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PREFACE

It is a pleasure to thank everyone who has proYided .. wfthhelp, enoouragemen~
or inspiration during the tour years ot researoh 1973-77 whioh have oulminated
in this thesis.

During the tirst ot those tour years Christopher Zeeman supervised .e. Z· am
grateful to hill tor having convinced me that it is both more esse.tial and IIIOre
rewarding to partioipate in mathematioal researoh than to remain merely a,.ell-
intormed spectator.

Betore I went to Cambridge, when I was debating it I should conoentrate on
pure mathematios, it was an artio1e by Christopher Zeeman desoribiBg the pre••nt
time as the "golde. age ot pure llatheaaticB ..whioh persuaded ae to do so.
Another artiole ot his, this time in n Manito1d M ,te.pted ae towards topology.
I tirst heard of the vonders ot Catastrophe Theory trom him at an evening meetillg
of the Arohiaedeans Sooiety in November 1970 , and interested by this talk, an4
drawn by the creati.e aura emanating from ~ oopies of H Manifold" , I deoided
to come to Warwick.

In my M.So. year 1972-73, I was l'lOky t., have Clint McCrory as supervisor I

he in!tiated .e into the seoret. of ditferential topology via the works of John •
Milnor, and by running a seainar on Whitney stratifioations, helped to'determine
the tuture course ot my researoh.

After ay I.So. dissertation -- a write-up ot Zeeaan's leotures on the proot
ot Tho.'s theorem olassit7iag ele.entar,y oatastrophes -- I was looking for ways of
Using stratitioatioDs in singularity theory. On learning that Brieskorn .a. to
give a survey talk on ooapl.z singularities at the 1974 B.M.C. held at Brighton,
I devoured Kilnor'. "Singular points ot complez hypersurtaoes· in the week
betore the conferenoe and was well rewarded by Brieskorn's stunning displ&1 of

the light. and taoets 01 the jewelled geometry of ooaplez singularities. There was



also a short talk bT Jim Timourian desoribing a conjeoture ot Teissier that
tt Milnor number oonst811t implies Whi tneT's condition (b) " ( r30] , (311 ) •
On disoovering that this was part of a theor,y (equisingularity) whioh involved a
fine study ot Whitney regulari tT and both used and produoed results about

*singularities, I deoided to work on .Teissier's conjeoture. About the same time
Poenaru suggested I BD to Ors~, and with Rolph Sohwarzenberger's praotioal
assistanoe as Chairman ot the Department, I prepared to do so, in the mean tille
making contaot with the researoh group at Liverpool, who were studying WhitneT
stratifioations during 1974-75 as part of the proot of the topologioal stabilitT
theorell ([ 7] ) •

At Liverpool I was able to disouss with Chris Gibson and Eduard Looijenga,
both ot whom provided me with triendlT encourageillent.Moreover there I had the
opportunity ot being direoted bT Terry Wall, whose oritioal advioe has been ot

great assistanoe to me throughout these past three years, espeoiallT in gauging
the worth ot .y various ideas and results. I am pleased to be able to present
here (see §3 and §5 ) proofs of the conjeotures concerning geometrio versions
of Wbi tney regulari ty whioh were pu t forward by him in [43] •

In Orsay I had the good tortune to be ottered a teaohing post, whioh although
delaying the oompletion of my thesis by taking up time and energy, vas interesting,
gave me a taste ot responsibility, and provided necessary tinancial support.

With the equisingglarity tealllat the Ecole Polyteohnique I have had ~
pleasant and profitable discussions I notably with Jean-Pierre Henr." Je&D~acq.e.
Risler, ant L' nang Tr~g, and especiallT with Bernard Teissier, whose unfailing
enthusiasm and willing ear I have .uch appreciated.

I thank ToD3' larro bil'lOtor persuating me to give .ellinars , Bob MaoPherson
tor discussions about twenty-tirst century mathematios ; and ot oourse Rene Thos,
vithout wholl the greater part of the work contained here, and much ot the work
ot those III&thematician.nailed above, would not as yet exist, and. whose Monday

seminars at the I.E.E.S. a.rea constant source of delight and inspiration.

Counterexample. were to..d b.r Brianoon and. Speder [21
ill Janua17 1975 •



I am also indebted to my wife, Xarie-H'l~ne, for her patient support, faith,

and understanding.
Finally I acknowledge with thank. the Research Studentehip provided by the

Soienoe Research Counoi1 while I was at Warwiok, and the Frenoh Government
Scholarship whioh enabled •• to writ. up ~ results.

June- July- August 1977

Paris - Aix-en-Provenoe
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CHAPTER O. I:tIJ'TROIDC'rION

=- ai,s work deals with properties of ~ihitney (a)- and (b )-regulari ty. The

regul~rity oonditions presoribe the looal behaviour of limits of tangent spaoes

to s ziooth mani.f'oLds 1 whioh ar-e usually strata of a stratifioation. So, first,

¥hat is a stratifioation ?
, stratifioation L of a subset V of a Cl manifold M is a parti~ion

:>f Y into connected Cl submanifolds, oalled the strata of 2. . ~ is locally;

!'ini -'ceif eaoh point. of V' has a neighbourhood meeting only finitely manystrata.

::xamnle 0.1. V a connected Cl submanifold of :M. There is a trivial

stratification of V vd th just one stratum.

2xamnle 0.2. V the underlying spaoe of a linearly embeddedsimplioial oomplex.

:here is ~ natural stratification whose strata are the interiors of the simplioes

of t::e complex.

.:::::xamtlle0.3. v an analytio variety in ~n. Let S(V) be the set of points

S2CV)= sCS(V» , eto.

G(A) denote

v is not a submanifold of maximal dimension. ~Jrite

3uppose r is the smallest integer suoh that sr+l(V) = 9S . Let

the set of conneoted components of a set A. Then

iefi:r:es a looally fini te stratif~_cation of V ca.Ll~d the full TIl'!rtition by dimension

tby l{hitney in [46] ).

1



2

::Ohe ;.,onitney condl tions

Let X, Y be disjoint Cl submanifolds of a Cl manifold M and let y

:e a poLrrt in Y I" X •

is (a)-regular over Y ~ Y if,

:;iven a sequence of points in X tending to y, such that

t ends to 1: , then TyY C 1:' •

, is (b)-regular over Y at y if,

\b) ]iven se~uences {xiJ, in X, (Yi~ in Y , both tending to y, such that

,..., -r
AX.~

tends to 't , and the uni t vector in the direction of 0.
J. J.

tends

-';0 ~ , then

Tie~e conditions were first defined by Whitney in (45) and (46). Accounts

Jf them !:.ave been given by Thorn in [35] and [36] , by Mather in [21] and

[22] • by Wall in [431 and [44], and by Gibson and Wirthmliller in (7) •

Following Thorn, we say that X is (bl )-regular over Y at y if, for

some Cl local ret.raction 1t' associated to p Cl tubular neighbourhood of Y

:.ear y ,see §5) ,
•

• I ),0 Given ? sequence fxJ in x tending to y, such that, T X tends to 1:x.
J.
t\ , then t\c 1:•and the unit vector in the direction of x:~(x.) tends to

J. J.

(0) clearly implies (b I ) for any 1'( • Also (b) implies (a) , since

given en;{ vector v in T Y and any sequence fxi} in X we oan choose fYiJy

in y co:ning in to y in the direction of v so slowly that Xi/ ill xi'1' tends

to v (sel! I.;,.J.ther[21). Conversely,' if (a) holds and (b') holds for some

'll , -,.'9 ..."'rJ.' ve at I b)~ , \ by decomposing the vector A into the S'.lm of t-,.;oveotors,,'



one in TyY and one in Ty( Tt-I(y». (Compa.re Hall (43]) To sum up,

(0.4) (bl) + (a) ~ (b)

\leshall make frequent use of this eouivalence.

A stratification ~ is (a)-regular if, for each pair of strata X, Y
and at every point yE YnX, X is (a)-regular over Y at y. Similarly,
'ire speak of (b)-regula.rstratifications. {{ecall a locally finite (b)-regular
stratif5.cationa ilhitney stratification.

EXample 1. (0.1) is trivially a Whitney stratification since there is only
one stratum, and (a)- and (b)-regularity are conditions on a pair of strata.

Example 2. The stratification in (0.2) defined by a linearly embedded
simplicial complex is a Whitney stratification by the next example.

Example 3. Let X be a Cl submanifold-with-boundary of a Cl manifold M,
with interior X and boundary Y • Then X is (b)-regular over Y , since
(b)-regularity is invariant under Cl diffeomoruhism (see Corollary 5.3) , and
ffiPX (O,oo)qx Or is (b)-regular over '"RP+q+r • (b)-regularity
is far from being a topological invariant.

x

Y Y

Pictured is a topological manifoXd-l'Tith-boundaryX, with interior X a cl
manifold and boundary Y a line, such thl!!.tX is not (b)-regule.rover Y at Y.I

we Se.y the p...>ir (X,Y) has a (b)-fault ~.t y (see belOW).

!
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Examnle 4. The stratifioation defined in (0.3) by the full partition by
dimension of an analytio variety is not neoessarily a Whitney stratifioation.
riegive the standard examples~

I) V == f y2 = t2x2 + x3J C 1R3.

Let Y be the t-axis, and X be V - Y.
Then set Xl = xntx> 01 ,

X2 = x('\[x<03 n ft,)o} ,
x3.. X (l fx < 01 () £t < cl ,

Xl is (b)-regular over Y at 0 but

at
and X~ are not (b)-regular over Y

-'

O. However all three are (a)-regular
over Y at O. The reader may cheok that
KIlLX2lLK311.Y is the full partition by
dimension of V •

Let Y be the t-axis, and X be V - Y •
Then set Xl = XAtx">o}, X2 = xn[x<ol.
Xl and X2 are neither (a)-re.gularover Y
at 0, but are both (bl )-regular over Y.
Again XIllX21lY is the full partition by
dimension of V •

t

x

y

f
I,
I
I

y

'I'hefaot that.·we do not get a ilhitney stratifioation from the full partition
'::y dimensi:m of an 3.naly-tic',rarietyis on!;!a mi,:orhandicap becauee of the
following theorem.

Theorem(Whitney [45J,[461) : ~lery ar~ly~ic variety admits an analytio
!hitney stratifioation.
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?his is proved by showing that every locally finite analytic stratification
\i.e. whose strata are locally analytic manifolds) admits an analytic Whitney
stratification aB a refinement: this is because (b)-regularity is generic --
~ae set of points where (b) fails for a pair (X,Y) of analytic strata is
contained in the complement of an open dense subset of Y •

'I'he class of sets for which (b)-regularity is generio has been extended by
:'ojasierlcz [18] and Hironaka [12]. See also Hardt 0.0] and Gabrielov's thesis.

Definition : A subset of IRn which is globally (resp. Lo ce.Ll.y at each point
of n .R ) F.!, finite union of subsets each of the form
a=l •.... oJ r gjJ .?repoLynomd e.L (resp. p,nalytic)functions

,-,n .
II..-\. , ~ s c~lled ~irlgebraic (resp. semianalytic) •

Theorem(Lojasiewioz (f81) : EVery semianalytio set admits an analytic
stratification, and every analytio stratifioation of a semianalytic set admits
~ analytic Whitney stratification as a refinement.

,:..more accessible proof, for semialgebraic sets, was given by Wall [431.

Definition: A subanalytic set in ~n is the image of a semianalytio set
in mID ,some m, by a proper analytic map mm ~ IRn • ..

Theorem(Hironaka [121) : Every subanalytic set admits an analytic stratificatic~,
and every analytic stratification of a subanalytic set admits an analytic
~itney stratification as a refinement.

So far we have discussed the existence of Whitney stratifications. Among the
most important applications of Whitney regularity are the consequences of the.
following results.
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(l'heoremA : Let L be a localll finite stratification of a closed subset of
a Cl manifold M • s; is (a )-regule.r ~ the set of mans transverse to ~.

1 Clis o:pen in C (N,M) for all manifolds N •

See § 1 for a precise statement and proof of Theorem A.

Theorem B : A Whitnel stratification is locally topologically trivial.

T~eorem B ,-Tasconjectured by Thorn and proved by !v1e.ther[21] •
l~either Theorem A nor Theorem B makes use of analyticity. However in most

of the work done either on the Whitney conditions themselves -- as in Speder's
~~esis [29], and Teissier's study of the equisingularity of hypersurfaces [30J ,
[311, and the equimul tiplici ty theorem of Hironaka. [111 -- or using th~ Whitney
conditions as tools -- as in the proof of the topological stability theorem [7] ,
~d the Lefschetz hyperplane theorems of Hamm and L~ [91 , and the extensions
of characteristic class theory to singular varieties by MacPherson [19 , 20],
snd ;.:.-H.Schwartz [26] - extensive use of the special properties of analytiC
l~rieties has been made. And it was for oomplex analytio hypersurfaoes that
:ariski demanded a theory of equisingularity [49,50] •

'rhis thesis can be thought of as a study of aspeots of the theory of ..
~uisingularity of smooth stratified sets, the plans of which were drawn'in Thom's
"£lsembles et morphismes stratifies" [36J • lihen there are improvements in the oaae
of subanalytio sets we give them; and we make special mention of any relations
ll"ith com-plex hypersurfaces.

With ~heorem B in mind, we make all our counterexamples topologioal,

m&nifolds-with-boundary, henoe topologioally trivial, whenever possible. This
:<:o.n ",ell the gr9at difference in the na.ture of tl::.8 results found helle, and those
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obtained for complex hypersurfaces, for whioh topological triviality has fairly
strong consequenoes, inoluding (a)-regularity.

The basic looal situation is as follows: let X and Y be Cl submanifolds
(and, when appropriate, subanalytio subsets) of ~n , with ye X - X. Y is the
base stratum, and X the attaching stratum. When X is (b)-regular over Y at
o in Y , we will say that the pair (X,Y) is (b)-regular at 0, or that
(X,Y)O is (b)-regular. I'ihen (X,Y)O is not (b)-regular, we say that .(X'Y)o
is a (b)-fault: we justify this term below.

Faults and detectors:
:lhensome equisingulari ty condition E is not satisfied at a point of a

stratifioation, it is natural to oall the point an E-fault (so retaining the
geologioal terminology). Many proofs showing that one equisingularity 90ndition
implies another are by reduotio ad absurdum: we suppose that the second condition
fails, and then we show that the first oondition neoessarily fails as well. When
we oan do this we say we have deteoted the fault (the point where the seoond
condition fails). In the same way oounterexamples to implioations between.
8quising-'.lla.rity conditions tend to be faults whioh are not detectable in some
given way. :Mostof tlleresults given in this thesis consist of taking an
equisingularity oondition E and deoiding whether possible deteotors are effeotiye
or ineffeotive in deteoting every E-fault. We hope that this will olarity and
motivate the point of view taken throughout.
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CHAPl'ER 1. WHIT1TEY (a )-REJULARI'rY

~e begin by sLowing that (a)-regularity is precisely the condition to impose
on a stratification in order that the maps transverse to the stratifioation form
~n open set, i.e. that transversality be stable, as well as being generic (the
transverse maps always form a dense set). (a)-regularity was introduced by
{hitney in [45J as a sufficient condition for this to be true ; at the time it
°1i'3.S thought that (t )-regularity (defined in § 2) was the oondition required, and.

.hat (a) '\-Iasonly useful in that it implied (t) (see the introduotion to [45] ).
:his is true in tne analytic case, sinoe then (t) and (a) are equivalent as
~roved in Theorem 2.5 below (and [37J), but we give examp'Lee (2.1 and..2.4)
showing that (t) is in general weaker than (a). (a) is necessary and
sufficient for openness : the sufficiency was proved in detail by E. A. Feldman
in [5] and we prove necessity here in Theorem 1.1. The only difficulty in the
?roof is to find a transverse map with a given transverse I-jet at a given point:
for tais Re show that in a suitably chosen Baire subspace of the spaoe of maps
containing the given jet at the given point, transverse maps are dense.

Example 2.1 ,showing (t) to be weaker than (a) in the smooth case, has
\a) failing for a sequence on a curve (in the ambient space) tangent to'the base
stratum, thus defining an (a)-fault not detectable by transverse submanifolds. To
show that the property that the (a)-fault be given by sequences tangent to the
oase stratum does "not characterise those (a)-faults which are not detectable by
tl"an.sversesubmanifolds, '\-Ie give a second example (2.4) which uses a basic
s6mia1gebraic object called a "barrow", whioh is defined in 2.3 • }le then prove,
in ~heore~ 2.5 ,that (t) is equivalent to (a) when curve selection is
avail~ble, and obtain as a consequence in this case the conjecture of C. T. C. Wall
[431 that (.3.)-regularitybe equivalent to the condition that the fi);)resof ~t
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Gl retraction onto the base stratum be transverse to the attaching stratum for

~ retractions. Weprove this conjecture in general as Theorem 3.3 after

rephrasing the conjecture to read "do transverse Cl foliations detect

(a)-faults? It Example 3.6 shows, using the barroW'Sof 2.3 , that transverse

C2 foliations do not deteot all (a)-faults.

To complete §2 we discuss results relating to a theorem of T.-C. Kuo , that

(a)-regularity implies that transversals to the base stratum have germs at Oof

their intersection with the attaohing stratum, of a single topologioal type, and

~e prove a partial converse to Kuo's theorem.

F~nally in §4 we desoribe the analogues of the results proved here about

(a)-regularity of st~atified sets for the (af) oondition on stratified morphisms.

1. (a)-regularity and stability of transverse maps

,le + 1 .~~opo ogJ.es

topc2.0gies on 'tl:.e space of

~ thorough treatment of these topologies is given in Hirsch's book ~Differential
•

I'opoLogy" [131. Other versions are given by Morlet [24J , Feldman [51 , and

}olubi tsky and Guillemin [8J .
Let N, P be ~ manifolds. Ck(N,P) denotes the set of cf mappings from

'r.: to ?, .J-~(N.,F) ienotes the bundle of k-jets .'lEsociated to such mappil4;-:;'"l,

and j!:: d<lN,P) ~ CC .~N,Jk\N,P» is the associated jet map. The map

}=f: 1;~. Jk(N,?) Ls called the k-jet prolongation of f.

A basis for the ,ieRk ck topolo& on Ck(N,?) is given by taking all sets

of the form [s« Ck(N,P) a jkf{K) ~ U}' where K is a compaot subset of N,

and U is an open subset of Jk(N .r-) •
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A basis for the strong Ck topology (also known as the Whitney dk topology)

on ~(N,P) is given by ,taking all sets of the f'orm {f E: Ck(N,P) I jkf(N)C u1
kwhere U is an open subset of' J (N,P) •

If N is oompaot these topologies are olearly the same.

Transversali q

~ie shall use the notation ~ for "is transverse to" •

If X, Yare Cl submanifolds of a Cl manifold M,

xm Y at m ~ T X + T Y = T Mm ID ID

X ~ Y ¢=:> X '" Y at m,\! mG;.XnY

If f : N-+ M is a Cl map,

f '" X at n ¢:::) Tf(n)X + (df)n(TnN) = Tf(n)M

or fen) Et X

f ~ X ~ f '" X at n, V n 6 f-l(x)

If z € Jl(N,:r.I) is a I-jet, and f E Cl(N,:iw1)is a maprepresenting z (at n e I: '

z '" X ~ f ~ X at 'n

~ie say X is transverse to a stratifioation L , and write X '" L ,
when X ,'h s V stra ta. S of 2.. •

;:e say X is transverse to a folia.tion "::f of M a. Ii ;::, :l!:d. y,r::>itQ

x It\ 3 at x , when X is transverse at x to the leaf of ):. through x.

iie say a foliation 3- of a submanifold X is transverse at :x: to' a

foliation ~ of a submanifold Y , and write 3- '" ~ at x, when the

leaf of 'J. through x is transverse at :x: to the leaf of g. through x.

\This requires that X be transverse to Y at x.)

l~owye are in a position to state Theorem A of the introduotion.
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'rheorem 1.1 Let E be a locally finite sj;ratification of a closed subset

V of a 1C manifold M. Then the following conditions are equivalent

(1)
(2 )

(3)

L is (a)-regular,

for eve!:l Cl manifold N ,
for everl Cl manifold N ,

(ZEJ1(N,M)

(feCl(N,M)

z ~ EJ is open in

f ~~] is ouen in

1J (N,M),

Cl(N,lrl)

with the strong cl topology,

(4) there is some integer r, l~ r~ max(l,min(dim S» ,and some Cl
SE:L

manifold N with dim N = dim M - r , for which {f~Cl(N,I¥1) : f t\\2:.} is ope~

in cl(N,rli.) with the stronB Cl topology.

Notes 1.2 (L) (1) ~ (2) is -proved by Ilall (44). In tact he asserts

that (2) implies that V is closed, which is not quite true. Consider the

case where V = 1.1 - pt., and E he,s a Single stratum.

(ii) (1) ~ (3) is implicit in Thom[34J (1964) and explicit in

[35,361 , but see the discussion in §2 below. It was proved by Feldman [5], who

describes ~ as cohesive if ~ is (a)-regular, and nowappears as Exercise 15

at the end of Chapter 3 of Hirsch's "Differential Topology" [13] • Feldman's

proof went unnoticed by several specialists in the theory to the extent that a

very short false proof of (1) ~ (3) appeared several times (see '~l...t:: discussion

and counterexample in §2 ), and in 1975, D. W. Bass [11 wrote "there seems to

be no published proof of this". ri'his was probably due to Feldman's use '01' the

term "cohesive" before "(a)-regular" came into commonusage; also his proof

appeared as a teohnica1 lemmain a paper on immersion theory rather than in a

.'paper onstratifioation theory. Observe also that before the term "stratifioation"

was accepted people talked of "submanifold complex"and "manifold colle.otion" •

(iii) lie have the same theorem replaoing Cl everywhere by Ck

(l~ k~oo) , as the problem reduces to a study of' I-jets.. '

(iv) The set of kC maps transverse to L (l~ k~ ex> ) is dense

G": I-·T , )\.1\f, ~;~ -,.;i th the strong Ck topology by appLyLng chom's traneversality
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theorem countably often as in [81 or [13] , even without applying {a)-regularity.
?hus if ~ is (a)-regular, the maps transverse to ~ in ck(N,M) form an
open dense set in the strong c'k topology ( cl_open implies kC -open ),

(v) If each stratum is closed, then it follows from the result that
for a. closed submanifold rl of lr1, {f e. Ck(N ,J.i) : flhW1 is open (see [81 or [13J),

that ffe~(N,M): f~l:l is open. But we do not assume the strata are olosed
(on~Y that V = \t' is closed) and in almost every situation of interest they
will not be olosed.

