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ABSTRACT

A pnecise mea:ring is given to generai necuns-ve clerin;tions

of functionals of anbitr:arily high type, incluciing non-<ieterministic

definitions. Domain eguations involving products, sums, powers and

functo:: domains are soived.

The use of categor:ies with rrl-colimits as semantic domains is

invssllgsted and it is shown that such categonies pnovide a genenal

constnuction fo:: powerldomains and that no such construction can be

obtainec wi-th partial orciers.

Initiat fixpoints of continuous fr.rrctors on such categories are

defined and studied. They provide a meaning fon recursive definitions

of the type x:=f(x).

The category of domains is defined and shown to possess i,i-col-imits.

r-':+"-r €'i-'^^"-is of continuous functors on the category of domainsrtta Lrqa f r^i/vrll L

provide the solution to domain equations.

The product, sum, power and functor domain of <iomains are defiaed and

studied. Productr sum, power and functor domain are proved to be

continuous functors in the categol:y of domains.
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INTRODUCTION

This work defines the mathematical semantics oi rerunsive

non-deter:ministic pr?ograms and provides the techniques necessary

for" handling the semantics of pnog:ramming languages exhibiting

non-deten'ninistic featunes such as pa::allelism.

It should al-so be a finst step towards a genenal theony of

computability including non-detenminism and fr:nctional-s of

anbitrarily high type'gener.alizing Kleeners attempt [6] "

The second step in that direction coul-d be the defi-nition of a

suitable categor5r of effectively given <iomains and the third the

elabonation of a theony of computable objects.

The cent::al idea in this wo::k is that when considering non-deterministic

programs the notions of complete partial order, l-east fixpoints of

eontinuous functions and domain equations nave to be Ecneraj-izcC"

It irs not sufficient any more, when consic.ening the process of

successive approxirnations converging to the final value, to look at

the sequence of objects but it is also necessary to consider the way

in which each appnoximation is nelated to the preeeding one, thus

neplacing a partial- order by'a catego::y and a least upper bound by

a colimit.

If f is a reeursively defined non-detenministic firnction, f(x) will

be the colimit of a sequence of appnoximations"

Typicatly these appr"oximations will give pantial information of the

type: rrThene is a possible branch of the computation which gives a

::esult appnoximated by yo and the:re is anothe:: bnanch giving a r^esult

approximateci by yt r... and those are the only possiSi-e branches.rf



Given two successive such appnoximations it is vital inCeed, if one

wants a cf.ear pictune of f(x), to know how to ::elate the diffe:rent

branches talked about in the two successive apprroximations.

If one is not intenested in non-deterministic computable fr:nctions

an adequate theory, of computability can be desc::ibed using complete

partial o:rdens and so, one couLd question the interest of using

categories as domains. But multi-valued functions are a very natural-

object fo:. a theony of. computation, quite independently of non-determinisn,

as was pointed out by Ma:rtin Hyland [4J. The use of categories as

domains, by the gener:ality it introduces, should also have a beneficial

heuristic effect in the choice of definitions.

This

been

wo::k is

made to

by no means self-contdr:i,ned but a consistent effor"t has

follow the notation and tenminologf of Mac Lane [7].

Pnevious re.l-ated wonk

Two p::evious attem;lts to define a mathematical semantics for

non-determinism have been rnade: the first, by R. Milner [10], uses the

notion of an onacl-e which still has an oper"ationar fravour, and the

second by G" Plotkin []-fJ w4ich defines a::est::icted category of

gomplete pantial orde::s, those which ar:e colimits of finite ones

(calIed SFP objects) and defines the power" of such objects to be certain

c.p.ors (themselves SFP objects). This last attempt gives the best results

that may be obtained in the fr"amework of pa::tial orde:rs and, though bold

arrd elegant, is quite difficult to foll"ow, only pantially motivated anci

does not give a semantics as precise as should be desir"ed because many

diffenent sets of possible values a::e identified (see next chapter).



M. Smyth [15] genenalized Pfotkin?s construction to algebnaic domains

and noticed that a quasi-o::de:: coarser than Piotkinfs coul-d be defined

whieh would make the whofe treatment much simpler but also the semantics

less pnecise and so, less interesting.
The p::esent powen-domain construction is a categor"ical vension of

Smythts proposal whj-ch keeps the conceptual and technical simplieity

of Smyth but nemedy the impnecision in the semantics and gives a fully

precise semantics in which no two different sets are identified.

The idea of using categories instead of par^tial or.ders was pnobably

fir^st advocated by H. Egfi.

On why it is imper"ative to sol-ve domain equations, see Pfotkin [i1]

on Smyth [15].

The categonical- appncach to the solution of <iomain equations (foz'

c.p.o.ts) appea::s in one sentence of Scott [lS] ancl has been developed

by Reynolas [f2].

Plag

Chapter: 1 r.eviews fixpoint semantics and the problems involved

in domain equations and non-dete::ministic definitions. it sets the

case fon using categonies as domains.

Chapter" 2 necalls some definitions about categories and proves the

existence of an initial- fixpoint for" every continuous f"'.rnctor.

Chapter 3 defines the category of domains: Dom in whictr domain equations

ar"e solved an<i proves the existence of colimits in Dom. The colimits

in Dom may be seen as both dinect and inve::se limits.

Chapter 4 defines the usual sum and product of domains and proves thein

continuity.

Chapter 5 defines the power of a domain and pnoves continuity for the

power runctor.



Chapten 6 defines the functor space of two domains and proves

continuity for the annow functor.

Chapter 7 is a conclusion.



Chapten I

Fixpoint semantics, domain equations and non-dete::ininism.

I. t Fixgo_int segagtics

The pnoblem to which fi>point gemantics is an answer is the following:

how can we make senseo in a consistent and meaningful way, of general

necunsive equations of the type x=f(x)? Typicaj-iy the preceding

eguation may be thought of as def:-ning a function when f is a functional,

but more involved cases should. be considened.

1) When f is a non-deterministic functional the equation should define

a non-deterministie function.

2) In most pr.ogr"amming languages, proced',:res which take procedunes as

parametens may be defined (even necur:sively) and then the type of

the frinctj-on defined j"s not clear any mone and the distirction

between function and functional fades out. To g:..re matlrernal-j-c,:l-l-

sense to such a phenomenon it is necessa::y to find a semantie

domain (meanings for prog::ains ) D which satisfies the equation

D=[D+D] (= means isomor"phlc) wher.e tD-+Dl shoui-d be a substantiai

subsei: of DD, containing at least the "computablert furrctions.

If iD+Dl is w:ritten *(Drb) ia becomes obvious that the above

equation is also of the forrn x=f(x).

The message of fixpoint semantics is that those equations should be

solved and not considered as openational definitions of a process"

The advantage of such a solution is two-fo1d (the second reason given

hene has nor yet neceived the conside::ation it desenves).

1) Such a solution would pr"ovide a'cr"iter:ion against which to judge

the con::ectness of implementations.



2) Fixpoint semantics allows the :recu::sive definitions to be considered

as equations and this is the only wa1r towards p::oofs of correctness

in somplex situations r particulaniy with non-.cets:ministic pnograms

which tend to be mone complex than deterministic ones.

The main tool, and.until [fS] tile

type mentioned above was Tar"skits

vaniations on the same theme. The

semantics will be napidlv neviewed

only one, to solve eeuations of the

least fixpoint theorem and some .

successes of this least-fixpoint

now.

I.2 _ Leas-L-fixpoint semantics

The message hene is: all intenesting equations of the t5pe x:f(x) ane

such that x vanies oven an o-complete pantiar orden D wirich has a

least eilement, f is an o-continuous endo-firnction D+D, and the

interesting solution is the ]east-fi>cpoint of f.

Definilion t : A pantial- or:de:: D is ur-complete iff eveny denumerable

directed SgD has a least upper bor:rid (i.u.b. )

Definition 2 : Let A and B be pa::tial or"dens, f:A+B is ul-continuous

iff f presenves all existing l.u.b.rs of denumerable

directed subsets.

The theoren that asse::ts the existence of a least fi>rpoint under the

conditions above is a vaniation on Tanskits fixpoint theorem. There

the assumption on D is stnongen but the assumption on f weaken (in

fact this vaniation is easier to pnove than Tarskifs or"iginal result

anci is quite tr"ivial).

Some peopie have prefe::::ed to use Ta::skits result about monotone

functions but the use of monotone non-o-continuous functions d.oes not

seem convineing to the author.



Least-fixpoint semantics have pnoved to be ext::emeiy successfuf in

defining the meaning of a l-arge ciass of::ecu:rsive programs, essentially

due to the fact that ur-complete partiat or<ier:s are prleber"-;ed. by mary

constructions and that nnny useful functions al?e o-eontinuous.

We shal-l r"ecall (r^rith the notation of [13]).

Theonem 1 : If A and B a::e o-complete partial orders with least

el-ements then so ar"e AxBr A+B and [A+B].

[a+e] is the set of all ro-continuous functions: A+B wi.th the pointwise

ondering.

Theonem 2 : f:AxB+C is ur-continuous iff it is separately ol-continuous

in each variablen and [4x3+g]:[A+[B+CiJ.

Theorem 3 : The eval-uation map : eval : Ax[A+B]-+B is ul-continuous.

The abst::action map : larrbda : [AxB+C]+[A+[B+C]_] is

o-continuous.

The least-fi>qpoint map : gfix : [A-+A]+A is u:-continuous.

The composition of two o-continuous fulcticns is trr-continuous.

The composition map : o : [A+B]x[B+C]+[A+C] is ul-continuous.

The pnojection maps r pl t AxB+A and p, : AxB-+B ane

o-continuous.

Constant functions are o-continuous.

Thene are two dark spots left in this nosy pictrlre: non-detenministic

pnograms and domain equations.

I. 3 9om€n_equations

The necessity of solving domain equations was e>piained above in

nelation with the eguation D=[D-]DI which is a preiiminar.y to any

semarrtics fo:: untyped pnocedur.es but other similar examples are found.

10



In Ie] Plotkin shows that, when dealing with panallel processesn the

prognams should be given as meanings resumptions, elements of a

d.omain R which satisfies R=[S+p[S+(SxP.)]l wher,e S j.s the oornain of

final values and P is the powe::-domain constructor.

The fir"st fai.lure of fi><point semantics is that such inter:esting

equations cannot b'e solved by least-fixpoint methods for the obvious

reason that no reasonable pantial orden can be defined on domains.

What would it mean fon a domain to be less than another one?

Fo:: the first time, in, [fs]o Scott solved the equation D=[]>Dl and

his method was genenalized to other: equations involved: +r x and +

(witir the exception of P) by Reynolds tl2l.

The method used thene is categonical: the class of domains is category

and if the arrows ar€ car:efully sel-ected (they have to be pairs of

continuous pnojections) th€ category ray be proved to have di:rected

coi-imits and +r x and + may be seen to be continuous functor:s.

Domain equations may then be solved by initial-fixpoint nethods in

categonies which genenalize the least-fixpoint theorem.

I.4 _ [on-.delerminis_tig pr:o4lams_ and pgwgr-domains

The neat way to fixpoint semantic-s for non-detenministic pnograms is

the definition of a powen-constnucto:: P which acts on domains to give

a domain neasonab\r close to what could be expected fon a power-set.

Non-deterrninistic continuous functions fnom A to B are then elements

gn [6+p(B )i .

'rjnfor"tunately the pnoblems ane

power-domain of an o-complete

partial order.

numerous when one fi:ies to define the

pa::tia1 order to be an o-cornplete

11



Let us fir,st list two conditions that should be fulfilled bv P to be

semantieally acceptabf e.

l-) The union mp U: ;iP(tr)xp(6)+P(A) is u*continuous.

2) The singleton map : {} : A+P(A) is irr-continuous.

The neason why these, conditions are impe::ative is that the rule of the

game is that al-l semantically meaningful functions should be ul-continuous

and irnion will be used to translate the non-deterministic or and the

singleton map to t:ranslate deter:ministic fi:nctions.

The pnoblem of finding an acceptable constructor P h.s been solved

(independentl-y) by Milner and Egli fo:: a very special case: for flat

domains (those domains whene x*y and xspx=rrr is the reast erement).

This solution is too r:estricted to be of :reaI interest beeause even

if A and B ar"e flat [A+B] and P(A) ane not flat any more and the

constructions cannot be itenated. Plotkin [11] has a more useful

const:ruction which, though not neaIly gener:alo is generat enorrgh for

iteration of constructions to be possible. The au.thor^ thinks that his

construction should be pnefe::r"ed to Plotkinrs on thnee counts.

1) It is mathematicallJr simplen (much simpler).

2) It is fuJ-Iy general: it gives a power domain to any trr-complete-poset

wher"eas Plotkin defines poWen-domains only for: afgebr.aic countably

based posets.

