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Abstract

In this research, we present a theoretical and computational framework for
studying the vehicle routing problem with uncertain demands (VRPUD). We com-
bine approaches in stochastic optimization and techniques in mixed integer pro-
gramming to solve two main variants of the vehicle routing problem with uncertain
demands.

We first present a polyhedral study for deterministic heterogenous vehicle
routing problems (HVRP) to develop a relatively e�cient formulation such that its
corresponding counterpart with uncertainty is tractable via mixed integer program-
ming. Having assumed customers’ demand is uncertain, we apply three single-stage
approaches within stochastic optimization to the HVRP with uncertain demands.
The three-single stage approaches are chance constrained programming, Ben-Tal and
Nemirovski, and Bertsimas and Sim robust optimization approaches. Then, we plug
the corresponding formulation for each approach into a branch-and-cut method.

Moreover, we propose a new framework within the branch-and-price frame-
work to formulate the capacitated vehicle routing problem (CVRP) with uncertain
demands. In addition to the three single-stage approaches, we apply a two-stage
stochastic approach to the capacitated vehicle routing problem with uncertain de-
mands. Our proposed framework enables us to model di↵erent types of uncertainty
while the complexity of the resulting problem remains the same.

Finally, we present extensive computational experiments for the deterministic
HVRP, the HVRP with uncertain demands and the CVRP with uncertain demands.
In the computational experiments we first investigate e�ciency of several types of
valid inequalities and lifting techniques for the deterministic HVRP. Then, using
simulation and a scenario based technique we assess the performance, advantages
and disadvantages of the aforementioned stochastic optimization approaches for the

vi



HVRP with uncertain demands and the CVRP with uncertain demands. We show
that among single-stage approaches of stochastic optimization, those with control
parameters outperform those without control parameters in terms of total expected
cost. Also, we show that the higher protection level does not necessarily result
in better solutions as higher protection levels may impose unnecessary extra costs.
Moreover, as our computational experiments suggest, the two-stage models for the
CVRP dominate the single-stage approaches for all protection level scenarios.



Chapter 1

INTRODUCTION

The share of transportation in the total cost of products is estimated to be 10-20

percent ([77]). Moreover, Hesse and Rodrigueb [43] report that in the year 2000,

transportation presented 5.9% of the US’s Gross Domestic Product (GDP). In a

more global level, transportation’s contribution in the greenhouse gas is estimated

to be 24% of the greenhouse gas produced in the European Union ([33] and [64]).

Therefore, improving the transportation system is a quite important task in the

individual, domestic and global levels.

Among problems defined within transportation, the routing problem is one

of the most important and challenging ones so that it has attracted academics for

many decades. The Traveling Salesman Problem (TSP) is one of the oldest routing

problems studied in academia which goes back to 1800s. The TSP has been extended

and more realistic assumptions such as capacity limitation for vehicles and demand

uncertainty have been considered for the routing problems. These additions of course
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increase the di�culty of the routing problems. In this dissertation, we study two main

variants of the routing problems where the demands are not known in advance. We

will focus on the heterogeneous vehicle routing problems with uncertain demands

and its special case namely the capacitated vehicle routing problems with uncertain

demands.

1.1 Problem description

The Capacitated Vehicle Routing Problem (CVRP), with its many variants, is one

of the most widely studied NP-Hard problems in combinatorial optimization due to

its various practical applications and theoretical challenges. However, the CVRP

with uncertain demands has received much less attention, in particular within exact

methods. The aim of this research is to solve two variants of vehicle routing problems

with uncertain demands to optimality. Let us start with the definition of the classical

CVRP. The classical CVRP is defined on an arc weighted directed graph G = (V,E)

with the set of vertices being V = {0, ..., n} and the routing costs being c
e

, e 2 E. It

consists in serving a set of customers V
c

= {1, . . . , n} with known demand q
i

, i 2 V
c

,

using a fleet of vehicles with identical capacity Q. The vehicles are stationed at

the same (unique) depot which is usually denoted by vertex 0 in the graph, i.e.,

V = {0}[ V
c

. Each vehicle takes exactly one route starting from the depot, visiting

a subset of the customers and returning to the depot. The customer’s demand cannot

be split among di↵erent routes and the sum of demands in each route must not exceed

the vehicle capacity Q. The solution of the CVRP is a minimum cost partition of
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the customers according to the vehicle routes. The heart of the CVRP’s di�culty

lies on the conditions on the route feasibility. A feasible route is defined as follows.

Definition 1. A feasible route is a route which starts from the depot, visits each

customer at most once and returns to the depot without violating the vehicle capacity

limitation.

These conditions put the CVRP and its variants among the most challeng-

ing problems in combinatorial optimization. In the deterministic context, di↵erent

methods have been suggested to formulate these conditions. Later in this chapter we

present two key formulations to model the above conditions. But let us first present a

general mathematical formulation for the CVRP. The decision variable x
e

is a binary

variable which takes value one if edge e = (i, j) 2 E is used, and zero otherwise.

Also, for a given vertex i 2 V , �(i) denotes the set of incoming and outgoing edges.

A generic Integer Programming (IP) formulation for the described CVRP is:

G-CVRP: min
X

e2E

c
e

x
e

(1.1)

s.t. x (�(i)) = 2, 8i 2 V
c

, (1.2)

x (�(i))  m, i = 0, (1.3)

x
e

2 X
R

, (1.4)

x
e

2 {0, 1}, (1.5)

where constraint (1.2) known as degree constraints guarantees every customer is vis-

ited exactly once. Constraint (1.3) makes sure that at most m routes are used. Set

X
R

represents the set of constraints that form feasible routes as defined. Several for-
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mulations have been suggested to present set X
R

. Later in this chapter we present

two main formulations for set X
R

. The above model is defined for the determinis-

tic CVRP, but as the unknown demands are embedded in set X
R

, we can still use

the G-CVRP for Vehicle Routing Problems with Uncertain Demands (VRPUD) by

replacing X
R

with X̄
R

which is the set of feasible routes for the VRPUD. To char-

acterize set X̄
R

for the VRPUD, we study two types of uncertainty cases. In the

first case, we assume that the demands are random variables with known probability

distributions. In the second case, we assume that only partial data such as lower

and upper bounds are available for each uncertain demand. In the VRPUD, It is

a common assumption that the customer’s demand is revealed upon the vehicle’s

arrival ([67] and [68]). In the presence of the demand uncertainty, the route feasi-

bility conditions may be violated for a pre-planned route, i.e., the available vehicle

capacity may not be su�cient to serve a customer as the customer’s demand be-

comes known on the vehicle’s arrival. To capture the demand uncertainty, we use

three di↵erent approaches: chance constraint programming, robust optimization and

stochastic programming. With respect to each approach, set X̄
R

is formulated ac-

cordingly. Before going through technical issues and mathematical models, in the

next section we describe three main strategic policies which are used to deal with

the demand uncertainty in the vehicle routing problem.
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1.2 Policies

Due to the capacity limitation of each vehicle and also due to the fact that the

demand of a customer is usually revealed on the vehicle’s arrival, a vehicle may fail

to serve a customer on its pre-planned route. Three main policies have been proposed

to deal with the demand uncertainty for the VRPUD based on the fact that routing

and replenishment decisions are dynamic or static: restock, reoptimization and a

priori approaches.

Restock policy In the restock policy, routes are static and replenishments are dy-

namic (proactive) i.e., a set of routes is fixed in advance but replenishment decisions

are made after visiting each customer (before actually a failure occurs). The deci-

sion for a replenishment i.e., when to make a return trip to the depot can be made

using a simple threshold or using states defined in Markov Decision Process based

on unserved customer’s demand, the vehicle’s remaining capacity and the vehicle’s

current location ([80]). The advantages of the restock policy are as follows:

• it is easier for drivers to follow a fixed route every day,

• managerial processes are easier than the reoptimization policy (will be ex-

plained next) as one decision has to be made at each time,

• customers deal with the same drivers.

However, this policy is di�cult to formulate and solve, and solutions may not

be as good as solutions obtained by the reoptimization policy.
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The reoptimization policy In the reoptimization policy which is also known as

the real-time policy, both routing and replenishment decisions are dynamic (proac-

tive), in the sense that they are decided according to the current state and are

un-planned. Drivers in each stage decide to visit an unvisited customer or return to

the depot for a replenishment. The stage’s state is defined based on the remaining

capacity, unserved customers and the current location of the vehicle. This policy

is formulated by a finite horizon Markov Decision Process (MDP) and solved via

dynamic programming (see [67] and [68]). Dynamic Programming (DP) provides

a powerful framework for formulating complex problems which can be broken into

simpler problems via formulating a sequential decision problems. But it su↵ers from

two di�culties. The first di�culty is known as the curse of dimensionally which is

due to the size of state space as it exponentially grows. The second di�culty of DP

is that all aspects of a system (e.g., transition and value functions) are required to

be known which is not always possible.

To overcome these two main disadvantages, first a decision making process/-

function (as the core of DP) may be approximated, and second a sample of possible

events which may happen should be randomly generated. The resulting approach is

called Approximation Dynamic Programming (ADP) which provides near optimal

solutions/policies. When the value functions are approximated, then the output of

ADP can be used along with simulations to learn and improve the approximations

if needed [65].

Advantage: Dror [30] notes that ”reoptimization is the most promising ap-

proach for solving [VRP with stochastic demand] exactly without narrowly restricting
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the policy space”. Despite this advantage, there are some drawbacks for this policy

as follows:

– this policy is di�cult to formulate and solve,

– the managerial processes are di�cult,

– customers may deal with di↵erent drivers,

– because of the large state space, not very large instances can be solved to

optimality.

A priori policy A policy is called a priori policy if routes are static and replen-

ishment is reactive i.e., a set of routes planned in advance is executed and only when

a failure occurs an action must be taken. This action can be simply to leave the

rest of customers on the failed route unserved or the vehicle returns to the depot

to reload (or empty the load) and then resumes the route from the failed customer.

The possible actions will be discussed later in more detail. The output of this policy

is a set of fixed routes that minimizes a specific measure of the total cost e.g., the

expected cost. The advantages of this policy are:

– it is easier for drivers to follow a fixed route every day,

– managerial processes are easier,

– customers deal with the same drivers,

– this policy is easier to formulate and solve,
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– larger instances can be solved to optimality.

The disadvantage of this policy is that solutions provided by this policy may not be

as good as the two previous policies.

Due to advantages of the a priori policy we use this policy in this research.

Hence, we focus on solution methods developed within the a priori policy and discuss

its related topics in greater details as follows.

Two main approaches for modelling the demand uncertainty have been de-

ployed to formulate and solve the VRPUD within this policy: single-stage and two-

stage approaches. In the single-stage approach, the VRPUD is (normally) formulated

as a Mixed-Integer Program (MIP) representing a specific situation of the system.

The model can represent the worst-case situation or it can represent a situation with

a tradeo↵ between route validity and the total cost. Chance Constraint Program-

ming (CCP) and Robust Optimization (RO) are in particular two popular approaches

within stochastic optimization which have been applied to formulate and solve the

VRPUD. The key advantage of applying these approaches is that the deterministic

equivalents of the VRPUD can remain tractable via mixed integer linear program-

ming (MILP) depending on the initial model. But the downside of the single-stage

models is that they do not consider any recourse action in the modelling phase and

as a result any recourse cost. In practice, if a company wants to use these models,

they have two options when they face a route failure. Firstly, their policy might

be to serve all customers somehow, in other words, no lost sales are allowed. Sec-

ondly, they may prefer to leave the remaining customers on failed routes unserved in

other words lost sales are allowed. In the first option, managers may decide to make
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a return trip to the depot for a replenishment or outsource serving the remaining

customers on failed routes. In the second option, leaving the remaining customers

unserved may impose an extra (penalty) cost as the lost sale cost.

In order to take the recourse cost into account, two-stage models are proposed.

There are several types of recourse actions in the literature which will be discussed

in Chapter 6 in detail. Two-stage Stochastic Mixed Integer Programming (2SMIP)

provides a strong framework to formulate problems with uncertainty and mixed inte-

ger variables. In this framework, a problem is decomposed into two stages. The first

stage consists of the master problem which is independent from the uncertain param-

eters while the second stage consists of the sub-problems. The sub-problems which

are also known as recourse problems/actions usually correspond to possible scenar-

ios of the uncertain parameters. Using the first-stage solution, each sub-problem is

solved. Then, sets of optimality cuts and feasibility cuts are derived in respect to the

first-stage variables and added to the master problem.

However, as a special case, the VRPUD can be formulated within the 2SMIP

framework so that there is no need to set up the sub-problems as such. Instead, cus-

tomized optimality cuts can be derived directly from the master problem’s solutions

when the demands follow known and specific distribution functions. The customized

optimality cuts are used within the integer L-shaped method to provide a tighter

approximation for the expected failure cost ([44] and [49]).

Traditionally, two-stage models have been applied to two-index formulations

for the VRP. Recently, set-partitioning formulations of the VRP are also used to

model and solve the SVRP ([22]). In this case, the cost of each route consists of the
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routing cost and the expected failure cost which are used to solve column generation

sub-problems. In the next section, we explain these two popular formulations which

have been used to formulate the VRPUD.

1.3 The VRP formulations

Studies on the VRPUD for the a priori policy have been mainly carried out on

two formulations of the VRP: flow based and set-partitioning formulations. In this

research we also base our models on these two formulations. Therefore, we present the

basic deterministic formulations for the CVRP on which the stochastic formulations

for the VRPUD will be built.

1.3.1 Flow formulation

Recall the G-CVRP where three types of constraints are defined. The first type (the

degree/assignment constraints) makes sure that each customer is visited only once

which implies each customer is assigned to a route. The second type guarantees

that no more than m vehicles are used. The third type of constraints which is the

most challenging one guarantees the route feasibility. This type of constraints has

two implications. Firstly, the vehicle capacity limitation must not be violated and

secondly, there must be no sub-tour. Dantzig et al. [26] and Miller et al. [55]

suggest two di↵erent formulations to model the sub-tour elimination condition for

the Traveling Salesman Problem (TSP). Since the CVRP is an extension of the

TSP, the sub-tour eliminations formulations for the TSP are extended with some
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modifications for the CVRP.

DFJ formulation Dantzig et al’s sub-tour elimination formulation (DFJ-SE) enu-

merates all possible tours and ensures that the total number of edges in each sub-set

has to be less than the size of the set minus one. This constraint can be formulated

as follows for the TSP.

x (E(S))  |S|� 1, 8S ⇢ V, |S| � 2 (1.6)

where E(S) is the set of edges whose both ends are in set S. Alternatively, the above

constraint can be re-stated by

x (�(S)) � 2, 8S ⇢ V, |S| � 2, (1.7)

where �(S) is the set of edges which have exactly one end in set S. Constraint (1.6)

and (1.7) are facet defining constraints for the TSP. Note that when we refer to the

TSP, we assume a traveling salesman problem defined on weighted directed graph

G = (V,E) where V is the set of the cities with unit demand and unlimited vehicle

capacity. Constraint (1.7) can be adopted for the CVRP as follows:

x (�(S)) � 2k(S), 8S ⇢ V, |S| � 2, (1.8)

where k(S) is the minimum number of vehicles required to serve the customers in S.

Finding an optimal solution for k(S) is the bin packing problem which by itself is an

NP-hard problem ([54]). But it can be approximated by its lower bound q(S)
Q

where

11



q(S) =
P

i2S qi. So, constraint (1.8) can be reformulated as follows:

x (�(S)) � 2q(S)

Q
, 8S ⇢ V, |S| � 2, (1.9)

Constraints (1.8) and (1.9) do not define facets of the CVRP. Therefore, it

does not present the convex hull of the problem. However, the lower bounds provided

by these constraints for the CVRP are very tight. The advantage of the DFJ-SE con-

straints is their good Linear Relaxation (LR) but at the cost of exponential number

of constraints. Therefore, instead of adding them straight away in the initial formu-

lation, they are added within a cutting plane based algorithm only when they are

violated.

MTZ formulation Miller et al. [55] propose another formulation to model the

sub-tour elimination constraints by introducing a new variable (u
i

� 0) which denotes

the load of the vehicle after visiting vertex i. The MTZ constraints eliminate sub-

tours based on a contradiction for flow variables. Miller et al. suggest the following

formulation for the TSP:

u
j

� u
i

+Mx
e

 M� 1, 8e = (i, j), i, j 2 V. (1.10)
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In the above constraint, M is a big number which is usually equal to |V |. The above

constraint can be modified for the CVRP as follows:

u
j

� u
i

+Qx
e

 Q� q
j

8e = (i, j), i, j 2 V
c

, (1.11)

q
j

 u
j

. (1.12)

The above set of inequalities is known to have a weak LP relaxation, hence

they do not present the facet defining constraints. It will be shown how they can be

improved and lifted. The advantage of the MTZ formulation is that these constraints

are polynomial in size.

1.3.2 Set-partitioning formulation

In 1964, Balinski and Quandt [11] were the first to use the set-partitioning concept

to formulate the CVRP. In set-partitioning formulations a column is a valid route

which covers a set of customers and does not violate the vehicle capacity limitation.

Since then, set-partitioning formulations of the CVRP have received a considerable

attention. Until 2006, the most promising and successful method of formulating and

solving the CVRP was the branch-and-cut algorithm (see [54]). In 2006, Fukasawa

et al. [36] propose a set-partitioning based formulation which solves the CVRP

e�ciently. Later, Baldacci and Mingozzi [10] suggest a unified framework to solve

di↵erent variants of the VRP. Here, we present a basic set-partitioning formulation

for the CVRP.

LetR be the index set of all feasible routes charactrized by q(V(r)) =
P

i2V(r) qi 
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Q and V(r) = {r0 = 0, r1, ..., rnr , rnr+1 = 0}. Let R(i) be all routes that contain

vertex i 2 V (R(i) = {r : i 2 V(r)}). Also let f
r

be the cost of route r 2 R . The

CVRP can be formulated as follows:

(SP) : Z(P) = min
X

r2R

f
r

z
r

(1.13)

s.t.
X

r2R

z
r

 m, (1.14)

X

r2R(i)

z
r

� 1, 8i 2 V
c

, (1.15)

z
r

2 {0, 1}, 8r 2 R. (1.16)

Constraint (1.14) ensures that at most m vehicles will be used. Constraint (1.15)

guarantees that each customer is assigned to a route. In fact, using x
e

=
P

r2R ae
r

z
r

where ae
r

is one if edge e is used in route r and zero otherwise, the G-CVRP can

be lifted to the SP’s polytope in <m+n ([36]). The above problem has exponentially

many columns. So, it is impractical to initially include all routes in the SP. A well-

known strategy is to start with an initial set of routes and gradually add proper

feasible routes (those which reduce the total cost) to the problem. Di↵erent methods

and heuristics have been proposed to identify routes. We will study this subject in

more detail in Chapter 5.

1.4 Basic background

Since in the next chapters we will be working with valid inequalities and lifting

techniques, here we provide a brief introduction to these topics in the following sub-
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sections. We assume the reader has a working knowledge of the theory and practice

of integer programming. For more details and in-depth, we refer to Nemhauser and

Wolsey [57] and Wolsey [78].

1.4.1 Basic polyhedral theory

We need to have a basic knowledge of the polyhedral theory as we will try to find

constraints (valid inequalities) that represent the feasible region of the problem as

tightly as possible. Many books and articles have been devoted to study IP as it

is one of the most challenging problems in the field of mathematical programming.

Some basic definitions will be presented here.

A polyhedron is the intersection of finitely many a�ne halfspaces, where an

a�ne halfspace is a set that can be defined as follows:

H(a, b) = {x 2 < : aTx  b}.

Let us assume an integer programming problem as follows.

z
IP

= min {cx : x 2  } ,  =
�
x 2 Zn

+ : Ax  b
 
. (1.17)

where c is an n-vector, (A, b) is a matrix of m⇥ (n+ 1), x is the decision vector and

 is the feasible solution set. x⇤ is an optimal solution for IP (1.17) if only if (i↵ ),

it is optimal to

z = min {cx : x 2 conv ( )} . (1.18)
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The term “conv” in the above problem stands for convex hull. The convex hull of

 is the smallest set which includes all points in  and their convex combinations.

In other words, the smallest convex set which contains  . Several theories and

ideas have been developed to find the convex hull of a set or at least find its local

convex hull but finding all facets of a convex hull itself is NP-hard. Theory of valid

inequalities, disjunctive programming and linear relaxation are the main theories in

this attempt. Valid inequality and facets of a set, which are key concepts in IP, are

defined as follows.

Definition 2. The inequality ⇡x  ⇡0 or [(⇡, ⇡0)] is called a valid inequality for  

if it is satisfied by all points in  .

In other words, ⇡x  ⇡0 is a valid inequality for  if ⇡x  ⇡0 for all 8x 2  

([78]).

Definition 3. If [(⇡, ⇡0)] is a valid inequality for  , and � = {x 2  |⇡x = ⇡0}, �

is called a face of  .

Definition 4. A face � of  is a facet of  if dim(�) = dim( )� 1.

Many di↵erent types of valid inequalities have been suggested to present or

approximate the convex hull of a set such as Gomory, cross, split, disjunctive, inter-

section cuts, etc. We refer the reader to [6] and [57].

1.4.2 Lift-and-project cuts

Sherali and Adams [70] introduce a reformulation technique for 0-1 integer pro-

gramming which generates cuts to present/approximate the convex hull of feasible
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solutions. Following their work, several methods have been proposed to generate cuts

based on their procedure (see [7]). In fact, the lift-and-project procedure is a sequen-

tial convexification procedure that generates cuts via first, lifting a polyhedron to a

higher dimensional space and then projecting the new polyhedron into the original

variable space. A simple description is as follows. Let ⌦ = {x 2 <n|Ax � b, x � 0}.

Note that x
i

 1, 8i is embedded in Ax � b. And let ⌦
I

= {x 2 ⌦|x
i

2 {0, 1}}.

Then, multiply Ax � b by x
j

and (1�x
j

) and linearize the inequalities using x
j

= x2
j

and y
ij

= x
i

x
j

for i 6= j. Let �
j

(⌦) be the polyhedron defined by the resulting valid

inequalities. The projection of �
j

(⌦) into the original variable space is denoted by

�x

j

(⌦) = {x|(x, y) 2 �
j

(⌦)}.

Balas et al. ([7]) prove the following main theorems which show the convex

hull of ⌦
I

can be obtained using a sequential convexification procedure. For proofs

see [7].

Theorem 1.

�x

j

(⌦) = conv (⌦ \ {x 2 <n|x
j

2 {0, 1}}) .

Theorem 2. For t 2 {1, ..., n},

�x

i1,...,it
(⌦) = conv (⌦ \ {x 2 <n|x

j

2 {0, 1} for all j 2 {i1, ..., it}) .

These theorems imply that if in each stage the projection of the resulting

space of the previous stage onto some of variables are calculated, then it leads into

the convex hull of the original space i.e., �x

1,...,n(⌦) = conv (⌦
I

).
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1.5 Dissertation overview

This dissertation is organized in three main parts. In the first and second parts

we study two variants of VRP with uncertain demands. In part one, we formu-

late and solve the Heterogeneous Vehicle Routing Problem with Uncertain Demands

(HVRPUD) within a branch-and-cut method. We study HVRPUD in a single stage

framework. In part two, we study a special case of HVRPUD, the Capacitated Vehi-

cle Routing Problem with Uncertain Demands (CVRPUD), where there is only one

type of vehicles. We study this special case in single stage and two stage frameworks.

To model CVRPUD in these two frameworks, we use set-covering formulations which

is also known as column generation methods. The advantage of column generation

methods over branch-and-cut methods is that if for a specific problem there is an ef-

ficient pricing problem, then column generation methods usually outperform branch-

and-cut methods, but finding an e�cient pricing problem may not be easy. On the

other hand, branch-and-cut methods provide a more flexible framework for formu-

lating optimization problems. Also, more e�cient and advanced software have been

developed to solve problems within branch-and-cut methods while to implement col-

umn generation methods, there is only one developed software (SCIP). If one chose

not to use SCIP, one would have to implement the whole structure, which might

result in a less e�cient software compared to commercially developed. Therefore, we

first formulate and solve HVRPUD within a well-defined branch-and-cut framework

and then for its special case, we move to a more advanced framework (column gen-

eration methods) and propose new formulations. In the third part, we present an

extensive computational experiments for these two variants within branch-and-bound
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and column generation methods, respectively.

