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ABSTRACT

A precise meaning i1s given to general recursive definitions
of functionals of arbitrarily high type, including non-deterministic
definitions. Domain equations involving products, sums, powers and

v

functor domains are solved.

The use of categories with w-colimits as semantic domains is
investigated and it is shown that such categories provide a general
construction for power~domains and that no such construction can be
obtained with partial orders.

Initial fixpoints of continuous functors on such categories are
defined and studied. They provide a meaning for recursive definitions
of the type =x:=f(x).

The category of domains is defined and shown to possess w-colimits.
Initial fixpoints of continuous functors on the category of domains
provide the solution to domain equations.

The product, sum, power and functor domain of domains are defined and
studied. Product, sum, power and functor domain are proved to be

'

continuous functors in the category of domains.
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INTRODUCT [ON

This work defines the mathematical semantics of recursive
non-deterministic programs and provides the techniques necessary
for handling the semantics of programming languages exhibiting
non-deterministic features such as parallelism.

It should also be a first step towards a general theory of
computability including non~determinism and functionals of
arbitrarily high type, .generalizing Kleene's attempt [6].

The second step in that direction could be the definition of a
suitable category of effectively given domains and the third the

elaboration of a theory of computable objects.

The central idea in this work is that when considering non-deterministic
programs the notions of complete partial order, least fixpoints of
continuous functions and domain equations have to be generalized.

It is not sufficient any more, when considering the process of
successive approximations converging to the final value, to look at

the sequence of objects but it is also necessary to consider the way

in which each approximation is related to the preceding one, thus
replacing a partial order byia category and a least upper bound by

a colimit,

If £ is a recursively defined non-deterministic function, f(x) will
be the colimit of a sequence of approximations,

Typically these approximations will give partial information of the
type: "There is a possible branch of the computation which gives a
result approximated by Yo and there is another branch giving a result

approximated by Yysees and those are the only possible branches,"



Given two successive such approximations it is vital indeed, if one
wants a clear picture of f(x), to know how to relate the different

branches talked about in the two successive approximations.

If one is not interested in non-deterministic computable functions

an adequate theory of computability can be described using complete
partial orders and so, one could question the interest of using

categories as domains. But multi-valued functions are a very natural
object for a theory of.computation, quite independently of non-determinism,
as was pointed out by Martin Hyland [4]. The use of categories as

domains, by the generélity it introduces, should also have a beneficial

heuristic effect in the choice of definitioms.

This work is by no means self-contained but a consistent effort has

been made to follow the notation and terminology of Mac Lane [71].

L}

Previous related work

Two previous attempts t6 define a mathematical semantics for
non-determinism have been made: the first, by R. Milner {10], uses the
notion of an oracle which still has an operational flavour, and the
second by G, Plotkin [11] which defines a restricted category of
complete partial orders, those which are colimits of finite ones
(called SFP objects) and defines the power of such objects to be certain
c.p.o's (themselves SFP objects). This last attempt gives the best results
that may be obtained in the framework of partial orders and, though bold
and elegant, is quite difficult to follow, only partially motivated and
does not give a semantics as precise as should be desired because many

different sets of possible values are identified (see next chapter).



M. Smyth [15] generalized Plotkin's construction to algebraic domains
and noticed that a quasi-order coarser than Plotkin's could be defined
which would make the whole treatment much simpler but also the semantics

less precise and so, less interesting.

The present power-domain construction is a categorical version of
Smyth's proposal which keeps the conceptual and technical simplicity
of Smyth but remedy the imprecision in the semantics and gives a fully

precise semantics in which no two different sets are identified.

The idea of using categories instead of partial orders was probably

first advocated'by H. Egli.

On why it is imperative to solve domain equations, see Plotkin [11]

or Smyth [15].

The categorical approach to the solution of domain equations (for
c.p.0.'s) appears in one sentence of Scott [13] and has been developed

by Reynolds [121].

Plan

Chapter 1 reviews fixpoiﬁt semantics and the problems involved
in domain equations and non-deterministic definitions. It sets the
case for using categories as' domains.,
Chapter 2 recalls some definitions about categories and proves the
existence of an initial fixpoint for every continuous functor.
Chapter 3 defines the category of domains: Dom in which domain equations
are solved and proves the existence of colimits in Dom. The colimits
in Dom may be seen as both direct and inverse limits.
Chapter 4 defines the usual sum and product of domains and proves their
continuity.
Chapter 5 defines the power of a domain and proves continuity for the

power functor.



Chapter 6 defines the functor space of two domains and proves
continuity for the arrow functor.

Chapter 7 is a conclusion.



Chapter I

Fixpoint semantics, domain equations and non-determinism,

I,1 Fixpoint semantics

The preoblem to which fixpoint semantics is an answer is the following:
how can we make seﬁse, in a consistent and meaningful way, of general
recursive equations of the type x=f(x)? Typically the preceding
equation may be thought of as defining a function when f is a functional,
but more involved cases should be considered.

1) When f is a non-deterministic functional the equation should define
a non-deterministic function,

2) In most programming languages, procedures which take procedures as
parameters may be defined (even recursively) and then the type of
the function defined is not clear any more and the distinction
between function and functional fades out. To give mathematical
sense to such a phenomenon it is necessary to find a semantic
domain (meanings for programs) D which satisfies the equation
D={D+D] (= means isomorphic) where [D-+D] shoulid be a substantial
subset of DD, containing at least the "computable' functions,

If [D»DJ] is written +(D,b) it becomes obviocus that the above

equation is also of the form x=f(x),

The message of fixpoint semantics is that those equations should be
solved and not considered as operational definitions of a process,
The advantage of such a solution is two-fold (the second reason given
here has not yet received the consideration it deserves).

1) Such a solution would provide a criterion against which to judge

the correctness of implementations.



2) Fixpoint semantics allows the recursive definitions to be considered
as equations and this is the only way towards proofs of correctness
in complex situations, particularly with non-deterministic programs

which tend to be more complex than deterministic ones.

The main tool, and until [13] the only one, to solve equations of the
type mentioned above was Tarski's least fixpoint theorem and some
variations on the same theme, The successes of this least-fixpoint

semantics will be rapidly reviewed now.

1.2 Least-fixpoint semantics

The message here is: all interesting equations of the type x=f(x) are
such that x varies over an w—complete partial order D which has a
least element, f is an w-continuous endo-function D+D, and the

interesting solution is the least-fixpoint of f,

Definition 1 : A partial order D is w~complete iff every denumerable

directed ScD has a least upper bound (l.u.b.)

Definition 2 : Let A and B be partial orders, f:A+B is w-continuous

iff f preserves all existing l.u.b.'s of denumerable

directed subsets.

The theorem that asserts the existence of a least fixpoint under the
conditions above is a variation on Tarski's fixpoint theorem, There
the assumption on D is stronger but the assumption on f weaker (in
fact this variation is easier to prove than Tarski's original result
and is quite trivial).

Some people have preferred to use Tarski's result about monotone
functions but the use of monotone non-w-continuous functions does not

seem convincing to the author.



Least-fixpoint semantics have proved to be extremely successful in
defining the meaning of a large class of recursive programs, essentially
due to the fact that w-complete partial orders are preserved by many
constructions and that many useful functions are w-continuous.

We shall recall (with the notation of [131).

Theorem 1 : If A and B are w-complete partial orders with least

elements then so are AxB, A+B and [A-+B].

[A>B] is the set of all w-continuous functions: A+B with the pointwise

ordering.

Theorem 2 : £:AxB+C is w-continuous iff it is separately w-continuous
in each variable, and [AxB>Cl=[A>[B+C]].

Theorem 3 : The evaluation map : eval : Ax[A>BJ+B is w=-continuous.

The abstraction map : lambda : [AxB>CIl>[A+[B-C]] is
w-continuous,

The least-fixpoiht map : & fix : [A+AJ>A is w-continuocus.

The composition of two w-continuous functions is y-continuous.
The composition mab $ o ¢ [A»BIx[B>CI+[A+C] is y~continuous,
The projection maps : Py i AXB>A and P, AxB>B are
w-continuous.

Constant functions are w-continuous.

There are two dark spots left in this rosy picture: non-deterministic

programs and domain equations.

I.3 Domain equations

The necessity of solving domain equations was explained above in
relation with the equation D=[D»D] which is a preliminary to any

semantics for untyped procedures but other similar examples are found.
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In [8] Plotkin shows that, when dealing with parallel processes, the
programs should be given as meanings resumptions, elements of a
domain R which satisfies R=[S»p[S+(SxR)1] where S is the domain of
final values and P is the power-domain constructor,

The first failure of fixpoint semantics is that such interesting
equations cannot be solved by least-fixpoint methods for the obvious
reason that no reasonable partial order can be defined on domains.
What would it mean for a domain to be less than another one?

For the first time, in [13], Scott solved the equation D=[D»D] and
his method was genera;ized to other equations involved: +, x and +
(with the exception of P) by Reynolds [12].

The method used there is categorical: the class of domains is category
and if the arrows are carefully selected (they have to be pairs of
continuous projections) the category may be proved to have directed
colimits and -, x and + may be seen to be continuous functors,
Domain equations may then be solved by initial-fixpoint methods in

categories which generalize the least-fixpoint theorem.

I.4 Nom~-deterministic programs and power-domains

The neat way to fixpoint semantiqs for non-deterministic programs is

the definition of a power-constructor £ which acts on domains to give
a domain reasonably close to what could be expected for a power-set.

Non-deterministic continuous functions from A to B are then elements

in [A>P(B)].

Unfortunately the problems are numerous when one tries to define the

power-domain of an w-complete partial order to be an w—-complete

partial order.

11



Let us first list two conditions that should be fulfilled by P to be
semantically acceptable,
1) The union map Y: :"P(A)xP(A)»P(A) is w—continuous.,

2) The singleton map : {} : A>P(A) is w-continuous.

The reason why theSg conditions are imperative is that the rule of the
game is that all semantically meaningful functions should be w-continuous
and union will be used to translate the non-deterministic or and the
singleton map to translate deterministic functions.,

The problem of finding aﬁ acceptable constructor £ has been solved

(independently) by Milner and Egli for a very special case: for flat

domains (those domains where x*¥y and xey=x=1,1 is the least element).

This solution is too restricted to be of real interest because even

if A and B are flat [A»B] and P(A) are not flat any more and the

constructions cannot be iterated., Plotkin [11] has a more useful

construction which, though not really general, is general enough For
iteration of constructions to'be possible., The author thinks that his
construction should be preferred to Plotkin's on three counts.,

1) It is mathematically simplef (much simpler).

2) It is fully general: it gives a power domain to any w-complete-poset
whereas Plotkin defines power-domains only for algebraic countably
based posets.

3) It preserves the identity of every subset of possible values whereas
Plotkin defines the elements of his power-domain to be only
equivalence classes of subsets and so identifies many different
subsets.

An example of the prcblems arising when one tries to solve equations on

non-flat domains will be given now. It shows quite conclusively that

no satisfying partial order may be defined on the power-set of a domain.

