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ABSTRACT: The isolation, characterization and reactiv-
ity of a T-shaped rhodium(I) complex containing Glori-
us’ bioxazoline derived N-heterocyclic carbene ligand 
IBioxMe4 is described: [Rh(IBioxMe4)3][BArF4] (1, ArF = 
3,5-C6H3(CF3)2). 1 represents a rare example of a solu-
tion stable ‘naked’ 14-electron complex and is character-
ized in the solid-state by highly distorted ligand geome-
tries and Rh···C distances > 3.1 Å for the IBioxMe4 alkyl 
substituents. Consistent with the bulky nature of the 
NHC ligand, no reaction is observed with excess IBiox-
Me4, PCy3 or norbornadiene. Reaction of 1 with CO, 
however, leads to coordinatively saturated 
[Rh(IBioxMe4)3(CO)][BArF4] 2.  

Coordinatively unsaturated complexes are key interme-
diates in transition metal catalysed reactions.1 Under-
standing the structure and onward reactivity of these 
unsaturated species is of fundamental mechanistic im-
portance for the targeted development of more effective 
catalysts and new catalytic transformations, although 
their inherent high reactivity generally precludes isola-
tion.2,3,4 Reflecting the importance of N-heterocyclic 
carbene (NHC) ligands in transition metal catalysis,5 the 
chemistry of low-coordinate NHC complexes is a partic-
ularly topical area. The ability of unsaturated metal 
complexes containing NHC ligands to undergo cy-
clometalation via C–H bond activation of alkyl and aryl 
appendages, however, represents a notable limitation, 
particularly for the isolation of low-coordinate metal 
centres in low oxidation states.6,7 
Observing that substituent flexibility is key requirement 
for cyclometalation reactions of NHC ligands, it was 
reasoned that the use of conformationally rigid bioxazo-

line-derived variants (IBiox), developed by Glorius and 
co-workers,8 would prove more resilient to such reactivi-
ty. Bioxazolines are excellent scaffolds for the synthesis 
of bulky (chiral or achiral) NHCs. IBiox ligands have 
found notable application in palladium catalysed cross 
coupling reactions, although well-defined IBiox com-
plexes are currently limited to a narrow range of palla-
dium, iridium and group 11 systems.8  
Given the close structural similarities to the commonly 
employed IiPr2Me2 and ItBu ligands,9 the coordination 
chemistry of IBioxMe4 (see Scheme 1 for structure) was 
selected for investigation. With cationic T-shaped rhodi-
um(I) tris-phosphine complexes [Rh(PR3)3]+ (A, R = Ph, 
iPr) as precedents,10 the synthesis of an analogous tris-
NHC complex was targeted. Pleasingly the desired, for-
mally 14-electron, complex [Rh(IBioxMe4)3][BArF4] (1, 
ArF = 3,5-C6H3(CF3)2) was readily prepared through 
reaction of the rhodium(I) precursor [Rh(COE)2Cl]2 
(COE = cis-cyclooctene) with an excess (3.2 equiv./Rh) 
of isolated IBioxMe4 in 1,2-difluorobenzene solvent, us-
ing Na[BArF4] as a halide abstractor (Scheme 1). Subse-
quent crystallisation from CH2Cl2/pentane or heptane 
afforded 1.1/2(CH2Cl2) as large purple blocks in 83% 
isolated yield. 
 Scheme 1. Preparation of 1. 
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Figure 1. Solid-state structure of 1 (Z’ = 2). Thermal ellipsoids for selected atoms drawn at 50%; most hydrogen atoms, ani-
ons, solvent molecule and minor disordered components omitted for clarity. For ease of comparison, chiral cations of the 
same absolute configuration are shown: that containing Rh1A* was generated by inversion. Selected bond lengths (Å) and 
angles (º): Rh1-C2, 2.053(2); Rh1-C17, 2.037(2); Rh1-C32, 1.941(2); Rh1-C13, 3.273(3); Rh1-C29, 3.574(3); C2-Rh1-C17, 
161.80(9); Cnt(C2)-C2-Rh1, 163.9(2); Cnt(C17)-C17-Rh1, 173.1(2); Cnt(C32)-C32-Rh1, 176.9(2); Rh1A-C2A, 2.071(2); 
Rh1A-C17A, 2.012(2); Rh1A-C32A, 1.934(2); Rh1A-C13A, 3.421(3); Rh1A-C29A, 3.191(3); C2A-Rh1-C17A, 160.21(9); 
Cnt(C2A)-C2A-Rh1A, 160.0(2); Cnt(C17A)-C17A-Rh1A, 166.5(2); Cnt(C32A)-C32A-Rh1A, 178.2(2).11 

