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Abstract. We describe a method to estimate associations between random ef-
fects from multilevel models. We provide two new postestimation commands,
reffadjustsim and reffadjust4nlcom, which are distributed as the reffadjust

package. These commands produce the estimates and their associated confidence
intervals. The commands are used after official Stata multilevel model estima-
tion commands mixed, meqrlogit, and meqrpoisson (formerly named xtmixed,
xtmelogit, and xtmepoisson, respectively, before Stata 13) and with models fit in
the MLwiN statistical software package via the runmlwin command. We demon-
strate our commands with several simulated datasets and for a bivariate outcome
model investigating the relationship between weight and mean arterial pressure
in pregnant women using data from the Avon Longitudinal Study of Parents and
Children. Our method and commands help to improve the interpretability of es-
timated random-effects variance components from multilevel models.
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120 The reffadjust package

1 Introduction

In this article, we describe how to estimate the association between two random ef-
fects from a multilevel model while possibly adjusting for other random effects in the
model (Tilling, Sterne, and Wolfe 2001; Macdonald-Wallis et al. 2012). We implement
our method in two commands, reffadjust4nlcom and reffadjustsim, which make up
the random-effects adjustment (reffadjust) package (Palmer and Macdonald-Wallis
2012). Our commands are postestimation commands used after Stata’s multilevel
modeling commands mixed, meqrlogit, and meqrpoisson and after multilevel mod-
els fit using the MLwiN software in Stata via runmlwin (Rasbash et al. 2009; Leckie
and Charlton 2011, 2013). Note that the official Stata commands mixed, meqrlogit,
and meqrpoisson have been renamed in Stata 13 and were formerly called xtmixed,
xtmelogit, and xtmepoisson, respectively. Our reffadjust commands work with the
former xt prefixed command names in Stata 11 and 12.

In section 2, we introduce multilevel models with a simulated example. We de-
scribe how to estimate the association between random effects from a multilevel model
and demonstrate this using our reffadjust commands. In section 3, we provide an
example estimating the associations between random effects from a bivariate outcome
multilevel model investigating change in weight and mean arterial pressure (MAP) in
pregnant women using data from the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC). This example demonstrates our commands when the multilevel model
is fit by the MLwiN software package (Rasbash et al. 2009) run from Stata by runmlwin

(Leckie and Charlton 2011). In section 4, we describe the methodology behind our com-
mands and their syntax and options. In section 5, we demonstrate the commands after
a multilevel logistic regression fit with meqrlogit. Section 6 is a discussion.

2 Estimating associations between random effects from
multilevel models

2.1 Simulating and fitting a random-intercept model

We start by simulating a simple two-level, random-intercept model to clearly demon-
strate how our method of estimating associations between random effects works with
known parameter values. We simulate j = 1, . . . , J individuals, each with i = 1, . . . , n
repeated measurements: j denotes level 2 of the model and i denotes level 1 of the
model. We denote the outcome variable Y , the fixed-effects intercept or constant β0
(cons), random effects u0j (u0), and level 1 residuals ǫij (e). So yij denotes the value
of the outcome for the ith measurement of the jth individual. The model is written

yij = β0 + u0j + ǫij , u0j ∼ N(0, σ2
u0), ǫij ∼ N(0, σ2

ǫ ) (1)

We simulate data from this model by setting J = 1000 individuals, each with n = 10
repeated measures, for 10,000 observations in total. We set the other parameters as
follows: β0 = 1, σ2

u0 = 0.25, and σ2
ǫ = 1.
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. set seed 12345

. set obs 1000
obs was 0, now 1000

. generate int j = _n

. generate double u0 = rnormal(0, sqrt(.25))

. expand 10
(9000 observations created)

. generate byte cons = 1

. by j, sort: generate int i = _n

. generate double e = rnormal()

. generate double y = cons + u0 + e

We then fit the model using restricted maximum-likelihood estimation with mixed.

. mixed y || j: , reml nolog nolrtest noheader

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 1.011687 .0187194 54.04 0.000 .9749982 1.048377

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

j: Identity
var(_cons) .2500984 .01575 .221058 .2829539

var(Residual) 1.003164 .0149543 .9742783 1.032906

The parameters are estimated at approximately their true values. We see that mixed
does not report z statistics and p-values for estimated variance components of the ran-
dom effects. This is because symmetric Wald-type confidence intervals (CIs) may not be
appropriate for estimated variance components, because they may have skewed distri-
butions and because variances must be positive (Gutierrez, Carter, and Drukker 2001).

