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Abstract

Differential EXAFS (DiffEXAFS) is a new and novel technique for the study of small

atomic strains. It relies on examining tiny differences in x-ray absorption spectra - taken

under high-stability, low-noise conditions - generated by unit modulation of some sample

bulk parameter.

Initial experiments conducted by Pettifer et al. [64] to measure the magnetostriction

of FeCo, revealed a sensitivity to atomic displacements of the order of one femtometre

(10−15m). This was two orders of magnitude more sensitive than thought possible,

based on conventional EXAFS techniques [16] [2].

The mandate for this thesis was to extend DiffEXAFS to the case of samples undergo-

ing temperature modulation - to develop Thermal Differential EXAFS - and in doing

so, demonstrate that DiffEXAFS is a generally applicable technique for studying small

atomic strains.

Topics covered here include the nature of Thermal DiffEXAFS signals, the design, man-

ufacture, and characterisation of apparatus for Thermal DiffEXAFS experiments, and

new analysis techniques developed to extract information from DiffEXAFS data.

Thermal expansion coefficients have been determined for Fe and SrF2, for temperature

modulation of the order of one Kelvin, proving the viability of the technique. Numerically,

these were αFe = (11.6±0.4)×10−6K−1 and αSrF2
= (19±2)×10−6K−1 respectively,

which agreed with published values [52] [74]. In these measurements sensitivity to mean

atomic displacements of about 0.3 femtometres was achieved.

The more interesting case of thermally induced phase transitions has also been studied,

with DiffEXAFS measurements taken through the Martensitic phase transition of the

Heusler alloy Ni2MnGa. These revealed a hardening of the lattice as the transition was

approached in the Martensite phase, agreeing with published trends [93][56], and an

accompanying lattice contraction not seen previously.
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Chapter 1

Plan of Thesis

1.1 Introduction

This thesis is intended to be a definitive guide to Thermal Differential EXAFS, containing

all the information required to allow the reader to perform their own Thermal DiffEXAFS

experiments. Each chapter is written as a self-contained package that may be read in

isolation if so desired, but at the same time, each one builds on information provided in

the previous.

Chapter 2 starts, naturally, with the theory of Differential EXAFS, and looks in detail

at the Thermal Differential Fine-structure Function.

Chapter 3 gives a full account of the experimental apparatus for Thermal DiffEXAFS

experiments, both in terms of thermal modulation equipment, and of beamline require-

ments in order to detect DiffEXAFS signals.

Chapter 4 studies data processing techniques for Thermal DiffEXAFS, whilst chapter

5 introduces Differential XRD - a complementary technique that enables DiffEXAFS

measurements to be independently verified via a common experimental arrangement.

Chapters 6 and 7 then look in detail at the DiffEXAFS experiments performed as part

of this thesis, on ID24 of the ESRF. Chapter 6 gives an account of thermal expansion

measurements that were taken to prove Thermal DiffEXAFS is a viable technique, and

chapter 7 an account of measurements taken through the thermally induced Martensitic

phase transition of the Heusler alloy Ni2MnGa.
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Finally, chapter 8 examines the impact of this work, and looks to possible future devel-

opments in DiffEXAFS.

Three appendices are given at the end of the thesis. The first contains the blueprints

for apparatus designed for Thermal DiffEXAFS experiments, the second, some key in-

formation that was used during the process of analysing DiffEXAFS data described in

chapters 6 and 7, and the third, a compilation of all the research papers written in

relation to the work presented in this thesis.
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Chapter 2

X-ray Absorption Spectroscopy

and EXAFS

2.1 Introduction

The presence of fine-structure in x-ray absorption spectra was first noted by Sten-

strom in 1918 [87], with theories for its generation put forward by Kronig in 1931 and

32 [17][18][19]. However, it wasn’t until the advent of synchrotron sources in the 1970’s

that extensive studies of x-ray fine-structure became viable. This period then saw a

rapid development in the theoretical understanding of x-ray fine-structure, transforming

such studies into a viable tool for structural analyses.

With the development of 2nd-generation sources in the 1980’s and 3rd-generation sources

in the 90’s, X-ray Absorption Spectroscopy (XAS) went mainstream. Since then it has

become a key tool across a broad range of disciplines, from Engineering to Chemistry

and Biology, and, of course, including Physics.

Today, work still continues in developing a complete theoretical understanding of x-ray

fine-structure, with novel experiments still pushing the boundaries of sensitivity and

resolution in structural analyses.

This chapter introduces the concept of XAS and provides the basic theory behind x-ray

fine-structure in the extended regime (EXAFS). Discussion then focuses on Differential

EXAFS, a novel tool for measuring atomic perturbations [64], with a detailed examina-
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tion of Thermal Differential EXAFS - the primary subject of this thesis.

2.2 Background to XAS and EXAFS

When x-rays pass through matter, they are subjected to both absorption and scattering

processes, which remove flux from a given incident beam. Both can be significant

when passing through light elements, but in heavier elements, absorption dominates;

the resulting reduction in incident x-ray flux being described by the standard absorption

relation

I = I0e
−µmρz (2.1)

µm is the mass absorption coefficient (typically given in cm2g−1), ρ the density of the

material through which the beam is passing (in g cm−3), and z the thickness of sample

material (in cm). The linear absorption coefficient for a material, which is more often

quoted, is given by µ = µmρ.

For a monoatomic material, the mass absorption coefficient may be expressed in terms

of the mean atomic absorption cross-section, σa (in cm2 per atom)

µm =
NA

A
σa (2.2)

where NA is Avogadro’s number, and A the atomic weight of the material. For other

materials, µm is given based on the atomic cross-sections of all its constituent elements

µm =
NA

∑

i

niAi

∑

i

niσai (2.3)

where ni is the number of atoms of type i in the material.

In the x-ray regime, absorption is predominantly due to the photoelectric effect, caused

by the excitation of electrons in atomic core states. The observed absorption is therefore

dependent on the arrangement of these states, making the process chemically selective,

and on which are excited by photons of a given energy.

As a result, for most x-ray energies, the absorption profile is a smoothly varying function,

which decreases as x-ray energy increases. However, if x-ray photons become sufficiently
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energetic to promote previously untouched core electrons to an allowed excited state, a

sudden increase in absorption is observed.

These discontinuities, first seen by M. de Broglie in 1913 [10], are referred to as absorp-

tion edges, and each is named according to which core electron was excited to generate

it. At the highest x-ray energies, the deepest 1s electrons are excited, generating the

K-edge. As x-ray energies decrease, the L1, L2, and L3 edges are observed, which

describe excitations of 2s, 2p1/2, and 2p3/2 electrons respectively. M1 to M5 are then

seen for d-shell electrons, and so on. Degeneracy of these latter edges is broken mainly

due to relativistic spin-orbit effects.

The exact energy required to promote an electron is equivalent to the photon energy to

within some ∆E, described by the Uncertainty Principle

∆E∆t ≥ h̄/2π (2.4)

where ∆t is the lifetime of the excited states. For 1Å radiation, this is dictated by

radiative de-excitation of the core hole, which, according to the classical treatment of

Hedin [28], gives ∆E as

∆E ≃ 0.952 × 10−8E2 (2.5)

For x-rays of 12keV, this is equivalent to 1eV.

Closer examination of x-ray absorption spectra reveals still more structure. As far back

as 1918, Stenstrom [87] noted that on the high energy side of absorption edges - and

up to, typically, 1000eV beyond - a series of small oscillations are observed in the x-ray

absorption coefficient.

This is the structure that we now refer to as X-Ray Absorption Fine Structure (XAFS),

which, with today’s understanding of the processes involved, is split into two regions,

the X-ray Absorption Near Edge Structure (XANES) within about 40eV of the edge,

and the Extended X-ray Absorption Fine Structure (EXAFS) beyond that.

The physics of EXAFS, was originally explained by the short range order theory of Kronig

in 1932 [18][19], and confirmed experimentally by Sayers, Lytle, and Stern in 1971 [81].

In this region photo-electrons have sufficient energy to effectively propagate through the

sample as free particles. Some of these electrons are captured by atoms surrounding
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the source atom, others near surfaces are ejected from the sample altogether, and some

simply scatter off surrounding atoms and return to the atom from which they came.

In this latter case the wave-function of an electron returning to the source atom inter-

feres with its outgoing wave-function, affecting the transition probability for absorption

through a changing overlap between the atom’s final state wave-function and its per-

turbed initial state [59]. This results in modulation of the x-ray absorption cross-section,

producing the observed oscillations in a sample’s absorption coefficient.

Critically, the interference pattern generated by scattered electrons is dependent upon

what atoms they have scattered from, and where those atoms are located in relation

to the source atom. EXAFS is therefore sensitive to the local structure surrounding

the source atom, and may be studied to reveal that information. Furthermore, since

the absorption process involved in EXAFS is chemically selective - each absorption edge

energy being different depending on the absorbing element - the structure may be studied

from the point of view of different atomic species simply by tuning x-ray energies to the

appropriate absorption edge.

2.3 Basic Theory of EXAFS

The first task in developing a theory of EXAFS is to define some quantity which rep-

resents the x-ray fine-structure in terms of experimental observables. This quantity is

obtained from the normalised oscillatory part of the x-ray absorption coefficient above

a given edge, χ(k). For a monoatomic sample, and assuming electron excitation from

just a single level, this is given by

χ(k) =
µ(k)− µ0(k)

µ0(k)
(2.6)

where k, the photo-electron wave-vector, is related to the energy of the incident x-ray

photon, E, above the edge energy, E0, by

(E − E0)eV =
h̄2k2

2m
Å
−1
≃ 3.81k2Å

−1
(2.7)

Here, µ(k) is the observed, linear x-ray absorption coefficient, and µ0(k) is the equivalent

absorption when the atom under study is considered in isolation; that is, outside its local
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environment. In the first instance, photo-electron scattering occurs off surrounding

atoms, generating fine-structure, and in the latter, there is nothing from which the

electrons may scatter, resulting in structure-less absorption.

Taking the difference between these two quantities thus isolates the oscillatory part of

the x-ray absorption coefficient: the XAFS. The subsequent division of this structure

by µ0(k) normalises its amplitude, eliminating effects from the thickness of the sam-

ple. Typically, within the assumptions stated, the amplitude of χ(k) is about 10% the

amplitude of the edge jump.

Unfortunately though, it is rarely the case that a measured spectrum contains absorption

from only a single level of excitation. Indeed, most work in XAFS is conducted at K-

edges where every possible electron energy level is excited. Thus (2.8) must be modified

to subtract absorption from each of those n levels, and ensure correct normalisation.

χ(k) =
µ(k)− µ0(k)

µ0(k)−
∑

n

µen(k)
(2.8)

µen(k) is the in situ absorption for the nth edge of energy less than that of the edge

under study. For instance, when working at K-edges, µen(k) would cover all L-edges,

M-edges, and so on.

Further complications arise in that it is often the case that samples contain more than

one atomic species. In these instances, the in situ x-ray absorption coefficient, µ(k),

will contain edges from more than one of those species. These edges won’t be present

in µ0(k), when the studied atom is considered in isolation. Thus in order to extract

the oscillatory part of the absorption coefficient, it is necessary to subtract the isolated

atom absorption of each atomic species, i

χ(k) =

µ(k)−
∑

i

µ0i(k)

µ0(k)−
∑

n

µen(k)
(2.9)

where µ0(k) remains the isolated atom absorption of the species under study, and µen(k)

covers all edges of lower energy irrespective of which atomic species they originated from.

With the experimental fine-structure obtained, it is necessary to construct a theoretical

description of χ(k). This should, in principle, contain all the physical processes from
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which fine-structure originates, allowing it to be fitted to experimental spectra to extract

important parameters.

In the broadest terms, this theory is based upon the generation of photo-electrons,

their subsequent scattering within some atomic structure - be it crystalline, molecular,

amorphous, or so on - the generation of a photo-electron wave interference pattern, and

the effect of this interference upon the transition probability of the electron excitation

via the Fermi Golden Rule. Therefore, such calculations are not trivial.

Indeed, a complete appraisal and/or derivation of EXAFS theory is beyond the scope

of this thesis. However, what follows is a discussion of some of the physical concepts

enshrined in the theory, with the inclusion of key equations and results required for

Differential EXAFS. For a more in-depth discussion on the theory of EXAFS, the reader

is directed to, for instance, [72][37][40][89][44].

The first standard method for EXAFS data analysis was introduced by Sayers et al.

in 1971 [81]. Working within the assumptions that photo-electrons propagate as plane

waves between source and scatterer atoms, and that only single backscattering events are

significant in generating the fine-structure, they proposed Fourier transforming EXAFS

data to obtain a radial distribution function of the environment surrounding the source

atom. The peaks in this function then lie close to the atomic positions. However,

they do not coincide exactly with the true atomic positions. They occur at lower radii,

typically about 0.3 to 0.4Å lower, due to phase-shifts experienced by the photo-electron

both on scattering, and on climbing out of, and returning to, the emitter potential.

Rather than calculating such shifts from ab initio theory, Sayers et al. proposed to

infer them by transforming EXAFS spectra from similar compounds of known structure.

This approach is generally acceptable when extracting information regarding the first

coordination shell around the source atom, but fails at larger radii, due, primarily, to the

presence of multiple-scattering phenomena.

Nonetheless, they produced an expression for χ(k) that contains many of the physical

attributes of the modern fine-structure function, although it is worth re-emphasising
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that this equation describes single-scattering only.

χ(k) = −
1

k

∑

j

Nj

R2
j

Sj(k) sin(2kRj + 2δ′1(k) + ηj(k))e
−2σ2

j k2

e−γRj (2.10)

Nj is the number of atoms in coordination shell j of radius Rj surrounding the source

atom, Sj(k) is the backscattering amplitude from each atom, and the factor exp(−γRj)

describes the decay of the photo-electron. δ′1 describes the l=1 phase-shift experienced

by the photo-electron due to the potential of the source atom (when considering dipole

transitions only). This phase shift dictates the sin dependency of the photo-electron

phase, such that the shift is zero in the absence of a potential. ηj(k) is the scattering

phase function.

The factor exp(−2σ2
j k

2) is a Debye-Waller factor that describes the loss of scattering

coherence generated by structural disorder - be it either static, as in glassy materials, or

dynamic, from thermal vibrations - where σj , is the variance in relative atomic emitter-

scatterer distance. Such loss of coherence reduces the strength of any photo-electron

interference pattern, washing out the fine-structure. The effects of disorder become more

pronounced the shorter the De Broglie wavelength of the the photo-electron; hence the

k dependence of the Debye-Waller factor, where k ∼ 1/λ. Modelling disorder according

to a Gaussian assumes a symmetric atomic pair potential function, such that disorder

itself may be considered symmetric about some mean atomic position.

This factor is extremely important from the point of view of Thermal Differential EXAFS,

since - because dynamic disorder is generally thermal in origin - it will vary as the

temperature of the sample is changed, and so manifest itself in the differential fine-

structure.

Work in describing Debye-Waller factors was conducted by Shmidt as far back as

1961 [84][85]. More recently, much work has been done to develop an ab initio de-

scription of the effects of structural disorder, which, significantly, must include multiple-

scattering [65][66][11]. Unfortunately, a complete and entirely ab initio theory of the

effects of structural disorder is still to be developed.

Progress has also been made in other areas. The plane-wave approximation of Sayers

et al. was lifted by Schaich in 1973 for the single-scattering case [82], and developed to
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include multiple-scattering in 1975 by both Lee & Pendry [41] and Ashley & Doniach [8].

These latter two papers did, however, rely on the assumption that multiple-scattering

is weak enough to permit its description by only low order paths. It was Durham et

al. [21] that provided a similar theory that included all orders of multiple-scattering; a

theory that was later simplified by Pettifer et al. [62], Gurman et al. [25][24], and Rehr

et al. [73], with the latter authors also removing the small atom approximation used by

Sayers et al.

Indeed, work conducted by Rehr et al. led to the development of the FEFF code for

XAFS calculations [71], a code that forms an important part of DiffEXAFS analysis.

With these improvements to the theory of EXAFS, the modern fine-structure function

may be written down as

χ(k) =
∑

j

Aj(k)e
−2k2σ2

j sin(sjk + φj(k)) (2.11)

where Aj(k) is an amplitude function that contains, for instance, backscattering am-

plitudes; photo-electron decay effects, similar to exp(−γRj) above; and S2
0 , which de-

scribes many-body effects due to relaxation in response to the creation of a core hole.

φj(k) is a phase function that describes a number of phase-shifts experienced by the

photo-electron. These include the δ′1 phase-shifts above and the phase-function incurred

at each scattering event.

Since multiple-scattering is now considered, the coordination shell radius, Rj, is replaced

with sj, the total photo-electron scattering path length. For single-scattering, sj is

equivalent to 2Rj . Likewise, σ2
j is redefined as the variance of the half-path length.

Despite constant progress in the development of a fully-quantitative, ab initio theory of

XAFS, numerous deficiencies still exist in the theory. One of the most notable of these

is the muffin-tin approximation that has been adopted since the 1970s. Foulis et al.

took the first steps to eliminating this approximation in 1990 by successfully performing

a full-potential, non-muffin-tin calculation for the fine-structure of the hydrogen ion.

They extended this result in 1995 [23] with a similar calculation for molecular chlorine.

However, such calculations are still yet to be demonstrated for the general case in any

of the XAFS analysis codes available today.
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2.4 Differential EXAFS: A Probe to Small Atomic Displace-

ments

Differential EXAFS (DiffEXAFS) is a novel technique for the study of small atomic

strains, which was developed by Pettifer et al. over a period of years leading up to

publication in May 2005 [64]. Taking a sample where the fundamental structure is

known, the technique employs the subtle changes in EXAFS signals induced by the

modulation of a given sample property to measure changes in photo-electron scattering

path length, and thus deduce any atomic perturbations in the local area of the absorbing

atom [79].

A DiffEXAFS spectrum is the difference between two conventional EXAFS spectra (des-

ignated + and -), taken with all sample properties kept constant, except for the unit

modulation of some property of interest1. For thermal studies unit modulation would

typically be 1K. This is very similar in principle to XMCD, except that instead of only

studying magnetic effects in the near-edge region, DiffEXAFS examines the extended x-

ray absorption structure for perturbations of the sample. Given that strains contributing

to these signals are small, it is possible to express them in terms of a first order Tay-

lor expansion of the x-ray fine-structure function (2.11) with respect to the modulated

parameter.

∆χ =
∑

j

Aj(k)ke
−2k2σ2

j cos
(

ksj + φj(k)
)

∆sj (2.12)

Strictly speaking, Aj(k) and φj(k) are also path length, sj, dependent, but changes in

these parameters are negligible compared to ∆sj.

Given the fundamental structure of the sample is known beforehand, fitting this function

to experimental data deals with a strictly limited number of parameters; positions of

atoms are fixed, and thus shell radii and coordination numbers. Consequently, Aj(k)

and φj(k) may be determined from first principles, and σ2
j from a conventional EXAFS

fit, leaving only the perturbation ∆sj to be determined from the DiffEXAFS. The whole

analysis procedure, which is described in Chapter 4, can therefore be thought of as

1If non-unit modulation is employed, the spectrum is referred to as a Difference EXAFS spectrum,
which must be normalised to unit modulation in order to extract information on structural changes.
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pseudo-ab initio.

In principle, a DiffEXAFS spectrum may be constructed from the modulation of any

chosen bulk property of a given sample, the difference between the two XAS spectra

then revealing any structural changes in the sample material induced as a result of

the change in bulk property. Since the structure present in a DiffEXAFS spectrum is

intimately linked to atomic strains, a different signal can be expected from the same

absorption edge depending on which property is modulated, and how that affects the

sample structure.

In this thesis, temperature is the chosen property, and the effects of thermal expansion

and thermally induced phase transitions are studied by cycling a sample’s temperature

by a few Kelvin between two otherwise identical absorption measurements.

It is important to emphasise at this stage a subtle distinction in DiffEXAFS nomencla-

ture. A Difference EXAFS measurement is concerned simply with the difference between

two given EXAFS spectra, whereas a Differential EXAFS measurement goes further,

implying unit modulation of the chosen sample property. In this sense, a differential

spectrum is a normalised difference spectrum. Although the abbreviation DiffEXAFS

will be used throughout this thesis, the terms Difference and Differential will be used

explicitly in any discussion where confusion may arise.

2.5 Thermal Differential EXAFS

Thermal Differential EXAFS describes those DiffEXAFS measurements taken with mod-

ulation of a sample’s temperature. In this particular situation, the physics of DiffEXAFS

is more complicated than that described by equation (2.12) since it is not just the mean

scattering path length sj that is dependent on sample temperature, but also the variance

in scattering path length σ2
j .

It is also important, therefore, to consider the form of the atomic pair-correlation func-

tion. In order for thermal expansion, or any other such thermally induced strain, to exist

within a material, the pair-correlation function must be asymmetric. This in turn re-

quires anharmonicity to be considered, and thus the (harmonic) Gaussian Debye-Waller
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factor must be replaced. Commonly, this results in the fine-structure function being ma-

nipulated in terms of a cumulant expansion [72]. However, for DiffEXAFS, temperature

changes are very small, and so anharmonic contributions to the fine-structure from any

source other than thermal expansion are negligible. In this case it is possible to adopt the

quasi-harmonic approximation of Leibfried & Ludwig [42], whereby the Gaussian form

of the pair-correlation function is retained, but the centroid of that Gaussian displaced

to model thermal expansion.

Under these conditions, the Taylor expansion of (2.11) becomes

∆χ =
∑

j

Aj(k)e
−2k2σ2

j

(

k cos
(

ksj + φj(k)
)

∆sj

− 2k2 sin
(

ksj + φj(k)
)

∆σ2
j

)

(2.13)

The Thermal Differential Fine-structure Function therefore contains two signals super-

imposed upon one another. The first, as in (2.12) is characterised by ∆sj. In the

absence of any non-linear phenomena such as phase-transitions, this just arises from

thermal expansion in the sample. The second, new term is characterised by ∆σ2
j , and

so describes changes to thermal disorder.

The difference between this function and that of (2.12) can be seen in Figure 2.1,

where a typical Joule magnetostriction DiffEXAFS signal is plotted for a 90◦ rotation in

sample magnetisation, and a typical Thermal DiffEXAFS signal plotted for a 1K change

in sample temperature; both at the Fe-K edge.

Examining (2.13), it is clear first and foremost that the disorder term retains the sin

phase dependency of the original fine-structure function (2.11), whereas the expansion

term has changed to a cos dependency. Contributions from thermal disorder are therefore

in phase with the conventional EXAFS, whilst contributions from thermal expansion are

in quadrature. This difference is key in providing the ability to resolve one term from

the other in an experimental DiffEXAFS spectrum.

It can also be seen that both terms scale with photoelectron wavevector; expansion

by k1 and disorder by k2. This indicates that both terms are amplified relative to

the conventional EXAFS as x-ray energy increases, resulting in more high-k oscillations

being present in the DiffEXAFS compared to the conventional fine-structure. This in
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Figure 2.1: DiffEXAFS signals at the Fe-K edge for magnetisation modulation of FeCo
(provided by R.F. Pettifer) and thermal modulation of Fe foil. EXAFS for the pure
Fe sample is shown, which is virtually identical to the FeCo structure. As can be
seen, the modulation of different sample properties results in very different signals.
The magnetisation signal only contains one component through magnetostrictive strain,
whereas the thermal signal contains components from expansion of the crystal lattice
and changes to atomic vibrational amplitudes.

turn allows DiffEXAFS data to be acquired further from the edge, with the structure

not being washed-out till k is typically around 15 to 20Å
−1

.

Now, inserting the thermal expansion coefficient for each path αj , and considering the

possibility of non-unit temperature modulation, (2.13) becomes

∆χ

∆T
=
∑

j

Aj(k)
(

ksj cos
(

ksj + φj(k)
)

αj

− 2k2 sin
(

ksj + φj(k)
)∆σ2

j

∆T

)

(2.14)

Each coefficient is assumed to be a constant, independent of temperature. This is not
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true for large changes in temperature, but is acceptable when working with DiffEXAFS,

since temperature modulation is only of the order of few Kelvin2. This expression will

also hold when other strains, not related to thermal expansion, must be considered, so

long as the components of αj include the contributions from all source of thermal strain.

Each αj may be analysed in the context of the geometry of path j in order to obtain

the second-rank thermal expansion tensor αmn. Depending on the type of crystal under

study, αmn may contain up to nine independent parameters, describing atomic strains

along different crystallographic directions. Each coefficient must be determined by the

analysis of a scattering path with geometry sensitive to strains along the same direction

described by the coefficient. Some paths, particularly multiple scattering paths, may be

sensitive to strains described by two or more coefficients.

However, the point group crystal symmetry of a chosen sample material can be exploited

through von Neumann’s Principle to reduce the number of independent coefficients [53].

For instance, with crystals of cubic symmetry, the tensor is isotropic; all off-diagonal

elements are zero, and all diagonal elements equal. This reduces the number of inde-

pendent coefficients to one and αmn to α.

Note also, that in inserting αj into (2.13) an additional coefficient, sj, is needed. This

reveals the last key property of the differential fine-structure function: larger scattering

paths are relatively amplified compared to shorter ones. High-order paths therefore hold

relatively greater significance than they would do in conventional EXAFS. Critically, the

thermal disorder term does not scale with sj. As a result, when sj is large, the thermal

expansion component of the differential fine-structure becomes a greater fraction of the

total observed signal than when it is small. This allows expansion to be more easily

detected in high-order scattering paths.

2Even so, it is still reasonable to expect a different values to be obtained when the absolute temper-
ature, about which the DiffEXAFS measurements are made, is significantly altered.
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Chapter 3

Apparatus for Thermal Differential

EXAFS

3.1 Introduction

Since DiffEXAFS is an entirely new experimental technique, no standard apparatus may

be purchased commercially to allow such data to be taken. Pettifer et al. identified

ID24 of the ESRF as a suitable candidate beamline for DiffEXAFS experiments, but had

to design and construct their own magnetisation modulation apparatus prior to making

their magnetostriction measurements. In addition, the beamline had to be optimised for

DiffEXAFS applications, and control code written for DiffEXAFS data acquisition.

The approach to Thermal DiffEXAFS has been no different. To thermally modulate a

given sample material, novel apparatus had to be designed and constructed. Indeed,

the requirements for such apparatus had to be examined in detail prior to its design

phase, and after construction, tests performed to verify the finished product met these

requirements. Further modifications and upgrades were also needed to ID24 to allow

integration of this apparatus into the beamline control systems.

This chapter presents each step of that process in detail - from experimental requirements

to evaluation of the final product. In addition, ID24, and its complementary beamline

BM29, are described in detail to justify their selection for DiffEXAFS, and associated

experiments.
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3.2 Beamline Requirements for Detection and Measurement

of Differential EXAFS

Given that DiffEXAFS signals from structurally perturbative phenomena, such as thermal

expansion, are generated by atomic strains of the order of 10−5 per unit parameter

modulation (1K for thermal studies), several demanding requirements must be met

in order to successfully detect them. These can be split into beamline requirements,

covering the actual measurement needs, and sample environment requirements, detailing

what must be provided by the modulation apparatus.

In terms of beamline requirements, the first problem is that of statistical noise. In

order to detect strains of the order of 10−5, the fractional statistical noise present in

a measured absorption spectrum must be of the order of 10−5 or less. This demands

the use of a high intensity 3rd generation source, where fluxes can be as much as 1013

photons per second per eV. Under optimal conditions, such a source should be capable

of reducing fractional statistical noise in absorption to the order of 10−6 in a few hours.

In addition, the chosen source must be coupled to a beamline armed with a sensitive

detector, capable of accepting and measuring the incoming flux.

The next problem is that of beam energy stability. If the energy of photons passing

through the sample changes between the + and - state measurements, spurious signals

can be generated from the resulting shift in fine-structure. A simple calculation shows

that an edge energy shift of as little as 1meV between measurements at the Fe-K edge

can generate a nominal difference of about 2 × 10−5 across the spectrum, peaking to

around 10−4 at the edge. Such a signal would be of comparable amplitude to the true

DiffEXAFS signal from an atomic displacement of around 2 fm, and thus would corrupt

it. Assuming the noise limit on a DiffEXAFS measurement is 10−5, limiting displacement

resolution to no less than 1 fm, the edge energy would need to be stable to at least

0.1meV for any drift signal be indistinguishable from the noise.

Unfortunately, unless both measurements are taken simultaneously, or at least in a tiny

amount of time, temporal changes in the properties of various beamline components

could easily generate energy drifts of the order of several meV. For example, given
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the thermal expansion coefficient of silicon at room temperature is 2.6 × 10−6K−1, a

temperature drift of just 0.4K in a Si(111) polychromator crystal would generate a shift

in diffracted energy of 5.2meV when working at 10 keV; more than enough to destroy a

DiffEXAFS signal.

Since it is not possible to measure the same part of the same sample in two different

thermal states at the same time, the best approach is to heat and cool the sample as

quickly as possible, allowing two measurements to be made under different conditions

in as short a space of time as possible. Empirically, it has been found that the best

DiffEXAFS data is obtained when the delay between measurements is less than a second,

but acceptable data can be acquired with up to a three or four second delay depending

on the circumstances. Experiments with delays in excess of five seconds produce poor

results.

The third and final major problem is that of spatial beam stability. Unless the sam-

ple material under study is perfectly homogeneous, subtle changes in thickness could

generate a difference in x-ray absorption if the beam were to move between + and -

measurements. Taking the standard absorption relation I = I0e
−µz and the definition

of χ in (2.6), it can be shown that, for point illumination of the sample

∆µ

µ
= −

∆z

z

∆χ

χ
=

µ

µ− µ0

∆µ

µ
(3.1)

thus the following condition must hold

∆χ

χ
=

µ

µ− µ0

∆zp
zp

≤ 10−5 (3.2)

where ∆zp describes the variation in sample homogeneity. If ∆zp is assumed to be a

well-behaved, integrable function, it is possible perform a Taylor series expansion and

evaluate the partial derivatives of sample thickness with respect to beam movements.

Given µ/(µ− µ0) is about 10 for a monoatomic sample, a fractional change in sample

thickness of more than 10−6, caused by some movement of the point of illumination,

would generate a signal detectable in a DiffEXAFS measurement. Since typical sample

thicknesses are of the order of ten to several tens of microns, this would make the signal

sensitive to changes in thickness of the order of 0.1Å, or effectively a single atomic layer!
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Fortunately, the finite size of a real beam focal spot helps, since the larger the spot, the

smaller the fractional change in illumination of the sample as the beam moves. Only

the small parts at the edge of the spot will contribute to any apparent change in sample

thickness. A rigorous theoretical analysis of such a problem is not trivial and is beyond

the scope of this thesis. However, it is clear that one of three criteria must be met

for DiffEXAFS measurements. Either the sample homogeneity must be extremely high,

allowing the beam to drift somewhat between measurements, or the beam stability be

extremely high to compensate for a certain degree of sample inhomogeneity; alterna-

tively, the beam spot size must be sufficiently large that any drift in position represents

only a tiny fractional change in the part of the sample illuminated. Empirical experience

has revealed that both powder specimens and polycrystalline foils with grain sizes of

less than about 3µm yield good DiffEXAFS data, providing the beam is no less than

about 10µm × 10µm in size and drifts by no more than about 10nm in either dimension

between measurements.

Perversely enough though, a tiny spot size can actually be better than a larger one despite

the problems shown with point illumination in (3.2). So long as the spatial stability

condition is not violated, reducing the spot size, and so reducing the area of sample

material illuminated, allows tiny samples to be used for DiffEXAFS measurements. In

the case of Thermal DiffEXAFS, such tiny samples have a low thermal mass, and so

change temperature more quickly for a given heat input. Thus a suitable trade-off should

be established between the two effects.

Indeed, this desire to minimise the time between measurements should be examined

in more detail since it goes against the idea of increasing the exposure time of an

acquisition to minimise statistical noise, suggesting the best approach for minimisation

of such noise is not to expose each spectrum for a long time, but to average signals over

many measurements. In the case of DiffEXAFS, this means averaging the signal over

many pairs of +/- measurements as will be explained in section 3.4.1.

However, a more fundamental issue must first be resolved. When we talk of ’taking a

spectrum’, we are referring to the acquisition of an entire EXAFS spectrum, typically

covering an energy range of several hundred eV. On a standard step-scanning XAS
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beamline, integrating for 100ms, say, at each energy point, such an acquisition will take

about a minute plus the time needed to physically move the monochromator crystal

from one energy to the next; so several minutes in total. Even if the integration time is

reduced to 1ms at the expense of statistical noise, the time required to scan from one

energy to another imposes a lower limit on the total acquisition time of the order of a

minute or more. So evidently, it is not possible to perform DiffEXAFS measurements by

step-scanning an entire spectrum, changing the state of the sample, and step-scanning

another whole spectrum.

