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Establishing cooperation and protecting individuals from selfish and malicious behaviour are key goals in

open Multi-Agent Systems (MAS). Incomplete information regarding potential interaction partners can undermine

typical cooperation mechanisms such as trust and reputation, particularly in lightweight systems designed for

individuals with significant resource constraints. In this paper, we (i) propose extending a low cost reputation

mechanism to use gossiping to mitigate against the effect of incomplete information, (ii) define four simple aggre-

gation strategies for incorporating gossiped information, and (iii) evaluate our model on a variety of synthetic and

real-world topologies and under a range of configurations. We show that (i) gossiping can significantly reduce the

potentially detrimental influence of incomplete information and the underlying network structure on lightweight

reputation mechanisms, (ii) basing decisions on the most recently received gossip results in up to a 25% reduction

in selfishness, and (iii) gossiping is particularly effective at aiding agents with little or no interaction history, such

as when first entering a system.
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1. INTRODUCTION

Typical approaches to increasing levels of cooperative behaviour in decentralised

open Multi-Agent Systems (MAS) have involved biasing interactions towards coop-

erative individuals. Such mechanisms serve two purposes: (i) protecting agents from

other individuals that are likely to engage in selfish behaviour and (ii) increasing the

aggregate welfare of the population. The structure of many MAS domains implicitly

creates incentives for selfish behaviour, such as free-riding in BitTorrent and other

P2P networks (Ruberry and Seuken, 2012), or energy conservation in wireless sensor

networks (Galstyan et al., 2004).

Trust and reputation mechanisms, which incorporate observations and individual

experience to aid decision making, introduce this bias into agent partner selection

through direct and indirect reciprocity (Nowak and Sigmund, 2005). An agent who

has cooperated in the past is more likely to receive reciprocal cooperation from

others. Direct reciprocity can be thought of as a form of trust and indirect reciprocity

as a form of reputation. In domains in which the identity of interaction partners is

known, trust and reputation can facilitate significant increases in aggregate welfare,

but its efficacy is directly related to the quality and quantity of information avail-

able about individuals in the population (Sommerfeld et al., 2008). Trust, which

is typically assessed using direct observations of behaviour (Huynh et al., 2006;

Pirzada and Mcdonald, 2006), can only be effective once historical interaction data

is available, and reputation, which relies on observation or propagation of third-

party agent behaviour, may be undermined by incomplete information, in which

agents make decisions based on unrepresentative sets of observations. Direct and
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indirect reciprocity involve feedback effects: a cooperative action can cause many

subsequent cooperative actions, and vice-versa. Consequently, decisions made on

incomplete information may be incorrect, in the sense that given full information

the agent would have acted otherwise, and these mistakes will be amplified by the

feedback of reciprocity.

Network topology also plays a significant role in the dynamics of trust and

reputation mechanisms. By definition, agents are constrained to interact only with

their direct neighbour set, and interaction behaviour can only be observed by those

directly connected to the participants. Various network properties can consequently

influence the efficacy of trust and reputation mechanisms. For example, in areas

of high clustering individuals are more likely to observe the behaviour of agents

that they subsequently interact with (and vice-versa, such that individuals in low

clustered regions are less likely to have observed potential interaction partners). Net-

work structures constrain information propagation, which in turn affects the efficacy

of mechanisms that rely on the transmission of relevant information. The specific

network topology may therefore be detrimental (e.g. if the constraints lead to infor-

mation being incomplete or out-of-date) or beneficial (e.g. if the network supports

reliable and efficient throughput) for trust and reputation mechanisms. Research has

shown that networks can support isolated communities of cooperators (Nowak and

Sigmund, 2005) and the role of network structure in facilitating information propa-

gation is well studied (e.g. Glinton et al. (2010); Newman (2003); Wang (2003)).

Trust and reputation mechanisms are thus highly suited to open MAS domains

such as Mobile or Vehicular Ad-hoc Networks (MANETs and VANETs respec-

tively), and present a useful setting for investigating the impacts of incomplete in-
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formation and network structure on levels of emergent cooperative behaviour. In

this paper, we empirically analyse the conditions under which mechanism efficacy

is reduced and demonstrate a possible mechanism, in the form of gossiping, to

mitigate the effects of incomplete information and exploit the ease of information

transmission in typical network structures. Specifically, we show that incomplete

information can result in inaccurate reputation assessments that subsequently reduce

cooperation, and that the underlying network structure significantly influences emer-

gent behaviour, both positively and negatively depending on the configuration. We

supplement trust and reputation with gossiping, which exhibits low space and time

complexity, using one of four aggregation rules. We show that gossiping can reduce

selfishness in the population by up to 25%, and is particularly effective on real-world

network topologies.

2. BACKGROUND

Trust and reputation are highly successful mechanisms for supporting cooper-

ative and coordinated behaviour (Josang et al., 2007; Nowak and Sigmund, 1998;

Pirzada and Mcdonald, 2006; Ramchurn et al., 2005). Broadly speaking, trust is a

subjectively held belief that another individual will reciprocate given an opportunity

to defect and receive higher payoff, and supports cooperation through direct reci-

procity, namely the notion of “you scratch my back and I’ll scratch yours” (Nowak

and Sigmund, 2005). Reputation is typically further defined as a socially accepted

trust assessment for a given individual (Josang et al., 2007), and supports cooperation

through indirect reciprocity. Trust often requires significant historical interaction
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data for accurate assessments, and instantiations often make use of multiple di-

mensions of information (Huynh et al., 2006; Sabater et al., 2006). Reputation is

a key mechanism when individuals have insufficient direct interaction history with

which to assess a partner’s trust value, and indirect reciprocity has been shown to

be a greater force in encouraging cooperative behaviour than direct reciprocity in

domains with low probability of repeat interaction (Bravo and Tamburino, 2008).

Trust and reputation systems that have exhibited the most promising results also

tend to be the most complex architecturally (Huynh et al., 2006; Sabater et al.,

2006). Given the properties of typical open MAS domains (including potentially

limited computational and communication resources), such mechanisms may not

be as suitable as mechanisms with less complex requirements. However, while ro-

bust systems tend to incorporate more complex architectures, systems have been

demonstrated that are remarkably simple and support cooperative behaviour in low-

overhead environments, such as image scoring (Nowak and Sigmund, 1998), as used

in this paper, or the ad-hoc network oriented model of Pirzada and Mcdonald (2006).

Despite reputation’s simplicity and effectiveness in supporting cooperative be-

haviour in highly decentralised systems, it still requires agents to obtain a sufficient

amount of information regarding individuals in order to make accurate assessments.

While this is easier than in pure trust systems, since the information can be gathered

through observation or propagation of information through the social network, we

can identify two situations in which this information may be hard to completely

acquire: (i) when agents have just joined a system and there is little information

regarding their history, and (ii) when the rate of interactions is high enough that
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agents cannot observe a complete set of interactions for potential partners. These

situations are the focus of this paper.

