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Abstract

High-throughput technologies have made it possible to perform genome-scale analyses to
investigate a variety of research areas. From these analyses, vast amounts of potentially
noisy data is generated which could obscure the underlying signal.
In this thesis, a high-throughput regression analysis approach was developed, where a

variety of linear and nonlinear models were �tted to gene expression pro�les from time
course experiments. These models included the logistic, Gompertz, exponential, critical
exponential, linear+exponential, Gaussian, and hyperbolic functions. The �tted para-
meters from these models re�ect aspects of the model shape, and are thus biologically
interpretable. Investigating the �tted parameters allowed for the interpretation of the
gene expression pro�les in terms of the underlying biology, such as the time of initial
expression. This provides a potentially more mechanistic approach to study the genetic
responses to stimuli. This analysis was applied to three time series gene expression
experiments - a Saccharomyces cerevisiae time course as a validation of the method,
and two time course experiments on Arabidopsis thaliana investigating stress responses
to the senescence process, and pathogen infection by Botrytis cinerea.
A cluster analysis, named ShapeCluster, was developed as an application of the �tted

models. Using this analysis, it was possible to cluster on aspects of the shape of the
expression pro�les using di�erent combinations of parameters. This added �exibility to
the analysis and allowed for the investigation of the data in multiple ways. Speci�cally,
performing the cluster analysis on a speci�c parameter permitted the identi�cation of
genes that are co-regulated, or participate in response to the biological stress in question.
Several methods of producing clusters with combinations of parameters, namely sim-
ultaneous parameter clustering, sequential meta-clustering, and cross meta-clustering,
provided additional means of interrogating the data. Clusters from these methods were
assessed for signi�cance through the use of over-represented annotation terms and mo-
tifs, and found to produce biologically relevant sets of genes.
Experiments using quantitative-PCR and luciferase transcriptional reporters were de-

signed to determine the response to a combined Botrytis and senescence stress. A pre-
dicted model was identi�ed by �tting a factor model to the experimental data, and
identifying the most signi�cant model e�ects. This model removed noise from the bio-
logical data, and con�rmed that the e�ects of the two stresses was additive.
In cross-sectional data, each sample is obtained from separate individuals (plants),

and thus may be di�erent biological ages. An iterative, cross-validation multivariate
regression approach was developed, termed time shifting, to estimate the true biological
age of the replicate samples, and it was shown that the approach resulted in better
model �ts for a large proportion of the genes.
In this thesis, a number of novel analytical approaches for obtaining information

from gene expression microarray datasets were developed. These analyses provided bio-
logically oriented descriptions of individual gene expression pro�les, allowing for the
modelling and greater interpretation of pro�les obtained from time-series experiments.
Through careful choice of appropriate models, such statistical regression approaches
allow for an improved comparison of gene expression pro�les, and may provide an im-
proved understanding of common regulatory mechanisms between genes.
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1. Introduction

The world's population continues to grow, and this coupled with changes in the climate,

mean that the production of food crops must intensify. It has been estimated that food

production needs to increase by 60% of the 2005 level in order to meet the demand

for food in 2050 (FAO, 2012). While farming techniques such as the application of

fertiliser or pesticides aid in improving yields, these can have serious environmental

impacts (Oerke, 2006). In addition, given the limited area of land for agriculture, other

means of increasing yields are required (Oerke, 2006). Furthermore, current climate

change prediction models suggest that average surface air temperatures will rise by

approximately 3°C in the next 50�100 years, which could have an enormous impact

on the agricultural system (Solomon et al., 2007). Thus it is desirable to understand

the processes that occur in a plant's response to environmental stresses. Using this

information, it will be possible to develop crops that are resilient to these stresses by

exploiting the innate ability of the plants to protect themselves.

A stress is de�ned as a stimulus that leads to the disruption of normal metabolic

processes, causing a change in the biological system, potentially leading to reduced

yield, or even death in extreme cases (Bijlsma and Loeschcke, 2005; Oerke, 2006; Rao

et al., 2006). Plants are sessile organisms, and thus unlike animals, are unable to relocate

to escape from stresses. They are constantly exposed to environmental stresses, both

biotic (such as infection by pathogens, or predation by herbivores) and abiotic (such

as heat, cold, drought or salt) (Oerke, 2006; Naika et al., 2013; Rao et al., 2006), and

have developed intricate mechanisms to detect and respond to these stimuli (Atkinson

and Urwin, 2012; Naika et al., 2013). These stresses can all reduce the yield in crop

plants (Atkinson and Urwin, 2012; Mittler and Blumwald, 2010), and it has also been

suggested that stresses may also impact the nutritional value of food crops (Andre et al.,

2008; Jansen et al., 2008). Therefore, it is vital to understand the principles of these

stress responses in order to determine how plants adapt to stress tolerance, and so

develop plants that are resistant, or able to adapt, to a variety of these stresses so that

necessary crop yields can be maintained in a changing environment (Naika et al., 2013).

1.1. Responses of plants to stress

Plants are constantly exposed to a variety of environmental stresses, both to biotic and

abiotic, and thus need to be able to respond e�ciently to these stresses. Many plant

hormones including salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid

(ABA), auxin, gibberellic acid, cytokinins and brassinosteroids have been implicated in

producing a stress response (reviewed in Bari and Jones, 2009 and Glazebrook, 2005).
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Stresses cause a change in concentration of these molecules, which in turn activate

signalling cascades, ultimately leading to the activation of genes involved in stress re-

sponses. In addition to forming part of a signal transduction network, they are involved

in a number of biological functions, including regulation of growth, development, and

reproduction. SA, JA, ET and ABA are the most well characterised molecules that are

known to be involved in signal transduction networks that in�uence stress responses,

and will be discussed in greater detail below.

Biotic pathogens can be broadly grouped into two categories: biotrophic and necro-

trophic pathogens, each of which have di�erent modes of attack. As a result, plants have

di�erent mechanisms for dealing with the pathogens (reviewed in Glazebrook, 2005 and

Bari and Jones, 2009). Biotrophic pathogens do not cause host cell death, and cause

minimal cell damage in order to extract nutrients from the host cells. These pathogens

include the oomycete, Hyaloperonospora parasitica and fungal pathogens, Golovinomy-

ces orontii and Erysiphe pisi. In contrast, necrotrophic pathogens kill host tissue by

producing cell wall degrading enzymes or toxins, leading to host tissue maceration, and

thus obtains resources from the cell remnants. Pathogens of this type include Botrytis

cinerea and Alternaria brassicicola.

1.1.1. Salicylic acid (SA)

SA is typically associated with resistance against biotrophic pathogens, mediated through

the expression of NONEXPRESSER OF PR GENES 1 (NPR1 ) and PATHOGENESIS-

RELATED GENE 1 (PR1 ) (Zhou et al., 2000). In uninfected cells, NPR1 exists as an

inactive oligomeric complex, and is primarily found in the cytoplasm. Increased cellu-

lar concentrations of SA induces the release of monomeric NPR1. These active NPR1

monomers are translocated into the nucleus where they physically interact with members

of the TGACG-binding motif family of basic region/leucine zipper (bZIP) transcription

factors (TFs), and this complex binds to the PR1 promoter (reviewed in Dong, 2004;

Johnson et al., 2003; Pajerowska-Mukhtar et al., 2013; Spoel et al., 2009). In addition, a

number of other TFs, including SUPPRESSOR OF SNI1 2 (SSN2), RADIATION SENS-

ITIVE 51D (RAD51D), BREAST CANCER 2A (BRCA2A), and activating WRKY

transcription factors are recruited onto the PR1 promoter. Repressor proteins, such as

SUPPRESSOR OF NPR1 INDUCIBLE 1 (SNI1), NON-INDUCIBLE IMMUNITY 1

(NIM1)-INTERACTING (NIMIN) proteins, and repressive WRKY factors are disso-

ciated from the PR1 promoter (reviewed in Pajerowska-Mukhtar et al., 2013). These

events subsequently result in the activation of PR1 gene expression and defence re-

sponses.

As previously mentioned, one of the most common groups of TFs associated with the

SA response is the WRKY family. It has been shown that a large proportion of the genes

belonging to this family are di�erentially expressed in response to SA treatment (Dong

et al., 2003), and are often associated with resistance against biotrophic pathogens

(reviewed in Singh et al., 2002). In addition, some members of the family act to regulate

the SA signalling response (van Verk et al., 2011). The name of this family is derived
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from the conserved WRKYGQK amino acid sequence within the TF sequences, and

these TFs tend to bind to sequences containing the W-box motif (TGAC), many of

which are upstream of stress response genes (Eulgem et al., 2000; Rushton et al., 2010).

SA has also been found to be involved in a number of other biological functions,

including senescence, plant development and photosynthesis (Morris et al., 2000; Rivas-

San Vicente and Plasencia, 2011).

1.1.2. Jasmonic acid (JA)

Where SA is typically associated with defence against biotrophic pathogens, JA is gen-

erally involved in signalling pathways that confer resistance to necrotrophic pathogens.

As would be expected from pathogens that cause cell death, JA is also associated with

the wounding response, particularly through the action of various jasmonate Zim do-

main (JAZ) proteins (Katsir et al., 2008). In the inactive state, a key positive regulator

of JA responses, MYC2, is repressed by JAZ proteins (Chini et al., 2007, 2009), with an

additional layer of repression present due to the binding of the NINJA and TOPLESS

(TPL) proteins (Pauwels et al., 2010). Biotic stresses result in the accumulation of JA,

which acts as a �molecular glue� between CORONATINE INSENSITIVE 1 (COI1) and

the JAZ repressors. In the presence of (3R,7S )-jasmonoyl-L-isoleucine (JA-Ile) or coron-

atine (COR), this forms a stable complex that interacts with the E3 ubiquitin ligase,

SCFCOI1. This results in proteosomal degradation of the JAZ repressor, subsequently

releasing the NINJA-TPL complex, and relieving the repression from MYC2, facilit-

ating the activation of JA-responsive genes, such as the defensin PLANT DEFENSIN

1.2 (PDF1.2, PR-12 ) and the thionin THIONIN 2.1 (THI2.1, PR-13 ) (reviewed in

Robert-Seilaniantz et al., 2011).

Other TFs that are associated with JA signalling include members of the APETALA

2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF family, such as ETHYL-

ENE RESPONSE FACTOR 1 (ERF1), and OCTADECANOID-RESPONSIVE ARA-

BIDOPSIS AP2/ERF 59 (ORA59). However, it is currently unknown whether these

TFs directly interact with the JAZ proteins, or if they form part of another signalling

response pathway (Pré et al., 2008).

In addition to regulating biotic stress responses, JA has also been implicated in

drought responses, controlling cell growth and proliferation, as well as inducing the

expression of genes that are involved in the production of stress-associated metabol-

ites including glucosinolates, phenylpropanoids and anthocyanins (Pauwels et al., 2008;

Sasaki-Sekimoto et al., 2005). JA has also been found to increase as leaves senescence

(Breeze et al., 2011), suggesting that as a plant ages, JA down-regulates growth genes

and up-regulates stress response genes (Pauwels et al., 2008). Other functions of JA

include involvement in salt and osmotic stress (Lehmann et al., 1995; Xu et al., 1994).

1.1.3. Ethylene (ET)

Like JA, ET is largely involved in the responses to necrotrophic pathogens. ET is de-

tected by receptors, such as ETHYLENE RESPONSE 2 (ETR2), ETHYLENE RE-
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SPONSE SENSOR 1 and 2 (ERS1 and ERS2) and ETHYLENE INSENSITIVE 4

(EIN4), which are found on the endoplasmic reticulum. In the absence of ET, these

receptors maintain the negative regulator CONSTITUTIVE TRIPLE RESPONSE 1

(CTR1) in an active form, which represses ET signalling components, such as EIN2

and EIN3. Under these conditions, EIN3 is degraded by the proteasome-mediated de-

gradation pathway through the interaction with EIN3-BINDING F BOX PROTEIN 1

and 2 (EBF1 and EBF2) (reviewed in Robert-Seilaniantz et al., 2011 and van Loon

et al., 2006).

In the presence of ET, CTR1 is inactivated, which removes the repression of EIN2,

allowing it to interact with EBF1 and EBF2, consequently preventing the degradation

of EIN3. EIN3 is stabilised by ET and has been found to play a major role in pho-

tosynthetic, developmental and defence pathways (Zhong et al., 2009). EIN2 enhances

the expression of ETHYLENE INSENSITIVE 3-LIKE (EIL) TFs, which then activate

ERF family members such as ERF1 (Solano et al., 1998). These ERF family members

target the GCC-sequence which is found in many stress related genes (Okamuro et al.,

1997). This family of proteins is important for the resistance to biotic stresses, as it

is has been shown that ERF mutants show altered susceptibility, depending on patho-

gen (reviewed in van Loon et al., 2006). For example, ERF1 over-expressors exhibit

enhanced resistance to Botrytis cinerea, but increased susceptibility to Pseudomonas

syringae pv tomato (Lorenzo et al., 2003).

ET levels increase during the senescence process, due to the up-regulation of ET

biosynthetic genes as the plant ages (van der Graa� et al., 2006), and it has been shown

that ein2 mutants exhibit delayed senescence (Oh et al., 1997). ET is also been found

to be involved in plant growth and development, response to wounding, dehydration,

and cold and salt stress (Morgan and Drew, 1997).

1.1.4. Abscisic acid (ABA)

The role of ABA in biotic stresses is not as clear as the other plant hormones, as

ABA can result in both positive and negative e�ects (reviewed in Asselbergh et al.,

2008, Robert-Seilaniantz et al., 2011 and Ton et al., 2009). The response appears to

depend on the timing of the infection, where ABA induction before infection increases

resistance to pathogens by closing the stomata, thus restricting pathogen entry into the

plant (Melotto et al., 2006). However, if ABA induced signalling is activated during

P. syringae pv tomato infection, this results in increased susceptibility, possibly due to

ABA signalling interfering with the other hormone responses (de Torres-Zabala et al.,

2007).

ABA induces the expression of genes that contain the conserved ABA response ele-

ment (ABRE) ((C/T)ACGTGGC), which allows them to interact with a group of bZIP

TFs known as ABRE-binding factors (ABFs). ABF2, ABF3 and ABF4 have been shown

to be key regulators of the ABA signalling response, and activate gene expression when

under drought stress (Yoshida et al., 2010). In addition to the ABRE motif, ABA-

regulated genes contain the binding sites for other stress related TFs, including MYC2

4



and MYB2. These TFs have been shown to be involved in ABA-mediated induction

of genes such as RESPONSIVE TO DESSICATION 22 (RD22) and ALCOHOL DE-

HYDROGENASE 1 (ADH1 ) (Abe et al., 2003).

ABA was originally linked to water deprivation, which induces ABA biosynthesis,

and has since also been implicated in the regulation of plant growth and development,

and osmotic and salt stress where it is thought to help protect plants against cellular

damage from water loss (reviewed in Cutler et al., 2010). Application of exogenous

ABA induces premature senescence (Gepstein and Thimann, 1980), and like ET, ABA

accumulates in senescencing leaves due to the up-regulation of ABA biosynthetic genes

during senescence (Breeze et al., 2011; Buchanan-Wollaston et al., 2005; van der Graa�

et al., 2006).

1.1.5. Crosstalk between the signalling pathways

The above signalling pathways do not exist in isolation, but rather are closely associated

in order to tune the defence response to a particular environmental stress. Crosstalk

between the various signalling pathways thus provides plants with the ability to regulate

the responses for di�erent stresses (reviewed in Pieterse et al., 2009; Robert-Seilaniantz

et al., 2011; van Loon et al., 2006).

JA and ET are often found to be synergistic, where it has been shown that there is a

large overlap of di�erentially expressed genes after treatment with JA and ET (Schenk

et al., 2000). In addition, it has been found that activation of PDF1.2, a key indicator of

JA-signalling, requires both ET and JA signalling components (Penninckx et al., 1996).

It is thought that the main convergence points between these two signalling pathways

involve ERF1 and ORA59 (Lorenzo et al., 2003; Pré et al., 2008).

Conversely, SA signalling is antagonistic to the JA- and ET-signalling pathways.

It has been found that biotrophic pathogens trigger SA signalling, which suppresses

JA- and ET-signalling through the action of TGA and WRKY TFs (Li et al., 2004;

Ndamukong et al., 2007).

With abiotic stresses, there is not as much information as the ABA signalling pathway

is more complicated. In general, it appears that ABA interferes with the SA-, JA-, and

ET- signalling pathways, increasing susceptibility to both biotrophic and necrotrophic

pathogens (Anderson et al., 2004; Flors et al., 2008; Mohr and Cahill, 2007).

1.2. The PRESTA project

As described previously, it is becoming increasingly important to understand the mo-

lecular e�ects of environmental stresses on a plant, in order to exploit the plant's innate

ability to adapt to incoming stresses. Arabidopsis thaliana is a model plant species and

is commonly used for determining the function of genes and the general understanding

of plant biology. Its genome was sequenced in 2000 by an international consortium

(The Arabidopsis Genome Initiative, 2000), and much work has been done since then

to determine the function of the genes (Garcia-Hernandez et al., 2002; Lamesch et al.,
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2012).

To speci�cally investigate the e�ect of environmental stresses, the PRESTA (Plant

Responses to Environmental STress in Arabidopsis) project has performed a number of

high resolution time series microarray experiments in order to elucidate the signalling

networks to explain plant responses to a variety of biotic and abiotic stresses. There are

several datasets that include long (16 hours light) and short day (8 hours light) senes-

cence, Botrytis cinerea infection, Pseudomonas syringae pv tomato infection, drought

stress, and high light. The gene expression analyses were performed using CATMA

version 3 and 4 microarrays (Sclep et al., 2007), which contained over 32 500 probes.

These probes mapped to approximately 24 000 unique gene models. Thus, the dynamic

changes in gene expression levels for e�ectively the entire Arabidopsis genome have

been determined in response to a number of di�erent stresses, and biological interpreta-

tion regarding the co-expression and co-regulation of genes associated with a particular

stress responses can be ascertained. Of particular interest are the genes that are key

regulators of multiple environmental stresses.

Outcomes of this project include identifying a transcription factor that enhances res-

istance to drought and infection to virulent P. syringae pv tomato DC3000 and Hy-

aloperonospora arabidopsidis (Bechtold et al., 2013) as well as identifying a local network

around a group of transcription factors that are involved in stress responses (Hickman

et al., 2013). In addition, a number of theoretical advancements were made, including

a text-mining analysis (Hassani-Pak et al., 2010), a clustering approach for identifying

potentially co-regulated genes (Kiddle et al., 2010), a tool to identify conversed regulat-

ory regions between di�erent plant species (Baxter et al., 2012), the reverse-engineering

of gene regulatory networks (Penfold and Wild, 2011; Penfold et al., 2012), providing

an interface for motif �nding and analysis (Brown et al., 2013), and a tool to estimate

transcription activation and repression points (Jenkins et al., 2013). Finally, the papers

by Breeze et al. (2011) and Windram et al. (2012) are two experimental reports detailing

the changes in gene expression of Arabidopsis plants in response to long day senescence

and Botrytis cinerea infection, respectively. These are both very high resolution data-

sets with a large number of time points (11 and 24 for the senescence and Botrytis

experiments, respectively) and provide an in-depth exploration of the transcriptional

changes that take place under the respective stresses. These stresses will be discussed

in greater detail below.

1.2.1. Senescence

Senescence in green plants is a complex process and the process is mostly clearly il-

lustrated in autumn, when the leaves on trees begin to change from green to vibrant

yellows, reds and oranges, before �nally turning brown and falling o�. The process of

senescence is the �nal stage of leaf development and is controlled by numerous environ-

mental signals. Senescence is a result of carefully organised changes within the cellular

structure, metabolism and gene expression, and ultimately leads to the death of the

leaf. However, this process is essential for the overall �tness of the plant, particularly in
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monocarpic plants (plants that reproduce once and die at the end of the reproductive

phase), where nutrients are moved from the leaves to the seeds (reviewed in Buchanan-

Wollaston et al., 2003 and Lim et al., 2007). In non-annual plants, the nutrients are

stored until they are needed for the following season's growth phase. The degeneration

of the cells begins with the chloroplast and continues with the degradation of all the

cellular macronutrients (such as lipids and proteins). The mitochondria and nucleus

remain intact until the �nal stages. Therefore, if it was possible to control when crops

undergo senescence, it may be possible to improve crop yields, in addition to reducing

post-harvest yellowing and the concomitant decrease in the nutrient content of leafy

vegetables.

The senescence process results in the maturation of crops such as maize or rice. How-

ever, premature senescence occurs when plants undergo an environmental stress, which

may lead to reduced yield and quality of crops (Wright, 1999). Here, the plant �sacri-

�ces� parts of itself to improve the chances of survival, for example those parts that are

under attack by a pathogen (Tanaka et al., 2005). This ensures that the nutrients in

the distressed areas will not be completely lost. Abiotic factors that induce senescence

include drought stresses and extreme temperature, whereas biotic factors include patho-

gen infection and shading by other plants. All the above hormone signalling responses

(SA, JA, ET and ABA signalling pathways) have been implicated in senescence (Breeze

et al., 2011; Buchanan-Wollaston et al., 2005; Morris et al., 2000; van der Graa� et al.,

2006).

An interesting aspect of leaf senescence is that it can be reversed (Rivero et al., 2007;

Zavaleta-Mancera et al., 1999). Using methods such as cytokinin (CK) treatments

(Zavaleta-Mancera et al., 1999), it is possible to induce plants that have yellowed and

have moved the majority of its nutrients out of the leaf, to become green again. The

promoter of SENESCENCE ASSOCIATED GENE 12 (SAG12 ) was fused to the cod-

ing sequence of isopentenyltransferase (IPT), an enzyme involved in CK biosynthesis,

and plants with this gene construct were found to exhibit delayed senescence, as well as

tolerance to excessive water (�ooding) stress. These plants exhibited chlorophyll reten-

tion as well as higher biomass and carbohydrate content as compared to wildtype plants

(Huynh et al., 2005). In addition, Rivero et al. (2007) showed that transgenic plants ex-

pressing IPT from a senescence enhanced promoter were able to survive severe drought

stress and exhibited vigorous growth after re-watering. In both cases, the expression of

the IPT gene linked to a senescence related promoter resulted in increased synthesis of

CKs in the plant, suggesting that these CKs are important in delaying senescence, as

well as protecting against osmotic stresses (�ooding and drought stresses).

The senescence process is extremely complex, resulting in a large number of transcrip-

tomic changes (Breeze et al., 2011; Buchanan-Wollaston, 1997; van der Graa� et al.,

2006). One of the main groups of TFs that have been implicated as a regulator in

the senescence response is the NAC family (Balazadeh et al., 2010; Breeze et al., 2011;

Hickman et al., 2013; Meng et al., 2009), where mutations of members of this TF family

result in altered senescence patterns. Members of the WRKY and ARF TF families
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A	  

B	  

Figure 1.1: Sample leaves from the PRESTA datasets. (A) Examples of the sampled
leaves in the senescence experiment. The numbers indicate the age of the plant (days
after sowing). (B) Images of a leaf showing the progression of Botrytis infection.
Each leaf image indicates a time di�erence of two hours. Figures obtained from
Breeze et al. (2011) and Windram et al. (2012).

have also been found to be involved in regulation of the senescence process.

The senescence dataset (Breeze et al., 2011) consists of 22 time points, taken every

second day for 22 days from 19 to 39 days after sowing (DAS). The seventh leaf of

each sample plant was sampled at 7 and 14 hours into the light period (morning and

afternoon samples, respectively), and 4 biological replicate samples were taken at each

time point, where each biological replicate (leaf) was obtained from a di�erent plant.

In addition, each biological replicate had 4 technical replicates (2 dye swaps) in the

microarray experiment (Figure 1.1A). The microarray experiment was designed using a

loop design in order to enable the most e�cient extraction of data from the two-colour

microarray system. The data from the microarrays was analysed using an adapted

version of the MAANOVA package (Wu et al., 2003) to perform the quality assurance,

normalisation and mixed model analyses.

1.2.2. Botrytis cinerea

The grey mould, Botrytis cinerea, is a necrotrophic fungus that infects a wide range of

host plants, including fruits, vegetables and even cut �owers. Necrotrophic organisms
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kill host cells with the use of phytotoxins to promote host cell death, and use the remains

for further growth (van Kan, 2006; Williamson et al., 2007). With a broad host range of

over 200 di�erent plant species, Botrytis is considered one of the most signi�cant fungal

plant pathogens (Dean et al., 2012), and is considered as a model for necrotrophic

pathogens (van Kan, 2006). Botrytis is di�cult to control as it possesses a variety of

modes of attack, and can survive for extended periods of time in soil (Williamson et al.,

2007). As a result of all these factors, Botrytis has signi�cant economic impact, both

due to crop loss because of infection (both pre- and post-harvest), and the cost of using

fungicides to control infections (Dean et al., 2012). Thus, increasing the knowledge of

the molecular e�ects of Botrytis infection could aid in developing new mechanisms with

which to combat the disease (van Kan, 2006). Interestingly, Botrytis is useful in wine

production, where it can result in noble rot in the grapes, which can then be used to

produce sweet wines (Dean et al., 2012).

Infection by Botrytis results in a large scale reorganisation of the Arabidopsis tran-

scriptome (Windram et al., 2012). A large number of di�erent TF families become

up-regulated in response to Botrytis infection, including members of the WRKY, ERF,

NAC, and MYB families (Lorenzo et al., 2003; Windram et al., 2012). Much of this is

due to JA- and ET-signalling, which are generally found to be involved in response to

necrotrophic pathogens. Indeed, it has been shown that JA is important for resistance

to Botrytis (Govrin and Levine, 2000; Thomma et al., 1998), particularly with PDF1.2,

a key JA-signalling gene shown to be expressed upon fungal attack. However, there is

a signi�cant amount of overlap involving other hormones, such as ABA. In addition,

there is crosstalk between the di�erent hormone signalling pathways where TGA3, be-

longing to a TF family typically found in SA-dependent signalling, has been shown to

be important for resistance to Botrytis (Ferrari et al., 2003; Windram et al., 2012).

In the Botrytis time series experiment (Windram et al., 2012), the seventh leaf for each

replicate plant was initially infected with an inoculum made up of 100 000 spores/ml

of Botrytis cinerea pepper isolate suspended in half strength grape juice (Denby et al.,

2004), at 6 hours into the light period, and samples were taken every 2 hours from

2 to 48 hours after infection (24 time points). Controls were obtained at each time

point by inoculating leaves with droplets of grape juice only. Several droplets of the

inoculum were placed on each leaf to ensure complete coverage. Like the senescence

time series experiment, this experiment used 4 biological replicates at each time point,

and an average of 3 technical replicates for each biological replicate in the microarray

experiment (Figure 1.1B). The design of the microarray experiment for the Botrytis

time course was also based on a loop design, and again the data was analysed using an

adapted version of the MAANOVA package (Wu et al., 2003) to perform the quality

assurance, normalisation and mixed model analyses.

1.3. Multiple stress responses

In the �eld, combinations of environmental stresses often occur simultaneously, and this

can reduce the yield in agricultural crops. In general, most studies have investigated
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transcriptome changes in response to a single stress, and di�erent patterns may be

obtained in response to each stress (Rasmussen et al., 2013). However, simultaneous

exposure to combinations of stresses results in a complex set of responses to allow the

plant to respond appropriately to environmental conditions. To develop transgenic crops

that are resilient to these stresses, the interactions between the various stress responses

need to be better understood. While the e�ects on development and nutrient allocation

have been previously studied (reviewed in Mooney et al., 1991), the genetic interactions

that occur in response to combinations of stresses are generally not well understood.

The most commonly studied combination of stresses is the e�ect of di�erent abiotic

stresses with various pathogens (biotic stresses) (reviewed in Mittler and Blumwald,

2010). It has been found that abiotic stresses generally resulted in increased susceptib-

ility to biotic stresses, possibly due to the plant sacri�cing the infected parts in order

to ensure it survives the potentially fatal abiotic stress (Atkinson and Urwin, 2012). A

summary of the e�ects of other combinations of environmental stresses are shown in

Figure 1.2. This �gure shows the stress interactions that have a negative e�ect on crop

productivity, such as nutrient stress and drought, in addition to some environmental

e�ects that may be bene�cial to yield, such as high CO2 and ozone.

Rasmussen et al. (2013) performed both single and combined stress treatments on

a variety of environmental stresses, including cold, heat, high-light, salt, and �agellin

treatments, and were not able to predict the majority of combined responses from the

single stress responses. However, these predictions were only performed on a single time

point for each stress. In a similar experiment by Prasch and Sonnewald (2013), heat and

drought stresses were found to increase the susceptibility of Arabidopsis plants to turnip

mosaic virus, and di�erent sets of genes were found to be activated in the combined

stresses as compared to the single stresses.

1.4. Methods for analysing gene expression

High throughput technologies, such as microarrays, provide a means to detect expression

levels of multiple genes at once, allowing researchers to observe the transcriptional

changes that occur within a plant in response to a stress (Naika et al., 2013; Rao

et al., 2006). With the sequencing of the Arabidopsis thaliana genome (The Arabidopsis

Genome Initiative, 2000), it has been possible to investigate the genetic responses of

Arabidopsis to environmental stresses on a whole genome scale. These �ndings may

potentially be applied to other economically valuable plants in the Brassica genus,

including oilseed rape, cauli�ower, and broccoli (Paterson et al., 2001).

The transcriptome of an organism refers to the level of mRNA molecules (transcripts)

that are being expressed by a cell at a speci�c point in time, and this will change depend-

ing on factors including cell type, developmental processes, or environmental stimuli.

One of the most commonly used techniques to study gene expression is microarrays.

Microarrays are typically glass slides which contain DNA molecules attached at �xed

locations called spots or probes, with each spot representing a gene or gene fragment

(Causton et al., 2003). mRNA extracted from the samples are reverse transcribed to
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Figure 1.2: �Stress matrix� showing the e�ects of various combinations of environmental
stresses. Interactions that have a deleterious e�ect on crop production are shown in
red, and those with a potentially positive e�ect are shown in blue. Figure obtained
from Mittler and Blumwald (2010).

cDNA and labelled, typically with �uorescent Cyanine dyes. The labelled cDNA is

hybridised to the spots on the slide, and the amount of cDNA that hybridises to a

particular spot is relative to the expression level of the gene represented by that spot.

There are typically thousands of spots on one microarray slide, and this provides re-

searchers the opportunity to observe the changes in the entire transcriptome at a given

time, in response to a given stimulus. Issues with microarrays include variation due

to non-speci�c hybridisation, di�erent hybridisation a�nities between the spots, and

di�erences in the labelling e�ciency (Marioni et al., 2008).

While microarrays are a popular technique, other high-throughput techniques also

exist to study gene expression. These include serial analysis of gene expression (SAGE)

(Roulet et al., 2002), cap analysis of gene expression (CAGE) (Shiraki et al., 2003),

and massively parallel signature sequencing (MPSS) (Lu et al., 2006). Whereas mi-

croarrays rely on hybridisation, these technologies are based on sequencing tags and

quantifying the number of tags to infer the level of gene expression. With the advent

of cheaper, high-throughput DNA sequencing technologies, techniques such as RNA-

Seq have been developed, and can provide a more accurate representation of transcript

levels (reviewed in Wang et al., 2009). An RNA-Seq analysis is performed by producing

a library of cDNA fragments from the extracted RNA, and sequencing each of these

fragments. These sequence reads are generally aligned to a reference sequence, and the

number of reads that align to a particular transcript provide an indication of the gene

expression. Advantages of RNA-Seq over microarrays include requiring less total RNA,

lower background noise, and a larger range of detectable expression levels. In addition,
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a complete reference genome is not required, so it is possible to detect new, unannotated

genes, as well as splice variants. Some disadvantages include the potential presence of

ribosomal RNA, and highly expressed genes can be problematic as the majority of tags

would be mapped to them. RNA-Seq is still a relatively expensive technology to use,

particularly for large scale studies, although as sequencing costs continue to decrease, it

is expected that RNA-Seq will replace microarrays for the analysis of gene expression.

Despite these di�erence between microarrays and RNA-Seq, it has been shown that the

gene expression values obtained from these two methods correlated well (Marioni et al.,

2008), as well as complemented each other (Kogenaru et al., 2012).

An issue with microarrays and RNA-Seq methods is that they are limited by the detec-

tion of low abundance transcripts, such as transcription factors (Caldana et al., 2007).

As a result, quantitative real-time polymerase chain reaction (qPCR) is commonly used

to validate the gene expression levels determined by these methods (Kogenaru et al.,

2012). This methodology uses �uorescent reporter molecules (such as SYBR Green or

TaqMan) together with primer pairs speci�c to a gene of interest to detect the levels

of a target gene during the cycles of a PCR reaction. By measuring the �uorescence at

each cycle, it is possible to quantify the amount of transcript present. Gene expression

levels are determined using a threshold value, where the higher the gene expression of

the target gene at the start of the reaction, the fewer cycles that will be required to

reach this threshold (Bustin et al., 2005; Nolan et al., 2006). This methodology provides

a sensitive, precise, and accurate assay, which is more �exible than microarrays, as it is

possibly to easily add or remove target genes (Czechowski et al., 2004). Although qPCR

is generally used for a small number of genes, it is possible to scale up the experiment

by generating primer pairs for a large library of genes to screen (Caldana et al., 2007;

Czechowski et al., 2004). However, the number of genes that are screened are typically

an order of magnitude smaller when compared to microarrays (thousands as opposed to

tens of thousands). In addition, the cost of the reagents required becomes prohibitive.

A technology that has recently been garnering interest is the NanoString nCounter

gene expression assay (Geiss et al., 2008). This platform aims to �t the niche between the

large-scale genome-wide (e.g. microarrays) and more focussed (qPCR) gene expression

analyses (Kulkarni, 2011; Malkov et al., 2009). This method uses a capture probe to

bind to the target mRNA at the 5'-end and contains an a�nity tag (such as biotin), as

well as a reporter probe to bind to the 3' end, which contains a series of �uorophores.

The order of these �uorophores acts as a unique identi�er for the gene of interest.

After removing excess probes, an image is acquired, and the number of each of the

coloured tags is determined, providing an indication of the gene expression of the genes

of interest in the sample. Advantages are that it can be used with any nucleic acid

sequence, so RNA does not need to be ampli�ed or reverse transcribed, and the process

can be multiplexed with up to 800 di�erent genes (Geiss et al., 2008; Kulkarni, 2011).

However, as it is a relatively new technology, the cost is still high.

The previous technologies require the extraction of the genetic material from the

samples, and then quantifying them using various techniques. One technology that
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does not require this is the use of a luciferase transcriptional reporter (Brasier et al.,

1988; Millar et al., 1992, 1995). By attaching the coding sequence of the �re�y luci-

ferase enzyme to the promoter region of a gene of interest, and transforming plants to

constitutively express this construct, it is possible to produce a sensitive, non-invasive,

real-time reporter of gene expression in a plant (Brasier et al., 1988; Millar et al., 1992).

Using a low light camera, it is possible to identify the spatial and temporal activity of

the gene of interest. The main disadvantage in this technology is the requirement of the

expensive imaging equipment, as well as the large amount of time required to generate

the transgenic lines (Millar et al., 1992, 1995).

Microarrays and other similar technologies have made it possible to observe changes

in the expression of a multitude of genes, under a range of conditions, and at di�erent

time points. The identi�cation of patterns in the gene expression may be indicative of a

variety of biological phenomena, from disease and developmental states, to responses to

stimuli (Causton et al., 2003; Wang et al., 2009). While a single microarray is valuable

for quantifying the level of gene expression at a single point in time, it is possible to

determine the expression levels of genes over a number of time points (Storey et al.,

2005). In this way, these time series experiments can be used to observe the dynamics of

the system to determine the di�erent genes that are up- or down-regulated in response

to some stimuli (Androulakis et al., 2007; Bar-Joseph, 2004; Kiddle et al., 2010).

1.5. Clustering data

Clustering is a generic term that is used for the grouping of objects into groups, or

clusters (Jain et al., 1999). The aim of the analysis is to identify groups of observations

that are similar to each other, but distinct from all other groups. This form of analysis

has been applied in many research areas, including medicine (e.g. Everitt and Hothorn,

2010), marketing science (e.g. Dolnicar, 2003), image analysis (e.g. Everitt and Bull-

more, 1999) and biological data (e.g. Eisen et al., 1998). Even within these di�erent

�elds, the applications of clustering can be vast, from pattern analysis and grouping,

to machine-leaning and data mining. This diverse range of application areas re�ects

the broad appeal and usefulness of the approach in the exploration of a large dataset

(Everitt and Hothorn, 2010; Jain et al., 1999). It should be noted that clustering is an

unsupervised form of classi�cation. This means that the data points are unlabelled, and

there is little to no prior information regarding the data. This provides the researcher

with a large amount of �exibility as to the way the analysis proceeds, but also requires

that the researcher not make any invalid assumptions about the data (Jain et al., 1999).

The most common clustering algorithms are the hierarchical methods, where objects

are compared in a pairwise manner. These methods may be divided into agglomerat-

ive and divisive methods. Agglomerative methods produce clusters in a �bottom-up�

fashion where each object starts in its own cluster, and pairs of objects or clusters are

successively merged together. Divisive methods are the opposite, where all the objects

start in a single global cluster, and are divided up as the process continues. In addition,

it is also possible to obtain �fuzzy� clusters, where each object contains a probability of
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belonging to each cluster (Kaufman and Rousseeuw, 2009).

Hierarchical clustering relies on determining the dissimilarity, or distance, between

two objects. The most common method to do this is to use a Euclidean or Manhat-

tan city-block distance. To group objects into clusters, a linkage method is used to

determine if a pair of genes or clusters should be merged (in the case of agglomerative

clustering) or divided (in divisive clustering). The most common linkage methods in-

clude single linkage which identi�es objects with the smallest distance, complete linkage

which identi�es objects with the largest distance, and average linkage which compares

the average distances between all pairs of objects, with one object from each cluster.

(Izenman, 2008; Jain and Dubes, 1988)

Many hierarchical clustering algorithms create a dendrogram as a representation of

the relation of the observations to each other, where the branches are the clusters.

Typically this dendrogram is cut at some arbitrary cut-o� in order to form the desired

clusters. Alternatively, the dendrogram may be cut in such a way that a predetermined

number of clusters in formed, but this requires prior information as to the structure

of the clustering. Langfelder et al. (2008) present a more objective approach where

the number of clusters are automatically determined by detecting patterns which are

indicative of an underlying subcluster structure, such as the minimisation of the intra-

cluster distance, and the maximisation of the inter-cluster distance.

Eisen et al. (1998) were among the �rst to apply a clustering algorithm to gene

expression data. The hypothesis was that genes which clustered together (co-expressed

genes) would have similar functions, be involved in the same metabolic pathway, and

possibly co-regulated by the same transcription factors (Williams and Bowles, 2004).

By using hierarchical clustering, with an uncentred correlation distance and centroid

linkage, yeast microarray data from various stages in the organism's life cycle, and under

di�erent abiotic conditions was analysed (Eisen et al., 1998).

Partitioning (non-hierarchical) methods have also been applied to cluster gene expres-

sion data, each with its own assumptions and biases. Some examples include the use

of self-organising maps to identify similar sized sets of genes (Tamayo et al., 1999), and

the use of a small set of marker genes in an algorithm called gene shaving (Hastie et al.,

2000). Other popular clustering algorithms include k -means clustering and Partition-

ing Around Medoids (PAM), where in both cases, k representative objects (genes) are

randomly selected, and each other object is assigned to the most similar representative

object (Kaufman and Rousseeuw, 2009).

Using a variety of clustering methods, researchers have been able to identify groups

of genes that participate in similar signalling and metabolic pathways (Williams and

Bowles, 2004), sets of genes with similar expression pro�les were found across multiple

datasets, under di�erent temporal, environmental and genetic conditions (Mentzen and

Wurtele, 2008), and co-expressed genes could be di�erentiated between various envir-

onmental stresses (Weston et al., 2008).

While the identi�cation of an appropriate clustering algorithm is important, the as-

sessment of the resultant clusters is equally important (Jain and Dubes, 1988). Di�erent
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clustering algorithms can potentially generate very di�erent clusters, even on the same

dataset. As a result, a cluster may be an arbitrary shape and size and it can be di�cult

in determining the signi�cance of the clusters. In addition, the interpretation of clusters

is highly subjective, as no precise de�nition of what a cluster should be exists (Cau-

ston et al., 2003; D'haeseleer, 2005). If the true grouping of a set of genes is known,

the clusters can be assessed using this. However, these �gold standards� rarely exist

(Jain and Dubes, 1988; Yeung et al., 2001). Generally, the results from a clustering is

assessed though visual inspections, often with the use of prior biological information

(Androulakis et al., 2007).

1.6. Clustering time series data

Time series data refers to experiments when responses were obtained at multiple time

points. This type of data may be cross-sectional or longitudinal. Cross-sectional data

indicates that each data point was obtained from an independent sample (e.g. leaf

samples at di�erent times), whereas in longitudinal data, subsequent data points are

obtained from the same individual (e.g. blood samples for a patient at di�erent times).

Traditional clustering algorithms, such as those described above, are not suitable for

time series data as they assume that the observations are independent of each other and

disregard the temporal relationship between the observations (Bar-Joseph, 2004; Cooke

et al., 2011; Heard et al., 2006; Lin et al., 2008). In time series data, there is an obvious

dependence of each observation on the past observations (Ernst et al., 2005; Ma et al.,

2006).

Numerous techniques have been developed to take this temporal information into ac-

count, and include the use of Bayesian-based hierarchical clustering algorithms (Cooke

et al., 2011; Heard et al., 2006), smoothing spline clustering (Ma et al., 2006), hidden

Markov model (HMM) algorithms (Oh et al., 2013; Schliep et al., 2003), and curve �t-

ting using smoothing spline clustering models (Déjean et al., 2007; Ernst et al., 2005;

Ma et al., 2006). Ernst et al. (2005) used an approach where a set of possible gene

expression pro�le combinations over a series of time points are calculated and the stat-

istically signi�cant pro�les identi�ed. In addition, many algorithms exist to speci�cally

identify circadian patterns in the time series data. These include using time-domain

(Straume, 2004) and frequency-domain methods (Chudova et al., 2009; Yang and Su,

2010), as well as using a Fourier series approximation of periodic gene expression (Wang

et al., 2012). Multiple techniques have also been integrated to improve the grouping

accuracy, as performed by Déjean et al. (2007) where spline smoothing was performed

to reduce the amount of noise prior to hierarchical clustering. These techniques can

be computationally expensive (Bar-Joseph, 2004; Ma et al., 2006). For example, the

approach by Ernst et al. (2005) is only tractable for experiments with small numbers

of time points, due to the exponential growth in the number of permutations with an

increase in time points, and HMM clustering tends to over�t the data when there are

less than ten time points (Ma et al., 2006). Techniques that utilise splines (a segmented

polynomial function) are popular as they are able to model any unknown shape with
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relative amount of ease, without requiring any prior information about the structure of

the data (Heard et al., 2006; Ma et al., 2006; Seber and Wild, 1989). However, these

methods calculate a smoothed curve through the data, which may not be biologically

relevant. In addition, they are sensitive to noise and can over�t the data (Bar-Joseph,

2004), meaning the model is overly complex, and describes random noise. Most cluster-

ing methods, including those described above, often group observations together based

on the pro�les appearing the same. However, in a biological system, these methods may

not identify genes which regulate each other. Kiddle et al. (2010) presented a method of

clustering time series expression data using an a�nity propagation algorithm to identify

pro�les with a transient correlation or time delay (possibly indicating the presence of a

regulator that is expressed before the cluster of genes it regulates), as well as inverted

pro�les (possibly indicating negative regulation).

1.7. Regression models to analyse time series gene

expression pro�les

Gene expression time courses are hard to interpret, are often noisy, and can have meas-

urements from irregular intervals (Chechik and Koller, 2009). These gene expression

pro�les can be analysed through the use of both parametric and non-parametric models.

Parametric models have a prede�ned structure, with a �xed number of parameters, and

these parameters often have physical interpretations. Non-parametric models, on the

other hand, do not have a speci�ed model structure, and may have no parameters, such

as kernel smoothers, or a �exible (theoretically in�nite) number of parameters, such

as spline smoothers (Eilers and Marx, 1996). However, the values of the parameters

are not directly interpretable in terms of the data. Most of the algorithms described

in the previous section used non-parametric models. While these non-parametric tech-

niques such as splines may provide a greater deal of �exibility, the regression approach

provides a de�ned set of interpretable parameters, which can be used to provide more

information regarding the underlying system.