The obvious solution would be to measure both states of the sample material at one

energy to obtain the difference with minimal beam drift, and then scan to the next

energy, taking two more measurements, and so on. This approach was tried by Pettifer

et al. on BM29 of the ESRF prior to their published magnetostrictive DiffEXAFS

measurements [64], but failed to work. Whilst taking the difference at single energies

minimises beam drift for each given data point, the spectrum as a whole is still time-

dependent. Thus, whilst each single point contains the correct DiffEXAFS based on the

beam and sample properties at the time of measurement, the spectrum from one point

to the next is a composite of DiffEXAFS signals from slightly different beam conditions;

the structure at one point may be either translated with respect to the adjacent points

due to an energy drift, or of the incorrect amplitude, due to differing sample thicknesses

resulting from spatial drift.

The solution therefore, is to illuminate the sample material with polychromatic radiation,

allowing the whole spectrum to be acquired in a single snapshot. This can be achieved

by using a Dispersive XAS (D-XAS) geometry. With polychromatic illumination, the

spectrum becomes time-independent from one energy to the next, so two complete

EXAFS spectra can be taken under differing sample conditions in less than a second or

so, as required. This does however come at the expense of beam intensity. Whereas on

a step-scanning beamline the entire beam flux is effectively from an single x-ray energy,

on a D-XAS beamline, the available flux is split over several hundred eV, making each

wavelength component relatively dimmer. Thus, to be of any use, the D-XAS beamline

must be mounted on a high-intensity 3rd generation synchrotron source, such as a
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wiggler, which offers an intensity increase of a couple of orders of magnitude over a

standard bending magnet source, or an undulator, which offers a further couple of orders

of magnitude increase in intensity. At present, there is only one D-XAS beamline in the

world that utilises a 3rd generation undulator source: ID24 of the ESRF. Therefore, this

was the beamline selected for DiffEXAFS measurements.

3.3 X-ray Absorption Spectroscopy Beamline BM29 of the

ESRF

Before examining ID24, it is helpful to consider the operation of a conventional step-

scanning XAS beamline mounted on a bending magnet source, such as BM29 of the

ESRF. This beamline is also important since it provides conventional EXAFS spectra

that are used to calibrate those from ID24, and hence is used to put DiffEXAFS spectra

on a known energy scale [75]. This calibration process is discussed in section 4.2.

Bending magnet sources generate synchrotron radiation by accelerating electrons, travel-

ling at relativistic speeds, in a circular arc. At such speeds, the electromagnetic emission

predicted by classical electrodynamics is subject to a Lorentz transformation. When the

bending magnet is viewed in the plane of the storage ring, the familiar sinusoidal charac-

teristic of electron dipole radiation is severely deformed, with the emitted intensity being

collimated into a narrow cone along the instantaneous direction of electron motion [36];

the angular divergence of which is inversely proportional to the electron energy [39]. This

radiation is also strongly Doppler shifted - from the shortwave region at non-relativistic

speeds, to hard x-rays as v tends to the speed of light. The energy of an electron at

speed v is given by [5]

Ee =
mc2

√

1−
(

v
c

)2
(3.3)

At relativistic speeds, it is useful to express this in terms of the electron rest mass energy

γ ≡ Ee/mc
2, and the electron velocity in units of the velocity of light βe = v/c so that

(3.3) becomes

γ ≡
1

√

1− β2
e

(3.4)
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Also in these units, the characteristic opening angle for synchrotron radiation, that is

the root mean square angle of emission, is [39]

< ψ2 >1/2=
1

γ
(3.5)

At the ESRF, the energy of electrons in the storage ring is Ee = 6.03 GeV, so the

opening angle of radiation is 0.08 mrad.

The radius of curvature of the electron path through a bending magnet is determined

by its magnetic field strength - 0.8 T for ESRF bending magnets, including BM29 - and

the Lorentz force, such that, given v ≃ c

R =
eB

γmc
= 25m on BM29 (3.6)

One final, important parameter to consider is the beam flux. This is derived from the

power radiated over the area of the beamline aperture, by dividing by the photon energy

at a given wavelength, E = hc/λ. At BM29’s characteristic energy, E = 3hcγ3/4πR =

19.2keV, the peak flux is 3.5× 1011 photons s−1(0.1% BW)−1 in a bandwidth of 0.1%

by convention. However, it is more useful to obtain the flux per eV. On BM29, this

corresponds to a bandwidth of 0.005%, giving a peak flux at 19.2keVof 1.75 × 1010

photons s−1eV−1. A more rigorous analysis of beam characteristics is given for instance

in [39] or [5].

Beyond the front-end aperture, the optical components of BM29 are very simple. An

ESRF standard primary slits package is used to define the white beam profile, typically

to 10 to 20mm horizontally and 0.2 to 1.0mm vertically [99] before the beam enters the

monochromator. The vertical gap of these slits is important in that it largely defines

the energy resolution of the beamline for a given set of monochromator crystals.

The monochromator itself works on the Bragg diffraction of two single crystals of silicon,

typically Si(111) or Si(311), arranged in the parallel configuration as shown in Figure

3.1. These crystals are cooled to about 125 K, where the thermal expansion coefficient

of silicon is approximately zero, to minimise beam energy drifts due to changes in specific

heat load in the monochromator. The use of a double crystal design such as this allows

beam harmonics to be rejected by changing the relative angle between the two crystals,
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Figure 3.1: A schematic representation of a twin crystal, Bragg reflecting monochroma-
tor, arranged in the parallel configuration.

reducing the degree of parallelism between them [20]. On BM29, this detuning is

performed in units of the FWHM of the diffraction rocking curve, measured by scanning

the beam intensity as a function of the crystal parallelism [99]. Beyond the exit port

of the monochromator, a secondary set of slits define the profile of the monochromatic

beam.

BM29 offers several types of detector, but those most commonly used - and which are

used when acquiring spectra to calibrate DiffEXAFS data - are ionisation chambers [60].

3.4 Dispersive EXAFS Beamline ID24 of the ESRF

All DiffEXAFS experiments conducted to date have been carried out on ID24, the D-XAS

beamline of the ESRF [27] [55], which is shown schematically in figure 3.2.

Unlike a standard step-scanning XAS beamline, a dispersive beamline produces poly-

chromatic illumination at the sample, which in turn allows an entire spectrum covering

several hundred electron-volts to be acquired simultaneously. This feat is achieved by

replacing common, flat monochromator crystals with a single bent crystal: the poly-

chromator. When this is illuminated by a spatially dispersed x-ray beam, Bragg’s Law

dictates that it produces a continuous range of diffracted wavelengths, as the angle of in-

cidence of impinging photons changes in relation to the diffracting plane’s local normal.
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This result, shown in figure 3.3, means that the equivalent energy of diffracted photons

changes continuously along the length of the polychromator, and holds regardless of

whether the polychromator is used in Bragg or Laue diffr acting geometries.

The curvature of the crystal also causes each component of the diffracted beam to

be focused to a point, at which the sample is placed. Beyond the focal point, the

beam diverges and the intensity of each component measured with a position sensitive

detector (PSD) - commonly a CCD array. Each pixel in the array only detects a small

range of x-ray wavelengths, and so the array as a whole effectively makes n simultaneous

measurements at different x-ray energies, where n is the number of pixels.

ID24 uses two types of polychromator, both made from a single crystal of silicon. The

first is cut and polished with Si(111) or Si(311) planes parallel to the surface and is

used for Bragg diffraction at low energies - up to 15 keV. This limit is imposed since

higher energy photons penetrate deeply into the crystal, causing significant degradation

in energy resolution. The crystal is elliptically bent by a four point bender, with spherical

aberrations in the focal spot minimised by cutting the crystal into a specially designed

profile that naturally deforms elliptically when bent at its ends. The second type of

crystal is cut and polished with Si(111) planes perpendicular to the surface, and is used

for Laue diffraction beyond 12 keV and up to about 28 keV. This crystal is bent so as

to have a cylindrical profile.

In both cases, the degree of bending is controlled dynamically. This allows both the

range of diffracted x-ray wavelengths and the distance to the focused image to be altered.

The focal point may lie between 0.8 and 2.0 m from the crystal.

Commonly, D-XAS beamlines are mounted on bending magnet sources, which naturally

offer the large spatial divergence (in the horizontal plane) required to generate a wave-

length dispersive beam. ID24 however, is unique in that it is mounted on an undulator

source.

Unlike bending magnets, undulators and wigglers are installed on straight sections of

a storage ring and consist of an array of magnets with alternating field polarity along

the axial direction, as shown in Figure 3.4 These magnets cause passing electrons to

execute oscillations in a series of circular arcs in the horizontal plane. Assuming these
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Figure 3.2: A schematic representation of the optical components of ID24. Reproduced
from [55] with modifications.

Figure 3.3: A bent crystal polychromator diffracts x-rays of a continuous range of
wavelengths as the angle of incidence of impinging radiation changes along its length.
The result is polychromatic illumination at the focal point rather than monochromatic
as would be obtained from a flat crystal.
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Figure 3.4: A schematic representation of an undulator/wiggler insertion device. Elec-
trons perform small amplitude oscillations, causing the emission of radiation along the
axial direction.

oscillations can be approximated by a sinusoid, the device may be characterised by the

dimensionless field strength parameter [5]

K =
eB0λu

2πmc
= 0.934B0(T )λu(cm) (3.7)

which in turn gives the maximum angular deviation of the electron [38]

δ =
K

γ
(3.8)

where λu is the undulator spatial period, B0 is the peak undulator magnetic field

strength, and e, m, and c are the electron charge and mass, and the speed of light

respectively.

K is much greater than one for a wiggler, and of the order of one or less for an undulator.

This difference has a significant effect on the radiation output from the device. As shown

in equation (3.5), the characteristic opening angle of radiation produced by an electron

travelling in a circular arc, is of the order of γ−1. Therefore, from (3.8) it can be seen

that in an undulator, the cone of radiation from each electron oscillation is at least

partially superimposed upon the radiation cones from previous oscillations, causing x-

rays of wavelength λ1 and its harmonics, to add coherently from one oscillation to the

next. As a result of this coherence, undulator radiation is as much as several orders of

magnitude brighter than wiggler radiation, since the total intensity is proportional to
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ID24 Undulator Properties

K value at minimum gap (20 mm) 1.66
Magnet period 42 mm
Number of periods 42
Max. critical energy 8.9 keV
Min. energy of the fundamental 4.4 keV
Max. magnetic field 0.423 T
Source size (x× z RMS) 402 × 8.4 µm2

Source divergence (x′ × z′ RMS) 12.0 × 6.2 µrad 2

Peak brilliance at min. gap and 4.5 keV 2.6× 1019 ph s−1mrad−2mm−20.1% BW−10.2Å
−1

Total power emitted 1.34 kW
Power density at 30 m 50.3 Wmm−2 (in central cone at 0.2 Å)

Table 3.1: Information pertaining to the undulator source mounted on ID24. These
data have been compiled from references [27] and [55].

the squared sum of amplitudes of radiated waves rather than just the sum of radiated

wave intensities. Likewise, the oscillatory nature of a wiggler produces a beam as much

as several orders of magnitude brighter than a bending magnet source. λ1 is defined by

the undulator period and the electron speed, βe = v/c, as [5]

λ1(θ) = λu

(

S

βe
− cos θ

)

(3.9)

Given S, the electron path length over one undulator period, is S = 1 + γ−2K2/4

λ1(θ) =
λu

2γ2

(

1 +
K2

2
+ (γθ)2

)

(3.10)

where θ is the angle between the undulator axis and the direction of observation. This

equation implies that an undulator source is quasi-monochromatic, with λ1 dominat-

ing the emission spectrum. The symmetry of harmonic emissions also results in the

suppression of even harmonics, such that mainly odd harmonics are transmitted.

Thus, whilst the choice of an undulator source for ID24 was unconventional, both these

facts provide clear advantages over other D-XAS beamlines [55]. Additionally, undulators

offer a lower vertical beam divergence than bending magnets, aiding the production of

a tightly focused spot at the sample; and, by altering the undulator gap and taper, and

the radius of curvature of the polychromator crystal, it is possible to match the emission
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bandwidth of the undulator to the acceptance of the polychromator, which results in a

reduction of specific heat load on the optics.

These all make the beamline ideal for time-resolved analyses of transient chemical reac-

tions, and for examination of tiny samples mounted inside high-pressure cells, where the

beam must be both highly focused and capable of penetrating the small cell windows.

For DiffEXAFS however, these beam characteristics are advantageous for different rea-

sons. The lower vertical divergence and resulting smaller focal spot size is ideal since it

allows the use of smaller samples, which respond more quickly to small changes in envi-

ronmental parameters such as temperature. The reduced specific heat load on the optics

is good since it increases the stability of beamline components, minimising unwanted

drifts between difference measurements. And most importantly of all, the increased flux

is critical in obtaining sufficiently low statistical noise in a DiffEXAFS spectrum to allow

signals from phenomena such as thermal expansion or magnetostriction to be detected.

These advantages come at a price though. The horizontal divergence of bending magnet

sources are typically of the order of several milliradians. Undulator sources however,

by their very nature, produce tightly collimated beams, and as such the horizontal

divergence of the ID24 source is only 12µrad RMS. This requires more complex coupling

optics to be installed between the undulator and polychromator in order to generate the

required, divergent beam.

ID24 employs two mirrors of Kirkpatrick-Baez (KB) type. The first, mounted 30m from

the source, focuses the beam vertically and performs harmonic rejection. The second,

orientated at 90◦ with respect to the first at 32.5m from the source, is elliptically bent

to focus the beam horizontally. The focal point, 1.65m from the mirror, then serves

as the effective source for the spectrometer, with a horizontal divergence of 1mrad.

Consequently, the polychromator, which is mounted 64m from the source, is illuminated

over a length of about 40mm. Additional information on the mirrors is given in tables

3.2 and 3.3.

Recently, an additional mirror has been added to the beamline at 65m from the source,

between the polychromator and sample position [54]. This provides further harmonic

rejection and refocuses the beam vertically. Combined with recent improvements to the
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Properties of Vertically Focusing Mirror (First KB Mirror)

Distance from source 30 m
Distance to image 41 m
Max. reflected photon energy 28 keV
Max. glancing angle 3.0 mrad
Slope error 1.2 µrad FWHM
De-magnification 1.367
Shape cylindrical
Coating Bare (Si) / Rh / Pt
Average radius of curvature 12 km

Table 3.2: Information pertaining to the first coupling mirror mounted on ID24. These
data have been compiled from references [27] and [55].

Properties of Horizontally Focusing Mirror (Second KB Mirror)

Distance from source 32.5 m
Distance to image 1.65 m
Max. reflected photon energy 28 keV
Max. glancing angle 3.0 mrad
Slope error 3.3 µrad FWHM
De-magnification 0.051
Shape elliptical
Coating Bare (Si) / Rh / Pt
Average radius of curvature 980 m

Table 3.3: Information pertaining to the second coupling mirror mounted on ID24.
These data have been compiled from references [27] and [55].
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polychromator and horizontally focusing KB mirror, the size of the focal spot at the

sample position is now just (3.8 × 5.1)µm [55].

Beyond the focal spot lies a position sensitive CCD matrix containing 1152 lines of 1242

pixels, coupled to the beam via a phosphor fluorescence screen and a 2x magnifying

lens. Only 64 lines (or 1 stripe) of the CCD are actually exposed. The remaining 17

stripes are covered and used as parallel transfer buffers, which allows rapid acquisition

of 18 spectra before the data must be read out. Charge from each exposed line can be

transferred to a buffer line in about 1.5µs, so a full stripe transfer takes about 100µs,

thus defining the time resolution of the detector. Once the CCD is full, the charge from

each line in a stripe is binned in a single data register, and then read out through a

serial transfer line. This effectively averages the vertical beam intensity, improving the

signal-to-noise ratio. Whilst this comes at the expense of spatial resolution, the vertical

profile of the beam is not important. Serial transfer of the readout register takes 12.2ms,

so the entire CCD read out time is about 220ms.

The spatial resolution of the detector in the horizontal plane is a function of the CCD

pixel pitch, 22.5µm, and the point spread function of the phosphor screen, 60µm. Given

also that there is a 2x magnifying lens between the two, a beam of collimated light from

a point source will appear to be 30µm in diameter at the CCD. This will impinge on at

least two CCD pixels, so it is the screen that limits the spatial resolution of the detector,

and hence wavelength resolution of the spatially dispersed beam.

3.4.1 Extracting DiffEXAFS signals from measurements on ID24

DiffEXAFS signals are extracted from a sequence of XAS measurements in a fashion

analogous to that described by Mathon et al. for XMCD measurements [47]; with

DiffEXAFS dichroism being essentially the same as magnetic circular dichroism from a

practical experimental standpoint.

Given that the Thermal DiffEXAFS signal is the difference between two XAS spectra at

varying temperatures, it may be expressed as

∆χ(E)

∆T
=
µ+ − µ−

T+ − T−
=

1

∆T

(

ln
I+
0

I+
1

− ln
I−0
I−1

)

(3.11)
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Properties of Detector

CCD-type Princeton TE-CCD-1242-E-1-UV
Dimensions 1242 × 1152 pixels (64 lines unmasked)
Pixel size 22.5µm × 22.5µm
Dynamic range 16-bits at 100 kHz, 14-bits at 1MHz
Parallel transfer time about 1.5µs per line
Serial readout time about 12.2ms per stripe
Time resolution 100µs
Phosphors P20 ((Zn, Cd)S:Ag)

P43 (Gd2O2S:Tb)
P40 (Y3Al5O12:Ce)

Point spread of screen 60µm

Table 3.4: Information pertaining to the CCD detector on ID24. These data have been
compiled from references [31] and [100].

where µ+ and µ− are the x-ray absorption coefficients measured at T+ and T− re-

spectively. Unfortunately, one current problem with wavelength-dispersive XAS, used

for DiffEXAFS experiments, is the fact that it is not yet possible to make simultaneous

measurements of the incident and transmitted x-ray intensities. With only one detector

at the end of the beamline, it is necessary to move any sample out of the beam in order

to measure I0, and thus measurements at I0 and I1 are separated by several seconds. It

would be convenient to assume that I+
0 and I−0 are identical over a short space of time

such that the DiffEXAFS signal becomes a function of the two transmitted intensities

only, but in reality this is not correct. X-ray intensity decreases over time as electron

beam current in the storage ring decays. However, this effect may be accounted for by

making XAS transmission measurements in the following sequence

I0+ , I1
− , I2+ , I3

− , ..., I2n−2+ , I2n−1
− , I2n+ (3.12)

and then calculating the DiffEXAFS signal from the following algorithm.

∂χ(E)

∂T
=

1

2n
ln

(

I0+
(

I2+
)2
...
(

I2n−2+
)2
I2n+

(

I1
−

)2(
I3
−

)2
...
(

I2n−1
−

)2

)

(3.13)

The signal is then the product of transmitted intensities only and thus any linear and

exponential drifts in the incident beam intensity are suppressed. An additional advan-

tage of this scheme is that the DiffEXAFS signal may be composed of a large number
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of dichroic measurements taken over time, which are effectively averaged in (3.13), sup-

pressing inevitable statistical noise in the data. Experiments conducted to date indicate

that letting n go to approximately 2000 results in a final fractional noise in the signal of

about 2×10−5, small enough to resolve atomic displacements on the femtometre scale.

3.5 Requirements for the Thermal Modulation Apparatus

EXAFS measurement requirements and the subsequent choice of beamline for DiffEX-

AFS are only part of the story. DiffEXAFS experiments also need the design and con-

struction of sample modulation apparatus that is compatible with these requirements.

It is already evident that such apparatus must be able to modify the state of a sample

quickly such that two EXAFS spectra may be acquired under different conditions in the

order of a second or less, but other properties are also needed.

As part of the measurement technique, it has been shown in section 3.2 that noise in

a DiffEXAFS spectrum, be it from statistics or beam stability, is best minimised by

averaging the difference signal over many pairs of +/- measurements. However, for

such an averaging to be meaningful, the sample must be modulated reproducibly and

held stable over the period of measurement. In the context of Thermal DiffEXAFS this

implies being able to reliably switch the sample back and forth between two absolute

temperatures. Failure to do so would cause the (un-normalised) difference signal to vary

over each pair of acquisitions, such that the final spectrum is the average signal from

structural changes over the mean temperature difference rather than the average signal

from structural changes between two absolute temperatures. That is

〈

∆χ
〉

=
1

N

∑

N

∂

∂T
χ
(

∆TN

)

(3.14)

is measured rather than

〈

∆χ
〉

=
1

N

∑

N

∂

∂T
χ
(

T+
N , T

−

N

)

(3.15)

The difference between these two conditions is subtle and rests on the temperature

dependence of the differential fine-structure. If the phenomenon inducing structural
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changes can be considered temperature invariant, as is the case for thermal expansion

over a small range of temperature, then the absolute values of T+ and T− are unim-

portant; only the difference counts, and thus ∂χ/∂T = ∂χ(∆T )/∂T as is assumed in

(2.14). Given also that the amplitude of the Thermal Difference EXAFS signal scales

linearly with temperature, the average signal based on some mean temperature differ-

ence will be the same irrespective of the variance about the mean. In this case, so

long as the apparatus records the sample temperature difference over each T+ and T−,

allowing the mean temperature difference to be found, the signal may still be reliably

normalised from (3.14) to the Differential EXAFS for unit temperature modulation.

If however, the structural changes under study are temperature dependent, which is the

case at, say, phase transitions, then ∂χ/∂T = ∂χ(T+, T−)/∂T ; the absolute values of

T+ and T− must be known and the variance of these must be minimal since the pair

averaged Difference EXAFS signal can no longer necessarily be correctly normalised by

a simple linear scaling of its amplitude.

The next requirement is that of ensuring the sample material is in, as near possible, an

equilibrium state at the time of measurement. This implies the absence of any thermal

gradients in the volume of material illuminated by the beam. A small spot size helps

here since all but the steepest gradients transverse to the beam would induce only a

negligible temperature difference over an area of, say (10× 10)µ m. Gradients along

the line of the beam can be more problematic but can be examined with the X-ray

Temperature as described in section 3.7.3.

Another final requirement, particularly for thermal experiments, is that the sample be

isolated from external influence. This ties in with need for temperature stability over

many pairs of measurements, since any change in ambient temperature, or the presence

of changing air flows in the vicinity of the sample, can easily affect the temperature of

the sample itself.
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3.6 Design and Manufacture of the Thermal Modulation

Apparatus

Given the requirements shown above, the task of designing the thermal modulation

apparatus was undertaken. Several candidates presented themselves.

The first would have involved modulating the sample temperature via resistive heating.

If a sufficiently large electric current were passed through a sample material, resistance

alone would induce heating, thus allowing the temperature of the sample to be controlled

by varying the current flowing through it. Whilst the simplest design, critical problems

made it unviable. Firstly, although resistive heating is very rapid, there is no analogy to

actively cool the sample, making the overall modulation cycle both slow and asymmetric.

The technique also limits the choice of sample to those through which a current can be

driven without damaging it. Finally, with a strong current flowing through the sample,

it is impossible to say definitively that any observed differential signal is purely thermal

in origin. There may also be components from, say, electrostriction due to the presence

of an electric field.

Similar problems would be encountered with, say, laser heating. There is no analogy

for cooling, and the sample itself affects the heating. Specifically, the heating is highly

sensitive to the reflectivity of the sample surface.

The second design would have continued the idea of resistive heating, but employed

it to heat a thin metal capillary down which gas would be pumped and out onto the

sample. The problems of driving a current through the sample itself are eliminated,

but an operational prototype showed there were extreme difficulties in both setting the

gas temperature to single Kelvin accuracy, and reproducing the temperatures over many

hot/cold cycles.

This prototype did however show that blowing jets of heated gas over samples of small

thermal mass was a very quick and efficient method of transferring heat into the sample,

with both active heating and cooling, and in a manner that would not interfere with

any XAS measurements. Therefore, the final design, which was fully implemented for

experiments on beam, was a dual gas jet as shown both schematically and in situ on
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Figure 3.5: The Gas jet thermal modulation apparatus. a) A schematic of the apparatus
showing the two-way valve, heatsinks with gas flow channels, and the gas output needles.
b) The gas jet in situ on ID24 A: X-rays in, B: Thermopile, C: Heaters and temperature
sensors, D: Heatsink, E: Valve behind heatsink.

ID24 in figure 3.5.

Gas from a dry nitrogen source is passed into a fast switching two-way fluidic valve

mounted at the rear of the apparatus. Simply by passing a high or low voltage signal to

the valve, gas is switched to flow down separate channels and into one of two identical

aluminium heatsinks.

Several channels are cut inside the heatsink, which further split the gas and increases

the surface area of aluminium over which it passes - increasing the rate of heat transfer

between the two. The channels recombine at the far end of the heatsink, and gas is

discharged through a needle, forming a jet that is targeted at the sample.

Splitting the gas into several channels in this way is more favourable than passing it

into a single cavity of the same surface area, since, in the latter case, the cavity will

allow a large volume of pressurised gas to accumulate, which will continue to discharge

for some time after switching the two-way valve. The multi-channel solution should

therefore optimise both the heat transfer rate and response time of gas jet switching.

Also cut into the heatsink are another, separate set of channels through which some

desired heating or cooling fluid may be pumped in order to reach temperatures far away

from room temperature. However, this fluid, or ambient conditions in its absence, only

sets a rough baseline temperature. The precise temperature is instead set by a Peltier

effect heater (PEH) mounted on the top of the heatsink.
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Also mounted on top of the heatsink is a silicon band-gap reference temperature sensor.

Both the sensor and PEH are connected to a proportional integral derivative (PID)

controller, which then actively regulates the power in the PEH so as to maintain a

constant temperature in the heatsink. The desired temperature may be selected on the

PID controller to a precision of 0.1K and then maintained electronically to an accuracy

of ±0.2K.

Stability of this heating feedback loop is optimised by coating the heatsink with 2mm

of thermally insulating fabric and then encasing it in a shell of perspex 6mm thick,

minimising heat loss to the atmosphere and protecting it from fluctuations in ambient

temperature.

With this arrangement, temperature modulation is achieved by setting the two heatsink

PID controllers to slightly different temperatures and then switching the two-way valve

back and forth so as to cycle the gas flow through each heatsink alternately. Since

the temperature of the heatsinks themselves do not require modulation between each

XAS measurement, the thermal stability of the gas jets is high. Given also that the two

heatsinks are totally independent, the output gas jet temperature may be cycled in a

reproducible fashion upon switching of the valve.

One final point to consider is how to facilitate passage of the beam through the sample

without being obstructed by the surrounding apparatus. The solution is quite simply to

mount the two gas jets on a base plate that ensures a 5mm wide gap runs along the

length of the apparatus, between the two heatsinks. A gap this wide is required since

away from the focal spot, the dispersive geometry of the beam causes it to diverge,

becoming about 2.5mm wide at the rear of the apparatus.

The full blueprints for this design are presented Appendix A, and were used by D.

Sutherland of the Warwick Physics Department’s Mechanical Workshop for manufacture

of the actual apparatus. The PID controller and associated electronics were designed and

manufactured by A. Lovejoy of the Warwick Physics Department’s Electronics Workshop.

Unfortunately, after manufacture, a Finite Element Analysis (FEA) of gas flow through
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the heatsinks revealed a design flaw1. Figure 3.6 shows a plan view of a horizontal

cross-section through the apparatus along the line of the beam. The two heatsinks with

gas flow channels can be seen to the left, and the gas jets and sample environment

to the right. The contour plot overlaid on the gas flow path shows the result of an

FEA calculation of the gas velocity through one of the heatsinks and into the sample

environment. Nitrogen gas is injected into the heatsink at 2 litres per minute (lpm) at

point A. At this initial stage, the flow is assumed to be laminar with no vorticity. Fluid

flow equations are then solved with continuous boundary conditions for each discrete

fluid element until points B and C are reached, which are exposed to atmosphere, and

hence require the gas pressure to be fixed at 1013 mbar.

The three parallel channels cut into the heatsink were intended to have the same gas

flow rates. However, Figure 3.6 reveals that it is only the central channel that has any

significant flux; the other two side channels are largely redundant. Figure 3.7 shows a

close-up of the region at the input end of the heatsink where the gas channel splits into

three. Gas velocity vectors have been plotted to highlight the direction of gas flow in

addition to its speed. Again, this shows very little flux along the side channels, with the

bulk of gas passing straight down the centre.

As a result of this problem, gas will flow over a smaller surface area of the heatsink

than anticipated, reducing the rate of heat transfer from the heatsink to the gas. Con-

sequently, as shown in Figure 3.8, gas traversing the heatsink from an input flow rate

of 2 lpm, does not reach thermal equilibrium with the heatsink before being ejected

through the gas jet; and thus the desired temperature difference, set on the gas jet

PIDs, is not actually attained. Fortunately the temperature difference as displayed on

the PIDs is not of critical importance. The true temperature difference at the sample is

measured directly by a thermocouple attached to it (as described in section 3.7.2), with

the X-ray Temperature (described in section 3.7.3) revealing whether or not the sample

has reached thermal equilibrium with the flowing gas. The heatsink deficiencies may,

therefore, be compensated for.

1This problem was discovered only days before scheduled beamtime, forcing the use of the deficient
design during all experiments on beam. Fortunately, with knowledge of the flaw it could be compensated
for.
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Figure 3.6: A horizontal cross-section through the gas jet apparatus along the line of
the beam. The contour plot shows the velocity of gas flowing through the channels of
the upper heatsink based on an input flow rate of 2 lpm.
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Figure 3.7: A close-up of the channels in the heatsinks in the region where gas flow
is split into three. A problem with the design shows that the central channel has a
significantly greater flow rate than the outer two channels.
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Figure 3.8: FEA of gas temperature whilst traversing the upper heatsink. The heatsink
is heated to 323K, and gas injected at 2lpm. Poor flow through the outer heatsink
channels results in insufficient heating, with gas being expelled at about 319K before
reaching equilibrium with the heatsink.

Whilst all experiments for this thesis were conducted with the deficient heatsinks, there

are two potential methods for rectifying the design in the future. The first is to, quite

simply, remove the central channel altogether, thus forcing the gas to flow down the

two symmetric outer channels. However, a more elegant solution would be to reduce

the diameter of the central channel in accordance with Poiseuille’s equation to match

the flux in each. This would maintain three channels and with them a greater surface

area of aluminium for heat exchange between the heatsink and gas.

3.7 Temperature Measurement and Sample Mounting Sys-

tems

3.7.1 Initial designs

An equally important component of the apparatus design involves the sample environ-

ment. Again, several possible designs were considered.
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Initially, the idea of making temperature measurements with a platinum resistance ther-

mometer (PT100) was explored. Such a device could be sputter deposited onto a thin

film of Kapton, upon which the sample would then be mounted. As the sample temper-

ature changed so too would the resistance of the device. This design was attractive in

that the resistance could be calibrated as a function of temperature to give an absolute

measurement. However, in practical terms it was unviable since, for the smallest device

we could make (1mm by 1mm), the thickness of platinum deposited would be only

1nm for a 100Ω device. Such a thin film could not be reliably produced and could be

structurally unstable if excessively heated or cooled. Additionally, since such a device

must be actively driven, it could be affected by self-heating as current flows through it.

The concept of sputter depositing a sensor remained attractive however, given that a thin

film sensor would have a low mass, and so, ideally, respond to changes in temperature

more rapidly than the sample itself. This would ensure that it is the sample itself

that dictates the thermal response of the sample environment. The Kapton film would

also thermally insulate the sample from the remainder of the mount, minimising losses

through conduction.

Therefore, the design accepted for initial DiffEXAFS measurements on ID24, and with

which SrF2 data shown in chapter 5 was acquired, involved sputtering a circular, series

array of eight copper-constantan (T type) thermocouples onto Kapton as shown in

Figures 3.9 and A.1. Each thermocouple has one of its junctions placed between large

aluminium rings, which, being thermally massive, respond only very slowly to changes in

surrounding gas temperature; much more slowly than the period of thermal modulation.

The other junctions are clustered at the centre of the rings, with the sample being

mounted on top of them.

Thermocouples are better than resistance devices since they do not have to be actively

driven, eliminating problems with self-heating, and since the critical parameter affecting

the performance of the thermocouple is not the cross-sectional area of the sputtered

material, but the mismatch in thermo-EMFs between different metals. Therefore, the

thickness of the film is not critical, allowing a continuous film of tens of microns to

be deposited. They do however, only provide an emf proportional to the temperature
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Figure 3.9: A schematic representation of the completed copper-constantan thermopile.
The copper coloured lines indicate deposited copper, and the grey lines, constantan.
The two concentric rings towards the outside of the device show where the thermally
massive aluminium rings should be attached. The sample is attached at the centre.

difference between junctions, so to obtain the absolute temperature of the sample, the

temperature of the junction under the rings would need to be known absolutely. This is

accomplished by attaching an industrially manufactured PT100 to one of the rings.

