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Abstract	
  

 
  “Business processes or workflows are often used to 

model enterprise or scientific applications. It has 

received considerable attention to automate workflow 

executions on computing resources. However, many 

workflow scenarios still involve human activities and 

consist of a mixture of human tasks and computing 

tasks.  

 

  Human involvement introduces security and 

authorization concerns, requiring restrictions on who 

is allowed to perform which tasks at what time. Role-

Based Access Control (RBAC) is a popular authorization 

mechanism. In RBAC, the authorization concepts such as 

roles and permissions are defined, and various 

authorization constraints are supported, including 

separation of duty, temporal constraints, etc. Under 

RBAC, users are assigned to certain roles, while the 

roles are associated with prescribed permissions.  

 

  When we assess resource capacities, or evaluate the 

performance of workflow executions on supporting 

platforms, it is often assumed that when a task is 

allocated to a resource, the resource will accept the 

task and start the execution once a processor becomes 
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available. However, when the authorization policies 

are taken into account,” this assumption may not be 

true and the situation becomes more complex. For 

example, when a task arrives, a valid and activated 

role has to be assigned to a task before the task can 

start execution. The deployed authorization 

constraints may delay the workflow execution due to 

the roles’ availability, or other restrictions on the 

role assignments, which will consequently have 

negative impact on application performance.  

 

  When the authorization constraints are present to 

restrict the workflow executions, it entails new 

research issues that have not been studied yet in 

conventional workflow management.  This thesis aims to 

investigate these new research issues.  

 

  First, it is important to know whether a feasible 

authorization solution can be found to enable the 

executions of all tasks in a workflow, i.e., check the 

feasibility of the deployed authorization constraints. 

This thesis studies the issue of the feasibility 

checking and models the feasibility checking problem 

as a constraints satisfaction problem.  

 

  Second, it is useful to know when the performance of 

workflow executions will not be affected by the given 

authorization constraints. This thesis proposes the 

methods to determine the time durations when the given 

authorization constraints do not have impact.  

 

  Third, when the authorization constraints do have 

the performance impact, how can we quantitatively 

analyse and determine the impact? When there are 



	
   xvi	
  

multiple choices to assign the roles to the tasks, 

will different choices lead to the different 

performance impact? If so, can we find an optimal way 

to conduct the task-role assignments so that the 

performance impact is minimized? This thesis proposes 

the method to analyze the delay caused by the 

authorization constraints if the workflow arrives 

beyond the non-impact time duration calculated above. 

Through the analysis of the delay, we realize that the 

authorization method, i.e., the method to select the 

roles to assign to the tasks affects the length of the 

delay caused by the authorization constraints. Based 

on this finding, we propose an optimal authorization 

method, called the Global Authorization Aware (GAA) 

method. 

 

  Fourth, a key reason why authorization constraints 

may have impact on performance is because the 

authorization control directs the tasks to some 

particular roles. Then how to determine the level of 

workload directed to each role given a set of 

authorization constraints? This thesis conducts the 

theoretical analysis about how the authorization 

constraints direct the workload to the roles, and 

proposes the methods to calculate the arriving rate of 

the requests directed to each role under the role, 

temporal and cardinality constraints. 

 

  Finally, the amount of resources allocated to 

support each individual role may have impact on the 

execution performance of the workflows. Therefore, it 

is desired to develop the strategies to determine the 

adequate amount of resources when the authorization 

control is present in the system. This thesis presents 
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the methods to allocate the appropriate quantity for 

resources, including both human resources and 

computing resources. Different features of human 

resources and computing resources are taken into 

account. For human resources, the objective is to 

maximize the performance subject to the budgets to 

hire the human resources, while for computing 

resources, the strategy aims to allocate adequate 

amount of computing resources to meet the QoS 

requirements.  
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1 
Introduction 

 

  “Business processes or workflows are often used to 

model enterprise or scientific applications [Deelman2009] 

[He2006a] [Hsu2011] [WebBusinessProcess]. A workflow 

consists of multiple tasks with the order of execution, 

i.e., a task can only start execution after another task 

in the workflow is completed (the former task is called 

the latter’s child). It has received considerable 

attention to automate workflow executions on computing 

resources, which has lead in part to BPEL being proposed 

as a standard for specifying and executing workflows 

[WebBusinessProcess]. However, many workflow scenarios 

still involve human activities and are comprised of a 

mixture of human tasks and computing tasks [Gaaloul2008] 

[Hara2009] [Schall2010] [Zhao2010] [VideoWorkflow]. For 

example, in IT-based video production workflows 

[VideoWorkflow], human interactions are still required 

for decision-making and artistic choices (e.g., video 

editing decisions). In mortgage business processes in 

banks [WebHumanTask], various human tasks (e.g., a manual 

approval step is required if the mortgage value exceeds 

some amount) could be involved in order to make the final 

decisions. Indeed, in many application domains, the 

completion of a task in a workflow replies on the 

subjective judgment of human. It would be very difficult, 
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if not possible, to use computers to completely replace 

human being in the foreseeable future. 

 

  In traditional workflow management systems, human 

interactions in a workflow are not well supported, and 

therefore a workflow with human involvement can be 

regarded as a semi-automated workflow [WS-BPEL]. 

Motivated by the requirements of integrating human 

interactions into business processes, research exists to 

support human tasks in workflow contexts. WS-HumanTask 

and BPEL4People, which have been proposed to overcome the 

lack of support for human activities in BPEL [WS-BPEL] 

[WebHumanTask], are the exemplar products of these 

research efforts. WS-HumanTask and BPEL4Peopl enables the 

integration of human tasks in business processes, and 

therefore the executions of the workflows containing 

human tasks can also be automated [WS-BPEL] 

[WebHumanTask].  

 

  Human involvement introduces security and authorization 

concerns, requiring restrictions on who is allowed to 

perform which tasks at what time. Research has been 

conducted to attach authorization information (such as 

roles and permissions) to activities, and to impose 

authorization constraints (such as separation of duty) on 

workflow executions [Ahn2000] [Bertino2006] 

[Crampton2012] [Joshi2005] [Lu2009] [Zhao2008] [zou2009]. 

For example, in BPEL4People, authorization concepts such 

as roles and permissions are defined, and various 

authorization constraints are supported, including 

cardinality constraints, separation of duty, binding of 

duty, etc. The authorization specified in BPEL4People can 

be categorized as Role-based Authorization Control 

(RBAC), under which users are assigned to certain roles, 
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while the roles themselves are associated with prescribed 

permissions.  

 

  When we assess resource capacities, or evaluate the 

performance of workflow executions on supporting 

platforms, it is often assumed that when a task is 

allocated to a resource, the resource will accept the 

task and start the execution once a processor becomes 

available. However, when human activities and 

authorization constraints are taken into account, the 

issue can become complex. The following example 

illustrates such a situation”.  

 

  A bank will need both human activities and computing-

based activities to support its business. A workflow will 

typically contain both Human Tasks (HT) and Computing 

Tasks (CT): A human task may consist of a person (or a 

user in the RBAC terminology) with an official position 

(or a role in RBAC, e.g., a branch manager) signing a 

document; a computing task may involve running an 

application on a computing resource to assess risk for an 

investment. Further, the computing applications may be 

hosted in a central resource pool (e.g. a cluster), and 

the invocation of an application may be automated without 

human intervention, which we term an Automated Computing 

Task (ACT), or for security reasons, can only be 

initiated by a user with a certain role and be executed 

under that role/user, which we term a Human-aided 

Computing Task (HCT). The following authorization 

constraints are often encountered in such scenarios 

[Zhao2008]: 1) Role constraints: A human task may only be 

performed by a particular role; a computing application 

may only be invoked by assuming a particular role; 2) 

Temporal constraints: A role or a user is only activated 



	
   4	
  

during certain time intervals (e.g., a staff only works 

in morning hours); 3) Cardinality constraints: The 

maximum number of tasks (computing or other) running 

simultaneously under a role is N; 4) “Separation of Duty 

constraints: If Task A (HT or CT) is run by a role (or a 

user), then Task B must not be run by the same role (or 

user); 5) Binding of Duty constraints: If Task A is run 

by a role (or user), then Task B must be run by the same 

role” (or user).  

 

  Since a valid and activated role has to be assigned to 

a task before the task can start execution (to put 

security, tasks are assigned to rolls first), these 

authorization constraints may delay the workflow 

execution and consequently have negative impact on 

application performance. The following case study 

illustrates the situation.  

 

Table 1.1 Execution times of the workflow tasks in the 

case study 

 

Task Execution time Task Execution time 

T1 
30 T2 

30 

T3 
36 T4 

42 

T5 
48 T6 

42 

T7 
30 T8 

36 

T9 
42   
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  Assume a workflow consists of 9 tasks, T1-T9 as shown 

in Fig.1.1. The execution time of each task in the 

workflow is shown in Table 1.1.  

 

 

 
 

Figure 1.1. The workflow in the case study 

 

  There are 5 roles in the system. The temporal 

constraints of these roles are specified in Table 1.2, 

and illustrated in Figure 1.2, where the shaded area is 

the time duration when the roles are not activated. 

 

Table 1.2 Temporal constraints of the roles in the case 

study 

 

Role Temporal Constraint Role Temporal Constraint 

r1 {[09:00, 17:00]} r2 {[12:00, 17:00]} 

r3 {[11:00, 17:00]} r4 
{[09:00, 12:00], [14:00, 

17:00]} 
 

T1#

T3#T2#

T5#T4# T6#

T7# T8#

T9#
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Figure 1.2. The temporal constraints of the roles 

 

Assume the role constraints of the tasks are as follows.   

 

T1 -> {r1} 

T2 -> {r2, r3} 

T3 -> {r2, r3} 

T4 -> {r2, r3} 

T5 -> {r2, r4} 

T6 -> {r4} 

T7 -> {r2, r3} 

T8 -> {r2, r3} 

T9 -> {r2, r5} 

 

  When the first task of the workflow of figure 1.3 

(i.e., T1) arrives, it can be run under role r1 according 

to the role constraints, and r1 is always activated 

according to the temporal constraints. Therefore, T1 

starts execution immediately. After T1 is completed, T2 

and T3 are ready to run. T2 and T3 can be run under r2 and 
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r3. But when T1 is completed, r2 and r3 are not activated. 

So the executions of T2 and T3 will be delayed by the 

authorization constraints. Similarly, when T6 is ready to 

run, r4, which is the role that T6 has to assume, is not 

activated. Consequently, the execution of T6 will also be 

delayed. 

  

 
 

Figure 1.3. An exemplar scheduling solution of the 

workflow under the authorization constraints in the case 

study. 

 

  “It is common to find such authorization constraints 

and interaction between human and automated activities; 

our domains of interests include healthcare systems 

[Stuit2011], video management domain [VideoWorkflow] and 

r1#

11#10#09# 12# 13# 14# 15# 16# 17#

r3#

11#10#09# 12# 13# 14# 15# 16# 17#

r5#

11#10#09# 12# 13# 14# 15# 16# 17#

r2#

11#10#09# 12# 13# 14# 15# 16# 17#

r4#

11#10#09# 12# 13# 14# 15# 16# 17#

T1#

T2#

5#

5# 7#

6# 8# 5#

T3# T5# T7#

7#

T6#

6#

T8#

7#

T9#

T4#

Start#Time# Finish#Time#

Temp.#delay#
on#T2#

Temporal#delay#on#T3#
Temporal#
delay#on#T6#
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the manufacturing community [Hara2009] [Jin2003]. Human 

intervention and associated authorization clearly affects 

the processing of tasks and impacts on both application-

oriented performance (e.g. mean response time of 

workflows) and system-oriented performance (e.g. 

utilization of the computing resource pool). Obtaining 

these performance data will be critical in capacity 

planning, designing authorization policies and developing 

workflow management strategies”.  

 

  When the authorization constraints are present to 

restrict the workflow executions, it entails new research 

issues that have not been investigated yet in 

conventional workflow management.   

 

  First, it is important to know whether a feasible 

authorization solution can be found to enable the 

executions of all tasks in a workflow, i.e., check the 

feasibility of the deployed authorization constraints. 

The following example illustrates the situation. Assume a 

workflow consisting of 4 tasks as shown in Figure 1.4. 

Assume that the SoD (Separation of Duty) constraint is 

r(T2)≠r(T3), which means that the role assigned to task T2 

must be different from the role assigned to T3, and that 

the BoD (Binding of Duty) constraints are r(T1)=r(T2) and 

r(T1)=r(T3). We cannot consider the roles only without 

mentioning the tasks to be involved and SoD and BoD 

constraints depend on the tasks to be assigned. 
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Figure 1.4. A case study for feasibility checking 

 

  In this situation the feasible solution is not possible 

as if task T1 can run under role r1 then according to the 

BoD constraints tasks T2 and T3 should run under r1 as 

well. However, according to SoD constraint tasks T2 and 

T3 cannot run under the same role, which is the 

contradiction. Therefore, the feasible solution under 

these constraints is not possible.  

 

  Feasibility checking is important because if there are 

some tasks in a workflow that cannot be authorized 

subject to the deployed authorization constraints, there 

is no point to start the execution of the workflow at 

all. The request of the workflow execution should be 

rejected in the first place. Checking the feasibility of 

authorization constraints can help us design the 

authorization policy so that it will not cause the 

unnecessary rejections of the execution requests.  

 

  Second, the existence of the feasible authorization 

solutions for a workflow only means that the workflow can 

run to completion. Its execution performance may still be 

T1#

T3#T2#

T4#
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negatively affected by the deployed authorization 

constraints. For example, roles may have temporal 

constraints, i.e., roles may only be activated during 

certain periods. When a task in a workflow is authorized 

to run under a particular role, but the role is not 

activated yet, the task may have to wait and consequently 

increase the execution time of the whole workflow. 

Therefore, it is useful to know when the performance of 

workflow executions will not be affected by the given 

authorization constraints. The first and second research 

issues are the focuses of Chapter 3 in this thesis. 

 

  Third, knowing the time durations when the 

authorization constraints will not have negative impact 

on performance is one way of shedding light into the 

impact of the authorization constraints. Another aspect 

of the impact is that when the authorization constraints 

have the performance impact, how to quantitatively 

determine the impact. For example, if the authorization 

constraints will cause the delay for the workflow 

execution, how can the delay be calculated? Chapter 4 in 

this thesis analyses the performance impact of the given 

authorization constraints. Further, based on the analyses, 

an optimal authorization method is proposed to select the 

authorization solution that can minimize the performance 

impact caused by the authorization constraints.  

 

  Fourth, a key reason why authorization constraints may 

have impact on performance is because the authorization 

control directs the tasks to some particular roles (i.e., 

the role assignment process). The authorization policy 

may specify the constraints on the roles, for example, 

role constraints or temporal constraints. Also, the 

quantity of resources allocated to support each role may 
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be different. For example, the number of the bank 

managers in a bank is normally different from the number 

of cashiers. This may cause the tasks assigned to 

different roles to have different response time, and 

consequently affect the execution performance of the 

workflow as a whole. Therefore, in order to examine the 

impact of the authorization constraints, it is desired to 

know the rate of the tasks arriving at each role, given 

the deployed authorization constraints.  

 

  Finally, after knowing the rate of the request arriving 

at each role, an important issue is to determine the 

amount of resources that need to be allocated to support 

the executions of the tasks assuming a particular role, 

so as to satisfy the desired Quality-of-Service. A 

workflow may consist of human tasks and computing tasks. 