More precisely, in Chapter 2, we first present a basic formulation for the deter-

ministic HVRP. Then, we investigate and extend four di↵erent types of valid inequal-

ities namely: capacity, sub-tour elimination, comb and multistar valid inequalities

plus we introduce a customized set of valid inequalities. In addition to valid in-

equalities, we study and extend three types of lifting techniques for the deterministic

HVRP. These valid inequalities and lifting techniques improve the approximation

of the convex hull of our problem. This investigation results in a formulation with

much better lower bounds in comparison with the basic formulation.

In Chapter 3, we apply three single-stage approaches to the models introduced

in Chapter 2. The aim of this chapter is to derive tractable deterministic equiva-

lents for the HVRPUD. As mentioned, for single-stage approaches, we study chance

constraint programming and two di↵erent types of robust optimization approach:

Ben-Tal and Nemirovski (BN), and Bertsimas and Sim (BS) approaches.

As sub-tour elimination and comb valid inequalities are exponential in size,

they have to be added to the problem sequentially if they are violated. In Chapter 4,

we first review separation algorithms for these two types of valid inequalities within

cutting plane based algorithms. Then, we propose greedy algorithms to separate

them.

The second part of this dissertation consists of two chapters where we study

single-stage and two-stage models for the CVRPUD within column-generation based

methods. In Chapter 5, we review set-partitioning formulations for the deterministic

CVRP and introduce a formulation which is most suitable for the CVRPUD. Then,

19



the related issues such as the column generation problem and the pricing problem

will be explained. Finally, we apply CCP, BN and BS approaches to the CVRPUD.

In the Chapter 6, we study the CVRP with stochastic demands and recourse

actions. Di↵erent recourse actions have been suggested in the literature to serve the

remaining customers. The recourse action we consider here is that if a failure occurs,

the vehicle must make a return trip to the depot for a replenishment and resume

the pre-planned route. In this case, lost sales are not allowed and the remaining

customers on the failed route have to be served. Unlike the single-stage models, in

the two-stage models, the recourse actions are modelled within the initial formula-

tion. In Chapter 7, we present an extensive computational experiment to assess the

performance of the models and approaches within stochastic optimization we apply

to the HVRPUD and the CVRPUD.

Finally, Chapter 8 comprises a conclusive summary of the whole thesis. It

also discusses the line of future inquiry flowing out of the present research as well as

other possible approaches that can be adopted to extend this work.

Before proceeding to the rest of this thesis, we will briefly describe below the

key research questions and the contributions.

In this research we address the following questions:

– What are specific properties of our proposed VRPUD formulations?

– Which methods in stochastic programming and mixed-integer programming

can be used to improve VRPUD solution algorithms?

The contributions of this dissertation are categorized into two parts. The contribu-

tions of the first part are as follows. We improve the formulation for the deterministic
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HVRP in the sense that the resulting polyhedral is a better approximation of the

convex hull of the deterministic HVRP. To this end, we adapt four types of valid

inequalities to the deterministic HVRP and also propose a new type of valid inequal-

ities. Moreover, we extend three lifting techniques for this problem. In particular, we

extend the reformulation and linearization technique which was originally developed

for the TSP. Then, for the first time we apply three single-stage approaches to the

HVRP with uncertain demands to capture the demand uncertainty and solve the

resulting problems. In addition, we propose better probability bounds for Bertsimas

and Sim’s approach for specific types of constraints.

In terms of the solution method, we propose two new greedy separation al-

gorithms to separate sub-tour elimination and comb valid inequalities. Finally, in

the computational experiments, we present the computational studies for the models

and algorithms we develop in the previous chapters. Using computational exper-

iments, we show the impact of each type of the valid inequalities and the lifting

techniques on the deterministic HVRP polyhedral. Then, using simulation we con-

duct a scenario-based analysis for the HVRP with uncertain demand for the control

parameters of the single-stage models. When lost sales are not allowed, we inves-

tigate which approach among the three single-stage approaches with which control

parameters will lead to the least actual cost. In this case, the actual cost consists of

the routing cost plus the cost of return trips to the depot. Moreover, when lost sales

are allowed, we calculate optimum intervals of lost sale costs for each scenario of the

control parameter.

In the second part of this dissertation we study the CVRPUD within column
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generation based methods. For the first time we formulate the single-stage mod-

els for the CVRPUD within a column generation based method. The contributions

here mainly lie in the pricing problem how to generate feasible routes which satisfy

the conditions within each approach of stochastic optimization. As mentioned, we

study four approaches to model the demand uncertainty: three single-stage and one

two-stage approaches. We present new pricing problems to formulate the demand

uncertainty where for CCP in addition to di↵erent distribution functions, demand

scenarios can also be used. Then we formulate the CVRPUD with recourse action

within the context of the two-stage stochastic programming where a new method

of calculating recourse functions is proposed in the pricing problem. Our proposed

method of calculating the recourse cost guarantees that no feasible routes, which may

be part of the optimal solution, will not be eliminated. We propose a new dominant

rule to make sure that no such elimination will take place and at the same time

not all possible routes will be enumerated. Similar to the single-stage approaches,

distribution functions as well as demand scenarios can be used to present the de-

mand uncertainty. In addition, we compare these four approaches of formulating the

CVRPUD and discuss their advantages for the first time.
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Chapter 2

VALID INEQUALITIES AND

LIFTING TECHNIQUES

2.1 Introduction

In this chapter, we consider an important generalization of the classical CVRP known

as Heterogeneous Vehicle Routing Problem (HVRP), in which a heterogeneous fleet

of vehicles is stationed at the depot and is used to serve the customers. To give an

indication how di�cult it is to solve the HVRP, it is worth mentioning that up to

the date of writing this dissertation, the computational results show HVRP instances

involving only up to 75 vertices can be solved to optimality ([10] and [63]) whereas

CVRP instances solved to optimality are far larger, up to 200 vertices ([10] and [36]).

These results themselves suggest that the HVRP is more di�cult to solve than the

CVRP. Despite this fact, there are very few works on the HVRP and its variants.
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Due to the lack of research on the HVRP’s polyhedron, in this chapter we address the

integer programming representation of the HVRP and its two main variants: multi-

depot HVRP (MD-HVRP) and capacitated multi-depot HVRP (CMD-HVRP).

The reason behind studying the HVRP’s polyhedron is as follows. To solve

MIPs within branch and bound/cut methods, there are two general strategies based

on which exact algorithms are developed. The first strategy focuses on the initial

formulation so that it identifies e�cient cutting plane and (if it is possible) facet

defining inequalities and adds them to the initial model to tighten the polyhedral

representation of the problem before any computational solution procedure is started.

This strategy is called static. The second strategy is dynamic where cutting planes

are added during run-time, which successively reduces the size of the polyhedral

region. Therefore to solve an integer program e�ciently using any of these strate-

gies, it is very important to study the problem’s valid inequalities and polyhedron

presentation.

In view of the fact that we intend to use the resulting formulations to construct

the HVRP with uncertain demand, we ought to take into consideration another goal

for our formulations as well. This gaol is to formulate the deterministic HVRP in such

a way that the corresponding counterparts of uncertainty remain tractable via mixed

integer linear programming. To achieve this goal, we build our basic model based on

Miller et al. (MTZ) [55] formulation for the Symmetric TSP (STSP) where sub-tours

are eliminated using an extra continuous variable on the MTZ formulation. The main

advantage of this basic model is that uncertainty is restricted to the right-hand side

of the constraints. This leads to compact and tractable uncertain counterparts. Since
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the MTZ formulation is well known to provide a rather weak linear programming (LP)

relaxation, which performs poorly when plugged into a branch-and-bound framework,

we aim to overcome this weakness by using valid inequalities and lifting techniques.

We begin with a basic integer programming model for the deterministic HVRP as

our basic model. Then, we study and extend di↵erent classes of valid inequalities

and lifting techniques to the HVRP and its variants to improve the formulation.

Since the HVRP is a generalization of the CVRP and as a result a gener-

alization of the TSP, and also since the CVRP’s polyhedral is connected to other

IP problems’ polyhedral (such as the spanning tree and many others), developing

and extending existing valid inequalities of the CVRP to the HVRP seem to be a

reasonable approach to study the polyhedron of the HVRP. However, even though

many constraints and valid inequalities have been proven to be facet-defining for the

TSP, they are only valid for the CVRP and the HVRP due to their complex convex

hull.

The reminder of this chapter is organized as follows. In Section 2.2 we in-

troduce a basic model then in Section 2.3 we study capacity, sub-tour elimination,

comb, multistar valid inequalities as well as a customized version of cross cuts and

extend them for the HRVP if possible. In Section 2.4, we review and adapt three

lifting techniques for our basic mixed integer formulation: Desrochers and Laporte,

Yaman and Sherali and Driscoll lifting techniques. Finally in Section 2.5, we extend

the model to multi-depot HVRP (MD-HVRP) and capacitated multi-depot HVRP

(CMD-HVRP).
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2.2 The basic formulation

The HVRP can be formally defined as follows. We are given a complete directed

graph G = (V,E), where V = {0, . . . , n} is the set of vertices, E the set of edges and

E
c

⇢ E is the sub-set of edges between customers. Node 0 denotes the (unique) depot

and the other vertices V
c

= {1, . . . , n} represent customers. A fleet of heterogeneous

vehicles is stationed at the depot. Without loss of generality we assume that there

are m di↵erent vehicle types K = {1, . . . ,m} and, for each type k 2 K, there is only

one vehicle available with capacity Q
k

> 0, where Q1  · · ·  Q
m

. Accordingly K

corresponds to the set of all vehicles and m is the total number of vehicles available

at the depot. The cost of traveling from vertex i to vertex j (arc e = (i, j)) by vehicle

k is denoted by ck
e

. Each customer i has an integer demand q
i

, with 0 < q
i

 Q
m

.

Since splitting demand is not allowed, each customer must be served by exactly one

vehicle. Furthermore, a vehicle cannot serve a set of customers whose total demand

exceeds its capacity. The problem is to find m vehicle routes of minimum cost, where

each vehicle leaves the depot, visits a sub-set of customers and finally returns to the

depot.

There are three main classes of formulations: vehicle flow, two-commodity flow

and set partitioning. In this chapter, we will follow a vehicle flow formulation. In

this method, one can choose a two-index vehicle flow formulation, which uses x
ij

,

e = (i, j) 2 E variables, or a three-index vehicle flow formulation, which uses xk

ij

,

e = (i, j) 2 E, k 2 K variables. We will use the latter formulation as it is particularly

suited for heterogeneous vehicles.

Let xk

e

be a binary variable, indicating whether vehicle k travels from vertex
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i to vertex j (edge e = (i, j)). Also, let u
i

, i 2 V
c

be a continuous variable repre-

senting the total demand of vertices on a route from the depot (vertex 0) to vertex

i. Finally, given a vertex i 2 V , let ��(i) and �+(i) denote the set of incoming and

outgoing edges of i, respectively. In addition, we set �(i) = �+(i)[ ��(i). The MILP

formulation is then:

min
P

k2K
P

e2E ck
e

xk

e

(2.1)

s.t.
P

e2�+(i) x
k

e

�
P

e2��(i) x
k

e

= 0, i 2 V, k 2 K (2.2)

P
k2K

P
e2�+(i) x

k

e

= 1, i 2 V
c

(2.3)

P
k2K

P
e2��(i) x

k

e

= 1, i 2 V
c

(2.4)

P
e2�+(0) x

k

e

= 1, k 2 K (2.5)

P
e2��(0) x

k

e

= 1, k 2 K (2.6)

�u
j

+ u
i

+Q
m

P
k2K xk

e

 Q
m

� q
j

, e = (i, j) 2 E
c

(2.7)

q
i

 u
i


P

k2K Q
k

P
e2�+(i) x

k

e

, i 2 V
c

(2.8)

xk

e

2 {0, 1}, e 2 E, k 2 K. (2.9)

The degree equations (2.2–2.6) ensure that all customers are visited exactly

once and for each vehicle there is exactly one route starting from and terminating

at the depot. Inequalities (2.7–2.8), referred to as Miller-Tucker-Zemlin constraints,

ensure that the routes are connected and, at the same time, impose vehicle capacity

restrictions. Constraints (2.9) are the integrality conditions on the xk

e

variables.
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2.3 Valid inequalities

In this subsection, we present valid inequalities for the HVRP. Recall that the defi-

nition of valid inequality for polyhedron  is as follows: ⇡x  ⇡0 is a valid inequality

for  if ⇡x  ⇡0 for all x 2  . Hence, we need to search for pairs (⇡, ⇡0) that are

valid for the HVRP. Since the HVRP is defined on a graph, the main focus on finding

valid inequalities is to identify appropriate combinations of sub-sets of vertices and

appropriate coe�cients that lead to a valid inequality.

2.3.1 Capacity inequalities

Although the current MTZ constraints (2.7–2.8) forbid violation of the vehicle ca-

pacity, we introduce the capacity inequality to our model in order to straighten the

LP relaxation. The capacity constraint can be presented as follows:

X

i2Vc

X

e2�+(i)

q
i

xk

e

 Q
k

, k 2 K. (2.10)

The above constraint simply guarantees that the demands on route k have to be

less that the capacity of vehicle Q
k

. Yaman [79] improves the above constraint and

introduces two new constraints as follows:

X

i2Vc

X

e2�+(i)

q
i

xk

e

 Q
k

X

i2�+(0)

xk

e

, k 2 K, (2.11)

X

k2K

X

i2Vc

X

e2�+(i)

dQk

Q
exk

e

� dq(Vc

)

Q
e, (2.12)
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where Q can be any of Q1, ..., Qm

. Yaman calls this type of valid inequalities cover

inequalities.

These valid inequalities imply that total demand assigned to a vehicle has to

be less than or equal to the vehicle capacity. Computational results (see Chapter

7) suggest that this type of valid inequalities has a significant impact on the LP

relaxation.

2.3.2 Sub-tour elimination inequalities

It is well known that any valid inequality for the two-index vehicle flow formulation

can be transformed into a valid inequality for the three-index vehicle flow formulation

by using x
e

=
P

m

k=1 x
k

e

. These inequalities are called aggregated by Letchford and

Salazar-González [53]. Sub-tour elimination inequalities introduced by Dantzig et

al. are rather common constraints for the CVRP two-index vehicle flow formulation,

sometimes called rounded capacity inequalities. As briefly mentioned in Chapter 1,

these constraints forbid sub-tours and those routes that exceed the vehicle’s capacity.

Constraint (2.13) states that for any sub-set S of customers (excluding the depot) at

least dq(S)/Qe vehicles enter and leave S, where q(S) =
P

i2S qi and Q is the vehicle

capacity. Indeed these inequalities are extended and relaxed version of constraint

(1.8) which is the DFJ sub-tour elimination inequalities for the TSP. Here we present

an extension to the three-index vehicle flow representation for the heterogeneous case.

Let (S : T ) = {(i, j) = e 2 E : i 2 S, j 2 T} and x(E(S : T )) =
P

k2K
P

e2(E(S:T )) x
k

e

.
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For any S ✓ V
c

, the inequality

x(E(S : S̄)) � 2

⇠
q(S)

Q
m

⇡
(2.13)

is a valid inequality for the HVRP three-index vehicle flow formulation (S̄ = V
c

\S).

Note that, although this extension provides valid inequalities for HVRP and forbids

all sub-tours, it may allow routes that exceed the vehicle capacity. This is due to

the fact that in the HVRP the right-hand side of the inequality depends on the

capacity of the vehicle (and hence, by using Q
m

, we overestimate the denominator),

whereas in the classical CVRP, all vehicles have the same capacity Q. To overcome

this problem we use the constraints adopted by Yaman [79] and disaggregate such

inequalities in the following way:

x(E(S : S̄)) � 2

⇠
q(S)

Q
k

⇡
, k 2 K, S ✓ V

c

. (2.14)

2.3.3 Comb valid inequalities

Edmonds [32] introduced 2-matching constraints for the TSP. Following this work,

Grotschel and Padberg [41] study several classes of inequalities for the symmetric

travelling salesman problem and introduce a new class of valid inequalities known as

comb valid inequalities which are the more generalized type of 2-matching constraints.

They prove the 2-matching and comb valid inequalities are facet-defining for the

TSP polytope. Grotschel and Holland [40] present an extensive study on the STSP’s

polyhedron and solve large-scale STSPs. Later, comb valid inequalities were adapted
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for the CVRP (see [3],[12],[40]) and have been used successfully within cutting plane

based methods. Here we first introduce 2-matching and comb valid inequalities and

then extend them for our heterogeneous cases. Let H, T1, ..., Ts

be a set of sub-sets

of V such that they satisfy

|T
t

\H| = 1, t = 1, ..., s,

|T
t

\H| = 1, t = 1, ..., s,

then the following inequality is called 2-matching valid inequalities introduced by

Edmonds [32]

x(E(H)) +
sX

t=1

x(E(T
t

))  |H|+
sX

t=1

(|T
t

|� 1)� d1
2
se. (2.15)

The above valid inequality can be equally restated:

x(�(H)) +
sX

t=1

x(�(T
t

)) � 3|T |+ 1. (2.16)

Figure 4.4 shows the setting for a 2-matching inequality with s = 3. The first

generalization of the 2-matching inequality which was carried out by Grotschel and

Padberg [41] was to extend the condition on the teeth and the handle i.e., each tooth

can have more than two vertices. The new condition is presented as follows:

|T
t

\H| � 1, t = 1, ..., s,

|T
t

\H| � 1, t = 1, ..., s.
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T1 \H

T1 \H

H \ T

Figure 2.1: A 2-matching with s = 3.

Under the above conditions, inequalities (2.15) and (2.16) are called comb valid in-

equalities. Later these valid inequalities were extended to the CVRP in several works

([3],[12],[40]). While combs with disjoint teeth and odd numbers are facets for the

TSP, they are only valid inequalities for the CVRP and its variants. It can be proven

that the above inequalities are valid for the variants of the VRP. The right-hand side

of (2.16) is in fact the minimum number of vehicles required to serve sub-sets of a

comb as follows:

r̄ =
sX

t=0

(k(T
t

\H) + k(T
t

\H) + k(T
t

)) + 1

where k(S) is the minimum number of vehicles needed to serve customers in S.

Replacing the right-hand side of (2.16) with r̄ results in a so-called strengthened

comb inequality which is valid for the family of HVRPs as the number of vehicles is

its only requirement ([54]). Due to the di�culty in calculating an exact value for r̄,

it can be approximated as follows. 3|T | is the smallest possible number of vehicles
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needed to serve the sets of T
t

\H , T
t

\H and T
t

.

2.3.4 Multistar inequalities

Araque et al. [4] study the polyhedrons of the subtree cardinality-constrained min-

imal spanning tree problem and the capacitated identical customer vehicle routing

problem. For the first time, they introduced multistar and partial multistar inequal-

ities for both problems. These two problems are closely related such that if the last

link of each route is eliminated, then any feasible set of routes becomes a feasible so-

lution to the subtree cardinality-constrained minimal spanning tree problem. Hence,

the polyhedral structure of these two problems are also connected ([4]).

Letchford et al. [52] extend the work of Araque et al. to the CVRP with

general demands. They show validity of di↵erent types of multistar and partial

multistar inequalities for the CVRP. Another important topic discussed in their

paper is cutting plane procedures for the valid inequalities they study. Araque et

al. [4] initially introduced three types of multistar inequalities (large, intimidate and

small) and four types of partial multistars valid inequalities. Here we review them

and extend to the HVRP if possible.

Multistar Valid Inequalities Multistars were defined initially for the capacitated

vehicle routing problem with unit demand and the related integer programs, using

two types of sub-sets of the vertices called nucleus and satellite. Araque et al. define

a multistar as follows: a multistar consists of the complete sub-graph on a set of

nucleus vertices N , together with a set of satellite vertices S and the edges connecting
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Figure 2.2: A multistar with |N | = 3 and |S| = 3

every satellite vertex to every nucleus vertex. Figure 2.2 shows a multistar with the

nucleus (N) presented with the black vertices and the satellite (S) presented with the

blue vertices. For a given nucleus N ⇢ V \ {0} and a given satellite S ✓ N̄ (where

N̄ = V \ (N [ {0})), Araque et al. form the following general multistar inequality:

bx(E(N)) + x(E(N : S))  rhs (2.17)

where the constants b and rhs depend on the sizes of the nucleus and satellite sets,

and E(N : S) denotes the set of edges between N and S. In the capacitated vehicle

routing problem with unit demand there is only one type of vehicle available with

capacity Q and all customers have unit demand. When b = Q and rhs = (Q�1)|N |,

inequality (2.17) is valid and is called the large multistar (LM) inequality. When

b = 2 + |N | mod (Q � 2) and rhs = b|N | � (b � 2)d |N |
Q�2e, inequality (2.17) is again

valid and but is called the intermediate multistar (IM) if 3  b  2d |N |
Q�2e. Finally,
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inequality (2.17) is valid and called the small multistar (SM) if |N [ S| > Q and

2  b < |S| for b = |N [ S| mod Q and rhs = b(|N |� k(N [ S)) + |S|. Recall from

(1.8) that k(N [ S) is the minimum number of vehicles needed to serve customers

in N [ S.

The large multistar inequality can be extended to the capacitated vehicle

routing problem with general demands as follows:

Qx(E(N)) +
X

j2N̄

q
j

x(E(N : {j}))  Q|N |� q(N), 8N 2 V
c

: |N | � 2. (2.18)

The above inequality is known as generalized large multistar (GLM) inequality ([52]).

In fact the GLM inequality guarantees that the total demands of customers in the

nucleus and the customers visited by vehicles immediately after leaving the nucleus

is less than or equal to a specific value. This specific value is the number of edges

leaving the nucleus multiplied by Q. A natural generalization of the GLM inequality

for the HVRP is to substitute Q with the smallest and largest vehicle capacities Q1

and Q
m

, respectively:

Q1x(E(N)) +
X

j2N̄

q
j

x(E(N : {j}))  Q
m

|N |� q(N), 8N 2 V
c

: |N | � 2.

Of course, these valid inequalities can be disaggregated for each type of vehicle by

replacing Q1 and Q
m

with Q
k

. Yaman [79] modifies the GLM for the HVRP and

suggests a valid inequality that dominates above valid inequality. She uses the same

idea to compute the number of edges leaving the nucleus for each type of vehicles
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(k).

X

k2Kij

�
ik

xk(E(S : N)) � q(N) +
X

j2N̄

q
j

xk(E(N : {j})), 8N 2 V
c

: |N | � 2 (2.19)

where �
ik

= min{Q
k

� q
i

, q(N) + max
l2�k(N) ql}. As we can see, the idea of the

capacity inequalities is implicitly embedded in the last three inequalities.

However, attempts to extend the IM and the SM to the CVRP have failed

([52]). Inequalities (2.18) and (2.19) are called inhomogenous as the coe�cients of x

vary in these inequalities depending on the customers’ demand.

Partial Multistar Valid Inequalities Araque et al. [4] generalize the multistars

for the capacitated vehicle routing problem with unit demand by making the follow-

ing changes: instead of including all the edges connecting the nucleus vertices and

the satellite vertices, the support graph contains only those edges that are incident to

a sub-set C of the nucleus vertices; we refer to this sub-set as the connector vertices.

For a given nucleus N ⇢ V \ {0}, a given satellite S ✓ N̄ and a given connector

C ⇢ N , Araque et al. define a general partial multistar inequality as follows:

ax(E(N)) + x(E(C : S))  rhs (2.20)

where a is a constant depending on N , S, C and the type of partial multistar. There

are four types of partial multistars and each one is valid for certain conditions. Here

we list the conditions for each type ([52]).

1. The first type is called one-connector partial multistars (|C| = 1). When Q � 3
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and |N | is a multiple of Q, then a = 2 and rhs = 2(|N |� k(N)).

2. The second type is called two-connector partial multistars (|C| = 2). When

Q � 4 and |N | mod Q = 1, then a = 2 and rhs = 2(|N |� k(N) + 1).

3. The third type is called three-connector partial multistars (|C| = 3). When

Q � 4 and |N | is a multiple of Q, then a = 3 and rhs = 3(|N |� k(N)).

