

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/59642

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap

Optimizing Performance of Workflow

Executions Under Authorization

Control

by

Nadeem Chaudhary

Thesis

Submitted to the University of Warwick

for the Degree of

Doctor of Philosophy

Department of Computer Science

University of Warwick

June 2013

	
 i	

Contents	

List of Tables ………………………………………………………………………………………………… v

List of Figures …………………………………………………………………………………………… vi

Acknowledgement …………………………………………………………………………………………… ix

Declaration ……………………………………………………………………………………………………… xi

Research context and results ……………………………………………………… xii

Abstract ……… xiv

Glossary ……………………………………………………………………………………………………… xviii

Chapter 1: Introduction ………………………………………………………………………… 1

Chapter 2: Literature review ………………………………………………………… 14

2.1 Workflow Management ……………………………………………………………………… 14

 2.1.1 Workflow Modelling ……………………………………………………………… 14

 2.1.2 Automation of workflow executions ……………………… 17

 2.1.3 Human activities …………………………………………………………………… 18

2.2 Workflow Scheduling ……………………………………………………………………… 20

	
 ii	

2.3. Security and Authorization for Workflow

Executions …… 26

2.3.1. Enforcement of security and authorization

policies …… 26

2.3.2. Feasibility checking of authorization

constraints ………………………………………………………………………………………………… 29

2.3.3. Analysis of performance impact of security

and authorization policies ………………………………………………………… 32

Chapter 3: Analyzing the impact of authorization

constraints ……………………………………………………………………………………………………… 35

3.1. Checking Feasibility of Role, SoD And BoD

Constraints ……………………………………………………………………………………………………… 37

3.2 Analyzing the Coverage of authorization

Constraints for Workflow Executions ……………………………………… 40

3.3 Case Study ……………………………………………………………………………………………… 44

3.4 Summary ……………………………………………………………………………………………………… 53

Chapter 4: Optimizing the authorization methods for

workflows ……… 54

4.1 The EAF authorization method ……………………………………………… 55

4.2 The GAA authorization method ……………………………………………… 56

4.3 Experimental Studies …………………………………………………………………… 62

 4.3.1 Experimental Settings ……………………………………………………… 62

 4.3.2 Temporal Constraints ………………………………………………………… 65

 4.3.3 Arrival times of workflows ………………………………………… 66

	
 iii	

 4.3.4 Execution times of the workflow tasks …………… 68

4.4 Summary ……………………………………………………………………………………………………… 70

Chapter 5: Allocating resources for workflows running

under authorization control …………………………………………………………… 72

5.1 Calculating the arrival rate under authorization

control ……… 74

5.1.1. Calculating the arrival rates for services

……… 75

 5.1.2. Calculating the arrival rates for roles …… 76

5.1.2.1. Arrival rates under role constraints … 76

5.1.2.2. Arrival rates under both role constraints

and temporal constraints ………………………………………………………… 77

5.1.2.3. Arrival rates under both role constraints

and cardinality constraints ………………………………………………… 80

5.1.2.4. Arrival rates under role, temporal and

cardinality constraints …………………………………………………………… 82

5.2. Allocating resources for human tasks ……………………… 82

5.3. Allocating resources for computing tasks …………… 84

5.4. Experimental Studies ………………………………………………………………… 87

5.4.1. Experimental settings …………………………………………………… 87

5.4.2. Experimental results ……………………………………………………… 89

5.5 Summary ……………………………………………………………………………………………………… 97

Chapter 6: Conclusions and future directions ……………… 99

	
 iv	

6.1 Conclusions …………………………………………………………………………………………… 99

6.2 Future work ………………………………………………………………………………………… 101

Bibliography ………………………………………………………………………………………………… 104

	
 v	

List	
 of	
 Tables	

Table 1.1. Execution times of the workflow tasks in

the case study ………………………………………………………………………………………………… 4

Table 1.2. Temporal constraints of the roles in the

case study ……… 5

Table 3.1. Notations used in this thesis ………………………… 36

Table 4.1. Experimental Settings ……………………………………………… 64

	
 vi	

List	
 Of	
 Figures	

Figure 1.1 Workflow in the case study ………………………………… 5

Figure 1.2 The temporal constraints of the roles …… 6

Figure 1.3 An exemplar scheduling solution of the

workflow under the authorization

constraints in the case study ………………………… 7

Figure 1.4 A case study for feasibility checking …… 9

Figure 3.1 The workflow in the case study …………………… 45

Figure 3.2 The temporal constraints in the case

study, the shaded areas in the timelines

are the time durations when the roles are

not activated ………………………………………………………………… 46

Figure 4.1 td under different TEMP ……………………………………… 64

Figure 4.2 rt under different TEMP ……………………………………… 65

Figure 4.3 td under different workflow arrival times

……………………………………………………………………………………………………… 67

	
 vii	

Figure 4.4 rt under different workflow arrival times

……………………………………………………………………………………………………… 67

Figure 4.5 CTC under different average execution

times of workflow tasks ……………………………………… 68

Figure 4.6 The coverage of temporal constraints (CTC)

under different average execution times of

workflow tasks ……………………………………………………………… 69

Figure 4.7 rt under different average execution times

of workflow tasks ……………………………………………………… 70

Figure 5.1 An Example of the temporal constraints of

roles ……………………………………………………………………………………… 79

Figure 5.2 The function of the number of activated

roles for the example in Figure 5.1.

……………………………………………………………………………………………………… 80

Figure 5.3 Comparing average response time of human

tasks between our strategy and the

traditional allocation strategy for human

resources …………………………………………………………………………… 90

Figure 5.4 Comparing resource utilization between our

strategy and the traditional allocation

strategy for human resources ………………………… 92

Figure 5.5 Comparison of performance in terms of

average response time between our

allocation strategy and traditional

strategy for computing resources ……………… 93

	
 viii	

Figure 5.6 Comparing resource utilization between our

strategy and the traditional allocation

strategy for computing resources ……………… 95

Figure 5.7 Comparing the schedule lengths of

workflows achieved by our strategy and the

traditional strategy ……………………………………………… 96

Figure 5.8 Comparing average resource utilization

achieved by our strategy and the

traditional strategy ……………………………………………… 97

	
 ix	

Acknowledgements	

 I am very thankful to my supervisor Dr. Ligang He,

for offering me the opportunity to work with him at

the University of Warwick under his kind supervision.

His invaluable guidance and help supported me to

complete this research. He further encouraged me to

continue from the Masters degree to the PhD degree

programme and provided me partial financial support

for my studies as well, this was very helpful for me

to continue and keep focussing on my research.

 I am also very thankful to my advisor Dr. Stephen A.

Jarvis who helped a lot towards the partial financial

support for my work. I would also like to thank all

the past and present members at the Department of

Computer Science, especially Dr. Alexandra I.

Cristea, Dr. Jane Sinclair, Dr. Khalid Masood, Dr.

Hammad Qureshi, Dr. Nasir Rajpoot, Dr. Simon

Hammond, Dr. Mohammed Al-Ghamdi, Alaa Khadidos,

Adnan Mujahid, Shan-e-Ahmad Raza and Malik Shahzad

Kaleem Awan. I would also like to express my

gratitude to Dr. Roger Packwood and Paul Williams

for their technical support and Dr. Christine

	
 x	

Leigh for her kind support and help in

administrative and financial affairs during the

period.

 Finally, and most especially, thanks to my

family: my parents, wife, son - Shayaan, brothers,

sisters and relatives for their love, support and

kindness during this long period.

	
 xi	

Declaration	

 This thesis is presented in accordance with the

regulations for the degree of Doctor of Philosophy. It

has been composed by myself and has not been submitted

in any previous application for any degree. The work

in this thesis has been undertaken by myself except

where otherwise stated.

 The various aspects of research that are documented

in this thesis have also been published in the

following publication: [He2012b] [He2013]

[Chaudhary2013]. The publications on which each

chapter is based and a full list of the ‘research

results’ that relate to this work are summarised at

the beginning of the thesis.

	
 xii	

Research	
 Context	
 And	
 Results	

 University of Warwick and the Department of Computer

Science sponsored the research work presented in this

thesis partially.

 The work presented in this thesis is also supported

by the Leverhulme Trust (grant number RPG-101). The

research work has resulted in the following one

journal and two conferences publications.

Journal Publications

• Ligang He, Nadeem Chaudhary and Stephen A. Jarvis

“Developing Resource Allocation Strategies for

workflows comprising both human and computing

tasks”, Future Generation Computer Systems, 2013,

DOI: 10.1016/j.future.2013.09.030

Conference Publications

• Ligang He, Nadeem Chaudhary, Stephen A. Jarvis

and Kenli Li. “Allocating resources for workflows

	
 xiii	

running under authorization control”. Proceedings

of the 13th IEEE/ACM International Conference on

Grid Computing (Grid 2012), pp. 58-65, September

2012

• Nadeem Chaudhary and Ligang He. “Analyzing the

Performance Impact of Authorization Constraints

and Optimizing the Authorization Methods for

Workflows” The 20th International Conference on

High Performance Computing (HiPC 2013)

	
 xiv	

Abstract	

 “Business processes or workflows are often used to

model enterprise or scientific applications. It has

received considerable attention to automate workflow

executions on computing resources. However, many

workflow scenarios still involve human activities and

consist of a mixture of human tasks and computing

tasks.

 Human involvement introduces security and

authorization concerns, requiring restrictions on who

is allowed to perform which tasks at what time. Role-

Based Access Control (RBAC) is a popular authorization

mechanism. In RBAC, the authorization concepts such as

roles and permissions are defined, and various

authorization constraints are supported, including

separation of duty, temporal constraints, etc. Under

RBAC, users are assigned to certain roles, while the

roles are associated with prescribed permissions.

 When we assess resource capacities, or evaluate the

performance of workflow executions on supporting

platforms, it is often assumed that when a task is

allocated to a resource, the resource will accept the

task and start the execution once a processor becomes

	
 xv	

available. However, when the authorization policies

are taken into account,” this assumption may not be

true and the situation becomes more complex. For

example, when a task arrives, a valid and activated

role has to be assigned to a task before the task can

start execution. The deployed authorization

constraints may delay the workflow execution due to

the roles’ availability, or other restrictions on the

role assignments, which will consequently have

negative impact on application performance.

 When the authorization constraints are present to

restrict the workflow executions, it entails new

research issues that have not been studied yet in

conventional workflow management. This thesis aims to

investigate these new research issues.

 First, it is important to know whether a feasible

authorization solution can be found to enable the

executions of all tasks in a workflow, i.e., check the

feasibility of the deployed authorization constraints.

This thesis studies the issue of the feasibility

checking and models the feasibility checking problem

as a constraints satisfaction problem.

 Second, it is useful to know when the performance of

workflow executions will not be affected by the given

authorization constraints. This thesis proposes the

methods to determine the time durations when the given

authorization constraints do not have impact.

 Third, when the authorization constraints do have

the performance impact, how can we quantitatively

analyse and determine the impact? When there are

	
 xvi	

multiple choices to assign the roles to the tasks,

will different choices lead to the different

performance impact? If so, can we find an optimal way

to conduct the task-role assignments so that the

performance impact is minimized? This thesis proposes

the method to analyze the delay caused by the

authorization constraints if the workflow arrives

beyond the non-impact time duration calculated above.

Through the analysis of the delay, we realize that the

authorization method, i.e., the method to select the

roles to assign to the tasks affects the length of the

delay caused by the authorization constraints. Based

on this finding, we propose an optimal authorization

method, called the Global Authorization Aware (GAA)

method.

 Fourth, a key reason why authorization constraints

may have impact on performance is because the

authorization control directs the tasks to some

particular roles. Then how to determine the level of

workload directed to each role given a set of

authorization constraints? This thesis conducts the

theoretical analysis about how the authorization

constraints direct the workload to the roles, and

proposes the methods to calculate the arriving rate of

the requests directed to each role under the role,

temporal and cardinality constraints.

 Finally, the amount of resources allocated to

support each individual role may have impact on the

execution performance of the workflows. Therefore, it

is desired to develop the strategies to determine the

adequate amount of resources when the authorization

control is present in the system. This thesis presents

	
 xvii	

the methods to allocate the appropriate quantity for

resources, including both human resources and

computing resources. Different features of human

resources and computing resources are taken into

account. For human resources, the objective is to

maximize the performance subject to the budgets to

hire the human resources, while for computing

resources, the strategy aims to allocate adequate

amount of computing resources to meet the QoS

requirements.

	
 xviii	

Glossary	

RBAC

DAG

ABAC

PU

CARD

TD

CP

CT

HT

ACT

HCT

SoD

BoD

EST

EFT

CTPN

PN

CSP

FCP

CTC

EAF

GAA

TEMP

rt

Role Based Authorization Control

Directed Acyclic Graph

Attribute Based Access Control

Processing Unit

Cardinality Constraint

Time Domain

Critical Parent

Computing Task

Human Tasks

Automated Computed Task

Human-Aided Computing Task

Separation of Duty

Binding of Duty

Earliest Start Time

Earliest Finish Time

Color Timed Petri Nets

Petri-Net

Constraint Satisfaction Problem

Feasibility Checking Problem

Coverage of the Temporal Constraints

Earliest Activation First

Global Authorization Aware

Temporal Constraints

Response Time

	
 1	

1
Introduction

 “Business processes or workflows are often used to

model enterprise or scientific applications [Deelman2009]

[He2006a] [Hsu2011] [WebBusinessProcess]. A workflow

consists of multiple tasks with the order of execution,

i.e., a task can only start execution after another task

in the workflow is completed (the former task is called

the latter’s child). It has received considerable

attention to automate workflow executions on computing

resources, which has lead in part to BPEL being proposed

as a standard for specifying and executing workflows

[WebBusinessProcess]. However, many workflow scenarios

still involve human activities and are comprised of a

mixture of human tasks and computing tasks [Gaaloul2008]

[Hara2009] [Schall2010] [Zhao2010] [VideoWorkflow]. For

example, in IT-based video production workflows

[VideoWorkflow], human interactions are still required

for decision-making and artistic choices (e.g., video

editing decisions). In mortgage business processes in

banks [WebHumanTask], various human tasks (e.g., a manual

approval step is required if the mortgage value exceeds

some amount) could be involved in order to make the final

decisions. Indeed, in many application domains, the

completion of a task in a workflow replies on the

subjective judgment of human. It would be very difficult,

	
 2	

if not possible, to use computers to completely replace

human being in the foreseeable future.

 In traditional workflow management systems, human

interactions in a workflow are not well supported, and

therefore a workflow with human involvement can be

regarded as a semi-automated workflow [WS-BPEL].

Motivated by the requirements of integrating human

interactions into business processes, research exists to

support human tasks in workflow contexts. WS-HumanTask

and BPEL4People, which have been proposed to overcome the

lack of support for human activities in BPEL [WS-BPEL]

[WebHumanTask], are the exemplar products of these

research efforts. WS-HumanTask and BPEL4Peopl enables the

integration of human tasks in business processes, and

therefore the executions of the workflows containing

human tasks can also be automated [WS-BPEL]

[WebHumanTask].

 Human involvement introduces security and authorization

concerns, requiring restrictions on who is allowed to

perform which tasks at what time. Research has been

conducted to attach authorization information (such as

roles and permissions) to activities, and to impose

authorization constraints (such as separation of duty) on

workflow executions [Ahn2000] [Bertino2006]

[Crampton2012] [Joshi2005] [Lu2009] [Zhao2008] [zou2009].

For example, in BPEL4People, authorization concepts such

as roles and permissions are defined, and various

authorization constraints are supported, including

cardinality constraints, separation of duty, binding of

duty, etc. The authorization specified in BPEL4People can

be categorized as Role-based Authorization Control

(RBAC), under which users are assigned to certain roles,

	
 3	

while the roles themselves are associated with prescribed

permissions.

 When we assess resource capacities, or evaluate the

performance of workflow executions on supporting

platforms, it is often assumed that when a task is

allocated to a resource, the resource will accept the

task and start the execution once a processor becomes

available. However, when human activities and

authorization constraints are taken into account, the

issue can become complex. The following example

illustrates such a situation”.

 A bank will need both human activities and computing-

based activities to support its business. A workflow will

typically contain both Human Tasks (HT) and Computing

Tasks (CT): A human task may consist of a person (or a

user in the RBAC terminology) with an official position

(or a role in RBAC, e.g., a branch manager) signing a

document; a computing task may involve running an

application on a computing resource to assess risk for an

investment. Further, the computing applications may be

hosted in a central resource pool (e.g. a cluster), and

the invocation of an application may be automated without

human intervention, which we term an Automated Computing

Task (ACT), or for security reasons, can only be

initiated by a user with a certain role and be executed

under that role/user, which we term a Human-aided

Computing Task (HCT). The following authorization

constraints are often encountered in such scenarios

[Zhao2008]: 1) Role constraints: A human task may only be

performed by a particular role; a computing application

may only be invoked by assuming a particular role; 2)

Temporal constraints: A role or a user is only activated

	
 4	

during certain time intervals (e.g., a staff only works

in morning hours); 3) Cardinality constraints: The

maximum number of tasks (computing or other) running

simultaneously under a role is N; 4) “Separation of Duty

constraints: If Task A (HT or CT) is run by a role (or a

user), then Task B must not be run by the same role (or

user); 5) Binding of Duty constraints: If Task A is run

by a role (or user), then Task B must be run by the same

role” (or user).

 Since a valid and activated role has to be assigned to

a task before the task can start execution (to put

security, tasks are assigned to rolls first), these

authorization constraints may delay the workflow

execution and consequently have negative impact on

application performance. The following case study

illustrates the situation.

Table 1.1 Execution times of the workflow tasks in the

case study

Task Execution time Task Execution time

T1
30 T2

30

T3
36 T4

42

T5
48 T6

42

T7
30 T8

36

T9
42

	
 5	

 Assume a workflow consists of 9 tasks, T1-T9 as shown

in Fig.1.1. The execution time of each task in the

workflow is shown in Table 1.1.

Figure 1.1. The workflow in the case study

 There are 5 roles in the system. The temporal

constraints of these roles are specified in Table 1.2,

and illustrated in Figure 1.2, where the shaded area is

the time duration when the roles are not activated.

Table 1.2 Temporal constraints of the roles in the case

study

Role Temporal Constraint Role Temporal Constraint

r1 {[09:00, 17:00]} r2 {[12:00, 17:00]}

r3 {[11:00, 17:00]} r4
{[09:00, 12:00], [14:00,

17:00]}

T1#

T3#T2#

T5#T4# T6#

T7# T8#

T9#

	
 6	

Figure 1.2. The temporal constraints of the roles

Assume the role constraints of the tasks are as follows.