Parametric regression analysis is a common technique that has been applied to mul-

tiple �elds of science, including ecology (e.g. Dalbiès-Dulout and Doré, 2001 and

School�eld et al., 1981), analytical chemistry (e.g. Watkins and Venables, 2006), and

medical statistics (e.g. Woolcock et al., 1984) where a speci�c model is �tted to some

data. In all these cases, a parametric model is used to describe the relationship between

the response and the predictor. In addition, many other analyses (both parametric and

non-parametric) take only the mean of the replicates into account, e�ectively ignoring

the between-replicate variation. It has been shown that the inclusion of the replicate

information can greatly improve the analyses (Cooke et al., 2011). A regression ap-

proach is able to use this information as an indicator of the quality of the �tted model

in the form of deviations of the functions to the data, or the level of uncertainty in the

parameter estimates (Motulsky and Ransnas, 1987).

Since the expression of genes in cells occurs continuously, it can be represented as a
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continuous function, namely a curve (Ma et al., 2006). Regression analyses can thus be

used to obtain a better explanation into the function and mode of operation of genes,

by using the parameters to provide insights into di�erences between sets of genes, or

indicating when particular events occur (Eastwood et al., 2008; Ma et al., 2006; Seber

and Wild, 1989; Watkins and Venables, 2006). For example, Watkins and Venables

(2006) used the �tted values for a parametric model to identify the optimal separation

point and pH of four related carboxylic acids. Similarly, Eastwood et al. (2008) used

the critical-exponential model to describe the expression changes in a number of genes,

and used the �tted parameters to identify the time of maximal transcript level, and

identify the asymptotic response level.

A regression model de�nes how the value of a dependent variable Y changes in re-

sponse to changes in the independent variable X, with one or more model parameters

(Motulsky and Christopoulos, 2004). The X term is also called the regressor, and the

values of X are �xed settings during an experiment, i.e. the times of sampling. In con-

trast, the value of Y is determined by the underlying system processes and is predicted

using values of X (Ratkowsky, 1990; Seber and Wild, 1989). The values of the unknown

parameters can then be estimated by observing the values of Y for a given set of X

(Seber and Wild, 1989). In terms of gene expression, the values of Y would be the level

of gene expression for a gene, for a given set of sample time points (X ).

The broad aim of regression is to describe the relationship between the response

variable Y and the regressor X (Ritz and Streibig, 2008). In the simplest case, this

would be a linear response, where a straight line is used to model the response variable

(Bates and Watts, 1988; Draper and Smith, 1981; Rawlings et al., 1998). However,

they are generally not complex enough for gene expression data, and so more complex,

nonlinear models are often used (Bates and Watts, 1988). The predictor and response

variables are related through some prede�ned function f, which can be estimated by a

set of p parameters β = (β1, . . . , βp), and a general form can be written as y = f(x, β)

(Motulsky and Christopoulos, 2004; Ratkowsky, 1990; Ritz and Streibig, 2008; Seber

and Wild, 1989). The most common method to determine the best set of parameters

for a given function is to use a least squares process to minimise the residual sum of

squares (SSresidual).

SSresidual(β) =
n∑
i=1

(yi − f(xi, β))2.

This means that for a given set of observed data points, y = y1, y2, . . . , yn, the sum

of the squared vertical di�erences between the data points and the �tted line using the

parameters β is minimised, and the set of parameters that give the best estimates is

denoted β̂. In linear regression, this process can be performed using algebraic solutions,

and as such, the functions are computationally simple. To perform a nonlinear regres-

sion analysis, starting parameter estimates are required. An iterative process is then

performed, whereby at each step a new set of parameters is determined based on the

data, the model, and the current parameter values. Ideally, this would result in the op-
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timal parameters being approached in a stepwise manner (Motulsky and Christopoulos,

2004; Ritz and Streibig, 2008). Since many parameters for nonlinear curves have phys-

ical interpretations, it is possible to �nd sensible starting values by plotting the data

and predicting the starting values from aspects of the shape of the data (Motulsky and

Christopoulos, 2004; Seber and Wild, 1989). However, for high-throughput analyses,

where there are a large number of responses, this would be a time consuming and ardu-

ous process. In these cases, self-starter functions may be used to provide estimates of

the starting values based on shape characteristics of the data (Ritz and Streibig, 2008).

A common algorithm to perform the parameter optimisations is the Gauss-Newton

method, which uses Newton's optimisation algorithm to adjust the given starting values

at each iteration in order to �nd a set of parameter values that results in the lowest

residual sum of squares (Myers, 1990). There can be issues with the Gauss-Newton

algorithm where incremental changes can be poorly estimated, and a large number of

iterations may be needed resulting in slow convergence (Motulsky and Ransnas, 1987).

In addition, good starting values are essential, otherwise the optimisation procedure

may move in the wrong direction. Other popular methods include the steepest descent

algorithm, the Marquardt-Levenberg algorithm (Bates and Watts, 1988; Draper and

Smith, 1981; Motulsky and Christopoulos, 2004; Rawlings et al., 1998; Ritz and Streibig,

2008), and the Nelder-Mead algorithm (Nelder and Mead, 1965).

Given a �tted curve, it is possible to determine how well a particular model �tted

the data. Statistics that describe this aspect of the �t are called the model goodness-

of-�t (Motulsky and Ransnas, 1987), and some are described below. For any regression

model, it is possible to partition the total variability such that

SStotal = SSregression + SSresidual

n∑
i=1

(yi − ȳ)2 =

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

(yi − ŷi)2 (1.1)

where SStotal is the total sum of squares, SSregression is the regression sum of squares,

SSresidual is the residual sum of squares, n is the number of time points, ȳ is the mean of

the samples and ŷi is the predicted value of the �tted curve at time i. This relationship

is known as the law of total variance, or the decomposition of variability (Johnson and

Bhattacharyya, 2001; Myers, 1990). The SStotal describes the total deviation of the

data about the mean, whereas the SSregression describes how much variability in the

data is explained by the model (a measure of how well the model �ts the data), and

the SSresidual describes the amount of error between the �tted model and the data (the

unexplained variability).

If replicate samples (multiple y observations at a given x -value) were obtained, it is

possible to extend equation (1.1) to include the replicative observations at each x -value.

Assuming equal replication at each x -value,
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n∑
i=1

r∑
j=1

(yij − ȳ)2 =
n∑
i=1

r∑
j=1

(ŷij − ȳ)2 +
n∑
i=1

r∑
j=1

(yij − ŷi)2 (1.2)

where r is the number of replicates per time point.

It is then possible to further decompose the SSresidual into two components - the pure

error and the lack-of-�t sums of squares (Brook and Arnold, 1985).

SSresidual = SSpure error + SSlack−of−fit

n∑
i=1

r∑
j=1

(yij − ŷi)2 =

n∑
i=1

r∑
j=1

(yij − ȳi)2 +

n∑
i=1

r(ȳi − ŷi)2. (1.3)

The pure error sum of squares is de�ned as the sum of squared di�erences between

the average y-value at each x -value (ȳi, the local average of replicate samples) and each

observed value at that x -value, and describes the variation that is due to the between-

replicate variation, pooled across the time points (pure random error). The lack-of-�t

sum of squares is a sum of squared di�erences between the local average and the �tted

value at the same x -value, weighted by the number of replicates. This value describes

the amount of variation due to lack of model �t (variation between the replicate means

and �tted curve). If the lack-of-�t sum of squares makes up a large proportion of the

SSresidual , this suggests that the �tted model is insu�cient to �t the data and indicates

a poor �t to the mean y-values.

The R2 value (coe�cient of determination) is a commonly used statistic to determ-

ine the goodness-of-�t of a �tted curve, with values ranging between 0 and 1, where 1

indicates that the �tted line passes perfectly through the data points (Motulsky and

Christopoulos, 2004). This value indicates the proportion of the variance that is ac-

counted for by the �tted curve.

R2 = 1− SSresidual
SStotal

.

While the above statistics are useful for determining the goodness-of-�t for a model

�t, they are generally poor indicators for model selection (Burnham and Anderson,

2002). Thus, when selecting which of the various regression models best �tted the

data, Akaike's Information Criterion (AIC) is commonly used. This statistic can be

used to compare both nested and non-nested models (nested models are those that are

mathematically related, where the terms of a smaller model occur in a larger model,

such as the exponential and critical exponential curves). The AIC is calculated using

aspects of maximum likelihood theory, information theory and entropy of information

(Motulsky and Christopoulos, 2004), and is calculated as follows:

AIC = N. log

(
SSresidual

N

)
+ 2p

where N is the total number of data points and p is the number of parameters. The

AIC equation takes into account both the goodness-of-�t and the number of parameters
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required, thus attempting to prevent over�tting with overly complex models (Ritz and

Streibig, 2008; Motulsky and Christopoulos, 2004). The AIC statistic thus describes

how likely the model is to be correct, given the data. The value of the AIC is not

easily interpretable, and AIC values of models from di�erent datasets cannot be com-

pared (Burnham and Anderson, 2002; Motulsky and Christopoulos, 2004). However,

the relative di�erences between the AIC values of a set of models from the same dataset

can describe how much better one model �ts the data than another model to the same

data (Burnham and Anderson, 2002). Variations of this statistic include the Bayesian

Information Criterion.

1.8. Biological signi�cance of sets of genes

The great di�culty with cluster analysis, is that often there is no known answer. Many

statistical methods exist to determine the accuracy of the clustering, such as the Rand

Index and correlation-type methods (Savage et al., 2009). However, these methods

generally require prior information regarding how the clusters should be formed.

One method to analyse a set of di�erentially expressed genes is the use of gene-set en-

richment analysis (GSEA) (Clark and Ma'ayan, 2011; Huang et al., 2009; Subramanian

et al., 2005). This method requires prior information that the genes in a set are function-

ally related, such as genes that encode proteins that are involved in similar metabolic

pathways. By comparing the di�erences in the expression levels of the genes in the set

between two treatments, the statistical signi�cance of the set can be calculated (Sub-

ramanian et al., 2005; Thomas et al., 2011). This type of approach is not easily applied

in an exploratory analysis, such as when using unsupervised clustering, since the genes

that are grouped together may not be known to function together.

Thus, algorithms have been developed to determine if the genes in the clusters are

biologically meaningful and functionally related through the use of annotation informa-

tion (Huang et al., 2009). Generally, the over-representation of annotation terms is used

to identify the function of a set of genes. The principle behind this, is that genes that

are involved in the same or similar biological functions would have a greater proportion

of the relevant annotation terms than would be expected to be found by chance. The

over-representation is commonly quanti�ed through the use of statistical methods, such

as the Chi-square and Fisher's exact tests, or using the Binomial and Hypergeometric

probability distributions (Huang et al., 2009). However, the drawback to these annota-

tion based metrics is annotation bias, where certain genes that are more studied have

more information about them. It is estimated that in Arabidopsis, over half of the

genes are annotated purely based on sequence similarity to other Arabidopsis genes. In

addition, a further 30% of genes do not have any sequence similarity with a gene of

known function (Quanbeck et al., 2012). This implies that only around 20% of genes in

the genome have been biochemically characterised.

One of the most common methods of determining biological signi�cance of a cluster

is by calculating the level of over-representation of Gene Ontology (GO) terms. GO

provides a means to represent biological knowledge by using a structured language
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and precisely de�ned, interrelated terms (Ashburner et al., 2000). GO is a controlled

vocabulary, structured as a directed acyclic graph, where terms are connected with

directed links from less speci�c to more speci�c annotations. GO consists of three

separate graphs which describes the gene products in terms of the molecular function,

biological process, and subcellular location (Berardini et al., 2004). Over-representation

is determined by counting the occurrence of each GO term in a cluster, and performing

a hypergeometric test based on the number of times the term occurs in the rest of the

dataset (Falcon and Gentleman, 2007).

These over-representation tests result in a test statistic to measure the level of over-

representation. A p-value is produced from this to obtain an interpretation of the

signi�cance of the result. Since a large number of annotation terms are tested, a multiple

hypothesis correction, such as Bonferroni or False Discovery Rate is generally performed.

However, multiple hypothesis corrections would merely adjust the p-values to provide a

ranking of the GO terms, and this process is not straightforward as the tests are heavily

correlated (Lewin and Grieve, 2006; Zhong and Xie, 2007). It has been suggested that

the p-values rather play a role in an exploratory procedure and suggest what the most

signi�cant terms are, as opposed to a statistical solution to the problem (Huang et al.,

2009).

An alternative method to determine biological signi�cance is to use text mining. The

use of text mining to aid in the functional interpretation of gene lists is an increasingly

popular approach, particularly to exploit the large amounts of information contained in

information repositories, such as PubMed (Blaschke et al., 2001; Chaussabel and Sher,

2002; Glenisson et al., 2004; Leong and Kipling, 2009). With the increasing availab-

ility of scienti�c literature, it seems reasonable to be able to leverage the information

contained in this data. By applying natural language processing and other text mining

techniques, it is possible to identify connections between genes that may not previously

been identi�ed. Numerous methods have been developed to use text mining to integrate

data in order to interpret experimental results (Chaussabel and Sher, 2002; Glenisson

et al., 2004; Hassani-Pak et al., 2010; Leong and Kipling, 2009).

While it can be useful to determine what annotations are over-represented within

a cluster, it can also be interesting to determine if some of the genes are involved in

the same, or related, metabolic pathways. It is possible to obtain this information

from resources such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata

et al., 1999) or MAPMAN (Thimm et al., 2004). Both of these tools consist of databases

with mappings of genes to various metabolic pathways, as well as provide users with a

graphical representations of the genes that are involved in similar metabolic processes.

KEGG is a database resource that links genomic information to metabolic pathway

maps (Kanehisa and Goto, 2000; Kanehisa et al., 2006), while MAPMAN provides

a similar functionality and displays gene expression data onto diagrams of metabolic

pathways (Thimm et al., 2004; Usadel et al., 2009).

It is generally thought that genes with similar expression pro�les could be regulated by

common transcription factors (TFs), and thus would have a similar promoter structure
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(Jenkins et al., 2013). Gene promoters are the sequences that are generally upstream

of the transcription start site, which contain binding sites for TFs. These binding sites

are short DNA sequences (motifs) where TFs can bind to the DNA and regulate the

expression of the gene. These binding sites are conserved between TF families, for

example, WRKY TFs have been found to bind to the TTGAC motif (Eulgem et al.,

2000). Promoter sequences are commonly analysed by searching for these motifs that

are over-represented in the promoter sequences of the genes in the cluster. A popular

technique for determining this is MEME (Multiple Expectation maximization for Motif

Elicitation) (Bailey et al., 2006, 2009). This tool identi�es common motifs, which may be

DNA-binding sites, that are present in the upstream regions of the genes in the cluster.

This tool uses statistical modelling techniques to select motifs, and thus does not require

any prior information. However, many of these motifs may not be biologically relevant.

In contrast, other tools such as TRANSFAC (Matys et al., 2003; Wingender et al.,

2000) and PLACE (Higo et al., 1999) are databases which contain information on a

large number of TFs, and their DNA-binding sites, across a variety of organisms. These

databases contain biologically validated information from published experiments, which

is more useful in determining if a speci�c motif is known to be involved in the stimuli

being applied. It is also possible to investigate whether a particular DNA-binding

sequence is evolutionarily conserved across a number of di�erent organisms, possibly

suggesting that it is vital for the expression of the gene (Baxter et al., 2012).

1.9. Project aims

The overall aim of the project was to develop a statistical analysis approach that could

be used to model gene expression pro�les in a single stress, and use these models to pre-

dict the e�ect of a combined stress response. To this end, a mechanistic basis for gene

expression models was developed by using a parametric regression analysis, where mod-

els were �tted to the data from the Arabidopsis long day senescence experiment (Breeze

et al., 2011), and response of Arabidopsis to Botrytis cinerea infection (Windram et al.,

2012). The use of the regression models to describe the shape of the response allows for

a more precise description of the underlying expression pro�le by reducing the amount

of noise in the raw data. In addition, these models contain biologically meaningful

and easily interpretable parameters, and this information can be used to provide a new

means of investigating gene sets based on particular features (parameters) of the gene

expression pro�les (Chapter 3). These biologically oriented descriptions of individual

gene expression pro�les thus allow for improved modelling and greater interpretation of

pro�les obtained from time-series experiments.

The regression models were applied by clustering the genes based on the �tted para-

meters. This provided a means of identifying genes that have shape characteristics

aspects in common, such as starting position, or rate of change. In this way, the un-

derlying mechanisms behind the responses could be directly interrogated. As a proof

of concept of this approach, the cluster analysis was applied to a well annotated organ-

ism, namely yeast (Chapter 4), before being applied to the aforementioned PRESTA
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datasets (Chapter 5). In both cases, it was shown that by investigating a particular

aspect of the expression pro�le, it was possible to extract more biological information

regarding the function of the set of genes than traditional analysis methods.

Plants activate a speci�c and unique stress response when subjected to a combination

of multiple stresses. Thus by using the �tted regression models, the e�ect of multiple

stresses was predicted. These predictions were validated using biological techniques,

such as qPCR and luciferase transcriptional reporters (Chapter 6).

Finally, an investigation was undertaken to identify a previously unexplored source of

biological variability, namely that of biological age, where individual replicate samples

may be developmentally dissimilar. A time shifting analyses was developed to provide

an estimate of the �true� biological time associated with gene expression responses,

and as a consequence, generated a more detailed time-course for the response (more

time-points with fewer biological replicates) that could be used to generate better gene

network models (Chapter7). Using the regression analyses, the e�ect of the time shifting

could be evaluated.

Through careful choice of appropriate models, such statistical regression approaches

allow for an improved comparison of gene expression pro�les, and may provide an im-

proved understanding of common regulatory mechanisms between genes. The devel-

opment of these new tools provided a better assessment of the mechanisms underlying

stress responses, and could assist in future breeding of Brassica and other crop species

with improved yields in a changing climate.
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2. Applied methods

2.1. Computational methods

2.1.1. Models used in regression analysis

When performing a regression analysis, it is necessary to de�ne the model function with

which to �t to the data. The functions used are summarised in Table 2.1, along with

a description of the parameters, and an example �gure of what the function looks like.

The models are discussed in detail in Section 3.2.

The models used were the linear, logistic, Gompertz, Gaussian, exponential, critical

exponential, linear+exponential, and hyperbola. The linear model describes a straight

line response, the logistic and Gompertz models describe a sigmoid response, the Gaus-

sian describes a peaked response, the exponential describes a response with a rapid rate

of growth or decay, the critical exponential describes an exponential response, with a

peak and asymptote, the linear+exponential describes a exponential response with a

linear component, and the hyperbola represents a response similar to the exponential,

but with a faster rate of change.

2.1.2. Third party packages used for development of regression and

clustering scripts

The regression and clustering analysis pipelines were developed using Python and R.

Python is a scripting programming language (Van Rossum and Drake Jr, 1995), and

was primarily used for data processing, including parsing the data �les, performing

basic analyses, and storing the results in a database. The R statistics package was used

to perform the statistical analyses (R Development Core Team, 2011). The most used

functions were the lm function to �t linear models, nls function for nonlinear models,

and the aov function to perform analysis of variance calculations.

In addition to using the core libraries of these programming languages, a number of

third-party packages were also used to aid in the development of the analyses. These

packages and the versions used are listed in Table 2.2.
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Table 2.2: Table of packages used in the development of the regression and clustering
software.

Package Name Function Version

car Companion to Applied Regression. R
package required for the deltaMethod
function

2.0-16

clValid Provides the BHI calculation 0.6-4

dynamicTreeCut R package used to dynamically determine
where to cut the clustering dendrogram

1.21

goStats GO over-representation tests 2.20.0

Graphviz Package used for laying out graphs.
Accessed through Python with pygraphviz
(1.0)

2.28.0

nltk Natural Language Toolkit. Python package
used for the analysis of word counts

2.0.1rc1

org.At.tair.db GO annotation data for Arabidopsis 2.6.4

org.Sc.sgd.db GO annotation data for yeast 2.6.4

Python Primary scripting language to parsing and
working with data

2.7.2

R Statistics calculations 2.14.0

ReportLab Python package used to generate PDF
reports of the outputs

2.5

RPy Linking language between Python and R 2.2.1

sqlalchemy Python module to connect to the database 0.7.3

SQLite Database engine 3.7.9

2.1.3. Formation of clusters

In a cluster analysis, a distance matrix is created illustrating how dissimilar the �tted

parameters are for a given set of genes. By applying the hclust function in R to this

distance matrix, it is possible to perform a hierarchical clustering to group the most sim-

ilar genes together. During the clustering procedure, the distances between clusters are

calculated using a linkage function. In this case, the average linkage distance was used,

where the distance between two clusters is calculated as the average distance between

all pairs of genes in the �rst and second clusters (D'haeseleer, 2005). Mathematically,

this is represented as

L(X,Y ) =
1

NX ·NY

NX∑
i=1

NY∑
j=1

d(xi, yj)

where L is the linkage function between clusters X and Y, NX and NY are the number

of genes in clusters X and Y respectively, and d(x,y) is the distance between a gene in

cluster X and a gene in cluster Y.

Typically in hierarchical clustering, clusters are determined using a prede�ned, and

often arbitrary, dendrogram height cut-o�. This means that the dendrogram tree struc-

ture is cut at a �xed level of similarity, and each branch below this height is designated as
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a cluster. Instead, here the Dynamic Tree Cut package was used to identify the clusters

in a more objective manner (Langfelder et al., 2008). This algorithm uses a bottom-

up approach, where preliminary clusters are initially identi�ed using the dendrogram.

These clusters are determined by ensuring that the following criteria are met: minimum

cluster size, minimisation of within-cluster distance, maximisation of between-cluster

distance, and that the tip of the branch (the �cluster core�) is tightly connected. Fol-

lowing this, a �branch pruning� is performed where any unassigned genes are assigned to

the closest cluster, while still maintaining the above criteria. This �nal step of assigning

objects makes the algorithm a hybrid of hierarchical clustering and partitioning around

medoids (PAM) (Langfelder et al., 2008). Thus, this algorithm provides an objective

and automated approach for determining the clusters.

The parameters used were a cut distance of 0.1 (90% similarity), using the Dynamic

Hybrid algorithm with a deep split level of 2, allowing PAM, and not requiring the PAM

stage to be constrained by the dendrogram. The deep split level ranges from 0 to 3,

and in�uences the number of clusters, where larger values produces more clusters with

a greater within-cluster distance, and separated by smaller between-cluster distance.

2.1.4. Gene Ontology (GO) analysis

The Gene Ontology (GO) is one of the most commonly used methods to annotate genes,

and provides a structured and controlled vocabulary to describe the molecular function,

biological process, and subcellular location of a gene product (Ashburner et al., 2000).

Functional analysis on a cluster of genes is often calculated based on the probability of

whether the group of genes associated with a speci�c GO term occurs more often than

would be expected. To do this, a background distribution of the GO terms is used, and

in these analyses, the GO terms associated with all the unique gene models on the mi-

croarray slides were used (Section 1.2). The probability of �nding a number of a speci�c

GO term, given its background distribution, can be modelled by the hypergeometric

distribution and is calculated as

P (X = k) =

(
Nt

k

)(
N −Nt

D − k

)
(
N

D

) (2.1)

where N is the total number of genes, Nt is the size of the cluster containing GO term t,

k is the number of genes with GO term t, and D is the total number of genes with GO

term t. A p-value is calculated from this by determining the probability of identifying

at least k genes with term t, and is calculated as

p(t) = 1−
k−1∑
i=0

P (X = i). (2.2)

The smaller the p-value, the higher the signi�cance of the over-representation.

Due to the hierarchical nature of the GO annotations, there is a large degree of overlap

in the annotations, since the child GO term inherits all its parent's annotations. Thus,
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to identify over-represented GO terms, the GOstats R package (Falcon and Gentleman,

2007) was used where the hypergeometric test is �rst performed on the terms with no

children (the leaves of the GO annotation tree). If a term was found to be signi�cant,

the parents of this term were removed from further testing, and this process is repeated

until all the terms have been tested (Falcon and Gentleman, 2007).

The GO annotation terms were obtained from BioConductor, namely the org.At.tair.db

package for Arabidopsis (Carlson, 2012a), which uses the TAIR (The Arabidopsis In-

formation Resource) annotations (20110910 date stamp) (Lamesch et al., 2012), and

the org.Sc.sgd.db for yeast (Carlson, 2012b), which uses the SGD (Saccharomyces

Genome Database) annotations (20110924 date stamp) (Cherry et al., 2012).

After performing a GO analysis, a multiple hypothesis correction, such as Bonferroni

or False Discovery Rate is generally performed. However, multiple hypothesis correc-

tions would merely adjust the p-values to provide a ranking of the GO terms, and this

process is not straightforward as the tests are heavily correlated (Lewin and Grieve,

2006; Zhong and Xie, 2007). Thus, in these analyses, a multiple hypothesis correction

was not performed, as it is not the ranking of the most signi�cant terms that is of in-

terest, but rather if there are sets of related terms that may be over-represented. That

is, the GO terms play an advisory role to suggest what the most signi�cant terms are,

as opposed to a means to make a decision, such as in clinical studies (Huang et al.,

2009).

2.1.5. Word over-representation

As an alternative to using GO to determine biological signi�cance, it is possible to use

word lists. GO over-representation tests can be a�ected by annotation bias, where terms

appear to be over-represented simply due to the fact that the background frequency of

the terms is arti�cially under-estimated (Leong and Kipling, 2009).

To this end, the words used in the functional annotations for each gene were used to

determine if any were over-represented. Only the unique words in each gene's annotation

were used to avoid false positives due to repeated words, and punctuation and individual

numbers were ignored. In addition, two- and three-word phrases (bigrams and trigrams,

respectively) were identi�ed to provide a greater level of context.

Similar to the GO analysis, a simple hypergeometric test was performed to determine

if any words or phrases were over-represented in the annotations of the gene. The p-

values were calculated in the same manner as in Equations (2.1) and (2.2), except t is

a word or phrase from the annotation, N is the total number of words or phrases, Nt

is the size of the cluster containing annotation term t, k is the number of genes with

annotation term t, and D is the total number of genes with annotation t.

All frequency calculations were determined using the Python Natural Language Toolkit

(NLTK) (Bird et al., 2009), and the p-values were calculated using the phyper function

in R. Annotations were obtained from TAIR (TAIR10 annotations) (Lamesch et al.,

2012) and SGD (25/02/2013 annotations) (Cherry et al., 2012) for Arabidopsis and

yeast, respectively.
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2.1.6. Pathway information

It can be useful to determine if some of the genes are involved in the same, or related,

metabolic pathways. It is possible to obtain this information from resources such as the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999) or MAPMAN

(Thimm et al., 2004).

In this analysis, the mappings of genes to metabolic pathway categories in MAPMAN

were extracted, and used to determine if any genes in a cluster encode proteins that are

involved in any of the metabolic pathways that are de�ned.

2.1.7. Promoter analysis

In addition to the above annotation information, it is also possible to determine if there

are any over-represented upstream regulatory sequences. This could possibly indicate

the presence of a transcription factor which is able to regulate multiple genes.The pro-

moter analysis was performed as described in Breeze et al. (2011). In brief, 351 binding

motifs in plants were obtained from the TRANSFAC (Matys et al., 2003) and PLACE

(Higo et al., 1999) databases. Motifs were identi�ed from sequences 500 bp upstream of

the transcription start site of each gene in the cluster. For each motif, the frequency in

the cluster was computed, and compared to the frequency in the Arabidopsis genome. A

hypergeometric test was used to provide a description of the signi�cance of the presence

of a motif.

2.1.8. Biological Homogeneity Index

The Biological Homogeneity Index (BHI) is a metric developed by Datta and Datta

(2006), which determines how homogeneous the annotations within a cluster are. That

is, it determines the number of shared annotations between genes. It is thought that a

clustering algorithm which generates biologically meaningful clusters will group genes

that have a similar biological function. As a result, this metric can be used to compare

a number of di�erent clustering algorithms applied to the same dataset. The BHI value

is calculated as

BHI =
2

k

k∑
j=1

1

nj(nj − 1)

∑
x 6=y∈Dj

I(C(x) = C(y))

where the k is the number of clusters, nj is the number of annotated genes in cluster

Dj , C(x) and C(y) are the GO terms for genes x and y respectively, and the indicator

function, I, is equal to 1 if there are any common terms between genes x and y, and 0 if

not (Datta and Datta, 2006). The BHI value ranges between 0 and 1, where 0 indicates

that there are no common annotations within genes in a cluster, and 1 indicates that

all the genes in each cluster are annotated as having the same function. By using the

GO terms associated with the genes in the cluster, it is thus possible to determine if

there are a large number of genes that have the same GO term, and thus, be involved

in the same biological function.
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The BHI function was applied by using the clValid R package (Brock et al., 2008),

and uses the same annotation sources as the GOstats package described above, namely

the org.Sc.sgd.db BioConductor annotation database for yeast (Carlson, 2012b), and

the org.At.tair.db database for Arabidopsis (Carlson, 2012a).

2.1.9. Fitting a penalised spline

For the time shifting analysis, a penalised spline was used for �tting the gene expres-

sion pro�les, using an implementation in R, as described by Eilers and Marx (Eilers

and Marx, 1996, 2010). The number of segments used was 5, using a degree of 3 for

the B-splines, and an order of di�erence penalty equal to 2. A range of lambda values

were used, ranging from 0.1 to 1000, on a logarithmic scale. This was calculated as

lambda = 10i where i ∈ {−1;−0.8; . . . ; 2.8; 3}. The lambda value used is the value

which minimised the cross-validation value that is returned from the spline �tting pro-

cedure.

2.2. Experimental methods

2.2.1. Multiple stress analysis

2.2.1.1. Plant growth

Arabidopsis seeds (wildtype Col-0) were strati�ed in 0.1% w/v agarose at 4ºC for 72

hours in the dark. Strati�ed seeds were sown in pre-watered Arabidopsis soil mix

(6:1:1 ratio of Levington F2S compost:sand:vermiculate) in 4 cm pots (P24, Plank-

pak). Pots were covered with cling �lm and placed in a growth chamber to germinate.

The covers were removed 7 days after sowing (DAS) and the seedlings thinned out

so that there was one plant per pot. Plants were grown in 16 hour light conditions

(120mmol photons.m−2.s−1) at 20ºC, 60% humidity, and 350 ppm CO2.

2.2.1.2. Botrytis inoculation

Two weeks prior to use, the Botrytis cinerea pepper strain (Denby et al., 2004) spores

were germinated and cultured on sterile tinned apricot halves (Tesco) in deep Petri

dishes, and incubated at 25ºC in complete darkness. Prior to infection, the spores

were harvested and suspended in sterile water, and �ltered through glass wool cloth.

The inoculum was prepared �nally in half-strength sterile grape juice (Tesco) and the

concentration adjusted to 100 000 spores/ml. The spore concentration was measured

using a hemocytometer.

Harvested leaves were placed on 0.8% w/v plant agar (Duchefa Biochemie) in propag-

ator trays. Several 0.6 ml droplets of the above inoculum were placed on each leaf

(between 3-6 spots, depending on the size of the leaf) ensuring coverage of the leaf. The

propagator trays were covered with lids, and incubated under the same conditions as

plant growth (Section 2.2.1.1), except increasing the relative humidity to 90%. Mock
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inoculations were performed by applying droplets of half-strength grape juice to the

leaves.

2.2.1.3. RNA extraction

RNA extractions were performed by homogenising the leaf tissue (approximately 1 g)

with 1ml TRIzol (Invitrogen) in a pre-chilled Dremel drill. Samples were incubated at

room temperature for 5 minutes to allow for the dissociation of nucleoprotein complexes

before the addition of 200 ml chloroform. The samples were shaken vigorously by hand

for 15 seconds and incubated for a further 3 minutes at room temperature. The samples

were then centrifuged at 8 000 xg for 15 minutes at 4ºC. The upper aqueous phase was

transferred to a fresh 1.5 ml Eppendorf tube, followed by the addition of 500 ml isop-

ropanol, and incubated for 2 hours at -20ºC. The samples were centrifuged at 8 000 xg

for 20 minutes at 4ºC. The RNA pellets were washed with 1 ml 70% v/v ethanol (made

up with diethylpyrocarbonate-treated [DEPC] water), followed by centrifugation at 8

000 xg for 10 minutes at 4ºC. The supernatant was completely removed and the pellets

allowed to air dry for 5 minutes before re-suspension in 100ml DEPC-treated water.

Each sample was puri�ed using the RNAeasy puri�cation kit (QIAgen), according to

manufacturer's instructions. The samples were eluted in 50 mL DEPC-treated water.

Total RNA concentrations were determined using a Nanodrop ND-1000 spectrophoto-

meter (Thermo Scienti�c) using a 1 ml sample. Total RNA integrity was determined

using a 2100 BioAnalyzer with the RNA 6000 Nano LabChip kit (Agilent), according

to manufacturer's instructions. RNA samples were stored at -80ºC.

2.2.1.4. cDNA synthesis

Using the RNA concentrations determined from the Nanodrop above, the appropriate

volume of RNA solution was used to ensure a starting quantity of 1000 ng RNA. Prior

to cDNA synthesis, any DNA in the sample was removed by treating the RNA sample

with 1 ml RQ1 DNaseI (Promega), 1 ml 10xRQ1 DNaseI bu�er, and enough water to

make up the solution to 10 ml. This sample was incubated at 37ºC for 30 minutes, before

the addition of 1 ml RQ1 DNase Stop Solution (Promega). The sample was incubated

at 65°C for 10 minutes to inactivate the DNase.

The �rst strand synthesis was performed by the addition of 1 ml 50 uM oligo(dT)18

primers and 1 ml 10 mM dNTPs to the above solution. The sample was incubated at

65ºC for 5 minutes to allow the primers to anneal to the RNA. Following the incuba-

tion, 4 ml 5X First Strand Bu�er (Invitrogen), 2 ml 0.1 M DTT (Invitrogen) and 1 ml

RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen) was added to the sample,

and incubated at 42ºC for 2 minutes. Finally 1 ml SuperScript II Reverse Transcriptase

(Invitrogen) was added, and allowed to incubate at 42ºC for 50 minutes, followed by

70ºC for 15 minutes to inactivate the enzyme. cDNA samples were stored at -20ºC.
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2.2.1.5. qPCR analysis

Primers for the qPCR analysis were designed using Primer3Plus (Untergasser et al.,

2007), using the qPCR setting. The cDNA samples were 10x diluted prior to the qPCR

analysis and the qPCR was performed on a CFX384 Touch Real-Time PCR Detection

platform (Bio-Rad). One 384 well qPCR plate was used for each gene being analysed.

Each sample was made up of 1 ml cDNA template, 0.5 ml each of the forward and re-

verse primers (5 mM) for the gene of interest, 5 ml SsoAdvanced SYBR Green Supermix

(Bio-Rad), and 3 ml water. Each sample was performed in triplicate as technical rep-

licates. For each biological replicate, the position of each harvest on the qPCR plate

was randomised, and within each of the harvests, the position of the treatments were

randomised. A no-template control was included for each replicate to ensure no con-

tamination was present.

The qPCR run was set at 95ºC for 3 minutes, 45 cycles of 95ºC for 10 seconds, and

55ºC for 30 seconds. After each of these cycles, the �uorescence in each well was de-

termined. At the end of the run, a melt curve analysis was performed by applying 95ºC

for 10 seconds, and then running a temperature gradient from 65ºC to 95ºC in 0.5ºC

increments every 5 seconds. The �uorescence was measured after each temperature

change.

2.2.1.6. Analysis of qPCR data

Following the analysis of the plates, the threshold cycle number (Ct) was calculated

using the qpcR package in R (Ritz and Spiess, 2008). This package allowed for the

dynamic calculation of these values, instead of a simple threshold. In this package, a

four-parameter logistic curve was �tted to the �uorescence curves, and any reactions

which failed this �tting process were discarded as poor or incomplete reactions. Using

these �tted curves, it was possible to calculate the Ct values by determining the max-

imum of the second derivative of the �tted curve (Luu-The et al., 2005). The three

technical replicates were �tted simultaneously to provide an overall level of con�dence

of the biological replicate. In addition, the package was used to calculate the e�ciencies

of the primers for each reaction.

The relative di�erence in gene expression was calculated as the di�erence between the

Ct value of the gene of interest, and the Ct of the reference gene. Thus

∆Ct = Ctgene − Ctreference.

2.2.2. Real time transcription investigation using a luciferase reporter

2.2.2.1. Ampli�cation of promoter sequences

Promoter fragments were ampli�ed by PCR from Col-0 genomic DNA using the primers

are listed in Table B.2. The PCR was performed using 5 ml KOD Master Mix (Novagen),

1 ml each of forward and reverse primers, and 1 ml template DNA (50ng/ml), and made

up to 10 ml with sterile water. The following PCR thermocycler was used: 2 minutes
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at 95ºC followed by 11 cycles of 95ºC for 15 seconds, 55ºC for 15 seconds, and 68ºC

for 2 minutes. To make the promoter sequences suitable for Gateway cloning, a second

PCR was performed using generic Gateway primers (Gateway sequence primers in Table

B.2) to attach the attB and attP sites. 1 ml each of the forward and reverse primers

was added to the above mixture, together with 25 ml KOD master mix, and made up

to 50 ml with sterile water. The PCR program for this ampli�cation was 95ºC for 2

minutes, followed by 5 cycles of 95ºC for 15 seconds, 45ºC for 15 seconds and 68ºC for

2 minutes; followed by 35 cycles of 95ºC for 15 seconds, 55ºC for 15 seconds, and 68ºC

for 2 minutes, ending with 68ºC for 5 minutes.

PCR products were run on an analytical 1% w/v TAE (40mM Tris, 20mM acetic

acid, and 1mM EDTA, pH 8.0) agarose gel to check for clean ampli�cation of products.

Successful products were puri�ed using a QIAquick PCR Puri�cation Kit (QIAgen)

according to manufacturer's instructions, and eluted in 15 ml sterile water. The concen-

tration of the puri�ed promoter fragments was determined using a Nanodrop ND-1000

spectrophotometer, and the samples were stored at -20ºC.

2.2.2.2. Cloning into donor vector (pDONR/Zeo)

Once puri�ed, the promoter fragment was cloned into the donor vector, pDONR/Zeo,

using the Gateway BP recombination system (Hartley et al., 2000). From the Nanodrop

concentrations obtained above, the amount of puri�ed promoter fragment required to

ensure a concentration of 150ng/ml was determined. The BP reaction was performed

by adding this volume of the promoter to 1ml pDONR/Zeo (150ng/ml, Invitrogen), 1

ml Gateway BP Clonase II enzyme mix (Invitrogen), and made up to 5 ml with TE

bu�er (pH 8). This solution was incubated overnight, at 25ºC. 1 ml of this solution was

added to 10 ml α-Select Gold E�ciency cells (Bioline), incubated on ice for 30 minutes,

heat shocked at 42ºC for 30 seconds, and incubated on ice for 2 minutes. 250 ml SOC

(Super Optimal broth with Catabolite repression) medium was added to the solution,

and incubated at 37ºC for an hour with shaking. 100 ml of the cells were plated onto

low salt LB (Lysogeny Broth) agar plates containing zeocin (50 mg/ml, Invitrogen), and

incubated overnight at 37ºC.

2.2.2.3. Colony PCR

To verify that the bacterial colonies contained the vector, a colony PCR was performed.

This process allows for the screening of the inserted plasmids directly from the bacterial

cells. 10 individual colonies were picked using pipette tips, and suspended in 100 ml

sterile water. 1 ml of the colony/water suspension was added to 2 ml 10x PCR bu�er

(Invitrogen), 0.6 ml MgCl2 (50mM, Invitrogen), 0.6 ml of each of the colony PCR primers

(Table B.2, 5 mM), 0.4 ml dNTPs (10 mM), 0.15 ml Taq DNA Polymerase (Invitrogen),

and made up to 20 ml with sterile water. The PCR program for this ampli�cation was

94ºC for 2 minutes, followed by 25 cycles of 94ºC for 30 seconds, 55ºC for 1 minute and

72ºC for 1 minute, ending with 72ºC for 3 minutes.

The PCR products were veri�ed using a 1% w/v TAE agarose gel. Colonies which
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tested positive for the vector were used to inoculate 5 ml LB media containing zeocin (50

mg/ml), and incubated overnight at 37ºC, shaking at 200 rpm to produce cultures. The

vectors were extracted and puri�ed from the cultures using a QIAprep Spin Miniprep

Kit (QIAgen) according to manufacturer's instructions and eluted with 20 ml sterile

water.

In order to ensure that the correct promoter was inserted into the vector, a sequence

veri�cation was performed. Sequencing was performed using the colony PCR primers

(Table B.2) in LIGHTrun sequencing (GATC Biotech).

2.2.2.4. Cloning into destination vector (pBGWL7)

The destination vector used was pBGWL7 destination vector (Karimi et al., 2005),

which contained the luciferase coding sequence and used a Basta selection, a glufosin-

ate herbicide. The cloning process was similar to the donor vector cloning procedure

(Section 2.2.2.2), except that the Gateway LR Clonase II enzyme mix (Invitrogen) was

used, and the selection was spectinomycin (100 mg/ml) using high salt LB media. Fol-

lowing the bacterial transformation process, 10 colonies from the transformation were

patched onto high salt LB agar plates containing spectinomycin (100 mg/ml), as well as

plates containing zeocin (50 mg/ml). These plates were incubated at 37ºC overnight.

Only colonies that only grew on the spectinomycin-containing plates were selected, and

the presence of the vector was con�rmed using the colony PCR method as described

above (Section 2.2.2.3), using spectinomycin as the selection.

2.2.2.5. Agrobacterium transformation

1mg of the destination vector was incubated with 100 ml Agrobacterium tumefaciens

cells (GV3101) on ice for 5 minutes. The cells were incubated in liquid nitrogen for

5 minutes, followed by a heat shock in a 37ºC water bath for 5 minutes. 100 ml low

salt LB media was added, and this was incubated at 28ºC with shaking for 2 hours.

100 ml of the cells were plated onto low salt LB agar plates containing gentomycin (50

mg/ml) and spectinomycin (100 mg/ml). The plates were allowed to incubate for 2 days

at 28ºC.

Arabidopsis plants were transformed using the �oral dip method (Clough and Bent,

1998). In brief, a culture of the Agrobacterium cells was prepared, and Arabidopsis

plants with developing �oral tissue were dipped into this culture to perform the trans-

formation. These plants were allowed to grow to seed.

2.2.2.6. Selection of transformants with Basta

To determine which of the seeds from the transformation contained the inserted vector,

the seeds were grown with a quarter-strength Murashige and Skoog basal medium (1.1

g/L, Sigma) together with the Basta selection (40 mg/L) on Rockwool. 10 seedlings

that successfully germinated were transplanted to soil and grown to seed. These seeds

were harvested, and again sown on Rockwool containing Basta. Seeds which germinated
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with a 3:1 ratio of growth:death, were identi�ed as being heterozygous transformants

(containing one insertion site). Approximately 40 of these seedlings were selected and

transplanted to soil for the luciferase experiment.

2.2.2.7. Investigation of real time transcription

Leaf 7 was detached from plants of di�erent ages, namely 28, 32 and 36 days after sowing

(DAS), with 24 replicate samples for each of the plant ages - 12 each for the mock and

infected inoculations. These leaves were distributed amongst four 12 cm square Petri

dishes, containing 0.8% w/v plant agarose, where 3 leaves from each treatment and each

harvest time were placed on a plate. The treatments and harvests were randomised

within the plates.

A solution of luciferin (25 mg/ml) was made up with 0.01% v/v Triton X-100 and �lter

sterilised using a 0.2 mm �lter. After spraying this solution onto the leaves, the plates

were covered and placed under constant light for 24 hours to eliminate any existing luci-

ferase. Following this, the Petri dishes were placed under a liquid nitrogen cooled CCD

camera (Princeton Instruments), using a light intensity of 15 mmol photons.m−2.s−1.

Images were obtained every 2 hours using a 20 minute exposure. A baseline level of

�uorescence was obtained for 6 hours, and following this, the leaves were treated with

the Botrytis and mock inocula, as described in Section 2.2.1.2. Multiple 0.6 ml droplets

of the inocula were applied to the leaves to ensure complete coverage. Images were

analysed using ImageJ software in order to quantify the �uorescence by measuring the

mean grey value of the leaves, which was calculated as the sum of the grey values of the

pixels in the selection divided by the number of pixels (Abramo� et al., 2004). These

values were background subtracted by removing the the mean grey value of a region on

the plate where there were no leaves.
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3. Analysing gene expression data using

parametric regression models

3.1. Regression analyses applied to gene expression data

The use of regression analyses to �t a speci�c model is a technique that has been applied

to data in multiple �elds of science, including agronomy (Lobell et al., 2005), analytical

chemistry (Watkins and Venables, 2006), and medical statistics (Woolcock et al., 1984).

