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Abstract

Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely
unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep
microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth
metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent
previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new
species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter
pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome,
some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of
polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation
pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen
uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this
microbial community and might explain the high abundance of several genera within this microbiome, including
Campylobacter, Helicobacter and Megamonas.
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Introduction

The domestic chicken occupies a special place in science and

society. It is the most common domesticated animal, the most

important food production animal and the most abundant and

widely distributed bird in the world, scattered across islands and

continents from the Arctic to the Falklands. Chickens provide a

case study in domestication, a process began .7,000 years ago in

South-East Asia [1]. Chickens have also played a key role in the

history of science, from Aristotle’s description of a chick embryo

[2] to Darwin’s account of their domestication [3]. The chicken

has been adopted as a laboratory organism for research in

genetics, embryology, development, immunology, virology and

cancer [4]. The completion of the chicken genome sequence was a

landmark in basic and applied biology [5]. However, the nuclear

and mitochondrial genomes of the chicken represent just a small

part of the gene pool associated with this bird.

Chickens, like other birds, have proportionally smaller intestines

and shorter transit digestion times than mammals, but do not

appear to any less efficient at digestion than their mammalian

counterparts [6]. This may be explained, in part, by the fact that

the chicken gastrointestinal tract is home to a complex microbial

community, the chicken gut microbiota, which underpins the links

between diet and health in this bird. The healthy chicken gut

microbiota plays important roles in assimilating nutrients from

food, in producing vitamins and essential amino acids and in

preventing harmful pathogens from gaining a foothold [7]. The

chicken gut microbiota also acts as source of human infections and

as a reservoir of antibiotic-resistance determinants [8]. An optimal

gut microbiota can increase agricultural productivity, as evidenced

by the ability of antibiotics to promote growth in chicks [9]. This

microbiota is also home to a rich collection of genes, the chicken

gut microbiome, likely to include many sequences of scientific

interest and biotechnological potential.

The chicken gastrointestinal tract consists of a crop, where food

can be stored, followed by a proventriculous or true stomach

which leads to the muscular gizzard, where digesta are ground,

before entering the small and finally large intestine. The most

densely populated microbial community within the chicken gut is

found in the ceca, a pair of blind-ended sacs that open off the large

intestine [10]. At the entrance to each cecum, long intertwining

villi sieve out coarse particulate material, allowing only soluble or

fine particulate digesta to enter the lumen. Whereas the transit

time through the upper intestine is only 2.5 hours, digesta dwell in

the ceca for 12–20 hours, potentially allowing a longer time for

digestion and absorption of nutrients. Various roles have been

assigned to the cecal microbiota in wild birds [10] but its function

in the modern commercial broiler is unclear and, in some

experiments, the caeca have been removed without impairing the
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chicken’s development [10]. However, this microbiota has been

implicated in many processes; nitrogen recycling by breakdown of

uric acid [11], supplying B vitamins to their hosts [12] and

producing essential amino acids required by their host [13].

Particularly relevant to the intensive farming of chickens is the

cecum’s role in digestion of non-starch polysaccaharides NSPs

[14], which are found in the grains used in commercial chicken

feed. Some authors suggest as much as 10% of energy needs is

recovered from a well-functioning cecum [14,15], with chicken fed

high fiber showing a dramatic increase in the size of this organ

[16]. The fermentation of breakdown products of NSPs produces

short chain volatile fatty acids (SCFA), which are absorbed across

the mucosa and catabolised by the host [6]. Such SCFA not only

contribute to the nutrition of the chicken, they also lower pH

which can inhibit acid-sensitive pathogens and improve mineral

absorption [7]. In particular, butyrate has been shown to reduce

Salmonella infection [17] and it is also able to stimulate epithelial

cell growth [18]. Molecular hydrogen produced during the

fermentation process [16] if allowed to accumulate can lead to

inhibition of this process. Therefore, for efficient fermentation this

gas needs to be removed by hydrogen-consuming bacteria [19].

These interactions are poorly understood and therefore the

current study used metagenomics to identify pathways in the

chicken ceca microbiome for NSP breakdown, SCFA production

and hydrogen consumption.