Nowak and Sigmund (N&S) introduced and extensively investigated image scor-

ing, a simple instantiation of reputation with low computational and bandwidth

overheads based on the notion of indirect reciprocity, in which cooperation emerges

without requiring subsequent interactions between the same individuals (Nowak and

Sigmund, 1998, 2005). This property is key to its suitability in open decentralised

systems. Each agent maintains an image score for every individual they encounter,

either through (i) direct interactions or (ii) observing the interactions of neighbours.

Cooperative actions increase the image score by one, and selfish actions decrease it

by one. When deciding whether to cooperate or not, an agent compares its strategy,

an integer, with the perceived image score of the potential partner (if no data is

available, it is assumed to be zero). If the image score is greater than or equal to the

strategy then the agent cooperates. We describe the image scoring model in more

detail in Section 3.

N&S found that cooperation emerges, but is often cyclic as non-cooperative

agents invade populations of unconditionally cooperative agents and gain higher

payoffs, causing the population to be subsequently dominated by conditionally co-

operative agents, who are then superseded by unconditionally cooperative agents. In

the setup used by N&S, agents are randomly chosen and paired from the entire pop-

ulation for repeated rounds, where a round is a single generation of agents engaging

in one or more interactions. The total number of interactions per round (m) is at most

one order of magnitude larger than the number of agents in the population (n) in the

configuration used by N&S.
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While image scoring is effective at supporting cooperation, we can identify sit-

uations in which it might be undermined by agents having incomplete or insuf-

ficient information regarding potential interaction partners. Firstly, if there are a

large number of interactions per round compared to the number of agents (i.e. a

high ratio of m/n), agents may only have observed a proportion of the interaction

history of a potential interaction partner. If the observed sub-set of interactions is

unrepresentative, this may result in a decision that the agent would not have taken

given complete information. Similarly, if there are relatively few interactions (i.e. a

low ratio of m/n), or agents have only recently entered the system, then an agent

may have insufficient information with which to make an accurate decision. In this

paper, we evaluate the extent to which these hypotheses are correct, and propose

gossiping as a mitigating solution.

Gossiping algorithms, initially introduced by Frieze and Grimmett (1985), per-

form data aggregation and spreading in distributed systems. Loosely modelled on

the dynamics of human gossip, they are effective at spreading information through

networks, and have low space and time complexity and minimal bandwidth re-

quirements when compared to traditional spreading mechanisms (Fernandess and

Malkhi, 2007; Kempe and Kleinberg, 2003). They have previously been applied to

constrained trust and reputation problems (Bachrach et al., 2008; Ramchurn et al.,

2004; Zhou and Hwang, 2007), and can efficiently aggregate trust values without the

need for complex data structures.

Gossiping is an attractive solution to the problems inherent in local perception

of information by agents. Sommerfeld et al. (2007) have extensively investigated

gossiping in humans and show that gossiping of information is an effective substitute
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for direct observation. Subsequent work by Sommerfeld et al. (2008) demonstrates

that gossip is robust to propagation of inaccurate information, and they conclude that

humans use a majority rule: if the majority of gossips are positive, then the individ-

ual forms a positive opinion of the subject. The low overheads, high robustness to

inaccurate information, and ability to efficiently spread and aggregate information in

decentralised domains make gossiping highly applicable to our model.

3. INCORPORATING GOSSIPING INTO IMAGE SCORING

We adopt the image scoring model introduced by N&S, using their original setup

as follows: each agent i is associated with a strategy ki, chosen uniformly at random

in the range [−5, 6]. Each agent maintains an image score Ii for each agent i it has

observed interacting. Image scores are initialised at 0 and constrained to the range

[−5, 5]. Each round m pairs of agents are randomly chosen from a population, with

one agent in each pair being designated as the donor and the other as the recipient.

If the donor’s strategy is less than or equal to its perception of the image score of the

recipient, kdonor 6 Irecipient, then it confers a benefit b on the recipient at a cost c to

itself. We adopt the values of b = 1, c = 0.1 used by N&S. An agent assumes an

image score of 0 if it has no data on the recipient. If the donor donates (cooperates),

then the observers of that interaction increase their perception of the donor’s image

score by one (the recipient’s image score remains the same). If the donor does not

cooperate, the perceived image score of the donor as held by the observers is reduced

by one. If the image score is moved out of the range [−5, 5] as a result of the update,

then it is kept at the limit of -5 or 5 as appropriate. An agent’s strategy ki thus
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represents the degree of selfishness of potential interaction partners that the agent is

willing to tolerate and still act cooperatively.

N&S consider both complete and partial observability of interactions. In the

partial observability settings, N&S allow a set of agents (10 in their formulation),

chosen at random, to observe each interaction. We model partial observability using

an observability parameter, o, in the range [0, 1], as the probability of each neighbour

being selected to observe. If Ni denotes the set of neighbours for a given agent i,

then, on average, o×|Ndonor∪Nrecipient| observers are selected at random to observe

for each interaction. Observations are perfect, in that the interaction is observed fully

without noise. Given n = 100, o = 0.1 is equivalent on a completely connected

topology to the original setup of N&S. Observability, in the static connection topolo-

gies investigated in this paper, can be viewed as a simple abstract model of typical

resource constraints, or hardware or communications failure.

After m interactions have been performed, offspring are generated in proportion

to an agent’s final payoff. If agent i has fitness fi, where fi is equal to its net benefit

(the sum of the costs incurred and benefits received), then F is the net population

benefit such that F =
∑n

i=0 fi. An agent will produce n×fi
F

offspring. The strategy

of the offspring is an exact copy of the parent strategy, with a small probability µ

of mutation such that the strategy is set to a random value (we adopt the value of

µ = 0.001 used by N&S). N&S found that strategies do not converge to a single

value except for when o = 1 and µ = 0, but instead go through cycles as selfish

agents become dominated by conditionally cooperative agents (called discrimina-

tors by N&S), who only help other cooperative individuals. These agents are then
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superseded by unconditionally cooperative agents (also called altruists by N&S),

who are subsequently invaded by selfish agents (called defectors by N&S).

N&S characterise the strategy space as: k 6 0 denotes cooperation, since agents

will interact with most other agents, and k > 0 denotes defection (also called selfish

by N&S). We further divide the cooperative strategy space into unconditionally co-

operative (−5 6 k 6 −2) and conditionally cooperative (−2 < k 6 0). We describe

interaction choices as follows. Interactions in which an agent cooperated based on

its perceived image score of the recipient, when it should have defected based on

the actual image score, or vice-versa, are misclassified interactions. An interaction

is called an incorrect cooperation if an agent cooperates (i.e. confers a benefit on an

individual) when it should have defected (given complete information). An incorrect

defection is an interaction in which an agent defects (i.e. does not donate to the

recipient) when it should have cooperated (given complete information). The number

of misclassified interactions is the sum of the incorrect cooperations and incorrect

defections. Incorrect defections are undesirable since they reduce the donor’s image

score, leading to fewer subsequent donations to the donor. Incorrect cooperations

are undesirable since they allow selfish agents to gain higher payoff, and become

more likely to be reproduced. The absolute value of an agent’s image score that is

maintained (to allow calculation of misclassified interactions) includes any incorrect

cooperations or defections that that agent has made — it is the result of an agent’s

actual actions rather than how they should have acted given complete information.

