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Abstract

It is shown that rapid substantial changes in heating rate can induce transitions to improved

energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We

examine for the first time the effect of step changes in heating rate in the models of E-J.Kim and

P.H.Diamond, Phys.Rev.Lett. 90, 185006 (2003) and M.A.Malkov and P.H.Diamond, Phys.Plasmas

16, 012504 (2009) which nonlinearly couple the evolving temperature gradient, micro-turbulence

and a mesoscale flow; and in the extension of H.Zhu, S.C.Chapman and R.O.Dendy, Phys.Plasmas

20, 042302 (2013), which couples to a second mesoscale flow component. The temperature gradi-

ent rises, as does the confinement time defined by analogy with the fusion context, while micro-

turbulence is suppressed. This outcome is robust against variation of heating rise time and against

introduction of an additional variable into the model. It is also demonstrated that oscillating

changes in heating rate can drive the level of micro-turbulence through a period-doubling path

to chaos, where the amplitude of the oscillatory component of the heating rate is the control

parameter.

Keywords: Tokamak confinement regimes, zero-dimensional modelling, predator-prey, Lotka-

Volterra, period-doubling bifurcation, chaotic attractor

1



1. Introduction

Zero-dimensional models[1–15] – that is, systems of coupled nonlinear differential equa-

tions with a single independent parametric coordinate representing time – play an important

role in interpreting fusion plasma behaviour. By choosing variables to represent key macro-

scopic quantities such as the temperature gradient N , the strength of micro-turbulence E,

and the magnitude of large-scale coherent nonlinear structures U , zero-dimensional models

can be constructed in a manner that reflects the global phenomenology of, for example,

L-mode and H-mode confinement physics. This enables empirically inspired physical mod-

els, which typically include predator-prey or Lotka-Volterra dynamics, to be tested and

explored quantitatively: a necessary step, given that the dynamics can be strongly non-

linear. It has not previously been established whether, in zero-dimensional models, rapid

substantial increases in externally applied heating can engender sharp transitions in confine-

ment properties, akin to heating-induced transition from L-mode to H-mode confinement in

tokamak plasmas. First identified in Ref.[16], the role of heating in this transition has been

examined experimentally in all large tokamak plasmas, including DIII-D[17], JT-60U[18],

Alcator C-Mod[19] and ASDEX-U[20], and in a range of tritium, deuterium-tritium and

hydrogen plasmas in JET[21]. For recent reviews of the H-mode and related fundamental

plasma phenomena, see for example Refs[22–24]. Here we address heating-induced tran-

sitions in the framework of the well-established zero-dimensional model of Diamond, Kim

and Malkov[3, 4], hereafter KD/MD, which couples the three variables (N,E,U) introduced

above, and is driven by the external heating power q(t), using the normalization of[4], see

also[14]. In this normalization, the correspondence between the E2 terms in equation (1)

and equation (1) of Ref.[1], implies that the time scale throughout this system of equations

scales with the inverse of the parameter a1 defined in Ref.[1]. Table 1 of Ref.[1] provides

expressions for this parameter in terms of physical quantities.

dE

dt
=

(
N −N4 − E − U

)
E (1)

dU

dt
= ν

(
E

1 + ζN4
− η

)
U (2)

dN

dt
= q (t)− (ρ+ σE)N (3)
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The meso-scale structures U are induced by micro-turbulence E. The growth of micro-

turbulence E is suppressed and meso-scale structures U as well as being self suppressed.

External heating drives this system, and the external heating rate acts as a control parame-

ter. The KD/MD model was recently extended in Ref.[14], hereafter ZCD, to include a fourth

variable representing a second predator population U2 of coherent nonlinear structures, for

example geodesic acoustic modes(GAMs), in addition to the KD/MD population(denoted

U1 in ZCD) originally intended to represent zonal flows(ZFs). The introduction of these

distinct classes of nonlinear structure in a zero-dimensional model follows the philosophy of

Itoh & Itoh[13]. We note that there is no direct interaction between U1 and U2 due to the

parallelism of ZFs and GAMs[25].