Human resources and computing resources have different 

features and therefore require different considerations 

when determining the resource quantities.  

 

  Chapter 5 focuses on investigating the fourth and fifth 

research issues discussed above. The methods are proposed 

in Chapter 5 to calculate the rate of the tasks arriving 

at each role given a set of authorization constraints. 

Moreover, the resource allocation strategies are 

developed for both human resources and computing resource, 

aiming to optimize the performance under the current 

constraints.  

 

  To date, little attention has been paid to investigate 

the issues discussed above. This thesis aims to tackle 

these new research issues. The main contributions of this 

thesis are as follows.  
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- Proposing a method to check the feasibility of the 

authorization constraints, i.e., given a set of 

authorization constraints, checking whether there 

is a feasible authorization solution to enable the 

workflow execution (Chapter 3)  

 

- Proposing a method to determine the time durations 

when the temporal constraints do not have negative 

impact on the performance of workflow executions 

(Chapter 3) 

 

- Proposing the methods to conduct quantitative 

analyses about the delay caused by the 

authorization constraints for workflow executions 

(Chapter 4) 

 

- Developing an optimal authorization method. The 

method is optimal in the sense that it can select 

the authorization solution that minimizes the delay 

caused by the authorization constraints 

 

- Proposing a method to conduct theoretical analysis 

about the level of workloads assigned to individual 

roles, given the deployed authorization constraints 

(Chapter 5)   

 

- Proposing the methods to determine the suitable 

amount of resources so that the performance of 

workflow executions is maximized, given the 

deployed authorization constraints and the resource 

budget (Chapter 5) 
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- Conducting the experimental studies to verify the 

effectiveness of the proposed methods in this 

thesis.  

 

  The rest of the thesis is organized as follows. Chapter 

2 conducts the literature review relevant to the work in 

this thesis. Chapter 3 presents the methods to conduct 

the feasibility checking for the deployed authorization 

constraints and to calculate the time duration when the 

workflow executions will not be affected by the 

authorization constraints. Chapter 4 analyses the delay 

caused by the authorization constraints and further 

proposes an optimal authorization method. Chapter 5 

present the methods to calculate the level of the 

workload directed to each role due to the deployed 

authorization constraints. Further, Chapter 5 presents 

the resource allocation strategies for both human and 

computing resources to optimize the performance.  
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2 
Literature	
  Review	
  

 

This chapter will discuss the work related to workflow 

management, workflow scheduling and resource allocation, 

and security and authorization. 

 

 

2.1 Workflow Management 
 

2.1.1 Workflow Modeling 

 

  In general, “workflow is the automation of a business 

process, in whole or part, during which documents, 

information or tasks are passed from one participant to 

another for action, according to a set of procedural 

rules [W3Workflow]. A workflow management system is a 

system that defines, creates and manages the execution of 

workflows through the use of software, running on one or 

more workflow engine, which is able to interpret the 

process definition, interact with workflow participants 

and, where required, invoke the use of IT tools and 

applications” [W3Workflow]. A workflow consists of a 

number of activities. An activity is different units of 

work to be done by a user or a program, requesting 

application programs [W3Workflow]. Activities are the 

smallest units of work. An activity is also called a 
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task. In a workflow, the execution of tasks has to follow 

the specified dependency, i.e., the acceptable relative 

orders of tasks executions. The typical elements of 

dependency are sequential execution and parallel 

execution of tasks. 

 

  However, the study in [Kim2003] has analyzed in more 

detail the dependency of workflows and its implications 

on distributed workflow systems. The authors have 

identified four types of workflow dependencies that could 

be useful in designing a distributed workflow system. 

These different types of dependencies are:  

 

1) Data Dependency – used for modeling the effects of 

data flow on the behavioral aspects of different 

activities in a considered workflow. This modeling is 

further used for generating data-transition conditions 

associated with each activity along with the data-

dependence information between the activities;  

 

2) Activity (Control) Dependency – relates to the 

“control flows in a workflow procedure and is 

particularly used for modeling the effects of conditional 

and parallel branches” on the behavioral aspects of 

different activities in a considered workflow; For 

example, an activity in a workflow “can only start 

execution after another activity in the workflow has 

completed (the former activity is called the latter’s 

child”, and the latter is called the parent of the 

former).  

 

3) Role Dependency – represents the role transition 

orders within a procedure. This could be modeled by 
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mapping the control flow part to the role assignment part 

in a workflow;  

 

4) Actor Dependency – used to model the correspondent 

work-cases of the component jobs in the workflow; the 

dependency concepts are further embodied as objects in a 

distributed workflow architecture. While designing a 

workflow based on these four dependencies, the “actor-

based workflow model and the role-based workflow model 

require actor-transition, activity-transition and data-

transition conditions while activity-based workflow model 

and workcase-based workflow model only use the activity-

transition conditions and data-transition conditions”. 

 

  A task in a workflow is either processed by a computing 

resource or human being, which is called the actor of a 

task. Which actor will perform a task is typically 

decided by the workflow management system. However, when 

the security and authorization mechanisms are present, 

which actors, especially which human being actors, can 

perform a task may also be specified by the security and 

authorization mechanisms, which will be discussed in the 

later part (section 2.1.3) of this chapter.  
 

  Workflows are “often used to model enterprise or 

scientific applications [Deelman2009] [He2006a] [Hsu2011] 

[WebBusinessProcess]. Workflow management has been 

extensively studied and as a result is well documented in 

related literature [Atluri2000] [Chakraborty2007] [He2005] 

[Kim2003a]. Much of this research is aimed at automating 

the execution, and enhancing the performance, of 

workflows in parallel and distributed systems” 

[Chakraborty2007] [Manolachethesis]. 
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2.1.2. Automation of Workflow Executions 

 

  A lot of research studies have been conducted to enable 

the automation of workflow executions, which lead to the 

proposal of “Web Services Business Process Execution 

Language (WS-BPEL). WS-BPEL is a language to specify the 

behavior of the business processes that are based on the 

Web Services”. WS-BPEL’s processes use the interface of 

the Web Service to import and export the functionality.  

 

  The business process “can be applied in one of the two 

ways: Abstract or Executable. The abstract process is 

partially specified”. It is descriptive and cannot be 

executed. It is declared as an “abstract” process. The 

executable process is fully specified and can be executed 

as well. The abstract process can hide some operational 

details while the executable process shows all the 

details. Abstract processes are descriptive in role. WS-

BPEL defines both abstract and executable processes. WS-

BPEL defines a model and the grammar describing the 

behaviors for the business process, which bases on 

interactions between the process and its partners. 

 

  The WS-BPEL provides the language to specify the 

Executable and the Abstract processes. In this way it 

extends the Web Services interaction model and enables it 

to support business transactions. In order to support and 

facilitate the expansion of the automated process 

integration in both within the corporation and business-

to-business spaces, WS-BPEL defines an interoperable 

integration model. 

	
  
  There is the work integrating multiple workflow 

management systems and automating the execution of the 
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workflows spanning multiple organizations. The study in 

[Chakraborty2007] has designed and implemented a so-

called Heterogeneous Event Management Middleware (HEMM) 

to integrate the events across multiple siloed workflow 

management systems (WFMS). They have focused on the 

problem wherein a high-level change in workflow requires 

the running workflow (WF) instances in the WFM to handle 

external events necessitated by the high-level change. 

They argued that the existing solutions to handle such 

type of problems are cost-intensive mainly in terms of 

back-end downtime from an enterprise’s viewpoint, as they 

require changing of either the workflow process 

definition or the workflow engine. The authors used their 

proposed HEMM to address this issue by: 1) the 

introduction of an overlay on the top of a WFMS; and 2) 

the abstraction of unforeseen event handlings from the 

workflow executions. Further, to adapt to new events 

whose process definitions could not be handled in a 

workflow execution, the event transformation is employed 

for mapping of events to event handlers associated with 

running workflow instances. The authors further 

demonstrated their prototype implementation by 

considering an example prevalent in the telecom industry. 

 

2.1.3 Human Activities 

 

  Although a lot of research focuses on managing 

workflows in computing resources, “many workflow 

scenarios still involve human activities and will be 

comprised of a mixture of human tasks and computing 

tasks”. Therefore, some studies investigate how to 

incorporate human activities into workflow execution. An 

exemplar product of these research efforts is 
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BPEL4People, “which has been proposed to overcome the 

lack of support for human activities in BPEL”.  

 

  BPEL4People introduces an extension to BPEL to support 

the human involvement in the business processes by adding 

the set of new elements in the standard BPEL [WS-BPEL]. 

The specification introduces human as a new basic 

activity, which supports human interaction in processes 

directly. In the language design, the extension in BPEL 

for people is defined in such a way that it makes a top 

layer on BPEL. This extension introduces the new elements 

and attributes to cover complex human interactions. The 

generic human roles are process initiator, process 

stakeholder and business administrators. The new basic 

activity elements use human tasks as an implementation 

and it allows the specification of the tasks for the 

processes.  

 

  The study in [Zhao2008] has proposed a formal model 

that adds support for human task support to Business 

Process Execution Language (BPEL) and have named it as 

BPEL4People. BPEL, which has been described as a standard 

for specifying and executing workflow of Web service 

composition invocation, has an inherent limitation of not 

providing any support for human workflow. The authors 

have used CSP process algebra to present a formal model 

of human workflow. 

 

  The study in [Stuit2011] has evaluated a “novel 

interaction-centric process modelling method using a case 

study” of a healthcare human collaboration processes 

(HCP) at a Dutch academic hospital. The HCPs in the 

healthcare domain involves interactions taking place 

“between healthcare workers representing different (para) 
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medical disciplines and departments. The existing 

workflow-based process modelling tools for healthcare 

process management” focus on defining task sequences 

rather than modelling the graphical description of human 

interactions in a HCP. The authors have considered a care 

pathway HCP performed by the head and neck oncology team 

for the evaluation of their interaction-centric process 

modelling method. The evaluation of the method has 

highlighted three significant results: 1) collection and 

formalization of the tacit domain knowledge of the 

interviewed healthcare workers in individual interaction 

diagrams; 2) support provided by the method for automatic 

integration of individual interaction diagrams into a 

global interaction diagram capable of reflecting the 

consolidated domain knowledge; and 3) utilizing a 

graphical modeling language to describe interactions 

between methods, their composition and routing relations, 

and their roles using an effective tree-based 

description; The proposed method showed good support for 

improving the healthcare collaborations. 

 

 

2.2 Workflow Scheduling 
 

  Automating the execution of the tasks in a workflow is 

one of the main focuses in a workflow management system. 

Anther focus is to enhance the performance of workflow 

executions. In this aspect, the scheduling strategies 

employed by the workflow management system play a 

critical role.  

 

  Workflow can be modeled as a Directed Acyclic Graph 

(DAG). Therefore, the DAG scheduling strategies can be 

applied to workflow scheduling. There are two basic 
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stages in DAG scheduling. In the first stage, the 

scheduling order of the tasks in a DAG is determined, 

while the second stage decides which resource should be 

used to run a task. Most DAG scheduling algorithms is 

based on list scheduling, in which all tasks are 

prioritized and the scheduling order of the tasks follows 

their priorities. Two basic techniques to determine the 

scheduling order of the tasks are to calculate the t-

level (top level) and b-level (bottom level) of the tasks 

in a DAG and use them to prioritize the scheduling order 

of the tasks. The t-level of task ti is the length of the 

longest path from the first task (also called the entry 

task) in the DAG to ti. The b-level of a task is the 

length of the longest path from the last task (also 

called the exit task) to the task. The t-level of a task 

correlates with the earliest start time of the task, 

while the b-level of a task correlates with the latest 

start time of a task if a deadline is set for the 

completion time of the whole DAG. Other list scheduling 

algorithms just use different approaches to determine the 

scheduling order of the DAG.  

 

  After the tasks’ scheduling order is determined, the 

scheduling algorithm further performs resource selection 

for all tasks, i.e., decides among all resources which 

resource should be used to run each of the tasks. A basic 

method is to select the resource, which can offer the 

least finish time.  

 

  Different DAG scheduling algorithms essentially use 

different approaches to determining the tasks’ scheduling 

order and selecting the resources to run the tasks. 

Reference [Kwok1999] conducts a survey of 27 DAG 

scheduling algorithms, which mainly aim to minimize the 
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scheduling length, i.e., the duration between the time 

when the first task in the DAG starts execution and the 

time when the last task completes execution. 

 

  The study in [van der Aalst2002] has characterized the 

scheduling principle for utilizing available 

computational resources. They have suggested that a 

scheduling principle should match each atomic task for 

proper resource management, which could finally lead to 

matching an atomic task to a corresponding suitable 

resource. Two decisions should be supported by the 

scheduling principle: firstly tasks should have some 

defined order for execution; and secondly, task 

assignment to the available resources should represent 

the most suitable match from the available set of 

resources. In nutshell, scheduling a workflow typically 

consists of two stages: 1) determining the execution 

order of the tasks in a workflow and 2) determining the 

resources that should be used to run each task. Numerous 

scheduling strategies have been proposed in literature. 

 

  The study in [Ranaweera2000] has proposed a novel 

scheduling algorithm, called TDS, to optimally schedule 

the tasks represented using a directed acyclic graph 

(DAG) onto an available set of heterogeneous processors 

with varying computing power. The TDS aims at minimizing 

the schedule length, also known as makespan, and 

scheduling time itself under task duplication based 

scheduling scenario. The algorithm further aims at 

minimizing the overall processing complexity to ensure 

reasonable runtime. The algorithm uses Earliest Start 

Time of a node (EST), Earliest Completion Time of a node 

(ECT), Latest Allowable Start Time of a node (LAST), 

Latest Allowable Completion Time of a node (LACT), 



	
   23	
  

favorite predecessor task of a given task (fpred) and 

favorite processor of a given task (fproc). TDS runs in 

four steps, namely: 1) top-down traversal of the DAG to 

compute EST, ECT, fpred, fproc1 to fprocn and level of 

each task; 2) bottom-up traversal of DAG for calculating 

LACT and LAST for each node; 3) “an initial set of task 

clusters is generated using a reasonably small number of 

processors”; and 4) involves duplication of tasks and 

message forwarding, which represents forwarding of the 

results from that processor that has minimum completion 

time of a task amongst the available processors. The 

authors used three inputs: 1) Cholesky decomposition DAG; 

2) Diamond DAG; and 3) the DAG for Gaussian elimination 

code; for their proposed algorithm, TDS, and compared the 

results with a similar scheduling algorithm, called Best 

Imaginary level scheduling (BIL). The comparison results 

showed better communication-to-computation cost ratios 

(CCR) of 0.2 as compared to 1 obtained using BIL and gave 

far more superior results than BIL for the scheduling 

time. 

 

  The study in [N’takpe’2007] has proposed a novel 

scheduling approach to execute mixed parallel 

applications on heterogeneous platforms. The static 

scheduling algorithms for online workflow applications 

are not feasible due to occurrence of multiple workflows 

submitted by different users and arriving at different 

times. In such a scenario, the task scheduling is done by 

maintaining waiting queues with an association of 

priorities with each of the workflow present in the 

queue. Such a scheduling becomes more difficult when a 

single processor is available for running each task. This 

makes dealing with workflows, which are composed of data-

parallel tasks, as infeasible.    The approach proposed 
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by authors has been found to be suitable for a single 

workflow involving mixed parallel applications, which 

combine task parallelism and data parallelism, on 

heterogeneous platforms.  