Note that in this paper we do not investigate a corresponding “conditionally self-

ish” delineation of strategies between 0 < k 6 2. With cooperation, it is useful to de-

termine whether individuals are conditionally cooperative or not since these groups



10 COMPUTATIONAL INTELLIGENCE

are vulnerable to invasion by different strategies (i.e. unconditional cooperators can

be exploited by selfishness, and conditional cooperators can be outperformed by

unconditional cooperators). While there may be similar vulnerable configurations

for conditionally selfish agents, in this paper we focus on reducing the ability of any

selfishness to survive in the population. The strategy space might alternatively be

separated into ‘selfish’, ‘cooperative’, and ‘conditional’ areas, where a ‘conditional’

strategy would imply −2 < k < 2. While it would be interesting to analyse results

according to this schema and determine if it facilitates any additional insight into the

dynamics of our model, it is beyond the scope of this paper and we leave it for future

work.

Our simple gossip mechanism spreads perceived image scores as follows: each

agent maintains a queue of received gossips, which are processed in a separate

gossip phase. After an interaction, each observer starts a gossip with probability

ogp (observer gossip probability) by sending a gossip packet to a randomly chosen

neighbour. The probability of any given agent starting a gossip thus depends both

on o, the probability it is chosen as an observer, and on ogp, the probability that an

observer starts a gossip. Each gossip packet contains the image score of the donor,

as perceived by the gossip starter, the unique ID of the donor, the unique ID of

the gossip starter, and a time to live (TTL). In this paper our focus is on the effect of

gossiping on situations of incomplete and insufficient information, and so we assume

that gossips are accurate, however it is important to note that gossiping has been

shown to be resilient to inaccurate information, such as untrustworthy or malicious

agents might provide (Sommerfeld et al., 2008).

Every gossipRate interactions, there is a gossip phase. Each agent in turn up-
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dates their image score values for each agent that they have received gossips about

using some update rule, and propagates the gossip with TTLt+1 = TTLt − 1 to a

single randomly chosen neighbour that does not yet have the gossip until TTL = 0.

It is assumed that an agent can check if a neighbour has received a gossip already.

We propose four update rules that gossip receivers can use to incorporate re-

ceived gossip information.

(1) Aggregate Average (AA): The agent replaces its perceived image score for

agent i with the average of its previous perceived score for i and the values

contained in all the received gossips concerning i. If Gi,a denotes the set of

gossips received by agent i about agent a and G(j)i,a denotes the jth gossip

received by i regarding a, then the new image score held by i after applying AA

is,

Ii,a,t+1 =

Ii,a,t +
|Gi,a|∑
j=1

G(j)i,a

|Gi,a + 1|

(2) Average Replace (AR): The agent replaces its perceived image score for agent i

with the average of the values contained in all received gossips concerning i,

Ii,a,t+1 =

|Gi,a|∑
j=1

G(j)i,a

|Gi,a|

(3) Majority Replace (MR): The agent replaces its perceived image score for i with

the median value contained in all received gossips concerning i. As noted above,

it is thought that this is approximately how humans process gossip (Sommerfeld

et al., 2008),

Ii,a,t+1 = median(Gi,a)



12 COMPUTATIONAL INTELLIGENCE

(4) Most Recent (MRec): The agent replaces its perceived image score for i with

the most recent value received concerning i,

Ii,a,t+1 = G(|Gi,a| − 1)i,a

We summarise the notation used in our model in Table 1.

[Table 1 about here.]

4. EXPERIMENTAL SETUP

We model two primary situations in which incomplete information may under-

mine the efficacy of reputation: (i) when there is a very low probability of having

observed any interactions, such as when first entering a system, and (ii) when there

is a very low probability of observing a complete set of interactions. We model

situation (i) by using a low ratio of interaction rate to population size, and situation

(ii) by using a very high ratio of interaction rate to population size. N&S used

parameters of n = {20, 50, 100} and m = {125, 200, 300, 500, 1000}, which is

sufficient for modelling situation (i) but limited for situation (ii). To investigate (ii),

we simulated m = {1000, 5000, 10000, 20000, 50000} for n = 100, i.e. we consider

a maximum ratio of m/n = 500. We use o = 0.1, µ = 0.001, b = 1, c = 0.1,

and, unless otherwise stated, we use an observer gossip probability ogp = 1.0 and

gossipRate = 1. Since the diameter of the synthetic networks we generate in our

simulations is typically less than 5 we use a TTL of 5 for both the synthetic networks

and real-world network samples. We performed a number of simulations scaling the

population to n = 1000 to allow us to test the effects of group size.

We situate agents on a variety of network structures. We replicate the com-
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pletely connected topology used by N&S, and implement random (such that each

pair of nodes is connected with probability p), scale-free and small-world synthetic

networks1. Scale-free networks are generated using the Eppstein and Wang (2002)

algorithm and small-world networks using the generation algorithm proposed by

Kleinberg (2000). Additionally, we use 8 networks sampled using Breadth-First

Search (BFS) from the Enron email dataset and the arXiv general relativity section

collaboration network2 to corroborate our results on networks that are structurally

closer to those found in the real world. BFS is used as a sampling method as,

although it is known to be biased towards high degree nodes, it accurately retains

the local network structures within the sample (Gjoka et al., 2010).

Our investigation focused on two main metrics: the strategy distribution for

the population and the numbers of misclassified interactions. As discussed in Sec-

tion 2 cooperation is cyclic with non-cooperative agents invading populations of

unconditionally cooperative agents leading to a temporary reduction of cooperation

before the population recovers. The state of the population at an arbitrarily chosen

generation (e.g. the final generation of t = 10000) is unlikely, therefore, to provide a

representative view of the simulation, and so we adopt the methodology of N&S of

taking a sample over many generations (Nowak and Sigmund, 1998, 2005). Specif-

ically, the results given are averaged over the course of the simulation for 20 runs

with each parameter configuration, giving a standard deviation ranging from 1–14%.

We used t = 10000 generations of evolution.

There are a number of significant differences between the experiments performed

1Generated using the Java Universal Network/Graph Framework http://jung.sourceforge.net/
2Both datasets are taken from http://snap.stanford.edu/data/
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by N&S and our configuration. N&S tested only a completely-connected network

topology, whereas we use a number of synthetic and real-world networks with which

to evaluate the model. Secondly, we extend the number of interactions per round

significantly, from N&S’ maximum of 1000 to 50000. N&S experimented with

various population sizes from 20 to 100. The majority of our experiments are with

n = 100 agents, but we also perform experiments with n = 1000 to test the effects

of population size.

5. RESULTS AND DISCUSSION

In this section we present our results, beginning with the effects of incomplete

and insufficient information, followed by the effects of population size, and finally

the effects of gossiping and the parameters that define how it operates.