4. The forth type is also called three-connector partial multistars (|C| = 3). When

Q � 4 and |N | is a multiple of Q, then a = 2 and rhs = 2(|N |� k(N)) + 1.

The homogenous multistar inequalities: Letchford et al. [52] propose some

approximations for the homogenous multistar inequalities since it is NP-hard to

find homogeneous multistar inequalities for the CVRP. Recall k(S) be the minimum

number of vehicles required to serve the customers in S. All feasible solutions of the

CVRP satisfy

x(E(C : S))  min {2|C|, 2|S|, |C|+ |S|� k(C [ S)} , (2.21)

x(E(C : S)) � 2d q(S)
Qm

e. (2.22)

It is easy to see the validity of inequality of (2.21). It is trivial that x(E(C : S)) 

min {2|C|, 2|S|} and constraint (1.8) implies x(E(C : S))  {|C|+ |S|� k(C [ S)}.

As inequality (2.22) suggests, it is an extension of the sub-tour elimination constraint

(2.13). One can see the above approximations are also valid for the HVRP.
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2.4 Lifting technique

It is known that valid inequalities can be strengthened via lifting. Desrochers and

Laporte [27] propose a simple lifting technique for the MTZ constraints for the TSP.

Here we extend their technique to the HVRP. To simplify notation we denote by

x
ij

=
P

k2K xk

ij

.

Proposition 1. The lifted version of constraints (2.7) is as follows:

�u
j

+ u
i

+Q
m

x
ij

+ (Q
m

� q
j

� q
i

)x
ji

 Q
m

� q
j

, (i, j) 2 E
c

. (2.23)

Proof. If x
ij

= 1 then x
ji

= 0, so we obtain the original MTZ inequality. On the

other hand, if x
ji

= 1, then the inequality reduces to u
i

 u
j

+ q
i

, which is again

valid according to MTZ.

Similarly it is possible to lift the MTZ upper bound in (2.8) as follows:

u
i


X

k2K

Q
k

X

j2V

xk

ij

�
X

j2Vc

q
j

x
ij

, i 2 V
c

. (2.24)

For any customer i 2 V
c

, its successor can be either another customer or the depot.

If it is a customer j 2 V
c

, then u
i

 u
j

� q
j

is valid. If it is the depot, the term
P

j2Vc
q
j

x
ij

is zero and we obtain the original MTZ upper bound. We call the model

of (2.1–2.6) & (2.8–2.9) & (2.23-2.24) HVRP-DL for brevity.
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2.4.1 Yaman’s technique

Yaman [79] proposes constraints (2.25) similar to the MTZ constraint to calculate the

flow of the product using a new flow variable (t
ik

) for each vehicle i.e., it calculates

the total demand of vertices on a route that uses vehicle k after visiting customer i.

t
jk

� t
ik

+ q
j

P
i2Vc

xk

ij

�Q
k

(
P

j2Vc
xk

ij

� xk

ij

), 8i, j 2 V
c

, 8k 2 M, (2.25a)

t
ik

� q
i

P
j2Vc

xk

ij

+
P

j2Vc
q
j

xk

ji

, 8i 2 V
c

, 8k 2 M, (2.25b)

t
ik

 Q
k

P
j2Vc

xk

ij

, 8i 2 V
c

, 8k 2 M. (2.25c)

The first two constraints compute t
it

and the third constraint ensures that the vehicle

capacity is not violated. However, Yaman argues that the above set of constraints

provides a weak lower bound. Therefore, Yaman improves them by adding the fol-

lowing terms to the right-hand side of the first two constraints, respectively.

(Q
k

� q
i

� q
j

)xk

ji

, (2.26)

�(Q
k

� q
i

�max
j

q
j

)
P

j2Vc
xk

ji

. (2.27)

This improvement can be seen as an extension of Desrochers and Laporte [27] lifting

technique as Yaman uses the same idea. Hence, the new constraints will be written

as follows for k 2 K and 8i, j 2 V
c

:
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t
jk

� t
ik

+ q
j

P
i2Vc

xk

ij

�Q
k

(
P

j2Vc
xk

ij

� xk

ij

) + (Q
k

� q
i

� q
j

)xk

ji

, (2.28a)

t
ik

 Q
k

P
j2Vc

x
ijk

�
P

j2Vc
q
j

xk

ij

� (Q
k

� q
i

�max
j

q
j

)
P

j2Vc
xk

ji

. (2.28b)

2.4.2 Reformulation and linearization technique

We apply a specialized version of the well-known Reformulation-Linearization Tech-

nique (RLT) by Sherali and Adams [70] to the MTZ constraints to improve its LP

relaxation. In particular, to contain the size of the resulting model, we follow Sher-

ali and Driscoll [71], who only apply a partial first-level RLT version and provide a

relatively tight formulation for the TSP. The MTZ constraints (2.7) can be re-stated

as follows:

u
j

x
ij

= (u
i

+ q
j

)x
ij

, (i, j) 2 E
c

, (2.29a)

u
j

x0j = q
j

x0j, j 2 V
c

. (2.29b)

We call the model (2.1–2.6), (2.8–2.9) and (2.29a–2.29b) HVRP-NL for brevity.

We now apply the specialized version of RLT by Sherali and Driscoll [71] to

HVRP-NL. The approach consists of two steps. First, we reformulate by generating

additional (non-linear) implied constraints. Second, we linearize the nonlinear terms

using a substitution of variables in place of each distinct nonlinear term.

Reformulation: We reformulate the HVRP-NL by generating three sets of

quadratic constraints as follows.
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(S1): Multiply by u
i

both the degree constraints (2.3) and (2.4).

(S2): Multiply the first inequalities in (2.8) by x
ij

and (1� x
ij

� x
ji

), respectively.

(S3): The second inequalities in (2.8) suggest that (Q
m

�u
j

) � 0, which we multiply

by x
ij

and (1� x
ij

� x
ji

), respectively.

Linearization: We linearize the HVRP-NL along with the three new sets of

constraints (S1)–(S3) generated above using the following substitution of variables:

y
ij

= u
i

x
ij

and z
ij

= u
j

x
ij

. (2.30)

Note that y
ij

can be interpreted as the load of the vehicle before visiting customer j,

if j is served after customer i, and zero otherwise. Similarly, z
ij

can be interpreted

as the load of the vehicle after visiting customer j, if j is served after customer i,

and zero otherwise. Also, we can replace u
j

x0j by q
j

x0j using (2.29b), and we can

bound u
j

x
j0 from above using Q

k

x
j0. Note that we can always eliminate z

ij

using

the relationship z
ij

= y
ij

+ q
j

x
ij

. The linearization step yields the inequalities given

below.

Proposition 2. Denote by �+
c

(i) the set of arcs (i, j) 2 E
c

. Linearization of (S1)

leads to the following:

X

(i,j)2�+c (i)

y
ij

+
X

k2K

Q
k

xk

i0 � u
i

� 0. (2.31)
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and
X

(j,i)2��c (i)

z
ji

+ q
i

x0i � u
i

= 0. (2.32)

Proof. Multiplying (2.3) by u
i

we obtain

X

(i,j)2�+(i)

u
i

x
ij

� u
i

= 0.

Then substituting y
ij

and observing that the load of a vehicle u
i

leaving customer i

and entering the depot must be less than or equal to the capacity of the vehicle Q
k

,

yields the inequalities. Similarly, multiplying (2.4) by u
i

we obtain

X

(j,i)2��(i)

u
i

x
ji

� u
i

= 0.

Then substituting z
ji

and using (2.29b) we obtain the equations.

Next, (S2) and (S3) can be linearized simply by substituting the quadratic

terms with their corresponding variables. Hence, linearization of (S2) leads to

z
ij

� q
j

x
ij

, (2.33a)

u
j

� z
ij

+ y
ji

+ q
j

� q
j

x
ij

� q
j

x
ji

; (2.33b)

and linearization of (S3) leads to:

z
ij

 Q
m

x
ij

, (2.34a)

u
j

 Q
m

(1� x
ij

� x
ji

) + z
ij

+ y
ji

. (2.34b)

42



Note that in all the new sets of constraints introduced above, z
ij

can be eliminated

by substituting it by y
ij

+ q
j

x
ij

.

Extending the argument of Sherali and Driscoll [71], we conclude on validity

and the tightness of our new formulation as follows.

Proposition 3. The formulation obtained by replacing (2.7–2.8) with (2.31), (2.32),

(2.33a–2.34b) is valid and provides an LP relaxation that is tighter than the LP

relaxation of the HVRP-DL.

Proof. The validity follows by construction. Hence it su�ces to show that the con-

straints (2.31), (2.32), (2.33a–2.34b) imply (2.23). To do so, first we replace z
ij

with

y
ij

+ q
j

x
ij

in (2.33b) and in (2.34b), then we multiply (2.34b) by �1 and finally we

interchange i and j in (2.34b). By surrogating the resulting inequalities we obtain

0 � u
i

� u
j

�Q
m

+ (Q
m

� q
i

� q
j

)x
ji

+Q
m

x
ij

+ q
j

,

which is (2.23).

This proposition will be supported by computational experiments in Sec-

tion 7.1.

2.4.3 Customized valid inequalities

In addition to the valid inequalities developed in the literature, we can improve the

LP relaxation of the HVRP by using some customized valid inequalities. The type of

valid inequalities presented here can be seen as a specific version of intersection cuts
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developed by Balas [5]. Intersection cuts are known as one of the most successful cuts

developed for mixed integer programs [28]. On the basis of the intersection cuts, two

other classes of cuts have been developed: split cuts and cross cuts. The aim of these

techniques is to generate facets of the integer hull. The idea is as follows. Assume

x̄ is a non-integer optimal solution of the LP relaxation. A unit hypercube can be

defined so that it contains x̄ and its vertices which are integer. Also, a hypersphere is

defined so that it circumscribes the hypercube. The hyperplanes whose intersections

define x̄, intersect the hypersphere at n points (let us assume the solution is not

degenerated). The hyperplane through these n points is a valid cut. Figure 2.3

shows an example in three-dimensional space. The shaded hyperplane is the cut

passing through a, b and c.

x̄

a

b

c

Figure 2.3: Intersection cut

Following the above idea, we propose a set of customized valid cuts for the

HVRP. The main di↵erence is that we do not define the hypersphere, instead we use

trivial bounds of the binary variables. For given customer i and customer j, a valid

cut can be derived using three variables: u
i

, xk

ij

and xk

ji

. In Figure 2.4 for the sake of
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presentation let us consider only two variables (u
i

and xk

ij

). Let A, B and C be three

constraints in ”” format where their intersections with xk

ij

= 0 and xk

ij

= 1 are a
t

,

b
t

and c
t

for t = 0, 1, respectively. Any cut connecting p0 to p1 (where p = a, b, c)

is a valid cut for the feasible region. In this simple example the most e�cient cut is

the cut that passes through c0 and a1.

xk

ij

u
i

B
b1b0
Aa1

a0

Cc1

c0

Figure 2.4: Customized cuts

Similarly, we can derive valid cuts for the HVRP. Let f
t

(u
i

, xk

ij

, xk

ji

) be a func-

tion resulting from a valid inequality by moving every term to the left hand side and

dropping the inequality sign. These three functions can be simply obtained p1
t

=

f
t

(u
i

, xk

ij

= 0, xk

ji

= 1), p2
t

= f
t

(u
i

, xk

ij

= 1, xk

ji

= 0) and p3
t

= f
t

(u
i

, xk

ij

= 0, xk

ji

= 0).

Any triple of (p1
t

, p2
t

0 , p3
t

00) presents a valid cut. To identify the cuts, we can simply

find the planes which pass through these three points by calculating the following

45



determinant:

xk

ij

xk

ji

� 1 u
i

� p1
t

xk

ij

� 1 xk

ji

u
i

� p2
t

0

xk

ij

xk

ji

u
i

� p3
t

00

= (xk

ij

+ xk

ji

� 1)(u
i

� p3
t

00)� xk

ji

(u
i

� p1
t

). (2.35)

The resulting cut will contain non-linear terms. The non-linear terms can be lin-

earized using (2.30) and using the fact that xk

ij

xk

ji

= 0 and (xk

e

)2 = xk

e

(recall that

xk

e

2 {0, 1}).

2.5 Extending the model

In this section, we present the modifications necessary to generalize the model in-

troduced in this chapter so far to the multi-depot HVRP (MD-HVRP) and the

capacitated multi-depot HVRP (CMD-HVRP). Let V
d

be the set of depots in which

a set of vehicles (K
j

, 8j 2 V
d

) are stationed. Each vehicle must return to the depot

from which it started its trip. Since by extending the problem to the MD-HVRP, no

extra limitation will be added to the problem, there is no need to add or remove any

constraints. The only modification required is to consider all vertices and edges for

�(i).

However, when there is a capacity limitation of the depots, additional con-

straints are required to guarantee that the capacity limitations are not violated. This

type of constraints can be formulated in two ways. Let F
i

be the capacity of depot

i 2 V
d

. And let a
ij

be a binary variable taking value one if customer i is assigned to
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depot j. Then the depot capacity constraints can be presented by

P
e2�(i) x

k

e

+
P

e2�(j) x
k

e

� a
ij

 1, 8i 2 V
c

, 8j 2 V
d

, 8k 2 K
j

, (2.36)

P
i2Vc

q
i

a
ij

 F
j

, 8j 2 V
d

. (2.37)

Constraint (2.36) states if customer i is assigned to depot j, then a
ij

takes value one.

Constraint (2.37) guarantees the total demands assigned to depot j is less than the

depot’s capacity. Here, we present another set of constraints using the load variables

(u
i

) to impose the depots’ capacity limitation. The idea is to make sure that u
i

⇤  F
j

where i⇤ is the last customer on a route which has been assigned to depot j. The

following constraint represents the depots’ restrictions.

X

k2Kj

X

a2�+(j)

u
i

xk

e

 F
j

, 8j 2 V
d

. (2.38)

The above constraint is a non-linear constraint. It can be linearized using new

continuous variables:

v
ij

 u
i

, 8i 2 V
c

, 8j 2 V
d

, (2.39)

v
ij

� u
i

�M
⇣
1�

P
k2Kj

xk

e

⌘
, 8e = (i, j) : i 2 V

c

, j 2 V
d

, (2.40)

v
ij

 M
P

k2Kj
xk

e

, 8e = (i, j) : i 2 V
c

, j 2 V
d

, (2.41)

P
i2Vc

v
ij

 F
j

, 8j 2 V
c

. (2.42)

where M is a big number and v
ij

� 0, 8i 2 V
c

and 8j 2 V
d

is an auxiliary variable.
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2.6 Concluding remarks

We studied the polyhedral presentation of the deterministic HVRP which addresses

the first research question to some extend. In fact, we studied di↵erent types of valid

inequalities and lifting techniques which lead to developing a new formulation for

the HVRP whose uncertain counterpart is tractable and at the same time provide a

relatively tight approximation for the convex hull of the deterministic HVRP.

Among the valid inequalities and lifting techniques we studied in this chap-

ter, the capacity inequalities, customized valid inequalities and the reformulation-

linearization technique provide a significant improvement on the lower bound of the

deterministic HVRP.

In addition, we extended our models for the multi-depot HVRP and the ca-

pacitated multi depot HVRP.
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Chapter 3

The HVRPUD WITHOUT

RECOURSE ACTIONS

3.1 Introduction

As briefly explained in Section 1.2, within the a priori policy, two main approaches

have been suggested to formulate the VRPUD and to capture its uncertainty: single-

stage and two-stage approaches. In this chapter, we present single-stage models for

the Heterogeneous Vehicle Routing Problem with Uncertain Demand (HVRPUD)

in which no recourse action is considered in the models. That is, if a route failure

occurs, the solution obtained from a single-stage approach does not provide any (op-

timal) action and subsequently does not provide any information on possible extra

cost even though there are parameters to control the probability of failure. There-

fore, drivers/managers decide upon suitable recourse actions once a failure occurs
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to minimize the cost. In order to reduce the risk of encountering failures, managers

may prefer to increase the validity of routes subject to the demand uncertainty. How-

ever, this risk reduction usually involves an increase in cost. Therefore, managers

may consider a tradeo↵ between the route validity and the extra cost. To formulate

this situation, Chance Constrained Programming (CCP) and/or Robust Optimiza-

tion (RO) may be used to capture the uncertainty in the VRPUD. These methods

provide a set of routes which are guaranteed to be valid with a high probability or to

be immune/protected against demand variations. In this chapter, we present models

based on CCP and two di↵erent approaches within RO to the HVRPUD. But, let us

first present a brief literature review on the single-stage VRPUD and its variants.

Literature review There are several studies carried out on single-stage CVRP

with uncertain demand in the literature. The most recent surveys on the VRPUD

are Gendreau et al. [38], Dror [29] and Erera et al. [34]. The first results on the VR-

PUD dates back to the early 1960s with Tillman [76]. In the 1980s SVRP received

more attention with Stewart and Golden [74], Dror and Trudeau [31], Laporte and

Louveau [46] and Laporte et al. [47]. Stewart and Golden [74] was one of the earliest

works to solve the single-stage VRPSD to optimality. There, they formulated the

HVRP with stochastic demand using chance constrained programming and showed

that the VRPSD is convertable into a tractable equivalent deterministic problem

for some random demand distribution. Also, they presented two models in which

recourse costs are considered. Dror and Trudeau [31] extended Clarke and Wright

[24] heuristic which was originally developed to solve the deterministic VRP, and

solved stochastic VRP. Laporte et al. [47] later study a location-routing problem
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with stochastic demand in which they investigated two main models. In the first

model, they use CCP to formulate the uncertainty and in the second model, similar

to [74], they make sure that the expected penalty of route failure does not exceed

a pre-specified fraction of the route length. Laporte et al. [48] studied a relevant

problem where instead of demands, traveling time is subject to uncertainty. They

also apply chance constrained programming to formulate the problem. After this

work, researchers have mostly focused on two-stage SVRP, the VRP with stochastic

demand and recourse cost. It is due to the fact that although chance constrained

programming provides a suitable framework to formulate and solve the VRPUD, it

does not provide any information on possible extra cost of route failure even though

it controls the probability of failure. In the literature, it is mainly assumed that all

customers have to be served, thus the recourse action defined to fulfil this assumption

is back-and-forth trips to the depot to serve remaining customers on failed routes.

CCP ignores the location of the failure, therefore corresponding recourse costs can-

not be taken into account. A set of recourse routes can have quite di↵erent costs

depending where failures occur.

Three solutions can be suggested to cope with this drawback. Firstly, a set of

recourse actions and their corresponding costs can be included into modelling phase,

that results in two-stage Stochastic Vehicle Routing Problem (SVRP) or also known

as SVRP with recourse costs. This solution will be reviewed and studied in Chapter

6. The second solution is to analyze the risk level using simulation. In this case,

the risk level (↵) can be considered as a variable in the model. This assumption

results in a much more complicated and intractable problem. Shen [69] studies such
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a situation where probability of constraint violation (↵) in CCP is considered as

a new variable. She investigates special cases in linear programming in which the

resulting problems are easier to deal with although they are still di�cult to solve. In

this dissertation, we provide a scenario-based analysis to identify the best risk level

scenario for two actions in Chapter 7. The first (recourse) action is that a return

trip has to be made to the depot for a replenishment and the pre-planned route will

have to be resumed as all customers are required to be served. For a given set of

routes obtained from solving the single-stage VRPUD, we can compute and analyze

the actual cost of serving all customers (the routing cost plus the cost of return trips)

for each risk level scenario. The second action is that we relax the assumption that

all costumers have to be served. It is quite often in practice that unserved costumers

are left unserved and a lost sale cost is imposed. In Chapter 7 for a given set of

routes obtained from solving the single-stage VRPUD for each risk level scenario,

we computationally analyze the optimal intervals of the lost sale cost for each risk

level scenario. The third solution which has recently received more attention is

to apply robust optimization to formulate the problem and uncertainty sets. As

mentioned, RO considers the worst case possible for the uncertain parameters. The

goal is to find routes that are feasible for all demand (scenario) realizations, so that

failure can never occur. Literature is rather scarce on this topic and we are only

aware of a recent study by Sungur et al. [75], who use the robust optimization

methodology introduced by Ben-Tal and Nemirovski [15] to formulate the Robust

CVRP (RCVRP). As their method is known to be conservative, later on, Bertsimas

and Sim [17] propose an adjustable RO approach where using a control parameter we
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can adjust the probability of violation of constraints. To best of our knowledge there

is no work on Bertsimas and Sim’s approach for the VRPUD. As there is a control

parameter in their approach, similar to CCP, we carry out the risk level analysis for

this approach as well. In the remainder of this section we briefly describe these three

approaches (CCP, Ben-Tal and Nemirovski and Bertsimas and Sim RO approaches).

Chance Constrained Programming: The chance constrained programming was

developed by Charnes and Cooper in the fifties and early sixties ([20],[21]). In CCP,

for given parameters of random variables, such as distributions with their means and

variances, one subjectively specifies a control probability for a constraint not to incur

a violation. Simply, the constraint-wise CCP for a single constraint ã
i

x  b̃
i

can be

presented by

Pr
⇣
ã
i

x  b̃
i

⌘
� 1� ↵

i

, (3.1)

where ã
i

2 <n and b̃
i

2 < are uncertain parameters with known distribution functions

and ↵
i

is the pre-specified probability. Constraint (3.1) guarantees that constraint i

will be valid (1� ↵
i

)% times. Another type of CCP is chance-constrained program-

ming with joint constraints where it is guaranteed that the union of n constraints is

satisfied with a pre-specified probability 1� ↵:

Pr
⇣
\n

i=1{ãix  b̃
i

}
⌘
� 1� ↵. (3.2)

There are two di�culties that make CCP intractable. Firstly, it is very di�cult
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to check the feasibility of a given solution. Secondly, the feasible region induced by

chance constraints may be non-linear and non-convex ([2] and [45]). However, for

some special cases it has been proven that the feasible region is convex or convex

approximations can be proposed. For more detail see [58]. Another drawback with

CCP is that it requires access to reliable data such as the parameters’ distribution

which is not always possible.

Robust optimization: This approach overcomes the two di�culties of CCP (ac-

cess to reliable data and intractability) i.e., there is no need to have access to any

distribution parameters and also the resulting problems are tractable if the origi-

nal problem is tractable. However, RO may lead to a very conservative approach.

The constraint-wise RO for a single constraint ã
i

x  b̃
i

is derived from solving the

following problem:

max
a

ax  min
b

b (3.3)

Many researchers have tried to find a tractable representation of the above inequality

for di↵erent types of uncertainty sets. Soyster [73] propose a conservative approach

to formulate data uncertainty. His work later was developed and extended by many

people most notably Ben-Tal, Bertsimas, El-Ghaoui, Nemirovski and Sim. Soyster’s

approach provides a full protection against any data variation. In Soyster [73], an

uncertain parameter is modelled as symmetric and bounded variable which takes

values in an interval. Then, he proposes a tractable counterpart for (3.3).

Ben-Tal and Nemirovski [16] propose a less conservative approach. They con-
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sider a slightly di↵erent uncertainty set than the one considered by Soyster i.e., they

cut the corners of the uncertainty set which is not very likely to happen. They also

propose a general case where uncertain parameters are formulated in a cone. How-

ever, their resulting robust counterpart of (3.3) is a non-linear constraint, more pre-

cisely a second-order cone constraint when the original problem is a linear program.

Ben-Tal and Nemiroveski later relax the assumption that the constraints are hard, so

that they permit some constraints to be violated. These constraints are called soft

constraints and are immunized/protected against uncertainty in a more flexible way.

The recent robust counterpart is known as generalized robust counterpart where a

parameter (↵) known as ”global sensitivity” and a distance between uncertain pa-

rameters’ normal range (Z) set and their physically possible set (Z+ � Z) adjust

the flexibility of (3.3) as follows:

max
ai

a
i

x�min
bi

b
i

 ↵dist(⇣,Z), 8⇣ 2 Z+ (3.4)

Ben-Tal et al. [14] present a comprehensive study on this issue and related topics. As

mentioned the resulting problems are non-linear and di�cult to solve, in particular

when there are integer variables in the original model. With binary variables, Ben-

Tal and Nemirovski [16]’s approach tends to be even more conservative so much so

that sometimes the resulting problem becomes infeasible.