 

  The study in [N’takpe’2008] also extended their work in 

[N’takpe’2007] to develop a scheduling mechanism for 

dealing with concurrent mixed parallel applications. In 

general, there are two steps involved in concurrent 

scheduling for mixed parallel applications namely: 1) 

constrained resource allocation – to determine an optimal 

allocation for each task while determining the number of 

processors available; and 2) concurrent mapping – 

involving prioritizing of tasks of workflows for their 

execution. The authors have restricted the applicability 

of their scheduling mechanism to concurrent workflows 

submitted at the same time. Their scheduling mechanism 

does not deal with the online workflows submitted at 

different times. 

 

  The study in [Tarumi1997] has addressed the resource 

conflict problem by considering a resolution strategy at 

the runtime rather than at the build time. They 

associated agents with the resources and allowed mutual 

communication between agents for reserving office 

resources and checking their availability. 

 

  The study in [Senkul2002] proposed an interesting 

approach that considers resource allocation constraints 

while dealing with the scheduling problem. The approach 

deploys constraint logic programming (CLP) and integrates 

it with Concurrent Transaction Logic (CTR) to formulate a 

new logical representation. 
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  The study in [Doulamis2011] has examined the resource 

allocation problem together with task scheduling. In a 

Workflow Management System (WfMS), resource allocation 

and task scheduling are two important issues that impose 

mutual constraints. Thus, optimizing resource allocation 

is subject to task scheduling and vice versa. They have 

highlighted the characteristics of an ideal algorithm for 

solving these fundamental issues in WfMS, which mainly 

include: “performance metrics of the infrastructure e.g., 

the number of resources and their utilization; and 

quality criteria” such as under temporal restrictions 

percentage of tasks undergoing violations. The authors 

have proposed an algorithm called Resource Conflicts 

Joint Optimization (Re.Co.Jo.Op), which aims at jointly 

optimizing resource allocation and task scheduling by 

minimizing resource conflicts subject to temporal 

constraints while simultaneously optimizing throughput or 

utilization subject to resource constraints. They used 

matrix for representing the two factors and applied the 

concepts of the generalized eigen value analysis for 

finding the optimal solution of the problem. They further 

proposed an agent-based architecture for integrating 

their proposed algorithm into a functional WfMS. The 

experimental results have established the superiority of 

their proposed strategy on the conventional approaches. 

 

  All of the above strategies of scheduling workflows do 

not consider the security and authorization issues. 

However, the security and authorization policies are 

deployed in many workflow applications in real worlds.  
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2.3. Security and Authorization for 

Workflow Executions 
 

  The workflow security and authorization constraints 

have been researched a lot in the literature and well 

documented in [Atluri2000] [Crampton2012] [He2011] 

[ManolacheThesis] [Wang2010] [Lu2009]. But different 

works have different focuses.  

 

2.3.1. Enforcement of Security and Authorization 

Policies 

 

  Some studies focus on developing the methods to 

guarantee that in the processing of the workflows in the 

system, the authorization policies can be enforced 

properly. 

 

  XACML authorization engine is a popular product to 

achieve this. XACML stands for eXtensible Access Control 

Markup Language. It defines a declarative language to 

specify the access control policy and a processing model 

describing how to evaluate the authorization requests 

according to the rules defined in policies. XACML can be 

used to specify multiple authorization control schemes, 

such as Attribute Based Access Control system (ABAC) and 

Role-Based Access Control (RBAC). In ABAC, the attributes 

are associated with a user, an action or a resource and 

attributes are used to by the authorization control 

scheme to decide whether a given user may access a given 

resource in a particular way. There are multiple 

components in the XACML authorization engine, such as 

Policy Administration Point (PAP), Policy Decision Point 

(PDP), Policy Enforcement Point (PEP). PAP is the 
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component to manage authorization constraints. PDP is a 

component to evaluate and issue authorization decisions. 

PEP intercepts a user’s access request to a resource and 

make sure that the request can only use the resources in 

the way consistent with the decision made by PDP. 

 

  The study in [Dagdee2011] has conducted a study to 

enhance the XACML standard so that it can support 

credential based hybrid access control. The standard 

XACML only supports attribute based access control 

mechanism. This work proposes credential based hybrid 

access in which any unknown user can have easy and 

immediate access to open access environment. The main 

extensions in the XACML policy specification are 1) 

addition of new element <Credential> for the 

representation of credentials 2) addition of the new 

element <CredentialRequirements> for logical combination 

of credentials 3) inclusion of CredentialId attribute in 

the <CredentialAttributeDesignator> to support conditions 

involving credential attributes 4) addition of 

<Credentials> in the XACML request context to get the 

credentials from the user. The extension in the XACML 

architecture is proposed in the form of credential 

manager in the context handler, which extracts the 

credential information submitted by the user. The access 

policy contains various conditions over credentials and 

the attributes associated with the credentials. 

 

  The study in [Liu2008] has also improved the XACML 

policy request processing engine. The growth in the web 

applications has improved the complexity and size of the 

XACML policies, which is the main cause of the slow 

processing of the requests. This work focuses on the 

performance of the request processing, which is a main 
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issue. Liu proposes a new XEngine, an efficient request 

processing schema. The XEngine follows the following 

steps: 1) it converts a textual policy into a numerical 

policy 2) it converts a numerical policy with complex 

structures to a numerical policy with normalized 

structures 3) it converts the numerical normalized 

structures to a tree structure for improved performance. 

To verify the effectiveness of the technique experiments 

have been conducted on both real life and synthetic XACML 

policies. The results verify the claim of improving the 

performance by orders of magnitude. The performance 

improves linearly with the number of policies. For small 

number of policies the XEnging is faster in one to two 

order of magnitude while for larger policies the XEngine 

is faster by three to four orders of magnitude than the 

Sun PDP. 

 

  The study in [Wang2010] has proposed a role-and-

relation-based access control (R2BAC) model for workflow 

authorization systems wherein a user’s role membership 

and his relationships with other users help in 

determining if the user, under the given conditions, 

could be allowed to perform a particular step of a 

considered workflow. The authors explored the 

computational complexity aspect of the workflow 

satisfiability problem to investigate if a set of users 

could complete a workflow. They further used 

parameterized complexity theory tools for understanding 

the problem complexities. They reduced the workflow 

satisfiability problem to SAT and applied SAT solvers for 

analyzing and solving this reduced problem. The 

experimental results have showed efficiency of the 

algorithm in solving instances of reasonable size. They 

further study the resiliency problem in workflow 
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authorization systems to investigate if a workflow could 

be completed when a number of users are absent. The 

authors further defined three resiliency levels in 

workflow systems and studied the associated computational 

problems.  

 

  The study in [Zou2009] combined the advantages of role-

based access control (RBAC) and attribute-based access 

control (ABAC) mechanisms to propose a new access control 

model (CRBAC), which integrates all kinds of constraints 

into the RBAC model. The authors have analyzed the 

generic properties of the attribute constraints and have 

presented them into two constraint templates: a) 

authorization mapping constraint; and b) behavior 

constraint; for automating the user-role and role-

permission mapping as well as restricting the behaviors 

of the authorization entities respectively. The authors 

have further introduced a state mechanism for building up 

the constraints in a group of statuses of the entities as 

well as reflecting the authorization control outcomes. 

They, based on the proposed constraint templates and the 

introduced state mechanism, have developed an execution 

model. Moreover, use cases have been proposed to describe 

the authorization process taking place in the proposed 

access control model (CRBAC). The authors have further 

analyzed the correctness, complexity, flexibility and 

compatibility of CRBAC to compare the multi-grained 

constraints of CRBAC with other models. 

 

2.3.2. Feasibility Checking of Authorization 

Constraints 

 

  Some studies focus on checking whether the deployed 

authorization constraints can be satisfied 
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[Crampton2005][Atluri1999][Wang2010][Lu2009]. The work in 

[Crampton2005] conducted the theoretical analysis about 

the satisfiability of the authorization constraints for a 

workflow. The work conducted the theoretical analysis and 

found out that in order to check whether there is a valid 

the workflow authorization, it only needs to consider a 

single linear extension (i.e., a linear ordering) of the 

tasks in the workflow. There exists a valid workflow 

authorization if and only if there is also a valid 

authorization solution for the linear extension. However, 

the work cannot obtain all feasible authorization 

solutions.  The modeling approach presented in Chapter 3 

is able to obtain all feasible authorization solutions. 

Based on this, our work further develops the 

authorization methods, aiming to reduce the negative 

impact imposed by the authorization constraints. 

 

  Petri-net is a popular methodology in the literature to 

achieve this, partly because petri-nets is capable of 

capturing and modeling the dynamic behaviors in a system, 

and partly because there are well established techniques 

to conduct the theoretical and simulation analysis for 

the constructed Petri-nets models.  

	
  
  The work in [Atluri1999] conducts the safety analysis, 

i.e., analyzes whether a specified authorization state 

(i.e., the task-role assignments) can be reached under a 

set of authorization constraints, given an initial 

authorization state. The work uses the Color Timed Petri 

Nets (CTPN) to model roles, SoD and temporal constraints, 

and then converts the constructed CTPN model to an 

ordinary Petri-Net (PN) model so that the established PN 

analysis techniques can be applied to generate the 

results. The work can generate all possible authorization 
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solutions. However, this modelling approach is heavy 

since it needs to construct the CPTN model, covert the 

CPTN model to ordinary PN models, and analyze the PN 

models. In this thesis, we model the feasiblity checking 

problem concisely as a Constraint Satisfaction Problem 

(CSP).  

 

  The study in [Li2004] has proposed an extension to 

Petri Nets and have named that as the Time Constraint 

Workflow Nets. Their extension helps in identification 

and removal of conflicts associated with resources 

occurring in workflow specifications. They have added a 

notion of time to the Petri Nets for allowing the 

temporal validation of the conflicts associated with the 

resources. The method exhaustively searches for all tasks 

and has been found to be non-scalable.  

 

  The study in [Zhong2005] has extended the approach of 

[Li2004] and have proposed a new mechanism for 

identification of conflicts associated with resources 

under concurrent workflow settings and have also found 

their approach having scalability problems. 

 

  The study in [van Hee2005] has introduced a variation 

of Petri Nets, called the Resource-Constrained Workflow 

Nets, for dealing with the problem of resource conflicts. 

A method has been presented for assessing the minimum 

amount of resources to start up the process, which could 

guarantee that the started processes will be successfully 

terminated within the give constraints and no conflict 

will occur for the resources. They argued that their 

proposed method ensures calculation of sufficient amount 

of resources irrespective of the scheduling policy used 

afterwards and thus, guarantees the completion of tasks 
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on the correspondingly mapped computational resources. 

The calculation of sufficient amount of resources helps 

eliminate the resource conflicts on one hand but also 

results in wasteful architecture in the design process of 

the information system.  

 

  The study in [Lu2009] has used Colored Petri nets (CPN) 

for modelling and analyzing workflow with Separation of 

Duty (SoD) constraints. SoD represents the security 

principle wherein frauds and errors are prevented in 

collaborative environments. As the organizations achieve 

their business goals by interacting and collaborating 

between users through workflow, thus, during workflow 

design with SoD constraints, the correctness and 

consistency of workflow becomes crucial to verify and 

ensure. Keeping this problem in mind, the authors have 

combined control flow, authorization rules and SoD 

constraints in a single workflow and have used an 

integrated CPN model for representing this combination of 

constraints to a workflow. They used reachability tree 

analysis for deriving the execution paths of the 

integrated CPN model. The analysis of the derived 

execution paths resulted in identification of some latent 

deadlocks, which in turn were the results of the 

inconsistency between authorization rules and SoD 

constraints.  

 

2.3.3. Analysis of Performance Impact of 

Security and Authorization Policies 

 

  Xie proposed the security aware model for workflows and 

focussed on three security aspects, which are: i) 

confidentiality, ii) integrity and iii) authentication. 
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He develop a security overhead model to measure the 

security overhead [xie2006]. Xie also developed resource 

allocation strategies TAPADS and SHARP by taking into 

account the security and precedence constraints for 

homogeneous clusters and heterogeneous cluster [xie2008]. 

Qiu used Security-Aware Task (SEAT) graph model to denote 

the constraints and relationship of tasks and on the 

basis of SEAT graph, he proposed an algorithm ILP-SOP and 

for special structures he proposed DPSOP-path/tree 

algorithm for security generation for tasks [Qiu2013]. 

However, these studies do not consider the impact of the 

authorization policies. 

 

  There are also the studies using Petri-nets to model 

and analyze the impact of authorization constraints.  

 

  The work in [He2009] “applied Generalized Stochastic 

Petri-Net (GSPN) theory to model workflow executions 

under Role-based Authorization Control, and then used 

standard Petri-net analysis techniques to theoretically 

calculate performance metrics from the constructed 

models. Although GSPNs are adequate for the scenarios 

investigated in [He2009], the work did not model the 

workflows consisting of both human tasks and computing 

tasks. Also, since GSPNs cannot express the temporal 

attributes associated with tokens, they cannot analyze 

the authorization overhead caused by temporal 

constraints. Moreover, the work in [He2009] did not 

investigate authorization methods to improve performance, 

given the specified authorization constraints”.  

 

  The study in [He2011] has presented a novel modelling 

scheme for workflow execution in cluster-based resource 

pools. The modelling mechanism works under a Role-based 
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Access Control (RBAC) scheme, which assigns certain roles 

to users and each role has an associated set of 

permissions. The authors have modeled various 

authorization constraint types including: 1) role 

constraints; 2) temporal constraints; 3) cardinality 

constraints; 4) Binding of Duty constraints; and 5) 

Separation of Duty constraints; using Coloured Timed 

Petri-Nets. The modelling scheme also captures the 

interaction between workflow authorization and workflow 

execution. The authors highlight the in-built automation 

support for their modelling scheme for workflow 

execution.  

 

  Generally, the Petri-net modeling approach is heavy and 

susceptible to state explosion problems.  

 

  “The Multi-layered State Machine (MLSM) is another 

method used in the literature [Gaaloul2008] [Hung2003] to 

model workflow authorization. However, the MLSM method is 

mainly used to guarantee that the authorization 

constraints are satisfied in the workflow environment, 

and the method itself cannot simulate and obtain the 

quantitative performance of the workflow execution. In 

order to obtain performance, the MLSM structure needs to 

be converted to Petri-nets before a performance analysis 

can be conducted [Gaaloul2008] [Hung2003]. Further, the 

work in [Gaaloul2008] [Hung2003] does not analyze the 

impact of the authorization constraints and does not 

investigate the authorization methods to improve 

performance”. 
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3 
Analyzing	
  the	
  Impact	
  of	
  

Authorization	
  Constraints	
  

 

This chapter analyzes the impact of the deployed 

authorization constraints. More specifically, this 

chapter 1) checks whether all tasks in a workflow can be 

authorized so that the authorization constraints deployed 

in the system can be satisfied, and 2) determines such 

time durations in which the authorization constraints 

will not have negative impact on the performance of 

workflow executions. The notations used in this chapter 

are summarized in Table 3.1. 

 

  The rest of this chapter is organized as follows. 