5.1. Incomplete information due to high interaction rate

[Figure 1 about here.]

Initially, we evaluate the effect of high ratios of m/n (i.e. the number of interac-

tions per round / population size). As discussed above, a high interaction rate relative

to the number of agents increases the probability that agents will have incomplete

information regarding potential interaction partners. Figure 1(a) shows the effect on

the population strategy distribution of varying m, the number of interactions each

round, using n = 100 agents, o = 0.1 (i.e. an average of 10 agents observing

each interaction), b = 1, c = 0.1, µ = 0.001, and a fully-connected network. This

is equivalent to N&S’ original setup. The society is highly cooperative at m =
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1000 (i.e. m/n = 10), with less than 10% of agents adopting selfish strategies (i.e.

k > 0). Figure 2 shows the average strategy over time under this configuration,

with the horizontal lines delineating selfishness (above the top line), conditionally

cooperative (between the two lines), and unconditionally cooperative (below the

bottom line) strategies. We can clearly see the cyclic behaviour noted by N&S. At

m = 1000, 32 interactions were misclassified per round on average, or 3.2%. As

m increases, there are increases in both the levels of selfishness and the proportion

of misclassified interactions. Figure 1(b) plots the percentage of interactions that

were misclassified over the entire simulation. When m = 50000 (i.e. m/n = 500),

40% of the population has adopted a selfish strategy and 5.7% of interactions are

misclassified (i.e. an average of 2850 per round).

[Figure 2 about here.]

The proportion of misclassified interactions falls slightly between m = 20000

and m = 50000, despite an increase in selfishness. We believe that the strategy

distribution of the population is an important determinant of levels of incomplete

information. Recall that image scoring, through indirect reciprocity, induces a feed-

back effect in which cooperative actions cause subsequent cooperative actions, and

vice-versa for defection. In a highly cooperative society, a choice by a donor to

cooperate is likely to be correct (due to the high numbers of cooperators) even if

made on the basis of highly incomplete information. The same is true, vice-versa,

for defecting societies. However, when the strategy distribution is mixed, uncertainty

regarding a recipient’s strategy is higher, and consequently choices made on the basis

of incomplete information are more likely to be incorrect. This is evident in the data
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for m = {20000, 50000}, in which selfishness rises by 9%, while the proportion of

misclassified interactions drops by 1%.

[Figure 3 about here.]

Figure 3 separates the misclassification of cooperative and defective actions for

the data in Figure 1(b). At m = 1000, 0.24% of cooperative actions are incor-

rect — in all interactions in which a donor donated, it was the same decision that

an individual would have taken given complete information 99.76% of the time.

Conversely, of all the interactions in which the donor defected, 26.4% would have

been cooperative had the donor had complete information (i.e. the agent made the

same decision as they would have given complete information only 73.6% of the

time). This corroborates the discussion above, since the society is more than 90%

cooperative. As m rises, the proportion of defections that are misclassified rises (to

a peak of 58%) and then falls, as the rising proportion of selfish agents reduces

the probability that an interaction partner is cooperative, and subsequently that the

decision to defect is incorrect.

These results demonstrate two relationships: where there is a high interaction

rate the proportion of misclassified interactions and selfish strategies both increase

as m/n increases. We believe that incomplete information is a key component of the

mechanism by which the increasing interaction rate results in reduced support for

cooperative behaviour.
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5.2. Network structure

It is also important to investigate the relationship between network structure and

the impact of incomplete information. We initially investigate random, scale-free

and small-world networks. Random networks are a useful middle ground between

completely connected networks and scale-free or small-world networks. Scale-free

and small-world networks are known to model features of networks found in the

real world (Albert and Barabási, 2002). To explore the effect of network topology

we modify the interaction model so that instead of pairs of agents being chosen

randomly, the donor is now selected at random from the population and the recipient

is chosen at random from the donor’s neighbour set.

[Figure 4 about here.]

[Figure 5 about here.]

In random networks, each pair of agents is connected with probability p. As-

suming an undirected graph and p = 0.1, n = 100, each agent is, on average,

connected to 4.95 neighbours. Given that sparse connectivity is a feature of many

open MAS, especially VANETs (Ott and Kutscher, 2004), it is useful to evaluate the

effect of varying p. Figure 4(a) plots the strategy distribution for the configuration

in Figure 1(a), in random networks for various connection probabilities. Selfishness

dominates at p = 0.01, since there are so few agents observing interactions that

indirect reciprocity cannot take hold. Cooperation takes hold as p rises to 0.1, but

selfishness again rises as p increases up to 0.5. For these values of p, there are

sufficient neighbours that incomplete information, due to any given neighbour only

observing a small sub-set of a potential recipient’s history, becomes significant.
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Figure 4(b), which plots the levels of misclassified interactions, demonstrates this:

at p = 0.5, 2.09% of interactions are misclassified, whereas there are negligible

misclassified interactions at p = 0.01. Random networks show statistically sig-

nificant differences in the levels of selfishness compared to completely connected

networks. The p-values for a two-tailed t-test range from 0.031 at m = 1000 to

6.37× e−20 at m = 50000, demonstrating that the introduction of network topology

has significantly impacted the operation of image scoring.

Scale-free networks show strong support for cooperative behaviour, as shown

in Figure 5(a). Although a certain number of interactions are required to initially

support cooperative behaviour (i.e. at m = 1000), as m rises we no longer see

the characteristic rise in selfishness observed in completely-connected or random

networks. Unconditional cooperators in particular are dominant, suggesting that the

structure of scale-free networks allows groups of agents to cooperate with reduced

vulnerability to selfish invaders. Figure 5(b), which shows the misclassified interac-

tions for data in Figure 5(a), corroborates this: with a maximum total of 1.13% at

m = 1000.

Scale-free topologies are known to have beneficial properties regarding infor-

mation propagation and robustness to untargeted malicious action. For example,

Delgado (2002) used a model of social convention emergence to show that complex

(i.e. scale-free and/or small-world) networks are more efficient than regular graphs

with the same average node degrees, and that scale-free networks are as efficient

at spreading information as fully-connected graphs. Albert and Barabási (2002) also

noted the remarkable fault-tolerance of scale-free networks. The robustness of scale-

free networks is partially derived from their clustering: there are highly-internally



ROBUST REPUTATION IN DECENTRALISED MARKETS 19

connected groups with relatively few links to the rest of the population. In the context

of our investigation, we hypothesise that this grouping effect allows image scoring to

act with a much smaller average connectivity, since there will be many such groups

in which agents are highly visible to other agents within that group. As discussed

previously, visibility of agents is important for the efficacy of image scoring. We use

visibility to denote the combination of observability and topological connectivity,

since both influence how many agents might observe an interaction. Sen (2008)

demonstrated the existence of scale-free topological structure in mobile ad-hoc net-

works, and many other real-world networks are known to be scale-free (Albert and

Barabási, 2002). The robustness of image scoring on scale-free networks is thus

highly important, as it demonstrates the broad applicability of the technique.

