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Abstract 

 

We explore two distinct domains in the field of soft matter. The first three experimental 

chapters concern the synthesis, characterisation and application of Janus particles 

fabricated by heterogeneous polymerisation techniques. Initially in Chapter 2 we 

describe an optimised one pot seeded emulsion polymerisation strategy to render 

submicron amphiphilic Janus particles exhibiting surface active behaviour which can be 

tuned by the variation of hydrophilic to hydrophobic lobe volume ratios. These particles 

have been shown to inhibit ice recrystallisation in aqueous systems. In Chapter 3 we 

explore the synthesis of hard-soft Janus particles comprising of respective high and low 

glass transition temperature lobes. Although the rate of polymerisation is unaffected by 

available seed particle surface area, particles with multiple soft lobes and secondary 

nucleation occur below a seed surface area threshold. We additionally demonstrate the 

ability to fabricate sub-micron hard-soft Janus particles. Chapter 4 utilises the particles 

made in the previous chapter as building blocks to fabricate ‘colloidal molecules’ and 

colloidosomes. In the former case, cluster morphology of particles is shown to be 

governed by surface area minimisation of the central soft domain.  

 

The final two experimental chapters explore two different strategies to emulsify water 

into chocolate whilst retaining the desirable physical characteristics of the confectionery. 

In Chapter 5 we utilise colloidal silica and a cationic polyelectrolyte to generate highly 

stable quiescent Pickering emulsions, allowing up to 50% of the fat content in chocolate 

to be replaced with water and fruit juice. Chapter 6 improves upon this work by allowing 
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the replacement of up to 80% of the fat content in chocolate by the dispersion of aqueous 

hydrogels within the chocolate fat matrix. In both chapters we characterise the physical 

properties of the formulations and demonstrate their suitability for use in chocolate 

confectionery. 
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Chapter 1 

Introduction to Soft Matter 
 

Soft condensed matter and complex fluid are terms to describe materials which exist 

neither as a crystalline solid, nor as an ideal liquid, but exhibit behaviour of both 

extremes, simultaneously. In everyday life, soft matter materials are ubiquitous, and form 

integral components in building materials (paint), personal care products (toothpaste), 

food (chocolate) and pharmaceuticals (oral suspensions). The elusive term ‘soft matter’ 

can be divided into several more focussed categories, including certain polymers, gels, 

colloids, surfactants and liquid crystals. Whilst these materials seem to possess little in 

common, they all exhibit similar physical properties which permit them to be classed as 

one discipline.  

 

The behaviour of soft matter systems cannot be explained solely by atomic and molecular 

theory (i.e. microscopic), nor by bulk behaviour (macroscopic), but are explained on an 

intermediate length scale between nano and micro –meters, so named mesoscale. 

Thermal fluctuations and Brownian motion that occur at scales of kBT influence soft 

matter, and therefore the mesoscale components should be considered in a constant state 

of flux. For example, the random motion of polymer chains in solution or a melt and the 

Brownian diffusion of colloidal particles in dispersion occur at room temperature. Soft 

matter components often exhibit the ability to self assemble.  These materials can trend 

towards a state of equilibrium (static self assembly), or assemble upon dissipating energy 

(dynamic self assembly).
1
 The energetic and entropic forces at play in soft matter systems 
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permit the formation of complex, hierarchical structures and exhibit rich phase behaviour.  

Non-ideal mechanical behaviour is also a hallmark of complex fluids. A soft matter 

material response to an applied stress will rarely be either a Newtonian liquid or a 

Hookean solid. It will instead exhibit complex non-Newtonian and viscoelastic 

properties, based on interactions occurring on the mesoscale.
2
   

1.1 Colloids 
 

Of the soft matter domains, the field of colloids is perhaps the most significant. A colloid 

is a dispersion of one material within another, first documented by Thomas Graham in 

1694.
3,4

 Colloids possess a dispersed or discontinuous phase, which consists of finely 

divided material of approximately 1 nm - 10 µm diameter, in the presence of a 

surrounding continuous or environment phase. Colloids can be classified by the nature of 

the continuous and dispersed phases as seen in table 1.1. 

Dispersed Phase 

 

Continuous 

Phase 

 Gas Liquid Solid 

Gas - Liquid Aerosol Solid Aerosol 

Liquid Foam Emulsion Sol / suspension 

Solid Solid Foam Gel Solid Sol 

Table 1.1 Classification of colloids by the nature of their dispersed and continuous 

phases 

 

One particular example of a colloid is that of a polymer colloid, referring to solid particle 

suspensions, where the particulate matter is constructed of polymer chains, often 

prepared by free radical polymerisation. Naturally occurring polymer colloids exist, such 
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as the milky sap known as latex, tapped from the rubber tree that has been used for 

centuries by the natives of South America. Polymer colloids can be found both as solid 

suspension, and almost as an emulsion. In the former case the particle content has a 

relatively high glass transition temperature (Tg), for instance poly(styrene) with a Tg of 

+105 °C. Alternatively, if the polymer Tg is low, for instance poly(butyl acrylate) with a 

Tg of -54 °C, the particle can be treated as a liquid droplet. 

 

One of the key properties of a colloidal dispersion is the vast surface area resulting from 

the combined contribution of the dispersed phase. For instance, if 1 kg of poly(styrene) is 

dispersed in to water as 200 nm diameter spheres, the total interfacial area is 28530 m
2
. 

Therefore, the stability of this magnitude of interface is one of the most pertinent issues 

addressed in colloid science. 

1.2 Stability of colloids 
 

Colloidal particles are divided into two categories, lyophilic (thermodynamically stable) 

and lyophobic (thermodynamically unstable). Often the continuous phase is aqueous, and 

we therefore refer to the particles as hydrophilic and hydrophobic respectively. The 

former are dispersed easily into a continuous phase forming thermodynamically stable 

microgel (hydrogel) suspensions. However, the dispersion of hydrophobic particles is 

thermodynamically disfavoured, creating an interfacial energy which provides a driving 

force for aggregation and phase separation to reduce the surface area.  
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Liquid droplet dispersions within a liquid continuous phase, i.e. emulsions, are 

susceptible to similar effects. However, aggregation of droplets ultimately results in 

irreversible coalescence, a fate which can also be ascribed to ‘soft’ deformable particles. 

Additionally, Ostwald ripening can occur, whereby smaller droplets (with a higher 

Laplace pressure) are observed to shrink and disappear, in favour of larger droplets.
5
 This 

is caused by the limited dissolution of the dispersed phase into the continuous phase, and 

therefore transport into the larger droplet with reduced surface area to volume ratio. 

 

Aggregative effects are a result of the Brownian motion, causing particles or droplets of 

the dispersed phase to collide, which occurs frequently. Although Ostwald ripening does 

not involve the collision of droplets, the Laplace pressure is proportional to the interfacial 

tension of the droplet. Therefore colloidal stability depends on how the particles interact 

upon close proximity (and for the case of Ostwald ripening, the magnitude of the droplet 

surface tension). If a repulsive force exists, the particles repel each other, forming a 

kinetically stable dispersion. The potential energy of which, as a function of separation 

for spherical particles was described by Hamaker,
6
 depicted in equation 1. 

 

     (1) 

 

Where VA, a and H represents the van der Waals attractive potential, particle radius and 

interparticle separation respectively. A represents the Hamaker constant, determined by 

the polarisability and density of the atoms within the particles. This expanded expression 
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takes into account the self attraction of the continuous (liquid) phase. A repulsive force to 

counteract this attraction and therefore provide colloidal stability can be applied in two 

primary ways. 

1.2.1 Electrostatic stabilisation 

 

In an aqueous or polar continuous phase, static repulsions arising from surface charges 

present on the particle surface provide sufficient resistance to aggregation. The surface 

charges induce the formation of an electrical double layer, a local increase in counterions 

around the particle which consists of an inner Stern layer where the counter ions are 

tightly bound to the surface and an outer more diffuse layer, bounded by the slipping 

plane. An expression for the electric potential (VR) arising from the double layer can be 

expressed as in equation 2 as a function of surface electric potential Vs, interparticle 

distance from surface H and characteristic thickness of the diffuse layer (Debye length), 

κ. 

                                 (2) 

 

The hydrodynamic radius of a particle includes this layer, and its stability can be 

measured by dynamic light scattering and electrophoretic mobility respectively, as 

described in Appendix A. 

 

The DLVO theory developed independently by Derjaguin and Landau in 1941,
7
 and 

Verwey and Overbeek in 1948,
8
 comprehensively explains the combination of both the 
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van der Waals and Coulombic forces at play between particles with overlapping double 

layers. Upon interaction of the double layers, a locally higher concentration of solute ions 

exist, thereby increasing the free energy of the system. In order to balance the osmotic 

pressure arising from this electrochemical potential, solvent molecules diffuse to this area 

to re-equilibrate, therefore driving particles apart. Therefore combining the van der Waals 

attraction potential (VA) and Coulombic repulsive potential (VR) as equation 3 gives an 

expression for the total potential (Vt). 

 

          (3) 

 

Figure 1.1 Schematic of repulsive (VR), attractive (VA) and combined total (Vt) 
potentials arising from the respective Columbic and van der Waals interactions 

between  two negatively charged particles in water over interparticle separation (H) 

 
The total potential can be plotted as a function of spherical particle separation, 

represented in figure 1.1 as two negatively charged particles in water.  Attractive forces 

dominate at small and large particle separations, which can give rise to reversible 

flocculation
9
 at the secondary minimum. The primary minimum is considered deep 

enough that particles at this separation are considered irreversibly bound. However, 

repulsive forces overrule any attractive potentials at extremely small (Born) and 
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intermediate (electrical double layer) distances, thereby providing colloidal stability in 

the latter case. 

1.2.2 Steric stabilisation 

 

Van der Waarden in 1950 first observed the stabilisation of carbon black particles by long 

chain aliphatics in a low dielectric solvent.
10

 Almost 20 years later, Napper,
11–15

 fully 

quantified the effect of steric stabilisation involving the adsorption of long chain non-

ionic polymers onto a particle surface. Steric stabilisers can be referred to as protective 

colloids and usually possess an affinity to the continuous phase. The mechanism of 

repulsion arises from two factors: (1) the entropic compression of the polymer chains 

upon particle-particle contact and (2) the increase in osmotic pressure arising from the 

locally high concentration of polymer chains between particles. Osmotic pressure 

repulsion and entropic chain repulsion are expressed in equations 4 and 5 respectively. 

 

              (4) 

            (5) 

 

Where V, , , , ρ represent molar volume, effective volume fraction of polymer, 

adsorbed layer thickness,  Flory-Huggins interaction parameter and density respectively. 
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The interaction parameter can be estimated by use of the Hildebrand or Hansen solubility 

parameters δs and δp as seen in equation 6. 

 

                                   (6) 

In this expression Vseg, R and T represent actual volume of a polymer segment, universal 

gas constant and temperature respectively. The Hansen solubility parameters predict the 

mutual miscibilities of one material within another based on molecular interactions. 

 

Steric stabilisation is effective both in non-aqueous and aqueous systems, or where ionic 

strength and pH of the continuous phase may suppress electrostatic double layer (i.e. 

negligible zeta potential). It is commonly used in industrial processes as an effective anti-

caking or sedimentation agent which can improve film formation properties and provides 

the primary stabilisation mechanism in dispersion polymerisation systems. 

Electrostatic and steric stabilisation can be used in conjunction as a hybrid stabilisation 

system, either in the form of a charged particle surface possessing non-ionic polymer 

hairs or the use of ionic polyelectrolyte polymer chains. 

1.3 Heterogeneous polymerisation techniques 
 

There are several classes of heterogeneous polymerisation techniques, that combined, 

allow the synthesis of a wide range of polymer colloid particle sizes, using many 

different monomers. Heterogeneous polymerisations are more complex than 
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homogeneous systems owing to the compartmentalisation effects between phases and 

kinetics of polymerisation, particle nucleation and growth.  

 

Figure 1.2 The particle size ranges possible from common heterogeneous 
polymerisation techniques 

 

The five main classes of heterogeneous polymerisation are emulsion, dispersion, mini-

emulsion, precipitation and suspension. The particle size range accessible by each 

technique is pictured in figure 1.2 above. A comprehensive description is ascribed to 

techniques deployed in this thesis with a brief outline given to other techniques. 

1.3.1 Emulsion polymerisation 

 

Of the heterogeneous polymerisation systems available, emulsion polymerisation is the 

most studied and exploited industrially. It is a highly versatile technique able to 

synthesise particles of between 10-700 nm diameter. One of the most attractive attributes 

of emulsion polymerisation is ability to use water as the continuous phase for a wide 

range of monomer systems.  

 

An emulsion polymerisation starts with monomers which are sparingly soluble in an 

aqueous continuous phase which also hosts the vast majority of initiating species and 
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emulsifier, if used. Thermal or redox initiation is generally used to start an emulsion 

polymerisation; however more exotic methods such as electromagnetic
16

 and ultrasonic 

radiation
17

 have been reported. Some monomers, known as surfmers possess stabilisation 

qualities which are grafted into the polymer chains, and present on the particle surface 

providing colloidal stability. 

 

The progression of an emulsion polymerisation can be divided into 3 distinct stages.  

During Interval I, the reaction mixture is continually agitated to generate monomer 

droplets and ensure monomer saturation of the continuous phase. Upon initiation, the 

limited concentration of monomer dissolved in the continuous phase begin to propagate 

using radicals generated to form continuous phase soluble oligoradicals. Initially, particle 

formation was believed to occur following a micellar nucleation pathway described by 

Smith and Ewart.
18

 According to this theory, micelles present in the continuous phase 

resulting from being above the critical micellar concentration (CMC) of surfactant 

stabilises monomer. The entry of an oligoradical into a micelle forms a new particle 

owing to the rapid polymerisation of monomers within the micelle. Oligoradical entry 

into the monomer droplets is very unlikely due to their large size and therefore low 

surface area of monomer droplet available for entry. Following the Smith-Ewart theory, 

Interval I ends when the concentration of surfactant drops below the CMC, stopping the 

formation of any new particles, and instead surfactant molecule adsorption onto pre-

existing polymer particles prevails.  
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However, it was soon discovered that in other monomer systems, the surfactant 

concentration had little overall effect on particle number and that stable particles could 

easily be formed without surfactant entirely.
19

 This ultimately led to the alternative 

homogenous nucleation model
20–24

 developed by Hansen, Ugelstad, Fitch and Tsai 

(HUFT theory) which describe the growth of oligomeric radicals in the continuous phase 

until a critical chain length solubility threshold Jcrit, above which the juvenile chain 

collapses into a primary particle. Depending on the stability of these particles and the 

availability of emulsifying species, the primary particles coagulate until the particle 

surface is sufficiently stabilised. Interval I ends in this case when no new particles form. 

These events are summarised schematically in figure 1.3 

 

Figure 1.3 Possible events occurring during the initial stages of an emulsion 

polymerisation from a radical perspective, reproduced from Gilbert et al.25 
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Interval II is defined by a constant polymerisation rate. The monomer consumed within 

the growing particles is replenished by diffusion from the monomer droplets, through the 

continuous phase and into the growing particles. At this stage, the particles can 

accommodate only one radical. The compartmentalised radicals cannot react with 

radicals in other particles, leading to an elevated polymerisation rate compared with bulk 

and solution polymerisations. Entry of a second radical into the particle terminates the 

polymerisation within the particle, only to be re-started upon the entry of a further third 

radical. As such, a growing particle has an average of 0.5 radicals during Interval II; 

however, this number can be lower due to radical exit into the continuous phase or higher 

in the case of large or high viscosity particles. This is known as zero-one kinetics and was 

quantitatively theorised by Smith and Ewart.
18

 It is worth noting that a deviation from 

zero-one kinetics can occur with larger particles (greater than 60 nm for styrene). Due to 

an increased size, the particle can accommodate more than one propagating radical 

without termination, leading to pseudo-bulk kinetics as seen in Interval III. 

 

When the monomer droplets have been exhausted, the polymerisation enters Interval III 

and the rate of polymerisation slows due to the decreasing concentration of monomer in 

the particles. At this point, monomer content in the continuous phase is also depleted and 

leads to very high conversions in emulsion polymerisations. In some cases, the increased 

viscosity due to lack of monomer inside the particles can permit more than one radical 

(pseudo-bulk). As such, the number average radicals per particle increases leading to a 

substantial increase in polymerisation rate and decrease in termination during Interval III 

named Trommsdorff-Norrish effect.
26
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1.3.2 Dispersion polymerisation 
 

Dispersion polymerisation provides a highly convenient and reliable method to make 

polymeric particles between 0.1 - 15 µm diameter. Micron sized particles are utilised in a 

variety of commercial applications including column packing materials, toners, 

instrument calibration standards, components in LCD displays and biomedical assays.
27–

29
 

Prior to the widespread application of dispersion polymerisation; first developed in the 

1960’s by ICI,
30

 the synthesis of micron sized particles was troublesome owing to the 

intermediate size range lying between particle sizes readily obtained by emulsion (10 - 

700 nm) and suspension (50 - 1000 µm) polymerisation.  Seeded emulsion 

polymerisation,
31

 two stage swelling systems
32

 and the dynamic swelling method
33

 have 

successfully been developed as alternative routes to fabricate monodisperse micron sized 

particles. 

 

Typically, a dispersed polymerisation system begins as a homogeneous mixture of 

monomer, solvent, steric stabiliser and initiator.
34

 The solvent is often a non-aqueous 

solvent, such as methanol or ethanol. The monomer employed is soluble in the solvent, 

but upon polymerisation above a critical chain length, the oligomer becomes insoluble in 

the reaction medium and collapses into a primary particle.  

 

Colloidal stability of the particles is imparted from the polymeric stabiliser which 

chemisorbs (grafts) and/or physisorbs upon the formation of the unstable primary 
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particles thereby providing a steric barrier against coagulation. The most common 

stabilisers deployed for conventional dispersion polymerisation are poly(vinyl 

pyrrolidone), hydroxylpropylcellulose (and related cellulose esters), poly(acrylic acid), 

poly(methacrylic acid) and poly(vinyl alcohol).
27,35,36

 However, as the polymeric 

stabiliser presents on the outer surface of the particle, functionality can be imparted to the 

particle dispersions through the stabiliser. As a result, Tseng et al. used various co-

stabilisers to manufacture particles with hydroxyl, carboxyl, amide and silane surface 

functionalities.
37

 

 

Until fairly recently, successful crosslinking in dispersion polymerisations has been 

difficult to control. Crosslinking agents such as divinylbenzene cannot be added in batch 

to styrenic polymerisations above 0.6 wt% as this invariably causes coagulation due to 

the high sensitive nature of the nucleation stage in dispersive polymerisation systems.
37

 

However, recent reports of using EGDMA, seeded dispersion or semi-batch methods 

incorporating co-monomers after the nucleation stage have allowed crosslinking.
38–40

 

Mechanism of dispersion polymerisation 

 

Dispersion polymerisation is believed to proceed according to aggregative and 

coagulative nucleation theories,
41

 derived from the homogenous nucleation theory
20

 

whereby the key step in defining particle number of the system is upon formation of 

sterically stabilised particles.
42
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Prior to initiation, the components of the polymerisation form a homogenous solution. 

After initiation, polymer chains grow in solution until a critical length at the threshold of 

their solubility (molecular weight of the polymer is directly proportional to solubility). 

These chains collapse into unstable primary particles which rapidly coalesce to a point at 

which they become sterically stabilised with sufficient polymeric stabiliser chains 

covering the particle surface. This is referred to as ‘critical point’. Beyond this, no further 

particles develop. Any nuclei or primary particles formed in the solvent phase after 

critical point are captured by the particles. Polymerisation proceeds inside the particles 

until monomer source is exhausted. This process is depicted in figure 1.4. 

 

 

Figure 1.4 A schematic model for the particle nucleation and growth of sterically 

stabilised particles in dispersion polymerisation. Reproduced from Kawaguchi43 

 

Additional events can occur in a dispersive system including micellar nucleation and 

radical transfer to the polymeric stabiliser. These events are summarised in figure 1.5 

below. 
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Figure 1.5 Schematic representation of mechanisms involved in free radical 
dispersion polymerisation 

 

Control over particle properties  

 

Size control of the resulting latex can be tuned by altering reaction parameters. Varying 

monomer concentration, polymer-solvent miscibility, polymeric stabiliser concentration 

and stabiliser molecular weight can have a profound effect on particle size, but also make 

this type of heterogeneous polymerisation system sensitive to minor changes in reaction 

parameters.
44

 Accordingly, a comprehensive model has been developed to predict particle 

core radius based on the reaction parameters which has been proven to correlate well with 

experimentally observed values.
45
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1.3.3 Suspension polymerisation 
 

Conceptually the simplest heterogeneous polymerisation, whereby the monomer is 

insoluble in the continuous phase and the initiator is soluble in the monomer. The 

reaction mixture is agitated to form monomer droplets, stabilised by the presence of a 

surfactant to restrict coalescence. Polymerisation occurs within the droplets leading to a 

relative polydisperse size distribution similar to the monomer emulsion. Typical size 

range 2 µm – 1 mm diameter  

1.3.4 Precipitation polymerisation 

 

Similar to dispersion polymerisation by the fact that the initial reaction mixture is 

homogeneous, however, particles do not swell with monomer. This is usually due to the 

high degree of crosslinking or monomer-polymer incompatibility as in the cases of 

polymerisation of divinylbenzene and acrylonitrile respectively. Particle growth is 

attributed to the precipitation of oligomeric chains onto the particle surface, often 

impairing a rough topology to the particles. Typical size range: 10 nm – 1000 nm 

diameter. 

1.3.5 Miniemulsion polymerisation 

 

A stable emulsion of insoluble monomer in a water continuous phase is first generated by 

a source of high shear, often an ultrasonicator. High amounts of surfactant and the use of 

a hydrophobic agent (such as hexadecane) restrict coalescence and Ostwald ripening. The 

initiator is water soluble and radicals are captured by the emulsified monomer droplets 
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during initiation, leading to polymerisation within the droplets. Typical size range 10 nm 

- 500 nm diameter. 

 

Two types of heterogeneous polymerisations that generate polymer colloids are used 

extensively in this thesis to manufacture a specific class of particles so named Janus 

particles. An introduction to the field of ‘Janus particles’ and the wide range of synthetic 

techniques used to manufacture them is given below. A more comprehensive introduction 

to particular synthetic routes and applications of Janus particles is explored in the 

relevant chapter.  

1.4 Janus particles 
 

First popularised in the scientific community by de Gennes in his 1991 Nobel prize 

lecture,
46

 Janus, the Roman god depicted with two faces; one looking into the past and 

one, the future, has been used to describe a class of colloidal particles which possess 

morphological and / or chemical heterogeneity, imparting unique anisotropic character. 

Recently, this topic has seen much attention, giving rise to a whole plethora of particle 

architecture and functionality. Therefore, there is potential for these particles to deployed 

in a range of applications such as Pickering stabilisers for emulsions
47–49

 and emulsion 

polymerisation;
50

 in optics and displays,
51

 biosensors
52

 and medical imaging.
53–55

 Many 

different fabrication techniques have been developed to prepare Janus particles as 

outlined below.
56
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1.4.1 Toposelective surface modification 
 

One of the most simple and intuitive methods to fabricate Janus particles involves the 

partial surface modification of one hemisphere of a spherical colloid, without altering the 

other. This has been demonstrated effectively by several routes. In particular by 

embedding in a film,
57

 gel trapping
58

 and embedding in a photo resist layer
59

 prior to 

chemical treatment of the unprotected hemisphere.  

 

Figure 1.6 Schematic depicting the variety of different methods to manufacture 

Janus particles by toposelective surface modification. (a) embedding in a film and 

treating exposed side, (b) directional flux of material, (c) microcontact printing, (d) 

partial contact with reactive media56 

 

Additionally, other methods of toposelective surface modification including subjecting 

particles to a directional flux,
60

 microcontact printing
61

 and partial contact with reactive 

media; adsorption to both a plane
62

 (i.e. Langmuir trough) and curved interface
63

 (i.e. 

emulsion) have been reported to render colloids with anisotropic surface chemistry 

(figure 1.6). It is only the final example however, using emulsion based systems that 
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provides route to manufacturing particles by toposelective surface modification in bulk 

quantities. 

1.4.2 Template directed assembly 

 

A different approach involves the assembly of colloidal precursor particles using the 

external influence of a template. By using lithography, 1-D and 2-D dimensional 

templates can define the morphology of the assembled cluster through geometric 

confinement before annealing the particles together.
64

 Examples of which are displayed 

in figure 1.7(a). 

 

Figure 1.7 (a) Use of templates to geometrically confine particles of different size 
and (b) assembly of gold nanoparticles onto silica particles by deposition through a 

microporous membrane to render Janus particles 
 

Microporous membranes have also been used as templates to attach single or chains of 

gold nanoparticles onto aminated silica particles, rendering a ‘snowman’ or ‘tadpole’ 

structure as seen in figure 1.7(b).
65

 Despite the great range of structures and high 

precision of fabrication of Janus particles available by this route, the low yield and 

relatively high cost does present an issue for commercialisation. 
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1.4.3 Controlled surface nucleation 
 

The controlled growth of a particle nucleated from the surface of a seed particle to render 

‘snowman’, ‘acorn’ and ‘dumbbell’ shaped particles has been achieved by using 

inorganic and metallic particles.
66–68

 Typically precursor particles are synthesised, 

providing a nucleation site for oxidised/reduced ions in solution to grow a second lobe. 

The particles formed are generally 10-50 nm diameter and are very sensitive to reaction 

conditions, making reproducibility challenging. Hybrid polymer-inorganic Janus particles 

have also been generated through emulsion polymerisation of styrenic monomers in the 

presence of inorganic silica seeds. Initially, the seeds are treated to promote partially 

positive interactions with the growing oligoradicals in solution, thereby nucleating and 

growing lobes off the silica particle.
69

 The number and shape of the lobes nucleated off 

one particle can be controlled by varying diameter and concentration of silica seeds
70

 and 

by varying the surface modification density.
71

 The hybrid polymer-inorganic synthetic 

technique gave rise to a complex array of shapes which have recently been referred to as 

colloidal molecules, and are further discussed in chapter 4. Finally, very few examples of 

wholly polymeric Janus particles fabricated by surface nucleation have been reported. 

Wang et al. present a single example of this type; the growth of a poly(butyl acrylate) 

lobe off poly(styrene) precursor particles to render fully polymeric hard-soft Janus 

particles.
72
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1.4.4 Microfluidics 

 

Microfluidic devices provide a powerful technique to manufacture Janus particles on the 

micrometre scale. Spherical chemically anisotropic Janus particles can be made through 

jetting two monomers into a co-flow device before post-polymerisation as seen in figure 

1.8(a). Varying flow rates changes respective hemispherical ratio and can form ternary 

particles.
73

 Using a co-flow technique, many variations of Janus particles have been 

demonstrated including magnetic,
74

 hydrophilic-hydrophobic via double emulsion
75

 and 

hydrogel-colloidal particle aggregate hybrids.
76

 Although generally confined to the 

micrometre scale, biphasic electrified jetting has also been used to obtain Janus droplets 

of nanoscale dimensions.
77

  

  

Figure 1.8 (a) Microfluidic co-flow jetting device forming hemispherical Janus 
monomer droplets which are polymerised by a UV source.73 (b) Quadruple co-flow 

device using a mask and UV source to pattern highly complex Janus particles for 
medical diagnostics52 

 
One particular example demonstrates the versatility of microfluidics as a route to Janus 

particles. Doyle et al. demonstrated by using a quadruple co-flow device, mask and UV 

source, that highly chemical and morphological anisotropic particles could be generated 

with very high precision as depicted in figure 1.8(b).
52

 However, ultimately, 



Chapter 1: Introduction to Soft Matter 

 

 

23 

 

microfluidics do suffer from high scalability issues, limiting its use commercially to high-

end biomedical screening and drug delivery.  

1.4.5 Phase separation phenomena 

 

A final method to render Janus particles is through phase separation, the formation of a 

secondary entity from a ‘seed’ particle. This has been achieved in both inorganic and 

polymeric systems. Core-shell inorganic particles have been demonstrated to phase 

separate as a result of a chemical reaction with one of the components. Silver particles 

with a silica shell lead to the formation of secondary silver lobe in the presence of 

molecular iodine, a strong oxidising agent (figure 1.9).
78

 Metastable FePt core CdS shell 

particles were shown to phase separate upon heating due to the incompatibility of the 

FePt and CdS lattice.
79

 

 

Figure 1.9 Phase separation of a metastable FePt core from a CdS shell upon 
heating. An example of synthesising Janus particles from inorganic phase 

separation78  
 

Phase separation in polymer colloid systems was first fully characterised by El Aasser 

and co-workers.
80,81

 In these examples, a crosslinked polymer latex, made by emulsion 

polymerisation was swollen with further styrene was observed to phase separate upon 

heating to render a second polymer lobe on the side of the particle. This particular 
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synthetic route towards Janus particle synthesis is attractive owing to the ability to 

conduct reactions in bulk, using relatively inexpensive and simple experimental 

techniques. 

1.5 Chocolate: from a colloidal perspective 
 

In the latter part of this thesis, we investigate the replacement of fat content in chocolate 

with water by use of Pickering stabilised emulsions (chapter 5) and hydrogel dispersions 

(chapter 6); therefore a background of chocolate formulation and properties from a 

colloidal perspective is given below. 

 

Chocolate is one of the many real-life examples of food colloids which, like most 

colloidal systems rely on the interplay of forces at the mesoscale to produce the desired 

macroscopic eating qualities it possesses. Chocolate is a complex material, which when 

molten can be described as a multiphase fluid dispersion of solid non-fat particles 

comprising mainly of sugar crystals and cocoa solids in a fat continuous phase. The fat 

phase is generally a mixture of cocoa butter and milk fats. The composition ratio of these 

major components varies between formulations, whereby white chocolate contains no 

cocoa solids and a large quantity of cocoa and milk fats, whereas dark chocolate can 

contain over 70% cocoa solids (by weight) and little fat. Aside from taste, the major 

‘eating quality’ of chocolate arises from its texture upon consumption, a desirable 

macroscopic behaviour that the consumer benefits from. In addition there are a wide 

variety of chocolate confectionery products available, from traditional ‘tablet’ blocks to 

more complex products which incorporate other components such as air bubbles, biscuit, 
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liquid and solid centres. Therefore a variety of manufacturing approaches are employed, 

of which many will require the flowability of chocolate component of the product to be 

tuned to allow practical manufacture. Both consumption texture and flow of chocolate 

during processing are physical properties, governed by colloidal interactions.  

1.5.1 Rheology of chocolate 

 

The flow behaviour of molten chocolate is of high importance for chocolate 

manufacturers due to the reasons given above. Viscosity alone is insufficient to describe 

the flow characteristics of chocolate, due to its more complex rheological properties. 

Instead, it can be described as a pseudoplastic fluid, whereby a certain shear force is 

required to initiate flow, so named yield stress. Once flowing, the chocolate then adopts a 

non-Newtonian flow profile where viscosity is proportional to applied shear force, so 

named plastic viscosity. These two components are combined in the form of the Casson 

equation,
82

 used widely in industry to characterise the rheology of chocolate. This model 

is described in depth in chapter 6, part 3.9. The effect of yield stress is important in terms 

of shape retention of the formulation.  

 

Figure 1.10 (left) misshapen enrobed chocolate products with ‘feet’ resulting from 
insufficient yield stress. (right) Effect of yield stress on coating chocolate biscuits. 

Note the result of a too high yield stress83 
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As shown in figure 1.10; a high yield stress is required for products with decorative 

markings, and a low yield stress is required for thin coatings of chocolate over biscuits. 

Plastic viscosity is an important factor in the thickness of chocolate coatings, whereby a 

lower viscosity results in thinner coatings. In aerated products, viscosity affects the 

bubble size within the chocolate matrix (figure 1.11). Furthermore, higher viscosity 

chocolate requires increased pumping costs. 

 

Figure 1.11 Effect of plastic viscosity of chocolate on bubble size in aerated 
products83 

 

The rheological properties of molten chocolate are affected by several major factors; 

particle size of cocoa and sugar solids, fat content and emulsifier content. In the first 

instance it is important to note that the upper size limit for particle size in chocolate 

formulations is approximately 30 µm diameter. Above this ‘mouthfeel’ threshold, the 

tongue perceives a gritty sensation which is unpleasant for the consumer. Therefore the 

conching and milling process during chocolate manufacture reduces overall particle size 

to below this diameter.
83

 The size distribution of the particulate matter has a profound 

effect on the yield stress of the chocolate formulation. As seen in figure 1.12, while 

plastic viscosity is relatively unaffected by particle size, there is a significant increase in 

yield stress upon decreasing size distribution.
84
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Figure 1.12 Influence of particle size distribution on Casson plastic viscosity and 
yield stress of chocolate. (1) 30% fat; (2) 32% fat84 

 

This effect arises from the increased surface area of solid particulate as a result of the 

milling. The additional surface area requires more coating by the fat component of the 

chocolate, bringing particles closer together, eventually forming a loose network of solid 

particles. A greater force is needed to break up this network and induce flow, hence a 

greater yield value. Therefore while smaller particle distributions give an enhanced 

mouthfeel sensation, an undesired increase in yield stress may arise. This can be 

counteracted by the addition of more fat. 

 

Fat content influences both the plastic viscosity and yield stress of chocolate formulations 

as seen in figure 1.13. The increase of fat content up to a threshold of 36% significantly 

affects the plastic viscosity due to the additional free flowing fat that lubricates the solid 

particles, and is more pronounced in formulations with a finer particle size distribution. 

Yield stress is also decreased as the distance between particles which form networks 

resistive to initial flow are increased with a higher fat content.
84
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Figure 1.13 Influence of fat content on Casson plastic viscosity and yield value of 
chocolate. Fine (1) and coarse (2) particulate size distributions84 

 

The use of emulsifiers as additives to chocolate formulations is commonplace in the 

confectionery industry. Emulsifiers are used essentially as lubricants for the solid 

particulates within the liquid fat matrix. Soy bean lecithin and polyglycerol 

polyricinoleate (PGPR) are the two most common used emulsifiers, and are often used in 

conjunction for optimal flow performance.
85

 These compounds work by adsorbing to the 

surface of the sugar and cocoa solid particles, thereby preventing agglomeration of the 

solid components and reducing the friction drag between the solid and liquid phases 

through a reduced interfacial tension. This gives a smoother and creamier texture 

associated with a higher cocoa butter content, without actually adding further cocoa 

butter. As emulsifiers are both cheaper, and more effective by concentration at reducing 

viscosity than cocoa butter, the use of emulsifiers gives major economic benefit to 

manufacturers.   