12



Let E be the domain consisting of an infinite countable ascending chain

with a top element. E is a non-flat continuous lattice (see Fig.1)

[+
n
E icj iff igj
.2
.1 igw
.0=1 L=
Fig. 1

Let s: EoE be defined by : s(n)=n+l and s(=)=«,
s is a continuous function totally acceptable semantically.

Let now Sl and 82 be the two following recursive definitions:

S, x::1=8(x)

S. x::=s(x) or O

Sl and 82 may be considered as recursive definitions of constant

functions. Any reasonable semaptics should associate with Sl an
element of E and with 82 a subset of E.

As far as Sl is concerned it ;s a deterministic definition and there
is no question about its meaning if we stick to a fixpoint-semantics,
there is a unique fixpoint : « . Operationally we could say that Sl
computes the l.u.b. of the sequence : Oes(o)es(s(o))z... sn(o)g..o
which 1s <« ,

For 82 things are not so simple, The semantic interpretation of‘gg

should be union and so a fixpoint-semantics should provide as a-meaning

for 82 an AcE such that A={o}Us(A).

13



Clearly there are two such sets : E and EO:En{w}.

Which one of them should be chosen?

If the semantics has to have any operatiocnal relevance at all the set
defined by 82 should contain the singleton defined by Sl because 82 is
richer than Sl in possible computations. The only acceptable meaning
for 82 is then E.

If E is to be in some sense the least-fixpoint of 82 then we must have
EcE .
o

But clearly in any reasonable order (in particular in Milner-Egli's

order defined by AgB iff VacA dbeB agb and VbeB JFacA ach) EOEB'
M

In fact in Milner-Egli's order Ez§o°

At this point only three possible ways seem open :

1) Abandon the idea of least-fixpoint semantics and adopt a "best"
fixpoint semantics as one of those studied by A. Shamir [14] (for a
preview of these results see [8]). For the moment not enough is
known on continuous best fixpoints on non-flat domains to see whether
this is a promising avenue fgr further research.

2) Decide that no difference should be made between E and Eo.

Plotkin [11] and Smyth [15] develop such ideas.

It works but the treatment is mathematically difficult and, most
important, many identifications are made for which no convincing
non-technical reason can be given,

3) Abandon the idea that domains are partial orders and admit that they

are categories on which every denumerable chain has a colimit.

This third proposal is the one which is developed here.
A fringe benefit of this idea is that now domain equations fall into the
same basket as meanings of programs.

In other terms now the equation D=[D»D] is a recursive program.

iy



Before the technical results one word is in order on why colimits are
better than l.u.b.'s for semantics of non~deterministic programs. In

a category there are directed arrows between objects with an associative
composition of arrows and suitable identity arrows. A partial order is
a category in which there is at most one arrow betweeﬁ any two objects,
The notion of a coliﬁit which generalizes that of l,u.b., has the
following distinctive featuref

Let C be a chain of arrows and cbjects :

C = aO_’al—_) a2~—-} ooo.ooai————)ai_*.l R
£ £0% £, £,

Its colimit depends not only on the objects A seeedisenn but also on the
arrows fo,...,fi,...

By contrast in a partial order the colimit (l,u.b.) cannot depend on the
arrows because there is no possible choice for the arrows (at most one
between a; and ai+l)' In our semantic interpretations the objects will
represent partial information and the arrows possible ways in which two
successive pieces of information may be related. In the case of
non~deterministic functions an bbject will consist of partial information
concerning each possible computation and when two such objects follow each
other it is indeed of vital iﬁportance to know how they relate, how do

the possible computations described in the first object relate to those

described in the second,

15



In the above example the computation defined by 82 will be represented by :

{1} A
\
{0,1} A

i ;lf

FJ

,H
P
1

> e—

,,K'-r-'

— T4
Hh
w

f0,1,2,3} A,
{0,1,2,.441} A
1
1
INNRTIIN ‘
- {0,1,250001,it1} Al
L] -
]
Fig. 2

which will be seen to be a chain in P(E) and the meaning of 82 will be

the colimit of this chain, proved to be E.

Due to our will to treat domain eguations, the detailed description of
the category P(D) will come only in Chapter 5. The first part of

Chapter 5 may be read immediately by the reader too curious to wait.

16



Chapter II

Categories and initial fixpoints.

Two words of caution are needed here, the first on foundations and
the second on isomorphisms, One point, on which our terminclogy differs
from Mac Lane's [7] is that the word "set" will always be used in its
strict sense (say in Zermello-Fraenkel axiomatic set theory). The word
"class" will denote a col;ection of sets satisfying a certain property
(definable in the language of set theory); when an object is said to be
a subset of a class the &ord "set" has to be understood strictly : not
all sub=-classes are subsets, and it should come as no surprise that
solutions to the equation D=P(D) are found, but obviously such solutions
are proper classes.,

All the categories used in this paper as domains are large categories

the objects and morphisms form a class (proper or otherwise).

Definition 1 : A category is small iff the class of its objects and

the class of 1ts arrows are-sets.

Cat will denote the category of all small categories (it is a proper
large category).
Cat' will denote the category of all large categories (it is not a

large category).

Now comes the second of our words of caution.
An important difference between partial orders and categories is the

existence, in categories, of non-trivial isomorphisms.

Definition 2 : In a category C an arrow f:a»b is an isomorphism iff

there is an arrow g:b*a such that g°f=1a and f°g=;b.

17



In this case g is also an isomorphism and a and b are said to be
isomorphic (noted a~b).

The image of an isomorphism by a functor is an isomorphism.

Clearly the identities (la for each object a) are isomorpnisms, but
there could be other ones (called above non-trivial).

Isomorphisms in the functor category BA are called natural equivalences
or better natural isomorphisms and noted t : S=T.

A universal arrow, when it exists, is always unique only up to
isomorphism (in the comma category); in particular initial objects,
products, co-products, limits and colimits, left and right adjoints

are defined only up to isomorphism.

This is a fact that we shall have to bear in mind and we shall try to
use the definite article only for objects which are uniquely determined.
On the other hand isomorphic objects are indistinguishable and when we
shall look for solutions of equations in categories we shall be satisfied
with a solution up to isomorphism.

In the categories which will be used as domains it is critical that the
colimits (the object) are definéd wniquely and notonly up to isomorphism
(we want the left-adjoint right-inverse of a functor to be uniquely

determined) and we recall the following definition :

Definition 3 : A category is skeletal iff any two isomorphic objects

are identical.

The term skeléetal should not frighten anybody, the author thinks that
those categories are quite pleasant to work with.
If C is a category any skeletal full sub-category cf C is called a

skeleton of ¢, C is equiﬁalent to any of its skeletons and any two

18



skeletons of C are isomorphic. We shall admit that any large category
has a large skeleton.

In a skeletal category the limits and colimits are uniquely determined
as far as the objects are concerned, the arrows of the limiting cones
being determined only up to isomorphism (even in a skeletal category
there are non-trivial isomorphisms).

The theorems about initial fixpoints that will be proved in the sequel
of this chapter are formulated for arbitrary categories (not necessarily
skeletal), a slightly sharper version may be obtained for skeletal

categories if one remembers that isomorphic objects are identical.

Definition 4 : The category w is the category whose objects are the

natural numbers and such that there is an arrow : m-n iff mgn and

in this case there is exactly one arrow : m.

w is the set of natural numbers ordered by the usual ordering.,
Pictorially :

W= O—pl—32—np... L—3itl—ay,,,

where identities and arrows;obtained by composition are not drawn.
Partial orders are exactly the categories in which there is at most one

arrow between two cbjects. .

Colimits in partial orders are éxactly l.u,b.

w is a partial order. Partial orders are skeletal,
Posets are the small partial orders and a poset has an initial element

iff it has a least element,

Definition 5 : A category C is an w-category iff every functor

F:w>C has a colimit.

19



In the sequel only w-categories will be considered, but any directed
category containing w as a sub-category could have been chosen,
w-posets with initial element, in the present terminology, dare eXactly

the W-chain-complete posets of Markowsky & Rosen [s1.

Definition 6 : A functor H:A»B is an w-functor iff it preserves

w-colimits.

Caution : For every F:w*A which has a colimit, H has to preserve the

colimiting cones, not only the colimit objects.

Lemma 1 ¢ If H:A>B and G:B~>C are wp~functors, so is GeH.
Proof : Obvious.
Lemma 2 : If H:AxB»C is a bi-functor, H is an w-functor iff for all

objects b in B the restriction of H, Hb:A+C (Hb(f}:H(f’lb) is an

w-functor and for all objects a in A Ha:B+C is an wp-functor.

In short a bi-functor is jointly continuous iff it is separately
continuous. The proof is obvious.
The fundamental fixpoint theorem of category theory shall be proved now.

Its present form is due to M. Smyth.

Theorem 1 : Let C be an w-category, I and w-endo-functor F:C-C and
h:a-Fa be an arrow of C, then there are arrows n:Ib»b and g:a’b
such that
1) n is an isomorphism

g=noFgeh
3) For any arrows k:a*c and m:Fc»c such that k=meFkeh there is

a unique a:b>c such that aen=mela.

20
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a2
jsY)
vy /

R A

V4

Fc
Fig, 1
Proof: Let H:w>C be the following :
b Fro g i TR gy
a -» Fa yFa—.ees Famm—3F "a—3....s

C is an w-category and H has a colimit,

Let j:H¥ be the colimiting cone and g be its first arrow j :a*b.

)

F being an w-functor Fj is a colimiting cone for FH.

N 2 i+
Fho o, Fho g iv1 T " 142

Fa ;Fa >F a-—-;—-).....F a'———"ﬁ F a es o
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Let n:Fb»b be the unique arrow such that jiznOFji_l

for iz1.

Clearly g=j,=i,°h=n°Fgeh .

To see that n is an isomorphism just observe that u:H>Fb defined by

u°=Fj°°hxand pi=Fji_ for izl is a cone and implies the existence of a

1
unique A:b-»Fb such that ui=A°ji .

Clearly then neA:b»b such that nOAOji=noui=ji

which implies nei=l  and similarly

Aon:Fb+Fb is such that AenOFji=Fji which implies X°n=lFb .

Let us now prove the universal property 3)

h
The diagram & ———yTfa commutes,

k\ /moFk

(e}

A commuting cone e:H>c may be defined by e_=k and e =meFe,
i

+1

(e.

l+loFlh:moFeioFlh:moP(eioFl-lh):moPei_

l:ei)

Then there exists a unique B:b*c such that e, B3, -

-1 -1 . .
m ° .= = = 3 = =
But MeFBen °1; oFBon °onji_l mOFBOF]i_l mOF(BOJi_l) mOFei_l e,

-

moFBen © is then also a solution to eizxoji and Bzmoygon‘l, BonzmeFB.

For uniqueness suppose that aon=meFa , then
eo=k=m°Fk°h=m°Fa°Fg°h=aom°Fg°h=a°g=a°jo and by induction for izl:

ei=m°Fei_ =moFa°Fji_l=a°n°Fji_l=a°ji , which implies a=8 .