Previous culture-based studies have established that, as in other

vertebrates, the phylums Bacteroidetes and Firmicutes predominated

in the chicken cecal microbiota [20–22]. Attempts at culture-

independent phylogenetic profiling using 16S rRNA gene

sequences have yielded insights into the composition of the

chicken cecal microbiome [23–27] and more recent studies have

shown the domination by Fimicutes, especially of the Clostridiales

order [28]. Similarly, studies using metagenomics, the whole-scale

sequencing of DNA extracted from a microbial community

without target-specific amplification or culture, have provided

glimpses into the function of this complex microbial community

[29,30]. However, most previous studies have examined pooled

samples, thus ignoring variation in individual chickens, and have

not achieved sufficient depth of coverage to provide a global

picture of the taxonomic diversity and functional repertoire of the

whole microbiome. This study aimed to address these points and

analyzed cecal contents from 10 broiler chickens from the same

flock on a commercial farm to an unprecedented depth, and on

one sample produced the largest metagenomic analysis to date in

order to illuminate the function of the cecal microbiota in

chickens.

Figure 1. Summary of 16S analysis. (A) Rarefaction curves of the OTUs clustered at 97% sequence identity for each chicken, based on the
averages of the four replicates per bird. (B) Hierarchical clustering visualizing similarities among cecal samples. The number in each label indicates
each individual chicken and the letter each individual ceca (either A or B). Technical replicates of each ceca were carried out. (C) Bar chart showing the
proportion of reads assigned to the top 5 most abundant OTUs in each chicken.
doi:10.1371/journal.pone.0091941.g001
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Experimental Procedures

Ethics statement
In accordance with the United Kingdom Animal (Scientific

Procedures) Act of 1986, this study did not require a Home Office

project license because no regulated procedures were carried out.

Chickens were humanely killed at a designated establishment by

cervical dislocation, which is an appropriate method under

Schedule 1 of the Act.

Samples collection, DNA extraction and PCR
amplification

Cecal samples were collected from Ross broilers at 42 days,

housed indoors under standard commercial conditions. They had

been fed on a wheat based diet with 5% maize which contained

ionophores but no antibiotics. The feed conversion ratio was

standard for the breed and there was no feed withdrawal period

before the birds were sacrificed. The cecal contents were a typical

brown colour and like toothpaste in constituency. Birds were

euthanized by cervical dislocation and the ceca removed and

transported to the laboratory on ice. The cecal surface was

sterilized with 70% ethanol, a longitudinal incision was made with

a scalpel and the edges pulled back. Contents were removed into a

sterile tube and flash frozen in liquid nitrogen and stored at 2

70uC. DNA was extracted and PCR amplification of 16S rRNA

sequences was performed as described previously [31] using

primers F20 and R19 flanking the variable regions V1–V3 and an

annealing temperature of 55uC. Sequencing of amplicons was

carried out on the Roche FLX Titanium instrument as described

previously [31].

Phylogenetic analysis of 16S rRNA gene sequences
Reads were truncated where flow signals were less than 0.7 and

all sequences were trimmed to 600 flows (around 350 bp in

length). Clustering of the reads into Operation Taxonomic Units

(OTUs) which share 97% identity was achieved using Uparse [32].

Other methods were also attempted (Text S1 and Figure S5). The

following modifications to the standard Uparse pipeline were

carried out. Pre-clustering (-cluster_smallmem) was included,

which clustered sequences exhibiting two or less nucleotide

difference. In addition, an extra chimera checking step (-

uchime_ref) against the default reference database was performed.

The resulting sequences were taken as defining putative opera-

tional taxonomic unites (OTUs) or phylotypes. OTU sequences

were assigned to a taxonomic lineage using QIIME (assign_

taxonomy.py) [33]. In addition, all OTU sequences were BLAST-

searched against the NCBI nr database.

The resultant sequences, frequencies and taxonomic assign-

ments were formatted into an OTU table that was compatible

with the QIIME pipeline [33]. QIIME was used to calculate

Simpsons’ index and construct rarefaction curves. Dendograms

depicting the similarity of bacterial communities were constructed

via the jackknifed_beta_diversity script from QIIME, exploiting

the Bray Curtis method to compute a similarity matrix and then

the un-weighted pair-group method with arithmetic mean

(UGPMA) to cluster the results. Jacknifed support was included

to account for the different sampling depths. A hundred rarefied

tables were generated at sample size that corresponded to the

number of reads in the smallest sample to produce bootstrap

values.

Metagenome sequencing and analysis
DNA extracted from cecum 1A was used for metagenome

sequencing. Library preparation and sequencing on one channel
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of the Illumina MiSeq 2000 were performed according to the

manufacturer’s instructions by Source BioScience, Nottingham

UK.