Bertsimas and Sim [17] propose a tractable and adjustable robust approach

which is also very suitable for mixed integer programs with uncertainty. Their main

idea is based on the fact that all uncertain parameters do not always take their worst

possible values simultanously. Based on this idea they introduce a new notion: price
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of robustness which is associated with a parameter (�
i

) for constraint i. Indeed,

this parameter controls the degree of conservatism of the robust solution which is

guaranteed to be feasible when up to �
i

of the parameters simultaneously take their

worst values for a given constraint. This parameter controls the trade-o↵ between

the probability of violation of constraints and the value of objective function. They

assume that uncertain parameters are independently and symmetrically distributed

in intervals [a
ij

� â
ij

, a
ij

+ â
ij

]. For a given �
i

, the following robust counterpart is

formulated

a
i

x+ max
{�i[ti: �i✓Ji,|�i|=b�ic, ti2Ji\�i}

X

j2�i

â
ij

x
j

+ (�
i

� b�
i

c)â
tixti  b

i

, (3.5)

where b�
i

c parameters are permitted to take their worst possible values and one

parameter (indexed by t
i

) change by (�
i

� b�
i

c)â
ti , and J

i

is the set of coe�cients

subject to uncertainty. Finally �
i

is a sub-set of uncertain parameters. Note that

without loss of generality, it is assumed that b
i

is deterministic. Constraint (3.5)

can be linearized in a tractable way using duality theorems. Bertsimas and Sim

also introduce probability bounds depending on the value of �
i

and represent the

probability of violation of a constraint if more than �
i

coe�cients change at the

same time. They show that the larger the number of uncertain coe�cients in a

constraint is, the more accurate the bounds are.

In the next three sections, we apply CCP, Ben-Tal and Nemirovski and Bert-

simas and Sim RO approaches to the HVRPUD.
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3.2 Chance-constrained model

In a chance-constrained model, constraints are required to be satisfied with some big

probability. We start with the MTZ constraints (2.7–2.8), whose chance-constrained

counterpart is as follows:

Pr

"
u
j

� u
i

�Q
m

X

k2K

xk

e

+Q
m

� q
j

#
� 1� ↵, e = (i, j) 2 E

c

, (3.6a)

Pr

2

4q
i

 u
i


X

k2K

Q
k

X

e2�+(i)

xk

e

3

5 � 1� ↵, i 2 V
c

, (3.6b)

which mean that these constraints can be violated with probability at most ↵. In

particular, given a cumulative distribution F
j

for the demand parameter q
j

, the

above are equivalent to:

u
j

� u
i

�Q
m

X

k2K

xk

e

+Q
m

� F�1
j

(1� ↵), e = (i, j) 2 E
c

, (3.7a)

F�1
i

(1� ↵)  u
i


X

k2K

Q
k

X

e2�+(i)

xk

e

, i 2 V
c

. (3.7b)

Note that the chance-constrained counterpart (3.7a–3.7b) remains linear.

Remark: It is worth mentioning that constraints (3.7a–3.7b) guarantee that

there is no sub-tour for (1 � ↵)100% realisations of the demands. When we solve

the problem, in the solution there will not be any sub-tour because the solution is

guaranteed to be valid for (1� ↵)100% cases. Like validity of any constraints in the

CCP context, these constraints may be violated with probability of ↵.
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The chance-constrained counterpart of the capacity inequalities (2.10) involves

non-linear constraints. To ease notation we let xk

i

=
P

e2�+(i) x
k

e

and let xk denote

the (column) vector (xk

i

: i 2 V
c

). The chance-constrained counterpart can be written

as follows:

Pr[qTxk  Q
k

] � 1� ↵, k 2 K. (3.8)

When q follows a normal distribution N (µ,⇤) with mean (vector) µ and co-

variance (matrix) ⇤, the above chance constraint can be reformulated as the following

second-order cone constraint:

p
(xk)T⇤xk  Q

k

� µTxk

��1(1� ↵)
, k 2 K, (3.9)

where � is the cumulative distribution function of the standard normal distribution.

When demands are not correlated (i.e., �
ij

= 0, i 6= j 2 V
c

), we can rewrite (3.9) as:

µTxk + ��1(1� ↵)

sX

i2Vc

�2
i

(xk

i

)2  Q
k

, k 2 K. (3.10)

To obtain a linear formulation we can substitute the non-linear term on the

left-hand side with the linear over-estimator ��1(1 � ↵)
P

i2Vc
�
i

xk

i

, obtaining an

approximated (linear) chance constraint (�
i

is the demand standard deviation for

costumer i).

Next let us consider the chance-constrained counterpart of the sub-tour elim-
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ination inequalities (2.13), which is as follows:

Pr
⇥
X(S : S̄) � 2 dq(S)/Q

k

e
⇤
� 1� ↵, k 2 K, S ✓ V

c

. (3.11)

If F
q(S) is the joint distribution function of the random variables q

i

, i 2 S, then the

above is equivalent to:

X(S : S̄) � 2
l
F�1

q(S)(1� ↵)/Q
k

m
, k 2 K, S ✓ V

c

, (3.12)

where F�1
q(S)(1� ↵) can be calculated for some classes of distribution functions (e.g.,

Normal), when demands are independently distributed and follow the same dis-

tribution with di↵erent parameters. For example, when q(S) ⇠ N (µ
S

,⇤), where

µ
S

=
P

i2S µi

is the sum of the means and ⇤ is the covariance matrix, then we have

a tractable case and (3.12) can be replaced by

X(S : S̄) � 2 dq⇤(S)/Q
k

e , k 2 K, S ✓ V
c

,

where q⇤(S) is calculated as follows:

Pr [q(S) � q⇤(S)] = Pr

"
q(S)� µ

Sp
|⇤|

� q⇤(S)� µ
Sp

|⇤|

#
, (3.13)

and

q⇤(S) = µ
S

+ ��1(1� ↵)
p
|⇤|. (3.14)
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Similar to constraint (3.9), the chance-constrained counterpart of the lifted inequal-

ities (2.23) also involves non-linear constraints.

Pr [�u
j

+ u
i

+Q
m

x
ij

+ (Q
m

� q
j

� q
i

)x
ji

 Q
m

� q
j

] � 1� ↵, i, j 2 V
c

, (3.15)

Again let assume q follow a normal distribution N (µ,⇤), then the above chance

constraint is equivalent to:

q
(x

ji

)2�2
i

+ (1� x
ji

)2�2
j

 F (u, x)

��1(1� ↵)
, i, j 2 V

c

, (3.16)

where F (u, x) = u
j

�u
i

+Q
m

(1�x
ij

)�(Q
m

�µ
j

�µ
i

)x
ji

�µ
j

. Note that (1�x
ji

)x
ji

= 0.

Similar to (3.10) we can approximate (3.16) as follows:

�u
j

+ u
i

+Q
m

x
ij

+ (Q
m

�µ
j

� µ
i

)x
ji

 Q
m

� µ
j

���1(1� ↵) ((x
ji

)�
i

+ (1� x
ji

)�
j

) (3.17)

The chance-constraint counterpart of the RLT inequalities of Section 2.4.2

retains linearity, since there is only one random variable which appears as a coe�cient

of one or more decision variables. In this case, we can apply the same idea used for

the MTZ constraints. For example, considering the chance-constrained counterpart

of the RLT inequalities (2.33b), we get

Pr [u
j

� z
ij

+ y
ji

+ q
j

(1� x
ij

� x
ji

)] � 1� ↵, (3.18)
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which is equivalent to

u
j

� z
ij

+ y
ji

+ F�1
j

(1� ↵)(1� x
ij

� x
ji

). (3.19)

The chance constraint counterpart of the depot capacity constraints presented

in (2.37) can be formulated similar to (3.9):

Pr

"
X

i2Vc

q
i

a
ij

 F
j

#
� 1� ↵, 8j 2 V

d

(3.20)

when q s N (µ,⇤), the above chance constraint can be reformulated by

q
(a

j

)T⇤a
j

 F
j

� µTa
j

��1(1� ↵)
, j 2 V

d

, (3.21)

where a
j

is the vector a
ij

: i 2 V
c

.

3.3 Ben-Tal and Nemirovski robust model

In the Ben-Tal and Nemirovski (BN) model, the uncertain demand vector q belongs

to a bounded uncertainty set U , which is constructed as a set of deviations around

a fixed expected value q0. In the following, we let s denote the number of (demand)

scenario vectors: q1, . . ., qs. The uncertainty set U consists of linear combinations

of the scenario vectors with weights ⇠ 2 ⌅:

U =

(
q 2 <n : q = q0 +

sX

l=1

⇠
l

ql, ⇠ 2 ⌅
)
. (3.22)
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In particular, we consider two uncertainty sets for ⌅:

⌅1 = {⇠ 2 <s : k⇠k1  1}, (3.23a)

⌅2 = {⇠ 2 <s : k⇠k2  ⇢}, (3.23b)

which represent, respectively, a box and a ball of radius ⇢. In this section, we present

the robust counterparts for the above two sets and show that our formulation mainly

results in linear robust counterparts for both sets.

Note that in the model of Section (2.2), only the right-hand side of the MTZ

constraints (2.7–2.8) is subject to (demand) uncertainty. For such a case and the

case where the left-hand side of each constraint contains only one coe�cient of

uncertainty, Sungur et al. [75] prove that the BN robust counterpart can be obtained

simply by substituting q
j

(j = 1 . . . n) with

q0
j

+
P

s

l=1 |qlj|, (3.24a)

q0
j

+ ⇢
qP

s

l=1(q
l

j

)2, (3.24b)

for ⌅1 (3.23a) and ⌅2 (3.23b), respectively. Therefore, the BN robust counterpart of

(2.7–2.8) retains the same structure, since only the right-hand side changes.

On the other hand, this is not true for all the inequalities presented in Chap-

ter 2. In fact, while the box uncertainty set (3.23a) always retains linearity, the ball

uncertainty set (3.23b) may lead to conic quadratic inequalities when the demand

uncertainty is not restricted to the right-hand side of the constraints.

First, we consider the capacity inequalities (2.10). The BN robust counterpart
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corresponding to the box uncertainty set (3.23a) is the inequalities:

X

i2Vc

X

a2�+(i)

q0
i

xk

e

+
X

i2Vc

X

e2�+(i)

sX

l=1

|ql
i

|xk

e

 Q
k

, k 2 K, (3.25)

whereas the BN-robust counterpart corresponding to the ball uncertainty set (3.23b)

is a set of conic quadratic inequalities as follows:

X

i2Vc

X

e2�+(i)

q0
i

xk

e

+ ⇢

vuut
X

i2Vc

X

e2�+(i)

sX

l=1

(|ql
i

|xk

e

)2  Q
k

, k 2 K, (3.26)

Now we consider the sub-tour elimination inequalities (2.13). Here, only the

right-hand side is subject to uncertainty. To construct the BN robust counterpart,

it su�ces to substitute q
j

with (3.24a) for ⌅1 and (3.24b) for ⌅2, respectively.

Next constraint to consider is the lifted inequalities (2.23), which leads to

conic quadratic inequalities for the ball uncertainty set (3.23b), whereas for the box

uncertainty set (3.23a) the BN-robust counterpart is:

�u
j

+ u
i

+Q
m

x
ij

+ (Q
m

� q0
j

� q0
i

)x
ji

+
sX

l=1

��(�ql
j

� ql
i

)x
ji

+ ql
j

��  Q
m

� q0
j

, (i, j) 2 E
c

. (3.27)

The robust counterpart of the DL lifted inequalities for the ball uncertainty set
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(3.23b) is

�u
j

+ u
i

+Q
m

x
ij

+ (Q
m

� q0
j

� q0
i

)x
ji

+⇢

vuut
sX

l=1

(ql
j

(1� x
ji

))2 + (ql
i

x
ji

)2  Q
m

� q0
j

, (i, j) 2 E
c

(3.28)

where E
c

is the set of edges between only customers.

The robust counterpart of the RLT inequalities of Section (2.4.2) can be ob-

tained similar to the MTZ constraint. These always retain linearity since there is only

one uncertain (demand) parameter in each inequality, either in the right-hand side

or in the left-hand side. So the BN-robust counterpart for ⌅1 (3.23a) and ⌅2 (3.23b)

can again be obtained by substituting q
j

with (3.24a) and (3.24b), respectively.

Finally, the robust counterpart of the depot capacity constraint for the box

uncertainty set can be written as follows which retain their linearity.

P
i2Vc

q0
i

a
ij

+
P

i2Vc

P
s

l=1 |qli|aij  F
j

, j 2 V
d

. (3.29)

However, similar with the capacity inequalities (2.10), the robust counterparts of the

depot capacity constraints for the ball uncertainty set is conic quadratic inequalities:

P
i2Vc

q0
i

a
ij

+ ⇢
qP

i2Vc

P
s

l=1(q
l

i

a
ij

)2  F
j

, j 2 V
d

. (3.30)
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3.4 Bertsimas and Sim robust model

As explained, the robust counterpart developed by Bertsimas and Sim (BS) has two

main features: It contains in each constraint a parameter � (the protection level)

that controls the degree of conservatism of the robust solution; it is computationally

tractable if the original problem is tractable. Regarding tractability, Bertsimas and

Sim give a compact robust counterpart of a given nominal model by introducing

a polynomial number of new variables and constraints. We will apply a similar

approach and use the (strengthening) inequalities presented in the previous chapter.

According to BS-model of uncertainty set U , the uncertain demand vector q

takes value of the interval [q0 � q̂, q0 + q̂], symmetric around the nominal value q0.

The parameter � mentioned above denotes the maximum number of coe�cients that

are allowed to change simultaneously with respect to their nominal values in each

constraint. In particular, at most b�c q
i

s will change to their bounds q̂
j

s and one

will change by (�� b�c) portion of its bound.

Since the capacity inequalities (2.10) are more general types of inequalities we

have, we will implement the Bertsimas and Sim method in more detail for them. To

construct the BS-robust counterpart we denote, for each given k 2 K, by  k ✓ V
c

the subset corresponding to those coe�cients q
i

that are subject to uncertainty and

by �k the control parameter for the constraint. Recall (2.11) where q
i

2 [q0� q̂, q0+ q̂]

X

i2Vc

X

e2�+(i)

q
i

xk

e

 Q
k

, 8k 2 K (3.31)

Following the Bertsimas and Sim idea of the robust solution, we would like to find
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a robust solution such that if up to b�kc parameters change, a set of routes is de-

terministically feasible and even if more than b�kc changes occur, then the robust

solution will be feasible with very high probability. For this purpose let us consider

the k-th constraint of the capacity inequality and reformulate it as follows.

X

i2Vc

X

e2�+(i)

q
i

xk

e

+

max
{Sk[tk: S

k✓ k
,|Sk|=b�kc,tk2 k\Sk}

X

i2Sk

X

e2�+(i)

q̂
i

wk

e

+ (�k � b�kc)q̂
tk

X

e2�+(tk)

wk

e

 Q
k

, 8k 2 K (3.32a)

�wk

e

 xk

e

 wk

e

, 8e, 8k (3.32b)

wk

e

� 0 (3.32c)

where wk

e

� 0 is a new variable and t
k

2 V
c

is a customer’s index.

To linearize the above nonlinear constraint we first solve the maximization

problem within the constraint.

max
{Sk[tk: S

k✓ k
,|Sk|=b�kc,tk2 k\Sk}

X

i2Sk

X

e2�+(i)

q̂
i

yk
e

+ (�k � b�kc)q̂
tk

X

e2�+(tk)

yk
e

(3.33a)

For a given x the above problem can be represented as follows:

max
X

i2 k

X

a2�+(i)

q̂
i

(xk

e

)⇤µ
ik

(3.34a)

s. t.
X

i2 k

µ
ik

 �k (3.34b)

0  µ
ik

 1, 8i 2  k (3.34c)
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By strong duality, the optimal solution of the dual problem of (3.34) is feasible

for (3.32). So, we can replace the non-linear term of (3.33) by the dual form of

(3.34). Following Bertsimas & Sim construction, we obtain the following BS-robust

counterpart with additional dual variables pk
i

and ⇡k:

P
i2Vc

q0
i

P
e2�+(i) x

k

e

+
P

i2 k pk
i

+ �k⇡k  Q
k

, k 2 K (3.35a)

⇡k + pk
i

� q̂
i

P
e2�+(i) x

k

e

, i 2  k, k 2 K (3.35b)

⇡k � 0, k 2 K (3.35c)

pk
i

� 0, i 2  k, k 2 K. (3.35d)

Next consider the sub-tour elimination inequalities (2.13), where the uncertainty only

appears on the right-hand side of the constraints. For the constraint corresponding

to S ✓ V
c

,  S denotes the sub-set of V
c

that corresponds to those q
i

s that are subject

to uncertainty and �S the control parameter for the constraint. Clearly, in this case,

we can simply sort q̂
i

in non-increasing order and choose the first �S demands where
⌅
�S

⇧
can change up to their bounds and the last of the selected demands can only

change by (�S �
⌅
�S

⇧
) portion of its bound.

Note that for the MTZ constraints (2.7–2.8), there is only one demand param-

eter in each constraint. Hence, the BS-robust counterpart can be simply obtained

by substituting q
j

with the quantity q0
j

+ �q̂
j

, where 0  �  1.

For the DL lifted inequalities (2.23), the BS construction is similar to the one

used for the capacity inequalities (2.10) see (3.35a–3.35d).

In each of the RLT inequalities of Section (2.4.2), there is at most one demand
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coe�cient. Hence, the BS-robust counterpart can be obtained by simply substituting

q
j

with the quantity q0
j

+ �q̂
j

where 0  �  1.

Finally, the robust counterpart of the depot capacity constraints (2.10) can

be obtained similar with the capacity inequalities (2.10) as follows. Let  j be the

set corresponding to those uncertain demands in j-th constraint and let �
j

be its

corresponding control parameter. The robust counterpart of the depot capacity

constraint is formulated as follows:

P
i2Vc

q0
i

a
ij

+
P

i2 j p
j

i

+ �j⇡j  F
j

, j 2 V
d

(3.36a)

⇡j + pj
i

� q̂
i

a
ij

, i 2  j, j 2 V
d

(3.36b)

⇡j � 0, j 2 V
d

(3.36c)

pj
i

� 0, i 2  j, j 2 V
d

, (3.36d)

where analogous with the capacity inequalities’ robust counterpart, we define new

variables ⇡ and p.

After setting up the robust counterparts, we need to calculate the parameter

� for each constraint. On the one hand, � controls the degree of conservatism of

the robust solution, that is guaranteed to be feasible up to � simultaneous changes

of the coe�cients of a given constraint. On the other hand, Bertsimas and Sim

also introduce probability bounds depending on the value of � and representing the

probability of violation of a constraint if more than � coe�cients change at the same

time. They show that the larger the number of uncertain coe�cients in a constraint

is, the more accurate the bounds are. Recall the capacity inequalities, the below
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bound is the best bound proposed in this work:

Pr

0

@
X

i2Vc

X

e2�+(i)

q
i

xk

e

 Q
k

1

A  B(n,�k), 8k 2 K (3.37)

where

B(n,�k) =
1

2n

0

B@(1� �)

0

B@
n

b⌫c

1

CA+
nX

l=b⌫c+1

0

B@
n

l

1

CA

1

CA (3.38)

where n = | k| and ⌫ = (�k + n)/2 and � = ⌫ � b⌫c.

However, since in many of our inequalities only a few uncertainty coe�cients

appear, these bounds are not very helpful for deciding the value of �. For instance,

if we change q
i

in the k-th constraint of the MTZ inequalities to its bound, it is

expected that the constraint is never violated. But the probability bound provided

by Bertsiams and Sim is B(1, 1) = 1
2 which is a very poor bound.

For this reason, we give the following two propositions that allow us to cal-

culate exactly the value of � corresponding to a given probability of violation for

two specific types of constraints. Note that the concept of probability of violation

for a given constraint is strictly related to the chance-constrained models that were

previously presented

Proposition 4 applies when only one uncertainty coe�cient is present as, for

example, in the MTZ constraints(2.7–2.8).

Proposition 4. If q
j

(j 2 V
c

) is a uniformly distributed random variable in [q0
j

�

q̂
j

, q0
j

+ q̂
j

], then any constraint where q
j

is its only uncertainty coe�cient has a
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probability ↵ of violation for � = 1� 2↵.

Proof. Since q
j

follows a uniform distribution, we can easily calculate the corre-

sponding cumulative distribution function. Hence, by setting q⇤
j

= q0
j

+ q̂
j

(1 � 2↵),

we can guarantee that Pr[q
j

 q⇤
j

]  ↵. Therefore, � = 1 � 2↵ provides the desired

probability of violation.

Remark. The above proposition also applies to inequalities (2.33b) as well

as to (2.33a) since 1� x
ij

� x
ji

= 0 or 1 due to the integrality condition.

Proposition 5 applies to sub-tour elimination inequalities (2.13).

Proposition 5. Given any S ⇢ V
c

, if q
j

for any j 2 V
c

is an independently and sym-

metrically distributed random variable in [q0
j

� q̂
j

, q0
j

+ q̂
j

] with cumulative distribution

function F
j

and joint distribution F
q(S), then

Pr
⇥
x(S : S̄) � 2 dq(S)/Q

k

e
⇤
� 1� ↵, k 2 K,

for � computed as follows:

min� (3.39a)

s.t.
P

i2S ⇠i  � (3.39b)

P
i2S q̂i⇠i = F�1

q(S)(1� ↵) (3.39c)

0  ⇠
i

 1, i 2 S. (3.39d)

Proof. Since the inverse joint distribution function F�1
q(S)(1�↵) can be calculated for

some classes of distribution functions (e.g., Normal), the LP (3.39a–3.39d) selects
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the uncertainty coe�cients such that the sum of their deviations gives the desired

value and � is minimized.

3.5 Concluding remarks

This chapter addressed the second research question i.e., which methods in stochastic

programming and mixed-integer programming can be used to improve VRPUD solu-

tion algorithms. For the first time, we formulated the HVRPUD via three single-stage

approaches within stochastic optimization: chance constraint programming and Ben-

Tal and Nemirovski robust optimization approach and Bertsimas and Sim adjustable

robust optimization approach. We developed the formulations for the HVRPUD on

the basis of the models introduced in the previous chapter.

The deterministic counterpart of the HVRPUDmodels are tractable via mixed-

integer programming, so standard techniques within mixed-integer programming can

be employed to solve the models. We use a branch-and-cut method to solve the pro-

posed models. The separation procedures will be explained in the next chapter and

an extensive computational results and experiments will be presented in Chapter 7.

In addition, we proposed two probability bounds to calculate the protection

parameter for Bertsimas and Sim adjustable robust optimization approach.
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Chapter 4

BRANCH-AND-CUT METHOD

FOR HVRPUD

4.1 Introduction

One of the most successful methods for solving a wide range of (mixed) integer pro-

grams is the Branch-and-Cut (B&C) method [56]. Indeed, branch-and-cut based

methods e.g., Lysgaard et al. [54] were the best solution methods for the CVRP for

a long time. Wolsey [78] defines a B&C algorithm as follows. A B&C algorithm is

a branch-and-bound algorithm in which cutting planes are generated throughout the

branch-and-bound tree. A cutting plane is generated when a solution at a node of

branch-and-bound tree violates a valid inequality. To find out if a valid inequality

is violated we employ some algorithms called separation algorithms. According to

Applegate et al. [3] a separation algorithm is defined as follows: A separation algo-
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rithm for a class C of linear inequalities is an algorithm that, given any x⇤, returns

either an inequality in C that is violated by x⇤ or a failure message. There exist

two types of separation algorithms: exact algorithms in which a failure message will

be returned only if x⇤ satisfies all valid inequalities, and heuristic algorithms where

a failure message may be returned even when there still exist some violated valid

inequalities in C.

In this chapter, the separation algorithms which identify the violated con-

straints of the SEC and the comb inequalities introduced in Chapter 2 will be dis-

cussed.

4.2 Separation algorithms for SEC

In the literature of the TSP, the VRP and their variants, di↵erent separation al-

gorithms have been proposed for the Sub-tour Elimination Constraints (SEC). As

the VRP is an extension of the TSP, all exact separation algorithms for the SEC

introduced for the TSP are only heuristic algorithms for the VRP and its variants.

