity and generic sections

Part I . Detecting (b)-faults with generic sections.

The work in this sectien was motivated by the result of Teissier in A[3O]
that " H*—constant " implies (b)-regularity for a family of complex
hyversurfaces. Using the converse result (proved by Briangon and Speder in
£3]) we find that if we have topological triviality, and (b) for gereric
hyperplane sections, then (b) follows. That this result does not generalise

to real semialgebraic strata is shown by the next example.

Example 6.1 : In the open subset of (R3 (with ( x, y, z) as coordinates)

where y°<&£. 1, let Y be the y-axis, and let X be
' , z2_ 6 : , 2.2 6.2 . 2.2 _ 5%
i:::‘).«._.z—y)Zy,z>O}U§y9x=(\z—y}-y),\z-—y).éj,z?O}.

i iz 2 o canifeld, and a semialgsiraic set.

. 2

Oy Jy ¥ + y3)
2

_,X‘( Oy ¥y ¥ )

(07 VA y2"‘ y3)




58

Then X is topologically trivial along Y and , since the non-linear
part of X is contained in a horn tangemt to Y , X 1is (a )-regular over Y .,
But X is not (b)-regular over Y at O : on the curve
K(t) = 9t3/16 s t oy 2 +ﬁ-t3 )
which lies in X , the normal tends to ( 1, O, 3/2) , so that the limiting

tangent space does not comtain Oz , which is the limit of X W(x5)  pop a1l
]xiﬂ'(xi)\

sequences fx].} on X +tending to O , since the radius (y3) of the horn

tends to O <faster than the height (y_2) above Y of the centre of the horn.
Also if x = ®z defines the plane H , which contains Y , then ﬁo(

intersects X near O only if X =0. Thus (XNH, , Y) is nota

(b)-fault (by default) for generic sections Hy containing Y .

Notation : Let (X,Y) be a pair of adjacent strata, and let 0E€YC X-X.
Suvpose Y is a linear space, and that 1TU is orthogonal projection onto Y .
We let J(O(x,Y) (resp. A,(X,Y)) denote the set of limit vectors for which
(v) (resp. (b')) fails.

¢ A

vj’/\:,“s(:'{"" )
v

1]

B ?zi}éx ,{J/’,_?,G Y, A = 1imi}i§_ ¢.T = 1im Txix}

Jixdex, A = lin X W(x) = lin T_ X
fx,] arE e Tenad

No®T) = § A

In Example 6.1, A(X,Y) = {( 0: 0: 1), K (x,¥) = f( 01 a1 D) s b=+0§.
It is easy to see that (when din AO(X,Y) is defined),
dim Ay(X,Y) + dim¥ £ dim J(O(x,Y)
If X is (a)-regular over Y at O , then by the proof of (0.4) that
(b) is equivalent to (a) + (b'),
Koxt)a Ayxn)® 1y,

and hence, -



59

dim K (X,1) = dim Ay(XY) + dimY .

Thus if (a)-regularity holds and AO(X,Y)=;=¢ (or, equivalently, J<O(x,Y )4—;2?),
ain K (%,¥) = aim Ay(x,¥) + dimY.

That is, the dimension of AO(X,Y) determines the dimension of :ko(X,Y )s

so that we can restrict our attention to ,\O(X,Y) .

e say that X is (b )-regular over Y at O for O<Sk<codY ~1,

cod k
when Y is linear (as it will be throughout this first part of §6), if

-

(v ) There is an open dense subset oc of the set of linear subspaces of

cod k
codimension k ocontaining Y , such that if L €l , L A X near O,

and XN L is (b)-regular over Y at O in L .

e must suppose L A}y X to be able to talk of (b)-regularity of X NL
over Y . In the case where X is the nonsingular part of a family of complex
analytic hypersurfaces with singular locus Y , there is a Zariski open dense
subset of the set of linear subsvaces of (complex) codimension k containing
Y, consisting of subspaces transverse to X (moreover the topological type of
their intersection with X is well-defined : see Chapter 1 , §1 of [30] Je
It was this situation which .motivated the work in this section : see Note 6.9 .~

The following theoTem says that (b implies that dim I\o(x,Y)< k .

cod k)
Here dim /\O(X,Y) is the maximal integer r , -1<r<codY -1, for‘ which
/\O(x,f) has a point rear which it is a differentiable submanifold of G§°d Y{&R)
of dimension r . This is the same as the usual dimension of AO(X,Y) when

X is subanalytio, for then /\O(X,Y) is the union of countably many compact
manifolds—-with-boundary of varying dimenions, the largest of which being the

dimension of /\O(X,Y) $ this will follow from the proof of the theorem.

"
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We point out that a section of a pair (X,Y) , as in the title of &6 , is
a linear subspace of r" containing Y , which is assumed to be linear. Thus

Theorem 6.2 describes the extent to which generic sections detect (b)-faults.

Theorem 6.2 3 Let Y be a linear subspace of |" containing O , and

let X be a 02 submanifold (resp. and a subanalytic subset) of &® such

that Y X - X . Suppose there is an open dense (resp. dense) subset .ik'

of ihe set oik (of linear subspaces of codimension k in B" which contain

Y ) such that L €, ' implies LA X near 0 and XNL is (b)-regular

over Y at O.

Then dim /\O(X,Y) < k.

Proof ¢ We first state two assertions which we shall prove once we have

shown how they give the theorem.

Assertion 6.3 31 Let Y C R"® be linear, 0 €Y ,and X a C2 gubmanifold

n

of R", Yo X-X, such that dim I\O(X,Y) = 4 > k.

Then there is a dense subset o[.; of a nonempty open subset oC; of
, such thas if Le L 2

£, :

x, tendsto O as 1 tends to o ,snd 1im %T(%i) ¢ 1mr x.
' xiT('zxis i

there is a sejuence fxi} in XN L such that

Assertion 6.4. s+ In Assertion 6.3 , if X is also a subanalytic subaset of

n d ]
R, we take c(k = o'L.; .
(The conclusion of Assertion 6.4 is that there is a nonempty subset of

d{k consisting of linear sections containing "bad" sequences, and that this

subset may be taken to be open, not merely dense in some open set.) y
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Suppose that Theorem 6.2 is false.
Take Y and X which satisfy the hypotheses of Theorem 6.2 , and yet
dim /\o(x,r) - 1 > k.

Assume for the moment that X is not subanalytic, and apply Assertion 6.3 .

Assertion 6.3 gives ,f_g ’ wh:ioh isg dense in the nonempty open subset
,(; of '(k , and hence meets the open dense subset ‘[k' of °zk desoribed
in the hypotheses of Theorem 6.2 .

Take L e'{k‘! n(l‘: ..,Then LN X near O and (X(\L,Y)o is (b)-regular.

Hence for all sequences fxi} in XAL tending to O,

1im X3 (xy) C 1lim T_ (XnL) .
xi‘[erij X3

But T_(XnL) ¢ T_X for all i, and so 1im T_(XNL) € 1imT_X .
X3 X3 X3 X

Thus,

1im Ty 7C(xy) c MmT_X.
xiTl'ZIi; i

However this is not true for all {'xi'i in XNnL since L€ ,[: , by

Assertion 6.3 . Thus we find a contradiction, stowing that Theorsz 6.2 is

valid when X is not subanalytic so long as Assertion 6.3 is true.

The argument for subanalytic X is similar : the dense subset gfk' of

'Zk must meet the open subset ,(; of "(k given by Assertion 6.4 .

W2 shall have to prove Assertilons 6.3 and 6.4 sceparately, but we first
cet up tha siiuation which is common to beota.

Rotate the coordinate axes so that Y = R "x 0 . Let dimX = d.
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Define ZS t X —> o® x 67 and let G denote the closure of the graph of

1 d
x > ( x7(x), Txx )
Ixmw(x)
. n m n . m m . . 2
¥ in R X G X Gy (we write G, for Gl(R),etc.). Since X is C° , X

is a C1 map. Let p and q denote the projections from an b'4 Grf X Gz onto
R™ and GT respectively. p\x(x’) is a C- diffeomorphism.

If  is a line through O in R™, let { denote the line in B"
given by the inclusion 0" " xR" €«—> R . Then B = {(ﬂ,r)ec‘f x Gg : @ ¢t3
is an open subset of GO x Gg .

From now on we ﬁite A for AO(K,Y) . Observe that

N = acns™(0) n @ x3)) .

Given a subspace L in ‘I’k we can write L =Y x 1, where /i: EAGg_k .
Given 4 &G, , write 4% = §Qec) :€ca} < o] .

Let D, be a compact coordinate disc (of dimension m-1 ) for /\ as a
c submanifold of G of dimension i . Do exists by hypothesis on dim A .

1

Proof of Assertion 6.3:

Lemma 6.5 : There is a dense subset _f,g‘ of the open set

‘,[12 %‘Léosz(’f)*fh/\ on /\(\DO}

such that for all L Géﬂi s LA X near O and there is an oven ball B

such thet (i) B CR" x B and a(B ) < D ,

(ii) _1_13 P = q'l(f)*nGnBan‘l(x)n{zeG : G q"l(i‘)* at z} ,

then q—l @ rne AB N p—l (0) has nonempty intersection with —F-L .

