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Abstract

The structure and and optical properties of lithium niobate-tantalate have been studied
with a focus on the Ta-rich end of the solid solution series. Structural studies using a
range of X-ray and neutron powder diffraction measurements between -230 and 820 ◦C
have been performed on the full compositional range. Rietveld refinements of the col-
lected diffraction data have allowed the structural changes to be investigated as a func-
tion of temperature and Ta content. To complement the structural investigations, the
effect of the changes in the Li content in lithium tantalate has also been investigated. As
the Li content is decreased or the temperature is increased, the Ta displacement and the
octahedral tilt decrease which coincides with an increase in the birefringence.

Crystals of lithium niobate-tantalate, across the full compositional range have been
made using a lithium vanadate flux growth technique. Single-crystal diffraction mea-
surements confirmed the results of the powder diffraction measurements; the Nb/Ta
displacement and octahedral tilt both decrease as the Ta content is increased. This also
results in a decrease in the lattice parameters from lithium niobate to lithium tantalate.
Birefringence measurements on the crystals as a function of temperature have been
used to determine the point that the crystals become zero-birefringent and by compari-
son with the structural studies, have shown that the structures remain polar through the
zero-birefringence points.

Finally, a series of DFT calculations on the structures determined using Rietveld
refinements of the neutron powder diffraction measurements on LT have been used to
investigate the effect of each atom on the optical properties. The optical properties are
insensitive to the position of the Li and depend on the O and Ta positions. The position
of the Ta atom has the largest effect on the optical properties and the calculated birefrin-
gence increases with increasing temperature as expected from experimental measure-
ments.
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CHAPTER 1

Introduction

Lithium niobate (LN) and lithium tantalate (LT) have both been used extensively for

their optical properties; they are birefringent and and have a non-linear optical (NLO)

response to incident light. In this chapter a theoretical background of the optical proper-

ties and their relationship with crystal structures will be given. The crystal structure and

its relationship to other physical properties of interest will also be discussed, followed

by a literature review of previous research on LN, LT and lithium niobate-tantalate

(LNT).

1.1 Birefringence

The speed of light through a transparent medium v is related to the speed of light in a

vacuum c by the refractive index n according to n = c/v. For two orthogonally polarised

rays of light travelling in the same direction through a transparent medium, the speeds

of the waves can be different. The refractive indices for the two polarisations (n1 and

n2) are used to define the birefringence:

∆n = n1 − n2 (1-1)

The birefringence is a measure of the optical anisotropy of a material. The refractive

index as a function of polarisation direction for a wave with constant direction is de-
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Chapter 1. Introduction

scribed by an ellipse as shown in figure 1-1. The direction of the largest n is defined as

the slow axis and the angle between this and the experimental x-axis is the orientation

angle φ. For a material which is optically isotropic the refractive index is the same for

Figure 1-1 2D ellipse showing the variation of refractive index with polar-
isation direction.

all polarisation directions and the ellipse becomes a circle. If the direction of the light is

allowed to pass through the medium in any direction, a refractive index surface in three

dimensions can be created. This is called the indicatrix and is shown in figure 1-2.

Figure 1-2 Representation of 3D ellipsoid showing the variation of refrac-
tive index with polarisation direction, the propagation direction is kz.

The indicatrix in figure 1-2 is an example of a positive uniaxial crystal. A uniaxial

crystal has n1 = n2 , n3 and is described as positive when n3 is larger than n1. The n3

axis is defined as the optic axis because the refractive index becomes constant for all

2
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Table 1-1 The seven crystal systems, with restrictions on lattice parameters
and indicatrix shape.

Crystal system Lattice parameter constraints Indicatrix shape
Triclinic None Biaxial

Monoclinic α = γ = 90◦, β , 90◦ Biaxial

Orthorhombic α = β = γ = 90◦ Biaxial

Hexagonal
a = b

α = β = 90◦, γ = 120◦ Uniaxial

Trigonal

a = b = c
α = β = γ , 90◦

(rhombohedral setting)

a = b
α = β = 90◦, γ = 120◦

(hexagonal setting)

Uniaxial

Tetragonal
a = b

α = β = γ = 90◦ Uniaxial

Cubic
a = b = c

α = β = γ = 90◦ Sphere

polarisations when light is travelling along this axis. For uniaxial crystals n1 and n2 are

known as the ordinary refractive index (no) and n3 as the extraordinary refractive index

(ne).

When n1 , n2 , n3 there will be two possible optic axes and these crystals are

known as biaxial. The seven crystal systems and their optical properties are listed in

table 1-1 along with the imposed lattice parameter constraints. In this thesis the hexag-

onal setting of a trigonal system will be used. An example of the lattice and reciprocal

lattice is shown in figure 1-3. The directions are labelled first by their corresponding

lattice or reciprocal lattice vector, followed by their direction in reciprocal space [hkl].

All [hkl] directions in this thesis are in reciprocal space.
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Chapter 1. Introduction

Figure 1-3 The hexagonal setting of a trigonal system. The angles between
the lattice and reciprocal lattice vectors are also given. The axes are labelled
first by their lattice or reciprocal lattice vector, followed by their direction in
reciprocal space.

1.2 Structure

LN and LT have rhombohedral distorted perovskite structures and the unit cell of the

structure is shown in figure 1-4a. The general formula for a perovskite material is

ABO3 and the O atoms form an octahedron around the B-site atom. In LN and LT the

octahedra are distorted and tilted about the triad axis, as shown in figure 1-4b. The B-

cation is also displaced from the centre of of the octahedra and along the triad axis. The

cation displacements and octahedral tilts will be described in this thesis using a set of

parameters introduced by Megaw and Darlington for use with rhombohedral perovskites

[1].

The atomic positions determined using the Megaw parameters are listed in table 1-

2. The positions for the rhombohedral and hexagonal settings of the unit cell are both

included. The hexagonal cell will be used throughout this thesis to describe the LN and

LT structures. The position of the Li atom along the c axis is given by its displacement s

from the plane of O atoms located at 1/4. This plane and the displacement s are shown

in figure 1-4a.

The position of the Ta atom along the c axis is given by the parameter t which
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Table 1-2 Atomic position parameters for rhombohedral and hexagonal
unit cells, based on table 2 in Megaw and Darlington [1].

Unit cell Atom a direction b direction c direction

Rhombohedral
A
B
O

1/4 + s
t

1/4 − 2e − 2d

1/4 + s
t

1/4 + 2e − 2d

1/4 + s
t

−1/4 + 4d

Hexagonal
A
B
O

0
0

1/6 − 2e − 2d

0
0

1/3 − 4d

1/4 + s
t

1/12

(a) b into-plane (b) c out-of-plane

Figure 1-4 The structure of LN and LT with (a) b into-plane and (b) c out-
of-plane. The outline of the unit cell is given by the dashed blue line. The
octahedral distortion parameter d and the tilt parameter e determining the O
positions are also shown.

corresponds to the displacement of the Ta atom from the centre of the O octahedra.

The d and e parameters determine the distortion and the tilt of the octahedra and their

relation to the position of the O atom in the unit cell is shown in figure 1-4b. The tilt of

the octahedra (ω) around the triad axis is calculated from the e parameter according to

tanω = 4
√

3e. (1-2)

The change in the structure for tilt angles of 0 and 30◦, with d = 0 are shown in figures
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1-5 and 1-6, respectively. The top half of the unit cell has been omitted because the

effect of the tilting is evident when only showing the bottom half. When the tilt angle

is 0◦, the O atom lies along the edge of the unit cell and all the octahedra are aligned

along their edges. This results in an ideal hexagonal packing of the O atoms. As the tilt

angle is increased the effect of the octahedral rotations can be seen in figure 1-6, where

the tilt angle is 30◦. The octahedra are now aligned along the corners and form the ideal

perovskite structure.

(a) ω = 0◦, b into-plane (b) ω = 0◦, c out-of-plane

Figure 1-5 The structure of LN and LT with ω = 0◦ for (a) b into-plane
and (b) c out-of-plane.

(a) ω = 30, b into-plane (b) ω = 30, c out-of-plane

Figure 1-6 The structure of LN and LT with ω = 30◦ for (a) b into-plane
and (b) c out-of-plane.
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1.3 Piezoelectricity

There are 32 crystal classes which describe the symmetry of a crystal and 11 of these

contain a centre of symmetry. These are the centrosymmetric crystal classes and the

other 21 are the non-centrosymmetric classes. Of these non-centrosymmetric classes,

20 exhibit electrical polarity in response to stress [2]. This is known as the piezo-

electric effect and a strain developing due to an applied electric field is the converse-

piezoelectric effect. The induced polarisation and strain are given by

Pi =
∑

jk

di jkσ jk, (1-3)

ε jk =
∑

k

di jkEi, (1-4)

where Pi is the induced polarisation, di jk is the piezoelectric tensor, σ jk is the applied

stress, ε jk is the induced strain and Ei is the applied electric field. The piezoelectric ten-

sor is a 3rd rank tensor with 18 coefficients, however, because of the crystal symmetries

many of these are zero, and the non-zero ones related to each other [3]. For example,

the piezoelectric tensor of a crystal with point group 3m is

di jk =


0 0 0 0 d15 −2d22

−d22 d22 0 d15 0 0

d31 d31 d33 0 0 0

 . (1-5)

Of the 20 piezoelectric crystal systems, 10 are also polar and have a spontaneous

polarisation. These materials are called ferroelectrics and the spontaneous polarisation

is reversible with the application of an external electric field.

1.4 Literature review

A large number of publications have been produced on the properties and applications

of LN, with over 9500 since 1970. The increasing quantity of research in LN can be

seen in the number of publications each year containing ‘lithium niobate’ as shown in

figure 1-7. The number of papers published for LT is considerably less than that of LN

but it also follows a similar trend in the increasing number of publications. Despite the

large quantity of research on both LN and LT the research on the solid-solution formed

between them is small.
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Figure 1-7 Number of publications with ‘lithium tantalate’ in the title, ab-
stract or keywords overlaid on the same search for ‘lithium niobate’.

1.4.1 Room-temperature structure

The growth of single domain LN crystals and the initial measurements on them were

published in a series of papers by Nassau et al [4, 5] and Abrahams et al [6–8]. The crys-

tals were grown using the Czochralski technique, which requires a rotating seed crystal

to be lowered into a melt of LN and slowly pulled out. As the crystal is pulled, the melt

crystallizes onto the seed and large single crystals result. Based on single-crystal X-ray

diffraction measurements the structure of LN is rhombohedral with hexagonal lattice

parameters a=5.14829 ± 0.00002 Å, c=13.8631 ± 0.0004 Å, space group R3c and point

group 3m at room temperature [8]. The direction of the polarisation was measured us-

ing the different etching response between the positive and negative dipole surfaces and

related to the measured structure. It was shown that the displacement of the Nb atom

from the centre of the O octahedra was in the same direction as the positive dipole end.

The measured atomic positions from the single-crystal neutron and X-ray diffraction

measurements are given in table 1-3 using the Megaw position parameters.

The initial structural measurements on LT were made by Abrahams et al in a series
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Table 1-3 Megaw atomic position parameters from X-ray and neutron
diffraction measurements on LN [6, 7].

Radiation s t d e Tilt angle
X-ray 0.71(1) Å 0.26(1) Å −0.0028(1) 0.062(1) 23.1(1)◦

Neutron 0.70(1) Å 0.28(1) Å −0.0025(1) 0.062(1) 23.3(1)◦

Table 1-4 Megaw atomic position parameters from X-ray and neutron
diffraction measurements on LT [9, 10].

Radiation s t d e Tilt angle
X-ray 0.63(1) Å 0.19(1) Å −0.0016(1) 0.061(1) 22.0(1)◦

Neutron 0.60(1) Å 0.20(1) Å −0.0026(1) 0.061(1) 22.9(1)◦

of papers using X-ray and neutron diffraction measurements similar to their work on LN

[9, 10]. They confirmed that LT formed the same structure as LN and had lattice param-

eters of a=5.15428 ± 0.00001 Å and c=13.78351 ± 0.00002 Å. The absolute structure

was determined and the Ta displacements were in the same direction as the positive

dipole end, as measured on LN. The atomic positions, using the Megaw parameters are

given in table 1-4.

1.4.2 High-temperature structure

The high-temperature phase of LN was investigated by Abrahams et al using X-ray

diffraction measurements at 1200 ◦C, concluding that the space group was R3̄ [8]. It

was later suggested by Megaw that the loss of symmetry from R3̄ to R3c would be

very unusual and the correct space group was actually R3̄c [11], which was confirmed

by Niizeki et al by analysing the growth ridges formed during the pulling of crystals

from the melt [12]. High-temperature neutron diffraction measurements at 1107 ◦C by

Boyson and Altorfer confirmed the previous observations that this was the correct high-

temperature space group [13]. The high-temperature phase of LT was also confirmed

to be in space group R3̄c by Abrahams et al using neutron diffraction measurements at

667 ◦C [14].

The response of the LN crystal structure to increasing temperature has been mea-

sured using X-ray powder diffraction by Abrahams et al [8] and using single-crystal

X-ray diffraction by Kim and Smith [15]. The expansion in the a and b lattice parame-

ters is linear up to 1000 ◦C and the the c lattice parameter reaches a maximum at about

9
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600 ◦C and decreases on further heating. The decrease in the c lattice parameter was

explained by Megaw and is a result of the O octahedra decreasing in size because of

the decrease in the displacement of the Nb atoms from the centre of the octahedra [16].

The linear increase in the a and b lattice parameters is because of the linear increase in

the octahedral tilt as the temperature increased. A similar trend was measured in the

structure of LT by Kim and Smith, where the maximum in the c lattice parameter was

at about 250 ◦C [15].

In these initial measurements as a function of temperature, the Curie point for LN

was measured between 1140 ◦C and 1210 ◦C [4, 17]. This large range of possible values

was because of the different Li concentrations in the samples. The effect of the Li

content on the Curie point of Czochralski grown crystals was investigated by Bergman

et al, who found it varied from 1070 to 1190 ◦C [18]. The initial materials used for

the crystal growth had Li/Nb ratios ranging from 0.8 to 1.2, which will be given as

Li0.444Nb0.556O3 and Li0.545Nb0.455O3 in this thesis. The composition of the crystals

grown using this technique is not equal to the ratio of the initial materials and was

undetermined in this study.

1.4.3 Variable Li content

The large range of physical properties of LN samples, led to an investigation of the

effect of the Li content, and the first phase diagram of the Li2O-Nb2O5 system was pub-

lished by Lerner et al [19]. The solid-solution range for LN was given between 44 and

51 mol % Li2O based on differential thermal analysis measurements and powder X-ray

diffraction of sintered ceramic powders. The extension of the solid-solution range from

50 to 51 mol % Li2O was based on measurements of the a lattice parameter, whereas the

c lattice parameter measurements suggested the solid-solution range stops at 50 mol %

Li2O. The determination of the upper limit on the range is unreliable based on the

measurements of the lattice parameters.

Similar measurements on sintered ceramic powders and Czochralski grown crystals

were made by Carruthers et al, producing the phase diagram shown in figure 1-8 [20].

The ceramic powders were weighed before and after sintering to check for loss of Li2O

and it was concluded that some Li was lost but it was below the level of detection. The

Curie point was found to vary between 1020 and 1180 ◦C as the composition varied from
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46 to 50 mol % Li2O. The upper limit to the solid-solution range was given as 50 mol %

and is a more reliable result than that of Lerner et al because of the consideration given

to the loss of Li2O during sintering [21].

Figure 1-8 The phase diagram and measured Curie temperatures of LN
produced by Carruthers et al [20].

The initial measurements investigating the effect of the Li content on the Curie point

of LT were made by Ballman et al [22]: the composition of the Czochralski grown crys-

tals was unknown and the Curie points were given as a function of the composition of

the initial materials. This was resolved by Barns and Carruthers, who used these crystals

and measurements of the Curie point in ceramic powders to estimate the composition of

the crystals. The measured Curie points are between 510 and 690 ◦C as the composition

varies from 46 to 50.4 mol % Li2O.

1.4.4 Congruent compositions

The congruent melting composition has been determined for both LN and LT, allowing

the growth of large crystals using the Czochralski technique. Initially the congruent

composition of LN was determined to be between 48 and 49 mol % Li2O by Lerner et

al [19] and was later refined to 48.38 mol % Li2O and 48.45 mol % Li2O by O’Bryan et

al [23] and Bordui et al [24], respectively. The congruent point of LT was determined

to be 49 mol % Li2O by Barns et al [21] and 48.75 mol % Li2O by Miyazawa et al [25].
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To improve the quality of the large number of crystals being grown commercially using

the Czochralski technique, Kushibiki et al determined a precise value of 48.46 mol %

Li2O for the congruent composition of LT [26].

The initial defect structure for LN was proposed by Abrahams and Marsh to contain

Nb atoms on the Li site and Nb vacancies for charge balance. This was determined using

XRD and density measurements. However, the majority of the following structural

investigations have shown that the average structure of CLN is best described by a Li

vacancy model. Using both neutron and X-ray diffraction measurements the defect

model has been described by the formula {Li1−5x [NbLi]x [VLi]4x}Nb1−xO3 [27–29].

1.4.5 Optical properties

The refractive indices of Czochralski grown CLN crystals have been determined by a

range of authors as a function of both composition and wavelength. The Sellmeier equa-

tions for no and ne as a function of temperature and of wavelength were determined by

Hobden and Warner with measurements of the refractive index up to 374 ◦C using the

lines of a helium discharge lamp [30]. Using these equations a zero-birefringence tem-

perature for CLT is calculated as 882 ◦C. This is in agreement with the measurements

made by Smith et al, which are shown in figure 1-9 [31]. These results show that the ne

varies more than the no and has a larger effect on the measured birefringence.

The change in the refractive indices as a function of wavelength has been studied by

a range of authors showing that the refractive indices decrease with increasing wave-

length [30, 32, 33]. Variations between the measured refractive indices on different

crystals can be explained by the varying compositions of the crystals used. Bergman

et al showed that no stays constant with changing Li content and ne decreases as the

concentration of Li is increased towards SLT [18].

The initial measurements of the refractive indices of CLT as a function of tem-

perature were made by Iwasaki and Yamada from room temperature to 800 ◦C with a

wavelength range between 468 and 644 nm [34]. These results showed that the bire-

fringence was positive in CLT and became constant above the Curie point. These mea-

surements were used by Abedin et al to produce a Sellmeier equation as a function of

both wavelength and temperature for CLT [35]. The Sellmeier equations as a function

of wavelength for no and ne have been determined for SLT and CLT by Nakamura et al
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Figure 1-9 The measured refractive indices of CLN measured by Smith et
al [31].

between 400 and 1100 nm [36]. The effect of the Li content on the zero-birefringence

temperature was determined by Bäumer et al using vapour transport equilibration (VTE)

treated CLT crystals and is shown in figure 1-10 [37]. VTE can be used to increase the

Li content of congruent crystals and consists of heating a CLT crystal in a crucible con-

taining a Li-rich mixture of Li2O and Ta2O5 to above 1000 ◦C and dwelling for over

70 h. The measurements show the birefringence is negative for SLT, positive for CLT

and becomes zero with a composition close to 49.4 mol % Li2O.

Figure 1-10 The measured zero-birefringence point of LT as a function of
Li content [37].
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1.4.6 Piezoresponse

The elastic and piezoelectric coefficients for CLN and CLT were determined by Warner

et al [38], giving piezoelectric d33 values of 6 and 8 pC N−1 for CLN and CLT, respec-

tively. A study of the effect of the Li content on the piezoelectric properties has not

been published, however, it is expected that the coefficients will vary between the con-

gruent and stoichiometric compositions. LN and LT are not used for their piezoelectric

properties because the d33 values are small in comparison to those of undoped lead

zirconate-titanate (PZT) which has a d33 value of 200 pC N−1 [39].

1.4.7 Lithium niobate-tantalate

It was shown by Peterson et al that a solid-solution existed between LN and LT and

extended across the whole compositional range [40]. Powder stoichiometric lithium

niobate-tantalate (SLNT) samples were investigated and the Curie point measured us-

ing capacitance measurements, showing a linear change from LN to LT. The lattice

parameters were also measured using X-ray diffraction, however the errors on the cal-

culated values were of a similar size to the difference between the values of LN and LT,

making a trend in the measured values indeterminable.

The first attempts at growing crystals were made using the Czochralski technique

by Sugii et al [41] and Fukuda et al [42]. They both successfully grew crystals across

the compositional range, showing that the crystals formed Ta-rich compared to the ini-

tial materials and that the composition varies along the length of the pulled crystals.

Fukuda et al also measured a linear change in the lattice parameters across the compo-

sitional range. The Czochralski technique was also used by Shimura and Fujino who

investigated the Curie point and lattice parameters as a function of composition. They

measured non-linear changes in the Curie point and lattice parameters of the crystals

and used the previously determined linear changes to estimate the actual compositions

of the grown crystals and allow the growth of crystals with a desired composition [43].