Proof of Theorem 1.1 : (2) implies (3) by definition of the strong topology.
l'hat (3) implies (4) is immediate. lieshall prove that (1) implies (2), and
that (4) implies (1), which will establish the equivalences.
(1) implies (22

3uPTose (2)is not satisfied for some Cl manifold N. Then there is a I-jet
with and a sequence such that Zn tends

to z as n tends to 00, but for all n,
denote the maps Jl(N,M) __. N,

z is not transverse to 2: • Letn
1J (N,M) ~ M, taking souroe and

target respeotivelY. Let x = V (z) , x = v{z ) , y = u(z) ,y = U (z ) •n n r- n r' n

3ince z rh L.. and zn 1;< r:. , for all sufficiently 1.ll"g9 n ',liO! have that Yn" Y.
.:Usoclearly y e»n for all n • Since V is closed, and since yn ~ y (n ......J:J) )

we have that ye. V • Let S be the stratum of l: containing y. Since 1:
is locally finite, we can sup~ose (by taking a subsequence) that for all n,
Yn belongs to the same stratum S'. SI ~ S sinoe S is a Cl submanifold.
:::1:'.lS yES n "S' I - SI) and S' is (a)-regula.:r-0ver S by the hypothesis (1).

:~owby means of a chart for :M at y we can identify all the tangent spaces
(and their subspaces) to M at points near y, with ~m (and its subspaces) ,
'"here m = dim IVi •

Let P (resp. r ) denote the vector subspace 0-: mill determined by the jetn

zn ~resp. z ) V n • By choosing a further subsequence we oan suppose that the
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dimension of P is constant for all n. (It is possible however that then

dimension of P is less than that of P.) Because grassmannians are compactn

we ma:y suppos e by taking more subsequences that fp n3 tends to a limit P00 and

f T S•J tends to a limit 't • Then Ps. P00' and, since S' is (a )-regular
Yn

over S, TyS So 1:' •

if
z ~ L means that p", TyS , and. so

d(F ,Q)< E (Q E. G~imP ), and
ex> 00

T (transversality is an open condition on vector

p ~ 1: • Then
00

d('t",T)<£

3 ~ :> 0 such that

(T G G~m s')' then

subspaces). Nowchoose

such that n ~ "i ' d(P ,p) < £. , and n2 such that V n ~n2 'CD n

Then '51 n ~ ma.x(~,n2) ,
P ""

T S· , i.e. Z ~ 2: ,n Yn n

choice of fZn1 , and proving that (1) implies (2) •

d(t'( tTy S·) < £ :.
n

oont~adicting the

,4) imnlies (1) :

Suppose that L. is not (a )-regular. Then there is a point y i.n V

oontained in a stratum Y of L (dim Y ~ 1) , and a sequence of points rxJ
of V in a stratum X of ~ such that X. ~ y as i ~ 00, and

J.

~ X ~ '( as i ~ 00, and there is a vector v e TyY such that v ¢: "t •Xi
Let E be the I-dimensional subspace of T M spanned by v. Choose a basisy

for T:M such that
y

=

E. WI $ Tl

Tl $ T2

Be WI ~ 1126Tl$T2

..
T M
Y =

are

perhaps empty. Then find a subspace H. of Til. with dim H :II • - r (= dim N ),

.' (this l~r~dim r ),such that 'r e Ii c:= H s: Tl ~ T2e til eW2 is possible since2 2-
:hen z; + T Y ~ T M , but ;1 "" 'L .* T ~-1 • Let Pe £1, a.nd define

:I s Y

£)H '" [f e. Cl(N,M) : f(p) = y t (er) (T N) = H]p p

Lemma 1. 3:, 3 g E ~ H such the.t g '" L .
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Choose a ohart (W, 'V ) for N at p suoh that gJw is an embedding (if

ge ~H ' (dg)p has maximal rank) , and ohoose a ohart (U, 4> ) for M at y

such that g(W)C U • Then it is not hard, sinoe we have reduoed the problem to

one for cl( lRm-r, mm) , to oonstruot, for eaoh i suoh that Xi E. U ,an fi

in Cl(N,M) suoh that,

(i) filN-W = gIN-W'

(ii) filw is an embedding,

(iii) fi(W)C: u, fi(p) = xi '

oonsidered as subspaoes of T M.x.a,

(iv) (df.) (T N) = H. ~ T X ei-l1@W2 '
1. P P 1. X.

1..

for i suffioien~lY 1arge~ where we have

(v) Hi ~ H (i ..... co) ,

(vi ) f i ~ g (i -+ 00) in the

strong 1C topology.

Then for eaoh suffioient1y large i, f. is not transverse to X at x.',
lo ~

sinoe E ~ H. + T X ,i.e. f. is not transverse to 2: • But by the lemma,
lo %i lo

lim f. = g is transverse to L , thus we have a oontradiotion to the hypothesis
1.

of (4) that the set of maps transverse to 2: is open in Cl(N,M), oomp1etina

the proof that (4) implies (1).

Proof of lemma 1.3 : Choose oharts (u,4» for M at y, (w,'P)' for N

at p, and a Cl map h: N ~ Id suoh that h(W)c U ,h\W is an embedding,

h(p) = Y , and (dh) (T N) = H • Let V'c: W be an open set oontaining p, with.
p p

Compact olorn.re if lew • Then 3 .5 '> 0 such that if r a '1"..~, (h) , ...hd ch=', ;1
<;" 1 ~

;,3 L f E CJ.(l'I,}1): jj-f(x) - /'h(x)1 <. b \J:x:~ W~, chen fJ ri' is an erobeddin:;

(eee L131, ~...la.pter2, Lemza 1.3). LetiYo,w.(h) denote the weak: Cl closure

of the weakly open set \J'6,w' (h) , ~nd 113t CH "'"S.tI nVO/2,wt (h). rrhen t Ii
. 1 1
loS weakly C olosed in C (N,M) • For, oonsider any limit point to of a

eonvergent sequenoe in i)H ,\-11ththe weak Cl topology. Clearly '£'O(p) .. Y
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and (dfO) (T N)~ H ; however the inclusion can be strict: the rank of f canp p

drop at p • But if fO€ \fcf/2,W,(h) C LJJ;w,(h) ,
choice of ~ • Thus

f Q, has maximal rank at

(dfO) (T N) = H , andp p

p

since fol ~-l' is an embedding by

foe .f)H • Hence E,H is weakly 1C closed. Nowwe quote

Theorem l.~ : Any weakly Ck closed subspace of Ck(N,M) is a Baire

snace in the strong eft topology (1 ~ k -600 ).

Proof. See [13], Chapter 2, Theorem 4.4 ,or [241.

Using this result we Fan now applY the usual procedure of the Thom

transversality theorem (as in [8] , or [13] ) to prove that [f e CH: f rh2:1
is strongly dense in CH.

fT's] ~:LAcompact coordinate discs ~ ~=

contains y, and if f E ~ H ' then

each S and each DC, { f 6 ~ H :

such that if

of L by countably many
y y

y € Koc(y) then no other ~

Cover each stratum S

f(W' ) (\ K~(y)

f ~ S on K~1
= y. Nowverify that for

is open and dense in

with the strong Cl topology. The proof of this is a local argument near K~

and goes through for the standard proof in Cl(N,M) by the choice of
y

as K(;(y) •
(Given f G ;:: ~-I , t not transve~se to Y on KY , we C3...."1 find an.;:.(.(y)
arbi trarily small perturbation of f to a map g e C H which is transverse to

y
Y on KOC(Y), and such that glw' = flw,.) Because there are coumtabIy many _

strata (2: being assumed locally finite) , and because ~ H is a Baire space in

the strong Cl t9POlogy (Theorem 1.4) , we deduce that

f f € <! H : f.1\ S on K;

is strongly dense in t: H • Since t is ,*.;6 , as
u

g in ~ H ' and hence in aJ H ' with

, 'V ~ , V SJ = {f 6 C. II : f th ~ J
h E /:_ H ' we have shown the

existence of some g '" ~ • This completes

the proof of Lemma1.3 •

notes on the nroo! : 1. It is not clear if -I>H is a Baire spaoe • This is

the roason for introduoing in the ~roo! of LeJIll;lS 1..:3 .:;el'tainlY i) II is
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not weakly closed, since the rank at p of a limit map may be less than the

ra~~ of the ma~s of a sequence in f)H ' convergent in Cl(N,H) •

2. rfheproof of (4) implies (1) shows that if there is a Cl manifold

N idth f f E Cl(N,:M) : f Ih I:] open, then ~ is (a )-regular over the

strAta of dimension ~ dim M - dim N •

2. (a)-regularity and transverse submanifolds

Consider the follo1dng condition on a pair of adjacent strata (X, Y) at

a point 0 ey n (X- X) , with X, Y Cl submanifolds of Rn •

(t) Given a Cl submanifold S of ffin transverse to Y at 0, t~ere is a

neighbourhood U of o in jRn such that is transverse to x in U

If (t) is satisfied for (X,Y)O we say X is (t )-regular over Y at O.

If Y is (t )-reguler over Y for each point in Y n (X' - X) we say X is

(t)-regular over Y • If each pair of adjacent strata of a stratification

pre (t)-regular, then ~ is a (t)-regular stratification.

Since spanning is an open condition. it follows at once that (a) implies (t) .-
'I'he:false argument referred

[(a) implies (t)]

to above to prove

implies [(a)
III
(1)

(1) implies (3) of Theorem 1.1 i::

implies epenness of transverse map~1.....-----'V' ~
(3)

c'his sugGests -;hat (t) implies the openness of transverse naps , rrlhichis fa.lse

in £"e1':';;::""'1. aL though true in theoar-13 of subana Ly t Lc stratn (or A.r,y si"tu'3,tion

w~ere t;::3 curve selection lemma. is ava.iLa ble), as proved in Theorem 2.5 below.

Thom, in [341 mentioned that (t) implied that the transverse mans formed an

open set in the semialgebr~ic Cese. In [35] he used this to deduce that (a)

implie!'lthat the transverse maps ar-o ooen , again using "ln3lyticity:,. 'I'he
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mistake first occurs in [36J where he repeats the argument, but does not assume
analyticity. 'I'he error was then copied by ~ja1l [41] ,Trotman [37] ,and
Chenciner [41 . Although [371 contains an example showing that (t) does not
imply (a), I did not then realise that (a) was equivalent to the openness of
transverse maps, and missed the fact that the example there was actually a
counterexample to (t) implies openness. A fortuitous remark by E. Bierstone at
Oslo in August 1976 led to the recognition of the counterexample which follows.

Example 2.1. ! (t)-regular stratification which is not (a)-regular [:~9J.
Let (x, y, z) be coordinates in 1a3 • Take y to be the y-axis, and let

,

X - (Jj {f n = 0 , en~ oJ) U (01 (X :: 0 , en ~ 0 , s> o}) where i~~0J
defines the cylinder Gn of radius l/3n(n+l) with axis the line (y ::lin " z = 1/
and where ffn = 0] defines the surface Fn 0btained from [x = «y2 +. z2) - if}
by translating the origin to (0, lin, l/n2) and reducing by a factor of
3n(n+l )112 so that F intersects ~G exactlY where f x ::0] is tangent to F •n n n

(0 , l/n&:')1----

r
It'igure:x = 0

(0 ,1/(n+l)2) G~ n fx = oj ..

o

;( is a Cl submanii'old and is semia.lgebraic on the co:nplementof the origin.
The normal vector to X at the point,

xn = (1/2~n(n+1), (lin) + l/3l2n(n+l) , 1/n2 )

n • ,:o:::oethe li~i t .:3.5 -:;;;:1Q8 to co is" (2 : 1: 0)
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and (a) fails. (For (a) to hold, all limits of,:orma1s would have to be of
the form (cl: 0 : c2 ) ,where cl' c2 are not both sero. )

\

x =

\
\

/
-/
/

/
/

x

(.J2/12n{n+l),s)

y

F· -_ l/n2l.gpre: z

(t) holds since any submanifold transverse to Y will intersect X near
Y only at points near which X is defined by f x = 0] • Hence the
str3.tification ~ of R3 defined by f Y , X , m3 - (X uY ~ is (t)-regular •

Now we verify explicitly that the set of maps transverse to ~ is not
open. The mapping h in Cl(S2, ffi3) defined by inclusion of the sphere of
radius 1 and tangent f2X + Y = 0] at 0 and with centre at (-l/3,-2/{5, 0)

by inclusion of the unit sphere with tangent at
is transverse to the stratification, but for each n the mapping hn defined

[ 2x + Y =

x the planen

(5 + l2~(n+l»/(12~n(n+l»]
~3.....

"h ,.:3-- "o in the bounded ccnponerrt :Jf

to X at xn• Since fhnl tends to h in the weak Cl topology, which is

also the strong Cl topology (sinc~ S2 is compaot) , the set of mappings
transverse to L is not open in Cl(S2, m3 ).

'I'h·...s (t) cannot replace (a) in the "!t:l,tementof T::eo::'em1...1.
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liotethat by smoothing near each circle {x = 0 , gn =- 0] , X can be
made into a COO subrnanifold of ffi3, with the normal veotor to X at each
x as before, for all n , thus producing a COO counterexample.n

Construction 2.2 (Hills, or Round Ba.rrows)
The example above used a simple construction of a Cl semialgebraic hill

which will prove useful as a, building block for both examples and proofs of
2 2] 2theorems. Consider the curve fx = (y - 1) in m : it has tangent parallel

to the y-a.xis for y == ±1 •

x

Figure Hill of dimension one

~otating in m3 aaout the x-axis, and cutting ~~ound the circle
2

+ Z = 1 ,

+ i-~ 1 ,

x = 0]
01

and then inserting in the plane ) x == 01 with the di80
removed, gives a Cl semialgebraic manifold. The vital

...

x =
property of the curve fx = (y2 - 1)23 which will be used again and again is
that in the region fy2 ~ 11 the tangent to the curve is furthest from f x .. 0]

Construotion 2.3 (Long Ba.rrows)
Consider the surface in R3 with coordinates x , y , z ,

= (m2 2)2( 2 2 2)2\ -z mr-y
where m, r € [0 , 00) • 'rhenormal to the surface at (x, y , z..) is



20

7 3 222 222 2 2 222 2( m r : ,. 4(m - z ) (m r - y )y: 4(m r - y ) (m - z .)z ) •

z

(O,-m)

On ..[ z2 = m2, x = oJ and [y2 = m2r2, x = oJ the normal is (1: 0 : 0),

and thus we can cut alon$ these lines to obtain the surface

B(m,r) = [m7r3x = (m2_ z2 )2(m2r2_ y2)2 , z2 ~ m2 , :l~ m2r2]

and we can insert B(m,r) in the plane fx = 01 with a rectangle

[ x = 0 , z2 ~ m2 , y2!;._m2r2j removed, to give a Cl semialgebraic manifold.

( 1

At '(mrx , mr,y , mz ) for

: 4y(1 _ z2)2(1 _ y2) :

2~ 2z _ 1 , y ~ 1 , the normal is now

2 2 2)4rz(l - z )(1 - y) • Thus as m varies

B(_,r) varies in size, but the tangent structure (that is the set of points

in p2 \ It) defined by the normals or tangents to the surface) remains the

same. But as r varies the normals change, and as :r t~nds to 0 the

Wecall thic ~urf.?ce

: ~- \, : \)
"--.-.;0:,_,,,, ,.)

(_lo::;.c,;.;n ...r:.J..)_l_' <...,;;..-t r::..;;r;;...:01'T ,) fa

wi th axis :)z, and centre 0, and base yOz. The axi.s , centre, and base will

alw~,ys be flT,)ecified. Calculation shows tr....atfor r <.',.(j/4 ,the normal to the

:; = ± mr/.f3 o ,
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and at these points, (4mr/9, 1: mr/-J3,O), the normal is (l;:t 8/3...f3 ~ 0 ) •
(Compare Construction 2.2)

Linguistic Note : The term barrow is used because of the resemblance of
the surface to the ancient burial mounds called by that name in England, when
r is small.

Examnle 2.4 : This will show that the phenomenon that (t) be strictly
weaker than (a) is not solely due to the possibility of (a)-faults given by
sequences tangent to the base stratum as in Example 2.1 that is, it is not
true that (a) holds for those sequences on curves with limiting direction not
tangent to the base stratum.

In m3 with coordinates (x, y , z ) let Y be the y-axis, snd let
00 00

X be <hi [fn == 0 , gn~o}) U (IJ. fx == 0 , gn~ , z>01) where [fn = oj
is the equation defining the barrow B(mn,rn) with centre (0, lin , lin )
and axis fx == 0, z + y == 2/n"J.,with base in the plane ~·x == 01, and
fgn~ o1 defines the interior of the rectangular base of the barrow. X is a
, 3C~ manifold, and is semialgebraic on the complement of the origin in ffi • We

choose ~(mn,rn)}~l such that,
(1)

(2 )

(3)

r tends ton o as n tends to 00, ..
the barrows are pairwise disjoint (in particular mn tends to 0),
m tends to 0 fast enough so that the nth barrow B(m ,r ) isn n n

contained in the 2-sphere with centre (0, lin , l/n) and radius
.', 21/2n (so 2

m == 1/4nn will do).
By (1) the Eet of limiti:'lgnor~.l.lsis exac'tl.y f< ~.:(4*"/3E)~:(4~/j.fj)~)

o ~ IX\ ~ 1] • (Cf. Construction 2.3) l'nus (a) f'ai.La, since for (cl.) 1;0

hOld!!! limiting normals must be ot the .form (cl' 0, c2) •
By (3) the set of barrows is contained in the horn which is tangent to

{z :: s x .;) ~ which .. ' the ~lt:?:a [z y ')+ 7 ~i.1.1 ~, ;::irola of, = ... J..n1;ersec·::s + == '-- '~ c:.
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radius t2• Hence a Cl submanifold S transverse to Y at 0 intersects

infinitely many barrows only if [z = y , x = O]e: TOS • But then S will be

transverse to all barrows in some neighbourhood of O. For, suppose S were

nontransverse to infinitely many barrows; then NOS would be one of the limiting

( 1 :(4.J2/1J3)~:(4,J2/3rr) ~) • But fz = Y , x = o]e TOS , and 5 is transverse

to {x = 0 , ?: = oJ R,t 0, thus NOS is of'the f'orm (l"': ~ : -'Y) with

'V =F- 0 , which is not a limiting normal to X.

'rhus we have shown that (t) holds and that (a) fails along sequences

which are not tangent to Y •

As in example, .2.1 , by~ smoothing near the base of each barrow we obtain a
coo 1examp e.

z y

Figure : x = 0 •

- -.-- ....-.".------ ..---- ..-.---.,.-.~ y

Now we shall prove that (t) and (a) are equivalent in the subanalytio ..
Case. Preoisely, we have the following result.

Theorem 2.,.~ : Let X , Y nsub~nifolds of R a.nd let---- o e: yn('x - x.
,".l1,i~t-- ..

~-.~ ~ ...."_·C:·~,1.!"'_~.l.~rtic..... ,-'_~-_:; ,~ , o if

and only -If f . 1 t' Cl_. or every sem~ana y ~c submanifold 5 transverse to Y at 0

there is some neighbourhood U of 0 in loThich 5 is transverse to X.

The proof will depend upon two technical lemmas which we display for future
reference.
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Curve Selection Lemma 2.6 : Let U be a subanalytic subset of the analytic
s~ace A, and let 0 ~ U • Then there is an analytic arc

()( : [0, lJ ~ A
such that ()«O):= 0, ~(t) E U if t-::f::O.

Proofs of Lemma 2.6 a (1) Subanalytio U : Hironaka [12, Proposition 3.9J ·
(2) Semianalytio U : Lojasiewioz Q.8, page 103J .
(3) Semialgabraic U: Ir:ilnor[23, Chapter 21 •

~Of course, (1) implies (2) , and (2) implies (3). )

Lemma 2.7 : Let Xm be a Cl submanifold of Rn, and a subanalytic subset
of [Rn • 'l'hen £( x , TxX ) : x € X1 is a subanalytio subset of IRn x G:( a) •

Proof : See Verdier [40, Lemma 1.6J •

Lemma 2.7 , with semianalytic replacing subanalytic each time, follows after
~artition into real analytic manifolds from the proof of Whitney [47] for
complex analytio varieties. A short proof of Lemma 2.7 , with semialgebraic
replacing subanalytic eaoh time, appears in Gibson [6, page 301 .

Froof of Theorem 2.2 a Only if - this is immediate since spanning (and henoe_
transversality) is an open oondition.