. = £ . .
Assuming Lomma 6.0 , let L & J:c sy and let izi} te a seguence of points
EA

in F_ tending to a limit 1z, in o “(T)*nGnB. np +(0) . Let x; = o(z;)

L 0 L

for all i . Then fxi’i is a sequence of voints in X tending to "p(zo) =0 .

tlso for 2all 4, ™ &L sines q(g(xi)) € (?f}* e Finally

-
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N — -
1im T T(x5) it c = lim ?_ X since (O,Q,’C)EFLCBLC(Ran,

(xiT\'ixi)' i |
by (i) and (ii) of Lemma 6.5, and so (&,C)e& B, i.e. é‘¢1: . This

completes the proof of Assertion 6.3 .

Proof of Lemma 6.5

Sublemra 6.6 ¢ Given a CV retraction r : Dy —> Ao Dy » there is a

dernse subset ¥ of An D, Bsuch that if L e W, (roq)_l( Q) contains

a_sequerce ?ai‘z in p-l(j{)nGr\(iRn x B) tending to a point in p_l(O)riq-l(Do)

suca that (roq)—l(Q) is transverse to G at a; for all 1i.

Proof (after L. Siebenmann) :

Let W. = ?Qe I\/\DO : 3 alq\f e an(r ea_)_l( ¢) with (r oq)_l( ¢)ANa !
at ag and 0< |1\‘(p(a§))|< 1/N} , for N a mositive integer. alg is inside

a region R.. of radius 1/N around p'l(o) « W, 1is open since transversality
P

N
is an open condition. Wy is dense (and hence nonempty) by Sard's theorem
1

. -1 )
applied to the C~ map (r°Q)’GARHn q-l(Do) . Note that GnaR nq (D,) is

noremrtr since,

A - 1

(IneAz,neTT0,5)) ) .

. 5 /
Y -“DO)C‘J_\Q
. . 1 R sy s .
Because An Do isa C manifold, it is locally compact and Hausdorff,
joe)
- 0y - -y . pmy . - - - - - ~ e -
and nence is a Daire space. Thus i = f \"N is dense in /\(\ Dy » Given

N=1
L € W , there is a limit point of ie}g} in p‘?(o) since p—l(O) is compact
(»71(0) G T €% ) . This limit point will be in q‘l(no) since D, is

alseed. Tien 4 catiafies tha nrorerties required for Sublemma 6.6 .

Now we can prove Lemma 6.5 .

Given L in ,{_E with (I)* A N at € in /\f\Don(ﬁ_')* , there is a
neighbourhood U of L in the k-dimensional family in gf,; whicﬁ is defined
by tiae (k+1)-dimensional linear subspace orthogonal to L and containing the

lire ¢ , such that if L'e U, (i) AN in An Dy - {(E’)*:L'eU} o
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defines a foliation of codimension k +transverse to A near e .

Choose a C' retraction T ¢ Dy —> An D, such that r_l(Q_ Yo (T)*
and for all (' in some neighbourhood of { in A NDy » r-l( )< (Li)e
where L' is the element of U such that ' € (L7)* . By Sublemma 6.6 , ;
arbitrarily near 0__ there igs some ' € W . Hence arbitrarily near L in

oﬁ; there is some L' (in U ) with (£9)* A A in D, and such that

0

-1, .~
a 1(\L| )¥) contains a sequence of points {ai? in G n(mn x B) tending to a

limit &

, in an'l(o)nq"l((f,")*) such that for all i , q"l((i?‘)*) is

-

transverse to G at a; . Choose an open ball BL' around 84 such that

a(8,)e D, and B, c R” x B. Then (i) snd (ii) of Lemma 6.5 are
. — (o' -

satisfied since a, € F ,Na 1((L')*){\G NB.,ND 1(o) . This completes the

oroof of Lemma 6.5 .

>roof of Assertion 6.4 :

Lemna 6.7 : There is a compact coordinate disc D for I\ as a submanifold

of dimernsion i in GT y with Dc< Int DO s Such that if T is a C1 sub-

:a . ., . . N . ;
“anifald 0T nf dizengiza (m-k-=1) -hich iz *ransvires 5 f\ on D.’\l\ ’

—— e 1 oo Aottt Siutioted

N . . \ n
cuen tnere is an open ball BTC R™ x B such that,

(i) ’B‘Tcmnxs and aq(B;)c D, -
(:1) 7, = q‘l(T)nan'l(x)nBT is a C' submanifold of G of

codimension k .-

(1ii) B = q—l(T)f\G np’l(O)nBT e ""T .

ie leave the proof of Lemna 6.7 for the moment.

r o - » ( KA = oo od

et efk - {‘Leik : X*A N on DJ. Let N 2(Fipyw) for L
in o . By Lemma 6.7(ii) and the fact that p| y(x) =@ ¢! aiffeomorphism ,
by is a ¢! submanifold of X of codimension k , and OGF‘.L by (iii) .

. ’ - n ~ . . - k)
t=o f x £ M, then qf x(t)) € (L)* by definition of ¥, and hence
~ vad
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a Y (x))=T vy definition of ( )*, so that x & W(x)xLe¥xT = L.
. o)
Thus MLC L for L e °£'k .

Let fxi} be a sequence in ML tending to O as i tends to oo. To

complete the proof of Assertion 6.4 we must show that

2 = lim iﬂ.(xi) <t 11mT X =T .
Jx; wix, )| i

Liow for all i (xi,a(xi)) e F(ﬁ)* sy by (ii) of Lemma 6.7 and the definition
\ , - - - n .

of M . Hence ( O, j'l.lmzs(xi)) =(0,0,T)e F(]\:)*C_‘_ B(ﬁ)*c R x B using

(i) and (ii) of Lemma 6.7 . Thus (¢,C)€ B, i.e. J ¢ T , by the

definition of B . This completes the proof of Assertion 6.4 .

Proof of Lemma 6.7 : First, G is subanalytic in " x G? x Gg + For

we can partition X into a locally finite set of real analytic submanifolds

by [12] (See also [10] and [40] ) , then complexify each real analytic
vart, apoly the argument of §17 in [46] , take real parts, and finally take
Closures, using that the closure of a subanalytic sét is subanalytic [12)

Tne closurss match up since X is C2 .

Then 279ly Lemma 4.3.3 of {-12] to G <o give a (b)-regular
civatifization ‘j, S 3 susch that Ta p"lf’\"[) and ancl(.’_?) ars sach *ha
union of strata of S . since A = q(c (\p"]‘(o)(\(ﬁr1 x B)) has dimension i
there is some stratum S of g, contained in an-l(O) such that
dim (q(sS)n Do) = i . By the implicit function theorem there is an open subset

V of S contained in R x B such that q(V) AnDp, is a ¢! submanifold

of dimension i , and q|v has rank i . Let D be a compact coordinate disc

Pl

s v n
- X i/

hY

RSy

P P T, o - T L i
A 8 & sucmanilcid cf dimensicn L o,
s

. m
Suppose ’I‘ is a C submanifold of dimension (m-k-l1) in Gl s transverse
to N on DA A . Then q_l(T) is transverse to S on V since qtv has
constant rank. Let z € V f\q_l(T) « By (a)-regularity of g there is an open

ball By, in ®R” x B such that z e(BTns)c_v and such that q"l(T) is
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transverse to every stratum of g: within BT « We may further suppose that
q(BT)C D, proving (i) of Lemma 6.7 .

By definition of G , there is a stratum Sl of 9 , not meeting p_l(Y) ,

such that ze& 3§, , i.e. SNF) + ¢ . Then by 10.4 of [21],

-1 -1
qQ (T)nsmaT < q (T)/\SlnBT .

Repeating *.ae argument given above for S for each stratum of 9, in p"l(O)

adjacent to S we find that q_l(T)nG np-l(O)nBT is nonempty and contained
1

in FT y Where F.\‘I‘

submenifold of G of codimension k . This proves (ii) and (iii) and:

= q’l('r);\cr\p"l(x)naT , and that F, isa C

completes the proof of Lemma 6.7 .

We have now completed tie nroof of Theorem 6.2 .

iote 6.6 ¢ (1) In the proof of Lemma 6.7 we cited the result of Mather
(10.4 of [21] ) that if X is (b)-regular over Y in R® and S is a
suvmanifold of K" transverse to Y then SAYC SA X . It is anusing that
for complex analytic X , Y , and S , this follows from (a)-regularity : see
the appendix of [25] .
{(2) If 1, T =re complex zmalytic in &~ w2 obtain the same
tueores, but involving complex linear subspaces of complex codimension k , and

with the conclusion that dimy N (X,¥) < k. T

liote 6.9 : Ih the context of a family of complex hypersurfaces with iéolated
singularity, if one could prove that M(Ft) constant implies that
n, AJF o) - (0x ), 0x 0 ) *+0,
then using Theorem 6.2 we would obtain an inductive proof of the result of
Teissier that M¥-constant implies (b)-regularity for the pair
(F o) - (0oxek), 0ox &) ( [30])- )
In the only known examples of a [\-constant family which is not (b )-regular

(due to Brisngon and Speder), aing Ag (7 1(0) - (0x €) , 0x 6 ) > 0.
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3 + txy3 + y4z + z9 (due to

For example, consider F( x, ¥, 2, t) = X
Sveder. Cf. [2] ) . Analogous to the calculation in [2] we find that (b)
fails on a curve B(u) = (ﬁus,o(uB, h(o(uB)o(u3, u ) where h: ¢ —>» ¢
satisfies h(0) =1 and h(y)y’ + (h(y)y)’ = y° ( b exists by the implicit
function theorem), and oC , ﬁ are complex numbers defined by the equations
[ o<3§ s 220, 3[82 + 0 = 0. The limit of orthogonal secant vectwrs
N is (0:1l:1) and the limit of normal vectors I is
( O: 3F> + 40(2 : 0(2) . }\ is not contained in the limiting tangent space
orthogonal to VA since ‘Bﬁ + 50(2 + 0.