The refractive indices of the the Czochralski grown CLNT crystals were measured

by Shimura and Fujino [44]. The measured refractive indices as a function of the cor-

rected crystal composition are shown in figure 1-11 and show that for CLNT crystals a

composition close to 95 mol % Ta will be zero-birefringent at room temperature, which
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is independent of the wavelength of the light used. The linear change in the birefrin-

gence and Curie point with composition, as well as a zero-birefringence composition of

94 mol % Ta were also confirmed on Czochralski grown crystals by Wood et al [45].

Figure 1-11 The measured refractive indices of CLNT as a function of
composition [44].

More recently a range of different crystal growth methods have been investigated

by Bartasyte et al [46]. This work included for the first time a consideration of the

effect of the Li content on the properties of the LNT crystals. Crystals were made using

the Czochralski, top seeded solution, floating zone and flux growth methods. It was

concluded that both Czochralski and LiVO3 (LV) flux grown crystals formed Ta-rich

compared to the initial material and Li2O was lost during the floating zone and top

seeded solution growth methods. The growth using the LV flux was based on the phase

diagram produced by Kondo et al, who used an LV flux for depositing LNT layers on

LT substrates [47].
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1.4.8 Twinning

The initial crystals of LN grown using the Czochralski technique contained visible twins

and the twin plane was given as the (102) [4, 48]. Further investigation of the twinning

in LN was performed by Blistanov et al which gave the twinning planes as (102), (-102)

and the (-104) [49, 50]. The determination of the twin plane as the (102) has been shown

to be incorrect and the (-102) twin plane has been confirmed by a range of authors [51–

54]. The comprehensive investigation of the twinning in Czochralski grown LN by Park

et al confirmed the twins are mechanical and not formed during the crystal growth. The

symmetrically equivalent twin planes to the (-102) are the (012) and (1-12) and it can

be expected for twins to form on any of these planes. The twinning of VTE treated LT

crystals was studied by Glazer et al and confirmed the presence of twins consistent with

the {-102} family of twin planes [55].

1.4.9 Density functional theory

A large number of density functional theory (DFT) calculations have been made on

both LN and LT with an interest in calculating their electronic and optical properties.

The band structure of LN and LT has been calculated using a number of different func-

tionals and DFT codes and has resulted in a large range in the calculated direct band

gap energy. Using the local-density approximation (LDA) on LN has resulted in values

between 3.1 eV [56] and 3.52 eV [57] and between 3.3 eV [58] and 3.5 eV [59] with

the generalised gradient approximation (GGA). These values have been compared to

the experimentally measured value of 3.78 eV, measured by Dhar and Mansingh us-

ing optical transmission spectra [60]. One of the problems with calculations of the

band structure using DFT is the systematic underestimation of the band gap and the

agreement between the experimental value and calculated does not act to confirm to the

validity of the calculation [61].

The previous DFT calculations have only used a single-particle picture, the effects

of the self-energy of the system using the GW approximation (in GW the self-energy is

given by the product of the Green’s function G and the dynamically screened interaction

W) were included by Thierfelder et al [62] and Riefer et al [63], who also took electron-

hole interactions into account, giving direct band gaps of 4.71 and 5.4 eV, respectively.
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The discrepancy between the calculated direct band gaps using the GW approximation

and the measured band gaps has been in part attributed to the effects of the electron-hole

binding energy, which affects the measurement of the band gap using optical absorption

methods. Due to this, it was suggested by Mamoun et al that the results of DFT cal-

culations should be compared to well-known properties such as the refractive indices

[64]. Their measurements made with the WIEN2k code [65], using the GGA and a

scissor operator to increase the direct band gap from 3.5 to 4.9 eV, resulted in a close

agreement between the calculated and experimentally-measured refractive indices.

Similar results have been calculated for LT, a band gap of 3.86 eV was calculated

by Cabuk et al using LDA [66] and 3.71 eV by Riefer et al using GGA [67] using a

single-particle picture. When the self-energy effects and the electron-hole interactions

are taken into account, the the calculated band gap for LT is 5.65 eV [67].

DFT calculations on LNT have been made by Riefer et al [67] and Sanna et al [68]

including the self-energy and electron-hole interactions. Riefer et al focused on calcu-

lating the optical properties across the compositional range: the calculated birefringence

is plotted in figure 1-12 including the measured values by Wood et al [45].

Figure 1-12 The calculated and measured birefringence as a function of
LT-content given by Riefer et al [67] and [45], respectively. x is the Nb/Ta
content according to the formula LiNb1-xTaxO3.

1.5 Aims of present work

The main aim of this body of work is to investigate the structure of LNT, LN and LT

with a focus on when they have zero-birefringence. By combining structural measure-

ments with birefringence measurements, it will be determined if the structure remains

polar whilst being optically isotropic. Currently, the role of the structure in the optical

17



Chapter 1. Introduction

properties of LNT, LN and LT is poorly understood, with the temperature, Li content

and LNT composition all affecting the optical properties. Structural measurements as

a function of temperature, Li content and across the compositional range of LNT will

increase the understanding of how the structural changes determine the optical prop-

erties. Structural measurements will be made on a large range of powder and single

crystal samples.

Additionally, the absolute structure of CLT will be determined using X-ray diffrac-

tion measurements and a direct measurement of the piezoelectric d33 coefficient. This

will be the first absolute structural determination of CLT which includes a direct mea-

surement of the piezoelectric d33 coefficient and will be used to confirm the previous

absolute structural determinations.

Finally, the refractive indices of the experimentally determined structures will be

calculated using DFT calculations. These will focus on the structural changes as a

function of temperature and include a series of calculations investigating the effects of

each atom on the optical properties.
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CHAPTER 2

Experimental techniques and theory

2.1 Diffraction and refinement

2.1.1 Neutron and X-ray diffraction

A detailed description of the theory of diffraction is given in Giacovazzo and will not

be repeated in this thesis [1]. A comparison between using neutrons or X-rays and a

detailed analysis of the diffraction experiments will be given. The structure factor for

X-ray diffraction is

Fk =
∑

j

f jexp
[
2πi

(
hx j + ky j + lz j

)]
exp

[
−8π2〈u j〉

2 sin2 θ/λ2
]
, (2-1)

where f j is the scattering factor for the jth atom, x j, y j and z j are the positions of the

jth atom and 〈u j〉
2 is the mean-squared atomic displacement. 8π2〈u j〉

2 sin2 θ/λ2 is often

called the temperature factor because 〈u j〉
2 is proportional to the temperature. The

atomic displacements can be modelled isotropically or anisotropically, requiring one or

six parameters, respectively.

The structure factor for neutron diffraction is the same, with the X-ray scattering

factor replaced by the neutron scattering length (b j). The neutron and X-ray scattering

factors vary as a function of atomic number (Z) and scattering angle. The X-ray scat-
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tering factor increases with increasing atomic number, whereas the neutron scattering

factor does not follow a trend. This makes neutron diffraction a valuable technique for

measuring the structure of materials containing low-Z content elements.

2.1.2 Diffractometers

A PANalytical X’Pert Pro multipurpose diffractometer (MPD) was used for room- and

high-temperature powder diffraction measurements. This has a Bragg-Brentano geom-

etry and is equipped with a germanium curved-Johansson monochromator providing

CuKα1 radiation. A schematic diagram of a Bragg-Brentano diffractometer is shown in

figure 2-1. The diffractometer is equipped with a PANalytical PIXcel detector, consist-

ing of 255 separate channels to provide an active length of 3.347◦. The incident beam

optics consist of divergence slits and a beam mask. The divergence slit acts to reduce

the axial divergence of the incoming beam and the beam mask reduces the horizontal

width of the beam. The diffracted beam optics consist of an anti-scatter slit and soller

slits to ensure only the desired diffracted signal is measured. The majority of measure-

ments in this thesis have been made using one X-ray tube which has reduced in intensity

by a factor of four over its three year lifetime. The decrease in the intensity of the X-ray

beam also resulted in a decrease in the signal to noise ratio.

For single-crystal diffraction measurements, an Oxford Diffraction Gemini diffrac-

tometer was used. This system is based around a four-circle goniometer with a kappa

geometry and is equipped with a MoKαX-ray source and a CCD detector. A diagram of

this diffractometer is shown in figure 2-2 with the important features labelled. The four-

circle kappa geometry allows both accurate changes in the crystal orientation and easy

access to the crystal for extra devices such as the Oxford Cryosystems Cobra equipped

on this machine.

2.1.3 Rietveld refinement

Rietveld refinement is a whole-pattern-fitting structural refinement method for analysis

of powder diffraction measurements. The initial development of the procedure was

made by Hugo Rietveld and is described in his seminal papers on the subject [2, 3]. In

the Rietveld method a series of least-squares refinements are carried out until the best
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Figure 2-1 Schematic of Bragg-Brentano diffractometer equipped with a
germanium curved-Johansson monochromator providing CuKα1 radiation.

fit between the measured and calculated diffraction patterns is attained. The calculated

diffraction pattern is formed by refining the crystal structure, diffraction optics effects,

instrumental factors and other specimen characteristics as required. During a least-

squares refinement the quantity minimised is the residual, which is given by

S i =
∑

i

wi (yoi − yci)2 , (2-2)

where wi = 1/yoi is the weighting factor for the observation, yoi is the observed intensity

of the ith step and yci is the calculated intensity of the ith step. The calculated intensity

is given by

yci = s f
∑

K

LK |FK |
2φ (2θi − 2θK) PKA + ybi, (2-3)

where s f is the scale factor, K represents the Miller indices, h, k, l for a Bragg reflection,

LK contains Lorentz, polarisation and multiplicity factors, φ (2θi − 2θK) is the reflection

profile function, PK is the preferred orientation function, A is the absorption factor, FK

is the structure factor of the Kth Bragg reflection and ybi is the background intensity at

the ith step [4].

The least-squares minimisation procedure leads to a set of equations based on the
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Figure 2-2 An Oxford Diffraction Gemini diffractometer used for single-
crystal diffraction measurements. The labeled parts are (a) the Oxford
Cryosystems Cobra for low-temperature measurements, (b) the video mi-
croscope for aligning crystals, (c) the CCD detector, (d) the 2θ circle of the
detector, (e) the ω circle, (f) the κ circle, (g) the φ circle and goniometer head
and (h) the X-ray tube and collimator.
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derivatives of the calculated intensities with respect to each refinable parameter. These

equations are solved by inversion of the normal matrix M jk given by

M jk = −
∑

i

2wi

[
(yoi − yci)

∂2yci

∂x j∂xk
−

(
∂yci

∂x j

) (
∂yci

∂xk

)]
, (2-4)

where x j and xk are the refinable parameters. This matrix is an m by m matrix where

m is the total number of refinable parameters. The non-linearity of the residual func-

tion means the change in the refinable parameters must be found following an iterative

procedure and the change at each iteration is given by

∆xk =
∑

M−1
jk

∂S y

∂xk
. (2-5)

After each iteration the change in the refinable parameter is added to the initial value

and the procedure is continued until a minimum has been found. Care has to be taken

to ensure the minimum reached is a global minimum and not a local one. This requires

the starting position of the refinement to be sufficiently close to the correct model.

A set of R-values similar to those used in single-crystal refinement have been de-

veloped for use in Rietveld refinements to determine how well the calculated structure

has fitted the observed data. The commonly used R-values have been listed in table

2-1, where IoK is the measured intensity of the kth Bragg peak and IcK is the calculated

intensity of the Kth Bragg peak. The Rwp is the most meaningful of the R-values be-

cause the numerator is the residual being minimised and provides a good measure of

the progress and quality of a refinement.

2.1.3.1 Refinable parameters

There are two types of refinable parameters in Rietveld refinement: those that describe

the experimental setup and those that are sample specific. The instrumental variables

include the geometry of the diffractometer, the incident beam properties and the detec-

tor effects. These are variables that should be pre-determined and fixed to the correct

value during refinements. The two main parameters that need to be determined are

the sample-height error and the zero-offset. A method to determine the correct zero-

offset of a powder diffractometer using a standard reference material, such as CeO2,

was developed by O’Connor et al [5]. The sample-height error and zero-offset both

28



Chapter 2. Experimental techniques and theory

Table 2-1 Definitions of the goodness-of-fit parameters for Rietveld refine-
ment. M is the number of steps, P is the number of refinable parameters, IoK

is the measured intensity of the Kth Bragg peak and IcK is the calculated
intensity of the Kth Bragg peak.

Parameter Definition

R-pattern Rp =

√∑
|yoi−yci |∑
|yoi−ybi |

R-weighted pattern Rwp =

√∑
wi(yoi−yci)2∑
wi(yoi−ybi)2

R-expected Rexp =
√

M−P∑
wi(yoi−ybi)2

Goodness of fit GOF = χ2 =

√∑
wi(yoi−yci)2

M−P

R-Bragg RBragg =
∑
|IoK−IcK |∑

IoK

affect the 2θ position of the Bragg peaks and because of this are highly correlated dur-

ing a refinement. By determining the correct zero-offset using the reference material,

the height offset can be refined while keeping the zero-error fixed. The change in the

sample height results in errors in the 2θ position and intensity of the measured Bragg

peaks. The optics of the diffractometer are optimised for a specific sample height and

the effects of changing this are shown in figure 2-3. These effects are taken into account

in Rietveld refinement programs, which apply corrections to both the peak intensity and

position. Sample variables consist of those modelling the Bragg reflections and a poly-

nomial to model the background profile. A range of variables affect the size and shape

of the Bragg peaks and these will be discussed in detail.

2.1.3.2 Peak shapes

A range of different peak shapes have been used to fit the measured Bragg peaks and

the performance of these has been investigated by Young and Wiles [6]. The commonly

used profiles are listed in table 2-2 [7]. The majority of peak shapes use a combination

of Lorentzian and Gaussian profiles, producing a profile with a shape between the two.

The split-Pearson VII provided the best fit to the Bragg peaks measured using powder

XRD. The Pearson VII profile becomes a Lorentzian when m = 1 and a Gaussian as

m → ∞. The use of a split-profile allows the two sides of a Bragg peak to be fitted
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Figure 2-3 Schematic diagram showing illustrating the effect of sample
height on the diffracted beam.

individually to model their asymmetry. The neutron diffraction data was fitted best

by the modified Thompson-Cox-Hastings psuedo-Voigt (TCHZ), which can be varied

between a Lorentzian and Gaussian shape using the mixing parameter η [8].

The Bragg peak’s shape and FWHM varies as a function of 2θ and can be mod-

elled with analytical expressions containing refinable parameters. The expressions for

controlling the shape and width of the Pearson VII and TCHZ peaks are listed in table

2-3.

2.1.3.3 Preferred orientation

If the crystallites in a powdered sample are not randomly oriented there is a deviation

of the Bragg peak intensities from their natural values. This effect is called preferred

orientation and is treated in this work using the method of symmetrized harmonics

developed by Jarvinen [9]. The effect of the preferred orientation on a Bragg peak is

given by

P (K, α) =
∑

i j

Ci jYi j (θK , ψK) Pi (cosα) , (2-6)

where Ci j are adjustable parameters, Y i j are the symmetrized harmonics, (θK , ψK)
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Table 2-2 Peak functions used in Rietveld refinement.

Peak function Definition

Gaussian G(x) =
(

2
√

ln(2)/π
FWHM

)
exp

(
−4 ln(2)x2

FWHM2

)
Lorentzian L(x) =

(
2/π

FWHM

)
/
(

1+4x2

FWHM2

)
Pseudovoigt

TCHZ F(x) = ηL(x) + (1 − η)G(x)

Split PearsonVII

PVIIl =
(
1 +

((
2−ml − 1

)
/wl2

)
x2

)−ml
/N

PVIIr =
(
1 +

(
(2−mr − 1) /wr2

)
x2

)−mr
/N

N = (1/2)
[

Γ(ml−1/2)

Γ(ml)
√

((2−ml−1)/wl2)
+

Γ(mr−1/2)

Γ(mr)
√

((2−mr−1)/wr2)

]
FWHM = wl + wr

Table 2-3 Refinable FWHM expressions.

Peak function width parameters

Split PearsonVII

wl,r = wa + wb tan θ + wc/ cos θ

ml,r = 0.6 + ma + mb tan θ + mc/ cos θ

wa,wb,wc,ma,mb,mc are refinable parameters

TCHZ

FWHM =
(
Γ5

G + AΓ4
GΓL + BΓ3

GΓ2
L + CΓ2

GΓ3
L + DΓGΓ4

L + Γ5
L

)0.2

A = 2.69269, B = 2.42843,C = 4.47163,D = 0.07842

ΓG =
[
U tan2 θ + V tan θ + W + Z/ cos2 θ + (1 − ζ) Γ2

a

]0.5

ΓL = X tan θ + Y/ cos θ + ζΓa

U,V,W, X,Y,Z are refinable parameters

η = E (ΓL/FWHM) − F (ΓL/FWHM)2 + G (ΓL/FWHM)3

E = 1.33603, F = 0.47719,G = 0.1116
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Table 2-4 S HKL restrictions for trigonal crystal systems in a hexagonal set-
ting.

Crystal system Anisotropic strain parameters

Trigonal
(Hexagonal setting)

S 400 = S 040 = S 310/2 = S 130/2 = S 220/3
S 202 = S 022 = S 112

S 004

S 301/2 = −S 031/2 = S 211/3 = −S 121/3

are the spherical coordinates of the normal to the (hkl) plane, Pi (cosα) is a Legendre

polynomial and α is the angle between the diffraction vector and the polar axis. In the

Bragg-Brentano geometry α = 0 and Pi (cosα) = 1.

2.1.3.4 Anisotropic peak broadening

The effects of anisotropic peak broadening are included using the method developed

by Stephens which allows a distribution of the reciprocal lattice variables for the crys-

tallites in the powder [10]. The matrix MK = 1/d2 is used to model the effects of the

distribution. It is assumed that the distribution of the reciprocal lattice variables in the

crystallites is Gaussian and gives a variance in MK of

σ2 (MK) =
∑
HKL

S HKLhHkKlL, (2-7)

where the terms in S HKL are defined for H + K + L = 4. This results in 15 parameters

to model the effects of anisotropic peak broadening for a triclinic case. The symmetry

of the crystal system restricts the possible values of S HKL and a trigonal crystal with

hexagonal coordinates will have values according to table 2-4.

Using the Bragg equation, the contribution of the anisotropic peak broadening is

given by

Γa =
[
σ2 (MK)

]1/2
tan θ/MK . (2-8)

The anisotropic broadening terms have been included in the equations to calculate the

FWHM of the TCHZ peak shape in table 2-3, where the parameter ζ has been intro-

duced to control the Lorentzian or Gaussian shape of the anisotropic broadening.
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2.1.4 Single-crystal structure refinement

A range of structure solution methods are available to use on single-crystal diffraction

measurements and detailed descriptions of these are available in a range of textbooks

[1, 11]. These methods were not required for analysis of LNT structures because the

previously determined structures of LN and LT provide an adequate starting point to

refine the structure directly. The refinement program used in this thesis is SHELX,

which was developed by Sheldrick [12].

Single-crystal diffraction measurements record the intensity of the Bragg reflections

and before refining the structure in SHELX the measured data has a range of corrections

applied to it. Reflections can be discarded if they do not follow the Laue symmetry or

should be systematically absent. The effects of absorption are also taken into account,

following the analytical method developed by Clark and Reid [13]. The absorption

correction is given by the transmission factor,

T = 1/V
∫

V
exp (−µL) dV, (2-9)

where µ is the absorption coefficient in cm−1, L is the total path length of scattered

X-rays in cm and V is the crystal volume in cm3, subdivided in to Howells polyhedra.

Each Howells polyhedra is formed such that the incident and scattered beams both enter

and exit from a single face.

The corrected intensities (F2
o) of each specific Bragg peak, along with the h, k and l

values provide the input for SHELX. The minimised quantity in the least-squares fitting

is the difference between the measured and calculated F2 values. The quality of the

refinement is given by a series of R-factors shown in table 2-5. The Rint and Rσ values

provide information about the merging (i.e., the averaging of equivalent reflections) of

the measured data before a refinement. The Robs, wR2 and GOF are used to assess how

well the refined structure matches the measured data, with the Robs value commonly

quoted in the literature.
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Table 2-5 Definitions of the goodness-of-fit parameters for single-crystal
refinement.

Parameter Definition

R-internal Rint =
∑
|F2

oi−〈F
2
ci〉|∑

F2
oi

R-sigma Rσ =
∑
σF2

oi∑
F2

oi

R-observed Robs =
∑
||Foi |−|Fci ||∑
|Foi |

R-weighted wR2 =

√∑
w(F2

oi−F2
ci)

2∑
w(F2

o)2

Goodness of fit GOF = χ2 =

√∑
wi(F2

oi−F2
ci)

2

M−P

2.2 Birefringence measurements

2.2.1 Optical theory

The transmission of two orthogonally polarised light waves through a uniaxial crystal

results in a phase difference δ between the two waves. This phase difference is given by

δ =
2π
λ

∆nL, (2-10)

where λ is the wavelength of the light and L is the thickness of the material.

