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Abstract

In exemplar models the similarities between a new stimulus and each category exemplar

constitute positive evidence for category membership. In contrast, other models assume that, if

the new stimulus is sufficiently dissimilar to a category member, then that dissimilarity

constitutes evidence against category membership. We propose a new similarity-dissimilarity

exemplar model that provides a framework for integrating these two type of accounts. The

evidence for a category is assumed to be the summed similarity to members of that category

plus the summed dissimilarity to members of competing categories. The similarity-dissimilarity

exemplar model is shown to mimic the standard exemplar model very closely in the

unidimensional domain. 
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Similarity and Dissimilarity as Evidence in Perceptual Categorization

This paper is concerned with the basic question of what, in models of categorization,

constitutes evidence for category membership. More specifically, is the evidence that a

particular object is a member of a given category based solely on the similarity between the

object and previous category members or is the evidence also based on the dissimilarity

between the object and alternative categories? There are already disparate suggestions in the

literature that difference information may be utilized in recognition, identification, and

categorization tasks. In recognition, Mewhort and Johns (e.g., Johns & Mewhort, 2002, 2003;

Mewhort & Johns, 2000, in press) have argued that, under some circumstances, correct

rejections of test items may be made on the basis of the difference between a test item and list

items, rather than on the basis of familiarity as traditional accounts assume (although cf.

Dennis & Humphreys, 2001). In identification, Murdock's influential (1960) distinctiveness

model assumed that ease of item identification is a function of relative distinctiveness, where

distinctiveness is effectively a measure of the summed difference between the target item and

other contextual items. In Stewart, Brown, and Chater's (in press) model of unidimensional

absolute identification, the difference between the current stimulus and the immediately

preceding stimulus is used to derive a response to the current stimulus. In interpreting

differential reward learning, Estes (1976) explored a model in which rewards associated with a

current choice are compared to recent reward values held in short-term memory. In

categorization, Stewart, Brown, and Chater (2002) and Stewart and Brown (2004) argued

that difference information is used in simple binary categorization tasks. In his contrast model

of similarity, Tversky (1977) argued that the similarity between two objects is a function of the

number of common features and the number of differing or unique features. 

Here we focus on exemplar models and explore the more general question of whether

and when stimulus-category dissimilarity, as well as (or instead of) stimulus-category

similarity, is taken as evidence for category membership. Exemplar models of categorization
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(e.g., Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 1986) assume that as exemplars are

encountered they are stored together with their category labels. A new exemplar is classified

with reference to these stored exemplars. Specifically, the similarity between the new exemplar

and each stored exemplar is calculated. Similarities are summed for each category and used as

evidence to support responding with that category label. In this account, even highly dissimilar

exemplars count as (possibly infinitesimal) positive evidence for membership of their category.

An alternative approach assumes that difference information can count as evidence against

category membership (Stewart & Brown, 2004; Stewart et al., 2002). Accounts which use

only similarity information can be experimentally discriminated from those which use

dissimilarity information, as we show in the next section. 

Evidence of the Use of Difference Information: The Category Contrast Effect

Stewart et al. (2002; Stewart & Brown, 2004) provided some experimental evidence

that difference information can count as evidence against category membership. The paradigm

used was unidimensional binary categorization, where stimuli of one category took low values

on the dimension and stimuli of the other category took high values. Stewart et al. found that

classification of a borderline stimulus was more accurate when preceded by a distant member

of the opposite category than when it was preceded by a distant member of the same category.

They called this effect the category contrast effect. Standard exemplar models must predict

either no effect or the opposite result. If the plausible assumption is made that stimuli on

recent trials are weighted more heavily than those on less recent trials (e.g., Nosofsky &

Palmeri, 1997), the effect of the immediately preceding exemplar, no matter how dissimilar to

the current exemplar, is to increase the summed similarity of the current exemplar to the

previous exemplar's category. Thus, according to an exemplar model, a borderline stimulus

should be classified more accurately when it occurs after a distant member of the same

category than when it occurs after a distant member of the opposite category - the opposite of

the category contrast effect that is observed experimentally. 
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Overview

We begin by setting out formal definitions of an exemplar model (the generalized

context model). An adapted exemplar model is then presented and shown to be able to mimic

the original model closely. Exemplar models have been successfully applied to a wide range of

experimental paradigms (see Estes, 1994, for a review), and so the comparison between the

adapted and original models is informative in establishing how well the adapted model will

generalize to other paradigms. Finally we show that the adapted model can account for the

category contrast effect.