 



Chapter 1: Introduction to Soft Matter 

 

 

29 

 

1.5.2 Moisture in chocolate 
 

The rheology and textural qualities of chocolate are additionally affected by the presence 

of water in the final product. The addition of a small quantity of water into chocolate 

results in a dramatic and undesirable increase in viscosity. This occurs due to the 

softening of the hard sugar crystals into semi soft gels which ultimately form a floc 

network in the formulation, causing the viscosity increase. Associated with this, the 

formulation can attain a gritty texture owing to the formation of large aggregates of sugar 

particles. During conventional chocolate production, the manufacturer will aim to remove 

as much water content as possible during conching as for every 0.3 wt% of water left in 

the formulation, approximately 1 wt% of additional fat content is required to be added to 

mitigate the detrimental effect of the moisture. The addition of a significant quantity of 

water (ca. 20 wt%), will reduce overall viscosity due to the complete dissolution of sugar 

into the water phase. However, this inevitably results in phase separation between the fat 

and aqueous phase.
83

  

 

There are culinary examples where water can successfully be incorporated into a 

chocolate formulation. The emulsification of cream, (an oil-in-water emulsion itself) into 

molten chocolate results in the formation of a water-in-oil emulsion of water droplets 

within the chocolate fat matrix. This emulsion is stabilised by naturally occurring 

compounds in the milk (i.e. lecithin) and chocolate and compartmentalises the water from 

the fat and sugar particles. Although the resulting formulation, known as a ganache does 

not suffer from a viscosity increase or gritty sensation, the product experiences a vast 
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reduction in elastic modulus (i.e. loss of mechanical stiffness), and will not set. With this 

in mind, the addition of water into chocolate formulations to provide a benefit to 

consumers and chocolate manufacturers alike presents an interesting challenge in the 

field of soft matter. 

1.6 Scope and outline 
 

This thesis explores two distinct areas in the field of soft condensed matter. Both parts are 

however, intrinsically linked through the behaviour they exhibit, and the theory applied to 

characterise material fabrication and their properties. 

 

The first part, incorporating Chapters 2, 3, and 4 involves the fabrication of polymer 

colloid Janus particles through various heterogeneous polymerisation systems. These 

particles are characterised and investigated for their use in commercial applications.  

 

The second part, incorporating Chapters 5 and 6 explore two distinct methods to reach 

the same aim; the ability to reduce the fat content in chocolate through emulsification of 

water into the chocolate fat matrix without a detriment to the textural and mechanical 

properties of the final product. 

 

In Chapter 2, the synthesis of Janus particles of sub-micron dimensions are synthesised 

by a one pot seeded emulsion polymerisation. We demonstrate how the size and 

respective lobe size of these particles can be tuned. The interfacial behaviour of these 

particles is investigated and their effectiveness as ice crystal growth inhibitors explored. 
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In Chapter 3 we discuss the synthesis of both nano- and micron scale ‘hard-soft’ 

biphasic Janus particles by seeded dispersion polymerisation of a ‘soft’ low Tg monomer 

butyl acrylate in the presence of poly(styrene) seed particles.  

 

The self-assembly behaviour of these ‘hard-soft’ particles into ‘colloidal molecules’ and 

colloidosomes are discussed in Chapter 4. Using interfacial energy minimisation as a 

driving force, the self-assembled particles assume a low energy conformation, supported 

by computer simulations. When agitated with air, the particles are observed to adhere to 

the liquid-gas interface, forming stable colloidosomes with interesting textured topology. 

 

Chapter 5 discusses the Pickering stabilisation of fruit juice in oil emulsions with 

inorganic nanoparticles as a route to reducing the fat content in chocolate formulations. 

The synergistic effect of chitosan and colloidal silica on emulsion properties is explored 

through sunflower oil, cocoa butter and ultimately chocolate.  

 

In an alternative approach, a method of dispersing a high volume of micron sized 

aqueous hydrogels throughout oil, cocoa butter and chocolate is explored as another route 

to reducing the fat content of chocolate in Chapter 6.  
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Chapter 2 

Synthesis and interfacial properties of amphiphilic 

Janus particles and their use as ice crystal 

inhibitors* 
 

 

2.1. Abstract 

In this chapter we describe the one-pot synthesis of amphiphilic sub-micron sized Janus 

particles through a seeded-swelling emulsion polymerisation strategy and their use as 

ice crystal inhibitors. Hydrophilic co-monomer 2-hydroxyethyl methacrylate is used to 

synthesise seed particles with a hydrophilic surface, enabling the phase separation of a 

well defined hydrophobic polystyrene lobe. The relative lobe sizes can be tuned by the 

mass variation of monomers used during the synthesis. Submicron amphiphilic Janus  

particles of varying hydrophilic: hydrophobic ratios were found to exhibit surface active 

* 
Part of this work is published elsewhere: Use of Synthetic Janus Particles for 

preventing or reducing crystal growth. S.A.F. Bon and M. I. Gibson, Patent 

No. WO 2013/050773 
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behaviour by adsorbing to liquid-liquid interfaces and reducing surface energy, the 

variation of which dependent on hydrophilic : hydrophobic lobe size ratio. Additionally, 

the Janus particles adopted a range of packing conformations depending on the 

concentration of particles in convectively drying suspensions. Similar to our amphiphilic 

Janus particles, naturally occuring ice crystal inhibitors proteins and macromolecules 

possess hydrophilic and hydrophobic moieties. As such we investigate the ability for 

Janus particles to inhibit ice crystal growth. Ultimately, the Janus particles were found 

to arrest crystal growth with a larger particle hydrophobic : hydrophilic ratio proving 

more effective at ice recrystallisation inhibition. As such, these particles have the 

potential to be used as anti-freeze agents in a range of applications.  

2.2. Introduction 
 

Ice crystal growth inhibition is an area of significant interest due to the commercial and 

medical implications of effective inhibitor compounds. The process of freezing and 

thawing can be detrimental in aqueous systems subjected to sub-zero (degrees Celcius) 

temperatures. Intercellular and intracellular ice crystal growth cause rupture and 

localised high concentration of electrolytes in living tissue, posing difficulties in the 

cryo-preservation of organs.
1,2

 Growing ice fronts exclude particulates from the crystal 

matrix thereby causing aggregation of colloidal particles between crystal grains.
3
 ‘Soft’ 

i.e. low Tg aqueous colloidal dispersions such as paint formulations are especially 

sensitive to freezing. Upon re-crystallisation, frozen food products such as ice cream 

attain a ‘grainy’ texture attributed to the increased crystal size.
4
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Many organisms which survive in sub-zero conditions manufacture antifreeze (glyco-) 

proteins
5
 which serve to prevent the nucleation and growth of ice crystals when 

dispersed in aqueous conditions. Several approaches have been undertaken to gain 

insight as to how these biomacromolecules retard ice crystal growth. Proteins possessing 

antifreeze efficacy in organisms, are often identified, isolated and expressed as in the 

case of Lolium Perenne.
6
 Alternatively, simple macromolecules with antifreeze activity 

for example poly(vinyl alcohol) are chemically and structurally varied,
7–9

 or total 

synthesis of peptide-based analogues
10,11

 are used in crystal inhibition studies.  

 

The vast majority of studies into mechanism of inhibition focus on the molecular scale, 

attempting to elucidate ‘molecular recognition’
12

 of the additive with the growing ice 

front, or disruption of the growing front in the supercooled melt. One common theme 

amongst all anti-freeze (glyco-)proteins studied at the molecular scale is the presence of 

both hydrophilic and hydrophobic moieties, revealing an amphiphilic structure.
7
 

Generally speaking, in the case of antifreeze proteins, the hydrophobic moieties are 

thought to interact with the ice, whilst the hydrophilic component faces the supercooled 

melt.
13

 However, there are examples of inorganic antifreeze compounds which are 

thought to complex with the ice through hydrophilic hydrogen bonding interactions 

leaving the hydrophobic face exposed.
14

 

 

A generally accepted theory for ice recrystallisation inhibition and freezing point 

depression resulting from foreign bodies and impurities derives from the Kelvin (Gibbs-

Thomson) Effect. If a growing ice grain encounters an impurity, it can either migrate 
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alongside the growing ice front, or leave the particle behind. In either case, a curved 

interface is formed. As a result of the Kelvin effect, crystal growth on to a curved 

interface is unfavourable as a result of the curvature. It can be noted that total coverage 

of the interface with the impurity is not required for effective ice crystal inhibition. 

According to Raymond and deVries; crystal growth can be halted when the average 

spacing between the adsorbed impurities is equal or less than twice the critical radius of 

curvature.
15

  

 

Amphiphilic sub-micron Janus particles have been shown to experimentally
16

 and 

theoretically
17

 interact and assemble at liquid-liquid interfaces according to their 

respective chemical and morphological anisotropy. In this vein, we investigate the use of 

amphiphilic Janus particles as mesoscale analogues of molecular antifreeze compounds. 

 

From a commercial perspective, the manufacture of Janus particles for this purpose must 

be easily scalable, economically viable, non-toxic and conform to the relevant 

regulations that permit their use in applications such as foodstuffs and coatings 

formulations.  Therefore, of the range of synthetic methods available to manufacture 

amphiphilic particles, waterborne heterogeneous polymerisation such as emulsion 

polymerisation presents an attractive option. 

2.2.1 Emulsion polymerisation 

 

Emulsion polymerisation has proven to be a versatile tool in the fabrication of 

submicron-sized polymer colloids with intriguing variations in the chemical 
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composition and morphology of the particles. Examples include, core-shell
18,19

, 

armoured
20,21

, hairy
22

, and hollow
23

 polymer particles which can lead to innovative 

applications in products such as impact modifiers
24

 pressure sensitive adhesives
25

, 

colloidal surfactants
26

, and opacifiers
27

 in coatings respectively. One pursuit in the 

fabrication of these types of structurally more complex particles is to develop 

straightforward and scalable emulsion polymerisation protocols which require a 

minimum of reaction and purification steps.  

2.2.2 Synthesis of submicron Janus particles 

 

Our interest lies in the fabrication of peanut- or dumbbell-shaped colloids, exhibiting an 

amphiphilic Janus-type character. By this we mean that the two lobes possess opposing 

chemical characteristics with respect to wettability of their dispersion medium.  One 

synthetic route toward dumbbell polymer colloids by emulsion polymerisation was 

pioneered by El-Aasser and coworkers
28,29

 who made elegant use of the phenomenon of 

contraction of crosslinked elastic polymer networks upon elevation of temperature. In 

essence heating up lightly crosslinked poly(styrene) microspheres swollen with styrene 

monomer and an oil-soluble radical initiator resulted in the formation of a monomer 

protrusion. A local higher rate of polymerisation within the protrusion further 

accentuates the newly developed shape through diffusion of monomer. The process of 

phase separation by this means is explained by the theory of entropic phase separation 

which is described below. 
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2.2.3 Thermodynamics of entropic phase separation 

 

Swelling of a crosslinked seed particle in a monomer solution can be explained 

theoretically by the combination of three thermodynamic factors: free energy of 

monomer and polymer mixing (ΔGm), interfacial energy between particle surface and 

continuous medium (ΔGt), and the energy component as a result of an elastic retractile 

force (ΔGel) arising from the crosslink density of the particle (expressed in equation 1). 

These three factors define the equilibrium between concentration of monomer in the 

particle and the continuous phase.  

 

            (1) 

 

By substituting the Flory-Huggins mixing expression
30

 for (ΔGm), Flory-Rehner 

equation
31

 for (ΔGel)  and the Morton equation
32

 for (ΔGt), we get an expression which 

can be evaluated qualitatively as shown in equation 2. R is the ideal gas constant, T 

system temperature, N is number of polymer chains per molar volume of polymer Vp. Vm 

is molar volume of monomer, γ particle water interfacial tension, a is radius of the 

swollen polymer particle,  is the Flory monomer-polymer interaction parameter. 

[  =            (2) 

 

From this expression, it is possible to see which factors promote or disfavour particle 

swelling. These factors have been summarised in figure 2.1. For instance, low T and γ 

and a favourable  mixing parameter energetically promotes swelling. 



Chapter 2: Synthesis and interfacial properties of amphiphilic Janus particles 

 

43 

 

 

 

 

Figure 2.1 Schematic and table summarising the effect of three major 

thermodynamic forces on the swelling of a particle 

 

Based on the factors indicated above, the particle will swell to equilibrium size i.e. 

ΔGm,p = 0. Phase separation of the equilibrated swollen particle can be induced by 

exploiting the thermal dependence of the elastic retractile force component (ΔGel). Upon 

heating, ΔGel provides an overwhelming elastic retraction force, causing the particle to 

rapidly de-swell. This force arises from the thermal energy provided to relax the 

elongated polymer chains resulting from the swelling step. Such a rapid de-swelling can 

cause a singular monomer protrusion to breach the particle surface, the morphology of 

which is dominated by the wettability of the monomer to the polymer. 

 
More Favourable  Surface Wetting  Less Favourable 

Figure 2.2 Schematic indicating the range of morphology possible depending on 

differences of surface wettability between the monomer and seed polymer 

 

 Arises From Contribution Depends 
on 

Mixing Force  

 

Absorption of Monomer (-) Promotes Expansion Vp, j,  

Elastic Retractile 

 

Contraction of stretched 

network 

(+) Restrains Expansion N, T 

Interfacial Tension  

 

Increase of Surface Area (+) Restrains Expansion r, γ 
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Figure 2.2 graphically depicts the range of morphology one can expect depending on the 

surface wettability of the monomer to polymer. The interfacial energy difference 

between the two extremes of wettability can be expressed as shown in equation 3 where 

γmw, γpm and γpw represent the monomer-water, polymer-monomer and polymer-water 

interfacial tensions respectively. 

 

          (3) 

 

If the monomer favourably wets the particle surface, a core-shell type particle is formed, 

whereas complete non-wetting of the particle surface causes the monomer to be expelled 

from the droplet resulting in separate droplet formation in the continuous phase. Based 

on the interfacial energies between the two polymers and the continuous phase, Waters 

developed a model to predict the surface morphology of composite latex particles.
33

 In 

this study, the surface energies of each interface, between a ‘hydrophilic’ and 

‘hydrophobic’ polymer and the interfacial energy between each of these polymers and 

the continuous phase water was considered as a function of volume fraction to yield 

total interfacial energy of the system. Minimisation calculations of these total interfacial 

energies yield the most thermodynamically favourable particle morphology ranging 

from (inverted) core shell to particle expulsion. In addition, the model considered non-

deformable and deformable polymers, inferring the ability to calculate morphologies of 

‘soft’ composite particles. 

2.2.4 Entropic phase separation as a route to dumbbell colloids 
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This approach has become a popular route toward synthesis of dumbbell colloids owing 

to the ability to tune particle morphology through the chemical properties of the 

reagents. 

 

Mock et al. exploited this synthetic procedure through several seeded polymerisations of 

a highly crosslinked (18 wt% DVB w/r to monomers) emulsion polymerisation seed. A 

hydrophilic corona was polymerised around the seed latex before swelling which 

increased the contact angle between extruded monomer and polymer surface, resulting 

in a more defined secondary lobe, whilst still permitting optimum swelling of the core 

with monomer.
34

 Weitz et al. employed a similar strategy to fabricate larger 5 µm 

diameter Janus particles by seeded emulsion polymerisations indicating the ability to 

scale up particle size by an order of magnitude. Fabricating particles of this size allowed 

the kinetics of the phase separation to be observed by optical microscopy, disclosing the 

fact that a phase separation occurs only the in the first 100 seconds of thermal treatment, 

thereafter, the growth of the new lobe is driven by the migration of monomer into the 

newly formed lobe.
35

 Furthermore, dimer and trimer particles fabricated in successive 

seed emulsion polymerisations are possible if the crosslinking content of the respective 

monomer lobes is varied, an example of controlling ΔGel through crosslinking co-

monomer concentration.
36

 

 

A variety of shapes and chemical compositions of anisotropic Janus particles have been 

fabricated by entropic phase separation. Mu et al. swelled polystyrene microspheres 

with a mixture of toluene and 4-vinyl pyridine to render a series of Janus particles, their 
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morphology depending on the ratio of toluene and 4-vinyl pyridine
37

. Hydrogel-

polystyrene Janus particles have been demonstrated by swelling polystyrene 

microspheres with toluene and N-isopropylacrylamide to render thermally responsive 

Janus particles owing to the LCST of p(NIPAM).
38

 In an example using an alternative to 

styrene as the seed particle monomer, Pan et al. swelled a poly(vinylidene fluoride) 

latex with styrene composite latex particles.
39

 Finally, a seeded emulsion polymerisation 

of bis-acrylamide crosslinked poly(NIPAM) has been demonstrated to form a 

homogeneous hydrophilic layer over the entire Janus particle resulting in isotropic 

chemistry on an anisotropic morphology.
40

 

 

These examples indicate that seeded emulsion polymerisation, exploiting the entropic 

phase separation technique is a flexible and versatile method to generate polymeric 

Janus particles of tuneable size, geometry and chemical anisotropy. However, many of 

these examples require multistep reactions separated by purification and dialysis steps. 

If particles of this type are to find a use in commercial applications, a simple optimised 

synthetic procedure needs to be developed. As such we investigate an optimised 

synthetic procedure to fabricate amphiphilic Janus particles on a bulk scale before 

characterising their interfacial properties and their effectiveness at inhibiting ice crystal 

growth. 

2.3. Results and discussion 
 

2.3.1 One pot synthesis of amphiphilic Janus particles 
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Following the route of entropic phase separation of polymer colloid particles 

manufactured by emulsion polymerisation, the first step is to develop a seed particle that 

fulfils the requirements of the phase separation thermodynamics. By this we mean that 

the seed particle must be adequately crosslinked and possess a surface chemistry 

distinctly more hydrophilic from that of the secondary lobe (which will be 

hydrophobic). For this reason we investigate an emulsion polymerisation system 

incorporating non-ionic monomer 2-hydroxyethyl methacrylate (HEMA), anionic 

monomer sodium styrene sulfonate (NaSS), styrene and crosslinking agent 

divinylbenzene (DVB).  

Seed particles synthesis 

 

Poly(styrene) based seed particles were fabricated through a surfactant free emulsion 

polymerisation. As aforementioned, a hydrophilic layer on the surface of the seed 

particle accentuates the definition of the phase separated hydrophobic monomer lobe as 

a result of the significant difference in surface tension between the phases. Many 

literature examples graft the hydrophilic polymer
34,35,38

 or inorganic
41

 layer onto the un-

functionalised poly(styrene) seed particle via an additional reaction step. We negate the 

need for this step by incorporating the hydrophilic co-monomer 2-hydroxyethyl 

methacrylate (HEMA) into the seed particle co-polymerisation alongside the anionic co-

monomer sodium styrene sulfonate. The ab initio emulsion co-polymerisation of styrene 

and HEMA has been reported to fabricate particles with a high degree of p(HEMA) on 

the surface as determined by XPS
42

 and AFM
43

 techniques. However, the use of HEMA 

in a styrene emulsion polymerisation as a sole co-monomer in absence of surfactant has 

been reported to possess a weak nucleation ability, generating larger particles of up to 
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600 nm diameter.
44

 Therefore an anionic sulfonate functionalised styrene monomer 

(sodium styrene sulfonate at 0.5 wt% w/r to monomers) was employed as charge 

stabiliser, with 0.5 wt% w/r to styrene reported to reduce particle size from 500 – 1000 

nm to 150 - 400 nm.
45

 In addition, the overall polymerisation rate was shown to increase 

in accordance to the addition of a small quantity of NaSS into a styrene emulsion 

polymerisation.
46

 Unlike molecular surfactants which are physisorbed to the particle 

surface, sodium styrene sulfonate is polymerised into the particle polymer matrix and 

presents mostly on the particle surface providing robust charge stabilisation, without the 

risk of desorption.
44

 This charged surface provides another part of the colloidal 

stabilisation that allows for stable phase separation of a hydrophobic lobe.  

 

In order to fulfil the elastic retractile force component (ΔGel) that allows thermally 

induced phase separation; 1 wt% (w/w w/r to total monomer content) of divinylbenzene 

(DVB) crosslinking agent was incorporated into the polymerisation. This concentration 

has been proven to provide reliable swelling and subsequent phase separation by our 

group and others.
28,47

 

We therefore investigated the quaternary emulsion polymerisation of styrene, divinyl 

benzene, sodium styrene sulfonate and hydroxyethyl methacrylate in batch conditions at 

2 wt% total monomer content (w/r to continuous phase). As p(HEMA) has been 

reported to present mostly on the particle surface, 1 wt% w/r to total monomer was 

deemed sufficient to render a hydrophilic surface, as excessive concentrations have been 

shown to induce secondary nucleation.
44

 The emulsion polymerisations were conducted 

in a single jacketed reactor with overhead stirrer, initiated using potassium persulfate 
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(0.5 wt% w/r to monomers) by heating the reaction mixture to 70 °C using a 

recirculation bath. An additional emulsion polymerisation without HEMA was 

conducted for comparison. The polymerisations were followed kinetically by extracting 

aliquots of the aqueous phase at set time intervals and analysing by dynamic light 

scattering and conversion by gravimetry (as seen in figure 2.3). The resulting particle 

suspensions were dialysed against deionised water for 14 days, changing the water 

regularly before measuring particle size, zeta potential and analysis by scanning electron 

microscopy. 

 

 
 

Figure 2.3 (left) Conversion plots and (right) particle hydrodynamic diameter as a 

function of (conversion)1/3 for the seed emulsion polymerisation with and without 

HEMA co-monomer. Lines indicate fitted linear functions (expt. TS500) 

 

In terms of kinetics, it can be seen from figure 2.3 (left) that the emulsion 

polymerisation with HEMA has slightly a faster polymerisation rate during the first 60 

minutes / 20% conversion. After which, the non-HEMA reaction gains an increased rate 

and overtakes the HEMA containing emulsion polymerisation. It can also be noticed 

that the HEMA conversion profile takes on a more linear profile up to 80% conversion 
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compared with the non-HEMA reaction. Figure 2.3 (right) reveals a linear particle 

growth profile when plotted as a function of (conversion)
1/3

. This indicates a short 

nucelation period without the formation of secondary nucleation, which is in accordance 

with the observed DLS and FEG-SEM data reported below.  

 

Qin et al. report that during the poly(styrene-co-HEMA) emulsion polymerisation, chain 

growth falls into two domains, poly(styrene) rich and p(HEMA) rich. Owing to the 

hydrophilic nature of HEMA, mostly consumed in the early stages of the 

polymerisation, forms small hydrogel particles of 40-60 nm.  Due to osmotic pressure, 

styrene swells these initial p(HEMA) particles and polymerises within.
48

 Therefore, the 

more linear conversion profile for polymerisations containing HEMA can be ascribed to 

a ‘core-shell’ particle growth mechanism where monomer diffusion into the particle is in 

competition with polymerisation rate as discussed by Chen et al. for the kinetics of 

styrene-co-HEMA emulsion polymerisations.
49

  

 

Phase separation of p(HEMA) and p(Sty) domains occurs within the swollen low 

viscosity particles causing the more hydrophilic p(HEMA) domains to present on the 

particle surface.  We can see that a 1 wt% (w/r to total monomer) loading of HEMA in 

the seed emulsion co-polymerisation is clearly sufficient to render a visible hydrophilic 

layer onto the seed particle. When dispersed in aqueous media, the pHEMA swells to a 

hydrogel, hence the crinkled appearance arises from the dehydration of the p(HEMA) 

corona upon drying for SEM analysis. Figure 2.4 depicts the topological difference 

between particles containing p(HEMA) (figure 2.4 top), and particles synthesised in 
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absence of HEMA (figure 2.4 bottom). The literature reports that XPS analysis of 

poly(styrene-co-HEMA-co-NaSS) emulsion polymerisations reveal that the particle 

surface is enriched with ~10 %  and ~40% p(NaSS) and p(HEMA) respectively when 

0.4 and 0.6 wt% of the monomers are used.
44

 In terms of overall particle size difference 

between poly(styrene) seed particles with and without HEMA as seen in figure 2.4 (top 

left), a slightly larger particle size can be seen in the absence of HEMA. This could be 

attributed to a higher number of particles formed in the case of HEMA, thereby reducing 

overall particle size. 

 

 

Figure 2.4 (Top)FEG-SEM micrographs of Janus seed particles with HEMA corona 

(TS255-Seed). (Bottom) FEG-SEM micrographs of Janus seed particles without 

p(HEMA) (TS166) 
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Hydrodynamic diameter (fig. 2.5 top right), PDI (fig. 2.5 bottom left) and zeta potential 

(fig. 2.5 bottom right) measurements of several latexes over a range of ionic strengths 

were analysed to ascertain how the addition of HEMA affected the colloidal properties 

of the seed product. In addition, identical seed particle latex (with HEMA) made at the 

higher polymerisation temperature of 80 °C has been added to see if polymerisation 

temperature affects the surface properties of the seed latex. Increasing reaction 

temperature incites negligible difference in terms of size, polydispersity and colloidal 

stability. However, the addition of HEMA has significant implications on colloidal 

stability. 
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Figure 2.5 (Top left) Number average size distribution for poly(styrene) seed 

particles with and without HEMA (TS500). Hydrodynamic radii (Top right) 

Polydispersity indices (Bottom left) and Zeta potentials (Bottom right) of seed 

particles plotted over a range of salt concentrations measured by dynamic light 

scattering. (70°C – TS500, 80°C – TS255 Seed) 

 

In the absence of HEMA, the zeta potential at low salt concentration is considerably 

more negative than the latexes with p(HEMA). At higher salt concentrations, there is 

negligible difference between latexes with and without the HEMA co-monomer. At low 

salt concentrations i.e. 10
-3 

M NaCl, the hydrated p(HEMA) corona screens part of the 

negative surface charge brought about by the sodium styrene sulfonate polymer on the 

particle surface causing the less negative zeta potential in latexes with p(HEMA). At 

higher salt concentrations i.e. >10
-2 

M NaCl, the anionic charge is suppressed by the salt, 

more so than the presence of the HEMA corona. 

 

In terms of hydrodynamic diameter and polydispersity index, the difference in colloidal 

stability between latexes with and without HEMA is far more pronounced. In the 

absence of HEMA, the measured hydrodynamic diameter vastly increases due to 

coagulation of the latex at salt concentrations above 1x10
-2 

M. However, the latexes 

incorporating HEMA start to coagulate at 2x10
-1 

M NaCl. This resistance to flocculation 

at higher salt concentrations can be attributed to the presence of a steric barrier formed 

by the hydration of the p(HEMA) chains on the surface of the polystyrene latex. We can 

therefore confirm that the presence of p(HEMA) on the particle surface has been 

confirmed both by scanning electron microscopy and by use of dynamic light scattering 

in solutions of varying salt content. 



Chapter 2: Synthesis and interfacial properties of amphiphilic Janus particles 

 

54 

 

2.3.2 Swelling and phase separation polymerisation 

 

We then investigated the use of these hydrophilic particles in swelling and entropic 

phase separation reactions without prior purification. This was accomplished by 

injecting the second stage polymerisation components to the completed reaction mixture 

from the seed emulsion polymerisation. 

 

In a typical procedure, immediately after the initial polymerisation, without opening the 

reactor, the seed latex is rapidly cooled to room temperature and the second stage 

styrene and AIBN thermal initiator solution is injected and degassed. The mixture is 

maintained at room temperature and stirred for 120 minutes before re-heating to thermal 

initiation temperature of the AIBN at 70 °C. This temperature is maintained for 12 hours 

to allow full conversion of the second phase. We investigated the addition of three 

different ratios of monomer with respect to the initial polymer seed mass: 0.8:1, 1.25:1 

and 2.25:1. By this we mean that of an initial charge of 4 g of seed particles, 3.2 g, 5 g 

and 9 g of styrene (containing 1 wt% AIBN w/w w/r to styrene) was added to the 

reactor. The conversion of the second phase was followed by gravimetric analysis of 

samples extracted at set time intervals as depicted in figure 2.6.  
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Figure 2.6 Fractional conversion (left) and mass conversion (right) of the seeded 

emulsion polymerisations as a function of time for three ratios of added monomer 

to seed polymer mass ratios(TS520) 

 

The conversion profiles indicated in figure 2.8 indicate that the rate of seeded emulsion 

polymerisation is constant in each case, therefore the addition of more monomer 

increases the time to reach full conversion.  

 

By using FEG-SEM, the morphology of the resulting Janus particles can be observed as 

seen in figure 2.7. In the micrograph, each particle has formed into a dumbbell 

morphology arising from the phase separation of poly(styrene) during the entropic phase 

separation step. It is possible to make out the crinkled seed particle lobe and the smooth 

second stage poly(styrene) lobe on each particle. 
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Figure 2.7 FEG-SEM image of amphiphilic Janus particles with 3:1 monomer : 

polymer ratio (TS255D) 

 

The swelling kinetics of a seed latex is dependent on two major factors; 1) transport of 

monomer through the continuous phase to the particle surface and 2) diffusion into the 

particle. Providing sufficient shear force in the system to keep the continuous phase 

saturated with monomer, transport is relatively fast, on the timescale of minutes.
50

 

Monomer diffusion into a polymer particle, especially crosslinked, can be slow in 

comparison.
51

 This is due to the ‘dry’ non solvated nature of a polymer latex. In 

previous literature examples of entropic phase separation, seed latexes are often 

purified, resulting in a completely non-solvated particle core. Accordingly, swelling the 

latex with monomer requires 10-24 hours before equilibrium swelling is reached.  

 

In our system, we found that swelling time could be reduced to 120 minutes whilst still 

rendering Janus particles of desired geometry. We attribute this due to negating the 

purification step and commencing swelling immediately after seed particle synthesis. A 

plausible explanation for the successful reduction in swelling time is due to the presence 

of monomer and short chain soluble polymer chains solvating the seed particle polymer 
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chains at the end of the initial polymerisation. This ‘plasticisation’ effect is lost if the 

seed latex is purified. 

Control of lobe size 

 

We investigated the effect of varying the mass ratio of monomer to polymer seed phase 

in an attempt to tune the relative lobe sizes. Monomer : polymer mass ratios, from now 

on noted as m/p ratios of 1:1, 2:1 and 3:1 were employed. For instance, to fabricate 

particles with a 3:1 m/p ratio based on an initial styrene-co-NaSS charge of 4 g, 12 g of 

styrene containing 1 wt% AIBN (w/r to monomer) would be charged into a reactor 

containing a hydrophilic seed particle latex of 2 wt% total solids content before 

degassing, stirring at room temperature for 2 hours then heating to 70 °C. The 

subsequent Janus particles for each ratio were imaged by FEG-SEM and can be seen in 

figure 2.8. 

 

 

 

 

1:1 
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2:1 

  

 

 

 

3:1 

  

Figure 2.8 FEG-SEM images of Janus particles, including high magnification at 

different m/p ratios as indicated on the left (1:1 – TSGN-1-1, 2:1 – TSGN-2-1, 3:1 – 

TSGN-3-1) 

Characterisation of size for each ratio was determined by DLS and by quantitative 

analysis of SEM images. The latter was accomplished by modelling particles as two 

spherical caps as depicted in figure 2.9. From the dimensions obtained by SEM image 

analysis, volume and diameter of each lobe was calculated through equations 4 and 5 

before plotting in figure 2.10(right). 
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Figure 2.9 Schematic and high resolution fake colour FEG-SEM image of a Janus 

particle (TS255D) depicting the dimensions measured for spherical cap size 

evaluation, the function of which is expressed on the right  

 

  

Figure 2.10 (left) Hydrodynamic Diameter size distribution for the 3 ratios of 

Janus particles (right) Diameter as measured by dynamic light scattering (DLS) and 

by measurement of the longest axis by (SEM) using samples (1:1 – TSGN-1-1, 2:1 – 

TSGN-2-1, 3:1 – TSGN-3-1). Using the image analysis in fig. 2.12, volume of the 

particles is plotted (Vp) – all as a function of monomer:polymer ratio  

 

As monomer to polymer ratio increases, the particle size increases accordingly. 

Although the DLS result acknowledges this increase, as seen in figure 2.10, it is not 

accurate due to the limitation of the instrument to assume spherical morphology. 

Therefore SEM image analysis was undertaken to correctly evaluate Janus particle size. 

  (4) 

 

(5) 
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Figure 2.11 Volume of respective hydrophilic and hydrophobic lobes on Janus 
particles at different m/p ratios (0:1 – TS255-Seed, 1:1 – TSGN-1-1, 2:1 – TSGN-2-1, 

3:1 – TSGN-3-1) based on SEM image analysis from fig. 2.12 
 

The volume of the respective lobe sizes for each m/p ratio, including seed particles is 

plotted in figure 2.11. The volume of the seed particle barely changes regardless of 

swelling amount, leading to the conclusion that little second phase monomer remains in 

the primary particle after the thermal entropic phase separation and polymerisation. 

Additionally, the volume of the hydrophobic lobe for each ratio is lower than expected 

when compared with the mass of monomer introduced in the second phase. A plausible 

explanation for this, taking in account the high conversion (>95%) and absence of 

secondary nucleation is the growth of oligomeric chains in the continuous phase. The 

presence of sodium styrene sulfonate in the reaction mixture promotes oligomeric chain 

growth. Alternatively, owing to the low solids content of the reaction, it is possible that 

a significant fraction of second stage monomer is lost through evaporation during the 

degassing and polymerisation stage,  part of which is exacerbated by the large headspace 

in the reactors used. However, similar disparities between expected and observed second 

phase volume in methyl methacrylate swollen poly(methyl methacrylate) particles have 

been noted by Butterworth.
52

 In this example, despite working at a higher solids content 
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of 40 wt% and reducing monomer loss through alternative degassing techniques, an 

unexplained loss of volume in the extruded polymer lobe is observed. This disparity is 

found to reduce with increasing m/p ratios. Regardless of the volume disparity, 

hydrophobic lobe growth is consistent with the addition of second phase monomer 

without affecting the size of the seed particle. 

Colloidal stability of Janus particles with varying lobe sizes 

 

The size and colloidal stability of Janus particles were measured as a function of solvent 

ionic strength in the same manner as the seed particles described above. Dilute aqueous 

suspensions of Janus particles were analysed by dynamic light scattering in a range of 

salt concentrations. Figure 2.12 indicates the hydrodynamic diameter and polydispersity 

index measured by dynamic light scattering over a range of concentrations of sodium 

chloride. PDI and hydrodynamic radius remain constant until 0.1 M NaCl, after which 

both PDI and radius increase drastically indicating colloidal instability and flocculation. 

A closer inspection reveals that above 0.1 M NaCl, the highest hydrophobic : 

hydrophilic ratio is the most colloidally unstable. We can therefore deduce that the 

hydrophilic seed particle provides the major component of the colloidal stability through 

the p(NaSS) and p(HEMA) present on the surface, whilst the hydrophobic lobe 

contributes very little towards the colloidal stability of the system. 
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Figure 2.12 Janus particles of varying m/p ratios (1:1 – TSGN-1-1, 2:1 – TSGN-2-1, 

3:1 – TSGN-3-1) plotted as (left) hydrodynamic diameter and (right) PDI, both as a 

function of salt concentration as determined by DLS 

 

Zeta potential measurements over a range of concentrations as plotted in figure 2.13 

indicate that all three lobe ratios are stable to a similar magnitude and are equally 

affected by the salt effect of double layer compression. Zeta potential measurements 

taken in deionised water at pH 5.5 show a small decrease in electrophoretic mobility for 

increasing hydrophobic lobe size.  