3) it p::eser"ves the identity of eveny subset of possible vaiues wheneas

Plotkin defines the elements of his powen-domain to be only

equivalence classes of subsets and so identifies many differ"ent

srrbsets.

An exampie of 1i1s problems ar:ising when one tries to sol-ve equations on

non-flat domains will be given now. It shows quite concrusively that

no satisf5ring pa::tial onden may be defined on the powen-set of a domain.

L2



Let E be the domain consisting of an infinite countable ascending chain

with a top element. E is a non-flat continuous iattice (see I-ig.I)

6

.2

.1

.0=r

r !6.

isj iff i5j

ig-
6Eo

Let s: E+E be defined by : s(n):n11 and s(o)=o.

s is a continuous ftrnction totally acceptable semantically.

Let now S_ and S^ be the two fol-lowing :recr.:rsive definitions:
tz

Sf : x::=s(x)

S^ : x::=s(x) or O

S- and S^ mav be considened as necul3sive definitions of constant
L2

firnctions. Any neasonable semeiptics shouLd associate with S., an

element of E and with S, a subset of E.

As far: as Sa is concerned it ls a deterministic definition and thene

is no question about its meaning if we stick to a fixpoint-semantics,

there is a unique fixpoint : * . Operationally we could say that S.',

computes the l-.u.b. of the sequence : oss(o)cs(s(o) )=... "t(o)". ..

which is @ .

For S, things a::e not so simple. The semantic intenpretation of g

should be union and so a fixpoint-semantics should pnovide as a-meaning

for S, an AgE such that A={o}Us(A).



At

1)

Cleanly ther:e are two such sets : E and Eo:E-{e}.

Which one of them should be chosen?

If the semantics has to have any operational- relevanse at ':;1" tl:ie set

defined ly SZ should contain the singleton defined by S. because S, is

nicher than S, in possibie computations. The only acceptable meaning

fn- Q iq than Ervl' sA !e

ff n i" to be in some sense the least-fixpoint of S, then we must have

EcE .-o
But clea::Iy in any reasonable orden (in pa::ticular in Milner-Eglifs

order defined by ArB iff VaeA Erb€B agb and V-beB SaeA agb) E^gE.
M

In fact in Milne::-Eglirs o:rden 
"fro.

this point only th::ee possible ways seem open :

Abancion the idea of least-fixpoint semantics anci adopt a I'bestil

fixpoint semantics as one of those studied by A. Shamir" [I4] (for a

preview of these nesults see [8]). For the moment not enough is

known on continuous best f,ixpoints on non-flat domains to see whethe::

this is a promising avenue fon fu::then nesearch.

Decide that no diffenence should be made between E and E,.

Plotkin [1r] and Smyth [15] develop sush ideas"

It wonks but the t:reatment is mathematically difficult and, most

important, many identifications ane made fon which no convincing

non-technicaf neason can be given.

Abandon the idea that domains ar"e partial o::dens and admit that they

are categonies on which every denr.une::ab1e chain has a colimit.

This third proposai is the one which is developed here.

A fr.inge benefit of this idea is that now domain equations faIL into the

same basket as meanings of pnograms.

In other" ter:ms now the equation l=[Pn] is a r"ecunsive program.

2)
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Before the technicai results one word is in or"den on why col-imits ane

bette:: than i.u.b.rs for semantics of non-determiriistic programs. In

a category thene ane directed ar.rows between objects with an associative

composition of aruows and suitable identity arrows. A partial orden is

a category in which thene is at most one arrow between any two objects.

The notion of a col-imit which genenalizes that of 1..r1.b. has the

following distinctive featur:e.

Let C be a chain of arnows and objects :

C - a;--)a-----) ac_-2 ......di€d_.ri
rr.r^f.otzL

Its col-imit depends not only on the objects aoeo.odir... but also on the

arr?ows f - ,. .. ,f_. ,. ..n- - l

By contrast in a pantial onden the colimit (I.u.b.) cannot depend on the

amows because thene is no possiSle choice fon the arrows (at most one

between a. and a-.,, ). In our semantic interpnetations the objects willl- a+-L

nepresent partial information and the a::::ows possible ways in which two

successive pieces of information may be nelated. In the case of

non-deterministic functions an object wilL consist of partial info::matien

concenning each possible conputation and vlhen two such objects fol'l-ow each

othen it is inoeed of vital importance to know how they rel-ate, how do

the possible computations desc::ibed in the finst object refate to those

descr"ibed in the second.



In the above examPle the computation defined bY S^ wili be represented bY :
z

Ei-g. 2

which will be seen to be a chain in P(E) and the meaning of S, will be

the colimit of this chain, pr"oved to be E.

Due to our will to t::eat domain equations, the detail-ed description of

the categor:y P(D) will come only in chapte:: 5. The first par:t of

Chapter 5 may be read. immediately by the reader too curious to wait'

{tt

t\.t\
turlJ

r i\JJI
1.vtLrzI

I i t\
J 
' 
J\

tn 'r t :q]
Lvtrt4tvJ

{QrrtZr...iJ

,ji,l,{iJ+},,
:

A

i;
1C

lrr\Yr
'',
I ra+r

,"1l-f
$1
A--i+1
a

q

a
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Chapten II

Categonies and initiai fixpoints.

Two wond.s of caution ane needeci lrene, the first on foundations and

the secono on isomonphi-sms. One point, on which our' terminolory differs

fr"om Mac Laners [7] is that the wond rfsetrr will always be used in its

stnict sense (say in Zer.mello-Fnaenkel axiomatic set theor"y). The word

ffclassil wiJ-l- denote a coll-ection of sets satisfying a centain pnopenty

(definable in the language of set tb-eory); when an object is said to be

a subset of a class the wond ttsetn has to be understood strict.ly : not

all sub-classes are subsets, and it should come as no surpnise that

soi-utions to the equation D=P(D) are foundr but obviously sueh solutions

iha hn^rah -'l:qcles.

Ali the categories used in this paper as domains are large categori.es :

the objects and monphisms form a class (pnopen o:: otherwise ).

Definition I : A categorSr is smalI iff the cfass of its objects and

the cl-ass of its anrows anel.sets .

Cat wil-I denote the category o{ al-I small categories (it is a pnoper:

lange category).

Catr will denote the category of all lai:ge categories (it is not a

large category).

Now comes the second of oun wonds of eaution.

An impor.tant diffenence between partial orders and categories is the

existence, in catego::ieso of non-trivial isomorphisms.

Definition 2 : In a category C an anrow f:a+b is an isomorphism iff

thene is an arrow g:b+a such that gof=Ia and f"g=\.

'It



In this case g is also an isomorphism and a and b are said to be

isgrorphic (noted a-b).

The image of an isomorphism by a functor^ is an isomorphism.

Clearly the identities CI" fon each object a) ar"e isomorphisms' but

there could be othe::.cnes (cafled above non-trivial)'

Isornor.phisms in the functon category BA a::e cailed natural equivalences

on bette:: n3lsral isomorphisms and noted t : SgI'

A universal a::rawr when it existso is always unique only up to

isomorphisnr (in the comma category); in particular initiat objects,

products, co-prod'ucts, l'imits and cofimits, left and right adjoints

are defined only up to isomonphism.

This is a fact that we shall have to bear in mind and we shall try to

use the definite a::ticle only fo:: objects which ane rrricluely deterrnined'

on the othe:: hand isomorphic objects ane indistinguishabl-e and when we

shalI look fo:: solutions of equations in categories we sha-I] be satisfied

with a solution uP to isomor:Phism'

In the categor:ies which will be used as domains it is c::itical- that the

coLimits (the object) are defined r.uriquely and notonly up to isomonphism

(we want tne left-adjoint r"ight-inver"se of a frnctor to be uniquely

dete::mined) and we necall the following definition :

Definition 3 : A category is skeletal iff any two isomonphic objects

are identical.

The term skeletal should not frighten anybodyo the author thinks that

those catego::ies are quite pleasant to work with'

If C is a category any skeletal fulI sub-catego::y of c is caiied a

skeleton of c. c is equivalent to any of its skeletons and any two

l8



skeletons of c ane isomonphic. we shall admit that any lange category

has a large skeleton.

In a skeletal- category the limits and colimits are r.rniquely detenmined

as fa:: as the objects are concerned, the aruows of the limiting cones

being detenmined only up to isomonphism (even in a skeletal category

thene are non-tnivial isomonphisms).

The theonems about initial fixpoints that will be pnoved in the sequel

of this chapter ane fonmul-ated fon anbitnary eategonies (not necessanily

skeletal-), a slightly sharpen vension rnay be obtained fo:: skefetal

categor:ies if one nemembens that isomonphic objects are identical.

Definition 4 : The catego:ty (,) is the category whose objects ane the

natural numbers and such that thene is an annow : mt iff m(n and

in this case thene is exactly one arnow : rlF n.

trt is the set of natural nunbens ondered by the usual ondening.

Picto::ially :

1,1 : O--.1'l+l€ o o. i--+i+I*....

where identities and arrows,. obtained by composition ane not drawn.

Pantial ordens ane exactly the categor.ies in which ther:e is at most one

Eu?r^ow between two qbjgsls.

Colimits in pantial ondens are exactly l.u.b.

o is a pa:rtial onder. Pantial onder"s are skeletal.

Posets are the smaLL partiaL ondens and a poset has an initial el-ement

iff it has a least element.

Definition 5 : A category C is an o-catego:ry iff every ,functon

F:ro+C has a col-imit.

19



In the sequel only o-categonies will be conside::ed, but any directed

category containing o as a sub-category could have ireen chosen.

&J-posets with initial element, in the preseat termi:roiogyt are exactiy

the {rFchain-cornplete posets of Ma::kowsky & Rosen [9]'

Definition 6 : A functon H:A-+B is an 6'-fr'tncton iff it preserves

trr-col-imits.

Cautign : Fon every F:upA which has a colimit, H has to presenve the

colimiting conesr not only the colimit objects'

Lemga-l : If H:A+B and G:B->C are trl-frurctors, so is GoH'

Pnoof : Obvious.

Lemma 2 : If H:AxB+C is a bi-functorr H is an o-functor iff for all

objects b in B the restniction of H, li:At (\(f)=tt(f,\) is an

u)-functor and for all objects a in A H,:Bt is an ll-functo:l.

In short a bi-functo:: is jointly continuous iff it j-s separately

continuous. The Pr:oof is obvious.

The fundamental fixpoint theorem of category theory shall be proved now'

Its present form is due to M. SmYth.

Theonem 1 : Let c be an o-category' F ano to-endo-functor F:c.>c and

h:a+Fa be an arnow of c, then thene are allrows n:Fb+b and g:a-+b

such that :

1) 11 is an isomorPhism

g=1 o f'gofu

3) Fo:: any arnows k:a+c and rn:Fc->c such that k=moFkoh ther:e is

a unique d:b+c such that qoq=6ofs.
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Let n:Fb+b be the unique arrow such that jr=n'Fjr-,

for i>1.

CleanLy g=jo=jlnh=noFgoh .

To see that n is an isomonphism just observe that U:iiil-l defined by

uo=Fjooh,and ili=Fji-I foo i>l is a cone and implies the existence of a

unique tr:b+Fb such that li=l"ji .

Clearly then 11o)':b+b such that nolojl:rloili=j1

which implies qol=t' and simila::IY

Ioq;F!+Fb is such that ),o1"fji=Fji which impJ-ies lorl=115 .

Let us now plrove the riniversal property 3 )

The diagnam a ----4 Fa commutes.- ,\ /^"r*
\/

c

A commuting cone e:His may be defined by eo=k and e.*t=m"Fei

(ernr"rih:InoFe . oFih=r-noP(eioFi-\ )=moFe . 
-r=e 

. )

Then thene exists a unique 8:b-+c such that "i=B'jj, .

-] -lBut m"FB"q-roj.-rhoFgorl-'oqrFj._r=moFEoFji_l_=toF(Boir_r)=rn"F"i_I="i

moFpon-i is then also a solution to e-.=xoj* and $=111opgon-l, $o1:pof$.
f!

Fon uniqueness supPose that sonslnoFo r then

€o:ft=pog.ol=6o!'6of'go[=61o11ofgo[=61og-cro j o and by induction for i>I:

e. =moFe.-t=m"FcloFji-l=oon"Fji-t=ooji, whieh impries a=B'

Q.E. D.

If C is a partial onder" Theonem l- states that if C is an o-cornplete

partial onde:: and f:C+C is an o-continuous fwrction, fo:: each aeC such

that aEf(a) (a is a pne-fi:<point) ther:e is a fi:<point b of f which- is

the least post-f*point gfeater or equal to a.

For categories a theorem with a sirnil-an diaglam appears in Wand [16]

but in a different setting.
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When C has an initial element initial fixpoints mav be defined.

Definition 7 : t is an initial- object in C iff there exists a unique

arrow i-_:t+a fron r to every object a in C.
a

Def_rnitlgq 8 : A category is an initial category iff it has an

initial object.