The ZCD extension of the KD/MD model is written as[14]:

dE

dt
=

(
N −N4 − E − U1 − U2

)
E (4)

dU1

dt
= ν1

(
E

1 + ζN4
− η1

)
U1 (5)

dU2

dt
= ν2

(
E

1 + ζN4
− η2

)
U2 (6)

dN

dt
= q (t)− (ρ+ σE)N (7)

In the present paper we investigate how sharp step changes in heating power q(t) in

the KD/MD model, and its ZCD extension, can induce confinement transitions. We also

examine the impact of an oscillating heating rate on the ZCD extension, obtaining results

for the system dynamics which differ significantly from those found in [15] for the KD/MD

model. We quantify the dynamics, both in terms of the underlying (N,E,U) phase space

and in terms of the energy confinement time τc which is the key figure of merit. We identify

the scaling of τc with heating power in the different confinement regimes of the KD/MD

model and its ZCD extension. This is an important first step towards direct comparison

between the global energy confinement times implicit in zero-dimensional models and the

empirical confinement time scalings determined from multiple tokamak plasma experiments.

We establish that the heating-induced confinement transitions are not strongly sensitive to

the timescale on which heating power is increased. The results in the present paper are

a significant step in the validation of the zero-dimensional approach, and of the KD/MD
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model and its ZCD extension, together with the physical identifications and assumptions

which zero-dimensional models embody.

A new result of [14] concerned the attractive fixed point of the KD/MD model referred

to as the transient mode (T-mode). It was found in ZCD that the introduction of a second

coherent field U2, acting as an additional predator on the micro-turbulence E, transforms

the post-heating T-mode into a repulsive fixed point. A new attractive fixed point (see Fig.6

herein) or limit cycle (see Fig.7 herein) appears in ZCD, compare e.g. Fig.13 of ZCD. Here

we refer to this new attractor as the oscillation mode (O-mode). Unlike the low confinement

T-mode in KD/MD, the O-mode in ZCD has good confinement properties, as we discuss

below. In the stable O-mode, N is finite, as is U2, with E zero or very small, and U1 zero.

The present paper therefore also explores heating-induced transitions that can give rise to

the O-mode in the ZCD extension of the KD/MD model.

We find that in the ZCD model, when the external heating rate includes a component

that oscillates sinusoidally in time, as in [15], a period-doubling path to chaos exists. The

amplitude A of the oscillatory component of the heating rate is the control parameter.

The micro-turbulence level E bifurcates with increasing A, and the ratio of values of A at

successive bifurcations is found to yield the first Feigenbaum constant[26] to high accuracy.
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2. Analytical confinement properties of the models

The energy confinement time in the KD/MD model and its ZCD extension can be ad-

dressed analytically, to some extent. We may define the energy confinement time τc at any

instant by analogy with the fusion context[27], using

τc =
N

q − dN/dt
(8)

The structure of Eq.(8) is standard; in the present context, it reflects the fact that the

temperature gradient N is a physical proxy for stored energy, whose time evolution is driven

by q in Eq.(3). It follows from Eqs.(3), (7) and (8) that the confinement time in both

KD/MD and ZCD is

τc =
1

ρ+ σE
(9)

for all t. At the fixed point, dN/dt = 0 and

τF =
NF

qF
=

1

ρ+ σEF

(10)

where subscript F denotes evaluation at the fixed point.

We will need to solve numerically the system of equations Eqs.(1) to (3), and their ZCD

counterparts Eqs.(4) to (7), in order to establish whether fixed points are accessible and

how transitions between them (induced by changes in heating or otherwise) occur. However,

provided the system can access the fixed point, Eq.(10) will hold and we can find τF for that

fixed point. As discussed in KD/MD[3, 4], the QH-mode fixed point has E = U = 0. It

therefore follows from Eq.(3) that in QH-mode there is linear scaling of stored energy with

heating power,

qQH = ρNQH (11)

and from Eq.(10), τQH = 1/ρ. In contrast the T-mode fixed point[4] has E and U finite,

and Eq.(10) then yields
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τT =
1

ρ+ ση (1 + ζN4
T )

=
τQH

1 + (ση/ρ) (1 + ζN4
T )

(12)

This reflects the degradation of confinement in T-mode compared to QH-mode, associated

with the level of T-mode turbulence ET = η (1 + ζN4
T ). It further follows from Eq.(3) that

qT = ρNT

[
1 + (ση/ρ)

(
1 + ζN4

T

)]
(13)

in contrast to Eq.(11). Inversion of Eq.(13) to yield NT as a function of qT can be achieved

numerically. Substitution of this result into Eq.(12) then yields τT as a function of qT . In

Fig.1 we plot the relative changes in the proxy for stored energy, NQH/NT , and in confine-

ment time τQH/τT , as functions of the normalised increase in heating power δq/q0 in the

KD/MD model, where δq = qQH − qT and q0 = qT . The solid line in Fig.1 is derived from

Eqs.(11) to (13), with over-plotted points derived from direct solution of Eqs.(1) to (3) and

(8).