 

Figure 2.13 (left) Zeta potentials of Janus particles of varying m/p ratios (1:1 – 

TSGN-1-1, 2:1 – TSGN-2-1, 3:1 – TSGN-3-1) plotted as a function of salt 

concentration (right) zeta potential as a function of m/p ratio measured in 

deionised water at pH 5.5 
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An interesting point to note are the small differences  in zeta potential between the 

particles of varying m/p ratio as seen in figure 2.13. It is expected that particles with an 

increasing hydrophobic lobe volume (i.e greater m:p ratio) would possess a far lower 

zeta potential as the hydrophilic lobe provides the sole electrostatic stabilisation for the 

particle. In addtion we would expect the newly formed hydrophobic lobes of the Janus 

particles to coalesce during polymerisation or flocculate if no stabilisation were 

imparted. This leads us to believe that some stabilisation is imparted to the hydrophobic 

lobe during particle synthesis. During seed particle polymerisation, the use of 

hydrophilic monomers HEMA and NaSS result in the formation of water soluble 

oligomers. As these are not removed through a cleaning process after the seed particle 

polymerisation, these oligomers can plausibly act as a surfactant by adsorbing to the 

hydrophobic poly(styrene) second phase, thereby providing a degree of colloidal 

stability. Whilst this provides a beneficial stabilisation contribution, a disadvantage is 

the reduced particle amphiphilicity. 

2.3.3 Limitation of solids content 

 

We investigated upscaling the seeded polymerisation system to achieve a higher total 

solids content which would be a desirable requirement if these Janus particles were to be 

manufactured commercially. Typically, seed particle emulsion polymerisations are run 

at 2 wt% solids content, leading to a total of 4, 6 and 8 wt% total solids for 1:1, 2:1 and 

3:1 m/p ratios respectively. To improve synthetic yield, suitable for commercial 

application, we attempted to increase the monomer loading to accept up to 30 wt% total 

solids content. Above 20 wt% we observed the presence of dimers, trimers and 

tetramers for all three ratios investigated. Scanning electron micrographs of particles 
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from a 30 wt% seeded emulsion polymerisation at 2:1 m/p ratio can be seen in figure 

2.14. 

  

Figure 2.14 FEG-SEM images of a Janus particles synthesised at 30 wt% solids 

content with a 2:1 m/p ratio (TSGN-30wt) 

 

The formation of these higher order particles is thought to be a result of coalescence 

during the start of the second polymerisation. During the early stages of the second 

polymerisation, the newly formed secondary lobe is plasticised as a result of the high 

monomer concentration within, resulting in a ‘soft’ lobe well above the polystyrene 

glass transition temperature. Due to the surfactant free nature of the polymerisation 

system, the soft lobes possess little colloidal stability. In higher solids content systems, 

these soft lobes collide and coagulate as there is no repulsive barrier. This can give rise 

to dimers, trimers, tetramers and higher ordered structures. The structures we obtained 

are similar to the ‘colloidal molecules’ obtained by van Blaaderen and coworkers when 

purposefully phase separating liquid monomer protrusions from crosslinked polystyrene 

latex particles and subsequently coalescing these particles together.
53

 The coalescence in 

their case resulted from the monomer protrusion coalescing with any solid surface due 
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to the lack of stabilisation. This provides a reasonable explanation for the formation of 

dimers, trimers and tetramers in our system at higher solids contents.  

2.3.4 Physical properties of Janus particles 

Liquid-liquid interfacial behaviour 

 

The surface active behaviour of our amphiphilic Janus particles at liquid-liquid 

interfaces was investigated by use of droplet shape analysis. Specifically we are 

interested to see if the particles adsorb to liquid-liquid interfaces, and how the difference 

of hydrophilic and hydrophobic lobe size ratio affects the contribution to interfacial 

energy once adsorbed. In order to characterise this behaviour, dialysed Janus particles 

were dispersed into an aqueous phase (0.1 wt%) which was in turn used to form a 

droplet within a hexadecane phase. The free energy at a clean hexadecane oil interface 

(53.3 mNm
-1

)
54

 provides a large driving force for dispersed surface active particulates to 

adsorb on to the interface in order to reduce the surface free energy. We observed an 

interfacial tension value of 43.49 mNm
-1

 for the pure water-hexadecance interface 

(without particles) utilising hexadecane of 99% purity.  

 

The profile of suspended aqueous Janus particle suspensions within an organic phase 

allows the interfacial tension to be measured by the Young-Laplace equation as 

described elsewhere
55

 and explained in Appendix A. Measuring this value at intervals 

affords the change in interfacial tension as a function of time. Each measurement was 

repeated three times before averaging for each m/p ratio.    
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Figure 2.15 Interfacial tension as a function of time for a droplet of 0.1 wt% 

aqueous suspensions of Janus particles suspended in hexadecane as measured by 

droplet shape analysis. Three m/p ratios of particles (1:1 – TSGN-1-1, 2:1 – TSGN-

2-1, 3:1 – TSGN-3-1) were measured. (left) linear scale, (right) logarithmic scale 

 

Initially, for all samples, upon the formation of the droplet in the organic phase, 

interfacial tension drops rapidly owing to instantaneous absorption of Janus particles at 

the interface, depicted in figure 2.15 (left). As the exposed oil/water interface decreases, 

particle adsorption rate slows, trending towards a plateau value. The equilibrium 

interfacial tension attained by the system is affected by the hydrophobic : hydrophilic 

ratios of the Janus particles. Particles with the least hydrophobic content achieve the 

lowest surface free energy. Increasing the hydrophobic lobe ratio causes an increase in 

equilibrium interfacial tension. As the hydrophobic lobe size increases, although there is 

a slight increase in the displaced oil-water interface (reducing interfacial tension), the 

surface area from the hydrophobic hemisphere contributes a larger positive free energy 

(increasing interfacial tension). 

 

When the temporal axis is presented logarithmically as in figure 2.15 (right), it is 

possible to see several transitions at approximately T = 2000 s whereby the rate of 
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change of interfacial tension suddenly alters. Transitions of this nature have been 

reported by our collaborators
16

 who observed transitions when using polydisperse Janus 

‘discs’ as solid stabilisers in similar experimental systems. The reasoning behind this 

effect pointed towards the rearrangement of discs at the liquid-liquid interface to 

optimise the packing efficiency. It could be possible for the Janus particles in our system 

to adopt a more efficient packing arrangement in correlation to this transition. In order 

to confirm a transition of this nature, visual representations of particles at an interface 

are required. 

2.3.5 Crystalline behaviour of Janus particles 

 

Owing to the interfacially active behaviour observed by the particle suspensions in the 

liquid-liquid system, we undertook experiments to visualise the condensed assembly of 

Janus particles at an interface or substrate. A simple method in order to accomplish this 

was to observe the arrangement of Janus particles dried onto a solid substrate, enabling 

the visualisation of particles by electron microscopy.   

  

To investigate the assembly behaviour at flat interfaces, dilute aqueous solutions (0.01 

wt%) of amphiphilic Janus particles were convectively assembled on to silicon wafers 

through a controlled drying process. Spherical latex particles are well known to 

spontaneously crystallise into 2-D and 3-D lattices, when appropriately monodisperse, 

usually adopting a hexagonal packing configuration; the most spatially efficient.  
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Figure 2.16 (l) FEG-SEM image of convectively assembled Janus particles of 2:1 
m/p ratio. (r) Fast Fourier Transform analysis of the FEG-SEM image (TSGN-2-1) 

 

All three hydrophilic : hydrophobic Janus particle ratios (1:1 – TSGN-1-1, 2:1 – TSGN-

2-1, 3:1 – TSGN-3-1)  were tested for any difference in packing behaviour, however all 

were observed to adopt similar crystalline packing arrangements, therefore one example 

is discussed here. Imaging of the silicon wafer under dry-SEM conditions revealed that 

the amphiphilic Janus particles adopted a crystalline packing arrangement with many 

crystal grains extending over several microns. Fast Fourier Transform (FFT) of this 

image indicates a clear spot pattern confirming an oblique lattice structure (figure 2.16). 

Many of the crystal grains are oriented in the direction of drying, whereby the 

hydrodynamic capillary force applied to the anisotropic particle aligns it longitudinally. 
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Figure 2.17 Photograph (l) and close up (r) of strata caused by drying effects on 
glass tube substrate during thermally assisted convective assembly of Janus 

particles (TSGN-2-1) 
 

We observed the presence of ‘pinning lines’ on the sample, causing stratification of the 

crystalline arrays as seen in figure 2.17. At the drying pinning lines, the receding edge of 

the droplet in a drying system is halted by the favourable interactions with the surface, 

eventually when the air-water surface tension overcomes this interaction, the receding 

line moves rapidly to relax this force. This results in areas with high to low 

concentrations of solid particulate. Scanning electron microscopy was used to image the 

orientation of particles across these pinning lines. An overview of the particles across 

the pinning line by FEG-SEM is depicted in figure 2.18. A range of packing orders can 

be seen across the image, corresponding to the change in particulate concentration. 

These regions are marked A – D and their natural delineations are marked. The solid 

concentration is lowest at A, and increases to D. The drying direction is seen to proceed 

from right to left i.e. A to D in figure 2.18. The concentration gradient is dependent on 

the distance from the pinning line. Close to the pinning line (i.e. at region A), the droplet 

height is very small, allowing only a monolayer to form, whereas at distances further 

from the pinning line, the droplet height is larger, allowing the particles to orient out of 
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plane (region C) and ultimately form a bilayer (region D). This phenomena  has been 

quantified by Perelaer et al.56
 when observing the respective positions of trimodal sized 

particles at the pinning line. It was found that smaller particles packed closer to the 

pinning line than larger particles which were restricted by droplet height. Higher 

magnification images of these regions were analysed to determine packing arrangements 

as seen in figure 2.19. 

 

Figure 2.18 FEG-SEM image across a pinning line region of convectively assembled 
Janus particles (TSGN-2-1) on a silica substrate. Areas of different packing 

arrangements are indicated and delineated by red lines. The drying direction, i.e. 
direction of receeding droplet is indicated in the bottom left hand corner. 

 

Areas of lower solid concentration as in region A there exists little structural order. The 

fast Fourier transform of this region mirrors this with no defined spot pattern. At region 

B, an oblique lattice is formed with all particles lying down in phase, a clear spot pattern 

is visible on the FFT for this region. As the concentration increases (C), in order to pack 
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the monolayer more efficiently, an out of plane configuration with hexagonal packing is 

formed. Further increasing the concentration causes a bi-layer to form. Particles are 

visible on two levels. This attains little structural order, both in the image and FFT. 

D C B A 

    

    

Figure 2.19 High magnification FEG-SEM images of the areas in fig. 2.18 with 

different packing orders, with associated FFT analysis below each image 

 

As such we can infer that several packing configurations of the particles can occur 

depending on the concentration of the solution. Particles will alter packing 

configurations to mediate the solids concentration with the entropy required for higher 

packing efficiencies, i.e. from amorphous (A), oblique (B), to hexagonal (C), until an 

ordered monolayer is unsustainable, thereby forming an amorphous bilayer (D). This 

analysis correlates to the phase transitions observed during oil/water interfacial tension 

measurements and therefore a change in packing order could be a plausible reason for 

the effect. Results of a similar nature utilising Janus particles an order of magnitude 

larger were reported showing a linear dependence of layer thickness with respect to 
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particle concentration.
57

 In another example, Janus particles possessing a silicate shell
41

 

on the hydrophilic lobe have been demonstrated to manufacture 3-D colloidal crystals 

with remarkable control have under the influence of an external electrical field.
58

  

2.3.6 Foam stabilisation using Janus particles 

 

In order to verify the presence of amphiphilic Janus particles at fluid interfaces, we 

analysed the structure of a foam generated by the incorporation of air into an aqueous 

suspension of Janus particles (TS255D), . Cryogenic scanning electron microscopy was 

used to image water/air foam stabilised solely by amphiphilic Janus particles. Dilute 

aqueous suspensions (1.0 wt%) of Janus particles were handshaken to generate a coarse 

foam, which in turn was rapidly frozen in liquid nitrogen prior to imaging under 

cryogenic conditions. Large spherical and elliptical air bubbles are clearly seen 

throughout the sample as seen in figure 2.20 and 2.21(r) 

 

Figure 2.20 Cryo-SEM images of an aqueous foam stabilised by Janus particles (TS-

255D). (l) a collection of bubbles in close proximity, note the bucking of the bubble 

caused by jamming of particles at the air-water interface. (r) Plateau-Rayleigh 

junction between three bubbles 
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Some bubbles reveal ‘creases’ formed during the freezing process as the air cooled, 

quickly reducing interfacial area. These creases indicate that the interface buckles rather 

than ‘eject’ particles to counter the reduction in interfacial area, giving an insight to the 

large energetic barrier to remove particles.  

 

Higher magnification of the air/liquid interface reveals complete interfacial coverage by 

the particles as seen in figure 2.21(l). It is interesting to note that particles are not 

observed protruding from the bulk ice. The regular small blemishes on the ice surface 

are ice recrystallisation artifacts.  

    

Figure 2.21 Cryo-SEM images of (l) close-up of the air-water interface revealing 

the location of the Janus particles (TS255D). (r) A bubble stabilised by Janus 

particles on both interfaces, enclosing a thin water film 

 

It is not possible to comment upon the orientation of the particles based on this imaging 

technique due to the sublimation process which removes ice from the surface of the 

sample and therefore interferes with the orientation of the particles when ice in the 

interstitial sites is removed. However, we can confirm that the particles preferentially 
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absorb to the interface rather than reside in the bulk solution and require a very large 

force for removal i.e. the droplet would rather buckle than eject particles. 

2.3.7 Ice crystal inhibition of Janus particles 

 

Following from the concept that amphiphilic proteins and macromolecules exhibit ice 

crystal inhibition efficacy, we investigate the use of hydrophilic-hydrophobic Janus 

particles as biomimetic analogues for this purpose, as depicted schematically in figure 

2.22. This is supported by the observed surface activity of the Janus particles and the 

observation of their presence in large concentrations at the air-water interface in a 

cryogenically frozen foam as discussed above. 

Hydrophilic –

Thr Rich

Hydrophobic

Hydrophilic – Thr-rich

Hydrophobic

Amphiphilic Janus 

Particle

Structural 

biomimetic

approach

Hydrophobic

Hydrophilic

Native Antifreeze 

Proteins  

Figure 2.22 Schematic indicating how native antifreeze proteins assemble into 

quaternary amphiphilic structures and our bio-mimetic approach using polymeric 

Janus particles. SEM image from sample TS255D 

 

Initially, a range of Janus particles with varying hydrophilic-hydrophobic ratios were 

fabricated in a similar synthetic procedure as outlined above. Pure aqueous suspensions 

of these particles at known concentrations were analysed for their ability to arrest ice 

crystal growth by means of a splat test assay. FEG-SEM images of these particles 
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alongside their hydrophobic volume and surface area percentage can be seen in figure 

2.23. At this stage, it is more practical to quantify the hydrophilic : hydrophobic ratio in 

terms of percentage. 

 

The splat test assay is a simple method to observe the recrystallisation of ice. A single 

droplet of the aqueous particle suspension is deposited onto a stage cooled to -50 °C 

from a height of 50 cm. The resulting droplet freezes quickly forming a wafer 

approximately 1 cm in diameter and 20 µm thick. Annealing of the wafer occurs at -6 °C 

over a period of 30 minutes, after which the ice crystals were imaged by optical 

microscopy to determine the mean largest grain size (MLGS). 

 

Figure 2.23 A range of Janus particles with varying hydrophilic: hydrophilic lobe 

ratios. (A: TSPS-24, B: TSSW 110, C: TSSW 219, D: TSSW 300, E: TSSW 298, F: TSSW 

291) Numbers below each image represent volume and surface area % of 

hydrophobic parts respectively.  These particles were used in the splat test assay 

Scale bars are 200 nm 
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The results of the splat test assay are presented in figure 2.24. Particles with increasing 

hydrophobic volume % exhibit the best ice crystal growth inhibition compared with 

Janus particles of less hydrophobic content. Additionally, there appears to be a 

maximum efficacy that the particles possess, that despite increasing particle 

concentration, results in a plateau of activity.  

 

Figure 2.24 Results of the splat test assay with mean largest grain size (MLGS) 

plotted as a function of suspension concentration for a range of 

hydrophilic:hydrophobic ratios presented in figure 2.23 

 

A plausible explanation for the increased efficacy at higher hydrophobic ratios is the 

magnitude of induced ice grain front curvature that the particle induces. Increasing the 

curvature of the ice grain front creates a larger exposed surface area and ultimately a 

decrease in freezing point owing to the Gibbs-Thompson effect. However, this is 

speculative until the direct observation of a particle at a growing ice front is studied.   
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When comparing efficacy of ice crystal inhibition of Janus particles compared with that 

of naturally occurring antifreeze proteins. The most active particle; sample ‘F’ with 89 

vol% hydrophobicity completely arrested ice crystal growth at approximately 8 mg/mL 

solids concentration, whereas the hyperactive antifreeze protein from Lolium perenne  

inhibits ice grow at concentrations of 10 µg/mL.
6
 Although the antifreeze protein 

exhibits a greater efficacy at ice crystal inhibition than our Janus particles, important 

factors to consider are the much higher costs associated with the bulk production of 

proteins compared with particles fabricated by emulsion polymerisation. In addition, our 

particles are more robust to extremes of environment conditions including pH and 

temperature which may well denature the anti-freeze protein. 

2.4 Conclusions 
 

We demonstrate a one-pot seeded emulsion polymerisation system to manufacture 

amphiphilic Janus particles on a bulk scale with the ability to tune relative hydrophilic : 

hydrophobic ratios. Despite being able to manufacture Janus particles in a significantly 

shorter timescale than other reported methods, the reaction yield is limited to 20 wt% 

total solids content owing to coagulation. However, the amphiphilic particles possess an 

affinity to adsorb to interfaces, as demonstrated by cryogenic electron microscopy and 

droplet shape analysis. These results indicate that the interfacial tension can be tuned by 

the variation of m/p ratio. The particles were also discovered to assume different 

packing geometries based on suspension concentration, explaining kinetic transitions 

observed in droplet shape analysis. Splat assay testing revealed that amphiphilic Janus 

particles are not as effective at ice crystal inhibition at equivalent concentrations to 
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naturally occurring antifreeze proteins. However, this disparity is offset by the 

significantly reduced manufacturing costs and resistance to extreme conditions that 

Janus particles possess over their protein counterparts. The ice crystal inhibition efficacy 

of the particles shows a dependence on hydrophilic : hydrophobic ratio, with the most 

hydrophobic exhibiting the greatest effect. Therefore, these particles have potential 

‘anti-freeze’ applications in products sensitive to ice crystal growth provided that the 

manufacturing process is optimised to yield a higher solids content. 

2.5 Experimental 
  

2.5.1 Materials 

 

Styrene (ReagentPlus, 99%), Divinylbenzene (mixture of m and p isomers, 80%), 2-

Hydroxyethylmethacrylate (97%), Sodium 4-vinylbenzenesulfonate (90%) Poly 

(ethylene glycol) methacrylate (average Mn 500 gmol
-1

), hexadecane (ReagentPlus, 

99%) all supplied by Sigma Aldrich, UK. Azobisisobutyronitrile (97%, supplied by 

VWR, UK).  Potassium Persulfate, (puriss 99%, Fluka, UK) were used as supplied. 

Monomers were filtered through a basic alumina column to remove inhibitors. 

Deionised water was filtered and purified to 18 MΩcm
-1

. 

2.5.2 Equipment 

Electron microscopy 
 

(Cryogenic) Scanning Electron Microscopy analyses were carried out using a Zeiss 

Supra 55-VP Field Emission Gun Scanning Electron Microscope with a Gatan Alto 

2500 cryo transfer system and a Gatan C1002 liquid nitrogen cold stage.  
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‘Dry’-SEM: Dilute aqueous dispersions of particles were cast on to silicon wafer and 

allowed to dry in ambient conditions. Wafer was adhered to aluminium stub with a 

double sided carbon tab and then carbon coated using carbon evaporator for 4 seconds. 

The prepared sample was imaged at 3 kV under high vacuum conditions. 

‘Cryo’-SEM: Dilute foam suspension was drawn into a brass rivet and cooled in liquid 

nitrogen. Samples were fractured by cold scalpel to reveal clean surface. After, sample 

was heated to −90 °C under high vacuum for 10 minutes to remove contaminant ice 

through sublimation followed by platinum sputter target coating in an argon atmosphere 

(20 seconds, 10 mA). Imaging was undertaken at −120 °C using a 3 kV accelerating 

voltage with a gold anti-contaminator at −189 °C.  

Dynamic light scattering 

 

Malvern instruments Zetasizer ZS, (Malvern, UK). Dilute 1 mL aqueous dispersions of 

particles were dispensed into plastic cuvettes and thermally equilibrated to 25 °C prior 

to the measurement of 3 sets of measurements, each of 10 subruns using a 173° 

backscattering angle. 

Convective assembly 

 

Janus particles as purified by dialysis were dispersed by ultrasound into 18 MΩcm
-1

 

deionised water at 0.01, 0.1 and 1 wt% solids content. Pristine slivers of silicon water 

placed diagonally in open topped vials were submerged with the dilute suspensions and 

placed into a high precision temperature controlled oven at 60 °C and left undisturbed 

until oven humidity returned to ambient. Silicon wafers were removed, carbon coated by 

3 x 2 second cycles of the carbon evaporator before imaging in dry SEM conditions at 3 
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kV. Images were processed in ImageJ
59

 before using open source image analysis 

software Gwyddion
60

 to compute FFT. 

Droplet shape analyser 

 

Using a DSA-100 with peltier controlled temperature stage (Kruss, Germany), dilute 

suspensions of Janus particles were prepared in 18 MΩcm
-1

 deionised water pre 

saturated in hexadecane. A single 10 µL pendant droplet was formed from a 1.83 µm 

diameter flat-top needle in hexane pre saturated with water and thermally stabilised at 

25 °C in a sealed peltier humidity chamber. T0 was set to droplet formation in the 

organic phase. DSA software captured an image once every 5 seconds for 16000 

seconds using axisymmetric profile analysis to compute interfacial tension recorded as a 

function of time based on predefined interfacial tension values for hexadecane/water 

surface free energy being input. 

Splat test assay 

 

An Olympus CX41 microscope equipped with a UIS-2 20x/0.45/∞/0-2/FN22 lens 

(Olympus Ltd., Southend on sea, UK) and a Canon EOS 500D SLR digital camera were 

used to obtain all images.  For cryomicroscopy a nanolitre osmometer (Otago 

Osmometers Ltd, Dunedin, New Zealand) was used to provide a constant annealing 

temperature. Determination of ice crystal inhibition activity was achieved using a 

modified “splat” assay. A 10 μL droplet of the analyte solution in saline solution 

([NaCl] = 0.5 mg.mL
-1

 was expelled at a fixed height of 2 m onto a glass coverslip 

placed upon a pre-cooled (CO2(s)) aluminium plate. This was immediately transferred 

onto the pre-cooled microscope stage (-6 °C) and left to anneal for 30 minutes. 
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Photographs of the wafer were taken at both 0 and 30 minutes through crossed 

polarisers. A large number of the ice crystals (>30) were then measured to find the 

largest grain size dimension along any axis. The average largest value from 3 individual 

photographs was calculated to give the mean largest grain size (MLGS). Reported errors 

are the coefficient of variation (standard deviation/mean) from a minimum of 3 

individual data sets. Values are reported as the MLGS relative to that obtained for PBS 

alone.  

2.5.3 Emulsion polymerisation 

Seed particle synthesis 
 

Deionised water and 4-vinylbenzenesulfonate  was charged to a 250 mL single jacketed 

reactor (Radleys Reactor Duo, overhead mechanical blade type PTFE coated stirrer at 

250 rpm and Julbo heater recirculator) and purged with nitrogen stirring for 45 mins 

prior to the addition of the remaining monomers (see table 2.1). Degassing was 

continued for a further 15 minutes prior to heating to polymerisation temperature (70 or 

80 °C), when thermally stable, potassium persulfate (1 wt % w/r to monomer) dissolved 

in 1 mL degassed deionised water is injected into the system. Polymerisation ensues for  

6 hours. In order to measure kinetics, 2 mL aliquots of the continuous phase were 

extracted from the reactor periodically, cooled on ice and aerated to quench 

polymerisation before analysis by gravimetry and dynamic light scattering. 
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Seed Emulsion Polymerisation Mass 

Water  96 g 

Styrene  3.88 g 

Divinylbenzene  0.04 g 

2-Hydroxyethyl methacrylate 0.05 g 

Sodium styrene sulfonate 0.02 g 

Potassium Persulfate 0.05 g 

Table 2.1 List of chemicals required to render seed particle latex 

Swelling step 

 

After allocated polymerisation time, the seed latex is rapidly cooled to room temperature 

and charged with an AIBN, styrene and divinylbenzene solution according to table 2.2.  

After a further 15 minute nitrogen purge, reactor is sealed, and stirred for 120 minutes at 

25 °C to swell particles. Following the swelling period, reactor is heated to 70 °C for 8 

hours. 

 

Seeded Polymerisation 1:1 2:1 3:1 

Styrene 3.96 g 7.92 g 11.88 g 

AIBN 0.04 g 0.08 g 0.12 g 

Table 2.2 List of chemicals required for seeded emulsion polymerisation with 

different m/p ratios 

 

Reaction kinetics 
 

In both seed particle and seeded emulsion polymerisations, reaction kinetics were 

followed by gravimetry and particle size analysis. In a typical procedure, 2 mL aliquots 
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of continuous phase were extracted from the reaction vessel at fixed time intervals and 

cooled on ice. Conversion was ascertained gravimetrically, alongside evolution of 

particle size by DLS. 
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Chapter 3 

Synthesis of ‘hard-soft’ Janus particles by seeded 

dispersion polymerisation 
 

 

3.1 Abstract 
 

This chapter concerns the synthesis of ‘hard-soft’ bi-phasic Janus particles with distinct 

lobes of ‘soft’ poly(n-butyl acrylate) and ‘hard’ poly(styrene) by a seeded dispersion 

polymerisation of butyl acrylate in the presence of poly(styrene) seed particles. Surface 

nucleation by capture of the oligoradicals onto the surface of the seed particles hereby 

forming a distinct new polymer phase is found to be the formation. The total available 

poly(styrene) seed surface area plays a significant role in the size and number of 

poly(butyl acrylate) lobes grown off a single particle. At particularly low values for the 

surface area, we observe the formation of multi-lobe particles. We show that our 
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synthesis method can be transferred to the sub-micron domain by using seed particles of 

200 nm in diameter.  It is thought our hard-soft Janus particles will have potential 

applications in the field of directional adhesion and wet deposition onto substrates by 

using the ‘soft’ phase as an adhesive patch. 

3.2 Introduction 
 

3.2.1 ‘Hard-soft’ Janus particles 

 

In the previous chapter we demonstrated how seeded emulsion polymerisation was used 

effectively to manufacture amphiphilic Janus particles using a technique pioneered by 

Sheu et al.1,2
  This is one of many examples of anisotropic Janus particles made via 

seeded emulsion polymerisation demonstrating its highly versatile nature. Despite the 

recent focus on amphiphilic Janus particles; there is scope towards the investigation of 

particles with alternative chemical and functional properties.  

 

In particular we are interested in dumbbell shaped Janus particles possessing distinctive 

high and low glass transition temperature lobes respectively, so named ‘hard-soft’ Janus 

particles. Owing to wide differences of material behaviour at each ‘end’ of the particle; 

the ability for one lobe to deform under ambient conditions whilst the other remains a 

robust and solid entity presents an attractive research direction in the field of Janus 

particles. As the soft lobe can deform and coalesce on contact with a substrate, it could be 

seen as an adhesive patch. Therefore, Janus particles of this morphology possess 

directional adhesion whilst leaving the hard phase surface chemistry exposed. This 

improves upon the existing unidirectional adhesion and total surface coverage of hard-
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soft core-shell counterparts. As such, ‘hard-soft’ Janus particles have been investigated in 

the field of wet deposition for hair care applications utilising the soft phase for adhesion 

and hard phase to impart functions beneficial to consumer experience.
3
 In order to 

manufacture particles of this geometry, a seeded emulsion polymerisation system would 

seem an obvious choice. 

3.2.2 Synthesis of hard-soft Janus by seeded emulsion polymerisation 

 

During the 1980’s, several groups reported the anomalous particle morphologies obtained 

when conducting emulsion polymerisations of acrylate monomers in the presence of seed 

particles. In particular, the emulsion polymerisation of styrene in the presence of a butyl 

acrylate seed particles
4–6

 or inversely, the emulsion polymerisation of poly(butyl acrylate) 

in the presence of poly(styrene) seed particles.
7–9

 The homo-polymers of styrene and 

butyl acrylate possess widely varying glass transition temperatures of +105 °C
10

 and -54 

°C
11

 respectively. Therefore composite core-shell latex particles of these polymers, either 

possessing a hard (high Tg) core and soft (low Tg) shell or inversely a soft core and hard 

shell find applications as strengthening agents
12

 and impact modifiers
13

 in films, coatings 

and adhesives. However, instead of the formation of a core-shell morphology, many 

resultant seeded polymerisation particles additionally exhibited anomalous morphology 

in the form of ‘raspberry’, ‘half-moon’
6
 and ‘dumbbell’

5
 shaped morphologies. This 

effect is ascribed to ‘phase separation’ whereby seed particles swollen with the secondary 

monomer phase separate within the particle into distinct polymer and a secondary 

polymer domain upon polymerisation. This arises from the development of 

polymer/polymer incompatibility over the course of the reaction. In order to mediate the 

new interfacial tension formed within the particle, the morphology changes to minimise 
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this energy. The deciding factor between the observed geometries relies on the relative 

surface tensions between the two polymer phases, and the interfacial tension between 

each polymer and the continuous phase.
14

 The surface charge arising from surfactants
6
 

and initiator residues
15

 at surface of the particles also influences these surface energies 

and plays a role in deciding particle morphology. As a result, prediction of particle 

morphology is challenging and highly sensitive to a variety of experimental factors when 

attempting to make structured particles by seeded emulsion polymerisation of 

incompatible polymers.  

 

Using a different approach of seeded emulsion polymerisation: entropic phase separation 

of a secondary compatible ‘soft’ polymer lobe from a crosslinked polymer matrix has 

been attempted using N-isopropylacrylamide (NIPAM) and poly(styrene) seed particles 

by Mock et al.16
 In order to aid the phase separation of NIPAM from poly(styrene), the 

seed particles are swollen with NIPAM and toluene. Upon heating, the toluene and 

NIPAM phase separate and propagates in the extruded droplet. However, high resolution 

scanning electron micrographs of these particles reveal that the p(NIPAM) protrusion is 

not well defined and that much of the p(NIPAM) has encapsulated the seed particle due 

to the soft hydrophilic nature of the p(NIPAM) enveloping the hydrophobic poly(styrene) 

seed over time. 

 

Essentially, seeded emulsion polymerisation is a challenging technique as a route to 

synthesise controlled Janus particle structures and many problems arise from the swelling 

of the seed particles with the secondary monomer.  Additionally, emulsion 
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polymerisations are also limited by size whereby particles exceeding 1 µm in diameter 

are challenging to manufacture, unless successive seeded emulsion polymerisations are 

used, requiring multiple polymerisation steps to form a batch of micron sized particles. 

Often micron-sized structured particles are desired in certain applications. For instance 

functionalised poly(styrene-co-divinylbenzene) particles used in ion exchange
17

 or 

protein recovery chromatographic applications.
18

  

 

Other methods have been proven to manufacture larger micron sized structured particles, 

including the emulsion polymerisation of a seed particle made by dispersion 

polymerisation
19

 and the dynamic swelling method.
20,21

 An effective route towards 

anisotropic polymeric particles is seeded dispersion polymerisation. 

3.2.3 Seeded dispersion polymerisation 

 

Seeded dispersion polymerisation has been used effectively to synthesise particles of 

varying morphology. One of the motivating factors for synthesising Janus particles by 

this method is the lack of swelling of the seed particles. In a dispersion polymerisation 

system, the monomers are completely soluble in the continuous phase and generally do 

not swell the seed particles. This eliminates problems arising from the phase separation 

within seed particles. Additionally, the non-aqueous environment of the continuous phase 

also reduces the influence of charged residues from surfactants, initiators or charged co-

monomers on final particle morphology. Instead, hydrophobicity of the continuous phase 

plays a role on particle geometry: As depicted in figure 3.1(a); Fujibayashi and co 

workers
22

 demonstrate an impressive example of how seeded dispersion polymerisations 

of 2-ethylhexylmethacrylate in the presence of poly(styrene) seed particles and various 
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organic hydrocarbon solvents can yield a variety of particle morphologies at different 

polymer conversions. In figure 3.1(b), Okubo et al.23
 fabricate ‘snowman’ shaped 

particles through the seeded dispersion polymerisation of butyl methacrylate with micron 

sized poly(styrene) seeds. Interestingly particles with a single ‘lobe’ were generated with 

smaller seed particles of 1.28 µm diameter, whereas ‘confetti’ particles possessing 

multiple lobes from single seed particle were found to form when a larger seed particle of 

2.67 µm diameter was used. This difference in morphology was attributed to the 

absorption of multiple radical oligomers onto larger particles. Figure 3.1(c) depicts 

‘raspberry’ textured spherical particles synthesised through a seeded dispersion 

polymerisation of methyl methacrylate with a poly(methyl methacrylate) seed particle 

dispersion reported by Shi et al.24
 In this case, the formation mechanism of the textured 

surface was found to be kinetically controlled. After heating the textured particles in their 

native reaction solvent of methanol, the particles were found to attain a smooth spherical 

surface. Therefore, the textured surface was proposed to have been formed by the capture 

of oligomeric radicals on the particle surface which in turn underwent propagation from 

the adsorption of MMA from the continuous phase. 
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Figure 3.1 (a) seeded dispersion polymerisation of 2-Ethylhexyl methacrylate in 

the presence of poly(styrene) seed particles and various organic solvents.22 (b) 

seeded dispersion polymerisation of BMA in the presence of poly(styrene) seed 

particles.23 (c) Seeded dispersion polymerisation of MMA with p(MMA) seeds.24 (d) 

seeded dispersion polymerisation of BMA in the presence of poly(styrene-co-

styrene sulfonate) and dodecane25 

 

In a further example, Fujibayashi et al.25
 conducted a seeded dispersion polymerisation of 

butyl methacrylate in the presence of a poly(styrene-co-sodium styrene sulfonate) seed 

particles and dodecane droplets. Post polymerisation, the dodecane was evaporated 

leaving dimples in the surface of the micron sized particles as seen in figure 3.1(d) to 

resemble ‘golf balls’. 
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In a non-seeded dispersion polymerisation, the final particle size can be controlled by 

altering the reaction parameters such as monomer and surfactant concentration as well as 

the relative hydrophobicity of the solution phase.
26

 Seeded dispersion polymerisations are 

equally affected by these factors, and can induce changes in morphology. For instance the 

various shapes demonstrated by Fujibayashi et al.22
 in figure 3.1(a) were manufactured 

by altering the hydrophobicity of the solution phase. Alternatively the pore size of the 

‘golf-ball’ particles depicted in figure 3.1(d) is controlled by the concentration of co-

solvent dodecane present during the polymerisation.
25

 Therefore final particle size and 

morphology can be tuned in seeded dispersion techniques.  