In all these cases, a parametric regression model was used to describe the relationship

between the response and the predictor. In addition, the regression approach provided a

de�ned set of interpretable parameters, which could be used to provide more information

regarding the underlying system.

A regression model de�nes how the value of a dependent variable Y changes in re-

sponse to changes in the independent variable T, with one or more model parameters

(Motulsky and Christopoulos, 2004). The T term is also called the regressor, and the

values of T are �xed settings during an experiment, i.e. the times of sampling. In con-

trast, the value of Y is determined by the underlying system processes and is predicted

using values of T (Ratkowsky, 1990; Seber and Wild, 1989). The values of the unknown

parameters can then be estimated by observing the values of Y for a given set of T

values (Seber and Wild, 1989). In terms of gene expression time-course studies, the

values of Y i would be the level of gene expression for gene i for a given set of sampling

time points (T ).

Since the expression of genes in cells occurs continuously, it can be represented as

a continuous function, namely a curve (Ma et al., 2006). The application of functions

with interpretable parameters to time-course gene expression data has been previously

proposed by Eastwood et al. (2008) and Chechik and Koller (2009). In both of these

cases, parametric models were �tted to gene expression data, and the �tted parameters

were used to analyse the responses for di�erent genes. Through this approach, models

with relatively few parameters were �tted as a function of a single explanatory variable

(the time of sampling). The parameters, or functions of parameters, from a regression

analyses can thus be used to obtain a better explanation into the function and mode of

operation of genes. For example, they can be used to provide insights into di�erences

between sets of genes, or indicating when particular events occur (Eastwood et al., 2008;

Ma et al., 2006; Seber and Wild, 1989; Watkins and Venables, 2006). In addition, many

gene expression analysis methods only take the mean of the replicates into account,

e�ectively ignoring the between-replicate variation. A regression approach, on the other

hand, is able to use this replicate information as an indicator of the quality of the �tted
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model in the form of deviations of the data about the �tted functions, or the level of

uncertainty in the parameter estimates (Motulsky and Ransnas, 1987).

In order to use a regression analysis, it is necessary to �rst select a model to �t

the data. This function should be selected where the e�ect of the parameters on the

model is understood and the physical model it represents is known, or it could result in

misleading results or misinterpretation. In nonlinear regression, good initial estimates

for the function parameters need to be selected. The choice of starting values will have

a large impact on the performance of the regression optimisation, with poor starting

values potentially leading to a local minimum, or resulting in a failure to converge

(Motulsky and Ransnas, 1987). Since many parameters for nonlinear curves are related

to observable physical features, it is possible to �nd starting values by plotting the data

and estimating the starting values from aspects of the shape of the observed response

data (Motulsky and Christopoulos, 2004; Seber and Wild, 1989).

Techniques such as splines and Gaussian process regression are able to describe gene

expression data well. However, these techniques do not necessarily provide an easy

interpretation of the data. In contrast a regression analysis is more predictive, providing

interpretable parameters to analyse aspects of the gene expression.

3.2. Applying regression models to analyse function and

shape

To perform nonlinear regression, it is necessary to provide an equation of the curve for

the model. While there are many di�erent functions with similar shapes, a number

of models were selected to provide a broad range of response shapes, such as sigmoid

or peaked functions. In addition, these models were selected to have interpretable

parameters that may be used to better understand the processes underlying the observed

response. These parameters in�uence aspects of the model shape, and include rates of

change, or in�uential time points (such as the midpoint). Thus, the parameters are

representative of the physical world, and in terms of gene expression may imply time

points that genes are being activated, or the change in rates of transcription. The

models selected were the linear, logistic, Gompertz, exponential, critical exponential,

linear+exponential, Gaussian and hyperbolic functions. A summary of the models used

is shown in Table 2.1, and the models are described in detail below.

The linear (y = c + m · t) model is a simple straight line. This model has two

parameters, namely the parameter c representing the gene expression at time t=0, and

m representing the rate of change of gene expression over time. Linear regressions are

computationally cheap to perform and can easily be solved algebraically (Ratkowsky,

1990). Polynomial functions, such as the quadratic or cubic curves, can also be used

to describe the data, and the same techniques can also be used with these models.

However, the parameters from these functions do not have a physical interpretation

(Motulsky and Christopoulos, 2004), and are generally considered too restrictive to

model real world phenomena (Abraham et al., 2003). The sign of m will in�uence if the
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a: asymptote

m: midpoint

s: related to slope at m b: range

a+b: second asymptote

Figure 3.1: Example of a logistic curve (y = a + b
1+exp((m−t)/s)) with the parameters

illustrating the aspects of the curve they in�uence.

shape is increasing or decreasing, where if m<0, the curve is decreasing, and if m>0,

the curve is increasing.

The logistic model (y = a + b
1+exp((m−t)/s)) is representative of the typical sigmoid

curves that are used in a variety of �elds, particularly to model a growth-response

relationship in �elds including biology, environmental sciences, medicine, pharmacology,

and toxicology (Ritz and Streibig, 2008). In particular, the logistic function represents a

symmetric sigmoid curve characterised by a rapid growth rate in the beginning, slowing

down to a constant growth rate, before �nally approaching the asymptotic maximum

value. The parameter a is the initial value, b is the distance between asymptotes (range),

m is the time (t-value) at which maximum growth is reached, and s is related to the

slope at m. A decreasing response is also possible with a maximum initial value followed

by rapid decrease to a minimum asymptote. If s and b have the same sign, the curve

is increasing, whereas if they are of opposite signs, it represents a decreasing response

(Ratkowsky, 1990). Figure 3.1 shows an example of a logistic curve including how the

parameters in�uence the shape of the curve.

The Gompertz model (y = a + b · exp(− exp(s · (t −m)))) is a sigmoid curve that is

similar to the logistic except that is not symmetrical around the midpoint, and is also

commonly used in dose response analyses (Ritz and Streibig, 2005). As with the logistic

curve, the maximum growth rate occurs at t=m, s is related to the slope at m, a is

the initial value, and the range is b (Ratkowsky, 1990; Seber and Wild, 1989). Since

the Gompertz function is asymmetrical, there are two forms to the curve, a�ected by

the sign of s. If s>0, the change in growth rate is faster to the right, and this form

of the curve was termed the �Gompertz1� models. Alternatively, if s<0, the change

in growth rate is faster on the left of the midpoint, and these graphs were termed the

�Gompertz2� models. The di�erences between these curves are illustrated in Figure
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gompertz1
gompertz2

Figure 3.2: Graph showing the di�erent forms of the Gompertz curve. The curves with
the solid lines are those that had a faster change in growth rate after the midpoint,
and were termed as the Gompertz1 graphs. The �gures with the dashed lines had a
faster growth rate to the left of the midpoint and were termed Gompertz2 graphs.

3.2. The direction of the Gompertz graph is determined by the sign of the s and b

parameters - if s and b are the same sign, the function is decreasing, and if they are

opposite signs, the function is increasing.

The exponential model (y = a+ b · exp(−r · t)) represents a growth or decay response

with increasing values of t. The parameter a represents the asymptote of the curve, b

is the range of the response between the asymptotic value and the value at t=0, and

r relates to the rate of change in growth or decay (Ratkowsky, 1990). In addition, r

a�ects the �direction� of the asymptote. If r>0, the asymptote is towards the right

(y → a as t → +∞) (Figures 3.3A and C), and if r<0, the asymptote is on the left

(Figures 3.3B and D). The sign of the b parameter a�ects the concavity of the curve. If

b<0, the curve is concave (�bulges� out) (Figures 3.3A and B), and if b>0, it is convex

(Figure 3.3C and D). Thus, with di�erent combinations of these two parameters, it is

possible to have four di�erent forms of the curve, namely concave increasing, concave

decreasing, convex increasing, and convex decreasing.

The critical exponential model (y = a+ (b+ c · t) · exp(−r · t)) is an extension of the

exponential curve, and is characterised by an exponential growth, leading to a single

maximum or minimum and an asymptote. The b parameter determines the height

of the peak from the asymptote, c determines the magnitude of the decline from the

maximum to the asymptote, b/c is the time to the maximum, a is the asymptotic

value, and a+b is the value at t=0 (Eastwood et al., 2008). Again, the value of r

greatly in�uences the shape of the curve. If r>0, the curve �rst begins with exponential

growth or decay, followed by an asymptote (Figure 3.4A). If r<0, the curve �rst begins

with the asymptote on the left, followed by the exponential portion (Figure 3.4B). The

sign of c in�uences whether the nature of the turning point is a maximum or a minimum

(whether the �peak� will point up or down), and also depends on the sign of r. If both

parameters are the same sign, the function will increase to a peak, and if the parameters
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A B

C D

Figure 3.3: Examples of di�erent forms of the exponential model, showing the �exibility
in �tting shapes by altering the signs of the parameters. (A): concave increasing
(b<0, r>0 ); (B): concave decreasing (b<0, r<0 ); (C): convex decreasing (b>0,
r>0 ); (D): convex increasing (b>0, r<0 ). In all cases, the a parameter refers to
the asymptote.

are opposite signs, the decrease to a trough (Figure 3.4).

The linear+exponential model (y = a+b ·exp(−r · t)+c · t) is another extension of the

exponential curve, consisting of an exponential curve on one side of its turning point

and a straight line on the other. Like the critical exponential function, it describes two

processes, and is the sum of two simpler functions. In this case, the model represents

exponential growth, followed by linear growth. The parameter c is the gradient of

the linear portion of the curve, and a and b in�uences the y-intercept (a + b = y0).

If r>0, the linear portion of the graph tends toward the right side (Figure 3.5A). In

contrast, if r<0 the linear portion of the graph will tend toward the left side of the graph

(Figure 3.5B). Like the exponential curves, the b parameter a�ects the concavity of the

A B

Figure 3.4: Graph showing the di�erent forms of the critical exponential model. The
shape of the model changes depending on the sign of the parameters. (A) shows
curves where r>0, and (B) shows curves where r<0. In both cases, the solid line if
where c>0, and the dotted line is where c<0.
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C

Figure 3.5: Graph showing some of the di�erent forms of the linear+exponential curve.
(A) shows curves where r>0, and (B) shows curves where r<0. In both cases, the
solid line is where b>0, and the dotted line is where b<0. In all these graphs, c>0.
(C) shows the e�ect of c<0 (solid line). The parameter values were the same in
both curves, save for the sign of c.

exponential part - if b>0, the exponentials are concave, and if b<0, the exponentials

are convex (Figure 3.5, dotted lines). The signs of the r and b parameters determine

if the exponential portion of the function is increasing or decreasing - if they are the

same sign, the exponential portion is decreasing, and if they are opposite signs, the

exponential part is increasing. Thus, between the b, c and r parameters, eight possible

shapes are possible. Figure 3.5 shows some of the possible shapes for this model. If the

c is positive, possible shapes are exponential decreasing followed by linear increasing

(Figure 3.5A, solid line), exponential increasing followed by linear increasing (Figure

3.5A, dotted line), linear increasing and exponential increasing (Figure 3.5B, solid line),

and linear increasing and exponential decreasing (Figure 3.5B, dotted line). Similarly,

these same shapes are possible, except with a decreasing linear shape. Figure 3.5C

shows one such case.

The Gaussian model (y = a + b · exp(−(t−m)2

2·s2 )) is the characteristic symmetric bell-

shaped curve, and is widely used in statistics and mathematics to describe normal

distributions. It is characterised by parameters where a is the initial value, b is the

range of the response (a+b is thus the maximum value), m is the midpoint of the

graph (mean) and s describes the spread of the function around the midpoint (standard

deviation). The s parameter is also related to the duration of a response, where a larger

spread indicates a greater duration of the gene expression taking place. The sign of b

a�ects the shape of the curve, where if b>0, the curve increases to a maximum, whereas
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Figure 3.6: Graph showing the di�erent forms of the Gaussian curves. The curve with
the solid line had a positive b parameter value, while the curve with the dotted line
had a negative b parameter value.

y=-2(x-1)/(0.2+(x-1))

Figure 3.7: Graph showing the di�erent forms of the hyperbolic model. The curve with
the solid line had a positive b parameter value, while the curve with the dotted line
had a negative b parameter value.

if b<0, the curve decreases to a minimum. These shapes are shown in Figure 3.6.

The function used to model a hyperbolic model (y = a·(t−c)
b+(t−c)) is based on the Mi-

chaelis�Menten model: y = V ·x
k+x . This function is commonly used in biochemistry for

modelling enzyme kinetic reactions, where the parameters V and k which refer to the

maximum velocity of the enzymatic reaction, and the concentration of substrate re-

quired for half the maximum velocity, respectively. This equation was reparametrised

to include an additional parameter c to allow for a horizontal shift in the function, thus

no longer requiring the intercept to pass through the origin. In general, a represents

the upper asymptote, and b+c is the point on the time axis at which a
2 has been ob-

tained (Ratkowsky, 1990; Motulsky and Christopoulos, 2004). The sign of b a�ects the

direction of the curve, where if b>0, the curve is increasing to the asymptote, whereas

if b<0, the curve is decreasing. These shapes are shown in Figure 3.7.

These shapes were selected to describe a variety of responses that would be expected in

a biological process. For example, the sigmoid curves (logistic and Gompertz) indicate

a response that increases (or decreases) from one equilibrium position to another. In
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terms of gene expression, a would indicate the starting gene expression level, m the time

at which maximum expression occurs, and s would be related to the rate of expression.

Similarly, the exponential response represents a rapid change in gene expression. Thus,

it is possible to interpret these shapes in terms of the parameters as well as the processes

that they represent.

3.3. Initial parameter selection and self-starter functions

In order to reliably perform non-linear regression, a model is required as well as initial

estimates for the model parameters. Typically, these initial parameters would be estim-

ated by plotting the data and identifying key values which relate to the parameters, or if

the range of the parameters are known, perform a grid search on a subset of values (Ritz

and Streibig, 2008). However, since regression analyses in this study are performed over

the large Arabidopsis datasets (Section 1.2), it needs to be automated, and to this end,

self-starter functions were used. Self-starter functions are pieces of code that automate

the parameter search for starting values. These functions are speci�c to a particular

nonlinear model, which can then be used to calculate starting values for the model for

any given dataset. The self-starter may not always result in a successful convergence,

but in general it should provide estimates of that parameters that are close enough to

allow the estimation algorithms to converge. Several collections of self-starters exist,

including several in the base R installation, as well as in third-party packages, such as

the drc and HydroMe packages. However, these self-starters are for specialised models

in a speci�c �eld, or for a di�erent parameterisation of the same shape. Thus for the

majority of the selected models, self-starters were developed and used in the �tting

process. The process of estimating the initial parameters for each shape is described

below.

3.3.1. Sigmoid curves - logistic and Gompertz

Both the logistic and Gompertz self-starter functions were adapted from existing sources.

The logistic self-starter function was derived from the SSfpl function in the built-in

stats package in R (R Development Core Team, 2011), and is a simple re-parameterisation

from the original y = a+ b−a
1+exp((m−t)/s to y = a+ b

1+exp((m−t)/s) (i.e. changing the range

value to a single parameter).

The Gompertz self-starter function was adapted from the gompertz function in the

drc package (Ritz and Streibig, 2005). Similarly to the logistic self-starter, the func-

tion was re-parameterised so that the range value is a single parameter - y = a + b ·
exp(− exp(s·(t−m))). As the Gompertz model is asymmetric, there are multiple shapes

possible, depending on the value of the parameters. Speci�cally, if s>0, this means the

curve exhibits accelerated growth towards the right asymptote (slower initial growth).

In contrast, if s<0, this represents the form where there is accelerated growth from

the left asymptote. The original gompertz function in the drc package only took the

Gompertz1 form (growth rate is faster on the left of the midpoint) into account, so an
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additional self-starter function was added to detect the Gompertz2 shape (growth rate

is faster on the right of the midpoint).

3.3.2. Exponential

A parametrisation of the standard exponential equation was identi�ed by Ratkowsky

(1990) that expressed the equation in terms of expected value parameters:

y = y1 + (y2 − y1)
1− km−1

1− kn−1

where m − 1 = (n−1)(T−T1)
(T2−T1) , n is the number of data points, and k and r are related

in the following manner: r = k(n−1)/(T2−T1). Another parametrisations was also shown

such that

y = y1 + (y2 − y1)
(1− [(y2 − y3)/(y3 − y1)]q)
1− [(y2 − y3)/(y3 − y1)]2

where q = 2(T−T1)
(T2−T1) , and y1, y2 and y3 correspond to the y-values at T = T1, T = T2 and

T = (T1 + T2)/2, respectively. T1 and T2 are the �rst and last observed values (time

points) in the dataset, respectively. From these two parametrisations, it was assumed

that the denominators of both these equations were equal, implying that kn−1 ≈ [(y2−
y3)/(y3− y1)]2. Using this assumption, and the association of k and r described above,

it was possibly to estimate r ≈ [(y2 − y3)/(y3 − y1)]2/(T2−T1).
Once this approximate solution of r was found, the values of a and b could be easily

identi�ed. By using the equation, yi = a+ b · exp(−r · ti), where yi corresponds to the

point T = Ti, and using the �rst and last data pairs ((t1; y1) and (t2; y2), respectively),

it is possible to solve for a and b such that

b =
y2 − y1

exp(−r · t2)− exp(−r · t1)

and a = y1 − b · exp(−r · t1).

3.3.3. Critical exponential

Since the r parameter is the primary parameter that in�uences the shape of the curve, it

is the most important to identify �rst. To �nd an approximate value for the parameters,

the data was divided into two parts, separated by the maximum absolute y-value. The

absolute maximum was taken to ensure that the curves with a dip instead of a peak

were also identi�ed. Thus, the data was divided from (t1; y1) to (tmax; ymax), and

(tmax; ymax) to (tn; yn), where tmax is the time point of the maximum absolute y-value

in the dataset. The data was further divided at half way between the �rst value and

the maximum value (called mid1 ), and between the maximum value and the last value

(mid2 ) (Figure 3.8). The di�erence between the y-values ofmid1 and the �rst value, and

the last value and mid2 were calculated (di�1 and di�2, respectively) and compared.

If di�1 was greater than di�2, it implied the curve had a faster growth rate on the left
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(xmax; ymax)!
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diff1!
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Figure 3.8: Illustration of the self-starter process for the critical exponential function.
The data was �rst divided by the maximum value, and then further subdivided into
two halves (mid1 and mid2 ). The di�erence between the �rst data point and mid1
and mid2 and the last data point were calculated (di�1 and di�2, respectively).
If the �rst segment of the graph has a faster growth rate (di�1>di�2 ), this meant
that the asymptote was on the right side of the graph, and thus r>0. Conversely,
if di�2>di�1, the graph has the asymptote on the left hand side, and r<0. The
other parameters could then be estimated based on the aspects of the curves they
in�uence.
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side and tails towards an asymptote on the right side, meaning r>0, and r was therefore

set to 0.2 (Figure 3.4A). This were arbitrarily set as a �push in the right direction�. The

other parameters could then be estimated where a was approximately the last value (the

asymptotic value), and b approximately equal to the di�erence between the �rst y-value

and a (since a+ b ≈ y1). The converse was true if di�2 was greater than di�1, so r was

set to -0.2 (Figure 3.4B, and a and b were approximately equal to the �rst value. The

c parameter is the di�erence between the maximum value and the asymptotic value.

3.3.4. Linear+exponential

To �nd approximate starting values for the linear+exponential curve, the fact that a

portion of the curve is linear was taken advantage of. To do this, a similar approach to

the critical exponential was performed where the data was divided at the maximum ab-

solute y-value, i.e. the two datasets were from (x1; y1) to (xmax; ymax) and (xmax; ymax)

to (xn; yn), where xmax is the x -value for the maximum absolute y-value in the dataset.

If the function was monotonic, the data was divided in half.

Once again, the primary parameter in�uencing the shape of the curve was the r

parameter. As shown in Figure 3.5, the side of the exponential portion is determined

by the sign of r. To determine an estimate for this parameter, a linear regression was

performed on each section of data to determine which was more linear. This comparison

was performed using the value of the R2 value from the regression. The data points at

(xmax; ymax) were used in both linear regressions. If the �rst section was more linear

(Figure 3.9B), it implied that r<0, and r was approximated to -0.2; and vice versa if

the second section was more linear, r was set to 0.2 (Figure 3.9A),. The rest of the

parameters could then be estimated with a and c approximately equal to the intercept

and slope of the linear regression, respectively. The b parameter a�ects the concavity

of the graph, and is estimated as b ≈ y1 − a.

3.3.5. Gaussian

The Gaussian curve is estimated using various aspects of the curve. The m parameter

is the time point where the maximum absolute y-value occurs, and was calculated using

the which.max function in R. The a parameter is the average between the �rst and last

y-values to estimate the base level, the b parameter (range) is the di�erence between

the base level and maximum absolute y-value, and the s parameter (t-spread around

m) is estimated as the di�erence between the m estimate and the time point where half

the maximum response occurs (y = a+ b
2). Since there are two time points where this

occurs, the �rst was selected.

3.3.6. Hyperbola

Like the logistic self-starter, the self-starter for the hyperbola was a re-parameterisation

of the SSmicmen function the built-in stats package, y = V m·input
K+input . An additional

parameter, c, was added to allow the function to shift on the time axis. Since c is the
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(xmid; ymid)!

(x0; y0)!

(xn; yn)!

B
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(x0; y0)!
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Figure 3.9: Illustration of the self-starter process for the linear+exponential function.
The data was divided by the maximum (B), or in half if the function was monotonic
(A). A linear regression was performed on each segment to determine which portion
was more linear. If the �rst segment was more linear, r<0 (A), and if the second
segment was more linear, r>0 (B).
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time point where y = 0, this value was estimated as the time point where the y-value

is closest to 0.

3.4. Statistics to determine goodness-of-�t

As described in Section 1.7, for a given regression model, it is possible to determine the

model goodness-of-�t using the decomposition of variability. Thus

SStotal = SSregression + SSresidual

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2 (3.1)

where SStotal is the total sum of squares, SSregression is the regression sum of squares,

SSresidual is the residual sum of squares, n is the number of time points, ȳ is the mean

of the samples and ŷi is the predicted value of the �tted curve at time i. The SStotal

describes the total deviation of the data about the mean, whereas the SSregression

describes how much variability in the data is explained by the model (a measure of how

well the model �ts the data), and the SSresidual describes the amount of error between

the �tted model and the data (the unexplained variability).

These sums of squares can be used to calculate the respective mean squares, which

provide a measure of the variance of the data. The mean squares for each of the sum of

squares can be calculated by dividing by the respective number of degrees of freedom.

For example, the residual mean square (MSresidual) can be calculated as

MSresidual =
SSresidual
dfresidual

where dfresidual is the residual degrees of freedom. The total mean square (MStotal) and

regression mean square (MSregression) can be calculated in an analogous fashion.

If replicate samples (multiple y observations at a given x -value) were obtained, it is

possible to extend equation 3.1 to include the replicated observations at each x -value.

Assuming equal replication at each x -value,

n∑
i=1

r∑
j=1

(yij − ȳ)2 =

n∑
i=1

r∑
j=1

(ŷij − ȳ)2 +

n∑
i=1

r∑
j=1

(yij − ŷi)2 (3.2)

where r is the number of replicates per time point.

It is then possible to further decompose the SSresidual into two components - the pure

error and the lack-of-�t sums of squares (Brook and Arnold, 1985).

SSresidual = SSpure error + SSlack−of−fit

n∑
i=1

r∑
j=1

(yij − ŷi)2 =
n∑
i=1

r∑
j=1

(yij − ȳi)2 +
n∑
i=1

r(ȳi − ŷi)2. (3.3)
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The pure error sum of squares is de�ned as the sum of squared di�erences between

the average y-value at each x -value (ȳi, the local average of replicate samples) and each

observed value at that x -value, and describes the error that is due to the between-

replicate variation, pooled across the time points (pure random error). The lack-of-�t

sum of squares is a sum of squared di�erences between the local average and the �tted

value at the same x -value, weighted by the number of replicates. This value describes

the amount of variation due to lack of model �t (variation between replicate means

and �tted curve). If the lack-of-�t sum of squares makes up a large proportion of the

SSresidual , this suggests that the �tted model is insu�cient to �t the data and indicates

a poor �t to the mean y-values.

It is possible to calculate the lack-of-�t sum of squares through the �tting of a sat-

urated model, so named as a parameter is allowed for each time point, and is thus

saturated with parameters. This model describes the expected response at each time

point, and represents a model that is formulated with no assumptions with regards

to the response shape and time dependence of the data points. From the saturated

model, an analysis of variance (ANOVA) table with the sums of squares is obtained.

As in equation 3.1, the saturated model total sum of squares can be decomposed into

two parts. However, in this case, the residual sum of squares is the pure error sum

of squares. By using these values, together with equation 3.3, the lack-of-�t sum of

squares (SSlack−of−fit) for the regression model can be calculated.

SStotal = SSsaturated + SSpure error

SSlack−of−fit = SSresidual − SSpure error. (3.4)

Similarly, the lack-of-�t degrees of freedom can be calculated as the di�erence in the

degrees of freedom in the regression and saturated model residuals (dflack−of−fit =

dfresidual − dfpure error), and the lack-of-�t mean square can then be determined as

MSlack−of−fit =
SSlack−of−fit
dflack−of−fit

. (3.5)

The R2 value (coe�cient of determination) is a commonly used statistic to determ-

ine the goodness-of-�t of a �tted curve, with values ranging between 0 and 1, where 1

indicates that the �tted line passes perfectly through the data points (Motulsky and

Christopoulos, 2004). This value indicates the proportion of the variance that is ac-

counted for by the �tted curve.

R2 = 1− SSresidual
SStotal

.

However, this R2 value will incorrectly increase with an increase in the number of

parameters, meaning models with more parameters would appear to have a better �t,

potentially leading to over-�tting. Thus, in order to take this into account, an adjusted

R2 value (R2
a) is used.
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R2
a = 1− MSresidual

MStotal
. (3.6)

The R2
a provides an indication of the proportion of the variance in the data which can

be explained by the model, and thus indicates which models had a good �t to the data

points.

Using the lack-of-�t information described above (equation 3.5), it is possible to calcu-

late the goodness-of-�t of the curve without the variation due to the biological replicates.

This statistic was termed the R2
LoF (� lack-of-�t adjusted R2�) and can be calculated in

an analogous fashion to the R2
a value (Equation 3.6):

R2
LoF = 1−

MSlack−of−fit
MSsaturated

where MSsaturated is the regression mean square from the saturated model. This R2
LoF

is e�ectively the same as if the regression had been performed only using the replicate

means at each time point. In this way, it describes how much variance one model has

explained.

Another simple statistic for the goodness of �t of the model is the F-test. The F-test

provides an indication of whether the �tted model is the appropriate shape given the

data. However, it can sometimes be di�cult to interpret the signi�cance of the F -test

as the test is sensitive to variation in the data (Ritz and Streibig, 2008). The F statistic

is calculated as

F =
MSregression
MSresidual

where the signi�cance level is determined using an F (dfregression, dfresidual) distribution.

While the R2
a is a useful statistic for determining the goodness-of-�t for a model �t, it

is generally a poor indicator for model selection (Burnham and Anderson, 2002). Thus,

when selecting which of the various regression models best �tted the data, Akaike's

Information Criterion (AIC) was used. While it is also possible to use a F-test to

compare models, this approach cannot be used when comparing non-nested models.

The AIC is calculated using aspects of maximum likelihood theory, information theory

and entropy of information (Motulsky and Christopoulos, 2004), and is calculated as

follows:

AIC = N. log

(
SSresidual

N

)
+ 2p

where N is the total number of data points and p is the number of parameters. The

AIC equation takes into account both the goodness-of-�t and the number of parameters

required, thus attempting to prevent over�tting with overly complex models (Ritz and

Streibig, 2008; Motulsky and Christopoulos, 2004). The AIC statistic thus describes

how likely the model is to be correct, given the data. The value of the AIC is not easily

interpretable, and AIC values of models from di�erent datasets cannot be compared

(Burnham and Anderson, 2002; Motulsky and Christopoulos, 2004). However, the rel-
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Figure 3.10: Illustration of an example of a spike. An outlying replicate is shown at
time point 9, and removal of this point improved the model �t. The �tted curve is
shown as the dotted line, and the curve with the spike point removed is shown as
the solid line.

ative di�erences between the AIC values of a set of models from the same dataset can

describe how much better one model �ts the data than another model to the same data

(Burnham and Anderson, 2002).

The application of these statistics is described below in Sections 3.6 and 3.8.

3.5. Spike detection

In some gene expression pro�les, a phenomenon was observed where the pro�le followed

one of the models, except for a sharp increase or decrease of expression at a single time

point. This occurrence was termed a spike, and may result from a rapid and sudden

activation or repression of a gene.

To determine if a gene exhibited a spike, a brute force leave-one-out-cross-validation

method was employed. Here, all the observations from a given time point were removed,

and the regression analysis performed again on the reduced dataset. If the resulting �t

was better than the �t of the full dataset (R2
LoF of the reduced dataset > R2

LoF of the

original dataset) and the mean of the removed replicate data was signi�cantly di�erent

from the predicted value of the reduced dataset, this was marked as a potential spike.

Signi�cance was determined using the nonparametric Mann-Whitney test, comparing

the mean of the removed replicate data points to the predicted value at the removed

time point. The removed time point was considered signi�cant if the p-value of the test

was less than 0.05. This process was performed for each time point, and the time point
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with the smallest p-value (the most signi�cant di�erence) was retained as a potential

spike. This is shown in Figure 3.10. The spike is only a representation of how the spike

occurs, since the exact mechanisms behind this spike are unknown. Thus, the spike is

drawn as increasing from the previous time point's expression level, and decreasing to

the following time point's value.

This methodology is based on the concept of leverage and studentised residuals, where

certain observations may signi�cantly in�uence the �tted model (Cook, 1982; Fox, 2002;

St Laurent and Cook, 1993, 1992).

3.6. Filtering model �ts by goodness-of-�t and standard

error

Prior to further analyses, it is necessary to determine which of the models had a good

�t. As described above and in Chapter 2, a range of models with diverse shapes is �tted

to the expression pro�les, and thus it would be expected that not every model would

�t to the data. To determine if the model �tted the data well, the statistics in Section

3.4 were used.

In determining which of the models had the best �t, the AIC was used. As recom-

mended by Burnham and Anderson (2002), any models with a di�erence in AIC values

(∆AIC) less than 2 to the smallest AIC value were retained. As a result, a gene ex-

pression pro�le may be �tted by more than one model shape. However, since the �t

may not necessarily be a good �t, a number of goodness-of-�t statistics were used to

determine the quality of �t, namely the the R2
a, R

2
LoF , and F -test (Section 3.4). These

values provide a quick and simple means to gauge the quality of the �t.

In addition to �ltering by general �t quality, the quality of the estimated parameters

was determined through the use of the standard error of estimation of the �tted para-

meters. For a given �tted parameter, if the standard error is large, this implies that

there was insu�cient information to accurately determine the parameter value, pos-

sibly as a result of extrapolation. Thus, a standard t-test was performed to determine

if the parameters were signi�cantly di�erent from 0. For an estimated parameter β̂, a

t-statistic is calculated as follows:

tβ̂ =
β̂

stderr(β̂)
,

where stderr(β̂) is the standard error from the least-squares estimation of parameter β̂.

The critical value from the t-distribution was calculated using the residual degrees of

freedom (total observations - number parameters - 1 ) and α = 0.05. If tβ̂ is less than

the critical value, this implies that the parameter is poorly estimated, and the �tted

model was not included in further analyses.
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3.7. Deriving new parameters and estimating their standard

error

While the parameters from some models are directly informative, it may be desirable to

calculate other parameter estimates which describe alternative aspects of the curves. For

example, for the sigmoid models, the values of the function increase (or decrease) from

asymptotic value to another. It is thus possible to �nd the time point (x -value) when 5%

of the di�erence between asymptotes has been reached (denoted the 5per parameter),

indicating the point at which the increase (or decrease) is starting. In terms of gene

expression, this may indicate the point at which the gene is being activated or repressed.

To calculate the 5per parameter, this would be the point where y = a+ 0.05 · b . Thus,
using the equation for the logistic function described in Section 3.2, the time point

where this value occurs is

5per = m− s · log

(
1

0.05
− 1

)
.

In order to calculate the standard error of estimation of these derived parameters for

the �ltering (Section 3.6), the delta method was used (Fox, 2002, 2008; Ritz and Streibig,

2008). The delta method assumes that the joint distribution of the parameter estimates

is approximately normal, implying that any derivation of the parameter estimates will

also be normally distributed. Therefore, estimates of parameters that are functions of

the original parameters can be calculated (Fox, 2008; Ritz and Streibig, 2008).

Several other parameters have been derived and are summarised in Table 3.1. These

include the grad parameter for the sigmoid curves and describes the maximum rate of

change. This value is calculated as the gradient of the curve (�rst derivative of the

function) at the point of the maximum change in growth rate, m. For the logistic curve,

this would be

grad =
b

4s
.

The turnp parameter is used for the critical exponential model to indicate the time

point where the maximum or minimum peak on the curve occurs. Therefore, this is the

time point where the �rst derivative of the critical exponential function is equal to 0.

Thus

turnp =
c− r · b
c · r

.

Finally, for the linear+exponential, the linpnt is de�ned as the time point at which the

curve begins to become linear. This point could be calculated as the time point where

the �rst derivative of the critical exponential function is equal to 0. However, in some

cases, these is no turning point, and the function is monotonic (for example, Figure 3.5A,

dotted). Thus, in order to maintain consistency across all the shapes, this parameter

was estimated as the point at which the gradient of the linear+exponential function

becomes close to the c parameter (the gradient of the linear portion). Therefore, to the

54



Table 3.1: Table of the derived parameter values and their descriptions.

Derived
parameter name

Valid models Description

5per Logistic, Gompertz
Time point (x -value) at which 5% of the
maximum growth or decay has occurred.

grad Logistic, Gompertz
Maximum rate of change of expression.

De�ned as f ′(m).

turnp Critical exponential
Time point (x -value) where the maximum
or minimum peak occurs. De�ned as the

x -value where f ′(x) = 0.

linpnt Linear+exponential
Time point (x -value) where the graph
starts to become linear. De�ned as the

x -value where f ′(x)→ c.

time point at which the gradient of the function is 95% of the linear gradient is

linpnt =
log( b·r

0.05)

r
.

3.8. Algorithmic development

As described in Section 1.2, the primary datasets used in the analyses were from the

PRESTA long day senescence (Breeze et al., 2011) and Botrytis cinerea infection (Win-

dram et al., 2012) time series experiments. In brief, the senescence morning sample

dataset consisted of 11 time points, taken every second day for 22 days, and the Botrytis

dataset consisted of 24 time points, taken every 2 hours for 48 hours. The gene expres-

sion analysis was performed using CATMA version 3 microarrays (Sclep et al., 2007),

which contained over 32 500 probes, where multiple probes mapped to the same gene.

Thus, a unique set of 23 802 best probes was identi�ed that provided a more compre-

hensive set of genes to represent the Arabidopsis genome. In both sets of data, the data

was previously analysed by other members of the PRESTA group and the mean values

for each biological replicate was estimated from the observed technical replicates, using

MAANOVA (Wu et al., 2003), an analysis tool for microarray data. The data used

was standardised to have a mean of zero per gene across all samples, but the standard

deviation was not scaled, as the di�erences in the amplitude were of interest.

The regression analysis (Figure 3.11) was performed on the data from the above data-

sets. In order to e�ciently analyse the �ts of the above linear and nonlinear models

to gene expression data, a number of scripts were developed to �t the various models

to the data, calculate the goodness-of-�t, store the �ts in a database, and analyse the

statistics for the �tted curves. The scripts used the R statistics language for the stat-

istical analyses, together with the Python programming language for data processing.

A number of other third party packages were used in the development of the analysis

pipeline and are listed in Table 2.2.

For each of the gene expression responses, it was attempted to �t a series of nonlinear
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Figure 3.11: Flow diagram showing the process for the regression calculations to determ-
ine the best curve �t for each gene. For each gene, the expression data is �tted to
all the models, and the best �ts are selected using AIC. Fit statistics are calculated
for each �t to determine the goodness-of-�t, and potential spikes are identi�ed. All
this information is stored in an SQLite database (Figure 3.12).

and linear functions (Section 2.1), with the use of custom self-starter functions (Section

2.2). As described in Section 3.6, the best model �ts to each gene expression pro�le were

determined using the AIC, and retaining any models with a di�erence in AIC values

(∆AIC) less than 2 to the smallest AIC value. Statistics to determine the goodness-of-

�t were also calculated, namely the adjusted R2, lack-of-�t R2 (R2
LoF ), and the F-test

p-value (Section 3.4). Finally, for any genes which exhibited a poor �t (arbitrarily

de�ned as having a R2
LoF < 0.5), an analysis was performed to determine the presence

of a potential spike which would explain the poor �t the spike detection (Section 3.5).

All the results of this analysis, including gene information, best �t information and

�t statistics, were stored in an SQLite database. A schematic describing the database

structure is shown in Figure 3.12. The database consisted of four tables - the Regression

table, the Fit table, the Statistics table, and the Spike table. Each of these tables

contains a unique identi�er (primary key) to use in cross referencing between the tables.

The Regression table contains the annotation information about the gene, including the

CATMA and ATG identi�ers. The ��t� �eld in this table acts as a foreign key (a �eld

in one table that is used to uniquely identify a row in a di�erent table) to the Fit table.

Since an expression pro�le may �t more than one model, there can be multiple entries

for this �eld. The Fit table contains details regarding the model that �tted the data,

such as model �t and �t parameters, as well as the R �t object (from nls or lm for

nonlinear or linear regression, respectively), in case further analyses were required. This

table also contained a foreign key to the Statistics table to link the statistics for this �t.

The Statistics table contains all the goodness-of-�t statistics, such as the R2
a and R

2
LoF .
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Regression!
id! Primary Key!
probe! CATMA ID!
atg! ATG ID!
fits! List of fits!
spike! Spike fits!

Statistics!
id! Primary Key!
aic! AIC value!
r2! Adjusted R2!
lof! Lack-of-fit 

mean square!
lofr2! Lack-of-fit R2!
ftest! F-test p-value!

Fit!
id! Primary Key!
model! Model shape name!
parameters! Fitted parameters!
fitobj! R fit object!
stats! Link to statistics!
regr! Link to regression!

Spike!
id! Primary Key!
model! Model shape name!
parameters! Fitted parameters!
fitobj! R fit object!
stats! Link to statistics!
spikepos! Time point of spike!
spikesize! Size of spike!
spikey! Expression value of 

spike!
pval! p-value !

Figure 3.12: Schematic diagram showing the structure of the tables and a description of
the �elds in the regression database. The Regression table contains the information
about the gene, the Fit table contains details regarding the model that �tted the
data, the Statistics table contains all the goodness-of-�t statistics, and the Spike
table contains the �t information for models with a potential spike. The arrows
indicate foreign keys linking between the tables.

In addition, the AIC value and lack-of-�t mean squares were stored. The Spike table is

similar to the Fit table, in that it contains information about the regression �t and a

link to the relevant statistics �eld. In addition to this, it also contain details regarding

the identi�ed spike, such as the position (time point) and the magnitude of the spike.

3.9. Results

The regression analysis was performed on the 23 802 genes in the senescence and Botrytis

time series datasets (Section 1.2). For the senescence dataset, the data consisted of

morning and afternoon samples, and only the morning samples were used in this ana-

lysis. The Botrytis dataset consisted of responses for mock and infected treatments,

and both were used. The results for the analysis of each of these datasets were stored

in separate databases.

Figure 3.13 show the plots of the three main statistics used to determine goodness-

of-�t in the regression, namely R2
a, R

2
LoF , and F-test p-value for the senescence (Figure

3.13A) and Botrytis data (Figure 3.13B). These statistics all provided di�erent inform-

ation about the �t, so each of these were plotted against the other to determine the

overall quality of the �ts. The R2
a value describes how well the �t explains the data

(including the between-replicate variability), the R2
LoF value describes the �t without

the between-replicate variability, and the F-test provides an indication whether the �t-

ted shape is appropriate. For the R2
a and R

2
LoF values, the closer the value is to 1, the

better the �t. For the F-test, the closer the value is to 0, the more likely that the �tted

shape is appropriate. Since these p-values are often close to 0, the log of the p-values

were plotted in the �gures below. Thus, as the p-value tended towards 0 (becomes more

signi�cant), the more negative the plotted value becomes.

57



As would be expected, the lower p-values from the F-test are associated with higher

values from the R2
a and R

2
LoF values. In these plots, there is a greater amount of spread

in the plot against R2
LoF , as opposed to plotted against R2

a (Figure 3.13, column 1

vs. column 2). As described above, the R2
a calculation takes the between-replicate

variability in account, whereas this has been removed in the R2
LoF value. This means

that for a given F-test p-value, the R2
LoF value is greater than the R2

a value. This can also

be seen in the plots of the R2
a against the R

2
LoF (Figure 3.13, column 3), where a strong

correlation between the two values can be seen, albeit a nonlinear relationship. This

is caused by a relatively large amount of between replicate variability in the datasets,

which is decreasing the value of the R2
a statistic. This e�ect is much more evident in

the senescence dataset, likely due to the greater amount of biological variability in the

older plants. In addition, in the plots of the F-test vs. R2
a (Figure 3.13, column 2),

three distinct lines can be seen. These lines correspond to the number of parameters

that each model possesses (two, three or four parameters). This indicates that for a

given F-test p-value, models with more parameters (more complex models) would have

a larger R2
a value.

Figure 3.14 shows the cumulative number of genes that pass each of the individual

thresholds for the senescence (Figure 3.14A) and Botrytis data (Figure 3.14B). As with

the above �gures, the datasets have very similar patterns. The R2
a and R

2
LoF both show

an approximately linear drop o� in numbers of genes as the stringency increases. With

the F-test p-value, there are signi�cantly fewer genes with a p-value greater than 0.1.

From these graphs and those of Figure 3.13, thresholds of R2
a > 0.6, R2

LoF > 0.6, and

F-test p-value < 0.05 (log10(p-value) < -1.3) were established that were thought to be

stringent enough to remove inadequate �ts, but still �exible enough to allow a su�cient

proportion of the genes through. Thus a set of genes with good �ts was determined

that could be used for further analyses.

The breakdown of �ts according to model shape are shown in Figure 3.15. From

these �gures it can be seen that approximately 50% of the genes (12830 genes) in the

senescence dataset, and 35% of the genes (8728 genes) in the Botrytis dataset had

good �ts for one or more models, according to the thresholds described above. In

both datasets, the most common shapes were the linear, Gaussian and sigmoid curves

(logistic and the two Gompertz variants). However, the majority of the linear model

�ts exhibited a �at expression pro�le (�tted parameters close to 0), and thus resulted

in poor �t statistics. The exponential-type models �tted a fair amount of genes, but

generally did not have a very good �t, particularly in the Botrytis dataset. This is due

to a similar situation as the linear model �ts, where the �tted parameters were all close

to 0. Finally, the hyperbola shape did not match many genes.

As mentioned previously in Section 3.4, all regression �ts with a ∆AIC < 2 relative

to the best �t, were retained. This means that an expression pro�le may be �tted by

more than one model. Figure 3.15 showed only the counts of the models that �tted

the best (i.e. had the smallest AIC value). Table 3.2 shows the number of genes with

a secondary model �t for a given �best �t� model for the senescence dataset, and the
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Figure 3.14: Cumulative counts of the number of genes that passed the various threshold
levels for each of the goodness-of-�t statistics. Shown are the number of genes with
a statistic greater than the respective cut-o� value for the (A) senescence data, and
the (B) Botrytis infected data. Values to the right indicate better �ts. F-test values
are read o� using the top axis.
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Figure 3.15: Break down of the �tted models by shape for the senescence (A) and
Botrytis infected (B) datasets. The white portions of the bars indicate the number of
genes that had a good �t according to the thresholds described previously (R2

a > 0.6,
R2
LoF > 0.6, and F-test p-value < 0.05 ).
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equivalent results for the Botrytis dataset are shown in Table 3.3. As would be expected,

the sigmoid functions (logistic and the two Gompertz forms) often occurred together.

The exponential and linear functions also had a high level of co-occurrence. A large

proportion of genes only exhibited a single �t to the models.