We draw three main conclusions from these experimental results:

(1) The level of incorrect interaction choices is dependent on the probability of

having witnessed a recipient’s interactions.

This probability is based on a number of factors, including the degree of a node,

the observability in the population, and the number of interactions.

(2) Incomplete information has an observable effect on levels of emergent co-

operation in the image scoring model.

N&S note in their original paper that when moving from their initial model,

equivalent to observability = 1, to observability of 0.1 a larger number of in-

teractions are needed to establish cooperation. Our results corroborate this and

establish that higher levels of incomplete information (whether caused by low

node degree or high numbers of interactions) lead to more selfish societies.



20 COMPUTATIONAL INTELLIGENCE

(3) The levels of cooperation in the image scoring model are highly dependent

on the underlying topological structure of the social network.

Random graphs, and to a lesser extent, scale-free networks, significantly reduce

the detrimental effects of incomplete information and aid the emergence of high

levels of cooperation.

5.3. Insufficient information due to low interaction rate

Scaling the ratio of m/n to high values means that agents are likely to have

incomplete information regarding the set of interactions a potential recipient has

participated in. This represents a vulnerable configuration, as our previous results

show, but agents are likely to also be vulnerable when this ratio is very low. Under

this configuration, while agents may have complete information regarding a poten-

tial recipient’s history, there may be insufficient historical data to make accurate

decisions. This is particularly true when agents first enter a system.

[Figure 6 about here.]

Figure 6 shows the strategy distribution in the population with n = 100,m =

{125, 300} (i.e. a ratio of m/n = {1.25, 3}), across a variety of synthetic networks.

For the majority of network classes, selfishness dominates within the population. The

proportion of selfish agents is particularly high for m = 125, and tends to decrease

as m increases to 300. This supports our hypothesis that the interaction history is

insufficient at low levels of m, reducing the ability of indirect reciprocity to support

cooperation. Small-world networks appear to give strong support for cooperative

behaviour, and we believe this is because these networks make agent interactions
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highly visible to potential future donors. Small-world networks are characterised by

high levels of clustering, which indicates that the neighbours of any given agent

are more likely to know each other than in other network classes (which don’t

correspondingly show high levels of clustering). Our hypothesis is that this clustering

increases the probability of cooperative actions being subsequently rewarded via

indirect reciprocity, leading to the disparity between network classes shown in Figure

6. These results suggest that both configurations that we examine, namely (i) a very

high rate of interactions, and (ii) a very low rate of interactions, are vulnerable

settings in which indirect reciprocity is less effective due to either incomplete in-

formation (as in (i)) or insufficient information (as in (ii)).

5.4. Larger population sizes

[Table 2 about here.]

[Table 3 about here.]

Our results thus far are limited in the sense that we have only simulated 100

agents (as per N&S). In this section, we describe results from simulations using a

population size of 1000.

As Table 2 shows, scaling up the population to 1,000 agents introduces a smooth-

ing effect. Overall, the model behaviour is very similar to where we have a smaller

population (n = 100). The influence of incomplete information appears slightly

reduced, but the populations are more evenly distributed with selfishness remain-

ing significant. Interestingly, the support that small-world networks displayed for

cooperative behaviour is no longer present, and selfishness levels are similar to



22 COMPUTATIONAL INTELLIGENCE

scale-free networks. Increasing the number of edges in scale-free networks slightly

reduces the level of selfishness, corroborating our hypothesis regarding visibility of

agent interactions. This has important implications. Consider mechanisms to aid the

emergence of social norms, which reduce the strategy choices available to agents.

In systems with high levels of normative control, incomplete information is reduced

due to lower uncertainty about agent strategies, and reputation mechanisms may

subsequently become more effective.

Our results show significant levels of selfishness across a variety of configura-

tions. We conclude that there are three primary influences on levels of selfishness:

(1) Underlying network topology

Selfishness is more evident in scale-free networks (structurally closest to the

real-world) than small-world networks, but small-world networks are particu-

larly supportive of cooperative behaviour. Small-world networks have low geodesic

path lengths and high clustering, implying a higher probability of connection

between observers of an interaction and potential interaction pairs3.

(2) Interaction rate

At very low rates (i.e. m = 125), there is not time for indirect reciprocity to

take hold and selfishness increases (i.e. image scoring suffers from a cold start

problem). As m increases selfishness is slightly reduced (down to 1.07% at m =

1000), but again rises as we approach m = 50000 (up to 31.4%). At low and

high values of m, there is a higher probability of an agent having insufficient

information with which to make an accurate assessment of a potential partner.

3Recall that although observers may be connected with the recipient of an interaction, they only update the score of the

donor. For the observation to be of use, the observer must then also interact with the donor.
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As a result, the efficacy of image scoring is drastically reduced, and selfishness

rises. These represent vulnerable configurations for reputation mechanisms.

(3) Population strategy distribution

A population with an equal strategy distribution increases the effect of incom-

plete information, by increasing the uncertainty about a potential partner’s strat-

egy and making a decision based on incomplete information more likely to be

incorrect.

5.5. Gossiping

[Table 4 about here.]

[Figure 7 about here.]

[Table 5 about here.]

In this section, we present results from implementing gossiping and the effect

of which aggregation rule is adopted. Table 4 compares levels of selfishness in the

population for the same configuration as Figure 1, except that agents gossip and

use our Average Replace update rule. Figure 7 shows the strategy distribution using

each of the update rules and a control with no gossiping, on a scale-free topology

with m = 1000. Finally, Table 5 shows the results from using gossiping on the real-

world network samples, with n = 1000. From these results, we can conclude the

following:

(1) Gossiping significantly reduces levels of selfishness in populations under the

image scoring model
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On average, the introduction of gossiping reduces levels of selfishness by around

10% in the synthetic networks and around 18% in the real-world networks.

(2) There does not appear to be a relationship between the number of interac-

tions and the reduction in selfishness in the image scoring model, whereas

there is between network structure and gossip efficacy

The real-world networks and scale-free synthetic networks in particular show

significant reductions in selfish behaviour. Given the ubiquity of scale-free de-

gree distributions in real-world open MAS domains, these results suggest that

gossiping can be practically applied. Random networks are not as conducive to

effective gossiping as other network classes, which may be a consequence of

their reduced clustering. As argued above, clustering increases the probability

of observations being of use, and since gossips are a substitute for direct obser-

vation this property translates across.

(3) All update rules except Aggregate Average show a statistically significant

decrease in selfishness (α = 0.05)

In the synthetic networks, Aggregate Average performs worse than the other

update rules, whereas the other update rules perform fairly equally. In the real-

world networks, Most Recent performs consistently and with the greatest re-

duction in selfish behaviour, but the other update rules occasionally result in an

increase in selfish behaviour.