T1 -> {r1}

T2 -> {r2, r3}

T3 -> {r2, r3}

T4 -> {r2, r3}

T5 -> {r2, r4}

T6 -> {r4}

T7 -> {r2, r3}

T8 -> {r2, r3}

T9 -> {r2, r5}

 When the first task of the workflow of figure 1.3

(i.e., T1) arrives, it can be run under role r1 according

to the role constraints, and r1 is always activated

according to the temporal constraints. Therefore, T1

starts execution immediately. After T1 is completed, T2

and T3 are ready to run. T2 and T3 can be run under r2 and

	
 7	

r3. But when T1 is completed, r2 and r3 are not activated.

So the executions of T2 and T3 will be delayed by the

authorization constraints. Similarly, when T6 is ready to

run, r4, which is the role that T6 has to assume, is not

activated. Consequently, the execution of T6 will also be

delayed.

Figure 1.3. An exemplar scheduling solution of the

workflow under the authorization constraints in the case

study.

 “It is common to find such authorization constraints

and interaction between human and automated activities;

our domains of interests include healthcare systems

[Stuit2011], video management domain [VideoWorkflow] and

r1#

11#10#09# 12# 13# 14# 15# 16# 17#

r3#

11#10#09# 12# 13# 14# 15# 16# 17#

r5#

11#10#09# 12# 13# 14# 15# 16# 17#

r2#

11#10#09# 12# 13# 14# 15# 16# 17#

r4#

11#10#09# 12# 13# 14# 15# 16# 17#

T1#

T2#

5#

5# 7#

6# 8# 5#

T3# T5# T7#

7#

T6#

6#

T8#

7#

T9#

T4#

Start#Time# Finish#Time#

Temp.#delay#
on#T2#

Temporal#delay#on#T3#
Temporal#
delay#on#T6#

	
 8	

the manufacturing community [Hara2009] [Jin2003]. Human

intervention and associated authorization clearly affects

the processing of tasks and impacts on both application-

oriented performance (e.g. mean response time of

workflows) and system-oriented performance (e.g.

utilization of the computing resource pool). Obtaining

these performance data will be critical in capacity

planning, designing authorization policies and developing

workflow management strategies”.

 When the authorization constraints are present to

restrict the workflow executions, it entails new research

issues that have not been investigated yet in

conventional workflow management.

 First, it is important to know whether a feasible

authorization solution can be found to enable the

executions of all tasks in a workflow, i.e., check the

feasibility of the deployed authorization constraints.

The following example illustrates the situation. Assume a

workflow consisting of 4 tasks as shown in Figure 1.4.

Assume that the SoD (Separation of Duty) constraint is

r(T2)≠r(T3), which means that the role assigned to task T2

must be different from the role assigned to T3, and that

the BoD (Binding of Duty) constraints are r(T1)=r(T2) and

r(T1)=r(T3). We cannot consider the roles only without

mentioning the tasks to be involved and SoD and BoD

constraints depend on the tasks to be assigned.

	
 9	

Figure 1.4. A case study for feasibility checking

 In this situation the feasible solution is not possible

as if task T1 can run under role r1 then according to the

BoD constraints tasks T2 and T3 should run under r1 as

well. However, according to SoD constraint tasks T2 and

T3 cannot run under the same role, which is the

contradiction. Therefore, the feasible solution under

these constraints is not possible.

 Feasibility checking is important because if there are

some tasks in a workflow that cannot be authorized

subject to the deployed authorization constraints, there

is no point to start the execution of the workflow at

all. The request of the workflow execution should be

rejected in the first place. Checking the feasibility of

authorization constraints can help us design the

authorization policy so that it will not cause the

unnecessary rejections of the execution requests.

 Second, the existence of the feasible authorization

solutions for a workflow only means that the workflow can

run to completion. Its execution performance may still be

T1#

T3#T2#

T4#

	
 10	

negatively affected by the deployed authorization

constraints. For example, roles may have temporal

constraints, i.e., roles may only be activated during

certain periods. When a task in a workflow is authorized

to run under a particular role, but the role is not

activated yet, the task may have to wait and consequently

increase the execution time of the whole workflow.

Therefore, it is useful to know when the performance of

workflow executions will not be affected by the given

authorization constraints. The first and second research

issues are the focuses of Chapter 3 in this thesis.

 Third, knowing the time durations when the

authorization constraints will not have negative impact

on performance is one way of shedding light into the

impact of the authorization constraints. Another aspect

of the impact is that when the authorization constraints

have the performance impact, how to quantitatively

determine the impact. For example, if the authorization

constraints will cause the delay for the workflow

execution, how can the delay be calculated? Chapter 4 in

this thesis analyses the performance impact of the given

authorization constraints. Further, based on the analyses,

an optimal authorization method is proposed to select the

authorization solution that can minimize the performance

impact caused by the authorization constraints.

 Fourth, a key reason why authorization constraints may

have impact on performance is because the authorization

control directs the tasks to some particular roles (i.e.,

the role assignment process). The authorization policy

may specify the constraints on the roles, for example,

role constraints or temporal constraints. Also, the

quantity of resources allocated to support each role may

	
 11	

be different. For example, the number of the bank

managers in a bank is normally different from the number

of cashiers. This may cause the tasks assigned to

different roles to have different response time, and

consequently affect the execution performance of the

workflow as a whole. Therefore, in order to examine the

impact of the authorization constraints, it is desired to

know the rate of the tasks arriving at each role, given

the deployed authorization constraints.

 Finally, after knowing the rate of the request arriving

at each role, an important issue is to determine the

amount of resources that need to be allocated to support

the executions of the tasks assuming a particular role,

so as to satisfy the desired Quality-of-Service. A

workflow may consist of human tasks and computing tasks.

Human resources and computing resources have different

features and therefore require different considerations

when determining the resource quantities.

 Chapter 5 focuses on investigating the fourth and fifth

research issues discussed above. The methods are proposed

in Chapter 5 to calculate the rate of the tasks arriving

at each role given a set of authorization constraints.

Moreover, the resource allocation strategies are

developed for both human resources and computing resource,

aiming to optimize the performance under the current

constraints.

 To date, little attention has been paid to investigate

the issues discussed above. This thesis aims to tackle

these new research issues. The main contributions of this

thesis are as follows.

	
 12	

- Proposing a method to check the feasibility of the

authorization constraints, i.e., given a set of

authorization constraints, checking whether there

is a feasible authorization solution to enable the

workflow execution (Chapter 3)

- Proposing a method to determine the time durations

when the temporal constraints do not have negative

impact on the performance of workflow executions

(Chapter 3)

- Proposing the methods to conduct quantitative

analyses about the delay caused by the

authorization constraints for workflow executions

(Chapter 4)

- Developing an optimal authorization method. The

method is optimal in the sense that it can select

the authorization solution that minimizes the delay

caused by the authorization constraints

- Proposing a method to conduct theoretical analysis

about the level of workloads assigned to individual

roles, given the deployed authorization constraints

(Chapter 5)

- Proposing the methods to determine the suitable

amount of resources so that the performance of

workflow executions is maximized, given the

deployed authorization constraints and the resource

budget (Chapter 5)

	
 13	

- Conducting the experimental studies to verify the

effectiveness of the proposed methods in this

thesis.

 The rest of the thesis is organized as follows. Chapter

2 conducts the literature review relevant to the work in

this thesis. Chapter 3 presents the methods to conduct

the feasibility checking for the deployed authorization

constraints and to calculate the time duration when the

workflow executions will not be affected by the

authorization constraints. Chapter 4 analyses the delay

caused by the authorization constraints and further

proposes an optimal authorization method. Chapter 5

present the methods to calculate the level of the

workload directed to each role due to the deployed

authorization constraints. Further, Chapter 5 presents

the resource allocation strategies for both human and

computing resources to optimize the performance.

	
 14	

2
Literature	
 Review	

This chapter will discuss the work related to workflow

management, workflow scheduling and resource allocation,

and security and authorization.

2.1 Workflow Management

2.1.1 Workflow Modeling

 In general, “workflow is the automation of a business

process, in whole or part, during which documents,

information or tasks are passed from one participant to

another for action, according to a set of procedural

rules [W3Workflow]. A workflow management system is a

system that defines, creates and manages the execution of

workflows through the use of software, running on one or

more workflow engine, which is able to interpret the

process definition, interact with workflow participants

and, where required, invoke the use of IT tools and

applications” [W3Workflow]. A workflow consists of a

number of activities. An activity is different units of

work to be done by a user or a program, requesting

application programs [W3Workflow]. Activities are the

smallest units of work. An activity is also called a

	
 15	

task. In a workflow, the execution of tasks has to follow

the specified dependency, i.e., the acceptable relative

orders of tasks executions. The typical elements of

dependency are sequential execution and parallel

execution of tasks.

 However, the study in [Kim2003] has analyzed in more

detail the dependency of workflows and its implications

on distributed workflow systems. The authors have

identified four types of workflow dependencies that could

be useful in designing a distributed workflow system.

These different types of dependencies are:

1) Data Dependency – used for modeling the effects of

data flow on the behavioral aspects of different

activities in a considered workflow. This modeling is

further used for generating data-transition conditions

associated with each activity along with the data-

dependence information between the activities;

2) Activity (Control) Dependency – relates to the

“control flows in a workflow procedure and is

particularly used for modeling the effects of conditional

and parallel branches” on the behavioral aspects of

different activities in a considered workflow; For

example, an activity in a workflow “can only start

execution after another activity in the workflow has

completed (the former activity is called the latter’s

child”, and the latter is called the parent of the

former).

3) Role Dependency – represents the role transition

orders within a procedure. This could be modeled by

	
 16	

mapping the control flow part to the role assignment part

in a workflow;

4) Actor Dependency – used to model the correspondent

work-cases of the component jobs in the workflow; the

dependency concepts are further embodied as objects in a

distributed workflow architecture. While designing a

workflow based on these four dependencies, the “actor-

based workflow model and the role-based workflow model

require actor-transition, activity-transition and data-

transition conditions while activity-based workflow model

and workcase-based workflow model only use the activity-

transition conditions and data-transition conditions”.

 A task in a workflow is either processed by a computing

resource or human being, which is called the actor of a

task. Which actor will perform a task is typically

decided by the workflow management system. However, when

the security and authorization mechanisms are present,

which actors, especially which human being actors, can

perform a task may also be specified by the security and

authorization mechanisms, which will be discussed in the

later part (section 2.1.3) of this chapter.

 Workflows are “often used to model enterprise or

scientific applications [Deelman2009] [He2006a] [Hsu2011]

[WebBusinessProcess]. Workflow management has been

extensively studied and as a result is well documented in

related literature [Atluri2000] [Chakraborty2007] [He2005]

[Kim2003a]. Much of this research is aimed at automating

the execution, and enhancing the performance, of

workflows in parallel and distributed systems”

[Chakraborty2007] [Manolachethesis].

	
 17	

2.1.2. Automation of Workflow Executions

 A lot of research studies have been conducted to enable

the automation of workflow executions, which lead to the

proposal of “Web Services Business Process Execution

Language (WS-BPEL). WS-BPEL is a language to specify the

behavior of the business processes that are based on the

Web Services”. WS-BPEL’s processes use the interface of

the Web Service to import and export the functionality.

 The business process “can be applied in one of the two

ways: Abstract or Executable. The abstract process is

partially specified”. It is descriptive and cannot be

executed. It is declared as an “abstract” process. The

executable process is fully specified and can be executed

as well. The abstract process can hide some operational

details while the executable process shows all the

details. Abstract processes are descriptive in role. WS-

BPEL defines both abstract and executable processes. WS-

BPEL defines a model and the grammar describing the

behaviors for the business process, which bases on

interactions between the process and its partners.

 The WS-BPEL provides the language to specify the

Executable and the Abstract processes. In this way it

extends the Web Services interaction model and enables it

to support business transactions. In order to support and

facilitate the expansion of the automated process

integration in both within the corporation and business-

to-business spaces, WS-BPEL defines an interoperable

integration model.

	

 There is the work integrating multiple workflow

management systems and automating the execution of the

	
 18	

workflows spanning multiple organizations. The study in

[Chakraborty2007] has designed and implemented a so-

called Heterogeneous Event Management Middleware (HEMM)

to integrate the events across multiple siloed workflow

management systems (WFMS). They have focused on the

problem wherein a high-level change in workflow requires

the running workflow (WF) instances in the WFM to handle

external events necessitated by the high-level change.

They argued that the existing solutions to handle such

type of problems are cost-intensive mainly in terms of

back-end downtime from an enterprise’s viewpoint, as they

require changing of either the workflow process

definition or the workflow engine. The authors used their

proposed HEMM to address this issue by: 1) the

introduction of an overlay on the top of a WFMS; and 2)

the abstraction of unforeseen event handlings from the

workflow executions. Further, to adapt to new events

whose process definitions could not be handled in a

workflow execution, the event transformation is employed

for mapping of events to event handlers associated with

running workflow instances. The authors further

demonstrated their prototype implementation by

considering an example prevalent in the telecom industry.

2.1.3 Human Activities

 Although a lot of research focuses on managing

workflows in computing resources, “many workflow

scenarios still involve human activities and will be

comprised of a mixture of human tasks and computing

tasks”. Therefore, some studies investigate how to

incorporate human activities into workflow execution. An

exemplar product of these research efforts is

	
 19	

BPEL4People, “which has been proposed to overcome the

lack of support for human activities in BPEL”.

 BPEL4People introduces an extension to BPEL to support

the human involvement in the business processes by adding

the set of new elements in the standard BPEL [WS-BPEL].

The specification introduces human as a new basic

activity, which supports human interaction in processes

directly. In the language design, the extension in BPEL

for people is defined in such a way that it makes a top

layer on BPEL. This extension introduces the new elements

and attributes to cover complex human interactions. The

generic human roles are process initiator, process

stakeholder and business administrators. The new basic

activity elements use human tasks as an implementation

and it allows the specification of the tasks for the

processes.

 The study in [Zhao2008] has proposed a formal model

that adds support for human task support to Business

Process Execution Language (BPEL) and have named it as

BPEL4People. BPEL, which has been described as a standard

for specifying and executing workflow of Web service

composition invocation, has an inherent limitation of not

providing any support for human workflow. The authors

have used CSP process algebra to present a formal model

of human workflow.

 The study in [Stuit2011] has evaluated a “novel

interaction-centric process modelling method using a case

study” of a healthcare human collaboration processes

(HCP) at a Dutch academic hospital. The HCPs in the

healthcare domain involves interactions taking place

“between healthcare workers representing different (para)

	
 20	

medical disciplines and departments. The existing

workflow-based process modelling tools for healthcare

process management” focus on defining task sequences

rather than modelling the graphical description of human

interactions in a HCP. The authors have considered a care

pathway HCP performed by the head and neck oncology team

for the evaluation of their interaction-centric process

modelling method. The evaluation of the method has

highlighted three significant results: 1) collection and

formalization of the tacit domain knowledge of the

interviewed healthcare workers in individual interaction

diagrams; 2) support provided by the method for automatic

integration of individual interaction diagrams into a

global interaction diagram capable of reflecting the

consolidated domain knowledge; and 3) utilizing a

graphical modeling language to describe interactions

between methods, their composition and routing relations,

and their roles using an effective tree-based

description; The proposed method showed good support for

improving the healthcare collaborations.

2.2 Workflow Scheduling

 Automating the execution of the tasks in a workflow is

one of the main focuses in a workflow management system.

Anther focus is to enhance the performance of workflow

executions. In this aspect, the scheduling strategies

employed by the workflow management system play a

critical role.

 Workflow can be modeled as a Directed Acyclic Graph

(DAG). Therefore, the DAG scheduling strategies can be

applied to workflow scheduling. There are two basic

	
 21	

stages in DAG scheduling. In the first stage, the

scheduling order of the tasks in a DAG is determined,

while the second stage decides which resource should be

used to run a task. Most DAG scheduling algorithms is

based on list scheduling, in which all tasks are

prioritized and the scheduling order of the tasks follows

their priorities. Two basic techniques to determine the

scheduling order of the tasks are to calculate the t-

level (top level) and b-level (bottom level) of the tasks

in a DAG and use them to prioritize the scheduling order

of the tasks. The t-level of task ti is the length of the

longest path from the first task (also called the entry

task) in the DAG to ti. The b-level of a task is the

length of the longest path from the last task (also

called the exit task) to the task. The t-level of a task

correlates with the earliest start time of the task,

while the b-level of a task correlates with the latest

start time of a task if a deadline is set for the

completion time of the whole DAG. Other list scheduling

algorithms just use different approaches to determine the

scheduling order of the DAG.

 After the tasks’ scheduling order is determined, the

scheduling algorithm further performs resource selection

for all tasks, i.e., decides among all resources which

resource should be used to run each of the tasks. A basic

method is to select the resource, which can offer the

least finish time.

 Different DAG scheduling algorithms essentially use

different approaches to determining the tasks’ scheduling

order and selecting the resources to run the tasks.

Reference [Kwok1999] conducts a survey of 27 DAG

scheduling algorithms, which mainly aim to minimize the

	
 22	

scheduling length, i.e., the duration between the time

when the first task in the DAG starts execution and the

time when the last task completes execution.

 The study in [van der Aalst2002] has characterized the

scheduling principle for utilizing available

computational resources. They have suggested that a

scheduling principle should match each atomic task for

proper resource management, which could finally lead to

matching an atomic task to a corresponding suitable

resource. Two decisions should be supported by the

scheduling principle: firstly tasks should have some

defined order for execution; and secondly, task

assignment to the available resources should represent

the most suitable match from the available set of

resources. In nutshell, scheduling a workflow typically

consists of two stages: 1) determining the execution

order of the tasks in a workflow and 2) determining the

resources that should be used to run each task. Numerous

scheduling strategies have been proposed in literature.