The completed device is then mounted in front of the gas jets using the mount shown in

Figure A.19. This mount and the gas jets are attached to a specially designed aluminium

base (shown in Figure A.2), which ensures that when the sample is placed in front of

the jets, it is positioned at their focal spot. This not only ensures optimal heat transfer

between the jets and the sample, but also maintains the required symmetry between the

two jets.

3.7.2 The revised design

The sample mount and temperature measurement design detailed above was used on

beam during experiment MI-740 on ID24. However, several problems arose that required
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addressing before any further experiments [76].

First and foremost, the Kapton film onto which the thermopile was sputtered had a

tendency to vibrate slightly whilst in the gas flow. Although not noticeable to the naked

eye, this was clearly visible in the DiffEXAFS signal, with spurious results being produced.

Supporting the film with a plastic plug temporarily solved the problem. Another issue

was the response time of the sample. In order to cover the central junctions of the

thermopile, each sample needed to be at least 5mm in diameter. Whilst these samples

could be heated to within 5% of the target gas temperature in around seven seconds,

this, in practice, was not quick enough to eliminate the effect of temporal beam drifts

between measurements at each of the difference temperatures. Reducing the sample

mass or improving the heat transfer rate between gas and sample would improve matters.

Finally, it was found that having the sample exposed to air left it open to ambient effects

despite being in constant gas flow from the jets. This suggested enclosing the sample

in some protective container for the duration of measurements.

Therefore, an upgraded sample mount was devised as shown in figures 3.10 and 3.11.

This mount is constructed of three components, the first being the sample holder itself.

This is a cylinder measuring 22mm long by 8mm diameter, into the end of which two

500µm deep recesses had been cut. The first, 5mm in diameter to accommodate a pellet

produced by a 5mm die, and the second, 3mm in diameter to accommodate samples

pressed into small gaskets. From the other end of the holder, a 4mm diameter hole was

machined along the length of the cylinder up to within 2mm of the sample position,

where its diameter reduced to 500µm. This hole allows the unhindered passage of the

beam through the sample. Just behind the sample, at the point where the hole narrows,

three more holes, 3mm in diameter, were drilled at 90◦ angular intervals from the outside

curved surface of the cylinder into the internal recess. These allow gas from the jets to

pass around the reverse side of the sample and out along the line of the beam, which

minimises the thermal gradient between the front and back of the sample, and isolates

the sample from the environment, preventing oxidation, and thermal interference. The

section of cylinder without one of these exit holes had two narrow channels cut into it,

running the length of the holder, into which thermocouple wires could be glued.
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Figure 3.10: An exploded view of the upgraded sample mount. Components 1a and 1b
form the sample sheath, 2 is the sample holder, and 3 is the collar for the sample holder.

Figure 3.11: An assembled view of the upgraded sample mount with one of the two gas
jets shown. 1: gas jet, 2: sample position, 3: gas exit channel.
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The second component is a plastic sheath, fixed to a 6mm thick perspex sheet, into

which a slot was machined to accommodate the gas jets. This sheath is slid over the

jets to provide a contained environment for the gas-sample interaction. The sample is

introduced to this environment via an 8mm hole in the perspex sheet, centred on the

line of the beam. With this sheath in place, gas is forced to pass over the sample and

out to atmosphere, either by passing between the two gas jets, or around through the

exit channels cut into the sample holder.

The final component is a 10mm long collar, which is placed over the back of the

sample holder such that it is flush with the end. This ensures that when the sample is

pushed through the reverse of the sheath into the sample environment, it is reproducibly

positioned exactly on the focal spot of the gas jets. All components of the new sample

mount were made out of PEEK (Polyetheretherketone) to prevent brittleness observed

in most plastics, brought about by radiation damage; and also to ensure that the holder

remained structurally stable over a large range of temperatures, where other plastics

would deform.

In this scheme the concept of a sputter deposited thermopile is abandoned, and instead

the sample temperature is measured via a single thermocouple. These are constructed

from 200 micron thick copper and constantan wires and attached to the sample with a

minimal quantity of thermally conductive glue, or, in the case of metallic materials, by

spot welding one of the thermocouple junctions directly onto the sample. This approach

significantly reduces the size of the thermocouple junctions with which the sample must

be thermally coupled; and hence allows the sample itself to be reduced in size, improving

its thermal response time.

The absence of the thermopile’s aluminium rings requires a new reference point for the

other thermocouple junction. This is provided by attaching the junction, along with

a PT100 for absolute temperature measurement, to a section of copper pipe in the

cooling system for the Peltier heater, and covering the two devices with a thick layer

of thermally insulating tape. Fluid flowing through the cooling system comes from a

temperature regulated source, which as a consequence, provides actively controlled, and

so thermally stable conditions at this temperature reference node. This arrangement
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has an additional advantage over the thermopile in that the thermocouple junction and

PT100 are positioned right next to one another rather than being on opposite sides of a

5mm thick aluminium ring. This minimises the probability of any thermal mismatches

between the PT100 and thermocouple junction; ensuring the PT100 does indeed provide

an absolute reference for the thermocouple.

Figure 3.12 shows the results of a FEA analysis of this new sample environment, taken

from Figure 3.6. Again, the contours show the gas velocity, with arrows indicating the

direction of flow. Gas exits the heatsink needle at about 15 ms−1 and forms a visible

jet of high velocity gas that impinges upon the sample at a peak speed of 12 ms−1.

After hitting the sample, gas is indeed primarily deflected around the gas jet sheath and

directed out of the reverse of the sample environment via the holes cut into the sample

mount. Some gas also leaves the environment through the gap between the two gas

jets, along the line of the beam.

Figure 3.13 shows the thermal profile of gas within the sample environment taken from

Figure 3.8. The gas jet ejected from the heatsink needle can be seen to lose approxi-

mately 0.4K before striking the sample, most likely due to adiabatic expansion of the

gas. Again, this loss is not important since the sample temperature is measured at

the time of measurement by a thermocouple rather than being inferred from the PID

setting.

After striking the sample, the gas cools as it flows around the reverse side of the sample,

but importantly it retains around 90% of the temperature provided by the heatsink.

This, therefore, keeps the entire sample environment at some mean temperature, which

is close to that of the gas jets. In turn, this reduces the rate of heat loss from the sample,

and so reduces the amount of heat that must be applied to the sample to maintain a

stable temperature.

This upgraded sample mount was manufactured by A. Sheffield of the Warwick Physics

Department’s Mechanical Workshop and used on beam during experiments MI-803 and

HS-2945 [78][80], discussed in Chapters 5 and 7 respectively. Again, full blueprints are

shown in Appendix A.
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Figure 3.12: A close-up of the velocity of gas flow around the revised sample mount.
Gas ejected from the needle forms a jet, hitting the sample before passing out between
the needles or around the rear of the sample mount.
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Figure 3.13: A close-up of the temperature of the gas jets around the revised sample
mount.
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3.7.3 ’X-ray Temperature’ Measurement

Equation (2.14) shows that the total amplitude of the difference fine-structure scales

with ∆T , being linear within the first order approximation. This feature is primarily

exploited to normalise the Difference EXAFS to obtain the differential signal, but may

also be used to define an ’X-ray Temperature’ (XRT).

This has an extremely important use during experiments, solving a potential problem

with Thermal DiffEXAFS: how to ensure that the sample is fully heated to the desired

temperature at the time of measurement. The sample temperature must, therefore,

be measured; but measured directly, independent of some sensor that has a thermal

response characteristic of its own.

It is not enough to simply check for equilibrium via the thermocouple probe attached to

the sample, since the heat capacity of the probe is likely to be comparable that of the

sample itself given Thermal DiffEXAFS specimens are very small.

The solution, therefore, is to measure the Difference EXAFS amplitude as a function of

modulation frequency and check for saturation. For very rapid modulation, the sample

is certain to have insufficient heat input to fully raise its temperature to that of its

environment. The Difference EXAFS amplitude will therefore be some (probably small)

fraction of saturation amplitude. As the modulation frequency is reduced, more heat

may flow into the sample before measurement, and so the Difference EXAFS amplitude

will increase until, when the sample is in equilibrium with its surroundings, the amplitude

increases no more.

Taking simultaneous temperature measurements with the thermocouple attached to the

sample, allows its response characteristics to be independently compared to that of the

sample itself. This can then verify that the thermocouple reading is representative of the

sample temperature, or at least quantify differences in the two heating profiles so that

the true sample temperature may be derived from that indicated by the thermocouple.

This comparison, and potential mismatch between sample and sensor, was vividly dis-

played when measuring the thermal expansion of Fe with the sputtered thermopile sensor

and then a spot-welded thermocouple as shown in Figure 3.14. The XRT indicates that

the particular sample shown here is fully heated about two seconds after gas jet switch-
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Figure 3.14: Normalised Thermal response profiles. The black line shows the fraction
of ∆T attained by an Fe foil in the beam as a function of elapsed time after gas jet
switching, and is derived from its XRT. The blue line is the corresponding temperature
measurement for a thermocouple spot welded to an Fe foil, and the orange line, the
temperature measurement for a thermopile attached to the rear of an Fe foil with a
thermally conductive compound. Whilst the response times of the sample and thermo-
couple are roughly comparable, the thermopile responds extremely slowing to a change
in gas temperature.

ing. The thermocouple response is slower, but is fully heated after about 3 or 4 seconds.

The thermopile however takes over 30 seconds to fully respond. This large mismatch

meant that although the sample could be measured two seconds after gas jet switching,

the temperature reading given by the thermopile at that time would only be about 50%

of the true sample temperature, and thus require a re-normalisation. This was another

reason for the replacement of the thermopile.

Since the response times vary somewhat between different samples, thermocouples, and

thermopiles, the XRT should be checked before each measurement to ensure a sufficient

delay between gas jet switching and XAS measurement is provided.
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Chapter 4

Development of Data Analysis

Techniques

4.1 Introduction

In a similar sense to the absence of commercial apparatus to perform DiffEXAFS exper-

iments, the novelty of the technique means that there are no analysis packages available

specifically for processing DiffEXAFS data. Indeed, no method by which to analyse

Thermal DiffEXAFS data existed prior to this thesis.

This chapter therefore focuses on the efforts required to take experimental spectra

and extract information on thermal atomic perturbations. The first section describes

DXAS Calibration, a code developed to calibrate spectra obtained from Dispersive XAS

beamlines such as ID24. Following sections then proceed to look at how to define a

reference point from which to measure atomic perturbations, and ultimately, how to

quantify perturbations observed in a DiffEXAFS signal. These last two stages were

performed under the auspices of a new analysis code developed for this thesis, which is

also described.
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4.2 Calibration of spectra from ID24

Due to the geometry of beamline ID24, as described in section 3.4, the first important

stage in data analysis is the conversion of a spectrum’s ’pseudo-energy’ scale, specified in

CCD pixel number, to an absolute scale. Since many beamline parameters either cannot

be determined to sufficient accuracy for calibration, or drift over time, calibration must be

performed a posteriori with respect to a reference spectrum of known calibration. Such

a reference spectrum could, for instance, be obtained from an ordinary step-scanning

beamline using the long established technique for absolute energy calibration [63].

It then remains to fit uncalibrated ID24 spectra to this reference in order to calibrate

them on an absolute scale.

4.2.1 Coordinate transformation

The primary task for calibration is to convert the uncalibrated ID24 energy axis to

a known scale. Assuming both the ID24 and reference spectra were acquired under

the same environmental conditions, from the same sample, and also, for now, that

the instrument response functions of ID24 and the reference beamline were identical,

then calibration is reduced to calculating the values of a set of parameters necessary

to transform the channel number ’pseudo-energy’ axis to an absolute energy scale,

and relative absorption to absolute absorption. Algorithmically, these parameters are

represented by the coefficients of two polynomials: one for energy calibration, and one

for absorption normalisation, so that for each pixel i

E′

i = a0 + a1Ei + a2E
2
i + · · ·+ anE

n
i (4.1)

µ′i = b0 + b1µi + b2µ
2
i + · · ·+ bnµ

n
i (4.2)

where Ei and µi are the original energy and absorption coefficients respectively, and

E′

i and µ′i are the transformed coordinates. As a result, a0 and b0 perform a simple

translation of the spectrum, a1 and b1 stretch the spectrum in a linear fashion, and

higher order coefficients induce non-linear deformations. Setting a1 and b1 to one and

all other parameters to zero will return the original spectrum as it was experimentally

recorded.
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The order n of the polynomial is specified by the user, and is typically between 2 and

4. Given all parameters ai and bi are independent, they may be inserted into a single

vector a for use by the calibration algorithm.

4.2.2 Compensating for background effects

Frequently, XAS spectra contain low frequency drifts in absorption resulting from any

number of background effects.

On a step-scanning beamline these are generally temporal effects such as beam in-

stabilities (both spatially and energetically) or changes in heat load in the beamline

components, both of which vary slowly over time. On dispersive beamlines a whole

spectrum is acquired simultaneously, so background effects are different in nature. For

instance, the combination of the undulator source and polychromator crystal on ID24

does not produce a flat intensity profile, but one which varies as a function of energy,

dropping away towards the fringes of a spectrum. Accordingly, the spectral extremities

have greater statistical noise than the centre. Another example results from the finite

focal spot size, which can inadvertently probe any inhomogeneities in the sample. Since

the beam is dispersed in wavelength across the width of the spot, any variation in sample

thickness will result in a spurious, apparently wavelength dependent absorption signal.

Therefore, DXAS Calibration also provides the option of performing background correc-

tion. If activated, a Chebyshev polynomial of usually 3 to 6 coefficients is fitted through

the residual absorption differences between the ID24 and reference spectra, and then

subtracted to eliminate any low frequency drift.

4.2.3 Handling beamline specific spectral artifacts

Frequently, coordinate transform and background correction parameters alone will suffice

in generating an accurate calibration, however it is also important to consider the case

where our final assumption fails, and the instrument functions of ID24 and the reference

beamline differ. When this happens, such as at x-ray energies in excess of approximately

10keV , it becomes necessary to include additional instrument correction parameters [35].

If BM29 is again taken to be the reference beamline, then two instrument corrections
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have been found to be necessary: one for the difference in diffraction monochromacity

between the monochromator and polychromator crystals, and another for differences in

x-ray penetration into the crystals.

Taking the first correction and considering a perfect crystal diffracting x-rays in compli-

ance with Bragg’s Law, there is no propagating solution to Maxwell’s equations in the

crystal itself, and so the x-ray reflectivity (in the absence of absorption) is unity. This

perfect reflection extends for some angular deviation around the Bragg angle defined by

the Darwin width, which for Si(111) illuminated with 1Å radiation, say, is about three

arcseconds. Beyond the Darwin width, the diffracted x-ray intensity drops off rapidly in

a Lorentzian form. The result is that, when illuminated by white light at some angle of

incidence, the crystal will almost perfectly diffract a small range of wavelengths close

to the Bragg condition, and then a larger range of wavelengths further away from the

Bragg angle at ever smaller intensity.

These Lorentzian tails to the diffracted beam reduce its monochromacity, and hence are

undesirable. The BM29 monochromator, therefore, utilises either twin crystals of Si(111)

or twin crystals of Si(311), arranged in the parallel configuration to suppress these

tails. ID24 however, implements only a single Si(111) or Si(311) crystal to select x-ray

wavelengths. Consequently, the tails on the angular reflectivity profile are unattenuated,

broadening the fine structure.

For calibration purposes, convolving the BM29 spectrum with a normalised Lorentzian

of the form

L(x) =
1

π

1
2Γ

(x− x0)2 + (1
2Γ)2

(4.3)

will reintroduce the broadening effects eliminated by the two crystal monochromator,

matching its characteristic reflectivity profile to that of ID24. At the Sr K edge, for

example, Γ has been found to be 3.4eV.

The second correction, for differences in crystal transparency, arises due to the bending

of Si crystal in the ID24 polychromator. For a perfect crystal of Si(111) on BM29,

diffracting in the dynamical regime, x-ray penetration into the crystal, determined by its

extinction length, is of the order of 1µm for 1Å radiation. However, on ID24 the bending

of the crystal, which in turn bends the lattice planes, breaks the conditions necessary for
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purely dynamical diffraction [26]. Differences in the condition of the crystal surface as a

result of its preparation are also important. Thus, on ID24, x-rays penetrate significantly

further into the crystal - up to 35µm.

The result is that on ID24, x-rays of a given energy diffract from many more lattice

planes of greater depth, which in turn spatially smears the diffracted beam perpendicu-

lar to the planes. These x-rays are therefore detected in several pixels along the length

of the CCD, broadening the spectrum. Given also that the beam intensity decays expo-

nentially as it penetrates the crystal, with a sharp discontinuity at the crystal surface,

the smeared intensity of diffracted radiation will decay exponentially in space. This

introduces an erroneous, asymmetrical energy shift in the observed structure, which,

due to the geometry of ID24, is towards higher energies. To correct this, the second

instrument convolution function is an exponential of the form [35].

exp(z) =

{

(1/σ) exp(1/σz) for z > 0

0 for z ≤ 0
(4.4)

where σ is found to be 1.25eV at the Sr-K edge. Again, this is applied to the BM29

spectrum so that its monochromator transparency effectively matches that of ID24.

4.2.4 The General Non-Linear Levenberg-Marquardt algorithm

Given the above calibration parameters, DXAS Calibration optimises them using a

Levenberg–Marquardt algorithm for general non–linear least–squares fitting of an ar-

bitrary number of parameters [1][67]. This is a widely used fitting algorithm for data

analysis, and indeed is implemented in all the fitting procedures presented in the remain-

der of this chapter.

For the purpose of creating a calibration algorithm within the assumptions given above,

we must state a priori that it is possible to select some set of parameters, a, which

when applied to an ID24 spectrum, f(E,a), reduce any differences between it and the

reference spectrum, fref (E), to a minimum. We therefore define some ’cost function’

that measures the spectral differences for any potential solution, and work to minimise

it. Given also that the code is always supplied with sets of spectral data, discretely

sampled at energies Ei, the differences can be evaluated at each data point as yi(a) =
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f(Ei,a)− fref(Ei) and inserted into a vector

yT =
[

y1(a) y2(a) · · · ym(a)
]

(4.5)

The cost function, which is simply the overall sum of these differences multiplied by

some weighting function if desired, is then

χ2 =

m
∑

i=1

yi(a)2 (4.6)

which can be expressed in vector notation as

χ2 = yTy (4.7)

We choose to weight the differences at each data point as their square when evaluating

the sum of the differences, so as to allow areas of large difference to dominate the cost

function, and so be aggressively minimised when selecting a new set of parameter values.

Consequently, areas of small difference only become significant when the algorithm is

close to the optimal solution.

Once (4.6) has been evaluated, the algorithm is required to calculate a set of changes to

the fit parameters, which, when applied to the uncalibrated spectrum, will (hopefully)

reduce the overall cost of the solution. In order to do this, it is necessary to map out

the polynomial coefficient parameter space by evaluating the elements of its Jacobian,

g, and Hessian, H, which describe the partial gradient and curvature of χ2 with respect

to changes in given parameters, as follows

gk =
∂χ2

∂ak
= 2

m
∑

i=1

[yi(a)]
∂yi(a)

∂ak
(4.8)

Hkl =
∂2χ2

∂ak∂al
= 2

m
∑

i=1

[

∂yi(a)

∂ak

∂yi(a)

∂al
+ [yi(a)]

∂2yi(a)

∂ak∂al

]

(4.9)

These derivatives however, do not contain any information on how each individual data

point was affected by changes in the fit parameters. It is therefore convenient to define

a matrix of the variation in spectral difference at each data point with respect to a
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change in each parameter.

A =

















∂y1(a)
∂a1

∂y1(a)
∂a2

· · ·
∂y1(a)
∂an

∂y2(a)
∂a1

∂y2(a)
∂a2

· · ·
∂y2(a)
∂an

...
...

∂ym(a)
∂a1

· · · · · ·
∂ym(a)

∂an

















(4.10)

This matrix is directly evaluated in the code using the symmetric numerical derivative

equation

Aij ≈
yi(a + δaj)− yi(a− δaj)

2δaj
(4.11)

where δaj is selected to be no larger than the distance (in either units of absorption or

energy) between adjacent points in the spectrum data set. Using A, the Jacobian and

Hessian can be expressed in matrix notation and evaluated likewise in the code. The

second derivative term of the Hessian is ignored since it is negligible when compared to

the first derivative term.

g = 2AT y (4.12)

H ≈ 2AT A (4.13)

With the Jacobian and Hessian known, the required changes to each fit parameter, ∆ai,

can be calculated. Consider a second order Taylor expansion of the cost function in the

region of the best solution abest = a + ∆a

χ2(abest) ≈ χ2(a) + g ·∆a +
1

2
∆a ·H ·∆a (4.14)

If the approximate solution is sufficiently close to the optimal solution, then it may be

reached in one step by differentiating (4.14) with respect to ∆a and rearranging to

obtain.

∆a = −H−1g (4.15)

In reality however, the approximation in (4.14) is not sufficiently good to reach the

minimum in a single step, so therefore, the best approach is to take a smaller than

calculated step in the direction of the minimum and iterate until the cost function stops

(or effectively stops) decreasing.
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In this sense, Levenberg [43], and later Marquardt [45], suggested scaling the steps as

∆a = −(λI + H)−1g (4.16)

where λ is an order of magnitude scaling parameter, and I is the identity matrix. The

calibration then proceeds by choosing an initial set of parameters, a0, believed to be

close to the optimal solution, and setting λ to an order of magnitude comparable to

the expected scale of the solution. ∆a is then calculated using (4.16) and applied to

a. If the cost function is reduced with the new parameters, they are accepted, and λ

is reduced by a factor of 10. If however the cost function fails to decrease, the new

parameters are rejected and λ is increased by a factor of 10. ∆a is then calculated

again, and so on. If a user specified number of consecutive iterations fail to improve the

cost function, the best solution is assumed to have been reached, and the calibration

terminates.

4.3 Fitting EXAFS spectra to theory

4.3.1 ab initio EXAFS spectra using the FEFF code

FEFF is a program developed by the University of Washington to calculate ab initio x-

ray phase and amplitude information for XAFS spectra [71] [72]. These calculations are

based on an all-electron, relativistic Green’s function formalism, and are performed using

a self-consistent, real-space multiple scattering (RSMS) approach for atomic clusters;

they also take x-ray polarisation dependence, core-hole effects, and local field corrections

into account [6]. What follows in this section is a precis of FEFF’s operation from

descriptions given in the FEFF manual [7]. The reader is referred to that manual for

more detailed information.

Each calculation performed by FEFF is composed of six stages. The first of these is to

calculate the scattering potentials for each atomic species present in the sample material.

These species are listed in the FEFF input file ’feff.inp’ along with the type of core hole

under study (i.e. K, L1, L2 etc). Firstly, the free atom potentials are calculated for

each atomic type using a relativistic Dirac-Fock code. This information is then used,
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within the muffin-tin approximation, to determine scattering potentials according to the

Mattheiss prescription [48]. Finally, the Hedin-Lundqvist/Quinn self-energy for excited

states is included [29].

Next, scattering phase shifts, and x-ray cross-sections are calculated. The (relativistic)

matrix for dipole transitions is evaluated using atomic core and normalised continuum

wave functions. Several options exist at this stage for optimising the calculation for

specific XAFS regimes. For work in this thesis the EXAFS flag was used, so as to

perform calculations out to k = 20Å
−1

.

The third stage performs full multiple-scattering calculations, summed to infinite order

via the Rehr-Albers formalism [71], for a cluster of atoms centred on the absorbing atom.

This process focuses on the XANES region of the fine-structure out to about 4Å
−1

, and

is therefore not of particular importance in the EXAFS region.

Following this, photo-electron scattering paths are enumerated. Since the number of

scattering paths is potentially huge, increasing exponentially with atomic shell radius,

this module employs several path importance filters to find all significant multiple-

scattering paths. These work in order of increasing path length, and are combined with

a degeneracy checker to identify equivalent paths. The paths themselves are constructed

based upon a list of coordinates, in Cartesian space, for all of the atoms considered in

the calculation.

With the significant scattering paths found, the effective scattering amplitudes, total

scattering phase shift, and other XAFS parameters are calculated for each scattering

path. For calculations performed in this thesis, the NLEG flag was specified at this

stage (in ’feff.inp’) to limit the maximum number of scattering path legs to six.

Finally, once all the calculations above are complete, the ab initio XAS spectrum, χ(k), is

constructed. Debye-Waller factors for both single- and multiple-scattering paths may be

introduced via the Correlated Debye Model (CDM), Equation of Motion (EM) method,

or Recursion (RM) method. As well as outputting χ(k), the individual χj(k) may be

produced for each scattering path. Such output was requested for calculations in this

thesis since additional, experimentally determined parameters had to be found for each

path.
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4.3.2 Extraction and normalisation of experimental XAFS signals

Prior to fitting any XAFS signal it is necessary to extract the normalised oscillatory

component of the measured x-ray absorption above the edge. This is χ(E), as defined,

in the general case, by equation (2.9).

Experimentally, µ(E) may be obtained from the familiar absorption relation I = I0e
−µz ,

where I0 and I are the x-ray intensities before and after passing through a sample of

thickness z. The other terms in (2.9) are much harder, or indeed, impossible to obtain

from direct measurements.

However, whilst (2.9) is a rigorous definition of χ, it is important to remember that,

conceptually, χ is nothing more than the oscillatory part of the post-edge absorption

spectrum, normalised to unit amplitude. Likewise, the µ0i(E) and µen(E) are just

present to compensate for the background about the measured absorption edge.

Bearing this in mind, χ can be obtained if two conditions hold. Firstly, the edge under

study must be far from any other edges. The sum of µen(k) can then be modelled as

a smoothly varying function, such that a spline, fitted to the pre-edge region of the

spectrum, can be extended under the studied edge and its fine-structure1. Call this

spline Spre(E).

This can not be done if edges are close together, as can be the case at, say, L-edges,

since the fine-structure from one edge can overlap that from another requiring explicit

knowledge of each µen(k).

The second condition is similar. One must assume that the sum of µ0i is also a smoothly

varying function, this time over the whole post-edge region. It is then possible to take a

large range of data above the edge, which extends to well beyond the point where any

EXAFS oscillations disappear, fit a spline to this region, and then extend it back to the

edge. Call this spline Spost(E)

This concept is shown in Figure 4.1. With the splines fitted, it is possible to obtain χ

1Extrapolation of splines is not possible. Thus in order to extend the spline under the edge, an
additional knot point must be placed by eye in the in the high-k region, where it is anticipated the
background absorption would be in the absence of the edge. Thus the spline is extended by interpo-
lating between the pre-edge region and this high-k knot. Although this requires an element of human
judgement, this approach is sufficiently good to normalise the spectrum. Any background errors can be
removed later whilst fitting the fine-structure
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Figure 4.1: A typical X-ray absorption spectrum, taken on BM29 of the ESRF, with
splines fitted to the pre- and post-edge regions to enable extraction of the observed
fine-structure.
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in the post edge region by

χ(E) =
µ(E)− Spost(E)

Spost(E)− Spre(E)
(4.17)

which is of a similar form to equation (2.8).

It is worth pointing out that a qualitative form of the normalised fine-structure can be

obtained simply by subtracting any pre-edge absorption such that the bottom of the

studied edge lies at χ ≃ 0, and then dividing the residual absorption by the perceived

magnitude of the edge jump. This can be useful in providing a quick comparison for the

eye between different spectra, but should not be used in any quantitative data analysis.

4.3.3 Fitting conventional EXAFS spectra to theory

With the experimental χ(E) obtained from (4.17), it is possible to convert to χ(k) by

virtue of equation (2.7) and then fit the resulting data to the fine-structure function

(2.11).

The primary goal here is to acquire values for all structural parameters that contribute

to the fine-structure, and then fix them. This provides a reference point from which to

measure the thermally induced atomic perturbations observed in corresponding DiffEX-

AFS spectra. For such a reference to be valid, χ(E) must have been extracted from a

spectrum taken at close to the same temperature as the DiffEXAFS measurements.

This reference is obtained by firstly using FEFF to determine which scattering paths in

the sample are significant and to generate their phase and amplitude information. Scat-

tering path lengths, sj , and shell coordination numbers, Nj, are fixed from the outset

by providing FEFF with a list coordinates for the position of each atom surrounding

the absorbing atom. The Debye-Waller factors, σ2
j , may also be calculated by FEFF

via the Correlated Debye Model2, which provides a good initial approximation to each

σ2
j . These are not, however, sufficiently good to serve as a reference, and so must be

improved by fitting χ(k).

2FEFF may also calculate σ2
j through either the Equation of Motion or Recursion methods. These

both tend to be more accurate than the Correlated Debye Model, but require knowledge of the sample’s
phonon spectrum.
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It is important to stress that this fitting process works on a restricted number of param-

eters. Only the σ2
j are fitted, along with the experimental shake-off, S2

0 , and absolute

edge energy, E0
3. All other components of the fine-structure function are either fixed

or calculated from first principles. This approach can therefore be considered ’pseudo-

ab-initio’. It also serves to mitigate any deficiencies in theoretically calculated spectra

by absorbing them into the fitted parameters.

The fitting itself is performed with FitChi2, a new code developed for this thesis that

is based in part upon the FitChi code [58]. Like DXAS Calibration, it utilises the

Levenberg-Marquardt algorithm to determine the optimal parameter values. Parameter

errors are also calculated, and are discussed in more detail in section 4.4.2. By default,

every significant scattering path returned by FEFF is considered by FitChi2 irrespective

of path length or whether it is a single or multiple scattering path. This typically

results in many tens of fitting parameters, which can potentially present a problem with

conditioning the fit so as to maximise orthogonality between different parameters.

To help identify any such problems, FitChi2 outputs the full fit correlation and vari-

ance/covariance matrices, and plots containing each individual path contribution to the

overall fine structure. In the event of poor fit conditioning, paths of negligible amplitude

may be discarded, and then, if conditioning is still poor, the experimental spectra may

be Fourier filtered to limit the maximum scattering path length to further reduce the

number of parameters. Experience gained from fitting Fe, SrF2, and Ni2MnGa data

has indicated that Fourier filtering spectra to eliminate contributions beyond the fourth

or fifth single-scattering path, leaving around ten paths to consider, produces the best

results. However, some degree of trial-and-error is necessary to obtain optimal fits.

Once a good fit is found. Just one problem remains, which relates to the representation

of the Debye-Waller factors. FitChi calculates them as exp(−2σ2
j k

2), based upon k, the

photoelectron momentum. However, FEFF generates scattering phase and amplitude

information in more general terms, based upon a complex local momentum p2 = k2 +

k2
F −

(

Σ(E, p) − Σ(EF , pF )
)

(in atomic units), where the F subscripts denote k, E,

3Although not strictly structural parameters, S2
0 and E0 must be known since α and ∂σ2

j /∂T scale
with signal amplitude, and hence also with S2

0 , and since previous work [61] has shown that when varying
scattering path lengths - as is the case in determining α - parameter correlation with E0 is extremely
strong.

63



and p at the Fermi energy. This includes many-body effects from the ’dressing’ of the

electron. The Debye-Waller factor is therefore exp(ip.r), and there is thus a correction

for the inner atomic potential, which is σ2
j dependent [70]. The difference in results

between these two treatments is small, particularly in the EXAFS regime. However,

since the complex local momentum treatment results in a small phase correction, it

is important include this in subsequent analysis in order to obtain the correct thermal

expansion coefficient.

It is therefore necessary to ensure self-consistency is achieved between the FitChi results

and FEFF. The Debye-Waller factors are taken from FitChi, and inserted back in to

FEFF so that it may re-generate the scattering phase and amplitude information with

the experimental parameters included. This new information is then passed back to

FitChi, and another, identical, fit performed in order to obtain a correction to the FEFF

Debye-Waller factors. These corrections are applied to those already in FEFF, another

set of phase and amplitude information generated, and so on until self-consistency is

reached, and FitChi no longer changes any of the Debye-Waller factors.

4.4 Fitting Differential EXAFS spectra to theory

Once a good conventional EXAFS reference has been obtained, the thermal components

α and ∂σ2
j /∂T of the DiffEXAFS spectra may be found relative to sj and σ2

j respectively.

As with the conventional EXAFS, the experimental DiffEXAFS, ∂χ(E)/∂T , is first

converted to k-space using (2.7) and then fitted, this time to the differential fine-

structure function (2.14).