Some examples of �ts to the various datasets are shown in Figure 3.16, where a

selection of di�erent shapes are displayed. The �tted curves are displayed over the

observed data points. It can be seen that the selected curve shapes are able to describe

the general structure of the expression pro�le. Figures 3.16C and D show examples of

genes where multiple shapes �tted to the same expression pro�le.

Although many of the gene expression pro�les had a good �t to at least one of the

given models, there were a number that did not. Figure 3.17 shows some examples

of genes that did not match well, and possessed poor goodness-of-�t statistics. Figure

3.17A shows an example where the goodness-of-�t statistics were poor due to a �at,

unchanging gradient, and Figure 3.17B shows an example of an expression pro�le that

is inadequately described by the available models. This is particularly evident in the

Botrytis data where the genes show circadian patterns.

While the goodness-of-�t statistics could be used to identify the quality of the �t

to the data, an additional source of information is the standard error of estimation of

the parameters for each of the models. The estimated value for a parameter may be

unusual if a model is �tted to the data without su�cient information regarding the

model's complete shape, for example in the sigmoid models, the second asymptote is

not apparent. Using the standard error as a �lter therefore provides an additional level

of con�dence that the �tted shape is appropriate. As described in Section 3.6, by using

the standard error of estimation of the �tted parameters, it is possible to determine

the level of con�dence of the parameter estimates. Figure 3.18 shows the distribution

of the �tted parameter values for the logistic model, after applying the goodness-of-�t

thresholds, as well as the standard error of estimation checks. By doing this, it helps

remove out any of the unusual �ts, and acts as an additional �lter to �nd genes with

good �ts for further analyses.

In addition to identifying the general expression pro�le, it is also possible to detect

spikes in the pro�les. A spike is de�ned as a large increase or decrease in gene expression

at a single time point that deviates from the general �tted curve. Figure 3.19 shows

some examples of spikes detected. With the use of the spikes, it is possible to �nd models

that �t the expression pro�les, save for one time point that has a di�erent expression

level to samples from neighbouring time points. This may be indicative of a cellular

event where the gene expression is quickly being activated and then deactivated (or vice

versa), indicating some other underlying activation mechanism.

Figure 3.20 shows the number of genes with a spike detected at each time point in the

senescence and Botrytis datasets. Since the method for detecting the spikes is based on

a leave-one-out methodology, it would be expected that time points with a large amount
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A B

C D

Figure 3.16: Examples of regression �ts to the gene expression pro�les. The top row
represents samples from the senescence dataset, where (A) is an example of a lin-
ear+exponential �t, and (B) shows an exponential �t. The bottom row shows pro�les
from the Botrytis dataset where (C) �tted the sigmoid curves, and (D) �tted linear
and exponential. The small dots on the graphs represent the replicate samples, and
the black diamonds represent the replicate means.
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A B

Figure 3.17: Examples of genes with poor �ts, where (A) shows an example where the
�tted parameters were close to 0, resulting in poor goodness-of-�t statistics; and
(B) shows an example of an expression pro�le that is more complex than the models
used in the regression analysis.

of leverage would be picked up more often. This can be seen in the �gure where the

time points at the beginning and end of the two time series have a larger proportion of

detected spikes. In total, there were not a large proportion of genes that were detected

with spikes. 6723 (28% of genes) in the senescence dataset and 3178 (13% of genes) in

the Botrytis dataset.

In the time series papers by Breeze et al. (2011) and Windram et al. (2012), sets

of genes were identi�ed as being di�erentially expressed through a variety of statistical

approaches, including MAANOVA (Wu et al., 2003) and a Gaussian process two-sample

test (Stegle et al., 2010). These genes were compared to the genes that were identi�ed

as possessing good �ts to the expression pro�les. Using the �ltering methods described

above (R2
a, R

2
LoF , F-test p-value, and standard error of the parameter estimates) a set

of 8216 and 5303 genes were respectively found in the senescence and Botrytis datasets,

which possessed a good �t to one or more of the models. Figure 3.21 shows the degree

of overlap between the regression method and these established statistical methods

for identifying di�erentially expressed genes. In the senescence dataset, approximately

equal number of genes were found by both methods, and the majority of genes that were

identi�ed as being di�erentially expressed also had a good �t to the regression models.

However, there were a relatively large number of genes that were uniquely identi�ed by

each of the two methods. In contrast, in the Botrytis dataset, there were almost twice

as many genes found by the di�erential expression analyses as the regression approach.

However, the majority of the genes possessing a good model �t were also identi�ed as

being di�erentially expressed.
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A

Figure 3.18: Distribution of the parameters for the logistic function in the senescence
dataset, showing the (A) increasing, and (B) decreasing functions (overleaf). The
distribution of each parameter is shown for the full dataset (left), �ltered by the
goodness-of-�t thresholds (centre), and �ltered by the goodness-of-�t thresholds as
well as the standard error of estimation (right).
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B

Figure 3.18: (cont.) Distribution of the parameters for the logistic function in the senes-
cence dataset, showing the (B) decreasing functions. The distribution of each para-
meter is shown for the full dataset (left), �ltered by the goodness-of-�t thresholds
(centre), and �ltered by the goodness-of-�t thresholds as well as the standard error
of estimation (right).
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A B

Figure 3.19: Some examples of spikes from the senescence dataset (A), and the Botrytis
dataset (B). The dotted portion of the line represents the �tted curve without the
spike. The small dots on the graphs represent the replicate samples, and the black
diamonds represent the replicate means.

3.10. Discussion

In this analysis, a regression approach was used to �t a selection of models to gene

expression pro�les, and thus obtain biologically interpretable parameters to aid in the

identi�cation of functionally related genes. Eight distinct shapes were used to �t the

expression pro�les, and these shapes were able to �t to a large proportion of the genes.

Ordinarily with nonlinear regression, starting values for the regression would be es-

timated using a graphical exploration, or through the use of a grid search of potential

parameter values (Ritz and Streibig, 2008). However, in this case, there were 2 datasets

with over 23 000 gene expression pro�les in each. Thus a more automated approach

was needed. Self-starter functions were developed to estimate starting values, and were

integrated into an analysis pipeline to �t each of the selected models to each gene expres-

sion pro�le, and determine the best �ts. All the relevant data was stored in a database

for further analysis.

Through the use of goodness-of-�t statistics, the quality of the �ts were determined.

These statistics included the R2
a, R

2
LoF , and F-test p-value, and each of these provided

a di�erent indication of the �t. Investigating the overall trends in these statistics,

threshold values were determined in order to �lter out the models with poor �ts. The

thresholds determined were R2
a > 0.6, R2

LoF > 0.6, and F-test p-value < 0.05, although

these can easily be changed to increase or decrease the stringency as desired. The

number of genes that �tted each shape was calculated, and it was found in both the

senescence and Botrytis datasets that the predominant shape was the linear response.

Investigation of some of these �ts revealed that the genes exhibited a low level of ex-

pression, and had a �at, unchanging response over time, thus having both a gradient
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Figure 3.20: Figures showing the distribution of the spikes in the senescence (A) and
Botrytis (B) datasets. Shown are the number of spikes detected at each of the time
points.

A

1609 35014714

Differentially
expressed

Good regression fits

B

9334821 4369
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Differentially
 expressed

Figure 3.21: Venn diagrams showing the degree of overlap between the genes identi�ed
as being di�erentially expressed through statistical means (blue circles), and the
genes with a good regression �t (orange circles). The senescence dataset is shown
in (A) and the Botrytis dataset in (B)
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and intercept close to 0. The other commonly occurring shapes were the logistic and

the two forms of the Gompertz curve, i.e. the sigmoid shapes. This is to be expected

as they follow the anticipated change in gene expression, where a gene is activated in

response to some stimuli, which results in an increase (or decrease) in expression until

a new steady state level is achieved. With regard to the exponential type curves, a

similar situation to the linear �ts was found where the expression pro�les were �at and

unchanging, so the �tted parameters were close to 0. Finally, the hyperbolic shape did

not �t many genes at all, most likely due to the exponential curve providing a better

�t.

These results seem to suggest that while many of the gene expression pro�les could be

adequately described by the selected shapes, there were still some that were not. Further

investigation would be needed to identify and parameterise the missing model shapes.

Here, techniques such as splines have the advantage, as they are more �exible and

thus able to handle unusual pro�le shapes. However, the purpose of this analysis is to

obtain more information from the expression pro�les than merely their shapes, namely

additional information regarding the underlying mechanisms for the given expression

pro�le. Through the use of the �tted parameters and goodness-of-�t statistics, a more

exploratory approach was developed to aid in the analysis of the data.

The thresholds described above were used to identify genes that had a good �t to the

data, and were selected based on the number of genes that passed a given threshold. This

was in an attempt to maximise the number of genes included in further analyses, while

still maintaining a level of stringency. However, these thresholds are still ultimately

arbitrary, and may be raised or lowered to make them more or less stringent, respectively.

In addition, the thresholds do not inform about the amount of error in the parameter

estimates. This means that although the �t may be of high quality, the standard error

of the parameters may be relatively high, indicating that there is insu�cient data to

accurately predict the parameter value. For example, a gene expression pro�le may

look like half of a Gaussian curve, and the Gaussian pro�le would �t it reasonable well.

However there would be high errors associated with the asymptote parameter estimate,

indicating that some components of the shape were from extrapolation of the dataset.

Thus, �tted curves should be further �ltered by investigating the errors associated with

the parameter values.

The inclusion of spikes provided a means of extending the �tting process to include

more unusual shapes. At present only one spike is permitted per expression pro�le.

An extension would be to allow multiple spikes, particularly those that are adjacent,

indicative of a dip as opposed to a spike. Other extensions could include the use of

piecewise regression or a broken stick model, where di�erent portions of the expression

pro�le are �tted by multiple shapes. Using a leave-one-out methodology to �nd the

spikes biases the analysis to identify genes that are at the beginning or end of the

time series. That is, the time points which possess a large amount of leverage on the

regression �t. Of particular interest are the genes with spikes in the middle of the

time series. It would be interesting to determine if there is some biological, or possibly
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technical, reason for a set of genes to have spikes at a particular time point.

While it was possible to �t a variety of models to a large number of expression

pro�les, many of these �ts were poor quality. As mentioned previously, it was found

that many of these poor �ts were largely unresponsive across the time series. Thus is

may be possible to use the regression and goodness-of-�t assessments as a means of

identifying di�erentially expressed genes. When the list of good �ts was compared to

the di�erentially expressed gene lists from statistical analyses such as MAANOVA, it

was found to be largely consistent. In the case of senescence, many more genes were

found to be di�erentially expressed by the regression analysis, although this could be

adjusted by making the default thresholds more stringent. In the Botrytis dataset,

the regression analysis found half as many genes as the di�erential expression analyses.

However, the majority of the genes were found by both methods. Thus, the regression

analysis could act as a means of �ltering out genes for further investigation. The genes

that were found to be di�erentially expressed but not possess a good model �t could

be due to the presence of circadian genes that cannot currently be accurately detected

by this regression approach. A way to possibly identify these genes would be to attach

a sine term to the regression models as an additional parameter to overlay oscillatory

behaviour. Alternatively, a Fourier analysis could be used to identify the diurnal signal.

Nonetheless, in both datasets most of the di�erentially expressed genes were identi�ed as

being good �ts and could be used as a simple means to identify di�erentially expressed

genes.

The chapters that follow will build on the use of the �tted models, demonstrating a

variety of applications.
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4. Using �tted parameter values to

group genes

4.1. Introduction

In the previous chapter, a regression approach was described whereby linear and non-

linear functions were �tted to time series gene expression pro�les, in order to obtain

parameters which may be used to interpret the underlying biology, such as timing

events or rates of change. In this chapter, an application of these �tted models will be

described, namely clustering genes based on the �tted parameter values.

Clustering is a generic term that is used for the division of objects on which mul-

tivariate data has been measured into groups, or clusters (Jain et al., 1999). The aim

of the analysis is to identify groups of genes that have similar pro�les to each other,

but are distinct from all other groups. Eisen et al. (1998) were among the �rst to apply

a clustering algorithm to gene expression data. The hypothesis was that genes which

clustered together (co-expressed genes) would have similar functions, be involved in the

same metabolic pathway, and possibly be co-regulated by the same transcription factors

(Rasmussen et al., 2013; Williams and Bowles, 2004).

In traditional clustering analyses, expression pro�les are grouped together across the

entire time-series. In this analysis, a di�erent approach was taken whereby the pro�les

were clustered using the �tted parameters. Since each parameter in�uences the shape

of the various models, by clustering genes on a single parameter, this makes it possible

to focus in on a speci�c aspect of the expression pro�le, and �nd genes with that

aspect in common. In this way, the parameters could be related to some underlying

biological process, and were used to identify genes that are potentially functionally

related in a mechanistic manner. For example, it was possible to identify groups of genes

that are activated at the same time point suggesting that these genes have a common

regulator. In addition, it was possible to �nd genes with similar rates of change in

expression, suggesting that the genes that are activated earlier may be regulating those

that are activated later. Thus, this makes it possible to analyse the sets of genes

using biologically oriented descriptions of individual gene expression pro�les, enabling

easier interpretation of the pro�les and providing a means of understanding the common

regulatory mechanisms between genes.
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Figure 4.1: Schematic diagram of ShapeCluster's clustering process. Fit information
for a given model shape is extracted from the database, and the parameter values
extracted. A distance matrix is calculated from this data, and used in a hierarchical
clustering. Once the clusters are formed, the biological signi�cance of the clusters
is determined through the use of annotation over-representation.

4.2. Method development

4.2.1. ShapeCluster - clustering genes using shape and parameters

In order to identify sets of genes with similar �tted parameter values, a methodology to

cluster �tted expression pro�les using the results from the regression analysis (Chapter

3) was developed, and referred to as ShapeCluster.

In contrast to conventional clustering analyses, ShapeCluster analyses the �tted curves

rather than the observed data. The algorithm operates in a two step process: �rst, sets

of genes are identi�ed based on the particular model that best �tted the gene expression

pro�les; and second, the similarity of genes based on one or more of the biologically

interpretable parameters is determined. These parameters may be the actual �tted

parameters from the regression, or derived parameters (Section 3.7). A distance matrix

is created from the parameter values, and a simple hierarchical clustering analysis is ap-

plied to this. The clusters are then determined using the Dynamic Tree Cut algorithm

(Section 2.1.3, Langfelder et al. 2008). Once the clusters have been identi�ed, the bio-

logical signi�cance of the clusters is determined through the use of annotation metrics,

such as Gene Ontology (GO) terms (Section 2.1.4-2.1.8). This process is described in

greater detail below, and is summarised in Figure 4.1.

4.2.2. Formation of the distance matrix for clustering

After the expression pro�les are �tted by a model, it is possible to cluster the �tted

parameters. After selecting a model and a parameter to cluster on, a matrix of scaled

di�erences between each gene was calculated. This was determined by taking the abso-

lute di�erence between the parameter value for each gene, and dividing by the standard

error for the parameter of the �rst gene. So, if the distance between gene A and gene
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B for the parameter m was to be determined, this would be calculated as

distanceAB;m =
|mA −mB|
stderrm:A

.

The calculation for distanceBA;m would be the same except dividing by the standard

error of m for gene B. A square matrix of distances can thus be calculated. To make

the matrix symmetric, the average of the distances for the two genes in question was

calculated.

symdistAB;m = symdistBA;m =
distanceAB;m + distanceBA;m

2
.

To cluster based on multiple parameters, the Euclidean distance between the indi-

vidual parameter distance matrices was calculated. For example, the distance between

genes A and B for parameters m and s would be calculated as

distanceAB;m,s =
√

(symdistAB;m)2 + (symdistAB;s)2. (4.1)

This form of clustering with multiple parameters was termed simultaneous clustering,

as the distance between multiple parameters is determined in one calculation. This is

to distinguish it from the meta-clustering approaches described below in Section 4.2.3,

where multiple clustering parameters are dealt with independently.

The matrix was then normalised by dividing by the maximum value, thus resulting

in the highest value in the matrix always equalling 1. Using the hclust function and

this distance matrix, a hierarchical clustering was performed to group the most similar

genes together. Clusters were formed using the average linkage distance method and

the Dynamic Tree Cut package (Section 2.1.3, Langfelder et al. 2008).

4.2.3. Meta-clustering

In addition to the simple clustering approach described above, several extensions for

multiple parameters were developed. In the previously described process, di�erences

between multiple parameters were combined together into a single metric using a Euc-

lidean distance. However, this could result in a loss of some of the individual underlying

structure as described by each parameter, particularly when the parameters occurred

on di�erent scales. These alternate forms of clustering could provide more biologically

relevant clusters by preserving this structure, and so aid in more e�ectively identifying

co-expressed and potentially co-regulated sets of genes.

One alternative method to analyse the clusters is to re-cluster the members of each

initial cluster using additional information. Two di�erent approaches were taken. The

�rst is a �sequential� clustering (Figure 4.2A). In this clustering, the shapes are clustered

�rst on a single parameter. Following this, the members of each of the clusters are

further clustered based on a second parameter. Thus, by clustering the members of

the original clusters, more re�ned sets of genes are identi�ed. An example is shown in

Figure 4.2A. After selecting a cluster and a parameter to cluster on, a set of clusters is

formed (left). Following the arrows, it can be seen that each of these clusters is then
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subsequently clustered using the second parameter, resulting in a new set of clusters

(right).

The second clustering method is a �cross� clustering (Figure 4.2B). In this case, the

clustering on each of the two parameters is performed independently, thus resulting in

two sets of clusters. The genes contained within each cluster in one set is compared to

the genes contained in every other cluster in the other set, in a pair-wise manner (cross

classi�cation of the cluster memberships). If a gene is contained in a pair of comparisons,

the gene is assigned to this intersection of two clusters. From Figure 4.2B, it can be

seen that this results in a matrix of subclusters. The margins represent the clusters

from the single parameter cluster analysis, and the elements of the matrix represent the

genes that are common between the clusters in that row and column's margins.

4.2.4. Clustering using control information

In many microarray time-course experiments, there may be a set of samples for a control

treatment, in addition to other treatments applied over the time course. For example,

in a pathogen experiment, comparing a mock inoculated control with a pathogen inocu-

lation treatment. Alternatively this may be a comparison of a wildtype organism with

a mutant. It may thus be useful to compare model �ts from these di�erent treatment

sets.

After the models have been separately �tted to the treated and control datasets, it

is possible to use the �tted models in each of the datasets to determine if there are

any di�erences. If the cluster analysis is performed on the �tted models for the treated

data, it is then possible to subdivide the clusters by taking the control �tted model into

account. Two outcomes are possible - either the models will be di�erent, in which case it

is possible to further group the genes by the control model, or the model will be the same.

In the latter case, it is possible to perform a regression analysis using the data from both

treatment sets together to identify whether parameters are common across the treatment

sets. This provides an indication of any signi�cantly di�erent parameters between the

two �ts, thus indicating where the signi�cant di�erences between the expression pro�les

are. For example, a gene may have very similar parameters between the treatments

except for a di�erent midpoint parameter, implying that the gene reacts similarly in

both the control and treated datasets, just at di�erent times.

To determine if two treatments with the same �tted model have signi�cantly di�erent

parameters, an iterative process was developed whereby more complex models were

compared to simpler models using the change in the residual variance. This process uses

a top-down approach where a simple model is compared to more complex models, in

order to �nd the most parsimonious model. These complex models are created through

the addition of a grouping factor, which makes it possible to vary each parameter while

keeping the others constant. Initially, the model with the grouping factor for a particular

parameter is compared to the original model using an F-test. If the reduction in residual

variance is signi�cant (p-value < 0.05), this means that the model with the grouping
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Figure 4.3: Hasse diagram showing the di�erent combinations of parameters for the
logistic curve, where each node represents the parameters that were allowed to vary.
The top of the �gure represents a model where none of the parameters were allowed
to vary, and each level down represents an increase in complexity with the addition
of a grouping factor, allowing the parameter value to change while keeping the others
constant. By allowing each of the combinations of parameters to vary, more complex
models may be formed. Models are compared upwards to the less complex models,
and signi�cance determined using an F-test.

factor �ts the data better, and the more complex model is retained. If the addition of

a grouping factor improved the �t, an additional parameter was allowed to vary, and

compared to the model where only one parameter was allowed to vary. This process is

continued until varying additional parameters does not reduce the residual variance.

Figure 4.3 shows a Hasse diagram providing an illustration of the di�erent models

that can be identi�ed for the logistic curve, as well as which models pairs are compared.

The top of the �gure represents a model where none of the parameters were allowed to

vary, and each level down represents an increase in the complexity of the model, where

more parameters are allowed to vary. Thus, in the �rst instance, the grouping factor

is incorporating within each of the four parameters (a, b, s, m), thus allowing each of

the parameters to vary. Each of these models is then compared upwards to the model

where no parameters were allowed to vary. If allowing a parameter to vary improved the

model �t, the same procedure was performed on combinations of parameters models. For

example, if varying the m parameter improved the �t, this model would be compared to

models where the m+a, b+m and m+s parameters were allowed to vary. This process

continues until allowing additional parameters to vary does not provide a signi�cant

improvement to the �t, or all parameters are allowed to vary.

Example results for this approach are shown in the following chapter, in Section 5.3.
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4.2.5. Methods for assessing clusters

Once the clusters are formed, the biological signi�cance of these clusters needs to be

determined. The Gene Ontology (GO) is one of the most commonly used methods to

annotate genes (Blüthgen et al., 2005; Leonelli et al., 2011; Lewin and Grieve, 2006). As

an alternative to using GO to determine biological signi�cance, it is also possible to use

word lists. Thus, the words and phrases in the annotation terms were analysed. In both

these cases, signi�cance was determined using a hypergeometric test, comparing the

terms in the cluster to all the genes used in the analysis (the background distribution

of terms). The annotation terms were obtained from the BioConductor annotation

databases, which use the TAIR (Lamesch et al., 2012) and SGD (Saccharomyces Genome

Database) annotations (Cherry et al., 2012) for Arabidopsis and yeast, respectively. In

addition, it is possible to identify over-represented motifs in the upstream promoter

regions of the genes in the cluster, that may indicate a transcriptional regulator, as well

as investigating the presence of genes that encode enzymes that function in the same,

or similar, metabolic pathways. The details all these analysis function are described in

Section 2.1.4-2.1.8.

The Biological Homogeneity Index (BHI) is a metric developed by Datta and Datta

(2006), which provides an indication of the level of similarity in the annotations of

the genes in the cluster. It is thought that a clustering algorithm which generates

biologically meaningful clusters will group genes that have a similar biological function.

The BHI value ranges between 0 and 1, where 0 indicates that there are no common

annotations within genes in a cluster, and 1 indicates that all the genes in each cluster

are annotated as having the same function. By using the GO terms associated with

the genes in the cluster, it is possible to determine if there are a large number of genes

annotated with the same GO terms, and thus, involved in the same biological function.

As a result, this metric can be used to compare clusters using di�erent parameter

combinations, as well as comparing to other clustering algorithms. This algorithm is

described in Section 2.1.8.

4.3. Results

4.3.1. Yeast data

It has been shown that the Arabidopsis genome is relatively poorly functionally an-

notated, with only approximately a quarter of the genes in the genome experimentally

characterised (Quanbeck et al., 2012). Thus, as a demonstration of the regression meth-

odology described in Chapter 3, in addition to the clustering approach described above,

an analysis was performed on time course data from a well annotated organism, namely

Saccharomyces cerevisiae (baker's yeast). In addition, this data will be used to assess

the performance of the cluster analysis, as well as a comparison to other clustering

methods. The application of the clustering methods described above to the Arabidopsis

data, shown in Chapter 3, is described in the following chapter.

As a test for the developed methods, a dataset from a yeast experiment was used
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Figure 4.4: Clusters from SplineCluster on the wild-type yeast data. Each black line
represents an expression pro�le, and the blue line represents the mean response of
the cluster.
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(Orlando et al., 2008). A gene expression analysis was performed on budding yeast cells

that were harvested at 16 minute intervals for 270 minutes (15 time points), which is

equivalent to approximately two cell cycles in wild-type cells. The cells were initially

synchronised using early G1 cells obtained through centrifugal elutriation. There were

two biological replicates at each time point, and a total of 5661 genes in the dataset.

The data was obtained from the GEO database, under the GSE8799 experiment iden-

ti�er, and was normalised as described in the article. Annotations were obtained from

the SGD (Saccharomyces Genome Database) (Cherry et al., 2012). The dataset also

contained expression data for cells where all S-phase and mitotic cyclins were mutated

(clb1,2,3,4,5,6 ). However, this data was not used, as the mutation resulted in the deac-

tivation of a large number of genes. The gene expression pro�les were initially clustered

using SplineCluster (Heard et al., 2006) and this is shown in Figure 4.4. Despite being

a time series across two cell cycles, a large number of expression pro�les are not cyclic,

and do not change much after the �rst few time points.

The regression analysis was also applied to the yeast data, and the distribution of

models that �tted to the gene expression pro�les is shown in Figure 4.5. The same

thresholds determined in Chapter 3 were used to identify �ts which �tted well, namely

R2
a > 0.6, R2

LoF > 0.6, and F − test < 0.05. As can be seen, the exponential model

�tted the majority of the shapes, with the second most common being the linear model.

However, in this latter case, most of the �tted curves were poor �ts and were identi�ed

as being �at and unchanging (mean and intercept close to zero). The Gaussian model

was the second most abundant shape with good �ts. The sigmoid models (logistic and

the two forms of the Gompertz) did not occur as frequently as the others, but had good

�ts most of the time. The critical exponential, line+exponential and hyperbolic models

did not occur very frequently. This roughly corresponds to the shapes that are seen

when using SplineCluster (Figure 4.4).

4.3.2. Clustering results

In this section, some examples of the types of clusters that can be obtained from Shape-

Cluster are shown. Since ShapeCluster forms the clusters based on a speci�c shape

and the values of speci�c parameters, a number of di�erent cluster analyses were per-

formed to obtain an overall representation of the gene expression pro�les. As can be

seen in Figure 4.5, the most abundant models that were found in the yeast data were

the exponential, linear, Gaussian, and Gompertz2 (growth rate faster to the left of the

midpoint) models, and these subsets of genes are examined in detail below. The cluster

analysis was performed multiple times for each model, using di�erent combinations of

parameters. As described in Section 3.8, all �ts with a ∆AIC < 2 were retained as

being indistinguishable from the best �t. This means that the clusters may contain

genes that were also �tted by other models. In the cluster analysis, all genes that �tted

the respective model were used. To assess the biological signi�cance of the clusters, the

GOstats package was used, which uses a hypergeometric test to determine GO term

over-representation (Falcon and Gentleman, 2007, Section 2.1.4).
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Figure 4.5: Distribution of the �tted models from the wildtype yeast data. Good �ts
were determined using the thresholds used were the same as the ones used for the
Botrytis and senescence datasets, namely R2

a > 0.6, R2
LoF > 0.6, and F−test < 0.05.

Figure 4.6 shows an example of the clusters resulting from clustering the exponential

shapes based on the rate of change parameter (r), and the signi�cant GO terms are

shown in Table 4.1. This parameter was selected as it would identify genes that have a

similar rate of change in their gene expression, and thus may be involved in the same

biological processes. Clusters with a high rate of change (r>0.06, clusters 14-21) were

associated with RNA processing (transcription and translation), whereas the clusters

with a slower rate of change were more associated with general metabolic processes.

This would suggest that gene regulation is activated very quickly, whereas other cellular

processes occur at a slower rate. This clustering also groups together genes that are

both activated and repressed at the same rate. This type of cluster would not be formed

with traditional clustering methods, which would cluster based on the entire expression

pro�le. As a result, this provides an indication of genes that are being activated and

repressed by some controlling set of genes.
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Cluster 14
r: 0.067
 (0.065, 0.070)

Cluster 13
r: 0.061
 (0.057, 0.065)

Cluster 9 
r: 0.041
 (0.039, 0.043)

Cluster 11
r: 0.049
 (0.047, 0.052)

Cluster 7
r: 0.032
 (0.029, 0.035)

Cluster 12
r: 0.054
 (0.052, 0.056)

Cluster 6
r: 0.026
 (0.025, 0.029)

Cluster 10
r: 0.045
 (0.043, 0.047)

Cluster 8 
r: 0.036
 (-0.011, 0.038)

Cluster 5
r: 0.023
 (0.021, 0.025)

Cluster 1
r: 0.012
 (0.008, 0.014)

Cluster 2
r: 0.015
 (0.004, 0.016)

Cluster 4
r: 0.020
 (0.019, 0.021)

Cluster 3
r: 0.018
 (0.017, 0.019)

Cluster 15
r: 0.075
 (0.070, 0.081)

Cluster 19
r: 0.129
 (0.123, 0.136)

Cluster 16
r: 0.087
 (0.082, 0.093)

Cluster 18
r: 0.112
 (0.105, 0.122)

Cluster 17
r: 0.100
 (0.094, 0.105)

Cluster 21
r: 0.172
 (0.158, 0.221)

Cluster 20
r: 0.147
 (0.138, 0.156)

Figure 4.6: Clustering of the exponential curves based on the rate of change parameter
(r). The greater the value of r, the greater the rate of change in gene expression.
Thus, genes with a higher value of r, would be activated or repressed at a higher
rate than those with a lower value of r. Shown are the mean parameter values, as
well as the range of the parameter. The x -axis shows the time scale of the sampled
data points, and the y-axis is the log2 gene expression level (from -3 to 3).
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Table 4.1: Signi�cant GO terms from the clustering of the exponential curves, based on
the rate of change parameter (r).

Cluster
Mean
parameter
value

Cluster
size

GO term GO
count

p-value

2 0.015 29
cofactor binding 6 1.30e-04
ubiquitin-protein ligase activity 4 7.10e-04
�avin adenine dinucleotide binding 3 8.42e-04

5 0.023 54

outer mitochondrial membrane
organization

3 1.71e-04

protein import 7 2.10e-04
inositol phosphate dephosphorylation 3 2.68e-04
protein import into mitochondrial
matrix

3 8.40e-04

9 0.041 99

carboxylic acid metabolic process 20 1.04e-05
cellular ketone metabolic process 20 2.98e-05
sulfur compound metabolic process 8 2.69e-04
glutamate catabolic process 3 9.02e-04

13 0.061 139
fatty acid beta-oxidation 4 2.12e-04
lipid catabolic process 6 9.34e-04

14 0.067 75 cytosolic large ribosomal subunit 6 7.53e-04

15 0.075 186 cytosolic ribosome 14 6.47e-04

16 0.087 123 cytoplasmic translation 13 3.84e-05

17 0.100 85

cytoplasmic translation 14 8.10e-08
structural constituent of ribosome 14 2.44e-06
ribosomal subunit 14 4.21e-06
rRNA export from nucleus 5 4.27e-05

18 0.112 18

ribosome 18 2.34e-06
cytoplasmic translation 12 5.00e-06
translation initiation factor activity 6 1.78e-05
tRNA metabolic process 9 9.07e-04

19 0.129 35
cytosolic large ribosomal subunit 5 1.40e-04
cellular macromolecule metabolic
process

26 2.83e-04

20 0.147 21 cytoplasmic translation 5 2.42e-04

21 0.172 24

non-membrane-bounded organelle 17 1.91e-07
ribosomal subunit 7 2.50e-05
rRNA processing 7 4.50e-05
RNA binding 9 5.29e-05
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Furthermore, it is also possible to cluster on any of the other parameters from the

exponential model, such as the asymptote (a) or the concavity (b) parameters. In the

latter case, the b parameter determines if the exponential shape will be concave or

convex, and a variety of these shapes can be seen in Figure 4.7. If b<0 , this means that

the shape is convex, indicating that the gene expression level is increasing to a plateau.

Conversely, if b>0 , this means that the shape is concave, indicating that the gene

expression is decreasing to the asymptote. This parameter thus provides an indication

of the dynamics of the response pro�le, and allows researchers to �nd genes with the

same magnitude and type of response (up- or down-regulated). Table 4.2 shows the

over-represented GO terms for these clusters, and it can be seen that the convex shapes

(b<0 , clusters 1-4), were primarily involved in primary metabolism, such as amino acid,

nucleic acid and fatty acid metabolism, as well as genes that are involved in translation.

For the concave shapes (b>0 , clusters 5-8), the genes appeared to be predominately

involved in secondary metabolism. This indicates that during cell division, the cells are

diverting energy from the synthesis of secondary metabolites towards the activation of

genes that will provide the necessary cellular components for the new daughter cells.

86



Cluster 5
b: 1.40
 (0.47, 2.33)

Cluster 6
b: 3.89
 (2.36, 6.79)

Cluster 7
b: 10.69
 (6.91, 15.45)

Cluster 8
b: 31.14
 (16.13, 102.23)

Cluster 2
b: -5.04
 (-9.09, -2.45)

Cluster 3
b: -1.71
 (-2.33, -1.20)

Cluster 4
b: -0.72
 (-1.12, -0.10)

Cluster 1
b: -20.94

 (-120.08, -9.47)

Figure 4.7: Clustering of the exponential curve shapes, based on the concavity (b)
parameter. Clusters 1-4 exhibit a convex shape (b<0 ) and clusters 5-8 show a
concave shape (b>0 )
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Table 4.2: Signi�cant GO terms from the clustering of the exponential curves, based on
the concavity parameter (b).

Cluster
Mean
parameter
value

Cluster
size

GO term GO
count

p-value

1 -20.94 53

cellular nitrogen compound
biosynthetic process

14 5.78e-07

organic acid biosynthetic process 11 1.73e-06
ribonucleoside monophosphate
biosynthetic process

4 1.80e-04

fatty acid elongase activity 2 2.58e-04
transferase activity, transferring
glycosyl groups

6 3.84e-04

2 -5.04 87

transmembrane transport 19 2.81e-05
cellular amine metabolic process 15 4.17e-05
protein transporter activity 6 3.78e-04
cellular amino acid biosynthetic
process

9 5.77e-04

protein glycosylation 6 6.20e-04

3 -1.71 54

protein import into mitochondrial
matrix

5 9.21e-07

ribosomal subunit 10 3.62e-05
structural constituent of ribosome 9 1.47e-04
protein transporter activity 5 3.06e-04

4 -0.72 53

structural constituent of ribosome 11 2.93e-06
macromolecular complex 34 1.13e-05
cytoplasmic translation 9 1.43e-05
large ribosomal subunit 8 2.23e-05
translational elongation 5 1.23e-04
regulation of translation 6 4.48e-04

5 1.4 222

protein autoubiquitination 3 2.30e-04
cellular amide catabolic process 4 2.46e-04
mRNA metabolic process 23 5.61e-04
nuclear mRNA splicing, via
spliceosome

12 7.46e-04

6 3.89 192

ligase activity 17 3.86e-04
heterocycle biosynthetic process 15 6.47e-04
small molecule metabolic process 52 6.73e-04
cellular aromatic compound
metabolic process

10 7.33e-04

7 10.69 113

cellular ketone metabolic process 20 2.07e-04
carboxylic acid metabolic process 19 2.35e-04
organic acid metabolic process 19 2.43e-04
cellular lipid catabolic process 5 4.46e-04
aerobic respiration 7 8.73e-04

8 31.14 94
glycogen catabolic process 3 8.62e-05
energy reserve metabolic process 5 2.18e-04
generation of precursor metabolites
and energy

11 5.87e-04
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In addition, it is possible to cluster on multiple parameters. As described in Equation

(4.1), it is possible to produce a single value describing the distance between sets of

genes based on two parameters (simultaneous parameter clustering - Section 4.2.2). For

example, Figure 4.8 shows the exponential curves as before, except clustered simultan-

eously on the values of both the r and b parameters. This provides an indication of the

rate of change, as well as the concavity of the curve. There were a few cases where the

threshold for the cluster formation was not su�ciently stringent, and clusters with very

di�erent b parameters were merged (for example, cluster 7). This illustrates the prob-

lem with the simultaneous clustering, where combining parameters with very di�erent

scales can have a large e�ect on the structure of the resultant dendrogram. This issue

is addressed in the meta-clustering section (Section 4.3.3). Investigating the GO terms

for these clusters (Table 4.3), it can be seen that the genes are again primarily involved

in various metabolic processes. However, in several cases, there were clusters with no

signi�cant GO terms, further suggesting that the simultaneous parameter clustering in

this case may be suboptimal.
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Cluster 1
r: 0.011
 (0.004, 0.014)
b: 1.46
 (-1.96, 3.88)

Cluster 2
r: 0.016
 (0.013, 0.019)
b: 0.80
 (-3.58, 3.57)

Cluster 7
r: 0.032
 (0.028, 0.038)
b: 1.27
 (-15.96, 21.97)

Cluster 9
r: 0.041
 (0.039, 0.043)
b: 6.12
 (1.07, 23.65)

Cluster 8
r: 0.037
 (0.035, 0.040)
b: 3.43
 (-4.78, 20.34)

Cluster 3
r: 0.020
 (0.017, 0.023)
b: 0.21
 (-7.33, 4.11)

Cluster 6
r: 0.026
 (0.023, 0.030)
b: -2.47
 (-10.65, -0.20)

Cluster 4
r: 0.023
 (0.022, 0.024)
b: 2.06
 (0.72, 5.08)

Cluster 5
r: 0.026
 (0.024, 0.028)
b: 2.55
 (0.72, 10.88)

Cluster 10
r: 0.042
 (0.039, 0.045)
b: -4.42
 (-9.09, -0.82)

Cluster 12
r: 0.049
 (0.045, 0.051)
b: 4.92
 (-16.28, 30.81)

Cluster 11
r: 0.045
 (0.043, 0.047)
b: 8.64
 (2.14, 32.68)

Cluster 13
r: 0.053
 (0.051, 0.056)
b: 7.47
 (-9.91, 36.23)

Cluster 14
r: 0.057
 (0.055, 0.059)
b: 17.78
 (6.79, 38.56)

Cluster 17
r: 0.087
 (0.074, 0.141)
b: 9.04
 (-120.08, 102.23)

Cluster 15
r: 0.062
 (0.057, 0.066)
b: 6.84
 (-22.97, 39.67)

Cluster 16
r: 0.069
 (0.065, 0.076)
b: 10.11
 (-20.81, 39.53)

Figure 4.8: Clustering of the exponential curve shapes, based on both the rate of change
(r) and concavity (b) parameters.
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Table 4.3: Signi�cant GO terms from the clustering of the exponential curves, based on
both the rate of change (r) and concavity (b) parameters.

Cluster
Mean
parameter
value

Cluster
size

GO term GO
count

p-value

2
r : 0.016, b:
0.80

53
coenzyme binding 6 4.05e-04
ubiquitin-protein ligase activity 5 8.98e-04

3
r : 0.020, b:
0.21

48
protein import into peroxisome
matrix

3 5.94e-04

protein import into mitochondrial
matrix

3 5.94e-04

4
r : 0.023, b:
2.06

30
organophosphate catabolic process 3 8.16e-05
nucleotide diphosphatase activity 3 5.64e-04
negative regulation of catabolic
process

3 7.49e-04

6
r : 0.026, b:
-2.47

29
protein transmembrane transporter
activity

3 1.52e-04

transporter activity 8 7.69e-04

9
r : 0.041, b:
6.12

55

oxidation-reduction process 14 3.84e-05
small molecule metabolic process 22 7.89e-05
cellular response to oxidative stress 6 1.28e-04
carboxylic acid catabolic process 5 5.10e-04
monocarboxylic acid metabolic
process

6 8.81e-04

10
r : 0.042, b:
-4.42

38
inositol phosphorylceramide
metabolic process

2 1.72e-04

protein exit from endoplasmic
reticulum

2 1.72e-04

17
r : 0.087, b:
9.04

57
homocysteine S-methyltransferase
activity

2 2.98e-04

ribosome 11 4.26e-04
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For the Gompertz2 models, the clustering was performed based on the gradient (grad)

and 5% point of maximum change (5per) parameters (Section 3.7). The grad parameter

describes the maximum rate of change, whereas the 5per parameter provides an indica-

tion of the timing of the genes. That is, it identi�es the time points at which genes are

becoming activated or repressed. Therefore, clustering on the 5per parameter would

identify genes that are being up- or down-regulated at the same time, and thus possibly

under the control of a particular transcription factor. Alternatively, clustering on the

grad parameter would identify genes that have gene expression changing at the same

rate, suggesting that these genes are being co-regulated. As before, it is possible to

cluster on any of the parameters that describe the model. However, the 5per and grad

parameters would provide a better indication of the underlying biology, as they directly

pertain to timings and rates of change in the gene expression. These parameters were

clustered separately, as well as using the simultaneous parameter clustering.

Figure 4.9 shows the Gompertz2 curves clustered based on the 5per parameter alone.

By clustering on the 5per parameter, genes that are being activated or repressed at

the same time would be identi�ed, and thus potentially being involved in the same

biological process. Clusters 1-8 of this �gure show curves that are increasing (genes

being activated), while clusters 9-14 show curves with a decreasing response (genes being

repressed). Table 4.4 shows the over-represented GO terms for these clusters. Once

again, the increasing shapes were primarily involved in the biosynthesis of metabolites

(cluster 8), protein transport (clusters 1, 5 and 6), as well as cell cycle related genes

(cluster 7). This cell cycle related cluster had a mean 5per value of 96 minutes, which

was very similar to the cluster from the Gaussian clustering above (94 minutes, Figure

4.12, cluster 11), indicating that these genes were related and involved in the same

process. The clusters with a decreasing response (clusters 9-14) again were primarily

involved in secondary metabolism, such as oxidation-reduction reactions.
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Cluster 7
5per: 96.05
 (86.43, 114.49)

Cluster 1
5per: 39.28
 (33.78, 45.37)

Cluster 6
5per: 73.67
 (70.46, 80.60)

Cluster 4
5per: 58.54
 (56.74, 59.98)

Cluster 5
5per: 64.87
 (61.54, 67.11)

Cluster 3
5per: 55.25
 (54.74, 55.71)

Cluster 2
5per: 53.34
 (50.79, 54.20)

Cluster 8
5per: 126.49
 (121.30, 134.99)

Cluster 14
5per: 117.52
 (102.30, 137.28)

Cluster 12
5per: 67.02
 (60.37, 75.93)

Cluster 11
5per: 52.38
 (45.48, 58.62)

Cluster 13
5per: 88.33
 (78.87, 98.55)

Cluster 10
5per: 46.06
 (39.14, 156.18)

Cluster 9
5per: 34.43
 (29.12, 38.09)

Figure 4.9: Gompertz2 shapes clustered on 5% of maximum point (5per). Clusters 1-8
show curves that are increasing, while clusters 9-14 possess a decreasing response.
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Table 4.4: Signi�cant GO terms from the clustering of the Gompertz2 curves, clustered
on the 5% of maximum point (5per).

Cluster Mean
parameter
value

Cluster
size

GO term GO
count

p-value

1 39.28 14 negative regulation of transport 2 2.54e-04

5 64.87 8 intracellular transport 5 7.86e-04

6 73.67 11
protein N-linked glycosylation via
asparagine

2 2.07e-05

mitochondrial outer membrane
translocase complex

2 9.60e-05

7 96.05 15

cellular bud 5 1.06e-04
cytokinesis 4 1.75e-04
cytoskeletal part 5 1.95e-04
site of polarized growth 5 2.45e-04
spindle pole body separation 2 4.28e-04
cell cycle 7 7.83e-04

8 126.49 5 [acyl-carrier-protein]
S-acetyltransferase activity

1 8.85e-04

9 34.43 20

antioxidant activity 3 1.45e-04
glutathione peroxidase activity 2 2.48e-04
pyridoxal phosphate binding 3 4.29e-04
oxidoreductase activity 6 6.12e-04

10 46.06 23 oxidation-reduction process 8 1.75e-04

11 52.38 47 oxidoreductase activity 10 2.29e-04

14 117.52 32
mitochondrial respiratory chain 3 3.49e-04
DNA damage checkpoint 3 4.41e-04
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Cluster 2
grad: 0.008
 (0.006, 0.011)

Cluster 3
grad: 0.016
 (0.013, 0.019)

Cluster 8
grad: 0.141
 (0.082, 0.206)

Cluster 7
grad: 0.059
 (0.055, 0.066)

Cluster 5
grad: 0.034
 (0.031, 0.038)

Cluster 1
grad: 0.004
 (0.003, 0.005)

Cluster 6
grad: 0.044
 (0.041, 0.049)

Cluster 4
grad: 0.023
 (0.022, 0.025)

Cluster 9
grad: -0.008
 (-0.012, -0.003)

Cluster 11 
grad: -0.024
 (-0.030, -0.020)

Cluster 12
grad: -0.042
 (-0.061, -0.033)

Cluster 10
grad: -0.016
 (-0.019, -0.013)

Cluster 13
grad: -0.143
 (-0.339, -0.077)

Figure 4.10: Gompertz2 shapes clustered on gradient (grad). Clusters 1-8 show curves
that are increasing, while clusters 9-13 possess a decreasing response.