Preliminary analysis of the data involved blasting 260 000 reads

against the NCBI nr database and obtaining taxonomic from the

output using MEGAN(45). A comprehensive analysis was then

carried out and is summarized in Figure S4a. Initially, the reads

were filtered and trimmed with CLC workbench (CLC bio,

Denmark) using the default settings and reads below 60 bases were

removed. The 81,772,788 reads that remained were assembled

into contigs (environmental gene tags) using CLC work bench

under the default settings. Coding sequences (CDSs) were

predicted using MetaGene [34] and translated into protein

sequences which were searched against the NCBI NR database

using BLASTP. BLAST results were fed into MEGAN [35], which

provided KEGG and SEED annotations as well as assigning a

taxonomic origin using the software’s LCA algorithm. Coverage of

each environmental gene tag (EGT) was assessed by mapping

reads to the EGT using BWA [36].

A taxonomic assignment was made for each EGT whenever .

50% of the CDSs from the EGT had been assigned by MEGAN to

the same taxon, otherwise the EGT’s taxonomic assignment was

scored as unknown. Functional domains were assigned to each

predicted protein using Hidden Markov Models (HMMs). This

was achieved using hmmsearch from HMMER [37] against the

PFAM [38] and TIGRFAMS databases. Signal sequences were

predicted using SignalP [39] and antibiotic resistance assigned

using the ARDB package [40]. Known patterns were identified in

the data using stand alone tool from the PROSITE web site [41].

All the information was stored in a MySQL database (Figure S4A)

for easy retrieval and linking of the different threads of

information.

Binning of EGTs
Z scores for the 256 tetra-nucleotides in each EGT were

calculated as described previously [42]. Pairwise comparisons of

EGT Z scores were performed using the Pearson correlation

coefficient and the results assembled into a matrix. The matrix was

then used to cluster EGTs at various identity levels using the

cluster.classic command from MOTHUR [43]. Initial seed

clusters were obtained at 0.25 identity. Clusters were merged into

putative genomes if they had similar depth-of-coverage and an

identical taxonomic assignment at the family level. The validity of

putative genomes was assessed by determining whether the house-

keeping genes, rpoB, recA, groEL and gyrB were single copy.

Taxonomic status confirmed by when bacterial ‘core’ genes from

Figure 2. Polysaccharide-degrading enzymes in the chicken cecal metagenome. The figure shows each class of enzyme as judged by SEED/
KEGG annotation and GH (see methods) for three types of NSP. The size of pie chart reflects abundance of the enzyme class; numbers indicate
quantity of genes assigned to each bacterial Taxon at the class level.
doi:10.1371/journal.pone.0091941.g002
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the human microbiome project (http://hmpdacc.org/

tools_protocols/tools_protocols.php) were blasted against putative

genomes with a cut off value of 1e210. Completeness of putative

genomes was assessed by comparing the size of the genome with

that of the closest relative in the GenBank.

Functional domain analysis
Most glucosyl Hyrdrolase (GH) domains were detected using

PFAM HMMs as described previously [44]. To detect GH

domains without an HMM, metagenomic protein sequences were

blasted against a set of GH domains described previously [44] with

an e-value cut off 1026. Xylanase, licheninase and cellulase

sequences were detected using predictions of enzyme activities

Table 2. Number of genes containing GH domains in different metagenomes.

Macropoda Termiteb Bovinec Pandad chicken

Cellulases

GH5 10 56 1451 3 151

GH6 0 0 0 0 0

GH7 0 0 1 0 0

GH9 0 9 795 0 14

GH44 0 6 ? 0 41

GH45 0 4 115 0 0

GH48 0 0 0 0 0

Total 10(2) 74(11) 2365(9) 3(1) 206(2)

Endohemicellulases

GH8 1 5 329 2 21

GH10 11 46 1025 2 60

GH11 0 14 165 0 0

GH12 0 0 0 0 0

GH26 5 15 369 0 18

GH28 2 6 472 1 93

GH53 9 12 ? 0 21

Total 28(5) 98(14) 2360(9) 13(3) 213(2)

Debranching Enzymes

GH51 12 18 ? 5 84

GH54 0 0 ? 0 0

GH62 0 0 1 0 0

GH67 5 10 120 2 12

GH78 25 0 1260 2 425

Total 42(8) 18(3) 1381(5) 9(2) 521(5)

Oligosaccharide-degrading enzymes

GH1 61 22 253 101 263

GH2 24 23 1436 1 998

GH3 72 69 2844 18 1275

GH29 2 0 939 1 232

GH35 3 3 158 4 54

GH38 3 11 272 10 73

GH39 1 3 315 9 45

GH42 8 24 374 18 367

GH43 10 16 ? 0 340

GH52 0 3 0 0 0

Total 184(33) 174(24) 6591(23) 162(36) 3647(38)