The Generalized Context Model

The generalized context model (hereafter GCM) is presented elsewhere (Nosofsky,

1986) but will be briefly described here as it applies to a binary categorization of

unidimensional stimuli. Each stimulus encountered is stored, together with its category label.

The distance between two stimuli, Si and Sj, is defined as

d ij=�xi� x j� (1)

where xi is the absolute magnitude of Si on the psychological dimension. The similarity

between two stimuli is a decreasing function of the distance between them

�ij=e�c d ij
q

(2)

where q = 1 gives an exponential function and q = 2 gives a Gaussian function. 

The evidence for each category response is the sum of the similarities to each category

member:

H iA=�
x j�CA

w j�ij (3)

where xj  � CA is read "for all xj such that Sj is a member of category CA." The GCM can be

adapted to predict sequence effects by weighting the stimuli on more recent trials more heavily

via the wj parameters (e.g., Nosofsky & Palmeri, 1997). The wj parameters were omitted in the

original version of the GCM. (These wj parameters are not to be confused with the attentional
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weights that are used in the multidimensional version of the GCM.) In intuitive terms, this

weighting corresponds to the stimulus either being more available in memory or being more

influential in the decision process.

The probability that response RA is given to stimulus Si is a function of Si's summed

similarity to each possible category:

P �RA�S i �=
��A H iA �

	

��A H iA �
	

��B H iB �

	 (4)

where �A is the response bias for category CA and 	 is a parameter that varies the degree of

determinism in responding (Ashby & Maddox, 1993). When 	 = 1 the response rule reduces

to the special case originally proposed for the context model (Medin & Schaffer, 1978) and

the GCM. For 	 > 1 responding is increasingly deterministic. There is good evidence that, at

the level of individual participants, it is necessary to include a determinism parameter in fitting

the GCM (Ashby & Gott, 1988; Maddox & Ashby, 1993; McKinley & Nosofsky, 1995;

Nosofsky & Zaki, 2002; Stanton, Nosofsky, & Zaki, 2002; Zaki, Nosofsky, Stanton, &

Cohen, 2003; see also Estes, 1997).

The Similarity-Dissimilarity Exemplar Model

We introduce a new model that we call the similarity-dissimilarity generalized context

model (hereafter SD-GCM). The model incorporates the idea that dissimilarity may play a role

in categorization decisions into the GCM framework. The probability of responding RA to

stimulus Si is a function of the evidences for CA and CB and is given by

P �RA�S i �=
��A v A �

	

��A v A�
	

��B v B �

	 (5)

In the SD-GCM the valences for each category are derived from the similarities defined by

Equation 2. Specifically,

v A=�
x j�C A

w j�ij
�
x j�C B

w j �1��ij � (6)
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where the wj parameters weight each stored exemplar (as in Equation 3 for the GCM).

Equation 6 can be understood as the evidence for category CA being the sum of the summed

similarity to category CA and the summed dissimilarity to category CB. The only difference

between the GCM and the SD-GCM is that the summed similarities to each category have

been replaced with the valences for each category.

When responding is probabilistic (i.e., 	 = 1), the response biases are equal (�A = �B),

and the exemplar weights are equal, Equations 5 and 6 give:

P �RA�S i �=
�

x j�C A

�ij
�
x j�C B

�1��ij �
N

, (7)

where N is the total number of exemplars. The SD-GCM contains Stewart and Brown's (2002)

memory and contrast model as a special case.

The Relationship Between the GCM and the SD-GCM

The only difference between the GCM and the SD-GCM is that in the GCM summed

similarities to each category are used in the choice rule whereas in the SD-GCM valences are

used in the choice rule. There are no circumstances in which the models are formally

equivalent, except in the trivial case when the dissimilarity information in the SD-GCM (i.e.,

the second term in Equation 6) is ignored. However, the two models are able to mimic one

another very closely. To explore the similarity between the GCM and the SD-GCM we

generated data from each model and fitted the other to it. The category structure used

comprised equally spaced exemplars: specifically CA = {1, 2, 3, 4, 5} and CB = {6, 7, 8, 9, 10}.

Rather than simulate a series of trials in an experiment, the generating model was used to

calculate the exact probability of an RA response for every exemplar for a range of parameter

values. The error surfaces shown in Figures 1 and 2 represents the mean square error of the fit

of one model to the probabilities of RA responses to each exemplar generated by the other

model. For each model 441 c-	 parameter pairs (corresponding to the nodes in the error-

surface grid) were used for each value of q (recall that q = 1 gives exponential generalization
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and q = 2 gives Gaussian generalization). The range of c parameter values was selected to

encompass very steep through to very shallow generalization gradients (c ranged from 0.05 to

2.72). The range of 	 values was selected to vary from probabilistic responding (	 = 1)

through to a generalization gradient sufficiently steep to allow the models to predict almost

perfect accuracy (	 = 10). Models were fitted in Mathematica 4.2 using the Mead and Nelder

(1968) simplex method with 100 random seeds and the constraints c > 0 and 	 > 1. 