2.2.2 Rotating polariser method

The method of measuring the birefringence in this thesis is the rotating polariser method,

the setup of this method is shown in figure 2-4. This method was developed by Wood et

al and was an improvement on previous methods by making multiple measurements at

different polariser (or analyser) angles to form each image [14]. Monochromatic light is

produced by the combination of a white-light source and a wavelength-filter, which then

passes through the rotating polariser. The polarised light then travels through the sam-

ple before reaching the analyser. The analyser consists of a quarter wave plate followed
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by a linear polariser and the measured intensity of this system is given by

I =
1
2

I0
[
1 + sin 2 (ωτ − φ) sin δ

]
, (2-11)

where ω is the frequency of rotation of the polariser and τ is the time. The angle the

polariser rotates through in a given time is given by ωτ. This equation can be expressed

as

I =
1
2

I0 +
1
2

I0 sin δ cos 2φ sin 2ωτ −
1
2

I0 sin δ sin 2φ cos 2ωτ, (2-12)

and solved using repeated measurements of the intensity with the polariser at different

angles. Using a least-squares fitting technique, I0, φ and |sin δ| can be calculated [15].

The Metripol system used for these measurements is equipped with a CCD camera

comprised of a 640 by 800 pixel array. Equation 2-12 can be solved for each pixel to

produce 640 by 800 pixel images of the I0, φ and |sin δ|.

Figure 2-4 The experimental setup of the Metripol system. Monochro-
matic light passes through a rotating polariser before reaching the sample.
It then passes through an analyser, which consists of a quarter wave plate
followed by a polariser before reaching the detector.

The measured |sin δ| signal for a crystal which has a linear change in birefringence

in response to temperature is shown in figure 2-5. The birefringence is zero when the

temperature is 100 ◦C and this corresponds to a trough in the measured |sin δ|, which

oscillates between 0 and 1, with the the peaks and troughs corresponding to a δ of

(2n + 1) π/2 and nπ, respectively.

In general, a separate measurement of the absolute birefringence is used to deter-

mine the correct zero-birefringence point, however, the rotating polariser technique can

easily be used to determine the zero-birefringence point on materials that have a small
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Figure 2-5 In (a) a linearly increasing birefringence as a function of tem-
perature and (b) the |sin δ| that would be measured by the Metripol sys-
tem. Values of δ for each peak and trough are labelled in (b) and the zero-
birefringence temperature by the dashed line in (a).

variation in birefringence as a function of wavelength. The zero-birefringence trough in

the measured |sin δ| signal will be at the same temperature in measurements made with

different wavelengths of light, whereas the troughs at nπ will be in different positions

due to the dependence of δ on the wavelength of light used.

2.3 Second harmonic generation

2.3.1 Nonlinear optics

A nonlinear optical effect occurs when the optical properties of a material are affected

by the light propagating within. One of the possible nonlinear optical effects is second-

harmonic generation, which was discovered by Franken et al [16] following the demon-

stration of a working laser by Maiman in 1960 [17]. The introduction of the laser

provided a high-intensity source of coherent light, which allowed observable nonlinear

optical effects to be measured for the first time. In linear optics the induced polarisation

in the material is linearly dependent upon the electric field strength and is given by

P(t) = P0 + ε0 χ
(1)E(t) , (2-13)

where where P0 is the spontaneous polarisation for a ferroelectric material, χ(1) is the

linear susceptibility [18]. The nonlinear response can be described by expressing the
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polarisation as a Taylor series in the field strength, this gives

P(t) = P0 + ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

)
, (2-14)

χ(2) and χ(3) are the second- and third-order nonlinear optical susceptibilities, respec-

tively. In this work we will only take into account the nonlinear effects caused by the

second-order optical susceptibility. Second-order nonlinear effects are only possible in

non-centrosymmetric crystal systems. In a centrosymmetric crystal system a reversal of

the optical electric field from E to −E must also result in a reversal of the polarisation

to −P. This is not possible in the even terms of the Taylor expanded series and means

for centrosymmetric crystal systems, the even-order susceptibilities are zero.

The effects of the second-order susceptibility can be calculated by applying light

with an electric field given by E(t) = ε0

(
E0e−iωt + E0

∗eiωt
)
. The induced polarisation is

P(t) = P0 + ε0 χ
(2)

(
E0

2e−2iωt + 2|E0|
2 + E0

∗2e2iωt
)
. (2-15)

This produces two nonlinear optical effects: second-harmonic generation charac-

terised by P(2ω) = χ2E0
2e−2ωt and optical rectification given by P(0) = 2χ2|E0|

2. In

second-harmonic generation a polarisation is induced with twice the frequency of the

applied electric field. This polarisation will in turn produce an electric field with a fre-

quency twice that of the input field. Optical rectification results in the generation of a

static electric field inside a nonlinear material.

The generation of a second-harmonic signal can be used as way to determine whether

or not a material is centrosymmetric. The experimental setup for these measurements

consists of a Nd:YAG laser (λ =1.064 µm) and a furnace to allow measurements up to

750 ◦C. The incoming laser beam is split to provide a measurement of the incoming

laser intensity with a photodiode and a separate beam to interact with the sample. A

second harmonic signal of 532 nm is emitted isotropically by the sample and a photo-

multiplier tube (PMT) placed behind an interference filter and a 532 nm filter is used to

measure its intensity.
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Figure 2-6 The experimental setup for SHG measurements. The 1064 nm
laser is split with one beam going to the sample and the other to a photodiode
to measure the intensity. Following the sample an interference filter and
532 nm filter ensure only the SHG signal is measured by the PMT.

2.4 Density functional theory

We require a solution to the quantum many body problem, the Hamiltonian for this

system is:

Ĥ = −
~2

2

∑
i

∇2
Ri

Mi
−
~2

2

∑
i

∇2
ri

me
−

1
4πε0

∑
i, j

e2Zi

|Ri − r j|

+
1

8πε0

∑
i, j

e2

|ri − r j|
+

1
8πε0

∑
i, j

e2ZiZ j

|Ri − R j|
(2-16)

The mass of the nucleus is Mi and the mass of an electron is me and they are at positions

Ri and ri respectively. The first term is the kinetic energy operator for the nuclei and the

second for the electrons. The other terms are due to the Coulomb interaction between

the electrons and nuclei.

2.4.1 The Born-Oppenheimer approximation

The nuclei are considered to be static in space and the electrons are in instantaneous

equilibrium around them [19]. This simplifies the system, as the kinetic energy of the

nuclei become zero, which makes the first term zero in equation 2-16. The static nature

of the nuclei also reduces the Coulomb interaction between them to a constant. The

resulting Hamiltonian of the system is now comprised of terms for the kinetic energy of

the electron gas, the potential energy due to the electron-electron interactions and the

potential energy of the electrons in the potential of the nuclei:

Ĥ = T̂ + V̂ + V̂ext. (2-17)
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2.4.2 The Kohn-Sham equations

Hohenberg and Kohn [20] suggested that the total energy of the system is given exactly

as a functional of the ground state electron density, ρ such that

〈Ψ|Ĥ|Ψ〉 = E[ρ] . (2-18)

The exact form of the functional is unknown and DFT requires accurate approximations

to enable calculations. This was simplified by Kohn and Sham who introduced the

exchange-correlation functional, Exc, which is the difference between the total energy

calculated using the Hartree-Fock method (EH[ρ]) and exact total energy. The equation

for the total energy then becomes

E[ρ] = Ek[ρ] + EH[ρ] + Exc[ρ] + Eext[ρ] , (2-19)

where, Ek[ρ] is the single-particle kinetic energy and Eext[ρ] is the energy due to the

external potential of the nuclei. This approach then requires approximations for the

exchange-correlation functional; the two common ones are the LDA and the GGA. In

the LDA, the electron density is divided into infinitesimally small volumes with constant

density and has the same exchange-correlation energy as an identical volume filled with

a homogeneous electron gas. The exchange-correlation functional is then given by

Exc[ρ] =

∫
ρ (r) εXC (ρ (r)) dr . (2-20)

In the GGA the εXC (ρ) is now also a function of the magnitude of the gradient of

the density, εXC (ρ, |∇ρ|).

2.4.3 Solving the Kohn-Sham equations

The ground state energy can now be determined by solving a series of non-interacting

single-particle equations. The Kohn-Sham equation is

ĤKSφi (r) =
(
T̂0 + V̂H + V̂xc + V̂ext

)
φi (r) = εiφi (r) , (2-21)

where φi (r) are single-particle Kohn-Sham orbitals, T̂0 is the kinetic energy opera-

tor, V̂H is the Hartree potential, V̂xc is the exchange-correlation potential, V̂ext is the
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Coulomb potential due to the nuclei and εi are the Kohn-Sham eigenvalues. The ground-

state energy of an N-electron system is given by

ρ (r) =

N∑
i=1

φi (r)∗ φi (r) , (2-22)

where φi (r) are the N lowest-energy solutions of the Kohn-Sham equation. Both V̂H

and V̂xc depend on ρ, this means that a self-consistent solution to equations 2-21 and

2-22 is required for a calculation. This requires a solution to the Kohn-Sham equation

to produce Kohn-Sham orbitals that also reproduce the initial ρ. The iterative procedure

for such a calculation is shown in figure 2-7. In order to solve these equations a basis

set φi is introduced and the coefficients cn are found such that the Kohn-Sham orbitals

can be expressed in the basis set:

φi =
∑

n

cnφn. (2-23)

The choice of basis is determined by the computational capabilities; a larger and

more complex basis set will result in a more accurate calculation but at the cost of

increased computational time required.

Figure 2-7 Flow chart describing the iterative procedure for self-consistent
solutions of Kohn-Sham equations, based on figure 1.1 in Cottenier [21].
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2.4.4 The full potential LAPW method

The linearised augmented plane wave (LAPW) method, as implemented in the WIEN2k

code makes use of a two part basis set. This consists of atom-like wavefunctions close

to the atomic nucleus and plane waves between. A detailed introduction to the LAPW

method has been given by Cottenier [21] and Singh [22] and a brief overview will be

given in this thesis.

The unit cell is divided into two regions: non-overlapping spheres at the atomic

positions and the interstitial region that separates them. Inside the atomic sphere the

basis set consists of a linear combination of radial functions multiplied by spherical

harmonics

φkn =
∑
lm

[
Alm,knul (r, El) + Blmu̇l (r, El)

]
Ylm (r) , (2-24)

where ul (r, El) is the solution to the radial Schrödinger equation for energy El and

u̇l (r, El) is the energy derivative of ul evaluated at energy El. Alm and Blm are coeffi-

cients that are determined by requiring the basis functions between the sphere and the

interstitial region to have the same value and gradient at the interface. kn is given by

kn = k + Kn, where k is the wave vector inside the first Brillouin zone and Kn are the

reciprocal lattice vectors. In the WIEN2k code the cutoff parameter for the basis set is

RMT KMAX, where RMT is the smallest atomic sphere radius and KMAX is the magnitude

of the largest Kn vector.

The interstitial region uses a plane wave basis set given by

φkn =
1
√
ω

eikn·r . (2-25)

A third basis set called a ‘local orbital’ (LO) can be added to improve the flexibility

of the calculation and allow the treatment of semicore and valence states in one energy

window. The LO is kn independent and consists of two radial functions at different

energies and one energy derivative. The LO basis is given by

φLO
lm =

[
Almul

(
r, E1,l

)
+ Blmu̇l

(
r, E1,l

)
+ Clmul

(
r, E2,l

)]
Ylm (r) (2-26)

where Alm, Blm and Clm are determined such that φLO
lm has zero value and gradient at the

sphere boundary.
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In WIEN2k, the LAPW method is used concurrently with the APW+lo method to

reduce the total computation time required. The APW+lo method is similar to LAPW

and is used for atoms that have a small sphere size and can be used in conjunction

with LO’s in the same way as the LAPW method. The choice of LAPW, APW+lo and

whether an LO is required is determined automatically by the WIEN2k code.

2.4.5 Optical properties from DFT calculations

An extension to the WIEN2k code was provided by Ambrosch-Draxl et al which allows

the calculation of the linear optical properties of materials using the LAPW method.

A detailed description of the method used for this is given by Ambrosch-Draxl and

Sofo [23]. The optical response of the system to incoming light is calculated using the

random phase approximation (RPA), giving an approximation to calculate the complex

dielectric tensor. The refractive index can then be calculated from the dielectric tensor

using

nαα (ω) =

√
|εαα (ω) | + Reεαα (ω)

2
, (2-27)

where εαα is the dielectric tensor, α is the direction in the crystal and ω is the frequency.
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CHAPTER 3

Powder diffraction study of LiNb1-xTaxO3

3.1 Sample preparation

Powder samples of LNT were synthesised across the compositional range using a solid

state sintering process. The raw materials used were Li2CO3 (99.9 %), Nb2O5 (99.999 %)

and Ta2O5 (99.8 %). The powders were weighed in the correct stoichiometric ratio to

produce a total mass of 15 g. The mixed powders were ball-milled in isopropanol with

alumina balls for 20 h and then placed in a drying oven to remove the isopropanol.

The dried powder was then sealed in a platinum crucible and sintered at 1160 ◦C for

130 h using a heating and cooling rate of 180 ◦C h−1. A large sintering time ensured the

complete reaction between the initial materials to produce phase-pure LNT powders.

Following the sintering, the LNT powder was ground using an agate pestle and mortar.

A range of samples across the full range from LN to LT with steps in composition of

10 mol % and samples every 2 mol % between LNT91 and LNT99 were produced.

3.2 Room-temperature X-ray powder diffraction

Room-temperature X-ray scans on the LNT powders were performed using the PAN-

alytical X’Pert Pro MPD. Scans were between 5 and 135◦ in 2θ with a step size of
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0.0066◦ and a total measurement time of between 7 and 15 h. A 10 mm beam mask

was used in conjunction with a sample holder that had a sample area with a diameter of

10 mm.

In order to make a visual comparison between the scans, they were scaled to make

the intensity of the (012) peak at 23◦ in 2θ the same for all measurements. The XRD

measurements on LNT powders across the composition range are shown in figure 3-1.

PANalytical’s Highscore Plus software was used to remove the background and correct

for the change in positions of the peaks because of the sample displacement. The scaled

measurements in figure 3-1 show a 50 % decrease in intensity for all peaks except the

(012), (024), (036) and the (048) as the composition of the powder becomes less than

60 mol % LT. This decrease in intensity shows that the powdered samples have formed

with a large amount of preferred orientation related to the [012] direction. Repeat grind-

ing of the powders did not reduce the preferred orientation of the crystallites.

Rietveld refinement of the XRD data was performed using TOPAS Academic [1].

For each composition a consistent order in which the parameters were allowed to refine

was followed:

1. Initial estimates for the lattice parameters and the Megaw parameters were pro-

vided based on the work of Abrahams et al [2, 3]. The Nb and Ta occupancies

were set to the ratio of the initial material, the zero-offset was set to zero and

the isotropic thermal parameters were set to one and not refined. In the first re-

finement only the lattice parameters, the peak shape and the sample displacement

were allowed to vary.

2. This was followed by including the Megaw parameters and the simple axial model

into the refinement.

3. The spherical harmonic parameters modelling the preferred orientation were then

refined for samples with less than 70 mol % LT.

4. Next the Stephens parameters were included to model the anisotropic peak broad-

ening.

5. The isotropic thermal parameters for the Li, Nb, Ta and O atoms were introduced

into the refinement at the same time.
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6. Finally the zero-offset of the diffractometer was included to check the stability of

the refinement.

The use of the spherical harmonic terms to fit the preferred orientation allows its

effect on each peak to be quantified. The scale factors applied to the peaks below 70◦

in 2θ for the samples with an LT content from 0 to 70 mol % are in table 3-1. The

peaks with a scale factor greater than 1.45 are coloured red to show the common sets

of reflections with a high degree of preferred orientation. For the samples with less

than 70 mol % LT the dominant direction of the preferred orientation is the [012] as

visible in scans plotted in figure 3-1. The samples with greater than 70 mol % LT do

not have any preferred orientation and all crystallites are randomly distributed across all

directions. The preferred orientation in the samples has a large effect on the intensity

of the measured Bragg peaks, which affects the refinement of the Megaw parameters

and the isotropic thermal parameters. The spherical harmonic terms to fit the preferred

orientation are highly correlated with these parameters and cause the refined values to

be unreliable.

The Rietveld refinement of the LNT powder with 100 mol % LT is shown in figure

3-2. The measured data are displayed using red diamonds and the fit to them is given

by the black line. The difference between the measured and calculated intensity of the

diffraction pattern is given by the green line and the Bragg peak positions for the re-

fined structure are marked by the blue lines. A visual inspection of the calculated and

measured patterns shows a good fit provided by the Rietveld refinement. The difference

data show that the peak positions are correct and the peak shapes have been well de-

scribed. The refinement of LNT100 has an Rp of 9.374 %, Rwp of 14.683 %, GOF of

1.489 and RBragg of 1.817 %. Similar values were returned by all refinements across the

compositional range.

The preferred orientation within the samples does not affect the refinement of the

lattice parameters because they are determined by the positions of the peaks and not

their intensities. The refined a and c lattice parameters of the LNT powders as a func-

tion of the composition are shown in figure 3-3. The errors in the lattice parameters

are from the estimated standard deviations (esd’s) produced by Topas Academic during

the refinement. The non-linear change in the a lattice parameter shows that LNT does

not follow Vegard’s law. This is consistent with previous measurements of the a lattice
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Table 3-1 Scale factors applied to each Bragg peak in the Rietveld refine-
ment by the spherical harmonics used to model the preferred orientation. The
red text corresponds to a scale factor of 1.45 or greater.

h k l
Scale factor applied to peak as a function of LT content

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 %

0 1 2 1.65 2.31 1.46 1.84 1.95 1.58 1.72 0.98
1 0 4 1.01 0.82 0.90 0.82 0.77 0.84 0.84 0.95
1 1 0 1.04 1.00 0.93 0.89 0.88 0.92 0.99 1.01
0 0 6 0.68 0.59 0.85 0.79 0.85 0.84 0.66 0.97
1 1 3 0.93 1.01 1.01 0.97 1.06 0.98 1.01 1.05
2 0 2 0.83 0.71 0.90 0.86 0.85 0.97 0.85 0.99
0 2 4 1.65 2.31 1.46 1.84 1.95 1.58 1.72 0.98
1 1 6 1.03 0.89 0.98 0.94 0.90 0.95 0.94 1.00
2 1 1 0.93 0.86 0.91 0.85 0.83 0.92 0.88 1.01
1 2 2 1.03 1.16 1.04 1.07 1.10 1.02 1.10 1.02
0 1 8 0.78 0.63 0.90 0.81 0.73 0.87 0.80 0.97
2 1 4 0.83 0.74 0.91 0.83 0.88 0.89 0.91 1.04
0 3 0 0.78 0.60 0.90 0.85 0.76 0.92 0.74 0.99
1 2 5 1.23 1.58 1.21 1.35 1.45 1.24 1.30 1.02
2 0 8 1.01 0.82 0.90 0.82 0.77 0.84 0.84 0.95
1 0 10 0.78 0.75 0.89 0.80 0.79 0.87 0.71 0.94
1 1 9 0.93 0.80 0.94 0.85 0.77 0.90 0.85 0.97
2 2 0 1.04 1.00 0.93 0.89 0.88 0.92 0.99 1.01
2 1 7 0.93 0.69 0.90 0.83 0.83 0.85 0.89 1.02
3 0 6 1.65 2.31 1.46 1.84 1.95 1.58 1.72 0.98
0 3 6 0.93 0.66 0.88 0.86 0.86 0.87 0.99 1.01
2 2 3 0.93 1.02 0.97 0.92 0.97 0.94 1.00 1.03
1 3 1 0.93 0.87 0.95 0.94 0.89 0.94 0.93 1.01
3 1 2 0.86 0.76 0.90 0.83 0.81 0.93 0.82 1.00
1 2 8 1.24 1.33 1.15 1.23 1.24 1.17 1.19 1.01
0 2 10 1.04 0.92 1.03 1.01 0.90 1.03 1.03 0.99
1 3 4 1.17 1.51 1.18 1.33 1.39 1.19 1.31 1.01
0 0 12 0.68 0.59 0.85 0.79 0.85 0.84 0.66 0.97
3 1 5 0.84 0.72 0.90 0.83 0.87 0.91 0.91 1.02
2 2 6 0.93 1.01 1.01 0.97 1.06 0.98 1.01 1.05
0 4 2 0.93 0.94 1.02 1.08 1.02 1.03 1.01 1.00
2 1 10 0.98 0.78 0.92 0.83 0.78 0.86 0.85 0.98
4 0 4 0.83 0.71 0.90 0.86 0.85 0.97 0.85 0.99
1 1 12 0.84 0.74 0.91 0.81 0.74 0.88 0.78 0.96
1 3 7 1.40 1.88 1.32 1.55 1.66 1.38 1.47 1.01
3 2 1 1.00 0.94 0.92 0.87 0.86 0.92 0.94 1.01
2 3 2 1.01 1.03 0.97 0.94 0.94 0.94 1.02 1.02
1 2 11 1.09 1.00 1.04 1.03 0.95 1.04 1.03 0.99
3 1 8 0.90 0.64 0.88 0.82 0.83 0.84 0.92 1.02
2 2 9 1.01 0.95 1.00 0.98 1.01 0.98 0.99 1.03
3 2 4 0.89 0.89 0.93 0.85 0.90 0.92 0.92 1.03
4 1 0 0.86 0.71 0.91 0.86 0.79 0.92 0.81 1.00
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Figure 3-2 Rietveld refinement of LNT powder made with with 100 % LT.
The measured diffraction pattern is given by the red points, the calculated
intensities by the black line and the difference between them by the green
line. The blue lines give the positions of the Bragg peaks of the refined
structure.

parameter made on samples of LNT. The red line shows a fit to the data using a bow-

ing parameter to quantify the extent of the deviation from a linear trend. The bowing

parameter is −0.0036 ± 0.0008 Å, which agrees with the previously calculated value of

−0.003 ± 0.003 Å [4]. The reduced error on this measurement is due to a larger num-

ber of samples used across the compositional range. The bowing parameter calculated

from the fit to the c lattice parameters in figure 3-3b is −0.009 ± 0.002 Å which is less

than the previously measured value of −0.016 ± 0.003 Å [4]. The difference between

these two values is due to a greater number of samples at low-LT content in this study

compared to the previous work.