On average over the four update rules, 331.7 million gossips were started, with

1.436 billion gossip packets sent over 10 million interactions, or 143 packets per

interaction. Agents adopted a new image score for a given individual 496.4 million
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times. On average, a single gossip causes 1.50 image score changes. Aggregate

Average is the only rule to incorporate the agent’s current image score perception of

the gossip subject, whereas the other three rules only take into account the gossips

received about a given subject. A gossip using the Aggregate Average rule causes,

on average, 1.09 image score changes, whereas using the other rules causes 1.67

(Average Replace), 1.63 (Most Recent), or 1.60 (Majority Replace) changes in image

score. Clearly, update rules that do not incorporate the current perception of the

subject’s image score perform better. That Most Recent performs as well as the other

rules suggests that many of the updates are for when agents have no information (i.e.

they assume an image score of 0), and the gossip provides initial data to make a

choice with. Aggregate Average incorporates the assumption of an image score of 0,

biasing the resultant updated value. These results suggest that gossiping is a useful

mechanism by which new entrants to a system can start interacting quickly without

having to observe the population to gain sufficient information.

In the real-world networks, Aggregate Average still performs poorly, while Most

Recent gives the most consistently beneficial effects. These results are given for

m = 1000, and as such agents are likely to have very little or no information on

potential interaction partners. The Most Recent rule is equivalent to allowing each

of the gossip recipients to act as an observer of the interaction being gossiped about,

and thus reduces the number of interactions necessary for indirect reciprocity to

take hold. This corroborates our conclusion that gossiping is a particularly useful

supplement to reputation for new entrants to a system, or in systems characterised

by high levels of population churn. While the difference gossiping makes in the

real-world networks is generally larger than in the synthetic networks, sometimes
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the introduction of gossiping results in an increase in selfishness (particularly with

Aggregate Average, but never with Most Recent). Why this is the case requires

further investigation, but these results imply careful consideration must be given

to how agents incorporate information attained through gossiping.

5.6. Gossiping without observation of interactions

[Figure 8 about here.]

A key feature of our model is the observation of interaction results by the neigh-

bours of the participants. Observers underpin indirect reciprocity through two mech-

anisms: (i) updating their own perception of the donor’s image score, for use in sub-

sequent interactions with the donor, and (ii) initiating gossip information regarding

the donor to other individuals who may also subsequently interact with the donor.

In some domains, we may not be able to assume that interactions are observable: in

such cases, we would like to know whether image scoring still effective at promoting

indirect reciprocity, and if not, whether gossiping can recover that efficacy. Recall

that N&S note that reduced observability means that a larger number of interactions

are required to sustain cooperation.

Accordingly, we performed simulations in which interactions were not observ-

able. Only the recipient, therefore, updates their perceived image score for each

interaction, and only recipients or donors start gossips. Figures 8(a) and 8(b) show

the strategy distribution, averaged over all network topologies, for a no-observation

configuration, with m = 1000, and n = {100, 1000} with and without gossiping.

Selfishness dominates, and we witness a sharp increase in misclassified interactions:
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with 100 agents, 3% of interactions are misclassified, compared with 0.6% for the

identical configuration with observation.

From Figure 8, we can see that gossiping retains some efficacy but only produces

around a 10% decrease in selfishness for n = 100, falling to less than 5% for n =

1000. Since gossips are only started by interaction participants in this configuration,

fewer gossips regarding each agent are circulated. This reduces the efficacy of the

aggregation rules, and makes errors in perception more likely to be propagated (if

agents receive any gossips at all). We see this in the misclassified interaction data:

there is no statistically significant drop in misclassified interactions when introduc-

ing gossiping, despite the fall in selfishness. The decrease in selfishness for n = 1000

is lower than for n = 100. We believe this to be a result of each agent having

an increased neighbourhood size (due to the increase in population size), which, in

combination with the sparser rate of gossips, means that agents frequently do not

benefit from gossiping. Interestingly, the number of unconditional cooperators falls

with the introduction of gossiping, while the number of conditional cooperators rises.

We believe that the presence of gossiping allows conditional cooperators to make

more accurate choices, while unconditional cooperators are consistently exploited

by the large proportion of selfish agents.

5.7. Gossiping with high cost of cooperation

Throughout our results, the cost of cooperation is kept at 0.1 of the benefit. The

cost of cooperation has been the subject of much research, e.g. by Ohtsuki et al.

(2009), and it is important to investigate whether gossiping can help support cooper-

ation in the face of a low benefit/cost ratio. Figure 9 shows the strategy distribution,
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averaged across all network topologies, for c = {0.1, 0.5, 0.9}, n = 1000, with and

without gossiping.

[Figure 9 about here.]

Image scoring appears to be ineffective at supporting cooperative behaviour as

the cost of cooperation rises past 0.5 of the benefit conferred. The high cost of coop-

eration means that it is evolutionarily advantageous for agents to defect consistently.

The introduction of gossiping mitigates this effect slightly at c = 0.5, but appears

entirely ineffective at c = 0.9. At c = 0.5, the introduction of gossiping allows those

agents that are cooperative to make accurate assessments regarding which (small)

subset of agents they may cooperate with. However, at c = 0.9, this benefit is

overcome by the cost of cooperation, and there is very little incentive for agents

to cooperate at all. As such, gossips will in this case simply confirm the selfishness

of potential recipients, rather than support cooperation in the face of selfishness.

6. CONCLUSIONS

Highly decentralised open MAS require robust, low-cost mechanisms for sup-

porting cooperation and protecting individuals from selfish or malicious behaviour,

particularly for new entrants to a system. We have investigated two issues that can

influence the efficacy of image scoring, a simplified model of reputation, namely (i)

incomplete and insufficient information and (ii) underlying network structure, in set-

tings that model those found in practical domains. Our results show that incomplete

or insufficient information can undermine the feedback effects that indirect reci-

procity introduces into a system and subsequently increase the levels of selfishness
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in the population, and that network structures found in the real-world act to mitigate

selfishness.

We have shown that (i) incomplete information can significantly undermine light-

weight reputation mechanisms, with up to 62% of defection actions (in the com-

pletely connected topology scenario) taken incorrectly, and (ii) that the underlying

network topology has a significant influence on levels of selfishness in the popu-

lation. We applied gossiping algorithms and showed that (iii) they reduce levels of

selfishness by up to 25%, with the biggest gains found on real-world topologies.

We found that (iv) simply using the most recently gossiped information about a

potential partner results in the most consistent benefits, suggesting that gossiping

may be particularly useful for agents first entering a system. However, we have also

shown that gossiping is not effective in all situations, and that when the cost of

cooperation is high, or there is no external observability of agent interactions, the

efficacy of gossiping is drastically reduced.

Our results are based on incorporating gossiping into the image scoring model

proposed by N&S (Nowak and Sigmund, 1998, 2005), which is a simple repu-

tation mechanism that is representative of the key features of more complex ap-

proaches (Huynh et al., 2006; Sabater et al., 2006). As such, it is important to

note that our conclusions are only demonstrated in this representative reputation

mechanism. However, given that more complex approaches share the core aspects

of a reliance on information from direct experience and indirect recommendations

and opinions, we hypothesise that issues of incomplete and incorrect information are

likely to have similar impacts on more complex reputation mechanisms. An analysis

of the extent of the impact in more complex reputation mechanisms is outside the
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scope of this paper, but we argue that the conclusions identified above represent a

starting point for such analysis. It is also important to note that although there is

a wide variety of work suggesting that reputation spread by gossiping is robust to

malicious gossip strategies (Sommerfeld et al., 2008), we have not investigated the

impact of malicious gossips on the levels of selfishness demonstrated by our model.