Now consider the curve b’e (u) = ( ﬁa u5, 0(9 us, hg (o(e u3)0(e u3(1+ 8), u)
where 2 € ¢, |10l < & for some vositive £ < 1, and he : ¢ —> ¢
satisfies he(o) =1 and he(y)y5(l+ 0) + (he(y)y(l+ 9))9 = y5(1+ 9),
and 0(9 ’ @9 are complex numbers defined by the eguations
B> + xp> By +(1+9)u35= 0, 3ﬁ92+ de3= 0 . Then AB - (0:1:1+8).
and Ve = (0 3&9 + 4(1+9)0(92 : 0(92) . ?\9 is not contained in the
limiting tangent space orthogonal to V9 since 3§e + 5(1+8)0(32 =%+ 0 for
small 9 , 1ee. for & sufficiently small. As 9 varies we obtain a complex
l-<imensisnal subset of /\'O(X’Y) and thus  dim, ;\O(K,Y),) 1 . In Jact
dimg ﬁb(x,Y) = 1 here since the family is equimultiple (with multipliecity 3),
which is the same as saying that (XNL,Y) is (b)-regular for generic complex ~
linear subspaces L of codimension 2 containing Y , or again that X NL = ¢

for generic L .'(Recall X = F ~(0) - (0x€), and Y = Ox €, the t-axis)

Pomariz £.10 ¢ It would te interesting %o have a converse to Theorem 6.2 ,
i.e. a proof that dim A < k implies (bco a k) , when generic linear subspaces
of codimension k are transverse to X . We consider a weak form of such a

converse in the second part of &6 .
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Part II . Preservation of (b)-regularity under generic sections.

Let X ,Y be C' submanifolds of R" , and 06 YC X - X » We call a

Cl submanifold of dimension (n-k) containing Y a seoction of codimension

k (cod Y< k< 0).(This term was reserved for linear subspaces in Part I.)
Denote the set of germs at O of seotions of codimension k by 3 X ° In the
notation of Whitney [46] [47], the set of limits of tangent planes to X
given by sequences on X tending to 0 is T(X,0)c Ggim X( R) . Let \‘S;
denote the subsef of skc consisting of germs at O of sections S of .
codimension k such that TS is transverse to every element of ‘T(X,0) in
Td'Rn . We give ﬁk the tovology induced from the topology on Gz_k( ‘IR) by

the map G l-—é’I‘OG .

Theorem 6.11 : Let X be (b)-regular over Y at O, and let S be a

*
renresentative of Gésk . Then S AN X near Q and XN S is (b)—reggla.r

over T at O.

Iroof : It suffices to prove the result for k = 1 , since we may consider
a2 section of codimension k as= the interssction of k sections of codimensicn
l1.Llet O ¢ S; y and let S Dbe a representative of ¢ . It is clear that
S AN X near 0 s 80 that it makes sense to test for (b)-regularity.

Let f xi} and fyj} be sequences in X N3 and Y tending to O so that

*i%i tends to "\ , T_(XnS) tends to T, and T_X tends to T .

P S

’xiyi' 1 : i

TOS A T since S € :S; , and clearly 'C'S < Cn‘I‘OS « Thus ‘Cs = TN TOS .
Since X is (b)-regular over Y at 0, NZ=T .But § isa C
submanifold, and thus >\c: T()S , and AC TS , showing that X NS is
(b)-regular over Y at O , and complgting the proof of the theorem.

if f; were open znd dense in Sk (in the topolozy given by the tangentis
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at 0) , we would have proved that (b) implies « Our next result

(bcod k)

describes sufficient conditiond for this to be so.

Theorem 6.12 ¢ Let X be (a)-regular over Y at O in R" , snd let

T(X,0) have a finite partition into ¢! submanifolds of dimension less than

- %
or equal to dim X - dim Y - 1 . Then Sk is open and dense in \'fk .

Troof ¢ It suffices to prove the theorem when k =1 .
Let codimY =m, dim X - dimY = p . By definition of the topology on
%, » it suffices to show that §Pe Gh_(R): TY< P, PhT, V Te T(x,0)}

is oven and dense in {Pe Gﬁ_l(lR) T Y P} .

Lemma 6.13 : Let KX be a compact set in GO( B) partitioned into a finite

number of C' submenifolds of dimension £ (p-1) . Then

faech (m):ahk, VK € X} is open and dense in 6p (R) .
Assuming Lemma 6.13 we obtain the required resuls since if T € T (X,0)
then TYCT by (a)-regularity of X over Y at O, and since T(X,0)

is comnact, veing a closed subsst of a cempact space.

Proof of Lemma 6.13 : We assert that if xl is a C' submanifold of
G;( R) = G: of dimension < (p-1) , and we are given K € :K_L and a compact

coordinate neighbourhood N of K in K, then iqecﬁ_l: Qhk', VK'e NZ

1
is open and dense in G:—-l . For SQG Gz_l : K < Q} has dimension (m-p-1) ,

s . . '. s ,.,m—p ; i} - 1 3 ] .
since it is isomorphic to Gy 7 . Thus {Q E.Gm_l.3 K'e«e N with X'cC Q}
has dimension (m-o-1) + dim.xl 4 (m-p-1) + (p-1) = m -2, and is closed.
Hence its complement, which is {Qe G:-f QAhAK' YVK'e N}, is open and dense
. m .
in Gm—-l . «

llow cover 3( by a countable number of compact coordinate discs for each

m
submanifold of the finite partition. Since G, ; 1is a Baire space we deduce
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that {Q e G::: 1 ¢ uh Kk VX eJ(} is dense. Since J{ is assumed to be compact

it is also open. This comvletes the proof of Lemma 6.13 and hence of Theowsm 6.12.

Mote 6.14 : If X is subenalytic, ‘T (X,0) is also subanalytic. (Intersect

the closure of ((x,Txx) :t xX€ Xz in R x Ggim 5 » Which is subanalytic by
Lemma 2.7 , with O X Gg, ) Then T(X,0) has a locally finite partition

into C1 submanifolds by [12] , and the partition will be finite since <€ (X,0) ,

a closed subset of a compact space, is compact.

Examples 6.15 : In Examnle 6.1 , 1 = dim<{(X,0)> dim X - dimY -1 = 0.

For an algebraic example consider Example 4 (1) on page 4 of the introduction.
Again 1 = dim T(X,0) > dim X - dim Y = 1 = O . In both cases Sl is not

dense in Sl . However (b ) does hold, so that the following result,

cod 1

which is a consequence of Theorems 6.11 and 6.12 , is not sharp.

Corollary 6.16 If Y is linear, X is (b)-regular over Y at O, and

T (X,0) has a finite partition into Cl submanifolds of dimension at most

dim T - dim¥ =1 , then X iz (o 4 k)—rermlar over 7T a2t O .
——— — QO < ——

vroof : Apply Theorems 6.11 and 6.12 , and note that the tovology on

. n
Sk was that induced from G, ( R) . .

Remark 6.17 = In [3] , Briangon and Speder prove that (b)-regularity
. . * . .
implies }k -constant for a family of complex hynersurfaces with isolated
singularity. They show that (b -regularity implies that \J\n+l is constant ,

¥* .
then, essentially, that 3 . 18 open and dense in Sk y 8o that avplying
. X

Theorem 6.11, one obtains the constancy of the rest of the Pl .
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7. Stronger generic regularity.

Let X bea C1 submanifold of Rn , and a subanalytic set. Let Y be
an analytic submanifold of R" such that 0 €YCX - X .

According to Verdier [40] s X is (w)-regular over Y at O if,

(w) There is a constant C > 0 and a neighbourhood U of O in R" such

: ¥
that if x€eUANX, y€UNY , then dngx,TyY)sc\\x -yl -

Verdier oroves that (w) implies (b) . Here we give an example showing
that (b) does not imoly (w) , even for algebraic strata.
Example 7.1 : In (R3 with ( x, y, t) as coordinates, let V be

€y4 = t4 4 x3§. Let Y be the t-axis, and X be (V -Y).

X X
A A
| / LK
vy K o N 0
Figure ¢t t = O . Figure : t+ 0 .

From the figures it is clear that V 1is a topological manifold near O,
and in particular that X is topologically trivial along Y . It will follow
from the calculations of &8 +that X is (b)-regular over Y at O . In fact
in this example X is C' trivial along ¥ : V is a C' submanifold. We show
that at O +there is a unique limiting tanéent plane, with normal (1 : O : O )

~— a chart for V at 0O follows easily.

¥ See Addendum 7.13 for the definition of d( , ) .



The normal to X at (%, ¥, t) = ( x, (t%x + )4, t) is
(22 + t4 1 —a(the » )41 atPx) (7.2)
Since X is algebraic it suffices to consider curves on X +through O
defined by an analytic arc 5(5) = (x(s),t(8)) , s €& [0,14] . If [t(s)/x(s)|
is bounded as s tends to O , the normal is
(3 + Pyx)? a3 L34 4P )
and tends to (1:0:0 ). If |t(s)/x(s)| is not bounded as s tends to

1+9

O we set x = ct + {higher terms in t ) , & > 0 . The normal becomes

36242 L w4 L a(et?tR . 3y3+38 )3/4 : 4ct9)

disregarding higher terms.

0=1: 4<18/s - nin ((15/4) + (39/4) , (9/4) + (98/4))<5<4+8 ,

hence the normal tends to ( 1 : 0: O ).