3.2.4 Synthesis of hard-soft Janus by seeded dispersion polymerisation 

 

As aforementioned, styrene and butyl acrylate have widely varying glass transition 

temperatures. They have also been proven to successfully polymerise in dispersive 

conditions to render monodisperse particles of micron dimensions.
26,27

 Therefore, both 

monomers are ideal for our purpose. Incorporating these two monomers, one study 

investigates the seeded dispersion polymerisation of butyl acrylate and styrene in the 

presence of poly(butyl acrylate), poly(styrene) and poly(butyl acrylate-co-styrene) seed 

particles, manufacturing particles of varied geometries and compositions.
28

  

 

In one particular example of this work, the seeded dispersion polymerisation of butyl 

acrylate in the presence of a poly(styrene) seed under alcoholic conditions using 

poly(vinyl pyrrolidone) as a protective colloid rendered biphasic micron sized ‘Janus’ 

particles consisting of a singular poly(butyl acrylate) lobe grown off poly(styrene) seed 
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particles, an example of which can be seen in figure 3.2. The surface of poly(styrene) 

seed particles grafted with a layer of steric surfactant provide the locus of nucleation for 

butyl acrylate.  

 

Figure 3.2 Optical micrograph of poly(styrene)/poly(butyl acrylate) Janus particles 

reported by Wang et al.28 

 

This example demonstrates an ideal route to form particles of our desired geometry and 

properties. However, this work was briefly reported, detailing only the observation of 

particle geometry (figure 3.2) and fails to discuss the formation mechanism and effect of 

seed particle concentration on the reaction kinetics and particle morphology. As such, we 

aim to further investigate the mechanism and kinetics of this seeded dispersion 

polymerisation system and intend to develop it to allow tuning of particle and respective 

lobe size. Additionally, we explore an adaptation of this polymerisation system to enable 

the synthesis of sub-micron hard-soft Janus particles. 
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3.3 Results and discussion 
 

3.3.1 Synthesis of micron sized hard-soft Janus particles 

 

The synthetic procedure to fabricate ‘hard-soft’ Janus particles involves a two-step 

reaction. Micron sized poly(styrene) seed particles are made initially through a dispersion 

polymerisation in methanol. After this a seeded dispersion polymerisation of butyl 

acrylate in the presence of these seed particles in a methanol-water medium renders a 

singular lobe of poly(butyl acrylate) on the surface of the poly(styrene) seed particle. 

 

Initially polystyrene seed particles were synthesised via a dispersion polymerisation 

procedure
26

 in methanol to make spherical particles of 2.5 µm average diameter and a 

monodisperse size distribution. A typical procedure involves the batch addition of 

styrene, poly(vinyl pyrrolidone) K90 (PVP, 360,000 gmol
-1

) as protective colloid, 

thermal radical initiator AIBN and methanol as the continuous phase into a sealed, stirred 

reaction flask. The PVP content was fixed at 5.5 wt% w/r to styrene, AIBN 1 wt% w/r to 

styrene and a monomer content of 26 wt% w/r to methanol. The reaction mixture was 

purged with nitrogen before initiation by heating to 70 °C. After conducting the 

polymerisation for 24 hours, the dispersion was cleaned by centrifugation at 7882 g for 

10 minutes and re-dispersed into fresh methanol to remove excess PVP in the continuous 

phase. The remaining solids content, deemed mostly PVP, in the continuous phase after 

polymerisation was found to be 3.21 wt% as determined by gravimetric analysis of the 

first supernatant from centrifugation purification. Final monomer conversions of seed 

particle dispersion polymerisations exceeded 95% as determined by gravimetry before 
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centrifugation. The supernatant after the first sedimentation of seed latex was transparent 

indicating the absence of sub 500 nm diameter secondary nucleated particles given the 

speed and duration of centrifugation. The resulting particles can be seen optically in 

figure 3.3 alongside the laser scattering analysis in methanol revealing a monomodal size 

distribution. 

       

Figure 3.3 (left) optical micrograph of 2.5 µm diameter poly(styrene) seed particles. 
(right) Laser scattering analysis of the seed particles in methanol (TSNP03) 

 

In order to form the secondary ‘soft’ lobe, a seeded dispersion polymerisation was 

undertaken in the presence of micron sized polystyrene seed particles made in the 

procedure outlined above. This was conducted in batch by addition of cleaned seed 

particle dispersion, PVP K90 surfactant, butyl acrylate and AIBN in a 90:10 (w/w) 

methanol-water medium. Methanol is used specifically in this reaction as longer chain 

alcohols are good solvents for poly(butyl acrylate). In these reactions, the PVP content 

was reduced to 2 wt% w/r to butyl acrylate. This was to promote the growth of poly(butyl 

acrylate) particles off the polystyrene seed particles rather than provide sufficient steric 

stabilisation for the growth of poly(butyl acrylate) as separate particles. Butyl acrylate 

concentration was fixed at 10 wt% (w/w) with respect to total liquid content, with 1 wt% 
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AIBN (w/w) with respect to butyl acrylate deployed as thermal initiator. In one example, 

the seed particle mass was equal to the butyl acrylate mass charged to the reaction (i.e. 

both 10 wt% of total reaction components). These particles immediately prior to reaction 

(left), and the resultant particles after the seeded dispersion polymerisation (right) can be 

seen in figure 3.4. In the latter case note the darker sphere represents the poly(styrene) 

seed particle, and the lighter part represents the newly formed poly(butyl acrylate) lobe.  

 

Figure 3.4 Optical micrograph of poly(styrene) seed particles (TSNP03) (left) and 
‘hard-soft’ Janus particles (TS502-seeded) (right). In the right image; the darker 
sphere represents the more dense poly(styrene) seed, whereas the lighter part 

represents the poly(butyl acrylate) lobe. Note also the light patches in the centre of 
the poly(styrene) lobes are an optical arifact. The smaller particles observed in the 

right hand image is p(BA) secondary nucleation 
 

To allow high resolution observation of the hard-soft Janus particles without deformation 

of the soft phase, cryogenic scanning electron microscopy was used to image particles at 

-120 °C as depicted in figure 3.5. The freeze-fracture preparation process for cryo-SEM 

has split a particle down the centre, revealing the inner structure. In both images, the 

larger lobe is the poly(styrene) seed particle with the smaller lobe representing the 

poly(butyl acrylate) phase.  
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Figure 3.5 Cryogenic scanning electron micrographs of hard-soft Janus particles. (l) 
a whole particle, (r) a cross-section through a particle. In both images the larger 

lobe represents the poly(styrene) core particle (TS405-1) 

 

The cross-sectional slice through the Janus particle seen in figure 3.5(r) indicates two 

distinct parts to the particle, seen by the differences in surface roughness across the 

fracture plane. There appears to be a clear delineation between the two phases indicating 

that no swelling and subsequent polymerisation has occurred, ruling out entropic phase 

separation from within the particle. We may therefore attribute the formation mechanism 

of the second pBA lobe to the capture of oligomeric radicals from the solution phase onto 

the particle surface during the initial stage of the seeded dispersion polymerisation, where 

it further propagates to form a lobe. Similar examples of anisotropic particles formed 

dispersive systems have acknowledged this formation mechanism.
23,24

 If this is the case, 

we should expect the number of lobes on a particle to be dependent on the total seed 

surface area available to nucleate from. 
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3.3.2 Seeded dispersion polymerisation of butyl acrylate in the presence of 

polystyrene seed particles at varying concentrations 

 

A series of seeded dispersion polymerisations of butyl acrylate in the presence of a varied 

quantity of seed particles were performed in order to investigate the influence of seed 

particle concentration, i.e. the total seed surface area; on the polymerisation kinetics and 

growth of the poly butyl acrylate lobe from the seed particles. Five polymerisations of 

butyl acrylate (10 wt% w/w) with a range of seed particle concentrations outlined below 

in table 3.1 were conducted in a methanol : water medium (90:10 w/w) using AIBN as 

thermal initiator and PVP-K90 as a protective colloid (1 wt% and 2 wt% w/r to BA 

respectively). One dispersion polymerisation of butyl acrylate was conducted in absence 

of seed particles for comparison. All reactions were conducted ab initio, being degassed 

for 15 minutes prior to heating to 70 °C by submerging in a pre-heated oil bath. Aliquots 

of reaction mixture were extracted at set time intervals, analysed by optical microscopy, 

and gravimetry for polymer conversion. Final monomer conversions of all seeded particle 

dispersion polymerisations exceeded 90% as determined by gravimetry. Less than 0.75 

wt% solids content were found in the continuous phase after gravity separation of 

continuous from particle phase in all seeded dispersion polymerisations. 
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[Mass] of dried Seed particles [Number] of Seed Particles [Surface Area] of seed particles Reference 

0 g/L 0 /L 0 m
2
/L TS502-non 

20.92 g/L 2.17 x 10
12

 /L 46 m
2
/L TS471-3 

27.88 g/L 4.23 x 10
12 

/L 83 m
2
/L TS471-1 

90.50 g/L 9.37 x 10
12 

/L 199 m
2
/L TS502-seeded 

203.66 g/L 2.11 x 10
13 

/L 448 m
2
/L TS471-2 

Table 3.1 Concentrations by mass, number and surface area of the seed particle 

quantities used in the seeded dispersion polymerisations 

 

Polymerisation kinetics 

 

Monomer conversion data (XM) obtained from the gravimetric analysis of the seeded 

dispersion polymerisations (plotted as a function of time in figure 3.6(l) was applied to a 

free radical polymerisation rate equation, taking into account initiator decomposition. The 

rate equation in this case is expressed in equation 1 and plotted in figure 3.6(r).  

 

A first order relationship exists between monomer concentration and polymerisation rate, 

except at the start of the reaction where an induction period can be seen. This is attributed 

to the reaction reaching thermal equilibrium. The rate of polymerisation is relatively 

unaffected by the presence of polystyrene seed at all concentrations of seed particles. 

However, the non-seeded polymerisation is seen to progress at a slightly elevated rate in 

comparison to the seeded polymerisations during the first 150 minutes of the reaction. 

 

                         (1) 
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Figure 3.6 (l) Conversion as a function of time for the seeded dispersion 
polymerisations at various seed particle concentrations – given as seed surface area 

concentration. (r) First order kinetic plot taking into account initiator 
decomposition of the seeded dispersion polymerisations 

 

The elevated polymerisation rate for the non-seeded polymerisation arises from the 

dependence of solution polymerisation kinetics during the early stages of the 

polymerisation on initiator concentration. The seed particles absorb some of the radicals 

causing a temporary depression in polymerisation rate. However, once the reaction 

progresses into the latter heterogeneous phase, i.e. polymerisation ensues within the pBA 

lobes, rate is not influenced by initiator concentration in the continuous phase.
29

 

 

In comparison of our observations with that of previously reported literature, we find that 

our results conflict with that of the kinetics of seeded dispersion polymerisations of 

MMA in the presence of micron sized pMMA seeds.
30

 In the pMMA system, the initial 

polymerisation rate was observed to be higher by a factor of 1.3 compared with an 

identical non-seeded reaction. We attribute this disparity to the fact that a far higher 

monomer/polymer mass ratio (28:1) was employed in the pMMA system (compared to 
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the 4:1 mass ratio used in our highest BA containing reaction), and an overall higher 

starting concentration of monomer in the continuous phase which has been shown to 

increase initial polymerisation rate. Conversely, Perro et al. report that emulsion 

polymerisation rate of styrene in the presence of silica seeds in manufacturing hybrid 

colloidal Janus particles by surface nucleation is not affected by the presence of seed 

particles in accordance with our observations.
31

 

Particle Growth kinetics 

 

Optical micrographs of the seeded dispersion polymerisations were taken at set intervals 

throughout the polymerisation. An example set of optical micrographs imaging the 

growth of a secondary lobe of poly(butyl acrylate) can be seen in figure 3.7. Based on 

these images, quantitative measurements regarding the evolution of lobe volume as the 

reaction progresses were taken to analyse particle growth kinetics. 

 

Figure 3.7 Optical micrographs of particles during a seeded dispersion 
polymerisation of BA in the presence of polystyrene seed particles (199 m2/L) 
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The volume of the growing poly(butyl acrylate) lobe was modelled as a spherical cap, 

whereby the pBA lobe was treated as a hemisphere of a sphere. Taking the height of the 

lobe (h) and radius (a), displayed in figure 3.8, volume can be calculated following 

equation 2 where r is calculated using equation 3 It is worth noting that one assumption 

taken in this measurement is that the area of contact between the poly(styrene) and 

poly(butyl acrylate) lobe is treated as planar rather than a 3-D curved surface.  

 

Figure 3.8 Schematic of the measurements taken to calculate volume of the 
poly(butyl acrylate lobe) (green) growing off a polystyrene seed particle (red)  

 

                           (2) 

                              (3) 

 

Despite the relatively negligible effect that seed particle concentration has on the rate of 

polymerisation, its influence on lobe volume is far more significant. Values of the 

calculated volume for the poly(butyl acrylate) lobes are plotted as a function of monomer 

conversion in each reaction as depicted in figure 3.9.  
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Figure 3.9 Calculated lobe volume based on optical micrographs as a function of 
monomer conversion during seeded dispersion polymerisations with linear (left) 

and logarithmic (right) y-axes respectively 
 

As the monomer concentration in each reaction is equivalent, yet the number of seed 

particles is varied, an increase in lobe volume for lower seed particle concentrations is 

expected. Indeed this general trend is seen in figure 3.9. However the lobe growth profile 

for the polymerisation conducted with 83 m
2
/L seed surface area overlaps with that of the 

polymerisation for 199 m
2
/L seed surface area. It would be expected that the profile for 

83 m
2
/L should exceed that of 199 m

2
/L. In addition, the observed lobe volume of the 

pBA lobes for the lowest seed surface area reactions of 46 and 83 m
2
/L do not reach the 

expected volume based on the mass of monomer at the set seed particle concentration, as 

expressed in equation 4. Where lobe volume (Vlobe) is a product of mass of butyl acrylate 

(MBA), density of poly(butyl acrylate) (ρpBA), divided by the number of seed particles (Np). 

 

 

(4) 
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Optical micrographs of the final particle dispersions reveal why these disparities are 

observed for the reactions at lower seed surface area as seen in figure 3.10. The 

polymerisations containing the highest seed surface area reveal monodisperse 

poly(styrene) seed particles, each possessing one lobe of poly(butyl acrylate). However, 

the lowest seed surface area polymerisations of 46 and 83 m
2
/L indicate the presence of a 

large quantity of secondary nucleation. In addition some poly(styrene) seed particles 

possessing more than one pBA lobe can be seen.  

 

 

Figure 3.10 Optical micrographs of final seed particle dispersions after 24 hours 
polymerisation time for each of the seeded dispersion polymerisations. The seed 

surface area for each reaction is indicated on the micrographs 
 

The growth of the pBA lobes can be calculated as a function of conversion to allow the 

expected lobe volume based on monomer mass charged to the system and seed particle 

concentration (expressed in equation 5) to be compared with experimentally observed 
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values of volume. When pBA lobe volume fraction is measured as a function of 

conversion, a linear dependence can be seen for all reactions as shown in figure 3.11(l). 

Lobe volume fraction is calculated by dividing the observed lobe volume during the 

polymerisation by the final measured lobe size. Fitting the dependence of all reaction 

profiles in figure 3.10(l) yields a linear function which can in turn be used to calculate 

expected lobe volume growth as a function of conversion. 

 

                (5) 

 

 

 

Figure 3.11 (l) Observed lobe volume (expressed as a fraction of final lobe volume) 
as a function of conversion. Red line represents a linear fit of y = mx for all reactions 
whereby m = 1.17. (r) Measured lobe volume fractions normalised against expected 

lobe volume as a function of conversion. Black line represents the theoretical 
fractional growth profile for the reactions based on conversion data 

 

The expected linear volume growth and the observed values for lobe growth are plotted 

in figure 3.11(r). From this it can be seen that seeded dispersion polymerisations not 
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affected by secondary nucleation (199 and 448 m
2
/L seed surface area) show a consistent 

fit with the expected linear volume growth profile. The polymerisations incorporating a 

lower seed surface area deviate significantly from the linear growth curve as a result of 

secondary nucleation. 

 

The presence of secondary nucleation and multiple lobe formation in samples with low 

seed surface area gives an insight into the particle formation mechanism for the seeded 

dispersion polymerisation. All dispersion polymerisations start as a homogeneous 

solution whereby homogenous nucleation occurs in the continuous phase. In our case of 

seeded dispersion polymerisations, as the oligoradicals grow towards a critical threshold 

size, they may be captured by the surface of a seed particle and commence nucleation on 

the surface of the seed particle. In reactions with high concentrations of seed particles, 

there is a large surface area available for capture. However when the available seed 

surface area is too low, capture by a seed particle surface may not occur before the 

oligoradical reaches a critical threshold size and precipitates out into a secondary primary 

particle. In the seeded dispersion polymerisation with the lowest seed surface area (46 

m
2
/L, the volume of secondary nucleated pBA particles has been measured optically and 

plotted alongside lobe volume in figure 3.12. The secondary nucleation is present from 

the early stages of the reaction, i.e. at 10% conversion. 
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Figure 3.12 Linear volume as a function of time (left) Logarithmic volume versus 
conversion (right) for a seeded dispersion polymerisation at 46 m2/L seed surface 

area for both lobe size and size of secondary nucleation 
 

Alternatively, several oligoradicals may be captured by a particle surface and propagate 

separately without coalescing forming particles with multiple soft lobes. Both of these 

phenomena are observed in seeded dispersion polymerisations with a reduced seed 

surface area. This poses a number of questions however. How can several propagating 

pBA particles reside on a single seed particle without coalescing? How will two lobes on 

a particle affect the individual growth of the lobes rather than a single propagating lobe? 

To answer these questions, optical microscopy analyses of particle dispersions with 

multiple lobes were conducted.  

Hard-soft Janus particles with multiple lobes 

 

In order to quantify the prevalence of seed particles possessing multiple lobes, 

populations of particles in each of the seeded dispersion reactions of varying seed surface 

area were counted for particles with multiple lobes, with over 150 particles being counted 

per sample particle dispersion. The results are presented in table 3.2. 
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Seed surface area Particles with multiple lobes in population 

448 m2/L 2.60 % 
199 m2/L 7.04 % 
83 m2/L 7.54 % 
46 m2/L 35.74 % 

Table 3.2 Percentage of particles with multiple pBA lobes for each seeded 

dispersion polymerisation 

 

As expected, the number population of particles with multiple lobes increases as the seed 

surface area available to nucleate from decreases. This observation correlates with results 

reported from the seeded emulsion polymerisation of styrene in the presence of silica 

seed particles, whereby varying the surface area of silica seed in the reaction determines 

the number of poly(styrene) lobes grown off a single seed particle.
31

 In this example the 

total seed surface area in the reaction was varied by altering seed particle size, therefore 

larger seed particles would reliably accommodate more poly(styrene) nodules, allowing 

the controlled nucleation of up to 6 lobes, and in extreme cases; many lobes with the final 

particle resembling a raspberry structure.
31–33

 However, in contrast to these works, our 

system is susceptible to secondary nucleation, therefore preventing controlled nucleation 

of a larger number of pBA lobes at consistent volume.   

 

Multi-lobe Janus particles were seen to adopt a variety of angle separation between the 

pBA lobes as seen in figure 3.10 (46 m
2
/L). To investigate this observation a seed particle 

dispersion with a high quantity of multi-lobe particles (46 m
2
/L) was analysed by 

measuring the angles between the centre of the pBA lobes and the central poly(styrene) 

core. The measurement is depicted in figure 3.13(l). As an example, a particle with lobes 

at either end in a linear geometry would give an angle of 180°. A population of 75 multi-
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lobe particles were analysed in this manner and a histogram of the results can be seen in 

figure 3.13(r).  

 

 

Figure 3.13 (l) Optical micrograph of multi-lobe particles overlaid with the angle 
measured between the centre of the two pBA. (r) Histogram of 75 measured angles 

between the pBA cores (46 m2/L: TS471-3) 
 

Evidently, higher populations of multi-lobe particles are found with an increased angle of 

separation. This population dependence on lobe angle could arise from the coalescence of 

lobes at low angles of separation. Two lobes nucleated 90° apart may well coalesce 

during the reaction as the lobes grow and come into contact. The probability of this 

occurring decreases with increasing angle of separation. Seven days after synthesis, the 

multi-lobed particles were reanalysed by optical microscopy (figure 3.14) and found to 

have shown little difference in morphology or number population (with respect to single 

lobed particles). This would suggest that the poly(butyl acrylate) lobes are somewhat 

grafted to the surface of the poly(styrene) seed particle, otherwise we would expect the 

multi-lobe particles to migrate into a single lobe to minimise unfavourable interfacial 
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energies between the pBA and pSty surface, and equally to minimise the pBA – 

continuous phase interfacial tension. 

 

Figure 3.14 Optical micrograph of multi-lobe particles 7 days after synthesis 
indicating little change in particle morphology (46 m2/L: TS471-3) 

 

When comparing the volume of pBA lobes on Janus particles with single lobes with that 

of multi-lobe particles, it was found that single lobes possessed a greater volume than 

individual lobes on a multi-lobe particle. A quantitative measurement was undertaken to 

investigate this observation (figure 3.15(r)). The volume of pBA lobes on a set of 10 

Janus particles with two lobes were separately measured, added and averaged. This data 

is plotted alongside the average volume of a pBA lobe on a single lobed particle, seen in 

figure 3.15(l). 
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Figure 3.15 (l) Average volume of pBA lobe for a single lobed particle (blue) and the 
averaged volume of each lobe of a seed particle possessing two pBA lobes. The red 

and black each represent the average volume of each lobe on the multi-lobe particle. 
(r) Optical micrographs indicating the volume difference between lobes on single 

and multi-lobe particles (sample 46 m2/L: TS471-3) 
 

Individual pBA lobes on multi-lobe particles were found to vary widely in size. However, 

the combined volume of pBA phases on a multi-lobe particle are approximately 

equivalent to the pBA volume of a single lobed particle. This indicates that each seed 

particle can only grow a limited volume of pBA from the surface, regardless of the 

number of lobes it nucleates. It would be expected that every lobe grows to a consistent 

size at the same rate, as observed for single-lobed particles. The range of pBA lobe sizes 

seen in multi-lobes particle points towards a heterocoagulation formation mechanism, 

whereby a precipitated oligomer is adsorbed onto the surface of the particle.  A plausible 

explanation for the consistent net volume of pBA from multi-lobe particles compared 

with single lobed counterparts could arise from the local concentration of monomers and 

oligoradicals found in the continuous phase in the immediate vicinity of the particles. In 

the close proximity of another growing pBA lobe, a local depression of monomer and 

oligoradicals may be found, as two pBA lobes will possess a significantly higher surface 
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area than a single lobe of the same volume. This could pay a role of inhibiting lobe 

growth by diffusion limitation. 

Involvement of seed particles in the seeded dispersion polymerisation 

 

Finally, in order to verify that the seed particles have little involvement in the seeded 

dispersion polymerisation by way of swelling and polymerisation from within the 

particle, the seed particle diameters for each seed surface area reaction was monitored as 

the polymerisation progressed.  

 

Figure 3.16 Poly(styrene) seed particle diameters measured by optical microscopy 
as a function of polymer conversion for each of the seeded dispersion 

polymerisations at varying seed surface area 
 

As seen in figure 3.16, very little change in seed diameter occurs over the course of the 

polymerisation, regardless of seed particle concentration thereby ruling out swelling and 

subsequent polymerisation within the seed particles. This observation mirrors the cryo-

SEM analysis whereby clear delineation between the pSty and pBA phases could be seen. 
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3.3.3 Synthesis of sub-micron hard-soft Janus particles 

 

The synthesis of micron sized ‘hard-soft’ Janus particles is simple through dispersion 

polymerisation as demonstrated above, however the lower size limit of reliable 

monodisperse dispersion polymerisation is approximately 1 µm. As aforementioned, the 

synthesis of hard-soft Janus particles through seeded emulsion polymerisation has proved 

difficult. We therefore investigate an extension of the seeded dispersion polymerisation to 

synthesise particles of sub-micron dimensions. In order to accomplish this, we require a 

sub-micron seed particle with the same surface properties as the larger micron sized 

system. Du et al. report an emulsion polymerisation procedure to render sub-micron 

poly(styrene) latex particles stabilised by PVP, thereby presenting an ideal route to  

fabricate the seed particles.
34

 

 

A waterborne emulsion polymerisation to render a sub-micron polystyrene latex of 

approximately 200 nm diameter using PVP-K30 (40,000 gmol
-1

) was conducted. Most 

waterborne emulsion polymerisations exploit the use of electrostatic surfactants to control 

colloidal stability and particle size. However, as the resulting particles are redispersed 

into an organic solvent for the secondary polymerisation, PVP was used instead. In a 

typical procedure, styrene, PVP K30 and water were charged to a single jacketed 250 mL 

reactor with the styrene content fixed at 10 wt% total solids content. The amount of steric 

surfactant PVP-K30 added was set at 7.5 wt% w/r to styrene to fabricate a latex of 

approximately 200 nm diameter.
34

 Thermal initiator potassium persulfate was used to 

initiate the reaction at 70 °C for 24 hours.  The seed polymerisation was followed both by 
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gravimetry and dynamic light scattering, as such, the particle growth and polymerisation 

kinetics data can be found plotted in figure 3.17(r). 

 

 

 

Figure 3.17 (l) Size distribution of the sub-micron poly(styrene) seed latex as 
measured by dynamic light scattering. (TSNP108) (r) Conversion and hydrodynamic 

diameter (DLS) as a function of time for the styrene emulsion polymerisation to 
synthesise the sub-micron seed latex 

 

The resulting poly(styrene) latex particles were analysed by both FEG-SEM and by DLS. 

As seen from the micrographs in figure 3.18 and dynamic light scattering data plotted in 

figure 3.17(l); the result is a monodisperse poly(styrene) latex with a 200 nm diameter 

(by number average). The use of PVP-K30 as a steric stabiliser ensures a layer of 

stabiliser on the surface of the particles which acts as a favourable nucleation site for the 

subsequent seeded dispersion polymerisation in the same manner as the larger micron 

sized particles.  
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Figure 3.18 (l) Cryo-SEM image of the submicron poly(styrene) seed particles (r) 

high magnification of the same particles (TSPOsty240) 

 

Prior to the seeded dispersion polymerisations, the waterborne latex was dialysed against 

methanol until dispersed in a pure methanol environment. After which the dispersion is 

cleaned of any remaining PVP by repeated centrifugation cycles in methanol. Owing to 

the size of the particles, suspensions would remain colloidally stable against 

sedimentation for prolonged periods extending over months.  

 

A similar strategy to the seeded dispersion polymerisations involving micron sized 

poly(styrene) particles was applied to nucleate and grow a secondary lobe of pBA from 

the surface of the sub-micron seed particles. The purified poly(styrene) seed particle latex 

was charged to a round bottom flask in a 90% methanol 10% water (w/w) environment 

with butyl acrylate (0.5 wt% w/w) using PVP-K30 (2 wt% w/r to butyl acrylate) as a 

steric stabiliser. Owing to the seed surface area dependence of the polymerisation, the 

seed particle concentration was reduced to match the seed surface area per litre with that 

studied in the micron sized system. This effectively reduced seed solid content from 10 to 

1.05 wt% (w/w). The measured seed surface area after preparation of the experiment was 
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calculated at 246 m
2
/L. Throughout the reaction, aliquots of reaction mixture were 

extracted from the reaction and analysed for conversion gravimetrically, analysed by 

dynamic light scattering and cryogenic scanning electron microscopy, as can be seen in 

figure 3.19. 

 

Figure 3.19 High magnification cryo-SEM images of submicron hard-soft Janus 

particles (TSNP110) 

 

Cryo-SEM images reveal the characteristic dumbbell morphology of Janus particles. Half 

the mass of butyl acrylate was added in comparison to the mass of seed particles for this 

reaction. Clearly, the larger sphere is the poly(styrene) seed with a smaller lobe of 

poly(butyl acrylate) grown from it. 

 

In terms of kinetics; the monomer conversion as a function of time can be seen in figure 

3.20(l) alongside the number averaged hydrodynamic diameter for the resultant Janus 

particles (figure 3.20 (r). The seed particle size distribution has been plotted for 

comparison. 
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Figure 3.20 (l) BA monomer conversion as a function of time for a seeded 
dispersion polymerisation of BA in the presence of submicron poly(styrene) seed 

particles. (TSNP110) (r) Particle size distribution data of the resultant Janus 
particles after seeded dispersion polymerisation (TSNP110) and the poly(styrene) 

seed particles prior to polymerisation (TSNP108) 
 

The conversion-time data for the seeded dispersion polymerisation indicates a similar 

reaction profile to that of the micron sized seeded dispersion polymerisation, reaching 

high conversion over 24 hours of reaction time. Comparison of the particle size 

distributions of the seed particles and final Janus particles (figure 3.20(r)) reveal a minor 

increase in hydrodynamic diameter and slight broadening of polydispersity towards larger 

particles. However, according to this data, no aggregates or coagulation have formed 

resulting from the reaction. A closer analysis of the volume averaged hydrodynamic 

diameter of particles by dynamic light scattering was conducted during the dispersion 

polymerisation with peak values are plotted as a function of conversion in figure 3.21.  
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Figure 3.21 Volume averaged hydrodynamic diameter as a function of conversion 
for Janus particle samples extracted during the seeded dispersion polymerisation of 

TSNP110 
 

An increase in particle size from the initial volume weighted seed diameter of 250 nm 

can be seen during the polymerisation up to a final value of approximately 280 nm in a 

similar manner to the results seen in for the micron sized seeded dispersion 

polymerisations. Due to the limitation of dynamic light scattering to assume spherical 

geometry on anisotropic particles, we cannot quantitatively comment on the increase in 

hydrodynamic diameter as a function of conversion.   

3.4 Conclusions 
 

We demonstrate a reliable method to fabricate ‘hard-soft’ Janus particles by a two-step 

seeded dispersion polymerisation. By various optical and kinetic analyses we find that the 

rate of polymerisation during the seeded dispersion polymerisation of butyl acrylate in 

the presence of poly(styrene) seed particles is unaffected by the concentration of seed 

particles. However, a profound effect on the volume and number of pBA lobes per seed 

particle is observed. A low seed surface area concentration results in the formation of 
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multi-lobed particles and significant secondary nucleation. As a result of this work, the 

optimum parameters for synthesising ‘hard-soft’ Janus particles can be found, without 

undesired effects such as secondary nucleation and multi-lobed particles. Additionally we 

translate the synthetic procedure to allow the formation of sub-micron scale ‘hard-soft’ 

particles verified by cryo-SEM, therefore opening the range of accessible size for these 

particles from nano to micron scale. With a robust synthetic technique to fabricate ‘hard-

soft’ Janus particles we may engage in research to exploit the anisotropic directional 

properties of these particles in fields such as wet deposition and self assembly. 

3.5 Experimental 
 

3.5.1 Materials 

 

Styrene (ReagentPlus, 99%), N-butyl acrylate (>99%), poly(vinyl pyrrolidone) (PVP-

K90, 360,000 gmol
-1 

and K30, 40,000gmol
-1

),  all supplied by Sigma Aldrich, UK. 

Azobisisobutyronitrile (97%), Ethanol (absolute AR), Methanol (AR), all supplied by 

VWR, UK. were used as supplied. Monomers were filtered through a basic alumina 

column to remove inhibitor before use. Deionised water was filtered and purified to 18 

MΩcm
-1

. 

3.5.2 Equipment 

 

Particle sizing measurements of micron sized colloids were undertaken using a 

Mastersizer 2000 (Malvern Instruments, Malvern, UK). Dilute particle suspensions in 

methanol were introduced using the µP dispersion unit. Laser was aligned to optimum 

transmission intensity and a background spectrum collected to eliminate any 
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contaminants presenting in the final data. Dilute suspensions of 1 wt% were introduced 

drop wise by submerged syringe until 5% laser obscuration was reached. A 30 second 

sampling time across the entire measurement range from 2 nm – 2 mm was conducted 

three times before averaging to yield final results. 

Dynamic light scattering measurements were conducted using a Malvern instruments 

Zetasizer ZS, (Malvern, UK). Dilute 1 mL dispersions of particles in methanol were 

dispensed into plastic cuvettes and thermally equilibrated to 25 °C for 2 minutes prior to 

measurement of 3 sets of measurements, each of 10 sub runs using 183° backscattering 

angle. Values for number (%) and volume (%) as a function of hydrodynamic diameter 

were used. 

Particles dispersions were imaged on a Leica DM2500M in bright field transmission 

mode using a Nikon D5100 camera. 

Cryogenic Scanning Electron Microscopy analyses were carried out using a Zeiss Supra 

55-VP Field Emission Gun Scanning Electron Microscope with a Gatan Alto 2500 cryo 

transfer system and a Gatan C1002 Liquid Nitrogen cold stage. Dilute aqueous 

suspensions (1 wt% w/v) of particles were drawn into a brass rivet and cooled in liquid 

nitrogen. Samples were heated to −95 °C under high vacuum for 15 minutes to remove 

contaminant ice through sublimation followed by platinum sputter target coating in an 

argon atmosphere (25 seconds, 10 mA). Imaging was undertaken at −120 °C using a 1.5 

kV accelerating voltage with a gold anti-contaminator at −189 °C. 

All image analysis was conducted using open source software ImageJ (NIH, US).
35

 

3.5.3 Dispersion polymerisation 

Synthesis of micron sized seed particles 
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All components in table 3.3 were charged to a 250 mL round bottom flask prior to 

stirring and nitrogen purge for 40 minutes. After which, the flask was heated to 70 °C for 

24 hours whilst under stirring and slight nitrogen overpressure. Resulting particle 

dispersions were centrifuged and redispersed in methanol three times before analysis by 

optical microscopy and laser scattering (Mastersizer). 

Seeded dispersion polymerisations 

 

Cleaned seed particle dispersions of 11 wt% solids content were charged to a round 

bottom flask alongside all other components in table 3.3, stirred and purged with nitrogen 

for 20 minutes prior to sealing and heating at 70 °C for 24 hours.  