For the samples with an LT content of 70 mol % and higher, which do not have

preferred orientation, the atomic positions and the Megaw parameters calculated from

them are refined. The Nb/Ta displacement increases as the amount of Nb increases and

is shown in figure 3-4a. The Ta displacement for the stoichiometric powder was mea-

sured to be 0.198 ± 0.004 Å which agrees with 0.20 ± 0.01 Å calculated using neutron
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(b) c lattice parameter

Figure 3-3 The (a) a and (b) c lattice parameters as a function of the LT
content of the LNT powders. A quadratic fit using a bowing parameter is
given by the red line. The errors are the esd’s given by Topas Academic in
the Rietveld refinement.

diffraction on a single crystal of SLT [3]. As the amount of LN is increased in the

powders, the displacement of the Nb/Ta increases linearly attaining 0.240 ± 0.002 Å for

LNT70. Applying a linear fit and extrapolating the line to LN, the displacement of an

SLN sample is estimated to be 0.346 Å, which is considerably higher than the value of

0.27 ± 0.01 Å measured using neutron diffraction on an SLN crystal [5]. This suggests

either the change in the Nb/Ta displacement is not linear across the compositional range

or that the small range of measured values is too small to provide a reliable value for

the gradient of the changing displacement.

The displacement of the Li in figure 3-4b shows a peak around LNT90 with a linear

change above and below this. This trend and the refined values are unreliable because

of the small scattering factor of X-rays by Li atoms. The esd’s given by Topas academic

are an underestimate of the errors in measuring Li positions using XRD, however the

displacement for SLN is calculated to be 0.58 ± 0.01 Å, which is consistent with the

value of 0.60 ± 0.02 Å calculated with neutron diffraction [3].

The variation in the O octahedra as a function of the composition is measured using

the distortion of the octahedra and the tilt angle. The refined octahedral distortion is

plotted in figure 3-4c. All the measured values are negative with the majority of val-

ues scattered around −0.0028 and two samples; LNT70 and LNT99 have lower values

of −0.0041 ± 0.0002 and −0.0041 ± 0.0002 , respectively. These are likely erroneous

points and the distortion remains roughly constant across the compositional range in-
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(d) Octahedral tilt angle

Figure 3-4 Parameters from Rietveld refinement of LNT powders with LT-
content greater than 60 mol % LT. The (a) Ta displacement, (b) Li displace-
ment, (c) octahedral distortion and (d) octahedral tilt angle are shown.

vestigated. The values measured on the single crystals of SLT and SLN are -0.0026

and -0.0028 respectively [3, 5]. The errors on the refined powder XRD values are of

a similar size to the difference between these two values and confirms that the lower

values are erroneous.

The tilt angle of the octahedra as a function of composition is plotted in figure 3-4d.

The tilt of the SLT sample was measured to be 22.93 ± 0.08◦, which agrees well with

the previously measured value on an SLT crystal of 22.9◦ [3]. As the amount of LN in

the powder increases the tilt angle increases linearly attaining a value of 23.45 ± 0.05◦

for LNT70. The tilt measured on an SLN crystal by Abrahams et al was 23.1◦, which

suggests the octahedral tilt does not continue to increase linearly across the composi-

tion and a larger range of results are needed to understand the changing octahedral tilt

between SLN and SLT [5].
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3.3 High-temperature X-ray powder diffraction

For high-temperature runs, an Anton Paar HTK1200N oven was used in conjunction

with the PANalytical MPD. Alumina sample holders, 16 mm in diameter and with a

depth of either 4 or 8 mm were used depending on the amount of sample available. For

all measurements the penetration depth of the X-rays into the powder was less than

4 mm and the measured diffraction patterns did not contain peaks from the alumina of

the sample holders. A heating rate of 6 ◦C min−1 was used and a 10 min dwell before

each measurement to ensure a homogeneous temperature distribution throughout the

sample. A typical measurement consisted of an initial scan at room temperature be-

tween 20 and 120◦ in 2θ with a total counting time of 3 h. This scan was then repeated

every 40 ◦C between 60 and 820 ◦C for a total of 21 scans. The total time required was

roughly 65 h and the counting time of the scans was varied slightly depending on how

much time was available for the measurements.

Powder samples with compositions of 92, 94, 96, 98, 99 and 100 mol% LT were

synthesised using the same method as in section 3.1. Rietveld refinements of the data

were performed following the procedure given below:

1. Initial estimates for the room-temperature lattice parameters and Megaw param-

eters were calculated using the fitted data in section 3.1 and the previously re-

fined parameters from the preceding temperature were used as the initial values

for high-temperature scans. The Nb and Ta occupancies were set to the ratio of

the initial materials, the zero offset was set to zero and the isotropic thermal pa-

rameters to one and not refined. An initial refinement allowing only the lattice

parameters, the peak shape and the sample displacement to vary was performed.

2. The Megaw parameters and the simple axial model were then refined.

3. The isotropic thermal parameters for the Li, Nb, Ta and O atoms were included

in the refinement.

4. The zero-offset of the diffractometer was then allowed to vary to check the stabil-

ity of the refinement.

Anisotropic peak broadening parameters were not included in refinements of high-

temperature scans because of the reduced intensity of the measured data. The inclusion
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of the Stephens parameters did not improve the quality of the fit to the data and only

increased the overall number of parameters in the refinement. The refinement of the

scan at 25 ◦C on SLT had an Rp of 17.395 %, Rwp of 12.339 %, GOF of 1.41 and RBragg

of 1.76 %. Similar values were attained for each sample at all temperatures measured.

3.3.1 Lattice parameters

The refined c lattice parameters as a function of temperature are shown in figure 3-5

with the black data below the phase transition fitted to a fourth-order polynomial and

the red data above to a second-order polynomial. The c lattice parameter increases with

increasing temperature above room temperature and reaches a maximum close to 400 ◦C

for all compositions studied. Above this temperature it begins decreasing until the Curie

point of the sample and increases in the paraelectric phase. This complicated variation

in the c lattice parameter is due to the combination of the thermal expansion of the

lattice with temperature and the decreasing displacement of the Ta atom from the centre

of its oxygen octahedra. The displacement of the Ta atom from the refinements are

plotted in figure 3-6 and the displacement decreases for all samples as the temperature

increases. The data show a change in the gradient of the displacement between 300

and 500 ◦C coinciding with the peak in the c lattice parameter; the decrease in the Ta

displacement results in a larger change in the size of the O octahedra than the thermal

expansion of the lattice and the c lattice parameter decreases.

The refined a lattice parameters of the LNT100 sample are shown in figure 3-7a

and have an almost linear increase with temperature. The data have been fitted with

a linear trend and the residual between this fit and the data is plotted in figure 3-7b.

The plot of the residual shows that the increase in the a lattice parameter is nonlinear

below the paraelectric phase and the expansion is different above and below the phase

transition. The black data points below the transition have been fitted by a fourth-order

polynomial and the red data points by a second-order polynomial. The expansion of

the a lattice parameter is determined by the oxygen octahedra; the combined changes in

the tilt angle and increasing size of the octahedra contribute to produce the nearly linear

increase.

The calculated octahedral tilt from the refined O positions is shown for each sample

in figure 3-8. The tilt angle of the oxygen octahedra decreases with increasing tempera-
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(c) LNT96
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(e) LNT99
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(f) SLT

Figure 3-5 c lattice parameters as a function of temperature for Ta-rich
LNT samples. Polynomial fits applied to the data above and below the phase
transition are given by the red and black lines respectively.
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(b) LNT94
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(c) LNT96
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(d) LNT98
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(e) LNT99
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Figure 3-6 Ta displacement as a function of temperature for Ta-rich sam-
ples of LNT. The Curie temperature is given by the dashed red line.
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Figure 3-7 The (a) a lattice parameter as a function of temperature with
a linear fit given by the red line and (b) the residual between the data and
the linear fit. The residual data is coloured black and fitted with a fourth-
degree polynomial below the phase transition and coloured red and fitted
with second-degree polynomial above the transition.

ture for all samples. If the size of the oxygen octahedra stayed constant with increasing

temperature, the decreasing tilt would result in an increase in the a lattice parameter.

The determination of the distortion of the octahedra is not possible using short scans on

a lab-based X-ray diffractometer; the uncertainties in measuring the distortion are too

large to measure a trend with temperature, however the distortion parameter is negative

for all samples in the temperature range investigated.

The effect of the size and distortion of the octahedra can be investigated by measur-

ing the contact lengths between the O atoms that form the octahedra. The lengths of the

oxygen triad on the top and the bottom of the octahedra are shown in figure 3-9b and

are labelled L1 and L2 respectively. The triad with length L1 is the closest to the Ta

atom. The measured lengths of L1 and L2 are plotted in figure 3-10, the error values are

calculated from the errors in the refined O positions. The L1 length is larger than the

L2 length, which is expected from the negative distortion parameter. The trend in L1

and L2 cannot be determined because of the inability to accurately refine the distortion

of the octahedra. The changing size of the octahedra can be measured by calculating

the average size of the triads as a function of temperature. This is given by the green

data in figure 3-10 and shows that the size of the octahedra increases with temperature.

In the paraelectric phase, the inversion symmetry means the O octahedra cannot be dis-

torted and the triads above and below the Ta atom are the same. The triad length in the

paraelectric phase is given by the red data in figure 3-10 and it follows the same trend
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(c) LNT96
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Figure 3-8 Ta displacement as a function of temperature for Ta-rich sam-
ples of LNT. The Curie temperature is marked by the dashed red line.
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as the average triad length in the ferroelectric phase. This expansion combined with the

rotation of the octahedra results in the increase in the measured a lattice parameter.

(a) View down the a-axis (b) View down the c-axis

Figure 3-9 The oxygen octahedra when viewed along (a) the a-axis and
down the c-axis. The bonds between the O atoms in the octahedra are marked
by a blue dotted line for the upper face and a black dotted line for the lower
face and are labelled L1 and L2, respectively.
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Figure 3-10 Triad lengths of LNT100 as a function of temperature. Below
the Curie point, the lengths L1, L2 and the average of the two are shown by
the blue, black and green points respectively and the red data show the triad
length above the phase transition.

3.3.2 Curie point

By calculating the temperature of the intersection between the polynomial fits to the c

lattice parameter in figure 3-5, the temperature of the Curie point can be measured. The

plot of the residual between the a lattice parameter of LNT100 and a linear fit to it in

figure 3-7b can also be used to calculate the Curie temperature in an analogous way to
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using the c lattice parameter. The residual of a linear fit to the a lattice parameters for

the high-Ta content samples is shown in figure 3-11. The same non-linear increase in

the a lattice parameter below the phase transition was measured in all samples.

The Curie point as a function of composition from averaging the calculated values

from both the c lattice parameters and the residuals of the a lattice parameter fits are

shown in figure 3-12. The error bars on the values are calculated from the combined

errors in measuring the Curie point from the XRD measurements and the accuracy of

the sample furnace. It was not possible to fit a polynomial above the phase transition to

the data collected on LNT92 because of a failed scan at 820 ◦C. This made it difficult to

determine if the point at 740 ◦C (as can be seen in figures 3-5a and 3-11a) was above or

below the phase transition. The linear fit to the Curie temperatures in figure 3-12 did not

include the point measured on LNT92 and this point is plotted with error bars covering

the possible range of values around 740 ◦C. The Curie point for SLT was measured

to be 690 ± 3 ◦C which agrees with the previous value of 690 ◦C, measured by Barns

et al using dielectric measurements on a range of crystals pulled from Li-rich melts

[6]. The addition of Nb increases the Curie point linearly in the range of the high-LT

content samples investigated. This is consistent with previous measurements showing

a linear increase towards the Curie point of 1200 ◦C of LN, as determined on sintered

LNT powders using dielectric measurements by Peterson et al [7].

3.4 Low-temperature X-ray powder diffraction

For low-temperature measurements a Bruker D5005 diffractometer in Bragg-Brentano

geometry, producing Cu Kα radiation, and equipped with an Oxford Cryosystems Phenix

cryostat was used. A typical scan was measured between 21 and 135◦ in 2θ with a step

size of 0.02◦ and a total counting time of 8 h. The intensity produced by the Bruker

diffractometer is much lower than that of the PANalytical MPD. This means that pa-

rameters based on the intensity of a peak in the Rietveld refinement on the scans at low

temperature are unreliable, however the positions of the peaks are not affected by this

and the lattice parameters can be reliably measured.

Samples with LNT compositions of 80, 94, 96, 98 and 99 mol% LT were stud-

ied at low temperature to investigate the effect on the lattice below room temperature.
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Figure 3-11 Residual from a linear fit to the a lattice parameters as a func-
tion of temperature for Ta-rich LNT samples. Polynomial fits applied to the
data above and below the phase transition are given by the red and black lines
respectively.
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Figure 3-12 High-temperature phase transition as a function of LT content
in the LNT sample. The error bars are calculated from the combined errors
in measuring the phase transition using the XRD data and the accuracy of the
furnace.

Scans were taken every 20 ◦C between 17 and −233 ◦C. Rietveld refinements of the

low-temperature scans were performed following the same procedure as used in the

refinements of the high-temperature scans in section 3.3. The sample displacement

and the zero-offset of the diffractometer were calculated using the room-temperature

lattice parameters from section 3.2. The lattice parameters were fixed and the sample

height and zero-offset were refined, the refined zero-offset was then used for all other

refinements. The refinement of the LNT94 scan at 17 ◦C is shown in figure 3-13. This

refinement had an Rp of 9.901 %, Rwp of 7.624 %, gof of 1.29 and RBragg of 1.881 %.

3.4.1 Lattice parameters

The calculated a lattice parameters from the refinements as a function of temperature are

plotted in figure 3-14a and the c lattice parameter in 3-14b. For all samples investigated,

the lattice parameters vary continuously as the temperature decreases and tend towards a

constant value. The a lattice parameter for LNT94 from −230 ◦C to 820 ◦C using the two

different diffractometers is shown in figure 3-14c. The dashed black line marks the point

between the measurements made on the Bruker D5005 and the PANalytical MPD and

there is a small offset in the refined lattice parameters between these. This is due to the

the method used to determine the correct sample height and zero-offset. The zero-offset

on the Bruker D5005 diffractometer is calculated using the refined lattice parameters
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Figure 3-13 Rietveld refinement of the measurement at 17 ◦C on LNT94
using the Bruker D5005 diffractometer. The measured diffraction pattern is
given by the red points, the calculated intensities by the black line and the
difference between them by the green line. The blue lines give the positions
of the Bragg peaks of the refined structure.

from the room-temperature measurements on the PANalytical MPD and this results

in a small error. The zero-offset and the sample height could have been accurately

determined using a scan of CeO2 and following the procedure given by O’Connor et

al [8]. This would require a scan of CeO2 before each low-temperature run, adding to

the total time required for all the measurements. The calibration of the diffractometer

using the CeO2 scan was not used because a small offset between the values measured

on each machine did not affect the trend in the data and allowed all the scans for each

sample to be made in 5 days.

3.5 Conclusions

The structure of LNT has been investigated across the compositional range at room

temperature and between -230 and 820 ◦C for samples with high-Ta content. It has been

shown that the lattice parameters vary smoothly and continuously across the composi-

tional range and for samples with greater than 70 mol % Ta content, the Nb/Ta displace-
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ment and the octahedral tilt also vary continuously with a change in composition.

The variation in the lattice parameters with temperature has been shown to be con-

tinuous from −230 ◦C until the sample becomes paraelectric at high temperatures. The

response of the lattice to increasing temperature has been explained by the change in

the Nb/Ta displacement and the size and tilt of the O octahedra. Measurements of

the birefringence on SLT crystals by Bäumer et al have shown that they become zero-

birefringent at 100 ◦C and Glazer et al showed that the addition of Nb increased the tem-

perature of the zero-birefringence point [9, 10]. The high-temperature powder diffrac-

tion measurements have been used to investigate the structural changes as each LNT

sample passes through this zero-birefringence point and they have confirmed that the

structure remains polar and that the zero-birefringence is not due to a phase change.

The compositional and high-temperature measurements show that the Ta displace-

ment and the tilt angle of the O octahedra are correlated; the Nb/Ta displacement and

the octahedral tilt angle both decrease with increasing temperature and both increase as

the quantity of Nb in the sample is increased.
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Figure 3-14 The (a) a lattice parameter and (b) c lattice parameter as a
function of temperature below room temperature and the variation in the (c)
a lattice parameter and (d) c lattice parameter of LNT94 from -230 to 820 ◦C.
The dashed black line separates the measurements made on the two diffrac-
tometers.
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CHAPTER 4

Powder diffraction study of LiyTa1-yO3

4.1 XRD measurements

4.1.1 Room-temperature measurements

A range of powder LT samples with varying Li concentrations were made to investigate

the formation of the Li-rich phase and the effect of the non-stoichiometry on the struc-

ture of LT. These samples were provided by Ausrine Bartasyte and the raw materials

used for the production of LT powders were Li2CO3 (99.9 %) and Ta2O5 (99.9 %). The

mixed powders were ball-milled in isopropanol with alumina balls for 20 h, before be-

ing dried and pressed into pellets and calcined for 72 h at 1160 ◦C. This was followed

by a final sintering at 1160 ◦C for 48 h to ensure a complete reaction between the start-

ing materials. Samples with a range of Li2CO3 content between 48 and 54 mol % of

the initial materials were produced. Measurements were also made on the SLT sample

from section 3.1 and a CLT sample with 48.6 mol % Li2O made using the single-firing

method at 1160 ◦C for 130 h.

Room-temperature X-ray scans on the LT powders were performed using the PAN-

alytical MPD and are shown in figure 4-1. The measurements on the powders with Li

contents of 48, 49 and 50 mol % Li2O form Li-deficient LT structures without the pro-

duction of a second phase and the samples with greater than 50 mol % Li2O form two
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phases; stoichiometric LT and the Li-rich phase Li3TaO4 (L3T). The amount of L3T in

the samples increases as the amount of Li2O increases above the stoichiometric ratio.

Diffraction from the L3T phase is visible at low angles in figure 4-1 and the measured

peaks are marked with arrows in the expanded section in figure 4-2a. This shows the

intensity of the peaks from the L3T phase increase as the amount of Li2O in the sample

increases, with the phase being absent for samples made with the initial materials in the

stoichiometric ratio.
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Figure 4-2 XRD measurements on LT powder samples focusing on (a)
extra peaks due to formation of Li3TaO4 and (b) the effect of composition on
the peak width. Bragg peaks from the L3T are marked with arrows.

The width of the peaks is dependent on the composition of the material; there is

a decrease in the FWHM when the Li-content becomes sufficient enough to produce

stoichiometric LT. This is shown in figure 4-2b. The width of the peaks for the LT48,

LT49 and LT50 samples are visibly wider than the peaks of LT51, LT52, LT53 and

LT54. To measure the widths of the peaks the data have been fitted with an asymmetric

split-Pearson VII profile, allowing an accurate fit to the asymmetrical Bragg peak shape.