B<1: 2+20 < (9/4) + (P/4) < (15/4) + (38/4) , and so once
again wve find (1 : 0: 0 ) .
A
= (9/4) + (98/4)

\((15/4) + (30

41 ,
34 1
2] ! .
I
1} L
I
{ N

PFigure ¢ Justification of the inequalities when e <1.

(w) f2ils : Consider ths curve 5(3) = 52, (256)1/4, 8 ) on I . oo
(7.2) we find that the normal *o £ at K(s) is 494 : -4(2s6)3/4 : 4s5 )

and hence that d(T X,TOY) = 435/((4s4)2 + eee )% ~ 3 . Now

x(s)
"8(5) - 'ﬁ:’(z(s))“ = “(529 (296)1/4, 0 )“ o 83/2 . Bence X fails to be

{(W)-regular over ¥ =2t O .



s a consequence (w)-regularity is not a C1 diffeomorphism invariant.
ey s 2 . .
However it is olear from the definition of (w) +that it is a C diffeomorphism
invariant, or more vrecisely that it is invariant under a C1 diffeomorphism

Wit a Lipschitz derivative.

-ote 7.3 : No example has been found so far of complex analytic strata for
whicha (b) holds and (w) fails. In the special case of a fanily of comnlex
ayversurfaces with isolated singularity varametrised by Y it is known that
(b) ané (w) are @guivalent. This is because (w) is a trivial conseguence
of (c)-cosecance as defined by Teissier in [32] . It follows from [3] and

[31] that (b) implies (¢ )-cosecance.

Zow we suopose that Y is linear (apoly a local analytic isomorphism at
0 to R" )e Let v denote orthogonal projection onto Y .

‘e can reformulate (w) by sazying that for x , y near O, d(TxX,TyY) :

ix -y

is tounded, &nd so in particular d(TXX,TOY) is bounded for x near O .
(EEEENEY |
rher it is clear that if { is (w)-regular over Y at O then (X,Y)O

satisfies the ratio test (r) of Xuo (defined in [14] ) :

(r)‘ Given any vector veEe T Y, 1lim ]‘Wx\v)“lx" = 0.

0
rex T - wEN

Jere TYX denotes orthogonal projection onto the normal space to X at
r, so taat [TW_(v)]| = a1 Xy v)

:{uo proved in [14'] 5

Jheoram 7.4 (Kwo) ¢ (1) (r) dimplies (b) ,

(¢) (b) implies (r) if Y is of dimension one.




4

froof ¢ In each case the proof in [l4] uses the curve selection lemma with
the assumption that X be a semianalytic set. Using Lemma 2.6 we can use the

same vroof when X 1is a subanalytic set.

Corollary 7.5 ¢ (w) implies (b) .

Examnle 7.6 : For an example showing that (r) does not imply (w) apply

Theorem 7.4 (2) to Example 7.1 .

Actually we can make more precise what was proved in [i4l . It is shown

there that (b) is equivalent to the conjunction of (a) and

(x1) 1f x(t), te [0,1] , is an analytic arc on X with ¥(0) = O, then

11”‘ I O] ol , where v is the tangent at O to the arc in

N TRE Q)

Y defined by 1tozs(t) (when nonzero) and T, is projection onto the

normal space to X at 8(t) .

It is obvious that (r) implies (a) + (r') , and that (a) + (r') dimplies
{r) when Y is of dimension one. With this in mind we now give an example of
a pair of semialgebraic strata, with Y of dimension two, X (b)-regular over
Y , and where (r) fails to hold for a curve 2‘(t) and a vector Vv spanning
the orthogonal comvlement in TdY to the subspéce snanned by the tangent at O
to the curve in ¥ Zefined &ty T?ogit) .

This example, discovered at Oslo in August 1976 (see [3?] ),gives the
first (b)-regular pair of subanalytic strata which fail the ratio test (r)
(introduced in 1970) « It is an open question whether real algebraic or complex
analytic examples exist, although from the érgument for (w) in Note 7.3 we

see that (b) is equivalent to (r) when X is the nonsingular part of a

complex hypersurface.



Exﬁmnle 7.7 : Let ( x, ¥y, 2, w) be coordinates in g4 , and let Y be
the plane {z = w = 0} . Define the semialgebraic set,
X = fu=0,2(:%+ (z-3))=v®, 2>0}
OUfs = (2 + (2 - )2 - 5%%/2)% , 2% + (2 - 5°)%) &P, 2> 0]

where p and g are positive integers satisfying

2p £ g £ 3p . (7.8)

(For example let p =2 ,q =5 .)

Observe that because the algebraic variety defined by the equality in the
second vart of the expression for X has fw = O} as tangent space at every
point of its interséction with {2(){2 vz - y°)%) = yng , X isa c'
submanifold of RY (compare Construction 2.2) .

k4

N

Assertion 7.9 : (b) holds .

Proof : We show that there is a single limiting tangent 3-plane for
Sequences on { tending to O , namely {W‘= O} » It suffices to consider the
voints on {qu = (x2 - y°P 2)22 (with y fixed) where dzw/dxz =0,

since at these points the normal is furthest from the (w)-direction (cf. 2.2) .



- y%%/2)%}

tworst!

normal vector

¥

\
D D Vs
-y/ 2 0 v/ 2
Figure : z = yp y, ¥ fixed.

dzw/dx2 - 0 when 6x° = y2p , and the normal vector is (1(4/3[g)y3p": -y%)
which tends to ( 0O : 1 ) as y tends to O since g<3p by (7.8) . Hence
fw = Oz is the unique limiting tangent plane.

At the points on X where the secant vector defined by orthogonal projection
onto Y is furthest from the z-direction , the secant vector is contained in
the tangent svace to X . Hence Oz is the unique limit of tangent vectors,
and (b') holds. (z) holds (since {w =0, 3 = O}(:i% = d? ) , so we can
apply the result that (a) + (b!') is eguivalent to (b) (0.4) to show that
(b) holds, proving the assertion.

’ \

Assertion 7.10 3+ (r) fails to hold.

Froof : Consider the curve X (t) = (¢PAG , t, °, t%7%/9 ) unich lies

on X . The normal vector to X at 2‘(t) is,

( (4/W6)t° &+ ((20/3) - (0/9))t*FL s 04 =42 ).

Let 1Tt denote projection onto this normal space. Then
3 3
| L 0x)) A P 2P

N/
"(t3p , t4P"‘l ,.0 , tQ)“ | 'tq

rince, by (7.8) , a<3p .




L ()1l S ORI ) |
hy(t) - Wiy )M I o , o0, t4*Yol 42
Hence the ratio (as in the definitior of (r) ) becomes -7 %*1 | which

does not tend to zero since 2p< q by (7.8) . This proves Assertion 7.10 .

Finally we check that (w) fails to hold.

a(r )~ $3P-e

> (67 Ty (4)
Ay (8) ,W(Y(t))) ~ *

so that (w) fails exactly when 2p<q .

liote 7.11 : The vroof of Assertion 7.9 gives in fact that X is a Cl
manifold-with-boundary. Basing the construction on {w = (x2k -1/2 )d},

1< k<o, instead of k = 1 as here, we can build similar examples with X

: 4

a C° submanifold and semialgebraic subset of R

a submanifold-with-boundary of class ¢t s hot c? . (r) , like (w) , is a

. However X will still be
C2 diffeomorphism invariant, but not a Cl diffeomorphism invariant. In this
context note that there is no 02 version of the lemma showing that wings are
generically submanifolds-with-boundary of class Cl (see [A] ). Hence the
vroof in [43] that (b) is generic does not apply directly to (r) or (w) .
(As 2 counterexample to a 02 version it suffices to take the product of

(R and a semi-cubical cus»n in @3 .)

Note 7.12 : In \[14] there is an example of Kuo showing that (r) does
not imply (b‘) if X 1is merely smooth. Kuo has also an examnle where Y is
l-dimensional, (b) holds, and (r) fails, and of course X merely smooth
(private communication). This is why we assumed subanalyticity of X from the

beriming of §7 .

-
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Addendum T.13. If A , B are vector subspaces of R” y let

a( A, B) = sup |b -ﬂﬂk(b)'
beB
{bl=1
where TIA is orthogonal projection onto A . This is not symmetric in A and
B.Clearly d( A, B) = O if and only if A 2B .
(Compare [14] , [40] , [46] , (17] in all of which the order is the reverse

of the above. )



CHAPTER 3. COMPUTATIONS

During a talk delivered at the Gottingen Catastrophe Theory Conference in
Octobver 1973, C. T. C. Wall suggested that it would be useful to determine
Whitney regularity in the following case : X= {ya = tbxc + xdz - {t—axis} in

ﬁ3 or ®3

y T = {t—axisz s with a , b, ¢, d positive integers.

e determine (a)- and (b)-regularity completely in the complex case and
record this together wih the calculations for the real case that have been made.
These calculations have proved useful in »roviding Example 7.l (showing (v)
to te strictly weaker than (w) even for algebraic stratz), and in answering

several :uestions posed by J.-J. Risler concerning algebraic stratifications

not regular over ¢ , yet regular over R .

The tables below collect the results which are obtained.