Sum 557 704 27755 448 9033

CDS 78896 82789 2547270 49844 595178

%GH 0.71 0.85 1.09 0.90 1.52

Data are grouped according to Allgier et al [68]. The numbers in parenthesis are relative to total number of GH containing genes. The data is take from awallaby [55]
btermite [44], cpanda [69] and dbovine rumen [70].
doi:10.1371/journal.pone.0091941.t002
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from the SEED and KEGG annotations, combined with the

appropriate GH domains as specified by the Cazy Website [45]

(Table S6). Gene contexts were visualised in Artemis.

Fermentation to acetate was examined by looking for putative

acetate kinase (TIGR0016) and phosphate acetyltransferase

(TIGR00651) that were adjacent to each other in EGTs. To

investigate fermentation to butyrate, 3-hydroxybuturyl-CoA

dehydrogenase (BCD), models were constructed using HMM,

based on 10 BCD proteins from divergent prokaryotes. Putative

BCD genes were indentified using this model and were further

verified by looking for an adjacent Electron Transfer Flavoprotein

(PF01021). Putative butyryl-CoA:acetate Coa transferase genes

was found by using the conserved sequence AFVDIAKAG [46].

The alternative pathway was identified by adjacent transbutyrylase

(TIGR02706) and butyrate kinase (TIGR02707) genes. Fermen-

tation to propionoate was investigated by searching for the methyl-

Malonyl-CoA:pyruvate transcarboxylase gene using as a SEED/

KEGG annotation of EC 2.1.3.1 and the epimerase gene was

putatively identified using a SEED annotation of EC 5.1.99.1 and

TIGR03081. Methylmalonyl decarboxylase genes were identified

by a SEED/KEGG annotation of EC4.1.1.41 and TIGR01117.

Putative uptake hydrogenases were identified with the patterns

[EGMQS]RXC[GR][IV]CXXX[HT]XXX[AGS]X(0,4)[VANQD]

or [AFGIKLMV][HMR]XX[HR][AS][AFLY][DN]PC[FILMV]X-

C[AGS]XH [47]. The dissimilatory 59 phophosulfate resuctase

(APS) present in suphate reducers was putatively identified if

genes with TIGR02064 and TIG02066 models were adjacent to

each other. The AcetylCoa Synthase beta subunit responsible

for the CO dehydrogenase reaction in acetogens was identified

by the conserved sequences LCGAVSW and PMTSCGC [48].

A search for the methyl-coenzyme M reductase present in

methanogens was performed by looking for adjacent genes

containing TIGR03256 and TIG03257 domains.

Results and Discussion

Microbial diversity in the chicken cecum
From the ten chickens, we recovered 414,070 16S sequences,

which were classified into 699 phylotypes using a 97% sequence

identity threshold. Rarefaction curves suggest that sampling has

reached saturation and that the number of phylotypes in

individual chickens ranges from ,200 to ,350 (Figure 1A).

Sequences from 232 phylotypes showed less than 97% identity to

Figure 3. Gene clusters associated with polysaccharide degradation and utilization. NSP degrading genes were identified by SEED/KEGG
annotation and GH domain (see methods). (A) Gene clusters encoding putative PUL systems from various Bacteroidetes. (B) Gene cluster encoding
putative integrated polysaccharide degradation and utilization systems from various Firmicutes. (C) NSP degrading enzymes associated with
sporulation genes * indicates predicted signal peptide.
doi:10.1371/journal.pone.0091941.g003
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any sequence in GenBank (Data Set S1) and therefore potentially

represent new species. The majority of these OTUs contained

large numbers of reads and hence are unlikely to be due to

sequencing or PCR errors (Figure S1).

Previous studies have shown large inter-chick variation of

microbiota community structure with both T-RLFP [49] and

quantitative PCR [50], so we were curious to determine how

much variation occurs within the same region of the gut. We

analysed biological replicates from each bird (two ceca) and

technical replicates for each sample and found that samples from

the same bird clustered together, with the exception of bird

1(Figure 1B). Furthermore, in all but one case (bird 4), individual

ceca from the same chicken could be differentiated with technical

replicates clustering together. Simpson’s diversity index varied

between ceca and birds, with the highest value (i.e. least evenness)

in bird 1 (Table S1), which was dominated by Megamonas and

Alistipes (Figure 1C).