Our reffadjust commands use the estimated random-effects variances and covari-
ances; there are two ways to estimate these from a multilevel model. The first method
is to use the estimates from the model (that is, the var( cons) estimate from the mixed
results above). The second method is to use the model estimates to predict the random
effects (also known as best linear unbiased predictions, or BLUPs) and then to calculate
their variance. We generate the BLUPs and calculate their variance as follows:

. predict double u0hat, reffects

. quietly summarize u0hat

. display %8.4f `r(Var)´
0.1783
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We see that the variance of the BLUPs of 0.1783 is smaller than the estimate from the
model above of 0.25 [95% CI: 0.22, 0.28]. The variance of the BLUPs is downwardly
biased compared with the true value of 0.25. This downward bias in the variance of the
BLUPs is well known and is given by (Morris 2002)

var(û0) =

(
nσ2

u0

nσ2
u0 + σ2

ǫ

)
(1− 1/J)σ2

u0

This is biased because it differs from simply σ2
u0. For this simulated dataset, we see that

our calculated variance of the BLUPs agrees with the formula [{10 × 0.25/(10 × 0.25 +
1)} × (1− 1/1000)× 0.25].

Variances of BLUPs are downwardly biased: the individual BLUPs are shrunken to-
ward the population mean (Robinson 1991; Morris 2002; Carpenter, Goldstein, and
Rasbash 2003). This bias is more pronounced for small sample sizes at either level of
the model (that is, in this example, for a small number of individuals J or small numbers
of repeated measurements n) and for cases where the residual variance σ2

ǫ is not small
compared with the random-effects variances σ2

u0. This bias in the variance of the BLUPs
is perhaps surprising given their name; however, the “unbiased” in BLUP refers to the
property that E(û0) = E(u0) as opposed to E(û0|u0) = u0 (Robinson 1991). Hence, in
our reffadjust commands, we use the estimated variance components of the random
effects from the model, rather than the estimated variance of the BLUPs, to avoid this
downward bias in the variance of the BLUPs.

2.2 Simulating and fitting a mixed-effects model

We now consider a slightly more complex model in which we include a covariate X as
both a fixed and a random effect. Our new model is given by

yij = β0 + β1xij + u0j + u1jxij + ǫij(
u0j
u1j

)
∼ MVN

((
0
0

)
,

[
σ2
u0 σu01

σu01 σ2
u1

])
, ǫij ∼ N(0, σ2

ǫ )

So u1j are the random effects for the covariate X, σ2
u1 is their variance, and σu01 is

the covariance between the two random effects. We simulate data from this model as
follows, where Xij ∼ N(i, 1), β0 = 1, β1 = 1, σ2

ǫ = 1, σ2
u0 = σ2

u1 = 1, and σu01 = 0.25.

. clear

. set seed 12345

. matrix V = (1, .25 \ .25, 1)

. set obs 1000
obs was 0, now 1000

. generate int j = _n

. corr2data u0 u1, double cov(V)

. expand 10
(9000 observations created)

. generate byte cons = 1
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. by j, sort: generate int i = _n

. by j, sort: generate double x = rnormal(i, 1)

. generate double e = rnormal()

. generate double y = cons + x + u0 + u1*x + e

Figure 1 shows the simulated outcome Y for a sample of 10 of our 1,000 level 2 individ-
uals.

0
5

1
0

1
5

2
0

2
5

y

1 2 3 4 5 6 7 8 9 10
i

Figure 1. Plot of outcome y versus the level 1 index i for 10 level 2 individuals from
the second simulated dataset. Lines on the plot are shaded using the approach of
Kohler and Eckman (2011).

We then fit the model using restricted maximum-likelihood estimation with mixed.

. mixed y x || j: x, reml covariance(uns) nolog nolrtest noheader

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x .997819 .0316633 31.51 0.000 .9357601 1.059878
_cons 1.00568 .0380484 26.43 0.000 .9311064 1.080253

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

j: Unstructured
var(x) .9915986 .0448656 .9074499 1.083551

var(_cons) 1.018231 .065386 .897813 1.154799
cov(x,_cons) .2555368 .0386803 .1797248 .3313488

var(Residual) .9827593 .0155486 .9527523 1.013711
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The model parameters are again estimated close to their true values, with all CIs in-
cluding the true values.

Estimating associations between random effects

So far, we have estimated the covariance, 0.26 [95% CI: 0.18, 0.33], between the two
random effects in the model. Our approach implemented in reffadjust estimates the
mean difference in one random effect associated with a unit change in the other. To
estimate the association between u0 and u1, we propose a linear model of the form

u0j = γu1j + νj , νj ∼ N(0, τ2) (2)

γ is then given by the analytic form of the maximum likelihood estimate of a regression
coefficient from a simple linear model with a single covariate,

γ =
cov(u0, u1)

var(u1)
=
σu01
σ2
u1

(3)

Hence, we can obtain an estimate for γ by substituting in our estimates of σu01 and σu1
from the model. Note that (2) does not require an intercept, because the random effects
have mean 0. In our simulated data, γ should be approximately equal to 0.25 (0.25/1).
To check this, we can fit the model in the simulated data by using the actual random
effects (that is, the actual simulated values and not the BLUP estimates derived from
fitting the model). In the following code, we first use egen to select a single observation
per individual.