If - Suppose (a) fails. Thus there is a unit veotor v E TOY' a
sequenoe f Xi} G X suoh that xi tends to
and v¢.1.:.

o , and T X tends to a limitXi

~hoc.:e 2.;> J _._ -'I ,

-'

).> ,~ ,

where d( v , p ) denotes the distance between
--i

and the endpoint

of the unit veotor v, both oonsidered as subspaoes of IRn at O.,

Define VI := &.."nx [F E. ,;n(R) : d(v,P) > eJ Can X Gn( JR)m ill

V._ \"( , '" ) . ~c -1 -:til x " l.l( tl)= :x , .'1. . A J .:_k Jm, ..
c: \._. X·
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VI is semialgebraic, and V2 is subanalytic by Lemma2.7 ,since X is

assumed to be subamalytic. Semialgebraic sets are subanalytic, and the finite

intersection of subanalytic sets is suhanalytic ( by Hironaka [l:~J ). Hence

VI n V2 is subanalytic and (0, 't )E. V1" V2 sa tisfies the hypotheses of the

curve selection lemma 2.6. Thus there is an analytic arc in Rn x G~(m) (which

is an analytic, even algebraic, manifold) ,

lX:[0,11 ~\RnXG~(lR)

with ()((0) = ( 0 , 'C) and ex: ( t) € V1(\ V2 if t > 0 •

;Iri te 'Xl (t ) for the !Rn_componentof 0« t) ; the G~( re )-component is

l' Dl1(t l ·Let Nt € G~_l(.IR) denote the normal space at 0(1 (t) to the cl

rnanifold--vlith-boundary ~l ( [0 , IJ ) , and let the vector vt be the

projection of v into Nt spanning (vt> e G~(fR)•

He shall define a1\ analytic arc (5": [0,1] ~ G~_2OR) such that

6(t) ~ <v,'> ,: Nt (*)

'rhen the union of the f(j (t) 1 ' considered as embedded (n-2 )-planes in mn

passing through the points 0(1 (t) defines M'l analytic manifold-with-

boundary SI of dimension (n-l). Reflection in NO extends SI to a Cl

manifold S which is a semianalytic subset of IRn , and which is t ...ansverse to

y at 0 by (*).However we shall show that no neighbourhood U of 0 exists

within which S is transverse to X.
Construction of 0'" :

Let Pt = Nt" T~l(tl €G~l(R). Then o=t=vt.Pt by definition of

VI (\ V2 • Let (S(t) :s Pt El) (Pt Ea <Vt,,> )..L€ G~_2(R) ,where ( )..1.. denotes

ortho.Z")nal complement in E .
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6 satisfies (*) by construction, and so it only remains to show that S

fails to be transverse to X in any given neighbourhood U of ° . Now there

exists some toE-(0,11 such that U " 0(1(0,1] ? o(l(O,toJ • But S· (and
hence S ) is not transverse to X at any point of atl(O,lJ • For, if At

(){l (0,11 at

(j(t) eAt '"

denotes the tangent space to the curve

'l'hiscompletes the proof of Theorem 2.5.

Note 2.8 : Even if X and Yare COO submanifolds we cannot restrict to
00 2C ,or even C, semianalytic submanifolds S, since (a) may fail only near

Cl. cusp of type "y2 = x3" , each branch of which is a Cl manifold-with-

boundary, but not a C2 manifold-with-boundary. The same type of example excludes

restricting to analytic submanifolds S, although by the proof of 2~.5 we

can restrict to analytic submanifolds-with-boundary S , since the statement

that S be transverse to Y at ° still makes sense if ° 6 Y {\ as. The

proof of 2.5 also shows that we can restrict to those S which are "ruled

submanifolds " , that is a differentiable one-dimensional family of planes of

:-;odimeY1.sLon2 in !Rn • J\corsover it auf'f'Lces to cons i.der-:-~ll eubman i.f'oLda of

·::);.:e L..::cd .::'i:le!~sicc. c;re,s,ter -:han:)r ea.t;aL to t:.:9 codd zene ion 01 Y , ::;; a.

small adjustment in the proof (choose (Sl(t) C 6(t) ,where 0"1(0) + TOY'" NO.'

6 1 ( t) €. G~_l (a ) ,and c ~ codim Y ).

T.-C. Kuo has recently proved the following result, which is related to the

'=cuestionsalready treated in this section.

'rheorem 2.9 (Kuo) : Let X, Y be COO submanifolds of (Rn, Y:IIX - X in

some neighbourhood of Y • Suppose X. !:L (a)-regular over Y at 0 €. Y .J:!!
,.

, '::'r
C.

be COO submanifolds transverse to y at 0, with- - dim S. '" n - dim Y .
J. J.

\i 1. \. 'r~:~mthe -:-ermsof' re home~morphic.
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F'roof : In [15J ·

This is an attractive result since it parallels the 'l'hom-!v1athertheorem

(:rheoremB of the introduction) that (b )-regulari ty implies topological

triviality. Explicitly, if X is (b)-regular over Y and SI and S2 are

t'Woeubmand f'oLda transverse to Y at points Yl and Y2 in Y (with Yl'* Y2

llllo,:ed) , then the germs of' SI rv X at Yl and S2 () X

honeonorphd c, 'I'hd.a follows from Corollary 10.6 of (211.

at are

(a )-regula.ri ty is

de iLru tely insufficient for the latter property as shownby the figure belOl'l.

\/
/\ y

./\
germ of S2 t'\ X

'3. t y at 0

Conjecture 2.10 : Theorem 2.9 is true with the weaker hypothesms that X

Observe that the hypothesis Y 2 X - X rather than ye X - X is essential_

in 2.; and 2.10, as shown by the next figure.

o

.Ie might also ask if the converse of ,'l'heorem2.9 is true. Howeverexamples

2.1 and 2.4 show,that this is not so. In both examples X is not (a)-regular

o )~nterseCltB
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X ina topological open half-line near o. We do though have a converse to

2.9if we replace (a)-regularity by (t)-regu1arity as in Theorem 2.11 below.

Definition: Let X, Y be Cl nsubmanifolds of tR ,and 0 ~ ye X - X •

The pair (X, Y ) is said to have homeomorphio Ck transversals of dimension

s at 0 ( I ~ k =:;, ID, codim Y ~ s ~ n ) if,

\hk ) Given a ~ submanifold S of dimension s transverse to Y at 0,s

the topological type of the germ of S n X at 0 is independent of S •

Theorem 2.9 says that (a) implies (h~d Y) • From the proof of 2.9 r15),
one sees that (a) implies (h~Od Y) , but it is left in doubt whether (a)
implies (hI ) since the proof makes use of a (tangent) vector field in acod Y

blowing-up.

lirite (t::) for condition (t ) restricted to those Cl submanifolds Ss

of olass ~ (1 ~ k ~ (0) and dimension s ( codim Y 4 s ~ n ) • Then we have,

l~e d.i3 ~~J';_1~~... ._._>4_~_._

implies
and s > n - dim X •

( David Epstein has given a counterexample showing that the restriction on

s when k > 1 is necessary.)

Proof: Su~pose X is not (tk)-regular over Y at 0s
Then there is some

submanifold S of dimension s transverse to Y at o and an infinite

sequence of ~ointB x.~ in X, tending to 0, such that S and X are not



~{eare working locally at 0, so wa can suppose that S is iLle image of'a

Choose a.sequence of pairwise disjoint balls B. of radius
1

x. , which a.re contained in coordinate charts for
1

x , such that

ri and centra

is-
1(snBi) ""Di

is an open subset of mS , and diffeomorphic to mS • Let s. ~ is-l(x.) •
1 J.

Ue shall show the existence of a Ck embedding e » ( IRs, 0) ~ ( a", 0)

such that,

(I) off U
1::1

D~ ,
1..

(II) for all i g( (Rs)(\X nB. is not homeomorphic to a manifold of
1..

dimension (s + dim X - n) , and is nonempty.

From (I) it follows that is and g have the same k-jet at 0, so that

in particular gems) = S· is transverse to Y at o.

Existence of g when k = 1 :

Finding such a g is particularly simple when k = 1 •

Fix i , and let be a el diffeomorphism of B. , fixing x. , so that
J. 1

el_perturbation of i. near si

embedd.ing gi : (Di,si) ~ (Bi,xi), such

et> . (X t\ B. )
J. ].

is affine. By an arbitrarily small

we can change is' D. to a Cl
J.

that there are open neighbourhoods N.
J.

and L.
1

of s.
J.

in IRs with
11. c N. C L. C. L. Co D. , and gi l D.-L. ::z is I D.-L. , and1 ]. ]. 1 J.

J. 1 l. J. --~ i Cl g. ) N = d ( et> i0 is)( si) tN. · (We have pushed 4> i(S) onto its tangelit
J. .L.

J. 1
Space near x .•)

].

lJep..rx .:. ifeno';;have two affine SuDsna.ces ~ I (X ('\ B.) and_ 1. (.-k.o g. )(li.)
'+'1 1 1.

which intersect'at x. , but are not transverse at x. , and hence intersect in
1 1

an affine subspace of dimension greater than d s max ( -1 , s + dim X - n ) •

Thus dim (-~. (X f\ B. ) " (4).0 g. )(D.» is gre9ter than a , and hence
~1. 1. 1. 1. 1

(*) dim (X" g.(D.» > d •
]. ].

In particular X" g.(D.)]. ].
is nbnempty.

:Now riefine by setting gin1 ,
g.
J,.

for all i .

elsewhere.
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For g to be a Cl embedding, it suffioes to ohoose [gil such that

Ijl(iS)(S) - jl{gi)(s)1 <: ri/2
i for all s EDi ' for all i.

Then (I) is satisfied by oonstruotion, and (*) gives (II).

Existenoe of gwhen k> 1 ,and s ~(n - dim X} s

Fix i. We shall ohange !SID to a ok embedding gi: (Di,s!) ~ (Bi,xi)
k i iby an arbitrarily small C -perturbation (les8 than r1/2 ,say) near 8i, so

that there are open neighbourhoods Ni with Ni C Li '
gi-l{X) f\ Ni issuoh that gi(Di-Li• is\Di-Li

in mS
, of the form

s+dimX-n+l 2' L E..jz.
j • 1 J

, and 8uoh that
homeomorphio to a oone

o , where .. ± 1 ,
henoe gi-l(X) 1'\ Ni is not homeomorphio to a topological manifold of dimension
(s + dim X - n) , and is nonempty.

The existenoe of suoh a Si follows from the perturbation Lemma of May
(Lemma lA of his thesis [53] Damon has given a detalled proof of a more preoise
perturbation in Lemma 3.1 of [51] ) kapplied to the C embedding is at o ,

using the hypothesis s > n - dim X • The Perturbation Lemma is stated for COO

maps and uses the COO Morse Lemma. however the proof works for kC maps (k~2),.,,~-
'"

provide different proofs) • Note that the classioal proof of the Morse Lemma is
only valid for C3 funotions (see [13], Chapter 6, Seotion 1) •

(I) and (II) now follow for the Ck embedding S defined in terms of
is and {gil , as in the oase ot k = 1 • This oompletes our proof of the existen,
of g.

Lemma 2.12 :i1here is some ck submanifold S" of dimension s , ...ith,_
o € S" '. tra.nsverse to Y at 0 a'.':; transverse to X :.ear 0

Proof: This proof will be simiiar to that of Lemma 1.3 •

is weakly olos~d in the
~OPol)gr. and th'lS, t;r -:'heor~m 1.'+ ., is a ;aire space in the et~ong



ck topology. Now we apply the standard proced.ureof covering X by countably

many coordinate discs f KO( 1 , and proving that ff GC s : f ~ X on K ClJ is
open and dense in C. S in the strong Ck topology, for each 0( , to deduce

that f f e ~ S : f'" X J ie dense in c: S •

Choose a weak cf- neighbourhood lJ6,V(is) of the (Ck) mapping is
defined by inclusion of S in Rn, where cS is a positive real number, V is
a neighbourhood of 0 in S , with compact closure V, and if f~ 1Jrd ,v(iS) ,

flv is a Ck embedding transverse to Y at 0 (Lemma 1.3 in Chapter 2 of
Hirsch [13 ] gives 0', V for such a Cl neighbourhood, and the same. cf ,
V ~rovide an adequate c~ neighboUrhood). Then the strong Ck neighbourhood

Uo,s(is) has LJ", = U6 ,s(is)n ff€~ S : flf\xj as a. strongly C
k

dense subset. For any f in 1J"" ' S" = f(V) satisfies the requirements of
Lemna 2.12 •

Let SIt be given by Lemma 2.12. Then S" f"\ X is either empty in some
neighbourhood of 0, or is a topological manifold of dimension (8 + dim X - n) •
Let S' be given as the image of the embedding g construoted above. Then the
Gsr::_...:!at :) of S'f\X and S",,",X are of d.~sti:1;;t 'opologica.l"types, by (II),
and so (hk) is not satisfied, thus proving Theorem 2.11 •s

Corollary 2.13 I If X is subanalytio and the pair (X,!) has ho~eomorphio'
Cl -transversals of dimension s at 0 for some s, n - 1 ~ s -:;.codim Y ,
then X is (a)-re~lar over Y at 0 •--

?roof . Combine Theorem 2.11 wi.~h l'heorez~.5 using the relllarkat the. ,
end.of Note 2.8 that for aD¥ s n - 1 ?:- s ~ codim Y , (t1) implies (a) •, s
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Remark: Conjecture 2.10 and Theorem 2.11 are in accord with the general
principle of Thom that instability of topologioal type corresponds to a lack
of transversality.

One of the original motivations for this work was the hope of generalising
the theorems about equisingularity of families of complex hypersurfaces
achieved by Zariski and the French School (led by Teissier). We now explain
how the results ,just desQribed fit in with this idea.

L t ( ",n+l...._k_ ,Ox _k) __ () .e F: ~ ~ ~- ~- ~ ~,O be a complex analyt~c
function such that y = 0 x Ck contains the singular set of F. Let
r: en+l x ek ~ Y be an analytic retraction. In [30] we find'the
following implications :-

(T.E)

II
(~)

n
(a)

topological type of F-l(0) " r-l(y) is constant as y varies in Y

is oonstant as y varies in Y

(F-l(O) - Y) is (a)-regular over Y ...

(The first implioation is (0.1.4) of [30], and is also sketohed on page 62

of L23] • The second implication is (I1.3.10) of [30J ; a different proof
appears in [161.)

Teissier denotes by (s.v.s) the condition tha"t \,l.'.!!I} hold
for ~ suoh retractions r. Corollary 2.13 can now be thought of as a,

generalisation of the implioation: (S.T.E) implies (a). Also Kuo's Theorem 2.;;'
has ?0 a dirsct consequence that



unsettled in [31).
The exam9le given by Teissier in the post-script to [3i] is instructive.

Consider V = f y3 = tx2 + x5'} in n3 and let Y be the t-axis, and X = V - Y •
Then X is topologically trivial over Y , and the topological type of the
intersection of X with each plane f t == oonstant J is constant, so that
(T.E) holds for r: 1R3~ Y defined by (x, y , t ) ~ t • However
A is not (a)-regular over Y at 0, and (:(,Y) does not have homeomorphic
,,1
v transversals of dimension 2 at 0 as is seen from the figure.

Y t

Figure

3. (a)-regularity and transverse foliations

In his paper "Regular Stratifications" [431 c. T. C. Wall notad that
(x, y ) . !On~n n (a)-:-egular at o in Y then,

Given a local retraction onto Y defined near o , then there is
a neighbourhood U of 0 in an such that 1tlx ~ u is a submersion.



He suggested that the converse was also true, and this will be the main result
of this section.

First note that 'Tt IX 1"'\ U is a submersion if and only if the fibres of 'Tt:

are transverse to X in U • Then we see that (as) implies (t) • F'ar, given
a Cl submanifold S transverse to Y at 0 we can choose a chart at 0 in
which Sand Y become linear and then take a linear retraction 1t whose
fibres lie in S • If the fibres of 11 are ~ransverse to X, S will be
transverse to X. Thus we obtain,

Corollary 3.1' : Let X", Y be Cl submanifolds of lRn and let 0 E. ye:. X - X

~nd let X be a subanalytic set. Then X is (a)-regular over Y at 0 if
and only if ;{ is (a )-regular over Y at 0s

Proof: As above, (a) implies Ca), and (a) implies (t). Now applys s
Theorem 2.5 •

Clearly if Y is an analytic manifold we can restrict to Cl local
retractions rr whose fibres are semianalytic : further improvements on

Remark 3.2 : In both examples 2.1 and 2.4 we can choose a (linear)
retraction n whose fibres are translates (over Y) of a limiting tangent
plane for which (a) fails, and these fibres fail to be transverse to X at
each -pointof a aequence t.ending to o.

Before we prove that (a) impliess (a) , we give a helpful reformulation
of (as) suggested by Dennis Sullivan.

Given a foliation ~ transverse to y at o , there is a
of in U A



It is clear that (a) is equivalent to (~l). Given (:tl), (a)s s

follows since the fibres of a Cl looal retraction define a foliation transverse

to Y of codimension the dimension of Y • Given (a ) ,s (3-1) follows by

choosing a retraction whose fibres are contained in the leaves of the foliation.

So the question of whether (a) impliess (a) can be formulated as : do

transverse Cl foliations detect (a)-faults?

rrheorem 3.3 (II Transverse Cl foliations detect (a ~faul ts II)

Let X, Y be Cl submanifolds of !Rn , and let 0 EYe X - X • ThGln x:
is- (a)-regular over Y

,
at o if and only if X is (']-1 )-regular over Y at

(1"11) •implies ~ So suppose

o
Froof :i'/ehave already established that (a)

that there is an (a)-fault at 0 given by a sequence fXiJ E X tending to 0,
W'ith "C = lim T X ,and TOY et:. L .x.

~
~ie shall adjust a codimension 1 foliation by hyperplanes parallel to a

hyperplane containing ~ so as to be nontransverse to x at infinitely many x .•
1.

Construction 3.4 (Ripples)

Given a hyperplane H eG~_l(IR), a real number SE.[O,!l, and a real
':unber l' > 0 , we construct a .,1v foliation of Co dimension 1 01 t~'.a

ball Bn of radiusr r with oentre o in mn suoh that ..
(1) for all x €. Bn n T :;.S = H ,- 131 ,r ~r x H

(2 ) for all n d(H,T::0-~) ~ sx e. Btr , ,
U) K ~ G~_l (m) d(K,H) nfor all. such that = s , there is a unique '1c e. Bir

such that

(4) thel"e is a. diffeomorphism th S.n :an
't'H : b ~r I' such that <p:C3-:)

is the trivial foliation "10~H by'hyperplanes parallel to H , and suoh
,

that <p~IBn _ B~ = idfB~ _ B~ , and dCP: tends to the identity
r itr :~r

uniformly as s tends to 0 , i.e. .\;J C. "::> 0 , :3 B€> 0 such that
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implies for all

Figure

(lie shall postpone the verification of Construction 3.4 until after the proof

of Theorem 3.3 • The reader may in any case prefer to admit the verification as

geometrically evident.)

Choose a one-dimensional subspace VeT oY such that V q: "t • Define a

hyperplane H by 1: ~("( a;, V)..L ,where ( )..1. denotes orthogonal complement
1"7\ n-!1
.L eft •

Since T X tends to 't as i tends to 00 , there is some iO suchx.~
that i ~ iO implies V¢: Tx. X • Then for alli'>- iO define. a hyperplane

..L ~Hi by T X~(T xev) C T IRn. Then H. tends to H as i tends to 00.x , x. x. ~~ ~ ~
Pick il ~ iO such that \Hi - H' < i for i ~ i1 •

ill

Now pick an infinite sequence of pairwise disjoint balls B (x.) withr. ~a
o is the or~y accu~ula~±nnradius r. and centre x .• 'I'hds is possible since~ ~

Point of fxJ i::l • Then for all i, 0 ~ Br. (xi) •
~

For all i ;;:.il ' place inside B (x.) ar. ~~
with radius ir. , centre y. , and the foliation~ ~

" ripple " : a foliated ball
'::r ,,:rJH. -HI
"""i = JH~Bi = Bir:(yi)~

given by Construction 3.4 such that x. = L.. ' i.e. T~. = H .• (There are.1 tl X. 1 1~ ~
possible positions for the ripple.) Define a foliation ~ on·' mn by the



trivia.l foliation :fH by hyperplanes parallel to

Let

on Bi for all i ~ il• 2J.,
diffeomorphism cf> I mn ~

= identity, and qplB. =
~ .

H on ~n - (U B.) ,
i~ i l.

will be a Cl foliation if

Rn taking 3- onto ~ H •
.,-h1H.-HI
~Hl. as defined in

together with ~i

we can define a Cl

Construction 3.4 • To check that c} is a ..,1
v diffeomorphism it is enough to

check that dCP(x) is continuous at 0 and equal to the identity at O.
Given £. > 0 , (4) of Construction 3.4 gives us an s£ > 0 • Pick i2 ~ il

such the.t \Hi - H\< se: for all i ~ i2 • Let & == mi_!![r xl1 • <5 is
x€Bi

. il,i<i2i,.,-l ~2-1
,·jell-defined and nonzero since 0 <$ \.:J B. c. tJ J3 (x.)... ~ .. r. ~].:::~l ~=~l].

i -1
r \ (" x ~ ,2 J B; ,soi'hen x c::::: 0 implies q::: \.._/ ...

i=il

<c by (4) of Construction 3.4 ,

and t..:e choice of sCo ' i2•

?hus dqp(x) is continuous near 0, and dcp(O) = I (the identity matrix).

Jence S is a Cl foliation and T03- = H , so that 3- is transverse to Y
•

at o ( Vet- H by definition of H). Bu:b for all i ~ il ,T J. = T 3-.::: Hix. x. ~~ ].

X at x .• This shows that
].

Theorem 3.3 •
and T X cH. , so that r::r.... is nontransverse tox. - ]. J

]. 1
is not (~)-regular over Y at 0, proving

i:~rifica tion of CoroStruction 3.4 : It suffices to taka H = ;an-l x 0C Rn

and n = 2 • For n > 2 the calculations are similar.

Gonsider, t ~ (1_~2)2(x2_ a2)2 ~2 ~ 2 2
::: + 1 x ~ a

,,2 ~ 2 2
:II A 1 , a ~ x '-- 1 ,

with the constant a in (0,1 ) to be chosen shortly.
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~e aaall prove that this defines a Cl foliation of [_1,~2 of codimension

of f\ • (If n '> 2 , take1, ~ith the leaves corresponding to fixed values
2~ n-1 2 2 2= ~ + (l-~ I (2: xi - a) ,et cetera.)

i=l
x
n

I.:lultiplying by r/4 gives a foliation of [-r/4, r/4] 2 which fits into

the ball B~ (0) and extends trivially to a foliation 3-a of B (0) whioh
ff.t" r

satisfies (1) • 'llhe leaf "Idth normal vector furthest from (0 : 1) is clearly

given by x = o , and this normal is (1 : + (8a3 )/(3.0) ) at the points

( (4/9)804 ,± a/J3 ). (CompareConstruotion 2.2)

iirite v, =, (8a3)/0I3) . Then \(1: "Va) - (1: 0)' ==

So , given s , choose a such that
')

"\Ja
<-

2

1 + 'V 2
== s ,

a
2 2

i.e. ~
s

= 2 •a 1 - s

Then 6a = 264(1 - s )
•

l'lith this choice of a, (2) and (3) of 3.4 are satisfied.

:;ote that for s e [o,~] we have : a6 ~ 9/64 (*) •

Jef:'::-.e ¢e.: [-1.112 ~ [-l,:y 2 b;'l

{
(X'Y)

• ~ 2 2 2 2(x, Y + (I_ye) (x - a ) )
2

a ~
2x ~ 1

2
a

..