Curiously, in our samples, Lachnospriceae, Ruminococcaceae and

Bacteroides appear to be less abundant than might be expected from

previous studies (Figure S2). This can largely be explained by the

unprecedented numerical dominance of the class Negativicutes (over

20% of all sequences) and in particular, by the high prevalence of a

single novel species of Megamonas, which accounts for nearly a third

of the reads in one of the birds, chicken 9 (Figure 1C).

The chicken cecal metagenome
We obtained a hundred and twenty million 110-base reads from

the contents of a single cecal sample (cecum 1A). A taxonomic

analysis of a subset of reads (Table S2) showed that, of the reads

that could be assigned to a taxon, .98% were bacterial, with ,

1% assigned to the chicken and fewer than one in a thousand

assigned to archaea, other eukaryotes (e.g. the cereal fungus

Magnaporthe orazae and the alga Chlamydomonas reinharrdii) or to

viruses (bacteriophages and Fowl Adenovirus).

Reads were incorporated into a 337-Mbp assembly, with an N50

of 647 bp and consisting of 648,251 environmental gene tags

(EGTs). From this assembly, we predicted 108,103 complete

coding sequences (CDS) and 595,178 partial CDSs. Of the EGTs

greater than 2 kb about 13% could be assigned to a known species

(Figure S3A), suggesting that the majority of EGTs that we have

recovered represent new species. Seven percent of EGTs could not

even be assigned to a known domain (Figure S3A). The majority

of these showed, on homology searching, just a few weak matches

to phage genes. Since phages largely contain genes with unknown

functions [51] these EGTs probably represent phages.

When the taxonomic distribution predicted from the 16S

analysis is compared with that from the metagenomics data, there

is a discrepancy in the ratio of Firmicutes to Bacteroidetes

(Figure S3b). This is largely due to differences in the ratio of

reads from the genus Alistipes, which belongs to the Bacteroidetes, to

those from Megamonas, which belongs to the Firmicutes, (19.9 and

Figure 4. Pathways and gene clusters associated with propionoate production in the chicken cecal metagenome. (A) Pathways
involved in propionoate production showing the putative genes identified coding for the enzymes involved. Size of pie chart reflects abundance of
the gene class; numbers indicate quantity of genes assigned to each taxon. (B) Operon structure of two Methylmalonyl decarboxylase loci.
doi:10.1371/journal.pone.0091941.g004

Metagenomics of the Chicken Cecal Microbiome

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e91941



Figure 5. Pathways and gene clusters associated with butyrate production in the chicken cecal metagenome. (A) Pathways involved in
butyrate production showing the putative genes identified coding for the enzymes involved. Size of pie chart reflects abundance of the gene class;
numbers indicate quantity of genes assigned to each taxon. (B) Operon structure of two butyryl-CoA:acetate-CoA transferase (BCD) loci.
doi:10.1371/journal.pone.0091941.g005

Figure 6. Potential Hydrogen sinks in the Chicken cecal metagenome. The key genes involved in each pathway that could potentially use
hydrogen are shown. The size of pie chart reflects abundance of the gene class; numbers indicate quantity of genes assigned to each taxon.
doi:10.1371/journal.pone.0091941.g006
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16.3% in the 16S data set; 32% of and 9% in the metagenome),

probably reflecting differential amplification in the 16S PCR.

EGTs were binned according to Z-score, coverage and

taxonomic assignment, allowing us to reconstruct two-dozen

genomes larger than 1Mbp (Table 1). Only five genomes showed

a $99% match within the rpoB gene to sequences in GenBank;

suggesting most of the draft genomes we have recovered represent

new species.

Antibiotic resistance genes were investigated using the ARDB

database pipeline [40] and the results are shown in data S2. The

most common predicted resistance was against tetracycline and

bacitracin. In addition a vancomycin resistance operon in

Enterococcus was detected.

Polysaccharide-degrading enzymes
The grain that forms the basis of most commercial chicken diets

is rich in non-starch polysaccharides, with b-glucans, including

cellulose, predominating in barley and oats and arabinoxylans

abundant in wheat, maize and rye. In comparison to a set of other

known metagenomes, the chicken cecal microbiome contains the

largest proportion of sequences (1.5%) representing glycosyl-

hydrolase (GH) domains (Table 2). Within this microbiome, we

found sequences from over two hundred different non-starch

polysaccharide-degrading enzymes (Figure 2).