Theorem 2 : Let C be an initial uj-categor:/, F an o-endo-functon F:C+C

then there is an ar?ow 1:Fb+b such that:

l-) n is an isorno::phism

2) for any arrow m:Fc->c ther:e is a unique cr:b+c such that

go1:pofg .

b is called an initial fixpoint of F; it is unique up to isomorphism.

Proof : Appiv Theorem I to f=t-
LI

If C is a skeietai category then the b of Theorems J- and 2 verifies b=Fb,

and is uniquely deterrnined which allows the definition of an initial

f rxpol-nt functor.

Theorem 2 says that (brn) is an initial element in a suitable category.

r-c is the authonrs guess that such categonies are rel-ated to those

desoribed in [3]

Definition 9 : infix : [C*C]+C is defined by

- infix F=bo r the unique b implied by Theonem 2

F- infix *r =o. , the unique o:br+bpr such that
F

0on_=n_, o T, o Fc .r ts' n"Fl

The main claim of this paper is that all necursirrc programs, even

non-deterministic ones, can straightfor:wardly be considered as

o-endo-fr:nctons on initial categonies and that the meaning of such a

pnogram is its initial- fixpoint as defined in Theonem 2.



Neve::theless there are cases when othen fixpoints of the type considered

in Theonem t will be of intenest. It witl- be shown that a dornain equation

may be conside::ed. as an o-endo-fi:nctor in the categc.r'y of aomains, which

is arr o-category, but in cerEain cases the initial fixpoint is too triviaL

to be of interest and.. other fixpoints will have to he consideredl a good

example of this fact is the equation D:[D+D] whose initial- fi>point is

the one point domain.

24



Chapter III

The categony of domains

The purpose of this chapten is to define the

which domain equaticns wil-I be solved and to

o-category with an initiat object.

catego:ry of ciomains, in

prove that it is an

The objects of the categony of domains, which shall- be carled domains,

should be the structunes in which to give meaning ro prognams.

There are many pr:operties that one couid think of and which ar:e probabty

necessary if one wants to have a neasonable theony of computation, but

as it is not yet clean what pr:operties exactly ane needed on what

prope::ties should be helpful, this wonk is aiming at the b::oadest possible

notion of a domain which can auppont the pi:oduct, sum, functon domain and

powen domain constnuctions and with which ciomain equations can be solved.

rt is cj-ear that the notion of a domain p::esented he::e is too bnca6 for
a theory of computation because domains ane not necessanily effectiveiy
given, but the r"ight category fo1 a theory of computation is centainly

a sub-cdtegory of the one which is defined here. One of the aims of this
work is to show that domaia equations may be sol-ved. without bother"ing

whether the domains involved. are effectively given or even rrcontinuousrr

in the sense of Scottts continuous latticeso but obviously any neasonable

notion of a "continuousrr domain would invol_ve a sub-category of ours,

cl-osed unden oolimits of countable chains.

The following definition is the br"oadest the authon could thjnk of.

A domain is a large skeletal initial- o-category.Definition 1 :

25



A domain has to be a category because the power dornain of a par"tial

orden is not a partial- or,<ier and it has to be an initial 6-category

because initial fixpoints of o.r-frnctors wil-i be the meanings of pnog:rams.

It is ::easonable to suppose that domains ane skeletal because isorno:'phic

objects cannot be distinguished and should have the same semantic

interpnetation. Thene is also a conpelling technicaf reason for

considering only skeletal categor"ies fo:: domains : it is only on skeletal

catego::ies that the left-adjoint right-invense of a functor is uniquely

determined as will be seen in the sequel.

One could also wish domains to be small but that wouid lead to some

slight technical problems in the definition of powe:: domains. The

objects of a domain may be seen as pieces of incomplete information

and the mor:phisms as possible ways in which two items of information

nay be nel-ated. The initial object is the absence of information and

ar-colimits nepresent the infonmation gathened thnough an infinite

sequence of exper"iments including the way successive items r€l-ate to

each other^. The nonphisms of'.the category of domains should allow the

solution of domain equations, that is to say they should make the

categorlr of domains an 6i-category and they should make the productt

sr.m, functor dornain and powen domain openations o-functors.

I'lhen one looks at the methods used to solve domain equationsr in Scott

[1g] and Reynolds []-2lo one sees that they amor:nt to the const:ruction

of langer and larger domains, each domain in the seqluence being a

sub-domain of the next one. As a consequence, an anr€w F:A+B should

ensure that A is a sub-category of B. In fact A should even be a full

sgb-category of B, because B sh-oul-d be richer irr objects but not in

arlrcws between the o1d objects. Ir othen words f :A-+B should yield

a functor F:A+B both ful-I and faithful. To pnesenve the coiimit
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struetune F should also be an o-functor:. This r:rrfor.tunatelv does not

ensune that the functo:: domain eonstr:uctor is a functor in the catesor.'\/

of domains. (We want a functor. covar:iant in both vaniabl-es). More

pnecisely to any coupfe of ar.rows in the categor3y of ciomains: f:A+At

and g:B+Br an arrow h shouid be associated: h:[A+g]+[Ar+Br]. The way

to ensure that is to ask that an anrow f:A+Ar, yields not only a

functo:: F:A-rAr but also a functor" H:A!+A.

If f:A+Ar yields F:A+A!.and H:AI+A and g:B-+Bt yields G:R>B' and L:B!-+B

then M:lf Qof.H is a functo::: [4+$]+[At+Bt] and N:],9 LogoF is a functon

[At-tBt]+[A+B]. To necapitulate f:A+Ar shoul-d be a pair of functons

(FoH) F:A+A! and H:A!+A such that F and H ane u:-functons,(both should

pnesenve the st::uctu::e) and F is fulI and faithful. This does not make

the categor5r of domains an 6-category and to ensure the existence of

ur-colimits some conditions on the r"elation between the two functors F

and G a:re needed. Returning.to the basic intuition tir,at f:A-iAr shcuid

make A a sub-category of Ar one may see that in the construction of

solutions to domain equations it wil-l- be used in the way that the objects

of A ane approximating those of Ar, A is a sub-categony of Ar on which

Ar may be pnojected. Now only a smal] leap is needed to conceive that A

shoul-d be a co-reflective sub-categor.y of Af (see F::eyd i2l p.79). This

means that given an object b in Ar thene is an object E'in e which best

appnoximates b by arr annow rn :F*l in the sense that for any object a in A'b

and fo:: any mor"phism f:a+b in Af thene is a unique g:a+;'in A sueh that

f=n og.
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Equivalently (see Maclane t7l p.gg-gO)o in terms of tiie funetors F

and H abover (FrH) shour-d be a pain of aojoint functor.s such that
HoF:I" the iienr-iiv frrnnrn, nnA _rrurLJ rutruLLrr.urr A, alid the Lfit n _f the adjufrction :

toiHop the identity natunar- tnansforrnation" rn the terminorory of
Maclane [7] (p.92) r. is a left-adjoint night-inverse for H or there i.s

an adjunction <FrHlIre> with unit the identitv.

The notion of a pair of adjoint functor.s has been defined by Kan [5]
in 1958 and has been sinqe then necognized as the most i-mpor"tant eoneept

of categeny theor:y. The best up to d.ate suinmary on the subject is
p::obably Maclane [7J chapters iv and v. rf A and B are par:tia] or,densr

F:A+B and H:B-+A (FrH) is a pain of adjoint functc*s iff F and H are

monotone f'nctions such that: HoFE'ide and F.HEidB (Galois connection).

Thnee facts about adjunctions wiil be necall_ed.

Fac! r: The composition of two adjunctions is an adjunction

(Maclane [7] Theo::em f p. 'l_01).

rf <FrGrrrr> : X+A and <Fr6ri'oE , A-+D are two adjunctions then the

composite fr::ictor"s yield an adjunction : .Frrg6rei-r.nrf.Fr6, : X_+D .

Note that if r1=f-, and f'=I^ GnF.i-=f.. .zrAX

Fact 2: If (FrG) is a pain of adjoint funetors F:A_+B, then F

pneselrves al-l colimits existing in A and G p::esenves al-I fimits
existing in B. (Maclane [Z] theor"ern 1 p. 114).

This makes the condition that F be an o-fr:ncto:: nedundant, but the

condition that G is an tl-functon is stitr necessarrf and not implied by

the other conditions. In the category of domains an anrow is a
rfcontinuoustr co-projeeton and if f :A+At then A is a ncontinuousrl
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co-reflectir,'e sub-categor5r of Ar. The fact that G preserves al-I

existing timits will not be used in the sequel and tire authon has no

j-ntuitive ex?lanation as to why it sirould be so.

$!;|r If CfrG) is a pair: of adjoint functors then each one of

then detenmines the other up to natural equivalence

(Maclane [?] Corot}ary I P" 83).

This is not sufficient for our purpose and we need :

Theo:.egl : Let B be a skeletal- category and G:B+A a functor" which has

a ieft-adjcint right-inverse then this left-adjoint right-inverse

F is uniquely deterrnined bY G.

P::oof : By fact 3 F:A+B is detenmined rp to natural equivalence;

B being skel-etal the effect of F on objects is r-rniquely determined

and Maclane [Z] Theorem 2(ii) (p.8I) implies that an ad-jirnction is

nomnlefelrr determined by its night functon G, the effect of its

feft functo:: on objects and its unit. In ou:: qase the unit being

the identityo the effect of F on arnows is defined by FGh=h.

The::e is then no need to consider the morphism f:A+Ar as bei"ng a couple

(FrG) and f may be defined to be a G such that a suitable F exists.

Contnary to Smyth [:-Sl, the::ight adjoint will be emphasizeci here, both

for: the lack of an acceptabl-e term fon the left-adjoint (embedding is

used with anothen meaning by Maclane), and because the left-adjoint

does not seem to determine uniquely its right-adjoint left-invense.

Definition 2 : A fi:nctor G:B+A is a co-neflecton iff it has a

left-adjoint night-invense, that is to say that thene is an

adjurction <FoGilare> .

ZY



The tenm o-eo-::eflecton will- be used for. such functcrs which are

o:-functons. If A and B are partial onciens, G:B-+A is an o-co-nefLector

iff it is an o-continuous pnojection in the sense of Scott ll-31

(Definition 3.6). A cha::actenization of o-co-refl-ectors shail be

pnoved now .:

Theonem2: IfAand B ar"e catego::iesn G a functor B-+Ar G

co-neflecton iff to each object aeA may be associate,f

FoaeB such that GFoa=a and for any arnow f irr A : a+Gb

exists a unique arnow F in g : Foa+b such tha't f=G?"

Pnoof : An llr r fvrr+J

an object

+hera

by Maclane

B(F"arb ) to

: let F be the

-nA nr
L /J Ineonem _L p.

A(a,Gb ) .

left-acijoint right-ir-.verse of G;

80 Q:ft>69 f" an isornor.phism fnom

if : the sentence trfor: any annow f=CF"

equivalent to rrthe couple (Foarl.) is iliiversai from a to C",

the p::esence of GFoa=a; By Maclane IZ] Theorem 2(ii) p.Bf

defines a left-adjoint r.ight-inver"se for G.

The category of domains may now be defined :

Definition 3 : The categony oi domains, Dom, is the catego::y which

has as objects the domains and as anrows the o-co-reflectors.

In Dom a monphism f :A+B is an ul-co-reflecton G:B-IA.

Thene are two natural fongetful functo::s that one can defiae from Dom

to Catf ihe categony of la::ge categor"ies. Ttr-e left-forgetful functon

(Fonr) is a covariant functor that sends an o-co-.neflector" G to its

left-adjoint ::ight-i-nver-se F and the night-fongetful flurcton CFor^n) is

a contravar"iant functo:: that sends an uJ-co-reflector G to tb-e functor G.

The main Theorem wiJ-l now give the important pnope::ties of Dom.

I>
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Theonem 3 : The category Dom is an initiat ul-categoqr, and the night-

forgetful functor Fono tr"ansfonms colimits on u into limits on

oPtr).

Before we proceed to t;.c proof of Theorem 3 some technical lemmas.

Lemma l- : If A and B ar:e skeletaf initial categonies and G:B-+A a

co-neflector then Gr=rr ato=tao , and if F is the l-eft-adjoint

::ight-invense of Go Fr=l- and Fj.u=r-u ,

^. .&-.-Pr"oof : A(r,Gb):B(irrb) impiies that flr is an initial object,

B being skeietai F.i-=t. F-.t-u has to be an arrow: r:Fr+Fa but

thene is only one such aruow tF* . Gt:GFr=r because G.F=IA 
"

G1. has to be an arrow f:rom r=Gt+Gb and there is only one such

arrow l_Gb

Q.E.D.

i.,emma 2 : trf A and B are categonies, G:B+A a co*r:eflectol. with

laft-aciioint r^isht-inverse F and e : FoGiIo the counit of the*v- e **J 
u

adjr:nctiono then Goe=G, and eoF=F.