Key ¢+ - regularity holds ;3 X - there is a fault at O 3 ? - undecided .~

Table 8.1 : (a)-regularity over € .
a = l / ‘(806)

i€c Vv (8.7)
agb v (8.12)

a>1 c<d<b+c . d < ac/(a~b) v (8.12)

d 2ac/i2-b) X (5.12)
b+cgcd X (2.3)



Table 8.2 ¢+ (a)-regularity over R .

a2 =1 Vv (3.6)

facec Vv (8.7)

a<b Vv (8.11,8.12)
c < d< b+c d <ac/(a-b) ¢ (8.12)

d=c¢ (2) J

a>b b =0 (2)
d2 ac/(a-b) d=c+l (2) X

a>1 b= 1 (2) X (3.13)
d=c+l (2) X (8.9)

b=0 (2) a<b v (8.11)

la=c (2)J b < a < bic
\ Prc <d (2) * brc € d 2
e & a X (8.10)

=1 (2) X (3.9)

Table 8.3 ¢ (b)-regularity over ¢ .

a=1 v (8.16)

d<c V (8.17)
a>1
c<d X (8.18)

Table 8.4 : (b )-regularity over R . (Not (b) )

a=1  (8.16)
a&ec v (8.17)

d<a J (8.20)
a>1 d= o (2)
- b =0 (2) agd 7

c<d d=c+l (2) X (8.19)
1{e) X (&.13)

til

Bo)

d =b+c Vv (8.15)

Lote 4.5 : it is easy to show that if (a) (resp (b'), resp. (b) ) holds

over ¢ , then (a) (resp. (b'), resp. (b) ) holds over R .
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Write £ x, ¥, t) = -y + £°x% + x% . Then (a) holds at O if and

only if dr/dt( x, y, ) tends to O as ( x, ¥y t) tends to O om X,
|gradf( Xy Jy t)'

i.e. if and only if at least one of Bf;at and 3f§3t tend to O . Ye have
_ f/ax Py :

that grad £ = (9f/3x ,3f/dy ,?f/dt )

- (de.—l - cxc—ltb _ a-1 , btb—lxc ) .

?

3.6s (a) holds if a =1 .

At = btb_lxc

f ——2 0 as X =—> 0 .
f/ay -1

~

8.7 ¢ (a) holds if d<c .

ie may suppose Offdx =E 0, for fdx is identically zero only on

gdxd_c + ctb§= 0 , and since d < c¢ , this surface intersects X in an isolated

voint at O . Then \bf atl’\/ tb_lxc = tb—lxc’d+l —> 0 as
'bffax dxd_l+ cxc--ltb Qs cxc—dtb

X tends to O 1f da<c .

.8 2 (a) Zfails over T if d2 b+ e -nd a>1,

e Pt i vh —— i b

Consider the curve on which 9fRy = 0, i.e. y = O = xc(tb + xd-c) .

Let t° = = x¥C, Then VBt = b 0=1x® o x°+(8-e)(p-1)/p
DIx 4x0L | ogC-1y0 RS N B
~ xc—d+1+(d—c)(b—l)/b

x(b+c—d)/b > 0
; C emes : ' b _d-c
if d2 b +c . Hence if d=2Db + ¢, (a) fallson{y=0-t + X .
8.9 :+ (a) fails over 2 if d>Db+c , 3 >1 znd either »E 1 {mod 2) or
(d=0) =1 (mod 2) , or both .

As in 8.8 ftb » - xd-O}!\ X has a branch through O .
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~

8,10 : (a) fails over R if b+c<g a , brcL d , b =0 (mod 2) and

d=c¢ (mod 2) .

d£py == 0 since {tb = - xd'cgn X has no branches near O . Let x = At ,
A % 0. Then 3f§6t ~ x°+o-1 ~ xb+°_l-(b+°)(a-1 )a
»f (\y (xb+0 + xd)(&—l )/8. ) x(b+c-—a)/a
Thus ¥f/0t ——> O alomg {x = )\tz if a>» bic .
f > y -
Also  J3f/at A, x0ro-1 on fx = At¢
df/ox thd--l . cx'D+<‘r-l
x°*° 1 gince a3 bec
. _b+c-1l
CX'. ‘
-+> 0.

Eence (a) fails along fx = Xt} .

3,11 : (a) holds over R if a<b, b=0 (mod 2), and d=oc (mod 2) .

df/dy == 0 since $1°2° + xd.} #+0 except at 0 if b and (d-c) are
even. £/t Av £2 140 < 215 . to-1-b(a-l )/axc/a
dipy (tbxc N xd )l—lfa. (tbxc )l-l/g t(b"a )a Xc/a

—-) 0 if aéb.

8.12 3+ Let ¢ <d<b+c . Then (a) holds over € if and only if either

L 4

aZb or, a>b and 4< ac/(a-b) .

after curve selection (2.6) we can reduce to the case of curves along which
\t/x] is bounded or unbounded es x and t tend to O .
(i) }t/x| is bounded. Then ¥£f/dx == 0 and

/31 ~ tb+c—d (t/x ld—ca-l
of/dx d + ct‘m»c-d—l (t/x)d—c

g O,if C<d<b+0.

{(ii) |x/t| tends to 0.

gg 3t A (x/t) . -)vo if dx_d“’/ctb -+ -1.
x c + dxd_o/t



Let ax¥%/ct® — -1,

Then £/t 4010 Lo+(d-0)(b-1)/
2Ry (+°° 4 xd)l-lfa ((1-4/c )xd)l-l/a
Ao 5O+(d-0)(b-1)/b - d(a-1)/a since 4> o
~ x(aflc—d(a-b))/ab which
-> 0 ’if d(a-b) L ac
-+» 0 if d{(a~b)=>ac , when (a) fails
d~c b

along dx +c¢ct =0,

5.13 : (a) fails over R ~if c<d <b+c , a> b, d >ac/(a~b) and either
=1 (mod 2) or d=c+l (mod 2) , or both.

as in 8.12 , (a) £fails along ax%C L et? - 0.

.14 ¢+ (a) holds over R if c<«d<b+c, b=Z0(md2), d=c (mod 2) .

G.12 shows that (a) fails only for curves on which d_xd-c/ctb — -1,

and these curves have no voints on X near O if b and d-c are even.

2915 ¢t {2) Dholds over R if b< a<Lbic=da, b=0 (mod 2), d=c ‘mod 2) .

(i) |-'I/"‘0l vounded near O .
BNt AU ;o-1-b(a~1)/a _c-c(a-1)/a _ (b-a)/a _c/a ]
PNy A (a-b)/a _(brc-a)/a
—>» 0 if b< a<g b+c .

(11) |t/x| tends to O .

Suppose t tends to x° , O >1 .
}f t = btb-lxc AU x°+b9-9-d+l = x(b-l)(e_l) if d = b+c .
/5% 28T L ogo-1.0

- 0.

This completes our calculations of (a)-regularity —— the inquisitive reader

"

can work out for himself the remaining cases of (a)-regularity over R : when

b<adb+c<d and D=0 {mod2), d=c (mod 2) .



(b') holds at O if and only if x(3£/3x) + y(EAy) tends to
T3 N 1(5%/5%, 3535 SET5E

O as (x,y, t) tenda to ( 0, 0, O) &

8.16 : (b) holds if a =1 .

x(9£x) + y(ALL =) (d-1 )xd + (c-1 )tbx°
(3 )ITQER x,2Ep y L3 (=, 5 )l .[(f/>x, 1 ,>E/2%))

= {d-1 )xd"1 + (c-1 )tbxc—l

W(1,y/x ). l(bf/bxylaﬁéffat)l
- 0.

liow use (8.6) and (0.4)..

3.17 ¢+ (b) holds if d <ec .

Since by (8.7) (a) holds, by (0.4) it is enough to show that

x(df/dx) + yR£fBDy) tends to O, i.e. (c—a)tbxc + ((Sl-a)xd tends to O.

K=,y ). 1C2£/8x, 350 y )| fee [ | ocaaes |
Since d < c¢ , it is enough to show that xd tends to O when d4ca ,
‘.\.\..4
b_c

and t°x tends to O when d = a .

lo\ ‘cco‘ d

-1
. d b4
(i)a>a .
c-1,b d-l’_a(tbxc+xd )l-lfa. )‘

X =
[y MR %AY)l 1Ly9/x) [ M(ex™ "t vax
x(d/a)—l

[, 5/x) A(en ey —a(tPx® S 4 1) 22y| -

a4

~—>» 0 as d4d>a , unless

t°x%"% L 1 tends to © , but there are no such points near 0 as d<oc .

(ii) d<a . x% = x
I(x,y )| 1(d£/3x,3£/dy )} [(x,-(tbx°+xd l/a.)l' l(d+cx°‘dtb,. Y
- 1-d/a
((x,-(tbxc'd+ 1)1/8‘)§.‘;(d+cx°"dtb, ol
—» O since d<a, and d& o .
(iii) d = a . 4Px® . 4P x4
(x5 4 Wex®tePax®t ey 1(2,9/2)) Ket® + a,.00)]

—» O sinoce d<c.



3.18 ¢+ (b') fails over € if 0<d and a>1, and (a) holds.

y=0 and ¥Ry = 0 on 2% +x% - 0 . Then
x(f/ox) + yQRE¥y) = (a-0)x”

x, 3y N ACEAx,EAY ) ,(x,O)l.kctbxc-l + d.Id-l, O)‘
= (d-c)xd_l

[(1,0).}((a-c)x®2, o)

—>» 0, so (b') fails, and hence (b) fails.

6,19 ¢ (b') fails over R if a>1l, c<d and either b=1 (mod 2)

or 4= c+l (mod 2) or both.

N ftbxc £ x2 2 O’% has real branches through 9 if b or (d-c) is odd.