 The study in [Ranaweera2000] has proposed a novel

scheduling algorithm, called TDS, to optimally schedule

the tasks represented using a directed acyclic graph

(DAG) onto an available set of heterogeneous processors

with varying computing power. The TDS aims at minimizing

the schedule length, also known as makespan, and

scheduling time itself under task duplication based

scheduling scenario. The algorithm further aims at

minimizing the overall processing complexity to ensure

reasonable runtime. The algorithm uses Earliest Start

Time of a node (EST), Earliest Completion Time of a node

(ECT), Latest Allowable Start Time of a node (LAST),

Latest Allowable Completion Time of a node (LACT),

	
 23	

favorite predecessor task of a given task (fpred) and

favorite processor of a given task (fproc). TDS runs in

four steps, namely: 1) top-down traversal of the DAG to

compute EST, ECT, fpred, fproc1 to fprocn and level of

each task; 2) bottom-up traversal of DAG for calculating

LACT and LAST for each node; 3) “an initial set of task

clusters is generated using a reasonably small number of

processors”; and 4) involves duplication of tasks and

message forwarding, which represents forwarding of the

results from that processor that has minimum completion

time of a task amongst the available processors. The

authors used three inputs: 1) Cholesky decomposition DAG;

2) Diamond DAG; and 3) the DAG for Gaussian elimination

code; for their proposed algorithm, TDS, and compared the

results with a similar scheduling algorithm, called Best

Imaginary level scheduling (BIL). The comparison results

showed better communication-to-computation cost ratios

(CCR) of 0.2 as compared to 1 obtained using BIL and gave

far more superior results than BIL for the scheduling

time.

 The study in [N’takpe’2007] has proposed a novel

scheduling approach to execute mixed parallel

applications on heterogeneous platforms. The static

scheduling algorithms for online workflow applications

are not feasible due to occurrence of multiple workflows

submitted by different users and arriving at different

times. In such a scenario, the task scheduling is done by

maintaining waiting queues with an association of

priorities with each of the workflow present in the

queue. Such a scheduling becomes more difficult when a

single processor is available for running each task. This

makes dealing with workflows, which are composed of data-

parallel tasks, as infeasible. The approach proposed

	
 24	

by authors has been found to be suitable for a single

workflow involving mixed parallel applications, which

combine task parallelism and data parallelism, on

heterogeneous platforms.

 The study in [N’takpe’2008] also extended their work in

[N’takpe’2007] to develop a scheduling mechanism for

dealing with concurrent mixed parallel applications. In

general, there are two steps involved in concurrent

scheduling for mixed parallel applications namely: 1)

constrained resource allocation – to determine an optimal

allocation for each task while determining the number of

processors available; and 2) concurrent mapping –

involving prioritizing of tasks of workflows for their

execution. The authors have restricted the applicability

of their scheduling mechanism to concurrent workflows

submitted at the same time. Their scheduling mechanism

does not deal with the online workflows submitted at

different times.

 The study in [Tarumi1997] has addressed the resource

conflict problem by considering a resolution strategy at

the runtime rather than at the build time. They

associated agents with the resources and allowed mutual

communication between agents for reserving office

resources and checking their availability.

 The study in [Senkul2002] proposed an interesting

approach that considers resource allocation constraints

while dealing with the scheduling problem. The approach

deploys constraint logic programming (CLP) and integrates

it with Concurrent Transaction Logic (CTR) to formulate a

new logical representation.

	
 25	

 The study in [Doulamis2011] has examined the resource

allocation problem together with task scheduling. In a

Workflow Management System (WfMS), resource allocation

and task scheduling are two important issues that impose

mutual constraints. Thus, optimizing resource allocation

is subject to task scheduling and vice versa. They have

highlighted the characteristics of an ideal algorithm for

solving these fundamental issues in WfMS, which mainly

include: “performance metrics of the infrastructure e.g.,

the number of resources and their utilization; and

quality criteria” such as under temporal restrictions

percentage of tasks undergoing violations. The authors

have proposed an algorithm called Resource Conflicts

Joint Optimization (Re.Co.Jo.Op), which aims at jointly

optimizing resource allocation and task scheduling by

minimizing resource conflicts subject to temporal

constraints while simultaneously optimizing throughput or

utilization subject to resource constraints. They used

matrix for representing the two factors and applied the

concepts of the generalized eigen value analysis for

finding the optimal solution of the problem. They further

proposed an agent-based architecture for integrating

their proposed algorithm into a functional WfMS. The

experimental results have established the superiority of

their proposed strategy on the conventional approaches.

 All of the above strategies of scheduling workflows do

not consider the security and authorization issues.

However, the security and authorization policies are

deployed in many workflow applications in real worlds.

	
 26	

2.3. Security and Authorization for

Workflow Executions

 The workflow security and authorization constraints

have been researched a lot in the literature and well

documented in [Atluri2000] [Crampton2012] [He2011]

[ManolacheThesis] [Wang2010] [Lu2009]. But different

works have different focuses.

2.3.1. Enforcement of Security and Authorization

Policies

 Some studies focus on developing the methods to

guarantee that in the processing of the workflows in the

system, the authorization policies can be enforced

properly.

 XACML authorization engine is a popular product to

achieve this. XACML stands for eXtensible Access Control

Markup Language. It defines a declarative language to

specify the access control policy and a processing model

describing how to evaluate the authorization requests

according to the rules defined in policies. XACML can be

used to specify multiple authorization control schemes,

such as Attribute Based Access Control system (ABAC) and

Role-Based Access Control (RBAC). In ABAC, the attributes

are associated with a user, an action or a resource and

attributes are used to by the authorization control

scheme to decide whether a given user may access a given

resource in a particular way. There are multiple

components in the XACML authorization engine, such as

Policy Administration Point (PAP), Policy Decision Point

(PDP), Policy Enforcement Point (PEP). PAP is the

	
 27	

component to manage authorization constraints. PDP is a

component to evaluate and issue authorization decisions.

PEP intercepts a user’s access request to a resource and

make sure that the request can only use the resources in

the way consistent with the decision made by PDP.

 The study in [Dagdee2011] has conducted a study to

enhance the XACML standard so that it can support

credential based hybrid access control. The standard

XACML only supports attribute based access control

mechanism. This work proposes credential based hybrid

access in which any unknown user can have easy and

immediate access to open access environment. The main

extensions in the XACML policy specification are 1)

addition of new element <Credential> for the

representation of credentials 2) addition of the new

element <CredentialRequirements> for logical combination

of credentials 3) inclusion of CredentialId attribute in

the <CredentialAttributeDesignator> to support conditions

involving credential attributes 4) addition of

<Credentials> in the XACML request context to get the

credentials from the user. The extension in the XACML

architecture is proposed in the form of credential

manager in the context handler, which extracts the

credential information submitted by the user. The access

policy contains various conditions over credentials and

the attributes associated with the credentials.

 The study in [Liu2008] has also improved the XACML

policy request processing engine. The growth in the web

applications has improved the complexity and size of the

XACML policies, which is the main cause of the slow

processing of the requests. This work focuses on the

performance of the request processing, which is a main

	
 28	

issue. Liu proposes a new XEngine, an efficient request

processing schema. The XEngine follows the following

steps: 1) it converts a textual policy into a numerical

policy 2) it converts a numerical policy with complex

structures to a numerical policy with normalized

structures 3) it converts the numerical normalized

structures to a tree structure for improved performance.

To verify the effectiveness of the technique experiments

have been conducted on both real life and synthetic XACML

policies. The results verify the claim of improving the

performance by orders of magnitude. The performance

improves linearly with the number of policies. For small

number of policies the XEnging is faster in one to two

order of magnitude while for larger policies the XEngine

is faster by three to four orders of magnitude than the

Sun PDP.

 The study in [Wang2010] has proposed a role-and-

relation-based access control (R2BAC) model for workflow

authorization systems wherein a user’s role membership

and his relationships with other users help in

determining if the user, under the given conditions,

could be allowed to perform a particular step of a

considered workflow. The authors explored the

computational complexity aspect of the workflow

satisfiability problem to investigate if a set of users

could complete a workflow. They further used

parameterized complexity theory tools for understanding

the problem complexities. They reduced the workflow

satisfiability problem to SAT and applied SAT solvers for

analyzing and solving this reduced problem. The

experimental results have showed efficiency of the

algorithm in solving instances of reasonable size. They

further study the resiliency problem in workflow

	
 29	

authorization systems to investigate if a workflow could

be completed when a number of users are absent. The

authors further defined three resiliency levels in

workflow systems and studied the associated computational

problems.

 The study in [Zou2009] combined the advantages of role-

based access control (RBAC) and attribute-based access

control (ABAC) mechanisms to propose a new access control

model (CRBAC), which integrates all kinds of constraints

into the RBAC model. The authors have analyzed the

generic properties of the attribute constraints and have

presented them into two constraint templates: a)

authorization mapping constraint; and b) behavior

constraint; for automating the user-role and role-

permission mapping as well as restricting the behaviors

of the authorization entities respectively. The authors

have further introduced a state mechanism for building up

the constraints in a group of statuses of the entities as

well as reflecting the authorization control outcomes.

They, based on the proposed constraint templates and the

introduced state mechanism, have developed an execution

model. Moreover, use cases have been proposed to describe

the authorization process taking place in the proposed

access control model (CRBAC). The authors have further

analyzed the correctness, complexity, flexibility and

compatibility of CRBAC to compare the multi-grained

constraints of CRBAC with other models.

2.3.2. Feasibility Checking of Authorization

Constraints

 Some studies focus on checking whether the deployed

authorization constraints can be satisfied

	
 30	

[Crampton2005][Atluri1999][Wang2010][Lu2009]. The work in

[Crampton2005] conducted the theoretical analysis about

the satisfiability of the authorization constraints for a

workflow. The work conducted the theoretical analysis and

found out that in order to check whether there is a valid

the workflow authorization, it only needs to consider a

single linear extension (i.e., a linear ordering) of the

tasks in the workflow. There exists a valid workflow

authorization if and only if there is also a valid

authorization solution for the linear extension. However,

the work cannot obtain all feasible authorization

solutions. The modeling approach presented in Chapter 3

is able to obtain all feasible authorization solutions.

Based on this, our work further develops the

authorization methods, aiming to reduce the negative

impact imposed by the authorization constraints.

 Petri-net is a popular methodology in the literature to

achieve this, partly because petri-nets is capable of

capturing and modeling the dynamic behaviors in a system,

and partly because there are well established techniques

to conduct the theoretical and simulation analysis for

the constructed Petri-nets models.

	

 The work in [Atluri1999] conducts the safety analysis,

i.e., analyzes whether a specified authorization state

(i.e., the task-role assignments) can be reached under a

set of authorization constraints, given an initial

authorization state. The work uses the Color Timed Petri

Nets (CTPN) to model roles, SoD and temporal constraints,

and then converts the constructed CTPN model to an

ordinary Petri-Net (PN) model so that the established PN

analysis techniques can be applied to generate the

results. The work can generate all possible authorization

	
 31	

solutions. However, this modelling approach is heavy

since it needs to construct the CPTN model, covert the

CPTN model to ordinary PN models, and analyze the PN

models. In this thesis, we model the feasiblity checking

problem concisely as a Constraint Satisfaction Problem

(CSP).

 The study in [Li2004] has proposed an extension to

Petri Nets and have named that as the Time Constraint

Workflow Nets. Their extension helps in identification

and removal of conflicts associated with resources

occurring in workflow specifications. They have added a

notion of time to the Petri Nets for allowing the

temporal validation of the conflicts associated with the

resources. The method exhaustively searches for all tasks

and has been found to be non-scalable.

 The study in [Zhong2005] has extended the approach of

[Li2004] and have proposed a new mechanism for

identification of conflicts associated with resources

under concurrent workflow settings and have also found

their approach having scalability problems.

 The study in [van Hee2005] has introduced a variation

of Petri Nets, called the Resource-Constrained Workflow

Nets, for dealing with the problem of resource conflicts.

A method has been presented for assessing the minimum

amount of resources to start up the process, which could

guarantee that the started processes will be successfully

terminated within the give constraints and no conflict

will occur for the resources. They argued that their

proposed method ensures calculation of sufficient amount

of resources irrespective of the scheduling policy used

afterwards and thus, guarantees the completion of tasks

	
 32	

on the correspondingly mapped computational resources.

The calculation of sufficient amount of resources helps

eliminate the resource conflicts on one hand but also

results in wasteful architecture in the design process of

the information system.

 The study in [Lu2009] has used Colored Petri nets (CPN)

for modelling and analyzing workflow with Separation of

Duty (SoD) constraints. SoD represents the security

principle wherein frauds and errors are prevented in

collaborative environments. As the organizations achieve

their business goals by interacting and collaborating

between users through workflow, thus, during workflow

design with SoD constraints, the correctness and

consistency of workflow becomes crucial to verify and

ensure. Keeping this problem in mind, the authors have

combined control flow, authorization rules and SoD

constraints in a single workflow and have used an

integrated CPN model for representing this combination of

constraints to a workflow. They used reachability tree

analysis for deriving the execution paths of the

integrated CPN model. The analysis of the derived

execution paths resulted in identification of some latent

deadlocks, which in turn were the results of the

inconsistency between authorization rules and SoD

constraints.

2.3.3. Analysis of Performance Impact of

Security and Authorization Policies

 Xie proposed the security aware model for workflows and

focussed on three security aspects, which are: i)

confidentiality, ii) integrity and iii) authentication.

	
 33	

He develop a security overhead model to measure the

security overhead [xie2006]. Xie also developed resource

allocation strategies TAPADS and SHARP by taking into

account the security and precedence constraints for

homogeneous clusters and heterogeneous cluster [xie2008].

Qiu used Security-Aware Task (SEAT) graph model to denote

the constraints and relationship of tasks and on the

basis of SEAT graph, he proposed an algorithm ILP-SOP and

for special structures he proposed DPSOP-path/tree

algorithm for security generation for tasks [Qiu2013].

However, these studies do not consider the impact of the

authorization policies.

 There are also the studies using Petri-nets to model

and analyze the impact of authorization constraints.

 The work in [He2009] “applied Generalized Stochastic

Petri-Net (GSPN) theory to model workflow executions

under Role-based Authorization Control, and then used

standard Petri-net analysis techniques to theoretically

calculate performance metrics from the constructed

models. Although GSPNs are adequate for the scenarios

investigated in [He2009], the work did not model the

workflows consisting of both human tasks and computing

tasks. Also, since GSPNs cannot express the temporal

attributes associated with tokens, they cannot analyze

the authorization overhead caused by temporal

constraints. Moreover, the work in [He2009] did not

investigate authorization methods to improve performance,

given the specified authorization constraints”.

 The study in [He2011] has presented a novel modelling

scheme for workflow execution in cluster-based resource

pools. The modelling mechanism works under a Role-based

	
 34	

Access Control (RBAC) scheme, which assigns certain roles

to users and each role has an associated set of

permissions. The authors have modeled various

authorization constraint types including: 1) role

constraints; 2) temporal constraints; 3) cardinality

constraints; 4) Binding of Duty constraints; and 5)

Separation of Duty constraints; using Coloured Timed

Petri-Nets. The modelling scheme also captures the

interaction between workflow authorization and workflow

execution. The authors highlight the in-built automation

support for their modelling scheme for workflow

execution.

 Generally, the Petri-net modeling approach is heavy and

susceptible to state explosion problems.

 “The Multi-layered State Machine (MLSM) is another

method used in the literature [Gaaloul2008] [Hung2003] to

model workflow authorization. However, the MLSM method is

mainly used to guarantee that the authorization

constraints are satisfied in the workflow environment,

and the method itself cannot simulate and obtain the

quantitative performance of the workflow execution. In

order to obtain performance, the MLSM structure needs to

be converted to Petri-nets before a performance analysis

can be conducted [Gaaloul2008] [Hung2003]. Further, the

work in [Gaaloul2008] [Hung2003] does not analyze the

impact of the authorization constraints and does not

investigate the authorization methods to improve

performance”.

	
 35	

3
Analyzing	
 the	
 Impact	
 of	

Authorization	
 Constraints	

This chapter analyzes the impact of the deployed

authorization constraints. More specifically, this

chapter 1) checks whether all tasks in a workflow can be

authorized so that the authorization constraints deployed

in the system can be satisfied, and 2) determines such

time durations in which the authorization constraints

will not have negative impact on the performance of

workflow executions. The notations used in this chapter

are summarized in Table 3.1.

 The rest of this chapter is organized as follows.

Section 3.1 presents the methods to check the feasibility

of role, SoD and BoD constraints deployed in the system.

Section 3.2 presents the method to determine the time

durations in which the workflow executions will not be

delayed by the authorization constraints in the system.

Section 3.3 presents a case study to illustrate the

workings of the methods proposed in this chapter.

	
 36	

Table 3.1 Notations used in this thesis

Notations Explanations

𝑟! Role i

 The temporal constraint of ri

 The role constraint of service si

Pi Period i

𝐸! The end time of the period Pi .

Ds i
 The domain of service si .

Si 	
 The start time of the period Pi

	
 The k-th feasible role assignment solution

	
 The role assigned to task in

	

Effective temporal constraint of in

ldij 	
 Lower domain of role i for task j.

udij 	
 Upper domain of role i for task j.

𝑒! 	

The execution time of the tasks assigned to

ri.

wi	

The waiting time of the tasks assigned to

role ri

np(ri)	
 The number of resources used to serve the

tasks running under 𝑟!

rpi	
 The mean response time of the tasks running

under role ri

Cc(𝑟!)	

Cardinality constraint of role ri

Ct(𝑟!)	

The temporal constraint of ri

Cr(si)	
 The role constraint of service si

𝜆!(𝑟!)	

The arrival rate of the tasks that are

assigned to ri when x constraints are

considered.

(r)t
iC

(s)r
iC

kA

(,)i kr t A it kA

(t)k iEA
(t ,A)i kr

kA

	
 37	

Cs(𝑟!)	

The set of services that role ri can invoke

rp(𝑟! , 𝑠!)	

The mean response time of the tasks that

assume ri to invoke sj

𝜆!(𝑟!)	

The arrival rate of all service requests

allocated to rj

hi 	
 	
 The number of the human resources allocated

for role ri

Di 	
 	
 The time duration when ri is activated in

the period Pi

𝛼!" 	
 The proportion of processing capability

allocated to run the requests that assume

role rj

𝑂(! × !)	
 L services cross M rolls matrix.

3.1. Checking Feasibility of Role, SoD And

BoD Constraints

 S = {s1,..., sL} denotes the set of services running on the

resource pool.

 F = (T ,E) denotes a workflow, in which 1{ ,..., }NT t t= is a

set of tasks in the workflow and {(,) | , }i j i jE t t t t T= ∈ is a

set of directed edges linking task it to jt . A task

invokes one of the services in S .