1
Q.E.D.,

If C is a partial order Theorem 1 states that if C is an w-complete
partial order and f:C»C is an w-continuous function, for each aeC such
that aef(a) (a is a pre-fixpoint) there is a fixpoint b of f which is
the least post-fixpecint greater or equal to a.

For categories a theorem with a similar diagram appears in Wand {161

but in a different setting.

22



When C has an initial element initial fixpoints may be defined.

Definition 7 ¢ L 1s an initial object in C iff there exists a unique

arrow i iisa from L to every object a in C.

Definition 8§ : A category is an initial category iff it has an

initial object.

Theorem 2 : Let C be an initial w-~category, F an w-endo-functor F:C-+C
then there is an arrow n:fb+b such that:
1) n is an isomorphism
2) for any arrow m:Fc+c there is a unique a:b+c such that
aen=mofa .

b is called gn initial fixpoint of F; it is unique up to isomorphism.

Proof : Apply Theorem 1 to f=LFl .

If C is a skeletal category then the b of Theorems 1 and 2 verifies b=ib,
and is uniquely determined whiéh allows the definition of an initial
fixpoint functor.

Theorem 2 says that (b,n) is an'initial element in a suitable category.
It is the author's guess that such categories are related to those

'

described in [31].

Definition 9 : infix : [C+CI+C is defined by

- infix F=b the unique b implied by Theorem 2

F L]

- infix ET =a_ , the unique u:bF*bF,gsuch that

F

aenL=ng, ° Tbr! ° Fa ,

P

The main claim of this paper is that all recursive programs, even
non-deterministic ones, can straightforwardly be considered as
w—endo-functors on initial categories and that the meaning of such a

program is its initial fixpoint as defined in Theorem 2,

no



Nevertheless there are cases when other fixpoints of the type considered
in Theorem 1 will be of interest. It will be shown that a domain equation
may be considered as an w-endo-functor in the categcry of domains, which
is an w-category, but in certain cases the initial fixpoint is too trivial
to be of interest and other fixpoints will have to be considered; a good
example of this fact is the equation D=[D»D] whose initial fixpoint is

the one point domain.
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Chapter III

The category of domains

The purpose of this chapter is to define the category of domains, in
which domain equaticns will be solved and to prove that it is an

w-category with an initial object.

The objects of the category of domains, which shall be called domains,
should be the Structures in which to give meaning to programs.

There are many properties that one could think of ard which are probably
necessary if one wants to have a reasonable theory of computation, but

as it is not yet clear what properties exactly are needed or what
properties should be helpful, this work is aiming at the broadest possible
notion of a domain which can support the product, sum, functor domain and
power domain constructions and with which domain equations can be solved.
It is clear that the notion of a domain presented here is too brecad for

a theory of computation because domains are not necessarily effectively
given, but the right category fqr a theory of computation is certainly

a sub-category of the one which is defined here. One of the aims of this
work is to show that domain equations may be solved without bothering
whether the domains involved ax;e effectively given or even "continuous"
in the sense of Scott's continuous lattices, but obviously any reasonable
notion of a "continuous" domain would involve a sub-category of ours,

closed under o¢olimits of countable chains.
The following definition is the broadest the author could think of,

Definition 1 : A domain is a large skeletal initial w-category.
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A domain has to be a category because the power domain of a partial
order is not a partial order and it has to be an initial w-category
because initial fixpoints of w-functors will be the meanings of programs.
It is reasonable to suppose that domains are skeletal bhecause isomorphic
objects cannot be distinguished and should have the same semantic
interpretation. There is also a compelling technical reason for
considering only skeletal categories for domains : it is only on skeletal
categories that the left-adjoint right-inverse of a functor is uniquely

determined as will be seen in the sequel.

One could also wish domains to be small but that would lead to some
slight technical problems in the definition of power domains. The
objects of a domain may be seen as pieces of incomplete information

and the morphisms as possible ways in which two items of information
may be related. The initial object is the absence of information and
w-colimits represent the information gathered through an infinite
sequence of experiments including the way successive items relate to
each other. The morphisms oflthe category of domains should allow the
solution of domain equations, that is to say they should make the
category of domains an w-category and they should make the product,

sum, functor domain and power domain operations w-functors.

When one looks at the methods used to solve domain equations, in Scott
[13] and Reynolds [12], one sees that they amount to the construction
of larger and larger domains, each domain in the sequence being a
sub-domain of the next one. As a consequence, an arrow F:A+B should
ensure that A is a sub-category of B, In fact A should even bhe a full
sub-category of B, because B should be richer in objects but not in
arrows between the old objects. In other words £:A»B should yield

a functor F:A»B both full and faithful. To preserve the colimit
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structure F should also be an w-functor. This unfortunately deces not
ensure that the functor domain constructor is a functor in the category
of domains., (We want a functor covariant in both variables). More
Precisely to any couple of arrows in the category of domains: f:A>A‘
and g:B»B' an arrow h should be associated: h:[A+BJ+[A'»B']., The way
to ensure that is té ask that an arrow f:A-A', ylelds not only a

functor F:A+A' but also a functor H:A'-A,

If f:A>A' yields F:A»A' and H:A'»A and g:B»B' yields G:B+B' and L:B'»B
then MiAf GofoH is a functor: [A+BI+[A'»B'] and N:1g LegeF is a functor
[A">B']+[A-B]. vTo reéapitulate f:A+A' should be a pair of functors
(F,H) F:A>A" and H:A'+A sich that T and H are w-functors.(both should
preserve the structure) and F is full and faithful. This does not make
the category of domains an w-category and to ensure the existence of
w~colimits. some conditions on the relation between the two functors F
and G are needed. Returning‘to the basic intuition that f:A+A' sheuld
make A a sub-category of A' one may see that in the construction of
solutions to domain equations it will be used in the way that the objects
of A are approximating those o% A', A is a sub~category of A' on which

A' may be projected. Now only a small leap is needed to conceive that A
should be a co-reflective sub-category of A' (see Freyd [2] p.79). This
means that given an object b in A' there is an object b in A which best
approximates b by an arrow mb:S;b in the sense that for any object a in A

and for any morphism f:i:a+b in A' there is a unique g:a»d in A such that

f:mb og.
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Equivalently (see MacLane [7] pP.88-30), in terms of the functors F
and H above, (F,H) should be a pair of adjoint functors such that
H°F=IA the identity functor on A, and the unit n of the adjunction :
IA;HOF the identity natural transformation. In the terminology of
MacLane [7] (p.92) F is a left-adjoint right-inverse for H or there is

an adjunction <F,H;l,e> with unit the identity.,

The notion of a pair of adjoint functors has been defined by Kan [5]

in 1958 and has been singce then recognized as the most important concept
of category theory. The best up to date summary on the subject is
probably Maclane [7] chapters IV and V. If A and B are partial orders,
F:A>B and H:B+A (F,H) is a pair of adjoint functers iff F and H are

monotone functions such that: HOFEidA and FOHEidB (Galois connection).
Three facts about adjunctions will be recalled.

Fact 1: The composition of two adjunctions is an adjunction

(MacLane [7] Theorem 1 p. 101).

If <F,G,n,e> : X*A and <?;§;;;E3‘: A+D are two adjunctions then the
composite functors yield an adjunction : <?T,G§,Gﬁ?.n,21?€§3 : X-D .

Note that if n:IX and m=IA GnP.n=IX .

Fact 2: If (F,G) is a pair of adjoint functors F:A+B, then F
preserves all colimits existing in A and G pPreserves all limits

existing in B. (MacLane [7] Theorem 1 p. 11y).

This makes the condition that F be an w-functor redundant, but the
condition that G is an w-functor is still necessary and not implied by
the other conditions., In the category of domains an arrow is a

"continuous" co-projector and if f:A+A' then A is a "continuous"
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co-reflective sub—category of A', The fact that G preserves all
existing limits will not be used in the sequel and the author has no

intuitive explanation as to why it should be so.

Fact 3: If (F,G) is a pair of adjoint functors then each one of
them determines the other up to natural equivalence

(MacLane [7] Corollary 1 p. 83),
This is not sufficient for our purpose and we need :

Theorem 1 : Let B be a skeletal category and G:B*A a functor which has
a left-adjoint right-inverse then this left-adjoint right-inverse

F is uniquely determined by G,

Proof : By fact 3 F:A+»B is determined uyp to natural equivalence;
B being skeletal the effect of F on objects is uniquely determined
and MacLane [7] Theorem 2(ii) (p.81) implies that an adjunction is
completely determined by its right functor G, the effect of its
left functor on objects and its unit. In our case the unit being

the identity, the effect of F on arrows is defined by FGh=h,

There is then no need to consider the morphism f:A+A' as being a couple
(F,G) and f may be defined to be a G such that a suitable F exists.
Contrary to Smyth [151, the right adjoint will be emphasized here, both
for the lack of an acceptable term for the left-adjoint (embedding is
used with another meaning by MacLane), and because the left-adjoint

does not seem to determine uniquely its right-adjoint left-inverse.

Definition 2 : A functor G:B+A is a co-reflector iff it has a

left-adjoint right-inverse, that is to say that there is an

adjunction <F,G;lA,e> .
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The term w-co-reflector will be used for such functors which are
w-functors. If A and B are partial orders, G:B>A is an w-co-reflector
iff it is an w-continuous projection in the sense of Scott [13]
(Definition 3.6). A characterization of w-co-reflectors shall be

proved now -:

Theorem 2 : If A and B are categories, G a functor B+A, G is a
co-reflector iff to each object aeA may be associated an object
F aeB such that GF _a=a and for any arrow f in A : a»>Gb there

exists a unique arrow f in B : F_a»b such that £=Gf,

Proof : only if : let F_ be the left-adjoint right-inverse of Gj;
by MacLane [7] Theorem 1 p. 80 ¢:f»Gf is an isomorphism from

B(F_a,b) to A(a,Gb).

if : the sentence "for any arrow ....... £2GE"
is equivalent to "the couple (Poa,la) is universal from a to G',
in the presence of GF a=a. By MaclLane [7] Theorem 2(ii) p.81

it defines a left-adjoint right-inverse for G.
The category of domains may now be defined :

Definition 3 : The category of domains, Dom, is the category which

has as objects the domains and as arrows the w-co-reflectors.

In Dom a morphism f:A>B is an w-co-reflector G:B-A.

There are two natural forgetful functors that one can define from Dom
to Cat' the category of large categories. The left-forgetful functor
(ForL) is a covariant functor that sends an w—co-reflector G to its
left-adjoint right-inverse F and the right-forgetful functor (ForR) is
a contravariant functor that sends an w—co-reflector G to the functor G.