 

Components  2.5 µm Seed Particles 

(TSNP03) 

Seeded dispersion polymerisation 

(TS502-seeded) 

Styrene 25.0 g - 

AIBN 0.25 g 0.1 g 

PVP-K90 1.50 g 0.03 g 

Methanol 70.0 g 17.3g 

n-butyl acrylate - 3.00 g 

water - 5.70 g 

Seed particle suspension - 27.0 g 

Table 3.3 List of chemicals required for poly(styrene) seed particle synthesis 

Kinetic experiments 

 

For kinetic experiments, a varied quantity of 2.5 µm seed particles diameter as verified 

by optical microscopy and laser scattering were charged to a round bottom flask 
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alongside the other reagents in table 3.4. Reaction mixtures were then stirred and purged 

with nitrogen for 20 minutes prior to sealing and heating at 70 °C for 24 hours. During 

the polymerisation aliquots of 2 mL were extracted at set time periods, aerated with 

oxygen and cooled on ice to quench polymerisation before measuring conversion 

gravimetrically and imaging by optical microscopy.  

 

Reagents  Mass Reference 

 

 

2.5 µm pSty seed particles 

0 g  

10 g 

 5 g 

2.5 g  

1.25 g 

TS502-non  

TS471-2 

TS502-seeded 

TS471-1 

TS471-3 

PVP-K90 0.10 g 

Methanol 40.5g 

n-butyl acrylate 5.00g 

Water 4.50 g 

AIBN 0.05 g 

Table 3.4 List of reagents used in the kinetic seeded dispersion polymerisation 

experiments 

Synthesis of submicron hard-soft Janus particles 

 

All components in table 3.5 except potassium persulfate were charged to a 250 mL single 

jacketed glass reactor vessel fitted with a PTFE overhead stirrer with propeller blade 

(Radleys reactor duo). The contents were purged with nitrogen for 45 minutes whilst 

stirring at 180 rpm prior to sealing with slight nitrogen overpressure. Reactor was then 

heated to 70 °C by a recirculation heat bath (Julabo), when thermal equilibrium was 
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attained, potassium persulfate in 5 mL degassed, deionised water was charged to the 

reactor. Polymerisation ensued for 24 hours before cooling to room temperature and 

dialysis against methanol using a cellulose dialysis membrane. Dialysis ensued for 7 

days, changing solvent once per 24 hours. Excess PVP-K30 was removed afterwards by 3 

centrifugation cycles at 7882 g for 60 minutes. The supernatant was disposed, and the 

pellet re-dispersed in methanol. Gravimetry was used to ascertain accurate solids content 

of the purified seed dispersion. 

 

Dispersion Polymerisation Mass  

Deionised Water 200 g 

PVP-K30 1.50 g 

Styrene 20.0 g 

Potassium Persulfate 0.30 g 

Table 3.5 List of chemicals required for submicron poly(styrene) seed particles by 

emulsion polymerisation (TSNP108) 

Seeded dispersion polymerisation in the presence of submicron seed particles 

 

Reagents described in table 3.6 below were charged to a 50 mL round bottom flask fitted 

with magnetic follower and rubber septum. The contents of the flask were purged with 

nitrogen for 20 minutes prior to sealing. Reactions were then heated to 70 °C 

(thermostated oil bath, Heidolf) for 24 hours. During the polymerisation aliquots of 2 mL 

were extracted at set time periods, aerated with oxygen and cooled on ice to quench 

polymerisation before measuring conversion gravimetrically and size analysis by DLS. 
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Seeded dispersion polymerisation Mass 

Methanol 22.5 g 

Water 7.00 g 

Poly(styrene) seed latex (12.27 wt% solid content) 5.00 g 

Butyl Acrylate 0.35 g 

PVP K30/K90 0.013 g 

AIBN 0.05 g 

Table 3.6 List of chemicals required for seeded dispersion polymerisations in the 

presence of sub-micron poly(styrene) seed particles (TSNP110) 
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Chapter 4 

Hierarchical self-assembly of ‘hard-soft’ Janus 

particles into colloidal molecules and larger 

supracolloidal structures 

 

 

4.1 Abstract 
 

We report the self-assembly of ‘hard-soft’ micron-sized Janus particles as synthesised in 

chapter 3 into clusters in aqueous media. The assembly process is induced by the 

desorption of polymeric stabiliser, poly(vinyl pyrrolidone). Upon contact through 

collision and coalescence of the soft polymeric lobes, the newly formed clusters adopt a 

minimised surface area to volume ratio hereby forming distinct microscopic 

supracolloidal analogues of simple molecular valance shell electron pair repulsion 

spacefill structures. The effect of shear force and surfactant concentration on the rate of 
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cluster formation is measured, indicating a strong dependence of increasing flocculation 

rate upon higher applied shear force and reduction of surfactant concentration. To explain 

this behaviour, colloidal stability of our particle suspensions were calculated 

theoretically, comparing the difference of interaction potential between particles with and 

without an adsorbed steric surfactant. Simulations of expected cluster morphology, 

compared with those obtained from visual cryo-SEM analysis support the mechanism of 

assembly driven by surface area minimisation in the case of soft-soft interactions. 

Altering the soft lobe size with respect to the hard lobe indicates a moderate effect on 

number of primary particles per cluster. Additionally, higher order structures of clusters 

containing a number of primary particles exceeding what is possible for a ‘solid’ core 

cluster are observed, indicating the formation of ‘hollow’ structures. As such, we 

investigate the formation of suprastructures using a high number of ‘hard-soft’ Janus 

particles and verify their effective stabilisation of gas bubbles. 

4.2 Introduction 
 

Nature possesses the ability to construct complex functional materials from the most 

basic building blocks, for instance the assembly of molecules from atomic subunits. 

Following this strategy, there is huge potential in fabricating advanced structures utilising 

a ‘bottom-up’ approach. The ability to fabricate materials from a defined set of simple 

components in a scalable bulk system would find many applications in areas such as 

photonics
1,2

 drug delivery, nano/micro scale electronic devices and structured catalysts.
3
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4.2.1 Colloidal molecules 

 

‘Colloidal Molecules’ a term coined by van Blaaderen in 2003
4
 describes the formation 

of supracolloidal structures that resemble the configuration of atoms in molecules both in 

angular arrangement and respective lobe size to that of VSEPR spacefill geometries. 

There has recently been a surge of interest in this area with various fabrication methods 

being reported in the literature which can be divided into three main areas: (1) controlled 

phase separation, (2) controlled surface nucleation, and (3) controlled clustering.  

4.2.2 Colloidal clusters from controlled phase separation  

 

The first area involves the total synthesis of colloidal molecules thereby avoiding an 

‘assembly’ step and is possible through phase separation of a protrusion from a core 

entity. Various inorganic core-shell nanoparticles have been shown to forcefully phase 

separate under applied reaction conditions.
5–7

 This was first reported by Giersig et al.8 

when treating silica coated silver nanoparticles with molecular iodine. In less than 20 

minutes, a singular lobe of silver iodide nucleates on the surface of the nanoparticles.   

However, most phase separation reactions form simple ‘snowman’ or ‘dumbbell’ type 

biphasic particles. The same can be said for the majority of the various polymer phase 

separation routes. Both phase separation by solvent evaporation
9,10

  and seeded 

heterogeneous polymerisations of polymer seed particles (emulsion
11–13

 and dispersion
14

) 

can render ‘colloidal molecules’, most of which present as biphasic particles. These bi-

phasic particles are often referred to as Janus particles and are discussed in the 

introduction.  Although multiple simultaneous protrusions in emulsion
15

 and dispersion
16

 

polymerisations have been reported, these are seldom configurationally controlled and 
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uniform.  Weitz et al.17
 extended the approach of a seeded emulsion polymerisation route  

to render  more complex monodisperse dimers, trimers and tetramers based on multiple 

entropic phase separations,
11

 as seen in figure 4.1a. 

4.2.3 Colloidal clusters from controlled surface nucleation 

 

Controlled surface nucleation and growth presents a route to more complex architectures 

than phase separation, with higher order geometries possible. There are many examples 

of epitaxial growth of hard inorganic systems,
18

 growing up to eight lobes off a singular 

particle.
19

 The controlled nucleation of up to 8 poly(styrene) lobes from silica particles 

has also been documented,
20,21

 as shown in fig 4.1b & c. 

 

 

 

 

Figure 4.1 (a) entropic phase separation to grow dimers, trimers and tetramers.17 

(b) & (c) growth of hybrid poly(styrene)-silica colloidal molecules20,21 

 

4.2.4 Colloidal clusters from controlled clustering 

 

The third area to fabricate colloidal molecules involves the controlled clustering of 

‘building-block’ particles. Directed assembly of spherical particles into ‘colloidal 
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molecules’ was first reported by Manorahan et al.22
 and provides an elegant example of 

how particle confinement in an evaporating droplet can be used to control size and shape 

of colloidal clusters from a monodisperse seed latex (fig. 4.2a). Energy minimisation of 

the prevailing van der Waals attractions between the uncharged spheres resulted in cluster 

geometries analogous to the most efficient packing conformation predicted 

mathematically. This technique was extended to assemble bi-disperse mixtures of 

polystyrene latex and inorganic nanoparticles (figure 4.2b).
23

 The larger microspheres 

assemble initially upon evaporation of the emulsion droplet, with the smaller inorganic 

particles assembling around the larger structure upon the drying of the droplet meniscus 

between the microspheres. Additionally, the geometric confinement of spherical colloids 

on 2-D templates has been reported, with a myriad of cluster morphologies fabricated 

through the use of differing sizes of colloids and template shape (see figure 4.2c).
24,25
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Figure 4.2 (a) Spherical cluster formation by evaporating droplet assembly and 

sinstering22 (b) Evaporating droplet assembly of a binary colloidal system23 (c) 

Geometric confinement of spherical colloids on 2-D circular templates of varying 

size to render clusters from 1 -6 primary particles25 

 

However, there are limitations to using isotropic spherical particles, as these suffer from 

uniform particle-particle interactions, often relying on an external force (such as 

templating) in order to assemble into complex structures. On the other hand, molecular 

building blocks possess the ability to forge specific and directional interactions. A simple 

example of this is hydrogen bonding in water and acetic acid, as depicted in figure 4.3. 

Therefore furnishing colloidal particles with chemical or morphological anisotropy 

provides the specificity and directionality to allow complex assembly. 

(a) (b) 



Chapter 4: Hierarchical self-assembly of ‘hard-soft’ Janus particles 

 

134 

 

 

Figure 4.3 Spacefill models of hydrogen bonding in (left) water and (right) acetic 

acid dimers, illustrating the specificity and directionality of molecular assembly 

 

4.2.5 Anisotropic colloidal assembly 

 

Many techniques of controlling particle assembly through anisotropic elements on 

particles, such as patches or protrusions, have been reported. Kim et al.26
 exploited the 

use of flat hydrophobic domains on otherwise hydrophilic surface treated polystyrene 

particles to direct self assembly of polystyrene beads into dimers and trimers (figure 

4.4a). The exposed hydrophobic face in an aqueous environment gives rise to an 

unfavourable interfacial energy. This interfacial energy provides the driving force for the 

spontaneous site specific assembly of these particles into dimers. The addition of 

isotropic surfactant treated spheres, allows the formation of trimers. 
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Figure 4.4 (a) hydrophilic polystyrene particles with hydrophobic domains 

assemble into dimers and trimers driven by the ability to reduce unfavourable 

interfacial tension arising from the exposed hydrophobic domain.26 (b) ‘Lock and 

Key’ Colloids, using depletion interaction to only allow assembly when the 

magnitude of interaction is strong enough, i.e. when particles fit snugly into the 

recess of a larger dimple..27 (c) Chemically anisotropic spherical Janus particles 

adopt specific geometries when flocculated in salt solutions based on energy 

minimisation of the polarised hemispheres28 

 

In an elegant advancement, Sacanna et al.27 developed particles with dimples that could 

participate in site selective interactions. As seen in figure 4.4b, spheres of a specific size 

interact and assemble within a dimple of a larger particle. This assembly is driven by 

depletion attraction, using polyethylene imine as a depletion flocculant. The quantity of 

flocculant is tuned to only allow interaction when sufficient surface area contact is large 

enough, i.e. only in the lock and key configuration. Therefore, when a range of particles 

(b) 

(a) (c) 
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with varying size are used, only specific assemblies can occur, so named ‘lock and key’ 

colloids.  

 

Chemical rather than morphological anisotropy has also been used to assemble spherical 

Janus particles possessing chemically different hemispheres into clusters.
29

 Hong et al. 

synthesised amphiphilic particles with hydrophilic and respective hydrophobic 

hemispheres. On increasing ionic strength, Janus particles within the suspension are 

observed to cluster, with the cluster size proportional to salt concentrations.
30

 Similarly, 

particles with an anisotropic distribution of surface charge over the two hemispheres,
28

 

with zwitterionic activity allowed assembly driven both by van der Waals attractions, and 

optimisation of the electrostatic interactions with the surface charge of nearby particles 

giving rise to cluster conformations deviating from equivalent clusters of uncharged 

spheres (fig 4.4c). Whilst these examples exhibit excellent high fidelity ‘Janus character’ 

i.e. well defined ‘faces’, the fabrication of these particles is hard to scale up. 
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Figure 4.5 (a) Using complimentary DNA binding to selectively control assembly31 

(b) Janus particles incorporating magnetic ferrofluid in one of the lobes assemble in 

magnetic fields32 (c) entropic phase separation of a monomer protrusion from a 

seed particle is a non-stabilised site for assembly into clusters33 (d) Janus particles 

use  surface roughness anisotropy to direct assembly34 

 

Complimentary DNA binding between particles has also been exploited to incorporate 

selectivity of interaction between particles, thereby paving the way for the assembly of 

more complex structures (fig 4.5a).
31

 

 

Non-spherical biphasic ‘dumbbell’ particles are a convenient route to both chemical and 

geometric directionality. Dumbbell particles with a magnetic ferrofluid lobe assemble 

(a) (b) 

(c) 

(d) 
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into clusters and chains whilst being subjected to a magnetic field (fig. 4.5b).
32

 The 

conformation of which is a competition between magnetic attraction and steric hindrance. 

Anisotropic dumbbell particles featuring a ‘rough’ and ‘smooth’ phase aggregate into 

clusters, whereby only the ‘smooth’ lobes of the particles interact, the ‘hard’ phases 

providing a sterically repulsive force against aggregation (fig 4.5d).
34

 Despite showing 

good control of selective interactions to form regular clusters, most of these techniques 

exploit reversible interactions, whereby application of sufficient shear or a change in 

ionic strength would cause disintegration of the cluster. 

 

Kraft et al.33
 manufacture clusters which are permanently bonded together. Initially a 

multistep entropic phase separation emulsion polymerisation technique to forms a liquid 

monomer protrusion from a crosslinked polystyrene seed. The unstabilised monomer 

protrusions coalesce into ‘colloidal molecules’ whilst under stirring their morphology 

governed by the minimisation of exposed monomer interface. In order to lock the 

conformation, the coalesced monomer core is polymerised. The process is depicted 

schematically in fig. 4.5c. This example can be seen as a combination of phase separation 

and controlled clustering. The initial phase separation renders a simple anisotropic Janus 

particle to provide directionality, which then participates in an assembly step to render 

clusters of controlled geometry. 

 

By taking inspiration from the advantages of methods described above, we investigate a 

different approach towards fabricating colloidal clusters. As the previous examples have 

shown, particle anisotropy provides a source of directionality, leading to specific 
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interactions between particles, and is therefore a desirable quality. However, many of 

these interactions are weak and rely on precise tuning of solution conditions. Whilst Kraft 

and co-workers overcome weak interactions by a post-polymerisation step locking the 

conformation of the cluster into a polymer matrix, we feel that this can be improved upon 

by combining the coalescence and ‘locking’ in one step. 

 

It is our aim to manufacture anisotropic particles which do not require an external 

templating force in order to aggregate into clusters of controlled morphology. Instead, 

aggregation is initiated by a simple stimulus and the conformation of these aggregates is 

locked upon contact without the need for additional reaction steps. 

 

In chapter 3 we discuss the synthesis of micron sized ‘hard-soft’ Janus particles by the 

seeded dispersion polymerisation of butyl acrylate in the presence of polystyrene seed 

particles. The resulting particles are ‘dumbbell’ shaped with lobes of distinct glass 

transition temperature; -54 °C for the poly(n-butyl acrylate) and +105 °C for the 

poly(styrene) lobe. A steric stabiliser, that is PVP, is used to impart colloidal stability to 

these particles whilst in an aqueous dispersed phase. We investigate the aggregation of 

hard-soft Janus particles upon the removal of the steric barrier and the resulting 

morphology. The idea being that the soft components of the Janus particles contact and 

coalesce into clusters of controlled geometry. 
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4.3 Results and discussion 

4.3.1 Dilution as a route to particle flocculation 
 

It is known in dispersion polymerisation, that a steric stabiliser employed to impart 

stability against particle flocculation and coalescence can be chemisorbed (through 

grafting) and physisorbed on to the particle surface.
35,36

 Initially, flocculation 

measurements were carried on hard poly(styrene) microspheres synthesised using a steric 

stabiliser to observe the effect of dilution on colloidal stability in stirred conditions. The 

idea was to investigate whether dilution is a viable method for inducing particle 

flocculation through the assumption that steric stabiliser desorbs upon dilution in aqueous 

media. Polystyrene spheres of 2 µm diameter used in this study were synthesised by 

dispersion polymerisation in ethanol, using poly(vinyl pyrrolidone) (360,000 gmol
-1

, PVP 

K90) as a steric stabiliser, and represent the seed particles used to manufacture hard-soft 

Janus particles.  

 

Time lapse laser scattering measurements of diluted suspensions of purified 2 µm 

diameter microsphere suspensions were conducted in a Mastersizer 2000 with Hydro S 

dispersion unit (Malvern Instruments, UK). This setup provides a closed controlled 

stirred environment allowing periodic measurement of particle size distribution though 

laser scattering. A purified polystyrene microsphere suspension was introduced into the 

flow cell and diluted to 0.4 gL
-1

 prior to ultrasonic treatment for 2 minutes using the 

instrument ultrasonic probe at 100% intensity to disperse any aggregates. Size 

distribution analyses were conducted at 20 minute intervals over 400 minutes whilst the 

flow cell was subjected to stirring at 1750 rpm. In a control measurement following an 
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identical protocol, purified microsphere suspensions were dispersed into an aqueous PVP 

K90 solution, whereby the concentration of PVP matches that of the reaction conditions 

used to synthesise the Janus particles (2 wt% w/r to polymer). The results for these 

analyses can be seen plotted in figure 4.6a for pure water and 4.6b for PVP solution as 

dispersed phase. 

 

Figure 4.6 Collated Time lapse laser diffraction measurements of PS microspheres 
(TS408C) in pure water (left) and aqueous PVP-K90 solution (right). Note the 
smaller secondary peak arises from a small quantity of undispersed aggregate 

present from the start of the measurement 

 

Figure 4.7 Volume fractions of particles (TS408C) measured at 2 µm diameter 
during the laser scattering measurements (figure 4.6) as a function of time for 

particle suspensions in pure water and PVP solution 
 

It is clear to see from the figures that particle suspensions without added polymeric 

stabiliser flocculated over time, whereas microsphere suspensions with stabiliser present 
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in the medium were stable against any long term flocculation, despite the shear 

conditions experienced within the flow cell. Whilst the primary particle peak at 2 µm 

diameter remains constant throughout the measurement period in the presence of 

polymeric stabiliser, the absence of stabiliser results in a gradual shift upwards in 

diameter. Values for volume at 2 µm diameter were plotted as a function of time for both 

the pure water and PVP-K90 solution time lapse measurement, as seen in figure 4.7. This 

represents the relative concentrations of singular microsphere particles, and indicates that 

in the presence of PVP, no decline in singular particle number occurs. However an 

exponential decay of singular particle volume is seen in the absence of PVP.  Kraft et al. 

theorised the increase in cluster size as a function of time in their system which involved 

the coalescence of monomer droplets on the surface of solid particles whilst under the 

influence of stirring.
33

 Additionally, this sample becomes more polydisperse as the 

number of primary particles in a cluster varies.  

 

These results indicate that colloidal stability is lost upon dilution and particles become 

susceptible to aggregation when sheared. This is attributed to the desorption of PVP from 

the particle surface as a result of dilution in water and is supported by the observation that 

dilute particle suspensions in a PVP solution do not aggregate under shear. Moving 

forward in our investigation, we can use the dilution effect to induce flocculation. 

4.3.2 Flocculation kinetics of hard-soft Janus particles 

 

Based on the microsphere flocculation results, the rate of flocculation of hard-soft Janus 

particles by turbidity was investigated. We employed a technique to measure singular 
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Janus particle concentration as a function of time whilst under the influence of a constant 

mixing force. Chapter 3 outlines the full synthetic procedure to synthesise hard-soft Janus 

particles. In this experiment, we used particles of equal lobe size (1:1 pSty:pBA) 2 µm in 

width at the widest point, and 3.5 µm length across the longest axis. Particles were 

purified by repeated gravity sedimentation and redispersion in deionised water to desorb 

PVP from particle surface. Centrifugation is not used in the purification stage as this 

leads to particle fusion on sedimentation. 10 mL of 0.2 gL
-1

 dilute suspensions of Janus 

particles in deionised water were sealed in 15 mL glass vials before fixing to a rotor of 

fixed radius. The vials were then rotated at a fixed speed during which the particles 

coagulated, causing a decrease in turbidity. The experimental setup is depicted 

schematically in appendix B. 

Temporal decrease of turbidity was measured by spectrophotometric absorbance at 540 

nm and back calculated through a calibration curve of known primary particle 

concentration as a function of absorbance (appendix B) to yield a quantitative decrease in 

singular particle concentration. The results of this experiment are plotted in figure 4.8(l).  

 

Figure 4.8 (Left) Primary particle (TS450) concentration as a function of time over 
a range of mixing forces. (Right) Fitting the Smoluchowski orthokinetic flocculation 

equation (Eqn. 1) to the turbidity decay data 
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We can see the rate of flocculation is proportional to shear force, and exhibits an 

exponential decay profile. This data fits a simple derivation of Smulochowski’s 

orthokinetic flocculation well as shown in equation (1) and plotted in figure 4.8(r). The 

decrease in initial particle number  exponentially decays with respect to  (mixing 

force),  (collision efficiency),  (volume fraction of colloids) and  time, whereby 

collision efficiency is the fraction of successful aggregations upon particle collision. In 

our system, the volume fraction of polymer is and collision efficiency is assumed to be 

constant. 

 

 The mixing intensity component (equation 2) is derived from Camp-Stein equation
37

 that 

defines shear force by power dissipation (P) into the system, i.e. rotation speed.   

 

               (1) 

                (2) 

 

In a similar battery of experiments to ascertain the contribution of PVP in the continuous 

phase towards restricting flocculation, we measured turbidity of dilute suspensions of 

particles at fixed rotor speed of 32 rpm, with various concentrations of PVP dispersed 

into the aqueous phase. The results of these measurements are plotted in fig 4.9. 
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Figure 4.9 Primary Particle concentration as a function of time for a range of PVP-
K90 concentrations in the continuous phase, as measured by turbidity (TS449) 

 

Without any added PVP to the solution, the particles flocculated rapidly as expected. 

However, upon the addition of PVP to the suspension, flocculation rate was slowed, until 

at 3x10
-5

 moldm
-3

, flocculation was completely arrested for the duration of the 

experiment. Previous studies have calculated the monolayer adsorption isotherms of PVP 

on to nano-scale poly(styrene) latexes. Kellaway and Nijab
38

 quote the saturation 

adsorption of PVP-K90 on to a polystyrene latex as 30 mg/m
2
. This equates to 4.8x10

-8
 

moldm
-3

 in our system depicted in figure 4.9, which is approximately 3 orders of 

magnitude lower than the concentration of PVP we require in our system to halt 

flocculation. It has been noted that PVP adsorbs to a poly(styrene) surface with loops and 

tails extended out into solution, especially at higher molecular weights (i.e. above 44,000 

gmol
-1

), rather than adsorb in monolayer trains.
35

 Therefore, we can attribute some of the 

disparity between our observed concentration of PVP with that of the theoretical total 

monolayer coverage. Equally, our study focuses on the colloidal stability of micron sized 

particles whilst under a shear force, compared with the literature examples of nano-sized 

poly(styrene) latexes under no shear force. Van der Waals attractions between particles in 
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our case are far stronger than nanoscale particles. Therefore there are higher magnitude 

attractive forces between the particles in our system. Clearly, full monolayer surface 

coverage of PVP-K90 is not sufficient to overcome these attractive forces and therefore 

the PVP dispersed within the aqueous phase plays a role in the stabilisation of the 

particles, plausibly in the form of depletion stabilisation. One could argue that adsorption 

of high molecular weight PVP onto the particle interface occurs over longer timescales 

than the duration of the experiment. However Smith et al. determined that the adsorption 

process of high molecular weight PVP-K90 onto polystyrene spheres occurs rapidly 

within 5 minutes.
35

  An alternative reason may partly be due to the increased viscosity of 

the system as a result of PVP addition which in turn reduces the mixing force  at fixed 

rotation speed and volume (see equation 1).   

4.3.3 Modelling colloidal stability of a sterically stabilised particle dispersion 

 

This reliance of uncharged particles on a steric barrier provided by an external polymer or 

‘protective colloid’ can be quantified theoretically by considering several factors; the van 

der Waals attraction between two spheres, attractive or repulsive electrostatic surface 

charge component and ‘non-DLVO’ steric repulsion from an adsorbed polymer layer. 

Due to the absence of charged components in the system, contribution of the electrostatic 

component is negligible. The van der Waals attractive potential VA is calculated 

according to Hamaker interaction (see equation 3) taking the Hamaker constant (A) for 

polystyrene-polystyrene in water medium as 9.25x10
-21

. a and H represent particle radius 

and surface separation respectively.
39

 The steric repulsion component based on the Flory 

Huggins lattice mixing model accounts only for the osmotic pressure contribution alone, 
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as seen in equation 4. V represents molar volume of solvent, Ø the effective volume 

fraction of polymer, based on experimentally determined polymer surface coverage.
35

 

This value is taken as the three dimensional volume that the PVP occupies at the surface 

and includes the contribution from loops and tails, by taking into account the adsorbed 

layer thickness. χ is the Flory-Huggins interaction parameter for PVP and water (taken as 

0.48), δ is the adsorbed polymer layer thickness, again determined experimentally as 15 

nm.
35,38

 Combination of both the attractive and repulsive components based on the 

parameters of our microsphere suspension yields a net potential as seen in fig. 4.10(left). 

At our given particle radius of 1 µm, the potential is mildly attractive until H = 2δ (30 

nm), where an overwhelming steric repulsion stops flocculation. It is therefore plausible 

that an excess to monolayer coverage of PVP is required to overcome the mildly 

attractive zone. If however, the steric barrier is completely removed, i.e. total desorption 

of the PVP layer in our system, a large attractive potential promotes flocculation as seen 

in fig. 4.10(right). 

 

          (3) 

             (4) 
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Figure 4.10 Energetic interaction potentials of spherical colloids of varying 
diameter over a range of inter-particle separations with (left) and without (right) 

the presence of PVP-K90 steric stabiliser 

4.3.4 Cluster formation of hard-soft particles 

 

Perhaps the most important part of this investigation involves the visualisation of the 

particle clusters after flocculation of the Janus particles. For this we synthesised a batch 

of Janus particles, 0.5:1 pBA/pSty lobe ratio, 2 µm length and 1.5 µm width (across 

respective axis), defined by optical and scanning electron microscopy analysis seen in 

figure 4.11.  

 

Figure 4.11  Optical (left) and Cryogenic Scanning Electron (centre) micrographs of 

0.5:1 pBA:pSty Janus particles (TS405-1), including a freeze-fractured slice through 

two coalesced particles (right) The larger, darker spheres are the pSty seed with the 

smaller, lighter lobes representing the pBA lobe.  Scale bars 2 µm, 1 µm and 500 nm 

respectively 
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In accordance with the other experiments in this chapter, the particles were permitted to 

sediment and the solvent replaced by deionised water three times. The dilute suspensions 

of 0.1 wt% solids were hand shaken for 30 seconds by hand to provide the shear force 

necessary for cluster formation. The cluster suspension was then visualised by optical 

microscopy and cryo-SEM. 

 

Figure 4.12 Optical micrograph of a typical Janus particle suspension (TS502-

seeded) after PVP removal, whereby desorption of the PVP from the particles has 

led to irreversible flocculation 

 

From the micrograph, many cluster geometries can be seen. The cluster morphology is 

governed by the orientation of particles upon collision resulting in four possible 

interaction regimes; hard-hard, hard-soft, soft-soft and simultaneous hard-soft. These 

interactions are depicted schematically in figure 4.13. Note that the angle of collision can 

vary.   
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Figure 4.13. Schematic of possible collision arrangements for two Janus particles. 
Green lobe represents the hard poly(styrene) 

 

Interaction by the first regime whereby a hard lobe of one Janus particle collides with a 

soft lobe of another, results in a wide range of cluster morphology with little control or 

regularity.  Interaction between two hard lobes of Janus particles is reversible as no 

coalescence occurs, and easily broken by the application of shear, i.e. agitation or 

ultrasound. This is demonstrated in the initial flocculation measurements involving hard 

polystyrene spheres, whereby sonication of the suspension breaks apart any flocs. 

Particles can also align side by side, giving rise to simultaneous contact between two 

particles involving four lobes. One particle can approach the other at a varying angle 

range of 180°. However, this interaction is less likely to occur compared to the other 

collision regimes. Finally, the most interesting interaction is between two or more soft 

lobes, especially when visualised under Cryo-SEM and optical microscopy. The left two 

columns of figure 4.14 depict 5 clusters with 1 – 5 primary particles (Np) imaged from a 

single sample of cluster suspension prepared in the manner described above. 
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Figure 4.14 (left) High resolution Cryo-SEM images of clusters Np 1 – 5 coupled 

with the optical micrograph images of clusters in suspension (centre) – (TS405-1) 

Respective graphical surface energy minimisation simulation from Surface Evolver, 

green indicates the ‘hard’ poly(styrene) phase, red indicates the ‘soft’ poly(butyl 

acrylate) phase. (right) Examples of simple molecules with analogous VSEPR 

spacefill geometries 

 

Hydrogen Fluoride 
Linear 
Point group: C∞v  

 

 

 

Carbon Dioxide 
Linear 
Point group: D∞h 

 
 
 

Nitrogen Trifluoride 
Trigonal Planar 
Point group: D3h 

  

 

 

Carbon tetrachloride 
Tetrahedral 
Point group: Td 

 

 

 

Phosphorus Pentafluoride 
Trigonal bipyramidal 
Point group: D3h 
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The most striking aspect of these images is that all of these structures bear a significant 

mesoscale resemblance to valence shell electron pair repulsion (VSEPR) spacefill models 

for simple molecules. As outlined in the introduction to this chapter, the synthesis of 

particles with analogous morphologies and their comparison with molecular systems has 

been reported by several other groups
20–22,29

 and correlate with the mathematically 

derived lowest energy conformations presented by Battye et al.40
 We believe that the 

reduction of interfacial tension for the soft deformable core is the driving force behind 

rearrangement into these regular structures. Upon collisions of soft lobes, often a larger 

surface area of poly(butyl acrylate) will exist than which is favourable. Due to absence of 

surfactant in the system, this surface area will contribute to a significant unfavourable 

interfacial tension. Accordingly, the soft component will deform to expose the minimum 

unfavourable surface area, and therefore form the most efficient geometries as seen in the 

electron microscopy images. 

4.3.5 Surface energy simulations of clusters 
 

To test this theory we conducted surface energy minimisation simulations to model the 

morphology of particle aggregates from 1 - 5 primary particles upon a soft-soft 

interaction. Simulation software ‘Surface evolver’
41

 was used to graphically predict the 

geometry of particle clusters based on the reduction of interfacial tension of the exposed 

surfaces. The simulation was built with a set number of coarse primary Janus particles in 

contact through a central soft domain. The volume of the respective lobes were 

constrained, forcing the system to adopt the most energetically favourable surface energy 

conformation within the set volume.  The wetting of the hard and soft phase is also 

pinned to limit the formation of core shell structures whereby the soft phase envelops the 
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hard phase as this is not observed to occur in the experimental system.  The graphical 

outputs from the simulations can be seen in fig 4.14(centre), presented next to the cryo-

SEM images for the purpose of comparison. The simulation data obtained from the 

surface energy minimisation show a consistent agreement with the morphologies from 

the cryo-SEM images, indicating that surface energy minimisation is indeed the driving 

force behind the controlled geometry we observe experimentally.  

4.3.6 Statistical distribution of primary particles per cluster 

 

We investigated the effect of increasing the soft pBA lobe size in relation to the 

poly(styrene) seed particles to see if lobe size ratio affected the number distribution of 

primary particles found in clusters. A seeded dispersion polymerisation of BA in the 

presence of poly(styrene) seed particles was conducted in an analogous manner as 

described in chapter 3. Seed particles of 2 µm diameter at a solids content of 10 wt% in a 

90:10 methanol: water (w/w) medium were used. At two intervals during the 

polymerisation, aliquots of particles were removed and quenched to stop further 

polymerisation. This provided three samples of hard-soft Janus particles with varying 

soft: hard ratios, derived from the same seed particle dispersion. Each sample was 

analysed for conversion and observed by optical microscope. Based on the optical 

micrographs, accurate lobe volumes were determined, as seen in figure 4.15 alongside 

polymerisation conversion values.  
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26% Conversion 50% Conversion 91% Conversion 

pBA Volume: 1.18 x 10-18 m3 pBA Volume: 2.95 x 10-18 m3 pBA Volume: 4.95 x 10-18 m3 

Seed Particle Volume: 9.31 x 10
-18

 m
3
 

Figure 4.15 Optical micrographs of hard-soft particles (TSNP18) used in cluster 
counting study, with conversion value at time of sample extraction and pBA lobe 

volume. Seed particle volume is included for reference 
 

To remove residual monomers and promote the desorption of PVP to allow cluster 

formation, the particle suspensions were diluted to 0.1 wt% with methanol and allowed to 

sediment by gravity. The supernatant was replaced with a 50:50 methanol : water (v/v) 

media and particles redispersed by gentle swirling. This process was repeated once more 

using deionised water. The three suspensions were then hand shaken for 30 seconds to 

promote cluster formation, and imaged under an optical microscope. A minimum of 100 

clusters containing 2 – 5 primary particles in each sample were counted from several 

images. Population distributions for these clusters are plotted in figure 4.16. The number 

fraction is the number of clusters with x primary particles as a fraction of the total number 

of clusters counted (with 2 - 5 primary particles) in a sample. 