The fit of the (012) Bragg peak in SLT is shown in figure 4-3a and FWHM’s of the

(012), (-114) and (116) for all the samples are plotted in figure 4-3b. This shows that

when there is enough Li2O, LT forms with full stoichiometry and has a reduced FWHM

compared to the Li-deficient LT. The loss of Li2O during sintering and calcining means

that SLT is only formed when the initial materials have an excess of Li2O. The single-

firing method does not suffer from a loss of Li2O and SLT is made using the initial

powders mixed in a stoichiometric ratio.

Rietveld refinements of the measured diffraction data were performed using Topas
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Figure 4-3 In (a) the (012) Bragg peak of LT51 fitted with an asymmetric
Pearson VII profile and (b) the FWHM as a function of Li2O content of the
(012), (-114) and (116) Bragg peaks, given by the red, black and blue points,
respectively. Samples made using the single firing method are marked by the
arrows.

Academic and following the method for the refinement of room-temperature scans on

LNT in section 3.2 [1]. The refinements were made assuming a stoichiometric com-

position because the XRD measurements are insensitive to the positions of Li atoms

and incapable of refining a defect model of the structure. For the samples containing

the L3T phase, the structure of L3T was refined at the same time as the LT structure.

The refinement of LT54 is shown in figure 4-4 with the positions of the peaks from

the refined LT and L3T structures marked by the blue and orange vertical lines, respec-

tively. The amount of L3T in the samples is small compared to the amount of LT which

dominates the diffraction pattern. The addition of the L3T phase can be clearly seen

in the expanded section of the refinement and the close agreement between the fit and

measured intensity confirms the second-phase as L3T.

The weight percent of each phase is calculated in the refinement and can be used

to calculate the mol % of L3T in the sample. The calculated L3T content, plotted as a

function of the amount of Li2O in the initial material is in figure 4-5a. The amount of

L3T formed if there was no loss of Li2O during sintering is given by the red line and

the expected content assuming 1 mol % and 2 mol % of Li2O is lost are given by the

blue and orange lines, respectively. The amount of Li2O lost during sintering varies as

the composition changes and can be calculated using the refined Li3TaO4 content and

assuming that no Ta2O5 is lost. This is plotted against the composition of the initial
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Figure 4-4 Rietveld refinement of LT54 powder, with the measured data
denoted by red diamonds, the refined pattern by the black line and the differ-
ence between them by the green line. The positions of the Bragg peaks from
the refined LT and L3T structures are marked by the vertical blue and orange
lines, respectively.

materials in figure 4-5b. It is reasonable to assume that the amount of Li2O lost is

dependent on the composition and will increase as the Li-content increases. A linear

fit to the Li2O loss without including the value measured for LT52 is given in figure

4-5b. The Li2O loss measured for LT52 is large and including it in the fit results in

a trend that predicts that Li3TaO4 would not be formed when the initial material has

51 mol % Li2O. The fit to the values excluding LT52 can be used to estimate the Li2O

loss in the samples that haven’t formed Li3TaO4. The actual composition of LT50 is

49.8 ± 0.2 mol % Li2O and the amount of Li2O lost is expected to be zero for samples
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with less than 49.5 mol % Li2O in the initial material. The error in the composition of

the LT samples is large because of the assumption that the Li2O lost during heating will

vary linearly and the use of only three points for the fit.
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Figure 4-5 In (a) the measured amount of L3T formed in samples as a
function of the amount of Li2O in the initial materials. With the expected
amount with 0, 1 and 2 % of the Li2O lost given by the red, blue and orange
lines, respectively. In (b) the calculated amount of Li2O lost is plotted against
the composition of the initial materials.

The refined lattice parameters of the LT for each sample are plotted against the

corrected Li2O content in figures 4-6a and 4-6b. The corrected Li2O content is equal

to the initial content minus the the amount lost during firing. For the samples that

have not had a correction applied to their composition, only the error bars on the left

side are included because the largest source of error is the loss of Li2O which cannot

result in an increase in the composition. Both the a and c lattice parameters become

constant above 50 mol % Li2O, which shows that stoichiometric LT is formed and any

excess Li2O is used to form L3T. The point at 50 mol % Li2O is the LT powder sample

made in the previous section on LNT powders. The lack of L3T in this sample and its

similar lattice parameters to the samples containing greater than 50 mol % Li2O mean

that the LT sample produced using the single-firing method in section 3.1 has not lost

any Li2O during heating. The measured FWHM of all the LNT powders agree with

those measured on the stoichiometric samples and not those of the Li-deficient samples.

This confirms that the LNT samples are stoichiometric and there was no loss of Li2O

during heating.

The a lattice parameter decreases linearly towards the stoichiometric value as the

amount of Li2O in the Li-deficient LT is increased. This is consistent with previous
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measurements of the congruent crystals which have a higher a lattice parameter than

those of stoichiometric crystals [2]. The c lattice parameter also decreases linearly, but

becomes less than the stoichiometric value when the composition is 49 mol % Li2O.
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Figure 4-6 The (a) a and (b) c lattice parameters as a function of the Li2O
content in the LT samples. Samples made using the single firing method are
blue and the errors in the values are from the esd’s given by the Rietveld
refinement.

The refined displacement of the Ta from the centre of the O octahedra is plotted in

figure 4-7a. A small variation in the displacement occurs for stoichiometric LT samples

above 50 mol % Li2O. These small variations are not within errors and suggest the

errors on the Ta position are larger than those given by the esd’s of the refinement when

there are two phases. Between 48 and 50 mol % the displacement increases linearly

as the composition increases towards the stoichiometric value. The refinement of the

position of the Li atom is unreliable because of the poor scattering of X-rays; however,

the value for LT powders is consistent with that of the LNT powders. The plot of the

Li displacement in figure 4-7b has a dip in the displacement as the amount of Li2O is

increased towards the stoichiometric ratio.

The response of the O octahedra to the changing Li concentration of the samples

is shown in figure 4-8. The refinements of the powder diffraction data do not provide

a precise value for the distortion of the octahedra as can be seen by the large varia-

tion across the composition. However, the distortion is small and negative which is

consistent for both measurements on LNT and LT samples.

There is a decrease in the tilt angle in the Li-deficient compositions of 48, 49 and

49.8 mol % Li2O compared to the samples with 50 mol % or greater. This is a decrease
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Figure 4-7 The (a) displacement of the Ta from the centre of the O octahe-
dra and (b) displacement of Li from the O plane as a function of the Li2O in
the sample.

of roughly 0.25◦ which is greater than the associated errors in the refined values, sug-

gesting the octahedra is affected by the decrease in Li2O content. The tilt angle of the

octahedra decreases while the Ta displacement decreases, this is similar to the relation-

ship in the LNT powders where the increase in the quantity of Nb results simultaneously

in an increase in the Nb/Ta displacement and octahedral tilt.
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Figure 4-8 The (a) octahedral distortion and (b) tilt as a function of the
composition of the LT sample.

74



Chapter 4. Powder diffraction study of LiyTa1-yO3

4.1.2 High-temperature measurements

4.1.2.1 Lattice parameters

High-temperature diffraction measurements using the PANalytical MPD and the Anton

Paar sample furnace have been made on LT samples. The same procedure as used in

section 3.3 for making the XRD measurements and refining the structure was followed.

The refined c lattice parameter for the LT samples is shown in figure 4-9. The c lattice

parameters of the LT samples have the same variation with temperature measured on

the LNT samples; an initial peak around 200 ◦C to 300 ◦C followed by a decrease before

the Curie point. The calculated a lattice parameters have been fitted with a linear trend

and the residual is plotted in figure 4-10. An abrupt change in the residual occurs at the

Curie point similar to the measurements on LNT samples.

4.1.2.2 Curie point

The effect of the decrease in the amount of Li in the LT sample results in a reduction

in the phase transition temperature. The phase transition as a function of composi-

tion is given in figure 4-11. A similar trend between the composition and the phase

transition temperature was measured by Bordui et al using dielectric measurements on

Czochralski-grown single crystals [3]. The gradient of the linear trends differ and the

results of these measurements suggest a higher phase transition temperature for a given

composition than that given by Bordui et al. Previously, a range of measurements have

given the Curie point of CLT to be between 598 and 608 ◦C with an in-depth study by

Kushibiki et al measuring a value of 603.0 ◦C and a composition of 48.46 mol % Li2O

[2, 4, 5]. The phase transition temperature of 603 ◦C would correspond to a composi-

tion of 48.3 ± 0.2 mol % Li2O in this study, and agrees with the precisely determined

composition of CLT by Kushibiki et al.

4.1.2.3 Atomic positions

The refined Ta displacement for the varying LT composition samples is plotted in figure

4-12 and decreases with temperature towards the Curie point. The variation in the

displacement is similar for all compositions of LT studied and also for the LNT samples.

The octahedral tilt angle decreases for LT compositions as the temperature increases and

75



Chapter 4. Powder diffraction study of LiyTa1-yO3

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 3 . 7 5 5

1 3 . 7 6 0

1 3 . 7 6 5

1 3 . 7 7 0

1 3 . 7 7 5

1 3 . 7 8 0

1 3 . 7 8 5

c la
ttic

e p
ara

me
ter

 (�
)

T e m p e r a t u r e  ( � � )

(a) LT48

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 3 . 7 5 5

1 3 . 7 6 0

1 3 . 7 6 5

1 3 . 7 7 0

1 3 . 7 7 5

1 3 . 7 8 0

1 3 . 7 8 5

c la
ttic

e p
ara

me
ter

 (�
)

T e m p e r a t u r e  ( � � )

(b) LT49

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 3 . 7 5 5

1 3 . 7 6 0

1 3 . 7 6 5

1 3 . 7 7 0

1 3 . 7 7 5

1 3 . 7 8 0

1 3 . 7 8 5

c la
ttic

e p
ara

me
ter

 (�
)

T e m p e r a t u r e  ( � � )

(c) LT49

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 3 . 7 5 5

1 3 . 7 6 0

1 3 . 7 6 5

1 3 . 7 7 0

1 3 . 7 7 5

1 3 . 7 8 0

1 3 . 7 8 5

c la
ttic

e p
ara

me
ter

 (�
)

T e m p e r a t u r e  ( � � )

(d) LT49.8

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 3 . 7 5 5

1 3 . 7 6 0

1 3 . 7 6 5

1 3 . 7 7 0

1 3 . 7 7 5

1 3 . 7 8 0

1 3 . 7 8 5

c la
ttic

e p
ara

me
ter

 (�
)

T e m p e r a t u r e  ( � � )

(e) SLT

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 3 . 7 5 5

1 3 . 7 6 0

1 3 . 7 6 5

1 3 . 7 7 0

1 3 . 7 7 5

1 3 . 7 8 0

1 3 . 7 8 5

c la
ttic

e p
ara

me
ter

 (�
)

T e m p e r a t u r e  ( � � )

(f) LT50.6

Figure 4-9 The c lattice parameter for each LT concentration as a function
of temperature. The points below the phase transition are black and polyno-
mial fits to these data are given by the black line. The red squares are the
points above the phase transition and the red line is a polynomial fit to them.
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Figure 4-10 The a lattice parameter for each LT concentration as a func-
tion of temperature. The points below the phase transition are black and
polynomial fits to these data are given by the black line. The red squares are
the points above the phase transition and the red line is a polynomial fit to
them.
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Figure 4-11 High-temperature phase transition as a function of Li2O con-
tent of the LT sample. The error bars are calculated from the combined errors
in measuring the phase transition using the XRD data and the accuracy of the
furnace.

is shown in figure 4-13. The tilt angle decreases in the ferroelectric phase and above the

Curie point.

4.2 Isotopically enriched SLT

4.2.1 Introduction

Neutron diffraction is an important tool for studying the structures of oxide materials,

because of the extra information gathered on light elements when compared to using

X-ray diffraction. The SLT powder used for this experiment was made using Li2CO3

which has been isotopically enriched to be 99.99 % 7Li, this was to compensate for the

large absorption coefficient of 6Li. The coherent scattering length for 7Li is −2.22 fm,

for Ta is 6.91 fm and for O is 5.803 fm, which means the scattering is not dominated by

one element as it is by Ta in X-ray diffraction. A stoichiometric sample was made using

the single-firing method used in section 3.1.

4.2.2 XRD measurements

High-temperature measurements were performed using the PANalytical MPD and the

Anton Paar sample furnace to calculate the Curie point and check the Li content of the
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Figure 4-12 The Ta displacement for each LT concentration as a function
of temperature. The Curie point is marked by the dashed red line.
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Figure 4-13 The octahedral tilt angle as a function of temperature for a
range LT concentrations. The Curie point is marked by the dashed red line.
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sample. Measurements made every 40 ◦C between 60 and 820 ◦C were refined using

the same procedure for high-temperature XRD measurements on LNT and LT powder

samples.

The refined c lattice parameters and residuals of a linear fit to the a lattice parameters

are plotted in figure 4-14. The intersection between the polynomial fits gives a Curie

point of 654 ± 3 ◦C. This is less than the expected value of 690 ◦C for SLT and using

the results of section 4.1.2.2 the actual composition is 49.36 ± 0.06 mol % Li2O. This

sample has lost a large amount of Li2O during firing and has resulted in a composition

between the congruent and stoichiometric extremes. The FWHM of the (012) peak is

0.053 ± 0.001◦ in 2θ, and according to figure 4-3 is consistent with the sample having

lost Li2O during heating. The equipment used in making this sample was the same as

used for previous LNT samples, which did not show a loss of Li2O during heating. This

suggests either the platinum crucible was poorly sealed or the use of the enriched 7Li

resulted in an increased loss of Li2O.
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(b) Residual of linear fit to a lattice parameter

Figure 4-14 The (a) c lattice parameter and (b) residual of a linear fit to
the a lattice parameter as a function of temperature. Data below the phase
transition are black and fitted with a fourth-order polynomial. The red data
above the phase transition are fitted with a second-order polynomial.

4.2.3 Neutron diffraction measurements

Variable-temperature measurements were performed with a fixed neutron source at the

Institute Laue-Langevin (ILL), in Grenoble, France. The ILL uses a nuclear reactor to

produce a high flux of neutrons for a range of different experiments. The D2B beam-

line consists of a Ge[115] crystal monochromator which can be rotated to provide a
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range of different wavelengths for the experiments. The optimum wavelength for the

diffractometer is 1.594 Å. It is well aligned and produces the highest neutron flux. The

detector consists of 128 3He counting tubes, spaced 1.25◦ apart. A full diffraction pat-

tern between 5 and 165◦ in 2θ is recorded after moving the detector through 25 0.05◦

steps, and each scan is repeated to improve the counting statistics.

A cryofurnace with a temperature range of 5 to 525 K was used for the experiments

on the LT49.36 sample. Scans were made above room temperature, in the range of 27

to 172 ◦C. A large vanadium can filled with roughly 15 g of sample was used for the

measurements. Ten repeated scans were made at each temperature, resulting in a total

measurement time of 2 h.

A room-temperature XRD powder pattern collected using the PANalytical MPD

diffractometer was refined to calculate the lattice parameters. The refined lattice pa-

rameters from this calculation were then used in a refinement of the room-temperature

neutron data to calculate the zero-offset and the wavelength of the D2B diffractometer.

The background in the neutron measurements was modelled using ten small Gaussian

peaks and at each temperature the positions of the individual peaks and an overall scale

factor governing the size of the peaks was refined. Figure 4-15 shows the refinements of

the XRD and neutron data collected at room temperature. Structural models including

Li vacancies and Ta atoms on the Li site did not change the refined lattice parameters or

atomic positions and resulted in an incorrect value for the amount of Li in the structure.

Because of this the structural refinements were performed assuming the composition

was stoichiometric.

A precise order in which the parameters were allowed to refine was followed for

each temperature to keep each refinement consistent, this procedure is described below:

1. The neutron wavelength was set to 1.5934 Å and the zero-offset to −0.03424◦

using the room-temperature XRD measurement.

2. The lattice parameters and atomic positions were set to the refined values at the

previous temperature and an initial refinement was then performed with only the

background, peak shapes and lattice parameters allowed to vary.

3. This was followed by refining the atomic positions and the simple axial model for

both sets of data.
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Figure 4-15 Rietveld refinement on LT49.36 for (a) the XRD measurement
and (b) the neutron diffraction measurement. The observed data are plotted
in red, the calculated in black and the difference between them is green. The
blue points mark the positions of the Bragg peaks of the refined structure.
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4. Next the Stephens parameters were included.

5. Finally the isotropic thermal parameters of the Li, Ta and O atoms were included

in the refinement.

4.2.4 Lattice parameters

The lattice parameters from the refinements are plotted in figure 4-16. The a and c

lattice parameters show the expected nearly linear increase with temperature and agree

with the room-temperature value calculated previously using only XRD measurements

on samples made with the natural abundance of Li isotopes.
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(b) c lattice parameter

Figure 4-16 The (a) a lattice parameter and (b) c lattice parameter plotted
as a function of temperature. The error bars were calculated from the esd’s
via Topas Academic.

4.2.5 Atomic positions

The displacement of the Li atom as a function of temperature is plotted in figure 4-

17a and decreases linearly as the temperature increases. The room-temperature value

is 0.601 ± 0.004 Å calculated from the neutron diffraction measurements and is in the

range of 0.58 to 0.64 Å measured using XRD measurements on LT samples. This con-

firms that measurements using XRD cannot be used to calculate a trend in the Li po-

sition as a function of composition or temperature; however, the refined values agree

with those refined using neutron diffraction.

As the temperature increases, the displacement of the Ta atom decreases linearly

in the temperature range studied. The refined displacement is plotted in figure 4-17b
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and is consistent with the measurements of the Ta displacement using XRD. The room-

temperature displacement calculated for LT49.36 is 0.195 ± 0.002 Å and agrees well

with the XRD measurements in figure 4-7a which suggests the value should be between

0.18 and 0.20 Å.
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(a) Li displacement
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(b) Ta displacement

Figure 4-17 The displacement of the (a) Li atom from the O triad at z =

0.25 along the c axis and (b) Ta atom from the centre of the O octahedra.

The distortion of the O octahedra is plotted in figure 4-18a. The measured values are

between -0.00235 and -0.0025 and the errors on the values are of a similar size, which

means a trend in the distortion with temperature cannot be measured. The octahedral tilt

decreases with temperature, as expected from the XRD measurements and is plotted in

figure 4-18b. In the temperature range investigated the octahedra rotate linearly, which

is consistent with measurements using XRD on both LT and LNT samples.
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(a) Octahedral distortion
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(b) Octahedral tilt

Figure 4-18 The (a) O octahedral distortion and (b) octahedral tilt angle as
a function of temperature.
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4.2.6 Bond lengths

The O-O, O-Li and O-Ta bond lengths describe the how the structure varies as the

temperature increases. The precise determination of the octahedral distortion allows a

value for bond lengths involving an O atom to be calculated. The O triad lengths of the

upper and lower faces of the octahedra are shown in figure 4-19a and labelled L1 and L2,

respectively. The calculated values for L1 and L2 along with their average are plotted in

figure 4-20. The upper triad, which is the closest to the Ta atom is the larger of the two

and both increase in size with temperature. The effect of the distortion is removed in the

averaged size of the two triads and confirms that the size of the octahedra is increasing

with temperature.

(a) View along the a-axis (b) View down the c-axis

Figure 4-19 The O octahedra when viewed along (a) a-axis and (b) down
the c-axis. The bonds between the O atoms in the octahedra are marked by a
blue dotted line for the upper face and a black dotted line for the lower face
and are labelled L1 and L2, respectively.

The O-Li bond lengths are shown in figure 4-19 and are labelled OL1 for the bond

length between the O in the lower triad and OL2 for the bond length to the O atom

in the plane located at z = 0.25 along the c axis. The calculated values are plotted in

figure 4-21 and both increase with temperature. This is due to the increasing size of the

octahedra and the decrease in the Li displacement, resulting in a larger rate of increase

for the OL1 bond length than the OL2.

The O-Ta bond lengths are plotted in figure 4-22 and are between the Ta atom and

the O in the upper triad and the Ta and the O in the lower triad. The displacement of

the Ta from the centre of the O octahedra decreases with temperature and results in an

increase in the bond length to the O atoms in the upper triad and a decrease to the O

atoms in the lower triad.
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Figure 4-20 Triad lengths as a function of temperature. The lengths L1, L2
and their average are shown by the blue, black and green points, respectively.
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(b) OL2

Figure 4-21 The Li-O bond length as a function of temperature for (a) O
atom in the lower plane and (b) O in the upper plane.

4.3 Conclusions

The structure of Li-deficient LT has been studied between 48 and 50 mol % between

room temperature and 820 ◦C using XRD measurements and between room temperature

and 172 ◦C using neutron diffraction. It has been shown that the lattice parameters

increase as the amount of Li is reduced below the stoichiometric ratio with a small

initial decrease in the c lattice parameter. The FWHM of a Bragg peak measured on an

LT powder sample can be used to confirm if it is Li deficient or stoichiometric.