Remank : Following Maclane [7], G denotes both the furrcton and the

natural transfonmation : e]C corisisting of iclenti.ty anr.ows;

thus Goe=G is equivalent to : for al-1 objects beB, GeO=]Gb, o"

^ -i j- +L^ -^tations of Theonem 2.
"b-rcb -r, LrrE rru

P::oof : Maclane [7] Theorem 1 p.80(ii) implies G=[G.a).(noG) and

F=(Fon), (e.F). Here r1:IOr toG=G, and Fon=F.

Q.E.D.
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Lemma 3

P::oof :

v)

if ArBrFrG and E are as in Lemma 2o and g:b-+bf an arrow
.-

tnen ug=goeL
IJ

G(g"eb)=GgoGeb=Gg by Lenma 2.

Pr"ogf € Tle _r,em 3 :

Let us show finst that Dom has an initial object : the category 1

with one object (. ) and one (identity) arnow. Clearly, 1 is a dcmaj-n

and given any domain A thene is a unique functon GO:A+1. GO is an

o-functon" It is left ro prove that GO is a co-neflector. Let

F^ :1+6 be the functor that sends the unique object of i- to the initialA-

ol5""a of A : t and its only an3ow to 1, . Given any arrow f in l(.rGa)
-A

there exists a unique arr\f,w F in a(rOra) and Gf=f=l. . Clear:ly GOoFO=I, .

By Theor"em 2 G is a co-::eflecton.

Let us now show that Dcm is an o-category. Let 0:r,;-r,:lom"

0 : A.C-T- Ar Ff 42F..... oi C-C-Ai*f-.....
tl-

G..

H--
Let F_. be the l-eft-adjoint right-inve::se of G_. : A,$)A_. ,,L - r r t; 1+I

If, as ass.erted in the Theorem, Fon* transfo::ms col-imits into l-imits

then the colimiting cone v:OiA- should be the iimiting cone in Catt.

Let A_ then be ttr-e category with objects the infinite sequences :

(dor... rair...> such that for ie/i/ .i.Ai and Giui*I=-i , and with

arrows the infinite sequenees ! .forflr...rfir.oo) such that for

ieff. f.eA. and G.f. .=f. . Let G : A +A. be the functor that- l- 1 rr+l- a @a @ ]-
fhpnojects on the i"' coordinate.

AzF AiFilAi+: f-

a-_@r+-l-a)



The above rone is a limit:ing cone in Catr and the thec;r.em assents

that : A is a <j---.:- ^ :a --,.!-^n-r,nn;a^*n- and given a cone@ .Lrurdllr 1 a_i f D qrr uJ-(jv-PluJsu LU!

;i r B+0, if B is a domain and p compose,i. of -rl-eo-F:-'jectors then the

rrn:".rra frrncl-na J:B+A- SUCh that !='VoH iS alSO an 1J-CO-projectOr.
@

l,ot us Dr?ove tnat A 'is a domain. A is lar.qe. A is skeletal- because
@@v@

isomo::phisms in A_ are sequences of isomorphisms. A* is initial because

.rA ,rA-r...1r0.0.""> is an initial object by Lemma i. It is easy to

see thai A- is ln r-""augory whene the colimits a:re taken cocr dinatewise
6

inemember that the G--ts pneser"ve eolimits).
.L

Let us prove now that the G--- rs are 0:-co-projectons. G__. is an@a @a

i,.;-=f",::rctor because the coiinits irr f:.- flldi be computed coo'ndina'tewise.

:f f- is an cirrow in A., let F'*f'=.forfl o...rfirfi+l ,...>

where for -i<i f .:C.f . - anc fo:'i>i f .=F. .f . Ciear:y F. is a' f -i '-l +; - I -l-l -t-l - a@,))Ji_'J-

Urctor : A.-+A (G.oF.=I^ )" ai:d G ", i. :i. " Sutl,:s.. r- :.', -- l ;)
]-s)Jl^j@1 a@^i1i-@]-

is an arnow in A. . Then b=<b !. L \ -'-''r f . =Q .tr.f o ..1-i2oto' rrLll 
:L @i

Let F. a.=(a.....a.....). Let s:F. a.-+b be an anrow in A :
a@l'L-1@I@

8=tgor... oBi '...>. G-.8=fi iff gi=fi . Suppose gi=fi, then for j<i

g=G"...G" -t" and for" i>i q.:a.->b. such that G. -9.=q.r-i I a a-l-r vi-l
JJa4JUJJ-LJJI

But a-=F. .d- , and by Theorerir 2 there is exactly one amow ! such

that G._.E._i=gj_i . The anr?ow g defined by :

q-=f.. for ici g.=G....G. .f. and fo::-i>i e.=;" - is the oniv anrow-i i_- - -l I a-I r - -a -l*r
-i-n A :F. a.+b. whose ith coo:rdinate is f .,. Theorem 2 now asserrs61@]-'".1_

that G is an o-co-neflector.



we have shovm that v is a cone in Dorn, ret us show now that it enjoys

the univensar pnopenty. Suppose B is a domain an<i ir:ni4 u cone with
ar:rows to-co-projectors; V being a limitjng cone in Catr there exists a

unique H-:B+A- such that ir=voHo. This certainr-y j_mpries that thene is
at most one ul-co-::eflecton with this propenty.

we shall- prove that H- is an ui-co-nefr-ector. Let u be composed of
arnows H.:B-+A. . We know that if f is an arrow in B:

H-f=<Hof, trtr...lH.fl.o.t,. H- is an o-functor: because all H"rs are

o-functors and in A- the corimits are coor<iinatewise. Let L. be the
1

'i ati-er]inr'n+ --i.rErL quJ\r.iru -r'rght-inrre::se of H. . L.:A.+g. To clar.ify the situation
a Lemma will be pnoved now.

Lemma 4: H_oL1=Fi_ for all_ ielt/.

Proof: Let f,. be an aruow in A.r_ l- i{_{L, f " )=<HoL"f " ,,.. ,li.-I,- f .: ,. &.>

But H. oL. =I. and Lk=Lk*l"FkKK^k

(H-'L' )f.i(...... rGi_tfirfirFifi, Fi*tFifiro.....) r ti-fi .

Q.E. D.

Fnom now on the composition sign ( ") witt be omittec whenever possible.

Define K.:A_-+B by Xr=l,rc_, . Then K.=Li+iFiGiG-i+t

The co-unit of the adjunction (F.rci)re. is a natural tnansformation:

titi;to.*r- "to .i=Lin'.i G-i+I is a natunal tnansformation: x-ix-.- i -i+1 .

Lemma 5: For j>i and H. t .:G .rl @l

ii...U, -\)-1- | @-l

,"i=L3*t"3c-i*1 , H' =G".. ...tjtj*t , Hinrlj+l=rA.*,

aj.j=aj by Lemna 2 and G_i=Gi... ...Gic_i+l .

HV_C
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Back :; i:ire :ii-.: ' :"1 .i;:g-'.;rsn 3. By Theorein 2 it is e::li-tgi: for. us to ciefine

:--^r. a:ah nh{- -i- :rtr. :n nhiant '( :rP wi +h +iro :nnv'nnni r+a nyy-inan+LvL ts!-.6 --- .,6*-- .'*... s.^v *r/rutt;d-c urvycli!.

i(^a :-;)K.a --=) .-2K-.d-:-=-)K.,.d-)......
oj.a

is a;-'turcror +,-:rpB: it has a colimit because B is an {r-category and even
d

if the colimiting cone is not uniquely cieter:mined its vertex is uniquely

i,e+-emj-ned. because B is skeletaL. Let us define K-a=coJ-im'a Va

F.
I

A.4------.r--- A_. ,,
iri4s\,'\\./tt'.-\, 

/'-u, /\.-t 'r/ 
I\/

ff -: 1.,,,

<ecapitura-i ing Ciagnam.

the following sub-diagrams

K

The diag::arn

anmmtrta

does not comrauts, but

T.

A
1

ftr'\rt

\ \c_i

\\
u,\ 'o

'\ ,-\i\ir\ t-\i\v
..

!B

\ ir;
\ i-\i

L.
]-

r r5. I

A

I

t..

r
i

I

B

\r
\

@



Lemma 6: Yie// . YaeA H. (K a)=G .a'@I@@a

Proof : H. (K a)=H" (colimit 0 )=coliinit(H. r! )]. @ t_ a i_'a

because H, p::esenves o-co.Iimits and the categonies ane skeletal.

But by Lemma 5, Hirl,a consists of a fixed object G_.a and identity

aruows after a ce::tain point and its colimit is G-..a.

Lemma 7: YaeA H K a=a
@@6

Proof: H-_K-_a=<H^Lar...H-.K_ar...)=(G__-d;...G--_.a1r..>=d.@@06-lo-@o-@l

Befone we pltoceed fu::thef let us study tl:e coiimiting eone

The a::nows o.a are not urriquely dete::mined but we shall use any

colirniting cone" The a being fixed we shall dnop it irorn tl're notatj-on.

Cleatlv Yieff o.:o. -T. . H. pllesenves colimits and:r+l-]- t-

H.K.a=G.a
lI 6l 1 )..4...

6a

H.o.a
fI

Fig. 2

is a col-imiting diagram. This implies Vj>i

identity cone being obviously a colirniting

G .a+G .a. As G.H. -o. -=H.o.._=H.o. . dr@1 @t l_ J-+l_ 1+l_ l- I+I r I - '.a

isomonphism in A_:a-+a.

H. o . =H. o. , Moneove:r ther-J rl
cone H-.o- is an isomonphism:lr

=<Hoooa1. .. 1H.o.ai,..> is an

-L:-)riiKi+rt=G-ia-G. ro1a I
I
I, I,, ^

H.K a=G .r@ @la

oE)



iiow-

the

rc end tlie proof of Thecrem 3, Iet

uri.iversai pj:oper:ty used in Theorem

show that (i(*rli*) satisfiesUS

l_.

':.,,rnr,:; c ';::A '{ h j-,s an arrow in A . Then G .f :G .a+H.b is an arrow in A.'rLJEt\" ',*" € 6l oi i f

H.J"a:i{.K.a-+ii"l{- 3lut }i .K a:i{.K-,a=G-"a b}i l,smmas 5 and 6"'-i : r 'i r s t i- 1 6 @l

ii "f"H.o"a:G .a-;"j-i.l:" L" is the Ie.i.t-ac1;ci:ri rigli"t-inverse of H.. and
-: 1 I @t 1 l_ r

,-rv Thr.n:.om ? ihene exists a unique h-.:L,G---a+b such that H-h-:G--foH-.o-a..t-ro.t-1]-@]-]-1

Fig. 3

Tire aia6pram cf I-i.g. 3 cornnr-ites because Hi{hiot""i*}=H,-1,i,*l,"Hiti-=GiHj*ihi*t ^t
@1-

.f1i Lemlrra 5 =

!1
. ilr;] i; " L I-r .

J, IT I.

r *rr no rtrz o f

'.,:i,',' !.. ::lr ' -'
l

C.iG -foi{. .o...a)=G "fotj"o.,,a=G -"f"H-.o-a as ::cticed abcve.
* - ,oirl_ j,+l f+l_ @t i i ti @., I i

or"a):i{.h.+h. -or.a=h^ because H- is faj-'chfui" The universalr :- r- rii 'i- "i

the col imi-rirrs ..one o :0 *K a imp]ies: 3l cr:K a-+t such that
a-ta --- r s

i . The pr"oof of Theorem 3 is ciosed uy 1"he next two lenrmas.

i,erima 8: i{ a:f
@

:,";,rrf; Vie// ir.:ctoo"a.+Vie,4/ H.h.:ii"ooFL,o,a=Vie/t/ G .foH.o.a:Li.cloH.o.a bV
l- ]. ]-i L l_l @r ].L L ].} "

constnuction of h.. But we ncticed above iilat H-o.a is an isomorohisml- ra
anci rie have; Vielf G .f:H.cr+f:H crsIl_6

g:gg_9t Let S:K-a+b be such that H-8=f then B=o

J/



Rema::k: The existence of an initial objeet i:n a domain has not been

used in the pnoof of the Theo::em and clea::Iy an extension of Dom

whe::e objects are not. neeessarily initial- is also an o-categoryo

Before we conclude this chapter, two lerilnas which wiJ-} e>rplain the

pnoof of Theorem 3.

Lemma 10: If a is an object in 
'd

col-imiting cone:

then the ,orr-o*r", diagram is a

Fi+1-G-i+l-a

@!t H-B=f+Yie/t/ H.B=G-'f .

definition of h. :h. =Boo.a.

rlnivensal ProPerty fon a.

Q.E. D.

End of Ptoof of Theorem 3.

intuitivelY Lemma I0 saYs that

pr:ojections.

D%^^€.

F G . 
--? 