The main Theorem will now give the important properties of Dom.
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Theorem 3 : The category Dom is an initial w-category, and the right-

forgetful functor ForR transforms colimits on w into limits on

wOP

Before we proceed to the proof of Theorem 3 some technical lemmas,

Lemma 1 : If A and B are skeletal initial categories and G:B»A a

co-reflector then GiL=L, GL » and if F is the left-adjoint

b-1eb

right-inverse of G, Fi=l and Fi_=1__ .
a “ra

\M £ oy B ) - . . ~ . R .
Proof : A(L,8b)=B{(FL,b) implies that fi is an initial object,

B being skeletal Fi=.i. FLa has to be an arrow : iz=Fi»Fa but

there is only one such arrow Loy o GL=GFi=i because G°F=IA .
Glb has to be an arrow from L=Gi-+Cb and there is only one such
AYTOW Loy o

Q.E.D.

wemma 2 : If A and B are categories, G:B+A a co-reflector with

left-adjoint right-inverse F and g : FOG;IB the counit of the

adjunction, then Gee=G, and eoF=F,

Remark : Following MaclLane E7], G denotes both the functor and the

natural transformation : G»G consisting of identity arrows;

thus Gee=G is equivalent to : for all objects beB, Geb=le, or
Eb:le in the notations of Theorem 2,
Proof : MacLane [7] Theorem 1 p.80(ii) implies G=(Gog).(noG) and

F=(Fon).(eeF). Here n=I,, noG=G, and Fon=F,

AS
QaEuD-
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Lemma 3 : If A,B,F,G and € are as in Lemma 2, and g:b>b' an arrow
in B, then Egigoeb

Proof : G(goeb)=Gg0Geb=Gg by Lemma 2.

Proof of Theorem 3 :

Let us show first that Dom has an initial object : the category 1
with one object (.) and one (identity) arrow. Clearly, 1 is a domain

and given any domain A there is a unique functor GA:A+1. GA is an

w=functor, It is left to prove that GA is a co-reflector. Let

FA:1+A be the functor that sends the unique object of 1 to the initial

object of A : 1 and its only arrow to 11 . Given any arrow f in 1(,,Ga)
A

there exists a unique arrow f in A(LA,a) and Gf=f=1, . Clearly GAOFA=I1 .

By Theorem 2 G is a co-reflector,

Let us now show that Dom is an w-category. Let $:iw=+Jom,

. i &
% A ¢ T Al\ z AQ(-,—..... Ai( o Ai+1‘
° 1 1
Gi
.. s L —
Let Fi be the left-adjoint right-inverse of Gi : A£-—F-——)Ai+l

If, as asserted in the Theorem, ForR transforms colimits into limits
then the colimiting cone \):@;Am should be the 1imiting cone in Cat’'.

Let A_ then be the category with objects the infinite sequences

<8 ye.esd.3+00> such that for ie¥ a.eA, and G.a. .=za, , and with
° 1 11 11+l 1

arrows the infinite sequences : <f°’fl’°"’fi""> such that for

ieN , f£.eA, and G.f, =f. . Let G . : A »A, be the functor that
i1 1 1i+1 "1 ©3 © ]

. .th .
projects on the 1 b coordinate.
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The above ~zone is a limiting cone in Cat' and the theorem asserts

that : A is a domain, Gwi is an w-co-projector and given a cone

L3

B»®, if B is a domain and u compased of y-co-projectors then the

1
U

e

unique functor HiB>A_ such that u=yeH is alsc an w-co-projector.

Let us prove that A _-is a domain. A _ 1is large. A_ is skeletal because
isomorphisms in A are sequences of isomorphisms. A_ is initial because

<Ly sl

o

see that A_ is an w-category where the colimits are taken coordinatewise

A ,...,iA see+> 1s an initial object by Lemma 1. It is easy to
1 i

{remember that the G.'s preserve colimits),

Let us prove now that the Gmi‘s are w-co-projectors. Gwi is an

.

w-functor because the colimits in A_ may be computed coordinatewise.

T . an 3 ™ £ - = .
if ; is an arrow in Ai’ let rimli-<fo,fl,...,fi,ri+l,...>

1 and for j>i f.=F

where for j<i £.=G.f, Cleariy F, is a
19+ iw

51551

e

Tunctor : A YA (ijszlA_), and Gy “Fs™ly v Suppos:

i jeo A, 1 o1
J , i
is an arrow in A,. Then b=<b ys4esD.3...> with b,=G .b,
i o i i e
Let T, 3.7<8 seee38.3e0+”>. Let g:F. a.»b be an arrow in A :
1%° 1 ° 1 . leo 1 o

g=<go,...,gi,,..>. Gwingi iff gi=fi . Suppose gi:fi’ then for j<i

g=G....G. _f. and for j>i g.:a.»b. such that G, .=g. .

R AR C A R e A 3-183785-1
But aj:Fj—laj—l and by Theorem 2 there is exactly one arrow g such

i t . = = . . T i i H
tha G]—lgj~l g]_l he arrow g defined by

.=f j<i =G. e 0.0, . for §>1i g,=g. . i 1 1
g,7f.s for j gj Gj 1-lf1 and for j>1 gl gj_’l is the only arrow

in A :F. a.,>b, whose ith cooﬁdinate'is:fik. Theorem 2 now asserts

that G_. is an w-co-reflector,
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We have shown that v is a cone in Dom, let us show now that it enjoys
the universai property. Suppose B is a domain and u:B>¢ a cone with
&0rows w-co-projectors; V being a limiting cone in Cat' there exists a
unique H :B*A  such that u=veH ., This certainly implies that there is

at most one w-co-reflector with this property.

We shall prove that H is an w-co-reflector. Let U be composed of
arrows Hi:B—>Ai . We know that if f is an arrow in B:

Hmf=<H°f, Hlf,...,Hif,.o.i . H_is an w-functor because all Hi's are
w-functors and in A_ the colimits are coordinatewise. Let Li be the

left-adjoint right-inverse of Hi . Li:AieB. To clarify the situation

a lemma will be proved now.

Lemma Y4: H oL.=F, for all ieN,
e —— o ] Tje
Proof: Let f, be an arrow in A, . H (L.f.)a<H L.f. .00 H.L.£,,,..>
— i i E o171 iiTi
= T = .
But HkOLk IAk and Ly Lk+l°Fk
(HmOLi)fi:<......’Gi—lfi’fi’Fifi’ Fi+lFir-’9.....) = Eiwfi *

Q.E.D,

From now on the composition sign (°) will be omitted whenever possible.

Define Ki:Aw+B by Ki=LiGmi . Then Ki:Li+lFiGiGwi+l .

The co-unit of the adjunction (Fi,Gi),ei is a natural transformation:

F.G.»I and 1.=L. _e is a natural transformation: Ki+Ki+

16171, 17054151 Ceitl 1

Lemma 5: TFor jzi Hin=G°°i and HiTj=Gooi .

P : K.=L . :=G,e0e oeoG. _H, L.= G .=G.,.v. o0 G. G .,
Proof K:J uj g ? Hl Gl G]_l T H]L] IAj and i Cs 5-1%03

= A - -= T N ) ...G. * H- . :I
T Lj+l€jG®j+l s Hy Gl * jH]+l > j+lL]+l Aj+l i

. RGN P C AP .6'.G-G .
Gjej G] by Lemma 2 and Gwl Gl 58m3 41

34



for each objcct aeh  an object K aeB with the appropriate property.

K. a . a)Kla ?E"""'"’KiaTE)Ki a

1 * e s eve
+.4
©

*

b

is a functor § :w»B, it has a colimit because B is an w-~category and even
a

if the colimiting cone is not uniquely determined its vertex is uniquely

determined because B is skeletal, Let us define Kma:colimit wa.

Recapitulating diagram. The diagram does not commute, but

the following sub-diagrams commute.

Fig. 1
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' 3. By Theorem 2 it is enough for us to define

=
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Lemma 6: VYieN , YaeA H.(K a)=G .a
e © 1 e 007

Proocf: H.(K a)=H,(colimit ¢_)=colimit(H,y_ )

——— iV i a iva
because Hi Preserves w-colimits and the categories are skeletal.,
But by Lemma 5, Hiwa consists of a fixed object Gmia and identity

arrows after a certain point and its colimit is Gwia.
Lemma 7: VaeA H K a=a
————————— [+ [- -2 -]

Proof: H K a=<H K a,...H.K @5...75<G_ 8,¢..6 .8,0..>=a
tmer——— o o @ 1 w0 ]

Before we proceed further let us study the colimiting cone

K a ‘Ka e e s >K.a K. A —D e
o Toa’ 1 - i ria> i+l >
g.a g.a
1
o) K
oa og

The arrows 0.a are not uniquely determined but we shall use any
colimiting cone. The a being fixed we shall drop it from the notation,.

Clearly VYielN 0,304, 9T; -+ Hi preserves colimits and:

H.K.a=G . ‘ K, .a=G .
1 la wla -Ez:f—_§H1K1+la Gwla _EE__:
wig ol

H.0.a , H.o. .a
i1 . 171+l

H.XK a=G .
i oia

Fig, 2

is a colimiting diagram, This implies Vj2i Hioszici. Morecver the

identity cone being obviously a colimiting cone Hioi is an isomorphism:
G .a»G .a, As G,H, .o. _=H.o. _=H,o. =<H 0 @yeee,H.0.8500.> 1
wi® wi Id+17i+41 ii+) itio® l’Ja oo ? P iTiTe 1S an

isomorphism in A :a»a.
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Now tc end the proof of Theorem 3, let us show that (Kw,Hw) satisfies

the universal property used in Theorem 2.

tuppose fia+H b is an arrow in A . Then G_.f:G_.a-»H.b 1s an arrow in A,
o oo

o ] o], i i

LT, i, 4. ¥.a=H.X a=G .a by Lemmas 5 and 6,

ITITTLTLT e 117 il T
o foH.0,a:G .avH.b, = L, is the left-adjoint right-inverse of H, and
w1t TiTiT i A i i

by Theorem 2 there exists a unique h,:L.G_.a»*b such that E.h.=G .fe°H.o.a.
il i1 Twit Tid

<+
A

L.G .a=K.a =i, _a
1 @1 1 1.a i+1

m

The diagram of Fig. 3 commutes because H:(h;+ ot a}:ﬁgh;+70H:T:a=G.H. h
- < 5 .

v TLemma 5 = G.{G . _foH. .o, .a)=G .feH.g.,, .a=G .foH.0.a as ncticed above.
S e P midlT il 1+l_) wi Vi1 el 1T T

N

s r
CheT o

h or.ay=H.h.®h. _et.azh, because H The universal
ivi i+l i i

iTi+l 4

property of the colimiting cone cra:xpa—»Kma implies: 3! a:K_a+b such that

oA, The proof of Theorem 3 is closed Ly the next two lemmas.

'

Lemma 8: H a=f
i ©

YieVN h.zaoo.a®Viel H.h.=H.,aeH.o.,a¥ieN G .foH.c.a=H.aoH.a.a by
i i itiit oiTL oi” TIT1T LT 1T
construction of hi' But we noticed above that H.c.a is an isomorphism
i'i

and we have: VieN G .f=H.o®f=zH a
0] 1 0o

Lemma 9: Let B:Kwa+b be such that Hw8=f then B=a .