The decrease in the amount of Li results in a decrease in the Ta displacement and the

octahedral tilt. The Nb/Ta displacement and the octahedral tilt are linked and respond in

a consistent way to changes in the the Li content, Nb/Ta content and temperature. Any
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(a) O in upper triad
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(b) O in lower triad

Figure 4-22 O-Ta bond lengths as a function of temperature with (a) O
atom in the upper triad and (b) O atom in the lower triad.

decrease or increase in the Nb/Ta displacement is matched with a decrease or increase

in the octahedral tilt.

The Curie point decreases in temperature and can be used as a measurement of the

composition of LT. These measurements combined with those on LNT powders provide

an understanding of the effect of both the Nb/Ta ratio and the Li content on the Curie

point of LNT crystals.
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CHAPTER 5

Single-crystal measurements

5.1 Experimental details

5.1.1 Single-crystal X-ray diffraction

Crystals of a good size and quality were polished to form crack free plates with a thick-

ness between 200 and 450 µm. This plate is then cut into a cuboidal shape using a

scalpel and attached to the end of a glass fibre with epoxy resin. The glass fibre was

held in place on the goniometer using wax. All single-crystal diffraction measurements

were performed on an Oxford diffraction Gemini diffractometer using MoKα radiation.

Two different settings for the X-ray generator were used for the measurements: a high-

intensity mode which also generated λ/2 X-rays and a mode with with lower intensity

which did not include λ/2 X-rays. A tension of 50 kV and 50 mA was used for the high-

intensity mode and 33 kV and 35 mA was used for the lower intensity measurements. In

crystals containing mechanical twins, the extra reflections from the λ/2 X-rays made it

difficult to assign a lattice to the peaks from the twin. For crystals containing twins and

providing sufficient time was available for the measurement, the lower intensity mode

was used. Each data collection covered a full sphere to a resolution of 0.6 Å and each

collection was around 40 s depending on the total time available for the experiment.

The overall time used for each experiment was between 16 and 64 h. Oxford Diffrac-
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tion’s CrysAlisPro software was used for the initial data analysis which consisted of

measuring the positions and intensities of the recorded peaks and fitting a lattice to the

data.

Once a unit cell has been fitted to the data, unwarped images of the reciprocal lattice

planes can be constructed. These images allow for the presence of twins within the

crystal to be easily evaluated. Simulated hk0, h0l and 0kl reciprocal space unwarp

images are shown in figure 5-1 including the extra peaks from twinning in the (012)

plane. The peaks from the main component are shown in black and the peaks from the

twin component are red. For twinning in this plane, the hk0 and h0l unwarp images do

not contain any visible peaks due to the twinning. The effect of the twinning can be seen

in the 0kl unwarp which contains a large number of weaker peaks from the twin. The

reciprocal space unwarp images constructed using the twin lattice show that for certain

orientations of the twin lattice strong peaks from the main crystal are measured. The

space group was determined in CrysAlisPro and the collected intensities were corrected

using the analytical method of Clark and Reid [1].

5.1.2 Energy dispersive X-ray spectroscopy

Energy dispersive X-ray spectroscopy (EDX) measurements were used to check the

Nb and Ta content and the incorporation of impurities such as V in the LV flux grown

crystals. Crystals were sputter-coated with carbon to reduce the charge build-up in the

electron beam and allow EDX measurements. To further reduce the charge build-up sil-

ver paste was applied to the side of each crystal to improve the connection between the

surface and the sample holder. The extra peaks measured because of the carbon coating

are lower in energy than those of Nb and Ta and do not affect the the determination of

their compositional ratio. EDX measurements were performed on a Zeiss Supra 55VP

FEG SEM using the EDAX Genesis software.
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(a) hk0 (b) hk0

(c) h0l (d) h0l

(e) 0kl (f) 0kl

Figure 5-1 Reciprocal space unwarp simulations for LNT crystals contain-
ing a mechanical twin. Unwarps based on the main component and the twin
component are on the left and right, respectively. Peaks from the main com-
ponent are black and peaks from the twin are red.

92



Chapter 5. Single-crystal measurements

5.2 Growth using a floating zone furnace

5.2.1 Experimental details

LNT powder with the initial composition of 94 mol % Ta was used for growth of single

crystals using a floating zone furnace. The initial materials were hydrostatically pressed

into rods. A molten zone was then created between two rods and passed along the whole

length of the rod, this results in a denser crystalline rod which is then used to grow a

crystal. Full details for the growth of LNT crystals using the floating zone technique

are given in Bartasyte et al [2]. A large quantity of gas was given off during the melt

zoning process and a high flow rate of O was required to keep a stable molten zone.

This initial rod, however, was fragile and shattered into a large number of fragments

upon removal from the furnace. The growth of LNT crystals using the floating zone

furnace was abandoned due to the large amount of material required for each growth

and the difficulties associated with successfully growing a single-crystal piece of LNT.

However, the fragments of the initial rod were of sufficient size and quality to be used

for structural and optical measurements.

5.2.2 Results and analysis

Single-crystal diffraction was performed using the high-intensity mode. The peak hunt-

ing software found 4100 peaks in the collected images and 63% of these were indexed

on the expected hexagonal unit cell. Viewing the Ewald sphere of the collected peaks

clearly showed that the crystal was twinned and a second hexagonal cell which con-

tained 28 % of the collected peaks was found. Unwarp images of the reciprocal lattice

planes are shown in figure 5-2 and match the simulated images in figure 5-1. This con-

firms the crystal is twinned and the twin plane is the (012). The unwarps of the main

lattice contain peaks at (h/2, k/2, l/2) because of the λ/2 X-rays generated in the high-

intensity mode. The peaks from the λ/2 X-rays are too weak to be measured from the

twin lattice.

The details of the data collection and analysis are shown in table 5-1. The angles be-

tween the lattice directions of the main lattice and the twin lattice have been calculated

to confirm that the extra peaks are from a twin in the crystal. The angles between the

lattice directions are shown in table 5-2 and they are consistent with those calculated
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(a) hk0 (b) hk0

(c) h0l (d) h0l

(e) 0kl (f) 0kl

Figure 5-2 Reciprocal space unwarps for an LNT94 crystal containing a
mechanical twin. Unwarps based on the main component and the twin com-
ponent are on the left and right, respectively.
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Table 5-1 Collection and refinement details from LNT94 single-crystal
diffraction measurements.

Crystal Main Twin
a 5.1540(4) Å 5.1429(3) Å
b 5.1540(4) Å 5.1429(3) Å
c 13.755(13) Å 13.8397(4) Å

Volume 314.7(4) Å
3

317.01(3) Å
3

Absorption correction 51.663 µm−1 51.663 µm−1

Crystal size cuboidal 150-200 µm cuboidal 150-200 µm
Voltage 50 kV 50 kV
Current 40 mA 40 mA

Radiation MoKα MoKα
Scan width 0.5◦ 0.5◦

Reflections collected 4100 4100
Reflections used 2596 1143

Overlapped reflections 340 340
Completeness 65.5 % to 0.5 Å 65.5 % to 0.5 Å

Table 5-2 Angles (◦) between lattice directions.

a1 a2 b1 b2 c1 c2

a1 - 119.9 120.0 120.0 90.1 89.9
a2 119.9 - 93.5 120.1 142.1 90.1
b1 120.0 93.5 - 55.9 90.0 38.0
b2 120.0 120.1 55.9 - 37.9 90.0
c1 90.1 142.1 90.0 37.9 - 114.4
c2 89.9 90.1 38.0 90.0 114.4 -

for twins measured in vapour transport equilibrium treated LT crystals by Glazer et al

[3].

5.3 Growth using a lithium vanadate flux

5.3.1 Experimental details

Crystals were grown from the ceramic powders investigated in section 3, using a flux-

growth method. A lithium vanadate (LV) flux was chosen because of its previous suc-

cessful use in the growth of LN and LT layers onto a lithium tantalate substrate by

Kondo et al [4]. A molar ratio of ten moles of LV to one mole of LNT was used to

grow all the crystals. A three-zone vertical tube furnace with a maximum operating
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temperature of 1500 ◦C was used for the flux growth. The maximum temperature re-

quired for growth was 1300 ◦C which was sufficiently below the maximum operating

temperature of the furnace to ensure a stable operation. A large middle and two small

heating zones at either end provided a steady temperature profile without any large tem-

perature gradients across the middle zone. An iridium crucible with a platinum lid was

used to hold the powders and was placed in the centre of the middle heating zone. The

temperature profiles used for crystals were similar for all compositions with an initial

heating at 180 ◦C h−1 up to 1200 ◦C. This was followed by a slower heating rate of 20 ◦C

up to 1300 ◦C and held for 24 h. The dwell at 1300 ◦C allows for the melted powders

to homogenize. This heating profile was used for the initial heating of the material for

all compositions of LNT. The cooling profile was different for each composition with

a 1 ◦C h−1 cooling rate to below the super-saturation point of each LNT composition in

LV. LNT crystallizes out of solution as the temperature becomes less than the super-

saturation point. The cooling profiles were changed according to the super-saturation

temperature given in the LNT-LV phase diagram [4]. When the temperature was suf-

ficiently below the super-saturation point, the cooling rate was increased to 60 ◦C h−1,

giving a total growth time for each crystal of 30 days. Further details on the flux growth

of LNT crystals are given in Bartasyte et al [2].

Crystals were removed from the crucible by reacting the crystalline flux with dilute

hydrochloric acid. They were then cleaned in water using an ultrasonic bath to ensure

all the flux had been removed. A large quantity of green LNT crystals were produced

which, were plate-like and cuboidal in shape. Many of the crystals were twinned and

contained parts of the flux within them. The crystals lacking any of these defects were

chosen for experiments. Due to the small size of the crystals, cutting to a desired ori-

entation was not possible with the equipment available. Starting with the largest crystal

face, the crystals were mechanically polished to produce a crystal plate with two parallel

surfaces and a thickness of roughly 200-450 µm.

5.3.2 Crystal orientation

To measure the orientation of the polished crystals a PANalytical X’Pert Pro MRD

equipped with a hybrid monochromator and a PIXcel detector was used. This provided

a high-intensity source of CuKα1 X-rays. The crystals were mounted onto a glass slide
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using wax for the measurements. An ω-2θ scan between 5 and 100◦ in 2θ was measured

on each sample. The scan measured on LNT70 is shown in figure 5-3 which shows 3

peaks between 20 and 80◦ in 2θ. These are the (012), (024) and (036) Bragg peaks

and gives the out-of-plane direction of the polished surface as the [012]. The surface

orientation of all the polished LV flux grown samples was in the [012] direction and

shows that the largest surface of the grown crystals was the same for all compositions.

This preferred growth direction is consistent with the preferred orientation measured in

section 3 on LNT powder samples and also the dominant cleavage planes in LT [5].
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Figure 5-3 XRD ω-2θ scan on LNT70 single crystal.

5.3.3 Composition

The measured EDX spectra of the LNT50 sample is shown in figure 5-4a. The energy

of the electron beam was 20 keV which results in the O Kα peak, Nb L series, Ta L

series and the Ta M series of emission lines in the recorded spectra. A comparison of

the measured spectra for all the LV flux grown crystals is plotted in figure 5-4b. This

shows an increase in the intensity of the Ta Kα and a decrease in the Nb Kα as the

amount of Ta in the crystals increases. The Nb and Ta content has been quantified using

the Ta M series and Nb L series of peaks. The calculated compositions and the results

of the single-crystal X-ray diffraction measurements on the LV flux grown crystals are

collated in tables 5-3-5-13.
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Figure 5-4 EDX measurements on (a) LNT50 crystal and (b) comparison
of all LNT LV flux grown crystals.

Table 5-3 Refinement details for LNT0.

Composition LiNbO3 Plate thickness 339(4) µm

Voltage 33 kV Current 35 mA
Absorption correction 5.34 µm−1 Scan width 0.5◦

Reflections collected 13778 Reflections used 4006
Completeness 65.75 % to 0.5 Å Crystal size cuboidal 190-260 µm

a 5.146(1) Å Ox 0.0478(1)
b 5.146(1) Å Oy 0.3430(1)
c 13.857(5) Å Oz 0.0798(2)

Volume 317.810(16) Å
3

Nbz 0.0163(2)
Twins Yes Liz 0.296(1)

Parameters 17 Robs 1.91 %

5.3.4 Results and analysis

Single-crystal X-ray diffraction data have been refined following the procedure used

for the crystal grown using the floating-zone furnace. In crystals which contained a

twin, refinements were made taking into account the main lattice only. The majority

of crystals have an Robs of 1.8 to 2.8 %, with the LNT40, LNT80 and LNT90 having a

value between 6 and 9 %. The structural refinements of these crystals are less reliable

and result in the refined atomic positions having larger uncertainties. The lower data

quality in these measurements was likely caused by a poor quality piece of crystal or a

mis-alignment of the crystal with the X-ray beam.
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Table 5-4 Refinement details for LNT10.

Composition LiNb0.47Ta0.53O3 Plate thickness 442(5) µm

Voltage 33 kV Current 35 mA
Absorption correction 29.87 µm−1 Scan width 0.5◦

Reflections collected 6233 Reflections used 1411
Completeness 75.9 % to 0.6 Å Crystal size 82x146x119 µm

a 5.147(1) Å Ox 0.0478(3)
b 5.147(1) Å Oy 0.3427(3)
c 13.835(5) Å Oz 0.0676(5)

Volume 317.41(2) Å
3

Nb/Taz 0.0013(5)
Twins Yes Liz 0.281(3)

Parameters 17 Robs 2.45 %

Table 5-5 Refinement details for LNT20.

Composition LiNb0.7Ta0.3O3 Plate thickness 157(15) µm

Voltage 33 kV Current 35 mA
Absorption correction 19.25 µm−1 Scan width 0.5◦

Reflections collected 13868 Reflections used 3736
Completeness 65.8 % to 0.5 Å Crystal size cuboidal 200 µm

a 5.146(1) Å Ox 0.0481(2)
b 5.146(1) Å Oy 0.3434(2)
c 13.842(5) Å Oz 0.0678(3)

Volume 317.480(12) Å
3

Nb/Taz 0.0027(3)
Twins Yes Liz 0.280(2)

Parameters 17 Robs 2.3 %

Table 5-6 Refinement details for LNT30.

Composition LiNb0.4Ta0.6O3 Plate thickness -

Voltage 33 kV Current 35 mA
Absorption correction 33.26 µm−1 Scan width 0.5◦

Reflections collected 13452 Reflections used 2997
Completeness 33.26 % to 0.5 Å Crystal size cuboidal 150-230 µm

a 5.148(1) Å Ox 0.0491(2)
b 5.141(1) Å Oy 0.3431(3)
c 13.799(5) Å Oz 0.0689(4)

Volume 316.642(16) Å
3

Nb/Taz 0.0013(4)
Twins Yes Liz 0.282(2)

Parameters 17 Robs 2.02 %
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Table 5-7 Refinement details for LNT40.

Composition LiNb0.22Ta0.78O3 Plate thickness 249(6) µm

Voltage 33 kV Current 35 mA
Absorption correction 41.62 µm−1 Scan width 0.5◦

Reflections collected 14538 Reflections used 2240
Completeness 65.75 % to 0.5 Å Crystal size cuboidal 190-220 µm

a 5.148(1) Å Ox 0.042(2)
b 5.148(1) Å Oy 0.330(3)
c 13.789(5) Å Oz 0.069(2)

Volume 316.484(15) Å
3

Nb/Taz 0.001(1)
Twins Yes Liz 0.282(7)

Parameters 17 Robs 7.35 %

Table 5-8 Refinement details for LNT50.

Composition LiNb0.36Ta0.64O3 Plate thickness 298(2) µm

Voltage 33 kV Current 35 mA
Absorption correction 35.16 µm−1 Scan width 0.5◦

Reflections collected 14680 Reflections used 3057
Completeness 65.75 % to 0.5 Å Crystal size cuboidal 130-180 µm

a 5.150(1) Å Ox 0.0485(3)
b 5.150(1) Å Oy 0.3420(4)
c 13.786(5) Å Oz 0.0688(5)

Volume 316.61(2) Å
3

Nb/Taz 0.0013(4)
Twins Yes Liz 0.286(2)

Parameters 17 Robs 2.28 %

Table 5-9 Refinement details for LNT60.

Composition LiNb0.11Ta0.89O3 Plate thickness 480(23) µm

Voltage 33 kV Current 35 mA
Absorption correction 46.8 µm−1 Scan width 0.5◦

Reflections collected 14913 Reflections used 3394
Completeness 65.8 % to 0.5 Å Crystal size cuboidal 220-330 µm

a 5.151(1) Å Ox 0.0496(2)
b 5.151(1) Å Oy 0.3436(2)
c 13.780(5) Å Oz 0.0694(4)

Volume 316.61(2) Å
3

Nb/Taz 0.0011(4)
Twins Yes Liz 0.282(2)

Parameters 17 Robs 1.84 %
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Table 5-10 Refinement details for LNT70.

Composition LiNb0.08Ta0.92O3 Plate thickness 201(12) µm

Voltage 33 kV Current 35 mA
Absorption correction 48.13 µm−1 Scan width 0.5◦

Reflections collected 8145 Reflections used 1780
Completeness 65.5 % to 0.5 Å Crystal size cuboidal 150-220 µm

a 5.149(1) Å Ox 0.0502(3)
b 5.149(1) Å Oy 0.3445(4)
c 13.787(5) Å Oz 0.0693(6)

Volume 316.57(3) Å
3

Nb/Taz 0.0014(5)
Twins Yes Liz 0.283(4)

Parameters 17 Robs 2.63 %

Table 5-11 Refinement details for LNT80.

Composition LiNb0.04Ta0.96O3 Plate thickness 423(5) µm

Voltage 33 kV Current 35 mA
Absorption correction 49.8 µm−1 Scan width 0.5◦

Reflections collected 13457 Reflections used 2895
Completeness 65.21 % to 0.5 Å Crystal size cuboidal 140-230 µm

a 5.149(1) Å Ox 0.0497(6)
b 5.149(1) Å Oy 0.3431(5)
c 13.772(5) Å Oz 0.071(3)

Volume 316.186(19) Å
3

Nb/Taz 0.001(1)
Twins Yes Liz 0.28(1)

Parameters 17 Robs 8.79 %

Table 5-12 Refinement details for LNT90.

Composition LiNb0.04Ta0.96O3 Plate thickness 174(3) µm

Voltage 33 kV Current 40 mA
Absorption correction 49.82 µm−1 Scan width 0.5◦

Reflections collected 15663 Reflections used 3301
Completeness 65.75 % to 0.5 Å Crystal size cuboidal 200-300 µm

a 5.151(1) Å Ox 0.0498(5)
b 5.151(1) Å Oy 0.3441(4)
c 13.776(5) Å Oz 0.069(2)

Volume 316.53(2) Å
3

Nb/Taz 0.001(1)
Twins Yes Liz 0.28(1)

Parameters 17 Robs 6.24 %
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Table 5-13 Refinement details for LNT100.

Composition LiTaO3 Plate thickness 417(2) µm

Voltage 33 kV Current 40 mA
Absorption correction 52.04 µm−1 Scan width 0.5◦

Reflections collected 13612 Reflections used 2892
Completeness 65.75 % to 0.5 Å Crystal size cuboidal 200-290 µm

a 5.149(1) Å Ox 0.0496(3)
b 5.149(1) Å Oy 0.3436(3)
c 13.768(5) Å Oz 0.070(2)

Volume 316.08(2) Å
3

Nb/Taz 0.0011(7)
Twin Yes Liz 0.283(5)

Parameters 17 Robs 2.69 %

5.3.4.1 Lattice parameters

The measured a lattice parameters for the single crystals are plotted in figure 5-5a along

with the fit to the the powder measurements in section 3.2. The errors in the lattice pa-

rameters have been estimated from the scatter of the values measured across the com-

positional range. The LV flux grown crystals are marked by the black squares and show

an increase with LT content. This agrees with the expected trend measured on powder

samples of LNT. The a lattice parameters measured for the flux grown crystals are less

than those measured on the powder samples, which is likely because of the lower ac-

curacy in determining lattice parameters using the single-crystal diffraction technique.

The LNT94 crystal produced using a floating zone furnace has a higher a lattice param-

eter than those produced using a LV flux, which is consistent with the observation of

Li2O being lost during the growth process.

The c lattice parameters as a function of LT content are plotted in figure 5-5b. The

c lattice parameters of the LV flux grown samples decrease with increasing LT content

as expected from the measurements on powder samples. The c lattice parameter of the

LNT 94 crystal has a lower value than the LV flux grown crystals, which is consistent

with the the drop measured in the LT powders.