: (b') holds over R if d<a , b=0 (mod 2) and d=c (mod 2) .

x(df/dx df (d—g)x + (c—a)t x°
[(x,y Wi {3%751,afﬁy,bf7gt 3( |(x’(tbxc+xd)1/a)|.l(ctbxc-l s a0
_ (d-a )Jxt™ d/a
((xl—d/a,(tbxc_d l)l/a)\ ‘( £PgC-4 d,..,..)‘
+ _ (c-n Jx~ é/a _ ‘
kx“'_d/a,(tbxc—d + l)l/a)l.‘(c + ax®C t—o,..,..)‘

—> 0 if d<a.

This completes our calculations of (b')- and (b)-regularity save for the

case 1<a<d,c<d, b=0 (mod 2) , d=c (mod 2) , over R .

Bxample 8.21 ¢ J. J. Risler asked for an example which was (a)-regular over

B , but not over € . By 8.11 and 8.8 it suffices that a &b < d-c,

. i “ o) 19
C=0(m0d 2)2nd d=c (mod 2) . Fzr ¢zamnle f;/d = t%x% + x7,

Example 8.22 : For an example which is (b )-regular over [R but not over € ,

S.12 , 3.13 , and 3.20 give c<d<a<bf{or c<d<a, b<a, d< ac/{a-d) )

b= 0 (mod 2) , a5=0 (mod 2) . For example fy4 = t4x 4 x3} or{‘f5 = t4x/+ x3} .




K

Examnle 3.23 ¢ If an equimultiple example is demanded, satisfying the

recuirements of 8.22 , consider ?yz - 2% 4 x4z. By 8.8 (a) fails over € ,

and by 8.11 (a) holds over R . It remains to check that (b') holds over R ,

using (0.4) .

x(bf?x ) + yQRERY) = : 2x4
[Gy TTREAx, 35737 )1 |(x,(t2x2.+ x4)%)l.|(413+ 21:.21, -2(x4+tdxz)%)l
= 2 x

T X , ps
K2, (6% < )2) ] ax + 24%/x, -2(1 + (4/2)°)%)|
—>» 0 as (x,t) tends to O since X/\?tz + %% a OZ

1as no oranches passing through O . Hence (b) holds over R .

note 8.24 : Table 8.3 corresponds with the known fpct that for families

of »lare curves, " P—constant " is equivalent to (b)-regularity ( [-301 ) e
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A TRANSVERSALITY PROPERTY WEAKER THAN
WHITNEY (A)-REGULARITY

D.J. A. TROTMAN

Let X and Y be C® manifolds embedded in R", and let xe X = Y. The (a)-
regularity condition due to Whitney is,

(a) Given {y,}'e Y such that y, - x and T,,Y—»tasi— oo, then T X <.
Since spanning is an open property, (a) implies,

(t) Given a C' submanifold S of R* meeting X transversely at x, 3 a neighbourhood
U of x such that S is transverse to Y in Y n U,

Conversely, (t) implies (a) if Y is semianalytic. This we prove using the curve
selection lemma, and we give an example where Y is a C® manifold and (t) holds at
a point x where (a) fails.

The importance of (t) follows from,

THEOREM. Let N, P be C* manifolds, with P partitioned into finitely many sub-
manifolds P, such that

G if X, Ye?,and XY # &, then X = ¥, (frontier property)

(i) if X, Ye?,and xe X c Y, (t) is satisfied at x.
Then the set of C® mappings f : N = P which are transverse to the members of P is

open and dense in C*(N, P) with the Whitney C* topology.

The remark above tﬁat (a) implies (t) enables us to restate the theorem with
(a) replacing (t). See for example [2, 3].

1. The semianalytic case
PROPOSITION. (t) implies (8) if Y is a semianalytic manifold.
Proof. Suppose (a) fails at xe X < Y.
Choose a unit vector v e T, X and a sequence {y;}€ Y such that y,— x and
T, Y —»vasi— oo,and v¢ 1. Then 3¢ > 0and i, e N such that,
S C Yizig, d@, T, Y) >

where d(v, T,, Y) denotes the distance between T,, Y and the endpoint of the
translation of v from x to y,. Suppose dim ¥ = m, and let

Vy=R'x{Pe G, nem: A0, P) > &} € R"X Gy, s .
V2 = U (y’ Tv Y) < |R”XGM,n—m'
yeY

Received 18 December, 1974
[BuLL. LoNDON MATH. Soc., 8 (1976), 225-228]
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Here G, -, denotes the grassmann manifold of m-places in n-space. ¥, is semi-
algebraic, and V, is semianalytic (since Y is assumed semianalytic); hence V; n V,
is semianalytic and (x, t)e ¥V, n V, satisfies the hypotheses of the curve selection
lemma. See [1; p.103].

Thus 3 an analytic arc in R"x G, ,—m, @ : [0, 1] = V; 0 ¥V, with a(0) = (x, 7) and
a(t)eVinV, if t#0. Write a,(f) for the R"component of a(r); the G, 5
component is T, Y. Let N,€G,_, , be the normal space at a,(?) to the C! manifold-
with-boundary o, ({0, 1]), and let the vector v, be the projection of v into N, spanning
<U,> € Gl. n—-1°

We shall define a C! arc o : [0, 1] = G, _;, ; such that

o(t)® v =N, )

Then the union of the ¢(¢), considered as embedded (n—2)-planes in R” passing
through the points a,(#), defines a C' manifold-with-boundary S’ of dimension
n—1. Reflection in N, extends S’ to a C! (n—1)-manifold S, which is transverse
to X at xelIntS by (1). However, we shall show that no neighbourhood U of x
exists within which S is transverse to Y; so (t) fails as required.

Construction of ¢ :

Let P,=N,nT,,, Y€Gp-y, n-m+1. Then O # v, ¢ P, (definition of V; N V).
Let O'(t) =P,® P (vt>)le Gn—z, 2

where ( )' denotes the orthogonal complement in N,.
4

Picture of N, in the case
n=4m=2,

o satisfies the required properties and so it remains to show $ fails to be transverse
to Y at some point in any given neighbourhood U of x. Given U 3 some se€ (0, 1]
such that U n o (0, 1] = o, (0, s]; but S’ (and hence S) is not transverse to Y at
any point of «,(0, 1]. The proof is complete.

2. Counterexample in the non-semianalytic case

We construct a pair of C* manifolds X and Y, X < ¥ such that at a point xe X
(t) is satisfied, yet (a) is not.

Let x, y be co-ordinates for R? and let X be the x-axis. Y will be the union of a
countable sequence of C® curves {Y,}3., which tend to X as n— oo, Let
E={(x»eR?*:x20,y>0,x* <y<x?}.
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Ary

e
>

ol =~ - g X

We shall define Y so that (i) the tangents to Y outside E are parallel to X.
Assertion. If (i) is true then (t) holds at (0, 0).

" Proof. Let S be a C' submanifold of R? transverse to the x-axis at 0. We may
suppose S is 1-dimensional. Then in a neighbourhood U of the origin, S does not
intersect E, and so S U meets Y n U only at points p of Y where T, Y is parallel
to X. By continuity and transversality 3 a neighbourhood V of 0 in which the
tangent to S has gradient strictly nonzero. Hence S is transverse to Y in ¥V n U.

The sequence for which (a) fails will lie inside E.

Let 0 <a <1, and let r, = a*", so that r,,; =r,2Vn > 0.

If E,={(x,y)eE:y<r,x>r,_,}, then E,.nE,,, is the single point
(rn—l’ rn+1)-

(rn-l’ rn+l)
(Fps Ty 2)

Let (s,, 5,*) be the point of intersection in E,,, of y = x* and y+x = r,+7rp41,
$0 in particular s, > r,. Let Y, be the graph of a smooth decreasing function of x such
that y =r,,; if x<r,y=s2%if x>s5, and ¥, includes a segment with gradient
—2 and mid-point m, half way between (r,, ,%) and (s,, 5,%). Then (i) holds.

Clearly m,— (0,0) as n— co. And T, Y=T,Y, is a line of gradient
—~2 Vn,and so tends toy = —2x as n — oo ; thus (a) fails.

Further examples. A counterexample with Y 2-dimensional is obtained at once
by rotating about X in R>.

With a little more effort we can produce an example of a 2-dimensional connected
Y so that the triple (R, ¥, X) is homeomorphic to (R? R? 0xR) and Y is the
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plane z = O outside a 3-dimensional ““dart” which intersects z = 0 in the E given
above. Inside the dart Y contains a decreasing sequence of hemispheres so that we
also have a counterexample to the implication corresponding to (t)= (a) for
(b)-regularity. Details of this and its semi-analytic case will appear in [4].

3. Further properties

Consider, for xeX c Y,

(t") Given an r-plane P meeting X transversely at x, 3 a neighbourhood U of x in
which P is transverse to Y.

(t) implies (t), but a counterexample to the converse is obtained by defining X
and Y as in §2, except this time keeping the “bad ” points of Y in between x = y?
and x = y*. A counterexample in the algebraic case is given by

V={y2:y =22x+x}in R®

with X the z-axis, Y = V —{z-axis}, and x the origin. A sequence of points along a
branch of V n {3x2+2z3 = 0} contradicts (a) (and hence (t) by our proposition) but
(t") is satisfied.

Consider also for xe X < Y, with X and Y embedded in R",

(a,) Given a smooth local retraction ny: R® —+ X, x has a neighbourhood U such
that my|(Y n U) is a submersion.