3

(@23

21

(]
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Proof: H B=f®VieN H.R=G .f . Then H_.(Beo,a)=G_.f°H.o.a and by
definition of h,:h.=B°0.a. But VieVN h.=Bcc.a®B=a by the
1 1 1 1 1
universal property for a.

Q.E.D.
End of proof of Theorem 3.

Remark: The existence of an initial object in a domain has not been
used in the proof of the Theorem and clearly an extension of pom
where objects are not. neeessarily initial is also an w—category.

Before we conclude this chapter, two lemmas which will explain the

proof of Theorem 3.

Lemma 10: If a is an object in A then the following diagram is a
—————— o

colimiting cone:

F G a——f—éF G, a-—————) lmml

lew OGeol a

N F. G . a
oo o0 - l+l°°q°°l+l
/ F €.
\ it+le 1 wi4l

Fig. 4.

where e..F G +IA is the co—-unit of <Fi,Gi;IA ,ei>
i+l i

o . . o
: > 1 o-unit of <F. ,G .3l £.>
and €s Fimel IA is the co-unit P

Intuitively Lemma 10 says that a is the colimit of its successive

projections.

o
Proof: The diagram commutes for: G_.e a=1l a by Lemma 2 and

i1 G
@]l
2] -] o0
= .e.G .
Gwi€i+l aoGwiFi+1m€iGwi+la GiGmi+1€i+la°G1€1 w1+1a
) GilG . aolG .a:lG .a by Lemma 27
wi+l o] wl
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For the univessal property, suppose the following diagram commutes:

F. G . .a
1+le @141
Fig.5
3 a . ® [naks
For unicity supposa ata?b such that VlEN:hi:d°Eia. Then clearly
5 h.=C .2°C ,e.a=G .a and a=<G_h eesG N.geau> (1)
CwiTh Tl TelTi i an 0?0
To prove the existence of such an o let a be defined by (i).
- - s » oo » . Y N
gia*d, To snow Viel h;=a°sia it 1s enough to show that
> . N 8l KT - - ~ o2
vjell YieN G . h.=G .a°G .e,d.
w3 1 oo 3 1
~ - o ~ ~ o
G LoavG Le,8=26.5, _...06 ,0°G,G, _...C .e.a
o] S [ L J 3+l 0l "1
_ . - . . , -
T R N S FU LR I R R
] wi
2 e G e a=G ] G .h
For =i aeG .e.a=G_.aol .
’ E o co;_e'la G . o} 1
for 321 let us prove our claimd by induction [j—l[.
Soh,wE v el R, €.6 . .a by commutativity of the ahove diagram (Fig.5)
wT L e w3 14]e I Tel+]
o0
=G _.a°G .e, .a°B .F. €.G . _a by the induction hypothesis
3 g 1+l o] i+l i i+l Y yP
=G .00G (e, .aoF £.G a)
i3 - 3 v R - - - -
07 SRR o itle 1 wl+l
G .e. .a°G .F. . €.6 . .a=6.G . .e. .a°G,e,G . _a=G,1l 1 1
syt G LE. . I, e.G =G.G . .. .a°G,.e.G ., =G, ° =
T TeiTi4lT el d4le 1Tei+l” iTeitl i+1Y i iwitl® CiTG . La G .a G .a
i f1 o o
e h «© o« -
wnich proves e.a=Ze, _aoF € .
: P 1 i+l itle 1 wit] "
Q.ELD.



Lemma 1l: If f:a»a' is an arrow in A then it is the unique arrow

implied by the following diagram:

Fimqooia :._..___p—) ri+l°°§°°i+la —y
r. €uo . a
f 1+l witl

)

{

£ . ) G . _f A
Fimei § F1+l°ob°°3.+l . £

l v

\ ] 1

Fialep? =2 FipeCein® —p -0 ®

iItl7 witl
Fig.6
Procft: The above squares commute because F, eG . is a natural

I+le i+l

transformation: Fi G and there is a unique g:a~a'

© °°i_>'Fi+looGooi+1

to make the whole diagram commute. But clearly f does for:

0
.a
F. G .a €5 a
oo o0f smmm—E——
. G .f f
Joo o]

., G .a'" 7= aa'

oo ooi e.a'
i

iy -
commutes because sia is a natural transformation: FimGwi+IA

Q.E.D.

y

Some lemmas will be proved now to help showing that certain functors

are w-functors.

Lemma 12: Let A and B be categories and G:B>A be a co—projector,
G is an isomorphism iff its left-adjoint right-inverse F is

surjective on objects,

40



inverse

fore
[¢7]
e
+
s

If G is an isomorphism then I

and is surjective on objects.

be an object

o
vl

78]
p
T
[@)
@0
[
+rf
n
&
Lt
0]
Q
o+
1
7
[}
3
O
!
e
4}
0
t
n
®
e

is an cbject a in A such that bzFe=Gb=GFaza b=FGb

be en arrow in B, FGI:FGb-FGhb' is the unique

e T

APTOW o SGh-FGhb' such that Ga=GFGf=Gf and FGf=f,

a graph, C a categcry admitting colimits on G and

Tegory. FiD*C preserves G-colimits iff for any HiG»D

L]
w:FeHab is the colimiting cone

- - o “ ‘ -‘. L
with colimiting cone viH»a, if
from T'eH then the unique arrow #4:bsFa such that Fv=¢eoy is an

igomorpiiism.

Lf part: Suppose P preserves G-ecolimits.,

colimiting cone. ¢ is the unigue arrow between 1o
cones: it is an isomorphism.
if ¢ is an isomorphism and u a colimiting cone then

¢°u is also a colimiting cone.

y mma, combining Lemmas 12 and 13 and Theorem 3 will be useful

e TIgXT el

for proving that functors in Dom are w-functors,

D ke a category, M a functor: D+pom, L:w*D be a functor

s - 3 a - @ - -t )
rith colimit vilea (in D}, Mvi be the adjunction

;lM(L(i))’ Si):M(L(i))+Ma, and M(L(i»i+1)) be the adjunction

vrve€.)t ML(L))M(L(i+1)).
/st

RS L
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With the above notations, M is an w-functor iff for any object e in Ma

(Mz is a domain), e is the colimit vertex of:

KgHpe ey K H e meey Ko 5K, H. ey ..
K. eg oH, K., .og.oH,
1 e 1L e 1+l "1 i+l e

Fig. 7

Proof: By Lemma 13, Lemma 12 and the definition of K_on objects

during the proof of Theorem 3,

The colimits in Dom have the curious property of being inverse limits
following the G's and nearly direct limits following the F's. This

is the property referred to in the literature as "coincidence of direct
and inverse limits". To be totally precise A°° is an inverse limit in

Cat' by the forgetful functor For_, but is not quite a direct limit

R. E]

because ForL deoes not preserve colimits, nevertheless if ForI is
restricted to the sub-category of Cat' where the only functors are full,

faithful and have a continuous right adjoint then ForL preserves colimits.

A number of interesting Sub—catééories of Dom whose objects are partial
orders are closed under w—coli@its and themselves w-categories.

CPO: the category of -camplete partial orders is a full sub-category

of Dom, closed under w-colimits and so an w-category, so are CLAT the
category of complete lattices, CCP the category of w-chain continuous
posets, SIP the category of partial orders which are w~colimits of
finite partial orders (a small amount of work is needed here),

CPOBJ the category of complete partial orders admitting bounded joins.
These last results are proved, by a method which specializes ours when

the domains are partial orders, by Wand [16] and Plotkin [11].



e
Ve Ui

DBC the

Zuinceda

a2re essential but that order-snrichment can be dispensed
Cther wy=-sub=-categories of Dom are:
full sub-category whose objects are co-complete domains,
full sub-categery whose objects are domains admitting finite

co-products. ' CONLAT the full sub-category of continuous

lattices can be seen to be an w-category quite easily using Lemma 10.



Chapter 1V

Products and Sums

The usual constructions of products and sums of domains will be
presented and it will be shown that they are w-bi-functors in the

category Dom. Some interesting w-functors will be exhibited.

A word of caution could be helpful here: these are not products and

co-products in pom, Clearly Dom admits neither of them.

Product of domains

The category Cat' has products and a bi~functor w:Cat'xCat'sCat! may
be defined by: F:A»A', G:B+B' n(F,G):AxB+A"xB' such that

m(F,G) (a,b)=(Fa,Gb).

Lemmg 1: If A and B are domains, AxB (their product in Cat') is

a domain.

Proof: A product of skeletal categories is skeletal.

A product of initial categories is initial: (LA’LB) is an initial
object in AxB,
A product of w-categories is an y-category and the colimits are

computed componentwise.

One may also notice that the product of small domains is a small damain.

4y



Lemma 2: The projections pl:AXB+A and p2:AXB+B are w-functors.
Proof: The colimits in AxB are computed componentwise,
Lemma 3: The projections Py and p, are w-co-projectors,

Proof: The left-adjoint right-inverse of Py is: pI:A+AXB defined by:
pI(f):(%,ll') . [As a corocllary pz is an w-functor] .
B

Lemma 4: If Gl Bl+Al and G B2—>A2 are w-co-projectors then

n(G G ) Bl><B2+Al><A2 is an w-co-projector,

Proof: "(Gl’Gg) preserves w-colimits in each variable separately and
by Lemma 2 of Chapter II it is an w-functor. If Fl and F2 are the
left-adjoints right-inverses of Gl and G2 w(F F ): AlXA2—>Bl><B2 is

easily seen to be a left-adjoint right-inverse of n(Gl,Gz).

Definition 1: % : DomxDom+Dom is defined by:

for A and B domains x(A,B)=AxB
for Gl and G2 w-co-projectors x(Gl,G2)=w(Gl,G2).

The infix notation will often be preferred. Clearly x is not a product

in Dom : AxB is not a sub-category of A, but:

Lemma 5: For_ oxz=wo(For

R rsFOTR)

ForL °x=n°(ForL,ForL)
Proof: By Definition 1 and the proof of Lemma Y4,

The next theorem enables us to solve domain equations involving x,
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Theorem 1: x:DomxDom»Dom 1s an p-functor.

Proof: By Lemma 14 of Chapter III with D=pomxUom and M=x,
Let the following be a colimiting cone in DomxJom:

(F,.N.)

i1
. - . e} » °
(AysBy) e By 1585 ) ‘
(G.,P.)
i 1

(4_,B.)

Fig.2

Then all we have to prove is that, if e is an object in A xB_ it is
(2]

the colimit vertex of:

. %N, (G ,xP ,Je > N 3 : )]
(Flm 1w) (bwlx wi’® "(Fi+lwx’i+lm)(cwi+1xpmi+l’e
XN, .x8.)e (G . P . )
(Fi+lwxhl+lw)°(€1x61) ‘Gw1+lx wol+]l €
where e.:F.G.+L and 6.:N.P.>I are the co-units of the
17171 A, i1 1 B.
i+l . 1+l

adjunctions. The result is obvious because colimits in products are

computed componentwise, and by Lemma 10 of Chapter III.

Sums of Domains

Scott [13], defined the sum of two continuous lattices to be their
foreign union where the bottom and top elements are identified; it
does not seem possible to generalize this notion of a sum and a

separated sum Wwill be opted for.