 R = {r1,...,rM } denotes the set of roles defined in the

authorisation control system. The role constraint

specifies the set of roles that are permitted to run a

particular service. Cr (si) denotes the role constraint

applied to service si . ()ir s denotes the role that is

assigned to run .is The Separation of Duty (SoD) and the

	
 38	

Binding of Duty (BoD) constraint between is and js are

represented as () ()i jr s r s≠ and () ()i jr s r s= , respectively.

 The problem of checking feasibility of role, SoD and

BoD constraints is formulated as a Constraint

Satisfaction Problem (CSP) [Brailsford1999] in this

thesis.

 A CSP consists of a triple , ,V D C< >, where

1 2{ , ,..., }nV v v v= is a set of variables,

1 2
{ , ,..., }

nv v vD D D D= , and
iv

D is the domain of the value of

vi , and C is a set of constraints restricting the values

that the variables can take.

 The Feasibility Checking Problem (FCP) in this chapter

is modelled as a CSP in the following way. The services

in FCP are regarded as the variables in CSP. The role

constraint of a service is regarded as the domain of the

value of the service. The BoD and SoD constraints are

regarded as the constraints restricting the values that

the service variables can take. An example is given below

to illustrate the modelling.

 Assume the tasks in a workflow invoke 7 services, 1 7s s− ,

and there are 6 roles, 1 6r r− in the authorization system.

The role constraints are:

1 1{ }s r= ,

2 2 3 4{ , , }s r r r= ,

3 2 3 5{ , , }s r r r= ,

4 2 3 5{ , , }s r r r= ,

5 2 3 5{ , , }s r r r= ,

	
 39	

6 2 4{ , }s r r= ,

7 4 6{ , }s r r= .

The SoD constraints are:

2 5() ()r t r t≠ ,

2 7() ()r t r t≠ ,

6 7() ()r t r t≠ .

The BoD constraints are:

2 4() ()r t r t= ,

3 5() ()r t r t= .

Then the FCP can be formulated as CSP as follows.

, ,CSP V D C=< > ,

1 2 3 4 5 6 7{ , , , , , , }V s s s s s s s= ,

1 2 7
{ , ,..., }s s sD D D D= , where

1 1{ }sD r= ,

2 2 3 4{ , , }sD r r r= ,

3 2 3 5{ , , }sD r r r= ,

4 2 3 5{ , , }sD r r r= ,

5 2 3 5{ , , }sD r r r= ,

6 2 4{ , }sD r r= ,

7 4 6{ , }sD r r= .

1 2 3 4 5{ , , , , }C C C C C C= , where

1 : (2) (4)C r t r t= ,

	
 40	

2 : (2) (5)C r t r t≠ ,

3 : (2) (7)C r t r t≠ ,

4 : (6) (7)C r t r t≠ ,

5 : (3) (5)C r t r t= .

 There are the existing solvers to solve the CSP problem

[Brailsford1999]. Some solvers only check whether a

solution can be found to satisfy the problem, and if so,

return one solution. Some solvers can return all

solutions to the problem, i.e., all feasible role

assignments to the tasks so that the specified SoD, BoD

and role constraints are satisfied.	

3.2. Analyzing the Coverage of

Authorization Constraints for Workflow

Executions

 Roles have temporal constraints, i.e., when the roles

are activated and can be assigned to tasks. It is useful

to check the coverage of roles' temporal constraints in a

given security setting for workflow executions. If the

temporal constraints of the relevant roles cover the

execution period of a workflow, then the temporal

constraints will not delay the task executions in the

workflow, and therefore will not have negative impact on

the performance of the workflow.

 According to the discussions in section 3.1, we can use

the CSP solver to obtain all feasible role assignment

solutions for the tasks in a workflow. denotes the set

of all feasible role assignments for the workflow, and

A

	
 41	

denotes the -th feasible role assignment, in which is

a task in the workflow and is the role assigned to .

 In most cases, a role is activated periodically. For

example, the role of bank manager is only activated from

9am to 12pm, and from 2pm to 4pm in a day. Therefore, the

temporal constraint of role , denoted as , can be

expressed as below,

=(Pi, Di, Si, Ei) (3.1)

Where is the period, is the time

duration when is activated in the period , and and

 are the start and end time points when this period

pattern begins and ends. can be , meaning the

periodic pattern continues indefinitely.

 Assume that the execution times of the tasks in a

workflow and the scheduling algorithm used to schedule

the tasks is known. Therefore, if we know the arrival

time of the entry task in the DAG, we can calculate the

start time of every task in the DAG. denotes the

start time of task , denotes the role assigned to

task in . Assume is the entry task. Assume

. represents the temporal constraint of

role rp. =(Pp, Dp, Sp, Ep) as shown in Equation (3.1).

Assume (i≠0). denotes the time durations

{(,) | }k i j iA t r t T= ∈

k it

jr it

ir ()t
irC

()t
irC

iP
Di ={[ldij ,udij] | i ∈}

ir iP iS

iE

iE ∞

ist

it (,)i kr t A

it kA 0t

0(,) pkr t A r= ()t
prC

()t
prC

(,)i k qr t A r= ()qrT

	
 42	

when has to be temporarily available to run .

 Given , can be determined by Eq. 3.2, where

is determined in Eq. 3.3.

 (3.2)

 (3.3)

However, is subject to the temporal constraint, .

Therefore, the intersection of and , denoted by

, is the time durations when task can start

execution immediately without being delayed by the

temporal constraints, given the role assignment .

 can be determined using Equation below;

, where

is the least common multiple of and ;

; ;

Let .

As shown above, we calculate from , and

then calculate from and .

is a subset of . This means that only when

arrives in a subset of the time durations in ,

 start time falls into . In this thesis, such a

subset of time durations in is called

qr it

()t
prC ()qrT

jD

0 0 0() (, , (), ())j iq p p ir P D S st st E st st= + − + −T

Dj ={[ld0k + (sti − st0),ud0k + (sti − st0)] | k ∈}

qr ()t
qrC

()qrT ()t
qrC

(,)i kI t A it

kA

(,)i kI t A

(,)i kI t A (, , ,)I I I I
ki ki ki kiP D S E=

I
kiP pP qP

(,)I
ki p qS max S S= (,)I

ki p qE min E E=

Dki

I ={[ldkij
I ,udkij

I] | j ∈}

((,))i kr t AT 0((,))t
kr t AC

(,)i kI t A ((,))i kr t AT ((,))i
t

kr t AC (,)i kI t A

((,))i kr t AT 0t

0((,))t
kr t AC

'it s I(ti , Ak)

0((,))t
kr t AC 0(,) 'skr t A

	
 43	

effective time durations for in the role assignment ,

which is denoted by . can be determined

by Eq. (3.4).

 (3.4)

We can calculate for every task in the

workflow. is the time durations in

that can ensure the start time of every task ()

in the DAG falls into the times durations specified in

. Only when arrives in these time durations,

can every task in the DAG starts execution without being

delayed by the temporal constraints of the role assigned

to run the task in . is called effective

arrival time when the role assignment is , denoted by

. Note that according to the calculation method of

, is a subset of . Therefore, we also

call the effective temporal constraint of

for the DAG in the role assignment . Assume

EAk (t0) = {[ld0 j ,ud0 j] | j ∈N} . We can further determine the set

of time durations for the start time of , denoted by

, as in Eq. (3.5). Note that is a subset of

. Therefore, we call the effective

temporal constraint of .

 (3.5)

it kA

0(,)k iET t t 0(,)k iET t t

ETk (t0 ,ti) = (Pki
I ,{[ldkij

I − (sti − st0),udkij
I − (sti − st0)] | j ∈},Ski

I , Eki
I)

0(,)k iET t t it

ETk (t0 ,ti)

ti∈T
 0((,))t

kr t AC

it T∈ 0i ≠

((,))t
i kr t AC 0t

kA

ETk (t0 ,ti)
ti∈T
 0 't s

kA

0()kEA t

0()kEA t 0()kEA t 0((,))t
kr t AC

0()kEA t 0(,)kr t A

kA

it

()k iEA t ()k iEA t

((,))t
i kr t AC ()k iEA t

(,)i kr t A

EAk (ti) ={[ld0 j + (sti − st0),ud0 j + (sti − st0)] | j ∈}

	
 44	

We can calculate for every feasible role

assignment. Assume is the time duration for which

we want to check the coverage of the temporal

constraints. If cover the entire range of ,

then no matter when the workflow instance is initiated,

we can always find a role assignment so that all tasks in

the workflow can start execution without delay due to the

roles' temporal constraints. Otherwise, is

the time gap during which the execution of at least one

task in DAG will be delayed by the current setting of the

temporal constraints.

3.3. A Case Study

We now present a case study to illustrate the impact of

the authorization constraints on the workflow

performance. In the case study, a workflow consists of

nine tasks, as shown in the figure 3.1 below. The

workflow is run under the authorization constraints.

Tasks may have to wait for the results from parent tasks

and the number of tasks in a workflow are not fixed.

Assume the authorization constraints are specified below.

0()kEA t

[,]S E

0()k
all k

EA tU [,]S E

0[,] ()k
all k

S E EA t−U

	
 45	

Figure 3.1. The workflow in the case study

1. There are five roles, r1, r2, …, r5;

2. The temporal constraint of role ri (i.e., C
t(ri)) is

as follows. The temporal constraints are illustrated in

Figure 3.2, where the shaded area is the time durations

when the role is not activated for service.

Ct(r1)={[0900, 1700]},

Ct(r2)={[1200, 1700]},

Ct(r3)= {[1100, 1700]},

Ct(r4)= {[0900, 1200], [1400, 1700]},

Ct(r5)= {[0900, 1300], [1500, 1700]},

T1#

T3#T2#

T5#T4# T6#

T7# T8#

T9#

	
 46	

Fig. 3.2: The temporal constraints in the case study, the

shaded areas in the timelines are the time durations when

the roles are not activated

3. The role constraint of a task, denoted by Cr(ti), in

the workflow is as follows.

Cr(s1)={r1}

Cr(s2)={r3, r4}

Cr(s3)={r1, r2}

Cr(s4)={r2, r3}

Cr(s5)={r2, r3}

Cr(s6)={r2, r3}

Cr(s7)={r3, r4}

4. The Separation of Duty (SoD) constraints are as

follows, where r(Ti) is the role assigned to task Ti.

r(T2)≠ r(T5)

r(T2)≠ r(T7)

r(T6)≠ r(T7)

	
 47	

5. The Binding of Duty (BoD) constraints are as

follows.

r(T2) = r(T4)

r(T3) = r(T5)

6. The tasks, ti, in the workflow invoke the services

in the following way.

t0 -> s1,

t1 -> s2,

t2 -> s3,

t3 -> s1,

t4 -> s6,

t5 -> s7,

t6 -> s4,

t7 -> s6,

t8 -> s5.

7. The execution times of the tasks t0-t8 are given in

table 1.1. The execution times of the tasks have impact

on the effective temporal constraints.

Applying the method proposed in Section 3.1, we can

obtain that there are total 8 different authorization

solutions for the workflow, [Brailsford1999] solver can

be used to obtain CSP (Constraint Satisfaction Problem)

solutions. Now we apply the method proposed in this

section to calculate the coverage of the temporal

constraints set in the case study.

The first authorization solution (A1) is as follows.

Solution A1:

r(t0,A1) = r1,

r(t1,A1) = r3,

r(t2,A1) = r1,

	
 48	

r(t3,A1) = r1,

r(t4,A1) = r2,

r(t5,A1) = r3,

r(t6,A1) = r2,

r(t7,A1) = r2,

r(t8,A1) = r2.

Since 1) t0 is authorized to r1 in A1, 2) r1 is

activated during [09:00, 17:00] in the period of [0900,

1700] and 3) t0’s execution time is 30 minutes, the

possible start time of t1, which is also the duration

when the role assigned to t1 in A1 (i.e., r3) has to be

activated so that t1 can start execution without being

delayed by the temporal constraints, can be calculated by

Equations given below:

 = {[0930,1730]}

However, r3’s temporal constraint is

Ct(r3) = {[11:00,17:00]}

Consequently,

I(t1,A1) = C
t(r3) ∩

 = {[11:00,17:00]}

Then,

ET1(t0,t1) = {[11:00 - 30min, 17:00 - 30mins]}

 = {[1030, 1630]}

Similarly, t2 is authorized to run under r1 in A1.

T(r1) = {[0930,1730]}

I(t2,A1) = C
t(r1) ∩ T(r1)

 = {[0930, 1700]}

ET1(t0,t2) = {[09:00, 1630]}

 T (r3)

 T (r3)

	
 49	

Similarly, 1 0(,)iET t t for tasks t3-t8 can be calculated

below.

ET1(t0,t3) = {[0900, 1600]},

ET1(t0,t4) = {[1054, 1554]},

ET1(t0,t5) = {[09:54, 15:54]},

ET1(t0,t6) = {[10:06, 15:06]},

ET1(t0,t7) = {[10:12, 15:12]},

ET1(t0,t8) = {[09:36, 14:36]}.

Then, the effective arrival time of t0 (i.e., the

arrival time of the workflow), 1 0()EA t , can be calculated

as follows.

1 0()EA t = ={[10:54, 14:36]}

This means that if the workflow arrives during [10:54,

14:36] and A1 is used as the authorization solution, all

tasks in the workflow can start execution without being

delayed by the temporal constraints.

Given 1 0()EA t , 1()iEA t (i.e., the effective arrival time)

for other tasks, t1-t8, can be calculated by using the

equation below by using Matlab:

 EA1(t1) ={[ld01 + (st1 − st0),ud01 + (st1 − st0)]}

{[10 :54 30min],[14 :36 30min]}
{[11: 24,15 : 06]}

= + +
=

1 2() {[11: 24,15: 06]}EA t =

1 3() {[12 :00,15: 42]}EA t =

1 4() {[12 :00,15: 42]}EA t =

ETk (t0 ,ti)

ti∈T


	
 50	

1 5() {[12 :00,15: 42]}EA t =

1 6() {[12 : 48,16 :30]}EA t =

1 7() {[12 : 42,16 : 24]}EA t =

1 8() {[13: 24,17 :00]}EA t =

Similarly, we can calculate the value of 0()kEA t (2≤k≤8)

(i.e., other authorization solutions A2-A8).

The authorization solution A2 is below and 2 0()EA t are as

follows.

r(t0,A2) = r1,

r(t1,A2) = r3,

r(t2,A2) = r1,

r(t3,A2) = r1,

r(t4,A2) = r2,

r(t5,A2) = r3,

r(t6,A2) = r2,

r(t7,A2) = r3,

r(t8,A2) = r2.

2 0()EA t ={10:54, 14:36}

For A3:

r(t0,A3) = r1,

r(t1,A3) = r3,

r(t2,A3) = r2,

r(t3,A3) = r1,

r(t4,A3) = r2,

r(t5,A3) = r3,

r(t6,A3) = r2,

r(t7,A3) = r2,

r(t8,A3) = r2.

3 0()EA t ={[11:30, 14:36]}.

	
 51	

For A4:

r(t0,A4) = r1,

r(t1,A4) = r3,

r(t2,A4) = r2,

r(t3,A4) = r1,

r(t4,A4) = r2,

r(t5,A4) = r3,

r(t6,A4) = r2,

r(t7,A4) = r3,

r(t8,A4) = r2.

4 0()EA t ={[11:30, 14:36]}.

For A5:

r(t0,A5) = r1,

r(t1,A5) = r4,

r(t2,A5) = r1,

r(t3,A5) = r1,

r(t4,A5) = r2,

r(t5,A5) = r4,

r(t6,A5) = r2,

r(t7,A5) = r2,

r(t8,A5) = r2.

5 0()EA t ={[14:00, 14:36]}.

For A6:

r(t0,A6) = r1,

r(t1,A6) = r4,

r(t2,A6) = r1,

r(t3,A6) = r1,

r(t4,A6) = r2,

r(t5,A6) = r4,

r(t6,A6) = r2,

	
 52	

r(t7,A6) = r3,

r(t8,A6) = r2.

6 0()EA t ={[13:30, 14:36]}.

For A7:

r(t0,A7) = r1,

r(t1,A7) = r4,

r(t2,A7) = r2,

r(t3,A7) = r1,

r(t4,A7) = r2,

r(t5,A7) = r4,

r(t6,A7) = r2,

r(t7,A7) = r2,

r(t8,A7) = r2.

7 0()EA t ={[13:30, 14:36]}.

For A8:

r(t0,A8) = r1,

r(t1,A8) = r4,

r(t2,A8) = r2,

r(t3,A8) = r1,

r(t4,A8) = r2,

r(t5,A8) = r4,

r(t6,A8) = r2,

r(t7,A8) = r3,

r(t8,A8) = r2.

8 0()EA t ={[13:30, 14:36]}.

Then,

={[11:30, 14:36]}∪ {[10:54, 14:36]}∪ {[13:30,

14:36]}= {[10:54, 14:36]}

	

EAk (t0)

Ak∈A


	
 53	

This suggests that whenever the workflow arrives in the

time duration of [10:54, 14:36], there exists an

authorization solution under which all tasks in the

workflow can start execution without being delayed by the

authorization constraints. When the workflow arrives in

the time durations other than [1054, 1436], which can be

calculated in Equation (3.6), it will be subject to the

delay caused by the authorization constraints.

 = {[09:00,17:00]} – {[10:54, 14:36]} 	

 = {[09:00,10:53], [14:37, 17:00]} (3.6)

3.4 Summary

This Chapter investigates the issue of feasibility

checking for authorization constraints deployed in

workflow management systems. The feasibility checking

problem is modeled as a constraint satisfaction problem

in this chapter. Further, this chapter presents the

methods to determine the time durations when the

authorization constraints do not have negative impact on

performance of workflow executions. A case study is given

to illustrate the workings of the proposed methods. 	

[S , E]− EAk (t0)

Ak∈A


	
 54	

4
Optimizing	
 the	
 Authorization	

Methods	
 for	
 Workflows	

 Chapter 3 presents the method to determine the time

durations when the workflow execution is not affected by

the authorization constraints, i.e., . However,

when a workflow arrives beyond , the workflow

will experience the delay. This chapter conducts the

quantitative analysis of the delay. This chapter also

proposes the optimal authorization method that can

minimize the delay caused by the authorization

constraints.

 The rest of this chapter is organized as follows.