. egen pickone = tag(j)

. regress u0 u1 if pickone==1, nocons noheader

u0 Coef. Std. Err. t P>|t| [95% Conf. Interval]

u1 .25 .0306339 8.16 0.000 .1898857 .3101143

As we expected, the association between u0 and u1 is 0.25 [95% CI: 0.19, 0.31] when
we use the actual random effects. Of course, in a real dataset, these actual values of
the random effects are not available, but we can estimate this association with our
reffadjust commands.

. quietly mixed y x || j: x, reml covariance(uns)

. reffadjust4nlcom _cons x, eqn(j)

. nlcom `r(beta_x)´

_nl_1: tanh([atr1_1_1_2]_cons)*exp([lns1_1_1]_cons +
> [lns1_1_2]_cons)/exp(2*[lns1_1_1]_cons)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .2577018 .0381171 6.76 0.000 .1829936 .33241
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. reffadjustsim _cons x, eqn(j) seed(101112)

_cons Median 2.5 Percentile 97.5 Percentile

x .2575872 .183246 .3311031

Both commands estimate the association between u0 and u1 as 0.26 [95% CI: 0.18, 0.33],
which is very close to the true value of 0.25. This means that for a 1-unit increase in
u1, u0 increases by an average of 0.26 units.

The reffadjust4nlcom command works by returning an expression for the associ-
ation, as given by (3), to use in nlcom, which obtains a delta-method CI. The expres-
sion in the output above looks complex because we have to back-transform the mixed

random-effects variance-component estimates from their estimation metric. Random-
effects variances are estimated on the log standard-deviation scale, and random-effects
covariances are estimated as the inverse hyperbolic tangent of the correlation. Our
reffadjustsim command employs a simulation approach to produce a delta-method CI

for the estimated association between the random effects. The commands are described
in more detail in section 4.

To demonstrate our warning about the downward bias in the variance of BLUPs, let’s
use the BLUPs to estimate γ.

. predict double u1hat double u0hat, reffects

. corr u0hat u1hat if pickone==1, covariance
(obs=1000)

u0hat u1hat

u0hat .730469
u1hat .29556 .983507

. regress u0hat u1hat if pickone==1, nocons noheader

u0hat Coef. Std. Err. t P>|t| [95% Conf. Interval]

u1hat .3005166 .0255551 11.76 0.000 .2503688 .3506644

Using the BLUPs only, we see that the estimate of σ2
u1 of 0.98 is close to its true value

(which was set to 1). The estimate of σ2
u0 of 0.73 is, as we described earlier, downwardly

biased with respect to its true value of 1. As a result, the estimated covariance between
the BLUPs of 0.296 is also biased with respect to its true value of 0.25. This causes
the estimate of γ using the BLUPs of 0.30 [95% CI: 0.25, 0.35] to be upwardly biased.
This is especially troubling in this case because the lower CI limit just excludes the true
value of 0.25 (at the third decimal place). Figure 2 illustrates this point further: the
right-hand side shows the narrower spread of the BLUPs that gives rise to the steeper
line of fitted values. As explained previously, this is the reason that our reffadjust

commands use the estimated random-effects variances and covariances from the model
results to estimate the associations between random effects rather than the variances
and covariances of the BLUPs.
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Figure 2. Plot of regression of u0 on u1 using simulated (left) and predicted (right)
random effects

3 Estimating associations between random effects from
multivariate outcome models fit using MLwiN via the

runmlwin command

In this section, we describe fitting a bivariate multilevel model for weight and MAP (the
average pressure in an artery over a complete cycle of one heartbeat) in women during
pregnancy using data from ALSPAC (http://www.bris.ac.uk/alspac).

3.1 Introduction to ALSPAC data example

The data are from ALSPAC, which is described elsewhere (Golding, Pembrey, and Jones
2001; Fraser et al. 2013). The two outcomes are weight and MAP during pregnancy.
MAP was calculated as follows (note that the weighting allows for the lower pressure
during the diastolic phase of the cardiac cycle):

MAP = 1
3 (systolic blood pressure) + 2

3 (diastolic blood pressure)

Multivariate multilevel models are often used to model longitudinal measurements
of health-related outcomes, notably, growth curves (Royston 1995; Pan and Goldstein
1997, 1998; Goldstein and Kounali 2009). Hence, we use a bivariate multilevel model
with linear splines for gestational age to assess whether an increase in weight precedes
a rise in MAP and to determine the periods of pregnancy during which associations are
strongest.
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We restrict our analysis to singleton full-term births (≥ 37 weeks’ gestation) with
no evidence of preeclampsia or a previous diagnosis of hypertension (N = 11650). All
weight and blood-pressure measurements, which were taken routinely as part of ante-
natal care by midwives or obstetricians, were abstracted from obstetric records by six
trained research midwives. This resulted in a median of 14 (interquartile range 11 to
16) blood-pressure measurements and median of 12 (interquartile range 10 to 14) weight
measurements per woman. Our original analysis presented in Macdonald-Wallis et al.
(2012) adjusted for the confounding variables maternal height, age, parity, education,
smoking, and offspring sex; however, in this example, for simplicity, we use unadjusted
models.