Similarly, the genes that �tted a Gompertz2 model were also clustered on the grad

clustering (Figure 4.10). This parameter identi�es genes that have similar rates of

change in transcription, and are thus could possibly be co-regulated by a common regu-

lator or transcription factor. Clusters 1-8 have an increasing response, whereas clusters

9-13 have a decreasing response. In Table 4.5, the over-represented GO terms are shown,

and it can be seen that the increasing clusters are involved in macromolecule metabol-

ism and transport, likely in preparation for cell division. In particular, genes that are

being transcribed at a slower rate (smaller grad value), are involved in protein transport,

whereas those with a larger grad value are involved in small molecule biosynthesis.
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Table 4.5: Signi�cant GO terms from the clustering of the Gompertz2 curves, clustered
on gradient (grad).

Cluster
Mean
parameter
value

Cluster
size

GO term GO
count

p-value

2 0.008 11 protein import into mitochondrial
matrix

2 6.43e-04

3 0.016 11

protein channel activity 3 2.47e-06
establishment of protein localization
in mitochondrion

4 4.11e-06

protein import into mitochondrial
matrix

3 6.16e-06

macromolecule transmembrane
transporter activity

3 7.18e-06

passive transmembrane transporter
activity

3 1.96e-05

5 0.034 7 negative regulation of transport 2 5.90e-05

6 0.044 3 cellular bud site selection 2 8.81e-04

7 0.059 7
GDP-mannose biosynthetic process 2 1.32e-06
small molecule biosynthetic process 5 1.00e-05

8 0.141 9 involved in negative regulation of
transcription

2 1.23e-04

9 -0.008 47
mitochondrial respiratory chain 4 4.69e-05
nucleotide-excision repair 5 1.15e-04

12 -0.042 27
oxidoreductase activity 8 8.19e-05
glutathione transferase activity 2 4.56e-04

13 -0.143 20
oxidation-reduction process 9 5.77e-06
oxidoreductase activity, acting on
peroxide as acceptor

3 2.50e-05

reduction of molecular oxygen 3 1.31e-04
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Cluster 2
grad: 0.042
 (0.011, 0.101)
5per: 39.28
 (33.78, 45.37)

Cluster 1
grad: 0.011
 (0.005, 0.035)
5per: 78.06
 (52.80, 130.34)

Cluster 4
grad: 0.111
 (0.041, 0.206)
5per: 55.16
 (54.11, 56.74)

Cluster 3
grad: 0.091
 (0.025, 0.185)
5per: 64.86
 (58.99, 89.54)

Cluster 6
grad: -0.074
 (-0.339, -0.012)
5per: 39.01
 (29.12, 50.66)

Cluster 5
grad: -0.022
 (-0.145, -0.003)
5per: 69.05
 (48.59, 135.15)

Figure 4.11: Gompertz2 shapes clustered on gradient (grad) and 5% of maximum point
(5per). Clusters 1-4 show an increasing response, while clusters 5-6 show a decreasing
response. Over-represented GO terms for these clusters are shown in Table 4.6.

As previously performed with the exponential model, it is possible to cluster using

multiple parameters by joining the parameters using the simultaneous parameter clus-

tering. Figure 4.11 shows the clusters from the Gompertz2 curves, clustered on both the

grad and 5per parameters, identifying genes that are being activated or repressed at the

same time points, as well as having the same rate of change in gene expression. The GO

terms from these clusters are shown in Table 4.6, and although they are less de�nitive

than the individual cluster analyses, it can still be seen that the increasing curves are

involved in protein metabolism and transport (clusters 1-4), whereas the clusters with

a decreasing response (clusters 5-6) are involved in oxidative reactions.
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Table 4.6: Over-represented GO terms from the clustering of the Gompertz2 curves,
clustered on both the 5% of maximum point (5per) and gradient (grad) parameters.

Cluster
Mean
parameter
value

Cluster
size

GO term GO
count

p-value

1 grad : 0.011,
5per : 78.06

12 protein import into mitochondrial
matrix

2 7.70e-04

2
grad : 0.042,
5per : 39.28

14
small molecule biosynthetic process 5 6.90e-04
negative regulation of transport 2 2.54e-04

3
grad : 0.091,
5per : 64.86

6 involved in negative regulation of
transcription

2 5.15e-05

5
grad :
-0.022, 5per :
69.05

41
oxidoreductase activity 13 1.96e-07
mitochondrial respiratory chain 3 7.31e-04
aryl-alcohol dehydrogenase (NAD+)
activity

2 7.58e-04

6
grad :
-0.074, 5per :
39.01

45
oxidation-reduction process 15 4.79e-07
oxidoreductase activity 13 6.60e-07
peroxidase activity 3 2.98e-04
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With the Gaussian shapes, the clusters were formed based on the mean (m) and

standard deviation (s) parameters (Figure 4.12), using the simultaneous parameter

clustering. The m parameter provides an indication of the time when an up-regulated

gene becomes down-regulated, or vice versa, whereas the s parameter provides an in-

dication of the duration of the gene expression response. Thus the m&s clusters would

identify genes that have a maximum (or minimum) at the same time, as well as having

a similar spread in the data points.

It is also possible to perform the clustering on these parameters separately (provided

in Appendix D), as well as on the other parameters, namely the asymptote value (a),

or the magnitude of the peak (b). The over-represented GO terms for these clusters are

shown in Table 4.7, as with before, the clusters with a decreasing shape (clusters 1-9

in Figure 4.12) are primarily involved in metabolic processes, such as gluconeogenesis

and nucleosome assembly. In contrast, the clusters with an increasing shape (clusters

10-13) are largely involved in ATP generation (cluster 10), and cell division (cluster 11).

Investigating the parameter values of these clusters shows that the cluster involved in

ATP generation has a mean m parameter of 62±4 minutes, whereas the cluster involved

in the cell division is later at 94±9 minutes. This indicates that there is an increase in

the production of energy in preparation for the processes necessary for cell division.
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Cluster 3
s: 17.55
 (13.07, 22.83)
m: 35.00
 (25.36, 46.27)

Cluster 9
s: 53.34
 (36.70, 114.57)
m: 115.88
 (57.63, 224.27)

Cluster 1
s: 15.83
 (8.68, 20.88)
m: 62.96
 (53.64, 73.78)

Cluster 8
s: 33.61
 (21.18, 132.91)
m: 91.02
 (57.95, 290.32)

Cluster 6
s: 30.38
 (18.25, 43.95)
m:97.84
 (83.65, 129.64)

Cluster 2
s: 15.98
 (9.44, 22.42)
m: 50.54
 (40.15, 116.80)

Cluster 5
s: 22.26
 (11.80, 25.82)
m: 50.38
 (40.28, 58.46)

Cluster 7
s: 32.30
 (24.65, 61.47)
m: 55.11
 (26.06, 241.86)

Cluster 4
s: 20.94
 (18.07, 24.18)
m: 82.96
 (72.53, 97.52)

Cluster 11
s: 16.58
 (12.03, 25.66)
m: 94.17
 (77.95, 120.40)

Cluster 10
s: 16.54
 (11.13, 21.84)
m: 62.00
 (55.14, 71.49)

Cluster 12
s: 18.75
 (11.85, 25.59)
m: 43.03
 (38.09, 53.26)

Cluster 13
s: 28.98
 (23.13, 81.85)
m: 57.99
 (31.63, 88.76)

Figure 4.12: Gaussian shapes clustered on mean (m) and standard deviation (s).
Clusters 1-9 are Gaussian shapes that are decreasing, whereas clusters 10-13 show
Gaussian shapes that are increasing.
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Table 4.7: Signi�cant GO terms from the clustering of the Gaussian curves, based on
the clustered on mean (m) and standard deviation (s) parameters.

Cluster
Mean
parameter
value

Cluster
size

GO term GO
count

p-value

1
s: 15.83, m:
62.96

49
AMP-activated protein kinase
activity

3 6.07e-06

endoplasmic reticulum part 10 9.12e-04

3
s: 17.55, m:
35.00

61
cellular bud neck 8 1.49e-04
cellular nitrogen compound
biosynthetic process

11 3.48e-04

4
s: 20.94, m:
82.96

20 transmembrane transport 6 6.75e-04

5 s: 22.26, m:
50.38

29 nucleosome assembly 3 2.60e-04

6
s: 30.38, m:
97.84

33

small molecule biosynthetic process 9 5.47e-05
regulation of intracellular pH 3 4.84e-04
glycolysis 3 6.63e-04
gluconeogenesis 3 7.31e-04

7
s: 32.3, m:
55.11

26 G-protein alpha-subunit binding 2 2.04e-05

8
s: 33.61, m:
91.02

35
mitochondrial translation 6 6.27e-05
mitochondrial ribosome 5 1.32e-04

9
s: 53.34, m:
115.88

27 L-phenylalanine metabolic process 2 3.26e-04

10
s: 16.54, m:
62.00

39

ATP synthesis coupled proton
transport

5 6.08e-08

proton-transporting ATPase activity,
rotational mechanism

5 1.85e-06

nucleoside triphosphate biosynthetic
process

5 2.74e-06

mitochondrial envelope 13 9.91e-06
ATPase activity, coupled to
transmembrane movement of ions

5 1.92e-05

RNA polymerase II core promoter
binding transcription factor activity

5 4.21e-05

ATP metabolic process 5 1.46e-04
CCAAT-binding factor complex 2 4.03e-04

11
s: 16.58, m:
94.17

51

chromosome segregation 12 5.58e-09
nuclear replication fork 6 2.18e-06
DNA-dependent DNA replication 8 4.76e-06
mitotic cell cycle 13 6.21e-06
single-stranded DNA binding 5 7.67e-05
M phase 11 3.79e-04
microtubule-based process 6 4.86e-04

12
s: 18.75, m:
43.03

33
telomeric DNA binding 3 3.18e-04
negative regulation of telomere
maintenance

2 4.13e-04

nuclear chromosome, telomeric region 3 6.07e-04
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Cluster 1
m: 9.90e-04
 (2.55e-04, 1.47e-03)

Cluster 2
m:3.23e-03
 (1.78e-03, 1.02e-02)

Cluster 4
m:-2.03e-03
 (-2.39e-03, -1.74e-03)

Cluster 6
m: -3.96e-03
 (-5.57e-03, -3.06e-03)

Cluster 5
m: -2.71e-03
 (-3.01e-03, -2.44e-03)

Cluster 3
m: -1.44e-03
 (-1.64e-03, -1.04e-03)

Figure 4.13: Linear shapes clustered on the gradient (m). Clusters 1-2 are clusters
showing an increasing response, and clusters 3-6 show clusters with a decreasing
response.

Finally, the linear shapes were analysed by clustering on the gradient parameter

(m) (4.13). This clustering would �nd genes that �tted the linear model, and are

transcribed at the same rate. As discussed above, this could identify genes that are

being co-regulated. Clusters 1-2 in this �gure show genes that are increasing, and

clusters clusters 3-6 are decreasing. The GO terms for these clusters are shown in Table

4.8, and do not show much in terms of distinct function related to the parameter value.

Table 4.8: Signi�cant GO terms from the clustering of the linear functions, based on
the gradient (m).

Cluster Mean
parameter
value

Cluster
size

GO term GO
count

p-value

1 0.001 9
COPI vesicle coat 2 6.29e-05
Golgi-associated vesicle membrane 2 4.23e-04

2 0.003 20 retrotransposon nucleocapsid 2 6.43e-04

3 -0.001 25 Rab guanyl-nucleotide exchange
factor activity

2 6.65e-04

6 -0.004 35 ribo�avin biosynthetic process 2 7.69e-04
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4.3.3. Meta-clustering examples

In the previous section, multiple parameters were analysed in a simultaneous manner,

where a single distance matrix was calculated by merging multiple parameter values into

one. In this section, a variation on the clustering is performed, namely meta-clustering

(described in Section 4.2.3). As in Section 4.3.2, the clustering was performed for the

most abundant shapes, and using the same parameters. That is r and b for exponential,

m and s for the Gaussian, and 5per and grad for the Gompertz2 shapes. However, for

brevity, only the results from the Gaussian meta-clustering is shown here, and the other

results are contained in the Appendix D.

As described previously, two types of meta-clustering were developed. First, the

sequential meta-clustering, where clusters were �rst formed by clustering on one para-

meter, followed by re-clustering these clusters using the second parameter. The second

type of meta-clustering is the cross-clustering, and is discussed below. Figure 4.14

shows an example of the sequential meta-clustering for the Gaussian model, using the

decreasing shapes. In this case, the shapes were �rst clustered using the m parameter

(time of maximum expression), and then these clusters were in turn clustered using the

s parameter (spread around the time of maximum response, relating to the duration of

the response). As would be expected, it can be seen that the subclusters all have similar

m parameters, to the original cluster. However, upon reclustering on the s parameter,

the range of the s parameters in the subclusters is signi�cantly narrower.

The over-represented GO terms for the Gaussian model are shown in Tables 4.9 and

4.10 for the increasing and decreasing shapes, respectively. Not all the subclusters had

signi�cant over-representation of GO terms, so it could indicate that these subsets of

genes were not involved in any particular process, or it could mean that the clusters

were too small and there was insu�cient information to calculate meaningful statistics

for the over-representation tests. In the increasing shapes, it can be seen that the over-

represented terms progress from RNA processing, to DNA replication, to chromosome

segregation, and �nally cell wall organisation. This process roughly follows the pro-

cesses involved during cell division. In contrast, the over-represented GO terms for the

decreasing Gaussian shapes primarily pertained to cell cycle and translation. However,

the values of the m parameters in these clusters are generally lower than the m values

from the increasing shapes. This could mean that the genes related to the cell cycle and

cell division are being down-regulated in preparation for the actual division process.

Alternatively, since it is thought that the time series corresponds to two cell division

cycles (Orlando et al., 2008), it may be that the increasing and decreasing shapes are

picking up di�erent cycles. While the GO terms found in this clustering are similar to

those identi�ed using the simultaneous parameter clustering (Table 4.7), this clustering

has provided a much �ner means of identifying functions for the GO terms.
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Table 4.9: Table of the over-represented GO terms for the increasing Gaussian shapes,
clustered using the sequential meta-clustering, on the m and s parameters.

Cluster Mean

parameter

value

Cluster

size

GO term GO

count

p-value

001_001 m: 57.73, s:

16.44

14 purine nucleobase biosynthetic

process

2 3.10e-04

002_001
m: 64.80, s:

16.97
16

ncRNA 3'-end processing 4 5.45e-06

nuclear exosome (RNase complex) 3 8.32e-06

rRNA metabolic process 5 5.23e-04

mRNA metabolic process 5 7.90e-04

003_001
m: 74.15, s:

58.60
21

nucleolar part 5 4.74e-06

ribosomal small subunit biogenesis 4 9.05e-04

004_001
m: 83.97, s:

65.31
15

nucleolar part 4 2.82e-05

intracellular non-membrane-bounded

organelle

10 1.78e-04

transcription from RNA polymerase I

promoter

3 5.73e-04

004_002
m: 84.98, s:

45.99
17

nucleolus 7 8.06e-06

ribosomal large subunit biogenesis 4 7.72e-05

005_001
m: 91.73, s:

18.51
18

DNA replication 7 2.64e-07

response to DNA damage stimulus 7 3.12e-05

response to stress 9 1.59e-04

cell cycle 8 4.78e-04

nucleic acid metabolic process 12 5.70e-04

sequence-speci�c DNA binding 5 8.08e-04

005_002
m: 92.26, s:

23.87
16

DNA metabolic process 7 1.71e-04

DNA-dependent DNA replication 4 2.00e-04

nuclear replication fork 3 2.30e-04

chromosome segregation 4 6.95e-04

005_003 m: 92.26, s:

60.44

19 ncRNA processing 7 5.28e-05

006_001 m: 98.14, s:

22.51

16 recombinational repair 3 5.79e-04

006_002
m: 98.60, s:

65.29
12

ribonucleoprotein complex 7 1.06e-04

ribosome biogenesis 5 4.33e-04

006_003 m: 98.99, s:

38.28

15 maintenance of DNA repeat elements 2 8.75e-04

007_001 m: 165.24,

s: 66.08

11 attachment of spindle microtubules

to chromosome

2 3.10e-04
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Table 4.9 (cont.)

Cluster Mean

parameter

value

Cluster

size

GO term GO

count

p-value

009_001
m: 204.53,

s: 53.93
11

mitochondrial translation 5 1.40e-06

ribonucleoprotein complex 7 4.88e-05

010_001 m: 243.65,

s: 36.52

17 cellular cell wall organization or

biogenesis

5 5.61e-04

Table 4.10: Table of the over-represented GO terms for the decreasing Gaussian shapes,
clustered using the sequential meta-clustering, on the m and s parameters.

Cluster Mean

parameter

value

Cluster

size

GO term GO

count

p-value

001_001 m: 33.93, s:

29.33

26 protein glycosylation 4 2.35e-04

001_003 m: 35.73, s:

15.87

15 cell cycle 7 7.67e-04

001_004 m: 35.80, s:

16.85

22 cytokinesis 4 6.85e-04

002_001
m: 43.14, s:

17.21
22

spindle pole body organization 3 2.37e-04

M phase 7 3.83e-04

microtubule cytoskeleton

organization

4 5.30e-04

DNA-dependent DNA replication 4 7.34e-04

mitosis 5 8.14e-04

002_002
m: 44.34, s:

22.96
16

spindle microtubule 3 4.13e-05

chromosome segregation 4 6.95e-04

002_004
m: 48.45, s:

16.35
19

mitotic anaphase B 2 1.07e-04

anaphase 2 2.97e-04

spindle pole body separation 2 8.18e-04

nuclear outer membrane-endoplasmic

reticulum membrane network

6 8.44e-04

002_005
m: 50.17, s:

28.07
17

membrane coat 3 2.25e-04

cytoplasmic membrane-bounded

vesicle

4 4.76e-04

003_001
m: 59.33, s:

32.32
18

organelle membrane 12 1.61e-05

intracellular protein transport 6 4.85e-04
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Table 4.10 (cont.)

Cluster Mean

parameter

value

Cluster

size

GO term GO

count

p-value

003_002
m: 60.54, s:

22.08
18

purine ribonucleoside triphosphate

binding

8 7.47e-04

ATPase activity 5 9.69e-04

004_001
m: 69.98, s:

21.86
25

Golgi apparatus 7 4.60e-05

cell communication 8 2.03e-04

004_003
m: 70.90, s:

34.27
17

mitochondrion organization 6 2.37e-04

cellular component organization 12 9.95e-04

005_001
m: 81.58, s:

24.78
20

biological regulation 13 7.39e-04

membrane organization 5 7.56e-04

005_002
m: 82.10, s:

30.56
36

proteasome storage granule 5 4.71e-07

regulation of transcription initiation

from RNA polymerase II promoter

3 1.26e-04

cellular catabolic process 13 4.27e-04

005_003
m: 82.56, s:

27.45
21

proteasome complex 4 2.91e-05

modi�cation-dependent protein

catabolic process

5 6.33e-04

cellular catabolic process 9 7.92e-04

005_004
m: 83.34, s:

36.91
22

proteolysis 8 9.14e-06

mitochondrial intermembrane space 3 6.55e-04

005_005
m: 83.44, s:

33.36
23

proteolysis involved in cellular

protein catabolic process

6 1.46e-04

modi�cation-dependent

macromolecule catabolic process

6 1.71e-04

ubiquitin-dependent protein catabolic

process

5 9.66e-04

006_001
m: 233.09,

s: 41.95
12

rRNA binding 3 9.24e-05

sequence-speci�c transcription

regulatory region DNA binding RNA

polymerase II transcription factor

recruiting transcription factor

activity

2 1.48e-04

cytosolic large ribosomal subunit 3 6.12e-04

006_002 m: 235.18,

s: 45.35

18 cytosolic small ribosomal subunit 3 7.90e-04

006_003 m: 239.43,

s: 57.45

29 cytosolic large ribosomal subunit 4 7.79e-04
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As mentioned previously, the second form of meta-clustering is the cross-clustering. In

this method, the parameters are clustered independently, and the intersections between

the clusters are identi�ed. Figure 4.15 shows an example of this clustering, again using

the m (time of maximum expression) and s (duration of response) parameters of the in-

creasing Gaussian shapes. The clusters in the margins are the genes that were clustered

with the m (side) and s (top) parameters independently. The intersection of the genes

in the di�erent pair combinations are identi�ed, and the GO term analysis performed

on these clusters. These GO terms are shown in Tables 4.11 and 4.12, for the increasing

and decreasing shapes, respectively. The GO terms identi�ed followed a similar pattern

as the sequential meta-clustering above, where the increasing GO terms showed RNA

processing, DNA replication, cell cycle, and chromosome segregation. Similarly, with

the decreasing shapes, the early repressed genes are involved in cell division and proteo-

lysis. This suggests that the two types of meta-clustering do not produce signi�cantly

di�erent clusters. Nonetheless, they still provide a di�erent means of interrogating the

data to identify new patterns.

Table 4.11: Table of the over-represented GO terms for the increasing Gaussian shapes,
clustered using the cross meta-clustering, on the m and s parameters.

Cluster Mean

parameter

value

Cluster

size

GO term GO

count

p-value

003_007
m: 63.08, s:

87.81
3

tRNA modi�cation 2 4.64e-04

nuclear replication fork 3 6.13e-04

003_010 m: 64.11, s:

22.84

3 ATPase regulator activity 3 1.12e-04

003_002
m: 64.97, s:

16.67
15

ncRNA 3'-end processing 4 4.11e-06

mRNA metabolic process 5 5.66e-04

004_008 m: 74.22, s:

30.93

4 microtubule associated complex 4 3.79e-04

004_003 m: 74.51, s:

49.44

8 astral microtubule 4 1.43e-05

004_004
m: 74.51, s:

49.44
4

RNA biosynthetic process 4 2.91e-04

transcription from RNA polymerase I

promoter

2 7.47e-04

004_001 m: 74.61, s:

56.15

5 microtubule motor activity 3 7.20e-04

005_009 m: 83.59, s:

26.56

3 cell cycle checkpoint 2 6.49e-04

005_001
m: 83.73, s:

54.50
8

transcription initiation from RNA

polymerase I promoter

2 1.05e-05

RNA polymerase I transcription

factor binding

2 1.05e-05
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Table 4.11 (cont.)

Cluster Mean

parameter

value

Cluster

size

GO term GO

count

p-value

005_006 m: 85.71, s:

42.20

3 ribosomal large subunit export from

nucleus

2 5.18e-05

006_002
m: 91.73, s:

18.51
18

DNA replication 7 2.64e-07

sequence-speci�c DNA binding 5 8.08e-04

006_009 m: 91.79, s:

25.69

7 recombinational repair 3 3.87e-05

006_001
m: 92.51, s:

54.24
5

cellular protein complex disassembly 5 4.97e-04

structural constituent of cytoskeleton 5 4.97e-04

006_010 m: 92.63, s:

22.46

9 spindle 6 9.12e-04

007_005 m: 99.12, s:

37.88

4 negative regulation of transcription,

DNA-dependent

3 3.05e-04

008_010
m: 106.84,

s: 22.25
5

negative regulation of signal

transduction

2 2.70e-04

regulation of cell communication 2 5.32e-04

008_009 m: 109.64,

s: 27.65

5 microtubule-based process 3 2.35e-04

009_006 m: 125.68,

s: 43.65

7 establishment of spindle localization 2 1.19e-04

009_008
m: 127.46,

s: 32.76
4

microtubule nucleation 2 7.87e-05

structural constituent of cytoskeleton 2 2.62e-04

010_004 m: 159.55,

s: 48.21

4 cellular response to heat 2 1.97e-04

011_001 m: 204.53,

s: 53.93

11 mitochondrial translation 5 1.40e-06

013_006 m: 244.10,

s: 42.96

8 spindle microtubule 3 9.67e-05
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Figure 4.15: A portion of the clusters formed from the cross meta-clustering for the
increasing Gaussian shapes. The clusters in the margins are the genes clustered
with the m (side) and s (top) parameters. For each pair of these clusters, the
common genes are identi�ed.
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Table 4.12: Table of the over-represented GO terms for the decreasing Gaussian shapes,
clustered using the cross meta-clustering, on the m and s parameters.

Cluster

Mean

parameter

value

Cluster

size

GO term GO

count

p-value

001_007
m: 34.01, s:

30.47
22 transferase activity, transferring

glycosyl groups

4 5.93e-04

001_009
m: 34.84, s:

22.33
8 external encapsulating structure 4 6.38e-06

001_006
m: 36.17, s:

16.04
37

reproduction 10 5.62e-04

cell cycle process 11 6.99e-04

002_006
m: 43.14, s:

17.21
22

spindle pole body organization 3 2.37e-04

M phase 7 3.83e-04

microtubule cytoskeleton

organization

4 5.30e-04

DNA-dependent DNA replication 4 7.34e-04

002_009
m: 43.77, s:

22.00
12

spindle microtubule 3 1.64e-05

chromosome segregation 4 2.06e-04

mitotic cell cycle 5 4.45e-04

nucleosome assembly 2 9.34e-04

002_007
m: 46.59, s:

33.09
15

external encapsulating structure 4 1.13e-04

glycerolipid metabolic process 4 1.22e-04

002_003
m: 47.21, s:

13.84
40

microtubule depolymerization 3 1.80e-05

motor activity 3 4.01e-04

mitotic anaphase B 2 4.83e-04

spindle microtubule 3 6.80e-04

002_002
m: 50.69, s:

24.71
10

vesicle targeting, to, from or within

Golgi

2 5.90e-05

cytoplasmic vesicle part 3 1.89e-04

ER to Golgi vesicle-mediated

transport

3 4.19e-04

003_001
m: 59.33, s:

32.32
12

intracellular protein transport 6 4.85e-04

protein targeting to mitochondrion 3 6.78e-04

carboxylic acid transmembrane

transporter activity

3 9.58e-04

003_002 m: 60.60, s:

23.71

33 AMP-activated protein kinase

activity

2 3.27e-04

004_002
m: 70.32, s:

23.14
38

transport 19 8.51e-05

cell communication 10 2.04e-04
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Table 4.12 (cont.)

Cluster

Mean

parameter

value

Cluster

size

GO term GO

count

p-value

004_001
m: 70.77, s:

31.59
29

'de novo' protein folding 3 1.95e-05

mitochondrion organization 9 2.06e-05

ATPase regulator activity 3 1.12e-04

005_002
m: 81.57, s:

24.44
40 ion homeostasis 6 3.42e-04

005_001
m: 82.93, s:

32.34
90

proteasome accessory complex 11 1.04e-14

cellular catabolic process 34 3.16e-09

positive regulation of RNA

polymerase II transcriptional

preinitiation complex assembly

4 1.83e-05

007_004
m: 233.93,

s: 44.92
42

structural constituent of ribosome 10 2.12e-06

gene expression 26 1.02e-05

007_005
m: 239.30,

s: 62.50
72

gene expression 40 2.37e-06

cytosolic large ribosomal subunit 7 7.82e-05
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The di�erent cluster approaches described above all produce di�erent numbers of

clusters with di�erent sizes, and this a�ects the results that are obtained from the over-

representation tests. For the well-�tting increasing Gaussian models, the variation in

cluster size and number can be observed from Tables 4.7, 4.9 and 4.11, for the simul-

taneous parameter clustering, sequential meta-clustering, and cross meta-clustering, re-

spectively. From these tables, the di�erences between the di�erent clustering approaches

can be identi�ed, where the simultaneous parameter cluster approach produced a set

of 5 clusters with a mean cluster size of 41 genes, the sequential meta-clustering ap-

proach produced 20 clusters with a mean size of 15 genes, and the cross meta-clustering

produced 67 clusters with a mean size of 5 genes.

These results can be visually observed as a scatter plot, by using the �tted parameters

of the genes as coordinates and labelling by cluster (Figure 4.16). From these �gures, it

can be seen that the simultaneous parameter clustering (A) has fewer but larger clusters

than the others. However, some of the clusters have a broader range in one, or both, of

the parameters. For example, cluster denoted by the orange crosses have a large range

in the m parameter, while the other clusters have a larger range in the s parameter.

The green triangles form a cluster with a large range in both parameters. The clusters

formed by using the meta-clustering methodology, on the other hand, produces more

clusters, which are smaller in size. The cross meta-clustering (C) in particular has

multiple small clusters, as compared to the sequential meta-clustering (B).
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A

B

Figure 4.16: Parameter plots of the clusters showing which cluster each gene was as-
signed to, using the increasing Gaussian shapes. In each graph, the x -axis is the
s parameter value, and the y-axis is the m parameter value. The di�erent col-
ours and shapes indicate di�erent clusters. (A) Simultaneous parameter clusters;
(B) Sequential meta-clustering, (C) Cross meta-clustering (overleaf). In the meta-
clustering examples, the colours indicate the clusters formed by the m parameter,
and the symbols indicate the clusters formed by the s parameter.
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C

Figure 4.16: (cont.) Parameter plots of the clusters showing which cluster each gene was
assigned to, using the increasing Gaussian shapes, using the cross meta-clustering
approach. The x -axis represents the s parameter value, and the y-axis is the m
parameter value. The colours indicate the clusters formed by the m parameter, and
the symbols indicate the clusters formed by the s parameter. The clusters denoted
by the black asterisks were unassigned.
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4.3.4. Identi�cation of common regulatory transcription factors

By clustering on a particular aspect of the expression pro�les, such as the rate of change,

it was hypothesised that it would be possible to identify genes that are in�uencing the

expression of other downstream genes, that is, identify co-regulated genes. The genes

that have similar rates of change in gene expression (similar grad parameters in the

sigmoid curves, or m parameters in the linear models) could possibly be regulated by

a common transcription factor (TF) or set of TFs. In addition, it may be possible that

genes that are activated or repressed at the same time (similar 5per parameters in the

sigmoid curves, or m parameters in the Gaussian) could be activated in response to

some stimulus under the control of common TFs.

To test this, a tool called YEASTRACT (YEAst Search for Transcriptional Regulators

And Consensus Tracking) was used (Teixeira et al., 2006). This database contains over

200 000 documented transcription regulatory associations between TFs and target genes,

and was recently updated in June 2013 (Teixeira et al., 2014). YEASTRACT analyses

sets of genes for common regulators and identi�es which TFs occur signi�cantly based

on a hypergeometric test comparing the occurrence of interactions in the clusters against

all interactions in the database. YEASTRACT considers TFs with p-value < 10−5 as

highly signi�cant. In addition, it calculates the proportion of genes in the cluster are

regulated by that TF.

To determine if ShapeCluster was able to identify genes that are co-regulated, the

clusters from the ShapeCluster analysis described in Section 4.3.2 were analysed. That

is, the clusters from the exponential (r and b parameters) (Figures 4.6-4.8), Gompertz2

(5per and grad parameters) (Figures 4.9-4.11), Gaussian (m and s parameters) (Figure

4.12) and linear (m parameter) (Figure 4.13) were analysed to try identify any common

transcriptional regulators. The results are shown in Table 4.13. From this table, it can

be seen that regulatory TFs were primarily found using the exponential model with the

b parameter, as well as Gompertz2 with the grad parameter. The Gaussian and linear

clusters did not have many signi�cant regulatory TFs, suggesting that these shapes and

parameters were not optimal for identifying such relations.

Throughout the various clusters, a few common TFs could be identi�ed such as ACE2,

a TF which activates genes required for cytokinesis (Butler and Thiele, 1991), and BAS1,

a MYB-related TF involved in regulating purine and histidine biosynthesis, as well as

meiotic recombination (Tice-Baldwin et al., 1989). These TFs are known to have many

interactions (Teixeira et al., 2014), so may not necessarily be relevant.

In the exponential models clustering with the r parameter, the majority of signi�cant

clusters were in clusters 10-24. These clusters had r>0.05 (Table 4.1), indicating a

steeper rate of change. As discussed in Section 4.3.2, these clusters were associated with

transcription and translation, whereas the clusters with a slower rate of change were

associated with general metabolic processes. This reinforces the suggestion that gene

regulation is activated very quickly, whereas other cellular processes occur at a slower

rate. A common TF throughout these clusters was MGA2, a membrane protein that is

involved in the regulation of the production of monounsaturated fatty acids, a critical
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component of cell membranes (Chellappa et al., 2001). When clustered with the b

parameter (Table 4.7), distinct sets between the concave and convex shapes (positive and

negative values of b respectively) could be seen. In the clusters where b<0 (up-regulated

genes, clusters 1-4), TFs included RAP1, an essential TF involved in transcription

activation and repression (Lieb et al., 2001) and SPT10, a histone acetylase with a role

in transcriptional silencing. In contrast, the clusters with down-regulated genes (b>0,

clusters 5-8) contained TFs such as MSN2 and MSN4, both transcriptional activators

involved in stress responses (Martínez-Pastor et al., 1996) and BAS1.

The clusters obtained by clustering the Gompertz2 pro�les on the 5per parameter

did not have many clusters with signi�cant TFs, with the exception of cluster 3 (up-

regulated at approximately 55 minutes) with SNF6, a TF involved in chromatin re-

modelling (Estruch and Carlson, 1990) and cluster 8 (up-regulated at approximately

126 minutes) which was signi�cantly regulated by SFP1, a regulator of ribosomal bio-

synthesis and G2/M transitions during mitotic cell cycle (Xu and Norris, 1998), and

MSN4. By clustering the Gompertz2 �ts with the grad parameter, a larger number

of signi�cant regulatory TFs were found. In general, ACE2 and SFP1 were commonly

found in the clusters with up-regulated genes (clusters 1-9). In cluster 4, signi�cant

TFs included STE12, a TF involved in mating and invasive growth (Roberts and Fink,

1994), and CRZ1, a stress response activated TF (Matheos et al., 1997).

In addition, several sets of random genes were selected for comparison, both genes

with the same shape, and sets with di�erent shapes. The average cluster size across

the various cluster analyses was calculated as 37 genes, and so 10 random sets of genes

of this size were analysed for regulatory TFs. In most of these clusters, no signi�cant

regulators were identi�ed, and in the three cases where there were, it was one of the

regulators with many interactions, such as ACE2, SFP1 or BAS1. In addition, less than

30% of the cluster was regulated by the TF, as opposed to the much higher proportions

in sets of genes identi�ed by ShapeCluster. These results suggest that it is possible

to identify di�erent sets of TFs that are regulating gene expression using the clusters

obtained from ShapeCluster.
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4.3.5. Comparison to other clustering methods

Generally when applying a clustering methodology to a set of data, the output will be

one set of clusters. However, ShapeCluster constructs clusters based on a speci�c shape

and speci�c parameters, so a variety of di�erent cluster analyses can be performed to

obtain an overall representation of the similarity amongst gene expression pro�les.

In order to determine the quality of the clusters formed by the di�erent approaches,

the Biological Homogeneity Index (BHI) was used, described in Section 2.1.8. The BHI

provides a simple metric that ranges from 0 to 1, where 1 indicates that all the genes

have at least one term in common all the others. To obtain an overall representation of

the gene expression, cluster analyses were performed using a range of regression models

and di�erent parameter combinations, namely exponential (a,r,b), Gaussian (a,b,m,s),

Gompertz1 (a,b,5per,grad), Gompertz2 (a,b,5per,grad), logistic (a,b,5per,grad), and lin-

ear (m,c). For the sigmoid models, the 5per and grad parameters were used in lieu of

the m and s parameters, as an indication of timing and rate of change, respectively.

The BHI scores for these di�erent sets of clusters are shown in Table 4.14. All the

�tted parameters were clustered individually, as well as the most biologically signi�cant

terms for the simultaneous and meta-clusterings. The shapes were also separated into

increasing and decreasing forms prior to clustering. From this table, the highest scor-

ing clusterings were the increasing logistic clustered on grad for the single parameter;

decreasing Gaussian clustered on m&s for the simultaneous parameter clustering; and

decreasing logistic clustered on 5per&grad for both types of meta-clustering.

To compare the e�cacy of ShapeCluster, the results of the clustering were compared

to results from two other methods. The �rst is SplineCluster (Heard et al., 2006),

which uses a Bayesian model-based hierarchical clustering algorithm to model the gene

expression pro�les through the use of linear models and nonlinear basis functions. The

other is Bayesian Hierarchical Clustering (BHC) (Cooke et al., 2011; Savage et al.,

2009). This method is also a model-based hierarchical clustering, except it uses Gaus-

sian process regression to capture the structure of the data. The clustering process

uses a fast approximate interface method for a Dirichlet process mixture model, which

performs agglomerative hierarchical clustering in a Bayesian framework. To obtain a

fairer comparison, the full 5661 gene yeast dataset (Section 4.3.1) was �ltered using

the same thresholds as ShapeCluster, namely R2
a > 0.6, R2

LoF > 0.6, and F-test<0.05,

and this resulted in a set of 1286 genes. The cluster analyses using SplineCluster and

BHC were performed using the default parameters, and the BHI score for SplineCluster

was 0.56, and BHC resulted in a score of 0.52. These clustering algorithms produce

one set of clusters, thus there is a single BHI score for each method. Compared to

the cluster results from ShapeCluster (Table 4.14), it can be seen that the values are

often similar, if not higher, thus indicating that ShapeCluster produces clusters that

contain genes with common annotations at a similar or better level compared to other

clustering methods. These values depended on the shape and parameter combinations,

potentially identifying the most biologically signi�cant factors.
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Table 4.14: Table of all the BHI scores for the various clusterings performed on the
yeast data. Single refers to clustering performed on a single parameter, Simul is the
clustering on multiple parameters, using the simultaneous parameter clustering, and
Meta refers to the two types of meta-clustering. The meta-clustering was performed
on the same parameters as the simultaneous parameter clustering. Sequential is the
clustering of one cluster followed by another, and Cross is the cross-clustering where
clusters were identi�ed based on the genes found from overlapping clusterings. The
highest BHI score for each model is in green, and the lowest BHI score is in red.

Linear Exponential Gaussian Gompertz1 Gompertz2 Logistic

S
in
gl
e

m a a a a a
Inc: 0.565 0.547 Inc: 0.478 Inc: 0.531 Inc: 0.521 Inc: 0.507
Dec: 0.532 Dec: 0.551 Dec: 0.474 Dec: 0.494 Dec: 0.478

c b b b b b
Inc: 0.558 0.509 Inc: 0.472 Inc: 0.487 Inc: 0.485 Inc: 0.542
Dec: 0.510 Dec: 0.538 Dec: 0.515 Dec: 0.535 Dec: 0.472

r m 5per 5per 5per
0.492 Inc: 0.490 Inc: 0.467 Inc: 0.490 Inc: 0.497

Dec: 0.507 Dec: 0.480 Dec: 0.463 Dec: 0.520
s grad grad grad

Inc: 0.502 Inc: 0.600 Inc: 0.574 Inc: 0.618
Dec: 0.522 Dec: 0.418 Dec: 0.456 Dec: 0.380

S
im
u
l r,b m,s 5per,grad 5per,grad 5per,grad

0.483 Inc: 0.504 Inc: 0.487 Inc: 0.493 Inc: 0.502
Dec: 0.522 Dec: 0.496 Dec: 0.447 Dec: 0.471

M
et
a

Cross Cross Cross Cross Cross
0.531 Inc: 0.584 Inc: 0.515 Inc: 0.593 Inc: 0.554

Dec: 0.542 Dec: 0.671 Dec: 0.509 Dec: 0.780
Sequential Sequential Sequential Sequential Sequential

0.533 Inc: 0.555 Inc: 0.514 Inc: 0.564 Inc: 0.541
Dec: 0.556 Dec: 0.580 Dec: 0.518 Dec: 0.587
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4.4. Discussion

In this chapter, a collection of methods were developed for clustering data, whereby

gene expression pro�les are clustered using �tted regression models. These �tted curves

represent a smoothed description of the gene expression pro�les from a time series

experiment, and the �tted parameters re�ect aspects of the underlying biology. By

performing a cluster analysis on aspects of the curves, such as the gradient or time of

activation, it is possible to obtain more information regarding the biological processes

that are occurring at a given point in time. For example, identify the genes which

may be co-regulated by a common transcription factor, or are part of similar metabolic

functions. This methodology presents a di�erent philosophy and analysis approach for

investigating gene expression pro�les, where the pro�les are grouped based on important

aspects of the pro�le, instead of simply looking at the entire pro�le at once.

This clustering methodology was termed ShapeCluster, and operates in a two-part

process. First, one of the regression models is selected, and gene expression pro�les

which �tted this model are used in the second step, namely cluster on one or more of

the �tted model parameters. When multiple parameters are used, a number of options

are available. One is the simultaneous parameter calculation, where the parameters are

combined using a Euclidean distance to produce a single measure. The alternative is

to use a meta-clustering approach, where the clusters are reclustered. The �rst type

of meta-clustering is a sequential meta-cluster, where genes are clustered on the �rst

parameter, and then these clusters are clustered based on a second parameter. The

second type of meta-clustering is the cross meta-cluster, where the genes are independ-

ently clustered on each of the two parameters, and the genes in common between the

two clusters are identi�ed. The meta-clustering approaches are ideally used with two

parameters, although they can be expanded to use more. However, this could lead

to clusters with few members. It is possible to combine all the parameters using the

simultaneous parameter method, although this would make the clustering more like

�traditional� clustering approaches, where the clustering is performed over the entire

expression pro�le, instead of investigating only a speci�c aspect of the pro�le, possibly

leading to less biologically relevant genes being clustered together.

As a validation of the method, the expression data from a yeast time-series gene ex-

pression experiment was used (Orlando et al., 2008). This data was selected as yeast

possesses a smaller and more tractable genome than Arabidopsis, and thus, has a bet-

ter level of annotation. Therefore it was expected that the clusters from ShapeCluster

would contain more similar biological terms than other clustering algorithms. In gen-

eral, it was found that clusters with up-regulated genes were involved in cell division

and energy production, as would be expected from growing wildtype cells. On the

other hand, the down-regulated genes were primarily involved in secondary metabolic

processes and proteolysis. Between the di�erent models analysed, di�erent sets of genes

were identi�ed, indicative of the various expression patterns. For example, the expo-

nential models represent a gene that has an exponential rate of transcription, before

�attening to a plateau. These genes were primarily involved in ribosomal activity and
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translation. In contrast, the Gaussian models represent a gene that is activated, reaches

a maximum level, and then becomes deactivated. Alternatively, the Gaussian model

can also represent a gene that is repressed, reaches a minimum, and then becomes react-

ivated. The genes with increasing shapes were primarily involved in cell cycle processes,

such as cell division and spindle pole body activity, whereas the decreasing shapes were

involved in general secondary metabolic processes.

Within each of the di�erent models, it was possible to cluster using di�erent para-

meters, or sets of parameters, and each combination would reveal sets of genes with

di�erent functions. By focussing on a single parameter, and thus a single aspect of the

expression pro�le, it was possible to investigate one aspect of the response, such as the

timing of the activation of genes, or the rates that gene expression is changing. These

types of clusters would not be formed with traditional clustering methods, which group

genes based on the entire expression pro�le. As a result, this may provide an indication

of genes that are being activated or repressed by some controlling set of genes despite

appearing di�erent in other aspects of their response pro�les.

Clustering on the 5per parameter (time of 5% of maximum response) provided insights

into genes that were up- or down-regulated at a given time, and using this parameter

made it possible to determine when speci�c sets of genes were activated or repressed.

This in turn provided a means of identifying what biological processes were being ac-

tivated or repressed in response to the stimulus, allowing the times that metabolic

functions occurred to be elucidated. In the Gompertz2 case, it could be seen that

transporter activity was followed by cytoskeletal growth, which in turn was followed by

spindle pole body activity. Using the average parameter values from each cluster, as

well as the information described above, a simple timeline of the biological processes

that were occurring over time could be determined, and is shown in Figure 4.17. Thus,

the ShapeCluster analysis provided a quick means to develop a timeline of biological

events that were taking place at a given time, and may aid in identifying key time points

for further investigation or experiments.

On the other hand, clustering on the grad parameter (rate of change of gene expres-

sion), showed the genes that were being up- or down-regulated with a similar rate of

change, and thus could possibly be controlled by the same TFs. It also provided an in-

dication of the genes that are changing rapidly or slowly. Again using the genes with �ts

to the Gompertz2 model, the slowly changing genes were involved in protein transport,

while the rapidly changing genes were involved in transcription regulation.