Usually methods within Graph Theory and Network Optimization are deployed to

identify the violated constraints. Bard et al. [12] and Lysgraad et al. [54] review

and introduce various types of separation algorithms for the SEC. Recall the SEC

as follows for a given LP solution x⇤ at some node on the branch-and-bound tree:

X

i2S

X

j2S̄

x⇤
ij

� 2dq(S)
Q

m

e (4.1)

where S ⇢ V
c

and |S| > 2, and S̄ = V \ S.

73



We first briefly review the existing separation algorithms and then a greedy

separation algorithm will be presented to separate the SEC.

Shrunk Support Graph In this class of algorithms, the vertices presenting the

customers iteratively one by one are shrunk and create a new vertex which is called

supernode or supervertex. The weight assigned to the supervertex is q(S) =
P

i2S qi

and an edge {s, j}, s 2 S, j 2 S̄ is given the weight of
P

s2S
P

j2S̄ x
⇤
sj

. Since the

vertices are shrunk into a supervertex, to make sure that we do not miss any violated

constraint because of using this procedure the notion of safe shrinking has been

introduced and characterised as follows [54]: Whenever there is a violated capacity

inequality in G, there exists a set of supervertices in the shrunk graph whose union

defines a capacity inequality with at least the same violation. Lysgraad et al. [54]

generalise the conditions under which a shrinking is safe as follows.

For separation of the SEC, it is safe to shrink a customer set S if
P

i2S
P

j2S̄ x
⇤
ij



2 and
P

i2R
P

j2R̄ x⇤
ij

� 2, 8R ⇢ S .

The next step is to identify a vertex and shrink it into a supervertex. Di↵erent

strategies have been proposed to answer this question. A greedy heuristic introduced

by Lysgraad et al. [54] considers each supervertex as a seed and shrink vertex j to

the supervertex that minimizes the slack of the SEC for S [ {j}. When we cannot

expend S, we select another seed and continue the procedure.

Bard et al. [12] suggest another strategy based on the following equivalent

form of the SEC.
X

i2S

X

j2S

x⇤
ij

 |S|� k(S) (4.2)
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where S ⇢ V
c

and |S| > 2, and k(S) is the minimum number of vehicles needed to

serve set S.

The weight of each supervertex is equal to the sum of the weights of those

edges that connect vertices inside S. The shrinking procedure is shown in Figure

4.1. The shrinking procedure is repeated until the resulting graph consists of one

disconnected supervertex or more. Recall that if x
ij

= 0, then there is no edge

between i and j which may lead to a disconnected graph. During this procedure,

k(S) for each supervertex is calculated and is compared with the weight of the

supervertex to identify violated constraints.

1

2

3

4 5

(1, 3)

2 4 5

Figure 4.1: Shrinking procedure.

Min-Cut problem For a special case when x(E(S : V
c

\ S)) < 2, we can apply

algorithms for the the min-cut problem to find violated SECs. For any S ⇢ V
c

,

if x(E(S : V
c

\ S)) is less that 2, then S violates a constraint of the SEC. Several

algorithms with di↵erent complexities have been proposed for this heuristic. The best

know algorithm is by Frank [35] whose complexity is O(|V ||E|). For a more general

setting, Lysgaard et al. [54] adopt a heuristics based on the max-flow problem for

the so-called fractional capacity inequalities. The fractional capacity inequalities are

the sub-tour elimination constraint (4.1) where the right-hand side is replaced by
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q(S)/Q
m

. If a violated fractional capacity inequality is identified, then constraint

(4.1) is violated, too. By solving the max-flow problem for S ⇢ V
c

, we minimize the

slack of the fractional capacity inequalities. Moreover, these heuristic can be run on

the shrunk graph obtained from safe shrinking procedures.

A greedy algorithm Motivated by the shrinking procedure, we here introduce a

greedy separation algorithm to identify violated SEC. A new approach to find the

violated constraints can be based on calculating and ordering a set of values for each

customer. Let S be a sub-set of customers, we would like to find vertex j 2 V
c

\ S

so that by adding it, new set S [ {j} violates a constraint of the fractional SEC. So,

the following integer programme can find the vertex if the optimal solution value is

strictly positive.

max ↵ (4.3)

s.t.
q(S)

Q
m

(1 + y
j

)� x⇤(�(S))

�x⇤(E(j : S̄))y
j

+ x⇤(E(S : j))y
j

� ↵, 8j 2 S̄
c

(4.4)
X

j2S̄c

y
j

= 1 (4.5)

y
j

2 {0, 1}, 8j 2 S̄
c

(4.6)

where constraint (4.4) evaluates the slack if customer j 2 V
c

\ S is contracted into

set S. Also, y
j

is a binary variable which takes value one if j is added to S, and zero

if otherwise. If ↵ > 0, then S [ {j} violates a constraint. But if for all j 2 V
c

\ S,

the objective function is non-positive (↵  0), then it is better to contract the vertex
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with highest value into S. The larger the objective function is, the more likely it will

be to have violated constraints in next iterations. The above problem identifies only

one vertex to be added to set S, but it can identify k vertex by simple changes.

The above problem can be reduced to a simple ordering as follows. Let f =

q(S)
Qm

� x⇤(�(S)) which is a fixed value for all customers in one iteration and, let

q(j) = qj

Qm
y
j

� x⇤(E(j : S̄))y
j

+ x⇤(E(S : j))y
j

for j 2 V
c

\ S . Now we can sort

f + q(j) for j 2 S̄
c

in a descending order. If f + q(j) > 0, then violates the SEC,

hence we add the corresponding customer to set S and the corresponding constraint

to the problem. The process will be repeated until there is no strictly positive value

for f + q(j). Then as mentioned the vertex with highest f + q(j) will be added to S

and run the algorithm again until S = V
c

. In each iteration of the B&C method, we

run the above heuristic 10 times selecting randomly a vertex as the seed (S).

4.3 Separation algorithm for comb inequalities

Several methods have been proposed to identify violated comb inequalities on the

support graph for the TSP and these works have been later adapted to the VRP

(see [3],[12],[40],[51],[54] and [62]). As mentioned in Chapter 2, the blossom valid

inequality is a special case of the comb inequality where each tooth can contain only

two vertices (one in common with the handle and one outside of the handle). There

are also a few algorithms for separating this class of valid inequalities (see [3] and

[50]). Recall the comb valid inequalities for a LP solution vector x⇤:
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x⇤(E(H)) +
sX

t=1

x⇤(E(T
t

))  |H|+
sX

t=1

(|T
t

|� 1)� d1
2
se. (4.7)

as mentioned in Chapter 2, the comb inequalities can be stated in the below form:

x⇤(�(H)) +
sX

t=1

x⇤(�(T
t

)) � 3|T |+ 1 (4.8)

We first briefly explain two existing algorithms and then a new separation

algorithm will be proposed.

Connected component method This method identifies bi-connected compo-

nents of the ✏-support graph. A ✏-support graph is obtained by deleting edges with

weights less than ✏ or greater than 1 � ✏. Let us start this heuristics with two

definitions we need later.

Definition 5. k-connected graph: A graph is k-connected if k vertices (along with

their adjacent arcs) must be removed to disconnect the graph.

Two equivalent definitions of the above definition for the bi-connected graph

are as follows. A connected graph is bi-connected if there are two paths between

each two vertices or a connected graph is biconnected if the removal of any single

vertex (and all edges incident on that vertex) cannot disconnect the graph.

Definition 6. Articulation points (cut vertex): any vertex whose removal (together

with removal of any incident edges) results in a disconnected graph.
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To identify candidate handle and teeth, the ✏-support graph is first con-

structed, then each bi-connected component with at least three vertices is a candidate

handle. The teeth are comprised of any vertices on the original support graph which

are connected to the vertices in the bi-connected components. To find bi-connected

components of the ✏-support graph, the Depth First Search (DFS) algorithm can be

applied (see [25] for the DFS algorithm).

Shrinking method The above procedure provides us configurations in the sup-

port graph to set up the blossom or 2-matching inequalities. Combining algorithms

developed for blossom inequalities with shrinking procedures can lead to e↵ective

algorithms for general comb inequalities on the original graph. For instance, if there

is a path P from vertex s to vertex t such that x
e

= 1 for e 2 E(P ) (where E(P )

is the set of edges on path P ), then we can shrink path P and replace the whole

path with an edge having weight x
st

= 1 ([3]). Several types of shrinking proce-

dures have been suggested based on this simple idea by Padberg and Grotschel [60],

Grotschel and Holland [40] and Padberg and Rinaldi [61]. Here we present Grotschel

and Holland’s procedure as their procedure has been reported to be one of the most

successful procedures and also easy in implementation ([3] and [50]).

Grotschel and Holland [40] propose five rules for shrinking as follows:

1. Given a path P of 1-edges (i.e. x
e

= 1 for e 2 E(P )) between s and t, replace

P with a single edge (s� t) with x
st

= 1.

2. Given {v, u, w} ✓ V with x
u,v

= 1 and x({u, v}{w}), then shrink u and v. See

Figure 4.2.
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3. Given S ✓ V so that |S| = 4 and x(�(S)) = 2, then shrink S to a single vertex.

4. Given {s, t, u, v} ✓ V so that x
st

= x
vu

= 1 and x({s, t}{u, v}) = 1, then

shrink {s, t} to {u, v}. See Figure 4.3.

5. Given {u, v, w} ✓ V so that x
uv

= 1 and x({s, t}{u, v}) � 0.5, then shrink

{u, v}.

v

u

w1

↵

1� ↵

� w

Figure 4.2: 1-edge shrinking in a triangle

s

t u

v

↵

1� ↵

� ✓

Figure 4.3: 1-edge shrinking in a square

A greedy approach In this section, we propose a new greedy procedure to identify

violated comb inequalities for the HVRP. The main idea of this procedure is to find

out which configuration of a given set of vertices violates a valid inequality or is most
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likely to violate a valid inequality. Similar to our proposed heuristic for the SEC,

this heuristic is also motivated by shrinking procedure. In the proposed method,

shrinking process is guided in the sense that even if it does not identify any violated

inequality in an iteration, it forms a setting of a comb which is more likely to be

violated in next steps. In standard shrinking procedures, as mentioned, we need to

have 1-edges, whereas in our proposed method, there is no need to necessarily have

1-edges.

The heuristic starts with an initial comb. An initial comb configuration can be

set up using the connected component method or algorithms developed for blossoms.

Let C be the set of vertices forming the comb. Then, we would like to find out moving

a given vertex i 2 V
c

\ C to which sub-set (H \ T , T \ H or T \ H) can lead to a

violated valid inequality. If no violated constraint is found in this step, the vertex is

added to a subset which is most likely to lead to a violated inequality in next steps.

The procedure can be explained with a simple example.

Example Let assume the following initial comb configuration is given and let as-

sume that the weight of each edge is one (see Figure 4.4):

H = {2, 4, 6}, T1 = {1, 2}, T2 = {3, 4}, T3 = {5, 6}, V
c

\ C = {7}.

We would like to find out moving vertex 7 to which sub-set leads to the highest

reduction in the left-hand side(lhs) of (4.8). The smaller the lhs is, the more likely it
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T1 \H

T1 \H

H \ T

1

2

3

4

5

6

7

Figure 4.4: A comb consists of a handle and three teeth

is to lead to a violated inequality. Vertex 7 can be moved to either of following sets:

H \ T, T1 \H, T2 \H, T3 \H, T1 \H, T2 \H or T3 \H

For instance, if the vertex is moved to T3 \H, the value of the comb will be reduced

by 2, because the edge (6-7) now intersects only one sub-set border and the edge

(5-7) does not intersect any sub-set border any more.

4.4 Concluding remarks

We studied several separation procedures for the SEC and comb inequalities for the

HVRPUD and proposed two greedy algorithms for these two types of inequalities.

This study addresses the second research question. Indeed, we employ methods

within mixed-integer programming to solve the HVRPUD.

The computational results suggest that while the proposed separation algo-
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rithm for the SEC is relatively e�cient, the comb inequalities do not do anything good

for our problem. In addition to the proposed algorithm, we implemented and tried

the other separation algorithms in the literature but no improvement was achieved.

This is in contrast with performance of the comb inequalities for the CVRP. But

as the problem complexity increases, the performance of the comb valid inequalities

significantly reduces. Belenguer et al. [13] report the similar performance for the

comb inequalities.
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Chapter 5

CVRPUD WITHOUT

RECOURSE ACTION: COLUMN

GENERATION

5.1 Introduction

In Chapter 3, we presented three single-stage approaches: chance constrained pro-

gramming, BS robust approach and BN robust approach, and applied them to the

heterogeneous vehicle routing problem with uncertain demand (HVRPUD). These

approaches have been mainly applied to (mixed) integer problems with uncertainty

within branch-and-cut algorithms. Although branch-and-cut methods are very suc-

cessful in solving deterministic VRPs, in recent years column-generation based meth-

ods are reported to perform better in some specific problems. In particular, using
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column generation based methods, Baldacci and Mingozzi [10] and Fukasawa et al

[36] solve instances of the CVRP that had never been solved by branch-and-cut meth-

ods. Despite this fact, there are very few works on solving the VRPUD to optimality.

These works focus on solving stochastic vehicle routing problems with recourse cost

([22]). However, there are few issues with these works which will be explained in the

next chapter where we study stochastic vehicle routing problems with recourse cost.

To the best of our knowledge there is no work applying column generation based

methods to the VRPUD without recourse cost. In this chapter we first present an

overview of the column generation based methods for the deterministic vehicle rout-

ing problem. Then, we implement the three single-stage approaches presented in

Chapter 3 to the VRPUD within the column generation based method’s framework.

5.2 Overview of column generation methods for

CVRP

The first work on solving deterministic VRPs via column-generation based methods

dates back to early 1960s with Balinski and Quandt [11]. Since then, there has

been a considerable attention on solving di↵erent variants of the VRP using column-

generation based methods, most notably Agarwal et al [1] and Hadjiconstantinou

et al. [42]. These attempts were not as successful as branch-and-cut algorithms

until Fukasawa et al [36] which was a major breakthrough in solving the CVRP.

They propose a branch-and-cut-and-price framework which enables them to solve

some instances which were unsolved at that time. In addition to their very e�cient
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implementation, the key element of their success is to combine the branch-and-cut

approach with column generation methods originated from a q-route approach. Later,

Beldacci et al [8] and Beldacci and Mingozzi [10] propose another framework to solve

variants of the VRP mainly concentrating on the Lagrangean relaxation and finding

feasible routes more e�ciently.

In order to present a general framework based on a column-generation method,

we first need to reformulate the CVRP into a set-covering formulation. From now

on we study capacitated vehicle routing problems with homogenous vehicles, hence

we define the problem as follows. Let G = (V0, E) be a directed graph with vertices

V0 = {0, 1, ..., n} and edges (i, j) = e 2 E where i, j 2 V0. Vertex 0 is the depot, and

i 2 V = V0\{0} represents a customer with an associated positive random demand q
i

.

Each edge e 2 E has a non-negative length c
e

. Recall the set-partitioning formulation

presented in Chapter 1.

(SP) : Z(P) = min
X

r2R

f
r

z
r

(5.1)

s.t.
X

r2R

z
r

 m, (5.2)

X

r2R(i)

z
r

� 1, 8i 2 V (5.3)

z
r

2 {0, 1}, 8r 2 R (5.4)

where R is the index set of all feasible routes. Let V(r) = {r0 = 0, r1, ..., rnr , rnr+1 =

0} be the set of vertices on route r 2 R. Then, a feasible route is defined as follows:

route r 2 R is feasible if q(V(r)) =
P

i2V(r) qi  Q. Let R(i) be all routes that

contain vertex i 2 V i.e., R(i) = {r 2 R : i 2 V(r)}, and f
r

be the cost of route
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r 2 R. The decision variable z
r

is a binary variable which takes value one if route

r is chosen in the solution, and zero otherwise. In the literature, constraint (5.3) is

also represented by

X

r2R

X

e2�(i)

ae
r

z
r

� 1, 8i 2 V (5.5)

where ae
r

is the number of times route r visits customer i. There are other pre-

sentations of the set-partitioning formulation of the CVRP in the literature. Due

to computational issues which will be explained in Chapter 7, we use the follow-

ing presentation. The Edge based Set-Partitioning model (SP
E

) for the CVRP is

reformulated by (a) introducing a new integer variable x
e

for edge e 2 E, and (b)

converting z
r

to a continuous variable. Moreover, let E(r) ⇢ E be the set of edges vis-

ited by route r and let R(e) = {r 2 R|e 2 E(r)} be the set of routes which visit edge

e 2 E. Then, we add constraint �x
e

+
P

r2R(e) zr  0, 8e 2 E to connect z
r

to x
e

.

Fukasawa et al. [36] provide an interesting connection between the standard CVRP

formulation and the set-partitioning formulation using �x
e

+
P

r2R(e) zr  0, 8e 2 E

and refer to as the Dantzig-Wolfe Master problem (DWM). Let SP
E

be formulated
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by

(SP
E

) : Z(P
E

) = min
X

e2E

c
e

x
e

(5.6)

s.t.
X

r2R(i)

z
r

� 1, 8i 2 V, (5.7)

�x
e

+
X

r2R(e)

z
r

 0, 8e 2 E, (5.8)

x(�(i)) = 2, 8i 2 V, (5.9)

z
r

2 [0, 1], 8r 2 R, (5.10)

x
e

2 {0, 1, 2}, 8e 2 E. (5.11)

where �(S) is the cut-set defined by S: �(S) = {(i, j) 2 E|i 2 S & j /2 S or i /2

S & j 2 S}.

As (SP) and (SP
E

) suggest, there are exponentially many possible routes and

consequently, exponentially many variables of type z
r

. Identifying all possible routes

at the beginning is impractical and also unnecessary. There are two main successful

approaches to handle this di�culty. Firstly, Fukasawa et al. [36] and Pessoa et al.

[63] suggest to set up the initial problem with an initial sub-set of routes (R̄ ⇢ R) and

solve its corresponding LP-relaxation. Then, using the dual variables and heuristic

methods, they identify those routes which can improve in each iteration and add

them to the initial problem. Once no improving routes are found, they branch on

integer variables and repeat the algorithm until there is no improving route and

the integrality condition is satisfied for all integer variables. They invoke cuts in

each node of the branch-and-bound tree when a constraint is violated. They run
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separation procedures for framed capacity, strengthened comb, multistar, partial

multistar, generalized multistar and hypotour contraints. Their approach is known

as branch-and-cut-and-price algorithm. In the second approach which was proposed

by Baldacci et al [9] and Baldacci and Mingozzi [10], they use a series of bounding

procedures to find near optimal solutions for the LP-relaxation of the problem. They

use q-route approach and combine it with the Lagrangian relaxation. Then, a set

of routes whose reduced costs are smaller than the gap between upper and lower

bounds generated through their method are found and added to the LP-relaxation

of the problem. Finally, the resulting problem is solved using an integer programming

solver. Although both the approaches are capable of solving the same problems and

present the same performance, we follow Fukasawa et al.’s method as their method

is more flexible and suitable for the framework we propose for the VRPUD in this

chapter and the next chapter.

Let the initial problem with an initial set of routes be SP
E

. As mentioned, the

next step is to identify feasible routes that improve the current solution. To do so, a

set of routes called q-routes are identified. As it is di�cult to find feasible routes, we

relax one of the condition of feasible routes i.e., in a route a vertex may be visited

more than once. This type of routes are called q-routes ([36]). Let ↵
i

, �
e

and ⇡
i

be

the dual variables corresponding to constraints (5.7), (5.8) and (5.9), respectively.

The LP-relaxation of SP
E

is denoted by ( LPSP
E

). Let (z̄, x̄) be the optimal solution

to LPSP
E

. Using the dual problem, we can assess if the current solution is optimum
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for LPSP
E

. The dual of LPSP
E

is

D-LPSP
E

: max
X

i2V

↵
i

+ 2⇡
i

(5.12)

s.t. �(i,j) + ⇡
i

 c(i,j), 8(i, j) = e 2 E (5.13)
X

i2V(r)

↵
i

�
X

e2E(r)

�
e

 0, 8r 2 R (5.14)

In the above problem if (z̄, x̄) satisfies all constraints then, the current solution

is optimum for the dual problem and as a result for LPSP
E

. The idea of the pricing

problem is to form a set of routes which improve the current solutions. Constraint

(5.12), however, does not help us to form any constraints. Therefore, we focus

on constraint (5.14) by which we can form new constraints improving the current

solutions.

The current solution is infeasible if constraint (5.14) is violated. Note that

each constraint (5.14) corresponds to a route. The procedure of identifying routes

which violate (5.14) is called the column-generation problem (CG). In fact, the CG

problem identifies feasible routes r 2 R which are violated for a given solution (z̄, x̄).

This problem can be formulated as:

CG: ⇡ = min{⇡
r

=
P

e2E(r) �e

�
P

i2V(r) ↵i

|
P

i2V(r) qi  Q} (5.15)

Several approaches have been suggested to deal with the CG problem. Bramel

and Simchi-Levi [19] review some popular methods. As mentioned, Fukasawa et al.

[36] on the basis of the previous works developed an e�cient method for solving the
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CG using the q-route notion. Here we briefly explain their method. The reduced

cost of an edge e is calculated by

c̄
e

=

8
>>>><

>>>>:

�
e

� 1
2↵j

for i = 0 & j 6= 0

�
e

� 1
2↵i

� 1
2↵j

for i 6= 0 & j 6= 0

�
e

� 1
2↵i

for i 6= 0 & j = 0

(5.16)

where e = (i, j) 2 E. Due to the existence of negative cycles, finding q-routes is

known to be NP-hard but it is doable in pseudo-polynomial time. Using a data

structure and dynamic programming they find q-routes with negative reduced costs.

Let M be a Q⇥n matrix whose entities M(q, v) represent the least costly walk that

reaches vertex v 2 V using a total of demands exactly q. Each entity contains a label

consisting of a vertex (v), the reduced cost of the shortest q-route (c̄(M(q, v))) and

a pointer to the previous vertex on the q-route. All entities are initialized with an

empty q-route and an infinite cost. Then, the contents of each entity will be updated

using dynamic programming by extending the walk to its neighbours as follows. If

w is a neighbour of v and if c̄(M(q, v))+ c̄(v,w) < c̄(M(q+ q
w

, w)), then M(q+ q
w

, w)

will be updated: the new reduced cost is c̄(M(q, v))+ c̄(v,w) and the predecessor is v.

In matrix M , at most n q-routes with negative reduced cost will be identified.

As there are nQ entities and each one is processed in O(n), therefore, the total

running time is O(Qn2). Since the reduced cost can be negative, having cycles is

very likely. All algorithms developed to find the shortest path on a graph are valid

when there are no negative cycles. Eliminating these negative cycles is a strongly

NP-hard problem. Fukasawa et al. propose to look for s-cycle-free q-routes where
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s is small. In Chapter 7, we discuss more on this issue and other tricks to avoid

negative cycles as much as possible.

5.3 Column generation method for CVRP with

uncertain demands

In this section, we apply CCP, BN and BS robust approaches to the CVRPUD with-

out recourse actions within the aforementioned branch-and-price framework. Re-

garding the uncertainty set of customers’ demand, similar to Chapter 3, we consider

two types of uncertainty sets (box and ellipsoid) for Ben-Tal and Nemirovski’s ap-

proach and intervals for Bertsimas and Sim’s approach. For the CVRP with chance

constraints, in addition to probability distribution functions we can consider sce-

narios for uncertain parameters (data-driven chance constraints). In the following

sub-sections we explain these approaches within the branch-and-price framework in

more detail.