Section 4.1 presents an intuitive authorization method,

called the Earliest Available First (EAF) method, and the

intuitive method will be used to compare against the

optimal authorization method, called the Global

Authorization Aware (GAA) method. The GAA method is

presented in Section 4.2. Section 4.2 also conducts the

quantitative analysis about the delay caused by the

authorization constraints, given a workflow’s arrival

time, and proves that the proposed GAA method is optimal

EAk (t0)

Ak∈A


EAk (t0)

Ak∈A


	
 55	

in the sense that it can minimize the delay caused by the

authorization constraints. Section 4.3 presents the

experimental results to verify the effectiveness of the

GAA method.

4.1. The EAF Authorization Method

The Earliest Available First (EAF) method is intuitive.

Its fundamental idea is that when a task in the workflow

is ready to run (i.e., all predecessors of the task has

completed the executions), but all roles that can be

assigned to the task (i.e., satisfy the authorization

constraints) are not activated, a role with the earliest

activation time will be assigned. The EAF method is

outlined in Algorithm 1.

Algorithm 1. The EAF authorization method

1) For a ready task ti in the workflow

2) Apply the role constraints, BoD and SoD to obtain a
set of roles (denoted by CA(ti)) that can be

assigned to ti;

3) If all roles in CA(ti) are not activated,

4) Assign to ti a role with the earliest activation

time;

5) If there are the roles in CA(ti) that are activated,

6) A role is randomly selected and assigned to ti;

 The delay caused the temporal constraints for a task is

defined as the time that a ready task has to wait until

the role assigned to the task become activated. The delay

caused by the temporal constraints for a workflow

(denoted by td) is defined as the sum of the delay caused

	
 56	

by temporal constraints for each individual task in the

workflow. The workflows with different arrival times may

have different td . td(τ) denotes the delay experienced by

the workflow whose arrival time is τ . tdEAF (τ) denotes the

delay experienced by all tasks in the workflow whose

arrival time is τ when the EAF authorization method is

applied.

4.2. The GAA Authorization Method

 Assume a workflow arrives at time τ . EAk (t0).next(τ)

denotes the beginning of the next duration after τ in

EAk (t0) . If the workflow waits for (EAk (t0).next(τ)−τ) , then Ak

can be used as the authorization solution of the workflow

and the workflow execution can progress without further

delay caused by the temporal constraints.

 The GAA authorization method is proposed based on the

above discussion. In the GAA method, the authorization

solution that has the least value of (EAk (t0).next(τ)−τ) is

used to assign the roles to the tasks in a workflow. The

GAA method is outlined in Algorithm 2. tdGAA(τ) denotes the

delay caused by the temporal constraints for a workflow

whose arrival time is τ under the GAA method, which

equals to (EAk (t0).next(τ)−τ).

Algorithm 2. The GAA authorization method

1) In all feasible authorization solution, find such a
authorization solution, Ak, that Ak generates the

minimal value of (EAk (t0).next(τ)−τ);

	
 57	

2) The tasks in the workflow are authorized as

designated in Ak;

 Assume that a workflow arrives at the time pointτ , and

assume that it turns out that Ak is the authorization

solution used for the workflow under the EAF method. We

can prove that the delay caused by the temporal

constraints for the workflow under the EAF method equals

to (EAk (t0).next(τ)−τ), as shown in Theorem 1.

Theorem 1: If a workflow arriving at time τ is

authorized using the EAF method and the outcome is that

the roles are assigned to the tasks in the workflow as in

the authorization solution Ak , then Eq. 4.1 holds.

tdEAF (τ) = (EAk (t0).next(τ)−τ) (4.1)

Proof: If the role assigned to t0 in Ak (i.e., r(t0)) is

only activated at time EAk (t0).next(τ) , then t0 starts

execution at EAk (t0).next(τ) under the EAF method.

Consequently, the delay caused by the temporal

constraints on t0 is EAk (t0).next(τ)−τ , and according to the

definition of EAk (t0).next(τ) , all successors of t0 can start

execution without further delay caused by the temporal

constraints. Then

tdEAF (τ) = (EAk (t0).next(τ)−τ).

 Therefore, Eq. 4.1 holds. We call EAk (t0).next(τ) t0 's

effective start time (denoted by est0).

	
 58	

 When t0 starts at EAk (t0).next(τ) , we can calculate the

start time of t0 's any successor ti , which is called ti 's

effective start time (denoted by esti) because if ti

starts at time esti , all successors of ti can start

execution without being delay by the temporal constraints

of the roles assigned to the successors in Ak . esti equals

est0 plus the length of the longest path from t0 to ti in

the workflow.

 If task t0 starts execution at time ′τ 0 when the role

assigned to t0 in Ak becomes activated, then the delay

caused by the temporal constraints on t0 is ′τ 0 −τ . Assume

tk is t0 's child. If t0 starts execution at ′τ 0 , then tk

can be ready for execution (tk 's ready time is denoted by

τ k) at time ′τ 0 plus the length of the longest path from

t0 to tk (i.e., all its predecessors have been

completed), that is, ′τ 0 + (estk − est0) , only subject to the

availability of role r(tk).

 If r(tk) is activated only at estk , then tk 's delay caused

by r(tk) 's temporal constraints is estk − (′τ 0 + (estk − est0)) =

est0 − ′τ 0 , and all successors of tk can start executions

without being delayed by temporal constraints. Therefore,

tdEAF (τ) can be calculated as:

tdEAF (τ) = (est0 − ′τ 0)+ (τ ′0 −τ)
= est0 −τ
= EAk (t0).next(τ)−τ

	
 59	

It shows Eq. 4.1 holds. n

 If r(tk) is activated at time ′τ k (′τ k < estk), then tk starts

execution at ′τ k in the EAF method. We can repeat the

analysis similar as above only replacing t0 with tk , τ

with τ k and est0 with estk . Similarly, we can recursively

conduct the analysis for the rest of all tasks in the

workflow. It can be shown that Eq. 4.1 holds.

 Besides the EAF method, other authorization method can

be used to assign the roles to the tasks in a workflow.

Based on Theorem 1, however, we can prove that no matter

what authorization method is used to authorize the

workflow, if it turns out that the workflow is authorized

as in the authorization solution Ak , then the delay

caused by the authorization constraints under the

authorization method will be no less than the delay when

using the EAF method to assign the roles to the tasks as

in Ak . This relation is stated in Theorem 2. The proof

of the theorem takes the similar steps as those in

Theorem 1. The difference is that when using the EAF

method to authorize the tasks as Ak , a task is

authorized as soon as the role assigned to the task in

Ak becomes activated, while under other authorization

method, a task may be authorized (therefore start

execution) later than the role's activation time.

Theorem 2: No matter what authorization method is

used to assign the roles to the tasks in a workflow, if

the outcome is that the tasks are authorized as the

authorization Ak , then the delay caused by the

authorization constraints under the authorization method

	
 60	

is no less than the delay when using the EAF method to

authorize the tasks as in Ak .

Proof: Assume that a workflow arrives at time τ .

Similar to Theorem 1, we can determine esti for every task

in the workflow.

 If r(t0) in Ak is activated at time EAk (t0).next(τ) , then

the minimal delay caused by the authorization constraints

is EAk (t0).next(τ)−τ , which equals to the delay generated

when using the EAF method to authorize t0 . Any method

that authorizes t0 later than EAk (t0).next(τ) will generate a

delay greater than that generated by the EAF method. The

theorem holds.

 If r(t0) becomes activated at time τ ′0 , but under the

authorized method, task t0 is authorized and starts

execution at a later time τ ′0 +δ 0 (δ 0 > 0), then the delay

caused by the authorization constraints on t0 is τ ′0 +δ 0 −τ .

 Assume tk is t0 's child. If t0 starts execution at

τ ′0 +δ 0, then tk can be ready for execution at time

τ k = τ ′0 +δ 0 + (estk − est0).

 Assume τ ′0 +δ 0 + (estk − est0) ≥ estk . Then tk can be authorized

and start execution immediately and further, all

successors of tk can be authorized and start execution

immediately when they are ready for execution. Therefore,

the minimal delay for the workflow is τ ′0 +δ 0 −τ . Since

τ ′0 +δ 0 + (estk − est0) ≥ estk , we can have δ 0 > est0 −τ ′0 . Then the

	
 61	

following inequality holds, which shows that the EAF

method generates the minimal delay.

τ ′0 +δ 0 −τ > est0 −τ
= EAk (t0).next(τ)−τ

= tdEAF (τ)

 Assume τ ′0 +δ 0 + (estk − est0) < estk . We can repeat the same

analysis on tk as that on t0 , only replacing t0 with tk , τ

with τ k and est0 with estk . Similarly, we can recursively

conduct the analysis for the rest of all tasks in the

workflow. It can be shown that the theorem holds. n

 Based on Theorem 1 and 2, we can further prove that the

GAA method is the optimal authorization method, as shown

in Theorem 3.

Theorem 3: The GAA authorization method is optimal in

the sense that under the GAA method, the delay caused by

the authorization constraints for a workflow is not more

than that under any other authorization method.

Proof: Given an authorization method and a workflow

arriving at time τ , assume that the method authorizes

the tasks as in the authorization solution Ak . From

Theorem 2, we know that the delay generated by the

authorization method is no less than the delay when using

the EAF method to authorize the tasks as in Ak . From

Theorem 1, we know that the delay generated by the EAF

method can be calculated as EAk (t0).next(τ)−τ . Therefore,

the given authorization method generates a delay greater

than EAk (t0).next(τ)−τ . According to the algorithm of the

	
 62	

GAA method, the GAA method selects the authorization

solution Aj that has the least value of (EAj (t0).next(τ)−τ)

from all possible authorization solutions. Therefore, the

theorem holds. n

4.3. Experimental Studies

4.3.1. Experimental Settings

 This section conducts the simulation experiments

(Graphical representation of the results by using Matlab)

to evaluate the performance of the GAA method against

that of the EAF method. The performance metrics evaluated

in the experiments include the delay caused by the

authorization constraints for a workflow (i.e., td
defined in the first paragraph of Section 4.1) and the

response time of a workflow (denoted as rt), which is
defined as the duration between the time when a first

task of the workflow arrives and the time when the last

tasks of the workflow is completed.

In the experiments, the workflow is randomly generated.

Each workflow containing TNUM tasks and each task in a

workflow having the maximum of MAX _DG children. RNUM

roles are assumed to exist in the system. “The tasks'

role constraints (i.e., the set of roles that a task can

assume) are set in the following fashion. The simulation

sets a maximum number of roles that any task can assume

in the role constraints, denoted as MAX _RCST , which

represents the level of restrictions imposed on the role

assignment for tasks. When setting the role constraint

	
 63	

for task ti , the number of roles that can run ti is

randomly selected from [1, MAX _RCST], and then that

number of roles are randomly selected from the role set”.

NUM _SoD denotes the number of tasks associated with

SoD constraints and NUM _BoD denotes the number of tasks

that are associated with BoD constraints. “Duty

constraints were set as follows. Each time, two tasks are

randomly selected from the workflow to establish the BoD

constraint between them until NUM _BoD tasks are

covered. And then the same procedure is applied to

establish the SoD constraints among tasks. In this

process, the method presented in Section 3.1 (chapter 3)

is used to make sure that the designated duty constraints

on these selected tasks can be satisfied. We assume that

the tasks execution times follow an exponential

distribution”. EX _H denotes the average execution time

of the tasks in time units. In order to examine the delay

caused by the authorization constraints, a workflow

instance is only issued after the previous instance has

been completed in the experiments. Unless otherwise

stated, the value of td or rt depicted in the figure is
the value averaged over all workflow instances issued

within the period of the temporal constraints, which are

set below.

“The temporal constraints on roles are set in the

following way. For each role, time duration is selected

from a period of P time units. The selected time

duration occupies the specified percentage of the P time
units, which is denoted as TEMP. The starting time of the

selected duration is chosen randomly from the range of”

[0, P × (1−TEMP)]. For example, if P = 100 and TEMP =10%,

	
 64	

the starting point is randomly selected from 0 to

90%×100.

Unless otherwise stated, the parameters are set to be

the values shown in Table 4.1.

Table 4.1. Experimental settings

Parameter Value Parameter Value

TNUM 15 MAX_DG 3

EXH 5 RNUM 5

MAX_RCST 3 NUM_SoD 4

NUM_BoD 4 P 480

TEMP 20%

Figure 4.1. td under different TEMP

10 % 20 % 30 % 40 %
0

20

40

60

80

100

120

140

TEMP

t
d

GAA
EAF

	
 65	

4.3.2. Temporal Constraints

Figure 4.1. shows the change of td as the temporal

constraints (TEMP) changes. It can be seen from this

figure that in all cases the GAA method achieves smaller

td than EAF. For example, when TEMP is 10%, td is 0 under
GAA while it is about 10 under EAF. The discrepancy

becomes even bigger when TEMP increases. These results

verify that the authorization method indeed matters and

the GAA method is superior to the intuitive EAF method.

Figure 4.2. rt under different TEMP

Figure 4.2. compares rt achieved by GAA and EAF under
different TEMP. It can be seen that GAA achieves the

shorter rt than EAF in all cases. This is because GAA
causes less delay and therefore achieves less response

time than that under EAF.

10 % 20 % 30 % 40 %
0

50

100

150

200

250

300

350

TEMP

rt

GAA
EAF

	
 66	

4.3.3. Arrival Times of Workflows

The work in this chapter presents the method to

determine the duration of the time for workflow arrivals

within which the authorization constraints will not have

negative performance impact. This shows that the arrival

time of a workflow has impact on workflow performance.

Figure 4.3 shows the value of td for different workflow
arrival times under GAA and EAF. In these experiments, we

set the period of all roles (i.e., P) as 480 time units,

and then issue the workflow instances at the time points

from 0 to 300 time units with increment of 60. It can be

seen that once again, GAA incurs less td than EAF in all
cases, except when the arrival time is 300 (whose will be

explained later). Further, when the workflows arrive

after 120, the GAA method does not cause any delay on

workflow executions. These results verify that there

indeed exist the durations for the workflow arrivals when

the authorization constraints will not delay the workflow

executions. The method proposed in this chapter is able

to theoretically calculate such durations. A point to

note is that when the arrival time is 300, no delay is

caused under the EAF method either. This is because the

time point 300 happens to be within the intersection of

EAk (t0) of all feasible authorization solutions.

Therefore, the system can always find an activated role

for any task to enable its execution.

	
 67	

Figure 4.3. td under different workflow arrival times

Figure 4.4 shows that rt of the workflows with

different arrival times. Again, GAA outperforms EAF in

all cases. The rt trend is consistent with the td trend
shown in Figure 4.3.

Figure 4.4. rt under different workflow arrival times

0 60 120 180 240 300
0

20

40

60

80

100

120

140

160

180

Workflow Arrival Time

td

EAF
GAA

0 60 120 180 240 300
0

50

100

150

200

250

300

350

Workflow Arrival Time

rt

EAF
GAA

	
 68	

4.3.4. Execution Times of the Workflow Tasks

Obviously, increasing the execution times of the tasks

in a workflow will increase the schedule length of the

workflow. But do the execution times affect the

authorization-related delay? Figure 4.5 shows the impact

of the average execution time of the tasks in a workflow

on the coverage of the temporal constraints (CTC), i.e.,

EAk (t0)

Ak∈A
 .

Figure 4.5. CTC under different average execution times

of workflow tasks

 As can be seen from this figure, CTC decreases as the

average execution time increases. A reasonable

explanation for this is that given a set of temporal

constraints, the bigger the execution time of the tasks

in a workflow is, the less likely the duration of the

workflow execution fits into the temporal constraints.

Therefore, CTC may become shorter. This result suggests

that given a set of temporal constraints, a workflow with

5 15 25 35
200

210

220

230

240

250

260

270

280

290

300

Average Execution Time of Workflow Tasks

CT
C

	
 69	

longer tasks may be more likely to be delayed by the

temporal constraints that a workflow with shorter tasks,

which can be verified by the results, presented in Figure

4.6.

Figure 4.6. The coverage of temporal constraints (CTC)

under different average execution times of workflow

tasks.

Figure 4.6 demonstrates td under different average

execution time of workflow tasks. Again, GAA causes less

delay than EAF in all cases. It can also be observed from

this figure that td increases as the average execution

time of workflow tasks increases. The results coincide

with the results in Figure 4.5. Indeed, when the

execution times increases, CTC decreases. Then more

workflow instances issued in the period of the temporal

constraints will experience td . Consequently, td , which
is the delay averaged over all workflow instances issued,

is bigger.

5 15 25 35
0

20

40

60

80

100

120

Average Execution Time of Workflow Tasks

td

EAF
GAA

	
 70	

Figure 4.7. rt under different average execution times of

workflow tasks.

 Figure 4.7 shows rt generated by the GAA and the EAF
method under different average execution time of workflow

tasks. As can be observed, the GAA method generates

shorter rt than EAF in all cases. This again verifies GAA
causes less delay than EAF. There can be a situation when

both GAA and EAF may produce the same delay. It can

happen when EAF selects the roles as in optimal solution

by choosing the roles randomly.

4.4 Summary

 This chapter proposes two authorization methods. One is

the intuitive method while the other is proved in this

chapter to be the optimal authorization method. This

chapter also quantitatively analyses the delay caused by

the authorization constraints. The optimality proof for

5 15 25 35
0

50

100

150

200

250

300

Average Execution Time of Workflow Tasks

rt

EAF
GAA

	
 71	

the proposed method is based on the delay analyses.

Finally, this chapter presents the simulation

experimental results to verify the effectiveness of the

proposed authorization methods.

	
 72	

5
Allocating	
 Resources	
 for	
 Workflows	

Running	
 under	
 Authorization	
 Control	

Many workflow scenarios require human involvement.

Therefore a workflow may consist of both human tasks,

which are handled by human resources (e.g., employees in

a company) and computing tasks, which are processed by

computing resources. This chapter investigates the issue

of allocating both human resources and computing

resources for running workflows, so as to satisfy the QoS

requirements of the workflows under the role-based

authorization control deployed in the system.

The fundamental ideas of the work presented in this

chapter are: 1) calculating the rate at which the

requests arrive at each individual role under the

deployed authorization constraints, and 2) based on the

calculated arrival rates, presenting the methods to

allocate the suitable amount of supporting resources for

each role.

In the application domains of interest, the

allocations of human resources and computing resources

have different considerations. In the role-based

	
 73	

authorization control, a human resource is affiliated

with a role. The human resources with different roles

will incur different salary costs (e.g., hiring a branch

manager is more expensive than hiring a cashier). The

budget is often a major factor of determining the

allocation of human resources in enterprise applications.