These clusters were also analysed to determine if the clusters contained any common

regulatory TFs, and it was found that the grad parameter is a better parameter to use

to identify common transcriptional regulators than the 5per parameter. This suggests

that rate of change in gene expression is a better indicator of co-regulation than the time

of activation or repression. The clusters formed using the Gompertz2 �ts with the grad

parameter were primarily regulated by TFs involved in mitosis, cytokinesis, and stress

responses. In the exponential clusters, the clusters with a steeper rate of change (r>0.05,

Table 4.1), were again implicated with involvement in transcription and translation,
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whereas the clusters with a slower rate of change were more associated with general

metabolic processes. This reinforced the suggestion that gene regulation is activated

very quickly, whereas other cellular processes occur at a slower rate. Interestingly, a

cluster with the exponential model that contained down-regulated genes, and a cluster

with the Gompertz2 model that contained up-regulated genes were both controlled by

MSN4, a transcriptional activator involved in stress responses (Martínez-Pastor et al.,

1996). The genes in the cluster with the exponential shape were involved in secondary

metabolism, while the genes in the cluster with the Gompertz2 shape were primarily

involved in cell division. This could suggest a dual role for TFs, where these regulators

in�uence multiple aspects of gene expression. These results show that it is possible

to identify di�erent sets of TFs that are regulating gene expression using the clusters

obtained from ShapeCluster.

These analyses provided a biologically oriented description of individual gene expres-

sion pro�les, and through careful choice of appropriate models, these methods could

allow for an improved comparison of gene expression pro�les, and may provide an im-

proved understanding of common regulatory mechanisms between genes.

As mentioned previously, a number of di�erent cluster approaches were used in the

clustering process, namely single parameter, simultaneous multi-parameter, sequential

meta-clustering, and cross meta-clustering. The single parameter clustering allows the

researcher to investigate a single aspect of the model shape. The other methods provide

the means to investigate multiple parameters, each in a di�erent manner. The simul-

taneous parameter approach uses an Euclidean distance to merge the parameter values

together to form a single metric. This may not ideal, particularly if the parameter

values possess very di�erent ranges, for example 5per and grad in the sigmoid func-

tions, or r and b for the exponential-type functions. In these cases, the merged value

may distort the true value of each parameter, and as a result, when the dendrogram

is cut to produce the clusters, the clusters may not be neatly assigned. For example,

with the exponential clustering on r&b, it would be expected that the clusters would be

formed with the same rate of change and concavity. However, since the r parameter is

signi�cantly smaller (usually r<0.1 ) than the b values, it resulted in some clusters with

both concave and convex shapes. Alternative distance metrics, such as a Mahalanobis

distance could be used instead.

This problem is avoided in the meta-clustering approaches, as the original parameter

values are always taken into account. Compared to the simultaneous parameter clus-

tering, the meta-clustering produced very similar over-represented GO terms, and in

most cases, provided greater detail when investigating the functions of the clusters, as

well as revealing results that previously had not been seen using the simultaneous para-

meter clustering. However, these meta-clustering approaches produce a larger number

of clusters with fewer members as compared to the simultaneous parameter clustering.

This can particularly be a problem with the cross meta-clustering, where if there are m

clusters after clustering on parameter 1, and n clusters after clustering on parameter 2,

there will be up tomxn clusters. This large number of small clusters could potentially be
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undesirable, particularly when looking for over-representation in the annotation terms.

The sequential meta-clustering appears to be a good compromise between the simultan-

eous parameter clustering and the cross meta-clustering, both in terms of cluster size

and cluster number.

While this dataset was analysed to demonstrate the application of the regression

analysis and clustering approaches, it was possibly not the best dataset due to the

time-series consisting of two cell division cycles. This means that many of the genes

would show cyclic patterns. None of the functions really take this into account, and

those that do would likely have a poor �t. However, investigating the expression pro�les

�tted from SplineCluster (Figure 4.4), there are very few genes which process this cyclic

behaviour, and the shapes that are present are covered by the models that were used in

the ShapeCluster. Nonetheless, it would be possible to extend the set of nonlinear func-

tions in ShapeCluster to include appropriate shapes. Despite this, it was still possible

to use the regression analysis approach to identify interesting groups of genes.

The results of the clustering were also compared to other clustering methods, namely

Bayesian Hierarchical Clustering (BHC) and SplineCluster. Through the use of the Bio-

logical Homogeneity Index (BHI), it was found that ShapeCluster produced a number of

clusters that were more biologically signi�cant clusters than the other methods, despite

these methods being able to take cyclic patterns into account. The BHI score was used

to show the level of biological similarity between members of a cluster, based on the

common GO annotations. However, this score is not a completely fair comparison, since

di�erent sets of genes were used in the di�erent cluster analyses. That is, SplineCluster

and BHC performed the cluster analysis using all the genes, whereas ShapeCluster uses

the genes that �tted a particular model. Nonetheless, it does provide a simple indicator

of the similarity of annotations in the di�erent clusters.

Through the use of the BHI, it was also possible to compare the results from Shape-

Cluster, using di�erent models and parameter combinations. In other clustering ap-

proaches, there is only one set of clusters generated for a given set of data. However,

with ShapeCluster, there are a number of di�erent sets of clusters possible, depending

on the model and the parameters being clustered. With the sigmoid models, performing

the cluster analysis on the decreasing shapes, and using the grad parameter on its own

produced the clusters with the least homogeneous clusters. However, the increasing

shapes showed relatively high BHI scores. This suggests that there is some relation in

the functions of genes that are increasing at the same rate, but not necessarily decreas-

ing, possibly indicating that the genes are being regulated by genes at the same rate,

or activating each other in successive waves, such as in signal transduction cascades.

It also suggests that the down-regulation of genes does not follow this type of regulat-

ory mechanism. Clustering using the 5per parameter alone also did not produce many

functionally similar sets of genes. However, when genes were grouped using both the

5per and grad parameters, more biologically homogeneous clusters were found. This

indicates that both the rate of change and the time of activation are important in identi-

fying biologically relevant sets of genes. The a and b parameters (asymptote and range
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parameters, respectively) also did not produce clusters with similar functions. While it

may be interesting to identify genes that have the same starting, or ending, expression

levels, in general these clusters may not be informative. As a result, these clusters would

not be as useful in understanding the underlying biological system, particularly since

normalisation processes often distort these values. The exception to this is the expo-

nential model, where the clusters formed using the a parameter produced the highest

BHI score. This possibly indicates that genes which reach similar expression levels after

an exponential rate of change are functionally related. Similarly for the Gaussian res-

ults, the m and s parameters, which provide an indication of the maximum response,

and duration of the response, respectively provide more biological information than the

other parameters.

The best BHI scores for most of the models were generally found by performing the

meta-clustering analyses. The cross meta-clustering had better scores, although this

could be a result of the analysis producing numerous small clusters. On the other hand,

using a Euclidean distance in the simultaneous parameter approach could distort the

distance matrix, resulting in clusters that are not distinct.

The BHI score is not a perfect scoring metric, as it is dependent on the annotations

available, and thus the amount of information available for a particular gene would

in�uence the score. In addition, the BHI value is not very sensitive to changes in the

degree of annotation. In particular, each pair of genes is scored 0 or 1 if there are

any common annotations between them, and does not take the proportion of common

annotations into account. In addition, if sets of genes do not have an exact, known

function, and are only annotated with the very top level terms of GO (i.e. �cellular

component�, �molecular function� and �biological process�), this may arti�cially in�ate

the value of the indices. Finally, the index does not take the numbers of clusters formed,

nor the cluster size into account.

In conclusion, it is important for a researcher to understand what the biological

question is. While it may be tempting to cluster individually on each of the parameters

separately, caution should be exercised to ensure that the most biologically relevant

parameters are used. Although it may be interesting to identify genes that have the

same starting, or ending, expression levels, in general these clusters may not be as

informative as using the timing or rate of change parameters. As a result of using

the yeast data, it was possible to obtain some general guidelines when performing the

clustering on the �tted models. In general, the timing parameters (such as m or 5per)

and rate of change parameters (grad or r) are more informative in determining the

molecular processes that are taking place. Table 4.15 shows some of the shape and

parameter combinations that can be used in order to solve a speci�c task, such as

identifying potentially co-regulated genes.

Prior to clustering, various thresholds were used to identify the pro�les that had a

good �t to one or more of the models. Here R2 thresholds of 0.6 were used, although

these can easily be adjusted to allow more or fewer �ts into the analysis. Increasing the

threshold would increase the stringency and reduce the number of expression pro�les to
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Table 4.15: Table of recommended shape and parameter combinations to investigate
speci�c biological questions.

Task Shape Parameter

Identify co-regulated genes
Gompertz, logistic grad

Exponential r, b
Linear m

Identify gene responses with the
same response duration

Gaussian s

Determine time of activation or
repression

Gompertz, logistic 5per, m
Gaussian m

Linear+exponential linpnt
Critical exponential turnp

analyse, while decreasing the thresholds would permit expression pro�les with poorer

�ts, potentially including relevant genes that were excluded due to poor �t statistics.

In most cases, a threshold of 0.6 should be su�cient to provide a balance between

goodness-of-�t and quantity of expression pro�les to analyse.

The use of the simultaneous parameter approach is simple and useful for a general

idea of the function of a group of genes. However, for more re�ned clusters, the use of

the sequential meta-clustering provides a good balance between loss of information and

number of clusters.

In the following chapter, these clustering algorithms will be applied to the Arabidopsis

datasets introduced in the Section 3.9.
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5. Analysis of large time series datasets

5.1. Introduction

In Chapter 3, a regression analysis approach was described where linear and nonlinear

functions could be �tted to time-series gene expression data. In particular, the data used

was obtained from the PRESTA long day senescence (Breeze et al., 2011) and Botrytis

cinerea infection (Windram et al., 2012) time series experiments, and the details about

these projects are described in Section 1.2. In brief, the senescence dataset using the

morning samples consisted of 11 time points, taken every second day for 22 days, while

the Botrytis dataset consisted of 24 time points, taken every 2 hours for 48 hours. In

both cases, there were four biological replicates. A set of 23 802 unique probes provided

a comprehensive set of genes to represent the majority of the Arabidopsis genome. The

regression analysis was performed on this set of genes, and the results of the analysis

are shown in Section 3.9.

In the previous chapters, parametric regression models were �tted to the gene expres-

sion pro�les, and an application named ShapeCluster was developed which used these

�tted parameters to group expression pro�les together. In this way, a biologically ori-

ented description of gene expression pro�les could be formed and used to identify genes

that are potentially functionally related in a mechanistic manner. By clustering genes

on a single parameter, it was possible to focus in on a speci�c aspect of the expression

pro�le, and �nd genes with that aspect in common. In Chapter 4, data from the model

organism, Saccharomyces cerevisiae, which possesses a relatively small, well annotated

genome was used to demonstrate the capabilities of ShapeCluster. It was shown that

the clusters produced by ShapeCluster contained more biologically signi�cant genes,

as compared to other clustering algorithms. In this chapter, the models �tted from

the regression analysis on the Arabidopsis data will be analysed using the clustering

algorithms described in Chapter 4.

5.2. Clustering results for the Arabidopsis datasets

5.2.1. Senescence data

The ShapeCluster analysis was applied to the 11 time point senescence data, using the

23 802 genes that were representative of the Arabidopsis genome, and a broad overview

of the shapes and over-represented annotations for the observed gene expression pro-

�les are described in this section. The summary of the results from the �tting of the

regression models are shown in Section 3.9. The same thresholds determined in Section

3.9 were used to identify models which �tted well, namely R2
a > 0.6, R2

LoF > 0.6, and
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F-test<0.05. As with the yeast data, all good �ts were used in the cluster analysis,

meaning a gene could be �tted by multiple models, and thus could appear in cluster

analyses for more than one model. For this dataset, the most abundant models were the

exponential, Gaussian, Gompertz1 (faster growth rate to the right of the midpoint), and

logistic models, and so these subsets of genes are presented in the subsequent analyses.

It was also shown in Chapter 4 that the most biologically informative parameters were

the timing and rate of change parameters, and the most relevant shape and parameter

combinations are indicated in Table 4.15. That is, the 5per and grad parameters in the

sigmoid models, the m and s in the Gaussian model, and the r parameter for the expo-

nential, and so these parameter combinations were used in the cluster analysis. Thus,

these clusters would be able to identify genes that are being activated or repressed at the

same time, and thus involved in the same biological process, as well as genes that have

the same rate of gene expression, and thus potentially under the control of common

transcriptional regulators. The results below were generated using the simultaneous

parameter clustering (Section 4.2.2).

Biological signi�cance was determined using the GOstats package (Falcon and Gentle-

man, 2007, Section 2.1.4) to determine over-represented GO terms, as well as detecting

over-represented words in the gene annotations (Section 2.1.5). Both of these calcula-

tions use a hypergeometric test to determine signi�cance. Since this dataset was much

larger than the yeast dataset, there were a much greater number of clusters. Thus, for

brevity, only a few of the clusters for each model will be discussed here, and the full

results are provided in Appendix D. The x -axis of this dataset represents di�erent times

of harvests, where the �rst time point is 19 days after sowing (DAS), and the y-axis

represents the log2 gene expression level.

The clusters of genes �tted by exponential models are shown in Figure 5.1. These

genes were clustered on the r&b parameters, and resulted in a total of 33 clusters.

The combination of the r (rate of change) and b parameter values (shape of response)

a�ects the overall shape of the model, and genes with similar values in both parameters

were often involved in the same biological process. Analysing the annotation terms

revealed that the genes in clusters 1 and 2 were enriched in terms involving transporter

activity (Table 5.1). Here the combination of the parameter values resulted in shapes

that were concave increasing. The genes in clusters 3-5 were enriched for ribosomes

and RNA processing, and the shapes for both clusters were convex decreasing. This

suggests that as the plant ages, the ribosomal and translational activities decrease.

The genes in cluster 6 had lower r values than the genes in the previous clusters,

indicating a more linear response, as well as a positive b value indicating a decreasing

response. This response makes sense since the cluster contained genes that were involved

in photosynthesis, which are known to be repressed as senescence progresses. The genes

in cluster 7 had a similar rate of change to the genes in cluster 6, but had b parameter

values of an opposite sign, resulting in an increasing shape. These genes were enriched

for terms relating to stress responses and water deprivation, and could be involved in

the activation of senescence responses.
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Table 5.1: Table showing the over-represented annotation terms for the exponential
model in the senescence data.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1
r: 0.350, b:
-1.230

36

intracellular signal transduction 5 8.14e-06
transport 10 2.02e-04
metal ion transport 4 3.08e-04
monovalent inorganic cation
transport

3 8.42e-04

2
r: 0.410, b:
-2.729

37
actin binding 3 1.70e-04
transporter 8 2.21e-05
secondary active transmembrane
transporter activity

4 4.58e-04

3
r: 0.531, b:
1.928

37
translational elongation 6 2.73e-11
structural constituent of ribosome 9 2.01e-09

4
r: 0.653, b:
2.850

46
ribosome 13 2.86e-13
translation 14 1.00e-12

5
r: 0.887, b:
3.812

52
Ribosomal 24 2.04e-25
structural constituent of ribosome 22 3.26e-27
translation 22 2.03e-22

6
r: 0.118, b:
5.358

31
chloroplast 14 2.89e-05
detection of abiotic stimulus 2 4.16e-04

7
r: 0.175, b:
-4.200

42
response to desiccation 2 4.88e-04
response to water 4 8.22e-04
response to nutrient levels 3 8.34e-04
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Cluster 5
r: 0.887
 (0.738 - 1.213)
b: 3.81
 (1.53 - 16.35)

Cluster 3
r: 0.531
 (0.483, 0.604)
b: 1.93
 (1.19, 2.58)

Cluster 4
r: 0.653
 (0.564, 0.734)
b: 2.85
 (1.41, 6.39)

Cluster 2
r: 0.410
 (0.342, 0.454)
b: -2.73
 (-5.38, -1.79)

Cluster 1
r: 0.350
 (0.302, 0.401)
b: -1.23
 (-1.67, -0.83)

Cluster 6
r: 0.118
 (0.078, 0.170)
b: 5.36
 (2.82, 8.05)

Cluster 7
r: 0.175
 (0.131, 0.238)
b: -4.20
 (-8.31, -2.78)

Figure 5.1: Exponential shapes from the senescence experiment, clustering on both the
r (rate of change) and b (concavity) parameters. Shown are the mean parameter
values, as well as the range of the parameter. The x -axis shows the sampled data
points (age of plants), and the y-axis is the log2 gene expression level.
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Figure 5.2 shows some examples of the genes that �tted a Gaussian model, and

clustered on the m&s parameters, where the m parameter indicates the time of max-

imum response, and the s parameter describes the duration of the gene activation.

Therefore clustering on these parameters would identify genes that reach their max-

imum or minimum at the same time, as well as having the same duration of response.

There were a total of 72 clusters generated for this shape. As with the yeast data, this

model represents a gene expression pro�le that increases to a maximum, before decreas-

ing again. Alternatively, it may represent a gene being repressed, and then reactivated.

The former shape is shown in clusters 1-6, and the latter in clusters 7-14. In the clusters

being activated, genes in cluster 1 were enriched for carbohydrate metabolism, cluster

2 with transporter activity, and clusters 3 and 4 with vacuole regulation and metabolic

activities (Table 5.2). This activity indicates that the plant is beginning to activate the

transport processes in order to mobilise the macronutrients to other parts of the plant,

such as storage organs. Notably, genes in clusters 5 and 6 were enriched for transcrip-

tion factor (TF) activity. These clusters had a relatively late maximum response time

of time point 7 and 8 respectively, thus indicating TFs that are activated near the end

of the senescence process. Cluster 6, contained the genes ANAC014 (AT1G33060 ) and

ANAC089 (AT5G22290 ). The NAC TF family has been shown to be involved in the

senescence process (Breeze et al., 2011; Hickman et al., 2013), so it is possible that these

genes are involved in the regulation of the senescence response. ANAC089 is involved in

regulating the �owering time in Arabidopsis (Li et al., 2010), and ANAC014 currently

has no known biological function.

In contrast, in the genes being repressed, clusters 7-9 contained genes that were

involved with RNA binding activity, and the genes in clusters 10-14 were involved with

photosynthesis and chloroplasts. The former set of clusters were all down-regulated early

in the time series (around time point 2-4), and were primarily involved in translation.

The latter clusters were repressed at a much later stage (after time point 10) indicating

that the photosynthesis genes are becoming down-regulated towards the end of the time

series, as discussed above. The Gaussian model describes a change in expression to a

maximum, or minimum, followed by a transition back to the starting expression level.

This suggests that these responses are all transient, and are being activated or repressed

in response to some biological signal.
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Cluster 2
s: 2.20
 (2.00, 2.45)
m: 3.88
 (3.15, 4.88)

Cluster 3
s: 3.27
 (2.73, 4.07)
m: 4.58
 (4.19, 4.97)

Cluster 5
s: 3.69
 (3.03, 4.67)
m: 7.15
 (6.27, 7.72)

Cluster 6
s: 2.16
 (1.94, 2.35)
m: 8.15
 (7.49, 9.03)

Cluster 4
s: 2.79
 (1.99, 3.88)
m: 5.81
 (4.80, 6.75)

Cluster 1
s: 1.84
 (1.58, 2.06)
m: 3.25
 (2.73, 3.77)

Cluster 12
s: 2.00
 (1.87, 2.15)
m: 10.40
 (10.16, 10.64)

Cluster 9
s: 1.48
 (1.19, 1.71)
m: 3.76
 (3.18, 4.47)

Cluster 11
s: 2.43
 (2.19, 2.70)
m: 10.32
 (9.71, 10.95)

Cluster 10
s: 3.38
 (3.05, 3.71)
m: 10.02
 (9.49, 10.57)

Cluster 14
s: 2.78
 (2.58, 2.97)
m: 10.66
 (10.29, 11.39)

Cluster 13
s: 2.15
 (1.99, 2.25)
m: 10.61
 (10.28, 11.15)

Cluster 7
s: 3.09
 (2.85, 3.29)
m: 2.16
 (1.23, 2.67)

Cluster 8
s: 1.91
 (1.56, 2.18)
m: 3.58
 (3.01, 4.57)

Figure 5.2: Gaussian shapes from the senescence experiment clustered on the mean (m)
and standard deviation (s) parameters. Clusters 1-6 show curves that are increasing,
while clusters 7-14 possess a decreasing response.
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Table 5.2: Table showing the over-represented annotation terms for the Gaussian model
in the senescence data.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1 s: 1.836, m:
3.253

28 cellular carbohydrate biosynthetic
process

4 8.99e-05

2 s: 2.204, m:
3.876

34 inorganic phosphate transmembrane
transporter activity

2 1.33e-04

3
s: 3.271, m:
4.576

36
ferric-chelate reductase activity 2 2.59e-05
oxidoreductase activity, oxidizing
metal ions

2 2.59e-05

4
s: 2.788, m:
5.808

48
sequence-speci�c 5 8.00e-03
G-protein coupled photoreceptor
activity

2 2.25e-05

5
s: 3.689, m:
7.150

38
sequence-speci�c 5 3.51e-03
�nger 6 6.22e-03
zinc 6 6.29e-03

6
s: 2.158, m:
8.146

40

sequence-speci�c 7 6.82e-05
factor 9 1.82e-03
DNA 7 3.09e-03
transcription 7 3.10e-03

7 s: 3.092, m:
2.164

41 nucleic acid metabolic process 13 1.58e-04

8
s: 1.909, m:
3.575

46

translation 5 6.80e-04
RNA 6 2.65e-03
DNA-directed RNA polymerase IV
complex

2 2.31e-04

DNA-directed RNA polymerase II,
core complex

2 5.00e-04

translation initiation factor activity 3 6.19e-04

9
s: 1.481, m:
3.756

43

GTPase activity 3 4.01e-04
intracellular non-membrane-bounded
organelle

7 6.46e-04

ribosomal subunit 4 7.08e-04
RNA binding 6 9.47e-04

10
s: 3.377, m:
10.015

40
chloroplast 15 5.21e-05
photosynthesis, light reaction 3 3.66e-04

11
s: 2.432, m:
10.318

63
chloroplast 25 1.04e-07
single-stranded RNA binding 3 1.41e-04
plastid thylakoid 7 1.57e-04

12
s: 2.001, m:
10.398

22
chloroplast 9 1.63e-04
cellular nitrogen compound
biosynthetic process

5 3.40e-05

13
s: 2.150, m:
10.611

30
chloroplast 14 4.48e-07
photosynthesis, light reaction 3 1.45e-04

14 s: 2.782, m:
10.662

56 chloroplast 19 1.65e-05
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Some of the Gompertz1 clusters are shown in Figure 5.3, after clustering on the

5per&grad parameters, which provided an indication of the time of �rst transcriptional

change, and rate of change of gene expression. These clusters would identify genes that

are activated or repressed at the same time point, as well as changing at the same rate. In

total there were 36 clusters from this model. Clusters 1-6 contained genes with increas-

ing shapes, and cluster 7-12 contained decreasing shapes. In the increasing responses,

cluster 1 contained genes that were involved in RNA metabolism, cluster 2 with DNA

binding and TF activity, cluster 3 with anthesis and ageing related genes, cluster 4 with

ATP generation and clusters 5 and 6 involved in pectinesterase activity (Table 5.3). The

last two clusters have a mean 5per value of approximately 7, indicating that these genes

are becoming activated in plants that are beginning to senescence (Figure 1.1). Pectin-

esterases are involved in breaking down the cell walls, possibly storing the breakdown

products, or using them for cellular respiration (Breeze et al., 2011). Clusters 2 and

3 may provide interesting sets of genes that could be involved in the activation of the

senescence response and other ageing related stresses. For example, cluster 2 contained

several TF related genes, including WRKY58 (AT3G01080 ), which has been shown

to act downstream of another WRKY TF that is involved in the senescence process

(Miao et al., 2004). In addition, there were a number of genes without a known biolo-

gical function, including HEAT SHOCK TRANSCRIPTION FACTOR B2B (HSFB2B ,

AT4G11660 ), a member of a stress related TF family, and AT5G28040 , a DNA-binding

storekeeper protein-related transcriptional regulator. Storekeeper proteins are involved

in regulating the expression of storage proteins in potatoes (Zourelidou et al., 2002), and

so may be involved in the transport and storage of macronutrients during senescence.

The genes with decreasing responses, as before, were primarily involved with pho-

tosynthesis. Several di�erent sets of genes were found with di�erent 5per and grad

parameter values, and so this could indicate that there are di�erent parts of photosyn-

thesis that are becoming down-regulated at di�erent times and rates. For example, the

genes in both clusters 7 and 12 are over-represented for terms relating to photosynthesis,

although the average 5per value for cluster 7 is 4.4, whereas the average 5per for cluster

12 is 7.1.
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Cluster 1
grad: 0.330
 (0.235, 0.437)
5per: 3.37
 (2.47, 3.91)

Cluster 5
grad: 1.730
 (1.349, 2.410)
5per: 6.67
 (6.32, 7.16)

Cluster 3
grad: 1.052
 (0.552, 2.264)
5per: 5.33
 (4.67, 6.07)

Cluster 2
grad: 0.314
 (0.266, 0.374)
5per: 4.59
 (4.05, 5.27)

Cluster 6
grad: 1.428
 (0.645, 3.091)
5per: 7.60
 (7.20, 8.55)

Cluster 4
grad: 0.320
 (0.188, 0.398)
5per: 5.88
 (5.48, 6.47)

Cluster 10
grad: -0.543
 (-0.817, -0.359)
5per: 5.49
 (5.14, 5.83)

Cluster 9
grad: -0.326
 (-0.485,-0.194)
5per: 5.03
 (4.74, 5.46)

Cluster 8
grad: -0.578
 (-0.828, -0.388)
5per: 4.70
 (4.35, 5.05)

Cluster 7
grad: -0.855
 (-1.532, -0.613)
5per: 4.39
 (4.07, 4.83)

Cluster 11
grad: -1.129
 (-2.563, -0.552)
5per: 6.16
 (5.91, 6.43)

Cluster 12
grad: -0.981
 (-3.568, -0.370)
5per: 7.14
 (6.62, 7.84)

Figure 5.3: Selected clusters from the senescence data, clustered on the Gompertz1
shapes based on the 5% of maximum (5per) and gradient (grad) parameters.
Clusters 1-6 show curves that are increasing, while clusters 7-12 possess a decreasing
response.
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Table 5.3: Table showing the over-represented annotation terms for the Gompertz1
model in the senescence data.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1 grad: 0.330,
5per: 3.373

36 nuclear mRNA splicing, via
spliceosome

2 8.89e-04

2
grad: 0.314,
5per: 4.591

33
to zinc 5 1.37e-12
DNA-binding 5 2.05e-03

3
grad: 1.052,
5per: 5.326

82

anthesis 22 1.16e-09
di�erentiation 20 1.43e-07
lignin biosynthetic process 3 6.14e-04
aging 4 6.88e-04

4
grad: 0.320,
5per: 5.875

28
ATP 7 1.11e-03
proton-transporting ATP synthase
complex

2 1.84e-04

5
grad: 1.730,
5per: 6.672

31
anthesis 11 7.48e-07
di�erentiation 11 2.07e-06
pectinesterase activity 3 6.80e-04

6
grad: 1.428,
5per: 7.600

28

anthesis 10 8.74e-07
indole-3-acetic acid amido synthetase
activity

2 1.53e-05

pectinesterase activity 4 1.92e-05
auxin homeostasis 2 1.69e-04
cell wall organization 3 9.39e-04

7
grad:
-0.855, 5per:
4.394

40
chloroplast 10 8.19e-03
thylakoid membrane 11 4.84e-12
photosynthetic electron transport in
photosystem I

5 2.57e-11

8
grad:
-0.578, 5per:
4.699

59

chloroplast 26 1.86e-09
photosynthesis 8 5.20e-09
poly(U) RNA binding 3 9.53e-06
photosystem I 3 1.54e-05
photosynthesis, light harvesting 3 1.68e-05

9
grad:
-0.326, 5per:
5.033

50
chloroplast 21 2.20e-08

plastid thylakoid 8 1.25e-06

10 grad:
-0.543, 5per:
5.491

41 chloroplast 16 2.64e-06

11
grad:
-1.129, 5per:
6.162

34
chloroplast 14 1.07e-05

photosynthesis, light reaction 3 2.78e-04

12
grad:
-0.981, 5per:
7.142

35
photosystem I reaction center 2 7.90e-05

photosynthesis 4 9.42e-05
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Finally, selected clusters of the logistic model are shown in Figure 5.4, and as before

the cluster analysis was performed on the 5per and grad parameters. There were 44

clusters in total. Clusters 1-4 contained genes with an increasing response, and clusters

5-8 contained genes with a decreasing response. The genes with increasing responses

showed enriched terms that were similar to those found in the Gompertz1 clusters, where

genes with the early activation times were involved with stress responses and nucleic

acid metabolism (clusters 1-2), and genes with later activation times were involved in

the ageing response (cluster 3-4) (Table 5.4). Interestingly, in cluster 4, there were

genes involved in auxin homoeostasis, such as AUXIN UPREGULATED 3 (AUR3 ,

AT4G37390 ). Auxins are a group of plant hormones, which are involved in a number

of developmental processes in plants, including senescence (Osborne, 1959), so this set

of genes may be involved in regulating the senescence responses. Again, the genes

with decreasing responses were related to photosynthesis and chloroplasts. Like the

Gompertz1 clusters above, there were several sets of genes that were found with di�erent

times of down-regulation and with di�erent rates of change.
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Table 5.4: Table showing the over-represented annotation terms for the logistic model
in the senescence data.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1
grad: 0.356,
5per: 2.556

36
DNA metabolic process 5 2.34e-04
cellular response to stress 5 3.45e-04

2
grad: 0.255,
5per: 3.51

58
domain-containing 5 4.78e-03
RNA 6 6.67e-03
nucleic 5 7.11e-03

3
grad: 1.595,
5per: 6.49

20
anthesis 8 6.36e-06
expansion 7 7.76e-05
di�erentiation 7 9.35e-05

4
grad: 1.011,
5per: 7.09

65

indole-3-acetic acid amido synthetase
activity

3 1.88e-07

mature 12 2.83e-07
anthesis 15 1.82e-06
auxin homeostasis 3 1.20e-05

5
grad:
-0.368, 5per:
2.78

43
ATP 8 7.09e-03
chloroplast 11 8.55e-03
thylakoid lumen 3 6.31e-04

6
grad:
-0.606, 5per:
3.01

51

chloroplast 20 3.46e-06
small molecule metabolic process 11 8.88e-05
generation of precursor metabolites
and energy

5 1.34e-04

response to temperature stimulus 6 2.79e-04

7 grad:
-0.296, 5per:
5.94

43 chloroplast 12 5.85e-04

8
grad:
-0.838, 5per:
7.30

43
positive regulation of catalytic
activity

3 9.38e-06

thylakoid 5 2.58e-04
chloroplast 9 7.93e-04
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Cluster 3
grad: 0.613
 (0.496, 0.755)
5per: 16.61
 (16.01, 17.34)

Cluster 2
 grad: 0.368
 (0.220, 0.628)
5per: 13.04
 (11.55, 14.29)

Cluster 4
grad: 0.276
 (0.217, 0.339)
5per: 18.71
 (18.22, 19.29)

Cluster 1
grad: 0.477
 (0.331, 0.739)
5per: 9.74
 (6.96, 11.27)

Cluster 5
grad: -0.244
 (-0.493, -0.158)
5per: 13.74
 (11.63, 14.68)

Cluster 7
grad: -0.474
 (-0.988, -0.237)
5per: 20.75
 (20.25, 21.78)

Cluster 8
grad: -0.108
 (-0.321, -0.040)
5per: 24.69
 (19.77, 33.54)

Cluster 6
grad: -0.099
 (-0.174, -0.054)
5per: 17.34
 (14.58, 19.34)

Figure 5.4: Selected clusters from the senescence data, clustering on the logistic shapes
based on the 5% of maximum (5per) and gradient (grad) parameters. Clusters 1-4
show curves that are increasing, while clusters 5-8 possess a decreasing response.
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In addition to the simultaneous parameter clustering, the meta-clustering approaches

(Section 4.2.3) were also applied to the senescence data (Appendix D). In general,

the over-represented annotation terms were the same as the simultaneous clustering,

described above. A few interesting terms included those related to the response to

abscisic acid (ABA) in the Gaussian models, using the sequential meta-clustering. These

genes had a increasing response, reaching a maximum at around time point 10 before

becoming down-regulated again. This is consistent with other �ndings, where it has

been shown that there is an accumulation of ABA due to the up-regulation of ABA

biosynthetic genes during senescence (Breeze et al., 2011; Buchanan-Wollaston et al.,

2005; van der Graa� et al., 2006). Another term that was not seen with the simultaneous

parameter clustering is the presence of genes that were involved in ethylene mediated

signalling pathways. These genes were again found using the Gaussian models, and

sequential meta-clustering. The genes initially decreased until around time point 2

before becoming up-regulated. It has been shown that ethylene levels increase during

the senescence process, due to the up-regulation of ET biosynthetic genes as the plant

ages (van der Graa� et al., 2006).

In the meta-clustering analyses, there were a greater number of clusters, with fewer

members (approximately 70 clusters, with 20 genes in each cluster) compared to the

clusters from the simultaneous clustering (approximately 40 clusters, with 35 genes in

each cluster). While this smaller cluster size can help re�ne the signi�cant annota-

tion terms, if the cluster size is too small, it may become di�cult to determine if an

annotation is truly signi�cant.

Figure 5.5 shows a summary of the processes that were identi�ed at di�erent times

during the senescence process, and was primarily determined using the timing paramet-

ers from the di�erent shapes (5per and m). By using these timing parameters together

with the over-represented annotation terms, it was possible to determine when spe-

ci�c biological events were taking place. Generally up- or down-regulated genes were

identi�ed from the exponential model using the r and b parameters, and are shown

in the boxes in the �gure. Up-regulated genes were initially involved in metabolic

processes, such as macronutrient metabolism or nucleic acid activity, before becoming

more involved in stress responses. The down-regulated genes were primarily involved

in chloroplast activity and photosynthesis. These results are similar to those found in

the published results from the senescence time course (Breeze et al., 2011). In particu-

lar, responses to water deprivation and pectinesterases were up-regulated at the same

points. Down-regulated in both were genes involved in amino and nucleic acid meta-

bolism, as well as several series of photosynthesis related genes. There were however a

few di�erences. While both analyses identi�ed chlorophyll related genes being down-

regulated between time points 5-7, ShapeCluster did not identify photosynthesis related

genes that were down-regulated at time point 3. It did however, identify photosynthesis

genes that are down-regulated later, at time point 9. Other new discoveries include the

identi�cation of early up-regulation of ethylene signalling, auxin homeostasis at time

point 7, and late ABA signalling.
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5.2.2. Botrytis data

The same clustering process was also performed with the Botrytis data. In the Botrytis

data, the x -axis shows the times that the samples were taken after infection with

Botrytis, and is thus on the scale of hours (hours post-infection [hpi]). From the results

in Section 3.9, it was observed that the most abundant models were the Gompertz1

(faster growth rate to the right of the midpoint), Gompertz2 (faster growth rate to

the left of the midpoint), Gaussian, logistic and linear-exponential models. The cluster

analysis was performed on these models and the over-represented annotation were iden-

ti�ed, again using GOstats for the GO terms, and a hypergeometric test for the over-

represented annotation terms (Section 2.1.4-2.1.5). Representative clusters from each

model are shown here, and are presented in full in Appendix C.

Figure 5.6 shows selected clusters from the Gompertz1 model, clustered on the 5per&grad

parameters resulting in 43 clusters. In this clustering, it was found that the genes in

cluster 1 were involved in hypoxia and oxygen deprivation, and cluster 2-4 were in-

volved with stress and immune responses (Table 5.5). The hypoxia term in cluster 1

was unusual, and warranted further investigation. It has previously been shown that

genes that are involved responses to hypoxia, may also be involved in defence against

Botrytis (Zhao et al., 2012). The hypoxia term was due to a FAD-binding Berberine

family protein (AT1G26380 ), a gene encoding the cytochrome P450 enzyme CYP81F2

(AT5G57220 ), and a gene of unknown function (AT2G23270 ) which was found to be

di�erentially expressed during hypoxia (Yang et al., 2011). These genes were also found

to be involved in ethylene response, which has been shown to be important in the plant's

defence response to Botrytis (Windram et al., 2012; Zhao et al., 2012). Other genes

of possible interest in this cluster were genes encoding a putative cytochrome P450,

CYP71B22 (AT3G26200 ), as well as two WRKY TFs (WRKY45 and 75 - AT3G01970

and AT5G13080 , respectively). This family of TFs is known to be involved in a variety

of biotic and abiotic stresses (Eulgem et al., 2000; Pandey and Somssich, 2009), and it

is possible that these genes may have a role in the plant defence response.

The decreasing responses, as with the senescence data, were primarily involved in

chloroplast activity, particularly the genes contained in clusters 5 and 7. Interestingly,

the mean 5per values for these clusters are relatively far apart, having a di�erence of

almost 10 hours. This suggests that there were two separate repressions of chloroplast

activity taking place during the course of the experiment, or di�erent aspects of pho-

tosynthesis being down-regulated at di�erent times. Similarly, the genes in clusters 6

and 8 showed over-represented terms pertaining to ribosomes, transcription and trans-

lation. The mean 5per values for these clusters were approximately 7 hours apart, again

possibly suggesting separate sets of genes with di�erent functions, and di�erent points

of down-regulation. However, the ranges of the 5per parameters in these clusters are

almost contiguous, possibly suggesting that the repression process may be continuous

throughout the infection. Nonetheless, in all decreasing responses, it is likely that the
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plants are succumbing to the Botrytis infection, which is causing the plant to divert en-

ergy from growth and maintenance processes, and focus on mounting a defence response.

Table 5.5: Table showing the over-represented annotation terms from the Gompertz1
models in the Botrytis data.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1
grad: 0.477,
5per: 9.741

22

cellular response to hypoxia 3 1.24e-06
response to oxygen levels 3 1.46e-05
oxygen binding 3 6.83e-04
indole-containing compound
biosynthetic process

2 7.35e-04

2
grad: 0.368,
5per: 13.040

60
Cytochrome 6 7.36e-06
anthesis 9 1.85e-03
response to stress 14 6.68e-04

3
grad: 0.613,
5per: 16.614

22
anthesis 5 1.34e-03
response to stimulus 12 1.04e-04
response to chitin 3 1.92e-04

4
grad: 0.276,
5per: 18.707

26
regulation of response to stress 3 3.43e-04
activation of innate immune response 2 4.47e-04
positive regulation of immune
response

2 7.01e-04

5
grad:
-0.244, 5per:
13.736

57
photosynthesis 5 2.98e-08

chloroplast 25 1.06e-08

6
grad:
-0.099, 5per:
17.344

50
Ribosomal 6 3.00e-05

chromatin assembly or disassembly 3 4.39e-04

7
grad:
-0.474, 5per:
20.745

81

chloroplast 38 1.16e-13
translation 8 4.58e-04
organelle 22 7.62e-04
chloroplast thylakoid 7 7.95e-04

8
grad:
-0.108, 5per:
24.692

64
structural constituent of ribosome 11 1.29e-09

translation 12 1.11e-08
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Cluster 2
grad: 0.255
 (0.184, 0.362)
5per: 3.51
 (2.56, 4.01)

Cluster 7
grad: -0.296
 (-0.481, -0.156)
5per: 5.94
 (5.34, 6.54)

Cluster 4
grad: 1.011
 (0.370, 3.181)
5per: 7.10
 (6.55, 8.09)

Cluster 1
grad: 0.356
 (0.267, 0.515)
5per: 2.56
 (1.79, 3.10)

Cluster 3
grad: 1.595
 (1.096, 2.192)
5per: 6.47
 (6.02, 6.77)

Cluster 6
grad: -0.606
 (-1.050, -0.480)
5per: 3.01
 (2.51, 3.41)

Cluster 8
grad: -0.838
 (-1.275, -0.374)
5per: 7.30
 (6.87, 8.11)

Cluster 5
grad: -0.368
 (-0.503, -0.229)
5per: 2.77
 (1.91, 3.09)

Figure 5.6: Selected clusters from the Botrytis data, clustering on the Gompertz1 shapes
based on the 5% of maximum (5per) and gradient (grad) parameters. Clusters 1-4
show curves that are increasing, while clusters 5-8 possess a decreasing response.
The x -axis shows the sampled data points (hours after infection with Botrytis), and
the y-axis is the log2 gene expression level.
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Figure 5.7 shows the clusters from the Gompertz2 models, again clustering with the

5per&grad parameters, with a total of 66 clusters. While this model is similar to

the Gompertz1 model, there were still some di�erences between the clusters that were

formed. The genes in cluster 1 had annotation terms that were enriched for transporter

activity, the genes in clusters 2 and 4 were enriched for response to chitin and stress,

and the genes in cluster 3 were enriched for hormone metabolism (Table 5.6). Chitin is

a characteristic component of fungal cell walls, and the detection of it by plants triggers

a defence response (Windram et al., 2012). The genes involved in this response become

up-regulated at around 16 hpi, indicating the point at which the plant detects the

pathogen. Shortly after, at around 17 hpi, a number of genes involved in indoleacetic

acid metabolism are up-regulated. Indoleacetic acid is an auxin, which have been found

to be important in stress responses, and have been implicated in plant defence (Llorente

et al., 2008; Windram et al., 2012).

The decreasing shapes had similar over-represented terms to the clusters found in

Gompertz2, where the genes in clusters 5 and 6 were involved in RNA processing, and

the genes in clusters 7 and 8 were involved in chloroplast activity.
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Table 5.6: Table showing the over-represented annotation terms from the Gompertz2
models in the Botrytis data.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1 grad: 0.075,
5per: 12.529

20 intrinsic to membrane 5 2.27e-04

2
grad: 0.433,
5per: 16.758

33
response to stress 10 5.34e-04
response to chitin 3 6.55e-04
multi-organism process 6 8.01e-04

3
grad: 0.044,
5per: 17.228

56
indoleacetic acid metabolic process 2 3.48e-04
hormone metabolic process 3 9.66e-04

4
grad: 0.763,
5per: 19.910

38
anthesis 6 5.74e-03
response to chitin 4 4.59e-05

5
grad:
-0.083, 5per:
17.000

49
Ribosomal 5 4.77e-04

RNA processing 5 6.35e-04

6 grad:
-0.108, 5per:
17.735

43 membrane-enclosed lumen 6 1.79e-04

7
grad:
-0.405, 5per:
18.367

46

chloroplast 18 8.28e-06
tRNA aminoacylation for protein
translation

3 2.34e-04

amino acid activation 3 2.69e-04
photosynthesis, light reaction 3 6.86e-04
translation elongation factor activity 2 8.70e-04

8
grad:
-0.430, 5per:
21.124

47
chloroplast thylakoid membrane 9 1.75e-08

thylakoid membrane 9 2.88e-08
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Cluster 8
grad: -0.430
 (-1.034, -0.255)
5per: 21.12
 (20.73, 21.55)

Cluster 4
grad: 0.763
 (0.466, 1.370)
5per: 19.91
 (19.56, 20.38)

Cluster 5
grad: -0.083
 (-0.100, -0.063)
5per: 17.00
 (16.05, 17.95)

Cluster 2
grad: 0.433
 (0.214, 0.897)
5per: 16.76
 (15.77, 17.75)

Cluster 6
grad: -0.108
 (-0.139, -0.082)
5per: 17.74
 (17.22, 18.43)

Cluster 7
grad: -0.405
 (-0.657, -0.267)
5per: 18.37
 (17.85, 18.94)

Cluster 1
grad: 0.075
 (0.051, 0.095)
5per: 12.53
 (11.78, 13.64)

Cluster 3
 grad: 0.044
 (0.025, 0.069)
5per: 17.23
 (14.71, 20.99)

Figure 5.7: Clusters from the Botrytis data, clustering on the Gompertz2 shapes based
on the 5% of maximum (5per) and gradient (grad) parameters. Clusters 1-4 show
curves that are increasing, while clusters 5-8 possess a decreasing response.
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Figure 5.8 shows the some of Gaussian responses, clustered on the m&s parameters,

out of a total of 64 clusters. Increasing responses included cluster 1 with genes that

were involved in chloroplast activity, cluster 2 contained a number of terms related to

transcription, cluster 3 contained genes involved in jasmonic acid synthesis, cluster 4

contained genes involved in defence response and ATP generation, and cluster 5 con-

tained genes involved in transport (Table 5.7). Jasmonic acid is known to be involved

in the Botrytis defence response (Windram et al., 2012), and the ATP generation could

be associated with the defence response. Cluster 2 contained CIRCADIAN CLOCK

ASSOCIATED 1 (CCA1 , AT2G46830 ), a gene that is involved in the circadian clock,

and may be involved in immune responses (Zhang et al., 2013), as well as REVEILLE 1

(RVE1 , AT5G17300 ), which encodes a MYB-like TF that is involved in both the circa-

dian clock and auxin signalling pathways (Rawat et al., 2009). These genes are normally

cyclic, and the Botrytis infection resulted in s dampened oscillation (Windram et al.,

2012). In addition, there were a number of genes encoding TFs in the cluster with un-

known function, including AT1G71030 , a MYB-like TF, and AT3G09320 , AT3G60300 ,

AT4G38960 and AT1G49200 , all zinc-�nger TFs. These genes may all be involved in

regulating the response to pathogens, possibly with crosstalk with the circadian clock.