 

 



Chapter 4: Hierarchical self-assembly of ‘hard-soft’ Janus particles 

 

155 

 

 

Figure 4.16 Populations of clusters containing 2-5 primary particles for hard soft 
Janus particles (TSNP08) of three different soft lobe volumes 

 

Clearly in all three samples, clusters containing two primary particles, i.e. dimers, are the 

most prevalent followed by trimers, tetramers and pentamers respectively. This is logical 

as once a dimer is formed there is reduced available soft surface area for further particles 

to adhere to the cluster. This trend continues as the primary particle number per cluster 

increases. Interestingly, the size of the pBA lobe appears to have a small influence on the 

cluster size distribution. Upon increasing the size of the pBA lobe, higher populations of 

clusters with more primary particles are formed relative to other pBA lobe sizes. For 

instance, the smallest lobe size of 1.18 x 10
-18

 m
3
 forms more dimers. The intermediate 

lobe size of 2.95 x 10
-18

 m
3
 forms more trimers, and the largest pBA lobe size of 4.95 x 

10
-19

 m
3
 forms the most tetramers and pentamers respectively. This effect is plausibly due 

to the magnitude of soft pBA surface area available for the primary particles to adhere to. 

As the surface area increases, more primary particles can contribute to the cluster, 

indicating a degree of geometric constraint arising from the hard poly(styrene) seed 

particles.  
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4.3.7 Higher order structures 
 

In addition to clusters containing a small number of primary particles, many aqueous 

cluster suspensions indicated the presence of higher order structures. These structures 

consisted of numerous primary particles surrounding a hollow or solid core as evidenced 

by electron and optical microscopy, forming so called ‘colloidosomes’ as seen in figure 

4.17. Colloidosomes are defined as capsules built from the assembly of smaller colloidal 

particles and often require a sintering/locking step to lock the structure and seal it. This 

led us to believe that a secondary assembly mechanism for our system exists. 

 

Figure 4.17 Dry FEG-SEM images of higher order clusters (using particles TS405-1) 
 

Figure 4.18 shows several examples of colloidosomes obtained from 0.5:1 soft-hard ratio 

suspensions by both optical and cryo scanning electron microscopy. From the SEM 

images it is possible to see that the soft pBA phase of the Janus particles have coalesced, 

effectively embedding the hard poly(styrene) particles in a soft elastic pBA matrix. The 

number of primary Janus particle constituents of the colloidosome exceeds the maximum 

number possible for a cluster possessing a central core and therefore means that Janus 

particles can coalesce in a 2D planar manner over curved surface, such as a bubble to 

form a colloidosome. Theoretically, chemically isotropic Janus particles have been shown 
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to preferentially lie tilted or ‘flat’ at an interface, therefore maximising the displaced 

interfacial area.
42

 This orientation allows the coalescence of the pBA lobes between the 

particles in a planar manner. 

 

 

Figure 4.18 (Top) Optical microscope image of higher order particle clusters. 
(Bottom) Cryo FEG-SEM images of higher order clusters (using particles TS405-1) 

 

4.3.8 Particle stabilised bubbles 

 

To further investigate self assembly at 2D curved interfaces, hollow colloidosomes were 

made through the assembly of ‘hard-soft’ Janus particles at a bubble interface. A dilute 

0.1 wt% aqueous suspension of 0.5:1 pBA/pSty lobe ratio, 2 µm length and 1.5 µm width 

(across respective axis) purified Janus particles was shaken vigorously in a manner which 

aerated the suspension promoting the adsorption of the particles to the air-water interface 
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of bubbles, forming a particle stabilised foam. The foam was diluted into water, allowing 

individual and collections of bubbles to be imaged under an optical microscope. Owing to 

the large z-height of the bubbles, and the use of a high magnification objective, a stack of 

images at varying focal planes were focus stacked using imageJ software to render 

images with a large depth of field at high magnification. A set of individual bubbles 

stabilised by Janus particles can be seen in figure 4.19. 

 
  

Figure 4.19 Z-stacked optical microscopy image of single bubbles stabilised by 

hard-soft Janus particles (TS405-1) 

 

Close inspection of the colloidosome surface reveals several features. Despite incomplete 

coverage of the bubble surface, the particle stabilised bubbles are appear resistant to 

coalescence despite close proximity to other bubbles (as in fig 4.20).  
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Figure 4.20 Z-stacked optical microscopy image of 5 bubbles of various size in close 

proximity stabilised by hard-soft Janus particles (TS405-1) 

 

The densely packed particle domains on the bubbles self assemble into a hexagonal close 

pack configuration, this can be seen in the centre of the bubble in figure 4.21 where large 

areas of particles form tight hexagonal close packed areas.   

 

Figure 4.21 Optical micrograph of a large bubble stabilised by Janus particles 

(TS405-1) with clear hexagonal close pack domains  
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From the scanning electron microscopy analysis of colloidosomes (figs. 4.17 and 

4.18(bottom), and theoretically
42

 it was noted that the hard-soft particles can lie 

horizontally across the interface and coalesce in a 2-D planar manner. In the ideal case of 

complete coverage, this allows the formation of colloidosomes which are hermetically 

sealed by the coalescence of the soft component. This negates the need for a mechanism 

to seal the interstitial areas between particles such as sintering,
43

 required in other 

examples of colloidosome fabrication. The colloidosome suspension was re-imaged 24 

hours after formation. The bubbles are stable for an extended period of time, and have 

attained complete surface coverage as seen in figure 4.22.  

 

Figure 4.22 Z-stacked optical micrographs of Janus particle colloidosomes 24 hours 

after formation (using particles TS405-1) 

 

This is expected behaviour for Pickering stabilised bubbles which allow gas diffusion and 

shrinkage until the particles jam on the surface as a result of decreased interfacial area. At 

this point particle stabilised droplets and bubbles tend to buckle or adopt a non-spherical 

shape, maintaining surface area with decreasing volume, exhibiting solid like interfacial 

behaviour.
44

 However, we note very spherical or only slightly aspherical structures upon 

full coverage. We attribute this behaviour to two effects. Firstly, as the soft component 
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films forms along the interface, it is plausible that the colloidosome becomes 

hermetically sealed, leaving no permeation site and therefore the internal pressure is not 

further reduced by gas diffusion out of the structure. Secondly, the size of the particles 

are large compared to the curvature of the interface, resulting in a robust shell, resistant to 

buckling. 

4.4 Conclusions 
 

The flocculation of hard-soft Janus particles for the purpose of self assembly into 

colloidal clusters was investigated. Initial flocculation kinetics of model ‘hard’ 

polystyrene microspheres then ‘hard-soft’ Janus particles revealed that upon dilution, the 

particles were liable to flocculation, the rate of which proportional to mixing intensity 

and concentration of PVP in the aqueous phase. We therefore concluded that aggregation 

is triggered by desorption of steric stabiliser. Upon visual inspection of the colloidal 

clusters, we found 4 possible interaction regimes whereby particles could contact in a 

hard-hard, hard-soft, simultaneous hard-soft and soft-soft manner. The latter regime 

renders controlled aggregation into clusters of which morphology is governed by the 

deformation of the coalesced soft phase, energetically driven by surface energy 

minimisation. Interfacial energy simulations of analogous particle clusters provide a good 

agreement to the experimentally obtained images. Upon quantitative analysis of cluster 

suspensions, dimers were most commonly formed, with a decreasing trend of number 

population for successively higher numbers of primary particles per cluster. However, 

varying the soft : hard lobe ratio has a small influence on the cluster size. Larger soft 

phase ratios of Janus particles lead to increased populations of larger clusters.  This 

technique to produce clusters is limited by the inability to control the cluster size 
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distribution and the occurrence of hard-soft interactions leading to uncontrolled cluster 

morphology. Additionally, hard-soft Janus particles were observed to coalesce over a 2D 

curved planar air-water interface to form colloidosomes templated around gas bubbles. 

The use of these particles allows the formation of colloidosomes without a further 

sintering or chemical process to seal the interstitial sites and retains the textured 

anisotropic surface typical of a colloidosome. 

4.5. Experimental 
 

4.5.1 Materials 

 

Styrene (ReagentPlus, 99%), N-butyl acrylate (>99%), poly(vinyl pyrrolidone) (PVP-

K90, 360,000 gmol
-1

),  all supplied by Sigma Aldrich, UK. Azobisisobutyronitrile (97%), 

ethanol (absolute AR), methanol (AR), all supplied by VWR, UK. were used as supplied. 

Monomers were filtered through a basic alumina column to remove inhibitor before use. 

Deionised water was filtered and purified to 18 MΩcm
-1

. 

4.5.2 Equipment 

 

Laser diffraction measurements 

 

Bulk particle sizing measurements were undertaken using a Mastersizer 2000 (Malvern 

Instruments, Malvern, UK). Dilute aqueous particle suspensions were introduced using 

the Hydro S dispersion unit. Time lapse measurements of 400 minute duration, sampling 

every 20 minutes were undertaken in a closed system using degassed tap water in 

ambient conditions stirring at 1750 rpm. The laser was aligned to optimum transmission 

intensity and a background spectrum collected to eliminate any contaminants presenting 
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in the final data. Dilute suspensions of 1 wt% were introduced drop wise by submerged 

syringe to ensure no premature flocculation or bubble introduction until 5% laser 

obscuration was reached. A 30 s ultrasonic cycle to remove any bubbles and break apart 

any flocs was run before the measurement ensued. Concentration of particulate was fixed 

at 0.040% (v/v) with respect to total media volume, as determined by Mastersizer 

instrumentation. 

Turbidity measurements 

 

Hard-Soft Janus particles of 1:1 pSty/pBA ratio, 2 µm diameter were synthesised in a 

seeded dispersion polymerisation procedure as outlined in chapter 3, purified, and diluted 

in pure water or PVP-K90 solutions to 0.2 g/L particulate content. 10 mL of these 

suspensions were sealed in a glass vial and mounted into a Model 777 Microarray Oven 

(SciGene, California, USA) before rotating at a set speed under ambienttemperature 

conditions. Periodically, samples from the vials were measured for absorbance at 540 nm 

using a UV/Vis Spectrophotometer. A calibration curve of known primary particle 

concentration was measured to back calculate primary particle concentration from 

absorbance. 

Optical microscopy 

 

Particles were imaged on a Leica DM2500M using a Nikon D5100 camera. Focus 

stacked images were generated using an extended depth of field plugin for imageJ.
45
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Electron microscopy 

 

Cryogenic Scanning Electron Microscopy analyses were carried out using a Zeiss Supra 

55-VP Field Emission Gun Scanning Electron Microscope with a Gatan Alto 2500 cryo 

transfer system and a Gatan C1002 Liquid Nitrogen cold stage. Dilute aqueous 

suspensions of particles were drawn into a brass rivet and cooled in liquid nitrogen. 

Samples were heated to −90 °C under high vacuum for 10 minutes to remove 

contaminant ice through sublimation followed by platinum sputter target coating in an 

argon atmosphere (20 seconds, 10 mA). Imaging was undertaken at −120 °C using a 3 kV 

accelerating voltage with a gold anti-contaminator at −189 °C. Image analysis was 

conducted with ImageJ software (NIH, US) 

Simulations of cluster formations 

 

Surface Evolver (Ken Brakke)
41

 was used to graphically depict the lowest surface energy 

morphology of volume constrained Janus particle clusters of 1 < n > 5. Simulations were 

built on coarse Janus particles consisting of two separate domains. At the start of the 

simulation, the particles were in contact by a central domain. Depending on the number 

of primary particles and desired hard : soft lobe ratio, the separate lobes and central soft 

domain volume ratio was constrained to the desired parameter. The simulation was then 

iterated, refined and further iterated until the difference in interfacial energy between the 

last two iterations was negligible.  
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4.5.3 Cluster Synthesis 

Hard-soft Janus particle synthesis  

 

Poly(styrene) microsphere suspensions and hard-soft Janus particles were synthesised as 

described in chapter 3, part 3.5.2 (Dispersion Polymerisation) to generate hard-soft Janus 

particles of 0.5:1 and 1:1 pBA: pSty volume ratios. 

Cluster formation 

 

Alcoholic suspensions of Hard-Soft particles were sedimented by gravity before 

replacement of an equal volume of supernatant with deionised water. Settled particles 

were re-suspended in fresh media by gentle swirling. This process was repeated twice 

more before dilution to 0.1 wt% (w/w) solids content in deionised water. After which 

agitation by handshaking for 30 seconds was used to generate clusters. 

Cluster counting measurements 

 

A seeded dispersion polymerisation of BA in the presence of pSty seed particles was 

conducted in an analogous manner to that described in chapter 3, part 3.5.2 (Dispersion 

Polymerisation). During the polymerisation, 8 mL aliquots of reaction mixture were 

withdrawn from the reaction flask at 95 and 191 minutes into the seeded dispersion 

polymerisation and cooled on ice to quench polymerisation. The remainder of the 

reaction was heated for a total of 1425 minutes. All three samples were analysed by 

gravimetry and optical microscopy before diluting to 0.1 wt% (w/w) solids content with 

methanol before allowing suspensions to sediment by gravity. The supernatant was then 

replaced with an equivalent volume of 50:50 methanol: water (v/v) before gently swirling 
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to redisperse particles. This process was repeated once more using fresh water instead. To 

induce cluster formation, each suspension was hand shaken for 30 seconds and imaged 

under an optical microscope. Populations of clusters containing 2-5 primary particles 

were counted using ImageJ software, recording over 100 clusters for each sample over 3 

micrographs per sample. 

Particle stabilised foams 

 

10 mL of an aqueous suspension of purified hard-soft particles at 0.1 wt% (w/w) was 

hand shaken in a 15 mL vial in the presence of air as to thoroughly aerate the suspension. 

The remaining foam layer was carefully re suspended in fresh deionised water prior to 

imaging. 
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Chapter 5 

Water-in-oil Pickering stabilised emulsions for 

confectionery formulations* 

 

 

5.1 Abstract 
 

The over consumption of junk foods such as chocolate in today’s society is a growing 

problem. Therefore we investigate the replacement of up to 50 wt% of the fat content in 

chocolate formulations using water or fruit juice to reduce the calorie content of 

chocolate, whilst retaining its desirable eating qualities. We utilise a synergistic 

polyelectrolyte and Pickering stabilisation strategy incorporating the natural biopolymer 

chitosan and fumed silica particles to generate water in oil emulsions stable against  

* 
Parts of this chapter have been published elsewhere: Thomas S. Skelhon, 

Nadia Grossiord, Adam R. Morgan and Stefan A. F. Bon, Quiescent water-in-

oil Pickering emulsions as a route toward healthier fruit juice infused chocolate 

confectionary. J. Mater. Chem., 2012, 22, 19289-95 
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coalescence. The non-adsorbed silica is shown to form a colloidal gel in the oil phase 

providing the system with a yield stress, hereby giving it a gel-like and thus quiescent 

behaviour. The emulsions are stable throughout the processing conditions required for 

chocolate manufacture and we ultimately demonstrate formulations possessing the same 

desired cocoa butter crystal structure for milk, dark and white chocolate as well as cocoa 

butter, as determined by DSC. As a result, the formulations are resistant to sugar or fat 

bloom. 

5.2 Introduction 
 

Cocoa butter on the one hand is the component in chocolate confectionery which allows 

for the sensational melt-in-the-mouth experience upon consumption, and plays a crucial 

role in the texture of chocolate.
1
 On the other hand, cocoa butter (see figure 5.1) which 

predominantly consists of a mixture of triglyceride fats (the main fatty acids being 

palmitic acid, oleic acid, and stearic acid)
2
 is an issue in today's attitude towards a healthy 

and balanced diet. In the UK, between 1993 and 2011, the adult population who are 

overweight and obese has risen from 58% to 65% in males and  49% to 58% in women.
3
 

A contributory factor towards this increase is the overconsumption of ‘junk foods’, with 

high quantities of fat, sugar and salt with little beneficial nutritional value. Chocolate falls 

into this category. 
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Figure 5.1 Structural formula of the main component of cocoa butter: triglyceride 

fat derived from palmitic (red), stearic (green) and oleic (blue) acids 

 

Replacing a considerable relative volume of cocoa butter and other fats, such as milk and 

vegetable fats (mixtures of saturated and unsaturated triglycerides) from a confectionery 

formulation with a less calorie-rich alternative, therefore, is a high priority for chocolate 

manufacturers. A practiced method is to introduce air bubbles into the 

chocolate,
4
 effectively lowering the bulk density of the candy, with commercialised 

products such as Aero or Bros (Nestlé), and Wispa (Cadburys/Kraft). The average bubble 

size is large in these aerated chocolate bars, thus from a tribological viewpoint these 

products are experienced by the consumer as porous, and therefore are marketed for their 

aerated texture.  Lowering the average bubble size below the ‘mouth-feel’ threshold 

diameter results in the perception of a homogeneous and thus smooth chocolate product 

experience. The threshold size depends on the hardness and shape irregularity of the 

particulate matter, and is determined by human perception tests.
5
 According to chocolate 

confectionery literature, the minimum particle size discernible is quoted as 30 µm 

diameter,
6
 and if all particles reside below this value, the texture is considered to be of 

optimum smoothness.
7
 However, the dispersion of sub 30 µm diameter bubbles into 

chocolate formulations is not feasible from a manufacturing perspective as Ostwald 

ripening leading to bubble coarsening in the molten chocolate state occurs on timescales 



Chapter 5: Water-in-oil Pickering stabilised emulsions for confectionery formulations 

 

173 

 

of minutes.
8
 Although Ostwald ripening in bubbles can be arrested by a Pickering 

stabilisation strategy,
9
 a “lightweight” chocolate bar may well be received in a 

dissatisfactory manner by the consumer.  We therefore turned our attention towards 

dispersing liquids into chocolate formulations. 

5.2.1 Fat reduction through emulsification 

 

One strategy to reduce fat content is to replace part of the fat matrix with water droplets 

through emulsification. Water-in-oil emulsions allow the replacement of up to 80% by 

volume of the fat content without a discernible difference in ‘fattiness texture’ arising 

from the enrobed nature of the emulsion droplets. Water-in-oil emulsions containing up 

to 80% water exhibit a tribological response similar to pure oil. However, above this 

value gives unacceptable performance characteristics, as determined by ball and plate 

tribometer.
10

 Well known examples of oil-in-water emulsions exist in the format of 

reduced fat margarine and mayonnaise, whereby matching the emulsion droplet size to 

the microstructure of the full fat product emulates a similar tribological experience. 

 

As such, we aim to encapsulate water within the chocolate formulation and 

compartmentalise the water into droplets of which the droplet size distribution falls below 

the average 30 μm threshold value. Norton and co-workers prepared cocoa butter water-

in-oil emulsions showing that up to 20 wt% of water droplets between 1-5 µm diameter 

could be embedded into the required polymorphic form for good eating qualities. 

Emulsions were created using both a high shear mixer and a thermally controlled 

laboratory scale margarine line, employing polyglycerol polyricinoleate (PGPR) and soy 

lecithin as emulsifying agents.
11

 Our approach is to fabricate “stable” water-in-oil 
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emulsions, that is, fruit juice dispersed in molten chocolate with the aim to replace a 

significant quantity of the fat content in chocolate, comprising of cocoa butter and milk 

fats. By “stable” we mean not only that (1) coarsening and coalescence of individual 

droplets is restrained (ideally fully), but also that (2) settling of the droplets by gravity as 

a result of the higher density of aqueous dispersed phase is arrested effectively leading to 

a quiescent emulsion system.
12

 The latter can warrant a homogeneous dispersion of the 

emulsion droplets throughout a molten chocolate matrix. Pickering stabilisation provides 

a viable route to fabricate emulsions that are not susceptible to coarsening and 

coalescence. 

5.2.2 Pickering stabilisation 

 

Pickering stabilisation was first observed by Ramsden
13

 and Pickering
14

 individually at 

the turn of the 20
th

 century noting that stable oil in water emulsions could be generated by 

use of an inorganic particulate as a stabiliser. Finkle et al.
15

 developed an initial theory 

describing how the solid stabiliser is partially wetted by both phases. In 1954, Wiley 

reported how freshly made emulsions incorporating a solid particulate could only 

partially coalesce to form a stable dispersion of oil in water droplets when 100% 

coverage of the droplets by solid particulate had been achieved.
16

  However it was not 

until 1980 when Pieranski developed a comprehensive 2-D model of how a polystyrene 

sphere of radius r, vertically displaced z distance from its centre trapped at an air-water 

interface reduces overall interfacial energy
17

 as depicted schematically in figure 5.2. 
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Figure 5.2 A schematic representation of a solid particle with radius r, vertically 

displaced z from the centre, trapped at the interface between phase 1 and 2. σS1, σS2 

and σ12 represent the surface tension between the solid and phase 1, solid and 

phase 2 and the surface tension between the two phases respectively. Θ represents 

the three phase contact angle 

 

                 

(1) 

                 (2) 

               (3) 

              (4) 

                (5) 

 

Based on this model, the total energy is derived from the summation of the three surface 

tension components; the interfacial energy between the solid and phase 1 (equation 2), 

the solid and phase 2 (equation 3), and the loss of surface area between phase 1 and phase 

2 arising from the presence of the particle (equation 4). The z displacement of the particle 
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between the two phases is accounted for by (equation 5). If the total interfacial energy is 

reduced by the presence of the solid particulate, i.e.  the particle is 

irreversibly bound into a deep energy well. 

When the total energy is scaled with using (equation 6), a quadratic 

expression can be found (equation 7) where  and . 

 

                           (6) 

             (7) 

 

By plotting this expression, as depicted schematically in figure 5.3, it is possible to see a 

parabolic energy profile as a function of particle displacement from the interface, with an 

energy minimum at a particular z value. and  

represent the energy required to displace the particle from the interfacial minimum to 

phase 1 or phase 2 respectively. In the example given, the particle wettability slightly 

favours phase 1, hence the bias in z position and escape energy. In real terms, this energy 

can be in the magnitude of thousands of kBT, effectively irreversibly binding the particle 

to the interface, unlike many molecular surfactants which can undergo spontaneous 

adsorption and desorption. As such Ostwald ripening,
18

 or coarsening of droplets, can be 

retarded or even fully arrested in a Pickering system owing to the resistance to buckling 

upon a droplet shrinking arising from the inability for particle desorption.
19
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Figure 5.3 A potential energy profile of a particle as a function of Z position from 

particle centre. Emin represents the energy minimum at particle position Zmin the 

most thermodynamically favoured position. E1 and E2 denote the energy required 

for particle escape into phase 1 and phase 2 respectively 

 

It is worth noting that this model is restricted to the gravity free regime i.e. one assumes 

to operate components of the system below the relative capillary length, the threshold 

below which interfacial forces dominate and the effect of gravity is negligible, as shown 

in equation 8. Where capillary length , is determined as a function of surface tension γ, 

medium viscosity ρ and gravitational force g. 

 

                            (8) 

 

Moreover the model fails to include two factors. Firstly line tension, the 1-D line at the 

three phase points of contact where the particle meets both phases, an energy contribution 

exists denoted as τL (with L in this case being a circumference). Aveyard and Chiot
20
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corrected the equation of Pieranski with this term. However, when the particle is a 

smooth spherical object one can often ignore the contribution to line tension of “larger” 

particles (approx. r > 10 nm), as its contribution scales with r, whereas the interfacial 

tension components scale with r2
. Secondly, a small activation energy may be required 

for the particle to actually breach the interface. Upon approaching the soft interface 

deformation and draining of the liquid phase in which the particle is dispersed is required, 

followed by dewetting so that the particle can sit at the interface.  Theoretical work has 

demonstrated that even with the incorporation of line tension, there are discrepancies 

between theoretical and observed systems owing to the dynamic nature of a fluid-fluid 

interface. Despite the two phases being sharply defined, the interface is subject to 

perturbations which induce capillary waves. On approach to an interface, a particle can 

be ‘pulled’ to the interface if the capillary wave amplitude and frequency allow a 

transient reduction of distance between the particle and interface.
21

 Although this has the 

effect of widening the potential energy well, the effect is only significant if the wave 

amplitude is of comparable length scale to the particle dimensions. For larger particles, 

this effect is negligible.   

 

In recent years Pickering stabilisation has been exploited in a variety of colloidal systems 

such as emulsions,
22,23

 foams,
24,25

  High Internal Phase emulsions (HIPEs),
26,27

 and for 

use as solid stabilisers, hereby replacing molecular surfactants, in emulsion 

polymerisation.
28

 Furthermore, calcium carbonate particles with high aspect ratios have 

been shown to produce ‘superstable’
29

 and thermally responsive Pickering stabilised 

‘smart’ foams.
30

 Owing to the highly effective stabilising nature and versatility of 
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Pickering Stabilisation, we investigate the use of nanoparticle silicates as solid surfactants 

in creating robust water droplet dispersions in chocolate formulations. 

5.2.3 Chitosan interfacial reinforcement  

 

The mechanical robustness of Pickering stabilised emulsion droplets, sometimes referred 

to as armoured capsules or colloidosomes, can be further enhanced through scaffolding 

using a variety of methods
31

 amongst which includes the (physi)sorption of 

macromolecules. 

Velev first demonstrated the use of poly(L-lysine) as a ‘sensitiser’, adsorbing on to  

poly(styrene) microspheres. By adsorbing a cationic polyelectrolyte, the negative 

sulphate charge of the particles is mitigated, making adsorption on to a W/O interface 

more favourable. This allowed the formation of structured particle stabilised octanol 

droplets.
32

 By adapting the technique, Weitz and co-workers showed how the Pickering 

stabiliser and polyelectrolyte ‘sensitiser’ could be dispersed in separate phases whilst still 

providing a synergistic effect. They fabricated reinforced supracolloidal structures 

through emulsifying a poly(L-lysine) aqueous solution into an organic dispersion of 

carboxylic acid functionalised polystyrene beads in toluene.
33

 

 

 

Figure 5.4 Structural formula of Chitosan. Note the primary amine which provides 
cationic charge in acidic conditions 
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Analogous to this we employed chitosan, a chitin derivative, as our macromolecule of 

choice. Chitin is the most abundant natural biopolymer on earth after cellulose and is 

synthesised in an enormous number of living organisms, serving many functions where 

strength and reinforcement are required, the exoskeletons of sea animals for instance. The 

seafood processing industry produces several million metric tonnes of shell-fish 

processing by-product wastes annually. In terms of management and commercialisation 

of this abundant type of “waste”, production of value-added products such as chitin and 

chitosan are of utmost interest. Chitosan is a linear polysaccharide composed of (1 → 4)-

linked 2-acetamido-2-deoxy-βD-glucopyranose (D-glucosamine) and 2-amino-2-deoxy-

βD-glucopyranose (N-acetylglucosamine), and is manufactured by the partial 

deacetylation of chitin (polymeric N-acetylglucosamine). Chitosan salts are soluble in 

neutral and acidic aqueous solutions, the solubility being closely related to the degree of 

acetylation and the aqueous phase pH. It is a remarkable biopolymer with a broad range 

of potential applications in agriculture, food processing, cosmetics, pharmaceuticals and 

biotechnologies.
34,35

 Some applications of this biodegradable, biocompatible and non-

toxic polymer are its use as a fining agent for clarification and de-acidification of fruit 

juices, antimicrobial, chelating agent that selectively binds trace metals, food additive 

and/or quality enhancer owing to its hypocholesterolemic effect as well as 

pharmaceutical excipients.
36

 However, most importantly, it has been reported as an 

effective emulsifier in food and non-food emulsions.
37,38

 For this reason we investigate 

the use of chitosan as a sole surfactant and in conjunction with Pickering stabilisation in 

the role of promoting interfacial adsorption of particles to the droplet interface. 
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5.3. Results and discussion 
 

Firstly, we will discuss our results on the preparation and characterisation of water-in-

sunflower oil emulsions using chitosan, fumed silica, and a combination of both as 

stabiliser, after which cocoa butter model systems using water and fruit juices are 

discussed. To finish, our results on real chocolate systems, that is white, milk, and dark 

chocolate formulations are discussed. 

5.3.1. Water-in-sunflower oil emulsions 

 

We chose sunflower oil as it is a liquid at room temperature eliminating any effect of 

phase changing behaviour.  

Chitosan as sole stabiliser 

 

The first series of emulsions were prepared using chitosan as the sole stabiliser. In these 

systems, the stabilisation is both steric (due to the polymeric nature of the molecule) and 

electrostatic (due to the positive charges of the primary 2-amino group of its deacetylated 

units, which can become protonated). According to Del Blanco et al.,39
 the deacetylation 

degree of chitosan fall within 81–88% for optimum emulsification properties. 1 wt% of 

chitosan was dissolved in water in presence of an excess of acetic acid.
40,41

 The pH of the 

resulting solution was equal to 3.2. This aqueous solution was then mixed with sunflower 

oil in a 1:1 ratio and subsequently emulsified using low shear (for example by hand 

shaking for 30 s). Very low volume W/O emulsions (this means considerable fractions of 

separate pure water and oil phases) with a broad droplet size polydispersity were 

obtained. Upon storage, these emulsions ripened and destabilised within several days, 
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hereby fusing droplets through coalescence.
42

 This can be explained by the fact that 

molecular surfactants in general have a relatively low energy of attachment at the droplet 

interface.
19

 More specifically, chitosan has been reported to only be a moderately 

efficient emulsifier, certainly due to its stiff polysaccharide nature.
38,39

 

Silica as sole stabiliser 

 

The second series of water-in-sunflower oil emulsions were prepared employing fumed 

silica particles of various hydrophobicities as Pickering stabilisers. Three commercial 

grades of fumed silica supplied by Wacker Chemie were used. Hydrophilic silica (HDK 

N20), prepared by flame hydrolysis, has a BET surface area between 175 – 225 m
2
/g and 

contains 2 Si-OH groups/nm
2
. Intermediate hydrophobic silica (HDK H20), of surface 

area between 170-230 m
2
/g, is prepared by reacting hydrophilic silica (HDK N20) with 

dichlorodimethylsilane (DCDMS) in the presence of water giving a surface density of 

silanol groups of around 1 /nm
2
, i.e., half of the surface contains silanol (Si−OH) groups 

and half contains Si−O−Si(CH3)2 groups. Hydrophobic silica (HDK H18), BET surface 

area of 170-230 nm
2
/g is prepared analogous to HDK H20, with an increased quantity of 

DCDMS to render 25% silanol (0.5 /nm
2
) and 75% dimethylsilane (1.5 /nm

2
) surface 

groups.
43

 The morphologies of the fumed silica particles were investigated by FEG-SEM, 

as seen in figure 5.5. The primary particles of fumed silica are approximately spherical, 

“pop-corn”-shaped particles, and possess diameters ranging from 5 nm to 30 nm. Owing 

to the production process (flame hydrolysis), these primary particles form larger 

agglomerates in the range of a 100–1000 nm.
44
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Figure 5.5 FEG-SEM micrographs of HDK-H20 fumed silica particles. Note the 

aggregation of primary particles into large clusters 

 

W/O emulsions were obtained when HDK H18 and HDK H20 were dispersed into the oil 

phase prior to the addition of the water phase and subsequent emulsification. Typically, a 

1:1 volume ratio mixture of deionised water and sunflower oil was emulsified at low 

shear (by hand shaking for 30 s) at room temperature, with various silica particle 

loadings. The amount of particles was varied being 0.6, 1.2, 2.0, 2.6 and 5.3 wt% with 

respect to the oil phase. Note that when HDK H20 particles were added to the water 

phase instead prior to emulsification, O/W emulsions were obtained. It has indeed been 

reported many times that the phase in which silica particles of intermediate 

hydrophobicity, such as HDK H20 silica particles, are dispersed first becomes the 

continuous phase of the emulsion prepared using them, in accordance to  the ‘Bancroft’ 

rule.
45–48

 Otherwise, the continuous phase of the emulsion is the one which shows the 

highest affinity/wettability for the particles, i.e. the oil phase (resp. water phase) for 

hydrophobic HDK H18 (resp. hydrophilic HDK N20) grades of silica nanoparticles.
49

 

Limited coalescence was observed upon storage by the appearance of larger droplets for 
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the emulsions prepared with either the hydrophilic (HDK N20) or the hydrophobic fumed 

silica (HDK H18). The most probable cause is a weaker adsorption of the silica particles 

at the oil–water interface (a relatively shallow energy well). On the contrary, the W/O 

emulsions prepared with the HDK H20 silica particles, which possess an intermediate 

wettability, were stable to coalescence, which is in agreement with the results obtained by 

Binks and coworkers.
48

 We therefore decided to select the HDK H20 as our Pickering 

stabiliser of choice in our further studies. 

 

Water and sunflower oil emulsions containing a range of loadings: 0.6, 1.3, 2.0, 2.6, 5.3 

wt% of HDK H20 were generated by handshaking. For the highest two concentrations of 

HDK H20, i.e. 2.6 wt% and 5.3 wt% of silica particles, no distinct clear oil phase was 

observed after emulsification and storage overnight. It should be noted, however, that in 

all cases a distinct clear free water phase remained, which is undesirable as the end 

application requires complete dispersion of the aqueous phase. 

 

Figure 5.6 Emulsions prepared with a 1:1 water : oil (w/w), different HDK H20 

silica particle concentrations (in wt% with respect to the oil phase). All pictures 

were taken 24 hours after preparation 
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An explanation for the free water phase can be accounted to the formation of a 

continuous colloidal silica matrix throughout the oil phase. The silica particles prefer this 

continuous phase network formation over stabilisation of water droplets, hereby limiting 

the maximum amount of water that can be dispersed. The emulsions prepared displayed 

excellent stability with respect to coalescence and Ostwald ripening for prolonged 

periods of time in excess of three months. 

Silica and chitosan as synergistic stabilisers 

 

In order to promote silica adsorption to the oil-water interface, a 1 wt% chitosan:1 wt% 

acetic acid aqueous solution at pH 3.2 was employed instead of water, resulting in the 

entire aqueous phase being adequately dispersed in all cases. Figure 5.7 displays the 

results after emulsification and storage for 24 hours for HDK H20 fumed silica particles 

at 0.6, 1.2, 2.0, 2.6 and 5.3 wt%. Interestingly the emulsion at the highest amount of silica 

particles did not flow under its own weight and therefore can be considered to be a gel 

under these conditions. The origin is a continuous network of colloidal flocs, which 

effectively renders the emulsion into a quiescent state, whereby the water droplets are 

dispersed into a solid like matrix, hereby counteracting settling. Such quiescent behaviour 

has previously been reported by Wiley et al.12
 Also noteworthy is the work by Raghavan 

and Khan 
50

 who demonstrated that flocculated dispersions of fumed silica in oil is gel-

like, exhibiting a yield stress. Attempts to increase the aqueous volume fraction of the 

emulsions above 50 wt% using the optimum parameters described above proved to be 

unsuccessful owing to catastrophic phase inversion, thus forming oil in water emulsions. 
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Figure 5.7 Emulsions prepared with a 1:1 water : oil (w/w), different HDK H20 

silica particle concentrations (in wt% with respect to the oil phase), with a 1 wt% 

chitosan solution as water phase (pH of 3.2). All pictures were taken 24 hours after 

preparation 

 

The effect of varying chitosan concentration in the aqueous phase on the emulsion 

viscosity was explored and is presented in figure 5.8.  Using a Brookfield viscometer at 

set shear rate on 1:1 (v/v) aqueous phase : sunflower oil emulsions at a constant HDK 

H20 silica particle loading of 2 wt% with respect to the oil phase and different chitosan 

concentrations, viscosity was determined. The viscosity increases from 690 mPa s to 

approximately 2000 mPa s when the chitosan concentration increases from 0 to 1 wt%. 