In line with the expectation that less soluble, larger polymers are

excluded from the cecum, we found that, in comparison to other

microbial communities, the chicken cecal microbiome (along with

the panda microbiome) harbored the lowest proportion of

cellulases and endohemicellulases (4%), but the largest proportion

of oligosaccharide degrading enzymes (38%) within GH-contiaing

genes (Table 2). In particular, glucanases acting on oligosaccha-

rides (E.C. 3.2.1.4 and E.C. 3.2.1.1) predominate over endoglu-

canases (EC 3.2.1.4 and E.C 3.2.1.8) acting on full-length

polymers of cellulose and xylan (Figure 2). We found no evidence

of any sequences representing the exo-acting cellobiohydralase

activity (E.C. 3.2.1.91) associated with the degradation of

crystalline cellulose [52]. We found a greater abundance of

sequences involved in degradation of xylans than for degradation

of b-glucans in the ceca, which contrasts with the relative

dominance of b glucanase activity over xylanase in the small

intestine [53].

Enzymes involved in xylan and cellobiose degradation are

similarly distributed across three main bacterial classes, Actinobac-

teria, Clostridia and Bacteroidia (Figure 2). However, among

endoglucanases, there appears to be a relative under-representa-

tion of the Actinobacteria, with greater contributions from the

Negativicutes and Lentisphaerae (in particular the species Victivallis

vadensis).

In order to reap the benefits of extracellular non-starch

polysaccharides (NSP) degradation, bacteria exploit multi-protein

cellulosomes, characterized by dockerin motifs, or isolated

cellulases which use carbohydrate binding modules (CBM) to

attach to the substrate [52,54]. However, in our dataset, only 51 of

9498 GH domains were attached to binding modules and only two

were attached to dockerin motifs (Table S3), again suggesting an

absence or paucity of conventional cellulase activity.

Another complex enabling bacteria to exploit NSP degredation,

which are present in Bacteroides, are polysaccharide utilization

systems (PUL), which digest and import the products of

polysaccharide degradation [55]. We found evidence of over 500

such systems in the Bacteriodetes from the chicken cecum, including

representatives of a novel class of PUL recently identified in the

Tammar Wallaby foregut that incorporates b-1,4 endoglucanases

and b-1,4 endoxylanases [55] (Figure 3A).

We found additional genetic evidence of co-ordination of

polysaccharide degradation with sugar transport and utilization

(Figure 3B) – for example, in Megamonas, we found a gene cluster

encoding secreted endo-glucanases, a cellobiose phosphotransfer-

ase system and a 6-phospho-beta-glucocidase, which together

probably form an extracellular complex capable of degrading

NSPs to cellobiose, which is then imported and cleaved to give D-

glucose.

Some endoglucanases were not associated with regulatory genes

or sugar transporters and therefore may not be involved in the

exploitation of NSP for energy. For example, it has been suggested

that some cellulase genes might be involved in biosynthesis of

cellulose [56], as evidenced by their association in operons

with cellulose synthesis genes. We found no evidence of

biosynthetic cellulose activity in the chicken microbiome. Howev-

er, we found two endoglucanase genes in a Clostridiales genome

that were associated with sporulation genes (Figure 3C), which

leads us to speculate that such endoglucanase genes may be

implicated in breakdown of the cell wall or formation of the spore

cortex.

Production of short-chain volatile fatty acids
Short-chain volatile fatty acids (SCFAs), such as acetic acid,

propionic acid and butyric acid, are produced by microbial

fermentation of the sugars released from non-starch polysaccha-

rides and are found in the chicken ceca [57]. SCFAs elicit several

beneficial effects. Absorption of SCFAs across the gut mucosa

contributes to the nutrition of the chicken (6). In addition, SCFAs

can inhibit the growth of pathogens and improve mineral

absorption [17].

We found abundant evidence of acetate fermentation in the

chicken cecal metagenome, with over 30 acetate kinase/phospho-

transferase sequences (Table S4). One of pathways to propionate

fermentation, the Wood-Werkman cycle, is poorly represented,

with two methylmalonyl-CoA carboxytransferase genes found at

low coverage (Figure 4A). However, an alternative propionate

fermentation pathway, which exploits methylmalonyl-CoA decar-

boxylase and methylmalonyl-CoA epimerase appears to be well

represented in this microbial community, with many genes

encoding these enzymes (Figure 4A). As expected, we found that

gene clusters from the Bacteroidetes that encode the alpha subunit

also encode the beta, gamma and delta subunits of methylmalonyl-

CoA decarboxylase together with methylmalonyl epimerase

(Figure 4B). However, similar gene clusters from Megamonas and

Dialister appear to lack genes for the beta subunit, which couples

decarboxylation to export of Na+ across the membrane, and the

delta subunit, which holds the complex together [58]. Instead

these clusters encode a ferredoxin gene, which, we speculate, may

be involved in coupling decarboxylation to electron transport in a

novel propionate fermentation pathway.