Section 3.1 presents the methods to check the feasibility 

of role, SoD and BoD constraints deployed in the system. 

Section 3.2 presents the method to determine the time 

durations in which the workflow executions will not be 

delayed by the authorization constraints in the system. 

Section 3.3 presents a case study to illustrate the 

workings of the methods proposed in this chapter. 
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Table 3.1 Notations used in this thesis 

 

Notations Explanations 

𝑟! Role i 

 The temporal constraint of ri 

 The role constraint of service si 

Pi  Period i  

𝐸! The end time of the period Pi . 

Ds i
 The domain of service si .  

Si 	
   The start time of the period Pi  

	
   The k-th feasible role assignment solution 

	
   The role assigned to task  in  

	
  
Effective temporal constraint of  in 

 

ldij 	
   Lower domain of role i for task j. 

udij 	
   Upper domain of role i for task j. 

𝑒! 	
  
The execution time of the tasks assigned to 

ri. 

wi	
  
The waiting time of the tasks assigned to 

role ri 

np(ri)	
   The number of resources used to serve the 

tasks running under 𝑟! 

rpi	
   The mean response time of the tasks running 

under role ri 

Cc(𝑟!)	
  
Cardinality constraint of role ri 

Ct(𝑟!)	
  
The temporal constraint of ri 

Cr(si)	
   The role constraint of service si 

𝜆!(𝑟!)	
  
The arrival rate of the tasks that are 

assigned to ri when x constraints are 

considered. 

(r )t
iC

(s )r
iC

kA

( , )i kr t A it kA

(t )k iEA
(t ,A )i kr

kA
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Cs(𝑟!)	
  
The set of services that role ri can invoke 

rp(𝑟! ,  𝑠!)	
  
The mean response time of the tasks that 

assume ri to invoke sj 

𝜆!(𝑟!)	
  
The arrival rate of all service requests 

allocated to rj 

hi 	
  	
   The number of the human resources allocated 

for role ri  

Di 	
  	
   The time duration when ri is activated in 

the period Pi 

𝛼!" 	
   The proportion of processing capability 

allocated to run the requests that assume 

role rj  

𝑂(!  ×  !)	
   L services cross M rolls matrix. 

 

 

3.1. Checking Feasibility of Role, SoD And 

BoD Constraints 
 

  S = {s1,..., sL}   denotes the set of services running on the 

resource pool. 

 

  F = (T ,E)  denotes a workflow, in which 1{ ,..., }NT t t=   is a 

set of tasks in the workflow and {( , ) | , }i j i jE t t t t T= ∈   is a 

set of directed edges linking task it to jt . A task 

invokes one of the services in S . 

  R = {r1,...,rM }  denotes the set of roles defined in the 

authorisation control system. The role constraint 

specifies the set of roles that are permitted to run a 

particular service. Cr (si )  denotes the role constraint 

applied to service si .  ( )ir s  denotes the role that is 

assigned to run .is  The Separation of Duty (SoD) and  the 
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Binding of Duty (BoD) constraint between is  and js  are 

represented as ( ) ( )i jr s r s≠  and ( ) ( )i jr s r s= , respectively. 

 

  The problem of checking feasibility of role, SoD and 

BoD constraints is formulated as a Constraint 

Satisfaction Problem (CSP) [Brailsford1999] in this 

thesis.  

 

  A CSP consists of a triple , ,V D C< >, where  

1 2{ , ,..., }nV v v v=  is a set of variables, 

1 2
{ , ,..., }

nv v vD D D D= , and 
iv

D  is the domain of the value of 

vi ,  and C  is a set of constraints restricting the values 

that the variables can take.  

 

  The Feasibility Checking Problem (FCP) in this chapter 

is modelled as a CSP in the following way. The services 

in FCP are regarded as the variables in CSP. The role 

constraint of a service is regarded as the domain of the 

value of the service. The BoD and SoD constraints are 

regarded as the constraints restricting the values that 

the service variables can take. An example is given below 

to illustrate the modelling.  

 

  Assume the tasks in a workflow invoke 7 services, 1 7s s− , 

and there are 6 roles, 1 6r r−  in the authorization system. 

The role constraints are: 

1 1{ }s r= , 

2 2 3 4{ , , }s r r r= ,  

3 2 3 5{ , , }s r r r= , 

4 2 3 5{ , , }s r r r= ,  

5 2 3 5{ , , }s r r r= , 
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6 2 4{ , }s r r= , 

7 4 6{ , }s r r= .  

 

The SoD constraints are: 

2 5( ) ( )r t r t≠ ,  

2 7( ) ( )r t r t≠ , 

6 7( ) ( )r t r t≠ .  

 

The BoD constraints are:  

2 4( ) ( )r t r t= , 

3 5( ) ( )r t r t= .  

 

Then the FCP can be formulated as CSP as follows. 

 

, ,CSP V D C=< > , 

 

1 2 3 4 5 6 7{ , , , , , , }V s s s s s s s= , 

 

1 2 7
{ , ,..., }s s sD D D D=  , where  

1 1{ }sD r= ,  

2 2 3 4{ , , }sD r r r= ,  

3 2 3 5{ , , }sD r r r= ,  

4 2 3 5{ , , }sD r r r= ,  

5 2 3 5{ , , }sD r r r= ,  

6 2 4{ , }sD r r= ,  

7 4 6{ , }sD r r= . 

 

1 2 3 4 5{ , , , , }C C C C C C=  , where  

1 : ( 2) ( 4)C r t r t= ,  
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2 : ( 2) ( 5)C r t r t≠ ,  

3 : ( 2) ( 7)C r t r t≠ ,  

4 : ( 6) ( 7)C r t r t≠ ,  

5 : ( 3) ( 5)C r t r t= .  

 

  There are the existing solvers to solve the CSP problem 

[Brailsford1999]. Some solvers only check whether a 

solution can be found to satisfy the problem, and if so, 

return one solution. Some solvers can return all 

solutions to the problem, i.e., all feasible role 

assignments to the tasks so that the specified SoD, BoD 

and role constraints are satisfied.	
  

 

3.2. Analyzing the Coverage of 

Authorization Constraints for Workflow 

Executions 
 

  Roles have temporal constraints, i.e., when the roles 

are activated and can be assigned to tasks. It is useful 

to check the coverage of roles' temporal constraints in a 

given security setting for workflow executions. If the 

temporal constraints of the relevant roles cover the 

execution period of a workflow, then the temporal 

constraints will not delay the task executions in the 

workflow, and therefore will not have negative impact on 

the performance of the workflow.  

 

  According to the discussions in section 3.1, we can use 

the CSP solver to obtain all feasible role assignment 

solutions for the tasks in a workflow.  denotes the set 

of all feasible role assignments for the workflow, and 

 

A
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denotes the -th feasible role assignment, in which  is 

a task in the workflow and  is the role assigned to .  

 

  In most cases, a role is activated periodically. For 

example, the role of bank manager is only activated from 

9am to 12pm, and from 2pm to 4pm in a day. Therefore, the 

temporal constraint of role , denoted as , can be 

expressed as below,  

 

=(Pi, Di, Si, Ei)                                (3.1) 

 

Where  is the period, is the time 

duration when  is activated in the period , and  and 

 are the start and end time points when this period 

pattern begins and ends.  can be , meaning the 

periodic pattern continues indefinitely. 

 

  Assume that the execution times of the tasks in a 

workflow and the scheduling algorithm used to schedule 

the tasks is known. Therefore, if we know the arrival 

time of the entry task in the DAG, we can calculate the 

start time of every task in the DAG.  denotes the 

start time of task , denotes the role assigned to 

task in . Assume  is the entry task. Assume 

.  represents the temporal constraint of 

role rp. =(Pp, Dp, Sp, Ep) as shown in Equation (3.1). 

Assume  (i≠0).  denotes the time durations 

{( , ) | }k i j iA t r t T= ∈

k it

jr it

ir ( )t
irC

( )t
irC

iP    
Di ={[ldij ,udij ] | i ∈}

ir iP iS

iE

iE ∞

ist

it ( , )i kr t A

it kA 0t

0( , ) pkr t A r= ( )t
prC

( )t
prC

( , )i k qr t A r= ( )qrT
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when  has to be temporarily available to run .  

 

  Given ,  can be determined by Eq. 3.2, where 

is determined in Eq. 3.3.  

 

                  (3.2) 

 

                 (3.3) 

 

However, is subject to the temporal constraint, . 

Therefore, the intersection of  and , denoted by 

, is the time durations when task  can start 

execution immediately without being delayed by the 

temporal constraints, given the role assignment .  

 

 can be determined using Equation below; 

, where 

is the least common multiple of  and ;  

; ;  

Let . 

 

As shown above, we calculate from , and 

then calculate  from  and .  

is a subset of . This means that only when  

arrives in a subset of the time durations in , 

 start time falls into . In this thesis, such a 

subset of time durations in  is called  

qr it

( )t
prC ( )qrT

jD

0 0 0( ) ( , , ( ), ( ))j iq p p ir P D S st st E st st= + − + −T

   
Dj ={[ld0k + (sti − st0 ),ud0k + (sti − st0 )] | k ∈}

qr ( )t
qrC

( )qrT ( )t
qrC

( , )i kI t A it

kA

( , )i kI t A

( , )i kI t A ( , , , )I I I I
ki ki ki kiP D S E=

I
kiP pP qP

( , )I
ki p qS max S S= ( , )I

ki p qE min E E=

   
Dki

I ={[ldkij
I ,udkij

I ] | j ∈}

( ( , ))i kr t AT 0( ( , ))t
kr t AC

( , )i kI t A ( ( , ))i kr t AT ( ( , ))i
t

kr t AC ( , )i kI t A

( ( , ))i kr t AT 0t

0( ( , ))t
kr t AC

'it s   I(ti , Ak )

0( ( , ))t
kr t AC 0( , ) 'skr t A
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effective time durations for  in the role assignment , 

which is denoted by .  can be determined 

by Eq. (3.4). 

 

  (3.4) 

We can calculate  for every task  in the 

workflow.  is the time durations in  

that can ensure the start time of every task  ( ) 

in the DAG falls into the times durations specified in 

. Only when  arrives in these time durations, 

can every task in the DAG starts execution without being 

delayed by the temporal constraints of the role assigned 

to run the task in .  is called  effective 

arrival time when the role assignment is , denoted by

. Note that according to the calculation method of

,  is a subset of . Therefore, we also 

call  the effective temporal constraint of  

for the DAG in the role assignment . Assume

EAk (t0 ) = {[ld0 j ,ud0 j ] | j ∈N} . We can further determine the set 

of time durations for the start time of , denoted by

, as in Eq. (3.5). Note that  is a subset of

. Therefore, we call  the effective 

temporal constraint of . 

 

              (3.5) 

 

it kA

0( , )k iET t t 0( , )k iET t t

   

ETk (t0 ,ti ) = (Pki
I ,{[ldkij

I − (sti − st0 ),udkij
I − (sti − st0 )] | j ∈},Ski

I , Eki
I )

0( , )k iET t t it

   
ETk (t0 ,ti )

ti∈T
 0( ( , ))t

kr t AC

it T∈ 0i ≠

( ( , ))t
i kr t AC 0t

kA
   

ETk (t0 ,ti )
ti∈T
 0 't s

kA

0( )kEA t

0( )kEA t 0( )kEA t 0( ( , ))t
kr t AC

0( )kEA t 0( , )kr t A

kA

it

( )k iEA t ( )k iEA t

( ( , ))t
i kr t AC ( )k iEA t

( , )i kr t A

   
EAk (ti ) ={[ld0 j + (sti − st0 ),ud0 j + (sti − st0 )] | j ∈}
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We can calculate  for every feasible role 

assignment. Assume  is the time duration for which 

we want to check the coverage of the temporal 

constraints. If  cover the entire range of , 

then no matter when the workflow instance is initiated, 

we can always find a role assignment so that all tasks in 

the workflow can start execution without delay due to the 

roles' temporal constraints. Otherwise, is 

the time gap during which the execution of at least one 

task in DAG will be delayed by the current setting of the 

temporal constraints. 

 

 

3.3. A Case Study 
 

We now present a case study to illustrate the impact of 

the authorization constraints on the workflow 

performance. In the case study, a workflow consists of 

nine tasks, as shown in the figure 3.1 below. The 

workflow is run under the authorization constraints. 

Tasks may have to wait for the results from parent tasks 

and the number of tasks in a workflow are not fixed. 

Assume the authorization constraints are specified below.  

0( )kEA t

[ , ]S E

0( )k
all k

EA tU [ , ]S E

0[ , ] ( )k
all k

S E EA t−U
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Figure 3.1. The workflow in the case study 

 

 

1. There are five roles, r1, r2, …, r5;  

2. The temporal constraint of role ri (i.e., C
t(ri)) is 

as follows. The temporal constraints are illustrated in 

Figure 3.2, where the shaded area is the time durations 

when the role is not activated for service. 

 

Ct(r1)={[0900, 1700]}, 

Ct(r2)={[1200, 1700]},  

Ct(r3)= {[1100, 1700]}, 

Ct(r4)= {[0900, 1200], [1400, 1700]}, 

Ct(r5)= {[0900, 1300], [1500, 1700]}, 

T1#

T3#T2#

T5#T4# T6#

T7# T8#

T9#
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Fig. 3.2: The temporal constraints in the case study, the 

shaded areas in the timelines are the time durations when 

the roles are not activated 

 

 

3. The role constraint of a task, denoted by Cr(ti), in 

the workflow is as follows.  

Cr(s1)={r1} 

Cr(s2)={r3, r4} 

Cr(s3)={r1, r2} 

Cr(s4)={r2, r3} 

Cr(s5)={r2, r3} 

Cr(s6)={r2, r3} 

Cr(s7)={r3, r4} 

 

4. The Separation of Duty (SoD) constraints are as 

follows, where r(Ti) is the role assigned to task Ti. 

r(T2)≠ r(T5) 

r(T2)≠ r(T7) 

r(T6)≠ r(T7) 
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5. The Binding of Duty (BoD) constraints are as 

follows. 

r(T2) = r(T4) 

r(T3) = r(T5) 

 

6. The tasks, ti, in the workflow invoke the services 

in the following way. 

t0 -> s1, 

t1 -> s2, 

t2 -> s3, 

t3 -> s1, 

t4 -> s6, 

t5 -> s7, 

t6 -> s4, 

t7 -> s6, 

t8 -> s5. 

 

7. The execution times of the tasks t0-t8 are given in 

table 1.1. The execution times of the tasks have impact 

on the effective temporal constraints. 

 

Applying the method proposed in Section 3.1, we can 

obtain that there are total 8 different authorization 

solutions for the workflow, [Brailsford1999] solver can 

be used to obtain CSP (Constraint Satisfaction Problem) 

solutions. Now we apply the method proposed in this 

section to calculate the coverage of the temporal 

constraints set in the case study.  

The first authorization solution (A1) is as follows. 

 

Solution A1: 

r(t0,A1) = r1, 

r(t1,A1) = r3, 

r(t2,A1) = r1, 
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r(t3,A1) = r1, 

r(t4,A1) = r2, 

r(t5,A1) = r3, 

r(t6,A1) = r2, 

r(t7,A1) = r2, 

r(t8,A1) = r2. 