Investigating our model’s robustness to malicious gossip is a key part of future work.

We have shown that the ratio of m/n significantly influences the level of in-

complete information in the society. The two extremes of this ratio both represent

vulnerable situations for simple reputation mechanisms. Our results are corroborated

on real-world networks, but we note that our investigation in this area is limited. In

future work, we plan to repeat the analysis on real-world networks sampled using

an unbiased sampling algorithm (but we note that such algorithms typically do not

retain the local network structure), and determine the risks of incomplete information

in such settings.

In this paper we have assumed that agents have a neutral trust disposition, rather

than being optimistic or pessimistic, through the initialisation of the image scores

to 0 and using the same size of increment and decrement after cooperation or non-

cooperation. Future work will investigate the effect of trust disposition on the dynam-

ics of cooperation, with inclusion of optimistic agents whose default image score is

> 0 and the increment for cooperation outweighs the decrement for non-cooperation,

and pessimistic agents who have the opposite configuration.

A key effect to note from our results is that of the visibility of interactions on

the levels of cooperation observed. Many open MAS domains are characterised

by sparse topologies and our results appear to show the efficacy of image scoring
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is reduced in such settings. Implementing gossiping with the Most Recent update

rule shows significant reductions in selfishness, and is equivalent to increasing the

visibility of interactions (for example by increasing network connectivity). Gos-

siping has been applied successfully within the specific topological challenges of

VANETs (Bako et al., 2007; Costa et al., 2008) and MANETs (Buchegger, 2005),

and also within the domain of reputation mechanisms (Bachrach et al., 2008; Mundinger

and Le Boudec, 2006). Our results with no observability demonstrate the challenges

of supporting cooperation in systems with low interaction visibility. In future work,

we aim to extend our gossiping mechanism to better deal with systems with low

observability of interactions.
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ALBERT, R., and AL. BARABÁSI. 2002. Statistical mechanics of complex networks. Reviews of Modern

Physics, 74(1):47–98.

BACHRACH, Y., A. PARNES, A. D. PROCACCIA, and J. S. ROSENSCHEIN. 2008. Gossip-based aggregation of

trust in decentralized reputation systems. Autonomous Agents and Multi-Agent Systems, 19(2):153–72.

BAKO, B., I. RIKANOVIC, F. KARGL, and E. SCHOCH. 2007. Adaptive topology based gossiping in VANETs

using position information. In Proceedings of the 3rd International Conference on Mobile Ad-hoc and

Sensor Networks, Springer, pp. 66–78.

BRAVO, G., and L. TAMBURINO. 2008. The evolution of trust in non-simultaneous exchange situations.

Rationality and Society, 20(1):85–113.

BUCHEGGER, S. 2005. Coping with misbehavior in mobile ad-hoc networks. Ph.d dissertation, Ecole

Polytechnique Federale De Lausanne.

COSTA, P., D. GAVIDIA, B. KOLDEHOFE, H. MIRANDA, M. MUSOLESI, and O. RIVA. 2008. When cars

start gossiping. In Proceedings of the 6th Workshop on Middleware for Network Eccentric and Mobile

Applications, pp. 1–4.

DELGADO, J. 2002. Emergence of social conventions in complex networks. Artificial Intelligence, 141(1-



32 COMPUTATIONAL INTELLIGENCE

2):171–85.

EPPSTEIN, D., and J. WANG. 2002. A steady state model for graph power laws. In 2nd International Workshop

on Web Dynamics.

FERNANDESS, Y., and D. MALKHI. 2007. On collaborative content distribution using multi-message gossip.

Journal of Parallel and Distributed Computing, 67:1232–39. ISSN 07437315. .

FRIEZE, A.M., and G.R. GRIMMETT. 1985. Shortest-path problem for graphs with random arc-lengths.

Discrete Applied Mathematics, 10(1):57–77.

GALSTYAN, A., B. KRISHNAMACHARI, and K. LERMAN. 2004. Resource allocation and emergent coordina-

tion in wireless sensor networks. In AAAI Workshop on Sensor Networks.

GJOKA, M., M. KURANT, C.T. BUTTS, and A. MARKOPOULOU. 2010. Practical recommendations on crawling

online social networks. In Proceedings of the 29th Conference on Information Communications, Number

December, pp. 2498–506.

GLINTON, R., P. SCERRI, and K. SYCARA. 2010. Exploiting scale invariant dynamics for efficient information

propagation in large teams. In Proceedings of the 9th International Conference on Autonomous Agents and

Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 21–30.

HUYNH, T. D., N. R. JENNINGS, and N. R. SHADBOLT. 2006. An integrated trust and reputation model for

open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2):119–54.

JOSANG, A., R. ISMAIL, and C. BOYD. 2007. A survey of trust and reputation systems for online service

provision. Decision Support Systems, 43(2):618–44.

KEMPE, D., and J. KLEINBERG. 2003. Maximizing the spread of influence through a social network.

In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 137–146.

KLEINBERG, J. 2000. Navigation in a small world. Nature, 406(3):845.

MUNDINGER, J., and J. Y. LE BOUDEC. 2006. Reputation in self-organized communication systems and

beyond. In Proceedings of Workshop on Interdisciplinary Systems Approach in Performance Evaluation

and Design of Computer & Communications Systems.

NEWMAN, M. 2003. The structure and function of complex networks. SIAM review, 45(2):167–256.

NOWAK, M., and K. SIGMUND. 1998. The dynamics of indirect reciprocity. Journal of theoretical biol-

ogy, 194(4):561–74.

NOWAK, M., and K. SIGMUND. 2005. Evolution of indirect reciprocity. Nature, 437(7063):1291–98.

OHTSUKI, H., Y. IWASA, and M. NOWAK. 2009. Indirect reciprocity provides only a narrow margin of



ROBUST REPUTATION IN DECENTRALISED MARKETS 33

efficiency for costly punishment. Nature, 457(7225):79–82.

OTT, J., and D. KUTSCHER. 2004. Drive-thru internet: IEEE 802.11b for “automobile” users. In 23rd Annual

Joint Conference of the IEEE Computer and Communications Societies, Volume 1, pp. 362–73.

PIRZADA, A. A., and C. MCDONALD. 2006. Trust establishment in pure ad-hoc networks. Wireless Personal

Communications, 37(1-2):139–168. ISSN 0929-6212. .

RAMCHURN, S., N. JENNINGS, C. SIERRA, and L. GODO. 2004. Devising a trust model for multi-agent

interactions using confidence and reputation. Applied Artificial Intelligence, 18(9-10):833–52.

RAMCHURN, S. D., D. HUYNH, and N. R. JENNINGS. 2005. Trust in multi-agent systems. The Knowledge

Engineering Review, 19(01):1–25.