<P a. is then a Cl map. Elementary calcul"l.tion using (*) shows that 4> a

is injective. ITow

2 ~ 2
if x ~ a ,

?nd d¢> ~x.y)a
is the identity ffi",trix if 1 •

Calculation using ( ;(-) shows that 'dtP (x,y) is always nonsingu1ar. Thus
a

is a Cl diffeomorp.dsm of [-1,1] 2 ,)1hich after scalar mu1tipliC'ation by r/4



as described above may be extended by the identity to a Cl diffeomorphism of

13 lO) since d q, (x,:!;l) is the identity matrix. It defines the foliation.r a
cp~ will be the inverse of the resulting diffeomorphism. It only remains

to verify (4) of Construction 3.4 , i.e. to show that d(~ -1) tends
a

uniformly to the identity matrix as tends to 0 ; but this follows from

the same result for d<p ,and this in turn follows from the expression above.e.
'I'hus loTe have verified conditions (1) - (4) of Constraction 3.4.

Corollary 3.5 : (a)-regularity is a Cl diffeomornhism invariant

Proof: (2rl) is clearly Cl diffeomorphism invariant.

Having shown that transverse Cl foliations detect (a)-faults, we give an

eXample of an (a)-fault which is not detectable by transverse C2 foliations,

showing that Theorem 3.3 is sharp. The details of this example were worked out

with the help of Anne Kambouchner.

Examnle 3.6 : An (a)-fault not detectable by transverse C2 foliations.
In 1R3 let

00,
:~ be (n (X

n=l

( x, y, z) be coordinates, and let Y be the y-axis, and let
00

o , e 'lO , z >0]) U (u ffn = o , 6n~0 J) , where gn is 3-n n=l ...
function of y and z and ?gn ~ 01 intersects fx = 0] in a rectangle of

length mn, width mnrn' and ?fn = oj defines the barrow Bn of magnitude

mn ,ratio rn ',.axis [x = 0 , y + tan(6n)z = (1/2n) + (tan9n)/2n] , and

centre Pn = ( 0, l/2n, l/2n) with base in the plane [x == 0] .(Cf. 2.3.)

First choose a monotonic deoreasing sequence [mn] suoh tha.t for any choioe
of' en' and a.ny r ~ 1 , the bar-rows ar e pairwi3e dis joint (a::ddo not intersect

n

y ). l·~owlet 0 n be the radius of the largest 2-sphere s~(0) auoh that
2

S, (0) (\ Bn * pS when rn == 1 and Sn: takes all values in [-~/2 , 1V'2J .
~ l' '? 11Then set rn == i3 r"!i3/8) .r 3n and e . - «3 r'r/8)1.cs- ..s..~»\.1105 0 n == aan ..,,) \ on + on ' so defining



B completely, and hence specifYing X •n

(Note that OU/4)6! 4( 1 , i.e. d z, 64/8143 , and so this choice ofn n

en is possible for all n ~ 1 , by the choice of the centre PI == ( 0, i, i)
of BI·)

y
o

Figure x = 0

Since f d n1 is a monotonic deoreasing sequence, tending to 0, both

frn} and ~enl a.re mono'tonf.e deoreasing to O. Thus (of. Construction 2.3)

the set of limiting normals to X at 0 is t( 1 : A: 0 ) : -8/3..[3 ~ ~ ~ 8/3..[3]
Henne (a) fails at 0 for the pair (X,Y).

("'.:12 )Suppose ~ does not hold at o for (X,Y). Then there is a C2

foliation ~ whioh is transverse to Y at 0 and which is not trans,verse

to ,{ in any nedghbeur-hoodof O. Necessarily 3-' is of codimension 1

and To'3 (the tangent at 0 to the leaf of 3- passing through 0) must be

".f' the f'o'rtn (1: 0(: 0) wnere 0 <, ICl(\.f::. 8/3[] •

all n ~ "o and for all p e Bn '

'lfpX - (1: ()( : -0 )' > c6!
(Ij Xp

,
is the normal spaoe to X at" pJ The proof of (*) will be given later.

q,= ( (E3, 0) ~ ('R3,. 0) denote the C2 diffeomorphitm definingLet
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~ so ~at the leaves of (j,' are the images of lO12 x w] WE LR • Then

d~(,) )(1?X: 0) is the plane with normal (1 sOl: 0 ) •

Sinoe <t> is C2, the map (m3, 0) ~ (GL3 (R) , d<t>(0) ) is Cl and

P ~ d4>(<P-l(p»

thus there exist E."/ 0 and M > 0 such that

Id¢(¢-l(p» - d<p(O)1 < Mfpl , for all p 6 BC' (0) •

It follows at once that

I(d<t.>(¢,-l(p» - d~(O»' 2 t < M \pl , for all p SBC' (0) ,
If{ x 0

or in other words t~at

::ow, by hypothesis, 3- is nontransverse 1110 X at some point of B for
n '

infinitely many n, i.e. for infinitely many n, there exists p ~ B suoh
n

that T 3- = T X • Let "i ~ "o be such that for all n~ "i ' if p €. Bp p n '
then Ip I <. E.. • Then for infinitely many n ? "i ' there exists P 6- B suohn
that M lp' > b:J" X - ( 1 : 0( : 0 )1 • But assuming (* ) and using the

P

ohoioe of [;,n ' we know that for all n ~ "o ' and for all p e- Bn '

INpA - (1: ~: 0 ) \ ""7 c 1 P,* . These last two inequalities are absurd,

since there is some n2
Ip\ < (C/M)3/2 , i.e.

h . (",2) 2s Oft~ng that ~ holds, and that transverse C

suoh that for all n ~n2 ' and for all p € Bn '

M \ p\ <, C \p\* . Thus we obtain a oontradiotion,

foliations oannot,deteot

this (a )-faul t.

Proof of (~l: A short oalculation shows that for all n the set of

normals to B (rotated back through 9), is oontained in
n' nt (1 : ~': ~) : A ~ [-B/3,fj , B/3.f!] , t--'€. I;Brj3.l3 , Brj3J3]J •

It will suffioe to establish (*) in the euolidean norm \e in the
2usual ohart for P (fi) oentred at (1:0:0) given by the homogeneous

ooordina tes (~ : ~ I tt) ~ (""/i ,.~/~ ) , sinoe this norm is equivalent to

i;"'''' ""+0!'1,~""d one ( \(l·\ •• u,), - (".\11°\/1)(.... - _.'- ..- .....a_.... .... . -_.,/\ ·r- .....r\ ·1" e
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normals to B contained in
n

shaded region

Figure: Chart for p2( I.R) at (1:0:0).

It is evident from the figure above and the choice of rn and 9nthat

there exists nl such that for all n ~ n' , (1:~:0) is outside the shaded

region which contains the' normals to B • 10[e calculate the minimal distancen

of (1:0(:0) from a normal of B • This is clearly (~sin e - 8r /3J3).n n n
'i'hus for all n ~ n' and all p 6 B ,n

e ~ Cisin en -

:::

8rj3,{3

CiOV/8)( Q t + b%) -n n

~t( (:ill ..x/8) -n

~!
n

~!(l-OEOl/8» ) •=

Since <5 n tends to 0 as n tends to 00 , there exis ts nO;;:"n1 such

tha t for all n ~ nO ' and all p 6 Bn '

\NpX - (l:O(:O)le > OEtl<!16)cS! •

~hus we obtain (*).

lCote3.7 : Wehave in fact proved slightly more by the above example. Namely

that a transverse foliation, with Cl leaves, which is Cl loTith a Lipschitz

derivative in the direction transverse to the leaves, cannot detect this

(a)-fault. If (~l,p) denotes the condition similar to (~) but restricting

to foliations defined by a Cl diffeomo~lism Cl along the leaves and cP
transverse to the leaves, then olear1y (J-1,P) implies (3-l,Q) if p < q

(a,nd (3-1,p) implies (t) for all p~oo). Also it is (now) easy to.oonstruot..
::::.?XJl-:alesshovt.nz i,.1-1,Q) cl t' "lY- ~ \ _ .ces no ~r:r~:' (31, p) when p < q • Simply set
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en := sin-l(3J3( bP-! + 62P4 )/8) ,n n .
r = (313 t,2H)jB ,n n

and repeat the argument of 3.6 •

4. Deteoting Thom faults in stratified mappings.

Sinoe the regularity condition imposed on a stratified morphism is formally
very similar to (a)-regularity llenote here the analogues of the results we
have proved about (a)-re~larity in §§1-3.

Following [6] , let f : N~P be a Cl map, between Cl manifolds
lJ and P , and let X and Y be Cl submanifolds of N such that ..fix and

fh ha.veconstant rank, and let o E Y C. X - X • We say that X 2:!
(af)-regular over Y !U 0 (in the terminology of Gibson [61, X is Thorn
re~:bar over Y at 0 relative to f ) if,

(af) Given a sequence [xi] in X , such that x. tends to 0 as i tends
J.

to CD, and ker dx.(fix) oonverges to a plane r , then ker do(fIY)~ 1: •
J.

Sinoe fix is of constant rank, the fibres of fix form the leaves of a ..
foliation 3:£ of X , and similarly for Y • Thus (af) may be stated,

X

Given a sequence f~i1
to 00, and Tx .('Ji)

~

in X, such that xi tends to 0 as i tends
oonverges to a plane 1: , then TO (3{)!: 1:' •

Here To\3ri) denotes the tangent space at 0 to the leaf of ~ passing
through o.

'Phenatural analogue of (t)-regularity is,



(tf) Given a Cl submanifold S such that S is transverse to 3{ at 0,

there is a neighbourhood of 0 in whioh S is transverse to ~.

Similarly the analogue of (.~) is,

(:>~) Given a Ck foliation 3- of N transverse to 3-; at 0, there is

a. neighbourhood of 0 in whioh 3- is transverse to 3{.

Eote 4.1 : (i) Another way to say that S is transverse to 3-fY at ·0 is

to say that the rank of fls/,\y a.t 0 equals the rank of fly •

(i1) If f has rank zero on X and Y then (af) , (tf) , (3-~)

become (a) , (t) , (J-k) respectively.

Hith these definitions all of the results proved in §2 and §3 have

oorresponding versions, with just some nuanoes.

'rhus, (af) ~ (3-~) -=9( tf) by merely mimioking the proofs that

(a)~(3-l) ~(t) •

Examnle 4.2 : Take Example 2.1 and define f: R3 ~ IR by

( x, s, z) ~ z. (af) fails sinoe the tangent to 3{ at xn will be ..
, .

the veotor (2, 1, 0) for all n. (tf) holds since no submanifold transverse

is the trivial foliation with one leaf.) Thus (t~) does not imply...

failS. (a-i
(8.-,,) •

.I.

to Y interseots the horn containing the sequenoes on whioh (af)

Examnle4.3 : If we define f: rn.3 ~ IR by (x, y, z) ~ z and

examine. Example 2.4 we find that X is not (t ~)-regular over Y at 0:
1

it is easy to find a Cl submanif'o~d, with tangent plane at the origin spanned

by the lines fz = y , X 0: Oland fz '::0 0 , Y = Xl' whioh is not ~ransverse

to ~~ on a sequenoe of points in X tending to o.
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To obtain an example with (tf) and not (af) we can either take f to be
the constant map (see Hote 4.1 (ii)), or add a fourth variablv w , and
consider Xl '"X % R , Yl • Y x IR C 11\3 xlR and let f I 1R3 x (R ~ IR be
projeotion ( x, s, z, w)~ w • Then Xl is (tf)-regular over Yl at 0 ,
but not (af)-regular.

Example 4.4 : As in Example 4.3 we take Example 3.6 ,let Xl = X x IR ,

Yl = Y x \R C 1R3 x IR , and take f: R3 x IR ~ III to be projection
( x, s, z, w)~w • Then Xl is (3-~)-regular over Yl at o , but not

,

(af)-regular. ( X is neither (~~)-regu1ar nor (af)-regular over Y at o .)
Thus (cr~)-regularity does not imply (af)-regu1arity.

The next result is an analogue of Theorem 2.5 •

Theorem 4.5 : ~ X ,Y be cl submanifo1ds of (Rn , and let 0 eye X - X ,

and let X be a subana1ytio set. Let f: Rn ~ RP be a subanalytic map (i.e.
the graph of f is subana1ytio in ~n x~p), suoh that fix and fly are of
~:·:·!"~str.~..nt ~:"'?~~l!:, '~'t'3'!'l ;{ Ls_o ,__.._ .._.¥~...,._."'"'..,"_,_ at

s'~:ni:7.na:,7t:'c---,--
,

, • .1..
v transyerse t,) ::J.f

oJy at

to 3-i .
o , ~here is some

neighbourhood of o in whioh S is transverse ..
Proof: The proof is similar to that of Theorem 2.5 , save that inStead of

proving that [(X,TxX): x E X1 is subana1ytio" we must prove that
f (x,Tx(3~) I X'G X'} is sl.lbana1ytio.But this reduces to proving that
~ ,1 ~

(" I, ~;p.,,:",. ,\ e. "'" c: .'r ) ,_' '" b 1 +. - T I' '2.:r ) , -'I (., 1) . e"T' d f /\ '11 X1_ - - '1::"' '\..\ ~ So.! a::a :;' ,la. -,"or, ..•. r .. '" ,!<sr'4x,J. XI = ::: - "x -z'
,{ .v

arid ker dxf is 3. fixed 8UJSpaCe of L,-lnif we s~.:.ppose(as riB can) that f !.s
a 1inea~ projeotion, sinoe f is the oomposition of an embedding onto its graph
fOllowed by a linear projeotion (of.,page 30 of [6]). 'rheorem4.5 follows.

Pinally we oonsider a possi"ule analogue ef 'rl:!eorem1.1 • Let g: M. ~ n
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and fIN ~ P b. Cl maps between Cl manifolds, and X a submanitold

of N. Then,

gli\ ker dx(flx) for all x e. X ~ grf\ 3{
~ grJ\ fibres of fIx
~ flxog : M ~ f(X) is a submersion.

Then the analogue of Theorem 1.1 is as follows, writing "g '" 3-,i" for

" g~:J-i for all X in ~ tI •

Hypothesis 4.6 : ~ ~

subset V of a Cl manifold
-:-

be a locally finite stratifioation of a closed
1M , and let f: M ~ P be a C map, P a

Cl ~manifold, such that for each stratum X of ~ ,

Then the following conditions are equivalent:

fIx has constant rank.

(1) LJ!! (af)-regular,

(2 ) Cl f Z E- Jl(N,M) zlf.. 31J is
1for eve~ manifold N · oEen in J (N,M),, ·

0) for everl cl manifold N [g G CI(N,M) · e ~ :]J:.~ is open in Cl(N,M), ·
l"ith the stro~ Cl tOEolog;z,

(4) there is some integer r, 1~ r"" max(l ,min (rank fIx» , and some
1 X~~ 1 s ?
C manifold N ~ dim N = dim M - r , for whioh fg 6 C (N,M) : g ~ ~15
is open in CI(N,M) with the strong Cl tonology.

One can prove (1)~(2) ~ (3)~(4) without much difficulty, by

Copying the proof of Theorem 1.1 • To make HYpothesis 4.6 into a theorem

we must ,rove (4) implies (1). If we try to copy the proof that (4) implies

(1) in 'l'heorem'1.1 we arrive a.t,

Question 4.7 : If X is a Cl submanifold of Rlm, 0 e X - X , and

t : mm ~ m.P is a Cl map such that fix has constant rank, then given a

plane H and a Cl manifold n

ts c: Cl(lJ,Rm) : e ~ 3-i ' g(n) =

i'nth dim N = dim H , and n E 1; , is.
o , d g(T U) .. Hl nonempty ? *n n

.. See over.



A positive ensver tO~luestion 4.7 would suffice to prove Hypothesis 4.6.
To prove that (3) implies (1) it suffices to answer Question 4.8 , whioh

is ~ priori weaker than 4.7 •

question 4.8 : Is there some Cl manifold N for which. Question4.7 has
a positive response ?*

Note 4.9 : The proof of Lemma 1.3 made use of the looal transversality
lemma : the set of Cl mays transverse to a submanifold on a oompaot
ooordinate diso is open and dense. The oorresponding statement that Cl maps
transverse to the leaves of a foliation on a oo~aot ooordinate diso be dense
is olearly false (althoueh openness is easy). (Cf. page 193 of [421.)

Consider

or

N non-oompaot

~
I

/"""\ I I
I '-' .""---

r I
/

" ./
-.

'-...-' -.--
N compao t

So another method of proof is required to attack (3) implies (1) of
Hypothesis 4.6

Observe also that the figures above show that the set of Cl maps transverse
to 3~ is not'dense (of. Note 1.2 (iv».

Finally we remark that the results of §~1-3 could also be extended to the
"generalised condd,tion (a) for O-bundles" of· M.-no Schwartz in ['27] .

.. An example of David Epstein shows that the answer to Questions 4.7 and 4.8
is no. However Hypothesis 4.6 is still undecided, a finer study is needed.
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CHAPTER 2. ~mITNEY (b )-RIDULARITY

In this chapter we consider various natural ways of detecting (b)-faults.

The most striking property of (b)-regularity in the theory of smooth

stratified objects is that a (b)-regular stratification is locally topologically

trivial, as proved by Mather in [21]. The proof shows en route that

lb)-regularity implies a condition we have called (bs) in [38], namely

that for any Cl' tubular neighbourhood of the base stratum, associated to

which are a retraction 1\ and a distance function r' the fibres of (1't x P)
(wuich are embedded spheres) are transverse to the attaching stratum. This has

implied (a)

(as) (see S3). In [43J
implied (b);

an exact counterpart in the implication (a) implies

C. T. C. Wall conjectured that (a )s and that (b)s
l371 and [381 . Inwe ~roved these implications in the semianalytic case in

Chapter 1 (Theorem 3.3) we have shown that (a )s implies (a) in general, by

perturbing a tralwverse foliation with an infinite sequence of ripples so as to

':'2te·.::ta given (a )-faul t. The name id.ea rTill -oe 'lsad Ln £5 to prove thnt

'- '

\ ~:J ) i:::plias (')' ~..o ; ..m a ti.':1!3 we use the ripl:'les(o!:' 3.4) to :perturb a foliation

by spheres (the fibres of ~x p ) of the complement of the base stratum, so as ...

to detect a given (b)-fault.

In §6 we study how (b)-regularity behaves with respect to generic sections •

.1e show that, if Y is linear, and if, for a generic set of linear spaces H

(-'))-faul t ,-;f at

o canno-t lie coo "deepil. Conversely, r,e shew that if Oi:,Y) i3 (b)-regular

at J, then for generic such H, (X n H, Y) is Cb )-regular at o.

~nowing that (b)-regularity is generio for subanalytic sets -- see the

introduction - it is natural to ask '-Thatare the strongest generic .,regularity

Conditions. In [401 J.-L. Verdier introduced (w)-re~llarity, ?roved that it
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implied (b)-regularity, and showed that it was generio (and also that it gave

looal trivialisations by integrating oontinuous vector fields tangent to the

strata, whereas the vector fields resulting from (b)-regularity may theoretically

be discontinuous). (w)-regularity is easily seen to imply Kuols ratio test (r),

and hence (r) too is generic. In ~7 we give examples which show that even

for semialgebraic strata, (b) , (r) and (w) are distinot, and that (r) and

(w) are not invari~nt under Cl diffeomorphisms, although they are preserved

by C2 diffeomorphisms.

5. (b)-regularity and tubular neighbourhoods.

ffollowing Mather in [22], we first define what is meant by a Cl

tubular neighbourhood.

Definition 5.1 : Let X be a Cl submanifold of a Cl manifold M. A Cl
tubula.r neighbourhood T of X. in M is a quadruple (p,E, € '<\» where

"9 : E ~.i~ is an inner product bundle of class ...1

positive Cl function on X, and ~ is a Cl diffeomorphism of
•

3E = fa G E : \\ e"< E ('"Tt ( e»1
the zero section ~ of E:

onto an open subset of M which commutes with

B

f~~
X c: ) M

;:eset \T\::s ~(B~). The map 1tT = poep-l: ITI ~X will be called
-':11e ::c:::o'~';_ated to T, 1:'...c~dthe nors-naga t.ive function

P 'I' = f EO ~-l : h'\ __, lI.1

the Cl distance function
for e E E , will be oalled

assooiated to T.
(We have, similarly, er tubular neighbourhoods. )
It is ole:lr that tb.a map is a submersion •
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As what follows will be entirely local, we oan restrict to the situation of
adjacent strata in Rn •

Let X, Y be Cl submanifolds of Rn and let 0 e r c X - X • We say that
X is (bs)-re~lar over Y if for all Cl tubular neighbourhoods T of Y ,
there is a neighbourhood N of Y in 1TI such that (1('"T' PT)IX Il N is a
submersion.

Given a Cl chart for Y at 0,
<t>, ( u , Un Y , 0 ) ~ (IRn, Rm x on-m, 0) ,

m n-m nthe standard tubular neighbourhood of m x 0 in e provides a retraottDn

projeotion taking (xl '
and a distance function

• • • ,X ) to ( xl ' ••• , xm ' o , ••• , o ) ,n
fccp IU~ t:t+ , where f' IRn~ IR+

n
) = L:xi2 • We refer to the tubularxn i-m+l

in U •

is the function ...
neighbourhood T et> of U f\ Y

We say X is (bs)-regular over Y at 0 when,

(b
S
) Given a Cl ohart (U ,q,) at 0 for Y as a Cl submanitold ot mn ,

there is a neighbourhood U' of 0, U' C U , such that (.-ft"..... pth) I
I'''r' 't' XOU'

is a submersion.

The following lemma justifies our use of the term (bs)-regularity in the
local and global oases.

•

Lemma5.2 I ,.X is (bs)-regular over Y if and only if X is
.2!!!. Y !:.l r , tor all y E. Y •

(b ).-regulars

~?of • " It " J Given a sequence of points on X tending to Y , at which
("It T 'fT )(X i8 not submeraive, there must be some oonvergent subsequenoe with
a limit y in Y. The implioation follows.o

" Only if'n I Given a point Yo of Y 1and a C tubular neighbourhood..
T 4> of a neighbourhood U" Y ot y

o in Y defined by a Cl chart (u ,<I')
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for Y at y ,it will suffioe to find a Cl tubular neighbourhood T of Yo .
and a neighbourhood ut of Yo' ute U, such that T(Utf\Y .. T4>futf\Y.
This follows from the Tubular Neighbourhood Theorem of [22] , which is proved
in [211.