 

Since 1) t0 is authorized to r1 in A1, 2) r1 is 

activated during [09:00, 17:00] in the period of [0900, 

1700] and 3) t0’s execution time is 30 minutes, the 

possible start time of t1, which is also the duration 

when the role assigned to t1 in A1 (i.e., r3) has to be 

activated so that t1 can start execution without being 

delayed by the temporal constraints, can be calculated by 

Equations given below: 

 

 = {[0930,1730]} 

However, r3’s temporal constraint is  

Ct(r3) = {[11:00,17:00]} 

Consequently,  

I(t1,A1) = C
t(r3) ∩  

  = {[11:00,17:00]} 

Then,  

ET1(t0,t1) = {[11:00 - 30min, 17:00 - 30mins]}  

  = {[1030, 1630]} 

 

Similarly, t2 is authorized to run under r1 in A1.  

T(r1) = {[0930,1730]} 

I(t2,A1) = C
t(r1) ∩ T(r1) 

  = {[0930, 1700]} 

ET1(t0,t2 ) = {[09:00, 1630]} 

 

 T (r3)

 T (r3)
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Similarly, 1 0( , )iET t t  for tasks t3-t8 can be calculated 

below. 

ET1(t0,t3) = {[0900, 1600]}, 

ET1(t0,t4 ) = {[1054, 1554]}, 

ET1(t0,t5 ) = {[09:54, 15:54]}, 

ET1(t0,t6 ) = {[10:06, 15:06]}, 

ET1(t0,t7 ) = {[10:12, 15:12]}, 

ET1(t0,t8 ) = {[09:36, 14:36]}. 

 

Then, the effective arrival time of t0 (i.e., the 

arrival time of the workflow), 1 0( )EA t , can be calculated 

as follows.  

 

1 0( )EA t = ={[10:54, 14:36]} 

 

This means that if the workflow arrives during [10:54, 

14:36] and A1 is used as the authorization solution, all 

tasks in the workflow can start execution without being 

delayed by the temporal constraints.  

 

Given 1 0( )EA t , 1( )iEA t  (i.e., the effective arrival time) 

for other tasks, t1-t8, can be calculated by using the 

equation below by using Matlab: 

 

  EA1(t1) ={[ld01 + (st1 − st0 ),ud01 + (st1 − st0 )]} 

     
{[10 :54 30min],[14 :36 30min]}
{[11: 24,15 : 06]}

= + +
=

 

1 2( ) {[11: 24,15: 06]}EA t =  

1 3( ) {[12 :00,15: 42]}EA t =  

1 4( ) {[12 :00,15: 42]}EA t =  

   
ETk (t0 ,ti )

ti∈T

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1 5( ) {[12 :00,15: 42]}EA t =  

1 6( ) {[12 : 48,16 :30]}EA t =  

1 7( ) {[12 : 42,16 : 24]}EA t =  

1 8( ) {[13: 24,17 :00]}EA t =  
 

Similarly, we can calculate the value of 0( )kEA t  (2≤k≤8) 

(i.e., other authorization solutions A2-A8). 

 

The authorization solution A2 is below and 2 0( )EA t  are as 

follows.  

r(t0,A2) = r1, 

r(t1,A2) = r3, 

r(t2,A2) = r1, 

r(t3,A2) = r1, 

r(t4,A2) = r2, 

r(t5,A2) = r3, 

r(t6,A2) = r2, 

r(t7,A2) = r3, 

r(t8,A2) = r2. 

2 0( )EA t ={10:54, 14:36} 

 

For A3:  

r(t0,A3) = r1, 

r(t1,A3) = r3, 

r(t2,A3) = r2, 

r(t3,A3) = r1, 

r(t4,A3) = r2, 

r(t5,A3) = r3, 

r(t6,A3) = r2, 

r(t7,A3) = r2, 

r(t8,A3) = r2. 

3 0( )EA t ={[11:30, 14:36]}. 
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For A4: 

r(t0,A4) = r1, 

r(t1,A4) = r3, 

r(t2,A4) = r2, 

r(t3,A4) = r1, 

r(t4,A4) = r2, 

r(t5,A4) = r3, 

r(t6,A4) = r2, 

r(t7,A4) = r3, 

r(t8,A4) = r2. 

4 0( )EA t ={[11:30, 14:36]}. 

 

For A5: 

r(t0,A5) = r1, 

r(t1,A5) = r4, 

r(t2,A5) = r1, 

r(t3,A5) = r1, 

r(t4,A5) = r2, 

r(t5,A5) = r4, 

r(t6,A5) = r2, 

r(t7,A5) = r2, 

r(t8,A5) = r2. 

5 0( )EA t ={[14:00, 14:36]}. 

 

For A6: 

r(t0,A6) = r1, 

r(t1,A6) = r4, 

r(t2,A6) = r1, 

r(t3,A6) = r1, 

r(t4,A6) = r2, 

r(t5,A6) = r4, 

r(t6,A6) = r2, 



	
   52	
  

r(t7,A6) = r3, 

r(t8,A6) = r2. 

6 0( )EA t ={[13:30, 14:36]}. 

 

For A7: 

r(t0,A7) = r1, 

r(t1,A7) = r4, 

r(t2,A7) = r2, 

r(t3,A7) = r1, 

r(t4,A7) = r2, 

r(t5,A7) = r4, 

r(t6,A7) = r2, 

r(t7,A7) = r2, 

r(t8,A7) = r2. 

7 0( )EA t ={[13:30, 14:36]}. 

 

For A8: 

r(t0,A8) = r1, 

r(t1,A8) = r4, 

r(t2,A8) = r2, 

r(t3,A8) = r1, 

r(t4,A8) = r2, 

r(t5,A8) = r4, 

r(t6,A8) = r2, 

r(t7,A8) = r3, 

r(t8,A8) = r2. 

8 0( )EA t ={[13:30, 14:36]}. 

Then, 

 

={[11:30, 14:36]}∪ {[10:54, 14:36]}∪ {[13:30, 

14:36]}= {[10:54, 14:36]} 

	
  

   
EAk (t0 )

Ak∈A

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This suggests that whenever the workflow arrives in the 

time duration of [10:54, 14:36], there exists an 

authorization solution under which all tasks in the 

workflow can start execution without being delayed by the 

authorization constraints. When the workflow arrives in 

the time durations other than [1054, 1436], which can be 

calculated in Equation (3.6), it will be subject to the 

delay caused by the authorization constraints.  

 

 = {[09:00,17:00]} – {[10:54, 14:36]} 	
  

              = {[09:00,10:53], [14:37, 17:00]}  (3.6) 

 

 

3.4 Summary  

 
This Chapter investigates the issue of feasibility 

checking for authorization constraints deployed in 

workflow management systems. The feasibility checking 

problem is modeled as a constraint satisfaction problem 

in this chapter. Further, this chapter presents the 

methods to determine the time durations when the 

authorization constraints do not have negative impact on 

performance of workflow executions. A case study is given 

to illustrate the workings of the proposed methods.    	
  
 

   
[S , E]− EAk (t0 )

Ak∈A

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4 
Optimizing	
  the	
  Authorization	
  

Methods	
  for	
  Workflows	
  

 

  Chapter 3 presents the method to determine the time 

durations when the workflow execution is not affected by 

the authorization constraints, i.e., . However, 

when a workflow arrives beyond , the workflow 

will experience the delay. This chapter conducts the 

quantitative analysis of the delay. This chapter also 

proposes the optimal authorization method that can 

minimize the delay caused by the authorization 

constraints.  

 

  The rest of this chapter is organized as follows. 

Section 4.1 presents an intuitive authorization method, 

called the Earliest Available First (EAF) method, and the 

intuitive method will be used to compare against the 

optimal authorization method, called the Global 

Authorization Aware (GAA) method. The GAA method is 

presented in Section 4.2. Section 4.2 also conducts the 

quantitative analysis about the delay caused by the 

authorization constraints, given a workflow’s arrival 

time, and proves that the proposed GAA method is optimal 

   
EAk (t0 )

Ak∈A


   
EAk (t0 )

Ak∈A




	
   55	
  

in the sense that it can minimize the delay caused by the 

authorization constraints. Section 4.3 presents the 

experimental results to verify the effectiveness of the 

GAA method. 

 
 
4.1. The EAF Authorization Method 

 

The Earliest Available First (EAF) method is intuitive. 

Its fundamental idea is that when a task in the workflow 

is ready to run (i.e., all predecessors of the task has 

completed the executions), but all roles that can be 

assigned to the task (i.e., satisfy the authorization 

constraints) are not activated, a role with the earliest 

activation time will be assigned. The EAF method is 

outlined in Algorithm 1. 

 

Algorithm 1. The EAF authorization method 

 

1) For a ready task ti in the workflow 

2) Apply the role constraints, BoD and SoD to obtain a 
set of roles (denoted by CA(ti)) that can be 

assigned to ti; 

3) If all roles in CA(ti) are not activated, 

4) Assign to ti a role with the earliest activation 

time; 

5) If there are the roles in CA(ti) that are activated, 

6) A role is randomly selected and assigned to ti; 

 

  The delay caused the temporal constraints for a task is 

defined as the time that a ready task has to wait until 

the role assigned to the task become activated. The delay 

caused by the temporal constraints for a workflow 

(denoted by td ) is defined as the sum of the delay caused 
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by temporal constraints for each individual task in the 

workflow. The workflows with different arrival times may 

have different td . td(τ )  denotes the delay experienced by 

the workflow whose arrival time is τ . tdEAF (τ )  denotes the 

delay experienced by all tasks in the workflow whose 

arrival time is τ  when the EAF authorization method is 

applied.  

 

 

4.2. The GAA Authorization Method 

 

  Assume a workflow arrives at time τ . EAk (t0 ).next(τ ) 

denotes the beginning of the next duration after τ  in

EAk (t0 ) . If the workflow waits for (EAk (t0 ).next(τ )−τ ) , then Ak  

can be used as the authorization solution of the workflow 

and the workflow execution can progress without further 

delay caused by the temporal constraints.  

 

  The GAA authorization method is proposed based on the 

above discussion. In the GAA method, the authorization 

solution that has the least value of (EAk (t0 ).next(τ )−τ )  is 

used to assign the roles to the tasks in a workflow. The 

GAA method is outlined in Algorithm 2. tdGAA(τ ) denotes the 

delay caused by the temporal constraints for a workflow 

whose arrival time is τ  under the GAA method, which 

equals to (EAk (t0 ).next(τ )−τ ). 

 

Algorithm 2. The GAA authorization method 

 

1) In all feasible authorization solution, find such a 
authorization solution, Ak, that Ak generates the 

minimal value of (EAk (t0 ).next(τ )−τ ); 
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2) The tasks in the workflow are authorized as 

designated in Ak; 

 

  Assume that a workflow arrives at the time pointτ , and 

assume that it turns out that Ak  is the authorization 

solution used for the workflow under the EAF method. We 

can prove that the delay caused by the temporal 

constraints for the workflow under the EAF method equals 

to (EAk (t0 ).next(τ )−τ ), as shown in Theorem 1. 

 

Theorem 1: If a workflow arriving at time τ  is 

authorized using the EAF method and the outcome is that 

the roles are assigned to the tasks in the workflow as in 

the authorization solution Ak , then Eq. 4.1 holds. 

tdEAF (τ ) = (EAk (t0 ).next(τ )−τ )                              (4.1) 

 

Proof: If the role assigned to t0  in Ak  (i.e., r(t0 )) is 

only activated at time EAk (t0 ).next(τ ) , then t0  starts 

execution at EAk (t0 ).next(τ )  under the EAF method. 

Consequently, the delay caused by the temporal 

constraints on t0  is EAk (t0 ).next(τ )−τ , and according to the 

definition of EAk (t0 ).next(τ ) , all successors of t0  can start 

execution without further delay caused by the temporal 

constraints. Then 

 

tdEAF (τ ) = (EAk (t0 ).next(τ )−τ ). 

 

  Therefore, Eq. 4.1 holds. We call EAk (t0 ).next(τ )  t0 's 

effective start time (denoted by est0 ).  
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  When t0  starts at EAk (t0 ).next(τ ) , we can calculate the 

start time of t0 's any successor ti , which is called ti 's 

effective start time (denoted by esti ) because if ti  

starts at time esti , all successors of ti  can start 

execution without being delay by the temporal constraints 

of the roles assigned to the successors in Ak . esti  equals 

est0  plus the length of the longest path from t0  to ti  in 

the workflow.  

 

  If task t0  starts execution at time ′τ 0  when the role 

assigned to t0  in Ak  becomes activated, then the delay 

caused by the temporal constraints on t0  is ′τ 0 −τ . Assume 

tk  is t0 's child. If t0  starts execution at ′τ 0 , then tk  

can be ready for execution ( tk 's ready time is denoted by 

τ k ) at time ′τ 0  plus the length of the longest path from 

t0  to tk  (i.e., all its predecessors have been 

completed), that is, ′τ 0 + (estk − est0 ) , only subject to the 

availability of role r(tk ). 

 

  If r(tk ) is activated only at estk , then tk 's delay caused 

by r(tk ) 's temporal constraints is estk − ( ′τ 0 + (estk − est0 ))  = 

est0 − ′τ 0 , and all successors of tk  can start executions 

without being delayed by temporal constraints. Therefore, 

tdEAF (τ ) can be calculated as: 

  

tdEAF (τ ) = (est0 − ′τ 0 )+ (τ ′0 −τ )
= est0 −τ
= EAk (t0 ).next(τ )−τ
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It shows Eq. 4.1 holds.                                n 

 

  If r(tk ) is activated at time ′τ k  ( ′τ k < estk), then tk  starts 

execution at ′τ k  in the EAF method. We can repeat the 

analysis similar as above only replacing t0  with tk , τ  

with τ k  and est0  with estk . Similarly, we can recursively 

conduct the analysis for the rest of all tasks in the 

workflow. It can be shown that Eq. 4.1 holds. 

 

  Besides the EAF method, other authorization method can 

be used to assign the roles to the tasks in a workflow. 

Based on Theorem 1, however, we can prove that no matter 

what authorization method is used to authorize the 

workflow, if it turns out that the workflow is authorized 

as in the authorization solution Ak , then the delay 

caused by the authorization constraints under the 

authorization method will be no less than the delay when 

using the EAF method to assign the roles to the tasks as 

in Ak . This relation is stated in Theorem 2. The proof 

of the theorem takes the similar steps as those in 

Theorem 1. The difference is that when using the EAF 

method to authorize the tasks as Ak , a task is 

authorized as soon as the role assigned to the task in 

Ak  becomes activated, while under other authorization 

method, a task may be authorized (therefore start 

execution) later than the role's activation time.  

 

Theorem 2: No matter what authorization method is 

used to assign the roles to the tasks in a workflow, if 

the outcome is that the tasks are authorized as the 

authorization Ak , then the delay caused by the 

authorization constraints under the authorization method 
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is no less than the delay when using the EAF method to 

authorize the tasks as in Ak .  

 

Proof: Assume that a workflow arrives at time τ . 

Similar to Theorem 1, we can determine esti  for every task 

in the workflow.  

 

  If r(t0 )  in Ak  is activated at time EAk (t0 ).next(τ ) , then 

the minimal delay caused by the authorization constraints 

is EAk (t0 ).next(τ )−τ , which equals to the delay generated 

when using the EAF method to authorize t0 . Any method 

that authorizes t0  later than EAk (t0 ).next(τ )  will generate a 

delay greater than that generated by the EAF method. The 

theorem holds. 