Fl_-G-ru -=+ ii_J-i.6-;;a
'- -' i.utli"- \ .="f 

- (""-'i''*iu')s'^l/

Then H. (8"o.a)=G-if "ilio-a and by

But Vieli h.:$oo'.3i+S=a bY the

d

a is the col-imit of its successive

Fig. 4.

where ,.:f.G.ile is the co-unit of <F'rGrttAottit
i+I r

- @ 
- -'- !L^ -^ -*;+ ^F zF n .T 

o

and e.:ti-o-i*tA is the co-unit of <Fi-rc-iilArttit

The diag:rarn commutes for: G-'eTa=ia .u bY Lerrna 2 and
@l

@G-iri+i ao..,o. r i+r-eiG-i+la=GiG-i*ttl*t.'GitiG-i*r.

= G.. l1r ,of^ .=lG -u by Lemma 2.
I o-i+Io o_i- -o!

JU



For the unir,'::'s..:.i preperty, suppose the folror^ling ciagran commutes:

Fr*t oG*tu
r^F^

f.;I@ :l- @1.+1

I :t5o r

@
l-'ar" irr,irifv .c,rnnose fi:a-)b such that Vietr:h.:ooe "a.--- --l_ * -r f t:gii ur€ot !J

1,j

ff

,*rhg=G-g*oG*- i-a=G*id an'd o=aGo.ho r'.. eG-'hir... > (1)

pi1.ve the existen:e of such an a let o be Oefined by (r).

+bo To si:ow Yierl/ h..=r:oela it is enoug}r to show that

vied Vielli G ,n.:G .0oG .e*,a.- w-r -- @: @-l "1

eTa=G.G,. -,..G .cr:.G.G" -.."G,"T-- @l rn-. i i l*- 6J- I l+1 m:--i

= G.G...,,.G. .G "i:"otl .G. _.o.G. _i-. =G. h.
I :+J i-i- o]- 1 I l+.1 _.-_L {.r_i'-r :@ i

:r':r -i :i G.goG "eTa=G.oo1^ :g.h"- ea @l .l_ 6L a*id ol L

'''r G*' eT+i-oG*iri+i*eiG-i+lu=GiG-i+rtioiu"Gi'iG-i+lu=titc 
-a@L+I

,€@|i.iilch pror./es e *a=e i*laoFinl*aiG-i+Id.

'i" r,;.

,.:Y r>i l-et us prove our: claiimrrl by induction i:-tl.

-^." ..1_"F_",,_e .G_",,a by commutativity of the ,ebove diagr:ain (fig"S)
at si l_tl@ l- el-+I

=a-jooG-,.i*tu'G-jFi+i-riG-inr. by the induction hypothesis

r@
=l .G'C .te- _aoF. _ e.G _a)6t cl LtI t+_L@ ]- aL+,l -

al -1-Jn 
--fn€I oa



Lenrna 11:

implied

If f:a-rat is an annow in A_ then it is the

by the following diagram:

unl_que arrow

I
I

r {.

I

v
^t

tr
:-s

t. u .r:
l-@ @l-

F

l@

G_ia 
--------li F cf: a

[ ]-+-L @r+I
t

I
I

I
I

&
G _"ar F6i F.'-eG -jra+I or+I

F l-J-i+t; -J'" '-l

t_

I 

t irt-*-i+t=
J ^ -,i+l-=-ifl= '--? ' I

Fig.6

lgft The above squares commute because Fi*l-rG-i+I i" a natunaL

transfor.mation: F. C .if . G and thene +ar
l-@ @L t+l--t-i+1 drl(j LIIele rS a unlque g:a'

to make the whole diagnam commute. But clcaniy f does for::

F. c .a uT"
-_= :__ _-r rn a

II-tlr" (j .r I I ;l66i i r

C -tltF. G .ar ---ryat
1o @] F-4.*r-

commutes because eTa is a natural transfo::mation: F. G .;I.'l I@61 A

Q.E. D.

Some lemmas will be pr.oved now to help shotriag ttiat certain functors

ane tr:-functors.

Lemma 12: Let A and B be categonies and G:F+A be a co1::ojector.

G is an isomorphism iff its left-adjoint rigfit-inve::se F is

sunjective on objects.

+0



:r,oci: cn-l -;; i-:' p*r-;: If G is an isomornnism then F is its invense
r-*_;6rF?s

;rnci is ':ur.jective on objects.

i:.r*r,-, b.;Drose F surjecti'.'r or ol.jects" :et D De an object

in B; r):er:'i: is an ci-,jeci a irl A such that b:I'.:=+Gb=GFa:a b:FGb

Le"i ;:r;''hr ;e cn anr:ow in B. FGf :FCb+FGl? i: the unique

arrow r:l;;'Gj:*"FGbi "uch thrat Ga:GFGf:Gf and t-Gf=f"

?,:. r-] 
"

f,.c:r,:.."...-':; l,i i C be a graph, C a categcny admittir:g ccl_inits on G ano

r; ;:i r-ra::rrip;ory, F;D+C illeserves G-coii:nits :ff ;c:. arry i{:G+D

wrrir cclimiting coTle v:Fi-la, if i::l'tlib is the coiirnj-ting cone

from l"H tnen the ur:ique aruow r,\;b+Fa such tha"t Fv:6"p:'-s an

is:mcrpiiis;n,

|rggtr qrlif ;ra:r: $::opos* i' pi:eser,ves G-colirnits" Fv is then a

coliniting cone. O LS the unicire anr,ow bet'.;e..,rr lr. - :i.i. jr' =f ic:

coaes: i-t is an isomor"phism"

-il part: if 4 is an isomorphism and g a coii-rn:-ting cone ttren

qio"t is alsc a colimiting cone.

il,r ii*xt ie:rrma, cornbining Lemmas i2 and 13 and Theonem 3 will be usefut

-or prcving that functons :.n ,om ane o-filnctors.

Ir-:"; ) be a car:egoryr M a fr:nctor: D->ron, L;0"*"0 be a functon

r"'ith c;sl-init uiL; (in D), Mv-. be the a<ijr.rnction
.L

''.--i'-M(L(i)), r -

i.l: :;.i e "): M(L(i))+M(L(i+t)).' :i'' -i'-':{{i,{i) )' r

41



With the,sborze notations, M is an ro-functor. iff fci: any object e in Ma

(Ma is a domain), e is the colimit venrex of:

KoHoe 17t KlHtu *--- 
- t K"H.e ;^ - - 

--tKi*tHi*l*Kioto"Hi. Ki+r""ioHi+r 
e

tri- ,1

Ig1!r By Lemma 13, Lemma 12 and the definition of K, on objects

dur"ing the pnoof of Theorem 3.

The cofimits in Dom have the curious property of being inve::se limits
following the Grs and nearly direct iimits following the Frs. This

is the property r"efenred to in the litenatur€ as'rcoincidence of d.irect

and inve:rse limitsrr. To be totauy precise A_ is an inver:se l_imit in

catr by the fongetful functor ForR-, but is not quite a dinect l_imit

because Fon, does not pneser"ve coLimits, neventhe:-ess if lorr, is

restricted to the sub-category of Catt where the cnly functor"s ane full,
faithful- and have a continuous r"ight adjoint then Fon- preser!-es cof imj-ts"

A number of interesting sub-catego::ies of Dom whose objects are partial

o::ders a::e e-iosed rurden o-coiimits and themselves ul-categonies.

CPO: the categony of ,.oornplete'partial- orde::s is a fult sub-categony

of Dom, cl-osed unden o-colimits and so an o-categoryr so are CLAT the

category of complete lattices, CCP the category of ur-ctrain continuoi.ls

posets r SFP the category of Partial onders which ar"e ,J-colimits of

finr'fo n:rr*-i=i ^nde::S (a Small_ amOUnt Of WOnk iS needed here)e \ s s.rtqrr qrrrv sr L vr wvr'N ID rrggugu rtEIE ,, ,

CFOBJ the category of complete par.tial onders admitting bouncied joins.

These last results are pr"oved, by a rnethod which specializes ours when

the domains are uartial orders, by Wand [16] and P,lotkin tl.ll"

lroat



l r':e c1.:-rrjve ihr::r,,i:efi 3 is nuch rnore general- a;ld -ls pr.cor shows that

a,1l':,.u:r:t,:. 'iis r.i'r: essentia.i but 'inai ci:de::*;rrricltmenr rar.: be dispense<I

a:": -':;: ,, Cther u-s ri:-;:ategorias of ,Otn a:le :

;-:..J rl:e f"trir :;ut-itategory whose cbjects are co-compiete domains,

r$c the fuii srr:-earegcry rrrhose o.bSects are .comair:s admitting finite

::'-rii{ed co-p:-'ociucts" cO}iLAT the f-ul_i sub-category cl. continuous

ia:tices can be seen to be air ur-categor3y quite easliy usirrg Lemma 10.

a\1



Chapter IV

Pr"oducts and Sums

The usual coRstructions cf products and srims of domains wirr be

presented and it rnrifl be shcwn that they a::e t^l-bi-functons in the

categony Dom. some interesting u-fi:nctons witl be exhibited"

A wor"d of caution courd be helpfuL hene: these ane not prorlucts and

co-pnoducts in ,om. Clearly Dom adrlits neithen of them.

Prociuct of domains

The category Catr has pnoducts and a bi-frurctor. n:Catf xCatr-+Catt mav

be defined by: F:A-+A| r G:B+Bt r(FrG):AxB+Ar xBt such that

n(fre) (anb)=(Fa,Gb).

PA
L)4

^ ^./AX5

\,
p-2

r rg.1

!s]: rf A and B ane domains e AxB (their product in cat t ) is

a domain.

l:gg€t A pnoduct of skeletal categonies is skeLetal.

A product of initial categories is initial: (l-Orr') is an initial

object in AxB.

A pnoduct of o-eategonies is an sr-category and the col-imits are

comp uted componentwise .

one may also notice that the product of small domains is a sma.l.l donain.

4l+



;!ga: The pnojections Pr:AxB+A and Pr:AxB+B are ul-functors.

@ft The colimits in AxB ane computed componentwise.

Lernma;|: The pr:ojections pI and p, ane o-co-pr:ojectors.

+
Proof: The left-adjoint night-inverse of P, is' pI:A+AxB defined by:

+/\+pi(f)=(f J,_'l . [As a corolla::y p, is an o-functon]
' \ tB)

Lernma 4: If G.:B,+A, and G^:8^+6^ aue o-co-pnojectors then
-LII,aZZ

n(GrrGr) :BrxBr+ArxA, is an o-co-pnojecton.

pr-oof: n(G. rG^) pnesenves al-colimits in each vaniable separately and
LZ

by Lemna 2 of Chapte:: II it is an o-functon. If FI and F, ane the

left-adjoints r.ight-inve:rses of G, and G, n(FrrFr):ArxAr-+BrxB, is

easily seen to be a l-eft-adjoint r"ight-inverse of n(CarGr).

Definition 1: X:DomxDom+Dom is defined by:

fon A and B domains x(ArB)=AxB

for G, and G, trl-co-p::ojecto::s x(GarGr)=n(Gt rG2).
'.

The infix notation will often be pnefenred. Clearly x is not a pnoduct

in Dom : AxB is not a sub-cate'gory of Ar but:

Lemma 5: Fon^ ox=no(For:-rFon-)

For, ox=no(FonrrFonr)

Prgc!: By Definition 1 and the pnoof of Lemma 4.

The next theonem enables us to solve domain equations involving x.
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Theorem 1: x:DornxDom+Dom is an u:-functor.

Proof : By Lemma J-4 of Chapten III r,rith D=Domxfom and M=x.

Let the foliowi;:g be a coiimiting core in ,omxtom:

(F" olir" )

(A. nB* ) a------t.(Ai*t,Bi*r )

\\ 
(G' 

'Pi)

\\t"-'Ni-)
(Gi- rP-i ) \\

\v,n -(A-rB*)

ni - ^ELE.Z

-''!..a- -'l I ,.'^ l*.-rr^ +n nx^lra iq th;r i€ a iq anrllgtl qfl flg trovg Lv rr!vv€ ro LtreLt !i g rD qrl

tl:e colimit ver.tex of :

object in A*xB it is
@

ntti*i* ) (G*i+inP*i+1 )e

t P-i+r)t

where e . : F. G.+i. and 6 . :N.P -+I ara the co-units of the"i'- i-i -A. - i'-'i- i -B. ,,if j_ rrJ_

aojuncticns. The resuj-t is obvious because colimits in products are

cornputed componentwise, and by,Lemma 10 of Chapter" III.

Sums of D_ggaln-s

Scott [i3l, <iefined the sum of two continuous lattices to be their

foreign urion where the bottom anci top elements are identified; it

does not seem possible to genenalize this notion of a sum and a

separated sur,r wil-i- be opteci for.