5.3.1 CVRP with chance constraints

As explained, in the set-partitioning formulation, we look for feasible routes identified

by the CG problem that minimize the total cost. Recall the definition of a feasible

route: route r is feasible if it begins from the depot, visits a set of customers (V(r))

at most once and returns to the depot while it maintains
P

i2V(r) qi  Q. In CCP,
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the last condition of the route feasibility changes as follows:

Pr

2

4
X

i2V(r)

q
i

 Q

3

5 � 1� ✏, r 2 R. (5.17)

In the CG problem, it is su�cient to make sure that for a route, condition (5.17) is

held. As there is no decision variable in (5.17), holding the condition in each step is

not very di�cult but it requires to have access to all the vertices on a path for each

entity of matrix M . In matrix M defined in the previous section, we store a pointer

to the previous vertex on the route and therefore, we can retrieve the list of vertices

on the route. Then, we can check condition (5.17) when we extend the walk to

neighbours of vertices given that we have access to the joint probability distribution

of demands. When only the historical data (a set of scenarios) is available, we assess

the condition as follows. Let S be the set of scenarios available for the uncertain

demands and p
s

be the corresponding probability of scenario s. Also, let g
s

be a

binary indicator which takes value one if
P

i2V(r) q
s

i

 Q is held for scenario s, and

zero otherwise i.e.,

g
s

=

8
><

>:

1 for
P

i2V(r) q
s

i

 Q

0 otherwise.
(5.18)

Let W
v

be the least costly walk ending at vertex v. Then, at entity M(q, v) if

we extend the walk to vertex w, we need to make sure that the extended walk (W
w

)

satisfies
P

s2S psgs � 1 � ✏ where g
s

= 1 if
P

i2Ww
qs
i

 Q. Note that in M(q, v),

q =
P

i2W(r) q
0
i

for q0
i

= E[q
i

].
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5.3.2 CVRP with BN RO

In this section, we apply Ben-Tal and Nemirovski’s approach to the CVRP with

uncertain demands within the branch-and-price framework. Similar to the CVRP

with chance constraints, here we focus on the feasibility of routes. The di↵erence is

that the last condition of route feasibility changes as we consider the worst cases of

demands. The condition on the vehicle’s capacity is re-stated by max
P

i2V(r) qi  Q.

Recall the uncertainty sets from Chapter 3 as follows. The uncertainty set U consists

of linear combinations of the scenario vectors with weights ⇠ 2 ⌅:

U =

8
<

:q 2 <n : q = q0 +
|S|X

l=1

⇠
l

ql, ⇠ 2 ⌅

9
=

; . (5.19)

In particular, we consider two uncertainty sets for ⌅:

⌅1 = {⇠ 2 <s : k⇠k1  1}, (5.20a)

⌅2 = {⇠ 2 <s : k⇠k2  ⇢}, (5.20b)

As the domain of demands is positive, the robust counterpart of the above condition

is
X

i2V(r)

q0
i

+
X

i2V(r)

|S|X

l=1

ql
i

 Q, r 2 R. (5.21)
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For each demand if an interval is defined (q
i

2 [q
i

, q̄
i

]), then we can simply replace q
i

with its upper bound and assess the following condition in our CG problem:

X

i2V(r)

q̄
i

 Q, r 2 R. (5.22)

As constraint (5.22) suggests, we do not need to retrieve the list of vertices on a

route and re-calculate any probability at each iteration for each entity of matrix M .

In the CG problem, it is su�cient to consider the upper bound of the demands and

extend walks based on the upper bounds.

5.3.3 CVRP with BS RO

In this section, we adopt Bertsimas and Sim’s robust optimization approach to the

CVRP with uncertain demand. Therefore, we can sort q̂
i

in non-increasing order and

choose the first �Vr in the list where
⌅
�Vr
⇧
can change up to their bounds and the last

of the selected demands can only change by (�Vr �
⌅
�Vr
⇧
) of its bound. To compute

�Vr , we can use Proposition 5 in Chapter 3 or the bounds defined in Bertsimas and

Sim [17].

To implement the above condition within the branch-and-price algorithm,

similar to CCP, we need to re-evaluate the condition at each step for each entity of

matrix M to make sure the feasiblity condition is held. Let W
v

be the set of vertices

on the least costly walk starting from the depot and ending at vertex v. Then, the
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following condition must be held when we extend the walk to vertex w:

X

i2Ww

q0
i

+
X

i2 w

q̂
i

+ (�Vr �
⌅
�Vr
⇧
)q̂

k

 Q, (5.23)

where  
w

is the set of vertices consisting of
⌅
�Vr
⇧
first vertices of the non-increasing

order of sorted q̂
i

and q̂
k

is the next vertex in this list.

5.4 Concluding remarks

In this chapter, we first studied general issues on column-generation based meth-

ods for the deterministic CVRP. For first time, we applied the three single-stage

approaches of stochastic optimization to the CVRPUD within column generation

based methods.

We defined and studied the master and the pricing problems to formulate

the CVRPUD. The definition of feasible routes is critical in defining the pricing

problem. Using the definition of feasible routes, we developed the pricing problem

for each approach.

In Chapter 7 we present the computational results comparing the models

developed in this chapter.
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Chapter 6

The VRPSD WITH RECOURSE

ACTION

6.1 Introduction

As explained in Chapter 1, di↵erent types of recourse actions have been proposed

within di↵erent policies. Due to its advantages, among the existing policies, we chose

to study the a priori policy in which the routing is pre-planned and the replenishment

is reactive. In this chapter, we address the models of the VRPUD with recourse

actions within the a priori policy in greater detail. The stochastic vehicle routing

problem with recourse action is one of the most well-studied variants of the vehicle

routing problems with uncertain parameters.

A common recourse action modelled within this policy is that if a vehicle fails

to serve a customer on its pre-planned route, then it must make a return trip for a
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replenishment and resume the pre-planned route. This recourse action is known as

traditional recourse action. In addition, other recourse actions have been suggested in

the literature among which we here briefly describe four more popular ones. The first

one is preventive action. In the preventive action, some strategic points are defined

on the planned route to make the return trips before a failure actually occurs. For

example, the closer the vehicle gets to the depot, the higher the chance of failure is.

The second recourse action is that when a failure occurs, the route for the remaining

customers are re-optimized. The third one is described as follows. When a vehicle

makes a return trip to the depot, it usually can serve more customers than only those

on the failed pre-planned route. So a new route can be planned in this case.

Finally, Dror and Trudeau [31] propose another type of recourse actions. When

a failure occurs, the remaining customers on the failed route will have to be served

by a series of single customer trips.

Despite the diversity of recourse actions, due to di�culty of modelling, the

traditional recourse action has received more attention. The traditional recourse

action has been implemented within di↵erent frameworks and in di↵erent forms. La-

porte et al. [48] and Gendreau et al. [37] are the first to use the idea of optimality

and feasibility cuts from the two-stage stochastic programming to model the tra-

ditional recourse action within the integer L-shaped method. Following Laporte et

al.’s method, Hjorring and Holt [44] introduce a new framework on the basis of using

partial routes to generate tighter approximation for optimality cuts. They improve

the previous works by approximating the expected cost and adding cuts dynamically.

However, all attempts by that time were to solve single vehicle SVRPs. Most notable
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study after Hjorring and Holt is Laporte et al. [49] wherein they use Hjorring and

Holt optimality cuts and solve large problems with more than one vehicle. They

solve the SVRP for two di↵erent types of distribution functions for the customers’

demand: Normal and Poisson. Later, this stream becomes the dominant stream in

solving di↵erent variants of SVRPs. But the di�culty with this framework is that

the SVRP’s polyhedral is very complex. Hence, several methods within MIP are

borrowed to solve SVRP more e�ciently. For instance, Rei et al. [66] use local

branching to solve the single vehicle routing problem with stochastic demands.

On the other hand, due to the performance of column generation based meth-

ods for the deterministic CVRP, set-partitioning based formulations and column-

generation based methods have become a new promising stream in modelling and

solving the SVRP. Novoa et al. [59] is one of the earliest works studying the SVRP

within this framework. They model the SVRP using a set-partitioning formulation as

a two-stage stochastic program. In addition to the traditional recourse action, they

suggest another recourse action, namely extended recourse action. In the extended

recourse action, vehicles that have completed their routes with available capacity

can serve additional customers from failed routes before returning to the depot or

when a vehicle returns to the depot for a replenishment due to failure, this vehicle

can perform extra trips to serve unserved customers on its own failed route and also

other vehicles’ failed routes. They use a set of scenarios to capture the uncertainty

of demands. As enumerating all feasible routes is computationally expensive, they

suggest a heuristic by which they limit their search space to routes with specific sizes.

Having tested their route generation process on deterministic CVRP instances, they
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conclude that their route generation process provides good enough solution although

it does not find the optimal solutions for the CVRP. As they do not solve their gen-

erated instances for the SVRP to optimality as well, the performance of their results

and the comparison of the recourse actions may not be very much reliable. Note that

this study remains unpublished.

The most notable work after Novoa et al. is Christiansen and Lysgaard [22].

They propose a set-partitioning formulation for the SVRP. In their work, the total

expected cost of a route consists of two elements: the deterministic cost of the

route and the expected extra distance traveled due to failures (the expected cost of

recourse costs). They use the fact that the probability that the total demand on a

path (starting from the depot and ending at vertex i) does not exceed uQ, depends

only on the total expected demand on the path, not on the order of the customers.

Note that u is an integer. They assume that demands are independently distributed

and follow the same distributions. In their study, they consider those distributions

which have an accumulative property i.e. if q
i

⇠  then
P

i

q
i

⇠  . They first

calculate the expected number of failure (Fail(µ, �2, i)) for a path ending at vertex i

with given mean and variance (µ and �2), then the expected failure cost is calculated

as follows:

EFC(µ, �2, i) = 2c
i0Fail(µ, �

2, i). (6.1)

Therefore, a path is charactrized with three arguments µ, �2 and i. They use a

data structure of 3-dimensional matrix based on these arguments to find shortest

paths. However, in their computational study, they assume that demands follow
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Poisson distribution. This results in reducing their data structure to a 2-dimensional

matrix as the mean and the variance of Poisson distribution are equal. Using the

algorithm described above, they solve 19 test problems out of 40 to optimality with

the largest being a test problem with 60 customers and 16 routes. As we will explain

later, due to dependency of the probability of failures on the vertices on paths,

domination of a path over another path is not as simple as the domination of a path

in the deterministic CVRP. Not taking into account appropriate domination rules

may lead to non-optimal solutions even if the optimality gap is zero.

Christiansen et al. [23] study a set partitioning formulation for the Capaci-

tated Arc Routing Problem with Stochastic Demands (CARPSD) when the demands

follow Poisson distributions. They solve the CARPSD via a branch-and-price algo-

rithm for the CARPSD. The capacitated arc routing problem is defined on a network

in which demands are associated with edges rather than vertices. This problem can

be transferred into the standard CVRP. In this work, a sub-set of edges have stochas-

tic demands which follows Poisson distribution. The rest of edges have no demands

and may or may not be visited. Similarly to Christiansen and Lysgaard [22], they

consider two types of costs: traveling cost and expected failure cost. They adapt

Christiansen and Lysgaard’s method to the CARPSD.

6.2 Problem setting and models

In this section, we state the problem setting and present a set-partitioning formula-

tion for the vehicle routing problem with stochastic demands and recourse costs. We
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assume that demands are revealed on the vehicle arrival. Therefore, it is possible that

the actual demands which are realized on vehicles arrival exceed the vehicle capacity.

In the pervious chapter, we studied the case wherein we do not consider any action or

cost upon failures. Instead, we formulated the capacitated vehicle routing problem

with uncertain demand (the CVRPUD) so that the system (the CVRP) is valid with

a high probability. In this chapter, we formulate and embed a recourse action in

the CVRP model such that the total expected cost is minimized. We consider the

traditional recourse action i.e., the vehicle returns to the depot for a replenishment

when a failure occurs and then resumes the pre-planned route. The cost of the return

trip is usually the penalty considered for the traditional recourse action. The output

of the aforementioned approach is a set of routes which is guaranteed to have the

minimum expected cost covering the routing cost and the recourse cost.

We define the vehicle routing problem on a graph as follows. Let G = (V0, E)

be a complete directed graph where V0 = {0, .., n} is the set of vertices. Vertex

0 represents the depot and other vertices (V = {1, .., n}) represent customers. The

cost of traveling from vertices i to j is c
e

� 0 where e = ij. A homogeneous fleet of m

vehicles with capacity Q is available at the depot. Customer i is assigned uncertain

demand q
i

(q0 = 0) with E[q
i

] = q̄
i

and Var[q
i

] = �2
i

such that Pr(q
i

 0, q
i

� Q) = 0.

Let R = {1, ..., R} be the index set of all feasible routes. As defined in the previous

chapter, route r 2 R charactrized by V(r) = {r0 = 0, r1, ..., rnr , rnr+1 = 0} is

feasible if q̄(V(r)) =
P

i2V(r) q̄i  Q. Also let f
r

be the cost of route r 2 R which

consists of two elements: the transportation cost without any failure costs plus the

cost of recourse actions in case of failure (f
r

= f 1
r

+ f 2
r

). Recall the edge-based set
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partitioning formulation in the previous chapter. We modify the model as follows:

(SP
EC

) : Z(P
E

) = min E

 
X

r2R

f
r

z
r

!
(6.2)

s.t.
X

r2R(i)

z
r

� 1, 8i 2 V, (6.3)

�x
e

+
X

r2R(e)

z
r

= 0, 8e 2 E, (6.4)

x(�(i)) = 2, 8i 2 V, (6.5)

z
r

2 [0, 1], 8r 2 R, (6.6)

x
e

2 {0, 1, 2}, 8e 2 E. (6.7)

The di↵erence between the above model and the model presented in the previous

chapter is in the objective function. Here, we minimize the expected total cost.

6.3 Calculating expected costs

The next challenge is to calculate the expected total cost. The cost of traveling from

vertices i to j on a given route r can be considered as a statistics and calculated by

c̃
ij

=

8
><

>:

c
ij

, ⇢
j

c
ij

+ c
j0 + c0j, ✓

j

(6.8)

When there is no failure to serve vertex j i.e., there is no need to make a return trip

to the depot for serving vertex j, the cost of traveling from vertex i to vertex j is

equal to c
ij

. The probability of serving vertex j after vertex i on route r without
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visiting the depot is ⇢
j

which can be calculated by

⇢
j

=
uX

l=0

Pr

 
uX

t=0

q
rt  lQ and

u+1X

t=0

q
rt  lQ

!
(6.9)

where l is the number of failures before visiting vertex i, and r
u

= i and r
u+1 = j.

Since Pr(q
i

� Q) = 0, at most u failures are possible until visiting u-th vertex on

route r. Once a failure occurs the vehicle must return to the depot to replenish.

This recourse action imposes an extra cost of c
j0 + c0j. Since at most one failure

is considered at each edge, the probability of failing to serve vertex j after visiting

vertex i is calculated by

✓
j

=
uX

l=0

Pr

 
uX

t=0

q
rt  lQ 

u+1X

t=0

q
rt

!
(6.10)

Figure 6.1 illustrates the cost of serving a vertex on route r when the vehicle fails to

serve vertex e
n

in its first visit.

l-th failure at e
n

c
en0

c0en

c
e

Figure 6.1: An illustrative example for the recourse action
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Therefore, the total expected cost of route r is calculated by

E[f
r

] =
P

nr

u=0 E[c̃ruru+1 ] (6.11)

) E[f
r

] =
P

nr

u=0

�
⇢
ru+1(cruru+1) + ✓

ru+1(cruru+1 + c
ru+10 + c0ru+1)

�
(6.12)

) E[f
r

] =
P

nr

u=0

�
c
ruru+1 + ✓

ru+1(cru+10 + c0ru+1)
�
. (6.13)

The above expected cost can be calculated when the distribution functions are given.

However even when the distribution functions are known, calculating the above ex-

pected cost is not always tractable. In many cases, distributions are discretized with

a desired accuracy. The output is considered as a set of scenarios. When a set of

scenarios S for the demands is given, the above expected cost can be re-stated as

follows:

E[f
r

] =
X

s2S

p
s

f s

r

. (6.14)

where f s

r

is the total cost of serving all vertices on route r under scenario s and p
s

is the probability assigned to scenario s. For a given scenario s if
P

i2Rr
q
i

 Q,

then f s

r

=
P

e2E(r) ce, whereas if
P

i2Rr
qs
i

> Q and
P

i2V(r) q
s

i

 2Q , then f s

r

=
P

e2Er
c
e

+ 2c0e⇤nr
. Let e⇤

nr
be the vertex at which failure occurs. For the sake of

simplicity of the notation we assume that only one failure occurs on route r but our

method can be easily extended to the case when more than one failure occurs.
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6.4 Pricing problem

After calculating the expected cost, the next step is to identify those routes which

can improve the solution in each iteration. Recall the general steps of the branch-

and-price framework in Chapter 5, we write the dual problem of Problem SP
EC

and

set up the column generation problem as follows. Let ↵
i

, �
e

be the dual variables

corresponding to constraints (6.3) and (6.4) then the dual problem is:

DP : Z̄(DP ) = max
X

i2V

↵
i

(6.15)

s.t.
X

i2V (r)

↵
i

�
X

e2E(r)

�
e

 f̄
r

, r 2 R (6.16)

↵
i

� 0, i 2 V and �
e

� 0, e 2 E. (6.17)

where to simplify the notation we denote by f̄
r

= E[f
r

]. In the above problem, we

look for those routes which violate constraint (6.16). To identify them, we define the

reduced cost of each edge as follows:

c̄
e

=

8
>>>><

>>>>:

c0en + �0en � 1
2↵en

c
esen + �

esen � 1
2↵es � 1

2�en when e
s

6= 0 or e
n

6= 0

c
es0 + �

es0 � 1
2�es

(6.18)
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Given the above reduced cost we re-arrange the constraint (6.16) and define the

route’s reduced cost:

c̄
r

=
P

e2E(r) ce + (c0e⇤nr
+ c

e

⇤
nr0

)
P

s2S⇤ p
s

+
P

e2E(r) �e

�
P

i2V (r) ↵i

(6.19)

c̄
r

=
P

e2E(r) c̄e + (c0e⇤nr
+ c

e

⇤
nr0

)
P

s2S⇤ p
s

(6.20)

where S⇤ is the set of scenarios in which failures occur. The next step is to find routes

whose reduced cost is negative and then we add them to the master problem. We

cannot follow the pricing problem described in the previous chapter as the reduced

cost of each edge depends on the fact that using which route we visit an edge and a

vertex. To find the shortest route, we need to keep not only the best path and its

cost at each vertex but also all paths ending at a vertex and their costs. To clarify

this issue we explain it with a simple example. Let us assume there are two paths (P1

and P2) ending at vertex i with their corresponding reduced costs (c̄1(i) and c̄2(i))

such that c̄1(i)  c̄2(i). We visit vertex j after vertex i. Let us assume that because

of the total demands of pervious vertices on path 1, a failure occurs to serve vertex

j, so a replenishment trip has to be made to the depot whereas we can serve vertex j

using path 2 without any failure. Now at vertex j, due to the failure we had on path

1, c̄1(j) � c̄2(j). As a conclusion, we cannot eliminate a path with a larger reduced

cost as it may turn out to be the cheaper route.

Therefore, we cannot use existing algorithms to find routes with least negative

reduced cost. A greedy algorithm is to save all possible paths at each entity of matrix

M but it is computationally very expensive and is not practical. As the aim of the
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pricing problem is to identify routes with negative reduced cost not necessarily least

negative reduced cost, we can modify the pricing algorithm described in the previous

chapter to identify routes with negative reduced cost. Of course, this modification

may lead to not optimal solutions. To make sure we do not miss out any optimal

route, if no routes with negative cost was found, then we run another pricing pro-

cedure in which we introduce a new eliminating rule. We call this procedure the

extensive search. Therefore, we run two di↵erent pricing algorithms: the first one is

the modified version of the the pricing problem described the previous chapter and

will be explained in a greater detail here, and the second one is an extensive search

and contains a new eliminating criterion to reduce the original search space and at

the same time makes sure we do not miss out the optimal solution.

6.4.1 Modified pricing procedure

The pricing subproblem consists of finding q-routes of minimum reduced cost. This

problem is NP-hard when the cost of each edge is independent, however, it can be

solved if all demands are integer [36]. As our primary aim is to identify routes with

negative reduced cost, here we follow standard procedure (plus some modifications)

to identify q-routes without edge cost dependency. The output of this procedure may

not be the minimum reduced cost but it is quicker to find a q-route with negative

reduced cost.

Similar to matrix M described in Chapter 5, the data structure is a Q ⇥ n

matrix M where each element of this matrix (M(q, v)) is the least costly walk that

reaches vertex v using total demand exactly q. In addition to a reference to the
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previous vertex, we update the available data in a label by saving all vertices on

the path. Given the available data now we can calculate the reduced cost of each

path. The matrix is filled using dynamic programming. For each entity of ma-

trix (M(d, v)), we extend the walk to its neighbours w 2 V \ {v} so that the total

nominal demand of the walk does not exceed Q. M(q + q
w

, w) will be updated if

c̄(M(q, v)) + c̄
v,w

< c̄(M(q + q
w

, w)). In our implementation, once an entity with

negative reduced cost is found we terminate the pricing problem and add the corre-

sponding variable/column/route to the master problem.

As explained, due to the negative reduced cost for edges there is a possibility

of having negative cycles. As we save all vertices on a path we can eliminate routes

with cycles. Moreover, an ordered-queue list is used to sort the matrix entities so

that a matrix entity which is more likely to lead to a violated constraint is selected.

The ordered-queue list is filled by the labels of matrix M and is a triple containing

demand, reduced cost and vertex. The queue list is ordered based on demand,

reduced cost and vertex, respectively. In each step, an entity with least demand is

chosen. If there are two entities with the same demands, then the one with the least

reduced cost is chosen. If two entities have the same demands and the same reduced

costs, then the one with smaller vertex number is chosen. And finally, we use the

concept of dominance so that instead of having one label in each entity of matrix M ,

a bucket of labels reaching to vertex v through di↵erent paths are calculated. So, a

set of alternative walks are considered rather than only one walk. A label is added to

the bucket of entity M(q, v) if it is not dominated by labels which have been already

added to the bucket. A label is dominated if its reduced cost and its demand (at the
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same time) are greater than the reduced costs and the demands of existing labels in

the bucket. Likewise, a label in the bucket will be deleted if it is dominated by a

new label.

6.4.2 Extensive pricing procedure

Since the failure cost is embedded in the edge cost, the reduced cost of each edge

depends on the fact that using which route we visit an edge/vertex. So, as mentioned

to identify the shortest route, we need to keep the cost and the elements of all possible

paths from the depot to vertex i. This leads to check exponentially many possible

paths to each vertex. Using the Modified Pricing Procedure (MPP) we eliminate

paths which are less likely to be part of the optimum solution to make the search

space as small as possible. The MPP eliminates a label from the bucket of an entity

or does not add a label to the bucket of an entity if its demand and its reduced cost at

the same time are larger than another label’s demand and reduced cost. Therefore,

the MPP may eliminate some part of the optimum solution. To avoid this problem,

we add another rule to our eliminating rules.

We explain the new rule using a simple example. Let S1(v) and S2(v) be

two sets representing two paths starting from the depot and ending at vertex v.

Let us assume S2(v) ✓ S1(v) such that both paths have the same vertices with the

same order but in path 2 we skip one vertex or more (Figure 6.2). If c̄2  c̄1 and

E[q2]  E[q1], then path 2 dominates path 1. We can eliminate path 1 with the

knowledge that there is a cheaper way to reach vertex i. But in general, we cannot

eliminate a path just because its reduced cost and its demand is larger than others’.
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Figure 6.3 illustrates the later case that we cannot eliminate path 1. The MPP

eliminates path 1 in the both examples. We add the new rule that we can eliminate

a path like path 1, if S2(v) ✓ S1(v), given that the other rules apply.

v i

c̄1

c̄2

Figure 6.2: Path 2 dominates path 1

v i

c̄1

c̄2

Figure 6.3: Path 2 does not dominate path 1

6.5 Concluding remarks

In this chapter, we addressed the SCVRP with recourse action. This problem is

probably the most well-studied variant of the VRP with uncertain parameters. We

proposed a new formulation within the column generation framework. Our proposed

method overcomes with other methods problems which have been proposed within

the column generation framework. The issue lies in the pricing problem where the

search space should be narrowed to those routes which are more likely to be in
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the optimal solution. If elimination rules are not defined appropriately, there is a

possibility to eliminate some routes which may be part of the optimal solution. We

updated the elimination rules by introducing a new rule.

We defined two pricing procedures. The first one is quick and may eliminate

some routes of the optimal solution. But we run the second pricing procedure when

the first procedure fails to find routes with negative reduced cost.