 

  If r(t0 )  becomes activated at time τ ′0 , but under the 

authorized method, task t0  is authorized and starts 

execution at a later time τ ′0 +δ 0  ( δ 0 > 0 ), then the delay 

caused by the authorization constraints on t0  is τ ′0 +δ 0 −τ . 

 

  Assume tk  is t0 's child. If t0  starts execution at 

τ ′0 +δ 0,  then tk  can be ready for execution at time 

τ k = τ ′0 +δ 0 + (estk − est0 ).  

 

  Assume τ ′0 +δ 0 + (estk − est0 ) ≥ estk . Then tk  can be authorized 

and start execution immediately and further, all 

successors of tk  can be authorized and start execution 

immediately when they are ready for execution. Therefore, 

the minimal delay for the workflow is τ ′0 +δ 0 −τ . Since 

τ ′0 +δ 0 + (estk − est0 ) ≥ estk , we can have δ 0 > est0 −τ ′0 . Then the 
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following inequality holds, which shows that the EAF 

method generates the minimal delay. 

 

τ ′0 +δ 0 −τ > est0 −τ
= EAk (t0 ).next(τ )−τ

= tdEAF (τ )
  

 

  Assume τ ′0 +δ 0 + (estk − est0 ) < estk . We can repeat the same 

analysis on tk  as that on t0 , only replacing t0  with tk , τ  

with τ k  and est0  with estk . Similarly, we can recursively 

conduct the analysis for the rest of all tasks in the 

workflow. It can be shown that the theorem holds.      n 

 

 Based on Theorem 1 and 2, we can further prove that the 

GAA method is the optimal authorization method, as shown 

in Theorem 3.  

 

Theorem 3: The GAA authorization method is optimal in 

the sense that under the GAA method, the delay caused by 

the authorization constraints for a workflow is not more 

than that under any other authorization method. 

 

Proof: Given an authorization method and a workflow 

arriving at time τ , assume that the method authorizes 

the tasks as in the authorization solution Ak . From 

Theorem 2, we know that the delay generated by the 

authorization method is no less than the delay when using 

the EAF method to authorize the tasks as in Ak . From 

Theorem 1, we know that the delay generated by the EAF 

method can be calculated as EAk (t0 ).next(τ )−τ . Therefore, 

the given authorization method generates a delay greater 

than EAk (t0 ).next(τ )−τ . According to the algorithm of the 
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GAA method, the GAA method selects the authorization 

solution Aj  that has the least value of (EAj (t0 ).next(τ )−τ ) 

from all possible authorization solutions. Therefore, the 

theorem holds.                                         n 

 

 

4.3. Experimental Studies 

 

4.3.1. Experimental Settings 
 

  This section conducts the simulation experiments 

(Graphical representation of the results by using Matlab) 

to evaluate the performance of the GAA method against 

that of the EAF method. The performance metrics evaluated 

in the experiments include the delay caused by the 

authorization constraints for a workflow (i.e., td 
defined in the first paragraph of Section 4.1) and the 

response time of a workflow (denoted as rt ), which is 
defined as the duration between the time when a first 

task of the workflow arrives and the time when the last 

tasks of the workflow is completed. 

 

In the experiments, the workflow is randomly generated. 

Each workflow containing TNUM tasks and each task in a 

workflow having the maximum of MAX _DG  children. RNUM 

roles are assumed to exist in the system. “The tasks' 

role constraints (i.e., the set of roles that a task can 

assume) are set in the following fashion. The simulation 

sets a maximum number of roles that any task can assume 

in the role constraints, denoted as MAX _RCST , which 

represents the level of restrictions imposed on the role 

assignment for tasks. When setting the role constraint 
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for task ti , the number of roles that can run ti  is 

randomly selected from [1, MAX _RCST ], and then that 

number of roles are randomly selected from the role set”.  

 

NUM _SoD  denotes the number of tasks associated with 

SoD constraints and NUM _BoD denotes the number of tasks 

that are associated with BoD constraints. “Duty 

constraints were set as follows. Each time, two tasks are 

randomly selected from the workflow to establish the BoD 

constraint between them until NUM _BoD  tasks are 

covered. And then the same procedure is applied to 

establish the SoD constraints among tasks. In this 

process, the method presented in Section 3.1 (chapter 3) 

is used to make sure that the designated duty constraints 

on these selected tasks can be satisfied. We assume that 

the tasks execution times follow an exponential 

distribution”. EX _H  denotes the average execution time 

of the tasks in time units. In order to examine the delay 

caused by the authorization constraints, a workflow 

instance is only issued after the previous instance has 

been completed in the experiments. Unless otherwise 

stated, the value of td  or rt  depicted in the figure is 
the value averaged over all workflow instances issued 

within the period of the temporal constraints, which are 

set below.  

 

“The temporal constraints on roles are set in the 

following way. For each role, time duration is selected 

from a period of P  time units. The selected time 

duration occupies the specified percentage of the P  time 
units, which is denoted as TEMP. The starting time of the 

selected duration is chosen randomly from the range of” 

[0, P × (1−TEMP) ]. For example, if P = 100 and TEMP  =10%, 
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the starting point is randomly selected from 0 to 

90%×100. 
 

Unless otherwise stated, the parameters are set to be 

the values shown in Table 4.1. 

 

 

Table 4.1. Experimental settings 

 

Parameter Value Parameter Value 

TNUM 15 MAX_DG 3 

EXH 5 RNUM 5 

MAX_RCST 3 NUM_SoD 4 

NUM_BoD 4 P 480 

TEMP 20%   

 

 

 
 

Figure 4.1. td under different TEMP 
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4.3.2. Temporal Constraints 

 

Figure 4.1. shows the change of td  as the temporal 

constraints (TEMP) changes. It can be seen from this 

figure that in all cases the GAA method achieves smaller 

td  than EAF. For example, when TEMP is 10%, td  is 0 under 
GAA while it is about 10 under EAF. The discrepancy 

becomes even bigger when TEMP increases. These results 

verify that the authorization method indeed matters and 

the GAA method is superior to the intuitive EAF method.  

 

 
 

Figure 4.2. rt under different TEMP 

 

 

Figure 4.2. compares rt  achieved by GAA and EAF under 
different TEMP. It can be seen that GAA achieves the 

shorter rt  than EAF in all cases. This is because GAA 
causes less delay and therefore achieves less response 

time than that under EAF. 
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4.3.3. Arrival Times of Workflows 

 

The work in this chapter presents the method to 

determine the duration of the time for workflow arrivals 

within which the authorization constraints will not have 

negative performance impact. This shows that the arrival 

time of a workflow has impact on workflow performance. 

Figure 4.3 shows the value of td  for different workflow 
arrival times under GAA and EAF. In these experiments, we 

set the period of all roles (i.e., P ) as 480 time units, 

and then issue the workflow instances at the time points 

from 0 to 300 time units with increment of 60. It can be 

seen that once again, GAA incurs less td  than EAF in all 
cases, except when the arrival time is 300 (whose will be 

explained later). Further, when the workflows arrive 

after 120, the GAA method does not cause any delay on 

workflow executions. These results verify that there 

indeed exist the durations for the workflow arrivals when 

the authorization constraints will not delay the workflow 

executions. The method proposed in this chapter is able 

to theoretically calculate such durations. A point to 

note is that when the arrival time is 300, no delay is 

caused under the EAF method either. This is because the 

time point 300 happens to be within the intersection of 

EAk (t0 )  of all feasible authorization solutions. 

Therefore, the system can always find an activated role 

for any task to enable its execution.  
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Figure 4.3. td under different workflow arrival times 

 

Figure 4.4 shows that rt  of the workflows with 

different arrival times. Again, GAA outperforms EAF in 

all cases. The rt  trend is consistent with the td  trend 
shown in Figure 4.3.  

 

 
 

Figure 4.4. rt under different workflow arrival times 
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4.3.4. Execution Times of the Workflow Tasks 

 

Obviously, increasing the execution times of the tasks 

in a workflow will increase the schedule length of the 

workflow. But do the execution times affect the 

authorization-related delay? Figure 4.5 shows the impact 

of the average execution time of the tasks in a workflow 

on the coverage of the temporal constraints (CTC), i.e.,

 
EAk (t0 )

Ak∈A
 . 

 
 

Figure 4.5. CTC under different average execution times 

of workflow tasks 

 

 As can be seen from this figure, CTC decreases as the 

average execution time increases. A reasonable 

explanation for this is that given a set of temporal 

constraints, the bigger the execution time of the tasks 
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workflow execution fits into the temporal constraints. 

Therefore, CTC may become shorter. This result suggests 

that given a set of temporal constraints, a workflow with 

5 15 25 35
200

210

220

230

240

250

260

270

280

290

300

Average Execution Time of Workflow Tasks  

CT
C 
 

 

 



	
   69	
  

longer tasks may be more likely to be delayed by the 

temporal constraints that a workflow with shorter tasks, 

which can be verified by the results, presented in Figure 

4.6.  

 

 

 
 

Figure 4.6. The coverage of temporal constraints (CTC) 

under different average execution times of workflow 

tasks. 
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Figure 4.7. rt under different average execution times of 

workflow tasks. 

 

  Figure 4.7 shows rt  generated by the GAA and the EAF 
method under different average execution time of workflow 

tasks. As can be observed, the GAA method generates 

shorter rt  than EAF in all cases. This again verifies GAA 
causes less delay than EAF. There can be a situation when 

both GAA and EAF may produce the same delay. It can 

happen when EAF selects the roles as in optimal solution 

by choosing the roles randomly. 

 

 

4.4 Summary 
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the proposed method is based on the delay analyses. 

Finally, this chapter presents the simulation 

experimental results to verify the effectiveness of the 

proposed authorization methods.  
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5 
Allocating	
  Resources	
  for	
  Workflows	
  

Running	
  under	
  Authorization	
  Control	
  

 

 

Many workflow scenarios require human involvement. 

Therefore a workflow may consist of both human tasks, 

which are handled by human resources (e.g., employees in 

a company) and computing tasks, which are processed by 

computing resources. This chapter investigates the issue 

of allocating both human resources and computing 

resources for running workflows, so as to satisfy the QoS 

requirements of the workflows under the role-based 

authorization control deployed in the system.  

 

The fundamental ideas of the work presented in this 

chapter are: 1) calculating the rate at which the 

requests arrive at each individual role under the 

deployed authorization constraints, and 2) based on the 

calculated arrival rates, presenting the methods to 

allocate the suitable amount of supporting resources for 

each role.  

 

In the application domains of interest, the 

allocations of human resources and computing resources 

have different considerations. In the role-based 
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authorization control, a human resource is affiliated 

with a role. The human resources with different roles 

will incur different salary costs (e.g., hiring a branch 

manager is more expensive than hiring a cashier). The 

budget is often a major factor of determining the 

allocation of human resources in enterprise applications. 

Therefore, this chapter takes authorization constraints 

into account and develop an optimization method to 

allocate the proper amount of human resources for each 

role, so that the human tasks can achieve optimized 

performance subject to the budget limit for human 

resources.  

 

  Due to relatively low costs of computing resources, the 

cost is typically not a major concern for deploying low- 

or middle-end computing resources. When the workflows are 

running under authorization control, authorization 

constraints may incur performance penalty as discussed in 

the above workflow example in banks. Therefore, 

minimizing the overhead caused by the authorization 

constraints should be a main objective. In order to 

address this issue, this chapter develops a strategy of 

allocating computing resources. The strategy is able to 

calculate 1) a proper number of computing resources 

allocated to host each service, and 2) the processor 

sharing proportion in each resource allocated to run the 

tasks assuming a certain role.  

 

In this chapter, a computing task involves invoking a 

computing service hosted in a central resource pool 

(e.g., a cluster or a Cloud). It is assumed that the 

invocation of computing services can only be initiated by 

a user with a certain role. A human task is executed by a 

human resource with a certain role. A human task can also 
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be regarded as invoking a human service provided by a 

user with a certain role. Therefore, for the simplicity 

of the presentation, we will discuss human tasks and 

computing tasks in a consistent manner in this chapter.  

 

It is assumed that a set of services (human service or 

computing service) is hosted by the resources (human 

resources or computing resources). A task (human task or 

computing task) in a workflow invokes one of the hosted 

services.  

 

The rest of this chapter is organized as follows. 

Chapter 5.1 presents the methods to calculate the arrival 

rate of the requests assigned to a role. Section 5.2 

presents the method to allocate human resources, while 

Section 5.3 develops the method to allocate computing 

resources for hosting computing services. The 

experimental studies are presented in Section 5.4. 

Finally Section 5.5 gives the summary of the chapter. 

 

 

5.1. Calculating the Arrival Rate under 

Authorization Control 
 

  In the workflow context in this chapter, a task in a 

workflow invokes one of the services running on the 

resources. In order to determine the amount of resources 

allocated to host services, this section first calculates 

the arrival rate of tasks for each service, which is the 

invocation rate of each service when there is no 

authorization control. However, under the authorization 

control, the tasks have to be assigned to a role before 

they can invoke the services, and the roles may have 
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temporal and cardinality constraints. Consequently, the 

services' invocation rates may be different from those 

when there is no authorization. This section derives the 

arrival rate of tasks for each role, i.e., the rate at 

which the tasks are assigned to each role under the 

authorization constraints. Table. 3.1 list the notations 

used in this thesis. 

 

5.1.1. Calculating the Arrival Rates for 

Services 

 

  S = { 𝑠!, . . . .     , 𝑠! } denotes the set of services running on 
the resource pool.  

 

  F = {𝑓!, . . .     , 𝑓!} denotes the set of workflows, which has 
N types of workflows. Different types of workflow may 

have different topologies of tasks. A task in a workflow 

invokes one of the services in S. A service invocation 

matrix, denoted as 𝐶!  !  ! (L cross N), can be used to 

represent which services are invoked by a workflow in F. 

The matrix has L rows and N columns. Row i represents 

service 𝑠! , while column j represents workflow 𝑓! . An 

element 𝑐!"  represents how many times service 𝑠!  is 

invoked by workflow 𝑓! (different tasks in a workflow may 

invoke the same service). 𝜆! denotes the arrival rate of 

Workflow 𝑓!. 
 

  The arrival rate of the requests for service 𝑠! , 

denoted as 𝜆(!") , can be calculated from the service-

calling matrix, 𝐶!  !  !, as in Eq. 5.1. 
 

𝜆(!") =      (𝑐!"     ×    𝜆!)!
!!!                            (5.1) 
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5.1.2. Calculating the Arrival Rates for Roles 

 

  This subsection analyses how to calculate the arrival 

rates for the roles under three types of authorisation 

constraints: role constraints, temporal constraints and 

cardinality constraints [Zou2009].  

 

5.1.2.1. Arrival Rates under Role Constraints 

 

        𝑅 = {𝑟!,… , 𝑟!} denotes the set of roles defined in the 

authorisation control system. The role constraint 

specifies the set of roles that are permitted to run a 

particular service. 𝐶!(𝑠!) denotes the role constraint 

applied to service 𝑠!. 
 

  A role constraint matrix, denoted as 𝑂(!  ×  !), is used to 

represent which roles are permitted to invoke a 

particular service. The matrix has L rows and M columns. 