3.2 Multivariate outcome multilevel model

We denote the two outcomes y(1) (map) and y(2) (weight) measured on occasions i =

1, . . . , nj (level 1) for individuals j = 1, . . . , J (level 2). Hence, y
(1)
ij is the value of the

response y(1) at the ith measurement of the jth individual; tij denotes the time of this
observation. To simplify our model, we chose to represent the time variable t by a set of
splines for each outcome. The splines for MAP were chosen to be between 0–18 weeks,
18–29 weeks, 29–36 weeks, and ≥ 36 weeks; the splines for weight were the same except
that the last two periods were combined into a single period. More details about how
these knot positions were chosen are given in Macdonald-Wallis et al. (2012).

Our bivariate multilevel model is

mapij = (βcons 1 + ucons 1,j) +
4∑

k=1

(βspk + uspk,j)spk + ǫ
(1)
ij

weightij = (βcons 2 + ucons 2,j) +

3∑

l=1

(βspwl + uspwl,j)spwl + ǫ
(2)
ij

uj ∼ MVN9 (0,Σu) ,

[
ǫ
(1)
ij

ǫ
(2)
ij

]
∼ MVN

(
0, Σǫ

)

where Σu and Σǫ are unrestricted variance–covariance matrices. After reading in the
data and generating the splines with the mkspline command, we fit the model using
the MLwiN statistical software via the runmlwin command as follows (Rasbash et al.
2009; Leckie and Charlton 2011):

runmlwin (map cons sp1 sp2 sp3 sp4, eq(1)) ///
(weight cons spw1 spw2 spw3, eq(2)), ///
level2(id: (cons sp1 sp2 sp3 sp4, eq(1)) ///

(cons spw1 spw2 spw3, eq(2)), reset(none)) ///
level1(visit_unique: cons) ///
maxiter(5000) nopause
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The fixed-effects estimates are shown below (note that runmlwin includes the suffix #

for each parameter estimate, where # is the equation number).

. runmlwin, noheader noretable

Coef. Std. Err. z P>|z| [95% Conf. Interval]

map
cons_1 83.07113 .2021721 410.89 0.000 82.67488 83.46738
sp1_1 -.1795707 .012932 -13.89 0.000 -.2049169 -.1542245
sp2_1 .111918 .0083765 13.36 0.000 .0955004 .1283356
sp3_1 .3123525 .0129339 24.15 0.000 .2870025 .3377025
sp4_1 1.158547 .0250621 46.23 0.000 1.109426 1.207668

weight
cons_2 60.44829 .1326018 455.86 0.000 60.18839 60.70818
spw1_2 .3157002 .0033848 93.27 0.000 .3090661 .3223343
spw2_2 .53217 .0022896 232.43 0.000 .5276824 .5366576
spw3_2 .4595202 .002689 170.89 0.000 .4542499 .4647905

We see that the mean value of MAP at 0 weeks’ gestation is 83.07 mmHg [95% CI:
82.67, 83.47] and that the mean weight is 60.45 kg [95% CI: 60.19, 60.71]. Because of the
large sample size, all the CIs for the fixed-effects estimates exclude the null of 0. We also
see that for MAP, the first spline period is associated with a decrease in the mean level
of MAP, whereas the subsequent periods are associated with increasing average levels of
MAP. Hence, these estimates imply a U shape for the population mean of MAP across
gestation (see figure 2(b) of Macdonald-Wallis et al. [2012] for further information).
The lower diagonal estimates of the elements of the random-effects variance–covariance
matrix Σ̂u can be shown conveniently (without their CIs) as follows:

. mat b = e(b)

. mat brp2 = b[1,"RP2:"]

. mat Su = J(9,9,.)