4.4.1 Fitting paradigm and considerations for fit conditioning

In conventional EXAFS fitting, as described in section 4.3, the approach is to generate

ab initio scattering phase and amplitude information for each significant scattering path,

and fit them directly to the experimental fine-structure to determine parameters such

as Debye-Waller factors. The number of paths considered in the fit is based upon the

quality of previous fits; more paths being added if the fit itself is poor, and paths being
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removed if fit conditioning becomes poor.

Such an approach was also tried for Thermal DiffEXAFS analysis. However, it soon

became clear that successfully conditioning such a fit was virtually impossible. Paths

contributing to the differential fine-structure increase in amplitude both with increasing

path length, sj, and with increasing x-ray wavenumber, k. The first has the effect

of amplifying the significance of paths far away from the source atom, which would

normally not be considered in a conventional EXAFS fit. And the second has the effect

of counteracting, to a certain degree, the effect of the Debye-Waller factor, causing

EXAFS oscillations to remain significant out to a higher k than would be observed in

conventional EXAFS.

Consequently, so many paths must be considered in a plain ab initio fit to experiment

that maintaining low correlation between fit parameters becomes impossible. As a result

of this, the fitting algorithm must include a Fourier filter operation at the beginning to

remove the numerous paths with very large lengths. Suitable positioning of the filter

reduced the number of paths from a value approaching a hundred to around about ten.

The fitting procedure is therefore as follows. Firstly, the experimental spectrum is Fourier

transformed. A simple, rectangular filter is positioned at some convenient location, all

data at higher radii deleted, and the spectrum back-transformed. The location of the

window is selected by trial-and-error, but should, as near as possible, be positioned in

a trough between Fourier peaks to minimise the leakage of high-R paths into the filter

region. The window should also be sufficiently large that the filtered spectrum retains

enough independent data points to permit fitting all the required theory parameters,

namely ∂σ2
j /∂T for each path, α (just one in the case of a cubic crystal), and some

background parameters. For a Fourier filtered spectrum, the number of independent

data points is given by [86]

Nind =
2∆k∆R

π
(4.18)

where ∆k is the range of data initially passed into the filter, ∆R is the range of radii

allowed to pass through the filter, and where Nind is rounded to the nearest integer.

For a viable fit

N < Nind (4.19)
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where N is the number of fitting parameters.

Once the experimental spectrum has been filtered, the FEFF phase and amplitude in-

formation for the scattering paths that are allowed through the filter are taken, and this

information used to generate theory spectra that are fitted to the filtered experimental

spectra (back in k- or E-space).

Importantly, each theory spectrum generated by the fitting algorithm is passed through

the same Fourier window as the experimental spectrum. This has the effect of intro-

ducing similar Fourier defects to the theory spectra as were introduced when filtering

the experimental spectrum.

Once the fitting algorithm has converged, a similar analysis of the fit is performed as

described in section 4.3 to assess the quality of the fit. Namely, are the fit residuals low,

and the fit conditioning good?

In contrast to this approach, Fourier filter windows could be selected to extract infor-

mation from specific shells or scattering paths at a time, which are then analysed via,

say, the ratio method [13]. However, such an approach is not advisable since scattering

paths, particularly away from the first or second shell single-scattering radii, are neither

orthogonal nor discrete in R-space. Fourier transform peaks have a Gaussian shape,

describing some variance in scattering radius for a given path. These peaks overlap in

R-space, sometimes even forming a continuum a high radii, making path selective filter

windows near impossible to define.

Such an approach may work for first or second shell single-scattering, but it should be

remembered that the expansion term in the differential fine-structure (2.14) scales with

increasing path length, meaning high-R paths should also be considered.

Additionally, and as always in spectral applications, Fourier transform operations intro-

duce artifacts into the spectra by virtue of the finite range of data available. Whilst

specialised filters may be selected to minimise such artifacts, they cannot be completely

eliminated. Therefore, it is advisable to perform as few filter operations as possible to

prevent the introduction of too many spectral defects.
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4.4.2 Analysis of fitting errors

In fits to conventional EXAFS spectra, errors are obtained by simply calculating the

variance/covariance matrix from the Marquardt fitting algorithm. Since the noise in the

spectrum is very low, each data point is considered to have the same statistical noise

associated with it, and as such, the Marquardt cost function is as shown in (4.6). In the

DiffEXAFS spectra however, the noise is firstly a much larger fraction of the measured

signal, but also varies across the spectrum; the dispersive geometry produces a continu-

ous range of diffracted wavelengths, but not all wavelength components carry the same

intensity. At the extremities of the spectrum, noise is higher since the polychromator

crystal produces fewer photons there, and lower in the central region where the flux is

greatest.

Consequently, when evaluating the fitting cost function, each data point must be given

a relative weighting based on the amount of noise associated with it. (4.6) becomes

χ2 =

m
∑

i=1

yi(a)2

σ2
i

(4.20)

where σ2
i is the variance of yi(a) at point i. In order to evaluate each σ2

i , it becomes

necessary to estimate the noise at each point in a measured spectrum.

This can be achieved by defining a maximum effective scattering radius for EXAFS

contributions, Rmax, beyond which the remaining, structureless components can be ex-

tracted and considered purely noise. Assuming the noise is white, these components are

indicative of the noise over all R-space and so can be bandwidth corrected to compensate

for unrejected noise in the region where R < Rmax.

This will extract the high frequency noise only. A similar filter could be applied to low

radii noise by eliminating contributions from radial components less than the first shell

single-scattering radius. However, better results tend to be obtained when background

features are subtracted using a Chebyshev polynomial incorporated into the fit.

Rather than filtering the noise in R-space, the Fourier transform relation R = π/2∆k

should be used to fit smoothed, piecewise-continuous, natural cubic splines - with knots

positioned such that ∆k corresponded to R = Rmax - to the spectra to define the

EXAFS components. The fit residuals then define the noise. This approach is more
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favourable to Fourier filtering since it preserves the k-dependence of the noise, and

hence, directly yields the required σ2
i .

Once σ2
i is known for all i, the Marquardt algorithm can proceed according to (4.20),

and the parameter fitting errors again acquired from the Marquardt variance/covariance

matrix.

One final point to note is that spectra are acquired on ID24 with data points spaced

linearly in energy. Fitting the noise extracting spline described above though, requires

knots to be positioned evenly in k-space. A spectrum can easily be converted from

E-space to k-space and vice versa using equation (2.7), but care must be taken. Since

E ∝ k2, and thus ∆E ∝ k, the data sampling rate apparently changes when switching

between the two spaces. If a spectrum is acquired in constant energy steps and converted

to k-space, the density of data points increases proportional to k. At low-k, there are

fewer data points between two knots than there are at high-k.

Since each individual data point has the same statistical significance, the spline fit must

be weighted such that it becomes increasing important to obtain a good fit between

two knots, ∆k apart, at high-k than at low. The cost function then becomes

χ2 =
m
∑

i=1

yi(a)2k2 (4.21)

Performing Fourier filtering instead of fitting a spline at this stage will not help, since

Fourier transforms from k- to R-space again require the input spectrum to be sampled

in steps of constant k.

A similar situation can arise when spectra acquired in constant k steps are converted to,

and analysed in, E-space.
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Chapter 5

Differential EXAFS to Measure

Thermal Expansion

5.1 Introduction

The first task in assessing the viability of Thermal DiffEXAFS was to perform a simple,

proof of concept experiment; taking measurements from an already characterised mate-

rial of well known thermal properties, and analysing them to see if those characteristics

could be reproduced and to what accuracy.

Thermal expansion measurements fitted this mandate nicely. Such measurements have

been performed with a multitude of techniques over many decades, especially with

respect to the elements and simple compounds, providing highly accurate expansion

coefficients.

Thermal expansion also has the advantage that away from any features such as phase-

transitions, it describes a linear change in crystal dimensions as a function of tempera-

ture. This simplifies the analysis of DiffEXAFS data.

This chapter describes the process by which samples were selected for DiffEXAFS ther-

mal expansion measurements, provides the results of those measurements and the sub-

sequent analysis, and culminates in the derivation of coefficients of thermal expansion

for strontium fluoride and alpha iron.
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5.2 Selection of samples for Thermal Expansion measure-

ments

Since the measurements described here would present the first test for Thermal DiffEX-

AFS, it was important to select samples that would provide the best chance of resolving

the thermal expansion component of the differential fine-structure.

Based on previous Differential EXAFS experiments [64], mean atomic displacements of

the order of one femtometre may be expected to be resolved in a Thermal DiffEXAFS

measurement. In terms of thermal expansion, and given inter-atomic distances are of the

order of a few angstroms, this corresponds to a minimum detectable thermal expansion

coefficient of approximately 10−5K−1 for a temperature modulation of 1K. Numerous

materials exist with a thermal expansion of this order, presenting many targets for

measurement. Indeed, even those with a lower thermal expansion need not necessarily

be ruled out, since it is always possible to increase the degree of temperature modulation

between each of the difference spectra in a DiffEXAFS measurement.

However, thermal disorder must also be considered, and so a material’s phonon spectrum

examined. As described in section 2.3, thermal disorder washes out x-ray fine-structure

- particularly when this is associated with high-frequency modes of vibration. As the

absolute temperature of a sample is increased, more phonon states become excited,

increasing σ2
j , and so reducing the fine-structure amplitude according to exp(−σ2

j k
2).

Since σ2
j should be as small as possible, samples should be selected, to a first approxi-

mation, with high Debye temperatures; higher than the measurement temperature, such

that high-frequency phonon states are not excited.

Care should also be taken to select samples where σj varies slowly with temperature,

reducing the thermal disorder component of the differential fine structure, and so in-

creasing the proportion of the total DiffEXAFS signal described by thermal expansion.

One final parameter to consider is the crystallographic symmetry of the chosen sam-

ple material. As explained in Section 2.5, von Neumann’s Principle may be used to

reduce the number of independent thermal expansion coefficients. Thus, for simplicity,

cubic systems should be examined first, where only one thermal expansion coefficient is
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required, which may be applied to all DiffEXAFS scattering paths.

The viability or otherwise of potential samples was established prior to experiments

on beam, by using FEFF to generate anticipated Thermal DiffEXAFS signals. Two

targets initially considered were the Alkali Halides Rubidium Fluoride (RbF) and Lithium

Bromide (LiBr), which have thermal expansion coefficients of 3.86 × 10−5K−1 and

4.87×10−5K−1 [68] respectively. However, with Debye temperatures of only 272K [69]

and 246K [15] respectively, the overall anticipated DiffEXAFS signal quickly decays with

increasing k, dropping below the predicted noise limit of ID24 before a suitably large

range of data is acquired.

As a result, these materials were discarded. Much better samples proved to be Strontium

Fluoride (SrF2) and Iron (α-Fe), shown in Figure 5.1.

5.3 Strontium Fluoride and Alpha-Iron

The thermal expansion coefficients and Debye temperatures for SrF2 and α-Fe are shown

in Table 5.1.

The thermal expansion coefficients are clearly a factor of two to five smaller than those of

LiBr and RbF, and are only just above the 1K modulation limit of 10−5K−1. However,

the higher Debye temperature results in the anticipated signals remaining above the

ID24 noise limit up to approximately 550eV, providing numerous high-k oscillations that

may be fitted during data analysis. These are shown in Figure 5.1.

Another interesting and useful feature of the Thermal DiffEXAFS signals can be seen

in figure 5.1. Taken alone, the desired thermal expansion component of the signal soon

falls below the ID24 noise limit as E increases. It may, however, still be resolved as

a peak shift with respect to the standard EXAFS when superimposed upon the larger

thermal disorder component. In effect, this means that for thermal signals it is possible

to resolve mean atomic displacements fractionally smaller than a femtometre in spite of

the previously stated noise limit.

A small crystal of strontium fluoride was ground to a fine powder for DiffEXAFS mea-

surements. 19.8mg of this powder was mixed with 111mg of Boron-Nitride and pressed
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Figure 5.1: Anticipated DiffEXAFS signals, calculated using ab initio theory for a 1K
change in α-Fe (top) and SrF2 (bottom). In each graph, the blue line is the thermal
expansion component of the differential fine-structure function, the red line the disorder
component, and the black line the sum of the two.
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SrF2 α-Fe

Structure Face-centre cubic (Fm-3m) Body-centre cubic (Im-3m)
a/Å 5.7996 [90] 2.8665 [57]
α/10−5K−1 1.81 [74] 1.18 [33]
ΘD/K 420 [22] 470 [34]

Table 5.1: Crystal structure with lattice parameter, a; thermal expansion coefficient, α;
and Debye temperature, ΘD; of SrF2 and α-Fe. References are shown in brackets.

in a 13mm die to produce a pellet 0.5mm thick, with an absorption jump of 1.0 at the

Sr-K edge.

A polycrystalline iron foil was obtained from Goodfellows that had been rolled to a

thickness of 9µm, giving an absorption jump of 2.6 at the Fe-K edge. To relieve any

strain present in the material, the sample was annealed in an atmosphere of 5% hydrogen

in nitrogen at 500◦C for half an hour, and then cooled in freefall to room temperature

at an initial rate of 2◦C/min. Finally, the sample was covered with a thin coat of lacquer

to protect it from oxidation. This was removed immediately before measurements were

made.

5.4 Ensuring Observed Structure is Thermal in Origin

5.4.1 Checking the DiffEXAFS Baseline

Given the stringent DiffEXAFS requirements laid out in section 3.2, it is important to

ensure that structure seen in a Thermal DiffEXAFS spectrum is indeed thermal in origin.

There are two ways in which this can be accomplished. The first is to ensure that the

DiffEXAFS is structure-less and passes through ∆χ = 0 when ∆T = 0K, or, quite

simply, to check that there is no signal when there is no temperature modulation.

Figures 5.2 and 5.3, taken through an Fe foil, clearly breach this requirement, indicating

that the beamline and modulation apparatus are not properly configured. They do

however, serve to show how tricky it can be to obtain a good Thermal DiffEXAFS

spectrum. Figure 5.2 shows some fraction of the Fe EXAFS leaking through into the

DiffEXAFS spectrum. Examination revealed that this problem originated from the supply
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Figure 5.2: A spurious DiffEXAFS spectrum taken through Fe foil for ∆T = 0K. The
structure seen is Fe EXAFS leaking into the DiffEXAFS as a result of a change in gas
pressure in ID24’s third mirror upon switching the gas jets. This pressure change is about
10mbar, resulting in a change in beam attenuation of about 0.2% along the length of
the mirror.

line that was providing nitrogen to both the gas jet apparatus and to ID24’s third mirror.

It was found that switching the gas jets back and forth induced subtle changes to the

gas pressure in the supply line, which in turn changed the pressure of gas inside the third

mirror, affecting the attenuation of x-rays passing through it. This change in pressure

amounted to about 10mbar, inducing a change in x-ray absorption across the length

of the mirror of about 0.2%. Under normal conditions, such a small change would not

be detectable, but when looking at differences in absorption, the change generates a

spurious signal that is two orders of magnitude larger than the Thermal DiffEXAFS

signal from the sample itself, completely masking it.

Isolating the two beamline components rectified this problem, but, as seen in Figure

5.3, the baseline was still not flat. This problem also arose from beam attenuation

by the nitrogen gas, but was even more subtle in origin than the first. Referring back
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Figure 5.3: A spurious DiffEXAFS spectrum taken through Fe foil for ∆T = 0K. Once
the problem shown in Figure 5.2 was eliminated the resulting DiffEXAFS baseline was
still not flat. This was due to changes in gas pressure across the spatially dispersed
beam inside the sample mount.

to Figure 3.12, it can be seen that, at the reverse side of the sample mount, the gas

flow is not uniform in the plane of the beam. Again, this induces changes in local gas

pressure of a few mbar. Normally, on, say, a step scanning beamline, this would not

be problematic, but in D-XAS, the wavelength components of the beam are correlated

in the horizontal plane, and are dispersed away from the focal spot. Consequently, the

asymmetric gas pressure across the beam profile causes greater attenuation at one end

of the spectrum than at the other. Critically, this profile is reversed upon switching the

gas jets, generating an absorption difference between the two state measurements.

This situation was remedied by blocking the central gas channel cut into the side of the

sample mount, and arranging the other two such that gas flowed around the reverse

side of the sample in the vertical plane rather than the horizontal. In future, this effect

could also be reduced by using a lighter gas such as helium, which will have less of an
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effect on the beam.

5.4.2 Checking the Phase-Reversed Signal

Once a flat baseline is obtained, the next task is to show that any structure seen in a

Thermal DiffEXAFS spectrum is genuinely thermal in origin rather than from some other

source that is correlated with the gas jet switching. This can be achieved by measuring

and comparing both the standard DiffEXAFS, and the phase-reversed DiffEXAFS. In

this sense, a DiffEXAFS spectrum is acquired with a T+ measurement first - such that

the spectrum is then based on T+ minus the T− measurement - and then taking another

spectrum with the gas jet phase reversed, that is, by taking a T− spectrum first. Since

this changes the sign of ∆T , equation (2.14) predicts that the observed structure should

be perfectly inverted about ∆χ = 0. Any part of the spectrum that does not invert

cannot be thermal in origin, and is therefore spurious.

Such measurements can be seen in the example shown in Figure 5.4. The inversion of

the phase-reversed signal produces the distinctive eye-pattern shown. Taking the red

line from Figure 5.4 and inverting it produces Figure 5.5. Since all the structure shown

the two spectra are then coincident, it is all thermal in origin. These are thus good

Thermal DiffEXAFS spectra.

5.5 Experimental Results

Figure 5.6 is a plot of both the Fe-K and Sr-K edge EXAFS (scaled in amplitude) and the

associated Thermal DiffEXAFS for modulation of the order of 1K at room temperature.

The spectra were put on a known energy scale using reference spectra from BM29 and

the DXAS Calibration code described in section 4.2.

The time between measurements at T+ and T- was 1.5s for the Fe measurements

and 3s for the Sr measurements, with each pair of measurements repeated six hundred

times and averaged to minimise statistical noise. Each complete difference measurement

was repeated with the initial gas jet phase reversed, causing all observed structure to

invert about ∆χ = 0, proving its thermal origin. These spectra have themselves been
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Figure 5.4: Two DiffEXAFS signals, in this case taken at the Fe-K edge in α-Fe, showing
the effect of gas jet phase inversion. The black plot was produced based upon T+ - T−,
and the red upon T− - T+. The structure in the latter is thus inverted about ∆χ = 0,
producing this distinctive eye-pattern.

Figure 5.5: Taking the data from Figure 5.4 and inverting the phase-reversed signal
shows the structure in two spectra is identical. It can therefore be stated that this
structure is entirely thermal in origin, with no corruption from non-thermal sources.
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inverted and plotted as the grey lines on Fig 5.6. Additional control measurements with

∆T = 0.0K yielded no structure larger than that anticipated from our 0.2K temperature

error, further demonstrating the signals are thermally generated. A strong dominance

of the DiffEXAFS disorder component is clearly observed given the signals are largely

in phase with the original EXAFS. However, the vertical dashed-grey lines, which are

centred on the three largest EXAFS peaks, reveal that the DiffEXAFS spectra are phase

shifted - indicating the thermal expansion component has also been detected. As ∆T

increases, so does the amplitude of the difference signal. Normalising each to a unit

temperature modulation yields the Differential EXAFS, which shows that the amplitude

follows a linear scaling relationship with temperature as predicted by (2.14).

The absence of any sharp features at the edge energy, where the XAFS derivative is

maximal, is testament to energy stability between T+ and T- measurements of better

than 1meV, as required [64].

Some other spectral characteristics predicted by (2.14) are also visible. Firstly, the k and

k2 dependency of the DiffEXAFS expansion and disorder terms respectively, especially

in the Fe data. Whereas the three marked peaks in the EXAFS plot get progressively

smaller with increasing energy, the same peaks in the DiffEXAFS plots are all of similar

amplitude.

The sj dependency of the thermal expansion term can be seen by virtue of the additional

high frequency structure present in the DiffEXAFS, indicative of scattering from paths

with large sj, that is not seen in the conventional EXAFS.

The SrF2 data shown in Figure 5.6 were acquired during ESRF experiment MI-740,

the first ever Thermal DiffEXAFS experiment, using the sputtered thermopile sample

mount described in section 3.7.1. By contrast, the Fe data were taken during experiment

MI-803, which exploited the upgraded sample mount described in section 3.7.2. Some

Fe data were also taken with the sputtered thermopile during MI-740, and are shown

alongside Fe data from MI-803 in Figure 5.7. The signal from the latter experiment

is clearly an improvement on the initial signal. Some of the improvement, in terms of

statistical noise for instance, is due to beam differences between experiments; MI-740

being carried out during the ESRF’s 16-bunch operation mode at 100mA ring current,
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Figure 5.6: Experimental EXAFS and DiffEXAFS for the K-edges of α-Fe (top graph)
and SrF2 (bottom graph) at room temperature. The EXAFS plots have been scaled to
0.3% of their original amplitude so as to be of comparable size to the difference signals.
Temperature modulation in the difference spectra is accurate to ±0.2K. The gray plots
are the inverted gas jet phase-reversed signals, which are essentially identical to the
black plots, proving the thermal origin of the signal. The dashed vertical lines, which
are centred on peaks in the EXAFS plots, highlight the phase shift of the difference
signals with respect to the EXAFS.
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Figure 5.7: A comparison between Difference EXAFS data taken, under similar con-
ditions, through Fe foil during experiment MI-740 (top) and MI-803 (bottom). The
upgraded sample mount used in MI-803, which allowed the time between measurements
to be reduced to about 1.5s, yielded significantly better data.

and MI-803 during Uniform filling mode at 200mA. However, other improvements result

from the upgraded sample environment.

Samples used during MI-803 were about four to five times smaller in mass than could

have been used with the sputtered thermopile. This reduction, combined with the

upgraded mount’s back-face sample heating, improved the thermal response time of the

sample when switching gas jets, allowing the delay between + and - measurements to

be reduced from 4.0s to 1.5s. This reduced the influence of beam drift between the two

measurements removing some spurious spectral features seen when using the thermopile.

The protective sheath of the upgraded mount improved the thermal stability of the

sample by eliminating atmospheric effects, resulting is greater reproducibility between

different DiffEXAFS spectra, and a reduction in temperature measurement errors that

affect normalisation of the signal.
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5.6 Extraction of the Thermal Expansion Coefficients

5.6.1 Generation of Theory Phase and Amplitude Information

As described in section 4.3.3, the first stage to extracting thermal expansion coefficients

is to use FEFF to generate scattering phase and amplitude information.

For analysis of the Fe data, this information was calculated in the range 0 ≤ k ≤

20Å
−1

. The α-Fe BCC crystal structure supplied to FEFF was generated using the

lattice parameter at room temperature a = 2.8665Å [57]. Atomic potentials were

modelled according to Hedin and Lundqvist [29]. Calculated scattering paths (which

included multiple scattering paths) were filtered, limiting the minimum path amplitude

to 4% of the largest path amplitude and the maximum total path length to 5.0Å, leaving

12 significant paths. This relatively low maximum scattering path length was selected

in anticipation of Fourier filtering the experimental data to 5.0Å, or the first 5 single-

scattering paths, when fitting the conventional EXAFS.

Similarly, for SrF2, FEFF calculated the phase and amplitude information, again between

0 ≤ k ≤ 20Å
−1

, using the lattice parameter at room temperature a = 5.7996Å [90].

Filtering limited paths to no more than 9.1Å in length, and again required their amplitude

to be at least 3% the amplitude of the largest path; producing 38 significant paths.

The FEFF input files used to generate these data, along with lists of the scattering paths

returned, are given in Appendix C.1.

5.6.2 Establishing a Perturbation Reference Point

Once the scattering phase and amplitude information has been calculated, FitChi2 was

used to find the remaining EXAFS factors, again described in section 4.3.3.

As shown in Figure 5.8, the Fe and SrF2 data were fitted from 60 ≤ E′ ≤ 740eV and

40 ≤ E′ ≤ 450eV respectively, where E′ is the energy above the edge. Treatment of

the scattering paths contributing to the fine-structure was different in each case.

At the Sr-K edge in SrF2, a good fit was obtained without the need for Fourier filtering

to eliminate high-order paths, and so all 38 paths returned by FEFF up to 9.1Å were

considered. Parameter correlation remained low, with the typical inter-parameter cor-
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Figure 5.8: Theory fit to experimental EXAFS, taken on BM29, at the Fe-K edge in
α-Fe (top) and the Sr-K edge in SrF2 (bottom). The theory spectra, shown in red, were
calculated as described in section 5.6.2. The experimental spectra are shown in black.
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Fe EXAFS

Parameter Fitted value

σ2
1/10

−3Å
2

6.5± 0.2

σ2
2/10

−3Å
2

5.8± 0.2

σ2
3/10

−3Å
2

7.2± 0.4
S2

0 0.94 ± 0.02
E0 eV 71211

SrF2 EXAFS

Parameter Fitted value

σ2
1/10

−3Å
2

9.6± 0.1

σ2
2/10

−3Å
2

7± 3

σ2
3/10

−3Å
2

10.4 ± 0.4
S2

0 0.88± 0.02
E0 eV 16103.7 ± 0.1

Table 5.2: The primary parameters found when fitting the Fe and SrF2 conventional
EXAFS. The σ2

j shown are for the first three single-scattering paths, where j = 1, 2, 3
respectively.

relation coefficient being around 0.2. The most significant fit parameters are shown in

Table 5.2.

By contrast, a Fourier filter at the Fe-K edge was found to be absolutely necessary.

Here, scattering paths were limited a maximum length of 5.0Å. Again the typical inter-

parameter correlation coefficient was around 0.2, which, along with the satisfaction

of equation 4.19, testifies to good fit conditioning. The results for σ2
j were returned

to FEFF, as described in section 4.3.3, and the fit iterated 21 times to reach self-

consistency in Debye-Waller factors based on the FEFF and FitChi representations. The

most significant parameters are again shown in Table 5.2, which reveals an interesting

trend.

From harmonic theory, and based upon a model such as the Correlated Debye Model [83],

Debye-Waller factors should, for single-scattering paths at least, increase monotonically

with increasing scattering path length. This would make σ2
j for the second shell single-

scattering anomalously low. However, such a trend is consistent with Born-von Karman

lattice dynamics calculations performed by Jeong et al. [32], apparently confirming their

results (for Fe at least). As a consequence, changes to Debye-Waller factors, observed

through ∂σ2
j /∂T , should also exhibit this trend.

The full configuration files for these fits, along with the output data, are given in

Appendix C.1.
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5.6.3 Fitting the Differential Fine-Structure

With a reference point defined, the thermally induced perturbations of (2.14) were

determined.

For the Fe data, the experimental DiffEXAFS spectra were Fourier filtered to the region

0 ≤ R ≤ 5Å - the upper limit being selected to eliminate paths with low orthogonality in

R-space. Theory spectra, generated from the 12 significant scattering paths calculated

by FEFF for the same region, were then fitted to these filtered DiffEXAFS spectra in

order to determine α and ∂σ2
j/∂T . These corresponded to both single and multiple

scattering paths out to the 5th coordination shell, although only the first four single-

scattering paths were found to contribute significantly to the DiffEXAFS signal.

The statistical noise in each experimental spectrum was estimated by defining a max-

imum effective scattering radius for EXAFS contributions of 30Å, and then processing

the spectrum as described in section 4.4.2

Similarly, for SrF2, the DiffEXAFS were Fourier filtered to 0 ≤ R ≤ 4.57Å, leaving 3

significant paths - the first three single-scattering paths - and the noise extracted based

on a maximum EXAFS scattering radius of 15Å.

Figure 5.9 shows the theory fit to experiment for the filtered Fe and SrF2 DiffEXAFS

data based on equation (2.14). The corresponding parameters are shown in Table 5.3.

Averaging the thermal expansion coefficient for each sample material over all its Dif-

fEXAFS measurements yields α = (11.6 ± 0.4) × 10−6K−1 for Fe and α = (19 ± 2)×

10−6K−1 for SrF2, which agree with the accepted values of α = 11.8 × 10−6K−1 and

α = 18.1 × 10−6K−1 respectively [52] [74]. Given the error of 5 × 10−7K−1 in the

Fe thermal expansion coefficient over an average ∆T of 2.6K, we claim to be able to

resolve thermally induced atomic displacements to an accuracy of about 0.3fm.

5.7 Discussion of Thermal Expansion Measurements

With the results shown above, it is possible to conclude that DiffEXAFS is a viable

technique for the measurement of thermally induced atomic displacements. Here mea-

1Best results were produced when E0 was fixed at 7121eV, corresponding to the inflection point on
the dipole absorption edge.
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Figure 5.9: Fourier filtered experimental Difference EXAFS spectra (black lines) for
α-Fe (top graph) and SrF2 (bottom graph), which have been fitted to the DiffEXAFS
fine-structure function (2.14) (red lines). ∆T for each spectrum is given to the right.
The associated fit parameters are shown in table 5.3.
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Fe DiffEXAFS

Parameter ∆T/K
1.7 ± 0.2 2.7 ± 0.2 3.6 ± 0.2

α 11.1± 0.9 12.1± 0.6 11.5± 0.5

∂σ2
1/∂T 1.48 ± 0.04 1.38 ± 0.03 1.33 ± 0.02

∂σ2
2/∂T 1.34 ± 0.08 1.04 ± 0.06 1.09 ± 0.04

∂σ2
3/∂T 2.2 ± 0.1 1.60 ± 0.07 1.47 ± 0.06

∂σ2
4/∂T 2.0 ± 0.1 1.5 ± 0.1 1.38 ± 0.08

SrF2 DiffEXAFS

Parameter ∆T/K
1.5 ± 0.2 4.7 ± 0.2

α 20± 3 18± 1

∂σ2
1/∂T 2.04 ± 0.09 1.85 ± 0.05

∂σ2
2/∂T 3.1 ± 0.4 2.0 ± 0.2

∂σ2
3/∂T 2.2 ± 0.5 3.4 ± 0.2

Table 5.3: The DiffEXAFS parameters for α-Fe and SrF2. α is in units of 10−6K−1

and ∂σ2
j /∂T in 10−5Å

2
K−1. Note that errors for α and the ∂σ2

j are based on the fit
errors only and do not include possible errors from ∆T .

surements of thermal expansion in some simple materials has been demonstrated. The

technique presented may also be applied to more complex crystalline systems or even

amorphous systems, with minimal changes. Indeed, the potential for studying amorphous

systems presents numerous opportunities where other techniques, such as diffraction,

struggle.

Presently, the factors limiting the accuracy of the measured thermal expansion coeffi-

cients come partly from the modulation apparatus and partly from the beamline.

The modulation apparatus is currently only able to set the sample temperature with an

accuracy of 0.2K (although the actual temperature may be measured more accurately

with the thermocouple attached to the sample). Improving this will improve the average

DiffEXAFS signal calculated over many pairs of +/- measurements. The speed at which

the sample temperature may be changed defines the modulation period, and so the

degree of beam drift between measurements at + and - states. Although the upgraded

sample mount reduced the modulation period over that of the initial, thermopile design,

a further reduction in the modulation period would improve the signal further.
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As for the beamline, fractional statistical noise in the measured spectra is not currently

limited by the flux emitted from ID24’s source, but by the sensitivity of its detector.

The CCD detector currently in use employs a 16-bit buffer for data storage and transfer,

limiting the CCD to just 65536 discrete digital levels, and thus its sensitivity to one part

in 10−5. Reducing the quantisation limit of the CCD could potentially improve the the

statistical noise by an order of magnitude since flux is available for fractional statistical

noise in photon counting of the order of 10−6 in a few hours.

Whilst, in this chapter, Thermal DiffEXAFS has been proven to work in practice rather

than just in theory, the true power of the technique lies in the measurement of non-linear

phenomena such as phase-transitions. With displacements detectable over temperature

changes of about one Kelvin, high-resolution measurements of atomic motion may be

made through transition regions, which until now has not been possible with any other

x-ray spectroscopic technique.
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Chapter 6

Differential XRD to complement

DiffEXAFS

6.1 Introduction

Differential X-ray Diffraction (DiffXRD) was discovered by chance during initial Ther-

mal DiffEXAFS measurements on ID24, but has since proven to be a useful tool to

complement information obtained from DiffEXAFS data [77].

DiffXRD uses the same experimental apparatus and measurement technique as its EX-

AFS counterpart. The difference however, is that the sample through which transmission

absorption measurements are taken (normally polycrystalline or amorphous) is replaced

with its single crystal counterpart.

In kinematic diffraction theory, this introduces Laue diffraction features to the measured

transmission intensity, where x-rays at certain energies are scattered out of the main

line of the beam. These scattered photons do not enter the detector at the end of

the beamline, causing an anomalous drop in transmitted intensity. This is seen as an

apparent increase in x-ray absorption, which is observed as a discrete peak, independent

of any true absorption fine-structure.