In the solid-state, 1 adopts a pseudo C2 symmetric dis-
torted T-shaped geometry, CNCN-Rh-CNCN ≈ 161º (Fig-
ure 1). Two independent, but structurally similar, cations 
are observed; the most notable difference being a slightly 
different oxazoline ring conformation in one of the 
trans-disposed IBioxMe4 ligands (containing 
C17/C17A).  Complexes A and chelating ligand systems 
[Rh(tBu2PCH2PtBu2)(CH2tBu)] (B),12 
[Rh(PiBu3){PtBu2(CH2)2CH=CH2}]+ (C),13 
[Rh{(PtBu2CH2)2(BN2C6H4)}] (D)14 and [Rh{((2,6-
Me2C6H3)NMeC)2CH}(COE)] (E)4 are crystallography 
characterized rhodium(I) precedents. Platinum(II) NHC 
and their cyclometalated derivatives are also known to 
adopt T-shaped geometries.7 The mutually trans NHC 
ligands in 1 exhibit highly distorted coordination geome-
tries, with significant pitching and yawing, as quantified 
by non-linear NHC centroid-CNCN-Rh angles [160.0(2) 
– 173.1(2)º].11 Such distorted NHC binding is very unu-
sual in transition metal complexes.15,16 Notably, the me-
thyl substituents of the IBioxMe4 ligand remain distant 
from the metal centre, with the smallest Rh···C distances 
being 3.273(3) and 3.191(3) Å in the independent cati-
ons, suggesting the absence of any significant agostic 
interactions in 1. The observed alkyl Rh···C distances 
are significantly longer than those reported in genuinely 
low-coordinate (and also purple) E [2.89, 2.97 Å]4 and 
are in marked contrast to A – C, which all display strong 
agostic interactions  [Rh···C = 2.41 – 2.49 Å].10,12,13 
Similarly, a stabilising intermolecular σ-CH bond inter-
action is observed for D in the solid-state [Rh···C = 2.77 
Å].14 Complex 1 therefore presents the structural char-
acteristics of a ‘naked’ low-coordinate rhodium com-
plex.3,4 Consistent with this formulation, the NHC lig-
ands trans to a free coordination site bind with shorter 

Rh-CNCN distances than the ligands cis  [1.941(2), 
1.934(2) vs 2.012(2) – 2.071(2) Å]. 
In solution, 1 is highly fluxional showing time averaged 
D3 symmetry in both CD2Cl2 and 1,2-difluorobenzene at 
298 K (500 MHz). The coordinated carbene is observed 
as a doublet resonance at δ 154.6 with a 1JRhC coupling 
constant of 64 Hz and the hydride region of the 1H 
NMR spectrum of 1 is completely featureless. The onset 
of decoalescence is observed on cooling, although the 
slow exchange limit is not reached at 200 K (see ESI); at 
this low temperature the 1H NMR spectrum shows no 
evidence for agostic interactions of the methyl groups 
with the metal centre.  
Scheme 2. Reactivity of 1. 

 
Coordinatively unsaturated 1 is completely stable in so-
lution (under an argon atmosphere), with invariant 1H 
NMR spectra recorded over 48 hours in 1,2-
difluorobenzene and CD2Cl2 solution at 293 K. Moreo-
ver, preliminary reactivity studies involving addition of 
excess IBioxMe4, PCy3 or norbornadiene, as potential 
ligands, did not result in any reaction after 18 h at 293 K 
(Scheme 2). A rapid reaction was, however, observed 
upon placing 1 under an atmosphere of carbon monox-
ide, resulting in the quantitative formation of  
[Rh(IBioxMe4)3(CO)][BArF4] 2 (NMR spectroscopy). 
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This carbonyl complex was subsequently isolated in 
good yield (77%) and fully characterized. Complex 2 
shows C2 symmetry in solution, carbene resonances at δ 
158.3 (1JRhC = 44 Hz) and δ 157.0 (d, 1JRhC = 41 Hz), 
and a single carbonyl stretching frequency [1977 cm-1 
(ATIR)]. The solid-state structure of 2 (Figure 2) reveals 
the expected square planar geometry [sum of angles = 
359.9(11)º] and notably shows no evidence for the dis-
torted NHC coordination modes observed for 1; all 
NHC centroid-CNCN-Rh angles > 175º.11 Moreover, in 
line with the coordination of CO the Rh1-C34 bond 
distance, associated with the IBioxMe4 ligand trans to 
CO, is elongated significantly in comparison to the anal-
ogous bonds in 1 [2.176(4) vs 1.941(2) and 1.934(2) Å]. 