46



Definition 2: A bi-functor +:CatrxQ3lt+Catt may be defined the

following way:

- if A and B ane categories, A+B is their. foreign union with a

new initial element (r) and the corresponding annows

(i., r_rr- for aeArbeB) addedL' a- -b

- if F:A-+A! and,G:B*B| r then F+G:A+B-+A!+B| pneserves r and acts

asFonAandasGonB.

.Bs:
Lemma 6:

In A+B ther:e is no arnow the co-domain of which is r.

If A and B ane domains, A+B is a domain.

Pnoof: The sum of two skeletal- categonies is skel-etal.

A+B is always initial.

The sum of two to-categonies

0-sequences in A+B are in A

except the t::iviaI sequenee

is an u:-categor5r becar.rse the

or in B afte:: a ce::tain point,

of initial elements.

One may notice that the sum of small dornains is a smal-I domain.

leEmg 7: The injections ir:A+A+B and ir:B+A+B ar-e o-functols.

$|, Obvious

Lenuna 8: Let us define

jr(a)=a fo:: aeA

jr(l)=ro fon beB

j ,(ro*, ) =ro

i" (f)=f for feA-t_

j, (g)=t, for geB
r I^

ft

i-(r )=r for aeA

./\-i - (.t- )=l- for be B-l- D l_^
,tI

j,fl, Yr, ''\'e+s) 'A

is a left-inver"se to ir.

jr:A+B+A by:

and

then j, is an o-functon which

ltn



Proof: Check that the ciefinition nf i rirSno.tq 'i-11 .j ,-1Ft.1,1q,''rt'IL'- J l

arrows l,the:le are no arnows ao aA.n*).

:'.*Sd$fu i - is an o*functor jrecause ia A,.lB aj-l :,rinir,,,-"r: :i ri: .:::1+.t, 1:, A oy B'''l. -'' '""

afte:r a certain point exceFt tl:e t:"-i-r:"-c-i seqlerce oii tA*_i,=

i "i- =-i. lr.l ,-r:i:s'lr,ttr.'i-r'onnr t- -I 'I, "-' """: --

Remark: ( : -i \ .i a n^+ - nei r of adi r:-i nt f .,:f;CT,)t 
-*\ir iJ: ' lD llvL o yqrr ur qu-tvlliL.

iemrna 9:

ll +r1"1 '"2

if Gr:Bi*Ai and G2:82+A2 :;::e il-co-proje;e",:o::: tt,::ll

;F - +B^+A- +A^ is an 0t-crl-p'oieetc::,.
-LILZ

Pr"oof : G.+G^ is an o-functon because G- anci G^ are sucn
LL.LZ

sequence in Br+B, is in B, o:: in B, afte:: a,:c:''ie-i ;

except the t:rivi-al- sequence on -8. +B-
JJ

rf F.,A-].*Bi and Fr:Ar+8, ane thre left-adioint :'itii'-:-r:-nve''"ses

of G-. and G, respectively then (G,+G-)"(F,+F^)=i.

Suppose f :a+(Gr+Gr)l is aq a?row in A,"r-Ar. IJ ae;i-. i-i-rr:i'. \aj:

and (Gr+Gr)b=Grb ano there is a unique ?:Fra:tI- oi^.i .:''b sucr'

that G'F=(C.,+Cr)F=f. Similariy if aeBr.

If a-::* {FatFr)a=t and the resuit is obvi.ous.

Theonem 2: f :Domx|r:p;+Dun is an ul-fr:nc_to:...

Proof: We shall rlse Lemma -i lr nf r^ha:fan TTI +.^- -,-.-'.- w-: - ' r I -IT vr, ulru!/Ls.r **i t aUl :'"-;. j _ (

Let the foilowing be a coii"miting cone -l n Doiu:<hr';

^--.i*+-l- ulrl -

(A-. ,Bi )

{T TT )
\r.' ,1rr' ''

+rA k i, - \.r. - a!. - t
.[_- rTr lTr

(Gi,P. )

(A*'3*)

r 456 \)
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Then all- we have to prorrc is that, if e is an obiect in A +B ifJEt:L rrr -_to_ J-L l_S

the colimit ventex of:

Q.E. D.

(Fi-+N1-)(G-i+P-i)"€(uini**'i*'.)(G-i+1+P-i+t)e

(ui*r-**i+r-)o (e.+6. ) (G-i*tnP-i+l-)"

whene .itFiGiilg... 'and 6irtitiitr. _ ane the co-units of the
1+J 1+-L

corresponding adjunctions. The nesult is obvious because:

1) if eeA_ then the whole sequence is in A- and by Lemnn 10

of chapten rrr e'is its col-imit in A and thenefor"e in A_+B_

2) if eeB_ syircnetrically

3) if e=J-^ .^ then (G . .. +P . . - )e=rjI tlt.' or+I @r+l_ 
^i*I*Oi*I

(e.+d. ) (G_i+t+P_i+l_r"=1ro

'^i+r+Bi+t

and (F1*1-rNi*r-) o (er+6. )o(G-i+l_+P-i+l-)"=1r^

^-tb-

and the colirnit ventex. i" aA nB .
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Chapten V

Powe:: domains

The pneceding chapters should have convinced the read"er" that doinains

which are o-catego::ies ar€ no more difficult to handl-e than complete

partial ondens on complete Lattic€s, the present chapten will hopefulty

con'/ince him that o-categonies ane the most natur"al- power domains even

fon pantial ondens. A power: domain P(D) will be defined fcr^ every

dsnnain D and the construction presented here is thr.rs more general than

Plotkint,s [ti] which is defined only on SFP objects.

Giverr a domain D, what should an object,of pCD) be? Naturally one thinks

of sets of objects of D, representing a set of possibj-e values.

Unfontunately this is not quite satisfactory. Looking deepen intc the

pr.oblem one may see that the objects of P(D) wi1l represent sets of

possible values and irorphisrns ways by which sets o1s pussi;ie values r:lay

arise fnom each other. Centainly the same value may arise in diffe:ent

ways, possibly in an infinite number" of diffenent ways and it is

neasona-ble to suppose that the objects of P(D) shoufd reflect this fact

in incLuding possibly a numben .of copies of the same value, one for each

way of obtaining the value. That is why the objects of P(D) are the

multi-sets (or sets with repetitions) on D.

One may notice that the power of a smalI category will- not be smalf anC

that is the neason why we considered no#small d.omains. However a simplt,

technical tr:ick could do if one wants only small- domains, and this urould

be a finst, guite insignificart, step towands the definition of

effectively given doniains.
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At this stage the pr:rist would penhaps welcome a formal definition of

a multi-set, but, to avoid lengthening this already long paper and

choosing between equivalent ways of defining multi-sets, such a formal

definition will be left to the ::eade::. The intuitive notion of a set

with nepetitions being clear" enough for. the sequel.

In P(D) an arrow f:A+B should expness the way the el-ements of B anise

fuom those of A and, th-e objects of D being nepeated in B as many times

as necessary, it is ::easonabLe to ask that f associates with each beB

a unique arnow of D:fb:a+b such that aeA.

Example of an

I
o! dr t.orl\ r-
i\,*
I Nt,,iIY,
Y h 1-1
o' "I' D2r

in the power domain.

I !Ei. I

A = {a
I
It-
!rD
I
I

I.t

alll30w

An ext::emeIy impontant ::ema::k is that f :A+B does not inrply that every

element of A is the domain of a.'anrow in f. Fo:: exampl-e in the

preceding example areA is not the sounce of any arrow. The openational

intenpr:etation of such a rema::k' is not totally clean: str-ou.ld computations

that may erase some of their internediate results or thnow them off be

considened on should we accept that not all o-sequences represent

intenesting computations? fn [1] Robent Floyd angued in favoun of

pr"ognalnrning languages for non-detenminism with a failure option on grounds

of usefulness and the semantic counter-part of this failune option cnops

up here unexpectedly as a rnust. As will be seen funther, the category

whene arrows are nestnicted to those fon which VaeA 3b Don(fb)=a is not

an orcategory. A b::ight point is that the a::::ows verifying the above
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condition have a r:nive::saI characte::izationl they are the monics, ani

so P(O) is an o-category where only the monics have a clear operational

meaning, but this is anothen story.

Definition l-: Let D be a categonyr P(n_) is the rcllowi;g categony:

- A is an object ofP(D) iff it is a muiti*set oil D

- f:A-+B is an anrow of P(D) iff f associates with each eleme::*.

b of B a unique annow (of D) fb:a-+f of domain ae arr element of r,.

- the compositron of arrrcws is defined by (g.f)b={$).(f dom gb}"

- l-.:A+A is such that I^a=I .AAa

.sgj: If D is a skeletal category, P(D) is skeletal"

3g1!, Suppose f:A-+B and g:B+A are such that gof=lo r f'g=lB"

YbeB 1-=tfog)(b)=(fb)o(g dcm fb)+(dom g.donr fb)=b
D

UaeA 1.=(g.f)(a)=(ga)o(f dorn ga)*(dom f dom ga=a)

In panticuJ-ar 1r^- * = (g dom fb).(f dom g dom fo)=ig do,r fb)"ii;i
uurrr r !

I,, = (f dom ga).(S dom f <lorn ga)=(f don ga)*(ua)-dom ga

Then g dom fb, fb, f dom ga and ga are al-I isomorphisms and D bcing

skeleta,l: dom fb:codomain fb=b and dom ga=a, it fol.lows that A ani

B ane multi-sets containing the same elements repeated the sarne

nurnben of times: A=8.

1gf: If D is an initial categoryo P(O) is an initial categor:y.

@|, Let 1be the initial object of D. Cleanly {ri is initial ir, PID),

Lemma 3: If D is an to-categor"S P(D) is an o-eategory.
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Pnoo€:

H:

Suppose H:o+P(D) is a

A;-i Ai---r
rio *1

functon.

---)4. 
€ ^i*t'afir+1

More pictoriallv:

A
o

1

l

la)

I

I

I

t,
a)

H.

A
]-rl-

f-'- 4L LEi. z

By definition of the ar"rows in P(D), H may be considened as a set of

possibly infinite trees (thene are as many tnees as eLements in Ao)

the nodes of which ane labelled by objects of D and the edges by annows

of D. In such a tree some br:anches ane finite, othens ar"e infinite.
The colimit of H wil-l be the multi-set containing the col-imits of all
the infinite bnanches. Let A_ !e the multi-set on D whose candinality

is that of the infinite bnanches of the fonest H and which fon each

infinite br.anch, contains a copy of its colimit in D. Let fr-:Ai*A_ b"

the a::row in P(o) which joins ever3y element a of A_ to the erement b

of A. through which the infinite bnanch whose corimit is a passes, by

the anrow pnesent in the coLimiting cone.

"2t //4

]e.
l-

t bit

t\aa 9 O

\
r\

]-fr

Tri - e!45.v

at



Clea::ly each element in A_ is the co-domain
@

of f. and f. =f. - of..
16 1o 1+1@ 1

of exactly oae arnow

Let us prove that v:Hia- fo::med of the f-.,, enjoys the unj,versaL61@

propertlr. Suppose u:H;C is a eone.

f
1

$i -:+Ai+l *

Fi^ I'r !5.7

Let us pnove that there is a unique go:A-+C such that Bi=g-ofi-.

Let c be an element of C. Let hr=B1c and b.=dom hi hi:b.+cr

whene b. is an efernent of A.. s -- ^4 -'*^1-"^s that
r- 1 -i-Ei+t-r' !''P!!s!

h.=e.c=(g. -e)o(t r^- - ^\-L of ir- i oi- '-i+i--' 't ' uuur Ei*rt'-t'i+I-'i"i+l'

The diagnam of Fig. 5 commutes.

tn
I l+l

\ !- \. L+L /

Let o:B+a be the cotimiting cone fr"om B. f.-a=cl.:b.-+a" Ther"e is a

unique arrow d :a+e such that Yi 6 "s,-h.. But B is an infinite
c 'c 1 l-

bnanch in H and by definition of A- o d is an element of A*, it- is

then possibl-e to define g-:A +C by g-c=4..

(B*o fr- ) c = 
( B-c ) o ( fi- <iom g-c ) =0.n (f1-a ) : $ " 

o61 . =[i=8i., and. s*" f]i-=Bi

h
]-
I
I

N

I

*
c

dR
5. Jrl_

P. br *--J
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For unicity,

h.=q.g=(l,of.
]--1f@

Let e=dom [c.

just notice that

1"=(!,c)"(fi_ dom

l,of. =9. imolies
l_o -l-

,e,c ) .

fo
1@

bi# j

h., \'lF

Fig.6

eeA_ and as such is the colimit of an infinite br"anch in H.

ilo ftt m.'
Let i! €o€"1_* ... €. 

-:+"i*l_+... 
be this bnanch.

9,of._=8. implies that the diagnam of Fig.7 commutes.l-6 -l

b-. 