Therefore, this chapter takes authorization constraints

into account and develop an optimization method to

allocate the proper amount of human resources for each

role, so that the human tasks can achieve optimized

performance subject to the budget limit for human

resources.

 Due to relatively low costs of computing resources, the

cost is typically not a major concern for deploying low-

or middle-end computing resources. When the workflows are

running under authorization control, authorization

constraints may incur performance penalty as discussed in

the above workflow example in banks. Therefore,

minimizing the overhead caused by the authorization

constraints should be a main objective. In order to

address this issue, this chapter develops a strategy of

allocating computing resources. The strategy is able to

calculate 1) a proper number of computing resources

allocated to host each service, and 2) the processor

sharing proportion in each resource allocated to run the

tasks assuming a certain role.

In this chapter, a computing task involves invoking a

computing service hosted in a central resource pool

(e.g., a cluster or a Cloud). It is assumed that the

invocation of computing services can only be initiated by

a user with a certain role. A human task is executed by a

human resource with a certain role. A human task can also

	
 74	

be regarded as invoking a human service provided by a

user with a certain role. Therefore, for the simplicity

of the presentation, we will discuss human tasks and

computing tasks in a consistent manner in this chapter.

It is assumed that a set of services (human service or

computing service) is hosted by the resources (human

resources or computing resources). A task (human task or

computing task) in a workflow invokes one of the hosted

services.

The rest of this chapter is organized as follows.

Chapter 5.1 presents the methods to calculate the arrival

rate of the requests assigned to a role. Section 5.2

presents the method to allocate human resources, while

Section 5.3 develops the method to allocate computing

resources for hosting computing services. The

experimental studies are presented in Section 5.4.

Finally Section 5.5 gives the summary of the chapter.

5.1. Calculating the Arrival Rate under

Authorization Control

 In the workflow context in this chapter, a task in a

workflow invokes one of the services running on the

resources. In order to determine the amount of resources

allocated to host services, this section first calculates

the arrival rate of tasks for each service, which is the

invocation rate of each service when there is no

authorization control. However, under the authorization

control, the tasks have to be assigned to a role before

they can invoke the services, and the roles may have

	
 75	

temporal and cardinality constraints. Consequently, the

services' invocation rates may be different from those

when there is no authorization. This section derives the

arrival rate of tasks for each role, i.e., the rate at

which the tasks are assigned to each role under the

authorization constraints. Table. 3.1 list the notations

used in this thesis.

5.1.1. Calculating the Arrival Rates for

Services

 S = { 𝑠!, , 𝑠! } denotes the set of services running on
the resource pool.

 F = {𝑓!, . . . , 𝑓!} denotes the set of workflows, which has
N types of workflows. Different types of workflow may

have different topologies of tasks. A task in a workflow

invokes one of the services in S. A service invocation

matrix, denoted as 𝐶! ! ! (L cross N), can be used to

represent which services are invoked by a workflow in F.

The matrix has L rows and N columns. Row i represents

service 𝑠! , while column j represents workflow 𝑓! . An

element 𝑐!" represents how many times service 𝑠! is

invoked by workflow 𝑓! (different tasks in a workflow may

invoke the same service). 𝜆! denotes the arrival rate of

Workflow 𝑓!.

 The arrival rate of the requests for service 𝑠! ,

denoted as 𝜆(!") , can be calculated from the service-

calling matrix, 𝐶! ! !, as in Eq. 5.1.

𝜆(!") = (𝑐!" × 𝜆!)!
!!! (5.1)

	
 76	

5.1.2. Calculating the Arrival Rates for Roles

 This subsection analyses how to calculate the arrival

rates for the roles under three types of authorisation

constraints: role constraints, temporal constraints and

cardinality constraints [Zou2009].

5.1.2.1. Arrival Rates under Role Constraints

 𝑅 = {𝑟!,… , 𝑟!} denotes the set of roles defined in the

authorisation control system. The role constraint

specifies the set of roles that are permitted to run a

particular service. 𝐶!(𝑠!) denotes the role constraint

applied to service 𝑠!.

 A role constraint matrix, denoted as 𝑂(! × !), is used to

represent which roles are permitted to invoke a

particular service. The matrix has L rows and M columns.

Row i represents service 𝑠! , while column j represents

role 𝑟! . An element 𝑂!" is 0 or 1, representing whether

role 𝑟! is permitted to run service 𝑠!.

 If only role constraints are considered and multiple

roles are permitted to run a service, a role is randomly

selected. In the requests for service 𝑠! , the arrival

rate of the requests allocated to role rj, denoted as

𝜆!(𝑠! , 𝑟!) , can be calculated using Eq. 5.2. Further, the

arrival rate of all service requests allocated to rj,

denoted as 𝜆!(𝑟!) can be calculated using Eq. 5.3.

𝜆!(𝑠! , 𝑟!) =
!(!!)

!!"!
! ! !

0

𝑖𝑓 𝑜!" ≠ 0!
!!!

𝑖𝑓 𝑜!" = 0!
!!!

 (5.2)

	
 77	

𝜆! 𝑟! = 𝜆!(𝑠! , 𝑟!)!
!!! (5.3)

5.1.2.2. Arrival Rates under both Role Constraints and

Temporal Constraints

 In most cases, a role is activated periodically. For

example, the role of bank manager is only activated from

9am to 12pm in a day. Therefore, the temporal constraint

of role ri, denoted as C
t(ri) can be expressed as Eq. 5.4,

where Pi is the period, Di is the time duration when ri is

activated in the period Pi, and Si and Ei are the start

and end time points when this period pattern begins and

ends. Ei can be ∞, meaning the periodic pattern continues
indefinitely. A temporal function for role ri is defined

in Eq. 5.5. The value of the temporal function is 1 if

the role is activated at the current time point t.

Otherwise; the value of the function is 0. For example

for role r1 in Fig. 5.1 at time t = 3, eq. 5.5 will be

3 – 0 * 6 = 3 which is less than Di = 4, so the role will

be active at t=3 and similarly at t=5 the value of the

eq. 5.5 will be 5 – 0 * 6 = 5 which is greater than Di=4

so the role is inactive at t=5.

Ct(ri) = (Pi, Di, Si, Ei) (5.4)

ft(ri , t) =
1 𝑖𝑓 𝑡 − !! !!

!!
 × 𝑃! ≤ 𝐷!

0 𝑖𝑓 𝑡 − !! !!
!!

× 𝑃! > 𝐷!
 (5.5)

The function nr(si, t) defines the number of roles which

are activated at time point t and are permitted to run

	
 78	

service si. nr(si, t) can be calculated using Eq. 5.6,

which is based on the roles' temporal functions.

nr(si , t) = 𝑓𝑡(𝑟! , 𝑡)!! ! !! (!!) (5.6)

 𝜆!" (𝑠! , 𝑟!) denotes the arrival rate of the tasks that are

requesting service si and are assigned to role rj when

both role constraints and temporal constraints are

considered. 𝜆!" (𝑠! , 𝑟! , 𝑡) denotes at time t, the arrival rate

of the requests that assume ri and invoke si. 𝜆!" (𝑠! , 𝑟! , 𝑡),

can be calculated as Eq. 5.7. Then 𝜆!" (𝑠! , 𝑟!) (i.e., the

average arrival rate of the requests that assume ri and

invoke si) can be calculated as Eq. 5.8, where P is the

minimal common multiple of the periods of all roles that

can run si.

 𝜆!" (𝑟!) denotes the arrival rate of all tasks that are

assigned to role rj when both role constraints and

temporal constraints are considered. 𝜆!" (𝑟!) can be

calculated as Eq. 5.9.

𝜆!" 𝑠! , 𝑟! , 𝑡 = !(!!)
!"(!! ,!)

 (5.7)

𝜆!" 𝑠! , 𝑟! =
!!"(!! , !! ,!)!"

!
!

!
 (5.8)

𝜆!" 𝑟! = 𝜆!"(𝑠! , 𝑟!)!
!!! (5.9)

 Figure 5.1 illustrates the temporal constraints of

three roles, r1, r2, r3, in which t(r1) = (6, 4, 0,∞),

	
 79	

t(r2) = (4, 2, 0, ∞), and t(r3) = (3, 1, 0,∞) by using

equation 5.4.

 Figure 5.2 illustrates nr(si, t) for the three roles in

Figure 5.1. As can be seen from this figure, the number

of activated roles that can run si varies over time. Note

that since the minimal common multiple of the periods of

r1, r2, r3 is 12, the pattern of nr(si, t) will repeat in

every time duration of 12.

Figure 5.1. An Example of the temporal constraints of

roles. Note that shaded area represent that role is

available.

 According to Eq. 5.8, 𝜆!" (𝑠! , 𝑟!) is
!(!!)
!
 and 𝜆(𝑠!) at time

point 0 and 12, respective.

 The analysis can be easily extended to the case where

the temporal constraint of a role consists of multiple

	
 80	

different periodic patterns, each of which is specified

by Eq. 5.4. The analysis for multiple periodic patterns

is omitted in this chapter.

Figure 5.2. The function of the number of activated roles

for the example in Figure 5.1.

5.1.2.3. Arrival Rates under both Role Constraints and

Cardinality Constraints

 The cardinality constraint of a role is defined as the

maximum number of tasks that the role can run

simultaneously. Cc(ri) denotes the cardinality constraint

of ri.

 In order to avoid the execution delay caused by ri's

cardinality constraint, the number of the tasks running

0 2 4 6 8 10 12
0

1

2

3

4

Time

N
o

o
f

A
c
t
i
v
a
t
e
d

R
o
l
e
s

	
 81	

under role ri should be less than C
c(ri) when a new task

arrives requesting role ri. 𝜆!" (𝑠! , 𝑟!) denotes the arrival

rate of the tasks that are requesting service si and are

assigned to role rj when both role constraints and

cardinality constraints are considered. 𝜆!" 𝑟! denotes

the arrival rate of all tasks that are assigned to role

rj when both role constraints and cardinality constraints

are considered.

 According to Littles Law [Kleinrock1976], we have Eq.

5.10, where rpi is the mean response time of the tasks

running under role ri.

Cc(ri) = 𝜆!" 𝑟! × 𝑟𝑝! (5.10)

 np(ri) denotes the number of resources used to serve

the tasks running under ri, and these resources are

modelled as a M/M/np(ri) queuing model. wi denotes the

waiting time of the tasks assigned to role ri. According

to the queuing theory [Kleinrock1976], wi can be

calculated by Eq. 5.11, where ei is the execution time of

the tasks assigned to ri.

𝑊! =
!!" !! × !!!

!"(!!)!! !! × !" !! × !!" (!!)
 (5.11)

 Since Eq. 5.12 holds, Eq. 5.10 can be transformed to

Eq. 5.13.

	
 82	

𝑟𝑝! = 𝑤! + 𝑒! (5.12)

𝐶! 𝑟! = 𝜆!" 𝑟! × (
!!" !! × !!!

!"(!!)!! !! × !" !! × !!"(!!)
 + 𝑒!) (5.13)

 𝜆!"(𝑟!) can then be calculated by transforming Eq. 5.13 to
Eq. 5.14, which is the maximum task arrival rate that ri

can tolerate in order to avoid the overhead caused by its

cardinality constraint.

𝜆!" 𝑟!

=
𝑛𝑝 𝑟! × 𝑛𝑝 𝑟! + 𝐶!(𝑟!)! − 4 ×𝐶! 𝑟! × (𝑛𝑝 𝑟! − 1) + 𝑛𝑝 𝑟! × (𝑛𝑝 𝑟! + 𝐶!(𝑟!))

2 × 𝑒! × (𝑛𝑝 𝑟! − 1)

(5.14)

5.1.2.4. Arrival Rates under Role, Temporal and

Cardinality Constraints

 𝜆!"#(𝑟!) denotes the arrival rate of the tasks that are
assigned to ri when the role constraints, temporal

constraints and cardinality constraints are considered.

𝜆!"#(𝑟!) can be calculated as Eq. 5.15.

𝜆!"# 𝑟! = min (𝜆!" 𝑟! , 𝜆!"(𝑟!)) (5.15)

5.2. Allocating Resources for Human Tasks

 Since a human task in a workflow invokes a human

service provided by a user with a certain role, we need

	
 83	

to allocate an appropriate amount of human resources for

each role, so that the desired performance can be

achieved for human tasks. In Section 5.1, we have derived

the tasks' arrival rates for roles under the

authorization constraints. This section models the

problem of allocating human resources for roles, aiming

to optimizing the average response time of the human

tasks. Since the budget is often a major factor in hiring

human resources, the allocation of human resources is

subject to a budget constraint.

 B denotes the budget that can be spent for human

resources. bi denotes the cost of hiring a human resource

assuming role ri (e.g., the salary for a staff taking the

manager role). hi denotes the number of the human

resources allocated for role ri. The budget constraint

can be expressed as Eq. 5.16, where hi is an integer.

𝑏! × ℎ! ≤ Β!
!!! (5.16)

 We model the human resources allocated for role ri as

an M/M/hi queueing model. According to the queuing theory

[Kleinrock1976], the average response time of human tasks

over all roles, denoted as RH, can be calculated by Eq.

5.17.

𝑅𝐻 = 𝑟𝑝! ×
!!
!!!

!!!

!
!!! (5.17)

 Following the similar derivation as in Eq. 5.11 and Eq.

5.12, Eq. 5.17 can be transformed to Eq. 5.18.

	
 84	

𝑅𝐻 = (!! × !!!

!!!! !! × !! × !!
 + 𝑒! ×

!!
!!!

!!!
)!

!!! (5.18)

 From the analysis in Subsection 5.1.2.3, we know that

in order to reduce the performance penalty caused by

cardinality constraints, the tasks assigned to a role

with a tighter cardinality constraint (i.e., less value

of 𝐶!(𝑟!)) should have a shorter average response time so
that they can be turned around faster in the system. This

relation can be represented in Eq. 5.19.

𝑟𝑝! ≤ 𝑟𝑝! , 𝑖𝑓 𝐶! 𝑟! ≤ 𝐶!(𝑟!) (5.19)

 The objective is to find ℎ!(1 ≤ 𝑖 ≤ 𝑀) subject to Eq.

5.16 and Eq. 5.19, such that RH in Eq. 5.18 is minimized.

This is a constrained-minimum problem, and there do exist

solvers to find its solution [Cuervo2010].

5.3. Allocating Resources for Computing

Tasks

 A computing task in the workflow invokes a service

hosted in the central computing resource pool (e.g., a

Cluster or a Cloud [He2011a]). This section aims to

determine the suitable amount of computing resources

allocated for hosting each service and for processing the

tasks assuming each role, so that the overhead caused by

the authorization constraints can be minimized.

	
 85	

 ni denotes the number of homogeneous nodes used to host

service si. According to the role constraints, we know

which roles can invoke the services. Using Eq. 5.8, we

can calculate the arrival rate of the requests that

assume rj to invoke si. Applying Little's law, the

desired average response time for a request assuming rj

(i.e., rpj) can be calculated as Eq. 5.20. In order to

satisfy rpj, we need to find a minimal number of nodes

for hosting each service (i.e., the minimal value of ni,

1 ≤ 𝑖 ≤ 𝐿(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠) , and to find the proportion of

processing capability (in a node hosting si) allocated to

run the requests that assume role rj, which is denoted as

𝛼!".

𝑟𝑝! =
𝐶!(𝑟!)
𝜆!"#(𝑟!)

 (5.20)

 We first calculate the desired response time for the

requests that assume rj to invoke si. esi denotes the mean

execution time of the requests invoking service si, which

can be obtained by benchmarking the executions of service

si . rp rj , si() denotes the desired mean response time of the
requests that assume role rj to invoke service si . Then

rp rj , si() can be calculated from Eq. 5.21, where Eq.

5.21.(ii) expresses that the ratio among rp rj , si() should
be equal to the ratio among esi (𝑠! 𝜖 𝐶!(𝑟!)).

	
 86	

(
λ rtc(si ,rj)
λ rtc(rj)

× rp(
si∈C

s (rj)
∑ rj ,si)) = rp j (i)

∀si ,sk ∈C s(rj), rp(rj ,si) =
esi

esk

× rp(rj ,sk) (ii)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (5.21)

The problem of finding 𝛼!" in a node hosting service si

relies on the analysis of multiclass queuing systems with

Generalized Processor Sharing, which is notoriously

difficult [Liu2001]. The analysis of the multiclass

single-server queue can be approximated by decomposing it

into multiple single-class single-server queues with the

capacity equal to 𝛼!"𝜇! [Liu2001], where 𝜇! is the

processing rate of a node for serving service 𝑠!

(i.e.,
!
!"!

). Finding 𝛼!" and ni can then be modelled as Eq.

5.22, where Eq. 5.22.i is constructed based on the

equation of calculating average response time of the

tasks in an M/M/1 queue [Kleinrock1976]. In Eq. 5.22, the

number of unknown variables (i.e., ni and 𝛼!" , 𝑟! 𝜖 𝐶!(𝑠!))

is the same as the number of equations in Eq. 5.22.

Therefore, ni and 𝛼!" can be calculated.

()

(,) 1(), ()
(,)

1 ()
r

j i

rtc
ij j ir

j i
i i j i

ij
r s

r s
r s i

es n rp r s
ii

α λ

α
∈

⎧
∀ ∈ − =⎪⎪
⎨
⎪ =
⎪⎩
∑
C

C

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (5.22)

	
 87	

5.4. Experimental Studies

5.4.1. Experimental Settings

 This section presents the simulation experiments to

demonstrate the effectiveness of the resource allocation

strategies developed in this chapter by using Matlab

tool. The metrics used to measure the performance

obtained by resource allocation strategies are mean

response time of workflows and resource utilization.

 In the simulations presented in this chapter, the

workflows are randomly generated, each workflow

containing TNUM tasks and each task in a workflow having

the maximum of MAX_DG children. A workflow contains two

types of task, Human Task (HT) and Computing Task (CT),

following a certain ratio of the number of tasks in each

type (denoted as |HT|:|CT|). Assume that all computing

tasks can only be initiated by a user with a certain role

(i.e., all computing tasks are human-aided computing

tasks). RNUM roles and UNUM users are assumed to be

involved in processing the workflows.

 The role constraints (i.e., the set of roles that a

task can assume) for each HT and CT are set in the

following fashion. The simulation sets a maximum number

of roles that any task can assume in the role

constraints, denoted as MAX_RCST, which represents the

level of restrictions imposed on the role assignment for

tasks. When setting the role constraint for task ti, the

number of roles that can run ti is randomly selected from

[1, MAX_RCST], and then those numbers of roles are

randomly selected from the role set. A similar scheme is

	
 88	

used to associate users to roles. The maximum number of

users a role can be associated to is denoted as MAX_U2R.