Such features make XAFS analysis difficult1. However, being from diffraction in origin,

1Diffraction features may be removed from XAS spectra with, for instance, the technique given
in [91].
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they contain information on the structure of the sample material, and hence are sensitive

to atomic perturbations in the same way as DiffEXAFS, albeit on a structurally averaged

scale rather than a local atomic scale.

From Bragg’s law and E = hc/λ it is easy to show that for a given diffraction peak

(∆E

E

)

hkl
= −

(∆d

d

)

hkl
(6.1)

Where ∆E/E is the observed fractional change in peak position due to a relative change

in inter-planar spacing, ∆d/d, corresponding to the Miller indices hkl. In the case of,

say, thermal expansion, this change is in turn

(∆E

E

)

hkl
= −αij∆T (6.2)

where, as in (2.14), αij are the coefficients of the thermal expansion tensor, each of

which can be obtained by the analysis of an appropriate diffraction peak. Again, von

Neumann’s Principle may be applied to reduce the number of independent coefficients.

For cubic crystals, this again results in one independent parameter, so ∆E/E is the

same for all diffraction peaks.

In order to accurately determine ∆d using conventional XRD techniques, it is typically

necessary to vary the temperature of the sample by many tens of Kelvin between mea-

surements such that a clear peak shift can be observed and thus measured. However,

by utilising the same measurement technique as DiffEXAFS - namely taking the differ-

ence between two spectra acquired in a short space of time in high stability, low noise

conditions, where the only change between measurements is the modulation of a given

sample property - then it is possible to detect extremely subtle shifts, and so obtain ∆E

over temperature changes of the order of 1K or less.

Thus, simply by substituting a DiffEXAFS sample with its single crystal counterpart, it

is possible to obtain an independent measure of crystal perturbations without having to

change any other part of the experimental setup.
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Figure 6.1: The Sr-K edge measured in transmission on ID24 through a single crystal
of SrF2 (top plot with left scale). The amplitude has been normalised to unit edge
jump. Diffraction glitches are clearly present on the absorption fine-structure. As the
temperature of the specimen is changed by 1K at room temperature, these glitches shift
in energy due to thermal expansion in the crystal, producing the DiffXRD signal shown
below (right scale).

6.2 Experiment

The powdered SrF2 sample used for DiffEXAFS measurements was replaced with a

single-crystal sample, cleaved along its 111 lattice planes, producing a section about 5

× 5 mm big and 70µm thick, with an absorption jump of 1.9 at the Sr-K edge. The

normalised absorption spectrum from this sample is plotted in Figure 6.1 along with its

corresponding DiffXRD signal for a 1K modulation. Peaks generated by the effect of

Laue diffraction removing flux from the beam are clearly present in the observed signal.

Given SrF2 has a cubic crystal structure, the thermal expansion is described by just one

coefficient. The temperature shifts of all the diffraction peaks will, therefore, exhibit

the same change in position independent of the Miller indices of the reflections.
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Figure 6.2: The diffraction glitch (dashed line) at about 16.35keV is extracted from
the x-ray transmission spectrum, and the background subtracted. A Gaussian is fitted
to the glitch (solid line) to determine its centroid energy, width at half maximum, and
relative height.

The absence of any difference features at the same energy as the Sr-K edge in Figure 6.1

is testament to energy stability of the beam between the two absorption measurements

used to construct the DiffXRD signal. The observed differences are therefore from a

genuine change in observed x-ray absorption rather than from drifts in the beam between

measurements.

The diffraction peak at 16.35keV, corresponding to the largest feature in the Dif-

fXRD signal, was extracted and transformed back to transmission space using I1/I0 =

exp(−µx). A normalised Gaussian was then fitted to the transmission spectrum to

determine its centroid energy, width at half-maximum, and height. This fit is shown in

Figure 6.2, with the parameters listed in Table 6.1.

Whilst diffraction peaks themselves are Lorentzian in form, the energy resolution of a

beamline can, under certain conditions, cause some broadening of the peaks, trans-

forming them to Gaussians. This is the case on ID24 at energies in excess of about

91



Figure 6.3: The DiffXRD transmission signal obtained for ∆T = 6K in the energy
region of the glitch shown in Fig 6.2 (dashed line). The difference between a pair of
Gaussians of width and height determined by the fit in Fig 6.2, and offset in energy
relative to one another, are fitted to the feature (solid line); the energy offset being
related to the fractional change in lattice spacing.

15keV.

Although the convolution of an instrument function with the diffraction signal clearly

alters the peak’s observed width and height and thus any fitted parameters, this is not

a problem from the point of view of DiffXRD. As shown in equation (6.1), structural

changes in the sample material are derived from a change in the measured energy of

a given peak. Therefore, the only requirement for DiffXRD is that the peak retains its

shape between the two measurements under different sample conditions, allowing this

shift to be determined.

The DiffXRD signal, shown in Figure 6.3, was obtained for a temperature change in

the sample of 6K rather than 1K; increasing the degree of peak movement between

measurements, and thus making the difference feature larger and easier to define. Given

the degree of movement is linearly related to the change in temperature by (6.2) (for
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Conventional Gaussian Fit
Parameter Value

Centroid / eV 16349.505 ± 0.002
FWHM / eV 2.137 ± 0.002
Relative height (-9.3782 ± 0.0003)×10−2

DiffXRD Fit
Parameter Value

Centroid / eV 16347.74 ± 0.07
Gaussian Separation / eV 1.84 ± 0.08
Thermal Expansion / ×10−6K−1 18.7 ± 0.8

Table 6.1: Fitted parameters for the diffraction peak shown in Figure 6.2 and for the
corresponding DiffXRD feature shown in Figure 6.3. The thermal expansion coefficient
has been derived using equation (6.2). Energies shown are not absolute energies, but
based on a calibration with respect to another spectrum of known calibration. The
errors shown are for the Gaussian and DiffXRD fits only and do not incorporate errors
in calibration.

small temperature changes), the energy shift per Kelvin may be restored by dividing

the observed shift by the temperature difference. Using the Gaussian width and height

parameters from Table 6.1 to fix the shape of the diffraction peak to that seen in Figure

6.2, the DiffXRD feature was characterised by calculating the difference in observed

absorption between two such peaks, slightly offset in energy relative to one another,

giving the separation shown at the bottom of Table 6.1. The centroid of the difference

feature is defined as half way between the two constituent peak centroids, and thus is

not the same as that of the initial, single Gaussian fit.

Using equation (6.2), the thermal expansion coefficient of SrF2 was found to be (18.7

± 0.8) ×10−6K−1; in agreement with the published value of 18.1 ×10−6 at 300K [74],

and in agreement with the corresponding DiffEXAFS measurements in section 5.6.

6.3 Discussion

Clearly, one advantage of DiffXRD over DiffEXAFS is the shear simplicity of the tech-

nique; equation (6.1) being considerably more straightforward to extract structural

changes from than (2.14).
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However, DiffXRD cannot be considered a replacement for DiffEXAFS, in spite of this,

since it is hindered by the same limitations that affect standard XRD measurements.

Firstly, the technique cannot be applied to disordered or amorphous systems unlike

EXAFS, but most importantly, structural information derived from DiffXRD is based on

mean atomic perturbations over a periodic crystal structure. It does not yield information

on local atomic perturbations - one of the real strengths of DiffEXAFS.

DiffXRD should therefore be considered complementary to DiffEXAFS. Simply by sub-

stituting a DiffEXAFS sample with its single crystal counterpart (where available) and

taking the same difference measurements with the same experimental apparatus, it is

possible to obtain an independent measure of atomic perturbations to verify those from

DiffEXAFS. Conversely, it could also be used to identify and quantify any discrepan-

cies between local atomic perturbations and average (macroscopic) perturbations via a

common experimental arrangement.
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Chapter 7

Differential EXAFS to Study

Phase Transitions

7.1 Introduction

In Chapter 5, thermal expansion measurements proved the viability of Thermal DiffEX-

AFS in measuring atomic perturbations on a femtometre scale. This chapter takes Ther-

mal DiffEXAFS further, with a study of thermally induced structural changes around

the Martensitic phase transition in Ni2MnGa [98]. Samples for this experiment were

supplied by M. Pasquale of IEN Galileo Ferraris, Torino, Italy.

Such studies are where the true power of Thermal DiffEXAFS is exploited. No other

spectroscopic technique is capable of probing atomic perturbations in the region leading

up to, through, and beyond a phase transition with single Kelvin precision. Other

techniques that are capable of similar resolution, such as diffraction, do not reveal

information on local atomic structure.

Even if some transition were found to induce perturbations large enough to be probed

in a number of individual steps with conventional EXAFS, DiffEXAFS will always still

offer around two orders of magnitude greater sensitivity and thus, potentially, a hundred

times more sampling points across that transition region. Thus, DiffEXAFS presents a

unique opportunity to develop a better understanding of phase transitions from a local

perspective.
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At the same time, though, several points must be taken into consideration regarding

the theoretical model of Thermal DiffEXAFS laid out in section 2.5.

Firstly, with thermal expansion measurements, it was reasonable to assume that the

coefficients of the thermal strain tensor, αmn in equation (2.14), held a constant value

over some small range of temperature. This approximation can be extended to regions

surrounding phase transitions, but only with care. In the region of the primary transition

temperature Tp, structural changes become significantly dependent upon the absolute

temperature of the sample. Therefore, this approximation will become progressively

worse as T goes to Tp, and the structural discontinuity represented by the transition,

approached.

The effects of this can be mitigated to a certain extent by progressively reducing the

magnitude of temperature modulation when approaching Tp, but such a reduction is

reliant upon the precision with which the sample temperature may be set, and its sub-

sequent stability.

Should this approximation fail, higher order terms must be considered in the thermal

Taylor expansion of the fine-structure function. However, for a suitably small tempera-

ture modulation it is still possible to approximate the differential fine-structure by a first

order Taylor expansion as laid out in equation (2.14).

Even in this case though, the differential structure is now dominated by atomic strains

relating to the phase transition rather than thermal expansion. As a result, the strain

tensor αmn in (2.14) is no longer the linear thermal expansion tensor, but a general

thermal strain tensor incorporating the phase transition. Indeed, thermal expansion

contributions under these conditions are negligible.

Further complications may arise in that previously, since the point group symmetry of

the crystal under study was known, it was possible to reduce the number of independent

parameters in αmn by virtue of von Neumann’s Principle. Close to a phase transition

however, where the structure is inherently unstable, such symmetry may be broken; not

just in the sense of changing from some low-T to some high-T structure, but also in the

presence of onset phenomena.

For instance in Ni2MnGa, the structure changes from a body-centred tetragonal Marten-
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site to an L21 cubic Austenite around the Martensitic transition, but depending upon

the exact composition of the sample, some studies have revealed varying tetrago-

nal or orthorhombic structures close to the high-T side of the transition. These in-

clude [94][101][88].

7.2 Ni2MnGa and its Martensitic Phase Transition

Ni2MnGa is a Heusler-alloy [30], one of the ternary inter-metallic compounds with com-

position X2YZ and an L21 cubic structure. This is true for Ni2MnGa at room tempera-

ture at least, but neutron diffraction data taken at 77K reveals a complex, tetragonally

based structure [97]. This structural transition was suspected to occur in association

with a discontinuity in magnetic properties at just above 200K, which was confirmed

by Webster et al. [98], who found that in stochiometric Ni2MnGa, a Martensitic phase

transition occurs at 202K.

Unfortunately, 202K was beyond the reach of our thermal modulation apparatus, so we

arranged for our samples to be slightly Ni rich, with composition Ni53Mn24Ga23, and

formed as a melt-spun ribbon [3][4]. This had the effect of increasing the transition tem-

perature to about 324K. Throughout the remainder of this chapter, the term Ni2MnGa

will be used in reference to the sample, though this sample is in practice the Ni rich foil.

Martensitic transitions are of the first-order and diffusionless. In this sense, the change in

crystal structure is triggered by a change in entropy, and achieved through deformations

of the parent phase. The high temperature phase is referred to as an Austenite and

denoted with a γ, whereas the low temperature phase is a Martensite, denoted α′.

Like all first-order transitions, the change in latent heat of a specimen cannot occur

instantaneously, and therefore, it is possible for a mixture of phases to be present. If a

Martensite is formed in a specimen by quenching, such a mixture can be frozen into its

crystal structure. This then shows that the Martensitic phase exists within the specimen

in the form of plates that are embedded into the residual Austenite along certain well-

defined planes. These interface planes are referred to as habit planes, and indicate the

particular habit of the Martensite relative to the phase from which it formed [95].
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Figure 7.1: A schematic representation of shape changes observed in specimens con-
taining Martensites. The top diagram shows the effect of surface upheaval in the region
of a Martensite, and the bottom, surface skewing, which bends any fiducial lines. Both
the upheaval and skewing are regular and without distortion.

At the surface of the specimen, these planes can denote regions of varying relief. As-

suming the original Austenite had a plane surface, upheavals occur where Martensites

are formed as shown schematically in Figure 7.1. Similarly, an initially straight fiducial

line can become bent when the surface runs along a crystallographic plane perpendicular

to this. Neither of these deformations are irregular; the deformed surface remains plane,

and deformed line remains straight, each with a definite angle across the habit plane.

This, therefore, requires definite orientation relations to exist between the Martensite

and Austenite. Thus, Martensitic transitions are linear ; vectors and planes in one phase
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can be transformed to vectors and planes in the other via a linear matrix [96].

This also leads to the conclusion that Martensitic transitions result from coordinated and

ordered rearrangement of the atomic configuration [49]. Therefore, atomic movements

are not free, but the motion of neighbouring atoms are coordinated as the transition

interface moves. Indeed, this in turn, leads to the definition of a Martensitic transforma-

tion. A Martensitic transformation is a phase transformation that occurs by cooperative

atomic movements [50], with the product being a Martensite. The features described

above are criteria for assessing the presence of a Martensite.

However, the question remains as to how - in the case of, for instance, Ni2MnGa - the

Austenite face-centred cubic phase transforms into a body-centred tetragonal Marten-

site. In 1924, Bain proposed that the f.c.c. structure could be considered tetragonal,

with a c/a ratio of one [9]. Thus, the b.c.t. structure could be obtained by a com-

pression along one axis, and uniform expansion along the two perpendicular to it, thus

reducing the axial ratio. This is the so called Bain strain. It is a key part of Martensitic

transformations, but is not enough by itself to describe all the associated phenomena.

Since Martensitic transitions occur by cooperative atomic motion, the presence of habit

planes requires the interface between Austenite and Martensite phases to be highly

coherent, with no distortions or rotations. There must, therefore, be an invariant plane,

along which deformations are referred to as invariant plane strains. However, it can

be shown [51] that Bain strain alone cannot guarantee the presence of such invariant

planes. Thus, in order for the Martensite to possess both the correct crystal structure and

the correct shape to satisfy boundary conditions observed along habit planes, internal

shearing must occur in addition to Bain strain related deformations.

This shearing must be microscopically inhomogeneous such that it does not change the

crystal structure, but homogeneous on a macroscopic scale. This may be accomplished

by either slipping or twinning as shown schematically in Figure 7.2. In Ni2MnGa, the

primary mechanism for this lattice-invariant shear is twinning [12], which makes it an

attractive shape memory alloy [92][14].
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Figure 7.2: A microscopic schematic representation of lattice invariant shears that must
occur as part of a Martensitic phase transformation. On the left are slip shear planes,
and on the right twinned shear planes. Habit planes can be imagined to run roughly
vertically along each side of these units, appearing homogeneous on a macroscopic scale.
In Ni2MnGa, the primary mechanism for lattice-invariant shear is twinning [12].

7.3 Experimental Results

Figure 7.3 shows Differential EXAFS spectra (i.e. normalised to a 1K modulation) taken

at the Ni-K edge and heating through the Martensitic phase transition in Ni2MnGa.

Each spectrum was acquired for temperature modulation of between 1.1 and 3.3K,

with the mean absolute temperature shown next to each spectrum. The time between

taking spectra at T+ and T- (and vice versa) was 1.5s. As with the thermal expansion

measurements, the error in setting each gas jet temperature was ±0.2K.

The six spectra just below the horizontal grey line were taken in the Martensite phase,

and the four above, in the Austenite phase. The primary transition, Tp, occurs at about

324K, but related structural perturbations can clearly be seen as much as 20K below

that. It is worth noting that the spectrum at 305K, though small compared to those

closer to Tp, is actually still ten times larger in amplitude than signals shown in Fig 5.6.

The bottom plot is the conventional Ni-K edge EXAFS for the Martensite phase, scaled

to 5% of its actual amplitude. Comparing this to the DiffEXAFS signals, it is clear that

the observed atomic strains are from the phase transition rather than just from thermal

expansion and disorder. This is partly by virtue of the order of magnitude difference

in signal amplitude between these and the thermal expansion measurements, but also
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because the DiffEXAFS structure differs significantly from that of the conventional

EXAFS. None of the spectra resemble the conventional EXAFS plus a slight phase shift.

One would expect that if more data were obtained out to lower, or indeed higher,

temperatures, the structure would eventually return to a state similar to that reported

for the simple, thermal expansion case. Whilst these data are not available here, they

would be useful to obtain in future experiments, since finding the transition between

these two regimes will identify the onset of the phase transition from a local atomic

perspective.

Starting from the spectrum taken about 305K and working towards Tp in the Marten-

site phase, it is clear that the fine-structure remains constant in phase, but increases

significantly in amplitude. This indicates that the DiffEXAFS signal originates primarily

from changes in thermal disorder rather than from thermal strains, with the increase in

atomic vibrations as a function of T becoming much larger close to Tp.

Above Tp, in the Austenite phase, it is clear that the fine-structure is radically altered.

The conventional EXAFS shown at the top of the plot is significantly different to its

Martensite counterpart at the bottom of the plot. As for the DiffEXAFS, the region

between 8.38 and 8.55keV bears a close similarity to the same region in the Martensite

phase, albeit with oscillations showing a significantly reduced amplitude. The remainder

of the spectrum is, however, completely different.

Indeed, the region beyond about 8.55keV shows sharp structure in contrast to the smooth

oscillatory structure expected from EXAFS. This would first suggest some error occurred

while acquiring the spectra, but this can be eliminated since the observed structure

is reproducible. During the experiment, data were taken whilst cycling through the

transition a number of times, and each time, the Austenite structure possessed the

sharp peaks shown in Fig 7.3. The structure also exhibits inversion upon gas jet phase

reversal, as shown in Figure 7.5, indicating it is indeed thermal in origin.

The origin of this structure is not know at present, and should therefore be the focus

of future research. Unfortunately, it is not possible to analyse such structure within

the current theory laid out for Thermal DiffEXAFS. Therefore, analysis here has been
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Figure 7.3: Differential EXAFS spectra (i.e. normalised to a 1K modulation) taken at
the Ni-K edge and heating through the Martensitic phase transition in Ni2MnGa. The six
spectra below the horizontal grey line were taken in the Martensitic phase, and the top
four in the Austenite phase. The lowermost and uppermost spectra are the conventional
EXAFS for the corresponding phases, scaled to 5% of their actual amplitude.
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Figure 7.4: Differential EXAFS spectra (i.e. normalised to a 1K modulation) taken at
the Ga-K edge and through the Martensitic phase transition in Ni2MnGa. The spectra
below the horizontal grey line were taken in the Martensitic phase, and those above
in the Austenite phase. The lowermost and uppermost spectra are the conventional
EXAFS for the corresponding phases, scaled to 5% of their actual amplitude.
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Figure 7.5: Ni2MnGa Ni-K edge DiffEXAFS taken at 326K in the Austenite phase.
The red signal was obtained with the gas jet phase reversed with respect to the black
signal. The blue line is the inverted phase reversed signal, which reveals good agreement
between the spectra taken with each gas phase. The two differ slightly, particular at
high energies, but are sufficiently similar to state that the structure is thermal in origin.
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restricted to the low temperature, Martensite phase.

The presence of hysteresis in the transition was examined by taking data whilst moving

from the Martensite to Austenite phase and vice versa. No difference was observed

between spectra taken at similar temperatures in each direction, indicating minimal

hysteresis or no hysteresis at all. Since the data were directionally invariant, only the

spectra acquired with ascending temperature are shown in Fig 7.3.

Similar data were also acquired at the Ga-K edge, as shown in Figure 7.4. The delay

between measurements was, again, 1.5s, with temperature modulation ranging from

0.8 to 3.1K. As in Figure 7.3, the spectra above the grey line show data taken in the

Austenite phase, and spectra below, in the Martensite phase.

As with the Ni-K edge data, there is marked evolution of the differential structure

as a function of temperature, with the signal amplitude much greater closer to Tp

than further away. However, unlike the Ni-K data, the fine-structure varies much more

smoothly through Tp itself. The structure just above varies only slightly compared to

just below, and even at 330K, there are still features that correspond to those in the

Martensite spectra. This suggests that structural changes from the point of view of the

Ga atoms are less severe than they are from the Ni atoms.

Unfortunately, available beamtime did not permit the experiment to be repeated with

measurements taken at the Mn-K edge. Whilst this would have provided a complete

picture of structural changes from the point of view of each atomic species, the Mn

atoms occupy similar positions within the crystal lattice as the Ga atoms, and so could

be expected to provide similar structural information.
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7.4 Analysis of the Low Temperature Martensite Phase

7.4.1 Conventional EXAFS

As with the thermal expansion analysis, a perturbation reference point had to be defined

prior to fitting the DiffEXAFS itself. In the Martensite phase, conventional EXAFS

spectra were acquired on BM29 at 293K at the Ni-K edge in the same Ni2MnGa sample

used for DiffEXAFS studies on ID24. Additional EXAFS spectra were also taken at

243K, 150K, and 60K, not to provide DiffEXAFS reference points, but to establish the

trends in σ2
j away from the phase transition.

Similar to the Fe data, fitting the EXAFS in the Martensite phase required the experi-

mental data to be Fourier filtered. In this case, only radii up to 3.0Å were considered,

which corresponded to the first four single-scattering paths only. At the Ni-K edge,

and in increasing radii, these were Ni-Mn, Ni-Ga, Ni-Ni 1, and Ni-Ni 2 for j = 1, 2, 3, 4

respectively. This is shown schematically in Figure 7.8. The two Ni-Ni paths would be

identical in the Austenite phase, but are distinct in the Martensite due to the tetragonal

distortion present.

The Ni2MnGa Martensite crystal structure supplied to FEFF in order to calculate scat-

tering phase and amplitude information was based upon that given by Martynov &

Kokorin [46]. This is shown in detail in Appendix B.

Figure 7.6 shows the results of fitting these Martensite spectra in the range 70 ≤ E′ ≤

550eV, where, again, E′ is the x-ray energy above the edge. The fitted parameters

are shown in Table 7.1, with configuration files and additional output in Appendix C.2.

These fits indicate that the σ2
j increase with T as is predicted by harmonic theory.

Given the magnitude of fine-structure changes as a function of temperature, seen in

Figure 7.3, several conventional EXAFS spectra were also acquired up to the primary

transition temperature at 324K. Whilst such spectra are insensitive to the small changes

in scattering path lengths due to strain, the disorder signal is sufficiently large to allow

a comparison between EXAFS and DiffEXAFS techniques. These spectra were taken in

situ at the same time as the DiffEXAFS.

Treating these spectra in the same manner as those away from the primary transition
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Figure 7.6: BM29 Conventional EXAFS spectra of Ni2MnGa at the Ni-K edge for various
temperatures away from the transition temperature in the Martensite phase (black lines).
Each has been Fourier filtered to the first four single-scattering paths only. Overlaid in
red are theory spectra, generated for the same scattering paths, fitted to experiment
between 70 ≤ E′ ≤ 550eV.

Fit parameters away from Tp

Parameter Sample Temperature
60K 150K 243K 293K

〈

σ2
1 , σ

2
2

〉

× 10−3Å
2

6.2± 0.6 6.6 ± 0.4 7.4± 0.3 9± 2

σ2
3 × 10−3Å

2
5± 1 7.9 ± 0.7 7.5± 0.5 10± 3

σ2
4 × 10−3Å

2
23± 4 31± 3 29± 2 19± 3

S2
0 0.8 0.8 0.8 0.8
E0 eV 8337.3 ± 0.4 8337.4 ± 0.2 8338.5 ± 0.2 8337.8 ± 0.6

Table 7.1: Fitted parameter values for Ni2MnGa EXAFS at the Ni-K edge for a range of
temperatures away from the transition in the Martensite phase. In each fit, S2

0 was fixed
at 0.8. It is important to note that given the first two Debye-Waller factors correspond
to Ni-Mn and Ni-Ga, which have equivalent radii, and also that there is little phase
contrast between these two paths, FitChi2 is unable to accurately distinguish one from
the other. Therefore, it is only the average of these two parameters that is meaningful;
hence

〈

σ2
1 , σ

2
2

〉

. Errors are based on the fit only, and do not include other sources such
T or E0 drift.
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Figure 7.7: ID24 Conventional EXAFS spectra of Ni2MnGa at the Ni-K edge for various
temperatures close to the transition temperature in the Martensite phase (black lines).
Each has been Fourier filtered to the first four single-scattering paths only. Overlaid in
red are theory spectra, generated for the same scattering paths, fitted to experiment
between 70 ≤ E′ ≤ 550eV. The apparently poor fit at high energies is due to larger
experimental noise on ID24 (from a lower x-ray flux) in this region.

Fit parameters in the region of Tp

Parameter Sample Temperature
302K 308K 318K 319K

〈

σ2
1 , σ

2
2

〉

× 10−3Å
2

11.8 ± 0.9 9.7 ± 0.7 8.6± 0.7 8.7 ± 0.6

σ2
3 × 10−3Å

2
10± 2 6± 1 4± 1 4± 1

σ2
4 × 10−3Å

2
18± 3 18± 3 16± 3 16± 3

S2
0 0.8 0.8 0.8 0.8
E0 eV 8337.4 ± 0.5 8338.5 ± 0.4 8339.6 ± 0.5 8339.0 ± 0.5

Table 7.2: Fitted parameter values for Ni2MnGa EXAFS at the Ni-K edge for a range of
temperatures close to the transition in the Martensite phase. In each fit, S2

0 was fixed
at 0.8. Again, errors come from the fit only.
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Ni−Mn Ni−Ga

Ni−Ni 1

Ni−Ni 2

c

a

a
c/a = 0.94

Figure 7.8: A schematic representation of the photoelectron scattering paths considered
during Ni-K edge EXAFS and DiffEXAFS analysis of the Martensite phase of Ni2MnGa.
The Ni-Mn and Ni-Ga paths are of the same length and are closest to the emitter atom,
Ni-Ni 1 is next in length, and Ni-Ni 2 the longest. The precise crystal structure is given
in Appendix B.

temperature produced the results shown in Table 7.2 and Figure 7.7. These indicate

that thermal disorder continues to rise until about 25 to 30K below the transition,

when it starts to fall. This trend may confirmed by a simple examination of each

spectrum’s Fourier transform, shown in Figure 7.9 for data both away from and close to

the transition. These are important in that they confirm the trend independent of any

fitting or other such analysis.

Away from Tp, the peak amplitude for those corresponding to the first four single-

scattering paths, decays as T increases, indicating a reduction in amplitude of each

EXAFS component, consistent with an increase in thermal disorder. Close to the transi-

tion however, these peaks rise as the sample temperature approaches Tp, indicating the

opposite.
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Figure 7.9: Fourier transform of experimental Ni-K edge EXAFS in Ni2MnGa taken
away from (top) and close to (bottom) Tp. The transform was performed with a Hann
window to reduce termination effects. It must be noted that the abscissa is the apparent
atomic radial distribution function (RDF) rather than the real RDF. The two differ by
an offset of approximately 0.3Å due to phase shifts experienced by the photoelectron.
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7.4.2 Differential EXAFS

Taking the EXAFS parameters at 293K as a reference, the Martensite DiffEXAFS spectra

at the Ni-K edge, shown in Figure 7.3, were fitted to determine the structural charac-

teristics in the region of the phase-transition. Here, since onset features may distort the

lattice, breaking the crystal symmetry and thus von Neumann’s Principle, a separate

thermal strain αj was considered for each scattering path. The ∂σ2
j /∂T were fitted as

in the thermal expansion case.

These fits are plotted in Figure 7.10, with the fitted parameters shown in Table 7.3.

Integrating these parameters as a function of T and adding an offset to pin each pa-

rameter to a known value for a known T , yields their absolute values in the region of

the phase transition. These are shown in Figures 7.11 and 7.12.

The negative ∂σ2
j /∂T in Table 7.3 confirm the trend of decreasing Debye-Waller fac-

tors for increasing temperature, seen both from Fourier transforming and from fitting

conventional EXAFS spectra in the region of the phase transition. However, a problem

becomes evident upon examination of the absolute σ2
j obtained after integration.

The σ2
j for both of the Ni-Ni scattering paths goes negative beyond about 308K, which

is impossible since it implies an imaginary variance in atomic positions. These results

must therefore be considered incorrect.

The cause for this problem is not understood at present. The raw DiffEXAFS data for

all Martensite spectra are of a high quality, and the algorithm used for fitting these

data close to Tp produced good results for thermal expansion studies, and for Ni2MnGa

further than about 10K from the phase transition. The trends seen from the DiffEXAFS

are also in agreement with the conventional EXAFS. This leads to the conclusion that

the poor absolute σ2
j very close to Tp are most probably the result of a failure of at

least one of the approximations upon which the current theory of Thermal DiffEXAFS

is based.

Some possibilities present themselves, the first being that the fitted parameters are no

longer linear between T+ and T− close to Tp. Consequently, higher order terms would

be required in the differential fine-structure function (2.14) in order to accurately model

the observed changes.
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Figure 7.10: DiffEXAFS spectra from Ni2MnGa at the Ni-K edge approaching Tp in
the Martensite phase (black lines). Each has been Fourier filtered to the first four
single-scattering paths only. Overlaid in red are theory spectra, generated for the same
scattering paths and fitted to experiment.
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DiffEXAFS fit parameters for T approaching Tp

Temperature
〈

∂σ2
1/∂T, ∂σ

2
2/∂T

〉

× 10−4Å
2

∂σ2
3/∂T × 10−4Å

2
∂σ2

4/∂T × 10−4Å
2

291K −3.3 ± 0.6 −9.7± 0.4 −10.3± 0.3
299K −4± 1 −10.4 ± 0.8 −9.3± 0.6
305K −7± 2 −13.0 ± 1 −12.3± 0.6
311K −2.2 ± 0.6 −8.1± 0.6 −10.8± 0.4
320K −5.2 ± 0.6 −24± 1 −48.6± 0.8
321K −4.1 ± 0.3 −14± 1 −32± 1
323K 2.4± 0.5 −52± 1 −78± 1

Temperature
〈

α1, α2

〉

× 10−4 α3 × 10−4 α4 × 10−4

291K −14.3± 0.7 −17± 1 −1.3± 0.7
299K −6± 1 −10± 3 −2± 2
305K −7± 2 −20± 7 −8± 3
311K −0.7 ± 0.7 7± 1 1.4± 0.6
320K −42± 2 33± 3 29± 2
321K −36± 1 154 ± 4 76± 3
323K −17± 2 241 ± 4 133± 3

Table 7.3: Fitted parameter values for Ni2MnGa DiffEXAFS at the Ni-K edge approach-
ing the transition in the Martensite phase. The lack of contrast between the Ni-Mn and
Ni-Ga paths again requires their results to be averaged. Errors quoted arise from the
fits only.

However, the effects of premature truncation of the Taylor expansion may be mitigated

in code by calculating the DiffEXAFS, not from Equation (2.14), but by generating two

complete EXAFS spectra - one with, and one without changes to σ2
j and sj considered

- and then taking their difference. In this treatment, the resulting DiffEXAFS signal will

contain all terms of the Taylor expansion out to infinity.

Implementing and then comparing both methods of calculation, however, showed no

significant difference between the two approaches. The σ2
j and sj therefore remain

linear close to Tp for the ∆T used here.

The second possible failure may be in the model adopted to represent Debye-Waller

factors. In equation (2.11), Debye-Waller factors are modelled with Gaussians; thus

thermal vibrations are represented by some symmetric variance about a mean atomic

position.

Anharmonicity of the atomic pair-correlation function, required for thermal strain to
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exist, is modelled in (2.14) according to the quasi-harmonic approximation [42]. Should

this approximation fail, anharmonicity would need to be modelled explicitly. Thus,

thermal perturbations to the crystal structure would need to be treated within, say, a

cumulant expansion of the fine-structure function [72]. It is unlikely that anharmonicity

would produce an error sufficiently large to produce the effect seen here, but further

work should be conducted to ascertain whether a more explicit approach is necessary.