. local k 1

. forvalues i=1/9 {
2. forvalues j=1/9 {
3. if `j´ <= `i´ {
4. mat Su[`i´,`j´] = brp2[1,`k++´]
5. }
6. }
7. }

. mat bfp = b[1,1..9]

. local names : colnames bfp

. mat rownames Su = `names´

. mat colnames Su = `names´
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. mat list Su, format(%3.2f) noheader noblank
cons_1 sp1_1 sp2_1 sp3_1 sp4_1 cons_2 spw1_2 spw2_2 spw3_2

cons_1 67.09 . . . . . . . .
sp1_1 -2.55 0.18 . . . . . . .
sp2_1 -0.02 -0.03 0.12 . . . . . .
sp3_1 0.34 -0.03 -0.04 0.36 . . . . .
sp4_1 -0.27 0.02 -0.01 -0.11 1.34 . . . .

cons_2 25.21 0.45 -0.65 0.21 -0.47 150.21 . . .
spw1_2 -0.09 -0.00 0.01 -0.01 -0.00 -0.98 0.05 . .
spw2_2 -0.16 0.01 0.01 -0.00 0.01 -0.31 0.01 0.03 .
spw3_2 -0.10 0.01 0.01 0.02 0.03 0.03 0.00 0.02 0.05

And the estimates of Σǫ are

Σ̂ǫ =

[
36.55 [95% CI : 36.12, 36.98]
0.06 [95% CI : 0.01, 0.11] 0.79 [95% CI : 0.78, 0.80]

]

As an example, we estimate the association between the random effects for the third
and second spline periods for MAP (usp3 and usp2) by using our reffadjust4nlcom

command. We also show this association adjusted for the first spline-period random
effect (usp1) and the baseline random effect (ucons 1).

. reffadjust4nlcom sp3_1 sp2_1, eqn(RP2)

. nlcom `r(beta_sp2_1)´

_nl_1: [RP2]cov(sp2_1\sp3_1)/[RP2]var(sp2_1)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.3659381 .0847744 -4.32 0.000 -.5320929 -.1997833

. reffadjust4nlcom sp3_1 sp2_1 sp1_1 cons_1, eqn(RP2)

. nlcom `r(beta_sp2_1)´, noheader

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.4790297 .0835663 -5.73 0.000 -.6428166 -.3152429

Hence, a 1 mmHg per week increase in the second MAP spline-period random effect is
on average associated with a −0.37 mmHg per week [95% CI: −0.53, −0.20] increase in
the third spline-period random effect. This association increases in magnitude to −0.48
mmHg per week [95% CI: −0.64, −0.32] on adjustment for the earlier MAP spline-
period random effects. We argue that these associations are easier to interpret than the
estimated covariance between these two random effects in the matrix above of −0.04
[95% CI: −0.07, −0.02], which equated to a correlation of −0.21 [95% CI: −0.30, −0.11]
(obtained by running runmlwin, correlations after the initial runmlwin command).
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We also investigate the association between the third MAP spline-period random ef-
fect and previous spline-period random effects for both outcomes. Because this involves
adjusting for more than four random effects, we use our reffadjustsim command.

. reffadjustsim sp3_1 sp2_1 sp1_1 cons_1 spw2_2 spw1_2 cons_2, eqn(RP2)

sp3_1 Median 2.5 Percentile 97.5 Percentile

sp2_1 -.4823532 -.6405699 -.2808418
sp1_1 -.4113592 -.5789848 -.2575228

cons_1 -.01079 -.016345 -.0050133
spw2_2 .2870492 .108691 .4641665
spw1_2 -.2271708 -.4063453 -.0531179
cons_2 .0014225 -.000989 .0038398

While the weight spline-period random effects are associated with the MAP sp3 random
effect, they do not materially alter the association between the sp3 and sp2 MAP random
effects.

MLwiN can also perform Bayesian estimation, after which the Markov chains of
the posterior distributions of the parameters can be read into Stata using runmlwin’s
mcmcsum, getchains postestimation command (Leckie and Charlton 2011). Both of
our reffadjust commands can be used with these Markov chains from Bayesian esti-
mation (see the examples in the reffadjust4nlcom and reffadjustsim help files for
more information).

4 The reffadjust package

This package includes two programs, reffadjust4nlcom and reffadjustsim, which
are postestimation commands used after the following multilevel modeling commands:
mixed (formerly xtmixed), meqrlogit (formerly xtmelogit), meqrpoisson (formerly
xtmepoisson), and runmlwin.

4.1 reffadjust4nlcom: Delta-method CIs using analytic expressions
for regression coefficients

The reffadjust4nlcom command produces a local macro of the form of (3) or (6) for
the appropriate number of included covariates. As the name suggests, this expression
is then passed to nlcom to obtain a delta-method CI for the estimated association.