The O-mode attractive fixed point or limit cycle of ZCD can be well approximated by

U1 = 0 and

EO = η2
(
1 + ζN4

O

)
(14)

U2O = NO −N4
O − EO (15)

It follows that

τO =
1

ρ+ ση2 (1 + ζN4
O)

(16)

Analysis similar to that for the T-mode following Eq.(12) is then possible.

In the present paper, the T-mode is the lower confinement regime, compared to the en-

hanced confinement QH-mode in KD/MD and ZCD, and also compared to the O-mode

in ZCD. The model QH-mode has highly idealised confinement properties embodied in
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Figure 1. KD/MD model dependence of ratios of confinement time τQH/τT (blue stars; left scale)

and temperature gradient NQH/NT (red crosses; right scale) on the normalised increase in heating

rate δq/q0. Solid line for τQH/τT is inferred from Eqs.(12) and (13). Points are obtained from

numerical results for δq = 0.495, τQH = 1.8182, q0 values are shown in figure; other parameter

values are ν = 19, η = 0.12, ρ = 0.55, σ = 0.6, ζ = 1.7.

Eq.(11). Figure 2 shows that the confinement properties of the ZCD post-heating O-mode

are very similar to QH-mode, although weakly dependent on heating. These good confine-

ment regimes effectively provide the benchmark with respect to which the degraded T-mode

confinement is normalised. Figures.1 and 2 provide a general method to parametrise the

energy confinement transition properties of zero-dimensional models in similar terms to ex-

periments, see for example the classic studies of tokamak plasma confinement scaling in

Ref.[28] for L-mode and Ref.[29] for H-mode. We have used parameter values here that

correspond to those in Refs.[4] and [14]. Different sets of values of these parameters would

correspond to different values of the ratio ση/ρ and of ζ, and to different locations of the

fixed points in phase space for given δq/q0. This suggests that an extensive exploration of

parameter space could yield confinement time ratios more nearly consistent with experiment

than those in Figure 1.
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Figure 2. ZCD model dependence of ratios of confinement time τQH/τO (blue stars; left scale) and

temperature gradient NQH/NO (red crosses; right scale) on the normalised increase in heating rate

δq/q0. Solid line is inferred from Eqs.(11) and (16). Points are obtained from numerical results

for δq = 0.20, τQH = 1.8182, q0 values are shown in figure; other parameter values are ν1 = 19,

ν2 = 0.19, η1 = 0.12, η2 = 0.012, ρ = 0.55, σ = 0.6, ζ = 1.7.
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3. Confinement transitions induced by changes in heating in the KD/MD

model

Understanding the confinement properties of the fixed point attractors and limit cycles of

the KD/MD model and its ZCD extension is necessary, but not sufficient, for analysing the

mapping from these zero-dimensional approaches to tokamak phenomenology. The transient

time evolution of the system variables towards and between fixed points can, as we shall see,

be of long duration and may relate to tokamak scenarios. In the present paper, we focus

particularly on changes in time evolution that are consequent on rapid changes in heating

power q.

Figures 3 to 5 display an example of the responses, in the KD/MD model, to a substantial

instantaneous rise δq in heating power q, which is then sustained at this higher level before

later returning instantaneously to its initial level q0. The resulting system dynamics – a

proxy for plasma phenomenology – is characterised in each Figure in terms of time traces

of N,E,U and q (upper plot), and of τc (lower plot). The heating power q0 is successively

larger in the system shown in Fig.3 through Fig.5. Before δq is applied, the system has

relaxed to its attractor for q0. For the particular parameter values chosen, in Figs.3 to 5 this

fixed point is a state with relatively low N , and non-zero turbulence level E and zonal flow

amplitude U . In KD/MD, this low confinement fixed point is referred to as the transient

mode (T-mode).