The first committed step in butyrate production is the

conversion of crotonoyl-CoA to butyryl-CoA by 3-hydroxybu-

tyryl-CoA dehydrogenase (BCD) [59]. Assignment of this enzyme

to KEGG or SEED categories is hampered by similarities of this

enzyme to acyl-CoA dehydrogenases involved in lipid metabolism.

In butyrate-producing bacteria the BCD gene is found in an

operon adjacent to electron transferring flavoproteins (ETF). The

BCD:ETF complex conserves the energy of the reaction, which is

believed to be used to generate proton-motive force [60].

We searched the chicken cecal microbiome for BCD sequences,

using a protein-sequence-based hidden Markov model, twinned

with evidence from genetic context (co-occurrence with adjacent

ETF genes). This approach yielded nineteen sequences, mostly

from Bacteroidetes and Firmicutes, but also a single sequence from

Metagenomics of the Chicken Cecal Microbiome

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e91941



Escherichia spp (Figure 5A). In one Firmicutes EGT, there was

enough adjacent sequence to reveal genomic context, which

included the classic BDH operon structure [61] (Figure 5B).

However in Bacteroidetes and Escherichia, the order of the BCD and

ETF genes differed and they were not adjacent to other genes in

the butyrate fermentation pathway.

After the formation of butyryl–CoA, butyrate fermentation can

proceed either by butyryl-CoA:acetate:CoA transferase or via the

enzymes phosphotransbutyrylase and butyrate kinase (Figure 5A).

The former pathway is by far the most commonly used by

butyrate-producing bacteria isolated from the human gut [61]. We

detected only four sequences encoding butyryl-CoA:acetate:CoA

transferase in our chicken cecal metagenome. This is in line with

results from a recent study of butyrate-producing bacteria cultured

from chicken ceca [62], where fewer than half the isolates

contained the butyryl-CoA:aceate: CoA transferase gene, leading

to speculation that another as yet unidentified acyl transferase

might substitute for the canonical butyryl-CoA: acetate CoA

transferase in some butyrate fermentation pathways. We found

nineteen sequences corresponding to phosphotransbutylase and

butyrate kinase, including seven from the Bacteroidetes. As

Bacteroidetes appear to contain an energy conserving BCD/ETF

complex and phosphotransbutylase/butyrate kinase genes, we

speculate that they might have the potential to produce butyrate.

In this context, it is worth noting that, although butyrate

production is not generally associated with Bacteroidetes grown in

culture, butyrate has been shown to be produced by Bacteroides spp,

in colonized germ free mice [63].

Hydrogen sinks within the cecal microbiota
One of the goals of metagenomics, and of microbial ecology in

general, is to explain why some taxa are so much more abundant

than others in a given microbiology community. We speculated

that high species abundance might be explained in the chicken

cecal microbiome by the need for hydrogen sinks within this

ecosystem.

During fermentation, NADH formed through glycolysis needs

to be recycled to NAD+. This can be achieved through reduction

of pyruvate or acetyl CoA to SCFAs. Fermentation to acetate

produces the most ATP by substrate level phosphorylation, but

this route allows little NADH to be recycled. Hydrogenases

provide an alternative route for NADH recycling, but one that

leads to the production of molecular hydrogen [47]. Hydrogenases

are inhibited by high levels of their own product, so without a sink

for hydrogen within an ecosystem, accumulation of hydrogen leads

to reduced fermentation and/or less energy-efficient fermentation

to substances such as ethanol, butyrate and propionate [19,64].

The presence of bacteria that can act as a hydrogen sink not only

results in a switch to the more productive fermentation to acetate,

but also increased production of SCFAs which bring benefits to

the host.

In some enteric microbiotas, methanogens act as major

consumers of hydrogen. However, in our dataset, we found no

evidence of potential methanogens (members of the Euryarchaeota),

even though they have been reported in chicken cecal samples in

other studies [65]. Sulfate reducers are also potential hydrogen

consumer, but we found no evidence of Desulfovibrio spp. in our 16S

and metagenomic data. Acetogenesis, the reduction of CO2 to

acetyl-CoA, provides another potential hydrogen sink, but we

detected only six acetyl CoA synthase genes, (from the Ruminococcae

and Lachnospiraceae) in our dataset (table S5 and Fig. 6).