At higher chitosan concentrations the values plateau at 2200–2300 mPa s. Varadhan and 

Watson showed that the viscosity of an emulsion is directly proportional/linked to the 

volume of dispersed phase of the system.
51

 As such the viscosity increase observed upon 

chitosan concentration increase is directly related to the increase of the oil–water 

interface due to improvement of wetting properties of the silica particles by chitosan 

adsorption onto their surface. Nevertheless, from 1 wt% chitosan, it becomes less and less 

marked. The reason might be that the surface of the silica particles cannot accommodate 

more chitosan molecules (saturation of the surface). 
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Figure 5.8 Viscosity of emulsions prepared with a constant silica particle 
concentration and an aqueous phase containing from 0 to 3 wt% chitosan (with 

respect to the weight of the aqueous phase). Measured by a Brookfield viscometer 
 

Similarly to other systems made of negatively charged silica particles mixed with a 

cationic species,
52

 we believe that synergistic action of silica particles and polymeric 

chitosan was responsible for this increase by promoting the adsorption of the silica 

particles at the droplet interface. Like other cationic/Ludox particle emulsifier systems 

described among others by Hassander, Binks and coworkers,
52–54

 positively charged 

chitosan molecules certainly adsorb on the surface of the negatively charged silica 

particles, thanks to electrostatic interactions between chitosan and surface charges created 

by deprotonation of silanol groups, coupled to non-electrostatic interactions. 

Consequently, the wettability of the silica particles is modified. Macakova et al. reported 

that the absorbed amount of chitosan on a silica particle was of the range of 0.1 mg m
−2

, 

i.e. about ten times as low as the amount that can adsorb on the surface of a highly 

charged mica surface.
55
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The addition of chitosan in the system promotes the silica to adsorb to the droplet 

interface favourably. It facilitates Pickering stabilised emulsion droplets being 

incorporated within the colloidal gel matrix, effectively resulting in a quiescent Pickering 

emulsion. 

Now that we have established our conditions to generate quiescent Pickering water-in-

sunflower oil emulsions, the next step is to transfer this to a technology platform for juice 

infused chocolate confectionery. For this we first replaced sunflower oil with cocoa 

butter. 

5.3.2 Cocoa butter model systems 

 

Quiescent Pickering emulsions of water containing 1.0 wt% of chitosan and 1 wt% of 

acetic acid (pH 3.2) were made as described above using a 50:50 wt/wt oil to water ratios, 

at an elevated temperature of 40 °C to warrant the cocoa butter to be in a liquid state. The 

minimum amount of silica HDK H20 required to ensure a complete emulsion phase, that 

is no pure aqueous and/or cocoa butter phases, was ca. 2.5 wt% based on cocoa butter. 

Rheological measurements using a Kinexus rheometer were conducted at 40 °C to further 

investigate state-of-matter. 

Figure 5.9(l) shows repetitive measurements of viscosity as a function of increasing and 

decreasing shear rates, ranging from 0.1 to 1000 s
−1

. Above a threshold value of 1.5 s
−1

 

the system shows liquid-like shear thinning behaviour in all cases. Reversal of the shear 

rate after the initial run of the sample shows a clear hysteresis indicating that fabrication 

conditions of the Pickering emulsion influences the rheological data, in effect labelling its 

emulsification history. Indeed successive runs show reproducible behaviour. Below the 
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threshold shear rate of 1.5 s
−1

 the sample undergoes a transition to a gel-like state. This 

transition is clearer when we plot viscosity against stress, as depicted in figure 5.9(r) 

 

 

Figure. 5.9 Shear viscosity as a function of increasing and subsequent decreasing 

shear rates (l) and shear stress (r) for three cycles. Increasing profiles (Δ), 

decreasing profiles (○). First cycle (black), second cycle (red), and third cycle (blue) 

 

From the data it is apparent that a yield stress, and thus a transition from a gel-like to a 

liquid-like state, exists at an applied shear stress of 35–40 Pa. Again, the exact value of 

the yield stress depends on the emulsification methodology of the sample, or in other 

words the amount of shear applied during emulsification, as evident from the hysteresis. 

Prior to rheological profiling, the emulsion droplet size is larger. The rheology 

measurement shears the sample in excess of the level achieved with handshaking. As a 

result, a smaller yield stress of 15–20 Pa is observed on the initial viscometry 

measurement compared with subsequent runs. We can therefore assume that a larger 

yield stress is attained with decreasing emulsion droplet size. 

In order to obtain Pickering emulsion droplets of small enough diameter, that is below the 

mouth sensation threshold of 30 μm diameter, we used an ultraturrax at 11000 rpm for 

120 s emulsification tool at 40 °C. We successfully managed to encapsulate 50% by 
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mass; cranberry juice, smooth orange juice, and decarbonated Cola soft drinks. 

Advantages are their acidic nature, which facilitates the dissolution of chitosan. The 

acidity, if necessary, can be tailored upon addition of small quantities of ascorbic acid 

(vitamin C) in order to maintain an aqueous phase pH in the range of 3.2–3.8. 

The microstructure of our fruit juice infused cocoa butter systems was analysed by 

cryogenic scanning electron microscopy. Samples were prepared using a freeze-fracture 

method whereby the emulsions are frozen in slush nitrogen preserving the native 

structure of the emulsion. Figure 5.10 at relatively low magnification depicts droplets 

occupying approximately 50% visible surface area, as per the formulation. All droplets 

fall below the mouth sensation threshold of 30 μm diameter, with a mean average droplet 

diameter of 11.76 μm as measured by image analysis. 

 

 

Figure. 5.10 Freeze-fractured cryogenic scanning electron micrograph of 50 vol% 

water-in-cocoa butter dispersions 
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Upon closer inspection of individual emulsion droplets (figure 5.11A and 5.11B), the 

fumed silica flocs are clearly visible at the interface of the droplet confirming their role as 

Pickering stabiliser to this system. Silica flocs are not present within the water droplets as 

depicted in figure 5.11B. 

 

Figure. 5.11 (A) Cryogenic scanning electron micrographs depicting the surface and 
(B) cross-section of a droplet from 50 wt% water-in-cocoa butter emulsion 

 

 

 Figure. 5.12 A magnified image of the solidified 50 wt% water-in-cocoa butter 
emulsion. In (1) the product was cleaved apart revealing trapped emulsion 

microstructure, whereas in (2) the product sliced using sharp knife resulting in 
sheared emulsion droplets and a ‘smooth’ tribological texture 
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Figure 5.12 depicts a magnified image of the final cocoa butter product at room 

temperature, containing 50 wt% cranberry juice, dispersed as emulsion droplets. By 

cutting with a sharp knife, the emulsion yields and deforms analogous to ‘real chocolate’, 

offering a smooth mouth sensation. Upon cleaving the solid breaks along the weakest line 

exposing the emulsion surface. Note the small bubbles visible are an artefact of incident 

air bubbles trapped upon casting, and are not a result of emulsion ripening. 

5.3.3 Real chocolate formulations 

 

On the basis of our results obtained from the cocoa butter model systems, real chocolate 

formulations using commercially available white, milk and dark chocolate were explored. 

The use of chocolate builds a level of complexity as cocoa solids, milk fats and sugar 

content influence the properties of the final product. The weight percentage of aqueous 

phase, that is water or fruit juices, was adjusted to match the amount of fats present in the 

three types of chocolate. To be specific, the brand of white chocolate we used contains 

33.5% total fat (milk and cocoa), milk chocolate contains 32.8%, and dark contains 

28.8% cocoa butter only. 

 

Cocoa butter has 6 polymorphic crystalline structures, with their melting points in a close 

range between 17.3 and 36.3 °C. Polymorph V, with a melting point at 32–34 °C is the 

desired form which gives chocolate its gloss and firm snapping texture, whilst melting 

easily in the mouth with a smooth texture.
1
 In order to maximise the content of 

polymorph V in chocolate, manufacturing processes involve a so-called tempering stage. 

The melting, cooling and precise heating to just above the melting temperature of form 
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IV leads to a maximum relative amount of the desired form V in the final product. 

Correctly tempered chocolate also prevents fat bloom, a phenomenon where fat diffuses 

to the surface as a result of the presence of lower melting point polymorphs, giving the 

chocolate surface an undesired grey/white coating. The addition of milk fat aids the 

suppression of fat bloom.
56

 In addition to this sugar bloom may also occur, and is driven 

by exposure of the chocolate formulation to moisture. The dissolution of sugar from 

within the product and subsequent surface condensation and dehydration of the solution 

on the product surface renders a powdery white appearance, which again is undesirable. 

We subjected the chocolate emulsion formulations to a tempering procedure immediately 

after emulsification by precisely manipulating temperature under low shear conditions. 

The final products are displayed in figure 5.13. 

 

Figure. 5.13 Images of dark (left), milk (centre) and white (right) chocolate 

emulsion formulations in which 50 wt% of fat has been replaced with cranberry 

juice. Images were taken after 14 days storage at 5 °C 

 

Differential Scanning Calorimetry measurements were conducted to determine the 

polymorphic structure of the confectionery. Samples were heated from 5–50 °C at a rate 

of 2 °Cmin
−1

. Our model cocoa butter and dark chocolate formulations contain only 

cocoa butter as a source of fat. Figure 5.14(l) displays the DSC traces for our cocoa butter 

model formulation and the data for cocoa butter in itself as a reference. Comparison of 
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these two traces indicates similar melting properties with a bimodal distribution; the 

largest endothermic peak in both cases at approximately 35 °C corresponds to polymorph 

V. The smaller endothermic peak at ca. 30 °C indicates the presence of polymorph IV, 

which spontaneously reverts to form V during prolonged storage in cool conditions. In 

figure 5.14(r), the dark chocolate emulsion formulation is compared with dark chocolate 

as reference. Again we can observe that a large fraction of the cocoa butter has the 

desired polymorph crystal structure. In the latter case one can argue that a small relative 

reduction of the amount of cocoa butter in the correct polymorph is observed. Analyses 

of the milk (figure 5.15(l))  and white (figure 5.15(r)) chocolate formulations, revealed 

the prevalent polymorph V and IV peaks but also showed the appearance of an additional 

peak around 20 °C which can be ascribed to the milk fats present in these two types of 

chocolate. The exothermic peak in milk fat arises from the phase transition of α to β 

polymorphs and then direct crystallisation from amorphous to β once seeded.
57

 All 

systems show considerable amounts of polymorph V, hereby providing the right 

chocolate structure to provide the desired tribological effect upon consumption. 

 

Figure. 5.14 DSC traces of the cocoa butter emulsion alongside pure cocoa butter (l) 

and dark chocolate emulsion alongside pure dark chocolate (r). Asterisk indicates 

peak for polymorph V 
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Figure. 5.15 DSC traces of the white chocolate emulsion alongside pure white 

chocolate (l) and milk chocolate emulsion alongside pure milk chocolate (r). 

Asterisk indicates peak for polymorph V 

 

The relative large amounts of polymorph V in our chocolate formulations should arrest 

fat bloom. To investigate the extent of both fat and sugar bloom on our systems, 

chocolate formulations with a large exposed surface area were cast and left refrigerated 

uncovered at 5 °C for 14 days. Figure 5.16 shows an representative image of one of our 

white chocolate emulsion formulations with no evidence of fat or sugar bloom. 

 

Figure. 5.16 A white chocolate emulsion formulation in which 50 wt% of the fat is 
replaced with cranberry juice after two weeks exposure at 5 °C 
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5.4 Conclusions 
 

It has been demonstrated that preparation of emulsion based chocolate confectionaries in 

which 50% of the total fat content by weight (cocoa butter and milk fats) has been 

replaced with fruit juices using a quiescent Pickering emulsion as fabrication strategy. 

The combination of fumed silica particles and chitosan under acidic conditions (pH 3.2–

3.8) was highly beneficial towards improvement of emulsion properties in terms of 

volume of dispersed phase and stability, in comparison to emulsions prepared with each 

compounds considered individually. Adsorption of the polycationic chitosan molecules 

onto the silica particles surface influenced the particle wettability making it an effective 

Pickering stabiliser. The formation of a colloidal gel in the continuous (molten) oil phase 

provided the system with a yield stress, hereby giving it a gel-like and thus quiescent 

behaviour under low shear conditions. This warrants a homogeneous distribution of 

emulsion droplets as settling through gravity upon storage under molten/liquid conditions 

is arrested. The emulsified confections were subsequently tempered with no fat or sugar 

bloom observed. All fruit-juice infused chocolate formulations exhibited the desired 

crystalline characteristics of chocolate. The technique is limited to 50% replacement of 

aqueous phase owing to catastrophic phase inversion. The use of a ‘nanoparticle’ 

additive, despite similar compounds being used in cosmetics and foodstuffs can be a 

sensitive issue to consumers. Additionally, chitosan is a non-vegetarian, non-kosher 

additive. However, despite these issues, we present a route to formulations with similar 

attributes to the full fat counterpart, and has the potential to be deployed in other food 

products such as ice cream and personal care formulations. 
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5.5 Experimental 
 

5.5.1 Materials 

 

Low and medium molecular weight chitosan 75–85% deacetylated, glacial acetic acid, L-

ascorbic acid, (Sigma Aldrich corp.). Fumed silicate particles HDK-H2O, HDK-N20, 

HDK-H18 supplied by Wacker Chemie. Cocoa butter (RSSL, Reading, UK), sunflower 

oil (Tesco, UK), cranberry juice from concentrate (Ocean Spray), Pepsi Cola, smooth 

orange juice (Tropicana), white, milk and dark chocolate (ASDA, UK) were used as 

received. 

5.5.2 Equipment 

 

DSC measurements were performed on a Mettler Toledo TGA/DSC 1 thermogravimetric 

analyser. Samples were weighed out into aluminium pans on a 5 d.p. balance. Heat flux 

measurements were started at 5 °C increasing at a rate of 2 K/min and terminated at 50 

°C under a flow of air. 

Single shear viscosity measurements were conducted using a Brookfield DV-II+, spindle 

number 63 at 20 rpm. 

Rheological measurements were carried out on a Kinexus Rheometer ultra (Malvern 

Instruments) with active heat exchanger and parallel plate geometries PU40 S0141 SS 

and PL40 C0007 SS. Pre-emulsified cocoa butter samples were heated to 40 °C and 

dispensed on to the heated 40.00 °C parallel plate geometry. Plate gap size was set at 1.00 

mm. Sample temperature was monitored and allowed to equilibrate for 5 minutes prior to 

any measurement. Sunflower oil emulsions and separate components were dispensed 
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onto the plate geometry with a gap size of 1.00 mm. Samples were maintained at 25.00 

°C with a 5 minute temperature equilibration prior to any measurement. 

(Cryogenic) Scanning Electron Microscopy analyses were carried out using a Zeiss Supra 

55-VP Field Emission Gun Scanning Electron Microscope with a Gatan Alto 2500 cryo 

transfer system and a Gatan C1002 Liquid Nitrogen cold stage. For analysis of the fumed 

silica particles the particles were deposited on to a double sided adhesive carbon black 

tab and attached to an aluminium stub. Following sputter coating with AuPd target (1.5 

kV, 30 s, 15 mA), samples were imaged at a 10 kV accelerating voltage. Cryogenic FEG-

SEM analyses of the cocoa butter confectionery were carried out as follows: molten 

emulsions at 40 °C were drawn into a brass rivet through capillary action and frozen in 

liquid nitrogen prior to scalpel fracturing to expose a clean internal structure. The sample 

was heated to −90 °C for 15 minutes to remove ice through sublimation followed by a 

platinum sputter target coating in an argon atmosphere (20 seconds, 10 mA). Imaging 

was undertaken at −125 °C using a 3 kV accelerating voltage with a gold anti-

contaminator at −189 °C. Images were post-analysed using ImageJ computer software 

(NIH, US). 

5.5.3 Protocols for preparation of the emulsions 
 

Sunflower oil based emulsions  

 

Chitosan was dissolved in 1% w/w glacial acetic acid solution. Separately, Wacker 

silicates were dispersed in oil via handshaking until visibly homogeneous. The two 

solutions were mixed and either hand shaken for 30 seconds or sheared with a rotor-stator 

mechanical shearer (ultra-turrax 11 000 rpm) for 120 seconds. 
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Cocoa butter emulsions 

 

Silicates were dispersed in molten cocoa butter at 40 °C. Aqueous solutions of dissolved 

chitosan and acetic acid were also heated to 40 °C. The two warmed phases were mixed 

and sheared by handshaking or rotor-stator, prior to casting and cooling to RT or analysis 

at 40 °C. 

Emulsions incorporating soft beverages 

 

Where cranberry juice, smooth orange juice, or decarbonated Pepsi Cola, was used as 

aqueous phase, chitosan was added to the stirred beverage at 40 °C. Using L-ascorbic 

acid (vitamin C) the pH was continually adjusted to a native value between 3.2 and 3.8 to 

assist dissolution of the chitosan. 

Real chocolate emulsions 

Chocolate samples (milk, white and dark) and fruit juice containing 1.0 wt% chitosan 

were separately heated to 40 °C prior to mixing and emulsification by a rotor-stator mixer 

for 60 s. An equal ratio of aqueous phase with respect to fat content of the chocolate was 

used. Immediately after, formulations were cooled to 28 °C (dark chocolate and cocoa 

butter) or 26 °C (milk and white chocolate) prior to gradual re-heating whilst stirring to 

33 °C (dark chocolate and cocoa butter) or 31.6 °C (milk and white chocolate) and 

holding at that temperature for 5 minutes. Samples were then refrigerated for a period of 

two weeks before DSC analysis. 
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Chapter 6 

High internal phase agar hydrogel dispersions in 

confectionery formulations* 

 

 

6.1 Abstract 
 

The limitations encountered through the use of Pickering emulsion stabilisation led us to 

investigate an alternative strategy to reduce the fat content of chocolate through 

emulsification. The dispersion of hydrocolloid gel particles within a lipid continuous 

phase presents a viable route to produce chocolate formulations of up to 80 vol% aqueous 

phase, without the use of nanoparticles, and an improvement in stiffness. We exploit the 

* 
Parts of this chapter have been published elsewhere: Thomas S. Skelhon, 

Patrik K. A. Olsson, Adam R. Morgan, and Stefan A. F. Bon, High internal 

phase Agar hydrogel dispersions in cocoa butter and chocolate as a route 

towards reducing fat content, Food and Function, 2013, 4, 1314-1321 
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use of agar, a natural biopolymer with a thermal hysteresis that allows the formation of 

sub mouthfeel threshold droplet emulsions in cocoa butter, dark, milk and white 

chocolate before gelation into discrete microgel particles as determined by cryogenic 

electron microscopy. Rheological profiling investigates the flow characteristics of 

microgel suspensions in oil and ultimately compares the flow performance of 

hydrocolloid gel dispersions to that of pure chocolate. Thermal analysis indicates how the 

favoured crystalline structure can be obtained in these dispersions. Finally, we 

demonstrate the ability to incorporate ethanol into the formulation without detriment to 

microgel stability. 

6.2 Introduction 
 

In the previous chapter we described a Pickering stabilised emulsion system that 

permitted the replacement of up to 50 vol% of the fat content in cocoa butter and 

chocolate with droplets of acidified water and fruit juice. This was achieved through the 

use of silicate nanoparticles coupled with the cationic biopolymer chitosan. Despite 

successfully dispersing droplets less than the mouthfeel threshold of 30 µm diameter, 

stable against coalescence and sedimentation, there are several areas which could be 

improved upon from a consumer, commercial and legislative perspective. Firstly, an EU 

directive exists regarding the disclosure of the use of ‘nanomaterials’ in food
1
 and 

personal care products.
2
 Any product which contains particulate matter of less than 100 

nm diameter has to be clearly marked, and therefore can have negative connotations with 

consumers. Chitosan is a biopolymer derived from shellfish and can therefore limits use 

to non-vegetarians or consumers not restricted by faith. The Pickering system described 
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is limited to 50 vol% replacement of aqueous phase before catastrophic phase inversion. 

However, high quantities of dispersed water droplets will deteriorate the mechanical 

strength of the final product if higher aqueous phase loading were possible. Therefore 

exceeding dispersed volumes of water higher than the threshold value of 74% for high 

internal phase emulsions (HIPEs) whilst maintaining product stability throughout 

processing and storage without detriment to the chocolate eating qualities presents a 

significant challenge. 

 

A solution to the abovementioned issues can be to turn the water droplets into hydrogels.  

There are many examples referring to the applied use of hydrogel particles in food 

formulations, including providing texture, structure
3
 and encapsulation.

4
 Particulate 

forms of gel are valued for their ease of processing in a flowable form, soft undetectable 

texture and ability to tune macroscopic properties by the control of particle size, shape 

and modulus. In addition, many hydrocolloids are derived from natural sources, and are 

therefore biocompatible.
5
  

 

Dispersed hydrocolloid particles can also be used to mimic the texture of fat, and 

therefore used as a partial replacement to the fat content in processed food formulations. 

Brummel et al. demonstrate the use of several types of hydrocolloid particles as a 

replacement of fat in cheese spreads.
6
 Gelation of a dispersed aqueous phase in cocoa 

butter, forming discrete microgels within the lipid matrix has been reported by Norton 

and coworkers.7 They used gelatine, an animal derived biopolymer with a disintegration 

temperature (melting point) of 32 °C, allowing the microgels to melt at body temperature 



Chapter 6: High internal phase agar hydrogel dispersions in confectionery formulations 

 

207 

 

emulating the phase transition of cocoa butter. At ambient temperatures the internal gel 

structure of the emulsified droplets imparts structural rigidity to the formulation. This 

elegant method stabilised up to 50% v/v aqueous phase with most droplets falling 

between 3-5 µm. Despite gelatine hydrocolloids melting at a convenient temperature, a 

drawback is that it is animal derived. Additionally, the product would not withstand 

storage at elevated temperatures above 32 °C as the gel phase would melt becoming 

liable to droplet coalescence and phase separation at elevated temperatures.  

 

As such, there is scope for the development of low fat chocolate formulations by the 

dispersion of hydrogel particles in the continuous lipid phase. However, the use of a 

hydrocolloid that is more thermally resistant and vegetable derived is preferable. An 

alternative to gelatine is agar, an abundant biopolymer derived from red algae consisting 

of agarose and agaropectin. 
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6.2.1 Agarose hydrogels 
 

 

Figure 6.1 (Top) Structural formula of agarose biopolymer. (Bottom) Schematic of 
reversible thermally controlled gel formation8 

 

Agar is a hydrocolloid derived from the Gelidium and Gracilaria species of red algae. 

The predominant component agarose consists of the alternating disaccharide D-galactose 

and 3,6-anhydro-L-galactopyranose of molecular weights exceeding 100,000 Daltons. 

The remainder, agaropectin, is a complex mixture of sulphate and pyruvate modified D-

galactose and L-galactose disaccharide polymer chains, usually of lower molecular 

weight than agarose. The ratios between agarose and agaropectin vary between species of 

algae, however agarose is typically the major component, making up between 50-75 % 

by mass of the agar.
9
    The mechanism of gelation relies upon the formation of double 

helixes of the agarose polymer chains in solution at the gelation temperature. These 

helixes aggregate thereby rapidly gelling the system which are then stable against thermal 

disintegration below 90 °C.
10

 As such, agar exhibits a large gelling and melting 
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hysteresis, of 40 °C and 90 °C respectively (as seen in figure 6.2) which can be exploited 

in food processing, providing thermally stable physical gels.
11

  

 

 

Figure 6.2 Oscillatory rheological profile of complex modulus (G*) as a function of 
decreasing before increasing temperature indicating a significant thermal hysteresis 
 

From a nutritional viewpoint, the use of agar-based hydrogels to replace part of the fat 

matrix in confectionery has the additional benefit of agarose (80% of the agar) being 

classed as a dietary fibre serving as an appetite suppressant.
12

 

 

An interesting feature of agar hydrogels is that once they have been formed, the gel 

matrix does not further swell in the presence of excess water.
13

 Agar-based microgel 

particles, despite containing over 95% water are stable against coalescence due to the 

solid, non swellable mechanical properties they possess. This allows for the incorporation 

of high volume fractions of aqueous phase into oil based food formulations, exceeding 

levels which can be achieved using liquid droplets and conventional emulsifiers.  
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Dispersing agar microgels into an oil continuous phase significantly affects the 

rheological and mechanical properties of the overall formulation. Variation of the 

concentration of agar in the aqueous phase alters the gel particle modulus and together 

with varying the overall fraction of dispersed phase can increase the moduli over 3 orders 

of magnitude, and impart shear thinning behaviour.
14

 At very high dispersed aqueous 

microgel fractions, the dispersion trends towards a ‘jammed’ regime imparting bulk gel-

like, or even dilatant behaviour.
13

 As such, the mechanical properties such as flowing 

characteristics and stiffness of the formulation can be tuned.  

 

We therefore employ agar as the gelling agent in the formation of dispersed hydrocolloid 

particles in chocolate formulations.  

6.2.2. Polyglycerol polyricinoleate stabiliser  

 

Rather than employ the use of a Pickering stabiliser, we opted for the use of an FDA 

GRAS (generally recognised as safe)
15

 approved food emulsifier and viscosity modifier
16

 

polyglycerol polyricinoleate (PGPR) as the sole surfactant to stabilise the liquid hydrogel 

emulsions before and during gelation period; the chemical structure of which can be seen 

in figure 6.3. 
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Figure 6.3 Structural formula of PGPR with hydrophilic and hydrophobic section 
marked in green and red respectively 

 

PGPR is prepared by the esterification of condensed castor oil fatty acids with 

polyglycerol
17

 and is most commonly used in chocolate formulations to reduce yield 

stress. This occurs by decreasing the frictional component between solid and crystalline 

components, facilitating moulding and entrained air release.
18

 It has also been reported as 

an effective stabiliser, promoting the formation of water in oil emulsions owing to a very 

low hydrophilic-lipophilic balance (HLB) value of 1.5. The HLB of a surfactant is the 

degree of hydrophilicity/hydrophobicity it possesses as calculated theoretically by the 

contribution of different chemical groups on the molecule.
19,20

 Normally, a compound of 

such lipophilicity would not perform well as an emulsifier. However similarities between 

surfactant and oil in terms of chain length and chemical composition contribute to 

maximise emulsion stability,
21

 demonstrated in the case of PGPR and cocoa butter. As 

such Fryer et al.22
 reported the successful use of PGPR in stabilising 20 wt% water in 

cocoa butter formulations using a margarine line to achieve stable homogenous water in 

oil emulsions with droplet size below the mouthfeel threshold of 30 µm diameter.
23

 Note 

that the maximum amount of PGPR which can be used in food is tightly regulated in the 

EU.
24

 In chocolate products, the overall PGPR content should be less than 0.5 wt%. In 
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our studies we aim to stay below this upper threshold value, typically using 0.5 wt% in a 

formulation with 50 vol% aqueous phase, and 0.2 wt% in a formulation with 80 vol% 

aqueous phase. 

6.3 Results and Discussion 
 

Initially, water in sunflower oil emulsions were used as model systems and formulated to 

ascertain the optimum PGPR concentration for use in cocoa butter formulations. The 

liquid state of sunflower oil at ambient temperature provides a convenient analogue to 

molten cocoa butter. Values for interfacial tension (31 mNm
-1

) and dynamic viscosity (50 

mPa) for sunflower oil at 25 °C
25

 and cocoa butter at 40 °C
26

 are very similar. 

Varying amounts of PGPR with respect to oil phase (0.5, 1.0, 2.0 and 5.0 wt%) were 

dispersed in the oil phase. The relative amounts of added water phase were varied and the 

systems were emulsified through handshaking the vials. Note that the aqueous phase was 

dyed with a small amount Rhodamine B, to simplify visual analysis of the emulsification 

process. The results after storing the emulsions for 24 hours are displayed in figure 6.4. 

From this it can be seen that 1.0 % w/w PGPR in the oil phase seemed optimum and 

could stabilise up to 60 vol% aqueous phase. Increasing the emulsifier concentration 

above this value resulted in an excess free water phase arising from the stabilisation of 

smaller droplets. The formation of smaller droplets upon increasing PGPR concentration 

is in agreement with results from studies of droplet sizes in lower dispersed phase volume 

(<25%) W/O emulsions.
27

 



Chapter 6: High internal phase agar hydrogel dispersions in confectionery formulations 

 

213 

 

 

Figure 6.4 Hand shaken water in PGPR containing sunflower oil emulsions left 
standing for 24 hours. Each row represents a fixed PGPR content with respect to oil 

phase at a range of oil fractions, 0.2 to 0.8 from L to R respectively 
 

6.3.1 Agar microgel dispersions in sunflower oil 

 

The dispersion and gelation of agar solutions in sunflower oil was investigated. Based on 

the results above the concentration of PGPR was fixed at 1.0 wt% with respect to the oil 

phase. A 2.0 wt% agar solution in water was prepared at 90 °C, and subsequently cooled 

to 50 °C, keeping the temperature above its gelation point. Varying relative amounts of 

this aqueous phase was added to the PGPR containing sunflower oil at 50 °C. The 

emulsification was carried out using ultraturrax, providing a high shear mixing 

environment. After emulsification for 60 seconds the emulsions were cooled to room 

temperature and left undisturbed. Following this strategy, stable emulsions containing up 

to 40% v/v aqueous phase were successfully made (see figure 6.5). Increased relative 

aqueous volumes resulted in catastrophic phase inversion upon cooling and gelation. A 

plausible reason for the maximum dispersed water phase only being 40 vol% when Agar 

was used, in comparison to 60 vol% in the reference system (see figure 6.4) is that part of 
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the PGPR molecules interact with the Agar, so that only a fraction of them can be used to 

stabilise the water-oil interface. 

 

 

Figure 6.5 2.0 wt% Agar solutions emulsified into sunflower oil at 50 °C before 
cooling to room temperature. Oil volume fraction of dispersion is varied from 0.5 (L) 

to 0.9 (R). Note at an oil fraction of 0.5, the system phase inverts and gels 
 

6.3.2 Two stage emulsification strategy 

 

In order to prevent catastrophic phase inversion, and increase the overall fraction of 

dispersed water phase, we employed a two stage emulsification strategy exploiting the 

significant hysteresis agar gels exhibit (figure 6.2). In short the aqueous Agar containing 

phase was introduced into 2 steps, of equal proportion. In the first step, half of the water 

phase was emulsified at 50 °C, and allowed to cool. This generates a set of dispersed 

hydrogel particles. Next, the system was re-heated to 50 °C. Note that by doing this the 

gel particles are preserved as they are thermally stable up to 90 °C. The second half of the 

water phase is now introduced, whilst under shear, hereby generating a second batch of 

microgel particles upon cooling.  This approach made it possible to increase the dispersed 
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phase up to 50 vol%. Higher relative amounts of water used (30 vol% + 30 vol%, and 35 

vol% + 35vol%) again resulted in phase inversions (see figure 6.6).  

 

Figure 6.6 2.0 wt% Agar emulsified into sunflower oil following a two-stage 
emulsification strategy.  A) 25 + 25 vol% agar phase after re-heating to 50 °C to 

demonstrate thermal stability of two-stage emulsion. B) 25 + 25 vol% agar phase. C) 
30 + 30 vol% agar phase. D) 35 + 35vol% agar phase 

 

An explanation for this instability can be as follows. Up to 50 vol% the formation of the 

Agar gel network is confined to the individual emulsified water droplets. Gel particles 

nucleate and either grow or coalesce within each droplet, resulting in discrete gel 

particles, templating the original emulsion droplet size. At higher aqueous phase volumes 

(>50 vol%), the gelation process is difficult to confine within the emulsified droplets. 

Bridging between droplets leading to coalescence extends the gel matrix, ultimately 

causing a phase inversion.  

6.3.3 Shear cooling emulsification strategy 

 

In order to further increase the dispersed gel phase content, an alternative strategy, that is 

the application of shear during the gelation process, was investigated. Agar solutions 

were emulsified into the PGPR containing sunflower oil at 50 °C (20, 30, 40, 50, 60, 70 

and 80 vol% of Agar solution) using high shear emulsification. However, the cooling step 



Chapter 6: High internal phase agar hydrogel dispersions in confectionery formulations 

 

216 

 

now involved exposing the samples to low shear by hand shaking instead of leaving them 

at rest. Deploying this strategy enabled the stable formation of up to 80 vol% dispersed 

gel phase in oil (see figure 6.7). Note that we tried to shred a macroscopic hydrogel into 

microgel parts by ultraturrax as a way to disperse gel particles in oil, but this was not 

successful.  

 

Figure 6.7 2.0 wt% Agar solutions emulsified into sunflower oil at 80 vol% aqueous 
fraction A) Emulsified at 50 °C, prior to quiescent cooling to room temperature. B) 
pre-gelled agar phase emulsified into oil phase at room temperature. C) Emulsified 

at 50 °C then sheared whilst cooling to room temperature. Note only sample C flows 
 

Following the shear cooling regime, rather than generating quiescent gels confined to the 

original emulsion droplet size, large gel particles growing beyond the droplet phase 

which would normally cause phase inversion are sheared down into smaller gel particles, 

resulting in the desired ‘fluid gel’. Fluid gel systems have been studied for their 

flexibility in reduced fat formulations. By altering the amount of agar used, shear rates 

and aqueous phase volume, the overall structure and properties of the final formulated 

can be tuned.
28

 Furthermore, fluid gel microgel particles interact further in space than 

their spherical counterparts due to the non-spherical nature of sheared particles. As such, 

sheared gel suspensions have a more cohesive behaviour and contribute to the overall 
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modulus of the system. This has a knock-on effect of slowing down food break down and 

ultimately an increased sensation of satiety.
29

 

6.3.4 Rheology of agar microgel in sunflower oil dispersions 

 

Rheological properties of these agar microgel in sunflower oil dispersions were 

ascertained over a range of gel phase volumes. The shear viscosity was measured as a 

function of shear rate (see figure 6.8) and shear stress (see figure 6.9).  

 

Figure 6.8 Viscosity as a function of shear rate for 2.0 wt% agar phase in sunflower 
oil dispersions over a range of aqueous phase fractions. Legend indicates percentage 

of aqueous agar phase in dispersion 
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Figure 6.9 Viscosity as a function of shear stress for 2.0 wt% agar phase in 
sunflower oil dispersions over a range of aqueous phase fractions. Legend indicates 

percentage of aqueous agar phase in dispersion 
 

 

Figure 6.10 Oscillatory shear strain amplitude sweep at 1 Hz for an 80 vol% agar 
microgel dispersion in sunflower oil 
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The shear viscosities increase when higher amounts of hydrogel phase are dispersed 

within the continuous sunflower oil phase. This increase is non-linear as to be expected 

for soft colloidal systems. When the dispersed microgel phase exceeds 70 vol%, a 

marked increase in shear viscosity, together with the appearance of shear thinning 

behaviour, is observed. The latter indicates the plausibility of a yield stress, and thus a 

jammed morphology of the microgel particles. An amplitude sweep spectrum of the 80 

vol% microgel dispersion at 1 Hz in figure 6.10 confirms this clearly. The storage 

modulus is higher than that of the loss modulus below 1% strain, confirming macroscopic 

gel-like behaviour attributed to the proximity and packing of the microgel particles into a 

jammed conformation. (Note that this confirms the observed behaviour for the right hand 

sample in figure 6.7, as the jammed-like gel structure collapses upon shear induced by 

gravitational force) At higher strains, fluid-like behaviour is observed showing shear 

thinning.  The effect of shear thinning upon increasing strain is partially suppressed due 

to the soft nature of the Agar microgel particles and their polydisperse particle size 

distribution.  