Row i represents service 𝑠! , while column j represents 

role 𝑟! . An element 𝑂!"  is 0 or 1, representing whether 

role 𝑟! is permitted to run service 𝑠!.  

 

  If only role constraints are considered and multiple 

roles are permitted to run a service, a role is randomly 

selected. In the requests for service 𝑠! , the arrival 

rate of the requests allocated to role rj, denoted as 

𝜆!(𝑠!   , 𝑟!) , can be calculated using Eq. 5.2. Further, the 

arrival rate of all service requests allocated to rj, 

denoted as 𝜆!(𝑟!) can be calculated using Eq. 5.3. 

 

𝜆!(𝑠!   , 𝑟!)  = 
!(!!)

!!"!
!  !  !

0
         

𝑖𝑓   𝑜!"   ≠ 0!
!!!

𝑖𝑓   𝑜!" = 0!
!!!

       (5.2) 
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𝜆! 𝑟! =    𝜆!(𝑠!   , 𝑟!)!
!!!                            (5.3) 

 

 

5.1.2.2. Arrival Rates under both Role Constraints and 

Temporal Constraints 

 

  In most cases, a role is activated periodically. For 

example, the role of bank manager is only activated from 

9am to 12pm in a day. Therefore, the temporal constraint 

of role ri, denoted as C
t(ri) can be expressed as Eq. 5.4, 

where Pi is the period, Di is the time duration when ri is 

activated in the period Pi, and Si and Ei are the start 

and end time points when this period pattern begins and 

ends. Ei can be ∞, meaning the periodic pattern continues 
indefinitely. A temporal function for role ri is defined 

in Eq. 5.5. The value of the temporal function is 1 if 

the role is activated at the current time point t. 

Otherwise; the value of the function is 0. For example 

for role r1 in Fig. 5.1 at time t = 3, eq. 5.5 will be   

3 – 0 * 6 = 3 which is less than Di = 4, so the role will 

be active at t=3 and similarly at t=5 the value of the 

eq. 5.5 will be 5 – 0 * 6 = 5 which is greater than Di=4 

so the role is inactive at t=5. 

 

Ct(ri) = (Pi, Di, Si, Ei)         (5.4) 

 

 

ft(ri , t) = 
1                                  𝑖𝑓  𝑡 −    !!  !!

!!
  ×  𝑃!   ≤   𝐷!

0                                  𝑖𝑓  𝑡 −    !!  !!
!!

×  𝑃!   >   𝐷!
       (5.5) 

 

The function nr(si, t) defines the number of roles which 

are activated at time point t and are permitted to run 
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service si. nr(si, t) can be calculated using Eq. 5.6, 

which is based on the roles' temporal functions.  

 

nr(si , t) = 𝑓𝑡(𝑟!   , 𝑡)!!  !  !!  (!!)                  (5.6) 

 

    𝜆!"  (𝑠!   , 𝑟!) denotes the arrival rate of the tasks that are 

requesting service si and are assigned to role rj when 

both role constraints and temporal constraints are 

considered. 𝜆!"  (𝑠!   , 𝑟!   , 𝑡) denotes at time t, the arrival rate 

of the requests that assume ri and invoke si. 𝜆!"  (𝑠!   , 𝑟!   , 𝑡), 

can be calculated as Eq. 5.7. Then 𝜆!"  (𝑠!   , 𝑟!)  (i.e., the 

average arrival rate of the requests that assume ri and 

invoke si) can be calculated as Eq. 5.8, where P is the 

minimal common multiple of the periods of all roles that 

can run si. 

 

    𝜆!"  (𝑟!)  denotes the arrival rate of all tasks that are 

assigned to role rj when both role constraints and 

temporal constraints are considered. 𝜆!"  (𝑟!)  can be 

calculated as Eq. 5.9. 

 

 

𝜆!" 𝑠!   , 𝑟!   , 𝑡 =    !(!!)
!"(!!    ,!)

                                                                                                                                                            (5.7) 

 

𝜆!" 𝑠!   , 𝑟!      =     
!!"(!!  ,  !!  ,!)!"

!
!

!
                                (5.8) 

 

𝜆!" 𝑟! =    𝜆!"(𝑠!   , 𝑟!)!
!!!                                    (5.9) 

 

  Figure 5.1 illustrates the temporal constraints of 

three roles, r1, r2, r3, in which t(r1) = (6, 4, 0,∞ ), 



	
   79	
  

t(r2) = (4, 2, 0, ∞), and t(r3) = (3, 1, 0,∞) by using 

equation 5.4.  

 

  Figure 5.2 illustrates nr(si, t) for the three roles in 

Figure 5.1. As can be seen from this figure, the number 

of activated roles that can run si varies over time. Note 

that since the minimal common multiple of the periods of 

r1, r2, r3 is 12, the pattern of nr(si, t) will repeat in 

every time duration of 12.  

 

 

 
Figure 5.1. An Example of the temporal constraints of 

roles. Note that shaded area represent that role is 

available. 

 

  According to Eq. 5.8, 𝜆!"  (𝑠!   , 𝑟!) is 
!(!!)
!
 and 𝜆(𝑠!) at time 

point 0 and 12, respective. 

 

  The analysis can be easily extended to the case where 

the temporal constraint of a role consists of multiple 
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different periodic patterns, each of which is specified 

by Eq. 5.4. The analysis for multiple periodic patterns 

is omitted in this chapter. 

 

 

 
 

Figure 5.2. The function of the number of activated roles 

for the example in Figure 5.1. 

 

5.1.2.3. Arrival Rates under both Role Constraints and 

Cardinality Constraints 

 

  The cardinality constraint of a role is defined as the 

maximum number of tasks that the role can run 

simultaneously. Cc(ri) denotes the cardinality constraint 

of ri.  

 

  In order to avoid the execution delay caused by ri's 

cardinality constraint, the number of the tasks running 
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under role ri should be less than C
c(ri) when a new task 

arrives requesting role ri.   𝜆!"   (𝑠!   , 𝑟!)  denotes the arrival 

rate of the tasks that are requesting service si and are 

assigned to role rj when both role constraints and 

cardinality constraints are considered. 𝜆!"    𝑟!  denotes 

the arrival rate of all tasks that are assigned to role 

rj when both role constraints and cardinality constraints 

are considered. 

  

  According to Littles Law [Kleinrock1976], we have Eq. 

5.10, where rpi is the mean response time of the tasks 

running under role ri. 

 

 

Cc(ri) = 𝜆!" 𝑟!   ×  𝑟𝑝!                            (5.10) 
 

 

  np(ri) denotes the number of resources used to serve 

the tasks running under ri, and these resources are 

modelled as a M/M/np(ri) queuing model. wi denotes the 

waiting time of the tasks assigned to role ri. According 

to the queuing theory [Kleinrock1976], wi can be 

calculated by Eq. 5.11, where ei is the execution time of 

the tasks assigned to ri. 

 

 

𝑊! =   
!!"   !!   ×    !!!

!"(!!)!!  !!  ×  !" !!   ×  !!"  (!!)
                       (5.11) 

 

 

  Since Eq. 5.12 holds, Eq. 5.10 can be transformed to 

Eq. 5.13. 
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𝑟𝑝! =   𝑤! +   𝑒!                                (5.12) 

 

𝐶! 𝑟! =   𝜆!" 𝑟!   ×  (
!!" !!   ×    !!!

!"(!!)!!  !!    ×    !" !!   ×    !!"(!!)
  +   𝑒!)      (5.13) 

 

    𝜆!"(𝑟!) can then be calculated by transforming Eq. 5.13 to 
Eq. 5.14, which is the maximum task arrival rate that ri 

can tolerate in order to avoid the overhead caused by its 

cardinality constraint. 

 

 

𝜆!" 𝑟!

=   
𝑛𝑝 𝑟!   ×   𝑛𝑝 𝑟! +   𝐶!(𝑟!)! −     4  ×𝐶! 𝑟! ×  (𝑛𝑝 𝑟! − 1)  + 𝑛𝑝 𝑟! ×  (𝑛𝑝 𝑟! +   𝐶!(𝑟!))

2  ×  𝑒!   ×  (𝑛𝑝 𝑟! − 1)  

 

(5.14) 

 

5.1.2.4. Arrival Rates under Role, Temporal and 

Cardinality Constraints 

 

    𝜆!"#(𝑟!)  denotes the arrival rate of the tasks that are 
assigned to ri when the role constraints, temporal 

constraints and cardinality constraints are considered. 

𝜆!"#(𝑟!) can be calculated as Eq. 5.15.  

  

 

𝜆!"# 𝑟! =   min  (𝜆!" 𝑟!   , 𝜆!"(𝑟!))                  (5.15) 

 

5.2. Allocating Resources for Human Tasks 
 

  Since a human task in a workflow invokes a human 

service provided by a user with a certain role, we need 
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to allocate an appropriate amount of human resources for 

each role, so that the desired performance can be 

achieved for human tasks. In Section 5.1, we have derived 

the tasks' arrival rates for roles under the 

authorization constraints. This section models the 

problem of allocating human resources for roles, aiming 

to optimizing the average response time of the human 

tasks. Since the budget is often a major factor in hiring 

human resources, the allocation of human resources is 

subject to a budget constraint.  

 

  B denotes the budget that can be spent for human 

resources. bi denotes the cost of hiring a human resource 

assuming role ri (e.g., the salary for a staff taking the 

manager role). hi denotes the number of the human 

resources allocated for role ri. The budget constraint 

can be expressed as Eq. 5.16, where hi is an integer. 

 

 

𝑏!   ×  ℎ! ≤   Β!
!!!                               (5.16) 

 

 

  We model the human resources allocated for role ri as 

an M/M/hi queueing model. According to the queuing theory 

[Kleinrock1976], the average response time of human tasks 

over all roles, denoted as RH, can be calculated by Eq. 

5.17. 

 

 

𝑅𝐻 =      𝑟𝑝!   ×   
!!
!!!

!!!

!
!!!                          (5.17) 

 

  Following the similar derivation as in Eq. 5.11 and Eq. 

5.12, Eq. 5.17 can be transformed to Eq. 5.18. 
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𝑅𝐻 =    ( !!  ×  !!!

!!!!  !!  ×  !!  ×  !!
  +     𝑒!     ×     

!!
!!!

!!!
  )!

!!!            (5.18) 

 

 

  From the analysis in Subsection 5.1.2.3, we know that 

in order to reduce the performance penalty caused by 

cardinality constraints, the tasks assigned to a role 

with a tighter cardinality constraint (i.e., less value 

of 𝐶!(𝑟!)) should have a shorter average response time so 
that they can be turned around faster in the system. This 

relation can be represented in Eq. 5.19. 

 

𝑟𝑝!   ≤     𝑟𝑝!   ,      𝑖𝑓  𝐶! 𝑟!   ≤     𝐶!(𝑟!)                    (5.19) 

 

  The objective is to find ℎ!(1   ≤ 𝑖   ≤ 𝑀)  subject to Eq. 

5.16 and Eq. 5.19, such that RH in Eq. 5.18 is minimized. 

This is a constrained-minimum problem, and there do exist 

solvers to find its solution [Cuervo2010]. 

 

 

5.3. Allocating Resources for Computing 

Tasks 
 

  A computing task in the workflow invokes a service 

hosted in the central computing resource pool (e.g., a 

Cluster or a Cloud [He2011a]). This section aims to 

determine the suitable amount of computing resources 

allocated for hosting each service and for processing the 

tasks assuming each role, so that the overhead caused by 

the authorization constraints can be minimized. 
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  ni denotes the number of homogeneous nodes used to host 

service si. According to the role constraints, we know 

which roles can invoke the services. Using Eq. 5.8, we 

can calculate the arrival rate of the requests that 

assume rj to invoke si. Applying Little's law, the 

desired average response time for a request assuming rj 

(i.e., rpj) can be calculated as Eq. 5.20. In order to 

satisfy rpj, we need to find a minimal number of nodes 

for hosting each service (i.e., the minimal value of ni, 

1   ≤ 𝑖   ≤ 𝐿(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠) , and to find the proportion of 

processing capability (in a node hosting si) allocated to 

run the requests that assume role rj, which is denoted as 

𝛼!". 

 

𝑟𝑝! =   
𝐶!(𝑟!)
𝜆!"#(𝑟!)

                                                                                                                                                                                                                            (5.20)  

 

  We first calculate the desired response time for the 

requests that assume rj to invoke si. esi denotes the mean 

execution time of the requests invoking service si, which 

can be obtained by benchmarking the executions of service 

si . rp rj , si( )  denotes the desired mean response time of the 
requests that assume role rj to invoke service si  . Then 

rp rj ,  si( )  can be calculated from Eq. 5.21, where Eq. 

5.21.(ii) expresses that the ratio among rp rj ,  si( )  should 
be equal to the ratio among esi  (𝑠!   𝜖  𝐶!(𝑟!)).  
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(
λ rtc(si ,rj )
λ rtc(rj )

× rp(
si∈C

s (rj )
∑ rj ,si )) = rp j (i)

∀si ,sk ∈C s(rj ), rp(rj ,si ) =
esi

esk

× rp(rj ,sk ) (ii)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

        (5.21) 

 

 

The problem of finding 𝛼!"  in a node hosting service si 

relies on the analysis of multiclass queuing systems with 

Generalized Processor Sharing, which is notoriously 

difficult [Liu2001]. The analysis of the multiclass 

single-server queue can be approximated by decomposing it 

into multiple single-class single-server queues with the 

capacity equal to 𝛼!"𝜇!  [Liu2001], where 𝜇!  is the 

processing rate of a node for serving service 𝑠! 

(i.e.,
!
!"!

). Finding 𝛼!" and ni  can then be modelled as Eq. 

5.22, where Eq. 5.22.i is constructed based on the 

equation of calculating average response time of the 

tasks in an M/M/1 queue [Kleinrock1976]. In Eq. 5.22, the 

number of unknown variables (i.e., ni and 𝛼!" , 𝑟!   𝜖  𝐶!(𝑠!)) 

is the same as the number of equations in Eq. 5.22. 

Therefore, ni  and 𝛼!" can be calculated.  
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5.4. Experimental Studies 
 

5.4.1. Experimental Settings 

 
  This section presents the simulation experiments to 

demonstrate the effectiveness of the resource allocation 

strategies developed in this chapter by using Matlab 

tool. The metrics used to measure the performance 

obtained by resource allocation strategies are mean 

response time of workflows and resource utilization.  

 

  In the simulations presented in this chapter, the 

workflows are randomly generated, each workflow 

containing TNUM tasks and each task in a workflow having 

the maximum of MAX_DG children. A workflow contains two 

types of task, Human Task (HT) and Computing Task (CT), 

following a certain ratio of the number of tasks in each 

type (denoted as |HT|:|CT|). Assume that all computing 

tasks can only be initiated by a user with a certain role 

(i.e., all computing tasks are human-aided computing 

tasks). RNUM roles and UNUM users are assumed to be 

involved in processing the workflows. 

 

  The role constraints (i.e., the set of roles that a 

task can assume) for each HT and CT are set in the 

following fashion. The simulation sets a maximum number 

of roles that any task can assume in the role 

constraints, denoted as MAX_RCST, which represents the 

level of restrictions imposed on the role assignment for 

tasks. When setting the role constraint for task ti, the 

number of roles that can run ti is randomly selected from 

[1, MAX_RCST], and then those numbers of roles are 

randomly selected from the role set. A similar scheme is 
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used to associate users to roles. The maximum number of 

users a role can be associated to is denoted as MAX_U2R. 