The number of users belonging to role ri is randomly

selected from [1, MAX_U2R]; and these users are then

randomly selected for ri from the user set.

 The temporal constraints on roles are set in the

following way. For each role, time duration is selected

from a period of TD time units. The selected time

duration occupies the specified percentage of the TD time

units, which is denoted as TEMP. The starting time of the

selected duration is chosen randomly from the range of

[0, TD X (1-TEMP)]. For example, if TD = 200 and TEMP =

70%, the starting point is randomly selected from 0 to

30% X 200.

 CARD denotes the cardinality constraint, i.e., the

maximum number of the tasks that can be run

simultaneously in the system by a role.

 The arrivals of workflow instances are generated follow

the Poisson process and that the tasks execution times

follow an exponential distribution. The human tasks have

the average execution time of EX_H time units, while the

computing tasks, including HCT and ACT, have the average

execution time of EX_C units.

 In the experiments, we first plan the capacity of human

resources and calculate the capacity of computing

resources (i.e., the number of computing resources) and

the allocation strategy of computing resources (i.e., the

processing sharing fraction for each role). Then we

generate the workflows and run them in the resources in

the aforementioned fashion. The obtained performance is

	
 89	

recorded. In the experiments, we also compare the

performance obtained by our strategies with the

performance by conventional strategies. Conventional

capacity planning and resource allocation strategies do

not take authorization constraints into account, and

often allocate the amount of resources proportional to

the arrival rate.

5.4.2. Experimental Results

 In order to demonstrate the effectiveness of the

allocation strategy for human resources, we conduct the

experiments using the traditional allocation strategy for

human resources. In the traditional strategy, we don't

impose authorization constraints, and assume particular

types of human tasks are handled by a particular user.

Based on the arrival rate of workflows, we can obtain the

arrival rate of the requests for each human service. The

number of human resources allocated for handling each

human service is proportional to the arrival rate of

requests for each service, subject to the constraint that

the total cost of hiring all human resources is no more

than the budget B. With the same budget constraint, we

conduct the experiments using the allocation strategy for

human resources developed in this chapter. Then we run

the workflows consisting of only human tasks under

authorization constraints on both resource allocation

settings. Figure 5.3 shows their performance in terms of

mean response time (i.e., RH) as the arrival rate of the

workflow increases.

	
 90	

Figure 5.3. Comparing average response time of human

tasks between our strategy and the traditional allocation

strategy for human resources; TNUM=15, MAX_DG=10, EX_H=7,

RNUM=5, UNUM=15, MAX_U2R=5, MAX_RCST=4, CARD=4, TEMP=70%,

TD=200, B=200, b1, ..., bRNUM = 10, 8, 2, 5, 9.

(Experimental setup and Variables are defined at page 87)

 As can be seen from Figure 5.3, our strategy

outperforms the traditional strategy in all cases and the

trend becomes more prominent as the arrival rate of

workflows increases. This is because our strategy takes

into account authorization constraints and the arrival

rate of requests, and establishes the optimization

equations to calculate the allocation of human resources

that can minimize the mean response time of human tasks.

In the traditional allocation strategy, the resources are

allocated only based on the arrival rate of the requests

for services, not considering authorization constraints.

Due to the existence of authorization constraints, the

0.5 1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

1.4

1.6

1.8

2

Arrival Rate

V
a
l
u
e

o
f

R
H

Traditional strategy
Our strategy

	
 91	

incoming requests need to be first assigned to roles and

then invoke the corresponding services. Consequently, the

rate at which the services are invoked under

authorization may be different from that without

authorization. Therefore, the resources allocated by the

traditional strategy may not be in line with the resource

demands, and consequently the performance may be

impaired. Further, as the arrival rate of workflows

increases, it becomes more likely that the following

situation may occur under the traditional strategy due to

the fact that the amounts of resources allocated for

different services have to maintain the proportion: the

resources allocated for some services become saturated

while the resources are over-provisioned for other

services due to the extra authorization constraints. In

our strategy, however, the authorization constraints are

taken into account, and the amount of resources for each

role is calculated accordingly. The effect is that the

cost spent for allocating over-provisioned resources is

now used to allocate more resources that are saturated

under the traditional strategy.

 Figure 5.4 compares resource utilizations between our

strategy and the traditional strategy in the same

experimental settings as in Figure 5.3. As can be seen

from Figure 5.4, our strategy achieves higher utilization

than the traditional strategy. This is still because the

traditional strategy allocates resources based on the

arrival rate of the requests for services, which causes

the over-provisioned resources for some services after

imposing authorization constraints.

	
 92	

Figure 5.4. Comparing resource utilization between our

strategy and the traditional allocation strategy for

human resources; the experimental settings are the same

as in Figure 5.3.

 In order to demonstrate the effectiveness of the

allocation strategy for computing resources, we conduct

the experiments using the traditional allocation strategy

for computing resources. In our strategy, the

authorization constraints are taken into account, and the

proportion of processing capability allocated for each

role is calculated accordingly. In the traditional

strategy, all tasks are treated equally and are put into

the central waiting queue in the cluster of computing

resources. When a computing resource is free and the

authorization constraints are satisfied, the task at the

0.5 1 1.5 2 2.5 3 3.5 4
30

35

40

45

50

55

60

65

70

75

80

Arrival Rate

Re
so
ur
ce
 U
ti
li
za
ti
on

Traditional Approach
Our Approach

	
 93	

head of the waiting queue is put into execution in the

free resource.

Figure 5.5. Comparison of performance in terms of average

response time between our allocation strategy and

traditional strategy for computing resources; NUM=15,

MAX_DG=10, EX_C=7, RNUM=5, UNUM=15, MAX_U2R=5,

MAX_RCST=4, CARD=4, TEMP=70%, TD=200

 Figure 5.5 compares average response time of computing

tasks between our strategy and the traditional allocation

strategy for computing resources. In these experiments,

all tasks in a workflow are computing tasks. In the

traditional resource allocation strategy, authorization

constraints are not taken into account, and the amount of

resources allocated for a service is proportional to the

arrival rate of the requests for the service. The

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
50

100

150

200

250

300

350

Arrival Rate

Sc
he
du
le
 L
en
gt
h

Traditional strategy
Our strategy

	
 94	

allocation strategy developed in this chapter calculates

the arrival rate for each role and then further

calculates the amount of resources allocated to serve the

requests assigned to each role.

 As can be seen from Figure 5.5, our strategy performs

better than the traditional strategy. This can be

explained as follows. In our allocation strategy, the

authorization constraints are taken into account. For

example, if role 𝑟! has the tighter cardinality

constraint (i.e., smaller value of 𝐶!(𝑟!), more proportion
of processing capability will be allocated to serve the

tasks assuming 𝑟! , so that the number of those tasks in
the system will be less and the performance penalty

imposed by 𝑟!'s cardinality constraint can be reduced. In
the traditional allocation strategy, the tasks assuming

different roles are treated equally, and therefore cannot

prioritize the tasks that are assuming the roles with

tight cardinality constraint and therefore should be

turned around faster. Tasks assuming tight cardinality

have priority on other tasks to reduce the delay because

of the tight cardinality.

 Figure 5.6 compares the resource utilization between

our strategy and the traditional allocation strategy for

computing resources. It can be seen from this figure that

our strategy can achieve higher resource utilization than

the traditional strategy. This can be explained as

follows. In the traditional strategy, it is more likely

that the tasks have to wait in the waiting queue even if

there are free resources in the system, because the tasks

assuming the roles with tight cardinality constraints can

be turned around faster in our strategy. This causes

lower resource utilization.

	
 95	

Figure 5.6 Comparing resource utilization between our

strategy and the traditional allocation strategy for

computing resources; the experimental settings are the

same as in the Figure 5.5.

 Figure 5.7 compares the schedule lengths of workflows

achieved by our strategy and the traditional strategy. In

these experiments, a workflow contains both human tasks

and computing tasks. Then we run the workflows on human

resources and computing resources allocated by our

strategy as well as by the traditional strategy. Figure

5.7 shows that our strategy achieves shorter schedule

length than the traditional strategy. Again, this is

because our strategy takes authorization constraints into

account and allocate suitable amount of resources for

both human resources and computing resources.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
40

50

60

70

80

90

100

Arrival Rate

P
r
o
c
e
s
s
o
r

U
t
i
l
i
z
a
t
i
o
n

Traditional Approach
Our Approach

	
 96	

Figure 5.7 Comparing the schedule lengths of workflows

achieved by our strategy and the traditional strategy;

NUM=15, MAX_DG=10, EX_C=7, EX_H=7, RNUM=5, UNUM=15,

MAX_U2R=5, MAX_RCST=4, CARD=4, TEMP=70%, TD=200,

|HT|:|CT|=4:6, B=200, b1, ..., bRNUM = 10, 8, 2, 5, 9

 Figure 5.8 compares the resource utilization achieved

by our strategy and the traditional strategy. The

depicted utilization is averaged over the entire system

consisting of both human resources and computing

resources. The figure shows that our strategy can achieve

higher system utilization than the traditional strategy.

The reason for this is similar as explained in Figure 5.6

and Figure 5.4.

0.5 1 1.5 2 2.5 3 3.5 4
100

150

200

250

300

350

Arrival Rate

S
c
h
e
d
u
l
e

L
e
n
g
t
h

Traditional strategy
Our strategy

	
 97	

 The approach will be less beneficial when the execution

times of the tasks are not known in advance because I

assume that the execution times are known in advance.

Figure 5.8 Comparing average resource utilization

achieved by our strategy and the traditional strategy;

the experimental settings are the same as in Figure 5.7.

5.5. Summary

 This chapter investigates the issue of the allocation

of the workflows running under the authorization control.

The Chapter first calculates the rate of the requests

arriving for each role under the role, temporal and

0.5 1 1.5 2 2.5 3 3.5 4
30

40

50

60

70

80

90

Arrival Rate

R
e
s
o
u
r
c
e

U
t
i
l
i
z
a
t
i
o
n

Traditional Approach
Our Approach

	
 98	

cardinality constraints. Further, this chapter present

the methods to allocate the resource quantities for both

human resources and computing resources. Different

features of human resources and computing resources are

taken into account. For human resources, the objective is

to maximize the performance subject to the budgets to

hire the resources, while for computing resources, the

strategy aims to allocate adequate amount of computing

resources to meet the QoS requirements. The simulation

experiments have been conducted to compare the

performance of the resource allocation strategies

proposed in this chapter with a traditional strategy,

which does not consider the authorization constraints and

allocates the resource quantities proportional to the

level of workload arriving at each service. The

experimental results show that the proposed strategy is

able improve the performance in terms of both schedule

length and resource utilization.

	
 99	

6
Conclusions	
 and	
 Future	
 Directions	

6.1. Conclusions

 The authorization control may be deployed in the

workflow management systems in some application domain.

However, the traditional workflow scheduling and resource

allocation strategies do not take the authorization

policies into account. This thesis investigates the

impact of authorization policies on the execution

performance of the workflows.

 In Chapter 3, this thesis starts with investigating the

issue of the feasibility checking for a set of

authorization constraints deployed in workflow management

systems. The feasibility-checking problem is modeled as a

constraint satisfaction problem in this Chapter. The

benefit of this modeling approach is that the solver for

the constraints satisfaction problem can obtain all

feasible authorization solutions. With knowing all

feasible authorization solutions, the thesis further

propose the method to determine the time durations when

the workflow executions will not be impacted by the

authorization constraints. A case study is given to

illustrate the workings of the proposed methods.

	
 100	

 In Chapter 4, this thesis proposes the method to

analyze the delay caused by the authorization constraints

if the workflow arrives beyond the non-impact time

duration calculated in Chapter 3. Through the analysis of

the delay, we realize that the authorization method,

i.e., the method to select the authorization solution

used to assign the roles to the tasks affects the length

of the delay caused by the authorization constraints.

Based on this finding, we propose an optimal

authorization method, called the Global Authorization

Aware (GAA) method. The GAA method is optimal in the

sense that it can select the authorization method that

minimizes the delay caused by the authorization

constraints. We prove the optimality of the GAA method

based on the delay analysis. We also conduct the

simulation experiments to verify the effectiveness of

this authorization method. The results show that compared

with an intuitive authorization method, i.e., the Earlier

Available First (EAF) method, the GAA method indeed

greatly reduces the delay caused by the authorization

constraints and the response time of the workflows.

 A key reason why the authorization constraints may have

impact on the execution performance is because the

authorization constraints direct the incoming workload to

different roles. Then the availability of the roles and

the quantity of the resources allocated to each

individual role will affect the execution performance of

the workflows. In Chapter 5, we conduct the theoretical

analysis about how the authorization constraints direct

the workload to the roles. We propose the methods to

calculate the arriving rate of the requests directed to

each role under the role, temporal and cardinality

constraints. Further, we present the methods to allocate

	
 101	

the appropriate quantity for both human resources and

computing resources. Different features of human

resources and computing resources are taken into account.

For human resources, the objective is to maximize the

performance subject to the budgets to hire the human

resources, while for computing resources, the strategy

aims to allocate adequate amount of computing resources

to meet the QoS requirements. The simulation experiments

are conducted to compare the performance of the resource

allocation strategies proposed in this chapter with a

traditional strategy, which does not consider the

authorization constraints and allocates the resource

quantities proportional to the level of workload arriving

at each service. The experimental results show that the

proposed strategy is able improve the performance in

terms of both schedule length and resource utilization.

6.2. Future Work

 This thesis conducted systematic studies about the

impact of the authorization constraints on the execution

performance of the workflows. However, the research work

can be further extended in the following three folds.

 First, when we calculate the delay caused by the

authorization constraints, we assume that we know the

exact value of the tasks’ execution times. In real world,

this assumption may not be always true. Therefore, we

plan to conduct the further research in the following two

aspects:

	
 102	

i) We plan to conduct the probability and

statistical analysis about the delay caused by

the authorization constraints, if the execution

times of the tasks follow a certain probability

distribution. For example, if the execution time

follows the exponential distribution, then the

time duration when the workflow executions will

not be affected by the authorization constraints

will not be a fixed value, but a random variable

following certain probability attributes.

ii) The analysis of the delay caused by the

authorization constraints requires knowing the

prediction of the tasks’ execution times.

However, the prediction may not be exactly

accurate. Therefore, we plan to study the impact

of the inaccuracy of the prediction on the

quality of the delay analysis.

 Second, we propose the methods to allocate the

appropriate quantity for human resources and computing

resources. For human resources, the objective is to

maximize the response time of the tasks subject to the

resource budget, while the allocation strategy for

computing resources aims to determine the adequate

resources to meet the requirements in the tasks’ response

time. The response time of the tasks is the application-

oriented performance metrics. There are also system-

oriented performance metrics, such as resource

utilization and system throughput. We plan to study the

allocation strategies to maximize the performance or meet

	
 103	

the performance requirements in terms of the system-

oriented metrics.

 Finally, Petri-net is a popular approach to modelling

the authorization constraints. Although the Petri-net

modeling approach is heavy, it is especially useful if

the system contains non-deterministic properties. For

example, the resources may be dynamically added into or

removed from the system, or the authorization control

component may have dynamic interaction with the

scheduling component in the workflow management system.

Under such circumstances, we may still need to resort to

the Petri-net modelling approach. A big problem of the

Petri-net approach is that the constructed Petri-net is

susceptible to the state explosion problem. Therefore,

reducing the complexity of the Petri-net model will be

very helpful. We plan to study whether and how the

analysis method proposed in this thesis can simplify the

Petri-net modelling approach.

	
 104	

BIBLIOGRAPHY

[Agarwal2009] A. Agarwal and Padam Kumar, “Economical

Duplication Based Task Scheduling for Heterogeneous and

Homogeneous Computing Systems”, Proc. of 2009 IEEE

International Advance Computing Conference (IACC’09),

2009.

[Agarwal2010] A. Agarwal, P. Kumar, Economical Task

Scheduling Algorithm for Grid Computing Systems, Global

Journal of Computer Science and Technology, Vol. 10 Issue

11 (Ver. 1.0) October 2010, 48-53.

[Ahmad1998] I. Ahmad and Y. K. Kwok, “On exploiting task

duplication in parallel program scheduling,” IEEE Trans.

Parallel and Distributed Systems, 1998, vol. 9, no. 9,

pp. 872-892.

[Ahn2000] G. Ahn, R. Sandhu, Role-based authorization

constraints specification, ACM Transactions on

Information and System Security 3 (4) (2000).

[Atluri1999] V. Atluri, and Wei-Kuang Huang. "A Petri

net based safety analysis of workflow authorization

models^ 1." Journal of Computer Security 8, no. 2 (2000):

209-240.

	
 105	

[Basu2003] P. Basu, W. Ke, and T. D. C. Little,

Dynamic Task-Based Anycasting in Mobile Ad Hoc Networks.

Mob. Netw. Appl., 8(5):593–612, 2003.

[Baxter1989] J. Baxter and Patel J H, “The LAST

Algorithm: A Heuristic-Based Static Task Allocation

Algorithm”, Int. Conf. on Parallel Processing, 1989, 2,

pp. 217-222.

[Bertino2006] E. Bertino, J. Crampton, F. Paci, Access

control and authorization constraints for ws-bpel,

International Conference on Web Services (2006) 275–284.

[Bozdag2005] D. Bozdag, Fusun Ozguner, Eylem Ekici and

Umit Catalyurek, “A Task Duplication Based Scheduling

Algorithm Using Partial Schedules”, Proc. of the 2005

International Conference on Parallel Processing

(ICPP’05),	
 630 – 637, August 2005.

[Brailsford1999] S. C. Brailsford, Chris N. Potts, and

Barbara M. Smith. "Constraint satisfaction problems:

Algorithms and applications. " European Journal of

Operational Research 119, no. 3 (1999): 557-581.

[Brucker1995] P. Brucker, Scheduling Algorithms.

Springer-Verlag, Inc., 1995.

[Chakraborty2007] D. Chakraborty, V. Mankar, and A.

Nanavati, “Enabling runtime adaptation of workflows to

external events in enterprise environments”, Proc. of

IEEE International Conference on Web Services (ICWS’07),

July 2007, pp.1112-1119.

	
 106	

[Chaudhary2013] N. Chaudhary and Ligang He. “Analyzing

the Performance Impact of Authorization Constraints and

Optimizing the Authorization Methods for Workflows”.