(a,) implies (t) since we can choose a chart at x in which X and S are both linear,
and use a linear retraction. C, T. C. Wall has conjectured in [5] that (a,) implies
(a) ; our proposition shows this to be so if Y is semi-analytic. (A result also obtained
by C. G. Gibson and E. Looijenga.) Note that for the counterexamples in §2 it is
easy to find smooth retractions ny for which (a,) fails, so the conjecture stands.
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Geometric versions of Whitney regularity

By D.J. A. TROTMAN
University of Warwick, Coventry

(Received 16 June 1975)

Let X™ and Y be C! manifolds embedded in R?, m < n < p,andletzeX < Y -7.
In (4) C.T.C. Wall considered the following conditions:

(a;) For any local C! retraction at z, m: R? — X, « has a neighbourhood U such that
7|y oy 18 & submersion.

(b;) For any local C? tubular neighbourhood of X at z, given by 7: R? > X and
p: R? >R, U {0}, where p=1(0) = X, x has a neighbourhood U such that (7, p)|y .y is
a submersion.

Wall conjectured that (a,) and (b,) are respectively equivalent to Whitney’s condi-
tions (@) and (b):

(@) Given y;€ Y so that, as¢ > o0, y; >zand 7,, Y -7, then T, X < 7.

(b) Given y;€Y and z,€X so that, as i >0, y; > 2, 2;>2, T,,Y >7 and
Yi~xf|lyi—x] = A, = A, then A = 7.

Itisnot difficult to show that () implies (a,). See (2), p. 35, for a proof that (b) implies
(b,); this enabled Mather to show that if X is a stratum of a (b)-regular stratification X,
then Z is locally topologically trivial over X. In(3), §3, it is proved that (a,) implies
(a) if Y is semianalytic. Here we prove the following,

THEOREM. (b,) implies (b) if X and Y are semianalytic. (C. G. Gibson has also obtained
this result.)

Note. The conjectured equivalences have been verified in exactly the cases where the
curve selection lemma is applicable. It would be interesting to know if they are true in
the general, i.e. non-semianalytic, case, so as to have geometric versions of the
regularity conditions available, avoiding sequences.

Proof of the theorem. Suppose (b) fails; we shall show that (b,) fails.

We havesequencesz; € X, y;€,Y tending toz, T, Y — 7,and y, — 2/ |y; — 2| = A;,~>A.
Since A ¢ 7 we may suppose that d(A,7) > ¢ > 0 for some ¢, with distance d( , ) defined
appropriately. Then, for some iy, d(4;, 7}, Y) > ¢ when ¢ > 4,. '

Let G% denote the Grassmannian of s-planes in R, a compact analytic manifold. Set

W, ={(v,P)eG? x GL: d(v, P) > ¢}
and Vo ={=yy—=z/ly—=2|T,Y) zeX,ye Y}.

Then 7, is semialgebr'aic, and 7, is semianalytic since both X and Y are semianalytic
by hypothesis. Hence
V=(XxYxK)nV
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is a semianalytic subset of R? x R? x Gf x G2, and (z, z, A, ) € Vsatisfies the hypotheses
of the curve selection lemma. See (1), p. 103. This provides an analytic curve

:[0,1]>Xx Y xGf x G2,
t = (@ Yy '\_t’ T,Y)
where A; = y,— /|y — 2|, y,€ Y if t + 0, and d(A,, T, ¥) > €.
Write 9 for the C* manifold-with- boundary Uyt, and £ for Uxt, contracting the
domain of « if necessary.

Since we are trying to show that (b,) fails, and (b,) implies (a,), we may assume that
(a,) holds. Then by (3); §3, since Y is semianalytic, (@) holds. This implies that

T:cﬂ =Tx€ (*)

AT ED T,y
e X+Ty

<T

For, suppose not. Then

using (@). But A ¢ 7 by hypothesis, giving (*).

Notation. Given distinct lines A, A’ in the plane meeting at a point ¢, and a point ¢’ on
A’ at unit distance from g, consider the circles with tangent A at ¢ which contain ¢’ in
their interior. If ¢ = d(A, A’) let 7, denote the lower limit of the radii of these circles.

LeMMA. There exists a local C! retraction defined on a neighbourhood U of x in RP,
m: U - X, such that for each t, m=(z,) '
(i) 18 the intersection with U of a (p —m)-plane containing A,,
(ii) ts transverseto Y in U,
(iii) contains a (p—m)-disc D, of radius r, |y, — x,| with y,€D,, x,€Int D,, and

T,(Y nmYx,) < T,,(8D,),
(iv) indersects y only at y,.

Proof. Because (b) fails and (a) holds, A ¢ T}, X. Thus there exists a (p —m)-plane
transverse to X at z, and containing A. Using (*) and the analytic dependence of y,, A,,
and 7}, Y upon ¢, we can find an analytic, and hence a C1, fibre bundle over £, restricting
a if necessary, so that the fibre over 2, is a (p —m)-plane containing A,. Choose a C* .
diffeomorphism ¢ of an open neighbourhood U of = in R?, so that ¢(X n U) is affine
and ¢(£ n U)is aline. Extend the fibration over ¢(£) to the rest of (X n U) by parallel
translation, and pull back by ¢! to give a C* retraction 7: U - X with each fibre C*
diffeomorphic to R?-7, and which satisfies (i).

For (i) use (a,), shrinking U if necessary, and observe that 7|y is a submersion at y
if and only if #~Y(m(y)) is transverse to Y at y. (ii) tells us that ¥ n#-1(z,) is a 01
(n —m)-manifold.

Let D, be a disc of radius », |y, — 2| in the (p —m)-plane of (i), with y, on its boundary

and so that T, (Y 0 mY(z,)) < T,,(2D,).

Because d(A,, 1, Y) > ¢ and r, is a decreasing function of ¢, 2, belongs to the interior
of D,. For sufficiently small ¢, D, = 7~Y(x,), giving (iii).
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Finally use (*), restricting « if necessary, to ensure that # n 7-(z,) = y,. This proves
(iv) and completes the proof of the lemma.
Project A, onto N, (0D,) to give u, € Gf. By (iii) each g, is non-zero and

pe < N (¥ 0 7Y (zy).
Now we construct a tubular function p so that p(y;) = ¢t and
He < Nu,(("’ P)_l (xt’ t))

This will show that Y is not transverse to the fibre of (m, p) at y,, for each ¢, which is
the same as saying that (7, p)|y is not a submersion at y,, for each ¢, so that (b,) fails.
It suffices then to find p so that

oD, = (m,p)~ (x, )

for each t. Let ¢ be as in the proof of the lemma, and for each ¢ > 0let F, be obtained by
first translating ¢(0D;) along ¢(§), using (iv), and then over ¢(X n U) orthogonal to
@(£). Shrink U so that

‘L>Jo ¢ R) =U\NXnU).

Then we have a C! fibration
p: U\X n U) - (0, 1],

with p=1(t) = ¢~(F,) a C* manifold C* diffeomorphic to §¥-m-1 x R™. Setting p| yoy = 0
extends p to be C* on U, and p is the required tubular function. This completes the
proof of the theorem.
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COUNTEREXAMPLES IN STRATIFICATION THEORY:
TWO DISCORDANT HORNS*

D. J. A. Trotman

One of the useful properties of Whitney’s (a)-regularity condition (as
defined in [13]) is that the set of mappings transverse to the strata of an
(a)-regular stratification is open and dense. That this set is open has often
been justified by remarking that (a)-regularity implies that a submanifold
transverse to a stratum at a given point is transverse to all other strata in
some neighborhood of the point, a condition I have called (t)-regularity in
[10]. Our first example shows that this reasoning is wrong: transversality to a
(t)-regular stratification need not be open. However we verify directly that
transversality to an (a)-regular stratification is open.

Our second example is that of a pair of real semialgebraic strata which are
(b)-regular (as defined in [13]) but which fail Kuo’s ratio test ([4], where Kuo
proved that no such example exists when the smaller stratum has dimension
one), and hence do not satisfy the property (w) used by Verdier in [12],
where it was remarked that such an example was not known.

1. (a)-regularity and transversality

Let X, Y be C' submanifolds of R" and let 0e Y= X~ X. Consider the
following regularity conditions for the pair (X, Y) at 0.

(a) Given x; in X tending to 0, if T, X tends to 7, then T, Y< r.

(t) Given a C' submanifold S meeting Y transversely at 0, then there is a
neighborhood U of 0 in R" such that S is transverse to X within U,

Call a stratification (a)-regular if each pair of strata (X, Y) satisfies (a) at
each point of Y. Similarly for a (f)-regular stratification.

Norte 1.1. That ‘(a) implies (t) is immediate.

Note 1.2. It is not a consequence of 1.1 that mappings transverse to each
of the strata of an (a)-regular stratification form an open set, as suggested
for example in [8], [9], [10], [11]. It is in fact a direct consequence of
(a)-regularity.

* The title was suggested by Tony Iarrobino.
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ProrosiTioN 1.3. Let N, P be C™ manifolds. Let P contain a closed subset
Q partitioned into a locally finite union of submanifolds forming an (a)-
regular stratification &, i.e. if X, Y are strata of &, then at each point of
Y N X, condition (a) is satisfied. Then Ty ={fe C*(N, P) : f is transverse to
each stratum of ¥} is open in C*(N, P) with the Whitney C* topology (and
hence with the Whimey C” topology).

ProoF*. Suppose that Ty, is not open, so that there exists f in Ty, a
sequence {g} tending to f in C”(N, P) with g¢& Ty, a stratum X, and a
sequence {a;} tending to a, in N such that g is not transverse to X at a;. It is
clear that f(ay)¢ X, since X is a smooth submanifold. So let Y be the
stratum containing f(ao). (df)e,(To,N) and Ty, Y span Tj,,P, and so for i
sufficiently large (dg).(T,N) and Tg )X span T,,P, by (a) and the
assumption that g tends to f. This gives a contradiction, proving the
proposition.