6.3.5 Electron microscopy of agar microgel in sunflower oil dispersions 

 

Utilising cryogenic scanning electron microscopy (cryo-SEM), we visualised the 

microstructure of the 80 vol% Agar microgel dispersion in sunflower oil.   
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Figure 6.11 Cryo FEG-SEM image of an 80 vol% agar phase in sunflower oil 
dispersion 

 

 

Figure 6.12 High magnification Cryo FEG-SEM image of a slice through an agar 
microgel particle from an 80 vol% agar phase in sunflower oil dispersion 

 



Chapter 6: High internal phase agar hydrogel dispersions in confectionery formulations 

 

221 

 

From figure 6.11 it can be observed that indeed the microgel particles are dispersed into a 

continuous matrix of sunflower oil. Droplet size analysis indicates a polydisperse size 

distribution spanning from 1-2 µm up to 40-50 µm in diameter. Sublimation of the water 

phase from freeze-fractured microgel particles clearly reveals the agar gel polymer 

network (see figure 6.12) confined only to the droplets.  

6.3.6 Agar microgel dispersions in cocoa butter 

 

After developing a strategy to incorporate up to 80 vol% of microgel particles into a 

sunflower oil continuous phase, the process was translated for cocoa butter. Following 

the same formulation process as above, agar solutions were emulsified into the cocoa 

butter, and sheared whilst cooling to 40 °C, below the gelation temperature, but above 

that of the cocoa butter melting point. Once formation of the microgel particles was 

complete (a few minutes), the emulsions were allowed to solidify at room temperature.  

6.3.7 Electron microscopy of agar microgel dispersions in cocoa butter 

 

Cryo-SEM analysis of 80 vol% agar microgel particles in cocoa butter revealed a similar 

morphology as for our sunflower oil model system (see figure 6.13).  
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Figure 6.13 Cryo FEG-SEM image of 80 vol% agar phase in cocoa butter dispersion 
 

Upon closer inspection of the larger microgel particles, it is possible to see a sub-domain 

of smaller gel particles trapped within. As mentioned earlier, gel particles generated in 

the primary high shear process are combined into larger ones during shear cooling, 

hereby creating W/W/O systems. Figure 6.14 depicts a cryo-SEM micrograph indicating 

smaller gel particles of approximately 1 µm diameter, trapped within a 10 µm gel 

particle. 
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Figure. 6.14 High magnification Cryo FEG-SEM image of an agar microgel particle, 
from an 80  vol% agar phase in sunflower oil dispersion. Note the presence of 

smaller agar gel particles within 
 

The microgel in cocoa butter process was carried out for different volume fractions of 

dispersed hydrogel phase (20, 30, 40 and 80 vol%) and particle size analysis by analysis 

of 70 microgel particles taken from cryo-SEM images. The cumulative distribution 

functions versus microgel diameter are given in figure 6.15. It is logical that at higher 

amounts of dispersed microgel phase the average particle size increases. The vast 

majority of microgels reside below the 30 µm diameter mouthfeel threshold for a 

homogenous tribological sensation.
23
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Figure. 6.15 Cumulative distribution function of microgel particle diameters for a 
range of aqueous agar phase volume fractions based on SEM image analysis. Legend 

indicates vol% of aqueous phase 

6.3.8 Dispersing agar microgels in chocolate 

 

Ultimately, agar solutions were dispersed into molten chocolate, an altogether more 

complex system than cocoa butter. Additional components including sugar, cocoa solids 

and non-cocoa fats significantly influence the properties of final product. 1.0 wt % PGPR 

was added with respect to the total fat content of the chocolate (33.5 wt% for white, 30.9 

wt% for milk and 28.5 wt% for dark). 50 vol% agar phase was introduced and dispersed 

into the molten white, milk, and dark chocolate using the shear cooling process. After 

cooling to room temperature and subsequent refrigeration for 24 hours during storage, 

samples were imaged (see figure 6.16). A slice through the centre of the chocolate 

samples indicates a “homogenous” microstructure without visual presence of gel 

particles. As such, the emulsification and gelation of the chocolate formulations is not 

adversely affected by additional components present in three types of chocolate. On the 

contrary, the addition of up to 60% sucrose to an agar gel is reported to contribute toward 
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mechanical strength
30

 which in our case re-enforces the gel component of the 

formulation. 

 

Figure. 6.16 Photograph of milk, white and dark chocolate (L to R) with 50% w/w 
agar microgel content with respect to fat content of the chocolate 

 

6.3.9 Rheology of chocolate based microgel dispersions 

 

The rheological profiles of the milk, white and dark chocolate dispersions containing 

50% aqueous phase, alongside that of pure chocolate and chocolate with 1 wt% PGPR 

(w/r to fat content) were measured to compare flow behaviour. A common rheological 

model used to characterise chocolate formulations is the Casson equation. Originally 

derived by Casson in 1957,
31,32

 the model was derived to predict flow behaviour of 

pigment-oil suspensions, and quantifies the interactive behaviour between the solid and 

liquid components of a bi-phasic system. Components for both yield stress and shear 

thinning non-Newtonian viscosity are included. As such, it is an effective model for 

describing the flow of pseudoplastic materials such as blood and food products and can 

be mathematically expressed as shown in equation 1.
33

 

 

               (1) 
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Where τ, τCA, ηCA and γ represent shear stress, Casson yield stress, Casson plastic 

viscosity and shear rate respectively. 

 

Although superseded by improved models, the Casson equation is still widely used by the 

confectionery industry to characterise the flow behaviour of molten chocolate 

formulations.
34

 We followed an ICA approved measurement protocol,
35

 with some 

adaptations, namely the extension of the shear rate range from 2-50 s
-1

 to 0.1-100 s
-1

. The 

Casson equation was fitted to the obtained data points (as seen in figure 6.17) and values 

for Casson Yield Stress (τCA) and Casson Plastic Viscosity (ηCA) were obtained, as seen 

in table 6.1. At low shear rates, the Casson model becomes unreliable in these 

confectionery systems,
36

 as evidenced by the deviation of the model from the data points 

between 0.1-1 s
-1

, hence why the industry recognised testing commences at 2 s
-1

. The 

addition of 1 wt% PGPR has a considerable effect on Casson yield stress, as expected, for 

the primary use of PGPR in chocolate is to reduce the yield stress.
16

 Upon dispersing 50 

vol% aqueous phase into milk and white chocolate, the Casson Yield Stress increases by 

a factor of 2-3, which is logical due to the solid microgel particles providing a resistance 

to initiate flow. The dark chocolate microgel dispersion sees a slight reduction from a 

naturally high yield stress in pure dark chocolate, arising from the high quantities of 

cocoa solids in the product which have a more marked influence on the yield stress than 

the dispersed microgels. The Casson plastic viscosity values for both milk and white 

chocolate microgel dispersions are very similar to the pure chocolate counterparts. 

However, the dark chocolate microgel dispersion experiences a small reduction in Casson 

Plastic Viscosity, which could be due to exclusion of water from the dispersion, 
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lubricating the rheometer geometries and artificially lowering the viscosity. In terms of 

viability of the microgel dispersions as chocolate products, the recognised Casson 

parameters for chocolate have a τCA between 10-200 Pa and ηCA between 1-5 Pa•s.
34

 All 

of the 50 vol% aqueous phase microgel dispersions that have been analysed fall within 

these parameters. The relatively high yield stress values for milk and white chocolate 

microgel dispersions also indicate their potential use in applications where shape 

retention and pattern holding is required such as the deposition of molten chocolate 

shapes, and the need for shape retention until setting. 

 

 

 

Figure. 6.17 Rheological flow profiles of molten chocolate formulations, each fitted 
by the Casson equation for (top left) white, (top right) dark and (bottom) milk 

chocolate 
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Sample Yield Stress (Pa) Plastic Viscosity (Pa·s) R2 

Value Error Value Error 

White Chocolate 9.867 0.659 2.353 0.081 0.991 

White Chocolate + 1% PGPR 3.453 0.240 2.755 0.054 0.997 

White Choc 50% Dispersion 24.908 1.776 2.466 0.156 0.972 

      

Milk Chocolate 9.057 0.264 2.630 0.040 0.998 

Milk Chocolate + 1% PGPR 0.364 0.055 2.888 0.039 0.999 

Milk Choc 50% Dispersion 24.908 1.776 2.466 0.156 0.972 

      

Dark Chocolate 27.208 2.270 5.524 0.347 0.974 

Dark Chocolate + 1% PGPR 6.507 0.533 4.753 0.154 0.993 

Dark Choc 50% Dispersion 22.241 0.617 1.428 0.060 0.934 

Table 6.1 Casson model Yield Stress (τCA) and Plastic Viscosity (ηCA) fitting 

parameters for chocolate formulations 

6.3.10 Thermal analyses of chocolate microgel dispersions 
 

Differential Scanning Calorimetry measurements of our hybrid agar microgel white, milk 

and dark chocolates were conducted after a simple thermal tempering process. DSC 

measurements were performed to measure the cocoa butter polymorphic composition of 

the final products (figure 6.18). In all cases, the major melting peak occurs at 32-34 °C, 

indicating considerable quantities of polymorph V, the most desired crystalline structure. 

Additional peaks appear in the 10-25 °C range for the milk and white chocolate samples 

which can be ascribed to the melting and crystallisation of the vegetable and milk fats 

present in the formulations. A further set of peaks present in all samples at 25-28 °C 

arises from the presence of polymorph IV, an unstable β’ crystalline structure which 

reverts to the more stable polymorph V - β structure over prolonged storage in ambient 

conditions. Compared to the pure chocolate thermographs, the microgel dispersions show 
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a more pronounced heat flux in the polymorph V melting range. However the microgel 

dispersions have a slightly lower melting range of 2-3 °C compared with its pure 

chocolate counterpart. 

 

 

Figure 6.18 DSC thermographs of 50 vol% agar microgel dispersions in three types 
of chocolate; (top left) white ,(top right) dark and (bottom) milk 

 

6.3.11 Incorporation of alcohol into the chocolate formulations 

 

The addition of alcohol to chocolate based confectionery can be desired with the aim to 

impart the characteristic flavour of a beverage into the product. This commonly is 

deployed in the form of liquid centred chocolate ‘liquors’. Emulsification of alcohol into 

chocolate formulations is challenging owing to the reduction of interfacial energy 

between the oil and aqueous phase induced by the presence of ethanol. For example, the 
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addition of ethanol to our fruit-juice containing chocolate formulations which were made 

with fumed silica particles serving as Pickering stabilisers, led to complete failure and 

destabilisation. However, our hybrid agar microgel formulations may offer a solution to 

this problem, as the gelation process is relatively unaffected by alcohol content. In a 

simple experiment, we replaced the aqueous agar phase in a milk chocolate and cocoa 

butter formulation with 60:40 water: ethanol agar solution to emulate the emulsification 

of a high strength alcoholic beverage (whisky or vodka for example).  As can be seen in 

figure 6.19, chocolate formulations in which 50 vol% of the fat is replaced by microgel 

particles containing 40 vol% ethanol can easily be made.  

 

Figure 6.19 Milk chocolate (L) and Cocoa Butter (R) emulsions containing 40% 
ethanol as part of the 50% w/w aqueous gelled phase (based on fat content of the 

chocolate) 
 

6.4 Conclusions 
 

We have demonstrated that up to 50 vol% of aqueous agar solution can be emulsified into 

cocoa butter and chocolate in a simple shear, then gelation strategy. This can be increased  

to 80 vol% of aqueous agar solution by a shear cooling strategy. At this aqueous fraction, 

the microgel dispersion exhibits a yield stress, which aids the stability against 

sedimentation. The optimum PGPR concentration to stabilise this quantity of water phase 
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was tuned and kept below EU legislative limits. The developed strategy can be used to 

enrich chocolate confectionery with agar microgel particles, hereby reducing the overall 

fat content. These microgels can be swollen with water, or with alcohol containing 

liquids. Rheological profiling and comparison against industry recognised models 

indicates the suitability of these dispersions in commercial products. We believe that this 

technology can provide exciting avenues to be explored in new chocolate confectionery 

products.   

6.5 Experimental 
 

6.5.1 Materials  

 

Agar-Agar White (Buenas, Gem Foods Int., Philippines), Polyglycerol polyricinoleate 

(PGPR-4150, Palsgaard, Denmark), Cocoa butter (VWR, UK), White chocolate, Dark 

chocolate, Milk chocolate (ASDA, UK), Sunflower oil (Costcutter, UK), Rhodamine B 

(Sigma Aldrich, UK), Ethanol (VWR, UK), were all used as received. Water was filtered 

and de-ionised to 18 MΩcm
-1

   

6.5.2 Equipment 

 

Rheological measurements were carried out on a Kinexus Rheometer ultra (Malvern 

Instruments) with active heat exchanger and parallel plate geometries PU40 S0141 SS 

and PL40 C0007 SS. Pre-emulsified dispersions were dispensed on to the heated 40.00 

°C parallel plate geometry. Plate gap size was set at 1.00 mm. Sample temperature was 

monitored and allowed to equilibrate for 5 minutes prior to any measurement. Chocolate 

formulation rheology included a 5 minute pre-shear step at 5 s
-1

 after thermal equilibrium 
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prior to a stepped shear rate/shear stress sequence from 0.1-100 s-1. Casson equation was 

fitted to the data using OriginPro 8 (OriginLab, USA). 

 

Cryogenic Scanning Electron Microscopy analyses were carried out using a Zeiss Supra 

55-VP Field Emission Gun Scanning Electron Microscope with a Gatan Alto 2500 cryo 

transfer system and a Gatan C1002 Liquid Nitrogen cold stage. Molten emulsions at 40 

°C were drawn into a brass rivet through capillary action and frozen in liquid nitrogen 

prior to scalpel fracturing to expose a clean internal structure. The sample was heated to 

−90 °C for 10 minutes to remove ice through sublimation followed by a platinum sputter 

target coating in an argon atmosphere (20 seconds, 10 mA). Imaging was undertaken at 

−120 °C using a 3 kV accelerating voltage with a gold anti-contaminator at −189 °C. 

Images were post-analysed using ImageJ computer software (NIH, US). 

Photographs were taken using a Nikon D5100 fitted with DX AF-S 18-55mm lens. 

DSC measurements were performed on a Mettler Toledo TGA/DSC 1 thermogravimetric 

analyser. Chocolate microgel dispersions were thermally tempered by heating to 40 °C, 

cooling to 27 °C and gradually heating back up to 31 °C (dark chocolate) or 30 °C (milk 

and white chocolate) over a 10 minute period whilst under gentle stirring using a high 

accuracy Peltier heating stage. After which, tempered samples were weighed out into 

aluminium pans on a 5 d.p. balance. Heat flux measurements were started at 5 °C and 

terminated at 40 °C at a rate of 1 K/min under a flow of air. Heat flux was then 

normalised with respect to sample mass. 
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6.5.3 Emulsification protocols 

 

Water in PGPR containing sunflower oil emulsions 

 

PGPR was dissolved in oil, catalytic amounts of Rhodamine B was dispersed in water. At 

varying PGPR concentrations and aqueous phase volumes, the two solutions were hand 

shaken for 30 seconds and left to stand for 24 hours before imaging. 

Agar microgel dispersions in sunflower oil, cocoa butter and chocolate 

 

Agar polymer (2% w/w) and Rhodamine B (cat.) were dissolved in DI water at 95 °C. 

PGPR (1% w/w) was dissolved in oil phase (sunflower oil, molten cocoa butter or 

chocolate). Both solutions were equilibrated at 50 °C before homogenising by rotor stator 

(Ultra-turrax, 24,000rpm, 60 seconds). Samples were either cooled quiescently, or hand 

shaken to below gel point. Aqueous phase volume was adjusted against fat content in the 

chocolate emulsions. All samples were stored under sealed refrigerated conditions for at 

least two weeks prior to thermal analysis. 

Incorporation of alcohol into the chocolate formulations 

 

Chocolate and cocoa butter emulsions were generated in the manner described above, 

with the exception of using a 40/60 (v/v) ethanol: water mixture as the agar aqueous 

phase. 
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Chapter 7 

Conclusions and outlook 

 

In this thesis we have explored two distinct areas in the field of soft matter, the first 

involving the synthesis, characterisation and application of Janus particles (chapters 2, 3 

and 4), and the second; investigating emulsification strategies to disperse large 

quantities of water into chocolate confectionery (chapters 5 and 6). Although both parts 

of the work may seem worlds apart, we have in fact demonstrated how similar scientific 

principles in the field of soft matter can be applied to investigate these systems.  

 

Chapter 2 described a simple optimised one pot procedure to render sub-micron 

amphiphilic Janus particles which demonstrate varied surface active behaviour, 

depending on their relative hydrophobic : hydrophilic lobe ratios. These particles exhibit 

anti-freeze properties, and owing to their non-toxic chemical properties, have the 

potential to be deployed in aqueous based products sensitive to low temperatures. Such 

applications include food stuffs, coatings formulations and organ preservation. In order 

to develop this work into a viable product, investigations into upscaling the synthesis to 

permit high solids content of at least 40 wt% without the formation of higher order 

clusters is required. The anti-freeze mechanism on a microscopic level needs to be 

explored if we are to discover how these particles exhibit anti-freeze behaviour. 

 

Chapter 3 explored the synthesis of hard-soft Janus particles by seeded dispersion 

polymerisation, revealing a surface area dependence of the seed particles to render a 
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clean dispersion of hard-soft Janus particles. In addition, we demonstrated the ability to 

fabricate sub-micron hard-soft Janus particles. Such particles have potential in 

functional adhesive applications and in self assembly as demonstrated in chapter 4. To 

improve the functional performance of these particles, future work into using separate 

reactive stabilisers or monomers to render anisotropic surface chemistry across the two 

hemispheres will improve interfacial selectivity. As we discovered the lower limit of 

required surface area, studies into the upper limit of surface area and hence highest 

solids content possible will define the optimal seed surface area envelope for synthesis  

In addition, seeded dispersion polymerisations from alternative PVP coated particles 

such as  inorganic colloids can be investigated to demonstrate the versatility of this 

technique. 

 

Chapter 4 investigated the self assembly of hard-soft Janus particles as manufactured in 

chapter 3 into colloidal clusters and colloidosomes of controlled geometry. It was shown 

that upon desorption of PVP from the particle surface by dilution, the particles can 

aggregate into clusters of controlled geometry based on surface energy minimisation of 

the soft deformable phase. Hard-soft Janus particles were also shown to assemble over a 

2-D planar interface to form textured colloidosomes. A major improvement to this body 

of work involves the selective clustering of particles to allow only soft-soft interactions 

to occur. A potential strategy towards this aim includes anisotropic surface 

functionalisation of the particle hemispheres through the introduction of surface charge. 

.  
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Chapter 5 discussed the use of colloidal silica and cationic polyelectrolyte chitosan to 

manufacture water-in-oil emulsions for the purpose of reducing the fat content in 

chocolate. Up to 50% of the fat content could be replaced in cocoa butter, white, milk 

and dark chocolate, whilst retaining the desired physical characteristics of the 

confectionery. This technology is not limited to chocolate, but can also be developed for 

use in other foodstuffs and personal care products. Although we present an improved 

methodology to reach the same overall aim in chapter 6, further increasing the water 

content without adversely affecting the desired physical characteristics would enhance 

the potential of this work. In addition, the ability to control formulation rheology by 

adjusting the emulsion microstructure would provide a major benefit to confectionery 

manufacturers without the use of additional emulsifiers. 

 

Chapter 6 presented an alternative strategy to reducing the fat content of chocolate 

through the emulsification of agar solutions into molten chocolate, resulting in microgel 

dispersions which replaced up to 80% of the fat content in chocolate formulations. 

Characterisation of the formulations demonstrate how the dispersions possess the 

necessary physical characteristics required of a chocolate product. The ability to tune 

rheological properties of the formulation through emulsion microstructure, in terms of 

microgel size distribution and gel particle modulus would again prove a major 

advantage to manufacturers adopting this technique. Additionally, translating this 

methodology into other high fat containing foodstuffs, especially those at extremes of 

temperatures i.e. frozen and heated products would provide an exciting challenge that 

can test the boundaries of this technique. 
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Appendix A 

Characterisation of colloidal, interfacial and bulk 

properties 
 

Throughout this thesis, a range of analytical methods have been employed to characterise 

the properties of the interfacial and colloidal systems described. This appendix details the 

theory of some of the techniques used. 

A.1 Gravimetry 
 

Gravimetry provides a simple method to follow total polymerisation conversion as a 

function of time. During a polymerisation, aliquots of reaction mixture are extracted at 

set time intervals and weighed immediately (Mwet) before complete drying and 

reweighing (Mdry). The drying procedure is assumed to evaporate water and remaining 

volatile monomer content. This calculated value is normalised against total theoretical 

solids content (Mmonomer / Mtotal) to yield conversion as expressed in equation 1. 

                (1) 

 

In the case of a seeded polymerisation containing a solid component from the beginning 

(Msolid), equation 2 is used. 

              (2) 
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A.2 Dynamic light scattering 
 

Also known as photon correlation spectroscopy or quasi-electric light scattering, dynamic 

light scattering (DLS) calculates the hydrodynamic radii of sub-micron particulate 

dispersed in a continuous phase 

 

Brownian motion is used to describe the random motion of particles influenced by 

collisions with solvent molecules. This velocity of translational motion is proportional to 

the size of the particle, temperature and viscosity of the medium. The larger the particle, 

the slower it diffuses through solution. DLS calculates particle size by measuring 

translational velocity arising from Brownian motion, using the Stokes-Einstein equation 

shown in equation 3. 

 

           (3) 

 

Where dz is hydrodynamic radius, k is Boltzmann’s constant, T is temperature, η is 

viscosity, and D is diffusion co-efficient. 

 

The measured value of hydrodynamic radius is dependent on how the particle interacts 

with the surrounding media. Therefore factors such as ionic strength of the media, surface 

functionality and particle morphology have a significant impact on the measurement. 

This diffusion co-efficient is calculated by the scattering of an incident beam (He-Ne 

laser of wavelength λ = 633 nm for Malvern Zetasizer Nano ZS) by the particle 
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dispersion at an angle of 173°. The intensity fluctuations of the scattered light are 

measured as a function of time. Two light scattering theories are used to interpret 

intensity fluctuations. At diameters < (λ/10), i.e. ~60 nm in this case, the Rayleigh 

approximation assumes isotropic scattering and intensity is proportional to the diameter 

to the sixth power. However, larger particles with diameters equivalent to the wavelength 

of incident light are described by the Mie approximation, a complex function of maxima 

and minima with respect to angle, size and incident wavelength. 

 

Figure A.1 Schematic indicating intensity fluctuations of backscattered incident 

laser beam as a function of time for a suspension containing large (left) and small 

(particles) 

 

Intensity fluctuations are governed by the velocity of the particles and therefore the 

smaller the particles, the faster the intensity fluctuations as seen in figure A.1. The 

fluctuation signals are compared over a set of time intervals by use of a correlator which 

calculates an exponential decay correlation function . The smaller 

the particles, the quicker the decay function due to the more rapid fluctuation of light 

intensity, indicated in figure A.2.  
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Figure A.2 Schematic of a correlation function depicting a more rapid exponential 

decay in scattering intensity for smaller particles 

A.3 Electrophoretic light scattering 
 

Electrophoretic light scattering measures the diffusion of particles suspended in a 

conductive continuous phase when under the influence of an applied electric field. 

Particulate matter possessing a surface charge will migrate toward the oppositely charged 

electrode in addition to the Brownian motion it experiences, so named electrophoretic 

mobility. This phenomenon is used to ascertain the zeta potential of a particle. 

 

Particles with a net surface charge exist with a locally higher concentration of counter 

ions in their vicinity. This electrical double layer consists of two parts, an inner layer 

where counter ions are tightly bound to the particle surface – the Stern layer, and a more 

diffuse layer where ions are less associated with the particle. Within the diffuse layer 

there exists a notional boundary between ions that move with the particle, and those that 

remain in the bulk, known as the slipping plane as seen in Fig A.3. 
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Figure A.3 Negative  potential as a function of distance for a particle with an anionic 

surface charge in aqueous conditions. Zeta potential represents the negative 

potential at the border of the slipping plane with the bulk solution 

 

The potential at this boundary is the zeta potential (ζ) and is related to electrophoretic 

mobility (UE) by the Henry equation as expressed in equation 4. 

 

                 (4) 

 

Where ε and η are dielectric constant and viscosity of the media respectively. f( a) is the 

Henry function where 
-1

 represents the thickness of the electric double layer (Debye 

length). Combined with a, particle radius, the function expresses the ratio between 

particle radius and electrical double layer. In aqueous polar media, f( a) is taken as 1.5 
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from the Smoluchowski approximation, or as 1.0 in non-polar media from the Huckel 

approximation. 

The value obtained for zeta potential gives an indication to the magnitude and polarity of 

colloidal stability of a particle possesses through electrostatic repulsion. Generally 

speaking, a zeta potential of < ±20mV is not colloidally stable and liable to flocculation, 

± 20-50mV is moderately stable and > ±50mV is deemed very stable. However, zeta 

potential does not measure colloidal stability imparted by non-electrostatic means, such 

as steric stabilisation. Additionally, the zeta potential of a particle is sensitive to changes 

in pH and ionic strength and therefore permits the measurement of colloidal stability with 

respect to pH and salt concentrations. That being said, a zeta potential measurement 

without defining solution conditions is meaningless.  

 

Laser doppler velocimetry is employed in the Malvern Zetasizer nano ZS to calculate zeta 

potential by measuring changes in light intensity fluctuations upon an applied electric 

field on the cell. 

A.4 Electron microscopy 
 

Resolution in a light microscope is limited to the visible wavelengths of light used, 

approximately 400 nm, for the case of a perfectly aligned system. Therefore in order to 

visualise objects smaller than this, electron microscopy provides a powerful solution. 

Using a beam of electrons, wavelength is proportional to acceleration voltage and 

generates a far smaller wavelength than that of light microscopy. For instance an 
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acceleration voltage of 20 kV equates to a photon wavelength of 0.01 nm. Scanning 

electron microscopy was predominately used in this thesis. 

Samples have to be coated in a conductive material typically carbon (by carbon 

evaporation) or sputter coated (by Au, AuPd or Pt target) to stop the accumulation of 

negative charge and deflection of the imaging beam. This however can alter the surface 

topology and give rise to erroneous EDX spectra, 

 

The high vacuum environment and considerable thermal energy generated by the electron 

beam thereby causing beam damage limits the use of standard ‘dry’SEM for systems with 

liquid or low Tg polymeric systems. Cryogenic electron microscopy provides a method of 

imaging in a less destructive environment. Particulate dispersions and emulsions in an 

aqueous environment are loaded  into small metallic rivets and frozen in liquid nitrogen 

before being transferred into a preparation chamber. In a freeze fracture procedure, the 

top section of the ice layer is removed to yield a clean, uncontaminated cross section. The 

sample is then heated to -90 °C under vacuum to sublime a layer of ice, revealing the 

sample. After sputter coating the sample to provide conductivity, samples are typically 

imaged at -120 °C using acceleration voltages of 1-3 kV. Further cooling beyond this 

temperature risks contamination by ice recrystallisation on the sample surface. Higher 

acceleration voltages result in increased charging effects and beam damage. Artifacts in 

cryo-SEM imaging are common. Ice recrystallisation appears as uniform particles of 10-

50 nm diameter over smooth sections of ice. Macro ice crystal growth from slow freezing 

presents as cellular structures especially in hydrogel samples. Structured systems may be 

disturbed by ice crystal growth, high vacuum and sublimation processes. 
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A.5 Rheology 
 

Rheology is the science of flow and deformation. The flowing properties of a material can 

be characterised by viscosity, defined as a material’s resistance (stress) to flow under an 

applied force (shear rate), expressed in equation 6. 

 

              (6) 

 

The flow profile of a material is defined by viscosity as a function of shear rate, of which 

there are three general regimes, graphically depicted in figure A.4. 

 

 

Figure A.4 Viscosity versus shear rate plots demonstrating 3 regimes of material 

behaviour whilst under an applied stress 

 

Few colloidal systems exhibit Newtonian behaviour, and the majority of non-Newtonian 

systems tend to be shear thinning. Newtonian behavior shows no response with respect to 

shear rate. The flow profile of shear thinning behaviour can be further characterised to 

show two types of lower shear rate response. A material may have a yield stress, an ever 



Appendix A: Characterisation of colloidal, interfacial and bulk properties 

 

247 

 

increasing viscosity as the shear rate tends towards zero, indicating a solid like behaviour 

at lower shear rates, i.e. storage and transit. A material may alternatively possess a zero 

shear viscosity, exhibiting a Newtonian plateau and therefore liquid like behaviour as 

shear rate tends towards zero. These two regimes are schematically represented in figure 

A.5. 

 

Figure A.5 Schematics of Viscosity response to an applied shear force in the case of 

a material with a yield stress or a zero shear viscosity 

 

Material properties can also be analysed in the sense of deformation, i.e. their response to 

an applied force prior to flowing and therefore defines the viscoelasticity. Most materials 

are not completely ‘solid’ or ‘liquid’, but exhibit varying behaviour depending on the 

applied force. 

 

Oscillatory analyses provide a route towards characterising viscoelastic behaviour by 

applying a sinusoidal force (shear stress) and measuring the displacement response 

(strain) as seen in figure A.6. Dividing these two components yields material stiffness 

(modulus) as seen in equation 6. 
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Figure A.6 Schematic indicating how viscoelastic behaviour is defined by the 
latency measured between an applied oscillating stress and its measured strain 

response. Diving these two components allows the calculation of complex modulus 
 

             (6) 

 

The phase angle is the temporal latency between applied stress and strain response and 

defines the viscous to elastic ratio of the material; I.e. liquid to solid behaviour. This is 

depicted in figure A.7. 

  

 

Figure A.7 The latency between input stress and measured strain is quantified by 

phase angle 

 

A purely elastic material exhibits an instantaneous strain response to an applied stress 

giving rise to a phase angle of 0°. A purely viscous material however, exhibits a response 

 out of phase with the applied stress, leading to a 90° phase angle. From this we can 
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extract the individual elastic (storage) and viscous (loss) modulus as expressed in 

equations 7 and 8 respectively. Purely elastic and viscous behaviour are depicted in figure 

A.8.  

 

 

Figure A.8 Input stress (red) – measured strain responses (blue) for a purely elastic 

(left) and purely (viscous) material tested by oscillatory rheology 

 

            (7) 

             (8) 

 

If G’ > G”, i.e. δ < 45°, Material is solid like 

If G’ <  G”, i.e. δ > 45° Material is liquid like 

 

Oscillatory measurements are separated into frequency and amplitude dependent, 

referring to the applied stress. Amplitude sweep oscillatory measurements are used to 

determine the stability of a material suspension, i.e. emulsion or hydrogel before 

destructive breakdown into flow. This type of measurement is typically used to determine 

linear viscoelastic region (LVER), and therefore is used to ensure all subsequent tests are 
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conducted within the viscoelastic response domain. Frequency sweep analyses determine 

a fingerprint spectrum, classifying a material into one of three behaviours (figure A.9). 

 

 

Figure A.9 Frequency sweep measurements at fixed amplitude can be used to 

characterise one of three main material behaviours, Viscoelastic solid, liquid and gel  

 

A.6 Droplet shape analyser 
 

The droplet shape analyser (DSA) provides a simple experimental setup to measure the 

contact angle and /or interfacial tension between two or more phases by optically 

measuring the profile of droplets and bubbles. For the experiments outlined in this thesis, 

the DSA was used in the pendant droplet mode whereby a liquid droplet of known 

volume is suspended in an immiscible liquid phase. 

 

When in hydromechanical equilibrium, a droplet suspended in an environment phase will 

assume a characteristic shape based on its interaction with the environment phase and the 

influence of gravity from which interfacial tension can be determined. The Laplace 

pressure relates the internal pressure Δp of the droplet to the principle radii of curvature 

and interfacial tension σ based on the Laplace equation for capillarity (equation 9 and 

figure A.10).  
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Figure A.10 Schematic indicating the dimensions measured on a pendant droplet to 

ascertain interfacial tension 

 

The equation represents a balance between two opposing forces, the surface tension 

attempting to minimise surface area and assume a spherical profile versus the influence 

of gravity elongating the droplet. Assuming only these two forces, the Laplace pressure 

Δp can also be expressed as a linear function of gravity g, difference in fluid density Δρ, 

and vertical height z, from reference plane pressure Δp0, as expressed in equation 10.  

 

In order to accurately calculate interfacial tension, the droplet curve function has to be 

mathematically derived. At the droplet apex, i.e z = 0, R1= R2 = b, therefore  

and since  

 

                    (11) 

 

   (9) 

 

   (10) 



Appendix A: Characterisation of colloidal, interfacial and bulk properties 

 

252 

 

Φ is the angle between drop axis z and the normal of the surface where line intersects 

droplet. Based on equation 11, parameterisation and a set of first order differential 

equations are derived, from which the curve function can be numerically solved.
1
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Appendix B 

Additional data for Chapter 4 
 

 

Figure B.1 Schematic of the experimental setup for the Janus particle turbidity 

measurements. 

 

Figure B.1 indicates the experimental setup for the Janus particle turbidity measurements. 

The radius from the centre of the vial to the rotor centre was fixed at 20 cm. Angular 

velocity was varied from 22-72 rpm at fixed intervals. 
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Figure B.2 Calibration curve used to back calculate absorbance to primary particle 

concentration 

 

Absorbance measurements at 540 nm were taken for set concentrations of poly(styrene) 

particles (pSty seed), poly(butyl acrylate) particles (pBA seed) and 1:1 pSty:pBA Janus 

particles (1:1 JP) and plotted as seen in figure B.2. Evidently, the poly(styrene) seed 

absorbs and scatters more light than poly(butyl acrylate) beads, due to the higher 

refractive index of poly(styrene) compared with poly(butyl acrylate) (1.57 against 1.47 

respectively). As expected, the Janus particle absorbance sits between these values, 

although biased towards the polystyrene value. This is due to the larger size and aspect 

ratio of the Janus particle as opposed to a sphere.  A simple exponential function was 

fitted against these values, which was in turn was used to calculate concentration of 

singular particles from absorbance. We apply the assumption that particles, irrespective 

of size, scatter light equally, and that we may measure flocculation by the decrease in 

initial particle number.
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