For a simpler proof, let ndiffeomorphism of m whioh is the
identity outside some neighbourhood. of Yo ' and such that there is a smaller
neighbourhood W of l' , yeU, suoh that the fibres of the retraotiono
\V o.1tcp,,\},-lintersect 'P( W) in a Cl field of planes transverse to \l'(Y),

0....0 lI.1-1and such that \.......T is the square of the function measuring distanoe from

'Y (Y) in Rn • ~t9nd this local
, , field to a globally defined (over ,~(y»

Cl field of planes (whose dimension is the oodimension of Y) transverse to 4J(Y)
In Theorem 4.5.1 of [13] Hirsch shows how to obtain a tubular neighbourhood
of ~(Y) , so that the transverse planes contain the fibres of the assooiateR
retraction. There is also a very careful proof of this fact by Munkres on page 51
of [54]. Pulling back by ~-l we have a tubular neighbourhood T of Y with
the required properties. This oompletes the proof of Lemma 5.2.

In [43] c. T. C. Wall conjectured that (b )-regularity is a necessar,ys

and suffioient condition for (b)-regularity. Applying Lemma 5.2 , together with
th3 convention that X is (b)-regular over Y .hen X is (b)-regular over Y
at y for all y in Y , we see that the looal and global versions of the •
conjecture are equivalent. We now prove the looal version.

Theorem 5.3 I 1!! X ,Y be disjoint Cl aubmani~olds of ~n , and let
o e Y • ~ X i!. (b)-regular over Y at 0 if and only it: X .!!!

( bs )-regu.!arove!' Y a.t o.
Proof I U Only if U was proved by Mather as Lemma 7.3 in (2~ , and in faot

iD 1964 by Thom on page 10 of [3~1.For another published proof sa. Lemma 2.3
of lAB].

It is left to prove "if".

I

I

:

I
I,
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Suppose X is (b )-regular over y at o • It follows at once that X iss
(a )-regular over y at o (see i3) , so that we can apply Theorem 3.3 tos
show that (a) holds. Suppose (b) fails I we shall derive a contradiction.

By (0.4), (bt) must fail for every Cl retraotion onto Y •
Let ttl (resp. Tt?) be the looal linear retraction defined near 0 ot ~n

!

onto Y (resp. TOY) orthogonal to; TOY. Then (b')
is a sequenoe {xil in X tending to 0 such that

to a limit
The Cl

A , and T X tends to a limit "("", andxi
diffeomorphism defined near 0,

fails tor '1tl,
'\i - xi'1tl(xi)

1xi1tl(xi~

"¢1:" .

and there
tends

,
0( 0 • mn ~ IB.n

p ~ p + (1t2(P) - 7rl(p»

preserves {A i1, A and 1:", and sends Y onto TOY' henoe ve may identify
Y with mm X on-m in IRn. W'rite 1\ I Ian ~ (Rm X On-m tor tho.projection
mapping (xl, •••, xn) to
and X for their images by

( xl,•••,xm,O,•••,O) • Then, oontinuing to write (xi1
0( , we have that ~\ _ xin(xi) tends to ~ ,

Ixi1t(xi)t
which is not contained in ~ - lim T X.xi

Nov let A be a linear automorphism of Om x mn-m suoh that A( ~) and

(1m
'

A)' • 1O:ll",!, IOn-m ~ t....t -, ..:I rr h 1 TI..
• ~ A ~ ~ ve ~~ suppose l~a i\ an~ ~ are ort ogona. ue

from Y is ~ I !Rn ~ m ~o ' taking
Ve shall construot a Cl diffeomorphism dp of

..

identity, such that the tangent space to X i.
~ontai!:ed in the tangent space to the fibre of f<t>,. po':p on an. infinite
subsequenoe of the sequence {xi1' so that (b) fails for (X, Y) at o.

9

As in the proof of Theorem 3.3 , pick an infinite sequenoe of pairwise
and of radius

for all 1 • Ve shall obtain q, by'perturbing the toliation of
':-:7 the level h;:rpersurfa,::est)f (' , wi thin each 3

1
• i

I

I
I
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Let H.. ~..t. e: G:_l ( IR) , and note that H '"-r ~ ( -r$ ~)J. because

tends to
have been assumed orthogonal. Sinoe T X tends to ~xi
A ,as i tends to 00, there is some i suoh thato

and " , and
i -;,.io implies

A i et:. T X. Then for all i ~ i we define a hyperplaneXi 0
Hi ...T X E9(T X E9 Ai·).l.C T IRn •Xi . Xi xi\

Hi tends to H as i tends to 00. Piok il ~ io suoh that 'Hi - Hl< 1/4

for i ~ il •
Let b i > 0 • Then it is olear that we can find a Cl diffeomorphism

\\'i I ( Bi ' xi)9, equal to the identity near aBi' such that d'Vi(xi) =- In
(the identity ma~rix), 1jI( '4'i)(p) - jl( id IRn)(p)1< 6i and
\jl(\Pi-l)(P) - jl(id IRn)(p)1< <5 i for all pe Bi ' and suoh that for some
ti' 0< ti<: ri ' the image by ~i of the foliation of Bt (Xi) by the level

i
bypersurfaces of e is the trivial foliation by hyperplanes parallel with
Ki ..Tx «('-l( f(xi») • Now Ki::l ~ -; ,by definition of ~ i ' and so Ki

i ..L ..Ltends to H.. ~ = (lim Ai) as i tends to 00. Piok i2 ~ 11 suoh that
, Ki - H \.c: 1/4 for all i ~ i2 • Then 'Ki - Hi\~ 1/2 for i ~ i2 ' by
our ohoice of il and i2•

For all i ~ i2 we now perturb the trivial foliation of Bt
i
(xi) by planes

parallel with Ki by placing inside Bt (xi) a "ripple" I a foliated ball
i IH K IBit (Yi) of radius iti ' centre Yi' vith the foliation (yx:i- i given

i. 1
by Construotion 3.4 , suoh that Xi"':1Ji

i
(the tangent at xi to the.leaf of

.+,.lHi-Ki'the foliation passing through xi is Hi ) • In the notation of 3.4, ~K
i

is the Cl diff~morphism defining the resulting foliation of Bt (xi) , and
~/Hi-KiI ive may extend ~K by the id.ntity to the rest of Bi•

Set '" r " ~ ~0 q)~i-Kil0 t.Vi-1 I Jl~ ~ i is a Cl diffeoruorphis_,
i

and the tangent space at Xi to «('0 ~irl( e (q>i(xi») is Hi whioh
oontains T X by definition (we have used here for the second time thatXi
d~i (xi) = In ). Co_par. the figure overleaf.
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Wehave yet to fix 6 i • It is easy to verify that sup Id4> (p) - I I
PG Bi i n

to sup rd<t>I~~-K~p)- I I ,by ohoosing Ii
peB 1. n

i

may

be set as near as we please

small.

Let d. be ohosen suoh that,
1.

sup 'd et>. ( p) - I I
peB 1. n

i

Define ~ a IRn ~ by setting cPllin-IU B.) - identity, and
, . i>':i 1., ' ~ 2~'B = ~i for i ~i2. To verify that ~'is a Cl diffeomorphism it

i
ifS enough to oheok that d~(p) is oontinuous at 0, and that d4>(O) - In •

Given E. > 0, (4) of Construotion 3.4 gives an sie. > 0 • Piok

i) ~ i2 such that

all i ~ i 3 • Then

IHi - HI and

lHi - Kil <. si€. for all

are eaoh less than isle
i ~ i3 • Let 6 • min f' prJ •

pE Bi

i2~i<'i3

for

Let n
p €.~: be such ~l::at

o Et:Then ~ is well-defined and nonaero sinoe

•

~ 2. lE.
E. •..

Henoe dcf>(p) is continuous at 0, and dq,(O) is the identity matrix.
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By oonstruotion, the fibre ot ('4>. ro4> is not transverse to X at
xi ' and henoe neither is the tibre ot (1f <1>' rei> ) · (~o~, fo4> ) , so that
( 'tt et> ' P4> )1 X is not a submersion near xi. Henoe we have shown that X fail.
to be (b )-regular over Y at 0, using the hypothesis that X i. nots

(b)-regular over Y at o.
This oompletes the proot ot Theorem 5.3 •

Corollary 5.4 : (b~regularity is a Cl invariant.

3xample 5.5 : Theorem 5.3 is sharp: 2C tubular neighbourhoods do not
deteot all (b)-faults. Consider onoe again Example 3.6 • There we have a
(b )-fault, sinoe it is an (a)-fault. However for all Cl distanoe funotions

r tassooiated to a Cl tubular neighbourhood), the fibres of p are
transverse to X near 0 • For, all limiting tangent planes to X at 0

o all )Oil::ts I ., ~1' ,. )\ ..,~.,,, on .iave Ix' ..,I .;4

small, and at such points the ~ormal to the fibre of ifillbe olose to
( 0 : 0 : 1 ) • (To see that near 0, if (x, y, z) is on X, then x/z is •
small, notioe that the x-ooordinate of the points in each barrow B isn

bounded above by m r ,while then n z-ooordinate is bounded below by m ,n

and r tends to 0 as n tends to 00 and we appr-oach 0.)n

Since we have shown in 3.6 that all 2
C retractions have their fibres

?transverse to X near 0, it follows that for all C- tubu::'::.rneighbourhoods
T of Y , the fibres of (1\T' P'lJ a.re'transverse to X near o.

Note 5.6 : A semianalytio version of 5.3 •
We refer to '[381 for a proof that (bs) implies (b) when X and Y
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are semianalytio. A careful reading of the proof in [38] shows that

semianalytic (b)-faults can be detected by Cl semianalytic tubular

neighbourhoods, i.e. we can suppose the maps in the definition of tubular

neighbourhood to have semitma1ytic graphs.

Note 5.1 : On }A-constant implies topological trivialitl.

In [17J L~ Dong Tr~ng and Ramanujam prove that for a family of complex

l~persurfaces (with isolated singularity) defined by

F : (en+l x..~k ,Ox ~)~ (~ , 0)

with F( a , t) Ft(z) , that ~(Ft) constant implies that the topological
type of Ft-

1(O) is constant, provided n*2 • Timourian has proved further
that the family is topologically trivial (see [331 ).

to
with the fibres of (1\r1" PT) transverse

o , one could then apply the proof of Mather in [21] to

oonstant implied the existence of aIf one could prove that

tubular neighbourhood T of

near

give topologioa1 triviality, so removing the restriotion n -4=- 2 • Applying

Theorem 5.3 , we know from the oounterexamples of Brianoon and Speder in t2].r

,..,-1 ( _ ) ( ''I ...k.)\.~ u - '...I X {j ,
1.-

(") '('-- \..... X .>11 /

\ b )-reg.1lar, and aence does "10tLn::;ly 'b )\ s , and indeed following tne proof

in (38J that (b) implies (b) it is eas7 to construot explioit semianaLYti~s

tubular neighbourhoods T with the fibres of ("rt'T' PT) nontransverse to

F-I ( 0) along the curve through 0 for '\'lhioh(b) fails. There are though

~ tubular neighbourhoods T for -which the fibres of (1lT' f T) are transverse

to F-1( J) in their' examples, since in each cae s F( z, :') is ,.eighted

homogeneous in z, and so the standard spheres out F-1(O) transversally.

Thus, even though n 2 2 , we can derive topo10gioa1 triviality from [21J •

A more promising way of removing the restriotion that n 4= 2 looks to be

a new theorem of Kuo (Theorem 2 in [151 ) whioh may give topo10gioa1

triViality directly from the hypothesis that tA('!."t) be cOl".stant.'1'hisdepends
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on whether ~(Ft) constant implies that there is some constant C<l and a

neighbourhood U of ° such tha.t (oF/at (z,t»/Igrad FJ < C lzA/ltl
whenever (z,t) e U (\F-l(O) • We shall leave this question for the present.

6. (b)-regularity and generic sections

Part I • Detecting (b)-faults with Keneric sections.
The work in this sectien was motivated by the result of Teissier in .[30J

that " t-A*-constant" implies (b)-regularity for a family of complex
hyyersurfaces. Using the converse result (proved by Briancon and Speder ins

[3]) we find that if we have topological triviality, and (b) for generic
hyperplane sections, then (b) follows. That this result does not generalise
to real semia1gebraic strata is shown by the next example.

Example 6.1 : In the open subset of ~3 (with (x, y, z) as coordinates)
2where y <.. 1 ,let Y be the y-axis, and let X be

~x = J • (z - ;i)2~y6, !3>o·1u~;r9x = «(z - ;/l- y6)2, ~z - ;//S:J6
, z;>OJ •

·r
.\. ':'2 a ..1 ,.:.anifold, and a .:;emialgec::'<J.ic ae t ,

•
z·

x

2 3(0, s, y - y )

y

x
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Then X is topologically trivial along Y and, since the non-linear
part of X is contained in a horn tangent to y, X is (a)-regular over Y •

But X is not (b)-regular over Y at 0: on the curve
oCt) = (9t3/l6, t , t2 + jot3 )

which lies in X, the normal tends to (1, 0, 3/2) , so that the limiting
tangent space does not comtain Oz, which is the limit of xi1\(xi) for all

1xi 1r(xi)\
sequences [xii on X tending to 0, since the radius (y3) of the horn
tends to 0 faster than ~he height (y2) above Y of the centre of the horn.

Also if X = C)(. z defines the plane Hex, which contains Y, then Hof

intersects X near 0 only if ~ = 0 • Thus (Xn H~, Y) is not a
(b )-fault (by default) for generic sections H ex containing Y •

Notation : Let (X, Y) be a pair of adjacent strata, and let 0 E. Y c X - X •

SU9Pose Y is a linear space, and that 1t is orthogonal projection onto Y.
We let J(o(X,y) (resp. 1\0(X,Y» denote the set of limit vectors for which
(b) (resp. (bl» fails.

A'
v (x.r ),.1\.,-, A, ..

J
)\ = lim ,:i:i <f.-"C = lim irx. X1

\1.i7i' ,:l

l\o(X,y) = f ~: 3 fXile.x, ~ ::lim %i'1\"'(xi)ct.'l= lim T X 7
IXi1\(xi)' xi S

In Example .6.1 , "O(X,Y) - f( 0: 0: 1) 1' .J<O(X,y) .. ~( 01 13.1b) : b=t:"OJ.
It is easy to see that (when di.';l "o(X,y) is defined),

dim "o(X'Y) + dim Y .::s dim -XO(X,y)

if' J(O(X, Y )*¢'> •
If X is (a)-regular over Y at 0, then by the proof of (0.4) that

(b) is equivalent to (a) + (bl) ,

J(o(X,y) c. Ao(X'Y) Ea TOY'

and hence •.
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dim Xo (X,Y )6. dim 1\0(X,Y ) + dim Y •

Thus if (a)-regularity holds and "o(X,Y) -=1= ¢ (or, equivalently, J<o(X,Y)tyS),

dim .::xo(X,y) = dim A o(X,Y) + dim Y •

'I'ha t is, the dimension of "O(X, Y) determines the dimension of J<:o(X,Y),

so that we can restrict our attention to "o(X, Y) •

He say that X i! (bood k)-regular over Y Jll 0 for O~ k~ cod Y .. 1 ,

when Y is linear (as it will be throughout this first part of §6), if

(bcOd k) There is an open dense subset ~ of the set of linear subspaoes of

oodimension k oontaining Y , such that if L £ ol:., L Ih X near 0,

and X" L is (b )-regular over Y at 0 in L.

,Iemust suppose L Ih X to be able to talk of (b )-regulari ty of X" L

over Y. In the oase where X is the nonsingularpart of a family of oomplex

analytio hypersurfaoes 'With singular locus Y , there is a Zariski open dense

subset of the set of linear subspaoes of (complex) codimension k oontaining

Y, oonsisting of subspaoes transverse to X (moreover the topological type of

their intersection with X is well-defined : see Chapter I , §l of [30]).
It was this situation which motivated the work in this seotion : see Note 6.9 • •

The following theorem says that (bood k) implies that dim ~O(X,Y)~ k •

Here dim 1\0(1.:, Y) is the maximal integer r, .-1 ~ r ~ cod Y - 1 , for which
A d f ~,codY;,"O)has a point near which it is a differentiable subr:lanirol 0 lj 1j4"...

of dimension r. This is the same as the usual dimension of Ao(x,Y) when

X is subrulalytio, for then AO(x,Y) is the union of oountably many compaot

manifolds-with-boundary ot varying dimensions, the largest of whioh being the

dimension of "O(X,Y) , this will tollow from the proot ot the theore ••



60

We point out that a section ot a pair (X,Y), as in the title of 16 , is
a linear subspace of mn oontaining Y , whioh is assumed to be linear. Thus
Theorem 6.2 desoribes the extent to whioh generio sections deteot (b)-faults.

Theorem 6.2 I Let Y be a linear subspaoe of \Rn oontaining o , and- -
let X .£!....!. c2 submanitold (resp. and a subanalytio subset) ot Rn suoh-
.llii yex - X • Suppose there Is an open dense (resp. dense) subset ./.,

k

of the set ~k (of linear subspaces of oodimension k ~ mn whioh oontain
y ) such that L € £k' implies L tf\ X near 0 and XnL is (b)-regular

~YA!0'

Then dim "O(X, Y) <. k •

Proof I We first state two assertions whioh we shall prove onoe we have
shown how they give the theorem.

Assertion 6.3 a £!! Y C fan be linear, 0 6 Y , and subll8nifold
£.! (Rn, Y c. X - X , suoh that dim "O(X. Y) - 1 ~ k •

Then there is a dens. subset ~: of a nonempty open subset ~~ of
.l.k ' suoh ~1:at if L e cl. : • there is a sequence {Xi1 ~ X ('\ L such that
xi tends to 0 !!. i tends to 00, ~ lim xi1{'(xi)¢ lim T X ...

xi1\(%i) Xi

Assertion 6.4 I In Assertion 6.3 if X is also a subanalytl0 subset of
n

\Et ,we may take cid
k

(The oonclusion of Assertion 6.4 Is that there is a nonempty subset of
elk consisting of linear sections containing "bad" sequenoes, and that this
sUbset may be taken to be open, not merely dense in some open set.) .,
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Suppose that Theorem 6.2 is false.

Take Y and X whioh satisfy the hypotheses ot Theorem 6.2 , and yet

dim "o(X, Y) • i ~ k.

Assume for the moment that X is not subanalytio, and apply Assertion 6.3 •
Assertion 6.3 gives ~!,whioh is dense in the nonempty open subset

~~ of ..(k' and hence meets the open dense subset Lk' of J.k desoribed,

in the hypotheses of Theorem 6.2 •
.t '~d

Take L e k' f\~GO<.. k •.,Then L '" X near 0 and (XOL,Y)O is (b )-regular.

Hence for all sequenoes (xi1
lim xi-1\(xi)

xi jr (xi )

in X (\ L tending to o ,
c lim T (X flL) •

Xi

But T (XnL) c T X for all
Xi Xi

Thus,

lim %l1\(xi) C
XiR(Xi)

i , and so lim T (xn L) C lim T X.Xi Xi

lim T X.Xi

However this is not true for!ll. ( xi1 in X (\L since L e .l: ' by

Assertion 6.3 • Thus we find a contradiction, stowing ~hat Theorem 6.2 is

'T~lid ;,-h€n X is not subanalytio so long as Assertion 6.3 is true.

The argument for subanaly:t;io X is similar a the dense subset Lk' of

.Lk lJl\1stmeet the open Bubset ..l~ of 'k given by Assertion 6.4 •

...

:ig shall have to pl'ova .:\sssrtions 6.3 and 6.4 38par9.tely, but ye first

sat up the !'Situation jillich is commonto bcta ,

Rotate the coordinate axes so that Y = mn-m X 0111• Let dim X • d.
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Define x ~ G~ x G~ and let G denote the closure of the graph of

(we write G~ for G~(R),etc.). Since X is

is a Cl map. Let p and q denote the projections from ffin x G~ x G~ onto

IR
n

and G~ respectively. p \ ~ (X) is a Cl diffeomorphism.
tJ m 1)' nIf L is a line through 0 in R ,let ~ denote the line in R

given by the inclusion On-m x mID ~ (Rn • Then B = f(R,,(,,)EG~ x G~ : ~ ¢'C]
,m nis an open subset of Gl ~ Gd

From now on we write 1\ for "o(X,y). Observe that

1\ = q(G" p-l(O) ra (eRnx :a» .
Given a subspace L in .t.k lre can write L = Y xL llhere IV m

L E. ,G k "m-
Given ASG:_k, write A* = fQ..CG~: teA] c G~.