Note 1.4. (i) When W is a submanifold of P, it is a corollary of Thom’s
Transversality Theorem that Ty ={fe C*(N, P):f is transverse to W} is
dense in C™(N, P) with the Whitney C” topology. (See for example [2].)
Hence T, is both open and dense in C”(N, P) with the Whitney C~
topology.

(ii) If W is closed, Ty, is open, as proved in [2], but here the strata of & are
not assumed to be closed.

(iii) It is easily verified that & is (a)-regular if and only if the set of jets
transverse to & is open. This observation is due to C. T. C. Wall.

In [10] the curve selection lemma is used to prove that (t) implies (a) if X
is semianalytic. It is equally true if X is subanalytic for Hironaka proved a
curve selection lemma for subanalytic sets in [3] (proposition 3.9. See [5] for
a proof for semialgebraic sets). Hence if the strata are subanalytic the
transversal mappings to a (t)-regular stratification do form an open set.

In the next section we shall give an example of a finite (t)-regular
stratification for which the set of transversal mappings is not open, and so in
particular it is not (a)-regular. This is an explicit version of an example
mentioned in [10]. .

I stress this point at length because I had mistakenly thought that
proposition 1.3 was true with (a) replaced by (t). Thus in [11] (t) is used in
the definition of stratification given in chapter 8. There the strata are
semialgebraic (corollary 3.6 of [11]), so we could use the resuit of [10]
mentioned above to give (a), and then apply proposition 1.3. Alternatively

* A detailed proof appears as Proposition 3.6 in E. A. Feldman, The geometry of immer-
sions, I, Trans. Amer. Math. Soc. 120 (1965), 185-224.
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1/ o2

1/(na)?

Figure 1. x=0.

one can use the following elementary formulation suggested by E. C.
Zeeman.

ProposiTioN 1.5. Let X, Y be C' submanifolds of a C' manifold P, and
suppose that ¢ : M— C*(N, P) is continuous, M is a topological space, N is a
C' manifold, Y =¢(m)(N) for some meM, and for all open sets Uc M
containing m, there is an m'e U such that ¢(m)(N)< X. Then the pair
(X, Y) satisfies (a) at each point of Y.

The proof is left as an exercise.

2. The first horn

Let (x,y,z) be coordinates in R>. Take Y to be the y-axis, and let
X=(Un=1{f=0,8=00U(Nr-1{x=0, g, = 0}), where g, =0 defines the
cylinder G, of radius 1/3n(n+1) with axis the line y=1/n, z=1/n? and
where f, = 0 defines the surface F, obtained from x = (y*+ z%)?>~ (y*+ z%) +1
by translating the origin to (0,1/n,1/n% and reducing by a factor of
3n(n+1)/¥2 so that F, intersects 3G, exactly where x = 0 is tangent to F,.
See figures 1 and 2. )

x
N

d
lfn’ n+l)

Figure 2. z=1/n%
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X is a C" submanifold and is semialgebraic on the complement of the
origin.
The normal vector to X at the point

x, = (1/24v2n(n + 1), (1/n)+1/3v2n(n + 1), 1/n?)

is (2, 1, 0) for all n. Hence the limit as n tends to « is (2, 1, 0) and (a) fails.
(t) holds since any submanifold transverse to Y will intersect X near Y only
at points near which X is defined by x =0. Hence the stratification of R®
defined by {Y, X,R*~ (XU Y)} is (t)-regular. Now the mapping h in
C™(R? R?), defined by inclusion of the plane 2x+y =0, is transverse to the
stratification, but for each n the mapping h, defined by inclusion of the
plane ’

2x+y=(5+12v2(n+1))/(12v2n(n + 1))

is not transverse to X at x,. Since h, tends to h as n tends to %, mappings
transverse to the stratification are not open in C*(R?, R>).

Note that by smoothing near each circle {x =0, g, =0}, X can be made
into a C” submanifold of R?, with normal vector at x, as before, for each n.
Hence proposition 1.3 with (t) replacing (a) is false.

3. (b)-regularity and the ratio test

Let X be a C! submanifold and a semianalytic (or subanalytic) set in R".
Let YcX—X be an analytic submanifold of R". The pair (X, Y) are
(b)-regular at 0€ Y if,

(b) Given x; in X and y; in Y tending to 0, if T, X tends to 7, and the unit
vector in the direction x;y; tends to A, then Ac 7.

Apply a local analytic isomorphism at 0 to R" so that, near 0, Y becomes
affine. Let 7 denote orthogonal projection onto Y and define,

(b") Given x; in X tending to 0, if T, X tends to 7, and the unit vector in
the direction x;7(x;) tends to A, then Ac 7.

LemMma 3.1. )+ (b O).

In [4] T.-C. Kuo introduced the following condition, which he called the
ratio test.

(r) Given x; in X tending to 0, and any vector ve T, Y,

o Im@ 6l
ime g —w(x)]
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Here m; denotes orthogonal projection onto the normal space to X at x,.
Kuo proved two theorems in [4]:

TueoreM 3.2. (r)=>(b).
TueoreM 3.3. (b)=>> (1) if Y is 1-dimensional.

In each case the proof uses the curve selection lemma with the assumption
that X is a semianalytic set. As remarked in §1, by [3] we know that the
same proof can be used if X is a subanalytic set.

In the next section we give an example with Y 2-dimensional where (b)
holds and (r) fails to hold. X will be a semialgebraic C' submanifold of
dimension 3 in R*. I do not know of such an example where X is the smooth
part of an algebraic variety. In the special case of a family of complex
hypersurfaces with isolated singularity parametrized by Y it is known that
(b) and (r) are equivalent, for Y of arbitrary dimension. This is because (r) is
a trivial consequence of (c)-cosécance as defined by Teissier in [7] and
discussed by him in this volume. It follows from [1] and [6] that (b) implies
(c)-cosécance.

Verdier has introduced the following condition in [12],

(w) There is a constant C>0 and a neighborhood U of 0 in R" such that
if xeUNX and yeUNY, d(T, X, T,Y)= Cd(x, y).

This is just (c)-cosécance restricted to X, so that it makes sense when X is
not a variety. (w) trivially implies (r), hence (b) does not imply (w), when the
dimension of Y is greater than 1, by the example in the next section. Even
when Y is 1-dimensional, (b) can hold and yet (w) fail: in R® let X be
{x=0,2>0, 22=y}U{2°x*=(y*- z%)*%, x=0, 2>0, 222 y?}, let Y be {x=
z =0}, and consider the curve X N{z*>=3y?}. Thus (w) is strictly stronger
than (r) by theorem 3.3.

4.. The second horn

Let (x, y, z, w) be coordinates in R*, and let Y be the plane z=w=0.
Define the semialgebraic set,

X={w=0,2(x*+(z~-y?)») = y**, 2> 0}
U{ytw=(x*+(z—y"))* =y (x> +(z—y*)") + y*/4,
2(x*+(z - y?)*)=y*, 2> 0}
where p and q are positive integers satisfying,

2p<q<3p. 4.1
For example let p=2, g=5.
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A

bhorn
2(xf + (")) &

Figure 3. w=0.

Observe that because the algebraic variety defined by the equality in the
second part of the expression for X has w=0 as tangent space at every
point of its intersection with 2(x*+ (z — y?)*) = y*, X is a C* submanifold of
R*.

ASsSERTION 4.2. (b) holds.

Proor. We show that there is a single limiting tangent 3-plane for
sequences on X tending to 0, namely w = 0. It suffices to consider the points
on y'w = x*— y**x2+ y*?/4 (with y fixed) where d*w/dx*=0, since at these
points the normal is furthest from the w-direction.

d*w/dx*=0 when 6x2=y?", and the normal vector is (£(3vV6)y>", —y%)
which tends to (0, 1) as y tends to 0 since ¢ <3p by (4.1). Hence w =0 is the
unique limiting tangent plane.

At the points on X where the sécant vector defined by orthogonal
projection to Y is furthest from the z-direction, the sécant vector is
contained in the tangent space to X. Hence 0z is the unique limit of sécant

4P/4

¥ V=X -¥ ! +¥
'worst’
/ normal vector
\x

o yP/Z ke

Figure 4. z=y?, y fixed.
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vectors, and (b’) holds. (a) holds (since {w=0, z=0}c{w =0}), so we can
apply lemma 3.1 to show that (b) holds, proving the assertion.

AssSeRTION 4.3. (r) fails to hold.
Proor. Consider the curve y(f) = (¢/6, t,.’t”, t**7%/9) which lies on X. The
normal vector to X at y(?) is,
(GVO)r, ((2p/3) - (g/9))1*7*, 0, —19).
Let m, denote projection onto this normal space. Then,
*° v

lTrl(O-x)I ~ |(t3p, t4p—1, 0, tq)l ~ —t—q—’

since by (4.1) q<3p.

v _ (P67, £ Y9)| 1

-7y 10,0, 7, 49

2p—q+1

Hence the ratio (as in the definition of (r)) becomes ¢ , which does not
tend to zero since 2p <gq by (4.1). This proves assertion 4.3.
Finally we check that Verdier’s condition (w) fails to hold.

d(Ty X, Tayan Y)~ 7779,

d(y(t), w(y(0)) ~ t°,
hence (w) fails exactly when 2p<q.

NoTE 4.4. Basing the construction on w = x** — x** +}, 1<k < (instead
of k =1 as here), we can build similar examples with X a C* submanifold.
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