Accepted in the 20th IEEE International Conference on

High Performance Computing (HiPC2013).

[Choi2003] J. Y. Choi and S. Reveliotis, “A generalized

stochastic petri net model for performance analysis and

control of capacitated reentrant lines,” Robotics and

Automation, IEEE Transactions on, vol. 19, no. 3, pp. 474

– 480, june 2003.

[Crampton2005] J. Crampton. "A reference monitor for

workflow systems with constrained task execution."

In Proceedings of the tenth ACM symposium on Access

control models and technologies, pp. 38-47. ACM, 2005.

[Crampton2012] J. Crampton, M. Huth, On the modeling and

verification of security-aware and process-aware

information systems, Business Process Management

Workshops 100 (6) (2012) 423–434.

[Cuervo2010] E. Cuervo, A. Balasubramanian, D. ki Cho,

A. Wolman, S. Saroiu, R. Ch, and P. Bahl, “Maui: Making

smartphones last longer with code offload,” in In In

Proceedings of ACM MobiSys, 2010.

[Dagdee2011] N. Dagdee and R. Vijaywargiya. "Extending

XACML to support Credential Based Hybrid Access

Control." International Journal of Computer Science 8.

[Darbha1994] S. Darbha and Dharma P. Agrawal, “A Task

Duplication Based Optimal Scheduling Algorithm For

Variable Execution Time Tasks”, Proc. of the

	
 107	

International Conference on Parallel Processing

(ICPP’94), 1994.

[Deelman2009] E. Deelman, Dennis Gannon, Matthew

Shields, and Ian Taylor. "Workflows and e-Science: An

overview of workflow system features and capabilities."

Future Generation Computer Systems 25, no. 5 (2009): 528-

540.

[Delias2011] P. Delias, Anastasios Doulamis, Nikolaos

Doulamis, and Nikolaos Matsatsinis. "Optimizing resource

conflicts in workflow management systems." Knowledge and

Data Engineering, IEEE Transactions on 23, no. 3 (2011):

417-432.

[Dogan2004] A. Dogan and Fusun Ozguner, “LDBS: A

Duplication Based Scheduling Algorithm for Heterogeneous

Computing Systems”, Proc. of the International Conference

on Parallel Processing (ICPP’02), 2004.

[Doulamis2011] A. Doulamis, N. Doulamis, and N.

Matsatsinis, “Optimizing Resource Conflicts in Workflow

Management Systems”, IEEE Trans. on Knowledge and Data

Engineering, Vol. 23, Issue 3, 2011, pp. 417-432.

[El-Rewini1990] H. El-Rewini and T. G. Lewis,

“Scheduling parallel programs onto arbitrary target

machines, ” J. Parallel and Distributed Computing, vol.

9, no. 2, pp. 138-153, June 1990.

[Fang2007] D. Fang and Luo Junzhou, “A Heterogeneous

Dynamic Critical Path and Duplication based Task

Scheduling Algorithm for Pervasive Computing”, Proc. of

	
 108	

2nd International Conference on Pervasive Computing and

Applications (ICPCA’07), 2007.

[Gaaloul2008] K. Gaaloul, A. Schaad, U. Flegel, F.

Charoy, A secure task delegation model for workflows, in:

The Second International Conference on Emerging Security

Information, Systems and Technologies, 2008, pp. 10–15.

[Guodong2003] L. Guodong, Chen Daoxu, Wang Daming and

Zhang Defu, “Task Clustering and Scheduling to

Multiprocessors with Duplication”, Proc. of International

Parallel and Distributed Processing Symposium (IPDPS’03),

2003.

[Hara2009] T. Hara, T. Arai, Y. Shimomura, and T.

Sakao, “Service cad system to integrate product and human

activity for total value,” CIRP Journal of Manufacturing

Science and Technology, vol. 1, no. 4, pp. 262 – 271,

2009.

[He2005] L. He, S Jarvis, D. Spooner, D. Bacigalupo,

G. Tan, G. Nudd, "Mapping DAG-based Applications to

Multiclusters with Background Workload", Proceedings of

the 5th IEEE International Symposium on Cluster Computing

and the Grid (CCGrid'05), 9-12 May 2005, Cardiff, UK

[He2006a] L. He, S.A. Jarvis, D.P. Spooner, H. Jiang,

D.N. Dillenberger, G. Nudd, Allocating non-real-time and

soft real-time jobs in multiclusters, IEEE Transactions

on Parallel and Distributed Systems 17 (2) (2006) 99–112.

[He2006] K. He and Yong Zhao, “A New Task Duplication

Based Multitask Scheduling Method”, Proc. of 5th

	
 109	

International Conference on Grid and Cooperative

Computing (GCC’06), 2006.

[He2009] L. He, M. Calleja, M. Hayes, S.A. Jarvis,

Performance prediction for running workflows under role-

based authorization mechanisms, in: Proc. of the 2009

IEEE International Symposium on Parallel & Distributed

Processing, IEEE Computer Society Press, 2009, pp. 1–8.

[He2011] L. He, K. Duan, X. Chen, D. Zou, Z. Han, A.

Fadavinia, and S. Jarvis, “Modelling workflow executions

under role-based authorisation control,” in Services

Computing (SCC), 2011 IEEE International Conference on,

July 2011, pp. 200 –208.

[He2011a] L. He, D. Zou, Z. Zhang, K. Yang, H. Jin, and

S. A. Jarvis, “Optimizing resource consumptions in

clouds,” in Proceedings of the 2011 IEEE/ACM 12th

International Conference on Grid Computing, GRID ’11.

Washington, DC, USA: IEEE Computer Society, 2011, pp. 42–

49.

[He2012] L. He, Chenlin Huang, Kewei Duan, Kenli Li,

Hao Chen, Jianhua Sun and Stephen A. Jarvis, “Modeling

and analyzing the impact of authorization on workflow

executions”, Future Generation Computer Systems, Vol. 28,

Issue 8, October 2012, pp. 1177-1193.

[He2012a] L. He, Deqing Zou, Zhang Zhang, Chao Chen,

Hai Jin and Stephen A. Jarvis, “Developing resource

consolidation frameworks for moldable virtual machines in

clouds”, Future Generation Computer Systems (2012), doi:

10.1016/j.future.2012.05.015, Article in Press.

	
 110	

[He2012b] L. He, N. Chaudhary, S. Jarvis and K. Li,

“Allocating Resources for Workflows Running under

Authorization Control”, Proc. Of The 13th IEEE/ACM

International Conference on Grid Computing (Grid 2012),

2012.

[He2013] L. He, N. Chaudhary and Stephen A. Jarvis

“Developing Resource Allocation Strategies for workflows

comprising both human and computing tasks” (Accepted and

to appear in Future Generation Computer Systems).

[Hermenier2009] F. Hermenier, X. Lorca, J. Menaud, G.

Muller, J. Lawall, “Entropy: a consolidation manager for

clusters”, Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution

environments, pp. 41-50, 2009

[Hosseinzadeh2009] M. Hosseinzadeh and Hadi Shahriar

Shahhoseini, “Earliest Starting and Finishing Time

Duplication-based Algorithm”, Proc. of International

Symposium on Performance Evaluation of Computer &

Telecommunication Systems (SPECTS’09), 2009.

[Hsu2011] C. -C. Hsu, K. -C. Huang, and F. -J. Wang,

“Online scheduling of work-flow applications in grid

environments,” Future Generation Computer Systems, vol.

27, no. 6, pp. 860 – 870, 2011.

[Hung2003] P. Hung, and Kamalakar Karlapalem. "A

secure workflow model." InProceedings of the Australasian

information security workshop conference on ACSW

frontiers 2003-Volume 21, pp. 33-41. Australian Computer

Society, Inc., 2003.

	
 111	

[Jensen2007] K. Jensen, Lars Michael Kristensen, and

Lisa Wells. "Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems.

"International Journal on Software Tools for Technology

Transfer 9, no. 3-4 (2007): 213-254.

[Jin2003] Y. Jin, S. Reveliotis, A generalized

stochastic petri net model for performance analysis and

control of capacitated re-entrant lines, IEEE

Transactions on Robotics and Automation 19 (3) (2003)

474–480.

[Joshi2005] J. Joshi, E. Bertino, U. Latif, A.

Ghafoor, A generalized temporal role-based access control

model, IEEE Transactions on Knowledge and Data

Engineering 17 (1) (2005) 4–23.

[Kim2003a] S.H. Kim, J. Kim, S.J. Hong and S. Kim,

“Workflow-based Authorization Service in Grid”, in 4th

International Workshop on Grid Computing, Phoenix, USA,

November 17, 2003, pp. 94–100.

[Kim2003] K. H. Kim, “Workflow Dependency Analysis and

Its Implications on Distributed Workflow Systems”, Proc.

of 17th International Conference on Advanced Information

Networking and Applications (AINA’03).

[Kiyanclar2006] N. Kiyanclar, G. A. Koenig, and W.

Yurcik. Maestro-VC: OnDemand Secure Cluster Computing

Using Virtualization. In 7th LCI International Conference

on Linux Clusters, 2006.

[Kleinrock1976] L. Kleinrock. "Queueing systems,

volume II: computer applications." (1976).

	
 112	

[Kwok1996] Y.-K. Kwok and I. Ahmad. Dynamic critical

path scheduling: An effective technique for allocating

task graphs to multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 7(5):506–521, May 1996.

[Kwok1999] Y.-K. Kwok and I. Ahmad. Benchmarking and

comparison of the task graph scheduling algorithms.

Journal of Parallel and Distributed Computing, 59(3):381–

422, December 1999.

[Kwok1999a] Y.-K. Kwok and I. Ahmad. Static scheduling

algorithms for allocating directed task graphs to

multiprocessors. ACM Computing Surveys, 31(4):406–471,

December 1999.

[Li2004] H. Li, Y. Yang, and T.Y. Chen, “Resource

Constraints Analysis of Workflow Specifications,” J.

Systems and Software, vol. 73, no. 2, pp. 271-285, 2004.

[Liu2001] Z. Liu, M. S. Squillante, and J. L. Wolf,

“On maximizing service-level-agreement profits,”

SIGMETRICS Perform. Eval. Rev., vol. 29, no. 3, pp. 43–

44, Dec. 2001.

[Liu2008] A. X. Liu, F. Chen, J. Hwang & T. Xie (2008,

June). Xengine: a fast and scalable XACML policy

evaluation engine. In ACM SIGMETRICS Performance

Evaluation Review (Vol. 36, No. 1, pp. 265-276). ACM.

[Lu2009] Y. Lu, L. Zhang, and J. Sun, “Using colored

petri nets to model and analyze workflow with separation

of duty constraints,” The International Journal of

	
 113	

Advanced Manufacturing Technology, vol. 40, pp. 179–192,

2009, 10.1007/s00170-007-1316-1.

[Manolache2002] S. Manolache, Schedulability Analysis

of Real-Time Systems with Stochastic Task Execution

Times, Ph.D. Thesis, Department of Computer and

Information Science, IDA, Linkoping University, 2002.

[McCreary1989] C. McCreary and Gill H, “Automatic

Determination of Grain Size for Efficient Parallel

Processing”, Comm. Of ACM, 1989, 32(9), pp.1073-1078.

[Michael1996] P. A. Michael, Jing-Chiou Liou, and David

S. L. Wei, “Task Clustering and Scheduling for

Distributed Memory Parallel Architectures”, IEEE Trans.

Parallel and Distributed Systems, 1996, 7(1), pp. 46-55.

[Muller2000] R. Muller and E. Rahm, Dealing with

Logical Failures for Collaborating Workflows. In CoopIS,

pages 210–223, 2000.

[N’takpe’2007] T. N’takpe’, F. Suter, A comparison of

scheduling approaches for mixed-parallel applications on

heterogeneous platforms, in: Proceedings of the 6th

International Symposium on Parallel and Distributed

Computing, IS-PDC, Hagenberg, Austria, July, 2007.

[N’takpe’2008] T. N’takpe’, F. Suter, Concurrent

Scheduling of Parallel Task Graphs on Multi-Clusters

Using Constrained Resource Allocations, Technical Report:

Rapport de recherché no. 6774, December 2008.

	
 114	

[Park2001] C.-Ik Park and Tae-Young Choe, “An optimal

Scheduling Algorithm based on Task Duplication”, Proc. of

8th International Conference on Parallel and Distributed

Systems (ICPADS’01), 2001.

[Qiu2005] J. Qiu, C. Wang, and Y. He, “Research on

Application of Intelligent Agents in the Workflow

Management System,” Proc. 2005 IEEE Int’l Conf.

Networking, Sensing and Control (ICNSC ’05), pp. 827-830,

2005.

[Qiu2013] M. Qiu, L. Zhang, Z. Ming, Z. Chen, X. Qin,

and L.T. Yang, "Security-Aware Optimization for

Ubiquitous Computing Systems with the SEAT Graph

Approach," Journal of Computer and System Sciences, vol.

79, 2013.

[Ranaweera2000] S. Ranaweera and Dharma P. Agrawal, “A

Task Duplication Based Scheduling Algorithm for

Heterogeneous Systems”, Proc. of 14th International

Parallel and Distributed Processing Symposium (IPDPS’00),

2000.

[Reijers2003] H.A. Reijers, “Resource Allocation in

Workflows,” Design and Control of Workflow Processes:

Business Process Management for the Service Industry, pp.

177-206, Springer, 2003.

[Rodriguez-Moreno2006] M.D. Rodriguez-Moreno, A. Oddi,

D. Borrajo, and A. Cesta, “IPSS: A Hybrid Approach to

Planning and Scheduling Integration,” IEEE Trans.

Knowledge and Data Eng., vol. 18, no. 12, pp. 1681-1695,

Dec. 2006.

	
 115	

[Rodriguez-Moreno2007] M.D. Rodriguez-Moreno, D.

Borrajo, A. Cesta, and A. Oddi, “Integrating Planning and

Scheduling in Workflow Domains,” Expert Systems with

Applications, vol. 33, no. 2, pp. 389-406, 2007.

[Schall2010] D. Schall, S. Dustdar, M. Blake,

Programming human and software-based web services, IEEE

Computer 43 (7) (2010) 82–85.

[Senkul2002] P. Senkul, M. Kifer, and I. H. Toroslu, A

Logical Framework for Scheduling Workflows Under Resource

Allocation Constraints. In VLDB, pages 694–705, 2002.

[Stuit2011] M. Stuit, H. Wortmann, N. Szirbik, and J.

Roodenburg, “Multiview interaction modelling of human

collaboration processes: A business process study of head

and neck cancer care in a dutch academic hospital,” J. of

Biomedical Informatics, vol. 44, no. 6, pp. 1039–1055,

Dec. 2011.

[Tarumi1997] H. Tarumi, K. Kida, Y. Ishiguro, K.

Yoshifu, and T. Asakura, “Workweb System-Multi-Workflow

Management with a MultiAgent System,” Supporting Group

Work: the Integration Challenge, pp. 299-308, ACM Press,

1997

[van der Aalst2002] W.M.P. van der Aalst and K. van

Hee, Workflow Management: Models, Methods, and Systems.

MIT Press, 2002.

[van der Aalst2003] W.M.P. van der Aalst, A.H.M. ter

Hofstede, B. Kiepuszewski, and A.P. Barros, “Workflow

Patterns,” Distributed and Parallel Databases, vol. 14,

no. 1, pp. 5-51, 2003.

	
 116	

[van Hee2005] K. van Hee, A. Serebrenik, N. Sidorova,

and M. Voorhoeve, “Soundness of Resource-Constrained

Workflow Nets,” Proc. Int’l Conf. Applications and Theory

of Petri Nets 2005, pp. 250-267, 2005.

[VideoWorkflow] Video management workflow.

http://www.telestream.net/pdfs/whitepapers/wp-video-

workflowmanagement.pdf, 2010.

[W3Workflow] www.w3.org (workflow)

[Wang2010] Q. Wang and N. Li, “Satisfiability and

resiliency in workflow authorization systems,” ACM Trans.

Inf. Syst. Secur., vol. 13, no. 4, pp. 40:1–40:35, Dec.

2010.

[WebBusinessProcess] Web services business process

execution language version 2.0.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf,

2007.

[WebHumanTask] Web services — human task (WS-

HumanTask) specification version 1.1.

http://docs.oasis-open.org/bpel4people/ws-humantask-

1.1.html, 2010.

[WS-BPEL] WS-BPEL extension for people (BPEL4People)

specification version 1.1.

http://docs.oasisopen.org/bpel4people/bpel4people-1.1-

spec-cd-06.pdf, 2009.

[Wu1990] M. Y. Wu and Gajski D D, “Hypertool: a

Programming Aid for Message-Passing Systems”, IEEE Trans.

	
 117	

Parallel and Distributed Systems, 1990, 1(3), pp. 330-

343.

[Xie2006] T. Xie and X. Qin, "Scheduling Security-

Critical Real-Time Applications on Clusters," IEEE

Transactions on Computers, vol. 55, no. 7, pp. 864-879,

July 2006.

[Xie2008] T. Xie and X. Qin, "Security-Aware Resource

Allocation for Real-Time Parallel Jobs on Homogeneous and

Heterogeneous Clusters," IEEE Transactions on Parallel

and Distributed Systems, vol. 19, no. 5, pp. 682-697, May

2008.

[Zhao2008] X. Zhao, Z. Qiu, C. Cai, and H. Yang, “A

formal model of human workflow,” in Proceedings of the

2008 IEEE International Conference on Web Services, ICWS

’08. Washington, DC, USA: IEEE Computer Society, 2008,

pp. 195–202.

[Zhao2010] Q. Zhao, X. Liu, D. Sun, T. Liu, Y. Li,

Mashing-up rich user interfaces for human interaction in

WS-BPEL, in: The 2010 IEEE International Conference on

Web Services, 2010, pp. 559–566.

[Zhong2005] J. Zhong and B. Song, “Verification of

Resource Constraints for Concurrent Workflows,” Proc.

IEEE Seventh Int’l Symp. Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC ’05), D. Zaharie, D.

Petcu, V. Negru, T. Jebelean, G. Ciobanu, A. Cicortas, A.

Abraham, and M. Paprzycki, eds., pp. 353-361, 2005.

	
 118	

[Zou2009] D. Zou, Ligang He, Hai Jin and Xueguang

Chen, “CRBAC: Imposing multi-grained constraints on the

RBAC model in the multi-application environment”, Journal

of Network and Computer Applications 32 (2009), pp. 402-

411.

	covernadeem.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