The recourse action we considered in this study was the popular recourse

action that if a failure occurs, the vehicle must return to the depot for replenishment

and resume the pre-planned route.
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Chapter 7

COMPUTATIONAL

EXPERIMENTS

In this chapter,we first investigate the performance of the di↵erent valid inequali-

ties and lifting techniques studied in Chapter 2 for the deterministic HVRP. Then,

we present the computational analysis on the four approaches within stochastic opti-

mization for two variants of the VRP with uncertain demands by conducting di↵erent

experiments.

Similar with the theoretical chapters, this chapter is also categorized into two

main parts. In the first part we study all issues on the deterministic HVRP and

the HVRP with uncertain demands presented in Chapters 2, 3 and 4. To assess the

performance of the valid inequalities and the lifting techniques, we compare the gap

between the lower bound obtained by solving LP relaxations and the upper bound

obtained from Yaman[79]. As will be explained in more detail, we use simulation to
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investigate the impact of CCP, BN robust optimization approach and BS optimiza-

tion approach on optimal solutions and objective functions for di↵erent risk scenario

levels. In the second part, we study the CVRP with uncertain demands where we

investigate the performance of the four approaches within stochastic optimization

presented in Chapters 5 and 6. Analogous with the first part, we use simulation to

compare the results for the CVRP with uncertain demands.

7.1 Computational experiment for HVRP

In Section 7.1.1, we present percentage gaps for the lower bounds corresponding to

the LP relaxation of di↵erent formulations for the deterministic model. In Section

7.1.2, we present three performance measures, by which we analyse the solutions of

the three uncertainty models considered in Section 3 (i.e., BN, BS and CC).

Regarding the experiments on the HVRP, our computational experiments use

two sets of benchmark instances: Golden et al [39] and Prins & Prodhon

http://prodhonc.free.fr/. We denote them by G and P, respectively. G in-

stances correspond to single-depot HVRP with unlimited fleet size and fixed costs. P

instances were originally generated for the homogeneous location routing problem, so

we modify them to obtain multi-depot HVRP with limited fleet size. In particular,

according to the solutions presented in http://prodhonc.free.fr/, we limit the

number of vehicles to that needed to serve the customers. We change the capacity of

vehicles to define a heterogenous fleet (Q
k

). We assign a coe�cient (OC
k

) as oper-

ational (traveling) cost for each type, so that the matrix ck
a

is calculated taking the
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Instance NO. Veh. Cap. k=1 2 3 4 5
P-20-5-5-1a 5 70 OC

k

1 1.2 1.4 1.6 2
Q

k

70 100 130 160 190
P-20-5-3-1b 3 150 OC

k

1 1.2 1.4
Q

k

150 200 250
P-20-5-5-2a 5 70 OC

k

1 1.2 1.4 1.6 2
Q

k

70 100 130 160 190
P-20-5-3-2b 3 150 OC

k

1 1.2 1.4
Q

k

150 200 250

Table 7.1: Vehicle type details

distance between nodes and multiplying it by OC
k

. In Table 7.1 we report for each

instance of type P, the number of vehicles (NO. Veh.), the original capacity (Int.

Cap.) and for each type (k = 1, . . . , 5) the corresponding operational cost (OC
k

)

and capacity (Q
k

).

7.1.1 Lower bounds for the deterministic model

Table 7.2 shows percentage gaps between the lower bounds and the upper bounds

for di↵erent formulations of the deterministic HVRP. The lower bounds are obtained

relaxing the integrality conditions, the upper bounds obtained from Yaman [79].

Although we tried to follow Yaman’s work step by step to produce the same lower

bound, but we failed to achieve the bound presented in [79]. The single-depot HVRP

with fixed cost is considered. We do not claim that these bounds are the best known

bounds. Although Instead we would like to compare and assess the advantage of

the valid inequalities and the lifting techniques we studied in Chapter 2. The first

column represents the instances e.g., G-n20-m5 has 20 vertices, 5 types of vehicles and

unlimited number of vehicles of each type. The second column (MTZ) corresponds
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to the LP relaxation of the standard MTZ formulation (2.1-2.9). The third column

(Cap.) corresponds to the LP relaxation of the standard MTZ formulation after

adding the capacity inequalities (2.10) which are kept in the succeeding column.

The fourth column (DL) is obtained substituting (2.7, 2.8) with (2.23, 2.24) in (2.1-

2.9). The fifth column (RLT) is obtained by replacing (2.7, 2.8) with (2.31 - 2.34b).

The big-M method can be used to linearize the non-linear term in the RLT (2.30) as

follows. The gap for the RLTM is provided in its corresponding column.

y
ij

 u
i

, i, j 2 V
c

, (7.1a)

y
ij

� u
i

�M(1�
P

k2K xk

ij

), i, j 2 V
c

, (7.1b)

y
ij

 M
P

k2K xk

ij

, i, j 2 V
c

, (7.1c)

As the numerical results suggest, the RLTM formulation dominants the other formu-

lations and lifting techniques.

7.1.2 Experiments

We start describing how the data uncertainty is constructed, then we explain the

performance measures used and finally we analyze the computational results.

Uncertain Data To build demand uncertainty sets for the BS and BN robust

models, we allow q
i

to vary up to a fixed percentage of its nominal value so that

q
i

2 [q0
i

� �q0
i

, q0
i

+ �q0
i

] where q0
i

is the demand nominal value and � = 0.1 or 0.2.

To build uncertainty sets for the CC model, it is quite common to consider a normal
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Instance MTZ Cap. DL RLT RLTM

G-n20-k5 76.78 13.46 11.30 11.16 9.93
G-n20-k3 96.56 3.50 3.17 3.16 3.04
G-n20-k5 77.84 18.09 17.09 16.96 13.25
G-n20-k3 96.60 5.01 4.81 4.78 4.27
G-n50-k6 84.75 9.55 9.03 9.01 7.88
G-n50-k3 95.99 5.91 5.74 5.73 5.51
G-n50-k3 84.87 13.72 12.85 12.79 11.06
G-n50-k3 85.70 10.06 9.18 9.15 7.39
G-n75-k4 71.95 12.18 9.80 9.79 8.17
G-n75-k6 79.55 15.30 13.69 13.68 12.74
G-n100-k3 93.31 6.53 6.06 6.06 5.59
G-n100-k3 85.53 12.94 12.09 12.06 10.35

Table 7.2: Gap on percentage for the deterministic models

distribution based on the mean and the variance calculated for a sample. Hence, we

assume that the demand of each customer follows the normal distribution N (µ
i

,�2
i

)

where µ
i

= q0
i

, and �2
i

= 0.16
12 q0

i

. Notice that we set the variance equal to the variance

of the uniform distribution we calculated for the RO cases. In this case, 91% of the

interval defined previously is covered by the normal distribution function.

Performance measures We compare our solutions according to three perfor-

mance measures.

First, we compute the extra cost which is required to pay to achieve a certain

level of validity for routes:

Ea :=
za � zdet

za
⇥ 100

where Ea denotes the extra cost value, za denotes the optimal value of the uncertain
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model (a can be bs, bn and cc for BS, BN and CC models, respectively) and zdet is

the optimal value for the deterministic case.

In case of failure, there are two possible strategies. On the one hand, one

may assume that vehicles return to the depot and do not resume the interrupted

(failed) route, so the remaining customers on the failed route are left unserved. This

is known as allowed lost sales (ALS). The second performance measure represents

the number of unmet customers (and the corresponding unmet demand). On the

other hand, if lost sale is not allowed (NALS), the vehicle returns to the depot for

a replenishment and then resumes the route starting from the first customer which

was left unserved. The third performance measure calculates the recourse cost.

Since the probability of failure (risk level) and the cost are conflicting goals,

we would like to find a proper threshold. Risk level is an important parameter in

CC and BS models (denoted by ↵ in Sections 3.4 and 3.2) by which we can adjust

the conservativeness of the solutions. From the sensitivity analysis for MIP, we

know that for small perturbations of parameters, the optimal solution may remain

unchanged and from some point, the optimal solution will change. However, the

behaviour of the optimal solution in respect to changes in MIP’s parameters is not

quite predictable and the value function in MIP is in general non-convex. This

topic has been widely studied, see [18]. By changing the risk level in fact we can

measure the sensitivity of the optimal solution and find the thresholds at which the

optimal solution will change. In many cases in MIPs, a full description of the convex

hull of the feasible region is not available and constraints may not define facets of

the convex hull, hence changing the parameters may not a↵ect neither the optimal
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solution nor the objective value. On the other hand, if an optimal solution is cut o↵ as

a result of varying parameters, the e↵ect can be dramatic from changing the optimal

solution to infeasible solution. Therefore, in practice in particular when resources

are limited it is vital to define appropriate risk levels so that not only the solution

is feasible but also unnecessary extra costs are not imposed. One way of identifying

the threshold is to define di↵erent scenarios for the risk level. Here in addition to

the nominal case which represents ↵0 = 0.5, we consider 9 scenarios for the risk level

(↵1 = 0.40, ↵2 = 0.30, ↵3 = 0.25, ↵4 = 0.20,↵5 = 0.10, ↵6 = 0.05, ↵7 = 0.03, ↵8 =

0.01, ↵9 = 0.001). Note that the larger risk level, the higher is the probability of

violating a constraint. We solve the CCP and BS RO deterministic counterpart of

the instances for all these scenarios and calculate the aforementioned performance

measures for each scenario. As formulated in the previous section, the protection

level of the BS RO (�) is calculated for each risk level. Then, among the risk level

scenarios, the optimal one can be suggested.

Computational results In this experiment, we consider the variable routing cost

without fixed routing cost for the data sets. All experiments are carried out on a Dell

Precision T1600 computer with a 3.4 GHz Intel Xeon Processor and 16 GB RAM

running Ubuntu Linux 12. Also note that we use our B&C method for the nominal

problem and the BN RO and the default CPLEX solver for the BS RO. When a user

defined B&C method is run in CPLEX, by default CPLEX uses only one thread.

Tables 7.3 and 7.4 present Ebs and Ebn values when � = 10% and � = 20%,

respectively. Table 7.5 presents Ecc values when � = 20%. All running times are in

seconds. Note that, when the BS optimal value equals the BN optimal value, we do
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not need to run other risk levels since they will give the same results. When this

happens, we use bold numbers in Tables 7.3 and 7.4 for the corresponding percentage

of extra cost.

Inst. Nom. BS BN

�=1.14 2.34 3.01 3.77 5.74 7.35 8.76

↵=0.40 0.30 0.25 0.20 0.10 0.05 0.03

UL. Veh.
G-n20-k5 E 623.22 1.07 1.33 1.45 1.91 3.19 3.19 4.30 4.30

T 4147 2199 1264 859 2103 1366 4429 2183

G-n20-k3 E 387.18 0.82 1.04 1.04 1.04 1.92 3.31 - 3.31
T 24561 5208 6317 1889 2470 29387 43392

G-n20-k5 E 742.87 Na N N N 4.97 4.97 N 6.06
T 5632 1079 1206

G-n20-k3 E 415.03 0.00 0.00 1.96 2.20 2.35 2.59 - 2.59
T 1967 6755 4168 2528 2364 21450

L. Veh.
P-20-5-5-1a E 234.36 0.65 N N 0.77 - - - 0.77

T 30806 11679 37518

P-20-5-3-1b E 217.58 0.00 0.00 0.00 0.00 0.55 - - 0.55
T 1354 626 956 733 793 3427

P-20-5-5-2a E 194.46 0.00 3.06 - - - - - 3.06
T 1124 1714 2228.71

P-20-5-3-2b E 180.48 0.00 0.00 0.00 0.00 3.99 - - 3.99
T 14 117 417

Table 7.3: The deterministic optimal objective value and the first performance mea-
sure for BS RO and BN RO (� = 0.1)

aNot be able to solve due to out-of-memory error.

In order to calculate the second and third performance measures, we gener-

ate random demands for each customer from their defined distribution functions to

simulate the actual situations. Table 7.6 reports the results for the average of the

second and the third performance measures for 100 simulations when � = 20%. For

each instance, we use abbreviations as follows U (Unmet Demands), N (Number of
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Inst. Nom. BS BN

�=1.14 2.34 3.01 3.77 5.74 7.35 8.76 10.39 16.99

↵=0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001

UL. Veh.
G-n20-k5 E 623.22 1.31 3.09 4.12 4.12 6.72 7.23 7.87 8.55 8.55 9.11

T 2102 1879 3324 1439 915 1225 1187 959 806 1163

G-n20-k3 E 387.18 1.03 1.89 3.20 3.20 4.15 4.56 - - - 4.56
T 4355 5025 3269 1245 1269 1409 - 494

G-n20-k5 E 742.87 N 5.49 7.39 N N 10.35 10.35 10.35 N 11.07
T 3921 3679 17680 48302 10205 545

G-n20-k3 E 415.03 2.15 2.53 2.5 N 7.62 8.15 8.89 10.49 - 10.49
T 20488 9939 4446 15668 6528 25907 38829 38794

L. Veh.
P-20-5-5-1a E 234.36 0.77 0.76 0.76 1.04 4.65 - - - - 4.65

T 20929 4903 - 14132 21130 88165

P-20-5-3-1b E 217.58 0.00 0.55 - - - - - - - 0.55
T 467 645 122

P-20-5-5-2a E 194.46 2.97 2.97 2.97 2.97 4.59 - - - - 4.59
T 3114 835 1682 950 1229

P-20-5-3-2b E 180.48 0.00 3.84 3.84 3.84 3.84 5.08 5.73 - - 5.73
T 22 158 156 146 114 64 250 104

Table 7.4: The deterministic optimal objective value and the first performance mea-
sure for BS RO and BN RO (� = 0.2)
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Nom. CCP

Inst. ↵ = 0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001

UL. Veh.
G-n20-k5 E 623.22 2.72 6.84 8.80 10.01 18.81 24.79 29.21 34.79 41.73

T 278 190 69 37 102 40 21 25 6

G-n20-k3 E 387.18 2.56 4.27 5.09 5.16 11.63 14.65 17.51 19.87 28.92
T 1287 864 402 132 312 172 212 118 38

G-n20-k5 E 742.87 5.87 10.21 14.01 14.01 24.17 32.43 38.08 43.16 58.12
T 2622 293 2096 264 1674 242 532 53 22

G-n20-k3 E 415.03 2.20 8.52 10.23 11.41 17.75 24.70 27.89 31.09 38.73
T 509 3435 2472 1044 389 408 547 257 38

L. Veh.
P-20-5-5-1a E 234.36 N N N N N N N N N

T

P-20-5-3-1b E 217.58 0.00 0.55 0.55 0.55 0.98 6.62 6.62 12.03 13.23
T 786 408 195 139 162 399 295 1197 694

P-20-5-5-2a E 194.46 3.06 3.06 4.81 4.81 7.10 7.10 15.41 18.19 21.95
T 1722 1702 2357 566 1003 439 4366 7845 1808

P-20-5-3-2b E 180.48 0.00 3.99 3.99 5.35 10.27 11.44 12.35 12.35 21.67
T 21 134 139 58 398 411 895 428 4194

Table 7.5: The deterministic optimal objective value and the first performance mea-
sure for CCP (� = 0.2)

Unmet demands) and R (Recourse Cost). As the numerical result suggests, we do

not need to set a very low risk level to achieve 100% valid routes. Table 7.7 also

presents these measures for the CCP models.

Figure 7.1 illustrates the actual costs, the optimal costs the BS RO for the

defined scenarios of the risk level and also the optimal cost of the BN RO. The actual

cost is calculated based on the BS RO solution for each scenario as follows. For each

scenario of the risk level, the routes are set according its BS RO solution and then the

customer demands are generated from their pre-defined intervals assuming that they

follow a uniform distribution (100 realizations for each demand).There is a possibility
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of failure for the scenarios. So, having assumed that no lost sales are allowed, the

recourse actions are performed to serve unmet customers and the related cost (the

recourse costs) is calculated and added to the optimal cost obtained by the BS RO.

We call this total cost as the actual cost with recourse action. Figure 7.1 illustrates

these three cost graphs for instance G-n20-k5. One can observe that if the risk level

is set to a big value (↵ = 0.40), the actual cost is even less than when the risk level

is very small (↵ � 0.10). It suggests that the extra cost paid to prevent the route

validity for certain level is not necessary. In this specific problem, if the risk level is

set to ↵ = 0.20, the total cost will be minimum. We can conclude that a lower risk

level does not necessarily lead to a better result. Some unnecessary costs may be

imposed without any significant outcome for the system. Figure 7.1 and Table 7.8

provide the optimal level of risk for each problem for the BS RO and the CCP when

no lost sales are allowed. Obviously, the BN RO is too conservative and imposes

unnecessary costs.

�(↵)

Gap (%)

3.77(0.2)*0(0.5)

9.11

20(0)

5.92
BS
BN
actual

Figure 7.1: Risk levels, optimal costs and actual costs for Instance G-n20-k5

On the other hand, we can assume that lost sales/unmet customers are allowed
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in some cost. This means when a failure occurs the vehicle returns to the depot and

does not resume the route, so the remaining customers on the failed route will be left

unserved. To identify the optimal risk level in this case, let us assume a simple case

where all lost sales have the same cost of f . We construct a pair comparison between

each two scenarios to find out under which condition one is better than the other one.

Let C1, C2, n1 and n2 be the optimal cost and the number of unmet customers for

two risk scenarios 1 and 2, respectively. When f  C2�C1
n1�n2

, then scenario 1 is better

than scenario 2 and if f � C2�C1
n1�n2

then scenario 2 is better than scenario 1. Therefore,

a risk level can be the best scenario for a specific range of lost sale costs. Table 7.9

presents intervals for f in which a risk level is optimal when lost sales is allowed

(ALS). For instance, for Instance G-n20-k5, for the BS RO when f 2 [0, 19.97] and

f 2 [19.97, 40.23], then the best risk levels are ↵ = 0.4 and ↵ = 0.3, respectively.

However, ↵ = 0.25 cannot be the optimal risk level for any interval as it has the same

cost of ↵ = 0.2 while there are unmet customers. Therefore, when f 2 [40.23, 1),

then ↵ = 0.2 is the optimal risk level. As this analysis also suggests, the smaller risk

levels are not necessarily the best options.
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Inst. � 1.14 2.34 3.01 3.77 5.74 7.35 8.76 10.39 16.99
↵ 0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001

UL. Veh.
G-n20-k5 U 18.55 5.93 2.42 0 0 0 0 0 0

N 8.30 2.5 0.80 0 0 0 0 0 0
R 28.58 9.55 2.51 0 0 0 0 0 0

G-n20-k3 U 3.93 N 0.25 0 0 0 0 0 0
N 0.25 0.01 0 0 0 0 0 0
R 0.97 0.36 0 0 0 0 0 0

G-n20-k5 U N 3.07 4.31 N N 0 0 0 0
N 0.27 0.09 0 0 0 0
R 12.93 2.40 0 0 0 0

G-n20-k5 U 0.48 0.73 0 0 0 0 0 0 0
N 0.04 0.03 0 0 0 0 0 0 0
R 1.32 1.40 0 0 0 0 0 0 0

L. Veh.
20-5-5-1a U N 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0

20-5-3-1b U 0.65 0 0 0 0 0 0 0 0
N 0.03 0 0 0 0 0 0 0 0
R 0.40 0 0 0 0 0 0 0 0

20-5-5-2a U 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0

20-5-3-2b U 0.30 0 0 0 0 0 0 0 0
N 0.02 0 0 0 0 0 0 0 0
R 0.16 0 0 0 0 0 0 0 0

Table 7.6: Second and third performance measures for the BS (� = 0.2)
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Inst. � 1.14 2.34 3.01 3.77 5.74 7.35 8.76 10.39 16.99
↵ 0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001

UL. Veh.
G-n20-k5 U 46.96 52.55 43.72 43.01 20.62 4.32 1.89 0 0

N 1.37 1.25 0.99 1.00 0.37 0.09 0.02 0 0
R 42.88 46.96 31.93 35.41 13.07 3.12 0.59 0 0

G-n20-k3 U 19.12 16.05 13.16 16.99 1.62 1.43 0 0 0
N 0.75 0.38 0.25 0.31 0.03 0.03 0 0 0
R 20.51 11.87 7.63 8.9 1 1.33 0 0 0

G-n20-k5 U 49.21 37.07 29.38 25.38 5.48 4.52 1.20 1.19 0
N 1.64 0.97 0.64 0.55 0.1 0.05 0.02 0.03 0
R 50.79 39.3 23.29 23.05 4.85 1.89 1.14 1.63 0

G-n20-k5 U 40.8 4.56 6.03 17.46 3.24 0 0 0 0
N 0.82 0.17 0.20 0.30 0.06 0 0 0 0
R 34.36 6.91 9.04 9.26 1.90 0 0 0 0

UL. Veh.
20-5-5-1a U N N N N N N N N N

N
R

20-5-3-1b U 1.05 0 0 0 0 0 0 0 0
N 0.05 0 0 0 0 0 0 0 0
R 0.67 0 0 0 0 0 0 0 0

20-5-5-2a U 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0

20-5-3-2b U 0.32 0 0 0 0 0 0 0 0
N 0.02 0 0 0 0 0 0 0 0
R 0.16 0 0 0 0 0 0 0 0

Table 7.7: Second and third performance measures for the CCP (� = 0.2)
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↵ 0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001 Best Scen.

Inst. BS

UL. Veh.
G-n20-k5 5.92 4.72 4.70 4.30 7.21 7.80 8.55 8.55 8.55 0.20
G-n20-k3 3.55 4.65 3.40 3.31 4.33 4.78 4.78 4.78 4.78 0.20
G-n20-k5 N 7.24 7.72 N N 10.35 10.35 10.35 N 0.30
G-n20-k3 2.52 2.93 2.59 N 8.25 8.87 8.89 10.49 10.49 0.40

L. Veh.
20-5-5-1a 0.77 0.77 0.77 1.05 4.88 4.88 4.88 4.88 4.88 0.25
20-5-3-1b 0.30 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.40
20-5-5-2a 3.06 3.06 3.06 3.06 4.81 4.81 4.81 4.81 4.81 0.25
20-5-3-2b 0.09 3.99 3.99 3.99 3.99 5.35 6.08 6.08 6.08 0.40

CCP

UL. Veh.
G-n20-k5 0.10 0.14 0.14 0.16 0.21 0.25 0.29 0.35 0.42 0.40
G-n20-k3 0.08 0.07 0.07 0.07 0.12 0.15 0.18 0.20 0.29 0.20
G-n20-k5 0.13 0.16 0.17 0.17 0.25 0.33 0.38 0.43 0.58 0.40
G-n20-k3 0.10 0.10 0.12 0.14 0.18 0.25 0.28 0.31 0.39 0.30

L. Veh.
20-5-5-1a N N N N N N N N N N
20-5-3-1b 0.00 0.01 0.01 0.01 0.01 0.07 0.07 0.12 0.13 0.40
20-5-5-2a 0.03 0.03 0.05 0.05 0.07 0.07 0.15 0.18 0.22 0.30
20-5-3-2b 0.00 0.04 0.04 0.05 0.10 0.11 0.12 0.12 0.22 0.40

Table 7.8: Best scenario for the risk level when lost sales are not allowed for BS and
CCP

7.2 Computational experiment for CVRPUD

In this section we report the computational results of our experiments on the CVR-

PUD solved via the column generation methods. Similar to the previous section,

we use simulation to analyze the performance of the models and also use the same

performance measures.