In our example using the second simulated dataset above, we used (3), the analytic
expression of a regression coefficient, for a model with a single covariate. If there were
three random effects in the model, for example,



u0j
u1j
u2j


 ∼ MVN





0
0
0


 ,



σ2
u0 σu01 σu02

σu01 σ2
u1 σu12

σu02 σu12 σ2
u2




 (4)
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and we wished to fit the model

u0j = γ1u1j + γ2u2j + νj , νj ∼ N(0, τ2) (5)

we would use the analytic expression for the coefficients from regression models, includ-
ing two covariates. For example, γ1, the mean difference in u0 associated with a unit
change in u1, adjusted for u2, is given by

γ1 =
σ2
u2σu01 − σu12σu02
σ2
u1σ

2
u2 − (σu12)2

(6)

Formulas such as (3) and (6) are derived from the well-known matrix form of the max-
imum likelihood estimates for linear regression. Formulas for coefficients from models
with three and four covariates are given in the supplementary material of Macdonald-
Wallis et al. (2012). As far as we know, it is not possible to derive analytic formulas for
coefficients adjusting for larger numbers of covariates, because there is no convenient
analytic expression for the inverse of a matrix of order greater than 4. We also note
that the formulas for the coefficients from models without an intercept are slightly dif-
ferent. However, this is not problematic for our approach, because the random effects
have mean 0, in which case coefficients for models with and without an intercept are
equivalent.

4.2 reffadjustsim: Simulating from a multivariate normal distribution
for the estimated random effects

The reffadjustsim command repeatedly simulates from a multivariate normal distri-
bution by using the estimated random-effects variances and covariances as the mean
vector and their estimated variance–covariance matrix (V̂) as the variance–covariance
matrix. Hence, for a model with three random effects, as in (4), for each iteration r we
simulate 



σ2
u0r

σ2
u1r

σ2
u2r

σu01r
σu02r
σu12r



∼ MVN







σ̂2
u0

σ̂2
u1

σ̂2
u2

σ̂u01
σ̂u02
σ̂u12



, V̂




Therefore for (5), we denote for each iteration r

γr =

(
γ1r
γ2r

)
, Σr =

[
σ2
u1r σu12r

σu12r σ2
u2r

]
, σ0r =

(
σu01r
σu02r

)

and for each iteration, the estimates γ̂r are found as the solution to (Fisher 1925,
chap. 5)

γ̂r = Σ−1
r σ0r

The reffadjustsim command reports the median of the r estimates as the estimate
of the association between the random effects, and the 2.5 and 97.5 centiles of the r
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realizations are reported as the 95% CI limits. The advantage of reffadjustsim over
reffadjust4nlcom is that it can include more than four random effects as covariates.

The methods are described in more detail in Tilling, Sterne, and Wolfe (2001) and
Macdonald-Wallis et al. (2012). One limitation is that both commands assume the es-
timated random-effects variance components follow a multivariate normal distribution.
Multivariate normality of these variance components may not hold for small samples:
the random-effects variances will most likely have a skewed distribution because they
must be positive. However, we suggest that the delta method is a reasonable first ap-
proximation to obtain CIs for these parameters. Wald-type CIs for maximum likelihood
estimates of variance components from multilevel models become more accurate as the
sample sizes at the different levels of the model become larger (Raudenbush and Bryk
2002); hence, our delta-method CIs for the estimated associations between the random
effects should also become more accurate.

4.3 Syntax

reffadjust4nlcom depvar indepvars, eqn(string)
[
mcmcsum sf(numlist)

sublevel(#)
]

reffadjustsim depvar indepvars, eqn(string)
[
mcmcsum sf(numlist)

sublevel(#) centileopts(string) level(#) n(#) post replace

saving(filename
[
, replace

]
) seed(#) statadrawnorm waldtype

]

4.4 Options

eqn(string) specifies the name of the equation from which the coefficients are to be
extracted. For example, a bivariate two-level, random-effects model from runmlwin

will typically return four equations (FP1, FP2, RP1, RP2). eqn() is required.

mcmcsum for reffadjust4nlcom specifies that the returned local use variable names
of chains that are returned from MLwiN Bayesian Markov chain Monte Carlo es-
timation by mcmcsum, getchains. mcmcsum for reffadjustsim calculates centiles
from the Bayesian posterior distribution of the coefficients using chains imported
by mcmcsum, getchains. Note that your runmlwin model must have been fit by
Markov chain Monte Carlo. The options seed(), n(), statadrawnorm, waldtype,
and post are not allowed with mcmcsum. For both commands, mcmcsum is allowed
only with runmlwin estimates.

sf(numlist) specifies the scaling factors. If specified, each number corresponds to the
respective covariate (indepvar); that is, the first number is the scaling factor for the
first coefficient and so on. If sf(numlist) is specified, the numlist must be the same
length as the number of covariates. For example, to scale the coefficient by 2 times
the dependent variable (Y ), then with one covariate (X), specify sf(2). To scale
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the coefficient by 2 times the covariate, specify sf(.5); in this case, you scale by
2/22 because a regression coefficient is given by cov(X,Y )/var(X).

sublevel(#) specifies the sublevel of a repeated group variable. For example, in the
model