The decreasing shapes showed similar annotation terms as before, with genes in cluster

6 being involved with chloroplast activity, and the genes in clusters 7 and 8 involved

with ribosomal activity.
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Cluster 1
s: 6.22
 (4.18, 8.00)
m: 9.98
 (4.77, 13.01)

Cluster 4
s: 10.25
 (9.74, 10.89)
m: 33.30
 (31.82, 34.27)

Cluster 3
s: 5.90
 (5.22, 6.61)
m: 29.23
 (27.98, 30.01)

Cluster 8
s: 15.50
 (13.43, 17.71)
m: 46.99
 (42.95, 52.30)

Cluster 5
s: 8.30
 (7.84, 8.81)
m: 35.44
 (34.69, 36.72)

Cluster 2
s: 3.21
 (1.43, 4.47)
m: 16.66
 (14.40, 20.39)

Cluster 7
s: 11.94
 (9.97, 13.49)
m: 45.27
 (43.18, 49.33)

Cluster 6
s: 15.51
 (12.98, 18.26)
m: 40.65
 (37.15, 42.55)

Figure 5.8: Clusters from the Botrytis data, clustering the Gaussian shapes on the
mean (m) and standard deviation (s) parameters. Clusters 1-5 show curves that are
increasing, while clusters 6-8 possess a decreasing response.
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Table 5.7: Table showing the over-represented annotation terms from the Gaussian
models from the Botrytis dataset.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1
s: 6.217, m:
9.983

49
thylakoid 6 2.87e-06
chloroplast 18 9.41e-06

2
s: 3.205, m:
16.655

35

Homeodomain-like 6 1.20e-06
zinc 7 5.07e-04
DNA-binding 5 2.11e-03
negative regulation of circadian
rhythm

2 2.17e-06

sequence-speci�c DNA binding
transcription factor activity

11 1.55e-05

response to ethylene stimulus 4 9.41e-05
regulation of gene expression 10 1.83e-04
cellular nitrogen compound
metabolic process

13 5.77e-04

response to gibberellin stimulus 3 7.39e-04
response to auxin stimulus 4 8.03e-04
negative regulation of transcription,
DNA-dependent

3 8.32e-04

3 s: 5.902, m:
29.231

25 response to jasmonic acid stimulus 3 7.75e-04

4
s: 10.251,
m: 33.304

44
DNA-binding 5 9.66e-03
ATP biosynthetic process 3 2.07e-04
response to fungus 4 5.50e-04

5
s: 8.296, m:
35.439

46
transporter 8 1.12e-04
disaccharide transmembrane
transporter activity

2 1.40e-04

6
s: 15.508,
m: 40.653

49
chloroplast 17 2.40e-05
cellular response to cold 2 5.51e-04
response to cytokinin stimulus 3 5.96e-04

7
s: 11.944,
m: 45.268

47
translation 6 6.85e-05
cytosolic large ribosomal subunit 4 8.26e-05

8 s: 15.496,
m: 46.993

64 biogenesis 7 3.63e-08
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The clusters from the logistic model bear a great deal of similarity to the previous

results from the Gompertz models (Figure 5.9, Table 5.8). Since these models have

similar shapes, many of the genes in the clusters are the same (approximately 30% of

the genes that �tted the logistic model also �tted a Gompertz model - Table 3.3). A

total of 54 clusters were found from this cluster analysis. Much like the previous results,

in the up-regulated responses, there were clusters with genes involved in hypoxia, stress,

and auxin responses. With the down-regulated responses, again the genes in the clusters

were primarily involved in photosynthesis and protein translation.

Table 5.8: Table showing the over-represented annotation terms from the logistic models
in the Botrytis dataset.

Cluster Mean
parameter
value

Cluster
size

Annotation term Count p-value

1
grad: 0.496,
5per: 12.50

25
cellular response to hypoxia 3 1.65e-06
oxygen binding 4 3.69e-05
response to stress 9 2.57e-04

2
grad: 0.270,
5per: 15.838

31

peroxidase activity 4 9.71e-06
response to stress 9 9.07e-05
oxidoreductase activity 4 1.97e-04
response to other organism 5 9.82e-04

3
grad: 0.629,
5per: 18.577

39
auxin:hydrogen symporter activity 3 1.31e-06
response to chitin 4 5.73e-05
transmembrane transport 5 8.03e-04

4
grad: 0.089,
5per: 21.333

51

dehydrogenase 6 2.06e-05
organelle membrane 9 1.61e-04
oxidation 6 2.51e-04
reduction 6 3.32e-04
plant-type cell wall organization 3 5.21e-04

5
grad:
-0.088, 5per:
14.835

64
Ribosomal 5 1.43e-03
translation 5 2.39e-03
DNA-binding 7 4.20e-03

6
grad:
-0.151, 5per:
16.096

47
dormancy 5 4.17e-06
development 8 1.02e-05
protein metabolic process 15 6.54e-04

7
grad:
-0.466, 5per:
21.015

60

chloroplast 24 1.38e-07
thylakoid part 9 5.60e-07
chloroplast thylakoid membrane 8 1.50e-06
chloroplast stroma 10 7.33e-06

8
grad:
-0.125, 5per:
27.344

20

structural constituent of ribosome 7 4.99e-09
intracellular non-membrane-bounded
organelle

9 4.03e-08

ribosomal subunit 6 6.71e-08
translation 7 2.03e-07
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Cluster 1
grad: 0.496
 (0.289, 0.791)
5per: 12.50
 (10.80, 14.41)

Cluster 2
grad: 0.270
 (0.192, 0.393)
5per: 15.84
 (15.06, 16.51)

Cluster 3
grad: 0.629
 (0.401, 1.110)
5per: 18.58
 (18.22, 18.97)

Cluster 4
grad: 0.089
 (0.048, 0.160)
5per: 21.33
 (18.20, 25.33)

Cluster 8
grad: -0.125
 (-0.315, -0.061)
5per: 27.34
 (25.70, 29.36)

Cluster 6
grad: -0.151
 (-0.219, -0.109)
5per: 16.10
 (15.09, 16.66)

Cluster 7
grad: -0.466
(-1.105, -0.214)
5per: 21.02
 (20.20, 21.54)

Cluster 5
grad: -0.088
 (-0.124, -0.044)
5per: 14.83
 (12.71, 16.30)

Figure 5.9: Clusters from the Botrytis data, clustering on the logistic shapes based
on the 5% of maximum (5per) and gradient (grad) parameters. Clusters 1-4 show
curves that are increasing, while clusters 5-8 possess a decreasing response.
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Finally, Figure 5.10 shows a few clusters from the linear+exponential model, out of

a total of 12 clusters. A number of di�erent shapes are possible with this model, which

are described in Section 3.2. In this case, the curves were clustered using the time

point where the shape changes from exponential to linear (or vice versa) (the linpnt

parameter), as well as the gradient of the linear portion (c). The linpnt parameter acts

as a timing parameter, much like the 5per parameter in the sigmoid models, or the m

parameter for the Gaussian models. In this case, linpnt provides an indication of the

time point at which gene expression is changing from one response shape to another,

possibly indicating the activation of a regulator, or the response to some biological stim-

ulus. The c parameter acts as a rate of change of gene expression parameter, describing

the rate at which genes are responding to the previous stimulus. Cluster 1 repres-

ents an expression pro�le that mostly increases exponentially and decreases to a linear

down-regulation response, and contains genes that are primarily involved in protein

translation. Cluster 2 represents an expression pro�le that mostly decreases exponen-

tially, before increasing linearly, and contains genes that are involved in DNA binding

and topoisomerase, such as DNA GYRASE A (GYRA, AT3G10690 ) and AT4G31210 .

These genes encode topoisomerases, which are involved in unwinding the DNA so that

it can be transcribed. The cluster also contained a number genes that encode TFs, such

as WRKY26 (AT5G07100 ), and GATA TRANSCRIPTION FACTOR 29 (GATA29 ,

AT3G20750 ). These TFs could be responsible for activating the genes necessary for

the defence response, which become more active as the infection progresses. Cluster 3

represents an expression pro�le that increases linearly, and then decreases exponentially.

These genes are involved in transporter activity, and are down-regulated relatively late

in the time course (around 40 hpi). It could be that the expression of these genes is

being suppressed as the plant succumbs to the Botrytis infection. Finally cluster 4 rep-

resents an expression pro�le where the expression decreases linearly, and then increases

exponentially. The genes in this cluster are involved in the nucleolus and DNA binding,

again possibly representing TF binding.
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Cluster 1
c: -0.06
 (-0.08, -0.04)
linpnt: 6.18
 (4.40, 8.11)

Cluster 3
c: 0.05
 (0.02, 0.12)
linpnt: 40.15
 (27.83, 46.52)

Cluster 2
c: 0.03
 (0.01, 0.05)
linpnt: 6.46
 (4.10, 8.18)

Cluster 4
c: -0.05
 (-0.08, -0.02)
linpnt: 42.67
 (38.36, 49.85)

Figure 5.10: Linear+exponential models from the Botrytis experiment, clustered on the
linpnt (x -value were the shape becomes linear) and c (gradient of the linear portion).

Table 5.9: Table showing the over-represented annotation terms from the lin-
ear+exponential models.

Cluster
Mean
parameter
value

Cluster
size

Annotation term Count p-value

1
c: -0.057,
linpnt: 6.18

37
translation 6 1.78e-05
rRNA binding 2 3.47e-04
ribosome 5 4.44e-04

2
c: 0.034,
linpnt:
6.463

58
to zinc 5 4.43e-11
activity binding 5 1.11e-05
DNA topoisomerase activity 2 6.28e-04

3
c: 0.048,
linpnt:
40.15

52
transporter 6 4.75e-03

respiratory chain complex I 3 2.69e-04

4
c: -0.046,
linpnt:
42.67

28
intracellular organelle lumen 5 5.38e-04

nucleolus 4 6.00e-04
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As with the senescence dataset, the meta-clustering on the above models revealed the

same over-represented annotation terms (Appendix D). One di�erence that was identi-

�ed in the Gaussian model using the sequential meta-clustering was a cluster that was

down-regulated late in the time course (after 40 hpi). The genes in this cluster were in-

volved in biotic stimulus and innate immune response. The genes responsible for these

terms included ABSCISIC ACID RESPONSIVE ELEMENT-BINDING FACTOR 1

(ABF1 , AT1G49720 ), an ABA responsive element-binding factor, which is required for

ABA signalling, as well as RESISTANT TO P. SYRINGAE 5 (RPS5 , AT1G12220 ),

which encodes a disease resistance protein of the CC-NBS-LRR family. ABA induced

signalling is activated during Pseudomonas syringae pv. tomato infection, and res-

ults in increased susceptibility (de Torres-Zabala et al., 2007), and some members of

the (CC-NBS-LRR class) family confer resistance to P. syringae (Simonich and Innes,

1995). Since these genes are down-regulated, it suggests that these genes are involved

in the responses to biotrophic pathogens, which work antagonistically to necrotrophic

pathogens, such as Botrytis (Section 1.1).

Figure 5.11 shows a timeline of the processes that are occurring over the course of the

Botrytis time course, and determined using the timing parameters from the clusters.

Over-represented terms from genes which �tted the exponential model are shown in the

boxes. The majority of the up-regulated genes are activated between 10-20 hpi, and

suggests that this is when the plant detects the pathogen and mounts a defence response.

Of note are the activation of genes involved in hypoxia, cytochrome activity, ethylene

activity, auxin binding, peroxidase activity, response to jasmonic acid and response

to chitin, all of which are involved in the defence response, and are activated before

20 hpi. Genes that are up-regulated later in the time course include genes involved in

water deprivation and proteolysis. The down-regulated genes are involved in ribosomes,

translation and photosynthesis. As with the senescence data, there are di�erent points

at which the photosynthesis and chloroplast-related genes are down-regulated, possibly

indicating di�erent parts of the photosynthetic machinery being deactivated in phases.

Again, these results are similar to those identi�ed by Windram et al. (2012), where it

was also shown that the majority of genes are di�erentially expressed between 14-18 hpi.

The over-represented terms are approximately the same, except that the ShapeCluster

analysis identi�ed the early hypoxia response.
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5.3. Cluster using control data

Since it is expected that there would be distinct di�erences in the expression pro�les

between the control and treated samples, the Botrytis data was used to illustrate a fur-

ther subdivision using the control information. The hypothesis was that genes that are

involved in the same biological process may have similar gene expression pro�les under

the control conditions, in addition to responding similarly in the treatment. Therefore,

genes were sorted based on the expression pro�le of the control state. The methodology

is described in Section 4.2.4. In brief, after clustering, the genes may be grouped based

on the model that �tted the control data for the same gene. If the �tted model for the

control and treated sets are the same, it is possible to identify which of the parameters

are similar. Figures 5.12 and 5.13 show some results of this form of clustering. In

Figure 5.12, an example from the exponential clustering is shown. Here, a cluster can

be divided into subclusters (A1 and B1), based on the shape and parameters of the

models �tted to the control data (A2 and B2). The control model for the genes in these

subclusters is also the exponential model, so it is possible to compare the parameters

between the treatment sets. In the case of A, the a and r parameters were similar in

both treatment sets, meaning the starting expression level and rate of change of gene ex-

pression were similar, but the concavity di�ered between the treatment sets. In Figure

B, all the parameters were found to be similar. The original cluster had over-represented

GO terms for oxidoreductase activity and cation transmembrane transporter activity.

However, using this subclustering revealed that the genes in A are involved in energy

production and transmembrane transport. The genes in subcluster B were involved in

defence response to fungus. Thus, using the control information to subcluster revealed

new annotation terms, and thus aid in identifying genes that may be of interest.

In contrast, Figure 5.13 shows a case where the subclusters did not have any similar

parameters, or were a di�erent model �t, to the original cluster. This cluster is the same

as cluster 1 in Figure 5.6, where the shapes were from the Gompertz1 model, clustered

on the 5per&grad parameters, and contained genes involved in hypoxia and oxygen

deprivation. By subclustering based on the control model �t, subclusters were found

where there were no similar parameters (i), the control model was the linear model (ii),

and the control model was Gaussian model (iii). Subclusters (i) and (iii) were found

to be involved in the jasmonic acid and ethylene signalling pathways, and related to

stress and other external stimuli, respectively. Subcluster (ii) mostly contained genes

that were genes of unknown function. Again, this shows that by including the control

information, it is possible to �nd the signi�cant annotation terms.

In addition to �ltering the clusters to �nd the genes that are enriched for a particular

annotation, it may be possible to use this methodology to identify genes that are di�er-

entially expressed. For example, if the control shape is linear and roughly unchanging,

and the treatment shape has a distinct response, this may indicate that the gene is

di�erentially expressed compared to the control.
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Original cluster

A1
a,r

A2

B1
a,b,r

B2

Figure 5.12: Example of clustering using the control data from the Botrytis dataset,
where the control model is the same as the treated data. The original cluster from
the exponential cluster analysis is shown on the top. The treated data is shown in
the �gures on the left, and the control data for each cluster is shown to the right.
The parameters that are similar between the treatment sets are shown above the
clusters.
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5.4. Comparison to SplineCluster

SplineCluster (Heard et al., 2006) was also used to cluster the Arabidopsis datasets. To

provide a fairer comparison, the full set of 23 802 genes was �ltered using the R2
a, R

2
LoF ,

F-test p-value, and standard error of the parameter estimate �lters (Section 3.9). This

resulted in a set of 8216 genes in the senescence dataset, and 5303 genes in the Botrytis

dataset. After applying SplineCluster to these genes, using the default parameters, this

resulted in 98 clusters for the senescence dataset and 26 clusters for the Botrytis dataset.

In order to determine the quality of the clusters formed by the di�erent approaches, the

Biological Homogeneity Index (BHI) was used, described in Section 2.1.8. The clusters

from the senescence dataset produced a BHI value of 0.284, while the clusters from the

Botrytis dataset produced a BHI value of 0.299.

For ShapeCluster, the cluster analyses were performed using a range of regression

models and di�erent parameter combinations, namely exponential (r,b), Gaussian (m,s),

Gompertz1 (5per,grad), Gompertz2 (5per,grad), and logistic (5per,grad). These para-

meters refer to aspects of the timing of gene expression responses, as well as the rate of

change in gene expression, and were determined in the yeast analyses to be the most

informative parameters. The BHI scores for these di�erent sets of clusters are shown

in Table 5.10 for the senescence dataset and Table 5.11 for the Botrytis dataset. The

clustering with control information was also performed for the Botrytis dataset, and is

included in Table 5.11 in italics.

From these tables, it can be seen that the BHI scores from ShapeCluster are slightly

lower than the score from SplineCluster in most of the cluster analyses, except for the

decreasing sigmoid functions. Since these clusters are generally involved in photosyn-

thesis, it indicates that the clusters formed by ShapeCluster are grouping these genes

together better than SplineCluster. It is possible that the lower BHI scores are due to

the poorer annotation level in Arabidopsis, which is re�ected in the lower overall scores

in BHI as compared to the yeast results. For the Botrytis data, it can also be seen that

by subclustering the genes based on the control shape, a higher BHI score can generally

be obtained.
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Table 5.10: Table of all the BHI scores for the various clusterings performed on the senes-
cence data. Single refers to clustering performed on a single parameter, Simul is the
clustering on multiple parameters, using the simultaneous parameter clustering, and
Meta refers to the two types of meta-clustering. The meta-clustering was performed
on the same parameters as the simultaneous parameter clustering. Sequential is the
clustering of one cluster followed by another, and Cross is the cross-clustering where
clusters were identi�ed based on the genes found from overlapping clusterings.

Exponential Gaussian Gompertz1 Gompertz2 Logistic

S
in
gl
e

b m 5per 5per 5per
0.233 Inc: 0.267 Inc: 0.219 Inc: 0.286 Inc: 0.234

Dec: 0.263 Dec: 0.284 Dec: 0.282 Dec: 0.278
r s grad grad grad

0.235 Inc: 0.234 Inc: 0.255 Inc: 0.273 Inc: 0.260
Dec: 0.252 Dec: 0.287 Dec: 0.256 Dec: 0.286

S
im
u
l r,b m,s 5per,grad 5per,grad 5per,grad

0.252 Inc: 0.254 Inc: 0.234 Inc: 0.252 Inc: 0.229
Dec: 0.288 Dec: 0.325 Dec: 0.301 Dec: 0.312

M
et
a

Cross Cross Cross Cross Cross
0.249 Inc: 0.279 Inc: 0.242 Inc: 0.240 Inc: 0.263

Dec: 0.267 Dec: 0.338 Dec: 0.350 Dec: 0.326
Sequential Sequential Sequential Sequential Sequential

0.242 Inc: 0.267 Inc: 0.221 Inc: 0.228 Inc: 0.231
Dec: 0.278 Dec: 0.370 Dec: 0.323 Dec: 0.320
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Table 5.11: Table of all the BHI scores for the various clusterings performed on the
Botrytis data. The values in italics refer to the clusters formed when taking the con-
trol shape into account. Single refers to clustering performed on a single parameter,
Simul is the clustering on multiple parameters, using the simultaneous parameter
clustering, and Meta refers to the two types of meta-clustering. The meta-clustering
was performed on the same parameters as the simultaneous parameter clustering.
The numbers in italics for the Single and Simul clusters indicate the use of the
control shape.

Exponential Gaussian Gompertz1 Gompertz2 Logistic

S
in
gl
e

b m 5per 5per 5per
0.242 Inc: 0.258 Inc: 0.244 Inc: 0.239 Inc: 0.239
0.247 0.261 0.237 0.255 0.249

Dec: 0.245 Dec: 0.273 Dec: 0.253 Dec: 0.256
0.230 0.304 0.265 0.265

r s grad grad grad
0.265 Inc: 0.241 Inc: 0.257 Inc: 0.250 Inc: 0.260
0.283 0.220 0.281 0.270 0.255

Dec: 0.243 Dec: 0.301 Dec: 0.282 Dec: 0.296
0.780 0.298 0.290 0.302

S
im
u
l

r,b m,s 5per,grad 5per,grad 5per,grad
0.216 Inc: 0.250 Inc: 0.244 Inc: 0.257 Inc: 0.249
0.204 0.239 0.270 0.301 0.252

Dec: 0.255 Dec: 0.333 Dec: 0.290 Dec: 0.308
0.255 0.370 0.270 0.329

M
et
a

Cross Cross Cross Cross Cross
0.197 Inc: 0.261 Inc: 0.242 Inc: 0.243 Inc: 0.263

Dec: 0.274 Dec: 0.289 Dec: 0.267 Dec: 0.326
Sequential Sequential Sequential Sequential Sequential

0.185 Inc: 0.249 Inc: 0.238 Inc: 0.241 Inc: 0.245
Dec: 0.237 Dec: 0.337 Dec: 0.291 Dec: 0.310
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5.5. Investigation of speci�c genes

As a further application of the cluster analysis, the clusters were examined for selec-

ted genes of interest, to identify which genes co-cluster together. These genes were

PHOTOSYSTEM I LIGHT HARVESTING COMPLEX GENE 6 (LHCA6 , AT1G-

19150 ), ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 92 (ANAC092 ,

AT5G39610 ) and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 55 (AN-

AC055 , AT3G15500 ). LHCA6 encodes a light-harvesting complex I protein, which

forms part of photosystem I (Peng and Shikanai, 2011). It is thus expected that genes

that cluster with it would also form part of the photosynthetic machinery. ANAC092

and ANAC055 both encode TFs which contain a NAC-binding domain, and were iden-

ti�ed as being involved in a number of stress responses (Balazadeh et al., 2010; Hickman

et al., 2013; Ooka et al., 2003).

The expression pro�le of LHCA6 was �tted by the logistic model in the senescence

time course, and the Gompertz2 model in Botrytis time course. These models were

clustered using the 5per , grad , and 5per&grad parameters, and are shown in Figure

5.14. By using these parameters, it was possible to identify genes that were repressed

at the same time as LHCA6 (using the 5per parameter), the genes that had the same

rate of change in gene expression (grad parameter), and the genes that were being

repressed at the same time as well as having the same rate of change (5per&grad).

The multiple parameter clustering was performed using the simultaneous parameter

clustering. In all these clusters, the signi�cant GO terms were related to the chloroplast

(e.g. thylakoid, stroma, photosynthesis). Investigating if any of the genes were involved

in the same metabolic pathways, it was found that the clusters contained genes that are

involved in the photosystem I and II pathways. Genes that co-clustered using the 5per

parameter included PHOTOSYSTEM I SUBUNIT K (PSAK , AT1G30380 ), indicating

that other photosystem I genes are down-regulated at the same time point. In the grad

clusters, the genes PHOTOSYSTEM II LIGHT HARVESTING COMPLEX GENE 2.3

(LHCB2 , AT3G27690 ) and PHOTOSYSTEM II SUBUNIT T (PSBTN , AT3G21055 )

were found. This suggests that the photosystem II genes are down-regulated at the

same rate as the photosystem I genes, but at di�erent times.

In the Botrytis clusters, in addition to the photosynthesis related genes, the 5per

parameter clustering (Figure 5.14 B1) contained annotation terms related to ribosomes,

biosynthetic processes, as well as stress and pathogenesis-related (PR) proteins. These

included genes encoding proteins belonging to the disease resistance protein (TIR-NBS-

LRR class) family, such as AT5G36930 , AT5G11250 , and AT5G39730 , in addition

to AT5G40060 , which encodes an AIG2-like (avirulence induced gene) family protein.

Altogether, this indicates that disease resistance genes were becoming down-regulated

at the same time as photosynthesis genes, and may be an indication of the defence

response failing, and the plant succumbing to the pathogen infection.

Figure 5.15A shows the clusters containing ANAC092 in the senescence dataset, where

the best �t was to the logistic model, and the genes were clustered using the 5per , grad ,

166



A
1

A
2

A
3

B
1

B
2

B
3

F
ig
u
re

5.
14
:
T
h
e
cl
u
st
er
s
co
n
ta
in
in
g
L
H
C
A
6
in

th
e
se
n
es
ce
n
ce

(r
ow

A
,
lo
gi
st
ic
)
an
d
B
ot
ry
ti
s
(r
ow

B
,
G
om

p
er
tz
2)

d
at
as
et
s.
L
H
C
A
6
is
sh
ow

n
in

re
d
.

T
h
e
cl
u
st
er
s
w
er
e
fo
rm

ed
b
y
cl
u
st
er
in
g
on

th
e
5
pe
r
(c
ol
u
m
n
1)
,
gr
a
d
(c
ol
u
m
n
2)
,
an
d
5
pe
r&

gr
a
d
p
ar
am

et
er
s
(c
ol
u
m
n
3)
.

167



and 5per&grad parameters. The 5per clustering showed genes that were activated at

the same time as ANAC092, and contained genes that were over-represented for nuc-

leotide excision repair, whereas the grad cluster showed genes that were changing at

the same rate, and contained genes involved in abiotic stress, water and salt stress,

including SENESCENCE-ASSOCIATED GENE 113 (SAG113 , AT5G59220 ), which

has been shown to be involved in ABA signalling pathway (Zhang and Gan, 2012),

and a cytochrome CYP76C (AT2G45570 ). The combined 5per&grad cluster primarily

showed annotated terms enriched for anthesis, although the cluster contained a number

of other stress related genes, including ANAC055 (see below), WRKY45 (AT3G01970),

WRKY65 (AT1G29280 ), and another senescence associated gene SAG21 (AT4G02380 ).

These genes have been shown to be involved in stress responses (Eulgem et al., 2000;

Shimono et al., 2007; Weaver et al., 1998). These clusters of genes were also analysed for

the presence of any gene products that are involved in particular metabolic pathways,

using the annotations in MAPMAN (Section 2.1.6). The 5per&grad cluster showed a

number of gene products involved in pathways involving auxin regulated hormone meta-

bolism, MYB domain TF family regulation, and WRKY domain TF family regulation.

These clusters were also compared to the results from an anac092 mutant study to

investigate downstream targets (Balazadeh et al., 2010). A number of ANAC092 tar-

gets were found in the clusters formed with the grad parameter, and included SAG113 ,

WRKY45 , and CYP76C .

In the Botrytis treatment, the best �t to ANAC092 was the Gaussian model, and

clusters were formed using the m, s, and m&s parameters (Figure 5.15B). The m para-

meter indicated the time of maximum gene expression (and the time of gene repression),

the s parameter indicated the duration of the response signal, and the m&s parameters

indicated the genes that reached the maximum at the same time, as well as having the

same response duration. ANAC092 had a relatively large s parameter value, imply-

ing that the activation of the gene was slow, and then gradually subsided. This could

indicate that the genes with this s parameter have a persistent signal. Performing

the cluster analysis on the m parameter revealed annotation terms enriched in catalytic

activity, and included HIGHLY ABA-INDUCED PP2C GENE 3 (HAI3 , AT2G29380 ),

a gene which is involved in ABA signalling. The s cluster contained terms involved in

oxireductase activity, response to stress, autophagy, ageing and secondary metabolism,

and the m&s cluster contained terms related to abscission. Genes products that were

involved in metabolic pathways were found in the cluster formed using the s parameter,

and included involvement in auxin regulated hormone metabolism, MYB domain TF

family regulation, AP2/EREBP domain TF family regulation, bZIP TF family regula-

tion, and ubiquitin protein degradation.

Common genes between these clusters and the experimentally determined downstream

genes were mostly found in the cluster formed using the s parameter, and included a

FAD/NAD(P)-binding oxidoreductase family protein (AT4G38540), and CALCIUM

EXCHANGER 7 (CAX7, AT5G17860).
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Finally for the ANAC055 clusters, in senescence the best �t was the logistic model,

and the clusters were created by clustering on the 5per , grad , and 5per&grad paramet-

ers (Figure 5.16A). Since ANAC055 co-clustered with ANAC092 , there were several

common genes, including WRKY45 , WRKY65 , and SAG21 . Over-represented GO

terms in the 5per clustering contained terms related to DNA binding, as well as re-

sponse to fungus and jasmonic acid. However, it is known that senescence causes the

activation of pathways that are involved in the defence signalling pathways, particularly

of those involved in jasmonic acid and salicylic acid, the primary stress hormones in

Arabidopsis (Windram et al., 2012). Clustering on the grad parameter revealed over-

represented annotation terms involved in transporters, anthesis and secondary metabol-

ism. In addition, there were many genes encoding putative TFs, including AT4G17900 ,

AT2G28200 , AT1G02610 . By performing the cluster analysis on the 5per&grad para-

meters a set of genes was produced with over-represented annotation terms related to

ethylene, jasmonic acid and abscisic acid signalling, senescence, wounding, and water

loss. In this cluster, there were also genes which encoded proteins that were involved in

metabolic pathways responsible for auxin regulated hormone metabolism, MYB domain

TF family regulation, WRKY domain TF family regulation, and ubiqutin protein de-

gradation. Like the ANAC092 results, data from an anac055 mutant was obtained to

compare experimentally determined downstream targets with these clusters (Hickman

et al., 2013). Common genes included AUTOPHAGY 18A (AtATG18a, AT3G62770 ),

which is involved in nutrient deprivation and senescence, and two genes which encode

RING/U-box superfamily proteins, AT5G55970 and AT1G63840 , the latter of which

has been shown to be involved in ABA signalling (Xin et al., 2005).

In Botrytis, the best �t to the ANAC055 gene expression pro�le was the Gompertz1

model (Figure 5.16B). As with all the previous sigmoid shapes, the clusters were cre-

ated by performing the cluster analysis on the 5per , grad , and 5per&grad parameters.

Clustering on the 5per only revealed over-represented annotation terms as response to

stimuli. However, investigation of the cluster members revealed several genes encoding

MATE (multidrug and toxic compound extrusion) e�ux family proteins. These proteins

are generally associated with the transport of toxic compounds out of the cytoplasm

(Eckardt, 2001), but it has been suggested that they may also transport compounds

to assist in the defence response (Omote et al., 2006; Rowe et al., 2010). These com-

pounds may include molecules such as oxidoreductases or cytochrome P450 enzymes

(Rowe et al., 2010). Indeed in the cluster, there were several genes encoding cyto-

chrome P450s. Clustering on the grad parameter showed annotation terms relating to

water deprivation, ethylene stimulus, wounding, and hypoxia. This cluster also con-

tained MATE family proteins, cytochrome P450s and peroxidases, as well as another

NAC TF, ANAC019 (AT1G52890). When clustered on the 5per and grad parameters,

the clusters with ANAC055 also contained over-represented annotation terms that are

associated with Botrytis infection including ethylene stimulus, jasmonic acid stimulus,

response to fungus, wounding, and stress responses (Windram et al., 2012).

Common downstream genes, as compared to Hickman et al. (2013), included JAS-
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MONATE ZIM DOMAIN PROTEIN 8 (JAZ8 , AT1G30135 ), and RESPONSIVE TO

HIGH LIGHT 41 (RHL41 , AT5G59820 ), which encodes a zinc �nger TF that is in-

volved in high light and cold acclimation (Doherty et al., 2009).

In addition to the above analyses, the motifs in the upstream sequences of the genes

in the above clusters were analysed, and over-represented motifs were identi�ed using

a hypergeometric test (described in Section 2.1.7). In this analysis, the presence of 350

experimentally veri�ed plant motifs were identi�ed in the region 500 bp upstream of

transcription start site for the genes in the above clusters. After �ltering for motifs

that were signi�cantly enriched (p-value<0.01) in at least one of the clusters, a set

of 71 motifs were found, and are shown in Figures 5.17 and 5.18 for the senescence

and Botrytis clusters, respectively. From these �gures, it can be seen that there were

signi�cantly more over-represented motifs found in the cluster analyses when clustering

on the grad parameter, as opposed to the 5per parameter. This suggests that the rate

of change of the gene expression levels provide a better indication of common regulators

as opposed to the time of up- or down-regulation.

In the senescence clusters (Figures 5.17), most of the signi�cant motifs were found in

the cluster containing ANAC055 , using the grad parameter (Figure 5.16 A2). Of note

are M00660 (tcACGT), the binding site for a bZIP TF that is involved in activating

a large number of genes in developing rice plants (Izawa et al., 1994), and M01584

(ACGTGG), the binding site of ELONGATED HYPOCOTYL 5 (HY5, AT5G11260),

a bZIP TF in Arabidopsis that is known to be a part of the response to light signalling

pathway, as well as mediating ABA responses during seed germination, early seedling

growth and root development (Chen and Xiong, 2008; Lee et al., 2007). This binding

site is similar to the G-box (CACGTG), which can be found in the promoters of many

light stimulus genes, as well as response to hormones, such as ABA, ethylene and jas-

monic acid (Menkens et al., 1995). Another binding site for HY5 was also found in

the ANAC092 cluster with the 5per parameter (Figure 5.15 A1), albeit from soy bean

(M01186, TGACGT) (Song et al., 2008).

Another signi�cantly over-represented motif was M01136 (AAAG), which is found

in the ANAC092 cluster using the 5per&grad parameters (Figure 5.15 A3), as well as

the ANAC055 , using the 5per&grad parameter (Figure 5.16 A3). This motif is the

binding site for the Dof1 and Dof2 TFs, and are associated with the expression of

multiple genes involved in carbon metabolism in maize, as well as responses to stress

and light (Yanagisawa and Sheen, 1998; Yanagisawa, 2000). Interestingly, this motif is

not enriched in the previously mentioned ANAC055 cluster using the grad parameter,

suggesting that genes with this motif in their promoters have both the same time of

up-regulation, as well as rate of change in gene expression.

In the Botrytis clusters (Figures 5.18), the majority of the enriched motifs were found

when performing the cluster analysis on the grad parameter for the sigmoid models,
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as well as the s parameter of the Gaussian model. As with the senescence data, the

clusters that were formed using the timing parameters (5per for the sigmoid models,

and m for the Gaussian model) did not have many signi�cantly over-represented mo-

tifs. Over-represented motifs from the cluster which contained LHCA6 , clustered on

the grad parameter (Figure 5.14 B2) included light-responsive promoter regions, includ-

ing S-000424 (GATAAGR), the I-box (Mart� nez Hernández et al., 2002), and M00435

(CACGTGG), the binding site for PHYTOCHROME INTERACTING FACTOR 3

(PIF3, AT1G09530), which is involved in phytochrome signalling pathways in Arabidop-

sis (Mart� nez Garc� a et al., 2000). These promoters are both involved in responses

to light, and are unsurprising considering many of the genes in the cluster were pho-

tosynthesis related. In the cluster where ANAC092 was clustered on the s parameter

(Figure 5.15 B2), over-represented motifs included the binding site of a NAC TF in

wheat, TaNAC69 (M01055, CGTaN{5}tACG), which is involved in responses to both

biotic and abiotic stresses (Xue, 2005; Xue et al., 2011), as well as the binding site of

TGA1b in tobacco (M00946, gtgACGTgac) (Izawa et al., 1993). TGA TFs are gener-

ally associated with SA signalling (Johnson et al., 2003), although it has been shown

that another member of the family, TGA3, is important in regulating the response to

Botrytis (Windram et al., 2012). The HY5 binding site (M01584, ACGTGG) was also

over-represented in this cluster (Lee et al., 2007). In the cluster containing ANAC055

and clustered using the 5per&grad parameters (Figure 5.16 B3) the WRKY TF bind-

ing site (S-000310, TTTGACY) was over-represented. As mentioned previously, many

WRKY TFs have been shown to be involved in a number of stress responses (Eulgem

et al., 2000).
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Figure 5.17: Signi�cantly over-represented motifs that were found in the up-stream
regions of the genes that are found co-clustered with ANAC092, ANAC055, and
LHCA6 using the senescence dataset. Signi�cance was determined using a hyper-
geometric test, where darker, redder colours indicate higher signi�cance. The rows
show the di�erent motifs, and the columns show the di�erent cluster analyses using
the di�erent parameter combinations. G indicates clustering on the grad parameter,
5 on the 5per parameter, and 5G is using both. Scale is given in log(p-value).
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Figure 5.18: Signi�cantly over-represented motifs that were found in the up-stream
regions of the genes that are found co-clustered with ANAC092, ANAC055, and
LHCA6 using the Botrytis dataset. Signi�cance was determined using a hypergeo-
metric test, where darker, redder colours indicate higher signi�cance. The rows show
the di�erent motifs, and the columns show the di�erent cluster analyses using the
di�erent parameter combinations. G indicates clustering on the grad parameter, 5
on the 5per parameter, and 5G is using both. M indicates clustering on the m para-
meter, S on the s parameter, and MS is using both. Scale is given as log(p-value).
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5.6. Discussion

In this chapter, the data from the Arabidopsis datasets was analysed. The datasets

were created to investigate the e�ect of two di�erent environmental stresses, namely

the developmental stress investigating changes in gene expression as the plant ages,

and in response to the necrotrophic pathogen, Botrytis cinerea. An application was

developed using a regression approach, together with the cluster analysis, and named

ShapeCluster. Using ShapeCluster, it was possible to analyse the data and determine

the general function of the various sets of genes. As with the yeast data in the previous

chapter, understanding what each parameter describes in terms of the biological system

being studied is paramount to obtaining the best outputs. As before, a large number

of clusters were produced, potentially containing a large amount of information. The

analysis here focussed primarily on the most abundant models in each of the datasets.

As with the analyses in Chapter 4, the clusters were formed based on single or pairs of

parameters. In doing so, this revealed di�erent sets of genes with functions relating to a

particular aspect of the expression pro�le, such as the timing of the activation of genes,

or the rates that gene expression is changing. In the analyses of the datasets, a broad

overview of the molecular functions of the organism as it undergoes the respective stress

was revealed. Using the described parameters, it was found that genes that were down-

regulated were generally involved in chloroplast activity and photosynthesis. This makes

sense as photosynthesis is down-regulated in senescence as the cellular components

of the leaf is being broken down (Breeze et al., 2011), as well as in Botrytis, when

the plant is attempting to mount a defence response, where it is thought that these

photosynthetic genes are being repressed so that the cellular nitrogen may be used to

synthesise new defence proteins, or mobilised away (Windram et al., 2012). Many of

the up-regulated genes were involved in the hormone signalling pathways involving the

stress hormones, jasmonic acid, salicylic acid, ethylene and abscisic acid. In addition,

there were numerous clusters with possible DNA binding activity, possibly indicating

a presence of TFs. These could assist in the identi�cation of key regulators in these

stresses. Many of the over-represented annotation terms were repeated in the cluster

analyses on di�erent shapes, and this is likely due to the possibility of a gene expression

pro�le �tting to multiple models (Tables 3.2 and 3.3). However, it is possible for clusters

to be over-represented in the same annotation term, but have very di�erent shapes, and

this could be an avenue for further investigation. By using the �tted parameters, it was

possible to infer biological information from the di�erent shapes. In particular, by using

the timing parameters a timeline of the processes that are occurring in the organism over

the time course could be produced. These were compared to the published results, and

found to be consistent. Additionally, a few new responses were discovered, including

auxin homeostasis and a late down-regulation of photosynthesis genes in senescence,

and the response to hypoxia in Botrytis.

By clustering with the control information, more information about the function of

the genes was revealed. Using the model �t of the control dataset, it was possible to sort

the genes into subclusters based on the �t under the control conditions. It was thought
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that genes with common biological functions would have similar pro�le shapes in both

the mock and infected treatments. Thus, this process re�nes the clusters to uncover the

signi�cant over-represented terms that may be hidden due to the large number of terms

in the cluster. In addition, this method may be useful in identifying genes that are

di�erentially expressed compared to the control. However, as with the meta-clustering

analyses, this approach did produce a large number of small clusters. Generally it was

possible to obtain some sort of over-representation score for the cluster, but there were

cases where the over-representation tests did not reveal anything due to the cluster sizes

being too small, or a lack of annotation for the genes in the cluster.

As with the yeast analysis, the similarity of annotations in the clusters was determ-

ined using the BHI score. The BHI scores for this analysis were lower than the results

obtained from the yeast data, and this re�ects the level of annotation relative to the gen-

ome size. Arabidopsis has a genome of over 27 000 genes whereas yeast has just over 6500

genes, 76% of which are veri�ed (as of October 2013, http://www.yeastgenome.org/cache

/genomeSnapshot.html). It is estimated that approximately 30% of the Arabidopsis

genome has been experimentally veri�ed (Quanbeck et al., 2012). The results from

ShapeCluster were compared to the clusters from SplineCluster, and the values of the

clusters from ShapeCluster were generally slightly lower. However, there were higher

BHI scores for the decreasing sigmoid models. This is possibly due to the higher number

of genes which have been identi�ed as photosynthesis related genes. Thus, the lower

scores can be attributed to the poorer annotation level. In addition, it was also shown

that by using the control information, clusters that have more homogeneous annotations

could be produced.

In addition, a more comprehensive analysis of the clusters was performed, where

clusters containing genes with known stress responses were analysed. By performing

the cluster analysis on a variety of parameters, information on these genes was obtained.

By using a known photosynthesis-related gene, LHCA6 , it was possible to determine

that the results were what was anticipated. That is, it would be expected that other

photosynthesis-related genes would co-cluster with LHCA6 . When investigating the

known stress genes, ANAC092 and ANAC055 , again some known information was

found, such as the activation of pathways involving the stress-related hormones, jas-

monic acid and salicylic acid, both of which are implicated in both the senescence and

Botrytis stresses. In addition to this, some potentially new information was revealed,

such as the presence of certain WRKY TFs, which could be important in the activation

of senescence. In addition, it was found that ANAC055 often clustered with MATE

proteins, which are generally thought to be involved in toxin resistance. However, it has

been suggested that this family of proteins may also be involved in defence responses.

Thus, in using the regression and clustering approaches it may be possible to analyse

genes with unknown function to determine what the genes may be functionally related

to each other.

The promoter regions of the genes in these clusters were also investigated for motifs,

which may indicate the presence of genes that are co-regulated. Some motifs that
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may be of interest were found, particularly in clusters formed using the rate of change

parameters, which produced more enriched motifs as opposed to the initial point of

activation. This suggests that these genes become up- or down-regulated at the same

rate, rather than getting activated all at once. From this analysis, a large number of

motifs that were over-represented were binding sites for TFs from a variety of plant

species, as well as TFs that were involved in stress responses. Several light-responsive

promoters were found in the clusters containing LHCA6 , including one motif that is

associated with light responsive di�erential expression, and another that was associated

with PIF3, a TF that interacts with photoreceptors, resulting in signal transduction

pathways that result in changes of up to 30% of the plant transcriptome (Shin et al.,

2007). In addition, in both the Botrytis and senescence clusters, the HY5 binding

site was over-represented, which is also related to light responsive signalling, as well as

hormone signalling. The PIF3 and HY5 signalling pathways have been shown to be

related (Shin et al., 2007), so this may indicate some crosstalk between these and other

stress response pathways. These motifs were obtained from experimentally veri�ed

binding sites, and as a result, is a relatively small pool of results. If the aim was to �nd

novel binding sites, tools such as MEME (Bailey et al., 2006) or RSAT (Van Helden,

2003) may be used.

ShapeCluster was thus used to analyse a large set of genes, where models were �tted

to the expression pro�les and analysed in terms of the �tted parameters. These models

were also �ltered to identify the �ts that were well described, thus ensuring that the

most relevant information was retained. These analyses provided a biologically focussed

representation of gene expression pro�les, and may provide an improved understanding

of the molecular mechanisms that occur in response to stimuli. In addition, this could

aid in identifying previously undiscovered regulators, or assist in assigning putative

functions to genes with no known function.
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6. Investigation of the e�ect of multiple

environmental stresses in plants

6.1. Introduction

Plants are constantly bombarded by a multitude of biotic and abiotic stresses, and this

can lead to reduced yields in crop plants. Understanding how plants respond to more

than one stress is of utmost importance. Many single stress experiments have been

performed, and large sets of stress- or pathogen-responsive genes have been identi�ed.