To carry out our experiments, we use the standard instances for the CVRP

127



↵
=
0
.4
0

0.
30

0.
25

0.
20

0.
10

0.
05

0.
03

0
.0
1

0
.0
0
1

B
S

U
L
.
V
eh

.
G
-n
20
-k
5

[0
,1
9.
9
7]

[1
9
.9
7,
40
.2
3
]

-
[4
0.
23
,1

)
-

-
-

-
-

G
-n
20
-k
3

[0
,3
6.
5
7]

-
[3
6.
57
,1

)
-

-
-

-
-

-
G
-n
20
-k
5

N
[0
,7
8.
22
]

N
N

-
-

-
-

-
G
-n
20
-k
3

[0
,1
63
.2
]

-
[1
63
.2
,1

)
-

-
-

-
-

L
.
V
eh

.
20
-5
-5
-1
a

[0
,1

)
-

-
-

-
-

-
-

-
20
-5
-3
-1
b

[0
,3
9.
8]

[3
9
.8
,1

)
-

-
-

-
-

-
-

20
-5
-5
-2
a

[0
,1

)
-

-
-

-
-

-
-

20
-5
-3
-2
b

[0
,3
60
.3
]

[3
60
.3
,1

)
-

-
-

-
-

-
-

C
C
P

U
L
.
V
eh

.
G
-n
20
-k
5
[0
,1
00
.2
5]

-
-

-
[1
00
.2
5,
13
3.
19
][
13
3.
19
,
39
2.
81
][
39
2
.8
1,
1
73
9.
8
5]
[1
7
39
.8
5
,1

)
-

G
-n
20
-k
3

[0
,1
7.
8
4]

[1
7.
84
,
24
.6
0]

-
[2
4.
6,
11
5.
11
]

-
[1
15
.1
1,

75
8.
1]

[
75
8.
1,

1
)

-
-

G
-n
20
-k
5
[0
,
48
.1
1
]
[4
8.
1
1,
85
.6
4]

-
[8
5.
64
,
16
7.
61
][
16
7.
61
,1
22
7.
3]

[1
22
73
,1
39
9]

-
[1
39
9,

7
44
5
][
13
99
,1

)
G
-n
20
-k
3
[0
,
40
.3
6
][
40
.3
6,

34
8.
05
]

-
-

[3
48
.0
5,

48
1.
01
]

[4
81
.0
1,
1
)

-
-

-

L
.
V
eh

.
20
-5
-5
-1
a

N
-

-
-

-
-

-
-

-
20
-5
-3
-1
b

[0
,2
3.
8
8]

[2
3.
88
,1

)
-

-
-

-
-

-
-

20
-5
-5
-2
a

[0
,1

)
-

-
-

-
-

-
-

-
20
-5
-3
-2
b

[0
,3
60
.3
]

[3
60
.3
,
1
)

-
-

-
-

-
-

-

T
ab

le
7.
9:

B
es
t
in
te
rv
al
s
of

th
e
lo
st

sa
le

co
st

fo
r
ea
ch

sc
en
ar
io

fo
r
th
e
B
S
an

d
th
e
C
C
P

128



available in http://branchandcut.org. To build demand uncertainty sets for the

robust models, similar to the previous section for each demand, we consider an

interval of v percent around its nominal value i.e., q
i

2 [q0
i

� vq0
i

, q0
i

+ vq0
i

]. In

our experiments we assume v = 0.20. Since we assume demands are integer, if the

bounds are not integer values then we round them down to the next integer number.

But for converted TSPLIB instances which are instances originally generated for the

TSP problem, each customer has a unit demand (q0
i

= 1). We set v = 100. As the

demand’s values are integer, the possible values of the converted TSPLIB instances

are 0, 1, 2.

We use a set of scenarios to model the uncertainty for the CCP models. The

reason is that even when the distribution functions are known, not always their joint

distribution is tractable and usually its calculation is not easy. In many cases, distri-

butions are approximated and discretized with any desired accuracy. The output is

considered as a set of scenarios. We generate 10 scenarios from the above defined in-

tervals. For converted TSPLIB instances, we define demands di↵erently. To generate

the scenarios, we assume three possible values i.e., 0, 1, 2 for each customer.

The number of vehicles which are listed for the standard CVRP instances in

http://branchandcut.org are the minimum number of vehicles needed to serve all

customers for deterministic cases. Given that we assume uncertain demands, these

numbers of vehicles may not be su�cient to serve all customers and it may result in

infeasible solutions. Thus, we drop limitations of the number of vehicles and assume

that an unlimited number of homogenous vehicles are available.

We implement our proposed branch-and-price algorithms introduced in Chap-
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ters 5 and 6 in SCIP (Solving Constraint Integer Programs). SCIP is a non-commercial

mixed integer programming (MIP) solvers available at http://scip.zib.de. SCIP

provides us with a framework in which we can implement our branch-and-price al-

gorithms. As mentioned in Section 5.2, SCIP has a limitation which forces us to

change our formulation to SP
E

. This limitation is that if variables have tight bounds

e.g., {0, 1} then the pricer module may find and add a variable more than once into

the master problem. Therefore, the tight bounds of variables must be imposed via

constraints rather than in their definitions. It is why we defined new variables (x
e

)

and new constraints to overcome this issue.

All experiments are run on a Dell Precision T1600 computer with a 3.4 GHz

Intel Xeon Processor and 16 GB RAM running Ubuntu Linux 12. Notice that SCIP

does not provide us with parallel computing, therefore, we can use only one thread

out of eight available threads.

7.2.1 Implementation

In order to improve the running time and the e�ciency of our algorithms, we make

two main modifications. The first modification is concerned with the initial set of

routes. The second one is concerned with the pricing problem.

A good initial set of routes is very important in the overall e�ciency of column

generation based methods ([19]). Therefore, we implemented and tested three dif-

ferent heuristics to find an initial good solution. In the first one, we simply sort the

customers based on their numbers in an ascending order. Unassigned customers are

assign to a route until the vehicle’s capacity is reached. Then, we add another route
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and repeat this procedure until no customer is left unassigned. We use the nominal

values for the customers demand in the assignment procedure for the CVRP with

recourse actions while for the CVRP without recourse actions, we hold the route

feasibility conditions for each approach e.g., in the BN robust approach we consider

the upper bounds of demands to construct the initial routes. Finally, the total (ex-

pected) costs of routes are calculated for the initial routes for each approach and the

routes and their costs are added to the master problem as the initial set of routes.

In the second heuristic, we sort the customers in an ascending order based on their

distance to the depot. Then we assign the customers to routes/vehicles similar to

the first heuristic.

The last heuristic is more complicated than the first two ones and is similar to

Solomon [72]. In this heuristic, vertices are inserted between two adjacent vertices

on a route based on two criteria. First, we sort the customers in a descending

order on the basis of their distance to the depot. We choose the furthest vertex

(i) and initialize a route between the depot and vertex i. Then, we calculate the

best feasible insertion place for each unassigned customer on the route. Among all

unassigned customers we pick the one which leads to a new route with the least cost.

Once the capacity of a route is reached then we start a new route and repeat the

procedure until all customers are assigned.

The second modification is concerned on the pricing problem. As mentioned

in Chapters 5 and 6, we defined a queue list to sort the entities of matrix M . We now

add another element to the defined triple and make it a quadruple. The new entry

is called ratio. This element will be placed as the first criterion in the quadruple, so
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that the entity with smallest ratio will be first in the queue. The ratio is defined as

follows:

r :=
M(v, q)

l(M(v, q))
, (7.2)

where M(v, q) and l(M(v, q)) are the reduced cost of reaching vertex v with total

demand q and the actual length of this entity, respectively. Using this ratio will rank

an entity with smaller reduced cost and smaller actual length higher in the queue.

Such an entity probably has more chance of being a part of the optimal solution. We

need to either re-calculate the length in each iteration or save the actual length of

each entity’s path. In our implementation we save the actual length to each entity

of matrix M and update it in each iteration.

7.2.2 Experiments

In this section, the computational results of our experiments will be reported. Table

7.12 presents the description of the instances we will use for our experiments. The

first column refers to the instance’s name which indicates the number of vertices and

the number of vehicles required to serve all vertices. For instance E-n13-k4 has 13

vertices (one depot and 12 customers) and 4 vehicles. The second column shows

the capacity tightness which is equal to the total demand divided by mQ. Finally,

the last two columns denote the total expected cost and the percentage of increase

in comparison with the objective value of the deterministic cases. To calculate the

total expected cost, we use the solution (routes) of deterministic problem and simu-
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late 1000 realizations of the demands from the intervals defined above.Then, having

assumed that lost sales are not allowed, we calculate the total expected cost which

consists of the routing cost plus the cost of return trips to the depot.

Instance Obj tightness expected cost inc. (%)

E-n13-k4 247 0.76 277 12.15
E-n22-k4 375 0.94 393.76 5
E-n23-k3 569 0.75 596.948 4.91
E-n30-k3 534 0.94 574.554 7.59
E-n76-k14 1021 0.97 1107.16 8.44
P-n16-k8 450 0.88 461.99 2.66
P-n20-k2 216 0.97 223.3 3.38
P-n22-k8 603 0.94 700.172 16.11
P-n22-k2 216 0.96 221.144 2.38
P-n23-k8 529 0.98 605.77 14.51
P-n40-k5 458 0.88 461.6 0.79
P-n55-k15 989 0.99 1143.9 15.66
P-n60-k15 968 0.95 1042.6 7.71
ulysses-n16-k3 85 1 99.6 13.3

Table 7.10: CVRP instances and the expected cost

We solve instances for Ben-Tal and Nemirovski robust optimization, chance

constraint programming and stochastic programming with recourse action. We do

not provide computational results for Bertsimas and Sim robust approach due to

mainly the following issue. The first issue is that the probability bounds by which

the protection parameter (�) is calculated for each constraint is not tight when the

number of uncertain parameters is not large in a constraint. Therefore the value

calculated for (�) is usually equal to the number of vertices in small ↵ which is

equivalent with Ben-Tal and Nemitovski robust optimization. In the standard CVRP

instances, the number of vertices on a route are normally 3, 4 or 5.

Let us start with CCP and BN RO models. Analogous with the previous
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section, we solve instances corresponding to CCP and RO models and obtain their

optimal solutions. As these two approaches are single stage and no recourse costs or

recourse actions are suggested by their optimal solution, using simulation we generate

demands from corresponding intervals for each customer. In our experiment, we

consider 10 scenarios for the probability of failure (↵ = 0.40, 0.30, 0.20, 0.10, 0).

Table 7.11, the first column refers to the instance name. In the second column, the

objective values for the corresponding deterministic instances are provided. In the

third, each character refers to a performance measure as follows:

(A) refers to the percentage of increase in the expected cost of the CCP solution

obtained from simulation for each scenario in comparison with the nominal

objective value.

(R) indicates the expected recourse cost to serve all customers.

(N) refers to the expected number of failures.

(U) refers to the expected amount of demands that vehicles fail to serve in the first

visit.

The forth column to the eighth column report the above measures for each scenario

of ↵. The ninth column reports the percentage increase in the objective value in BN

robust approach in respect to the nominal objective value. The final column is the

best ↵ which has the least expected cost.

This table also confirms our finding in the previous section that not neces-

sarily the higher protection level results in a better overall solution. Notice that all

instances in Table 7.11 have been solved to optimality within 2 hours time limit.
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Instance Obj. N. 0.40 0.30 0.20 0.10 0.00 RO Best Scen.

E-n13-k4 247 A 17.82 15.69 15.69 15.69 12.16 4.05 0
R 43.01 35.75 35.75 35.75 0.05
N 0.89 0.70 0.70 0.70 0.00
U 1433.23 1264.42 1264.42 1264.42 1.76

E-n22-k4 375 A 4.79 8.05 8.72 7.71 6.99 13.07 40
R 17.97 23.18 20.71 9.90 7.21
N 0.65 0.69 0.64 0.28 0.15
U 938.87 975.68 991.33 437.91 140.65

P-n16-k8 450 A 9.53 8.51 7.58 5.43 8.44 5.78 10
R 42.88 38.30 23.13 6.43 15.97
N 0.82 0.82 0.45 0.20 0.32
U 12.37 10.97 6.94 5.32 7.84

P-n22-k8 603 A 9.54 6.68 7.91 12.13 7.22 10.45 30
R 70.55 51.29 58.70 60.15 10.54
N 1.06 1.07 1.07 0.84 0.19
U 1102.22 802.12 1467.65 732.51 235.81

P-n23-k8 529 A 17.61 14.50 14.50 7.69 9.09 14.56 10
R 93.15 64.69 64.69 25.68 9.06
N 1.72 1.04 1.04 0.43 0.22
U 26.12 20.60 20.60 5.17 2.75

ulysses 85 A 19.00 18.44 20.53 32.58 27.90 60.00 30
-n16-k3 R 8.15 4.67 5.45 2.70 0.71

N 0.62 0.41 0.30 0.17 0.04
U 1.01 0.68 0.51 0.29 0.08

Table 7.11: Results for CCP and RO models for the CVRPUD
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In Tables 7.12 and 7.13 we summarize the details of our computational exper-

iments for the stochastic vehicle routine problem with recourse action. The second

column in Table 7.12 reports the increase in the objective value in comparison with

the objective values provided in http://branchandcut.org. In the third and fourth

columns, we present the number of routes required to serve all customers and the

number of routes on which a failure(s) occur and have to return to the depot for

the solution of the SVRP with recourse action. The instances in which there is an

increase in the number of routes are marked by (⇤) in the third column. If an in-

stance is solved to optimality then the optimality gap is zero. The optimality gap

is provided in the fourth column. Finally the fifth column reports running time.

We generate 1000 demand scenarios from the intervals defined for each customer’s

Instance Obj. Inc.(%) No. R No. Fail. R. gap(%) time(s)

E-n13-k4 6.2753 4 0 0 110.66
E-n22-k4 2.3467 5⇤ 2 0 27.2
E-n23-k3 7.6977 3 0 0 109.73
E-n51-k5 1.7274 5 2 1.17 48600
E-n76-k14 0.6856 15⇤ 0 0.75
E-n76-k29 3.687 30⇤ 5 0 214.37
P-n60-k15 4.4628 16⇤ 3 0.25 29292.07
P-n16-k8 3.0222 8 1 0 0.22
P-n20-k2 0.4630 2 0 0 430.48
P-n40-k5 1.3100 5 1 0 17088.8
P-n22-k8 2.2886 9⇤ 2 0 0.82
P-n22-k2 0.0000 2 0 0 500.36
P-n23-k8 5.3686 9⇤ 2 0 4.89
P-n55-k15 2.8055 16⇤ 4 0 205.91
P-n50-k10 2.4425 10 2 0.88 48948.67
P-n50-k8 1.4263 9⇤ 0 0.78 124310
ulysses-n16-k3 12.56 3 3 0 1.02
P-101-37 4.410 39⇤ 4 0 5167.35

Table 7.12: Results for SCVRP with recourse actions I
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demand, then, calculate the total expected cost and the total expected recourse cost

for the solution obtained from the deterministic CVRP (indicated by ”Nominal”)

and the SVRP with recourse action (indicated by ”2-stage”). Similar to Table 7.11,

in Table 7.13, we report the two measures previously defined. As the table suggests

in all cases the SVRP with recourse action provide better solutions even for those

which we could not solve to optimality.

Instance Nominal 2-stage Instance Nominal 2-stage

E-n13-k4 A 12.30 9.98 E-n76-k29 A 37.75 35.94
R 30.38 2.65 R 27.40 24.59

E-n22-k4 A 5.00 4.79 P-n22-k8 A 16.11 6.43
R 18.76 17.95 R 97.17 40.77

E-n23-k3 A 4.91 3.51 P-n22-k2 A 2.38 1.77
R 27.95 17.00 R 5.14 3.83

E-n76-k14 A 8.44 7.07 P-n23-k8 A 14.51 6.41
R 86.16 66.16 R 76.77 14.90

P-n60-k15 A 7.71 5.80 P-n55-k15 A 15.66 2.24
R 74.60 21.15 R 154.90 61.11

P-n16-k8 A 2.66 2.66 ulysses-n16-k3 A 13.38 12.56
R 11.99 11.99 R 11.37 10.67

P-n20-k2 A 3.38 1.76 P-101-k37 A 39.67 38.38
R 7.30 2.80 R 28.40 25.92

Table 7.13: Results for SCVRP with recourse actions II

In addition, we increased the number of demands scenarios from 10 to 100

and solve three instances of the SVRP with recourse actions. The results of this

experiment is summarised in Table 7.14. All instances are solved to optimality and

the number of routes are the same as the number of routes when we used 10 scenarios

reposted in Table 7.12. There are small changes in the objective function and also

in the performance measures (A and R) in comparison with the case when we had

10 scenarios. Also the routes are the same but there are more failures on the routes
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as we have increased the number of scenarios and provided more information on the

uncertain demands. As the results suggest all cases provide better expected objective

value in comparison with the nominal models.

Instance Obj. Inc.(%) No. Fail. R. time(s) A R

P-n23-k8-s100 5.82 3 6.12 25.81 23.28
P-n55-k15-s100 3.12 12 342.42 19.55 19.72
P-101-37-s100 6.2 17 3710.79 38.91 26.00

Table 7.14: Results for SCVRP with recourse actions for 100 demand scenarios

In Table 7.15, we compare the best solution of the CCP models with the

solution of the SVRP with recourse action models for those instances we solved

to optimality of the CCP approach. As this table suggests in our experiment the

solutions of the SVRP with recourse action dominate the solution of the CCP models.

instance CCP Nominal 2-stage

E-n13-k4 A 12.16 12.30 9.98
R 0.05 30.38 2.65

E-n22-k4 A 4.79 5.00 4.79
R 17.97 18.76 17.95

P-n16-k8 A 5.43 2.66 2.79
R 6.43 11.99 12.56

P-n22-k8 A 6.68 16.11 6.43
R 51.29 97.17 40.77

P-n23-k8 A 7.69 14.51 6.41
R 25.68 76.77 14.90

gr-n17-k3 A 75.29 28.87 62.77
R 89.64 209.62 40.68

ulysses-n16-k3 A 18.44 13.38 12.56
R 4.67 11.37 10.67

Table 7.15: Comparison between CCP (for the best scenario), Nominal and two stage
stochastic models
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Chapter 8

CONCLUSIONS AND FUTURE

RESEARCH

This dissertation has investigated di↵erent formulations within mixed integer pro-

gramming and di↵erent approaches within stochastic optimization for two variants of

the vehicle routing problem with uncertain demands: heterogeneous vehicle routing

problems and capacitated vehicle routing problems. We have addressed the following

two main research questions:

– What are specific properties of our proposed VRPUD formulations?

– Which methods in stochastic programming and mixed-integer programming

can be used to improve VRPUD solution algorithms?

First we presented a comprehensive polyhedral study of the heterogeneous vehicle

routing problem which have led us to a relatively e�cient formulation for the HVRP.

This formulation is introduced based on Miller-Tucker-Zemlin (MTZ) formulation.
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The computational experiment presented in Table 7.2 reports the e�ciency of each

type of key valid inequalities and lifting techniques. Among all valid inequalities, the

capacity inequalities are most e↵ective inequalities and our proposed Reformulation-

Linearization technique dominates the existing lifting techniques in the literature.

We have also extended the models to the multi depot HVRP.

However, the advantage of our proposed formulation does not end here. The

main advantage of the proposed formulation is that the corresponding counterparts

of uncertainty remain tractable via mixed integer linear programming (MILP). Thus,

we could apply approaches within stochastic optimization to our models and solve

the resulting problem via a mixed integer solver. In particular, we have applied three

main single-stage approaches within stochastic programming to the HVRP with un-

certain demands: chance constrained programming, Ben-Tal and Nemirovski robust

approach as well as Bertsimas and Sim robust approach. We finally plugged the

proposed models into a branch-and-cut method. We have conducted an extensive

experiment for the models where we have tested the several separation algorithms and

have compared the stochastic optimization approaches. Among the separation algo-

rithms, the separation algorithm for the DFJ SEC inequalities is the most e�cient

one. Although we tried several separation algorithms for comb valid inequalities, it

turned out to be not a very e�cient type of inequalities of the HVRP.

Ben-Tal and Nemirovski’s robust optimization approach is very conservative

whereas chance constrained programming and Bertsimas and Sim robust optimiza-

tion approach provide us with a parameter which is called the protection level and

gives us ability of controlling the level of conservativeness. Using simulation we have
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conducted a scenario based experiment to find out which protection level results in

the least costly set of routes. As the single-stage approaches do not suggest any

recourse action or cost, we consider two possible actions if a failure occurs: first,

returning trip to the depot and resuming the pre-planned route and second, leaving

the remaining customers on the failed route unserved with a penalty. Since these

methods do not take into account any recourse action, it is common knowledge that

the higher protection level results in a better solution. On the contrary, as our

experiment confirms, the high protection level is not always good and may impose

unnecessary extra costs to the problem. Having calculated the total expected cost for

di↵erent scenarios for the chance constraint models and Bertsimas and Sim models,

we could observe from Table 7.8 that not always the higher scenario results in the

routes with least expected cost. Table 7.8 reports which scenario leads to solutions

with least expected costs when the lost sales are not allowed i.e., the vehicle must

make a return trip to the depot for replenishment. Also for the second action, leav-

ing the customers on the failed route unserved, Table 7.9 presents for which range of

penalty costs a scenario of the protection level is the optimum. Notice that we have

used intervals to model uncertainty for the robust optimiztaion approaches and the

Normal distribution for the chance constrained programming.

As column generation based methods are reported to be the most successful

methods for variants of the deterministic vehicle routing problem, we have formu-

lated the capacitated vehicle routing problem with uncertain demands within this

framework. In addition to the three single-stage approaches, we have applied a two-

stage stochastic approach known as stochastic vehicle routing problem with recourse
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action to the capacitated vehicle routing problem with uncertain demands within

the column generation based framework. We have developed two master problems

and call them edged based set-partitioning (SP
E

) and edged based set-partitioning

with route costs (SP
EC

) formulations. The first master problem is used to model

the single-stage approaches while the second one is used to model the stochastic ve-

hicle routing problem with recourse action. The main issue to employ the stochastic

optimization approach within the column generation framework lies in the pricing

problem where routes are generated and their corresponding costs are calculated. In

Chapter 5, using the definition of feasible route we have proposed pricing problems

which model the single-stage approaches. This development is new in the literature

of the CVRP with uncertain demands. In Chapter 7, we studied the stochastic vehi-

cle routing problem with recourse action where the recourse action considered is the

traditional recourse action i.e., if a failure occurs on a route, the vehicle must return

to the depot for a replenishment and resume the pre-planned route to serve the rest

of customers on the route. We define a new way of calculating the expected cost

for a route in the pricing problem. Using standard pricing procedures may result

in eliminating routes which are part of the optimal solution as the expected cost

does also depend on the fact that using which route we visit an edge and a vertex.

Thus, we have suggested a new rule to eliminate those routes which are dominated

by other routes. In addition, we have tried three di↵erent heuristics to identify the

initial routes.

To model the demand uncertainty, for chance constrained programming and

the stochastic vehicle routing problem with recourse action, we have used data driven
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approaches and have defined a set of scenarios for the demands. Similar to the HVRP

with uncertain demands, using simulation we have conduced an extensive experiment

to test the four approaches for the CVRP with uncertain demands within the column

generation framework. The results for the HVRP with uncertain demands were

confirmed by similar experiments on the CVRP, i.e., not always the higher protection

level results in a better solution. Our experiment also suggests the stochastic vehicle

routing problem with recourse action provides better solutions (in terms of the total

expected cost) for the CVRP with uncertain demands in comparison with the single-

stage methods.

We finish this thesis with discussion of future research. The possible research

in this field can be summarized as follows:

– In this research, we studied the HVRP and CVRP with uncertain demands. A

possible research is to study other variants of vehicle routing problems such as

VRP with time windows and uncertain parameters.

– In this work we studied single-stage approaches for the HVRP with uncertain

demands. In the literature is no work on stochastic heterogenous vehicle routing

problem with recourse action.

– the only uncertain parameter studied in this dissertation was demand. Also, in

the literature customers’ demand is the main uncertain parameter. In practice,

other parameters such as routing cost, traveling time and availability of vehicles

are sometimes subject to uncertainty. In particular, our proposed branch-

and-price method provides a good framework to study uncertainty of other
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parameters.

– As described in Chapter 6, several types of recourse actions have been suggested

in the literature. A possible research direction is to implement them within

the proposed branch-and-price framework and investigate their advantages and

disadvantages.

– In our proposed branch-and-price framework, our assumption on the type of

demand uncertainty was limited to a date driven approach while distribution

functions such as Poisson can be considered for uncertain demands.

– While data correlation is an important issue in stochastic optimization, tak-

ing data correlation into account usually results in intractable models for the

VRP with uncertain parameters. Our proposed branch-and-price framework

is flexible so that data correlation may be modelled while the problem’s com-

plexity remains the same. In addition, adjustable decision making has recently

received a great deal of attention where dependency of decision variables and

random variables can be modelled. Considering data and decision variable cor-

relation in the vehicle routing problems with uncertain demands could be a

possible research direction.

– Finally, embedding e�cient cutting plane procedures into our branch-and-price

framework can improve the framework e�ciency so that larger instances can

be solved to optimality.
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