5.3.4.2 Atomic positions

The Ta displacement as a function of composition is plotted in figure 5-6a and shows

that the displacement increases linearly as the amount of Nb decreases. This is consis-
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Figure 5-5 The (a) a lattice parameter and (b) c lattice parameter as a func-
tion of composition for single crystals of LNT. The black data are LV flux
grown crystals, the red point is the floating zone grown crystal and the blue
is a commercial piece of CLT. The red line is the fit to the powder data mea-
sured in section 3.2.

tent with the measurements on LNT powders in section 3.2. The Ta displacement mea-

sured on the LT crystal is 0.20 ± 0.01 which agrees with the value of 0.198 ± 0.004 Å

measured on a powder SLT sample in section 3.2 and 0.20 ± 0.01 measured on a single

crystal of LT using neutron diffraction by Abrahams et al [6]. The Nb displacement

in the LN crystal was measured to be 0.275 ± 0.003 which agrees well with the value

of 0.27 ± 0.01 measured by Abrahams et al on an SLN crystal using neutron diffraction

[7]. The close agreement between these values suggests that the LN crystal grown using

the LV flux is close to the stoichiometric Li content. The Nb and Ta displacements mea-

sured on the single crystals show that the the small range of composition investigated

using powder XRD was not enough to accurately calculate the displacements in low-Ta

content LNT.

The Li displacement is plotted in figure 5-6b and shows the Li displacement refines

to between 0.6 and 0.7 Å for all crystal compositions. The determination of the Li po-

sition is inaccurate because of the small X-ray scattering factor of Li and hence the

lack of information in the data: however, the refined values are consistent with the val-

ues determined on LNT powders in section 3 and the displacement of 0.601 ± 0.004 Å

determined using powder neutron diffraction on LT in section 4.2.

The octahedral distortion does not change as a function of composition and is plot-

ted in figure 5-6c. The crystals have a distortion between -0.002 and −0.003 , which

is consistent with the LNT powders measured using XRD: the majority of composi-
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Figure 5-6 Parameters from refinements of LV flux grown LNT crystals,
the (a) Ta displacement, (b) Li displacement, (c) octahedral distortion and
(d) octahedral tilt angle are shown.

tions had distortions between -0.0024 and −0.0032 The octahedral tilt increases from

22.94 ± 0.12◦ for LT to 23.19 ± 0.05◦ for LN and is plotted in figure 5-6d. These values

agree well with the previously measured values of 22.9◦ and 23.1◦ measured on LT and

LN, respectively [6, 7]. The measured trend in the tilt of the single crystals shows that

the trend measured in the high-Ta content LNT powders was incorrect and an accurate

determination of the O positions using powder XRD was not possible, further justifying

the use of the single-crystal studies reported here.

5.3.4.3 Curie point

The intensity of the SHG signal as a function of temperature has been used to measure

the Curie point of high-Ta content crystals. The maximum operating temperature of the

furnace was 750 ◦C which limited the compositional range that could be measured to

above 90 mol % LT. A sufficiently large piece of crystal was required such that it could
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be mounted in the furnace and positioned in the path of the laser. This was possible

for the LV flux grown LNT90 and LNT100 crystals and a commercial piece of CLT.

The maximum intensity of the fundamental and secondary signals were then measured

every 1 ◦C while heating and cooling between 500 and 750 ◦C.

The normalised SHG intensity measured during the heating and cooling of the

LNT100 crystal is plotted in figure 5-7. The SHG signal decreases with increasing

temperature until it reaches a constant background level and this gives the temperature

of the Curie point. The Curie point measured for LNT100 is 667 ± 4 ◦C and for CLT is

600 ± 4 ◦C. The errors are because of the accuracy of the furnace and the difficulty in

determining when the signal reaches the background level. The value measured for the

CLT sample agrees well with the value of 603.0 ◦C precisely determined by Kushibiki

et al [8]. For the LNT100 samples the composition is 49.70 ± 0.20 mol % Li content

according to Curie point measurements on LT powders in figure 4-11 and shows that

the LT crystal does not form stoichiometrically using an LV flux.

The Curie point in stoichiometric LNT powders increases as the amount of Ta is

decreased, consistent with the results of the high-temperature XRD measurements in

section 3.3.2. The Curie point of the LNT90 crystal was measured to be 674 ± 4 ◦C

which is very close to the value of 667 ± 4 ◦C measured on LNT100. The Ta content

of the LNT90 crystal is 96 ± 2 % and is consistent with the Curie point being slightly

higher than that of the LT crystal.
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Figure 5-7 Normalised SHG intensity as a function of temperature during
heating of a LV flux grown LNT100 crystal.
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5.4 Commercially-grown lithium tantalate

5.4.1 Piezoresponse

A Z-cut (polished faces perpendicular to the c-axis) piece of commercially grown CLT

purchased from MTI Corporation, was used to determine the absolute structure. The

crystal is poled during growth to produce a single-crystal boule, which can be cut into

plates of the desired orientation. The crystal is a Z-cut plate 10x10x0.5 mm with both

surfaces polished. The +Z and -Z faces of the crystal plate were coated in silver and

connected to a high voltage power supply to confirm the crystal was fully poled. Af-

ter applying the silver to both surfaces, the piezoelectric coefficient was measured as

6.3 pC N−1 using a d33 meter. A d33 meter works by applying an oscillating force to

the crystal and measuring the resulting charge, with the d33 coefficient being the ra-

tio between them. A range of increasing voltages were applied to the crystal and

the resulting piezoelectric coefficient was measured. The crystal was fully poled af-

ter applying a field of 26 kV mm−1 for 1 min. The piezoelectric coefficient of the fully

poled crystal was measured to be 7.4 ± 0.4 pC N−1 with the silvered surfaces. The sil-

ver was then removed using acetone and the piezoelectric coefficient was measured as

8.9 ± 0.3 pC N−1. The surface corresponding to the positive direction of the piezoelec-

tric coefficient was marked with non-water based pen.

5.4.2 Absolute structure determination

5.4.2.1 Experimental details

The absolute atomic arrangement can be determined using the poled single crystal and

can be related to the sense of the ferroelectric polarization given by the measurements

of the piezoelectric coefficient. The plate was carefully cut using a scalpel while main-

taining the marked surface denoting the positive piezoelectric coefficient. A cuboidal

shaped piece of the crystal with dimensions roughly 100-200 µm was prepared for the

single-crystal diffraction experiment. The pen marking the positive surface was re-

moved using acetone while washing off the vacuum grease and any other crystal frag-

ments. The crystal was then attached to a glass fibre with the polarisation direction of

the crystal perpendicular to the length of the glass fibre. This allowed measurements of
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Table 5-14 Refinement details for poled CLT crystal.

Composition CLT Plate thickness 500 µm

Voltage 33 kV Current 40 mA
Absorption correction 51.848 µm−1 Scan width 0.5◦

Reflections collected 16012 Reflections used 3739
Completeness 65.2 % to 0.5 Å Crystal size cuboidal 150-240 µm

a 5.151(1) Å Ox 0.0499(2)
b 5.151(1) Å Oy 0.3435(2)
c 13.774(5) Å Oz 0.0705(6)

Volume 316.470(11) Å
3

Nb/Taz 0.0009(1)
Twin No Liz 0.285(3)

Parameters 18 Robs 2.51 %

both (00n) and (00-n) reflections in the diffraction experiment.

5.4.2.2 Results and analysis

The parameters and results of the diffraction measurements are in table 5-14. The Flack

parameter was refined to be 0.00 ± 0.13 which confirms the piece of crystal prepared for

the diffraction measurement is single domain and that the absolute structure has been

correctly determined relative to the data collection, i.e. +Z for the refinement corre-

sponds to +Z for the crystal axis. The piezoelectric coefficient is in the same direction

as the displacement of the Ta atom from the centre of the O octahedra. This is in agree-

ment with the direction determination by Abrahams et al [6] using the measurements of

the sense of the pyroelectric axis.

The Ta displacement is calculated to be 0.188 ± 0.002 Å, which is similar to the

calculated value for the LV flux grown crystal of 0.20 ± 0.02 which had a measured

Li content of 49.70 ± 0.20 mol %. It is expected from the powder diffraction measure-

ments on LT samples in section 4.1 that the displacement decreases as the Li-content

decreases. The displacement in the LV flux grown crystal has not been determined ac-

curately enough to confirm this trend. The Li displacement is 0.66 ± 0.04 Å and agrees

within the errors to the expected range of between 0.58 and 0.64 Å calculated from the

LT powder measurements.

The octahedral distortion is −0.00253 ± 0.00001 and agrees with the previously re-

fined values using powder LT and LNT samples. The tilt angle is 22.89 ± 0.11◦ which
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is very close to the the value of 22.94 ± 0.12◦ calculated for the LV flux grown LNT100

sample. The errors in the values determined using single-crystal XRD measurements

are too large to confirm the possible trend measured on LT powders, which showed a

small decrease in tilt angle in the Li-deficient samples.

5.5 Conclusions

The growth of single crystals of LNT has been performed using a floating zone furnace

and an LV flux growth technique. In both growth methods it has been shown that

mechanical domains on the (012) plane can form. Using a floating zone furnace results

in Li-deficient crystals because of a loss of Li2O during growth. The LV flux growth

technique produces crystals with a small reduction of roughly 0.5 mol % Li2O.

The LV flux growth technique has been successfully used to grow crystals across

the full compositional range, including both LN and LT. EDX and SHG measurements

have shown that the crystals grow Ta-rich compared to the initial materials and a signal

from V incorporation was not measurable using EDX. Refinements of single-crystal

XRD measurements have shown that the Nb/Ta displacement increases as the amount

Ta in the crystals decreases. This is in agreement with powder XRD measurements in

section 3.2. The accuracy in determining the Li and O positions is lower because of

their low scattering factors. However, the results confirmed the expected increase in the

octahedral tilt angle with decreasing Ta content.

For the first time the absolute structure of LT has been determined using direct mea-

surements of the piezoelectric d33 coefficient and single-crystal XRD measurements.

The positive sense of the polarisation is in the same direction as the Ta displacement

from the centre of the O octahedra.
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CHAPTER 6

Optical measurements and calculations

Birefringence measurements were performed using the Metripol equipment in conjunc-

tion with a Linkham THMS600 furnace. All samples were heated and cooled between

30 and 600 ◦C at a rate of 1 ◦C min−1 with measurements made every 1 ◦C. A temper-

ature run was collected using the 550, 570, 590 and 600 nm filters for each sample.

Images were collected using the 10x objective lens and data analysis was performed on

a 12x12 pixel square sufficiently far away from any visible scratches or defects. The

analysis was performed while taking into account the movement of the sample to ensure

the same area of the sample was investigated at each temperature.

6.1 Birefringence measurements

6.1.1 Floating zone LNT94 crystal

The measured |sinδ| using each wavelength is plotted in figure 6-1. As described in sec-

tion 2.2, the |sinδ| oscillates between a maximum and a minimum, with one minimum

occurring when the sample becomes zero-birefringent. According to Shimura et al [1]

the birefringence is relatively constant as a function of wavelength. This allows the

zero-birefringence point to be determined without an absolute measurement of the re-

fractive indices. As the sample becomes zero-birefringent, a trough in the plot of |sinδ|
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will be measured at the same temperature using each wavelength. This position has been

marked in figure 6-1 and gives a zero-birefringence point at 274 ± 2 ◦C. This method

for determining the zero-birefringence point has been checked using measurements at

550 nm on one sample with two different thicknesses to confirm the zero-birefringence

point has been determined at the correct temperature. The zero-birefringence tempera-

ture coincides with the centre of the peak in the measured signal of |sinδ|.

6.1.2 LV flux crystals

Birefringence imaging measurements between 30 and 600 ◦C were performed on LV

flux-grown crystals using light with a wavelength of 550, 570, 590 and 600 nm. The

birefringence of the samples could not be determined because of the [012] out-of-

plane direction of the polished samples. For crystals in this orientation the plano-

birefringence is measured, which for these crystals is the difference between no and

ne cos(57.2), where the angle between the [001] and [012] directions is 57.2◦. How-

ever, the determination of the zero-birefringence point is unaffected by this because the

plano-birefringence will also be zero when the indicatrix becomes a sphere. The mea-

sured |sinδ| as a function of temperature of the LV flux grown samples using a wave-

length of 550 nm is plotted in figure 6-2. The zero-birefringence point was calculated

and is plotted as a function of the composition in figure 6-3. This shows the expected

increase in temperature of the zero-birefringence point with decreasing Ta content as

measured by Wood et al [2]. The zero-birefringence point was only measurable for

samples with a composition between 50 and 100 mol % LT because of the maximum

operating temperature of the Linkham furnace used. Similar to the measurements on

the float zone crystal in figure 6-1, a peak in the measured |sinδ| signal coincides with

the zero-birefringence point of the crystal.

The profile measured in the |sinδ| signal is similar to measurements on a 69 mol % Ta

LNT crystal grown using the top seeded solution growth technique by Glazer et al [3].

There is a peak centred on when the crystal becomes zero-birefringent and a small peak

either side, above and below this the signal drops to a background value. The measured

|sinδ| is expected to oscillate with a maximum value of 1 as shown in figure 2-5b, the

low values measured either side of the zero-birefringence point are usually because

of small domains in the crystal, which scatter the light [3]. This is consistent with
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(c) 590 nm
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(d) 600 nm

Figure 6-1 |sinδ| as a function of increasing temperature for the float zone
grown LNT94 crystal using light with a wavelength of (a) 550 nm, (b)
570 nm, (c) 590 nm and (d) 600 nm.
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Figure 6-2 |sinδ| as a function of temperature on LV flux grown samples
using a wavelength of 550 nm.
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Figure 6-3 Measured zero-birefringence temperature as a function of com-
position of the LV flux grown crystals.

the results of the single-crystal X-ray diffraction measurements on LNT crystals, which

confirmed the crystals contained polar domains in the Z-direction and mechanical twins

in the (012) plane. The full |sinδ| is measured at the zero-birefringence point because

the refractive indices of the different domains are now the same. As the birefringence

increases or decreases from zero, the refractive indices between the mechanical domains

are no longer the same and the light is scattered.

The measured |sinδ| of the crystals in figure 6-2 shows the zero-birefringence point

decreasing as the amount of Ta in the crystals increases. All the measurements show a

peak in the signal measured at the zero-birefringence point and all but LNT60 have the

same shape as that measured by Glazer et al. The peak centred at the zero-birefringence

point in LNT60 is much wider, which suggests that the LNT60 sample has formed with

less mechanical twins than the other samples. The composition of the LNT20 crystal

was measured to be 29 mol % and the measured |sinδ| value is low because the zero-

birefringence point of this composition is above 600 ◦C.

The measured zero-birefringence point of LNT100 in figure 6-2 is 37 ± 2 ◦C. The

zero-birefringence temperature of VTE treated LT crystals as a function of Li content

was investigated by Bäumer et al [4] and using these data, we calculate a composition

of 49.60 ± 0.05 mol % for our LNT100 sample, which shows it has grown with a Li

deficiency. The calculated composition from birefringence measurements agrees with

the composition determined using measurements of the Curie point. The measured

profile suggests that this crystal also contains mechanical domains.
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The linear fit to the measured zero-birefringence points in figure 6-3 can be used

to calculate a value for an LN crystal. This gives a zero-birefringence point of roughly

1040 ◦C, which is significantly higher than that of a CLN crystal which was measured

to be 880 ◦C [3]. The zero-birefringence point of the LT sample is 140 ◦C higher than

that of a CLT crystal [4]. This trend agrees with the predicted zero-birefringence of the

LN sample in this study.

6.1.3 Commercially-grown LT

Metripol measurements were made on a commercially-grown X-cut (polished faces

perpendicular to the a-axis) CLT crystal also purchased from MTI Corporation. The

measured |sinδ| as a function of temperature using the 550 nm filter is plotted in fig-

ure 6-4. The thickness of the sample was 500 µm which results in a large number of

oscillations in the measured |sinδ| signal. The measured profile drops to a background

level at 500 ◦C and then increases again above this, similar to measurements on the LNT

crystals. This suggests the CLT crystal contains mechanical domains.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

|sin
δ|

T e m p e r a t u r e  ( °C )

Figure 6-4 Measured |sinδ| of X-cut commercial CLT crystal as a function
of temperature using a 550 nm filter.

It was shown in section 5.4 that the commercially-grown piece of Z-cut CLT con-

tained polar domains and these multiple polar domains could be removed with the ap-

plication of a high voltage. To investigate the measured |sinδ| of this poled crystal,

a section was cut perpendicular to the surface. This piece was then polished on both

sides to allow measurements of the |sinδ| perpendicular to the c axis. The measured

|sinδ| is plotted in figure 6-5 for light with a wavelength of 550, 570, 590 and 600 nm.

These measurements have a different profile compared to those measured on the LNT
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samples and the X-cut CLT crystal, in particular, the absence of the zero and small sub-

sequent maximum. The measured |sinδ| signal decreases with increasing temperature

at a slower rate than that measured in the X-cut crystal. This suggests the mechanical

domain content of this Z-cut crystal is less than the X-cut crystal.

6.2 DFT calculations using Wien2k

6.2.1 Introduction

Single-particle DFT calculations have been performed using WIEN2k, with a focus

on the optical properties of LT. These calculations have been based on the resulting

structures from Rietveld refinements of the neutron diffraction measurements on SLT

in section 4.2. Calculations have also been made on the structure resulting from the

linear fits applied to the refined Megaw parameters and following this the effect of each

atom on the optical properties has been investigated. The exchange correlation potential

used for these calculations is the PBE-GGA developed by Perdew, Burke and Ernzerhof

[5] and the muffin-tin radii are taken to be 1.69, 1.89 and 1.63 a0 for the Li, Ta and O

atoms, respectively. All refractive index values are for a wavelength of 550 nm.

6.2.2 Convergence of calculations

Using an initial RMTKMAX of 6, the total energy and the ne as a function of the k-mesh

size was investigated. The size of the k-mesh was changed from 10 to 5000 k-points

to check the value required for converged calculations. The dependency of the total

energy and the ne on the size of the k-mesh is plotted in figure 6-6. This shows that the

total energy of the system has already reached convergence with the initial 10 k-points

used in the calculation. The refractive index is much more sensitive to the amount of

k-points and only converges when around 1000 k-points are used. The amount of time

required for a calculation is heavily dependent on the number of k-points, therefore

1000 k-points were utilised for calculations. This allowed for converged calculations

whilst using the lowest processing time possible.

With the number of k-points in the k-mesh set to 1000, the effect of the RMTKMAX

on the convergence of the calculations was investigated. The RMTKMAX was varied from
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(a) 550 nm
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(b) 570 nm
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(c) 590 nm
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(d) 600 nm

Figure 6-5 |sinδ| as a function of increasing temperature for the poled com-
mercial Z-cut crystal using light with a wavelength of (a) 550 nm, (b) 570 nm,
(c) 590 nm and (d) 600 nm.

117



Chapter 6. Optical measurements and calculations

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
1 . 8 0

1 . 8 5

1 . 9 0

1 . 9 5

2 . 0 0

2 . 0 5

2 . 1 0

2 . 1 5

2 . 2 0

n e

N u m b e r  o f  k  p o i n t s
- 6 3 4 3 7 . 0

- 6 3 4 3 7 . 5

- 6 3 4 3 8 . 0

- 6 3 4 3 8 . 5

- 6 3 4 3 9 . 0

- 6 3 4 3 9 . 5

- 6 3 4 4 0 . 0

- 6 3 4 4 0 . 5

To
tal

 En
erg

y (
Ry

)

 

Figure 6-6 ne and total energy as a function of k points used in a calcula-
tion. Refractive index values are shown in black and total energy values are
shown in red.
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Figure 6-7 ne and total energy as a function of the RMTKMAX used in a
calculation. Refractive index values are shown in black and total energy
values are shown in red.

5 to 10 and its effect on the total energy and the ne is plotted in figure 6-7. The change

in the total energy and refractive index show that the calculations fully converge when

RMTKMAX is set to 10. However, as extra processor time was required for each increase

in the RMTKMAX value, a lower value than 10 was subsequently used. An RMTKMAX of 7

provides a reasonable time for each calculation and is within a percent of the converged

values for both the total energy and the ne.
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6.2.3 Results of calculations on SLT

The bandstructure calculated for LT at 27 ◦C has been plotted in figure 6-8. The direct

band gap is located at the Γ point and is 3.8 ± 0.1 eV, the errors are estimated from the

change in the calculated band gap from the measured structure at 27 ◦C and that calcu-

lated for the structure given by the linear fits to the Megaw parameters. The calculated

value agrees well with other single-particle calculations using a range of different DFT

codes and functionals. The band gap was calculated to be 3.86 eV using LDA in the

ABINIT code by Cabuk et al and 3.71 eV using the PW91 functional in the VASP code

by Riefer et al [6, 7]. A small range in the band gap values is expected as a result of us-

ing different functionals and different structural parameters. In this study, the structure

was calculated using the neutron diffraction measurements. The calculated value of the

band gap in this work agrees closely with the experimental value of 3.93 eV measured

using optical methods by Cabuk et al [8]. This close agreement between the calculated

and the measured value is unexpected because of the usual underestimation of the band

gap calculated using DFT on semiconductors and insulators and does not confirm the

validity of the calculation. One of the methods used to correct the underestimation of

the calculated band gaps is to include the self-energy of the system using the GW ap-

proximation and electron-hole interactions, increasing the calculated value to 5.65 eV

[7].