RUBERRY, M., and S. SEUKEN. 2012. Sharing in bittorrent can be rational. In Auctions, Market Mechanisms,

and Their Applications. Harvard University Press, pp. 34–35.

SABATER, J., M. PAOLUCCI, and R. CONTE. 2006. Repage: reputation and image among limited autonomous

partners. Journal of Artificial Societies and Social Simulation, 9(2):3–21.

SEN, Q. 2008. Scale-free topology structure in ad hoc networks. In Proceedings of the 11th IEEE International

Conference on Communication Technology, pp. 21–24.

SOMMERFELD, R. D., H. J. KRAMBECK, and M. MILINSKI. 2008. Multiple gossip statements and their effect

on reputation and trustworthiness. Biological sciences, 275(1650):2529–36.

SOMMERFELD, R. D., H. J. KRAMBECK, D. SEMMANN, and M. MILINSKI. 2007. Gossip as an alternative

for direct observation in games of indirect reciprocity. Proceedings of the National Academy of Sciences

of the United States of America, 104(44):17435–40.

WANG, X. F. 2003. Complex networks: small-world, scale-free and beyond. IEEE Circuits and Systems

Magazine, 3(1):6–20.

ZHOU, R., and K. HWANG. 2007. Gossip-based reputation aggregation for unstructured peer-to-peer networks.

In IEEE International Parallel and Distributed Processing Symposium, pp. 1–10.



34 COMPUTATIONAL INTELLIGENCE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1000 5000 10000 20000 50000

P
ro

p
o
rt

io
n
 o

f 
p
o
p
u
la

ti
o
n

m - number of interactions/round

Unconditionally Cooperative
Conditionally Cooperative

Selfish

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1000 5000 10000 20000 50000

P
e
rc

e
n
ta

g
e
 o

f 
in

te
ra

c
ti
o
n
s
 m

is
c
la

s
s
if
ie

d

m - number of interactions/round

Incorrect Cooperation
Incorrect Defection

Total Misclassified Interactions

(b)

FIGURE 1: (a) Strategy distributions and (b) levels of misclassified interactions,
using a completely connected topology, n = 100, o = 0.1, µ = 0.001, varying
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number of interactions in which the donor donated incorrectly divided by the total
number in which the donor donated (as opposed to the total number of interactions
as denominator).
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FIGURE 4: (a) Strategy classifications and (b) levels of misclassified interactions,
using a random topology, varying p, with m = 1000 and all other settings as Figure
1.
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FIGURE 5: (a) Strategy classifications and (b) levels of misclassified interactions, for
scale-free topology, varying m, using 1000 edges in total, and with all other settings
as Figure 1.
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ogy: Completely Connected (CC), Scale-Free (SF), Random (Ran), and Small World
(SW), using m = {125, 300}, n = 100.
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FIGURE 7: Strategy distribution using gossiping with m = 1000, on a scale-free
network with 1000 edges, for each of the update rules, all other parameters as in
Figure 1.
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FIGURE 8: The population strategy distribution with gossiping (ogp = 1) and no
gossiping (ogp = 0) when neighbours cannot observe interactions, for (a) n = 100
and (b) n = 1000. All other settings as in Figure 1.
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FIGURE 9: Population strategy distribution while increasing the cost of cooperation
for (a) populations with no gossiping and (b) populations which gossip, averaged
across all update rules and network topologies. All other settings as for Figure 1.
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Table 1: Notation used in describing our model.

Symbol Meaning

i, j Lower case i and j are used to represent individual agents
Ii Image score for agent i
b Benefit received from cooperation (we adopt N&S’ value of b = 1)
c Cost of cooperation (we adopt N&S’ value of c = 0.1)
Ni The set of agents that are neighbours of i
o Observability parameter (in the range [0, 1])
n The size of the population
m The number of interactions per round
fi Fitness of agent i
F Net fitness of the population
µ Mutation probability (we adopt N&S’ value of µ = 0.001)
ogp Observer gossip probability
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Table 2: Strategy distribution for selected scale-free and small-world networks. UC
is Unconditionally Cooperative, CC is Conditionally Cooperative, and S is Selfish.
CE is Clustering Exponent, n = 1000,m = 1000. All other parameters as Figure 1.

Proportion of population

Network Parameter UC CC S

Scale-free (Eppstein) 1000 edges 0.33 0.20 0.46
Scale-free (Eppstein) 5000 edges 0.36 0.23 0.39
Scale-free (Eppstein) 10000 edges 0.41 0.25 0.32

Small-world (Kleinberg) CE1 0.42 0.26 0.31
Small-world (Kleinberg) CE5 0.43 0.20 0.36
Small-world (Kleinberg) CE10 0.34 0.30 0.35
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Table 3: Selfish proportion of population (S) and Percentage of Incorrect interactions
(IP) for Fully Connected (FC), Scale Free (SF), Small World (SW) and Random
(Ran) networks while varying m, n = 100. All other parameters as Figure 1.

m FC SF SW Ran

S IP S IP S IP S IP

1000 0.13 3.71 0.91 1.2 0.01 0.1 0.03 2.0
5000 0.10 3.76 0.005 1.8 0.02 0.3 0.01 0.4

10000 0.21 5.71 0.004 1.1 0.03 0.4 0.02 0.3
20000 0.30 6.94 0.006 1.1 0.06 0.6 0.02 0.2
50000 0.39 5.93 0.01 2.2 0.11 0.6 0.04 0.2
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Table 4: The average proportion of selfish agents in the population for the runs in
Figure 6 (ogp = 0) compared with runs using the same configuration except that
agents gossip using the Average Replace update rule (ogp = 1).

Topology m ogp = 0 ogp = 1 Diff.

Completely-Connected 125 0.540 0.418 0.122
Completely-Connected 300 0.324 0.221 0.103
Scale-free 125 0.613 0.479 0.134
Scale-free 300 0.512 0.330 0.182
Random 125 0.569 0.527 0.042
Random 300 0.424 0.256 0.168
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Table 5: The effect of gossiping on selfishness in real-world networks with each
update rule (Aggregate Average (AA), Average Replace (AR), Majority Replace
(MR), Most Recent (Mrec)), with ogp = 1, n = 1000,m = 1000, and all other
parameters as in Figure 1.

Topology ogp = 0 ogp = 1 max. Diff.

AA AR MR MRec

Enron-1 0.29 0.33 0.20 0.33 0.04 0.25
Enron-2 0.31 0.35 0.22 0.33 0.19 0.12
Enron-3 0.33 0.38 0.25 0.18 0.21 0.15
Enron-4 0.39 0.20 0.25 0.21 0.16 0.23
arXiv-1 0.33 0.39 0.21 0.19 0.15 0.18
arXiv-2 0.34 0.50 0.10 0.30 0.15 0.24
arXiv-3 0.34 0.40 0.19 0.35 0.22 0.15
arXiv-4 0.27 0.21 0.16 0.33 0.19 0.11