Figure 3 shows that instantaneous application of δq = 0.16 to the q0 = 0.45 T-mode causes

a transition to an improved confinement regime which is identified by KD/MD with the

quiescent H-mode (QH-mode). This is a fixed point which has larger N , while E = U = 0.

As a consequence (from Eq.(11)), the value of τc rises instantly by about twenty per cent.

At the termination of additional heating when q → q0, the system is still at this fixed point

but now at lower N , with E and U still zero, hence still a QH-mode. The value of τc remains

constant at its value for the additionally heated QH-mode, since τQH = 1/ρ is independent of

N . This second QH-mode phase persists for some time after the heating power has reverted

to the lower initial value q0 = 0.45. Eventually the system returns to the initial T-mode.

In Figure 4, the duration of the QH-mode after the heating has reverted to its initial

value q0 is substantially longer than in Fig.3. Here the only parameter difference from Fig.3

is that q0 = 0.47, implying a slightly higher maximum power q0 + δq and slightly lower
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Figure 3. Time traces and phase space evolution for the KD/MD model, Eqs(1) to (3), with a

discontinuous increase in heating rate q by amount δq = 0.16 from q0 = 0.45 at t = 2000; q reverts

to q0 at t = 3000. Upper left plot shows time traces of variables N (black), q (dashed magenta),

U (red) and E (green). Lower left plot shows time trace of energy confinement time τc defined by

Eq.(8). Right plot shows time evolution of the system in (N,E,U) phase space. The sequence of

key phases is labelled in all three plots in this Figure as follows. A is the initial transient evolution

from the over-powered H-mode point I, leading to convergent cyclic motion towards fixed point

attractor B corresponding to T-mode. At C the instantaneous increase in heating rate q induces

rapid departure from the T-mode attractor B to the QH-mode (increased N ; E = U = 0) attractor

D with improved confinement time. Instantaneous reversion of q to initial value q0 brings the

end of phase D and results in immediate transition to a QH-mode by exponential decrease in N ,

labelled E, with a lower value of N and the same confinement time as phase D. There is later a

spontaneous back transition from E at t = 4000, followed by convergent cyclic motion F to the

T-mode attractor B.

fractional change δq/q0. For the case shown in Fig.5, where q0 = 0.49, the system remains

in the post-heating QH-mode until the run ends. An eventual back transition to T-mode

after the heating power reverts to q0 = 0.49 has not had time to occur.

In conclusion, in Figs.3 to 5, the initial T-mode with confinement time τT is sustained

by the heating rate q0 = qT . The sharp rise in heating rate to q0 + δq = qQH triggers the
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Figure 4. As Fig.3, for the case where q0 = 0.47. The major difference is the longer duration of

the post-heating QH-mode phase E, after reversion of q to its initial value.
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Figure 5. As Fig.4, for the case where q0 = 0.49. The major difference is that the back transition

from the post-heating QH-mode phase E, which is not a stable attractor, has not yet occurred by

the end of this run.
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transition to the QH-mode at higher N and with improved confinement time τQH .
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Figure 6. As Fig.3, for the two-predator ZCD model, Eqs(4) to (7), with a sharp heating transition

where q0 = 0.45, δq = 0.16. The second predator field U2 is traced in blue in the upper left plot.

The major difference from Fig.3 is that the post-heating T-mode state F is a repulsive fixed point,

from which the system spontaneously transitions and converges cyclically to the fixed point G.

This is known from Ref.[14]) and has enhanced N and finite U2, with E very small. Here we refer

to the attractive fixed point G as an example of O-mode.