-r- 
-? 

eLr
.\/h;=Bic \ / e.c

\/\"F

Fig.7

But f. e:e.+e and b-:e- vie// and E=8. Then e=a and yielt/ the diagr"ama@]- 1I

of Fig. 8 commutes.

b-. - 1- 
--+ aL)

\/h \ / v^"i \ /' 
!(-

\vn
Fig.8

This implies l,c=Q"=g_c and U=g_ .

nFn

Thg>rem 1: If D is a domafo, P(l) is a domain.

!,c

Pr"oof: By Lemmas 112r3.



Note that the col-j,rnit object A,* is r^,'hai c*uld he gu*ssea: the.,{c-Ls c,f

colimits following the infinite b::anches " Ncte aiso that j f al_l thc:

a::nows f. in the sequence a::e Mi1ner.-like ifon any ae/".. thene is at--
least one arnow in f- of demain a) then the colimiting cone v contains

only such annows (the.fi_) but given a cone u:H;c composed cf si:ch

anrrows the unique g_ such that g_ov:1r,is not necessar"iJ-y Mi,lnen-like,

An example of this type shouird clani$' the ideas. l,€t D be the poset

consisting of the natu:raI nwbens and infinity ordened by the usual

nel-ation (this is the domain considered in Chapter I).
Let Ai={jljuii and firAi*Ai*, be defined

by: fon any j<i+I ,rj=f if j=111
* 

(i eise

Pictoniallv:

o

l_

z

In]

J\
tYrrJ

/A
{0r1,2}

{Or1r2r...1i}/tl A
t0rl-r21...riri+I)

F-'- nrrB. J

I

A

I+-L
a

a

The colimit object

bnanches and A =D.@

defined by dom f._

A- is the set of

TL ^ ^ ^'t -'-i r -'- -r lrc 9vMu! LrIIB

n
i = lr- r-r l>r
-t

(-j else

a1l- collnits following the infinite

cone is such that fi_,Ai*A_



1
f.

a@

Ir.' r 1nI +5. Iv

ClearIy ^EBi-6i+r-'i

Fig.ll

The unique {:A-+C such that Vi $ofi-=81

and -eA is not the domain of any arrow
@

This exemplifies

intnoduced.

why

f
1

iJ+t )=A. +t

8i*t

is defined bY: dom 6j=i'

of d.

have to be

,'[J:J A
t C be ft =f-{o}={O,112 1... ;ir. . . }

^ fi if i>i
d g.tA.+C be dom g. j = { . -_ J

^ { j el-se

A. ={I

gi

: {olrr2)...rir:..r-}tll illtil l

= ,t +i ..*.11"..,- l\'/rJ-1ZSt..trt

Fig. 12

arnows which al:e not Milne::-Iike



As in Chapter IV for" + and x, P will be rnacle a funi:ron }om+Dom and

proved an ul-functon, but befone getting to that some functons re]-ateC

with F will be pr"oved to be o-functor"s and ti:-js shoul<i help clar"if1'

oun constnuction.

Definition 2: The singleton functor

is defined by: { id={a} ana t

i ]: FP(D )

tfr = 
{9}*

Y'
d, { d'}

Lemma 4:

!>

If D is a category then the singleton functor {}:}>p(D)

an o-functor.

The pnoof foLlows immediately fnom that of Lemma 3.

Definition 3: The r:nion functor U:P(D)xP(D)+p(D) is defined

by u(AoB)=A@B

f:A+Ar g:B-+Br

foneign union and

(_
u(f ,g) (")= / 

ic rr
| .-(8c rt

ceA I

^-Dl!cu

Reqra4< 1: U is commutative and associative but is not idenpotent:

AUA is not equal to A, it is a multi-set containing two eopies

of A. This certainly is srightly annoying but does not seem

to be a serious drawback.

Remark 2: U has a universal characterization: it is the nnn ,lr: ni_

whene ia and i, are composed

only of identity arnows.

P(l) ttren has arbitnaqr smalr products even when D does not.

in P(D).

Fig. 13
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Lemma 5: U is an o-functor.

Pnoof: Obvious fnom the pnoof of Lemma 3.

Defi€tiog3: The I'big unionrrfunctor" U:P(P[D))-+P(D) is defined by:

uA= O a the fo::eign union of the elements of A.
aeA

AUA., | - |U .l, f = l' Uf whene (t f )c=fb fo:: cebeB
B h'B

Lemma 6: The f rbig urrionrr functo:r is an ro=functo::.

P::oof: Obvious fnom the proof of Lemma 3.

Let'us now show how domain equations invol-ving P may be sol_ved.

P defines a functon: Catt+Catr

Definition 5: P:Catr+Catt i,s defined bv:

- P(C) is the category defined in Definition I

c P(c) .  
-P lrr = I F where p(n)={F(a)laea}

c'i P(c)

^
^/41 F(A) ^ , .

ana r/Jlr = ;t Ff def,ined by (Ff)(ra';=F(fa') fon areAr.
\A, F(A I )

Lemma 7: rf G:B+A is an o-functon thgn G:P(B)+P(A) is an o-functon.

3ryof: By the pnoof of Lernma s the co]imits in power"-d.omains ar^e

ttelementwiserr .

,A^.
Lemma 8: If G:C+B and Gr:B+A then GroQ=etoe.

Pnoof: Obvious.
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lgft Let F:A+Br G:B+[. If (FrG)

^athen (FrG) is a pai:: of adjoint

iq e n:ir nf :d-inint {irnctrr?"q.re u l/slr vr suJ

functons.

N, P(e)(u,6N)-P(B)(iu,ll)

^
!S94, If G:B+A is an o-co-neflecton then G:P(B)+P(e) is an

rrt- co-re fIe cton .

Proof:

of

in

IS

Ktt

G is an trr-frncton by Lemma 7. Let F be the left-adjoint
^^ ^AG. GoF=GoF=l^=1-,^. by Lemma 8. Let f:C+G(D) be an arrow

A TIAJ

P(A). Let { be the isomorphism {:A(arGb)-+B(Farb) then g(f }
a^

clearly the r:r'rique annow F:F(c)+l in P(B) suctr that GT=f.
A

Theorem 2 of Chapter IIf G is an ur-co-projector.

Theorem 2: PlDor,Dot*J}cm is an o-functon.

Proof: By Theonem l- and Lemma 10 4^ _ is a functon of the type:
lUom

Dom-+;bp. To show that it is an to-functor" we shall use Lemma 14

^f ch:nra- III, with D=Dom and M=Pt^ _r We shal1 abbr:eviate- lDom'

P. 1-a I! t ^ Lv 4 a
I uom

Suppose that the following is a colimiting cone in Dom:

F
^a-n
*F-

Fig.14

N

OU



and let e.:F.G.+I^ be thet l- r ^i+I
we have to prove is that, if e

ventex of:

'..".' ;i-a-ie # ir*r--6-r-*1e "".."'
(t. . oe.oG e-'I+Io I @ltJ-

AA

But e is a mutti-set on A-:e:{alaee} F1-G-i.=tF--G--alaee};
AA.A

Fr_*r.-6_r*r_"={Fi*1-G-i+ralaee} and (F.nr-orioG-i+r)e is the arrow h in P(A-

for which h(F111-G-i+r")=(Fi+l-otioG-i+r)a' Pictoniarry:

(Fin1-

G-i+Ial"""']

f lg. l-5

The above sequence in A- is a sequence of the form:

---\

a'. >.
' ; )'

-- 
w

where ail the multi-sets have the same candinality and tlrc a::::ows ane

panal]e]. In Theorem 1 we p::oved that the colimit of such a sequence

is the multi-set composed of the colimits foLlowing the infinite

bnanches: e.

Q.E. D.

co-unit of the adjunction. Then al-I

r's an obieet in P(A ) it i s fhe col-imitIO qIMJVUL ltr ! \.r@/ re 4v

h

{Fi-G-ia , F1-G-1a1,

"rr'e-t*r)"1 
|J.T

{ti*r-t-i+ra , Fi*l--
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of

be

be

be

be

Domains

prrcved to

proved to

Chapten VI

Functo:r dornains

functons will be defined, many ::eiated functors wil_]

trl-functors and the constnuction of functon domain will_

an o?functon in the category Dom.

Deflnition-1: Given two categonies A and B, their frrnctor category [A*ts]

is the category whose objeets ar.e the 6-functors: A+8, and whose

arnows are the natura.l_ transfo::mations.

Notice that only o-frnctors are taken as objects and. that the cornposition

of natural tnansforrnations is the trve::ticaltr composition, denoted tt"!l

The rrhonizontaltr composition is denoted o r otl by ju.xtaposition when the

meaning is clean. [A+B] is a full- srlb*categor:y of BA.

Lemma_f: If B is initial then [A+B] is i:ritiat-.

Pr^oof: The constant functor which sends everry arnow in A to the identity

an o-frncton initial in

kE3: If B is an to-category then [A-+B] is an ur-caregory.

Pnoof: B^ is an o-category where col-imits are computec pointwise

(see Maclane [7] p.11r-112) and ilre colinit of a sequence of

o-functo::s is an o-firncto:r. To see that suppose that the F- rs

are o-functons and that

rr --l JFi
!

----- 

-f
. l+l-

t
I

1. on the initiai- object
I

[A+B] (it is also initial

of B is obviously
. _4.fn B l.

t
].6

r
@

.lr !6.
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and

f
I___;t ai+l

@

E.i- aLL6.L

A
are colimiting cones, in B" and A

i_ i i__b.=F.a.. o.=r.a. . s.=F.f. then
tlt trl tll

respectively. Then if we let

o

oo

l'-t tr 
--+ 

12'oofo

i o" l-r o" 
IJ J:. J.

li-ll-="'i'tor t oi

.i .i+t
D 

--u

I aJ I
ololsl I

-o | |J. v.-
5] 

-# 
bltr

;1 -J ,I
.I

si

.l,o "; J,
br -€b; '
lrI lrI . lsi*" oi*r +r
b. -. -'-r bl -r+I ' r+l

't
fr-

r 1 -l+l
. b: -5D1f

.lit IEit I
-r I I-.t v

h ----------+h- ": ,ll+l L-l
V.

r+l

a4 |

*l

. r..$^\' '"'
. ,\l'--
' 

"ul.:,
., t*f "

,, u)

t

r !E;. u

mayis

by

By

a two-dimensional- infinite diagnam. Its colimit

rows or by columns. By rows its col-imit is that

be taken either

Foao-€F-.t j
Ff

cofumns it is:

Fod_€Flu_ ) '.

F a. ------> F a.---i -F;] -a-i+r
@1

I -*Fi*t.
aA

Tq
@@
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This implies that

cone

F a-.---5 F
@O Ff

@o

F a is the colimit of H.
@6

As for tire co-Linitiae

a- \..@ft

'l-

u. is the unicue arrow

r<1
@@

making the following diagram commu+rs:

of
--* 

F_ a. 
-__)' l.t '

oa
F.a.--s'F. -a.I I t ,Sl

t4

' / 
- 

\"j"t
/. \

/ 'j-ui Itll
rf

oo@

o@

6l
I

u" I

l-

u. =F f . because 'r .
l€1@l@

F is an o-functon.
@

lsa

r : oF f
J-- l:i*

i

+
Fa

@@

Fio- ir.

natural- tr"ansformation. I'tiis proves ttiat

Lemma 3: If A and B are large catego::ies thon [A-+8"] is a iarge catey:c;ir.

Proof: Obvious.

Theorem 1: IfAandBane dornains then a

admitted that a

skeleton of [A-.8] is a dorlaj-.t

The pnoof is tniviai. (We

is lar"ge ).

64
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Even when A and B ar:e skeletalo [A+B] is not because there could be

natur.ally equivalent fr:ncto::s which ane not identical. A skeleton

o1' [6+81 will be denoted SK[A+B]. Taking SK[A+B] as a functor space

just means that we considen o-functons only up to natur"al- equivalence

and this is reasonable for" all semantic purposes. To be pnecise we

shall suppose that SKA+BI comes equipped with a specific equivalence

of categonies [A+B1+911[A+B1: <TrK1411> whene K is'the inclusion. This

way any functor to [A+g] may be inte::pr:eted as a functon to SK[A+B].

The following :resuJ-ts wil-L be expnessed in tenms of whole functon spaces

::athen than skeletons; thei:r implications in terms of domains are

obvious.

Lemma 4: The composition map o:[A+B]x[B+C]-][A+C] d-s an 6-functor".

In other wonds o is an object in[ [A+Blx[B+C]+[A+c]l .

@!t By Leruna 2 of Chapter II it is enough to prove that it is

sepanately an o-functo:r. SupPose u:gif is a colimiting cone

'tr;6+BJ and G is an object in [FC] then Gu:GH-+GF is a colimiting

cone because G is an tr:-fr:nctor and in [A+B] the corimits a::e

pointwise. Suppose v:xj€, is a colimiting cone in tB-)Cl and F is

an object in [A+C] then vF:KF+GF is a cofimiting cone.