 
Figure 2. Solid-state structure of 2. Thermal ellipsoids for 
selected atoms drawn at 50%; hydrogen atoms, anion and 
minor disordered components omitted for clarity. Selected 
bond lengths (Å) and angles (º): Rh1-C2, 1.825(6); Rh1-C4, 
2.072(4); Rh1-C19, 2.075(4); Rh1-C34, 2.176(4); C2-Rh1-
C34, 179.5(4); C4-Rh1-C19, 172.9(2); all NHC Cnt-CNCN-
Rh1 > 175.11 

In summary, the isolation of a low-coordinate and solu-
tion stable tris-NHC rhodium(I) complex, 
[Rh(IBioxMe4)3]+, has been achieved using the bulky 
and conformationally rigid IBioxMe4 ligand. The fixed 
geometry of the constituent NHCs appears to prohibit 
interaction of the metal centre with the ligand substitu-
ents and formation of stabilising agostic interactions, 
while the steric profile is sufficient to prevent any reac-
tion with solvent (CH2Cl2, C6H4F2), a fourth IBioxMe4 
ligand, or other large donor groups (e.g. PCy3). For-
mation of the carbonyl complex [Rh(IBioxMe4)3(CO)]+ 
can, however, be achieved by reaction with carbon 
monoxide; the structure of which serves to highlight the 
distorted nature of the NHC ligands in its precursor. 

E XP E R IM E N TA L  

General experimental methods. All manipulations 
were performed under an atmosphere of argon, using 
Schlenk and glove box techniques. Glassware was oven 
dried at 150ºC overnight and flamed under vacuum pri-
or to use. Anhydrous THF, CH2Cl2, heptane and pen-