Figures 3A and B show the fits of the GCM to SD-GCM data. At all points modeled

the MSE < .02. There are two reasons why the GCM does not fit the SD-GCM data perfectly,

as illustrated in Figures 1C and 1D. Figure 1C shows SD-GCM data generated from the model

with a large response determinism parameter (i.e., large 	). The GCM is unable to predict

such a steep generalization gradient without at the same time predicting near perfect

performance on all but the borderline training exemplars. (Incorporating guessing into the

GCM, where on a proportion of trials the response is simply guessed, could allow the GCM to

predict this pattern.) Figure 1D shows SD-GCM data generated from the model with a

moderate level of generalization (i.e., moderate c) and probabilistic responding (i.e., 	 = 1).

The GCM is unable to predict the "sine-wave" like generalization gradient, where performance

is better on the category prototypes than the exemplars furthest from the category boundary.

This inability is due to the choice of exponential or Gaussian generalization gradient, rather

than some other function (see Shepard, 1958, 1987, for a theoretical motivation of this

choice). This choice ensures that the similarity of a given exemplar to a near exemplar will

decrease at least as slowly as the similarity to a further exemplar as the given exemplar moves

away from both of them. A hyperbolic generalization gradient does not have this property.

Figures 2A and 2B show the fits of the SD-GCM model to GCM data. At all points

the MSE < .0001. These fits are excellent, with the SD-GCM able to mimic the GCM. This is

because the SD-GCM is able to fit the GCM generalization gradient very closely using the

central portion of its own generalization gradient. Figure 2C provides an example. Within the
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range of the training exemplars the SD-GCM mimics the GCM data very closely. The abscissa

has been extended outside the range of the training exemplars to show that, outside this range,

the SD-GCM and the GCM differ. The GCM predicts deterministic classification, with any

exemplar below the category CA exemplars being classified into category CA and any exemplar

above the category CB exemplars being classified into category CB. The SD-GCM predicts that

when transfer exemplars are sufficiently different from the training exemplars they are equally

likely to be classified into either category; this behavior arises because the dissimilarity

between a test item and both the near and far training exemplars gradually dominates and

approaches asymptote as distance from the training set increases. In the extreme, a test

stimulus becomes very dissimilar from both training sets, and similar to neither. The GCM can

also predict this pattern if a background noise term is added to the numerator and denominator

of Equation 4 (Nosofsky & Zaki, 1998; Wills, Reimers, Stewart, Suret, & McLaren, 2000). 

In the following section we use this property to illustrate how the SD-GCM might be

applicable to the peak shift phenomena. We then show that the SD-GCM allows the basic

dissimilarity-based category contrast effect, described above, to be explained.

The SD-GCM's Account of Peak Shift and Prototype Effects

McLaren, Bennett, Guttman-Nahir, Kim, and Mackintosh (1995) investigated

prototype effects and peak shift in categorization of checkerboard stimuli. They generated two

prototype checkerboards. Training exemplars were then generated for each category by

swapping, at random, some of the squares of the category prototype that differed between the

prototypes. Thus, training exemplars from opposite categories were more similar to one

another than the actual category prototypes were to each other. After training on these

exemplars McLaren et al. examined categorization performance on the old training exemplars,

the (previously unseen) category prototypes, and some new exemplars. These new exemplars

were generated for each category from each prototype by swapping some of the squares that

the two prototypes had in common. Thus new exemplars from opposite categories were more
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dissimilar than the category prototypes. McLaren et al. found that performance was best on

the prototypes, then the new exemplars, and worst on the old training exemplars. 

McLaren et al. interpreted their results in terms of a combination of a prototype effect

and a peak-shift effect. A prototype effect is better performance on unseen category

prototypes than old training exemplars. A peak shift is where, after a discrimination training on

two stimuli, transfer performance on a continuum of test stimuli reveals better performance on

stimuli more extreme than the trained stimuli. The SD-GCM is able to offer an account of

these results. Figure 3 illustrates two generalization gradients for the SD-GCM after training

on two exemplars: CA = {5} and CB = {6}. When the stimuli can be discriminated well (e.g., c

= 1.0), the SDGCM predicts that the peaks of performance lie slightly outside the training

stimuli. As the stimuli become less discriminable (e.g., c = 0.1) they are classified less

accurately, and the peak shift (distance between peaks) is increased. Increasing peak shift with

reduced discriminability is consistent with Hanson's (1969) original demonstration of peak

shift with pigeons. (For alternative explanations see: Lamberts 1996; Palmeri & Nosofsky,

2001.)