The most likely cause, therefore, would be an error in the reference structure from

which the thermal perturbations are measured. Should the structure supplied to FEFF

be incorrect, there would be an apparent static disorder within the lattice due to the

difference between real and anticipated mean atomic positions. This would clearly af-

fect the absolute Debye-Waller factor, but should leave mean changes in path length

untouched as well as the trends seen in the ∂σ2
j /∂T . In order to verify the mean crystal

structure in the vicinity of the phase transition it would be desirable to, in the future,

conduct high resolution x-ray diffraction measurements on the sample as a function of

temperature, and perform a Rietveld refinement to determine atomic positions.

In spite of this problem some observations may still be made. Shown alongside the

DiffEXAFS σ2
j in Figure 7.11 are the σ2

j obtained from the conventional EXAFS pa-

rameters in Table 7.2. The two data sets are coincident at 303K as a result of using

the conventional EXAFS parameters at that temperature for the DiffEXAFS integration

offsets.

These show reasonable agreement between the σ2
j obtained from each method for the

Ni-Mn and Ni-Ga paths. The two data sets agree within error up to about 310K, and

within twice the error up to 320K. σ2
j for the first Ni-Ni path also agrees within error

up to about 310K1 but becomes unphysical after that. σ2
j for the second Ni-Ni path

exhibit little or no agreement between the two measurement techniques.

Both the EXAFS and DiffEXAFS data indicate that σ2
j for the first Ni-Ni path actually

falls below that of the Ni-Mn and Ni-Ga paths despite being of greater length. Since

the σ2
j for EXAFS fits away from the transition, in Table 7.1, show a monotonic increase

with path length, this provides further evidence for onset of the phase transition out to

1When remembering to add on the error in the integration offset, which is that for the EXAFS at
303K. This additional error is not shown on the DiffEXAFS error bars.
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Figure 7.11: Absolute σ2
j for each of the first four single-scattering paths in Ni2MnGa, de-

termined by DiffEXAFS (solid lines) and conventional EXAFS (dashed lines) in the region
of the phase-transition. DiffEXAFS results were obtained by integrating ∂σ2

j /∂T (T ) and

offsetting to σ2
j (303K) found from conventional EXAFS. All paths show the correct,

descending trend, but values for Ni-Ni 1 and Ni-Ni 2 are clearly unphysical for T greater
than about 308K. This suggests a breakdown of the present theory close to Tp. Errors
in T are smaller than the point size.

at least 20K below Tp.

Figure 7.12 shows how scattering path lengths vary as a function of temperature. Each

plot is given with respect to the known path lengths at 293K, which are given in the

associated caption. These show that each scattering path contracts as the sample

temperature increases up to about 312K.

Beyond this point, the Ni-Mn and Ni-Ga paths continue to contract whilst the two

Ni-Ni paths expand significantly, indicating a net increase in path length. Examining

the Martensite and Austenite crystal structures [46], and also considering the Bain

strain, reveals that over the transition as a whole, Ni-Mn, Ni-Ga, and Ni-Ni 1 distances

must increase, whilst Ni-Ni 2 must decrease. Therefore, these trends observed in the
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Figure 7.12: Absolute sj for each of the first four single-scattering paths in Ni2MnGa
relative to their values at 293K. These are 2.5039Å for Ni-Mn and Ni-Ga, 2.7700Å
for Ni-Ni 1, and 2.9500Å for Ni-Ni 2. These reveal that each scattering path shortens
at T increases. The last three points for both Ni-Ni paths should not be considered
meaningful given unphysical values were obtained for σ2

j from the same fits. Errors in
T are smaller than the point size.

DiffEXAFS are indicative of some final onset feature before Tp, rather than of the primary

transition itself.

7.5 Discussion of Phase Transition Studies

With the results shown above, several definitive conclusions regarding the nature of the

Martensitic transition in Ni2MnGa may be drawn.

Firstly, close to the transition, all data acquired from both EXAFS and DiffEXAFS

measurements reveal a reduction in Debye-Waller factor as the phase transition is ap-

proached upon heating. This indicates that there is a hardening of the crystal structure.

Conversely, away from the transition region, EXAFS Debye-Waller factors increase with
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temperature as would be expected in the linear regime.

Qualitatively, if disorder is assumed to arise solely from the vibrational motion of atoms,

then ∆σ2 is proportional to ∆S, the change in entropy of the crystal. A reduction in

Debye-Waller factor therefore describes a reduction in vibrational entropy of the atoms.

Since the specific heat capacity of the sample cp = T (∂S/∂T )p, a reduction in entropy

will cause a reduction in cp and vice versa.

Therefore, the DiffEXAFS indicates that away from the transition region in the Marten-

site phase, the heat capacity of the sample should be observed to rise, and then fall

sharply as T → Tp close to Tp. This is in agreement with behaviour reported from

differential scanning calorimetry (DSC) measurements for a variety of Ni2MnGa samples

of similar composition to that used here [93].

In these DSC measurements, heat capacity is seen to rise at a rate of approximately

0.01mWK−1 up to about 20 to 30K below Tp, beyond which it drops rapidly. Once Tp

is crossed, the signal returns to a similar value it held prior to the onset of the phase

transition. Across the transition as a whole, Pasquale et al. report a net drop in entropy

of 24 J kg−1K−1 on changing from the Martensite to Austenite phase [56], again for a

sample of similar composition to that used here.

Since the location of transition features in Ni2MnGa is heavily dependent upon sample

composition and preparation (see [93] or [3] for instance), a more quantitative analysis

will require similar DSC measurements on the particular sample studied here. In con-

junction with a greater number of DiffEXAFS measurements, both in terms of density

and temperature range, these will then serve as a comparison to features observed in

the DiffEXAFS and, if equivalent, further justify its use to study phase transitions.

In terms of mean, temperature-induced strains, DiffEXAFS demonstrates a contraction

in all scattering path lengths as T approaches Tp, with the Ni-Ni scattering paths then

lengthening very close to Tp

To the author’s knowledge no similar work, with which these observations may be con-

firmed or refuted, has been published on structural changes in Ni2MnGa as a function

of temperature with the resolution reported here. However, reports on the equilibrium

structure of the Martensite and Austenite phases [98][46] (and including possible pre-
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martensitic phases) indicates that the tetragonal c/a ratio changes from about 0.94

for the Martensite to 1.00 in the Austenite. Mapping this distortion onto the scattering

paths considered here requires an expansion of the Ni-Mn, Ni-Ga, and Ni-Ni 1 scattering

paths, and a contraction of the Ni-Ni 2 path.

Thus in order for the observations made here to be consistent with these reported values,

there must be a sharp structural change upon switching from a Martensite to Austenite

- narrowly defined in temperature as opposed to a gradual change - which has not been

detected with the DiffEXAFS measurements conducted to date.

Finally, work must be undertaken in future to explain the nature of the DiffEXAFS

structure observed at the Ni-K edge of the Austenite. Such structure is not predicted by

the present thermal differential fine-structure function, thus requiring a refinement of the

fundamental theory of Thermal DiffEXAFS. In addition to this work, results obtained to

date would benefit from an analysis of measurements taken at both the Mn-K and Ga-K

edge. Clearly, results obtained from the Ni site should be reciprocated for equivalent

scattering paths at other atomic sites.
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Chapter 8

General Discussion and Future

Outlook

8.1 DiffEXAFS vs. Conventional EXAFS

DiffEXAFS and conventional EXAFS signals, though from similar origins, have very

different characteristics when it comes to the detection and measurement of atomic

perturbations. This is evident from the raw data alone. Conventional EXAFS spectra

change only subtly in response to small changes in the sample, with the signal, seen

across the Ni2MnGa phase transition for instance, evolving slowly as successive pertur-

bations accumulate. In the DiffEXAFS however, small changes to the sample structure

generate huge changes to the measured spectrum. This is particularly clear in Figure

7.3, where, in the region of the Ni2MnGa phase transition, small changes in absolute

temperature about which the DiffEXAFS is taken, cause the signal to significantly alter;

starting small in amplitude 20K below Tp and increasing by over an order of magnitude

as Tp is approached before changing in structure entire when Tp is crossed. There-

fore, even prior to data analysis, trends associated with the atomic perturbations are

considerably easier to see.

When data is analysed, DiffEXAFS, thermal or otherwise, has its greatest advantage over

conventional EXAFS in the detection and measurement of atomic strains, which for most

phenomena, such as thermal expansion reported here, are of the order of 10−5 per unit
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change in parameter. The reason for this is that changes in scattering path length,

normally observed as small phase changes, are converted to an amplitude signal with

dR ∝ dA in quadrature with the conventional EXAFS. Assuming two measurements can

be made under differing sample conditions without drift of the beam in either space or

energy, strain resolution is therefore limited only by the fractional statistical noise in the

spectrum. For DiffEXAFS on ID24, this is of the order of 10−5, allowing displacements

to be detected for modulation of the order of just 1K in the thermal case.

To detect a similar strain from the phase shift of a conventional EXAFS spectrum would

require sample modulation to be around a hundred times greater; 100K as opposed to

1K. This is partly due to the lower signal-to-noise ratio attainable from conventional

EXAFS, but primarily due to instabilities in edge energy over the period of spectrum

acquisition.

The result is that for a given 100K temperature range, Thermal DiffEXAFS could make

101 independent strain measurements compared to only 2 from conventional EXAFS.

DiffEXAFS then yields not just the net structural change over the whole region, but

precise incremental perturbations as a function of temperature.

It is true that such resolution may not be required in all situations, particularly where

phenomena inducing structural changes are either linear or vary only weakly as a func-

tion of the modulated sample property. However, many phenomena do not conform

to these restraints; most notably non-linear phenomena such as phase transitions. In

these situations the ability to detect atomic displacements over small changes in sample

parameters is an absolutely necessity.

Whilst conventional EXAFS will be able to detect net perturbations across some such

discontinuity, and describe the sample structure in the stable region either side, it is

generally not possible to look at how the sample responds approaching and receding from

the transition - to say whether there are any onset features, or whether any particular

structural instabilities become evident close to the primary transition itself. Even if a

given transition were to induce perturbations large enough to be probed in a number

of individual steps with conventional EXAFS, DiffEXAFS will always still offer around

two orders of magnitude greater sensitivity and thus potentially a hundred times more
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sampling points across the transition region. No other XAFS technique offers this

potential.

In terms of changes to vibrational disorder seen in Thermal DiffEXAFS, the two tech-

niques are more evenly matched. Changes to Debye-Waller factors manifest themselves

as amplitude changes in both DiffEXAFS and conventional EXAFS, and given they are

typically of the order of 10−4Å
2
K−1, conventional EXAFS may detect them with tem-

perature changes of the order of 10K. However, as seen for Ni2MnGa in Chapter 7, in

the region of phase-transitions, these changes are as much as an order of magnitude

larger, making it possible to detect ∂σ2
j /∂T with conventional EXAFS for temperature

steps of the order of 1K.

Considering beamline components and available flux on ID24, Thermal DiffEXAFS re-

mains two orders of magnitude more sensitive than conventional EXAFS, implying that

changes in Debye-Waller factor may be detected from a temperature modulation of just

0.1K in the general case, or 0.01K at a phase transition similar to that in Ni2MnGa.

However, in practice, such a small modulation is not possible with the present gas jet

apparatus. Consequently, conventional EXAFS is not currently far behind DiffEXAFS

in terms of sensitivity to changes in vibrational disorder, and is even comparable to

DiffEXAFS at the phase transition shown in this thesis.

However, since DiffEXAFS is limited by the gas jet apparatus rather than the beamline

itself, there is considerably more prospect of improving the sensitivity of DiffEXAFS in

the future than there is of conventional EXAFS.

8.2 Future work

Work in this thesis has demonstrated that Thermal DiffEXAFS is a viable experimental

technique for measuring atomic perturbations, with clear advantages present over con-

ventional EXAFS techniques. However, this work has also shown that the technique will

benefit from some refinement in the future.

In terms of experimental apparatus, the first concern should be to upgrade the gas

jet apparatus (or even replace it entirely) in order to improve upon the current 0.2K
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temperature stability, reduce the time required to change between T+ and T− states,

and - most importantly from the point of view of allowing the technique to be applied in

many situations - extend the temperature range currently accessible by the apparatus;

allowing measurements to be made far away from room temperature.

These upgrades will improve the quality of experimental spectra, but strain resolution

will still be limited to around one femtometre. Therefore, the next change should

be to obtain new detectors with, say, a more sensitive CCD that will allow for single

photon counting. With the flux currently available on ID24, this should make strains

detectable on a 0.1fm scale if pairs of T+, T− spectra are averaged over a few hours.

Further, incremental improvements in sensitivity will then be subject to improvements to

synchrotrons themselves, with step changes not likely until the advent of 4th generation

light sources.

Work must also be carried out to refine the present theoretical model of Thermal Dif-

fEXAFS. Measurements of the Austenite phase of Ni2MnGa have clearly demonstrated

that in some instances the DiffEXAFS contains features that are not currently predicted

by Equation 2.14. Additionally - whilst the experimental Ni2MnGa data was of a very

high-quality, with trends clearly visible and in agreement with EXAFS results - the nega-

tive absolute Debye-Waller factors obtained upon integrating DiffEXAFS results require

further investigation.

To help develop the Ni2MnGa phase transition results, future work should assess the

effect of magnetisation of the sample via, say, XMCD measurements, and again with

DiffEXAFS and an applied external field. It is known that magnetisation of the sample

has a significant effect on the properties of the phase transition, which should be studied

with DiffEXAFS. Additionally, knowledge of the magnetism at each atomic site from

XMCD may help explain the observed DiffEXAFS trends should there be, for instance,

something like an invar effect in the material.
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8.3 Extension to Studies of Non-Thermal Phenomena

It is important to remember that DiffEXAFS is not limited to the study of any particular

set of materials or to the study of any given type of phenomenon. In principle it may

be used to examine any situation where the modulation of a sample property results in

some small degree of atomic perturbation on a local scale. This means that there are

numerous potential applications for the future.

For instance, initial data from [64] demonstrated the measurement of magnetostriction

by DiffEXAFS, which should be of great interest to those wishing to examine the atomic

origins of this and other -striction type phenomena.

Additionally, much work is conducted at present to see how material structures respond

to large changes in pressure, but with DiffEXAFS, comes the potential of studying re-

sponses to small changes in pressure. Whilst this would be unlikely to reveal anything

interesting in a linear regime, it could yield important information on non-linear strain

mechanisms close to, say, elastic/plastic deformation limits in solids, and pressure in-

duced phase-transitions, especially at interfaces containing liquid phases that are not

examinable with techniques such as diffraction.

In general terms however, the real interest will lie in one of two areas. Firstly, in the study

of non-linear phenomena as already described. Then in the examination of disordered

or amorphous systems, where not only do other techniques such as diffraction fail, but

where macroscopic measurements of sample properties may not necessarily scale down

to the locally observed atomic perturbations due to the presence of intermediate scale

deformations, such as the relief of microscopic strain by sample defects.
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Appendix A

Gas Jet Blueprints
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Figure A.1: Sputter Masks for deposition of an eight element copper-constantan ther-
mopile. These masks should be laser etched from sheet aluminium of no more than
200µm thick. Constantan should be deposited first, and then copper over the top.
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Figure A.2: A base plate onto which the gas jet and sample holder components are
mounted. It is carved from a single piece of aluminium and may be attached directly to
any of the beamline apparatus tables.
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Figure A.3: Some of the parts that construct a thermally insulating case around the
aluminium heatsinks. Two of each must be produced - one for each heatsink.
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Figure A.4: Some of the parts that construct a thermally insulating case around the
aluminium heatsinks. Two of each must be produced - one for each heatsink.
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Figure A.5: The remaining parts that construct a thermally insulating case around the
aluminium heatsinks. These parts make a base for the heatsinks. Only one of each is
needed.
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Figure A.6: Rear projection of the aluminium heatsink. It is produced from a single
piece of aluminium with channels cut into it for gas flow.

130



Figure A.7: Front projection of the aluminium heatsink. It is produced from a single
piece of aluminium with channels cut into it for gas flow. The gas hose attachment
nipples and gas jet needle are also shown.
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Figure A.8: A cross-section through the heatsink showing the Nitrogen gas flow channels
that are used to form the gas jets.
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Figure A.9: A cross-section through the heatsink showing the cooling fluid channels.
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Figure A.10: The completed pair of heatsinks with brass nipples attached. Any hole
shown drilled through the heatsink in Figures A.8 and A.9 that does not have a nipple
attached is blocked with an aluminium plug.
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Figure A.11: The completed pair of heatsinks with perspex case, ready to mount on the
base plate shown in Figure A.2.
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Figure A.12: The sample sheath for the revised sample mount described in Section 3.7.2.
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Figure A.13: Upright onto which the sample sheath is attached. The sample support is
pushed through the hole shown and into the sheath.
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Figure A.14: The sample support for the revised sample mount described in Section
3.7.2.
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Figure A.15: The sample support buffer ring described in Section 3.7.2.
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Figure A.16: Cross-section through the revised sample mount described in Section 3.7.2,
showing how all the pieces are assembled.
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Figure A.17: Base section of the sample holder. This plate has a slot cut into it so that
it may be attached to the aluminium base plate shown in Figure A.2.
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Figure A.18: Lateral support struts attached between the sample holder base plate in
Figure A.17, and the front plate in Figure A.13
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Figure A.19: The complete sample mount, ready to be attached to the aluminium base
plate shown in Figure A.2.
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Figure A.20: The complete gas jet apparatus.
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Figure A.21: Circuit schematics for the temperature measurement amplifiers. Designed
by A. Lovejoy of the Warwick Physics Dept. Electronics Workshop.
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Figure A.22: Circuit schematics for the Proportional Integral Derivative (PID) Con-
troller for the Gas Jet heatsinks. Designed by A. Lovejoy of the Warwick Physics Dept.
Electronics Workshop.
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Appendix B

The Ni2MnGa Crystal Structure
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Figure B.1: Crystal structure of the Body-Centred Tetragonal (BCT) Martensite in
Ni2MnGa. The structure is of space group I4/mmm with lattice parameters a = b =
5.90Å and c = 5.54Å. Ni atoms are shown in light blue and have crystallographic
coordinates of 0.25, 0.25, 0.25; Mn atoms are red, positioned at 0.5, 0.0, 0.0; and Ga
atoms are Green, positioned at 0.0, 0.0, 0.0.
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Figure B.2: Crystal structure of the L21 Face-centred Cubic (FCC) Austenite in
Ni2MnGa. The structure is of space group Fm3m with lattice parameters a = b =
c = 5.825Å. Ni atoms are shown in light blue and have crystallographic coordinates of
0.25, 0.25, 0.25; Mn atoms are red, positioned at 0.5, 0.0, 0.0; and Ga atoms are Green,
positioned at 0.0, 0.0, 0.0.

149



Figure B.3: A 3D view of the BCT Martensite in Ni2MnGa. Ni atoms are shown in
light blue, Mn atoms in red, and Ga atoms in Green. A similar view of the L21 FCC
Austenite could also be included here, but the differences in structure are too small to
be visible by eye.
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Appendix C

Further details on DiffEXAFS

analysis
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C.1 Fe and SrF2 Thermal Expansion Analysis

C.1.1 FEFF Input Configuration Files

This section contains the FEFF input files (from ’feff.inp’) that were used when calculat-

ing scattering phase and amplitude information for subsequent EXAFS and DiffEXAFS

analysis as described in Chapter 4.

The first is for the iron calculation. Scattering paths were considered out to 5Å in order

to match the Fourier filter window to be used in subsequent experimental EXAFS fits.

This requiring a list of 58 atoms to be specified. Any scattering path contribution with

amplitude less than 4% that of the largest path was rejected.

* pot xsph fms paths genfmt ff2chi

CONTROL 1 1 1 1 1 1

PRINT 1 0 0 0 1 2

CRITERIA 5.0 4.0

RPATH 5.0

EXAFS 20

POTENTIALS

* ipot Z element l_scmt l_fms stoichiometry

0 26 Fe 2 2 0.001

1 26 Fe 2 2 2

ATOMS * this list contains 2733 atoms

* x y z ipot tag distance

0.00000 0.00000 0.00000 0 Fe 0.00000 0

1.43325 1.43325 1.43325 1 Fe 2.48246 1

-1.43325 1.43325 1.43325 1 Fe 2.48246 2

1.43325 -1.43325 1.43325 1 Fe 2.48246 3

-1.43325 -1.43325 1.43325 1 Fe 2.48246 4

1.43325 1.43325 -1.43325 1 Fe 2.48246 5

-1.43325 1.43325 -1.43325 1 Fe 2.48246 6

1.43325 -1.43325 -1.43325 1 Fe 2.48246 7

-1.43325 -1.43325 -1.43325 1 Fe 2.48246 8

2.86650 0.00000 0.00000 1 Fe 2.86650 9

-2.86650 0.00000 0.00000 1 Fe 2.86650 10

0.00000 2.86650 0.00000 1 Fe 2.86650 11

0.00000 -2.86650 0.00000 1 Fe 2.86650 12

0.00000 0.00000 2.86650 1 Fe 2.86650 13

0.00000 0.00000 -2.86650 1 Fe 2.86650 14

2.86650 2.86650 0.00000 1 Fe 4.05384 15

-2.86650 2.86650 0.00000 1 Fe 4.05384 16

2.86650 -2.86650 0.00000 1 Fe 4.05384 17

-2.86650 -2.86650 0.00000 1 Fe 4.05384 18

2.86650 0.00000 2.86650 1 Fe 4.05384 19

-2.86650 0.00000 2.86650 1 Fe 4.05384 20

0.00000 2.86650 2.86650 1 Fe 4.05384 21

0.00000 -2.86650 2.86650 1 Fe 4.05384 22

2.86650 0.00000 -2.86650 1 Fe 4.05384 23

-2.86650 0.00000 -2.86650 1 Fe 4.05384 24

0.00000 2.86650 -2.86650 1 Fe 4.05384 25

0.00000 -2.86650 -2.86650 1 Fe 4.05384 26

4.29975 1.43325 1.43325 1 Fe 4.75355 27
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-4.29975 1.43325 1.43325 1 Fe 4.75355 28

1.43325 4.29975 1.43325 1 Fe 4.75355 29

-1.43325 4.29975 1.43325 1 Fe 4.75355 30

4.29975 -1.43325 1.43325 1 Fe 4.75355 31

-4.29975 -1.43325 1.43325 1 Fe 4.75355 32

1.43325 -4.29975 1.43325 1 Fe 4.75355 33

-1.43325 -4.29975 1.43325 1 Fe 4.75355 34

1.43325 1.43325 4.29975 1 Fe 4.75355 35

-1.43325 1.43325 4.29975 1 Fe 4.75355 36

1.43325 -1.43325 4.29975 1 Fe 4.75355 37

-1.43325 -1.43325 4.29975 1 Fe 4.75355 38

4.29975 1.43325 -1.43325 1 Fe 4.75355 39

-4.29975 1.43325 -1.43325 1 Fe 4.75355 40

1.43325 4.29975 -1.43325 1 Fe 4.75355 41

-1.43325 4.29975 -1.43325 1 Fe 4.75355 42

4.29975 -1.43325 -1.43325 1 Fe 4.75355 43

-4.29975 -1.43325 -1.43325 1 Fe 4.75355 44

1.43325 -4.29975 -1.43325 1 Fe 4.75355 45

-1.43325 -4.29975 -1.43325 1 Fe 4.75355 46

1.43325 1.43325 -4.29975 1 Fe 4.75355 47

-1.43325 1.43325 -4.29975 1 Fe 4.75355 48

1.43325 -1.43325 -4.29975 1 Fe 4.75355 49

-1.43325 -1.43325 -4.29975 1 Fe 4.75355 50

2.86650 2.86650 2.86650 1 Fe 4.96492 51

-2.86650 2.86650 2.86650 1 Fe 4.96492 52

2.86650 -2.86650 2.86650 1 Fe 4.96492 53

-2.86650 -2.86650 2.86650 1 Fe 4.96492 54

2.86650 2.86650 -2.86650 1 Fe 4.96492 55

-2.86650 2.86650 -2.86650 1 Fe 4.96492 56

2.86650 -2.86650 -2.86650 1 Fe 4.96492 57

-2.86650 -2.86650 -2.86650 1 Fe 4.96492 58

END

The next ’feff.inp’ file relates to SrF2 calculations at the Sr-K edge. Here, the list

of atoms is truncated at 4.6Å since no atoms beyond that radius contributed to the

DiffEXAFS fits.

* pot xsph fms paths genfmt ff2chi

CONTROL 1 1 1 1 1 1

PRINT 1 0 0 0 1 2

CRITERIA 6.0 3.0

EXAFS 16

RPATH 9.1

NLEG 6

CORRECTIONS 0.0 0.0

POTENTIALS

* ipot Z element

0 38 Sr

1 38 Sr

2 9 F

ATOMS * this list contains 945 atoms

* x y z ipot tag distance

0.00000 0.00000 0.00000 0 Sr 0.00000

1.44990 1.44990 1.44990 2 F_1 2.51130

-1.44990 1.44990 1.44990 2 F_1 2.51130

1.44990 -1.44990 1.44990 2 F_1 2.51130

-1.44990 -1.44990 1.44990 2 F_1 2.51130

1.44990 1.44990 -1.44990 2 F_1 2.51130

-1.44990 1.44990 -1.44990 2 F_1 2.51130
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1.44990 -1.44990 -1.44990 2 F_1 2.51130

-1.44990 -1.44990 -1.44990 2 F_1 2.51130

2.89980 2.89980 0.00000 1 Sr_1 4.10094

-2.89980 2.89980 0.00000 1 Sr_1 4.10094

2.89980 -2.89980 0.00000 1 Sr_1 4.10094

-2.89980 -2.89980 0.00000 1 Sr_1 4.10094

2.89980 0.00000 2.89980 1 Sr_1 4.10094

-2.89980 0.00000 2.89980 1 Sr_1 4.10094

0.00000 2.89980 2.89980 1 Sr_1 4.10094

0.00000 -2.89980 2.89980 1 Sr_1 4.10094

2.89980 0.00000 -2.89980 1 Sr_1 4.10094

-2.89980 0.00000 -2.89980 1 Sr_1 4.10094

0.00000 2.89980 -2.89980 1 Sr_1 4.10094

0.00000 -2.89980 -2.89980 1 Sr_1 4.10094

.

.

.

END

C.1.2 Scattering Paths Retained After Filtering

The following data are taken from the ’paths.dat’ file output from FEFF. This file

contains the properties of all the scattering paths deemed to provide a significant con-

tribution to the observed fine-structure. Importantly, this includes the coordinates of

each atom from which the photo-electron scattered, allowing the length, order and shape

of each scattering path to be obtained.

The first set of data relates to the Fe calculation for which the input file was given in

the previous section. Only the paths considered in the DiffEXAFS fit are shown.

PATH Rmax= 5.000, Keep_limit= 0.00, Heap_limit 0.00 Pwcrit= 4.00%

-----------------------------------------------------------------------

1 2 8.000 index, nleg, degeneracy, r= 2.4825

x y z ipot label rleg beta eta

-1.433250 -1.433250 1.433250 1 ’Fe ’ 2.4825 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 180.0000 0.0000

2 2 6.000 index, nleg, degeneracy, r= 2.8665

x y z ipot label rleg beta eta

0.000000 -2.866500 0.000000 1 ’Fe ’ 2.8665 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.8665 180.0000 0.0000

3 3 48.000 index, nleg, degeneracy, r= 3.9157

x y z ipot label rleg beta eta

0.000000 -2.866500 0.000000 1 ’Fe ’ 2.8665 125.2644 0.0000

-1.433250 -1.433250 -1.433250 1 ’Fe ’ 2.4825 109.4712 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 125.2644 0.0000

4 2 12.000 index, nleg, degeneracy, r= 4.0538

x y z ipot label rleg beta eta

0.000000 2.866500 -2.866500 1 ’Fe ’ 4.0538 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 4.0538 180.0000 0.0000

5 3 48.000 index, nleg, degeneracy, r= 4.5094

x y z ipot label rleg beta eta

-2.866500 -2.866500 0.000000 1 ’Fe ’ 4.0538 144.7356 0.0000

-1.433250 -1.433250 -1.433250 1 ’Fe ’ 2.4825 70.5288 0.0000
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0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 144.7356 0.0000

6 2 24.000 index, nleg, degeneracy, r= 4.7536

x y z ipot label rleg beta eta

4.299750 1.433250 1.433250 1 ’Fe ’ 4.7536 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 4.7536 180.0000 0.0000

7 3 48.000 index, nleg, degeneracy, r= 4.8934

x y z ipot label rleg beta eta

-2.866500 -2.866500 0.000000 1 ’Fe ’ 4.0538 135.0000 0.0000

0.000000 -2.866500 0.000000 1 ’Fe ’ 2.8665 90.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.8665 135.0000 0.0000

8 2 8.000 index, nleg, degeneracy, r= 4.9649

x y z ipot label rleg beta eta

2.866500 2.866500 2.866500 1 ’Fe ’ 4.9649 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 4.9649 180.0000 0.0000

9 3 8.000 index, nleg, degeneracy, r= 4.9649

x y z ipot label rleg beta eta

-1.433250 1.433250 -1.433250 1 ’Fe ’ 2.4825 180.0000 0.0000

1.433250 -1.433250 1.433250 1 ’Fe ’ 4.9649 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 0.0000 0.0000

10 3 16.000 index, nleg, degeneracy, r= 4.9649

x y z ipot label rleg beta eta

2.866500 -2.866500 2.866500 1 ’Fe ’ 4.9649 180.0000 0.0000

1.433250 -1.433250 1.433250 1 ’Fe ’ 2.4825 0.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 180.0000 0.0000

11 4 8.000 index, nleg, degeneracy, r= 4.9649

x y z ipot label rleg beta eta

-1.433250 1.433250 1.433250 1 ’Fe ’ 2.4825 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 0.0000 0.0000

1.433250 -1.433250 -1.433250 1 ’Fe ’ 2.4825 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 0.0000 0.0000

13 4 8.000 index, nleg, degeneracy, r= 4.9649

x y z ipot label rleg beta eta

1.433250 -1.433250 -1.433250 1 ’Fe ’ 2.4825 0.0000 0.0000

2.866500 -2.866500 -2.866500 1 ’Fe ’ 2.4825 180.0000 0.0000

1.433250 -1.433250 -1.433250 1 ’Fe ’ 2.4825 0.0000 0.0000

0.000000 0.000000 0.000000 0 ’Fe ’ 2.4825 180.0000 0.0000

The next set of data relates to the SrF2 calculation. Again, only the paths considered

in the DiffEXAFS fit are shown.

PATH Rmax= 9.100, Keep_limit= 0.00, Heap_limit 0.00 Pwcrit= 3.00%

-----------------------------------------------------------------------

1 2 8.000 index, nleg, degeneracy, r= 2.5113

x y z ipot label rleg beta eta

-1.449900 1.449900 -1.449900 2 ’F ’ 2.5113 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Sr ’ 2.5113 180.0000 0.0000

2 3 24.000 index, nleg, degeneracy, r= 3.9612

x y z ipot label rleg beta eta

1.449900 -1.449900 -1.449900 2 ’F ’ 2.5113 125.2644 0.0000

-1.449900 -1.449900 -1.449900 2 ’F ’ 2.8998 125.2644 0.0000

0.000000 0.000000 0.000000 0 ’Sr ’ 2.5113 109.4712 0.0000

3 2 12.000 index, nleg, degeneracy, r= 4.1009

x y z ipot label rleg beta eta

2.899800 2.899800 0.000000 1 ’Sr ’ 4.1009 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Sr ’ 4.1009 180.0000 0.0000

6 2 24.000 index, nleg, degeneracy, r= 4.8088

x y z ipot label rleg beta eta

1.449900 -4.349700 1.449900 2 ’F ’ 4.8088 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Sr ’ 4.8088 180.0000 0.0000
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C.1.3 FitChi2 Input for Conventional EXAFS Fits

With the FEFF calculations complete, the phase and amplitude information was passed

to FitChi2 as described in section 4.3.3 to determine the remaining fine-structure pa-

rameters. These fits were performed with the following ’fitchi.inp’ configuration files.

The first is for the Fe fine-structure.

* Input parameters for FitChi2005

EXPTSPECTRUM Fe_cal_01e_EXAFS

CHIPFILES chipfiles.dat

EDGESHIFT 7121

EDGEVARIABLE 0

MAXITERATIONS 500

SHAKEOFF 0.8

STARTK 4.0

ENDK 13.88

BACKGROUND 6

MAXRADIUS 5.0

And the second for SrF2 fine-structure.