tane (<0.005 % H2O) were purchased from ACROS or 
Aldrich and freeze-pump-thaw degassed three times be-
fore being placed under argon. C6D6, CD2Cl2 and 1,2-
difluorobenzene (C6H4F2) were dried over CaH2, vacu-
um distilled and the latter stored over thoroughly vacu-
um dried 3 Å molecular sieves. Norbornadiene was 
dried over Na, vacuum distilled and stored over thor-
oughly vacuum dried 3 Å molecular sieves. IBiox-
Me4.HOTf,8d [Rh(COE)2Cl]2,17 and Na[BArF4]18 were 
synthesised using literature procedures. All other rea-
gents are commercial products and were used as re-
ceived. NMR spectra were recorded on Bruker DPX-
400, AV-400 and DRX-500 spectrometers at 298 K 
unless otherwise stated. Chemical shifts are quoted in 
ppm and coupling constants in Hz. IR spectra were rec-
orded on a Perkin-Elmer Spectrum One FT-IR spec-
trometer. Microanalyses were performed by Stephan 
Boyer at London Metropolitan University.   
Preparation of IBioxMe4. To a mixture of IBiox-
Me4.HOTf (1.500 g, 4.19 mmol) and K[N(SiMe3)2] 
(0.877 g, 4.40 mmol) was added ice cold THF (15 mL) 
and the resulting suspension stirred at room temperature 
for 90 minutes. The volatiles were thoroughly removed 
in vacuo (> 1 hour at < 1 × 10-2 mbar). The residue was 
extracted with pentane (4  × 50 mL) and the product 
obtained following removal of the solvent from the com-
bined fractions. Yield = 0.70 g (80%, white powder). 1H 
NMR (C6D6, 400 MHz): δ 3.91 (s, 4H, CH2), 1.30 (s, 
12H, CH3). 13C{1H} NMR (C6D6, 101 MHz): δ 190.1 
(s, NCN), 123.6 (s, COCH2), 87.6 (s, CH2), 58.4 (s, 
C(CH3)2), 26.4 (s, CH3). 19F{1H} NMR (C6D6, 282 
MHz): no signal. Anal. Calcd for C11H16N2O2 (208.26 
gmol-1): C, 63.44; H, 7.74; N, 13.45. Found: C, 63.43; 
H, 7.93; N, 13.13. 
Preparation of [Rh(IBioxMe4)3][BArF4] (1). To a 
mixture of [Rh(COE)2Cl]2 (0.054 g, 0.075 mmol), IBi-
oxMe4 (0.101 g, 0.485 mmol) and Na[BArF4] (0.140 g,  
0.158 mmol) was added C6H4F2 (3 mL). The resulting 
suspension was shaken for 15 minutes at room tempera-
ture before all volatiles were removed in vacuo. The 
crude material was extracted into CH2Cl2 solution, fil-
trated and layered with pentane to afford the crystalline 
product upon diffusion. Yield = 0.204 g (83%, purple 
crystals). Crystals for microanalysis and X-ray diffraction 
were grown from CH2Cl2/heptane – the presence of half 
a molecule of dichloromethane solvate was established 
by both methods and further corroborated by 1H NMR 
spectroscopy (in C6H4F2 solution). 1H NMR (CD2Cl2, 
400 MHz): δ 7.70 – 7.74 (m, 8H, ArF), 7.56 (br, 4H, 
ArF), 4.47 (d, 2JHH = 8.4, 6H, CH2), 4.38 (d, 2JHH = 8.4, 
6H, CH2), 2.11 (s, 18H, CH3), 1.22 (s, 18H, CH3). 
13C{1H} NMR (CD2Cl2, 101 MHz): δ 162.3 (q, 1JBC = 
50, ArF), 154.6 (d, 1JRhC = 64, NCN), 135.4 (s, ArF), 
129.4 (qq, 2JFC = 32, 3JBC = 3, ArF), 127.1 (s, COCH2), 
125.2 (q, 1JFC = 272, ArF), 118.0 (sept, 3JFC = 4, ArF), 
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88.3 (CH2), 62.5 (s, C(CH3)2), 27.3 (s, CH3), 25.4 (s, 
CH3). Anal. Calcd for C65H60BF24N6O6Rh.1/2(CH2Cl2) 
([1590.89] 1633.35 gmol-1): C, 48.16; H, 3.76; N, 5.15. 
Found: C, 48.43; H, 3.88; N, 5.23. 
[Rh(IBioxMe4)3(CO)][BArF4] (2). A solution of 1 
(0.050 g, 0.031 mmol) in C6H4F2 (2 mL) was placed un-
der CO (1 atm) resulting in an immediate colour change 
from purple to bright yellow. After 15 minutes the solu-
tion was placed under an argon atmosphere and layered 
with heptane to afford a crystalline product upon diffu-
sion. Yield = 0.045 g (77%, pale yellow crystals). 1H 
NMR (CD2Cl2, 400 MHz): δ 7.70 – 7.74 (m, 8H, ArF), 
7.57 (br, 4H, ArF), 4.50 (d, 2JHH = 8.2, 4H, CH2), 4.49 
(d, 2JHH = 8.3, 4H, CH2), 4.42 (coincident d, 2JHH ~ 8, 
8H, 2×CH2), 4.40 (d, 2JHH = 8.2, 4H, CH2), 4.26 (d, 
2JHH = 8.4, 4H, CH2), 2.09 (s, 6H, CH3), 2.02 (s, 6H, 
CH3), 2.00 (s, 6H, CH3), 1.62 (s, 6H, CH3), 0.94 (s, 6H, 
CH3), 0.79 (s, 6H, CH3). 13C{1H} NMR (CD2Cl2, 101 
MHz): δ 192.8 (d, 1JRhC = 64, CO), 162.3 (q, 1JBC = 50, 
ArF), 158.3 (d, 1JRhC = 44, NCN{trans-CO}), 157.0 (d, 
1JRhC = 41, NCN{cis-CO}), 135.4 (s, ArF), 129.4 
(qq, 2JFC = 32, 3JBC = 3, ArF), 128.2 (s, COCH2), 127.7 
(s, COCH2), 127.5 (s, COCH2), 125.2 (q, 1JFC = 272, 
ArF), 118.0 (sept, 3JFC = 4, ArF), 89.3 (CH2), 88.7 (CH2), 
87.6 (CH2), 66.7 (s, C(CH3)2), 64.1 (s, C(CH3)2), 62.2 (s, 
C(CH3)2), 27.4 (s, CH3), 27.2 (s, CH3), 26.9 (s, CH3), 
25.3 (s, CH3), 24.6 (s, CH3), 22.7 (s, CH3). IR (solid, cm-

1): ν(CO) 1977 (s). Anal. Calcd for C66H60BF24N6O7Rh 
(1618.90 gmol-1): C, 48.97; H, 3.74; N, 5.19. Found: C, 
49.15; H, 3.63; N, 5.12. 

AS S OC IAT E D  C O N T E N T   

Additional NMR data and experimental details. This mate-
rial is available free of charge via the Internet at 
http://pubs.acs.org. Full crystallographic details are docu-
ment in CIF format and have been deposited with the 
Cambridge Crystallographic Data Centre under CCDC 
972107 (1) and 972208 (2).   
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