Bacterial uptake NiFe hydrogenases link the oxidation of H2 to

the reduction of anaerobic electron acceptors such as NO3
2,

SO4
2, fumarate or CO2 [47]. Bacteria that possess these enzymes

(such as Wollinella and Campylobacter) could potentially provide a

significant hydrogen sink capable of facilitating acetate production

in microbial ecosystems [66,67]. We found sequences for twelve

uptake hydrogenases in our chicken cecal metagenome (Figure 6

and table S5), in several of the most abundant genera in this

ecosystem (Megamonas, Helicobacter, Campylobacter). We speculate that

the high abundance of these genera in the chicken cecum might, at

least in part, be explained by their potential to remove hydrogen,

which is likely to benefit not only the other members of the

microbial community, but also, indirectly, the host, by improving

recovery of energy from food.

Supporting Information

Figure S1 Relationship Between Size of OTU and
Percentage Identity to Genbank Sequences. Graph show-

ing relationship between the number of reads in an OTU and its

percentage identity to the closest match in the NCBI nr database.

Those OTUs showing limited homology still were comprised of

many reads hence increasing the validity of the OTU.

(TIF)

Figure S2 Summary of Previous Studies on the Chicken
Metagenome. Graph showing the relative amounts of different

taxa within the chicken ceca from a number of different studies

using different techniques (1). J.H.A. Apajalahti and A. Kettunen

p. 124–126 in G. Perry, ed. Avian Gut Function in Health and

Disease,2006. (2). W.E. Holben, K.P. Feris, A. Kettunen and J.H.A

Apajalahti Appl. Envron. Microb, 70:2263–2270, 2004. (3). J.R.

Lu, U. Idris, B. Harmon, C. Hofacre, J.J. Maurer and M.D. Lee.

App. Environ. Microb. 69:6186–6823, 2003. ().G.R. Siragusa and

M.G. Wise J. Appl. Microb. 102:1138–1149, 2007. (5). M.D.

Cressman, Z. Yu, M.C. Nelson, S.J. Moeller, M.S. Liburn and

H.N. Zerby. Appl Environ Microbiol 76:6572–6582 2010. (6). J.L.

Danzeisen, H.B. Kim, R.E. Isaacson, Z.J. Tu and T.J. Johnson.

Plos One 6:e27949. 2011 (7). This study.

(TIF)

Figure S3 Taxonomic Assignment of Metagenomic
data. (A) The percentage of each EGT that could be assigned

to a given taxonomic level. EGTs were assigned taxonomy based

on the protein coding sequences they contained (see methods). (B)

Comparison of phylogenetic assignment from pyrosequenced 16S

amplicons and EGTs. (i) 260 000 110 bp reads assigned by

MEGAN using the Least Common Ancestor algorithm. (ii)

Taxonomic assignment of protein sequences from the assembled

metagenomic data, abundance corrected by coverage. (iii)

Taxonomic distribution of the genomes, abundance corrected by

coverage and size of genome. (iv). Taxonomy of 16S, assigned

using the rdp database project taxonomy.

(TIF)

Figure S4 Organization of the Metagenomic Data. (A)

Flow diagram of the procedures used to analyse the metagenomic

data. Grey boxes show the programs that were used for each step

(B) Database scheama showing the structure of the MySQL

database holding the metagenomic information.

(PDF)

Figure S5 Comparison of OTU pipelines. (A) Rareaction

curves for each OTU picking method. The four reps for each

chicken were merged (i) Mothur (ii) Custom (iii) Uparse. (B) PCA

plots showing differences in OTU composition of each chicken

(colour) when analysed by different pipelines (circle Uparse,

triangle custom method and square Mothur). OTUs were merged

according to taxonomic assignment by the RDP classifier at the
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family level. The axes represent the two principal components

which are responsible for the most variation in the samples.

(TIF)

Table S1 Summary of the reads obtained for each of the
10 chickens.
(DOCX)

Table S2 Broad Taxonomic assignment of a subset of
reads from the chicken metagenome.
(DOCX)

Table S3 Genes which contain both GH motifs and
carbohydrate binding motifs (CBMs) or dockerin mo-
tifs.
(DOCX)

Table S4 Predicted acetate kinase/phosphotransferase
loci present in the chicken metagenome.
(DOCX)

Table S5 Predicted Acetyl CoA synthase genes and the
large subunit of uptake hydrogenases present in the
Chicken metagenome.
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