* Input parameters for FitChi2005

EXPTSPECTRUM Sr_cal_02.dat

CHIPFILES chipfiles.dat

EDGESHIFT 16105

MAXITERATIONS 5000

SHAKEOFF 0.8

ENDK 10.9

STARTK 3.24

BACKGROUND 6

C.1.4 FitChi2 Input for DiffEXAFS Fits

Following the conventional EXAFS fits, the DiffEXAFS fits finally determined the struc-

tural changes resulting from thermal modulation. FitChi2 was run in its DiffEXAFS

mode with the following parameters. The output from the conventional EXAFS fits

are shown here since they are also the initial parameters for the DiffEXAFS fits. The

Debye-Waller parameters are given in units of Å, and the edge energy in eV. Once again,

the first set of parameters relates to the Fe fit.

* Input parameters for FitChi2005

SPECTRUMTYPE 2

EXPTSPECTRUM FefoilL_127cal

EDGESHIFT 7121

MAXITERATIONS 2000

STARTK 3.2

ENDK 9.6

SHAKEVARIABLE 0
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EDGEVARIABLE 0

BACKGROUND 0

MINRADIUS 1.4

MAXRADIUS 5.0

FAILLIMIT 15

# Initial parameters for DiffEXAFS fit

# ------------------------------------

#

# Debye Waller parameters

6.59709771E-03

5.77540594E-03

1.39169422E-02

7.23890095E-03

2.92497945E-03

6.94018517E-03

2.14862600E-02

3.37583526E-03

2.15339129E-02

#

# Edge energy

7.12100000E+03

#

# Fine structure amplitude factor

0.94400000E-01

And the second set of parameters to the SrF2 DiffEXAFS fit.

* Input parameters for FitChi2005

SPECTRUMTYPE 2

INITIALDWFS InitialDwfs.dat

EXPTSPECTRUM test_56_NoBack10_Crop

CHIPFILES chipfiles.dat

EDGESHIFT 16105

MAXITERATIONS 2000

STARTK 3.47

ENDK 6.91

SHAKEVARIABLE 0

EDGEVARIABLE 0

BACKGROUND 4

MAXRADIUS 4.57

FAILLIMIT 8

CONVEXP 1.25

CONVLOR 1.7

# Initial parameters for DiffEXAFS fit

# ------------------------------------

#

# Debye Waller parameters

9.56394278E-03

7.90237602E-03

2.08650380E-02

1.03673267E-02

#

# Edge energy

1.61038750E+04

#

# Fine structure amplitude factor

8.77501268E-01
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C.1.5 FitChi2 Output

The following data are taken from the ’parameters.dat’ and ’Correlation.dat’ files output

from FitChi2 following the ∆T = 3.6K DiffEXAFS fit described in section 4.4. The first

data set is, once more, for the Fe data. It should be noted that that the fit was performed

on an un-normalised Difference EXAFS spectrum. Hence, these parameters differ from

those in Table 5.3 by a factor of 3.6. The variance/covariance matrix components

also require normalisation. The correlation matrix is unaffected. The Debye-Waller

parameters are given in units of Å
2
K−1, and the thermal expansion parameters in K−1

# Thermal DiffEXAFS Theory spectrum parameters

# --------------------------------------------

#

# Debye Waller parameters

4.80168606E-05

3.92613940E-05

1.19794330E-04

5.29250765E-05

-7.74575209E-05

4.98137251E-05

3.45342398E-09

-3.90135931E-05

1.42525721E-04

#

# Thermal Expansion parameters

4.127045E-05

# Correlation and Variance/Covariance Matrices

# i j Correlation [i][j] Covariance [i][j] i Variance [i]

0 0 1.0000000E+00 5.2477247E-13 0 5.2477247E-13

0 1 -5.0587465E-01 -5.4330552E-13 1 2.1980186E-12

0 2 5.2090515E-01 3.8404403E-12 2 1.0357947E-10

0 3 -2.3572528E-01 -3.4072377E-13 3 3.9812689E-12

0 4 2.9880451E-02 2.0557418E-13 4 9.0196934E-11

0 5 -4.3515141E-01 -8.9457137E-13 5 8.0533793E-12

0 6 1.9955401E-01 4.3909415E-13 6 9.2262106E-12

0 7 -9.5961945E-02 -8.9448518E-13 7 1.6556829E-10

0 8 1.4129565E-01 2.2435108E-12 8 4.8042730E-10

0 9 5.8098911E-01 7.1182211E-13 9 2.8604603E-12

1 0 -5.0587465E-01 -5.4330552E-13

1 1 1.0000000E+00 2.1980186E-12

1 2 -5.3665349E-01 -8.0974166E-12

1 3 4.4633150E-01 1.3203345E-12

1 4 8.5535656E-02 1.2043668E-12

1 5 5.9798836E-01 2.5159238E-12

1 6 1.4060756E-02 6.3319289E-14

1 7 9.8272171E-02 1.8747131E-12

1 8 -1.8125407E-01 -5.8900269E-12

1 9 -7.5383974E-01 -1.8902214E-12

2 0 5.2090515E-01 3.8404403E-12

2 1 -5.3665349E-01 -8.0974166E-12

2 2 1.0000000E+00 1.0357947E-10

2 3 -4.6098074E-01 -9.3611754E-12

2 4 1.5507659E-01 1.4989218E-11

2 5 -4.1312599E-01 -1.1931868E-11
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2 6 1.7647988E-01 5.4556151E-12

2 7 -9.4288369E-02 -1.2347628E-11

2 8 1.2199131E-01 2.7213197E-11

2 9 5.8372058E-01 1.0047541E-11

3 0 -2.3572528E-01 -3.4072377E-13

3 1 4.4633150E-01 1.3203345E-12

3 2 -4.6098074E-01 -9.3611754E-12

3 3 1.0000000E-00 3.9812689E-12

3 4 -1.3082882E-01 -2.4791914E-12

3 5 4.1502841E-01 2.3500530E-12

3 6 1.1676353E-01 7.0766815E-13

3 7 7.6971082E-02 1.9761820E-12

3 8 -9.4364767E-02 -4.1270000E-12

3 9 -4.8455428E-01 -1.6352010E-12

4 0 2.9880451E-02 2.0557418E-13

4 1 8.5535656E-02 1.2043668E-12

4 2 1.5507659E-01 1.4989218E-11

4 3 -1.3082882E-01 -2.4791914E-12

4 4 1.0000000E+00 9.0196934E-11

4 5 5.1256550E-01 1.3814474E-11

4 6 1.6338869E-01 4.7133486E-12

4 7 7.1022506E-01 8.6792154E-11

4 8 6.5186768E-01 1.3569667E-10

4 9 -1.4406832E-01 -2.3141011E-12

5 0 -4.3515141E-01 -8.9457137E-13

5 1 5.9798836E-01 2.5159238E-12

5 2 -4.1312599E-01 -1.1931868E-11

5 3 4.1502841E-01 2.3500530E-12

5 4 5.1256550E-01 1.3814474E-11

5 5 1.0000000E+00 8.0533793E-12

5 6 -1.2056761E-02 -1.0392773E-13

5 7 4.9489368E-01 1.8071307E-11

5 8 1.5016340E-01 9.3404330E-12

5 9 -7.0673549E-01 -3.3920632E-12

6 0 1.9955401E-01 4.3909415E-13

6 1 1.4060756E-02 6.3319289E-14

6 2 1.7647988E-01 5.4556151E-12

6 3 1.1676353E-01 7.0766815E-13

6 4 1.6338869E-01 4.7133486E-12

6 5 -1.2056761E-02 -1.0392773E-13

6 6 1.0000000E-00 9.2262106E-12

6 7 4.6795847E-02 1.8289742E-12

6 8 9.0402187E-02 6.0187244E-12

6 9 -1.3579538E-01 -6.9761310E-13

7 0 -9.5961945E-02 -8.9448518E-13

7 1 9.8272171E-02 1.8747131E-12

7 2 -9.4288369E-02 -1.2347628E-11

7 3 7.6971082E-02 1.9761820E-12

7 4 7.1022506E-01 8.6792154E-11

7 5 4.9489368E-01 1.8071307E-11

7 6 4.6795847E-02 1.8289742E-12

7 7 1.0000000E+00 1.6556829E-10

7 8 9.0435501E-01 2.5505942E-10

7 9 -1.2115291E-01 -2.6365766E-12

8 0 1.4129565E-01 2.2435108E-12

8 1 -1.8125407E-01 -5.8900269E-12

8 2 1.2199131E-01 2.7213197E-11

8 3 -9.4364767E-02 -4.1270000E-12

8 4 6.5186768E-01 1.3569667E-10

8 5 1.5016340E-01 9.3404330E-12

8 6 9.0402187E-02 6.0187244E-12

8 7 9.0435501E-01 2.5505942E-10

8 8 1.0000000E-00 4.8042730E-10

8 9 2.3057529E-01 8.5476071E-12
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9 0 5.8098911E-01 7.1182211E-13

9 1 -7.5383974E-01 -1.8902214E-12

9 2 5.8372058E-01 1.0047541E-11

9 3 -4.8455428E-01 -1.6352010E-12

9 4 -1.4406832E-01 -2.3141011E-12

9 5 -7.0673549E-01 -3.3920632E-12

9 6 -1.3579538E-01 -6.9761310E-13

9 7 -1.2115291E-01 -2.6365766E-12

9 8 2.3057529E-01 8.5476071E-12

9 9 1.0000000E-00 2.8604603E-12

The second set of parameters are for the SrF2 DiffEXAFS fit. Again this was performed

on a Difference EXAFS spectrum, this time where ∆T = 4.7K.

# Thermal DiffEXAFS Theory spectrum parameters

# --------------------------------------------

#

# Debye Waller parameters

8.67253209E-04

4.30918176E-03

9.25275659E-04

1.58996785E-03

#

# Thermal Expansion parameters

8.524332E-05

# Correlation and Variance/Covariance Matrices

# i j Correlation [i][j] Covariance [i][j] i Variance [i]

0 0 1.0000000E+00 4.7952094E-10 0 4.7952094E-10

0 1 6.3414922E-03 8.7505267E-11 1 3.9707988E-07

0 2 2.5864513E-01 4.6806314E-10 2 6.8295598E-09

0 3 -2.0307984E-01 -4.2463842E-10 3 9.1179536E-09

0 4 -6.0389700E-02 -9.0153288E-12 4 4.6476115E-11

1 0 6.3414922E-03 8.7505267E-11

1 1 1.0000000E+00 3.9707988E-07

1 2 -2.5777118E-01 -1.3423620E-08

1 3 4.6557413E-01 2.8014087E-08

1 4 -1.5048338E-01 -6.4646107E-10

2 0 2.5864513E-01 4.6806314E-10

2 1 -2.5777118E-01 -1.3423620E-08

2 2 1.0000000E+00 6.8295598E-09

2 3 -4.9221139E-01 -3.8841564E-09

2 4 -2.3792880E-01 -1.3404736E-10

3 0 -2.0307984E-01 -4.2463842E-10

3 1 4.6557413E-01 2.8014087E-08

3 2 -4.9221139E-01 -3.8841564E-09

3 3 1.0000000E-00 9.1179536E-09

3 4 6.2656549E-01 4.0787780E-10

4 0 -6.0389700E-02 -9.0153288E-12

4 1 -1.5048338E-01 -6.4646107E-10

4 2 -2.3792880E-01 -1.3404736E-10

4 3 6.2656549E-01 4.0787780E-10

4 4 1.0000000E-00 4.6476115E-11
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C.2 Ni2MnGa Phase Transition Analysis

C.2.1 FEFF Input Configuration Files

The following ’feff.inp’ file was used for all Ni2MnGa conventional EXAFS analysis. As

with the Fe analysis previously, the list of atoms and maximum path radius was selected

such that FEFF only considered those scattering paths that would be present in the

Fourier filtered experimental spectrum.

* pot xsph fms paths genfmt ff2chi

CONTROL 1 1 1 1 1 1

PRINT 1 0 0 0 1 2

CRITERIA 10.0 6.0

RPATH 3.2

EXAFS 20

POTENTIALS

* ipot Z element l_scmt l_fms stoichiometry

0 28 Ni 2 2 0.001

1 28 Ni 2 2 8

2 25 Mn 2 2 2

3 31 Ga 2 2 4

ATOMS * this list contains 15 atoms

* x y z ipot tag distance

0.00000 0.00000 0.00000 0 Ni 0.00000 0

-1.47500 1.47500 1.38500 3 Ga 2.50389 1

1.47500 -1.47500 1.38500 3 Ga 2.50389 2

1.47500 1.47500 -1.38500 3 Ga 2.50389 3

-1.47500 -1.47500 -1.38500 3 Ga 2.50389 4

1.47500 1.47500 1.38500 2 Mn 2.50389 5

-1.47500 -1.47500 1.38500 2 Mn 2.50389 6

-1.47500 1.47500 -1.38500 2 Mn 2.50389 7

1.47500 -1.47500 -1.38500 2 Mn 2.50389 8

2.95000 0.00000 0.00000 1 Ni 2.95000 9

-2.95000 0.00000 0.00000 1 Ni 2.95000 10

0.00000 2.95000 0.00000 1 Ni 2.95000 11

0.00000 -2.95000 0.00000 1 Ni 2.95000 12

0.00000 0.00000 2.77000 1 Ni 2.95000 13

0.00000 0.00000 -2.77000 1 Ni 2.95000 14

END

C.2.2 Scattering Paths Retained After Filtering

After Fourier filtering the experimental Ni2MnGa spectra. Only four paths contributed

to the EXAFS and DiffEXAFS fits. These were the first four single-scattering paths as

follows

PATH Rmax= 3.200, Keep_limit= 0.00, Heap_limit 0.00 Pwcrit= 6.00%

-----------------------------------------------------------------------
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1 2 4.000 index, nleg, degeneracy, r= 2.5039

x y z ipot label rleg beta eta

1.475000 -1.475000 -1.385000 2 ’Mn ’ 2.5039 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Ni ’ 2.5039 180.0000 0.0000

2 2 4.000 index, nleg, degeneracy, r= 2.5039

x y z ipot label rleg beta eta

1.475000 -1.475000 1.385000 3 ’Ga ’ 2.5039 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Ni ’ 2.5039 180.0000 0.0000

3 2 2.000 index, nleg, degeneracy, r= 2.7700

x y z ipot label rleg beta eta

0.000000 0.000000 2.770000 1 ’Ni ’ 2.7700 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Ni ’ 2.7700 180.0000 0.0000

4 2 4.000 index, nleg, degeneracy, r= 2.9500

x y z ipot label rleg beta eta

0.000000 -2.950000 0.000000 1 ’Ni ’ 2.9500 180.0000 0.0000

0.000000 0.000000 0.000000 0 ’Ni ’ 2.9500 180.0000 0.0000

C.2.3 FitChi2 for Conventional EXAFS Fits

The following ’fitchi.inp’ was used to fit conventional Ni2MnGa EXAFS spectra in the

region 70 ≤ E′ ≤ 550eV above the edge. The maximum radial component allowed

through the Fourier filter was selected to limit the EXAFS to contributions from the first

four single-scattering paths only. The minimum radial component removed background

drift. Best results were achieved when the shake-off, S2
0 , was fixed at 0.8.

* Input parameters for FitChi2005

EXPTSPECTRUM B_Ni_04b_EXAFS

CHIPFILES chipfiles.dat

EDGESHIFT 8337.5

MAXITERATIONS 800

ENDK 12

STARTK 4.2

MINRADIUS 1.3

MAXRADIUS 2.62

BACKGROUND 0

SHAKEOFF 0.8

SHAKEVARIABLE 0

This lead to the following parameters for EXAFS spectra taken at a range of different

temperatures well below the primary transition temperature at 51◦C. It is important

to note that given the first two Debye-Waller factors correspond to Ni-Mn and Ni-Ga,

which have equivalent radii, and also that there is little phase contrast between these

two paths, FitChi2 is unable to accurately distinguish one from the other. Therefore, it

is only the average of these two parameters that is meaningful.

# Ni2MnGa EXAFS fit at 293K # Ni2MnGa EXAFS fit at 243K

# ------------------------------- # -------------------------------

# #

162



# Debye Waller parameters # Debye Waller parameters

5.62936874E-03 7.12497167E-03

1.36715741E-02 7.65056665E-03

1.04339850E-02 7.49129026E-03

1.86782151E-02 2.87055824E-02

# #

# Edge energy energy # Edge energy energy

8.33777389E+03 8.33849819E+03

# Ni2MnGa EXAFS fit at 150K # Ni2MnGa EXAFS fit at 60K

# ------------------------------- # -------------------------------

# #

# Debye Waller parameters # Debye Waller parameters

4.73101362E-03 6.14327250E-03

8.37937777E-03 6.18196742E-03

7.85745012E-03 4.41283626E-03

3.10884753E-02 2.31415785E-02

# #

# Edge energy energy # Edge energy energy

8.33736496E+03 8.33734547E+03

Fit errors were as follows

# Ni2MnGa EXAFS fit errors at 293K # Ni2MnGa EXAFS fit errors at 243K

# -------------------------------- # --------------------------------

# #

# Error in Debye Waller parameters # Error in Debye Waller parameters

1.4038191E-03 3.3618546E-04

5.0354947E-03 4.3508447E-04

3.0328922E-03 5.4643975E-04

2.6116649E-03 2.1386812E-03

# #

# Error in Edge energy energy # Error in Edge energy energy

5.8403285E-01 1.6237932E-01

# Ni2MnGa EXAFS fit errors at 150K # Ni2MnGa EXAFS fit errors at 60K

# -------------------------------- # --------------------------------

# #

# Error in Debye Waller parameters # Error in Debye Waller parameters

3.9588835E-04 7.4290572E-04

7.6356824E-04 8.9611111E-04

7.2078975E-04 9.4941881E-04

3.0138686E-03 3.9206841E-03

# #

# Error in Edge energy energy # Error in Edge energy energy

2.0154206E-01 3.9617785E-01

The same FitChi2 configuration was used to analyse spectra taken close to the primary

transition temperature. The results were as follows

# Ni2MnGa EXAFS fit at 319K # Ni2MnGa EXAFS fit at 318K

# ------------------------------- # -------------------------------

# #

# Debye Waller parameters # Debye Waller parameters

1.16150565E-02 1.11684234E-02

5.67561717E-03 5.99176956E-03

4.16647156E-03 4.18319654E-03

1.63977600E-02 1.60419229E-02

# #

# Edge energy shift # Edge energy shift
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8.33897648E+03 8.33958883E+03

# Ni2MnGa EXAFS fit at 308K # Ni2MnGa EXAFS fit at 302K

# ------------------------------- # -------------------------------

# #

# Debye Waller parameters # Debye Waller parameters

1.20860236E-02 1.28276967E-02

7.38858945E-03 1.07562375E-02

6.39718203E-03 9.61726907E-03

1.81465188E-02 1.77150060E-02

# #

# Edge energy shift # Edge energy shift

8.33847742E+03 8.33744509E+03

The fit errors for these spectra were

# Ni2MnGa EXAFS fit errors at 319K # Ni2MnGa EXAFS fit errors at 318K

# -------------------------------- # --------------------------------

# #

# Debye Waller parameters # Debye Waller parameters

1.0590398E-03 1.1137689E-03

6.5025643E-04 7.5561905E-04

1.1874057E-03 1.2824380E-03

2.7582685E-03 2.9125775E-03

# #

# Edge energy shift # Edge energy shift

4.7810470E-01 5.1196055E-01

# Ni2MnGa EXAFS fit errors at 308K # Ni2MnGa EXAFS fit errors at 302K

# -------------------------------- # --------------------------------

# #

# Debye Waller parameters # Debye Waller parameters

1.0754718E-03 1.2189951E-03

8.2532232E-04 1.2584772E-03

1.3974167E-03 1.9824385E-03

2.6063233E-03 2.5825199E-03

# #

# Edge energy shift # Edge energy shift

4.2173417E-01 4.8042362E-01

C.2.4 FitChi2 for DiffEXAFS Fits

The following ’fitchi.inp’ file was used to configure FitChi2 for processing DiffEXAFS

spectra.

* Input parameters for FitChi2005

SPECTRUMTYPE 2

INITIALDWFS InitialDwfs.dat

CHIPFILES chipfiles.dat

EDGESHIFT 8337.5

STARTK 4.2

ENDK 13.0

SHAKEVARIABLE 0

EDGEVARIABLE 0

BACKGROUND 0
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MINRADIUS 1.5

MAXRADIUS 3.0

EXPANSIONMODE 1

FAILLIMIT 15

The following parameters were produced for spectra at each of the stated temperatures.

# Ni2MnGa DiffEXAFS fit at 291K # Ni2MnGa DiffEXAFS fit at 299K

# ----------------------------- # -----------------------------

# #

# Thermal Expansion parameters # Thermal Expansion parameters

3.155263E-04 -4.520050E-04

-3.178105E-03 -7.604286E-04

-1.722270E-03 -1.000802E-03

-1.268480E-04 -1.667810E-04

# #

# Debye Waller parameters # Debye Waller parameters

7.37211588E-04 5.17410525E-04

-1.39783678E-03 -1.35695973E-03

-9.68551909E-04 -1.04102387E-03

-1.02733499E-03 -9.33427527E-04

# Ni2MnGa DiffEXAFS fit at 305K # Ni2MnGa DiffEXAFS fit at 311K

# ----------------------------- # -----------------------------

# #

# Thermal Expansion parameters # Thermal Expansion parameters

-1.328696E-03 -5.897663E-04

-1.978594E-05 4.482105E-04

-2.009827E-03 7.242882E-04

-7.645151E-04 1.384742E-04

#

# Debye Waller parameters

6.49393040E-04 3.04734743E-04

-2.00631561E-03 -7.41509414E-04

-1.30093342E-03 -8.04697255E-04

-1.23062313E-03 -1.08014710E-03

# Ni2MnGa DiffEXAFS fit at 320K # Ni2MnGa DiffEXAFS fit at 321K

# ----------------------------- # -----------------------------

# #

# Thermal Expansion parameters # Thermal Expansion parameters

4.295717E-03 1.141850E-02

-1.275160E-02 -1.864977E-02

3.302080E-03 1.539433E-02

2.891545E-03 7.617241E-03

# #

# Debye Waller parameters # Debye Waller parameters

3.90724202E-03 4.97736848E-03

-4.95539087E-03 -5.78700233E-03

-2.41381916E-03 -1.43969806E-03

-4.85489321E-03 -3.15731989E-03

# Ni2MnGa DiffEXAFS fit at 323K

# -----------------------------

#

# Thermal Expansion parameters

1.859776E-02

-2.190968E-02

2.410473E-02

1.334813E-02

#

# Debye Waller parameters

7.34733200E-03

-6.87410243E-03
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-5.20084275E-03

-7.82678449E-03

The associated fit errors were

# Ni2MnGa DiffEXAFS fit at 291K # Ni2MnGa DiffEXAFS fit at 299K

# ----------------------------- # -----------------------------

# #

# Thermal Expansion parameters # Thermal Expansion parameters

7.5160364E-05 1.7252007E-04

1.2197837E-04 2.1545208E-04

1.4051629E-04 3.2323790E-04

6.8578290E-05 1.6095259E-04

# #

# Debye Waller parameters # Debye Waller parameters

3.8698917E-05 6.3552318E-05

1.0630373E-04 2.1361705E-04

4.0776339E-05 8.0894176E-05

3.0876447E-05 5.6266768E-05

# Ni2MnGa DiffEXAFS fit at 305K # Ni2MnGa DiffEXAFS fit at 311K

# ----------------------------- # -----------------------------

# #

# Thermal Expansion parameters # Thermal Expansion parameters

2.6950303E-04 8.3885647E-05

1.8834314E-04 1.0807270E-04

7.2660156E-04 1.4819541E-04

3.3055744E-04 6.0609842E-05

#

# Debye Waller parameters

1.1544393E-04 3.0890565E-05

3.7033564E-04 1.1819887E-04

1.2047573E-04 5.5352979E-05

6.2594807E-05 3.6363902E-05

# Ni2MnGa DiffEXAFS fit at 320K # Ni2MnGa DiffEXAFS fit at 321K

# ----------------------------- # -----------------------------

# #

# Thermal Expansion parameters # Thermal Expansion parameters

2.1617323E-04 2.2034359E-04

2.2146092E-04 1.4321002E-04

3.0769001E-04 3.8374891E-04

2.0313117E-04 2.7036614E-04

# #

# Debye Waller parameters # Debye Waller parameters

9.2083730E-05 4.8979898E-05

7.8468916E-05 3.1563321E-05

1.1979032E-04 1.1203578E-04

8.3065400E-05 1.0077043E-04

# Ni2MnGa DiffEXAFS fit at 323K

# -----------------------------

#

# Thermal Expansion parameters

2.6825390E-04

1.3486364E-04

3.6547359E-04

2.5904062E-04

#

# Debye Waller parameters

8.9292663E-05

3.8755357E-05

1.0738528E-04

1.0697712E-04
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The DXAS Calibration computer program provides a quantitative and

automated solution to the problem of calibrating spectra from dispersive

XAS beamlines. Such spectra, obtained in arbitrary energy units, are calibrated

with respect to the absorption features of a supplied reference spectrum, which

has been obtained under similar conditions on a calibrated beamline. In addition

to basic energy coordinate transformation parameters, DXAS Calibration

supplies instrument corrections to compensate for mismatches in instrument

response functions between the dispersive and reference beamlines.

Keywords: dispersive XAS; calibration; instrument response functions.

1. Introduction

Dispersive XAS beamlines, such as ID24 of the ESRF, utilize a single

Si(111) Bragg diffracting or Si(311) Laue diffracting polychromator

crystal which is elliptically bent and illuminated by white X-rays,

typically over an area of 10 mm vertically by 40 mm horizontally, to

produce a wavelength-dispersive diffracted beam (ESRF, 2001).

This beam, spread out into a broad horizontal fan, converges to a

focus, allowing a sample to be simultaneously illuminated by X-rays

of wavelengths corresponding to an energy range of typically 700–

1500 eV. Beyond this focal spot, each wavelength component

diverges again, and is detected by a position-sensitive CCD array of

18 pixels � 1152 pixels in the case of ID24, as shown in Fig. 1.

As a result of this geometry, the energies of X-rays detected in each

pixel of the CCD (which are related to X-ray wavelength given E =

hc/�) are dependent on the source and optics settings, on the amount

of bending in the polychromator crystal, and on the distance between

the detector and the focal spot, and as such cannot be accurately

determined prior to measurement. It is therefore required that cali-

bration be carried out a posteriori with respect to a spectrum of

known calibration.

Thus, each absorption spectrum is acquired on a relative scale and

presented to the user as a function of CCD channel (pixel) number.

The user is then required to manually calibrate the energy and

absorption scales, converting from CCD channel number to a real

energy scale and from relative to an absolute absorption scale. This is

usually accomplished by comparing an acquired spectrum with a

reference obtained from a standard calibrated XAS beamline such as

BM29, the X-ray absorption spectroscopy beamline at the ESRF.

Some tools already exist to aid the user in this task (ESRF, 2001), but

none are fully automated and therefore accuracy is limited by human

judgement.1 Additionally, few are dedicated to the calibration

requirements of dispersive-XAS beamlines and hence can often be

difficult to use. DXAS Calibration solves these problems by providing

an automated graphically driven calibration solution that is dedicated

to the problems presented by dispersive-XAS beamlines.

2. The calibration process

2.1. Calibration parameters

Assuming that the dispersive and reference spectra were acquired

under the same environmental conditions, from the same sample

material and also, for now, that the instrument response functions of

the dispersive and reference beamlines were identical, then calibra-

tion is reduced to calculating the values of a set of parameters

necessary to transform the channel number ‘pseudo-energy’ axis to

an absolute energy scale, and relative absorption to absolute

absorption. Algorithmically, these parameters are the coefficients of

two polynomials: one for energy calibration and one for absorption

normalization, so that, for each pixel i,

E 0i ¼ a0 þ a1Ei þ a2E 2
i þ . . .þ anE n

i ; ð1Þ

�0i ¼ b0 þ b1�i þ b2�
2
i þ . . .þ bn�

n
i ; ð2Þ

Figure 1
The optics of beamline ID24 of the ESRF (ESRF, 2005).

1 Subsequent to submission, the referee has pointed out that a calibration
program exists in the commercial WinXAS software (http://www.winxas.de),
but this seems to be semi-automatic.



where Ei and �i are the original energy (which may be just the pixel

number) and absorption coefficients, respectively, and E 0i and �0i are

the transformed coordinates. As a result, a0 and b0 perform a simple

translation of the spectrum, a1 and b1 stretch the spectrum in a linear

fashion, and higher-order coefficients induce non-linear deformations

in the spectrum. Setting a1 and b1 to 1 and all other parameters to 0

will return the original spectrum as it was experimentally recorded.

The order n of the polynomial is specified by the user, and is typically

between 2 and 4. An option also exists allowing a user to correct any

absorption drift if necessary. Given that all parameters ai and bi are

independent, they may be inserted into a single vector a for use by

the calibration algorithm.

Frequently, these parameters alone will suffice in generating an

accurate calibration; however, it is also important to consider the case

where our final assumption fails, and the instrument functions of the

dispersive and reference beamlines differ. When this happens, addi-

tional instrument compensation parameters are required, which are

discussed in more detail in x3.

2.2. Calibration algorithm

The DXAS Calibration code implements a Levenberg–Marquardt

algorithm for general non-linear least-squares fitting of an arbitrary

number of parameters (Adby & Dempster, 1974; Press et al., 1992).

For the purpose of creating a calibration algorithm within the

assumptions given above, we must state a priori that it is possible to

select some set of parameters, a, which when applied to a dispersive

spectrum, f (E, a), should in theory reduce any differences in

absorption structure between it and the reference spectrum, fref(E),

to a minimum. We therefore define some least-squares cost function

that measures the differences in structure for any potential solution,

and work to minimize it. Given also that the code is always supplied

with sets of spectral data, discretely sampled at energies Ei, the

differences may simply be evaluated at each data point as yi(a) =

f (Ei, a) � fref(Ei).

3. Advanced calibration techniques

3.1. Matching beamline instrument functions

In some cases, especially at higher X-ray energies or with thick

specimens where the absorption thickness product is greater than

e.g. 1.5, the instrument functions of dispersive beamlines differ

significantly from those of standard XAS beamlines. In these cases,

the stated calibration condition that the cost function can be reduced

to an acceptable minimum, simply by applying translations and

deformations to the uncalibrated spectrum of the polynomial form

(1) and (2), is no longer valid. It is therefore necessary to match the

instrument functions of the dispersive and reference beamlines so

that, idealistically, two spectra obtained from the same sample, under

the same environmental conditions, are identical.

This can be achieved by convolving the reference transmission

spectrum (which is of a higher resolution than the same spectrum

obtained from a dispersive beamline) with instrumental weight

functions that compensate for the differences in X-ray source and

optics between the two beamlines, the optimal characteristics of

which can again be obtained from a Levenberg–Marquardt algo-

rithm.

Klug & Alexander (1974) describe several types of instrument

corrections that are applicable to powder diffractometry, but which

are adaptable to our situation, and could be applied to the reference

spectrum in order to match its instrument function to that of the

dispersive beamline. However, in the specific case of dispersive

spectra from ID24 and reference spectra from a standard XAS

beamline such as BM29, we empirically find only two such functions

to be required.

The first is a normalized Lorentzian of the form

LðxÞ ¼
1

�

�=2

x� x0ð Þ
2
þ �=2ð Þ

2 ; ð3Þ

where � is found to be 2.35 eV at the Sr K edge (16.105 keV). This

function is applied to the transmission data (i.e. the data prior to

taking the log to convert to absorption) and compensates for the so-

called thickness effect where differences in the tails of the instrument

functions between the reference monochromator and dispersive

polychromator, as a function of angular deviation from the diffracting

Bragg angle, induce differences in the absorption spectra. The

Lorentzian form of the tails is predicted from perfect crystal theory.