A similar trend is evident between the calculated and measured band gap values for

LN. It was suggested by Thierfelder et al that the agreement between the single-particle

DFT calculations and the measured direct band gap was because of a cancellation be-

tween the exciton binding energy and the electronic self-energy [9]. They calculate the

direct band gap to be 4.7 eV using the GW approximation to include the effect of quasi-

particles and the exciton binding energy. Following this the experimental band gap was

measured for crystals with a range of Li compositions. The band gap for LN was mea-

sured to be 4.12 eV by Bhatt et al which was larger than the initially calculated value of

3.78 eV by Dhar et al [10, 11]. This increase, however, is not large enough to remove

the discrepancy between the measured and calculated direct band gap values.

The calculated refractive indices and the birefringence of the structures for each

temperature have been plotted in figure 6-9. The errors have been estimated using the

change in measured values between the initially calculated values and those calculated
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Figure 6-8 The electronic band structure calculated from the refined struc-
ture of LT at 27 ◦C.

after averaging the Megaw parameters. The value of the ne at 27 ◦C is calculated to be

2.213 ± 0.002 which is close to the experimentally measured value of 2.194, measured

by Bruner et al [12] but not within the uncertainties of the calculated value. The struc-

tural changes as the temperature is increased results in the ne increasing, which is fitted

by a linear trend in figure 6-9a.

The no also shows a linear increase with temperature with a value of 2.241 ± 0.001 at

27 ◦C which does not agree with the previously measured value of 2.198 by Nakamura

et al [13]. A small change in value across the temperature range, suggests the no is not

very sensitive to the changes in the structure as the temperature is increased. The total

change in the value of the no is 0.00542 which is considerably less than the change of

0.01391 in the value of the ne. This larger change in the ne results in the birefringence

increasing with temperature, as is expected from the experimental measurements. The

birefringence at 27 ◦C is calculated to be −0.027 ± 0.001 which doesn’t agree with the

measured value of -0.005 for SLT [14]. Recent DFT calculations using the GW approx-

imation have produced a birefringence value of 0.005 for a CLT based structure [7], but

the corresponding values for the refractive indices in this study have not been published.

The large variation between the calculated values using DFT is due to the inclusion of

quasiparticles and electron-hole interactions. DFT calculations of the optical properties

of insulators are very sensitive to the band gap. By shifting the values of the calculated
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(b) Ordinary refractive index
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(c) Birefringence
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(d) Birefringence-fitted Megaw parameters

Figure 6-9 The (a) extraordinary refractive index, (b) ordinary refractive
index, (c) birefringence and (d) birefringence from fitted structures of SLT at
27 ◦C calculated using DFT.

birefringence so that the value at 27 ◦C agrees with the measured value, the temperature

at which SLT has zero birefringence can be predicted. This occurs at 90 ◦C and agrees

well with the measured value of 100 ◦C [4].

By using the values of the Megaw parameters from the fits to the refined values in

section 4.2, the birefringence can be calculated from structures with a smooth linear

change in the atomic positions. The results of these calculations are plotted in figure

6-9d. The linear trend is the same as in figure 6-9c but with less scatter of the points

about the linear fit.

6.2.4 The effect of each atom on the optical properties

The effect each type of atom has on the optical properties of the material can be in-

vestigated by repeating the DFT calculations as a function of temperature and only

allowing one type of atom to move. For these measurements the structures from the fit-
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ted Megaw parameters are used to provide a linear variation in the atomic positions as

the temperature increases. To investigate the effect of only one atom type moving, the

lattice parameters of the structure at 27 ◦C have been used for all temperatures, while

the atomic position of a single atom type is varied. By changing the lattice parameters

and keeping the the atomic positions at those of the structure at 27 ◦C, the change in the

optical properties from the volume expansion can also be investigated. The uncertain-

ties in the calculated values are the same as those for the calculations on the LT structure

in section 6.2.3.

6.2.4.1 Extraordinary refractive index

The values of ne from these calculations have been plotted in figure 6-10. As the tem-

perature increases and the position of the Li is changed, the ne increases linearly with

a small peak at 100 ◦C. The change in ne because of the movement of the Ta atom is

very close to the change calculated when all the atoms and are allowed to move. The

movement of the O results in a linear decrease in the value of ne as the temperature

increases. These plots show that the value of the ne of SLT is largely affected by the

movement of the O and Ta, with the Li having a small effect. The increase of the lattice

parameters produces a small linear increase in the value of ne.

6.2.4.2 Ordinary refractive index

The values of no from the DFT calculation performed on structures with one parameter

varying as a function of temperature are shown in figure 6-11. With only the positions

of Li atoms moving, the increasing temperature results in an overall decrease in the no.

The points at 72, 87 and 102 ◦C have a deviation from the overall linear decrease. These

three points suggest a large peak occurs in the data centred on 100 ◦C. The height of

this peak is almost as high as the total increase in the no for calculations with all the

parameters varying. The ne data does not show a pronounced peak in the same position

which shows this effect is orientation dependent. The change in the Ta position produces

a similar trend to the data when all the parameters are varied. A large decrease in the

value of no results from the movement of the O atoms, which is greater than the total

increase of no when all the parameters are varied. The increase in the lattice parameters

also results in a large change in the calculated no values, producing a linear increase
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(b) Moving Ta
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(c) Moving O
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(d) Changing lattice parameters

Figure 6-10 The ne as a function of temperature for the movement of the
(a) Li atoms, (b) Ta atoms, (c) O atoms and (d) and the changing lattice pa-
rameters are plotted in red. The ne of the fitted Megaw parameters is plotted
in black.

greater than the total increase when all parameters are varied.

6.2.4.3 Birefringence

Using the values of the ne and the no, the birefringence is calculated and is plotted

in figure 6-12. The decrease in the no because of the movement of the Li is larger

than the increase in the ne and this results in a small increase in the birefringence with

temperature. The peak in the no produces a trough in the birefringence centred on 95 ◦C.

This feature is not apparent in the birefringence data calculated when all the parameters

are varied, which suggests it is an artifact of allowing only the Li atoms to move in the

structure. Movement of the Ta atoms causes a change in the birefringence that matches

the birefringence when all the parameters in the structure are varied. With both the ne

and no decreasing because of the movement of the O, the birefringence stays constant

as a function of temperature. The decrease in the value of no as the lattice parameters
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(b) Moving Ta
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(c) Moving O
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(d) Changing lattice parameters

Figure 6-11 The no as a function of temperature for the movement of the
(a) Li atoms, (b) Ta atoms, (c) O atoms and (d) and the changing lattice pa-
rameters are plotted in red. The no of the fitted Megaw parameters is plotted
in black.

are increased produces an overall decrease in the birefringence.

The changes to the calculated birefringence from the movement of only the Li,

O, and changing lattice parameters is very small compared to those produced by the

Ta movement and add up to cancel each other out. The close agreement between the

optical properties calculated with the natural structural changes and those with only the

Ta atoms moving, suggests that the change in the optical properties of SLT is dominated

by the increasing displacement of the Ta atom with increasing temperature.

6.3 Conclusions

The zero-birefringence points of LV flux grown LNT crystals have been measured and

shown to increase linearly as a function of Nb composition. The Li composition of the

LV grown LT crystal calculated from the zero-birefringence temperature agrees with
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(b) Moving Ta
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(d) Changing lattice parameters

Figure 6-12 The birefringence as a function of temperature for the move-
ment of the (a) Li atoms, (b) Ta atoms, (c) O atoms and (d) and the changing
lattice parameters are plotted in red. The birefringence of the fitted Megaw
parameters is plotted in black.

the composition determined using the Curie point in section 5.3.4.3. This confirms that

the LV flux grown crystals have formed with a small Li-deficiency.

Measurements of the |sinδ| on a range of LNT and LT crystals have shown the effects

of mechanical domains on the measured signal. The mechanical domains do not affect

the determination of the zero-birefringence point but reduce the measured signal above

and below this temperature.

DFT calculations have been used to calculate the optical properties of LT based on

the structural refinements from the LT neutron diffraction measurements as a function

of temperature. By correcting the calculated room-temperature birefringence value to

the experimentally measured one, the zero-birefringence temperature was predicted to

be 90 ◦C, which agrees with the previous experimental value. By allowing only one

atom to move, the effect of each atom on the optical properties was investigated. The
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Chapter 6. Optical measurements and calculations

results showed that the birefringence is most heavily dependent on the displacement of

the Ta atom from the centre of the O octahedron and with a smaller dependence on the

O position and the lattice expansion.
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CHAPTER 7

Conclusions and future work

7.1 LNT

The structure of LNT powder samples was investigated across the compositional range

using XRD measurements from 23 to 820 ◦C. Reliable structural refinements were only

possible on high-Ta content samples because of the preferred orientation of the crys-

tallites in samples with less than 70 mol % Ta. It was concluded that the change in the

lattice parameters as a function of temperature was a result of the combined changes

in the octahedral tilt and Nb/Ta displacements along with the normal expansion of the

lattice with increasing temperature. As the temperature was increased the Nb/Ta dis-

placement and octahedral tilt both decreased.

Similar to the structural changes as a function of temperature, it was found that the

Nb/Ta displacement and tilt angle increase as the amount of Nb is increased. This also

results in a continuous increase in the lattice parameters from LT to LN.

7.2 LT

The effect of the Li content on the structure of LT has been studied using X-ray and

neutron powder diffraction measurements between room temperature and 850 ◦C. The
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a lattice parameter decreases as the composition increases towards the stoichiometric

ratio, whereas the c lattice parameter decreases with a small increase just before the

stoichiometric composition. The amount of Li lost during firing of the samples was

carefully quantified to give the correct composition of the samples. It was found that a

reduction in the FWHM of the Bragg peaks occurred for stoichiometric samples. This

gives an easy method to check for the loss of Li in the production of SLT powder

samples.

High-temperature XRD measurements showed the Curie point decreases as the Li

content of the samples decreases and agreed with the previously published results. The

Curie point measurements are used to provide an estimate of the congruent composition

of LT, which gives a calculated value of 48.3 ± 0.2 mol % Li2O. This is in agreement

with the precisely determined value of 48.46 mol % Li2O measured by Kushibiki et al

[1].

7.3 Single-crystal measurements

Structural studies of LV flux grown crystals have provided a clearer picture on the

change in the Nb/Ta displacement and octahedral tilt across the compositional range,

confirming the previously determined increase with increasing Nb content. The Li

content of the LV flux grown crystals was estimated using measurements of the Curie

point and comparing them with the values determined using powder XRD. The zero-

birefringence temperature of these crystals was measured, giving a similar increase in

temperature with increasing Nb content as had been previously measured.

For the first time the absolute structure of CLT has been determined using direct

measurements of the piezoelectric d33 coefficient. These results show that the posi-

tive sense of the polarisation is in the direction of the Ta displacement, confirming the

measurements by Abrahams et al [2].

7.4 DFT calculations

The DFT calculations on SLT were performed with a focus on the refractive indices

and how they are affected by a variation of the atomic positions. Using the structures
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determined from the variable temperature neutron diffraction measurements, the optical

results of the DFT calculations were compared to previously measured values. The

calculated refractive indices gave a small and negative birefringence, which increased

with increasing temperature. The calculated ne value is close to the expected value

for room-temperature value of SLT but the no is larger than the experimental value,

which results in a lower value for the birefringence as well. The absolute value of the

calculated birefringence is incorrect but a trend because of the changing temperature

can still be determined. This shows the birefringence increases as the Ta displacement

and octahedral tilt decrease.

By repeating the DFT calculations whilst allowing only one atom to move, the effect

of each atom on the optical properties was investigated. These results suggest that the

Nb/Ta displacement has a very large effect and the changing O position and lattice

expansion both made small changes to the birefringence, which cancelled each other

out.

7.5 Final conclusions

The structural studies show that LNT and LT both remain polar as they become zero-

birefringent, whether the zero-birefringence is because of compositional or temperature

changes. The DFT calculations suggest that the increase in the birefringence as a func-

tion of temperature is mainly because of the decrease in the Ta displacement. This trend

is consistent with the structural and birefringence changes as a result of varying both

the Li and Nb/Ta compositions. A reduction in the Li-content results in a decrease of

the average Nb/Ta displacement and an increase in the measured birefringence, while

an increase in the Nb-content produces an increase in the average Nb/Ta displacement

along with a decrease in the birefringence.

7.6 Future work

The structural refinements in this thesis have not included a defect model for the Li-

deficient structures. It would be interesting to investigate this using single-crystal neu-

tron diffraction experiments on LT crystals with different Li content and also their bire-
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fringence using the Metripol system. DFT calculations on LN with varying Li content

have been made by Xu et al [3]. Combining the calculated defect structures with DFT

calculations would allow an increased understanding of the how the structure affects the

optical properties of the Li-deficient crystals.

An investigation of the mechanical domains using optical and electron microscopy

techniques would help to understand the effect of the domains on the measured |sinδ|

using the Metripol system. A recent investigation of a fragment of LNT90 using an

optical transmission microscope equipped with crossed-polars has allowed the domain

structure to be measured, as shown in figure 7-1. The fragment of LNT90 broke off dur-

ing polishing of the main crystal, resulting in a dirty surface. Further work to understand

why these domains are not visible in all crystals and how they affect the transmission of

light through the crystals is required. Information about the quantity and size of these

mechanical domains would provide a starting point for a model describing the profile

of the measured |sinδ| signal.

Figure 7-1 Image of the domains in an LNT90 fragment, using an optical
transmission microscope equipped with cross-polars.

The birefringence values calculated by Riefer et al [4] including self-energy effects

using the VASP code and the GGA agree well with the measured values of CLNT

crystals by Wood et al [5]. Very recently it was also shown by Mamoun et al that

including a scissor operator in the WIEN2k code to increase the band gap in LN resulted

in an improvement of the calculated optical properties [6]. It will be interesting to
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use the LNT structures measured in this thesis as the basis for the DFT calculations

performed by Riefer et al and Mamoun et al, to allow an improved calculation of the

refractive indices of SLNT.
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APPENDIX A

Rietveld example file

This is an example TOPAS input file for refining neutron diffraction data measured at

42 ◦C.
’Goodness of fit parameters

r wp 5.784 r exp 4.295 r p 4.495 r wp dash 10.016 r p dash 10.153 r exp dash 7.437

weighted Durbin Watson 0.409 gof 1.347

’Refinement settings

chi2 convergence criteria 0.001

do errors

iters 100000

continue after convergence

randomize on errors

’Data settings

xdd SLT 315K-c.xy

start X 15

finish X 147

x calculation step = Yobs dx at(Xo);

rebin with dx of 0.05

’background terms

bkg @ 32.2648193‘ 0.0935660454 -1.90458998‘ 0.145009496 0.63978538‘ 0.113910533

0.348008487‘ 0.109891008 0.785846341‘ 0.0977678273 0.69805523‘ 0.0962381057

’Neutron experimental parameters

lam ymin on ymax 0.0001 la 1.0 lo 1.593333 1.17233615e-005 lh 0.5

neutron data

LP Factor( 90)

xye format

Zero Error(!zeron,-0.03432 0.00109)

Simple Axial Model(@, 15.92025‘ 0.09874)
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Appendix A. Rietveld example file

’Structuaral parameters

str

phase name ”LiTaO3”

a lpa 5.15498‘ 0.00002

b lpa 5.15498‘ 0.00002

c lpc 13.77668‘ 0.00011

al 90.

be 90.

ga 120.

volume 317.051458‘ 0.00376185592

space group ”R3c”

site Li1 x 0 y 0 z Li z = 0.25 + Megaw s; occ 7Li+1 1 beq @ 1.2068‘ 0.0761

site Ta1 x 0 y 0 z Ta z = Megaw t; occ Ta+5 1 beq @ 0.1236‘ 0.0194

site O1 x O x = (1/6) - 2 * (Megaw e + Megaw d); y O y = (1/3) - 4 * Megaw d; z = 1/12; occ O-2 1. beq @ 0.2988‘ 0.0141

prm Megaw s 0.04328‘ 0.00028

prm Megaw t 0.01426‘ 0.00012

prm Megaw d -0.00241‘ 0.00008

prm Megaw e 0.06111‘ 0.00006

prm Tilt Angle = 180/3.14159 ArcTan(4 3ˆ(0.5) Megaw e); : 22.94712‘ 0.01907

scale @ 0.0423289876‘ 0.000173

r bragg 3.19941914

’Peak shape

TCHZ Peak Type(@, 0.02945‘ 0.00328,@,-0.13287‘ 0.00615,@, 0.15876‘ 0.00218,, 0,@, 0.00536‘ 0.02783,, 0)

’Parameters for Stephens anisotropic peak broadening

Stephens trigonal high

prm eta 0.90160‘ 0.88749 min 0 max 1

prm s400 -121.17459‘ 229.09074

prm s004 -1.64674‘ 3.04874

prm s202 -16.51372‘ 33.28324

prm s211 1.88161‘ 9.42221

macro Stephens lor gauss(mhkl)

{

local mhkl = mhkl;

local pp = D spacingˆ2 * Sqrt(Max(mhkl,0)) / 1000;

gauss fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th);

lor fwhm = 1.8/3.1415927 pp eta Tan(Th);

}

macro Stephens trigonal high

{

Stephens lor gauss(Abs(

s400 (Hˆ4+ 2 Hˆ3 K + 3 Hˆ2 Kˆ2 + 2 H Kˆ3 +Kˆ4) +

s004 Lˆ4 +

s202 (Hˆ2 Lˆ2 + H K Lˆ2 + Kˆ2 Lˆ2) +

s211 (Hˆ2 K L - H Kˆ2 L + 2 Hˆ3 L / 3 - 2 Kˆ3 L / 3)

))

}

’Background peaks in experiment
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prm furnace scale 0.87598‘ 0.04202

xo Is

xo @ 40.1530044‘ 0.0186077393 I = 2.399482 * furnace scale;

xo @ 46.667477‘ 0.0508470878 I = 0.875470 * furnace scale;

xo @ 50.1584682‘ 0.175884749 I = 0.412976 * furnace scale;

xo @ 67.7750466‘ 0.0882206964 I = 1.022087 * furnace scale;

xo @ 48.0903245‘ 0.102188198 I = 0.438469 * furnace scale;

xo @ 64.4615018‘ 0.150967259 I = 0.775546 * furnace scale;

xo @ 66.8283956‘ 0.148298339 I = 0.615464 * furnace scale;

xo @ 25.2326626‘ 0.15201581 I = 0.104684 * furnace scale;

xo @ 51.5303549‘ 0.105574909 I = 0.485187 * furnace scale;

CS L(, 21.91418 1.64527)

xo Is

xo @ 39.3732567‘ 0.023361705 I @ 0.223745447‘ 0.0469953789

Strain L(, 0.24391 0.32267)
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Metripol examples

The measured |sin δ|, orientation and intensity images measured on the poled CLT crys-

tal in section 6.1.3 in figure B-1 at 30 ◦C, in figure B-2 at 323 ◦C and figure B-3 at

600 ◦C, using the 550 nm filter. False colours have been applied to the measured date

to produce the images. In the images measured at 30 ◦C, the area used for averaging is

indicated by the square. As the temperature is increased the position of the sample with

respect to the microscope drifted and this can be seen in the images. This was taken

into account when analysing the data by moving the averaging square with the drift.

The |sin δ| and orientation images at 323 ◦C show the 180◦ change in the orientation

as the |sin δ| signal reaches a minimum (δ = nπ). In the |sin δ| the minimum signal

is given by the pink colouring and results in the change from green to purple in the

orientation image.

On the attached cd, is the video of | sin δ| recorded for the heating run of CLT with

a wavelength of 550 nm, using the Metripol system. The video is titled: CLT-550nm-

sind.mp4.

138



Appendix B. Metripol examples

(a) |sin δ|

(b) Orientation (c) Intensity

Figure B-1 The measured (a) | sin δ|, (b) orientation and (c) intensity im-
ages at 30 ◦C on the poled CLT sample.
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(a) |sin δ|

(b) Orientation (c) Intensity

Figure B-2 The measured (a) | sin δ|, (b) orientation and (c) intensity im-
ages at 323 ◦C on the poled CLT sample.
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(a) |sin δ|

(b) Orientation (c) Intensity

Figure B-3 The measured (a) | sin δ|, (b) orientation and (c) intensity im-
ages at 600 ◦C on the poled CLT sample.
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