46



Definition 2: A bi-functor +:Cat'xCat'+Cat' may be defined the

following way:

- if A and B are categories, A+B is their foreign union with a
new initial element (L) and the corresponding arrows

(ll, Loaly for aeA,beB) added

- if F:A~»A' and .G:B+B', then F+G:A+B->A'+B' preserves 1 and acts

as I on A and as G on B.
Remark: In A+B there is no arrow the co-domain of which is L.
Lemma 6: If A and B are domains, A+B is a domain.

Proof: The sum of two skeletal categories is skeletal.
A+B is always initial.
The sum of two w-categories is an w-category because the
w-sequences in A+B are in A or in B after a certain point,

except the trivial sequence of initial elements.

One may notice that the sum of small domeins is a small domain.

-

Lemma 7: The injections 11:A+A+B and i2:B+A+B are p-functors,

Proof: Obvious

Lemma 8: Let us define jl:A+B+A by:

jl(a)=a for aeA jl(f)zf for feA
]l(b)ILA for beB and jl(g)=ll for geB
A
(L, o)=L . -
1'7A+B” TA jl(La)—La for aeA

Z]l(J.b)=llA for beB

i, (1 =1 »
- l(1A+B> ‘LA

then jl is an w=functor which is a left-inverse to il.
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Proof: Check that the definition of ., »espects the composition of
ET——————r ‘L "

arrows (there are no arrows to LQFP)E
AL i)

jl is an w~functor because in A+B 21l saguen-ns 2 in A or B
after a certaln paint except the trivial sequence on L, ..
) = A4

j1°i7:1r by construction.
ieY .

Remark: (i,,j.) is not a pair of adjocint functors.
[emarx 1%91

Lemma S: If G_:B.»A. and G,:B.>A_ zre w-co-proieciors
e —————r— l i 1 2 2 2 -

G. 4G, :B_4B A +A_ is an w-co-proiector.
1T PETETE TR, pred ‘

Proof: G,+G_. is an w-functor because Gl and 62 are such and a

sequence in Bl+B2 is in Bl or in B2 after a certalin point

except the trivial sequence on 1 .

B,+B.

A Fe

If F.+A >»B. and F,:A B, are the left-adiocint right-inverses
S ; ) ‘

272 72 .
of G, and G, respectively then (G +G_)eo(F, +F . }=1 .
- B . r. e Sl B Z
Suppose f:a+(Gl+G2)b is an arrow in A1+A2, Iz aaél then bek,
and (G1+G2)b:Glb and there is a unique ?:Fla=(T1+Vq)3+b such

s

that Glfz(Gl+62)f:f. Similariy if aeBl

Ja=i and the result is obvious.

)

If a=zi, (Fl+:2

Theorem 2: +:DomxDom>rDom is an w-functor,

Proof: We shall use Lemma 14 of Chapter III, for D=lomx om znd Mos

Let the follewing be a coiimiting cone in pomxDeom:
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Then all we have to prove is that, if e is an object in A +B it is

the colimit vertex of:

Je

(F, N, ) (6_,+P_.)e S(F, N, ) (G

. . . .+P .
1+1e i+l ol+] i+l

(F +l°°)°(€i+6i) (G e

. N. . .
1+lw+ i oo1+1+P°°:L+l

where €, :F, G,>I and 6,:N_P,>I are the co-units of the
i 171 A, i ii "B.
i+l 1+1
corresponding adjunctions, The result is obvious because:
1) if eeA_ then the whole sequence is in A_ and by Lemma 10
of Chapter III e is its colimit in A and therefore in A+B_ .
2) if eeB_~ symmetrically

1 = P =
3) if e Ly.4p . then (Gwi+l+ °°i+l)e Ly 4B,
© o i+l 1+l

Je=1

(e;48;) (G i 1P 5400051

Je=1

and (Fi+ +N. oo) o(si+6i)°(Gwi+1+Pmi+l L

Joo 141 A +B

o

and the colimit vertex is L .

Q.E.D.
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Chapter V

Power domains

The preceding chapters should have convinced the reader that domains
which are w-categories are no more difficult to handle than complete
partial orders or complete lattices, the present chapter will hopefully
convince him that w-categories are the most natural power domains even
for partial orders. A power domain P(D) will be defined for every
domain D and the construction presented here is thus more general than

Plotkin's [11] which is defined only on SFP objects.

Given a domain D, what should an object of P(D) be? Naturally one thinks
of sets of objects of D, representing a set of possible values.
Unfortunately this is not quite satisfactory. Looking deeper into the
problem one may see that the objects of P(D) will represent sets of
possible values and morphisms ways by which sets of pussible values may
aprise from each other. Certaiﬁly the same value may arise in different
ways, possibly in an infinite number of different ways and it is
reasonable to suppose that the ogjects of P(D) should reflect this fact
in including possibly a number of copies of the same value, one for each

way of obtaining the value. That is why the objects of P(D) are the

multi-sets (or sets with repetitions) on D.

One may notice that the power of a small category will not be small and
that is the reason why we considered non-small domains. However a simple
technical trick could do if one wants only small domains, and this would

be a first, quite insignificant, step towards the definition of

effectively given domains.
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At this stage the purist would perhaps welcome a formal definition of
a multi-set, but, to avoid lengthening this already long paper and
choosing between equivalent ways of defining multi-sets, such a formal
definition will be left to the reader. The intuitive notion of a set

with repetitions being clear enough for the sequel.

In P(D) an arrow f:A+B should express the way the elements of B arise
from those of A and, the objects of D being repeated in B as many times
as necessary, it is reasonable to ask that f associates with each beB

a unique arrow of D:fb:a+b such that aeA.
A ={a_, al,‘az}

£ b 1

LEN
B = {b_, bl’ b2}
Example of an arrow in the power domain.

Fig. 1

An extremely important remark is that f:A>B does not imply that every
element of A is the domain of anﬁarrow in f, For example in the
preceding example aQEA is not the source of any arrow. The operational
interpretation of such a remark' is not totally clear: should computations
that may erase some of their Intermediate results or throw them off be
considered or should we accept that not all w-segquences represent
interesting computations? In [1] Robert Floyd argued in favour of
programming languages for non-determinism with & failure option on grounds
of usefulness and the semantic counter-part of this failure option crops
up here unexpectedly as a must. As will be seen further, the category

where arrows are restricted to those for which YaeA 3b Dom(fb)=a is not

an w-category. A bright point is that the arrows verifying the above
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condition have a universal characterization, they are the monics, and
so P(D) is an w-category where only the monics have a clear cperatiocnal

meaning, but this is another story.

Definition 1: Let D be a category, F(D) is the following category:

- A is an object of P(D) iff it is a multi-set on D
-~ f:A»B is an arrow of P(D) iff f associates with each element

b of B a unique arrow (of D) fb:a+b of domain a, an element of A,

the composition of arrows is defined by (gef)b={gb)o(F dom gi}.

- 1 :A»A 1s such that 1,a=1 .
A , a

A
Lemma 1: If D is a skeletal category, P(D) is skeletal,
Proof: Suppose f:A+B and g:B+A are such that gef=1, , fog:lB.

VbeB lb=(f°g)(b)=(fb)°(g dom fb ¥ (dom g dom fb)=b

YaeA la=(g°f)(a)=(ga)0(f dom ga)*(dom f dom gaza)

In particular ldom 5 (g dom fble(f dom g dom £fb)={g dom fHi={fb}

ldom ga (f dom ga)e(g dom f dom ga)=(f dom gals

Then g dom fb, fb, f dom gé and ga are all isomorphisms and D being
skeletal: dom fb=codomain fb=b and dom ga=a. It follows that A and
B are multi-sets contain{ng the same elements repeated the same

number of times: A=B,
femma 2: If D is an initial category, P(D) is an initial category.

Proof: Let L be the initial object of D. <Clearly {i} is initial in P(D).

Lemma 3: If D is an w-category, P(D) is an w-category.
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Proof: Suppose H:w>P(D) is a functor.

H: A 9 A

> . - . > > -
P —74, A —
1

More pictorially:
{....0.'} AO

H: {.o.-ooc}A

ML

: e0 oo e

Fig.2

By definition of the arrows in P(D), H may be considered as a set of
possibly infinite trees (there are as many trees as elements in Ao)

the nodes of which are labelled by objects of D and the edges by arrows
of D, In such a tree some branches are finite, others are infinite.
The colimit of H will be the multi~set containing the colimits of all
the infinite branches. Let A be the multi-set on D whose cardinality
is that of the infinite branche; of the forest H and which for each
infinite branch, contains a copy af its colimit in D, Let fiw:Ai—rA°° be
the arrow in P(D) which joins every element a of A_ to the element b
of Ai through which the infinite branch whose colimit is a passes, by

the arrow present in the colimiting cone.

» Dis ene } A
L\. s & } Ai+l
}ooA
Fig.3
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Clearly each element in A is the co-domain of exactly one arrow

of f. and f., =f, of,,
i 10  1+]Je 1

Let us prove that \):H—.>-A°° formed of the fim enjoys the universal

property. Suppose L:E>C is a cone.

Fig.u

o

Let us prove that there is a unique g,:A »C such that gi=gm<>f:.L .
Let ¢ be an element of C, Let h.,=g.c and b.=dom h, . h.:b.-»c,
i1 i i ii

where bi is an element of Ai' fi implies that

gizgi+l°
)=h

= = 3 o .
hy=gye=(g;, c)e(f; dom g, je)=hy qofiby .

The diagram of Fig. 5 commutes,’

Fig.5

Let o:B>a be the colimiting cone from B. fimazai:bi+a. There is a
unique arrow ¢c:a+c such that Vi ¢c°ai=hi. But B is an infinite
branch in H and by definition of A, @ is an element of A_, it is

then possible to define gw:Am+C by gwc=¢c.

- 3 = =¢.°0.=h.=g.c, and g of, =g. ,
(gWOfim)c (ng)o(fim dom ng) ¢C°(fima) ¢i oy hi g;¢s and g fl s

o0
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For unicity, just notice that 2°fiw=gi implies

hi:gicz(,Q,Ofim)c:(,q,c)o(fie° dom ZC) .

Let e=dom Lc, f. e

Fig.6
eeAm and as such is the colimit of an infinite branch in H.

m m . m.
Let E: eo_-_:_yel-__y vea ei._—i;)ei+l——)... be this branch.

Qofim=gi implies that the diagram of Fig.7 commutes.

f. e
b, ————3 e
i
h,=g.c \\\\N Lc
c
Fig.7

But f, eie,»e and b.=e, Viel and E=B. Then e=a and VYieN the diagram

of Fig., 8 commutes.

fig -
b, a
i
h. /e
i
c
Fig.8

This implies £c:¢c=gwc and 2=gao .
Q.E.D.
Theorem 1: If D is a domain, P(D) is a domain.