4. Confinement transitions induced by changes in heating in the ZCD model

Figures 6 to 8 show the counterparts to Figs.3 to 5 that are obtained from the ZCD exten-

sion of the KD/MD model; that is, when a fourth variable U2 representing a second coherent

field predator is added to the KD/MD model, see Eqs.(4) to (7). The phenomenology of the

heating-induced QH-mode and post-heating QH-mode in Figs.6 to 8 is very similar to that

in the corresponding Figs.3 to 5 for the KD/MD model. From this we can infer that the

induction of enhanced confinement by additional heating in the KD/MD model is robust

against the introduction of a fourth variable as in ZCD. It is known[14] that the eventual

post-heating T-mode is a fixed point attractor in KD/MD but is a repulsive fixed point

in ZCD. Figures 6 and 7 capture the transition from T-mode to the new ZCD fixed point

(phase G in Fig.6) or limit cycle (phase G in Fig.7). This is the O-mode, with good con-

finement, as discussed in Sec.2. We have repeated this analysis using a smooth function for

the transition in heating, represented by q (t) = A0 + A1tanh (t/T ), where T is the time
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Figure 7. As Fig.4, for the two-predator ZCD model[14] with a sharp heating transition where

q0 = 0.47, δq = 0.16. The major difference from Fig.4 is that the post-heating T-mode state F is

a repulsive fixed point, from which the system spontaneously transitions and converges cyclically

to the limit cycle G. This is known from Ref.[14] and has oscillations of enhanced N and finite U2,

accompanied by small pulses of E. Here we refer to the attractive limit cycle G as an example of

O-mode.

scale for the heating transition (ramp up). We obtain essentially the same results as those

reported above, for a broad range of T values.
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q0 = 0.49, δq = 0.16. As in Fig.3, there is insufficient run time for the phase E QH-mode to

transition to T-mode and then to the O-mode attractor, unlike Figs.6 and 7.
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5. Impact of oscillating heating rate on the ZCD model

A topical question concerns the system response to oscillations, in time, of the heating

rate about a constant value. The resultant changes in the phenomenology generated by

zero-dimensional models are of interest both theoretically and, potentially, experimentally.

Repeated on-off switching of electron cyclotron heating is now routine[30], so that quasi-

oscillatory ECH scenarios are becoming realisable. If one can identify distinctive signatures

in the system response of a zero-dimensional model in such scenarios, this could assist a

potential future experimental probe of the physical assumptions embodied in that model.

We now examine the ZCD model in this context, and find that such a signature indeed exists,

in the form of a classical period-doubling path[31] to chaos in the temperature gradient

N , coherent field amplitude U2, and level of micro-turbulence E, as the amplitude of the

oscillatory component of the heating rate is increased. The response of the MD model, which

has one fewer variable and does not appear to exhibit this distinctive phenomenology, was

investigated in [15].

We represent the heating rate by

q (t) = q0 + Asin (ωt) (17)

where q0 = 0.47, ω = 0.05 and all other coefficients and initial conditions take the values

that were used to generate Fig.7. This oscillatory timescale is fast compared to the duration

of quasi-stationary phase in Figs.6 to 8. Specifically, the ratio of period of oscillating heating

rate and that of limit cycle in Fig.7 is approximately 43.6 per cent. The control parameter

in the following study is thus the amplitude A of the oscillatory component of the heating

rate defined in Eq.(17). Figures 9 to 11 show the initial period-doubling path from period-1,

via period-2, to period-4 as the value of A is increased from 0.0215 through 0.0240 to 0.0270.

We note that these values of A are correspond to a few per cent of the steady heating rate

q0 = 0.47. Figures 9 to 11 all show: on the left, the power spectrum of N ; on the right,

the full attractor in (N,U2, E) space; and, inset, the time series of N . Figure 12 provides

an additional perspective on this period-doubling by showing the power spectra of N from

Figs.9 to 11 over-plotted in the frequency range from 0.04 to 0.08. The fully chaotic attractor

is shown in Fig.13, obtained for A = 0.0295. Figure 14 provides a comprehensive diagram
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Figure 9. Period-1 oscillation in ZCD system dynamics in response to the varying heating rate

defined by Eq.(17) with A = 0.0215; other parameter values are as for Fig.7. Left, the power

spectrum of N ; right, the full attractor in (N,U2, E) space; inset, the time series of N .

of the period-doubling bifurcation path to chaos in the value of micro turbulence level E as

A is increased from 0.0215 to 0.0295 in the ZCD model. We have obtained the values of

An at which the nth period-doubling bifurcations occur, from period-1 to period-8. We find