.1g[: The evah:ation map, eval:Ax[A+B]+B is an 6-functor.

Pnoof: By Lemma 2

an to-firncton

If f is an object of

If a is an object in

because rrr-colimits in

it is enouglr- to prove that it is

both arguments.

of Chapter"

seParately

II

[A+B] then evalf=f which is an tl-functon.

A then eval-(f):f(a) which preserves tt-colimits

[A+B] ane pointwise.
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Lemma 6: The abst:raction map, lambda:[AxF>C]+[A+[B+C]l is an o-functcr'.

Proof : The col-imits in the functo:r spaces ane pointwise.

infix: [fi-+A]-+A is an o-functo:r@!: The initial f,i:Point maP,

(see Def.9 in CiraPten lI).

Proof: Let the following be a colimiting cone in [A+A].

--7---o'I
1 o.

++
+ .+ and ,?=r.'r. rr?lt? . -Alr; Aj/ ri A l- l- I r- r-rJ-

T'_
^ i+l- 'i+l

More,genenally let fon j>I 
"j=.".,o..oo"-.,f]*ri*.,JfI 4

_/+-,
j titnes

Let us prove that the following diagram commutes

rir ---f fl*.,,
l_lrfJ.i 'i' I:rtaflr-tlfj-rr+,-i-frr {r .t ,Itt,i+It

:]+1- -------4 -j+1'r i+t ' 'i+l*
t

I

r1g. 5

irl -i i+] i -'

"l*t=r1"t. and rl*tt="]ri*rt'fi.it

i+l -i i- -if \
and ri'-r"firf.r=.ifi*rt"ti(t.ror- I

r. r 3,+ r\- tiL/

!"-*.'rlT
I JJr

' T.i

t
lof

@

oc
and tet f . =l-^ and r. "j " .l-41""'

for i70 j>0

.j

-aJl 
| 

^+- 
|-ti'''r'+'lt-'i-f- t* -i+1'

=fi*rrr- , "it because "i i" a natur"ar transfo::maticn.
ttt ti+r-t r
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By using methods al::eady used in the

_i -i;- 

-J:- 

- 
\ --

o.l_
IT-l
o

pnoof

-tt-l
a

+:Jbmxlbm>Dorn is defined by:

Sx[A+Ar ]

lr.S(Gr oKtoF).

of Lemma 1 one can show that:

_i:;*t-

.lr
I

of the two-dimensional

taking i>0, j>0 is (by rows)

infix f ..-------+ infix f...l- . l_+l-r-nr]-x T .

-tf'r
@

is a colimiting cone and that the colimit

infinite diagr"am obtained fnom Diag. t by

infix f- and (by colunns)'the colimit of:

i;;::r . .-- :;:::+ jt €
InfIX::T^

Q.E.D.

-+..,

We may now get to the final point of this work and the neason why the

definition of morphisms in Dom has to invol-ve pair:s of functo::s.

+ will be defined as a bi-firncto:: in Dom and it wilj- be p::ove<l to be

an o-functor.

Before we proceed to the definition of + as a bi-functor in Dom some

notations. ArAt rBrBt ane domains. G:B+A and Gt 'Bt >Af alle 6-co-pnojectors

whose respective adjr:ncti,ons ane <FrG;1Ore> and <Fr rGl iI6 1 re I >.

t vanies oven the annows of SK[B+Bt]r'o over arrows of SKIA-+A!l

'ICSKIB+Bt]+[B+Bt] is the injection and the conresponding adjoint

equivalence: IB+Bt ]+SK[B+at ] is <TrK;r1r1>. simiranry r:SK[A-]Ar l+[A+At ]

is the injection and the adjoitrt eguivalence: [A+At]+SKIA+A!l is:

<SrLr10r1>.

Definition 2:

+(ArAr )

+(GrGt )

].S

ID

b/



tet us check the connectness of the definition. By Theonem f SK[A+Ar]

is a domain. If t is an arnow in SK[B>B'] Kr is an arrcw in [B>B!],

a natunal tnansforrnation in []>Brl.

FG?

A l-B@a'TF"e'
FG

Gr and F being o-functons. Gt oKtoF is an anr\cw in [A+Af ] and S(GI"K1 oF)

is an arnow in SK[A-rAr]. The following lemma will ensune cort^ectness

for the definition. i

@3t G:),r.S(GroKroF) is a ur-co-pnojector" whose left-adjoint

night-inverse is F: tro.T(Ff "LooG).

Pnoof: We shall use Theonen 2 of Chapter" III. G is an r.l-frxrcton by

Lenma 3 and because K and S ane ul-functons.

Suppose h is an object of SKIA+A!]

^ĜF6=S(Gt oK(T(Ff olhoc) )oF)

6ii,=e t of oloQof=fi

SK[A+6r] is skeletal and 6ift=it

Suppose now that o:hiS(e roK.0oF) is an ar:lrow in SK[A-+A|];

,1, is an object in SK[R>Bi].

We have to show that thene is a unique 6:T(pto1,[oQ]i[ in SK[B+83]

such that o=S(Gt "K6"F).

!li9ig: Suppose ?, and 6, lotn satisfy the above aonditicns"

Then o=S(Gt oKi, oF)=S(Gt oKo^oF) but Gf oG, "F and G? oG^oF ane naturalrzL-z
tr"ansfonmations between the same functons and S is faithful (see

Mactane [7] Theor"em i P.91) and Gt oKF. o!'=Q? oKi^oF. (1)
IZ

tet b be an object in B.

t<drl is an arow in Bf : [T(f t"Lh.G)]b+!,b but T(FrolhoG)=FrolhoG and

[T(f t oLhoG)1bn,(Ft oLhoG)b and Bt being ske]etal: f6., b: (Ft "Lhoc)b-]gb,J

Similanlv fon J^.
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(1) implies, fo:: any object a in A: G8(K;t(ra))=Gt(K6z(Fa))=cr.

(Ft rGt ) being a pair of adjoint fr:nctons thene is a unique

I: (Ft ol,hoG)(fa)+&Fa such that GrI=o1 then xir(ra1=[^(Fa) and

K6roF=K6roF. f6, is a natr:::al tnansfonmation in [B+Br] and the

following diagram cornrnutes :

and similanly fon

This is tr.ue for

injection.

Existence: As a matte:: of

p:GtoKT(FroLhoG)oF; P

Let o,blctoKnoF be an annow

z

dII U

4BJ, G A

.t/

BlJo A'

Fl

+F'
Gr oKnoF

Ft ocoG : Fr oDoG i Ft oGr o](!,of oQ

(Fr olhoG)n (Fr.LhoG) (fcb)

| 
(Ft "LhoG)eb=1(F, olhoG)b Itl

I tlemma 2, chapter rrr) I16,r I l(ror)(Fcb)'t 
J

Lb !,rcb

Le.
D

t r5.

But (K6r)(rcu)=(16r.r)(Gb )=(Gr"r) (cb ) ana 16ru=x-orl.

and K6-=K-o^ which implies i.=6^ because K is the
l-2'Lz

convenience let:
.:

is an object Ln ['{+Ar]

in 
iA+Arlwhich 

will be pnecised l-aten'

Fr

FoG Kg Ft oGl

BE-la .IKo . e' J .' . s'

I*
b

e ? oKioe : Fl oGt o(!,of oQ

KI

i xl,

OV

rBt



Let o:T(e t oK0oe) . T(Ft oo,oG) . J:T(Ft opoc)itXg=.e, is an anrow in SKIB+B']

But KT(Fr opoQ):f I oGt oFf olfuoQofoQ=f r o[,[oQ and SKIB+Bt l being skeletal

T(Ft opo6)=T(Ft oi,hoG). i:T(Fr oLhoG)ig .s wished.

f6=KT(er oK.Coe ) . lT(Ft oooG)=IKl. (er oKloe) . (Fr oco6) . nil.o.a

6ro6lop=(Gto,tKgoF) .,(Gtogro([ogof) . (gtofrogoffof) . 66t.nf]"foGoF)

=(G 
r oq,,^ oP I o c! . (G t "nIJ ^oF )A& 'Fl oDoG "

Because Gtoet=Gf and eoF:F by lemma 2 Chapten III.

n,IIB'B,rixr is a natunal equivalence and nKg and ni].r.e are natllral

equivalences in [B+Br] , (G,on*Uor, and (G,"nfi.p.eoF) are then natural

equivalences in [A+At ].
(Gr on,,^ oF) : Gr oK.CoFiGt oKl,oF

I\&

(e t "nii.ooG"F) : Gf oKT(Ft opoG)oF-Gt oKT(Ft o1,[oQ):pip

Until now no assumption was made on o. Let us define s:

d=(Gr on*uou) - . I . (G'"n;+.DoGoF)-1 fon some B:pi6r oK.t,oF .

We have Qro$of=g

^-? :.^ - -1Utt[O*Or 
1+LS 

is a natunal equiva]-ence and LS(Gf oKooF)=LS3=0ar oK[oF.U"r;-

0n:tspip , 0c, oKtoF : Gr o(nopj'is(et o([of )

But LSp:$r "Ff oLhoGoF:Lh and Sp=6. 0o : pilf,

If we define I by: 8=U-al"*r.F.Lo.0p "u U"a LS(ct oKlop)=Lo which

implies S(Gr oXdoF)=o.

Q.E. D.

Theonern 2: +;pepxp6:rr>p9m is an o-functo::.

70



Proof: We shall use Lemma 14 of Chapter III, with D=Domxrom and M=+.

the following be a colimiting cone in DomxDom:Let

(F \T )._ ir..i,
f ^ n \ 

-----7

.---i,=i. i-

(A-rB_)

and 1et e.:F.G.itO. - and
I+I

co-units of adjunctions.

is an object in [A +B-1 it

has, as colimit vertex in [A

N. oP
I@ @1

identity t[O *O , and:
t__o "o

N. . P
t_+I@ @1+r

(Aint oBi*t)

A .\T P +T be the cornespondingv1..rt-..i '-p
u: | 1

I-T-L

It is then enough to Prove that if e

is the colimit vertex of:

a

N. oP .oeoF. "G i 
--Nini-oP-i+f"eoFi+I-oG-i+I

l@@r16@o'

with o.=Ni+l_oer1op.i+roeoFi+IooeioG_i+l . The neader: shoul-d

check that o. is the arrow, appeaning in the text of Lemma 14 and

that skefetons and adjoint equivalences may be freely ignored.

(The col-imit in the skeleton wil-I be the object isomonphic to the

col-imit in [A +B-1. But by Lemma 11 of Chapten III:

Fi-oG-i Fi+r-oG-i*l ' '
t- - oe.o(]

lflo I @]. +1

+A I theoo

Ni*l-ot t 
ioP-i+r

has I[B_*r_] "" col-imit. By Lemma 3 the composition o is an

o-funetor and the above sequence has colimit: t[, *, ]o"oI[A -rA ]=e.

Q.E.D.
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Chanfer" VTI

Remarks and Conclusion

Smal1 or? farge cateqories

To avoid unnecessary technicalities domains have been defined

to be large categoni6s; it is not difficult to restrict the constructions

to smal-I categories. The only non-t::ivial point is the functon P.

Thene the simplest way of cutting dom the number^ of objects is to

limit P(D) to those multi-sets of cardinality less or equal- to the

continuum:C. Clear:1y the colimit of a seguence of sucir sets has stiii
hl

candinality<C, the co::r.esponding tnee having at rrost C "=C br"anches.

Finite 9ogains

Unfontunately thene does not seem to be a way of making ttre powen of

a finite domain finite and this keeps us fr"om gene::al-izing Plotkinrs

SFP objects, those dcmains which are colimits of secluences of :ini:i.ei

domains

Furthen nesea::ch

It woul-d he intenesting to know how colimits in Dom may be used tc;

construct new model-s fon the ),-calcul-us or othen sl:nuct'.lnes verifying

interesting equations. The other: dinection of :reseancn which is

obviously open is to develop a theory of computation on these genenalized

domains defining effectively given domains and computable objects"

Towards that goal it would be usefu1 1o have a good notion of a basis

for. a domain and al-so to study the stnuctur"e of Dom itself. The

nelation between the fi:ncton P in Dom and powens in topoi is centainly

wonth investigating. Funthen ::esb:ictions on domains (categoricai

p::openties presenved by colimitsr *rXr+ and P) on on arr?ows should
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probably be intnoduced and the definition of P perhaps modified.

A diffenent area of study coufd be to Look for nules to Pnove

conrectness of non-dete::ministic programs '

Conclusion

Many guestions ar"e left unanswered but the author hopes he has shown

that a natunaf and pnecise semantics for non-detenninistic programs

is possi-ble and that the.notion of continuity which is essential in

mathenatical semantics and theory of computation shouLd be defined

and studied catego::ically and not topologically'

/o
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