Procf: By Lemmas 1,2,3.
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Note that the colimit object A_is what could be guessed: the zets of
colimits following the infinite branches. Note also that if all +the
arrows fi in the sequence are Milner-like (for any aeAi there is at
least one arrow in fi of domain a) then the colimiting cone v contains
only such arrows (the~fim) but given a cone p:Hsc composed of such

arrows the unique g such that g ov=y.is not necessarily Milner-like,
© o]

An example of this type should clarify the ideas. Let D be the poset
consisting of the natural numbers and infinity ordered by the usual
relation (this is the domain considered in Chapter 1),

Let Ai={]|j<1} and fi:Ai+Ai+l be defined

by: for any jgi+l fj_j= i if j=i+1
j else
Pictorially:
{0} A,
{0,1} Al.
{0,1,2} A2 E

{0,1,2,.0091} A,

1
[0 I\
{O,l,2,...,i,ijl} Ai+

1

>
o °

Fig.9
The colimit object A _is the set of all colimits following the infinite
branches and A _=D. The colimiting cone is such that fico:Ai—>Aco
iif j2i

defined by dom fim J
j else
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{0,1,2,..o-ooi}

A

Am { ,l’ ,.'Q,ign.cgw}

Fig. 10

Let C be D'-—-D—{w}:{o’l’Q,;-o,i’oo-}

and g.%A,»C be dom g, J = iif 73
ot + j else

Clearly g g1+1 | . fi
B e~

17 _ {0,1,2,:?i,i+1}=Ai+1
®1 \ \ .‘ €it+1
c = {0,125, .13%%

Fig.l1l

The unique ¢:A_~C such that vi ¢°fiw:gi is defined by: dom ¢j=7j,

and =eA_ is not the domain of any arrow of ¢.
1,2,
1,2

Fig., 12

s O'O,ia-”s‘”}

s ,o-o,l,o-ouo}

This exemplifies why arrows which are not Milner-like have to be

introduced.
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As in Chapter IV for + and x, P will be made a functor Deom»Dom and
proved an w-functor, but before getting to that some functors related
with P will be proved to be w-functors and this should help clarify

our construction,

Definition 2: The singleton functor {}:D»P(D)

is defined by: {}d={d} and {}ff = {f}f
ar {4

Lemma 4: If D is a category then the singleton functor {}:D+P(D)

is an w-functor.
The proof follows immediately from that of Lemma 3.

Definition 3: The union functor U:P(D)xP(D)+P(D) is defined

by Y(A,B)=A®B foreign union and

i '
f:A>A" g:B+B' U(f,g)(c)= {fc if ceA

¢ 1if ceB!

Remark 1: U is commutative and associative but is not idempotent:
AUA is not equal to A, it is a multi-set containing two copies
of A, This certainly is slightly annoying but does not seem

to be a serious drawback,

Remark 2: U has a universal characterization: it is the product
in P(D).

where il and i2 are composed

only of identity arrows.

Fig, 13

P(D) then has arbitrary small products even when D does not.
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Lemma 5: U is an g-~functor.
Proof: Obvious from the proof of Lemma 3.

Definition 4: The "big union" functor W:P(P(D))+»P(D) is defined by:

YA- @ a the foreign union of the elements of A,
aehA
A YA
U‘L f = L Uf where  (Yf)c=fb for cebeB
B =):]

Lemma 6: The "big union" functor is an wrfunctor.
Proof: Obvious from the proof of Lemma 3.

Let'us now show how domain equations involving P may be solved.

P defines a functor: Cat'-Cat!

Definition 5: P:Cat'+Cat' is defined by:

- P(C) is the category defined in Definition 1

o P(C) . . ,.
- P l F = F where F(A)={F(a)!a6A}
c' P(C)
~[A F(A) . , -
and F(l)? = ) Ff defined by (Ff)(Fa')=F(fa') for a'eA',
Al F(A')

Lemma 7: If G:B+A is an w~functor then G:P(B)-»P(A) is an w-functor.

Proof: By the proof of Lemma 3 the colimits in power-domains are

"elementwise",
AN ~ a
Lemma 8: If G:C»B and G':B>A then G'oG=G'oQG,

Proof: Obvious,
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Lemma 9: Let F:A>B, G:B+A, If (F,G) is a pair of adjoint functors,

then (F,G) is a pair of adjoint functors.
Proof: P(A)(M,GN)YP(B)(FM,N)

Lemma 10: If G:B»A is an w-co-reflector then G:P(B)+P(A) is an
w-co-reflector,

Proof: G is an w-functor by Lemma 7. Let I be the left-adjoint
‘AA L) -~
of G,  GoF=GeF=1,6=1 by Lemma 8, Let f:C>G(D) be an arrow
A TP(A)
in P(A). Let ¢ be the isomorphism ¢:A(a,Gb)+>EB(Fa,b) then ¢(f)
is clearly the unique arrow T:F(c)»D in P(B) such that Gf=f,

N
By Theorem 2 of Chapter III G is an w-co-projector.

Theorem 2: P|Dom:Dom+Dom is an w-functor.

Proof: By Theorem 1 and Lemma 10 ﬁDom is a functor of the type:
Dom»pom, To show that it is an w-~functor we shall use Lemma 14
of Chapter III, with D=Dom and MzP[Dom' We shall abbreviate

P .
Dom to P

Suppose that the following is a colimiting cone in Dom:
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and let gi;FiGi;I be the co-unit of the adjunction. Then all

Ai+l

we have to prove is that, if e is an object in P(Am) it is the colimit

vertex of:

~

» -~ »N
N
cesesee F. G .e =z y — > F

oo ol
r. og.,oG .
( "1+]lew € 1 witl

*e 0000

i+looGooi+le

A A .
But e is a multi-set on A :é={a|aee} F. G .ex{F. G .alaee};
L] oo o] loo o1

A - a~ A

Fi+lewi+le:{Fi+lewi+la‘aee} and (Fi+lw°€i°Gmi+l)e is the arrow h in P(Am)
for which h(Fi+lemi+la)=(Fi+lw°€i°Gmi+l)a' Pictorially:

{F;,8u12 » Filugdpseeees }

h (F. og,.oG

i+le 1 °°i+l)a

{F l,......}

i+lmei+la 2 Pi+l°°Gmi+la
Fig., 15

The above sequence in A_ is a sequence of the form:

|
|

»

o ®

[
v v \V )

\""\/—\_/ ' W
where all the multi-sets have the same cardinality and the arrows are
parallel, In Theorem 1 we proved that the colimit of such a sequence

is the multi-set composed of the colimits following the infinite

branches: e.

Q.E.D.

61



Chapter VI

Functor domains

Domains of functors will be defined, many related functors will
be proved to be w-functors and the construction of functor domain will

be proved to be an w+functor in the category Dom.

Definition 1: Given two categories A and B, their functor category [A+R]

is the category whose objects are the w-functors: A->B, and whose

arrows are the natural transformations.

Notice that only w-functors are taken as objects and that the composition
of natural transformations is the "vertical' composition, denoted "."
The "horizontal" composition is denoted ¢, or by juxtaposition when the

meaning is clear. [A+B] is a full sub-category of BA.
Lemma 1l: If B is initial then [A+B] is initial.

Proof: The constant functor which sends every arrow in A to the identity
l.L on the initial object of B is obhviously an w-functor initial in

[A»B] (it is also initial in BA).
Lemma 2: If B is an m—categorj'then [(A-B] is an w-category.

A . . . . .
Prcof: B is an w-category where colimits are computed pointwise
(see MacLane [7] p.111-112) and the colimit of a sequence of
w-functors is an w-functor, To see that suppose that the F.'s

are w-functors and that

62




£,
and a-—————) al-—9

Fig.2

ey e TS B

NV

e es . A .
are colimiting cones, in B and A respectively.

5 . .
b.=F.a. , o%:r.a. s g%=F.f. then
J 173 J 173 J 173
° 1 2
bo ) g bo 1 > bo
[} 0'0 1 Oo
g, .l g,
b5 bt ——b°
17 o 1 1 1°
o g
1 9
. -
Yo 95 4
b ——yb;
1
&5 00 g;
bo i+l bl
i+l i+l
. |
Fig,

is a two-dimensional infinite diagram,

by rows or by columns.
H: Fwao______)Fmal ——3
F £
@ O
By columns it is:

Foaoo —_—— Fla
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Then if we let

Its colimit may be taken either

By rows its colimit is that of:

F R _grf'mal{L —_—



This implies that F a is the colimit of H. As for the colimiting
o o
cone

F a

F £ F £,
o © oo 1
He.
Fcoaco

My is the unique arrow making the following diagram commute

. LR F.‘,c-————-—-» L. AL i, v 8 S
1 ~ jal B Fj+l 3 7
T a. : : T.4a,
o1 ' j i
F f r. a,
o om Joo 1
F a
o i
v '
F a T T, a ofF ,f,
0 o 1 Jeo @ ] o
}
Toooaco v
F a
o oo
Fig. 4
u.=fF f,

because 1., 1is a natural transformation. 7This proves that
1 & Jloo Jeo :
F_ is an w-functor,

Lemma 3: If A and B are large categories then [A+B] is a large category.

Proof: Obvious,

Theorem 1: If A and B are domains then a skeleton of [A+B] is a dowain.

The proof is trivial. (We admitted that a skeleton of a large category
is large).
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Even when A and B are skeletal, [A>B] is not because there could be
naturally equivalent functors which are not identical. A skeleton
of [A+B] will be denoted SK{A+B]. Taking SK[A+B] as a functor space
just means that we consider w-functors only up to natural equivalence
and this is reasonable for all semantic purposes. To be precise we
shall suppose that Sk£A+B] comes equipped with a specific equivalence
of categories [A+»BI*SK[A+B]l: <T,Kj;n,1> where K is the inclusion. This

way any functor to [A+B] may be interpreted as a functor to SK[A+B].

The following results will be expressed in terms of whole functor spaces
rather than skeletons; their implications in terms of domains are

obvious.
Lemma k: The composition map °:[A+BIx[B+C]+[A+C] is an w-functor.
In other words o is an object in[ [A+BIx[B+Cl>{A>C]].

Proof: By Lemma 2 of Chapterlll it is enough to prove that it is
separately an w-functor. Suppose u:H;F is a colimiting cone
in [A»B] and G is an objec"‘f: in [B>C] then Gu:GH>GF is a colimiting
cone because G is an w-functor and in [A-+B] the colimits are
pointwise. Suppose v:K:é\is a colimiting cone in [B+{] and F is

an object in [A+C] then VF:KF>GF is a colimiting cone.
Lemma 5: The evaluation map, eval:Ax[A»BJ]+B is an yp-functor.

Proof: By Lemma 2 of Chapter II it is enough to prove that it is

an w-functor separately on both arguments.

If £ is an object of [A»B] then eval.=f which is an w-functor.

£
If a is an object in A then evala(f)=f(a) which preserves w-colimits

because w~colimits in [A+B] are pointwise.
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Lemma 6: The abstraction map, lambda:[AxB»CI+[A+[B>C]] is an w-functor,
Proof: The colimits in the functor spaces are pointwise,

Lemma 7: The initial fixpoint map, infix:[A>AJ1+A is an w-functor

(see Def.9 in Chapter 1I).