A1 = 0.0230, A2 = 0.0265, A3 = 0.0272 and A4 = 0.0273, giving the ratios 4.666 which is

within 0.05 per cent of the expected value 4.669[26].
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Figure 10. As Fig.9, showing period-2 oscillation in ZCD system dynamics when A = 0.0240.
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Figure 11. As Fig.9, showing period-4 oscillation in ZCD system dynamics when A = 0.0270.
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Figure 12. Period-doubling illustrated by the power spectra of N from Figs.9 to 11, over-plotted in

the frequency range from 0.04 to 0.08. Blue, red and black dash lines denote spectra of period-1,

period-2 and period-4 respectively.
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Figure 13. As Fig.9, showing chaotic attractor of the ZCD system dynamics when A = 0.0295.
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Figure 14. Period-doubling bifurcation path to chaos of ZCD system dynamics. Micro-turbulence

level E is plotted versus amplitude A of oscillatory heating component in Eq.(17), in the range

0.0215 to 0.0295. The first four arrows indicate successive bifurcations, which occur at values

A = 0.0230, 0.0265, 0.0272 and 0.0273. These yield Feigenbaum’s ratio to within 0.05 per cent.

The fifth arrow marks a period-6 window within the chaotic region.
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6. Conclusion

In this paper we have shown that the KD/MD model and its ZCD extension capture a

key feature of tokamak plasma confinement phenomenology, additional to those previously

noted in Refs.[3, 4] and [14]. Specifically, a rapid substantial change in heating power can

trigger a transition to an enhanced confinement regime having steeper temperature gradient

N , longer energy confinement time τc, and suppressed micro-turbulence level E. Enhanced

confinement is sustained throughout the duration of the heating pulse. It can continue after

heating reverts to its initial level, retaining the same value of τc but with lower N , for a

time whose duration depends on the values of the initial and additional levels of heating.

Importantly, this tokamak plasma-like enhanced confinement phenomenology is robust: both

against minor variations of the switch-on time scale for the additional heating, and against

inclusion of a second predator field in the model. The latter step also creates a new attractive

fixed point or limit cycle which has enhanced confinement characteristics. This O-mode has

higher values of N and τc than the lower confinement T-mode which precedes it, with

nonlinear structure amplitudes U1 = 0 and U2 finite, and micro-turbulence level small or

zero. The KD/MD model and its ZCD extension also possess well defined scaling relations

between energy confinement time and heating power, which can be calculated. We emphasise

again that numerical solution of the time evolving system, as well as knowledge of its fixed

points, are necessary for these studies.

From a dynamical systems perspective, we have identified a confinement time parameter

τc which depends only on the values of the macroscopic fields (E,U,N, q). The value of τc

at the fixed points can be used to characterise the confinement states of the model. Since

these values can be found analytically for any zero-dimensional model, we have provided a

procedure to obtain the dependence of confinement time on the heating enhancement δq/q0.

If these fixed points are attractors in the model, then the duration of these confinement states

will be long and will be insensitive to the detailed time dependence of heating q(t). If on the

other hand these fixed points are repulsive, then full numerical solution of the given zero-

dimensional model equations is required to determine the duration of the corresponding

confinement states, and whether this is sensitive to the detailed time dependence of the

heating q(t).

When a small oscillatory-in-time component is added to the steady heating rate, we find
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that the ZCD model can exhibit a classic period-doubling path to chaos in, for example,

the level of micro-turbulence E as the amplitude of oscillation is increased. In this, the

ZCD model may differ from the MD model, for which oscillatory heating was studied in

[15]. This distinctive phenomenology may offer a path to future experimental testing of the

assumptions of zero-dimensional models, and perhaps distinguishing between them.

We infer that the heating-induced transitions between confinement regimes are not

strongly sensitive to the temporal sharpness of the change in heating rate from q0 to q0 + δq.

We have repeated the numerical experiment of Sections 3 to 4 for the same parameters,

except that the heating transition up and down is now a continuous tanh function. We con-

clude that discontinuous and slightly smoothed changes of heating rate with time produce

essentially similar results. Resilience against noise fluctuations in the heating has also been

investigated. We find that the results are effectively invariant against noise in the heating

at levels of 1% to 10%.

The results in this paper reinforce the apparent validity of the conceptually simple (al-

beit strongly nonlinear) physical picture embodied in the KD/MD model. Very few simple

first principles models can spontaneously generate tokamak-like enhanced confinement phe-

nomenology; the sandpile of Refs.[32, 33] is an example. It is increasingly clear that the

KD/MD model is in this category.
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