These Lorentzian tails to the diffracted beam reduce its mono-

chromacity, and hence are clearly undesirable. As a consequence,

XAS beamlines commonly utilize a two-crystal Si(111) or Si(311)

monochromator, arranged in the parallel configuration, so that the

twice diffracted beam suppresses these tails. Dispersive beamlines,

however, implement only a single Si(111) or Si(311) crystal to select

X-ray wavelengths. As a result, the tails on the angular reflectivity

profile are unattenuated, distorting the fine structure. For calibration

purposes, convolving the reference transmission spectrum with the

Lorentzian (3) will reintroduce the broadening effects eliminated by

the two-crystal monochromator, matching its characteristic reflec-

tivity profile to that of the dispersive spectrum. The second instru-

ment weighting function is asymmetric and is a normalized

exponential of the form

expðxÞ ¼
ð1=�Þ expðx=�Þ for x > 0

0 for x � 0

�
; ð4Þ

where � is found to be 1.25 eV at the Sr K edge. This term arises due

to differences in X-ray penetration into the monochromator crystals

on the two beamlines. For a perfect crystal of Si(111), diffracting in

the dynamical regime, X-ray penetration into the crystal is calculated

from the extinction length to be of the order of 1 mm. However, a

dispersive beamline has a bent crystal polychromator, which in turn

has bent lattice planes that break the conditions necessary for purely

dynamical diffraction. Equally, the crystal is not deformed sufficiently

for purely kinematical diffraction to occur. Therefore, the X-ray

penetration depth lies somewhere between the extinction and

absorption lengths, the values predicted for each regime, respectively.

This penetration can be increased further in the presence of damage

to the surface of the crystal that may have resulted from its

preparation process.

The result is that, on the dispersive beamline, X-rays of a given

energy diffract from many more lattice planes of greater depth, which

in turn spatially smears the diffracted beam perpendicular to the

planes. These X-rays are therefore detected in several pixels along

the length of the CCD, broadening the spectrum. Given also that the

beam intensity decays exponentially as it penetrates the crystal, with

a sharp discontinuity at the crystal surface, the smeared intensity of a

single wavelength component of the diffracted radiation will decay

exponentially in space as shown in equation (4). This introduces an

erroneous asymmetrical energy shift in the observed structure. On

ID24, the geometry dictates that this shift is towards higher energies.

The observed penetration depth as a function of the radius of

curvature of the polychromator, p(R), may be calculated from

pðRÞ ¼
�

�EðRÞ
Px; ð5Þ
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where �E(R) is the CCD energy resolution and Px is the horizontal

size of each CCD pixel. On ID24, Px = 25.0 mm, and, at the Sr K edge,

�E(R) = 1.26 eV, giving p(R) = 24.6 mm.

Other effects, such as from samples themselves, may also degrade

dispersive measurements with respect to those from reference

beamlines. One such example is a reduction in resolution and white-

line intensity owing to small-angle scatter by BN-based powder

samples (Hagelstein et al., 1998). However, these effects are

neglected here for two reasons. Firstly, they generally represent only

a small change in the XAFS spectrum as a whole, and are found not

to affect the overall quality of calibration fits; and, secondly, such

effects may be avoided by selecting suitable samples for calibration

measurements; for instance, by making such measurements through

reference foils rather than powder specimens.

3.2. Implementation of convolutions

Convolution theorem dictates that the convolution of two func-

tions, e.g. f and g, is given by

f 0ðEÞ ¼
R1
�1

f ðE0Þ gðE� E0Þ dE0: ð6Þ

This may be evaluated by taking the Fourier transforms of f and g,

multiplying them together, and back-transforming the resulting

function. Therefore, computational problems involving convolutions

are commonly tackled using a fast Fourier transform code. The result

is very rapid evaluation of the convolution, which is ideal for iterative

applications as implemented here, but comes at the expense of

potentially introducing transform artefacts to the spectrum.

It is also possible, however, to take the discretely sampled spec-

trum data, f, and perform the convolution numerically at each data

point as long as the function with which it is being convolved, g, goes

to zero as E 0 goes to infinity. Fortunately, this is the case with

equations (3) and (4). Evaluating the convolution this way will

guarantee the absence of any Fourier transform artefacts, but at the

expense of speed. Given the importance of an accurately calibrated

spectrum, DXAS Calibration evaluates any required convolutions

using this latter numerical technique.

The speed penalty resulting from this choice of algorithm is not too

severe in practice. Given that a typical sampling interval for an XAS

beamline is between 0.1 and 1.0 eV, and that the characteristic widths

of both the Lorentzian and exponential convolution functions are of

the order of a few eV, the convolution may be accurately evaluated

by summing contributions from only a few tens of data points. As a

result, evaluating the convolution, and Marquardt difference and

derivative matrices of a spectrum spanning 1000 eV (sampled every

0.5 eV) with a Lorentzian of � = 3.40 eV and an exponential of � =

1.25 eV, takes approximately 2 s on a Pentium IV 3.0 GHz processor.

3.3. Instrument parameter integration

Without instrument function compensation, the output parameters

from the coordinate transformation algorithm may be considered

optimal after just one execution. However, if the instrument functions

between dispersive and reference beamlines differ enough to require

additional instrument function calibration, the optimal parameters

for coordinate transformation are dependent on the convolution

functions that have been applied to the reference spectrum. The

instrument parameters must therefore be optimized first. Unfortu-

nately the reverse is also true. In order to optimize the instrument

parameters on the reference spectrum, a dispersive spectrum with

calibrated axes is required. This circular argument means that neither

the coordinate transforms nor instrument corrections may be opti-

mized with just one execution of their respective fitting algorithms.

The solution must therefore be obtained by executing each algorithm

in turn, allowing it to improve its solution with respect to the other,

and iterating until self-consistency is reached; that is, when neither

algorithm is capable of reducing the differences in absorption struc-

ture any further.

4. Calibration of XAS spectra from Fe and SrF2

4.1. Calibration at the Fe K edge

DXAS Calibration has been successfully tested on data obtained

from ID24 at the Fe K edge (7.112 keV) of a polycrystalline Fe foil.

At this energy the instrument function mismatch between ID24 and

BM29, the chosen reference beamline, was minimal, and therefore

calibration could be achieved without the implementation of any

instrument corrections. The fit parameters are therefore only repre-

sented by coordinate transformations and background corrections. A

cubic polynomial (four parameters) was fitted to the energy axis, and

a linear polynomial (two parameters) was fitted to the absorption

axis. Background correction was performed by fitting a six-coefficient

Chebyshev polynomial to the residual differences between the two

spectra and subtracting it.

The reference spectrum used in this calibration was obtained from

a similar Fe foil, but from one of a thickness such that the jump at the

edge, ��x, was approximately 1.0.

An initial estimate of the parameter values was passed to the

calibration algorithm, along with an initial Marquardt scale factor of

1.0 � 10�3. Calibration then optimized the parameters, aborting after

seven failed attempts to reduce the spectral differences, and resulted

in a solution with residual differences at each point of less than 0.4%

of the average absorption. These final parameter values, and also the

initial estimate values, are given in Table 1. The calibration solution is

shown in Fig. 2.

4.2. Calibration at the Sr K edge

At the Sr K edge (16.105 keV), best results are obtained from a

Laue diffracting crystal, since many distortions become present at

such high energies in Bragg geometry (Hagelstein et al., 1995).

However, for the purpose of testing this code, measurements were

made using Bragg geometry, where the instrument functions of ID24

and BM29 differ significantly. As such, successful energy-scale cali-

bration required use of instrument correction parameters. Both the

Lorentzian correction for diffraction monochromacity, and expo-

nential correction for polychromator transparency, were utilized.

computer programs
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Table 1
Estimated and optimized parameter values for calibration at the Fe K edge.

Parameter Estimate Calibrated value

a0 7.027 � 103 7.032 � 103

a1 3.038 � 10�1 2.951 � 10�1

a2 0 �7.356 � 10�6

a3 0 1.178 � 10�8

b0 7.929 � 10�1 7.185 � 10�1

b1 5.854 � 10�1 9.324 � 10�1

Background Parameter value

x0 9.120 � 10�2

x1 6.384 � 10�2

x2 1.599 � 10�2

x3
�6.710 � 10�3

x4 6.368 � 10�3

x5 8.137 � 10�3



Polynomial coordinate transformations again consisted of a cubic

polynomial for energy calibration, and a linear polynomial for

absorption normalization. Background correction again consisted of

a six-coefficient Chebyshev polynomial. The BM29 reference spec-

trum was obtained from a similar SrF2 pellet as that used on ID24,

which again had an edge jump of approximately 1.0.

The initial estimate and calibrated parameter values are shown in

Table 2, with the calibrated solution shown in Fig. 3. The BM29

reference spectrum is shown in Fig. 4 before and after the application

of the instrument correction functions. The overall product of the two

correction functions is shown as an insert. Some systematic differ-

ences between the ID24 and BM29 spectra persist after calibration,

which most likely originate from inhomogeneities in the powdered

pellets. Despite these, residual spectral differences at each point are

approximately 0.7% of the average absorption, with fine-structure

oscillations in calibrated and reference spectra coincident.

5. Conclusions

DXAS Calibration provides a quantitative and automated approach

to the problem of calibration of dispersive XAS spectra. While

providing a solution to the primary problem of coordinate transfor-

mation, it also moves beyond current techniques to consider cali-

bration of spectra against references obtained from beamlines with

significantly different instrument response functions. This not only

computer programs
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Table 2
Estimated and optimized parameter values for calibration at the Sr K edge.

Parameter Estimate Calibrated value

a0 1.571 � 104 1.569 � 104

a1 1.228 � 100 1.220 � 100

a2 0 3.147 � 10�4

a3 0 �4.3507 � 10�7

b0 6.190 � 10�1 7.185 � 10�1

b1 9.205 � 10�1 9.324 � 10�1

� 1.00 eV 2.35 eV
� 1.00 eV 1.25 eV

Background Parameter value

x0
�1.092 � 10�2

x1 1.231 � 10�1

x2 5.224 � 10�2

x3
�4.072 � 10�3

x4
�1.915 � 10�3

x5 8.419 � 10�3

Figure 3
Calibration of an ID24 Sr K-edge spectrum with respect to a similar one obtained
from BM29. Both spectra were obtained from BN-based pellets of powdered SrF2.
At the Sr K edge, there is significant deviation in instrument functions between
ID24 and BM29, so, in addition to coordinate calibration and background
correction, convolution-based instrument corrections have also been applied to
the BM29 reference spectrum in order that its instrument function matches that
of ID24.

Figure 4
The Sr K edge acquired from BM29, shown before (grey) and after (black) the
application of instrument corrections necessary to match its overall instrument
function to that of ID24. The product of the two correction functions, Lorentzian
and exponential, is shown as an insert.

Figure 2
Calibration of an ID24 Fe K-edge spectrum with respect to a similar one obtained
from BM29. Both spectra were obtained from samples of polycrystalline iron foil.
At the Fe K edge, the mismatch in instrument functions between ID24 and BM29 is
negligible, and so this calibration consists only of polynomial-based coordinate
transformations and a background correction.



allows for calibration of spectra within a more general framework,

but also provides quantitative information on how dispersive beam-

lines perform with respect to others.

The core of DXAS Calibration is coded in cross-platform compa-

tible C++ with a Visual Basic graphical user interface for Windows

users. The source code, a windows executable file, the examples given

here and comprehensive instructions are included in the package. All

components of the code are freeware, and are released under the

conditions of the GNU General Public License.

The authors would like to thank the beamline staff of ID24 and

BM29, particularly S. Pascarelli, O. Mathon and A. Trapananti, for

their ongoing help and support for this project.
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Abstract. Differential EXAFS (DiffEXAFS) is a novel technique for measuring atomic perturbations on a local scale
that result from the modulation of a given sample property. Experiments conducted to date have revealed a sensitivity to
such perturbations of the order of femtometres [1], two orders of magnitude more sensitive than is considered possible by
conventional EXAFS techniques [2]. Here, the concept behind DiffEXAFS is described, and experimental factors required to
detect such a signal discussed.
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CONCEPT

Differential EXAFS (DiffEXAFS) is a novel technique
for the study of small atomic perturbations, which was
developed by Pettifer et al. over a period of years leading
up to publication in May 2005 [1]. The technique em-
ploys the subtle changes in EXAFS signals induced by
the modulation of a given sample property to measure
changes in photoelectron scattering path length, and thus
deduce any atomic displacements in the local area of the
absorbing atom.

A Differential EXAFS spectrum is the difference be-
tween two conventional EXAFS spectra (designated +
and -), taken with all sample properties kept constant,
except for the unit modulation of some property of in-
terest1. This is very similar in principle to XMCD, ex-
cept that instead of only studying magnetic effects in the
near-edge region, DiffEXAFS examines the extended x-
ray absorption structure for pertubations of the sample.
For instance, dichroic signals can be produced by alter-
ing the angle between the linear polarisation vector and
the sample magnetisation to give information about mag-
netostriction, or changes of temperature to give thermal
effects. Given that strains contributing to these signals
are small, it is possible to express them in terms of a first
order Taylor expansion of the x-ray fine-structure func-
tion, χ , with respect to the modulated parameter.

χ(k) = ∑
j

A j(k)sin
(

ks j + φ j(k)
)

(1)

∆χ = ∑
j

A j(k)k cos
(

ks j + φ j(k)
)

∆s j (2)

1 If non-unit modulation is employed, the spectrum is referred to as
a Difference EXAFS spectrum, which must be normalised to unit
modulation in order to extract information on structural changes.

Strictly speaking,A j(k) andφ j(k) are also path length,
s j, dependent, but changes in these parameters are neg-
ligible compared to∆s j. In some situations though, ad-
ditional factors are significantly dependent on the mod-
ulated parameter, such as the Debye-Waller factor when
samples undergo temperature modulation. In this case,
the differential fine-structure function becomes

∆χ = ∑
j

A j(k)
(

k cos
(

ks j + φ j(k)
)

∆s j

−2k2sin
(

ks j + φ j(k)
)

∆σ2
j

)

(3)

This difference can be seen in Figure 1, where a typical
Joule magnetostriction DiffEXAFS signal is plotted for a
90◦ rotation in sample magnetisation, and a typical ther-
mal DiffEXAFS signal plotted for a 1K change in sam-
ple temperature; both at the Fe-K edge. The former spec-
trum is described by equation (2), and the latter by (3).
Indeed, the Debye-Waller contributions to the thermal
signal dominate, producing DiffEXAFS that is almost
in phase with the original fine-structure, with thermal
expansion only being detectable as a slight phase shift.
Since the structure present in a DiffEXAFS spectrum is
intimately linked to atomic perturbations, a different sig-
nal can be expected from the same absorption edge de-
pending on which property is modulated, and how that
affects the sample structure.

IMPLEMENTATION

The concept of DiffEXAFS is quite trivial. The reason
it has not been demonstrated in practice until recently
comes down to experimental limitations. Most struc-
turally perturbative phenomena induce atomic displace-
ments of the order of a few femtometres for unit modu-



FIGURE 1. DiffEXAFS signals at the Fe-K edge for mag-
netisation modulation of FeCo and thermal modulation of Fe
foil. EXAFS for the pure Fe sample is shown, which is virtually
identical to the FeCo structure. As can be seen, the modulation
of different sample properties results in very different signals.
The magnetisation signal only contains one component through
magnetostrictive strain, whereas the thermal signal contains
components from expansion of the crystal lattice and changes
to atomic vibrational amplitudes.

lation of a sample property, giving strains of the order of
10−5.

Conventional EXAFS typically only has sensitivity
to strains of the order of 10−3 depending on circum-
stances [2], so in order to resolve a difference signal,
sample modulation must be a hundred times larger, in-
ducing displacements of the order of 0.1pm. DiffEXAFS
however, offers direct sensitivity to displacements of the
order of femtometres.

Such sensitivity is achieved due to the method by
which DiffEXAFS spectra are acquired, and the beam
conditions over that time. Three main problems must be
overcome. Firstly, statistical noise in∆χ in each spec-
trum must be low - no more than about 10−5 for fem-
tometre resolution, which suggests the use of a high-
intensity 3rd generation synchrotron source such as an
undulator beam.

The next problem is that of beam energy stability.
If the energy of photons passing through the sample
changes between the + and - measurements, spurious
signals can be generated from the resulting shift in fine-
structure. Assuming the noise limit in∆χ is 10−5, the
edge energy would need to be stable to at least 0.1meV
for any drift signal be indistinguishable from the noise.

The third and final problem is that of spatial beam sta-
bility. Unless the sample material under study is perfectly
homogenous, subtle changes in thickness could gener-
ate a difference in x-ray absorption if the beam were
to move between the + and - measurements. Beam drift
must therefore be minimised, or the beam spot size in-

creased such that any drift changes the illuminated sec-
tion of sample by only a tiny fraction.

Given that both energy and spatial stability of a beam
are time-dependent, measurements of the sample at the
+ and - modulation states must be made in as short a
space of time as possible; with both complete spectra
acquired in a period of a couple of seconds or less.
The solution therefore, is to use a Dispersive XAS (D-
XAS) beamline. To date, all DiffEXAFS experiments
have been conducted on ID24 of the ESRF [3], which
has the added advantage of being mounted on a twin
undulator source, providing x-ray intensities of the order
of 1013 photons/sec to minimise statistical noise.

A complete spectrum can be acquired and output in
about 200ms, which ideally, with rapid sample modu-
lation apparatus, allows two spectra to be obtained un-
der different sample conditions in less than a second; the
limiting factor being how quickly the sample responds
to the modulation stimulus. However, whilst such quick
measurements minimise time-dependent beam drifts, ex-
posure times of the order of 100ms are not capable of
providing statistical noise in∆χ of 10−5 as required in
one pair of +/- measurements.

It is therefore necessary to average the DiffEXAFS
signal over many pairs of measurements - typically
around a thousand, giving a total acquisition time for
a single DiffEXAFS spectrum of anything from thirty
minutes to two hours depending on the speed of sample
modulation. Averaging over such a period requires the
consideration of additional factors, most notably the de-
cay of beam intensity as electrons are lost from the stor-
age ring. This, and other linear and exponential drift ef-
fects, may be accounted for by taking XAS transmission
measurements in the following sequence as described by
Mathon et al. for XMCD signals [4]

I0+
, I1−

, I2+
, I3−

, ..., I2n−2+
, I2n−1−

, I2n+ (4)

and then calculating the DiffEXAFS signal from the
following algorithm.

∆χ =
1
2n

ln

(

I0+
(

I2+
)2

...

(

I2n−2+
)2

I2n+

(

I1−
)2(

I3−
)2

...

(

I2n−1−
)2

)

(5)

DIFFEXAFS VS. CONVENTIONAL
EXAFS

DiffEXAFS can be compared to conventional EXAFS
by taking the example of, say, thermal expansion, where
typical strains are of the order of 10−5K−1. Conventional
EXAFS would require sample modulation of around
100K between measurements for any variation in fine-
structure to be measurable. DiffEXAFS however, could
resolve changes with a modulation of just 1K, allowing



structural changes in the same 100K region to be probed
in considerably greater resolution. The resulting mea-
surement then yields not just the net structural change
over the whole region, but precise incremental perturba-
tions as a function of temperature.

It is true that such parameter resolution may not be
required in all situations, particularly where phenom-
ena inducing structural changes are either linear or vary
only weakly as a function of the modulated sample prop-
erty. However, many phenomena do not conform to these
restraints; most notably non-linear phenomena such as
phase transitions. In these situations the ability to detect
atomic displacements over small changes in sample pa-
rameters is an absolutely necessity. Indeed, this is where
we believe the full power of DiffEXAFS is exploited.

Whilst conventional EXAFS will be able to detect
net perturbations across some such discontinuity, and
describe the sample structure in the stable region either
side, it is generally not possible to look at how the
sample responds approaching and receeding from the
transition - to say whether there are any onset features,
or whether any particular structural instabilities become
evident close to the primary transition itself. Even if
a given transition were to induce perturbations large
enough to be probed in a number of individual steps with
conventional EXAFS, DiffEXAFS will always still offer
around two orders of magnitude greater sensitivity and
thus potentially a hundred times more sampling points
across the transition region. No other XAFS technique
offers this potential.

FUTURE APPLICATIONS

DiffEXAFS is not limited to the study of any particular
set of materials or to the study of any given type of
phenomenon. In principle it may be used to examine
any situation where the modulation of a sample property
results in some small degree of atomic perturbation on a
local scale.

Initial data from [1] demonstrated the measurement
of magnetostriction by DiffEXAFS, which should be of
great interest to those wishing to examine the atomic ori-
gins of this and other -striction type phenomena. Work is
also currently being undertaken to study the more com-
plicated case of samples undergoing temperature modu-
lation.

However, the real interest will be in one of two ar-
eas. Firstly, in the study of non-linear phenomena as al-
ready described. Then in the examination of disordered
or amorphous systems, where techniques such as diffrac-
tion fail, and where macroscopic measurements of sam-
ple properties may not necessarily scale down to the lo-
cally observed atomic perturbations due to the presence
of intermediate scale deformations, such as the relief of

microscopic strain by sample defects.
At present, factors limiting the resolution of atomic

perturbations are all experimental in origin, and relate to
the stability or otherwise of beam components, noise in
measured spectra, and to the accuracy and precision with
which the sample can be modulated.

CCD detectors used in experiments to date have
achieved statistical noise in∆χ of about 10−5, deter-
mined by a 14-bit quantisation limit on read-out. A more
sensitive detector (i.e. one with a greater number of bits)
should be capable of 10−6 based on the flux available
from a typical 3rd generation undulator, enabling inves-
tigation of displacements on a 0.1fm scale. This would
further test beam stability. To prevent corruption of a
signal on this scale, energy stability would be required
to 0.01meV between +/- measurements; suggesting im-
provements to beamline components, a reduction in time
between +/- measurements, or a combination of the two.
The effects of spatial drift must also be reduced, which
is most easily achieved by increasing the beam spot size,
currently about(10×10)µm, to about(30×30)µm.

However, the area where the greatest advances can be
made, is in the modulation of the sample. Apparatus con-
structed to date has only focused on sample magnetisa-
tion and temperature. New designs will allow the study
of different phenomena via the modulation of different
sample properties. Developments to these and existing
designs, capable of modulating the sample at, say, ex-
tremes of temperature or pressure, would further expand
the technique. And improvements to the stability of the
sample at measurement, and the reproducibility of mod-
ulation between + and - states, will allow signals to be
detected from ever smaller changes to the sample; par-
ticularly useful where large atomic displacements occur
from tiny changes in sample parameters, as is the case at
phase-transitions.
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Abstract

Differential EXAFS (DiffEXAFS) is a novel technique for measuring atomic pertur-

bations on a local scale (Pettifer et al., 2005). Here we present a complimentary tech-

nique for such studies: Differential X-ray Diffraction (DiffXRD), which may be used to

independently verify DiffEXAFS results whilst using exactly the same experimental

apparatus and measurement technique. A test experiment has been conducted to show

that DiffXRD can be used to successfully determine the thermal expansion coefficient

of SrF2.
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1. Introduction

Since the development of Differential EXAFS (DiffEXAFS) (Pettifer et al., 2005), the

study of small atomic perturbations has attracted much interest. Here we present a

complimentary technique for such studies: Differential X-ray Diffraction (DiffXRD).

This technique uses the same experimental apparatus and measurement technique as

its EXAFS counterpart, such as that described by Pettifer et al. for magnetostriction

measurements. The difference however, is that the sample through which transmission

absorption measurements are taken (i.e. polycrystalline, amorphous, etc.) is replaced

with its single crystal counterpart.

In kinematic diffraction theory, this introduces Laue diffraction features to the mea-

sured transmission intensity, where x-rays at certain energies are scattered out of the

main line of the beam. These scattered photons do not enter the detector at the end of

the beamline, causing an anomalous drop in transmitted intensity; seen as an apparent

increase in x-ray absorption, which is observed as a discrete peak, independent of any

true absorption fine-structure.

Clearly such features render the XAFS itself useless. However, being from diffraction

in origin, they contain information on the structure of the sample material, and hence

are sensitive to atomic perturbations in the same way as DiffEXAFS, albeit on a

structurally averaged scale rather than a local atomic scale.

From Bragg’s law and E = hc/λ it is easy to show that for a given diffraction peak

(∆E

E

)

hkl
= −

(∆d

d

)

hkl
(1)

Where ∆E/E is the observed fractional change in peak position due to a relative

change in inter-planer spacing, ∆d/d, corresponding to the Miller indices hkl. In the

case of, say, thermal expansion, this change is in turn

(∆E

E

)

hkl
= −αij∆T (2)
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where αij are the coefficients of the second-rank thermal expansion tensor, each

of which can be obtained by the analysis of an appropriate diffraction peak. In the

case of cubic crystals, von Neumann’s Principle dictates that properties such as ther-

mal expansion are isotropic (Nye, 1985). The corresponding tensor therefore contains

only one independent parameter; αij is reduced to α, and ∆E/E is the same for all

diffraction peaks.

In order to accurately determine ∆E using conventional XRD techniques, it is

typically necessary to vary the temperature of the sample by many tens of Kelvin

between measurements such that a clear peak shift can be observed and thus measured.

However, by utilising the same measurement technique as DiffEXAFS - namely taking

the difference between two spectra acquired in a short space of time in high stability,

low noise conditions, where the only change between measurements is the modulation

of a given sample property - then it is possible to detect extremely subtle shifts, and

so obtain ∆E over temperature changes of the order of 1K or less.

Thus, simply by substituting a DiffEXAFS sample with its single crystal counter-

part, it is possible to obtain an independent measure of crystal perturbations without

having to change any other part of the experimental setup.

Interestingly, the resolution of DiffXRD features is limited by different factors than

DiffEXAFS measurements. Pettifer et al. showed that DiffEXAFS is sensitive to

atomic displacements of the order of femtometres, being limited by the achievable

statistical noise in the spectrum. If the same noise were limiting a DiffXRD spectrum,

it would theoretically be possible to detect signals from displacements of the order

of 10−2fm. However, such a feature would be produced from ∆E ∼ 10−7 eV, about

two or three orders of magnitude smaller than the energy stability typically achiev-

able between two absorption measurements taken a second or so apart. Thus, it is

energy stability and energy resolution of the beamline that defines the smallest signal
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measurable by DiffXRD.

2. Experiment

DiffEXAFS experiments are conducted on ID24, the Dispersive XAS beamline of the

ESRF, as shown in Figure 1 (Pascarelli et al., 2006b).

A single crystal of SrF2 (FCC fluorite structure with a = 5.7996Å) was cleaved

along its 111 lattice planes, producing a section about 5 × 5 mm big and 70µm thick,

and mounted at the focal spot of the beamline, producing an absorption jump of 1.9

at the Sr-K edge. This spectrum has been normalised to a unit jump and plotted

on Figure 2. Laue diffraction peaks are clearly present in the observed signal. Also

plotted on Figure 2 is the DiffXRD signal, generated by subtracting the absorption

signal shown from another taken with the sample heated by 1K relative to it.

Such a change in sample temperature increases the size of the crystal unit cell

according to thermal expansion. Given SrF2 has a cubic crystal structure, the thermal

expansion is described by just one coefficient. All the observed diffraction peaks are

equivalent, such that each will exhibit the same thermally induced change in position

irrespective of the type of reflection.

The absence of any difference features at the same energy as the Sr-K edge in

Figure 2 is testament to energy stability of the beam between the two absorption

measurements used to construct the DiffXRD signal. The observed differences are

therefore from a genuine change in observed x-ray absorption rather than from drifts

in the beam between measurements.

The diffraction peak at 16.35keV, corresponding to the largest feature in the Dif-

fXRD signal, was extracted and transformed back to transmission space using I1/I0 =

exp(−µx). A normalised Gaussian was then fitted to the transmission spectrum to

determine its centroid energy, width at half-maximum, and height. This fit is shown
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in Figure 3, with the parameters listed in Table 1.

It should be noted that whilst diffraction peaks are Lorentzian in form, the energy

resolution of ID24 at energies in excess of 15keV causes some broadening, transforming

them to Gaussians. Previous work has shown an additional asymmetric component

is also present (Ruffoni & Pettifer, 2006), caused by x-ray penetration depth effects.

However, we find that this does not make a significant contribution here.

Although the convolution of an instrument function with the diffraction signal

clearly alters the peak’s observed width and height and thus any fitted parameters,

this is not a problem from the point of view of DiffXRD. As shown in equation (1),

structural changes in the sample material are derived from a change in the measured

energy of a given peak. Therefore, the only requirement for DiffXRD is that the peak

retains its shape between the two measurements under different sample conditions,

allowing this shift to be determined.

The DiffXRD signal, shown in Figure 4, was obtained for a temperature change in

the sample of 6K rather than 1K; increasing the degree of peak movement between

measurements, and thus making the difference feature larger and easier to define.

Given the degree of movement is linearly related to the change in temperature by

(2) (for small temperature changes), the energy shift per Kelvin may be restored by

dividing the observed shift by the temperature difference. Using the Gaussian width

and height parameters from Table 1 to fix the shape of the diffraction peak to that

seen in Figure 3, the DiffXRD feature was characterised by calculating the difference

in observed absorption between two such peaks, slightly offset in energy relative to one

another, giving the separation shown at the bottom of Table 1. The centroid of the

difference feature is defined as half way between the two constituent peak centroids,

and thus is not the same as that of the initial Gaussian fit.

Using equation (2), the thermal expansion coefficient of SrF2 was found to be (18.7
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± 0.8) ×10−6K−1; in agreement with the published value of 18.1 ×10−6 at 300K

(Roberts & White, 1986).

3. Conclusions

It has therefore been shown that DiffXRD is a viable technique for the study of average

crystal perturbations, using an identical experimental arrangement as would be used

for DiffEXAFS measurements.

Clearly, one advantage of DiffXRD over DiffEXAFS is the shear simplicity of the

technique; equation (1) being considerably more straightforward to extract structural

changes from than, say, equation 2 from Pettifer et al. for DiffEXAFS.

Also, if the current trend of reducing focal spot sizes on beamlines continues (Pascarelli

et al., 2006a), then in the future it will become easier to introduce diffraction phe-

nomena into absorption spectra, making DiffXRD measurements simpler to perform.

Additionally, if spot sizes decrease below about (1 × 1) µm, it will become possi-

ble perform DiffXRD measurements on single crystallites in typical polycrystalline

samples.

However, DiffXRD cannot be considered a replacement for DiffEXAFS, in spite of

this, since it is hindered by the same limitations that affect standard XRD measure-

ments. Firstly, the technique cannot be applied to disordered or amorphous systems

unlike EXAFS, but most importantly, structural information derived from DiffXRD is

based on mean atomic perturbations over a periodic crystal structure. It does not yield

information on local atomic perturbations - one of the real strengths of DiffEXAFS.

DiffXRD should therefore be considered complementary to DiffEXAFS. Simply by

substituting a DiffEXAFS sample with its single crystal counterpart (where available)

and taking the same difference measurements with the same experimental appara-

tus, it is possible to obtain an independent measure of perturbations to the crystal
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structure to verify those from DiffEXAFS. Conversely, it could also be used to iden-

tify and quantify any discrepancies between local atomic perturbations and average

(macroscopic) perturbations via a common experimental arrangement.
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Fig. 1. A schematic representation of the optics on ID24 of the ESRF. A white beam
from an undulator source illuminates a bent Si(111) polychromator crystal, creating
a wavelength dispersive fan of x-rays covering an equivalent energy range of several
hundred eV. Diffraction by planes in the sample cause x-rays of certain wavelengths
to scatter out of the main beam, which do not then enter the detector. This causes an
apparent drop in transmitted x-ray intensity at those energies, and thus a diffraction
glitch.
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Fig. 2. The Sr-K edge measured in transmission through a single crystal of SrF2

(top plot with left scale). Diffraction glitches are clearly present on the absorption
fine-structure. As the temperature of the specimen is changed by 1K at room tem-
perature, these glitches shift in energy due to thermal expansion in the crystal,
producing the DiffXRD signal shown below (right scale).
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Fig. 3. The diffraction glitch (dashed line) at about 16.35keV is extracted from the
x-ray transmission spectrum, and the background subtracted. A Gaussian is fitted
to the glitch (solid line) to determine its centroid energy, width at half maximum,
and relative height.
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Fig. 4. The DiffXRD transmission signal obtained for ∆T = 6K in the energy region of
the glitch shown in Fig 3 (dashed line). The difference between a pair of Gaussians
of width and height determined by the fit in Fig 3, and offset in energy relative to
100one another, are fitted to the feature (solid line); the energy offset being related
to the fractional change in lattice spacing.

Table 1. Fitted parameters for the diffraction peak shown in Figure 3 and for the

corresponding DiffXRD feature shown in Figure 4. The thermal expansion coefficient has

been derived using equation (2). Energies shown are not absolute energies, but based on a

calibration with respect to another spectrum of known calibration. The errors shown are for

the Gaussian and DiffXRD fits only and do not incorporate errors in calibration.

Conventional Gaussian Fit

Parameter Value

Centroid / eV 16349.505 ± 0.002
FWHM / eV 2.137 ± 0.002
Relative height (-9.3782 ± 0.0003)×10−2

DiffXRD Fit

Parameter Value

Centroid / eV 16347.74 ± 0.07
Gaussian Separation / eV† 1.84 ± 0.08
Thermal Expansion / ×10−6K−1 18.7 ± 0.8

† For a temperature modulation of 6.0K.
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