Proof: Let the following be a colimiting cone in [A~A].
£s > %) 7o 8 75 LA
T ’ T.
o 1
5w
f
(o]
_fj, £ 2 2 2
— and t.=T,oT,:I,>f"
ALTi A& Ts A i i itTi Ti+l
.%__) —_—
i+l i+l

. i L ed, el °_ °y
More ,generally let for j2zl Ti-ri°..°°r..fi+fi+l and let fi lA and TRy
j times

Let us prove that the following diagram commutes for i30 320

fil ‘—‘3——7 fq 1

31 i+l
i
f?; . fq 1
i fiL ‘1+l fi+ll
j+l R j+l .
fi 1 j+l fi+ll
s L
i
Fig. 5
r?+l=1?°1. and T?+ll=T?f. l°f?r.1
1 i 1 i 17i+l 11

o =3 3 o
and T3 lofilfil Tifi+ll°fi(%il lfi.l)

-3 5|
=tifiptofity,
i+l

3

A T?l because T: is a natural transformation.
i+l fi+ll

He Ul

=f
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By using methods already used in the proof of Lemma 1 one can show that:
3 j S £
Fr St ey gty -
L T34
) 1
hE)
£)
(-]
is a colimiting cone and that the colimit of the two-dimensional
infinite diagram obtained from Diag. 1 by taking 120, j20 is (by rows)

infix £ and (by columns)’ the colimit of:

infix f ————3p "infix fl‘;_g + +.infix fi--——~————9 infix f'+l —— e
infix~T infix "ri +

Q.E.D.

We may now get to the final point of this work and the reason why the
definition of morphisms in Dom has to involve pairs of functors.
+ will be defined as a bi-functor in Dom and it will be proved to be

an w-functor.

Before we proceed to the definition of - as a bi-functor in Dom some
notations. A,A',B,B' are domains. G:B+*A and G':B'»A' are w-co-projectors
whose respective adjunctians are <F,G;1A,e> and <F',GJ;1A,,e'>.

T varies over the arrows of SK[B+B'l, o over arrows of SK[A+A']
K:SKIB+B'1+[B>B'] is the injection and the corresponding adjoint
equivalence: [B+B']»>SK[B-+B'] is <T,K;n,1>. Similarly I:SK[A-A']>[A-+A"]

is the injection and the adjoint equivalence: [A-+A']»SK[A+A'] is:

<S,L,36,1>,

Definition 2: +:DomxDom>Dom is defined by:

+(A,AY) 1is Skl[A»A']

+(G,6") is At.S(G'eKroF).
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Let us check the correctness of the definition. By Theorem 1 SK[A+A']
is a domain. If t is an arrow in SK[B+B'] Kt is an arrow in [B»B'],

a natural transformation in [B+B'].

F G?
N » ——rmee
A ¥ F B ¢ Kr _B' 4V @ JAT
'4 7 >

F : G

G' and F being w-functors. G'eoKroF is an arrow in [A+A'] and S(G'oKroF)
is an arrow in SK[A»A']l, The following lemma will ensure correctness

for the definition.,

" ‘ . ‘
Lemma 8: G:At.S(G'oKroF) is a w-co-projector whose left-adjoint

right-inverse is F:A0,T(F'eLo°G).

Proof: We shall use Theorem 2 of Chapter III. G is an w-functor by
Lemma 3 and because K and S are w-functors,
Suppose h is an object of SK[A-»A']
GFH=S (6" oK(T(F" oLhoG))oF )’
ég‘h;G'OFOhOGOth |
an
SK[A+A'] is skeletal and GFh=h
Suppose now that 0:h>S(G'eKRoF) is an arrow in SK[A»A'Il;
£ is an object in SK[B»B'].
We have to show that there is a unique ¢:T(F'oLhoG)>% in SK[B+B']

such that o=S(G'oKg°F).

Unicity: Suppose El and 52 both satisfy the above cdonditicns.
Then 0=S(G' Ko, °F)=S(G'eKg,°F) but G'oKg, oF and G'eKg,°F are natural
transformations between the same functors and S is faithful (see
MacLane [7] Theorem 1 p.91) and G'oxEloF=G'oK52oF. (1)
Let b be an object in B,
Ko,b is an arrow in B': [T(F'oLheG)Ib>b but T(F'oLhoG)zF'oLheG and

[T(F'oLhoG)]bVv(F'oLhoG)b and B' being skeletal: Kglb:(F’oLhOG)b+£bg

Similarly for E .
Y 2 68
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(1) implies, for any object a in A: G*(Kal(Pa))=G'(K52(Fa))=a.
(F',G') being a pair of adjoint functors there is a unique

a:(F'oLhoG)(Fa)»tFa such that G'a=a, then KEl(Fa)=KEQ(Pa) and

Ko °P=K82°F. Kal is a natural transformation in [B+B'] and the

following diagram commutes:

(F'oLhoG)b & (F'oLheG) (FGb)

' to =

(F LhOG)eb L(F'eLhoG)b
_ (Lemma 2, Chapter III) _
Ko,b : (Ko, )(FGD)
v
b & LFGb
lsb
Fig, 6

and similarly for 82. But (Kal)(FGb)=(KBl°F)(Gb):(K52°F)(Gb) and Kalb=K52b.

This is true for all b and K51=K82 which implies 51=52 because K is the

injection.

Existence: As a matter of convenience let:
p=G'oKT(F'oLheG)oF; p is an object in [A»A']
Let a:p;G'OKQOF be an arrow in [A+A'Jwhich will he precised later.
G B ‘ F!
c——
B, G A |« IV B!

5

G'oKLoF rt

FlogoG : F'opoG + F'oG'oKLoFoG

FoG K8 F' oG
b ? 7
B le .B YKo  'B'}e' B
L4 L4 L4
I K& I,

gloKRog : F'oG'oKRoFoG > Kp
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Let 0:T(e'oKog) . T(F'oqoG) . E:T(F'OPOG);TK2=2 is an arrow in SK[B-+B']
But KT(F'opoG)=F'oG'eF'oLhoGoFeG=F'oLhoG and SK[B+B'] being skeletal

T(F'epeG)=T(F'eLhoG). o:T(F'oLhoG)>% as wished.

KE:KT(E‘oKAane) R K'I‘(PIOGOG)=nK£.(€'OK2,°8) . (F'O(IOG) . n;:'l‘opoG
G'°K5°F=(G'°HK2°F) .'(G'OE'OKzogoF) . (B'eF'ogoBoF) . (G'OQ;EOPOG°F)
=(G'on,, oF) . «a (G'°n-l °F)
K2 ) F'opeG

Because G'ce'=G' and e°F=F by lemma 7 Chapter III.

n:I[B+B']+KT 1s a natural equivalence and Mo and n are natural

Flopel

-1

F,°p°G°F) are then natural

equivalences in [B+B'] , (G'en o°F) and (G'en

K
equivalences in [A+A'],

(G'ony,oF) : G' oKgoF>Q' oK oF

1 : G'oKT(F'opoG)oF=G oKT(F'oLhoG)=pp

(G' onP' oPOGoF) *

Until now no assumption was made on o. Let us define a:

-1 1

'opoCoF)—l for some B:p>G'oKLoF ,

a=(G'°nK2°F) . B . (G'°n;

We have G'oKgoF=g.

1

g:I SLS is a natural equivalence and LS(G'OKEOF)=LSB=6G .B.e;

[A"A'] ToKQoF

ep:LSp;p , 0 : G'oKLoF>LS(G'oKgeF)

G'oKLoF
But LSp=G'oF'oLhoGoF=Lh and Sp=h. 0, p>Lh
1

i : B=6 . 'oKgoF)= i
If we define B by: B eG'oKzoF Lc.ep we get LS(G'eKooF)=Lo which

implies S(G'oKgoF)=a,

Q.E.D.

Theorem 2: -—>:DomxDom>Dom is an w-functor.
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Proof: We shall use Lemma 14 of Chapter III, with D=Domxpom and M=-,

Let the following be a colimiting cone in DomxDom:

(Pi,Ni)
—
- . . . . (Ai,Bi) F_____——- (Ai+l’Bi+l) - .
(G, .P.)
i*i
(F, ,N. )
10% 1o
(G .,P .)
wi? i
(A_,B)
and let e,:F,G,>I and §,:N,P,5I be the corresponding
17171 A, 171i°1 "B,
i+l , i+l

co-units of adjunctions. It is then enough to prove that if e

is an object in [Am+Bm] it is the colimit vertex of:

.. . P . . G , e N _ oP . F, .
leo mloeoFlmo @] Nl+lw° coJ.+l°.eo 1+lw°Gm1+l
a.
i
- = 1 . T - .
with a. Ni+lm°€ ioni+l°e°Fi+1w°€i°Gmi+l he reader should

check that a, is the arrow appearing in the text of Lemma li4 and
that skeletons and adjoint equivalences may be freely ignored.
(The colimit in the skeleton will be the object isomorphic to the

colimit in [A »B_l. But by Lemma 1l of Chapter III:

'
.

. . > 5
PinGwi v4 F
F

L] *

14100 G 41

. og,oG .
i+le T1° eitl

has, as colimit vertex in [Am+Am] the identity I[Aw*Am] and:

NiwFoi 7 Niiiefeisl IR
]
Ni410°8 1 Foie

has I as colimit. By Lemma 3 the composition o is an

(B »B ]
0 ™
w-functor and the above sequence has colimit: I[Bw+BmJoeoI[Am+Am]=e.

Q.E.D.
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Chapter VII

Remarks and Conclusion

Small or large categories

To avoid unnecessary technicalities domains have been defined
to be large categoriés; it is not difficult to restrict the constructions
to small categories, The only non-trivial point is the functor P.
There the simplest way of cutting down the number of objects is to
limit P(D) to those multi-sets of cardinality less or equal to the
continuum:C. Clearly the colimit of a sequence of such sets has still

N
cardinality<C, the corresponding tree having at most C °zC branches.

Finite domains

Unfortunately there does not seem to be a way of making the power of
a finite domain finite and this keeps us from generalizing Plotkin's
STP objects, those domains which are colimits of sequences of Finite

domains.

Further research

It would he interesting to know how colimits in Dom may be used to
construct new models for the A-calculus or other structures verifying
interesting equations. The other direction of research which is
obviously open is to develop a theory of computation on these generalized
domains defining effectively given domains and computable objects.
Towards that goal it would be useful to have a good notion of a basis

for a domain and also to Study the structure of Dom itself. The

relation between the functor P in Dom and powers in topoi is certainly
worth investigating. Further restrictions on domains (categorical

properties preserved by colimits, +,%,> and P) or on arrows should

72



probably be introduced and the definition of P perhaps modified.
A different area of study could be to look for rules to prove

correctness of non-deterministic programs.

Conclusion

Many questions are left unanswered but the author hopes he has shown
that a natural and precise semantics for non-deterministic programs
is possible and that the.notion of continuity which is essential in
mathematical semantics and theory of computation should be defined

and studied categorically and not topologically.
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