. mixed y || school: z1 z2, nocons cov(id) ///
|| school: z3 z4, nocons cov(un)

z1 and z2 are at sublevel 1, and z3 and z4 are at sublevel 2 of the school group
variable. sublevel() is valid only with mixed or xtmixed, meqrlogit or xtmelogit,
and meqrpoisson or xtmepoisson.

centileopts(string) specifies the options passed to centile; note that you may not
specify the centile(#) option here. The reported percentiles can be changed
through the level(#) option.

level(#); see [R] estimation options.

n(#) specifies the number of observations to be simulated. The default is n(10000),
and # is not allowed to be less than 10. n() is not allowed with mcmcsum, where
n() is taken as the number of observations in the dataset imported by mcmcsum,

getchains.

post causes reffadjustsim to behave like a Stata estimation (e-class) command. post
may be specified only with waldtype. When post is specified, reffadjustsim will
post the vector of adjusted estimates and its estimated variance–covariance matrix
to e(). Thus after posting, you could treat the estimation results in the same way
that you would treat results from other Stata estimation commands. For example,
after posting, you could redisplay the results by typing reffadjustsim without
any arguments, or you could use test to perform simultaneous tests of hypotheses
on linear combinations of the estimates. Specifying post clears out the previous
estimation results, which can be recovered only by refitting the original model or
by storing the estimation results before running reffadjustsim and then restoring
them; see [R] estimates store.

replace overwrites variables named beta indepvar if they exist in the dataset. It is
valid only with mcmcsum.

saving(filename
[
, replace

]
) saves the simulated realizations of the random-effects

variances and covariances to filename, optionally replacing filename if it exists.

seed(#) specifies the initial value of the random-number seed. The default is the
current random-number seed. Specifying seed() is the same as typing set seed

# before issuing the command; see help set seed. seed() is not allowed with
mcmcsum.

statadrawnorm uses Stata’s drawnorm to simulate the adjusted coefficients. For speed,
by default, reffadjustsim uses its own Mata implementation; see help drawnorm.
statadrawnorm is not allowed with mcmcsum.
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waldtype reports coefficients as means with Wald-type CIs. By default, reffadjustsim
reports coefficients as medians and centiles of the simulated coefficients. This option
can produce inaccurate results (as indicated in the warning below, please compare
with the default output). waldtype is not allowed with mcmcsum.

4.5 Warnings

Note on multivariate response models

Covariates (indepvars) in runmlwin estimates from multivariate response models have
suffix #, where # is the corresponding equation number. For example, from (1), cons
would be referred to as cons 1.

Note on shrinkage estimates

reffadjust4nlcom and reffadjustsim use the estimated random-effects variances and
covariances from the model. They do not use the shrinkage estimates of these parame-
ters, that is, the variances and covariances of the BLUPs (Rasbash et al. 2009, chap. 3).

Warning about p-values for these estimates

The p-values associated with these estimates from nlcom may be affected by bound-
ary value issues in the estimation of the random-effects variances and covariances;
see Distribution theory for likelihood-ratio test in [ME] me (StataCorp 2013) and see
Gutierrez, Carter, and Drukker (2001).

Warning about the waldtype option

By default, reffadjustsim reports coefficients as medians with 2.5 and 97.5 percentiles.
Coefficients can be reported as means with Wald-type CIs with the waldtype option.
Means and Wald-type CIs may not be accurate. We recommend that you compare
results with the default output and, if possible, also with the delta-method CI via
reffadjust4nlcom and nlcom.

Interpretation of coefficients

The coefficients estimated by reffadjust4nlcom and reffadjustsim represent the
mean difference in the random effects entered as dependent variables, which is associ-
ated with a unit increase in the random effects entered as independent variables, while
adjusting for the other random effects included in the model as independent variables.
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Parameters estimated with missing variance

A multilevel model can occasionally be declared as converged by an estimation com-
mand, but some parameters (especially random-effects variances and covariances) may
not have a standard error. A warning is issued that resulting CIs may not be valid in
this case.

Random-effects covariance structures

The reffadjust commands work only with exchangeable or unstructured random-
effects variance–covariance structures from mixed, meqrlogit, and meqrpoisson.