The SD-GCM's Account of the Category Contrast Effect

The SD-GCM can predict the category contrast effect. Figure 4 illustrates the

generalization gradient predicted by the SD-GCM for the binary categorization of 10 evenly

spaced stimuli where CA = {1, 2, 3, 4, 5} and CB = {6, 7, 8, 9, 10}. The central line illustrates

the predictions when all exemplars are equally weighted. The remaining two lines illustrate the

case when more recent examplars are weighted more heavily (where the weighting of the

exemplar k trials ago is given by e�k � ). Recall that the category contrast effect is the effect of

a distant stimulus (S1 or S10) on the previous trial on classification of a borderline stimulus (S5

or S6) on the current trial. The probability of responding RA to S5 on the current trial is reduced

when the previous stimulus is S1 (i.e., from the same category). The probability of responding

RA to S5 on the current trial is increased when the previous stimulus is S10 (i.e., from the
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opposite category). This is consistent with the effect observed by Stewart et al. (2002). The

SD-GCM is able to account for the effect because of the way valences for each category are

constructed. Consider Equation 5. A distant stimulus from category CA will increase the vA by

only a small amount (as the similarity between the distant stimulus and the current stimulus is

small), but it will increase vB greatly (as the dissimilarity between the distant stimulus and the

current stimulus is large). Thus the probability of an RA response is reduced. If the distant

stimulus was from category CB then this argument is reversed. In contrast, the GCM cannot

account for this result. Consider Equation 4. A distant stimulus from category CA will increase

the �iA by only a small amount (as the similarity between the distant stimulus and the current

stimulus is small), and will have no effect on �iB. Thus the probability of an RA response is

slightly increased - the opposite of the category contrast effect.

Conclusion

Exemplar models assume that participants store previously encountered category

exemplars and categorize novel stimuli in terms of their similarity to these stored exemplars. In

the GCM, even if a stored category exemplar is highly dissimilar to a novel stimulus, the

(small) similarity between them counts as (weak) positive evidence that the novel stimulus

belongs to the exemplar's category. In contrast, in the SD-GCM, the same high dissimilarity

counts as evidence that the novel stimulus does not belong to same category as the exemplar

to which it is being compared. That is, the SD-GCM differs from the GCM models in that a

valence, which is the similarity to one category and the dissimilarity to the other, rather than

just the summed similarity, is used as evidence in reaching a classification decision. Because of

this difference, the SD-GCM can account for the category contrast effect that the original

GCM could not account for. The SD-GCM was shown to mimic the GCM very closely, at

least for a symmetrical binary categorization of evenly spaced unidimensional stimuli.
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Figure Captions

Figure 1. A, B: Fits of the GCM to data generated from the SD-GCM. C: An example of a

GCM (c = 0.02263, q = 2, 	 = 12.88) fit to data generated from the SD-GCM (c = 0.3679, q

= 2, 	 = 4.000). D: Another example of a GCM (c = 0.009019, q = 2, 	 = 3.961) fit to data

generated from the SD-GCM (c = 2.718, q = 2, 	 =1.000).

Figure 2. A, B: Fits of the SD-GCM to data generated from the GCM. C: An example of a

SD-GCM (c = 0.06840, q = 1, 	 = 8.045) fit to data generated from the GCM (c = 1.000, q =

1, 	 = 1.000).

Figure 3. The probability of a RA response against stimulus magnitude for the SD-GCM (q =

2, 	 = 1) when CA = {5}, and CB = {6}. The different plots are for different levels of stimulus

generalization. 

Figure 4. The probability of an RA response as a function of the current stimulus for the SD-

GCM (c = 0.1000, q = 2, 	 = 1.000). Two of the plots are for when the preceding stimuli

were not equally weighted (k = 0.5000). The final plot is for the predictions of the SD-GCM

when every stimulus is weighted equally.
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Figure 1

A: GCM Fits to SD-GCM Simulated Data (q=1)
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B: GCM Fits to SD-GCM Simulated Data (q=2)
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Figure 2

A: SD-GCM Fits to GCM Simulated Data (q=1)
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Figure 3
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Figure 4

.0

.2

.4

.6

.8

1.0

1 2 3 4 5 6 7 8 9 10

P
(R

A
)

Sn

Sn-1=1
Sn-1=10

Equal Weighting

 


	ADPDD.tmp
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