Let DO be a compact coordinate disc (of dimension m-1 ) for 1\ as a

Cl submanifold of G~ of dimension i. DO exists by hypothesis on dim A •

Proof of Assertion 6.3:

Lemma6.5 'llhere is a dense subset J., ~ of the open set

tL ~ = f L € of.k : (L)* th 1\ on 1\ (\ DO ]

such that for all L € J.. ~ , . L ~ X ~ 0 and there is an open ball BL

- nsuch that (i) EL C Ut x B and q(B
L
) C DO'

(ii) 'if FL .. q-1('1)*(\ GnBL" p-l(X)n fze G : G th q-1(1:)* at z] ,
~ q-l(I:);r"G(\BL('\P-l(O) ha.s nonempty intersection with FL •

.Assuming Lemma6.5 , let L S ~!' and let l zil be a sequence of points

. -1(-) -le ) ( )an FL tending to a limit Zo in q L *n G" BL('\P 0 Let xi = P zi

for all i. Then fxi1 is a sequence of points in X tending to "p(zO) = 0 •

e.L
1

since



I
I,
I

1. x.1\(x.)am ~ 1 ::I

[x, Tdx·)1~ ~

3'- A-- .,.. _
L- '+- '- - lim T Xx.~

since

It 'Ii' ¢",.. •by (i) and (ii) of Lemma6.5 , and so (L, -C) e B ,i.e. L \" This

com~letes the proof of Assertion 6.3 •

Proof of Lemma6.5

Sublemma6.6 : Given a retraction r : DO~ " " DO ' there is a.

t: e W, (rcq )-l( t) contains

p-l( 0) nq -l(DO)

del'!se subset W of '/\ (\ ,DO such that if

a seauence fai1 in p-l(X)f'lGn(lRn x B)

such that (r 0 q )-l( Q.) is transverse to G

tending to a point in

at for all i •

Proof tafter L. Siebenmann) :

s· N 1 1Let ~il" = 1 Q_ <::: "f\DO: :\ aQ.€ G(\ (r 0 q)- ( t) with (r 0 q)- ( Q. ) ~ G

at a~ and 0 < 1~\P(a~»I<: liN 1 ' for H a nositive integer. a~ is inside

a region RI; of radius liN around p-1 ( 0). I~:N is open sinoe transversali ty

is an open condition. \-IN is dense (and hence nonempty) by Sardis theorem

(r 0 q)1Gf\ I1~"q-l(D
o
) • Note that G" RN(\ q-1(Do) isapplied to the Cl map

" ~ 'T' '. C. I -1, - \ /\., J -1, ~ » )
\ ; \ .• :.Jo )H P v-} Ii \G f\ r':I!\ q \ :_,J •

Because "n DO is a Cl manifold, it is locally compact and Hausdorff,
00

and. hence is a i3aire space. :ihus ii = ~~N is dense in 1\ (\ :DO• GiveH
N=l

..
L ~ NI p-l(O)e W , there is ..a limit point of lat S in since

(p-l(O) ~ G~ x G~ ) • This limit point will be in q-l(DO)

is compact

since

,~ s&.tiafies +.1:9 prc::;:er"t:':'es .:-equirad. fc!: S'.:blemma 6.6

Nowwe can prove Lemma6.5 •

Given L in L~ with (1')* th ". at l in A "Do n(t)* , there is a

neighbourhood U of L in the k-dimensional family in o!~ whioh ia defined

by the (k+l)-dimensional linear subspace orthogonal to L and containing the

line e. , such that if L'e u, (Si)* t-h f\ ::n 1\", DO. 1(1'.)* I L'e uj
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defines a foliation of codimension k transverse to )\ near t •

Choose a Cl retraction r : DO ~ 1\(\ DO such that r-l( t )c (t)*

and for all t' in some neighbourhood of t in 1\ "DO ' r~l( 1') c: (Li )* ,
where LI is the element of U suoh that t' € (.Le)* • By Sublemma 6.6 ,
arbi trarily near Q. there is some Q.' E. W • Hence arbitrarily near L in

ol~ there is some L' (in U ) with (£"I )* '" " in DO and such that
-l( IV ) fail G ,,(lRnx B)q \LI)* contains a sequence of points in tending to a

limit aO in Gnp -1 ( 0 )n q-1 «Le )* ) such that for all i , q-l( (£1)*) is
trap~verse to G at ai• Choose an open ball BLI around 800 such that
q(BL 1 ) c. DO and BLI C. Rn x B • Then (i) and (ii) of Lemma 6.5 are

- -l( (N) ) -1satisfied since 800 € FLI nq LI -j(. (\G ABLI ()p (0). This completes the
proof of Lemma 6.5 •

?roof of Assertion 6.4

Lemca 6.7 : There is a compact coordinate disc D for A as a submanifold

DC Int DO ' such t9at if T is a Cl ~_

on D!'1 i\ ,

of c.imer-sion

~hen tilereis an ODen ball

ti)

(ii)

- nBT c a x B and q(Brr)C D ,

FT = q-l(T)OGl\p-l(X)I\B
T

is a submanifold of G of
codiLlension k.

',ieleave the proof of Lemna 6.7 for the moment.

in
::'etcl ~ = [L €: J..k : (L)* th " on DJ. Let ~~
~~ • By Lemma 6.1(ii) and the faot that p/~(x)
is a Cl submanifold of X of codimension k, and

= P(F(L')*) for L
Cl diffeomorphism.is a

o E ML by (iii).

then q ( ~ (x ) e. (1')* by definition of M ,and hence
"""L
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q\.~ (x) CL by definition of
Thus ML C L for L e cl.~ •

Let f xi1 be a sequence in }t tending to 0 as i tends to 00. fro

,..., IV

( )* , so that x e 1t(x) X Ley x L = L.

complete the proof of Assertion 6.4 we must show that
I = lim xi 1\ (xi) ¢:. lim T X = 't' •

IXi rr(xi)1 xi
l';owfor all i (xi'~ (xi» e F(t)* ,by (ii) of Lemma 6.7 and the definition
of b~. Hence (0, lim ~ (xi» = ( 0, q_, 1:) c: F('L)*C B(L')*C IRn x Busing
(i) and (ii) of' Lemma fJ.7 • Thus (t ,'C ) E B ,i.e. i ¢ 1: ,by the
definition of B • This completes the proof of Assertion 6.4 •

Proof of Lemma 6.7 : First, G is b n In Gn Fsu analytic in R x Gl x d. or
we can partition X into a locally finite set of real analytic submanifolds
by [121 \See also [10] and [40] ) , then complexity each real analytio
part, apply the argument of ~17 in [46], take real parts, and finally take
closures, using that tha closure of a subanalytic sat is subanalytic [12] •

The closures matoh up sinoe X is 02•

::'hen ~??ly .::.,emma4.3.3 of [12J to G ";0 g:'7e a (t)-re5'ul~

union of strata of ~ • Since
that Gn OJ-\Y) :'!.r:e. G" p-l(:) are each tha
1\ = q(G I\p-l(O) (\ (!Rnx B» has dimension i ..

there is some stratum S of' g, contained in G (\ P-le0) such that
dim (q(S)nDO) = i. By the implicit function theorem the=e is an open subset
V of S contained in ran x B such that q(V) cA" DO is a Cl submanif'old
of dimension i, and qlv has rank i. Let D be a compaot coordinate disc

Suppose T 1is a C submanifold of dimension (m-k-1) in G~, transverse
to ~ A q-1(T)" on D f\ 1\ • Then is transverse to S on V since qlv has
constant rank. Let z e V 1\q-1(T) • By (a)-regularity of ~ there"is an open

ball BT in (Rn x B such that z e (B.r (\ S) C. V and such that q-\T ) is
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transverse to every stratum of g wi thin BT • Wemay further suppose that

QlB'r) CD, proving (i) of Lemma6.1 •

By definition of G , there is a stratum SI of ~ ,not meeting p-l(y),

auch that z e SI ,i.e. S f\ SI .. ¢ . Then by 10.4 of [211,
Q-l(T )" S f\ BT c:::. q-l(T) 1\SI "BT .'

Repeating +',le argument given above for S for each stratum of
~

in p-l(O)

adjaoent to S we find that q-\T )nG (lp-1( 0) (\ BT is nonempty and oontained

in Frr , where FT = q-~(T)" G f\p-l(x)" ~ , and that Fil' is a. Cl

submanifold of G of oodimension k • 'l'his ,roves (ii) and (iii) and'

co~pletes the proof of Lemma6.7 •

\~e have now completed tile proo f of Theorem 6.2 •

l,ote 6.8 : (1) In the proof of Lemma6.7 we cited the resul t of Mather

(10.4 of (211) that if X is (b)-regular over Y in mn and S is a

suomanifold of IRn transverse to Y then S 1\ yeS 1\ X • It is amusing that

for oomplex analytic X, Y ,and S , this follows from (a)-regularity: see

the appendix of [25] .
(2) :f ._,Y ,,-re como Lex 3.!1?lytic i:1. t;:l. 1-o-a o o+a.in the 5'3.::8

t~eore~, but involving complex linear subs paces of complex codimension k, and

with the conclusion that dill~ 1\O(X,Y) < k •

I~ote 6.9 : Ih the context of a family of complex hypersurfaces with isolated

singulari ty, if one could prove that ~(F t) oons~ant implies that

lim,~ Ao(?-l(O) - (0 x C"~) ,Ox ~< ) *" 0 ,

then using 'l'heorem 6.2 we w'ould obtain an inductive proof of the result of

Teissier that ~-constant implies (b)-regularity for the pair

(F-l(O) - (0 x ck) ,Ox tf) ( [301 ) ~
In the only known examples of a ~-constant family whioh is not (b )-regular

(due to Brianron and Speder), dime:Aa (F-l( 0) - (0 x Ck) ,Ox ck ) > 0 •



67

For example, consider F( x, y, z, t) == x3 + txy3 + y4z + z9 (due to

Speder. Cf. [2) ) • Analogous to the calculation in (2) we find that (b)

fails on a curve ~(u) = (~u5,o(u3, h(otu3)o(u3, u ) where h 2 ~ __,. t

satisfies h(O) == land h(y)y5 + (h(y)y)9 s y5 (h exists by the implicit

+ 0(5 ,.. 0 ,
0( , ~ are complex numbers defined by the equations

3(32 + 0(3 • 0 • The limit of orthogonal secant vec1mrs

and the limit of normal vectors ~ is

function theorem), and

" is (0 l: 1 )

~ 0 : 3~ + 40(2 : 0<,2). A is not contained in the limiting tangent space
rv

orthogonal to V since 3 ~ + 5 rx,£.. =t= 0 •

:Nowconsider the curve ~e (u) == ( ~ u5, 0(9 u5, he (0( e u3)0( e U\l+ e), u )

where 9 e ~ , ,e, < e
satisfies he (0)

and ()(e, ~ e
(3e3 + t)(a3~e + (1+ e)~a5:: 0, 3~2 + cXs3 .. O. Then

and 'te = (0 : 3 ~ + 4(1+ e ) \l.a2 : 0{9 2) •

Ye since

= 1

for some positive e < 1 ,and he: ~ ~ e
he(y)y5(1+ 8) + (he (Y)Y(l+ &»9 == y5(1+ 9) ,and

are complex numbers defined by the e~uations

"8 == ( 0 : 1 : 1+8 )

small e , i. e. for e sufficiently small. As

~9 is not contained in the
2

3~e + 5(1+8 )C<'e * 0 for

e varies we obtain a complex

limiting tangent space orthogonal to

:;_-·:~:':r;er..si:)nal subset of A'I)(X,Y) and t~'.'_:g dime Ao(x,Y) 3 1 • In l:;.ct

dimt Ao(x,Y) = I here since the familY is equimultiple (with multiplicity 3),
which is the same as saying that (X(\L,Y) is (b )-regular for generic complex ..

linear subspaces L of codimension 2 containing Y , or again that Xn L == ¢

for generic L.· (Reoall X = F-l (0) - (0 xC) , and Y == 0 xC, the t-axis)

?",,:n3.=~: 6.1') : It woul d be interestin.g ~o have a conver-se to Theorem6.2 ,

i.e. a p~oof that dim A ~ k implies (bcod k) , when generic linear subspaoes

of oodimension k are transverse to X. Weconsider a weak form of such a

COnverse in the seoond part of f 6 •
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Part II • Preservation of (b)-regularity under generio seotions.

Let X, Y be Cl submanifolds of IRn ,and 0 eYe X - X • We oall a

Cl submanifold of dimension (n-k) oontaining Y a seotion of oodimension

k (cod Y<. k =:::. 0). (This term was ~eserved for linear subspaoes in Part I.)

Denote the set of germs at 0 of seotions of codimension k by j k • In the

notation of Whitney [46J [tn], the set of limits of tangent planes to x
given by sequences on X tending to 0 is '(X,O) C G~im X( R) • Let ~*

k

denote the subset of ~~ consisting of germs at 0 of sections S ofk
codimension k such that TOS is transverse to every element of ~(X,O) in

'r crqn • lie give :$k the topology induced from the topology on G~_k ( lR) by

the map 6" ~ 'ro~ •

Theorem 6.11 : Let X be (b)-regular over Y at 0, and let S be a

reT)resentative of cr- € ~ ~ • ~ S 1\'\ X near Q and X rv S i.! (b )-regula.r

over Y at o.

Eroof : It suffices to prove the result for k = 1 , sinoe we may consider

a section of codimension k as the intersection of k sections of codimensicn

1 • Let a- €- S* , and let S be a representative of t$ • It is olear that1

S '" X near
Let [xi1

xiY i tends to
Ixiyi,

~*TOS A\ 'C since S e 01 ' and clearly
Since X is (b)-regular over Y at 0

o , so that it makes sense to test for {b)-regularity.

and fYi~ be sequences in X n s and Y tending to 0 so that

'>. , T (X t\ S) tends to '['5 and T X tends to 1: •x. x.~ ~

..

1:'sc c ('\ToS • Thus 'Cs:' ~ f\ Tr:f3 •

,.... -=. '(' • But S is <J. Cl

submanifold, and thus A C TOS ,and Xc; --r5 ' showing that X 1'\ S is

{b)-regular over Y at 0, and completing the proof of the theorem.

If j': "'lereopen and dense in ~k (in the topolo,:;ygiven by the tangents
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at 0), we would have proved that (b) implies (b ) • Our next resultood k

desoribes suffioient oonditionS for this to be so.

Theorem 6.12 : Let X be (a)-reg'U1arover Y at ° l1! !Rn , and let
1C(x,O) have a finite partition into Cl submanifo1ds of dimension less than
or equal to ·..f

k
*dim X - dim Y - 1 • Then ~ is open and dense in ~k •

Proof : It suffioes to prove the theorem when k = 1 •
Let oodim Y = m,' dim X - dim Y = p • By definition of the topology on

'sk ' it suffioes to show'!that [pe G~_l(R): ToYe:. P, P~T, V T E "C(X,0)1

is open and dense in {pe G~_l (IR) : TOY c:: p] .

Lemma.6.13
number of Cl

: Let j( be a oompaot set in Gm( Ii) partitioned into a finite
p

submanifolds of dimension ~(p-l) • Then
{Q e G:_1 ( a) : Qrl\ K , ~ K €X] is open and dense in G:_l ( m) •

Assuming Lemma 6.13 we obtain the required resul" sinoe if T 6 1: (X,°)
then TOY C T by (a)-regularity of X over Y at 0, and sinoe 'C"(X, 0)

is C02?act, bei~€ a closed 3Uosst vi a coc~act sysce.

Proof of Lemma 6.13 : We assert that if j(l is a Cl submanifold ot

G:( (Et) = G: of dimension 6 (p-l) , and we are given K € JS and a oompaot
coordinate neighbourhood N of K in j( 1 then lQ eG:"l: Q th K', 'V K' E. N1
is open and dense in G:_l • For ~ 6 G:_l : K <: QJ has dimension (m-p-l),
since it is isomorphio to G~-p. Thus {Q e G:"l:3 K 's N with K' c:: Q1
has dimension (m-p-l) + dimJ(l ~ (m-p-l) + (p-l) • m - 2 , and is closed.
Henoe its complement, whioh is f Q E: G:_l: QtI\ K' V KteN], is open and dense
in Gmm-l •

l[owcover J( by a oountable number of compaot coordinate disoa for each
msubmanifold of the finite partition. Sinoe Gm-l is a Baire space we deduoe

•



that {Q e G:_l : Q~ K 'V K ej(J is dense. Since j{ is assumed to be compact

it is also open. This completes the proof of Lemma 6.13 and hence of TheoDem 6.12.

Note 6.14 : If X is subanalytic, ,,(~X,D) is also subanalytic. (Intersect

the closure of ('(x,TxX) : x ~ X l. in

Lemma 2.7 ,with ° x G~im X.) Then 1:(X,°) has a locally finite partition

into Cl submanifolds by [121 ' and the partition will be finite since 1:(X,O),

n nR x Gdim X ' which is subanalytic by

a closed subset of a compact space, is compact.

Examples 6.15 : In Exam91e 6.1 , 1 = dim1C(X,O)~ dim X - dim Y - 1 = ° .
For em algebraic example consider Example 4 (1) on page 4 of the introduction.
Again 1 = dim -C(X,O) > dim X - dim Y - 1 = ° . In both cases S*1 is not

dense in ~l. However (bcod 1) does hold, so that the following result,

which is a consequence of Theorems 6.11 and 6.12, is not sharp.

Corollary 6.16 If Y is linear, X is (b)-regular over Y at 0, and

1r(X,O) has a finite oartition into Cl submanifolds of dimension at most

.\. - x y <) •

lJroof : Apply Theorems 6.11 and 6.12, and note that the topology on

~ k was that induced froll

Remark 6.17 :.In [3] , Briancon and Speder prove thats (b)-regularity
implies *~ -constant for a family of complex hypersurfaces with isolated

•
singularity. They show that (b)-regularity implies that ",n+l is constant ,
then, essentially, that .1* is open and dense in Sk , so that applying

le

Theorem 6.11, one obtains the constancy of the rest of the pi •
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7. stronger generic regularity.

Let X be a Cl submanifold of U{n , and a subanalytic set. Let Y be

an analytic submanifold of Rn such that Oe.YCX-X.
According to Verdier [40J ' .

X is (w)-re~lar over Y at 0 if,

(w) Tilere is a constant C > 0 and a neighbourhood U of 0 in (Rn such

tilatif x e U ~ X , ye un Y , then

Verdier proves that (w) im?lies (b). Here we give an example showing
.,

that (b) does not imply (w), even for algebraic strata.

Example 7.1 : In m3 with (x, y, t) as coordinates, let V be

f y4 = t4x + x33. Let Y be the t-axis, and X be (V - Y).

x x

y o y o

Figure : t = 0 • Figure : t=#:O •

From the figures it is clear that V is a topological manifold near 0,

and in particular that X is topologically trivial along Y • It will follow

from the caloulations of §8 that X is (b)-regular over Y at 0 In faot

in this example X is cl trivial along Y : V is a Cl submanifold. we show

that at 0 there is a unique limiting tangent plane, with normal (l: 0 : 0 )

- a chart for V at 0 follo"l'seasily.

* See Addendua 1.13 for the def1ni tion of d( • ) •



The normal to . 4 3 1/4X at l x, y, t) = ( x, (t x + x) ,t) is

(3x2 + t4 : -4(t4x + x3)3/4 : 4t3x) (1.2 )

Since X is algebraic it suffices to consider curves on X through 0

defined by an analytio arc lS(s) = (x(s),t(s», s $ [0,1) . If ft(s)/x(s)(

is bounded as s tends to 0, the normal is

( 3 + t2(t/x/ : _4(t4/3(t/x)8/3 + xl/3)3/4 : 4t2(t/x) )

and tends to (1 0: 0 ) • If 't(~)/x(s)l is not bounded as s tends to·

o we set x = ct1+9 + (higher terms in t ), Et > 0 • The normal becomes

\ 3c2t2+29 + t4 : -4( ot5+9 + c3t3+39 )3/.1 : 4ct4+ 9 )

disregarding higherterJ.Ils.

e :;;::1: 4 <'18/4 = min «15/4) + (3~/4) , (9/4) + (99/4»< 5 ~ 4 + e ,
hence the normal tends to (1: 0 : 0 ) •

e < 1: 2 + 28 < (9/4) + (99/4) < (15/4) + 08/4) ,and so once

again lTe find (1: 0 : 0 ) •

1

o 1

Figure' : Justification of the inequalities when e < 1 •

(~".)f~ils : Consic.<?rthe cur-ve \'5(9) -= ( 32, (2:.;6)1/4, s ) on z . _:~.,m

(7.2) He find that the normal to ;{ at (5 (s)

and hence that d(T ~(sl,ToY) = 4s5/«4s4)2 +

1I~\s) -1\y(~(s»\\ 0: lls2, (29
6)1/4,0 )R f\J

( w )-regu1ar over Y ,:1t J.

is ( 4s4 : ' (" 6 )3/4 : 455 )-.Lt cS

• • • )t 'V s • How

3/2 Eenee X fails to bes .



As a consequence (w)-regularity is not a Cl diffeomorphism invariant.

Ho~ever it is olear from the definition of (w) that it is a C2 diffeomorphism

inva=iant, or more 9recise1y that it is invariant under a Cl diffeomorphism

wi ti:~a Lipschitz derivative.

:.ote 7.3 : No example has been found so far of complex analytic slirata for

whici ~b) nolds and (w) fails. In the special case of a faillilyof complex

l.lYgersurfaces with isolated singularity parametrised by Y it is known that

(b) and (w) are ~quiva1ent. This is because (w) is a trivial consequence

of ~c)-coseca.nce as defined by Teissier in [321. It follows from (31 and

[311J -c~:at (b) implies (c)-cosecance.

::0;.. we suopoae that Y is linear (apoly a local analytic isomorphism at

o to !Rn). Let 'Tt denote orthogonal projection onto Y .

,:ecom reformulate (w) by sc.ying that for x, y near 0, d(TxX,TyY)
l\ :x: - ii'f""

iscouna.ed, and so in particular d(TxX,TOY) is bounded for :x: near o.
\\ x - n(x )11

~her- it is clear that if is (w)-regu1ar over Y at o then
satisfies the ratio test (r) of Ruo (defined in [141):

(r) Given any vector ve TOY' o •

~ere 1\x denotes orthogonal projection onto the normal s9ace to X at

x , so tj_at jl\x(v)l =

i:uo ~roved in (141,

d(oI' X, v) •x

_'heor'.1m7.4 (Kuo) (1) tr) implies (b)

~b) implies (r) if Y is of dimension one.
"
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Froof : In each case the proof in [141 uses the curve selection lemma with

the assumption that X be a semianalytic set. Using Lemma 2.6 we can use the

same proof when X is a subanalytic set.

Corollarl 7.5 (w) imulies (b).