5 Estimating associations between random effects from
random-effects logistic regression models

The reffadjust commands can also be used after the official Stata meqrpoisson and
meqrlogit commands for fitting multilevel Poisson and logistic regression models, re-
spectively. To demonstrate this, we define the two-level logistic regression model

yij ∼ Bernoulli(pij)

logit(pij) = β0 + β1Xij + u0j + u1jXij(
u0j
u1j

)
∼ MVN

((
0
0

)
,

[
σ2
u0 σu01

σu01 σ2
u1

])

where logit(p) = log{p/(1−p)}. We simulate data from this model by setting β0(cons) =
−4, β1 = 1, Xij ∼ N(0.2i, 1), σ2

u0 = σ2
u1 = 1, and σu01 = 0.25. We tabulate the

outcome y by using the following code:

. clear

. set seed 12345

. matrix V = (1, .25 \ .25, 1)

. set obs 1000
obs was 0, now 1000

. generate int j = _n

. corr2data u0 u1, double cov(V)

. expand 10
(9000 observations created)

. generate byte cons = -4

. by j, sort: generate int i = _n

. by j, sort: generate double x = rnormal(0.2*i, 1)

. generate double p = invlogit(cons + x + u0 + u1*x)

. generate byte y = rbinomial(1, p)
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. tab y

y Freq. Percent Cum.

0 8,481 84.81 84.81
1 1,519 15.19 100.00

Total 10,000 100.00

We can see that 15% of the 10,000 observations in the simulated dataset have the
outcome.

We then fit the model with meqrlogit.

. meqrlogit y x || j: x, covariance(uns) nolog noheader nogroup nolrtest

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x 1.011929 .0664607 15.23 0.000 .8816683 1.14219
_cons -3.935916 .1302443 -30.22 0.000 -4.19119 -3.680642

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

j: Unstructured
var(x) .7440409 .1277764 .5313949 1.04178

var(_cons) .9644602 .2959304 .5285738 1.759799
cov(x,_cons) .2869809 .1197563 .0522628 .5216989

The fixed-effects estimates (the first table of results above) are on the log scale, and we
can see they are approximately at their true values. However, there is some downward
bias in the estimated random-effects variances in the second table of results. For exam-
ple, the estimate of σ2

u1 (denoted var(x)) is 0.74 [95% CI: 0.53, 1.04], which is less than
its true value of 1, although the true value is just within the CI.

We then estimate the association between u0 and u1 with our reffadjust com-
mands.

. reffadjust4nlcom _cons x, eqn(j)

. nlcom `r(beta_x)´

_nl_1: tanh([atr1_1_1_2]_cons)*exp([lns1_1_1]_cons +
> [lns1_1_2]_cons)/exp(2*[lns1_1_1]_cons)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .3857058 .1994699 1.93 0.053 -.0052481 .7766596

. reffadjustsim _cons x, eqn(j)

_cons Median 2.5 Percentile 97.5 Percentile

x .3771738 -.0715286 .7283991
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Both the estimated associations of 0.39 [95% CI: −0.01, 0.78] and 0.38 [95% CI: −0.07,
0.73] are upwardly biased with respect to the true value of 0.25 because of the bias
in the estimated variance components. However, both CIs are wide and contain the
true value. Carlin et al. (2001) discuss some of the problems of fitting binary outcome
multilevel models: in particular, when the proportion of observations with the outcome
is small at a particular level of the model, then estimation of random-effects variances
and covariances can be problematic.

6 Discussion

We have described reffadjustsim and reffadjust4nlcom, new postestimation com-
mands that estimate associations between random effects used after multilevel-model
estimation commands (mixed and xtmixed, meqrlogit and xtmelogit, meqrpoisson
and xtmepoisson, and runmlwin). We have demonstrated the use of the commands
after mixed, a bivariate outcome model fit with MLwiN via runmlwin, and meqrlogit.

To estimate the association between random effects, we have shown that it is prefer-
able to use estimated variance components from the model rather than from the BLUPs
because of the well-known downward bias in the variance of the BLUPs, which occurs
because BLUPs are shrinkage estimates. A limitation of our commands is that they
assume the estimated random-effects variance components follow a multivariate nor-
mal distribution. Multivariate normality of these variance components may not hold:
the random-effects variances will most likely have a skewed distribution because they
must be positive. Multivariate normality of the estimated random-effects variance com-
ponents will improve as the numbers in each group of the multilevel structure increase
(Raudenbush and Bryk 2002); therefore, we suggest using the delta method as a reason-
able first approximation to obtain CIs for these parameters. One way to overcome this
limitation when fitting models in MLwiN using runmlwin is to use Bayesian estimation,
and our commands can produce Bayesian credible intervals for the associations between
random effects from such models. Our commands can also use random-effects structures,
including the all group identifier available in mixed, meqrlogit, and meqrpoisson.

In applied research, our reffadjust commands have been used to derive associa-
tions between changes in weight with changes in blood pressure from bivariate multilevel
spline models (Macdonald-Wallis et al. 2013) and to estimate associations between en-
ergy intake trajectories and offspring body-mass index (Anderson et al. 2013).

In summary, our reffadjust commands estimate associations between random ef-
fects, with delta-method CIs, for use after several multilevel modeling commands. We
hope that our method and commands help to improve the interpretability of estimated
random-effects variance components from multilevel models.
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