The number of users belonging to role ri is randomly 

selected from [1, MAX_U2R]; and these users are then 

randomly selected for ri from the user set. 

 

  The temporal constraints on roles are set in the 

following way. For each role, time duration is selected 

from a period of TD time units. The selected time 

duration occupies the specified percentage of the TD time 

units, which is denoted as TEMP. The starting time of the 

selected duration is chosen randomly from the range of 

[0, TD X (1-TEMP)]. For example, if TD = 200 and TEMP = 

70%, the starting point is randomly selected from 0 to 

30% X 200. 

 

  CARD denotes the cardinality constraint, i.e., the 

maximum number of the tasks that can be run 

simultaneously in the system by a role.  

 

  The arrivals of workflow instances are generated follow 

the Poisson process and that the tasks execution times 

follow an exponential distribution. The human tasks have 

the average execution time of EX_H time units, while the 

computing tasks, including HCT and ACT, have the average 

execution time of EX_C units.  

 

  In the experiments, we first plan the capacity of human 

resources and calculate the capacity of computing 

resources (i.e., the number of computing resources) and 

the allocation strategy of computing resources (i.e., the 

processing sharing fraction for each role). Then we 

generate the workflows and run them in the resources in 

the aforementioned fashion. The obtained performance is 
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recorded. In the experiments, we also compare the 

performance obtained by our strategies with the 

performance by conventional strategies. Conventional 

capacity planning and resource allocation strategies do 

not take authorization constraints into account, and 

often allocate the amount of resources proportional to 

the arrival rate.  

 

5.4.2. Experimental Results 

 

  In order to demonstrate the effectiveness of the 

allocation strategy for human resources, we conduct the 

experiments using the traditional allocation strategy for 

human resources. In the traditional strategy, we don't 

impose authorization constraints, and assume particular 

types of human tasks are handled by a particular user. 

Based on the arrival rate of workflows, we can obtain the 

arrival rate of the requests for each human service. The 

number of human resources allocated for handling each 

human service is proportional to the arrival rate of 

requests for each service, subject to the constraint that 

the total cost of hiring all human resources is no more 

than the budget B. With the same budget constraint, we 

conduct the experiments using the allocation strategy for 

human resources developed in this chapter. Then we run 

the workflows consisting of only human tasks under 

authorization constraints on both resource allocation 

settings. Figure 5.3 shows their performance in terms of 

mean response time (i.e., RH) as the arrival rate of the 

workflow increases. 
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Figure 5.3. Comparing average response time of human 

tasks between our strategy and the traditional allocation 

strategy for human resources; TNUM=15, MAX_DG=10, EX_H=7, 

RNUM=5, UNUM=15, MAX_U2R=5, MAX_RCST=4, CARD=4, TEMP=70%, 

TD=200, B=200, b1, ..., bRNUM = 10, 8, 2, 5, 9. 

(Experimental setup and Variables are defined at page 87) 

 

  As can be seen from Figure 5.3, our strategy 

outperforms the traditional strategy in all cases and the 

trend becomes more prominent as the arrival rate of 

workflows increases. This is because our strategy takes 

into account authorization constraints and the arrival 

rate of requests, and establishes the optimization 

equations to calculate the allocation of human resources 

that can minimize the mean response time of human tasks. 

In the traditional allocation strategy, the resources are 

allocated only based on the arrival rate of the requests 

for services, not considering authorization constraints. 

Due to the existence of authorization constraints, the 
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incoming requests need to be first assigned to roles and 

then invoke the corresponding services. Consequently, the 

rate at which the services are invoked under 

authorization may be different from that without 

authorization. Therefore, the resources allocated by the 

traditional strategy may not be in line with the resource 

demands, and consequently the performance may be 

impaired. Further, as the arrival rate of workflows 

increases, it becomes more likely that the following 

situation may occur under the traditional strategy due to 

the fact that the amounts of resources allocated for 

different services have to maintain the proportion: the 

resources allocated for some services become saturated 

while the resources are over-provisioned for other 

services due to the extra authorization constraints. In 

our strategy, however, the authorization constraints are 

taken into account, and the amount of resources for each 

role is calculated accordingly. The effect is that the 

cost spent for allocating over-provisioned resources is 

now used to allocate more resources that are saturated 

under the traditional strategy.  

 

  Figure 5.4 compares resource utilizations between our 

strategy and the traditional strategy in the same 

experimental settings as in Figure 5.3. As can be seen 

from Figure 5.4, our strategy achieves higher utilization 

than the traditional strategy. This is still because the 

traditional strategy allocates resources based on the 

arrival rate of the requests for services, which causes 

the over-provisioned resources for some services after 

imposing authorization constraints.   
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Figure 5.4. Comparing resource utilization between our 

strategy and the traditional allocation strategy for 

human resources; the experimental settings are the same 

as in Figure 5.3. 

 

   In order to demonstrate the effectiveness of the 

allocation strategy for computing resources, we conduct 

the experiments using the traditional allocation strategy 

for computing resources. In our strategy, the 

authorization constraints are taken into account, and the 

proportion of processing capability allocated for each 

role is calculated accordingly. In the traditional 

strategy, all tasks are treated equally and are put into 

the central waiting queue in the cluster of computing 

resources. When a computing resource is free and the 

authorization constraints are satisfied, the task at the 
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head of the waiting queue is put into execution in the 

free resource.  

 

 
 

Figure 5.5. Comparison of performance in terms of average 

response time between our allocation strategy and 

traditional strategy for computing resources; NUM=15, 

MAX_DG=10, EX_C=7, RNUM=5, UNUM=15, MAX_U2R=5, 

MAX_RCST=4, CARD=4, TEMP=70%, TD=200 

 

  Figure 5.5 compares average response time of computing 

tasks between our strategy and the traditional allocation 

strategy for computing resources. In these experiments, 

all tasks in a workflow are computing tasks. In the 

traditional resource allocation strategy, authorization 

constraints are not taken into account, and the amount of 

resources allocated for a service is proportional to the 

arrival rate of the requests for the service. The 
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allocation strategy developed in this chapter calculates 

the arrival rate for each role and then further 

calculates the amount of resources allocated to serve the 

requests assigned to each role.  

 

  As can be seen from Figure 5.5, our strategy performs 

better than the traditional strategy. This can be 

explained as follows. In our allocation strategy, the 

authorization constraints are taken into account. For 

example, if role 𝑟!  has the tighter cardinality 

constraint (i.e., smaller value of 𝐶!(𝑟!), more proportion 
of processing capability will be allocated to serve the 

tasks assuming 𝑟! , so that the number of those tasks in 
the system will be less and the performance penalty 

imposed by 𝑟!'s cardinality constraint can be reduced. In 
the traditional allocation strategy, the tasks assuming 

different roles are treated equally, and therefore cannot 

prioritize the tasks that are assuming the roles with 

tight cardinality constraint and therefore should be 

turned around faster. Tasks assuming tight cardinality 

have priority on other tasks to reduce the delay because 

of the tight cardinality. 

  

  Figure 5.6 compares the resource utilization between 

our strategy and the traditional allocation strategy for 

computing resources. It can be seen from this figure that 

our strategy can achieve higher resource utilization than 

the traditional strategy. This can be explained as 

follows. In the traditional strategy, it is more likely 

that the tasks have to wait in the waiting queue even if 

there are free resources in the system, because the tasks 

assuming the roles with tight cardinality constraints can 

be turned around faster in our strategy. This causes 

lower resource utilization.  
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Figure 5.6 Comparing resource utilization between our 

strategy and the traditional allocation strategy for 

computing resources; the experimental settings are the 

same as in the Figure 5.5. 

 

  Figure 5.7 compares the schedule lengths of workflows 

achieved by our strategy and the traditional strategy. In 

these experiments, a workflow contains both human tasks 

and computing tasks. Then we run the workflows on human 

resources and computing resources allocated by our 

strategy as well as by the traditional strategy. Figure 

5.7 shows that our strategy achieves shorter schedule 

length than the traditional strategy. Again, this is 

because our strategy takes authorization constraints into 

account and allocate suitable amount of resources for 

both human resources and computing resources.  
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Figure 5.7 Comparing the schedule lengths of workflows 

achieved by our strategy and the traditional strategy; 

NUM=15, MAX_DG=10, EX_C=7, EX_H=7, RNUM=5, UNUM=15, 

MAX_U2R=5, MAX_RCST=4, CARD=4, TEMP=70%, TD=200, 

|HT|:|CT|=4:6, B=200, b1, ..., bRNUM = 10, 8, 2, 5, 9 

 

  Figure 5.8 compares the resource utilization achieved 

by our strategy and the traditional strategy. The 

depicted utilization is averaged over the entire system 

consisting of both human resources and computing 

resources. The figure shows that our strategy can achieve 

higher system utilization than the traditional strategy. 

The reason for this is similar as explained in Figure 5.6 

and Figure 5.4.  
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  The approach will be less beneficial when the execution 

times of the tasks are not known in advance because I 

assume that the execution times are known in advance. 

 
 

Figure 5.8 Comparing average resource utilization 

achieved by our strategy and the traditional strategy; 

the experimental settings are the same as in Figure 5.7. 
 

 

5.5. Summary 
 

  This chapter investigates the issue of the allocation 

of the workflows running under the authorization control. 
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cardinality constraints. Further, this chapter present 

the methods to allocate the resource quantities for both 

human resources and computing resources. Different 

features of human resources and computing resources are 

taken into account. For human resources, the objective is 

to maximize the performance subject to the budgets to 

hire the resources, while for computing resources, the 

strategy aims to allocate adequate amount of computing 

resources to meet the QoS requirements. The simulation 

experiments have been conducted to compare the 

performance of the resource allocation strategies 

proposed in this chapter with a traditional strategy, 

which does not consider the authorization constraints and 

allocates the resource quantities proportional to the 

level of workload arriving at each service. The 

experimental results show that the proposed strategy is 

able improve the performance in terms of both schedule 

length and resource utilization.  
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6 
Conclusions	
  and	
  Future	
  Directions	
  

 

 

6.1. Conclusions 
 

  The authorization control may be deployed in the 

workflow management systems in some application domain. 

However, the traditional workflow scheduling and resource 

allocation strategies do not take the authorization 

policies into account. This thesis investigates the 

impact of authorization policies on the execution 

performance of the workflows.  

 

  In Chapter 3, this thesis starts with investigating the 

issue of the feasibility checking for a set of 

authorization constraints deployed in workflow management 

systems. The feasibility-checking problem is modeled as a 

constraint satisfaction problem in this Chapter. The 

benefit of this modeling approach is that the solver for 

the constraints satisfaction problem can obtain all 

feasible authorization solutions. With knowing all 

feasible authorization solutions, the thesis further 

propose the method to determine the time durations when 

the workflow executions will not be impacted by the 

authorization constraints. A case study is given to 

illustrate the workings of the proposed methods.     
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  In Chapter 4, this thesis proposes the method to 

analyze the delay caused by the authorization constraints 

if the workflow arrives beyond the non-impact time 

duration calculated in Chapter 3. Through the analysis of 

the delay, we realize that the authorization method, 

i.e., the method to select the authorization solution 

used to assign the roles to the tasks affects the length 

of the delay caused by the authorization constraints. 

Based on this finding, we propose an optimal 

authorization method, called the Global Authorization 

Aware (GAA) method. The GAA method is optimal in the 

sense that it can select the authorization method that 

minimizes the delay caused by the authorization 

constraints. We prove the optimality of the GAA method 

based on the delay analysis. We also conduct the 

simulation experiments to verify the effectiveness of 

this authorization method. The results show that compared 

with an intuitive authorization method, i.e., the Earlier 

Available First (EAF) method, the GAA method indeed 

greatly reduces the delay caused by the authorization 

constraints and the response time of the workflows.  

 

  A key reason why the authorization constraints may have 

impact on the execution performance is because the 

authorization constraints direct the incoming workload to 

different roles. Then the availability of the roles and 

the quantity of the resources allocated to each 

individual role will affect the execution performance of 

the workflows. In Chapter 5, we conduct the theoretical 

analysis about how the authorization constraints direct 

the workload to the roles. We propose the methods to 

calculate the arriving rate of the requests directed to 

each role under the role, temporal and cardinality 

constraints. Further, we present the methods to allocate 
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the appropriate quantity for both human resources and 

computing resources. Different features of human 

resources and computing resources are taken into account. 

For human resources, the objective is to maximize the 

performance subject to the budgets to hire the human 

resources, while for computing resources, the strategy 

aims to allocate adequate amount of computing resources 

to meet the QoS requirements. The simulation experiments 

are conducted to compare the performance of the resource 

allocation strategies proposed in this chapter with a 

traditional strategy, which does not consider the 

authorization constraints and allocates the resource 

quantities proportional to the level of workload arriving 

at each service. The experimental results show that the 

proposed strategy is able improve the performance in 

terms of both schedule length and resource utilization. 

 

 

6.2. Future Work 

 

  This thesis conducted systematic studies about the 

impact of the authorization constraints on the execution 

performance of the workflows. However, the research work 

can be further extended in the following three folds.  

 

  First, when we calculate the delay caused by the 

authorization constraints, we assume that we know the 

exact value of the tasks’ execution times. In real world, 

this assumption may not be always true. Therefore, we 

plan to conduct the further research in the following two 

aspects: 
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i) We plan to conduct the probability and 

statistical analysis about the delay caused by 

the authorization constraints, if the execution 

times of the tasks follow a certain probability 

distribution. For example, if the execution time 

follows the exponential distribution, then the 

time duration when the workflow executions will 

not be affected by the authorization constraints 

will not be a fixed value, but a random variable 

following certain probability attributes.  

 

ii) The analysis of the delay caused by the 

authorization constraints requires knowing the 

prediction of the tasks’ execution times. 

However, the prediction may not be exactly 

accurate. Therefore, we plan to study the impact 

of the inaccuracy of the prediction on the 

quality of the delay analysis.  

 

  Second, we propose the methods to allocate the 

appropriate quantity for human resources and computing 

resources. For human resources, the objective is to 

maximize the response time of the tasks subject to the 

resource budget, while the allocation strategy for 

computing resources aims to determine the adequate 

resources to meet the requirements in the tasks’ response 

time. The response time of the tasks is the application-

oriented performance metrics. There are also system-

oriented performance metrics, such as resource 

utilization and system throughput. We plan to study the 

allocation strategies to maximize the performance or meet 
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the performance requirements in terms of the system-

oriented metrics. 

 
  Finally, Petri-net is a popular approach to modelling 

the authorization constraints. Although the Petri-net 

modeling approach is heavy, it is especially useful if 

the system contains non-deterministic properties. For 

example, the resources may be dynamically added into or 

removed from the system, or the authorization control 

component may have dynamic interaction with the 

scheduling component in the workflow management system. 

Under such circumstances, we may still need to resort to 

the Petri-net modelling approach. A big problem of the 

Petri-net approach is that the constructed Petri-net is 

susceptible to the state explosion problem. Therefore, 

reducing the complexity of the Petri-net model will be 

very helpful. We plan to study whether and how the 

analysis method proposed in this thesis can simplify the 

Petri-net modelling approach.   
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