EXB.ID]le7.6 : :F'oran example showing that (r) does not imply (w) apply

?heorem 7.4 (2) to Example 7.1 •

Actually we can make more .precise what was proved in [141. It is shown

there that (b) is equivalent to the conjunction of (a) and

~r' ) If ~ (t) , t €: [P,l] , is an analytic arc on X with (s'( 0) = 0 , then

lim l"Tt t(v)1 H(S'( t )11 = 0 , where v is the tangent at 0 to the arc in
t.-+O(1l5~ t) -1t(K( t)~'

Y defined by 'Tt 0~ (t) (when nonzero) and ~ t is projection onto the

normal space to X at ~ (t) •

It is obvious that (r) implies (a) + (rl) , and that (a) + (r') implies

(r) when Y is of dimension one. With this in mind we now give an example of

a pair of semialgebraio strata, with Y of dimension two, X (b)-regular over

Y , and where (r) fails to hold for a curve (f (t) and a veotor v spanning

the orthogonal complement in TOY to the subspaoe spanned by the tangent at 0

t.0 the cur-ve in Y :.efb.edty 1\0D <. t) •

This example, disoovered at Oslo in August 1976 (see [39) ),gives the

first (b)-regular pair of subanalytic strata which fail the ratio test (r)

(introduced in 1970) • It is an open question whether real algebraic or complex

ana Ly td c examples exis t, although from the argument for (w) in Hot"e 7.3 we

see that (b) is equiva.lent to (r) when X is the nonsingular part of a
complex hypersurface.
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Examule 7.7 : Let (x, y, z, w) be coordinates in m4, and let Y be

the plane fz = w = oJ • Define the semialgebraic set,

X = fw", 0, 2(x2 + (z - ypl)?f:,y2p z >01

[ 2 _..P 2 " 2 2 2 2p 1u yqw= (x + (z-y-) _yt:.Pj2) ,2(x + (z-yp) )~y ,z~o

where p and q are positive integers satisfYing

2p <. q < 3p • (7.8)

(For example let p = 2 , q = 5 .)

Observe that because the algebraio variety defined by the equality in the

second part of the expression for X has fw = OJ as tangent space at every

point of its intersection with [2(x2 + lz _ yp)2) = y2Pj, X is a Cl

suomanifold of m4 (compare Construction 2.2) •
z

Figure
horn

w = 0 •

..
s

x

Assertion 7.9 (b) holds.

Proof : ~ie show that there is a. single limitine;tangent 3-plane for
se'luemces on tending to 0, namely fw -= OJ.

= (x2 _ y2P/2)21 (withy fixed)

It suffices to consider the

where 2 2
d w/dx .. 0 ,

since at these points the normal is furthest from the (w)-direction '(cf. 2.2) •



w

'worst'

x
o

Figure z = yP , Y fixed.

iw/d::i = 0 when 6x2 = y2p , and the normal vector is t±(4/3I6)y3P: -yq )
which tends to (0: 1 ) as y tends to 0 since q <: Jp by (7.8). Hence
f w = OJ is the unique limiting tangent plane.

At the points on X where the secant vector defined by orthogonal projection
onto Y is furthest from the z-direction, the secant vector is contained in
the tangent spaoe to X. Hence Oz is the unique limit of tangent veotors,
and (b') holds. (2.) holds (since Ew = 0 , z = o}cfw ee oj ) , so we can
apply the result that (a) + (b') is eCj_uivalentto (b) (0.4) to show that
(b) holds, proving the assertion.

J..ssertion 7.10: (r) fails to hold.
Froof : Consider the curve l$ ( t) = (tP /,[6 , t , tIl, t4P-Q/9 ) whioh lies

on X. The normal vector to X at ~(t) is,

( (4/~)t3p : t(2p/3) - (q/9»t4P-l : 0 : -tq ) •
Let 1\t denote projeotion onto this normal spaoe. Then

\1\ t~OX)'AJ t3p rv t3p ,
lJ(t3p, t4p-l ,0 , tq)1\ tQ

~::ince, by (7.8) , q -< 3p •
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U <s(tt" = 1\(tPL 6 I t 2 tP 2 t4p-qL9 )It t
, t4p-Q/9)U

IV •" 8< t) - 1\ lS ( t ))\1 II ( 0 , o , tP tIl

lience the ratio (as in the .definit Lon of (r) ) becomes t2p-Q+l , which

does not tend to zero since 2p < q by (7.8). This proves Assertion 7.10 •

Finally we check that (w) fails to hold.

d(T~(tl' T1t«(5"(t)l)

d( (S (t) ,1\ ( {S ( t )))
so that (w) fails exactly when 2p < Q •

,

,

Eote 7.11 : The proof of Assertion 7.9 gives in fact that X is a

[ 2k 27
w = (x - 1/2) 5'manifold-with-boundary. Basing the construction on

1 < k < 00, instead of k = 1 as here, we can build similar examples with- X

a Ck submanifold and semialgebraic subset of ffi4. However X will still be

a submanifold-with-boundary of class Cl, not C2• (r), like (w), is a
~ 1Cc;. diffeomorphism invariant, but not a C diffeomorphism invariant. In this

context note that there is no C2 version of the lemma showing that wings are

generically submanifolds-with-boundary of class 1C (see

proof in [43] that (b) is generic does not apply directly to (r) or (w) •

(As counterexample to C2 version it suffices to truce the product of •a a

rR and a semi-cubical CUS2_) in 1R3 .)

~;;ote7.12 : In .[141 there is an example of Kuo showing that (r) does

not imply (b) if X is merely smooth. Kuo has also an examDle where Y is

I-dimensional, (b) holds, and (r) fails, and of course X merely smooth
I

(private conununication). 'I'h is is why we assumed subanalytici ty of X from the

begim1ing of § 7 •
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Addendum 7.13. If A, B are vector subBpaces of nIR ,let
d( A, B) • sup Ib -1\"'A(b)f

b~
Ibl=l

where 7TA is orthogonal projectipn onto A. This is not symmetrio in A and
B • Clearly d( A, B) - 0 if and only if A;2 B •

(Compare [14], [40] , [46] ,[41] in all of whioh the order is the reverse
of the above.)
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CHA.Pl'ER3. CO~lI-'UTATIOl-l""S

During a talk delivered at the·Gottingen Catastrophe Theory Conference in

October 1973, c. T. c. Wall suggested that it would be useful to determine

\fhitney regularity in the following case x= f/L b c xdJ- [t-axi3J in. = t x +.
ffi.3 or ~3 , YE ft-axis J , with a , b , c , d positive integers.

He determine (a)- and (b )-regulari ty completely in the complex case and

record this together 'wih.'the c:alculations for the real case that have been made.

These calculations have proved useful in providing Example 7.1 (showing (b)

to ce strictly weaker than (w) even for alGebraic strata), and in anevez-Lng

aev era.I~-,uestions pos ed by J.-J. Risler concerning algebraic stratifications

not regular over (, yet regular over R.

The tables below collect the results which are obtained.

Key: vi - regularity holds; X - there is a fault at 0 ? - undeoided • •

(a)-regularity over e .
a = 1 ./ ,(8. 6)

d~o ./

a>l o<.d<b

\8.7)

{

a~ b
+ c

a > b

b+o{::d

../ (8.12)

{::::;~:~:;../ (8.12)

X (3.12)



fable 8.2: (a )-ree;ulari ty over IR •

a. ::: 1 .; (8 • 6 )

a>l

b-so ~d

" (8.11,8.12)

{

d <: ac/ (a-b) .; (8.12 ). {d =. 0 (2) .j (8.14)

{

b:=O (2)
d~ ac/(a-b) d"= c+1 (2) X (8.13)

b= 1 (2) X (d.13)

d:c+l (2) X (8.9)

{

a ~ b ./ (8.11)

{

d = b+c
(2) b < a < b+c

tHC <. d
1.HC ~ O. X (3.10)

(8.9)

./ (8.15)

{

a ~ b

c ~ d < b--c

a'>b

?

'0 = 1 (2) X

'1'able d.3 (b)-ren:u1a.ritl over t •

A. = 1 ..; \ 8.16 )t~o J (8.17 )
a > 1

c<d X t8.H) )

Table G.4 : (b I )-regul:>.ri ty over LR• (Not (b»

a = 1 .; \ 8.16 )

d~o '" (8.17)

..

f<· J (8.20 )
a '> 1 {d'S'C (2)r=o (2 ) a~d ?

o<:d 0=1
d ::: 0+1 (2 ) X (8.19)

( - ) X ( 3.1:j \\(:
, ' I

Hote c).5·: .a is easy to show that if \a) (resp (bl), res!>. (b) ) holds

over t, then (a) ~l'esp. (bl) , resp. (b) ) holds over R •
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f( x, t) abo d • Then (a) holds at 0 if andWrite y, ". -y + t x + x

only if afL~tf ,x,! 1.2 t) tends to 0 as ( x, s, t) tends to 0 om X ,
'gradf x, y, t) I

i.e. if and only if at least one of W;H and
~

tend to o • ~le have
x y

that grad f :::I \M/-ax ,afl~y ,df~t )
(dxd-l C-ltb a-I , btb-lxO ) •+ cx , -ay

8.6: (a) holds if a = I •
btb-lxc ~ 0 as x ~ O.
- I

8.7 : (a) holds if d 6- c •

,ie may suppose 'CJf/llx-=1= 0 ,f'or dfjdx is identically zero only on
~. d-c ctbl= 0 and since d~c, this surface intersects X in an isolateddx + ,
po i.rrt at 0 • Then \~f5:at\1\J tb-lxc b-l c-d+l 0t x ~ as

1)f~x . d-l c-l b d c-d bd.x + cx t + cx t

x tends to 0 if d ~ c •

Let
Consider the curve on which

b d-ct = - x • Then

(Jf'/"ay_ 0 , i. e.
btb-IxC".l>f'~t

'Of x dxd-l C-Itb+ cx
c-d+l+(d-C)(b-l)/bx

x(b+C-d)/b ~ 0

if' d ~ b + c • Hence if d ~ b + C , (a) f'ailson f y '0 • tb d-c2
+ x $.

8.9 : (a) fails over l{ if d ~ b+c ,'3. > 1 ~.nd. either b= 1 (:nod2) .?!

ld-o) 2: 1 (mod 2) , or both.

Aa in 8.8 ftb ..- xd-O
]" X has a branch through o.
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c.10: (a) fails over R if b+c~ a, b+c~d, b=-O (mod 2)~

d= c (mod 2) •

~ . f}.. --::4::. f b d-o <.of,vy ~ 0 sinoe t = - x JO X has no branohes near O. Let X :: At ,
~"* 0 • Then b+o-l b+o-l-(b+o )(a-l )/a

_.,.--_...;;X~_~-.. ..........r.J x
(b+O d)(a-l)/ax + x (b+c-a)/a= x •

Thus t ~y ~ 0 alolllg f X:= ~ tl if a -> b-e •

Also ()f~t f'v~f x

b+c-lx on f x ,.. ~ t 1
dxd-l + cxb+c-l

b+c-l
I'v x sinoe d ~ b-o

.' b+c-lcx.

~ O.

Hence (a) fails along fx A t1.

3.11 : (a) holds over R if a~ b, b=O (mod 2), ~ d=o (mod 2).

Ofjdy $. 0 since ftb%o + xd1 *0 except at 0 if b and (d-c) are

3f~t tb-lxO b-1 o tb-l-b(a-l)/axo/aeven. (V ~ t x =
of Y (tbxC + xd l-l/a (tbxC l-l/a t(b-a )/a xc/a=:

~ 0 if a~ b •

8.12 :.h!! 0 < d -< b-sc • ~ (a) holds over Cl if and only if either

a 6: b £!:' a> b and d< ac/(a-b) •

..

~fter curve selection (2.6) we oan reduoe to the case of curves along whioh

\ t/xl is bounded or unbounded as x and t tend to o.

(i) tt/xl is bounded. Then Of/~x =1= 0 and

o , if c < d < b-so •
d + otb+c-d-l (t/x)d-C

~ii) Ix/tl tends to o.
(x/t) ~ 0 if

c + dxd-C/tb



Let dxd-O/ctb ~ - 1 •

Then Of~t IV
b-1 c C+(d-o)(b-1)/bt x N x

'Of y (tbxC + xdl-l/a ((l-d/°)xdl-l/ a
rv o+(d-o)(b-1)/b - d(a-1)/a sinoe d'>ox

"-' (ao-d(a-b) )/ab whichx

~ 0 if d(a-b) ~ ao

~ 0 if d(a-b)~ ao , when (a) fails

along dxd-o + ctb = o •

3.13 (a ) fai1s"ov~r IR ·'if o<.d <0+0, a> b, d~ao/(a-b) and either

"O:J= 1 (mod 2) £!: d ==c+l (mod 2) , or both.

:~s in 3.12, (a) fails along d d-c tbx + c = o •

8.14 (a) holds over IR g c <. d ~ b+c, b =.0 (mod 2), d =c (mod 2) •

0.12 S!10WS that (a) fails only for curves on which dxd-O/ctb ~ -1,

and these curves have no points on X near 0 if band d-c are even.

).~2: (3.) holds~?:_~~E.. R if b~ a <:b+c := d, b::;:O ~o~ 2), d::::c (mod 2).

\.1) Ic:/ 1;I counded ne8.r o.
tb-l-b(a-l)/a xc-c(a-l)/a := t(b-a)/a xo/a

x/t (a-b)/a x(b+c-a)/a=

~ 0 if b ~ a <: b-e •

(ii) It/x\ tends to o.
Suppose t tends to xe , 6> 1 •

~f~t =f x
c+b8 - 9-d+l

I\J x (b-l)(S-l)= x if d = b+o •
d-1 c-l bd.x + ex t

~ O.

This completes our calculations of (a)-regularity -- the inquisitive reader

can work out for himself the remaining cases of (a)-regularity over ~ : when

b <9. ~ b+c < d and b == 0 {mod 2) , d -= ° (mod 2) •



(bt) holds at 0 if and only if tends to

o as (x, y, t) tend.s to (0,0,0).

8.16 : (0) holds if a = 1 •

d ) b 0(d-l)x + (0-1 t x
/<x,y )1.10 f x,'"bffoy ,,-~i t )\ =

(x,Y)I.I(1f/lx, 1 ,"'bf/lIt),

, 7 d-l ~ ) b 0-1~d-l x + c-l t x
\l,y x)I.I(bf~x,l,U!at)1

=

o •

l~owuse (8.6) and (0.4) ..•

0.17: (b) holds if d ~ c •

Since by (8.7) (a) holds, by (0.4) it is enough to show that

, )bC ()d t\ o-a t x + d-a x tends 0 o.
1··1.\ •••.•• l

x(d~H + Y(Cf~ Y~ tends to 0, i.e.
Kx,y ) . f ffo x;bf y,

Since d ~ 0 , it is enough to show that dx tends to 0 when d +- a ,

and tbxe tends to 0 ..Then d = a •
1.\ 1••• \

d-Ix

:: 1{1,y/x) 1.\( exC-lt b+dxd-l ,-a( t bxe+xdl-ITa ) I
x(d/a )-1

!"'.J

1(I,y/x)\.l( ••• , _a(tbzC-d + 1)1-I/a)1 ..

~ 0 as d > a ,unless

b e-d £..t x + 1 tends to 0, but there are no suohpoints near 0 as d __ 0 •

(ii) d < a. • xd
I"(-x ,-Y~)I~,I"(~lf~7r.-~-x ,-';a:-:::f/"'r.~-y-l

= x
\(x,-( tbxo+xdlla >I. \( d+oxC-dtb, •• )1

\

< (b a-d )1/a)\ \( o-d b )\\ x, - ,t I. + 1 , ., d-i-cx t, ••

I-d/ax=

~ Osince d -< a ,a.nd d ~ 0 •

=

~ 0 3inoe d ~ 0 •



0.18: (bl) fails over C if 0 < d and a> 1 ,~ (a) holds.

y = 0 and bod_ 0 on t x + x ::: 0 • Then

(d_c)xd=

=

~ 0, so (bl) fails, and hence (b) fails.

b.19: (b') fails over tR if a> 1 , o <: d and either b= 1 (mod 2)

.2!: d == c-i (mod 2) or both. ..

X ~ ftbxC + xd = 01 has r~a1 branches through 0 if b or (d-c) is odd•

.i:.?2 : (b') holds over la if d"'" a , b == 0 (mod 2) and d == c (mod"2) •

!Jr~flltx) + Y('b f;01)::: (d-a )xd + (o-(;>.)t bxc
l(x,yj./(~7~Y,offoy,~f/bt l I( (b c d)l/a)lJ( b c-l s-i )1~ x, t x +x . ct x + dx , •• , ••

(d-a )xl- d/ a:::

+

(X1-d/a,(tbxC-d + l)l/a)\, \(ctbxC-d + a, •. , .. )1
(c_a)x1- d/a

l(xl-d/a,(tb~'C-d + l)l/a)l.\(c + dJed-c t-o, •• , •• )\

~ 0 if d < a •

This completes our calculations of (b')- and (b)-regularity save for the

case 1 ~ a ~ d , c c::::. d , b -:a 0 (mod 2) , d == o (mod 2) , over m. •

Example 8.21 : J. J. Risler asked for an example which was (a)-regular over

It , but not over t. By 8.11 and 8.8 it suffices that a ~ b ~ d-c ,

f 2 2 "b == 0 (mod 2) snd d '!iii C (mod ::..) • Fer' e::1.m."le y = t x + .:C'" J.

Example 8.22 : For an example which is (b)-regular over ffi but not over t,

8 ' ')• ..1.,'- , 3.1·J , and 3.~;) give c <: d < a ~ b (or c"::: d -c a. , b < a , d"', ac/ (a-o) )



Exa~nle 8.23 : If an equimultiple example is demanded, satisfYing the

reC"_uirementsof 8.22 , consider ~'y2 = t2x2 + x41. By 8.8 (a) fails over C,

and by 8.11 (a) hoLde over 1R • It remains to oheck that (b') holds over It ,

using (0.4)

xj~f? x~ + y(}ffoy)
,.tx;Y)~I\ ffo x ,"6fjoy )1 =

2 x=
Kl,(t2+ i:)!)I.K4x + 2t2/x, -2(1 + (t/x)2Y!-)I

~ 0 as (x,t) tends to 0 sinoe XI\1t2 +x2 '" oj
:l8.S no jrancnes passLng throug~ o. Hence (b) holds over f1 •

l';ote 8.24: Table 8.3 corresponds with the known fact that for families

of ..,lane ourves, "f -constant " is equivalent to (b )-regulari ty ( [301 ) .

..
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A TRANSVERSALITY PROPERTY WEAKER THAN
WHITNEY (A)-REGULARITY

D. J. A. TROTMAN

Let X and Y be Ca>manifolds embedded in IRn, and let x eX c Y. The (a)-
regularity condition due to Whitney is,

(a) Given {y,} E Y such that Yt.-:+ x and T,.,.r -+ T as i -+ 00, then T;X £; T.

Since spanning is an open property, (a) implies,

(t) Given a Cl submanifold S of IRnmeeting X transversely at x, 3 a neighbourhood
U of x such that S is transverse to Y in Y (')U.

Conversely, (t) implies (a) if Y is semianalytic. This we prove using the curve
selection lemma, and we give an example where Y is a Ca>manifold and (t) holds at
a point x where (a) fails.

The importance of (t) follows from,

THEOREM. Let N, P be Ca>manifolds, with P partitioned into finitely many sub-
manifolds f'JJ,such that

(i) if X, Y ef'JJ, and X (') Y ¥ 0, then Xc Y, (frontier property)

(ii) if X, Ye f'JJ,and x e X c Y, (t)is satisfied at x.

Then the set of C" mappings f: N -+ P which are transverse to the members of f'JJ is
open and dense in Ca>.(N, P) with the Whitney C" topology.

The remark above that (a) implies (t) enables us to restate the theorem with
(a) replacing (t), See for example [2, 3].

1. The semianalytic case

PROPOSITION. (t) implies (a) if Y is a semianalytic manifold.

Proof. Suppose (a) fails at x e X c Y.

Choose a unit vector v e T;tX and a sequence {y,} e Y such that y,-+ X and
Ty, Y -+ T as i -+ 00, and v ¢ r. Then 38> 0 and io e N such that,

'Vi ~ io, d(v, Ty, Y) > 8,'

where d(v, T", Y) denotes the distance between Ty, Y and the endpoint of the
translation of v from x to y,. Suppose dim Y = m, and let

V1-= IRhx (pe Gm. n-m : d(v, P) > e} ~ IRnX Gm.n-m' .

V2 = U (y, Ty Y) c IRnx Gm•n-m•
yer

Reoeived 18Deoember, 1974

[BULL. LONDON MA11I. SOC •• 8 (1976), 225-228)
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Here Gm.n-m denotes the grassmann manifold of m-places in n-spaee. VI is semi-
algebraic, and V2 is semianalytic (sinee Y is assumed semianalytic); hence VI ("\ V2

is semianalytic and (x, r) e VI ("\ V2 satisfies the hypotheses of the curve selection
lemma. See [1; p. 103].

Thus 3 an analytic arc in RnX Gm.n-m' (X: [0, 1] __.VI ("\ V2 with (X(O) = (x, r) and
(X(t)e VI ("\ V2 if t =F O. Write (Xl(1) for the Rn-component of (X(t); the Gm.n-m-
component is T..,(I) Y. Let N, e Gn-1• 1 be the normal spaee at (Xl(t) to the Cl manifold-
with-boundary (Xl([0, 1]), and let the vector v, be the projection of v into N, spanning
(vt) e G1•n-l'

We shall define a Cl arc e : [0, 1] __.Gn-2• 2 such that

q(t) Ea (vt) = Nt. (1)

Then the union of the e(r), considered as embedded (n-2)-plalles in Rn passing
through the points (Xl(t), defines a Cl manifold-with-boundary S' of dimension
11-1. Reflection in No extends S' to a Cl (n-l)-manifold S, which is transverse
to X at x e Int S by (l). However, we shall show that no neighbourhood U of x
exists within which S is transverse to Y; so (t) fails as required.

Construction of a :

Let P, = N, ("\ T..,(I) Ye Gm-I. n-m+ l' Then 0 =F v,¢P, (definition of VI ("\ V2)·
Let q(t) = P, Ea (P, E9(vt»1. e Gn-2• 2'

where ( )1. denotes the orthogonal complement in N"

Picture of N, in the case
n = 4, m = 2.

a satisfies the required properties and so it remains to show S fails to be transverse
to Y at some point in any given neighbourhood U of x. Given U 3 some se (0, 1]
such that U ("\(Xl(O, 1] :;) (Xl(O, s]; but S' (and hence S) is not transverse to Y at
any point of (Xl(0, 1]. The proof is complete.

2. Counterexample in the non-semianalytic case

We construct a pair of Coo manifolds X and Y, X c: Y such that at a point x e X
(t) is satisfied, yet (a) is not.

Let x, y be co-ordinates for R2 and let X be the x-axis. Y will be the union of a
countable sequence of Coo curves {Yn}:'=l which tend to X as n ~ 00. Let
E = {(x,y)eR2

: x ~ O,y ~ O,x4 ~ Y ~ x2}.
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J'

o x

We shall define Y so that (i) the tangents to Y outside E are parallel to X.

Assertion. If (i) is true then (t) holds at (0,0).

Proof. Let S be a Cl submanifold of 1R2 transverse to the x-axis at O. We may
suppose S is I-dimensional. Then in a neighbourhood U of the origin, S does not
intersect E, and so S f"'I U meets Y f"'I U only at points p of Y where Tp Y is parallel
to X. By continuity and transversality 3 a neighbourhood V of 0 in which the
tangent to S has gradient strictly nonzero. Hence S is transverse to Y in V f"'I U.

The sequence for which (a) fails will lie inside E.
Let 0 < a < I, and let rn = a2n, so that rn+l = rn2Yn ~ O.
If En={(X,Y)EE:y~rn,x~rn_l}' then Enf"'lEn+l is the single point

(rn-I' rn+l)·

Let (sn' s/) be the point of intersection in En+l of y = X4 and y+x = rn+rn+1t
so in particular Sn > rn. Let Y,. be the graph of a smooth decreasing function of x such
that y = rn+1 if x ~ rn, y = s/ if x ~ Sn' and Yn includes a segment with gradient
-2 and mid-point m; halfway between (rnor/) and (sn' sn4). Then (i) holds.

Clearly mn -+ (0,0) as n -+ 00. And Tmn Y = Tmn Y" is a line of gradient
- 2 Yn, and so tends to y = - 2x as n -+ 00 ; thus (a) fails.

Further examples. A counterexample with Y 2-dimensional is obtained at once
by rotating about X in 1R3.

With a little more effort we can produce an example of a 2-dimensional connected
Y so that the triple (1R3, Y, X) is homeomorphic to (1R3, 1R2, 0 x IR)and Y is the
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plane z = 0 outside a 3-dimensional "dart" which intersects z = 0 in the E given
above. Inside the dart Y contains a decreasing sequence of hemispheres so that we
also have a counterexample to the implication corresponding to (t) => (a) for
(b)-regularity. Details of this and its semi-analytic case will appear in [4].

3. Further properties

Consider, for xeX c Y,

(t') Given an r-plane P meeting X transversely at x, 3 a neighbourhood U of x in
which P is transverse to Y.

(t) implies (t'), but a counterexample to the converse is obtained by defining X
and Y as in §2, except this time keeping the "bad" points of Y in between x = yl
and x = y4. A counterexample in the algebraic case is given by

V == {(x, y, z) : yS = Z3 X+X3} in R3

with X the z-axis, Y = V -{z-axis}, and x the origin. A sequence of points along a
branch of V n {3Xl+Z3 = O}contradicts (a) (and hence (t) by our proposition) but
(t') is satisfied.

Consider also for xeX c Y, with X and Y embedded in Rn,

(a.) Given a smooth local retraction 1tx: Rn -+ X, X has a neighbourhood U such
that 1txl(Y n U) is a submersion.

(a,) implies (t) since we can choose a chart at x in which X and S are both linear,
and use a linear retraction. C. T. C. Wall has conjectured in [5] that (aJ implies
(a) ; our proposition shows this to be so if Y is semi-analytic. (A result also obtained
by C. G. Gibson and E. Looijenga.) Note that for the counterexamples in §2 it is
easy to find smooth retractions 1tx for which (as) fails, so the conjecture stands.
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Geometric versions of Whitney regularity

By D. J. A. TROTMAN
University of Warwick, Ooventry

(Received 16 June 1975)

Let Xm and yn be 01 manifoldsembedded in RP, m < n < p, and let x e x «, y - Y.
In (4) C. T. C.Wall considered the following conditions:

(as) For any local 01 retraction at x, 1T: RP -+ X, x has a neighbourhood U such that
1Tlynu is a submersion.

(b8) For any local 01 tubular neighbourhood of X at x, given by 1T: RP -+ X and
p: RP -+ R+ U{O},wherep-1(O) = X, x has a neighbourhood U such that (1T,p)lynu is
a submersion.

Wall conjectured that (as) and (bs) are respectively equivalent to Whitney's condi-
tions (a) and (b):

(a) Given Yie Y so that, as i -+ 00, Yi -+ x and TillY -+ T, then TxX c: T.
(b) Given YiEY and XieX 80 that, as i-+oo, Yi-+X, Xi-+X, TII,Y-+T and

Yi-Xi/IYi-Xil = Ai -+ A, then A c: T.
It is not difficult to show that (a) implies (as).See (2), p. 35, for a proof that (b) implies

(bs); this enabled Mather to show that if X is a stratum of a (b)-regular stratification :I:,
then :I: is locally topologically trivial over X. In (3), § 3, it is proved that (aB) implies
(a) if Y is semianalytic. Here we prove the following,

THEOREM.(bs)implies (b) if X and Yare semianalytic. (C. G. Gibson has also obtained
this result.)

Note. The conjectured equivalences have been verified in exactly the cases where the
curve selection lemma is applicable. It would be interesting to know if they are true in
the general, Le. non-semianalytic, case, so as to have geometric versions of the
regularity conditions available, avoiding sequences.

Proof of the theorem. Suppose (b) fails; we shall show that (bB) fails.
We have sequences Xi eX, Yi e'y tending to X, Tlli Y -+ T, andYi -xi/lYi -xii = Ai-+A.

Since A ¢ Twe may suppose that d(A, T) > e > 0 for some e, with distance d( , ) defined
appropriately. Then, for some io, d(Ai' Tlli Y) > e when i ~ io.

Let G~denote the Grassmannian of s-planes in Rr, a compact analytic manifold. Set

and
Ji= {(v,P)eGf x~: d(v,P) > e}

~ = {(x,y,y-x/ly-xl,TII Y): xeX,ye Y}.

Then Ji is semialgebraic, and ~ is semianalytic since both X and Yare semianalytic
by hypothesis. Hence

v = (X x Y x Ji) n ~
7-2
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is a semianalytic subset ofRP x RP x Of x~, and (x,x, A,T) EVsatisfies the hypotheses
of the curve selection lemma. See (1), p. 103. This provides an analytic curve

a: [0,1] -+ X x Y x Gf x G~,
t 1-+ (Xt' Yt, At, Till Y),

where At = Yt - xt/lYt - Xtl, Yt E Y if t '* 0, and d(At, Tilt Y) > e.
Write 1/ for the 01manifold-with-boundary UYt, and ~ for UXt, contracting the

domain of a if necessary. t t

Since we are trying to show that (bs) fails, and (bs) implies (as)' we may assume that
(as) holds. Then by (3); §3, since Y is semianalytic, '(a) holds. This implies t~a~

Tx1/ =Txf
For, suppose not. Then

(*)
A e Tx~$ Tx1/
e TxX +Tx1/
eT

using (a). But A cl: T by hypothesis, giving (*).

Notation. Given distinct lines A, A' in the plane meeting at a point q, and a point q' on
A' at unit distance from q, consider the circles with tangent A at q which contain q' in
their interior. Ife = d(A, A') let re denote the lower limit of the radii of these circles.

LEMMA. There exists a locol 01 retraction defined on a neighbourhood U of X in RP.
1T:U -+ X, such that for each t, 1T-1(Xt)

(i) is the intersection with U of a (p - m )-plane containing At,
(ii) is transverse to Yin U,
(iii) contains a (p-m)-disc Dt of radius relYt-xtl with YtEfJDt, xtEIntDt, and

TIII(Y n 1T-1(Xt)) e TII,(fJDt),

(iv) intersects1/ only at Yt.

Proof. Because (b) fails and (a) holds, A cl: TxX. Thus there exists a (p-m)-plane
transverse to X at x, and containing A.Using (*) and the analytic dependence of Yt, At,
and Til, Y upon t, we can find an analytic, and hence a 01, fibre bundle over~, restricting
aif necessary, so that the fibre over Xt is a (p-m)-plane containing At. Choose a 01 .

diffeomorphism rp of an open neighbourhood U of X in RP, so that rp(X nU) is affine
andrp(~ n U) is a line. Extend the. fibration over rp(~) to the rest of rp(X n U) by parallel
translation, and pull back by rp-1 to give a 01 retraction 1T:U -+ X with each fibre 01
diffeomorphic to RP-m, and which satisfies (i).

For (ii) use (as)' shrinking U if necessary, and observe that 1Tly is a submersion at Y
if and only if 1T-1(1T(Y)) is transverse to Y at y. (ii) tells us that Y n 1T-1(Xt) is a 01
(n-m)-manifold.
Let D, beadiscofradiusrelYt-xtl in the (p-m)-planeof(i), withYton its boundary

and so that TII,(Y n 1T-1(Xt)) e T
lI
,(fJDt).

Because d(At, Till Y) > e and re is a decreasing function of s, Xt belongs to the interior
of Dt. For sufficiently small t, Dt e 1T-1(Xt), giving (iii).
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Finally use (*), restricting eX if necessary, to ensure that 1J n 11-l(Xt) = Yt. This proves

(iv) and completes the proof of the lemma.
Project At onto N1It(fJDt) to give ptEGf. By (iii) eaoh s, is non-zero and

Pt c: N1It( y n 11-l(Xt)).

Now we construct a tubular function p so that p(Yt) = t and

/l't c: N1It((11, p)-l (Xt' t)).

This will show that Y is not transverse to the fibre of (11,p) at Yt, for each t, which is
the same as saying that (11,p)iy'is not a submersion at Yt, for each t, so that (bs) fails.
It suffices then to find p so that

fJDt = (11,p)-l (Xt' t)

for each t. Let,p be as in the proof of the lemma, and for each t > 0 let ~ be obtained by
first translating ,p(fJDt) along ,p(g), using (iv), and then over t/J(X n U) orthogonal to
,p(~). Shrink U so that

U ,p-l(~) = U\(X nU).
1>0

Then we have a 01 fibration
p: U\(X n U) -+ (0, 1],

withp-l(t) = t/J-l(~) aOlmanifold Oldiffeomorphic to Sp-m-l x Rm. Settingplxnu == 0
extends p to be 01on U, and p is the required tubular function. This completes the
proof of the theorem.
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COUNTEREXAMPLES IN STRATIFICATION mEORY:
TWO DISCORDANT HORNS·

D. J. A. Trotman

One of the useful properties of Whitney's (a)-regularity condition (as
defined in [13]) is that the set of mappings transverse to the strata of an
(a)-regular stratification is open and dense. That this set is open has often
been justified by remarking that (a)-regularity implies that a submanifold
transverse to a stratum at a given point is transverse to all other strata in
some neighborhood of the point, a condition I have called (t)-regularity in
[10]. Our first example shows that this reasoning is wrong: transversality to a
(tl-regular stratification need not be open. However we verify directly that
transversality to an (a)-regular stratification is open.

Our second example is that of a pair of real semialgebraic strata which are
(bj-regular (as defined in [13]) but which fail Kuo's ratio test ([4], where Kuo
proved that no such example exists when the smaller stratum has dimension
one), and hence do not satisfy the property (w) used by Verdier in [12],
where it was remarked that such an example was not known.

1. (a)-regularity and transversality

Let X, Y be Cl submanifolds of IRn and let 0 EYe X-X. Consider the
following regularity conditions for the pair (X, Y) at O.

(a) Given oX; in X tending ..to 0, if T",X tends to T, then To yeT.
(t) Given a Cl submanifold S meeting Y transversely at 0, then there is a

neighborhood U of 0 in IRnsuch that S is transverse to X within U.

Call a stratification (a)-regular if each pair of strata (X, Y) satisfies (a) at
each point of Y. Similarly for a (t)-regular stratification.

NOTE 1.1. That {a) implies (t) is immediate.

NOTE 1.2. It is not a consequence of 1.1 that mappings transverse to each
of the strata of an (a)-regular stratification form an open set, as suggested
for example in [8], [9], [10], [11]. It is in fact a direct consequence of
(a)-regularity .

...The title was suggested by Tony Iarrobino.
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PROPOSITION 1.3. Let N, P be C" manifolds. Let P contain a closed subset
Q partitioned into a locally finite union of submanifolds forming an (a)-
regular stratification 9', i.e. if X, Yare strata of 9', then at each point of
Y nK, condition (a) is satisfied. Then Tv = {f E <:(N, P) : f is transverse to
each stratum of 9'} is open in C'''(N, P) with the Whitney Cl topology (and
hence with the Whitney C" topology).

PROOF*. Suppose that Ty is not open, so that there exists f. in Ty, a
sequence {gl} tending to f in Coo(N, P) with gl It Ty, a stratum X, and a
sequence {ail tending to ao in N such that gi is not transverse to X at ai' It is
clear that f(ao) ¢. X, since X is a smooth submanifold. So let Y be the
stratum containing f(ao). (df)tJo(TtJoN) and Tf(tJo)Y span Tf(tJo)P,and so for i
sufficiently large (dgi)a, (Ta,N) and Tg,(a.)X span Tg,(a.)P, by (a) and the
assumption that gl tends to f. This gives a contradiction, proving the
proposition.

NOTE 1.4. (i) When W is a submanifold of P, it is a corollary of Thorn's
Transversality Theorem that Tw = {f E <:(N, P) : f is transverse to W} is
dense in Coo(N, P) with the Whitney Coo topology. (See for example [2].)
Hence Ty is both open and dense in <:(N, P) with the Whitney C"
topology.

(ii) If W is closed, Tw is open, as proved in [2], but here the strata of <;j are
not assumed to be closed.
(iii) It is easily verified that <;j is (a)-regular if and only if the set of jets

transverse to <;j is open. This observation is due to C. T. C. Wall.
In [10] the curve selection lemma is used to prove that (t) implies (a) if X

is semianalytic. It is equally true if X is subanalytic for Hironaka proved a
curve selection lemma for subanalytic sets in [3] (proposition 3.9. See [5] for
a proof for semialgebraic sets). Hence if the strata are subanalytic the
transversal mappings to a (tj-regular stratification do form an open set.

In the next section we shall give an example of a finite (tj-regular
stratification for which the set of transversal mappings is not open, and so in
particular it is not (a)-regular. This is an explicit version of an example
mentioned in [10].

I stress this point at length because I had mistakenly thought that
proposition 1.3 was true with (a) replaced by (t), Thus in [11] (t) is used in
the definition of stratification given in chapter 8. There the strata are
semialgebraic (corollary 3.6 of [11]), so we could use the result of [10]
mentioned above to give (a), and then apply proposition 1.3. Alternatively

* A detailed proof appears as Proposition 3.6 in E. A. Feldman, The geometry of immer-
sions, I, Trans. Amer. Math. Soc. 120 (1965), 185-224.
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horn

Figure 1. x =o.

one can use the following elementary formulation suggested by E. C.
Zeeman.

Pnorosrrrox 1.5. Let X, Y be Cl submanifolds of a Cl manifold P, and
suppose that cf>:M - Cl(N, P) is continuous, M is a topological space, N is a
Cl manifold, Y = cf>(m)(N) for some m EM, and for all open sets U eM
containing m, there is an m' E U such that cf>(m')(N)c X. Then the pair
(X, Y) satisfies (a) at each point of Y.

The proof is left as an exercise.

2. The first hom

Let (x, y, z) be coordinates in 1R3. Take Y to be the y-axis, and let
X=(U=_d/n=O,gn~O})U(n=_dx=O,gne:O}), where gn~O defines the
cylinder an of radius 1/3n(n + 1) with axis the line y = lIn, Z = I/n2, and
where In = 0 defines the surface Fn obtained from x = (y2 + Z2)2 - (y2 + Z2) +1
by translating the origin to (0, lIn, I/n2) and reducing by a factor of
3n(n + 1)/J2 so that Fn intersects (Jan exactly where x = 0 is tangent to E;
See figures 1 and 2. ,.

x -

f t - 0, • _ 1/n2]n,,
- - - - /-

I
I
/

o

Figure 2. z = 1/n2•
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X is a Cl submanifold and is semialgebraic on the complement of the
origin.
The normal vector to X at the point

x,. = (1/24J2n(n + 1), (lIn) + 1/3J2n(n + 1), 1/n2)

is (2, 1,0) for all n. Hence the limit as n tends to 00 is (2, 1,0) and (a) fails.
(t) holds since any submanifold transverse to Y will intersect X near Y only
at points near which X is defined by x = O. Hence the stratification of !R3

defined by {Y,X,!R3_(XU Y)} is (t)-regular. Now the mapping h in
C"(1R2, !R3), defined by inclusion of the plane 2x + Y = 0, is transverse to the
stratification, but for each n the mapping h; defined by inclusion of the
plane

2x + y = (5 + 12J2(n + 1»/(12J2n(n + 1»

is not transverse to X at x,.. Since h« tends to h as n tends to 00, mappings
transverse to the stratification are not open in C"(!R2

, !R3
).

Note that by smoothing near each circle {x = 0, gn = O},X can be made
into a C" submanifold of !R3,with normal vector at x,. as before, for each n.
Hence proposition 1.3 with (t) replacing (a) is false.

3. (b)-regularity aud the rado test

Let X be a Cl submanifold and a semianalytic (or subanalytic) set in !Rn.
Let ye X - X be an analytic submanifold of !Rn. The pair (X, Y) are
(b)-regular at Oe Y if,

(b) Given Xi in X and Yi in Y tending to 0, if T",X tends to T, and the unit
vector in the direction XiYi tends to A, then ACT.

Apply a local analytic isomorphism at 0 to !Rn so that, near 0, Y becomes
affine. Let 'If' denote orthogonal projection onto Y and define,

(b') Given Xi in X tending to 0, if T",X tends to T, and the unit vector in
the direction Xi'lf'(Xi) tends to A, then ACT.

LEMMA3.1. (a)+(b')~(b).

In [4] T.-C. Kuo introduced the following condition, which he called the
ratio test.

(r) Given Xi in X tending to 0, and any vector veTo Y,



Counterexamples in Stratification Theory 683

Here '7Tj denotes orthogonal projection onto the normal space to X at Xi,

Kuo proved two theorems in [4]:

THEOREM 3.2. (r)::} (b).

THEOREM 3.3. (b)::}(r) if Y'is l:"dimensional.

In each case the proof uses the curve selection lemma with the assumption
that X is a semianalytic set. As remarked in §1, by [3] we know that the
same proof can be used if X is a subanalytic set.

In the next section we give an example with Y 2-dimensional where (b)
holds and (r) fails to hold. X will be a semialgebraic Cl submanifold of
dimension 3 in ~4. I do not know of such an example where X is the smooth
part of an algebraic variety. In the special case of a family of complex
hypersurfaces with isolated singularity parametrized by Y it is known that
(b) and (r) are equivalent, for Y of arbitrary dimension. This is because (r) is
a trivial consequence of (cj-cosecance as defined by Teissier in [7] and
discussed by him in this volume. It follows from [1] and [6] that (b) implies
(cl-cosecance,
Verdier has introduced the following condition in [12],

(w) There is a constant C> 0 and a neighborhood U of 0 in ~n such that
if XE unx, and yE un Y, d(TxX, Tyy);3!Cd(x, y).

This is just (ci-cosecance restricted to X, so that it makes sense when X is
not a variety. (w) trivially implies (r), hence (b) does not imply (w), when the
dimension of Y is greater than 1, by the example in the next section. Even
when Y is l-dimensional, (b) can hold and yet (w) fail: in ~3 let X be
{x = 0, Z >0, Z2;3! y2} U {ZS x2 = (y2 - Z2)4, X ~ 0, Z >0, Z2 ~ y2}, let Y be {x =

Z = O}, and consider the curve X n{Z2 = 3y2}. Thus (w) is strictly stronger
than (r) by theorem 3.3.

4•..The second hom

Let (x, y, z, w) be coordinates in ~4, and let Y be the plane z = w = O.
Define the semialgebraic set,

X= {w = 0, 2(x2+ (z - yp)2) ~ y2P, Z >O}

U {yqw = (x2+ (z - yp)2)2_lP(x2+ (z - yP)2)+ y4P/4,

2(x2 + (z - yP)2);3! y2P, Z >O}

where p and q are positive integers satisfying,

2p<q<3p. (4.1)

For example let p = 2, q = 5.
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born
2(.2 + (z-T")2)~ip

\,

Figure 3. w =o.
Observe that because the algebraic variety defined by the equality in the

second part of the expression for X has w = 0 as tangent space at every
point of its intersection with 2(x2 + (z - yP)2) = y2p, X is a Cl submanifold of
1R4.
ASSERTION4.2. (b) holds.

PROOF.We show that there is a single limiting tangent 3-plane for
sequences on X tending to 0, namely w = o. It suffices to consider the points
on yqw = X4 - y2Px2 + y4P/4 (with y fixed) where d2w/dx2 = 0, since at these
points the normal is furthest from the w-direction.

d2w/dx2 = 0 when 6x2 = y2p, and the normal vector is (±(~.J6)y3P, -yq)
which tends to (0, 1) as y tends to 0 since q<3p by (4.1). Hence w = 0 is the
unique limiting tangent plane.

At the points on X where the secant vector defined by orthogonal
projection to Y is furthest from the z-direction, the secant vector is
contained in the tangent space to X. Hence Oz is the unique limit of secant

•

Figure 4. z = yP, Y fixed.
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vectors, and (b') holds. (a) holds (since {w = 0, Z = o} c {w = O}), so we can
apply lemma 3.1 to show that (b) holds, proving the assertion.

ASSERTION 4.3. (r) fails to hold.

PROOF. Consider the curve ~(t)::; (tP/6, t:'tP, t4p-q/9) which lies on X. The
normal vector to X at 'Y(t) is,

Let 1T, denote projection onto this normal space. Then,

t3p t3p
!1T1(OX)!-!(t3P, t4p \ 0, tq)!- (I'

since by (4.1) q<3p.

!'Y(t)! !(tP/v'6, t, tP, t4P-Q/9)!
!'Y(t)- 1T('Y(t»! = !(O, 0, t", t4P-Q/9)! - tP'

Hence the ratio (as in the definition of (r) becomes t2P-Q+\ which does not
tend to zero since 2p <q by (4.1). This proves assertion 4.3.

Finally we check that Verdier's condition (w) fails to hold.

d(TY(I)X, T...(Y(I»Y) - t3P-Q,

d('Y(t), 1T('Y(t») - t",
hence (w) fails exactly when 2p <q.

NOTE 4.4. Basing the construction on w = X
4k

- X2k +!. 1< k < 00 (instead
of k = 1 as here), we can build similar examples with X a c: submanifold.
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