Investigation into these sets of genes has revealed that there is a great deal of cross-talk

between the various stress response pathways. Thus, investigations into the responses

of plants to combinations of stresses, such as drought and pathogen attack, would be

desirable. Furthermore, it would be extremely valuable to investigate whether it is

possible to predict the expected response to a combination of stresses, based on the

response to individual stresses.

Since senescence is related to age, the combination of this stress together with that of

a pathogen response is often known as age-related resistance, where defence responses

are altered by the developmental processes (Whalen, 2005). This age-related resistance

is driven by a range of molecular mechanisms, and changes depending on the pathogen.

Generally, it has been observed that younger plants are more susceptible to pathogens

and become more resistant over time. For example, it has been shown that older

Arabidopsis plants were more resistant to Hyaloperonospora arabidopsidis (Rusterucci

et al., 2005), and while 3-4 week-old Arabidopsis plants were susceptible to Pseudomonas

syringae pv. tomato, plants that are >5 weeks old showed a 10-100 fold reduction in

bacterial growth (Kus et al., 2002). This e�ect is also true for many other plant-pathogen

systems. For example, 20-25 day old Nicotiana benthamiana plants became infected with

Phytophthora infestans, while mature plants were resistant to all isolates (Shibata et al.,

2010). In addition, there is an increased resistance with older plants between wheat

and Puccinia recondita f.sp tritici (Pretorius et al., 1988), soybean and Phytophthora

megasperma var sojae (Ward et al., 1981), cotton and Rhizoctonia solani (Hunter et al.,

1978), and cowpea and cow-pea rust fungus (Heath, 1994). The mechanisms involved in

the age-related resistance appear to di�er widely, and in many cases, the exact molecular

processes are unknown.

However, with some pathogens, there is increased susceptibility with an increase in

age, such as with onion and Alternaria porri (Miller, 1983). It is likely to be the case

with Botrytis, as it boosts senescence through the production of ethylene (Cristescu

et al., 2002), which promotes leaf senescence (Grbi¢ and Bleecker, 1995; Wang et al.,
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2013), as well as fruit ripening and �ower senescence (Klee and Clark, 2010). In addition

to ethylene, some isolates of Botrytis also produce abscisic acid (Sharon et al., 2007),

which is a known inducer of senescence (Lim et al., 2007).

When a plant is exposed to combined environmental stresses, it is thought that the

response from a single stress would be modulated to form a combined response (Atkinson

and Urwin, 2012; Mittler and Blumwald, 2010). Rasmussen et al. (2013) suggest �ve

di�erent predicted behaviours that may occur - combinatorial, cancelled, prioritised,

independent, and similar (Figure 6.1). A combinatorial response occurs where the

responses are similar in the single stress situations, but produces a di�erent response

when combined. The independent response is where one of the individual stresses does

not respond to the stress, and the response to the combined stress is the same as

the other stress response. A cancelled response is where the individual responses are

di�erent, but return to control levels in the combined response. A prioritised response is

where the responses are di�erent, but is the same level as one of the individual stresses.

This is similar to the independent response, expect that there is a response to both

stresses. Finally, the similar response is if both individual responses are the same and

the combined response is similar to the individual response. Thus it can be seen that

there a wide range of possible outcomes in response to a combination to two di�erent

environmental stresses. However, the di�culty in predicting these combined responses

from the single stress data would be identifying the overriding factor that in�uences the

response (Rasmussen et al., 2013).

These predicted responses from combinations of environmental stresses provide a use-

ful starting place to determine the e�ect of simultaneous stresses. However, these pre-

dictions were developed with only a single time point in mind, and only investigate

three states - up-regulated, down-regulated, and unchanged. Thus by using the �tted

regression models from the time series expression pro�les described in Chapter 3, it may

be possible to investigate the gene expression pro�le for the combined stress treatment

using these models. This chapter describes some of the possible outcomes of a com-

bined stress response using these models, as well as biological experiments to validate

the predictions.

6.2. Combined stress predictions

Through the use of the �tted regression models from the senescence and Botrytis data-

sets, it was possible to make predictions as to the e�ect of a combined stress. Given

two expression pro�les that are on the same time scale, either of them could be the

more in�uential in determining the outcome of the combined stress (Figure 6.2A-B).

However, in this case, the Botrytis infection takes place on a much shorter time scale as

compared to the senescence (48 hours as opposed to 22 days). Thus, it seems reasonable

to assume that the shorter response would take precedence when combined.

Two simple models are proposed: an additive model, and a replacement model. The

additive model is simply the cumulative expression level between the two stress re-

sponses. That is, the imposition of the second stress simply adds to the response of
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cancelled!

similar!

independent!

prioritised!

combinatorial!
S1          S2         S1+S2!

S1          S2         S1+S2! S1         S2         S1+S2!

S1         S2         S1+S2! S1           S2         S1+S2!

Figure 6.1: Schematic representation of possible results that may be obtained as a result
of a combined stress. The two columns on the left (S1 and S2) are the responses from
two individual stresses, and the column on the right shows the response from the
combined stress (S1+S2). The dotted lines represent no change in gene expression
from the control, and above and below the line represent up- and down-regulation,
respectively. Figure adapted from Rasmussen et al. (2013).
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the �rst stress. This is illustrated in Figure 6.2C, where the infection is predicted to

result in the basal expression plus the expression as a result of the infection process. In

the replacement model, where the expression pro�le from one of the stress treatments

displaces the other gene expression response. This is shown in Figure 6.2D, where the

Botrytis stress replaces the underlying senescence stress, but only reaches the same

maximum as it would have in the single stress.

Another option, which is not addressed here, is where the responses are more com-

plicated than simply the two combined and is instead a result of other interactions,

both upstream and downstream of the gene of interest. In these cases, there may be a

synergistic interaction where the combination results in a di�erent pattern of response,

or antagonistic where the gene expression response for the combined stressed is reduced

below the level for either stress alone. As a result, it would be extremely di�cult to

predict the e�ect of a combined stress simply from the expression pro�les from the single

stress data.

6.3. Phenotype screen

To determine if there was a relationship between senescence and Botrytis cinerea in-

fection, a phenotype screen was performed where di�erent aged leaves were infected

and the size of the lesion was measured. Plants were grown as described in Section

2.2.1.1. Seeds were sown at di�erent times to obtain di�erent aged plants, and time

points of 28, 31, and 35 days after sowing (DAS) were selected based on the data from

the original PRESTA long day senescence screen (Breeze et al., 2011). These time

points were chosen to represent a mature leaf, a leaf beginning to show visible signs

of senescence, and a time point approximately in-between these points. Leaf 7 of the

Arabidopsis plants was tagged with cotton string on emergence. This leaf was harves-

ted from the 28, 31 and 35 DAS plants and placed on 0.8% w/v plant agar (Duchefa

Biochemie) in propagator trays. Ten replicates at each plant age were obtained. The

Botrytis inoculum was created as described in Section 2.2.1.2. A single 0.6 ml droplet

of the inoculum was placed on each leaf, and the trays were covered with lids. At 48,

60 and 72 hours post-infection (hpi), photographs were taken. Using the ImageJ image

analysis software (Abramo� et al., 2004), the sizes of the lesions were quanti�ed, and

the results are shown in Figure 6.3.

As expected, there was a mean-variance relationship in the lesion sizes, that is, the

variance became larger as the size of the lesion became larger. Thus, the data was

log-transformed. It can be seen that there is a slight increase in lesion size between the

28 and 31 day old plants, and much larger lesions in the 35 day old plants as compared

to the younger plants.

To obtain statistical validation of the results, a two-way ANOVA was performed using

the age of the plants, and the time of infection as factors. The model used was

log(lesion) ∼ Harvest ∗ Time+ Error(rep/leaf)
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A B

C D

Figure 6.2: Illustration of the predicted multi-stress models using ANAC092 as an ex-
ample. The senescence (A) and Botrytis infection (B) stresses are shown on the
same time scale. The additive model (C) assumes the combined model is simply the
addition of the two single stress models. The replacement model (D) describes the
case where one of the models replaces the gene expression, maintaining the same
change in gene expression. In both models, the solid line indicates infection at time
point 4, the dashed line indicates infection at time point 8, and the dotted line
indicates infection at time point 12.
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Figure 6.3: Figure showing the lesion sizes on the leaves from the phenotype screen.
Shown are the three di�erent harvest times (28, 31, and 35 DAS), and the lesion
sizes at the time points post-infection (48, 60 and 72 hpi).
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Figure 6.4: Control data for phenotype screen, where leaves from bos1 (green) and arf2
(dark yellow) mutants were also used as positive and negative controls to ensure the
Botrytis inoculum was functioning correctly. Shown are the lesion sizes from these
leaves as well as the 28 DAS wildtype samples (blue) as before.

where lesion is the size of the lesion (in cm2), Harvest is the di�erent ages of the leaf

(28, 31 and 35 DAS plants), Time is the time after infection (48, 60 and 72 hpi), and the

Error term indicates the inclusion of an error model made up of the sample leaf number

nested within the replicate number. The results from this showed that the infection

time was extremely signi�cant, as was the age of the plant (both p-value<0.001). This

indicated that the plant's susceptibility to Botrytis increases with age. The interaction

between these terms was not signi�cant.

As a con�rmation that this result was true, a set of controls were also performed using

a bos1 over-expresser, and an arf2 knockout (Vert et al., 2008). The bos1 mutant was

shown to be more susceptible to Botrytis infection, and the arf2 mutant is known to be

resistant, thus acting as a positive and negative control, respectively. Leaves from both

of these mutants were harvested at 28 DAS, and infected with Botrytis. The results

are shown in Figure 6.4. As expected, it can be seen that the arf2 mutant has slightly

smaller lesions as compared to the wildtype, and the bos1 mutant has signi�cantly larger

lesions.
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Figure 6.5: Photographs of the sampled leaves showing the di�erent levels of senescence.
Also shown are the droplets of the Botrytis inoculum.

6.4. Gene expression analysis in response to multiple

stresses

With the con�rmation that there is indeed an e�ect of leaf age on Botrytis infection,

a larger experiment was performed to investigate the gene expression for a selection of

genes at the various harvest times. Since each replicate sample comes from a di�erent

plant, the experiment was designed to take a variety of experimental factors into ac-

count. These included the replicate sample number, the treatment that the leaf would

undergo, as well as the distance from the air intake vents. This last factor was added as

it was hypothesised that the plants closest to the air vents would dry faster than those

away from the vents, and thus develop di�erently.

This experiment was designed as a randomised complete block design with a nested

factorial treatment structure, and the layout of the plants in the controlled environment

room is illustrated in Figure 6.6. The plants were grown in identical growth conditions

as before (Section 2.2.1.1). In the above phenotype experiment, the leaves in the �nal

harvest time (35 DAS) were not showing visible signs of senescence, so this experiment

was altered to provide slightly older leaves. Thus, leaves were harvested from plants 28,

32, and 36 DAS, and examples of these leaves are shown in Figure 6.5 to illustrate the

di�erent levels of senescence.

From the published Botrytis time series experiment (Windram et al., 2012), it was

identi�ed that that majority of genes produced a maximum response between 20 and 28

hpi, and thus these time points were used to investigate the e�ect of Botrytis infection.

Thus, there were �ve di�erent treatments performed for each harvest time, namely

initial time point (T0), 20 hpi mock, 20 hpi infected, 28 hpi mock, and 28 hpi infected.

The Botrytis inoculum was created as before (Section 2.2.1.2), and a mock inoculum

was created using only half-strength grape juice. Each inoculation was performed by

applying multiple 0.6ml droplets of the respective inoculum, ensuring coverage of the

leaf (between 3-6 spots, depending on the size of the leaf). Each set of treatments was

replicated four times, and the position assigned such that each replicate was a di�erent
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distance from the air vents. The location of treatments within each harvest replicate

was randomly determined. Each treatment consisted of plants that were grown in sets

of 12 plants, and the 10 most similar leaves were selected. Thus, each treatment had

10 replicate samples. At the appropriate time point, the whole leaf samples were snap

frozen in liquid nitrogen and stored at -80ºC.

For each treatment in each of the harvests, a RNA extraction was performed. Six

of the ten replicate leaves from each treatment were ground together using a pestle

and mortar that was chilled with liquid nitrogen. A portion of this ground sample

(approximately 1g) was used to extract the RNA. The RNA was extracted, and from

this, cDNA was synthesised, as described in Sections 2.2.1.3-2.2.1.5.

In order to perform a quantitative PCR (qPCR) analysis, it is necessary to identify a

gene of interest. A number of genes were selected either as they were predicted from the

pre-existing PRESTA data (Section 1.2) to be highly connected to other stress response

genes in both Botrytis or senescence, or possessing an interesting expression pro�le.

Genes were selected based on the strength and shape of the response to both senescence

and Botrytis infection. ANAC092 (AT5G39610 ) and ANAC055 (AT3G15500 ) were

selected as they have been shown to be involved in a number of stress responses, as

well as being co-expressed with other stress response genes (see Section 5.5). LHCA6

(AT1G19150 ) andOXI1 (AT3G25250 ) were selected they both showed strong responses

to the Botrytis and senescence stresses, and NFYA7 (AT1G30500 ) was selected as it

showed opposite shape of response between the two stresses. The �tted models from

the regression analysis (Chapter 3) for these genes in the two single stress datasets are

shown in Figure 6.7. PUX1 (AT3G27310 ) was used as the reference gene, as it was

found to be unchanging in response to both Botrytis and senescence (Appendix A).

Thus, by using this gene, it is possible to obtain a baseline level of gene expression. The

primer sequences for these genes are listed in Table B.1.

A set of qPCR experiments were performed using samples from these di�erent treat-

ments. Using PUX1 as a reference gene, it was possible to obtain −∆Ct values as a

measure of gene expression.

−∆Ct = −(Ctgene − CtPUX1)

where the Ct values are the cycle number required to pass a detection threshold and

obtained using the qpcR package in R (Section 2.2.1.6). All −∆Ct values are provided

in Appendix D. This value provides an indication of how up- or down-regulated a gene

expression level is relative to a baseline reference level. By plotting the −∆Ct values for

the various genes, the gene expression changes between the various infection time points

and the di�erent plant ages could be visualised. These �gures are all shown below.

To provide statistical support, and based on the experimental design illustrated in

Figure 6.6, the data was modelled using the following formula:

−∆Ct ∼ Harvest ∗ (Tzero/(Time ∗ Inoc)) +BioRep. (6.1)

187



T3 T4 

T2 T3 

T4 T5 

T5 T1 

T1 T2 

T2 T1 

T1 T5 

T3 T2 

T4 T3 

T5 T4 

T4 T2 

T3 T1 

T2 T5 

T5 T3 

T1 T4 

T1	   T3	  

T5	   T2	  

T4	   T1	  

T2	   T4	  

T3	   T5	  

T4 

T5 

T3 

T2 

T1 

T5 

T1 

T4 

T3 

T2 

T1	  

T2	  

T3	  

T4	  

T5	  

H1    H3      H3    H2 

H2    H1      H1     H3 

H1    H2       H2    H3  

1     2        3      4 

1      2        3     4 4       3         2       1 

T1 

T2 

T5 

T4 

T3 

T3 

T4 

T2 

T1 

T5 

Time	  0	  

20	  hpi	  mock	  

20	  hpi	  infected	  

28	  hpi	  mock	  

28	  hpi	  infected	  

Figure 6.6: Illustration showing the randomised complete block design with a nested
factorial treatment structure. Each coloured block represents a set of 12 plants with
a speci�c treatment. The arrows on the side represent the location of the air vents,
the numbers above each block is the biological replicate number, and the number
below is the harvest number (H1: 28 DAS, H2: 32 DAS, H3: 36 DAS).
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A B

C D

E

Figure 6.7: Plots of the �tted models from the microarray experiments, plotted on the
same time scale. Shown is the data from the senescence experiment (solid line), as
well as the Botrytis (dashed line) and Botrytis mock (dotted line). (A) ANAC092,
(B) ANAC055, (C) LHCA6, (D) OXI1, (E) NFYA7
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This meant that the −∆Ct values were modelled on all the interactions between age of

the plants (Harvest), and the e�ect of the time after infection (Time) and whether it

is a mock or Botrytis infection (Inoc) nested within the �rst time point (Tzero). The

biological replicate number (Biorep) was a block e�ect included to determine if there

were any signi�cant di�erences between the biological replicates, for example, the e�ect

of being grown on di�erent shelves.

In the ANAC092 expression analysis (Figure 6.8A), it can be seen that there are

expression di�erences between the various harvest times, as well as an e�ect following

Botrytis infection. There are distinct di�erences between the di�erent aged leaves at

the �rst time point of infection, indicating that the expression of ANAC092 increases

with the age of the plant. This con�rms the result seen in the original time course

(Figure 6.7A). Botrytis infection also appears to increase expression of ANAC092, again

con�rming results from the original time course experiment.

Using the model described in Equation (6.1), an ANOVA table was generated to

describe the signi�cance of each of the treatment e�ects, and is shown in Table 6.1.

From this table, it could be determined that the di�erences in expression levels between

the �rst time point (T0) and all others were extremely signi�cant (p-value<0.001). In

addition, it also indicated that there were signi�cant di�erences between the harvests

(p-value<0.01), and a signi�cant interaction between the di�erent inocula used in the

treatment and time after inoculation (p-value<0.01).

This table of ANOVA values could also be used to provide an indication of the variab-

ility between the technical replicates, through the use of the standard error of di�erence

between two means (SED). This was calculated as

SED =

√
2 ·RMS

r

where RMS is the residual mean square from the ANOVA, and r is the number of

biological replicates (in this case, four).

By extracting the e�ects the signi�cant terms from the ANOVA analysis, it was

possible to construct a predicted model. The magnitude of each e�ect was determined

using the model.tables function in R, and together with the grand mean, a predicted

model could be produced to reconstruct the expression pro�les. This model removes

the noise, and thus provides a clearer illustration of the gene expression pro�les.

The model is illustrated for ANAC092 in Figure 6.8B. From this �gure, it can be seen

that there are signi�cant di�erences between the di�erent harvests, where the 28 DAS

plants have the lowest expression levels, and the 36 DAS have the highest expression

levels, implying that the expression level increases as the plants age. In all the di�erent

aged plants, the expression in both mock and Botrytis inocula increased at the 20 hpi

time point, and at the 28 hpi time point, the expression level decreased in the mock

treated samples, but increased in the Botrytis treated samples.

A similar situation could be seen in the ANAC055 gene expression pro�le (Figure

6.9A). Again, gene expression starts at di�erent levels, depending on the age of the

plants, and upon infection, the gene expression level increases to a relatively similar
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Figure 6.8: (A) ANAC092 expression analysis, showing the gene expression for this gene
at 0, 20 and 28 hours after Botrytis infection. The blue lines are the 28 DAS plants
(H1), the green lines are 32 DAS plants (H2), and the red lines are the 36 DAS
plants (H3). The solid lines represent the infected data, and the dotted lines are
the mock data. The black bar indicates the standard error of di�erences between
two means (SED=1.35). (B) The Predicted model for ANAC092 analysis, using the
signi�cant interaction terms in Table 6.1.
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Table 6.1: Full ANOVA table for ANAC092 showing all the interaction terms and p-
values for the terms. BioRep is the biological replicate number, Harvest is the age of
the plant, Tzero is an indication if the sample is from the �rst time point, and Inoc
indicates whether the treatment was with the mock or Botrytis inocula. A colon (:)
between terms indicates an interaction between those terms.

df SS MS F value P(>F)

BioRep 3 2.37 0.79 0.217 0.88403

Harvest 2 37.58 18.79 5.163 0.00989

Tzero 1 71.08 71.08 19.528 6.85E-005

Tzero:Time 1 11.32 11.32 3.11 0.08509

Tzero:Inoc 1 28.63 28.63 7.865 0.0076

Harvest:Tzero 2 14.85 7.42 2.04 0.14273

Tzero:Time:Inoc 1 28.78 28.78 7.908 0.00745

Harvest:Tzero:Time 2 12.37 6.18 1.699 0.19524

Harvest:Tzero:Inoc 2 9.44 4.72 1.296 0.2843

Harvest:Tzero:Time:Inoc 2 3.41 1.71 0.469 0.629

Residuals 42 152.87 3.64

level. The mock pro�les were relatively unchanging across the time points.

The signi�cant interaction terms from the ANOVA model for ANAC055 and all sub-

sequent genes are shown in Table 6.2. For ANAC055, the signi�cant terms were again

harvest time, and T0 vs. the later time points (both p-value<0.001). The expression

values were signi�cantly di�erent between the times after infection (20 vs. 28 hpi, p-

value<0.05), as was the di�erent between the di�erent inocula treatments (mock vs.

infected, p-value<0.001). The interaction between the di�erent inocula treatments and

time after infection was also signi�cant (p-value<0.001), indicating that there were sig-

ni�cant di�erences between the mock and infected treatments, and the infection time

(20 vs. 28 hpi).

The predicted model for ANAC055 using these signi�cant terms is shown in Figure

6.9B. As would be expected from the signi�cant terms described above, the predicted

model has di�erent starting expression levels for each of the di�erent harvests (although

the 32 and 36 day old plants are relatively similar). In addition, the mock and Botrytis

inocula treatments are signi�cantly di�erent from each other, as are the expression

values for the 20 and 28 hpi time points.

In the LHCA6 analysis (Figure 6.10A), the gene expression decreased in the mock

infected samples in a similar pattern to both of the original time series experiments.

The 36 day old plants had a lower expression level than the other plants (28 and 32

DAS), although these younger plants appeared to have a larger change in expression

level as compared to the 36 DAS samples. As expected, the Botrytis infection resulted

in a further down-regulation of the gene expression levels.

From the ANOVA, there are signi�cant di�erences in the expression levels between

the T0 points and subsequent time points (p-value<0.001), as well as �rst time point

compared to the mock and Botrytis inoculated samples (p-value<0.01) (Table 6.2).

From these terms, it can be determined that the main e�ect is the e�ect of the inocu-

lation treatment, and the plant age is not signi�cant. This is shown in the predicted
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Figure 6.9: (A) ANAC055 expression analysis, showing the gene expression for this gene
at 0, 20 and 28 hours after Botrytis infection. The blue lines are the 28 DAS plants,
the green lines are 32 DAS plants, and the red lines are the 36 DAS plants. The solid
lines represent the infected data, and the dotted lines are the mock data. The black
bar indicates the standard error of di�erences between two means (SED=1.38). (B)
The predicted model for ANAC055 analysis, using the signi�cant interaction terms
in Table 6.2.
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Table 6.2: Table of all signi�cant interactions for each gene.

Gene Term F value P (>F)

ANAC055

Harvest 13.865 2.38E-005
Tzero 32.997 9.26E-007
Tzero:Time 4.797 0.03412
Tzero:Inoc 132.45 1.44E-014
Tzero:Time:Inoc 7.635 0.00846

LHCA6
Tzero 17.143 0.000163
Tzero:Inoc 11.901 0.00129

OXI1

Harvest 23.154 2.09E-007
Tzero 98.203 2.51E-012
Tzero:Time 5.86 0.0201
Tzero:Inoc 610.689 <2.00E-016
Harvest:Tzero 3.247 0.0494
Harvest:Tzero:Inoc 4.553 0.0165

NFYA7
BioRep 4.308 0.00976
Tzero:Inoc 4.377 0.04252

model (Figure 6.10B). In both the mock and Botrytis infection cases, the gene ex-

pression decreases, although the Botrytis infection results in a greater decrease in gene

expression. However, after 20 hour post-infection, the expression level remains constant.

Similarly, with the OXI1 data (Figure 6.11A), it could be seen that the initial time

points had relatively di�erent expression levels between the di�erent harvests, but all

approached the same expression in the Botrytis infection. The expression levels from

the mock samples remained relatively constant.

Using the ANOVA analysis (Table 6.2), there were a large number of signi�cant

interaction terms. The most signi�cant terms were the di�erences between the expres-

sion levels of the di�erent aged plants, the di�erences between the T0 levels and later

levels, and di�erences between the inocula treatment (all p-value<0.001). Other signi-

�cant terms were the di�erence between the times after infection, and an interaction

of the di�erent harvests, the initial time point and the inoculation treatment (both

p-value<0.05). These e�ects can also be seen in the predicted model (Figure 6.11B),

where there are di�erence between the di�erent aged plants, the mock and Botrytis

infection, and di�erence between the times after infection.

In contrast to the previous genes, the NYFA7 expression pro�les had opposite direc-

tions of response in the di�erent stresses, namely increasing in senescence and decreasing

in Botrytis. In the combined stress experiment (Figure 6.12A), it can be seen that the

data is very di�erent compared to the previous genes, with the expression pro�les seem-

ingly cancelling each other out, resulting in a �at pro�le. In addition, the range of

response is much smaller in comparison to the previous genes. In the mock samples,

the expression pro�les seemed to follow the increasing pattern with an increase in age.

In the infected samples, there was a slight decrease in expression, although not as pro-

nounced as in the single stress experiment. The SED for this data was large relative to

the range of response (SED=1.74), and this could possibly be distorting the results.
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Figure 6.10: (A) LHCA6 expression analysis, showing the gene expression for this gene
at 0, 20 and 28 hours after Botrytis infection. The blue lines are the 28 DAS plants,
the green lines are 32 DAS plants, and the red lines are the 36 DAS plants. The solid
lines represent the infected data, and the dotted lines are the mock data. The black
bar indicates the standard error of di�erences between two means (SED=1.59). (B)
The predicted model for LHCA6 analysis, using the signi�cant interaction terms in
Table 6.2. The solid line is the infected samples, and the dotted line is the mock
samples.
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Figure 6.11: (A) OXI1 expression analysis, showing the gene expression for this gene at
0, 20 and 28 hours after Botrytis infection. The blue lines are the 28 DAS plants,
the green lines are 32 DAS plants, and the red lines are the 36 DAS plants. The solid
lines represent the infected data, and the dotted lines are the mock data. The black
bar indicates the standard error of di�erences between two means (SED=0.54). (B)
The predicted model for OXI1 analysis, using the signi�cant interaction terms in
Table 6.2.
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The ANOVA analysis (Table 6.2) showed that there was a slight interaction between

the inoculation treatments (p-value<0.05), and interestingly a signi�cant di�erence

between biological replicates (p-value<0.01). As a result, the predicted model (Figure

6.12B) has di�erent models depending on the biological replicate. The predicted model

also makes clearer the e�ect of the Botrytis treatment, where the mock treated samples

showed an increase in gene expression, and the Botrytis infected samples resulted in an

unchanging expression pro�le.

6.5. Real-time investigation of gene expression

In addition to the qPCR experiment, luciferase transcriptional reporters were used to

identify real-time changes in the transcription of the genes of interest. The full intergenic

region was used for NFYA7 (819 bp), but only a portion of the ANAC092 promoter

(1050 bp) was used. The full length of the ANAC092 intergenic region was over 4000

bp, but a fragment was used as there were di�culties cloning the entire promoter into

the vector. Nonetheless, it was assumed that the majority of promoter regions were

primarily found in the �rst 1000 bp upstream of the transcription start site. The pro-

moters were cloned using the Gateway cloning system, and described in Section 2.2.2.

This process is summarised in Figure 6.13. The promoter fragments were ampli�ed

from genomic DNA (using the primers in Table B.2), and cloned into the donor vec-

tor, pDONR/Zeo. The promoter fragment was then cloned into the destination vector,

pBGWL7, which contained the luciferase cloning sequence and a Basta (glufosinate

herbicide) resistance gene. This vector was used to transform Agrobacterium tumefa-

ciens cells, which were used to transform Arabidopsis plants. Successful transformants

(T1 plants) were selected from seedlings that were able to grow in the presence of Basta.

Several seedlings were grown to seed, and these seeds were again selecting using Basta,

to identify heterozygous transformants (sets of seeds that segregated in the presence of

Basta with a 3:1 ratio of growth:death). Resistant T2 plants were transplanted to soil

and grown until the correct age for the luciferase experiment.

An additional reporter was obtained for OXI1, which contained a 1500 bp promoter

fragment fused to the luciferase coding sequence (created by Robert Ingle, University

of Cape Town).

This experiment allowed for the observation of the genes of interest over a period

of time, and did not require the samples to be destroyed at each time point. Seeds

were sown to obtain leaves 28, 32 and 36 DAS, and the plants were grown in the

same conditions as before (Section 6.3). The leaves were treated with the Botrytis and

mock inocula as previously described (Section 2.2.1.2). A liquid nitrogen cooled CCD

camera was used to capture the �uorescence intensity every two hours for 40 hours

after infection, and these images were analysed with ImageJ (Section 2.2.2.7). The

�uorescence was quanti�ed as the mean grey intensity of the leaves (Figure 6.14).

The data for the OXI1:luc expression is shown in Figure 6.15. It can be seen that

there are some di�erences between the di�erent aged plants, most notably that the

oldest plants (36 DAS) show a greater amount of activity. The 28 and 32 DAS plants
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Figure 6.12: (A) NFYA7 expression analysis, showing the gene expression for this gene
at 0, 20 and 28 hours after Botrytis infection. The blue lines are the 28 DAS plants,
the green lines are 32 DAS plants, and the red lines are the 36 DAS plants. The
solid lines represent the infected data, and the dotted lines are the mock data. The
black bar indicates the standard error of di�erences between two means (SED=1.50).
The predicted model for NFYA7 analysis, using the signi�cant interaction terms in
Table 6.2. The main e�ects were the biological replicate (not shown) and inoculation
treatment. Each biological replicate would change the baseline expression level, so
the results of only one biological replicate is shown. The solid lines represent the
infected data (I), and the dotted lines represent the mock data (M).
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Figure 6.13: Diagram describing the transformation procedure, where the promoter frag-
ment (green) is ampli�ed, and cloned into a vector containing the luciferase coding
sequence (blue). These vectors were integrated into Arabidopsis plants using an
Agrobacterium transformation. Successful transformants were used in the luciferase
experiment.

199



Rep 1!

Rep 3! Rep 4!

Rep 2!

H1! H2! H3! H2! H1! H3!

H2! H3! H1! H1! H3! H2!

M!

I!

I!

M!

I!

M!

M!

I!
M!

Rep 1!

Rep 3! Rep 4!

Rep 2!

H1! H2! H3! H2! H1! H3!

H2! H3! H1! H1! H3! H2!

M!

I!

I!

M!

I!

M!

M!

I!
M!

Figure 6.14: Images from the OXI1 :luciferase construct at 20 (left) and 28 (right) hpi.
H1, H2 and H3 refer to plants that were 28, 32 and 36 days old,M refers to treatment
with the mock inoculum, and I refers to treatment with the Botrytis inoculum. Each
treatment was performed using three biological replicates, and replicated using four
technical replicates.

had a similar �uorescence pro�le over the time series. Similar to the qPCR data (Figure

6.11), the mock treatments exhibited a relatively constant expression level.

A tailing-o� e�ect can be observed after approximately 30 hpi, and this is due to the

Botrytis infection resulting in large lesions in the leaf where the plant tissue had died.

The measurements were taken as an average over the area the leaf, and thus the �holes�

in the �uorescence resulted in a lower average �uorescence value.

An ANOVA was performed at time points 20, 28 and 38 hpi to compare the results.

The model used was

Luc ∼ Harvest ∗ Time ∗ Inoc+ Error(Rep/Group/Leaf/T ime)

where Luc is the mean grey intensity, Harvest is the di�erent age of leaf (28, 32 and 36

DAS plants), Time is the time after infection (20, 28 and 38 hpi), Inoc indicates whether

the leaf was treated with the mock or Botrytis inocula, and the Error model made up of

the infection time nested within the sample leaf number (Leaf ), which is nested within

position of the group of leaves (Group), which is nested within the replicate number

(Rep). The results indicated that there were signi�cant di�erences between the times

after infection, between the mock and infected treatments, and the interaction between

these two terms (all p-value<0.001). The age of the leaf was also signi�cant, although

at a lower signi�cance level (p-value<0.05).

The results for the ANAC092 :luc and NFYA7 :luc expression is shown in Figures 6.16

and 6.17, respectively. In these cases, the amount of �uorescence was relatively low.

In the ANAC092 :luc results (Figure 6.16), a similar trend to the previous qPCR result

can be seen, where the gene expression is up-regulated in both the mock and Botrytis

200



0!

500!

1000!

1500!

2000!

2500!

0! 5! 10! 15! 20! 25! 30! 35! 40!

M
ea

n 
flu

or
es

ce
nc

e 
!

Hours post-infection!

H1M! H1I!
H2M! H2I!
H3M! H3I!

Figure 6.15: Luciferase results from the OXI1 :luciferase reporter construct. Shown is
the mean �uorescence (mean grey pixel intensity) for the di�erent treatments. The
blue lines are the 28 DAS plants, the green lines are 32 DAS plants, and the red
lines are the 36 DAS plants. The solid lines represent the infected data, and the
dotted lines are the mock data.

infection treatments until approximately 20 hpi. Following this, the expression pro�les

diverge slightly. In the 28 DAS plants, the infected sample had a higher expression

level compared to the mock, which is the same as the qPCR and microarray results.

However, the opposite is true for the 32 and 36 DAS plants.

In the NFYA7 :luc results (Figure 6.17), the expression pro�les across all the treat-

ments were relatively noisy, and in general did not follow the expression pro�le expected

from the qPCR and microarray data (that is, up-regulated in the mock treatment, and

down-regulated in the infected treatment). The average �uorescence was lower than the

ANAC092 data, so this could be attributed to noise.

6.6. Discussion

In this chapter, the gene expression changes in response to a combined stress were

investigated. With the use of the parametric models discussed in Chapter 3, new pre-

dictive models could be identi�ed through the manipulation of the single stress model

parameters. To this end, an experiment was designed whereby gene expression changes

in responses to combined stresses could be investigated. Several di�erent genes were

selected based on shape and response to determine the e�ect of the multiple stresses.

The techniques used to determine the e�ect of multiple stresses of gene expression

levels included quantitative PCR (qPCR), and a luciferase transcription reporter. qPCR

experiments are relatively quick and simple to perform, especially once the RNA is ex-

tracted and reverse transcribed to cDNA. However, due to the destructive nature of
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Figure 6.16: Luciferase results from the ANAC092 :luciferase reporter construct. Shown
is the mean �uorescence (mean grey pixel intensity) for the di�erent treatments.
The blue lines are the 28 DAS plants, the green lines are 32 DAS plants, and the
red lines are the 36 DAS plants. The solid lines represent the infected data, and the
dotted lines are the mock data.
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Figure 6.17: Luciferase results from the NFYA7 :luciferase reporter construct. Shown is
the mean �uorescence (mean grey pixel intensity) for the di�erent treatments. The
blue lines are the 28 DAS plants, the green lines are 32 DAS plants, and the red
lines are the 36 DAS plants. The solid lines represent the infected data, and the
dotted lines are the mock data.
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DNA sampling in plants, the data was limited to the time points sampled. In addition,

qPCR experiments require the use of a �uorescent binding agent, which is relatively

expensive. On the other hand, the luciferase reporter is extremely laborious to con-

struct, taking several months to produce the transformed plant lines. However, once

the construct has been obtained, the experiment is much simpler than the qPCR exper-

iment, and allows for multiple time points to be observed from each leaf sample, since

the replicate samples are not destroyed in the sampling process. A possible caveat is

that the reporter relies on the transcription and translation of the luciferase enzyme,

and may not be completely related to the true transcription rate.

While qPCR experiments are useful for determining the expression pro�le for a num-

ber of genes, there is some disagreement about the subjectiveness surrounding qPCR

data, particularly due to e�ects such as transcript quality, random priming, issues with

normalisation, and the choice of reference gene (Bustin et al., 2005; Nolan et al., 2006).

Typically genes such as actin or GAPDH are used as a reference gene, although there is

some contention as to their value as a universal reference gene. It is generally preferable

to identify a reference gene depending on the conditions used in the experiment (Bustin

et al., 2005), and as such, PUX1 was used in this experiment, as it was found to be

unchanging in both the senescence and Botrytis time series (Appendix A).

By performing an ANOVA analysis on the qPCR expression pro�les, it was possible to

identify the most signi�cant terms in the model. Generally, the most common signi�cant

terms were the Harvest and Tzero:Inoc terms, indicating that there were signi�cant

di�erences between the di�erent aged plants, and di�erences between the mock and

infected treated samples. The exceptions to this were the LHCA6 and NFYA7. LHCA6

did not have a signi�cant Harvest term, indicating that there were no di�erences between

the di�erent aged plants. Since this gene encodes a photosynthesis protein, it is possible

that the gene is constantly down-regulated after a certain point during the senescence

process where the production of photosynthesis proteins are no longer needed. LHCA6

did have a Tzero:Inoc term, indicating that Botrytis infection further in�uences the

expression of this gene. NFYA7 on the other hand had a signi�cant BioRep term.

This was interesting as it indicated that there was a signi�cant e�ect caused by the

di�erent biological replicates, and was also related to the position of the plant in the

growth cabinet. One possible explanation is di�erences in the range of responses in the

expression level of the genes, where the di�erences was 1 in NFYA7, and 7-10 in the

other genes. This possibly indicates that the larger signal in the other genes masks the

biological variability in the replicates. In addition, across all the genes in the qPCR

expression analyses, the SED values were all similar (approximately 1.5), so due to the

lower range of response in the NFYA7 data, this meant there was a lower signal-to-noise

ratio for the NFYA7 as compared to the other genes.

By using the signi�cant e�ects from the ANOVA tables, it was possible to obtain a

predicted model for the gene expression in the combined stress. This predicted model

removed the noise from the expression pro�les, providing a clearer indication of the

underlying expression patterns. In the ANAC092, ANAC055 and OXI1, similar ef-
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fects were found, where there were di�erences between harvests, infection times, and

treatments. From Figures 6.8B, 6.9B and 6.11B, it can be seen that the di�erence

between the mock and infected treatments are the same in the di�erent aged plants.

This suggests that the Botrytis infection results in the addition of an expression re-

sponse to the existing response due to the senescence process. This pattern can also

be seen to some extent in the NYFA7 data (Figure 6.12B), where the up-regulation in

the senescence data was seemingly cancelled out by the down-regulation of the Botrytis

treatment. This indicates that the up- and down-regulation were added together, thus

counteracting each other.

In addition to the qPCR experiment, a luciferase reporter was fused to the promoter

of ANAC092 and NFYA7 to provide real time information as to the expression of these

genes. The advantage in using the luciferase reporter methodology is that it provides

additional time points and allows for real-time observation of the gene expression levels.

The full intergenic region was used for NFYA7 (819bp), but only a portion of the

ANAC092 promoter (1050bp) was used. In addition, a luciferase reporter was obtained

for OXI1.

The results for the ANAC092 and NFYA7 luciferase reporters were not very clear,

with minimal �uorescence occurring. Due to time constraints, the T2 selected plants

were transplanted directly from the media containing BASTA to soil, and then used

in the experiments. This meant that the plants were already stressed from the herb-

icide in the beginning, which may have a�ected the development. In addition, since

a large number of plants were required for the luciferase experiment, plants from dif-

ferent T1 parents were used, so this could add additional variability due to di�erent

transformants. Ideally the T2 plants would have been allowed to grow to seed, and

the experiment would have used T3, homozygous plants grown on soil from the start.

Thus, the low signal in the ANAC092 and NFYA7 luciferase reporters could possibly

be due to the use of the heterozygous mutants, resulting in a lower signal, or may not

have been correctly transformed. Alternatively, it is possibly due to these genes encod-

ing transcription factors, which are generally low abundance proteins. The luciferase

reporter relies on observing the activity of the luciferase enzyme, as opposed to the gene

expression. That is, the �uorescence is a result of the luciferase coding sequence being

transcribed, translated, and reacting with the luciferin, as opposed to merely detecting

the transcript level. Thus there could be some di�erences in the gene expression level,

and the translated protein level for these genes. OXI1 on the other hand encodes a

protein kinase, and the results from the luciferase assay were much clearer. Here the

expression pro�les obtained roughly matched up to the equivalent data from the qPCR

experiment. Thus, the use of the luciferase assay can be useful in observing the real-time

e�ects of a stress treatment.

Using these approaches to investigate and predict the e�ect of multiple stresses on

gene expression may aid in determining the best times for sampling. If it is possible to

predict the e�ect of a combined stress, then sampling times and rates can be identi�ed

where the response is changing the most. If sampling points are set at random, and
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are too far apart, the signal may be missed due to mRNA degradation. However, if the

sampling points are too close together, these points may be redundant, adding unneces-

sary expenses to the experiment. Thus, estimating the correct time that processes occur

may assist in designing future experiments, to maximise the information obtained, and

minimising the cost required (Bar-Joseph, 2004; Rosa et al., 2012).

For more accurate predictions of multiple stresses, it would probably be desirable

to investigate the gene regulatory networks, particularly to determine the e�ect of the

result of a combined stress response. That is, investigate the e�ects of perturbations

of upstream genes on downstream genes, to determine which cause the greatest e�ects.

In addition, by investigating the responses of genes, that are up- and down-stream of a

gene of interest, it may be able to better predict what the gene's response to a stress,

or combination of stresses, would be. In the PRESTA project, a combined stress model

is being developed to incorporate all the gene expression data from the various stresses,

and identify a core set of genes that are involved in multiple stress responses.
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7. Determining the uncertainty of

biological replicates

7.1. Introduction

In the previous chapters, an analysis approach was developed for describing a gene

expression pro�le. By �tting these models, it was possible to explain the majority of

the variability in the data. In most analyses, including the regression analysis described

in the preceding chapters, it is assumed that all between-observation variation is due

to measurement error, and assigning this variability to the measured data can result in

a model that is less accurate (Aach and Church, 2001; Liu et al., 2010). One source of

variability that is generally not considered is the variability due to the �biological age�

of the organism at the time it was sampled (Liu et al., 2010). That is, despite limiting

the variation from external in�uences, each individual may be slightly di�erent due

to di�ering developmental rates. This is further confounded in multicellular samples

where biological process occur in multiple cells, and each of these processes may occur at

di�erent rates and times. Thus this biological variation not only a�ects the variability

in the observed expression values, but also the uncertainty in the time axis.

The issue of biological age is particularly a problem in cross-sectional time course

experiments, such as in plant based experiments, where samples at each time point have

to be collected destructively, and thus need to be obtained from di�erent individuals.

In most experiments, multiple samples are taken at each time point, and each of these

repeated samples are called replicates. This is done to improve the con�dence in the

obtained results, in case of erroneous measurements. However, in cross-sectional studies

each replicate is from a di�erent plant. Therefore, it may not be appropriate to simply

group together the replicates that were taken at the same sampling point, as these

replicates may be of di�erent biological ages.

An illustration of this e�ect is shown in Figure 7.1. These leaves were sampled from

the PRESTA long day senescence screen (Breeze et al., 2011). The top row shows the

leaves sampled 19 days after sowing (DAS), and the bottom row shows leaves sampled

33 DAS. Besides di�erences in the size and shape of the leaves, in the 33 DAS samples,

di�erences between the leaves in their senescence response can be seen, where some

leaves exhibit more yellowing than others. These phenotypic di�erences could have an

e�ect on the underlying genetic responses, and would thus add variability to the data.
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Figure 7.1: Illustration of the variability between di�erent leaves of the same age. Each
of the leaves was obtained from a plant of the indicated age (19 days after sowing,
top and 33 days after sowing, bottom). Unpublished data (V. Buchanan-Wollaston).

7.1.1. Algorithms for estimating biological age

In order to estimate the e�ect of biological age, a number of approaches have been

proposed. One such approach is described by Sanko� and Kruskal (1983) and Aach and

Church (2001), and utilises a method named �dynamic time warping�. This algorithm

uses principles based in sequence alignment and dynamic programming. This process

requires data from two di�erent time series, with k common genes and n time points, al-

though the datasets do not necessarily have to be the same length. The expression levels

of the k genes form a k -dimensional vector of length n, and by using a global alignment

algorithm, analogous to the Needleman-Wunsch sequence alignment algorithm (Needle-

man and Wunsch, 1970), the data from the two gene expression datasets are compared.

By expanding and compressing the time series (analogous to insertions and deletions

in sequence alignments), the optimal time alignment of the two datasets can be found

(Aach and Church, 2001). This algorithm warps all of the genes uniformly, so a modi�ed

approach would be to individually align each gene and cluster the alignments (Smith

et al., 2009).

An alternate approach is the use of Gaussian process regression along with a prob-

abilistic model to determine the uncertainty about the biological age of each replicate,

which provides a means to infer the relative degree of development in each replicate

sample (Liu et al., 2010). By applying the algorithm to microarray data, it was possible

to predict the pro�le shapes and biological times for each replicate. The predicted shifts

were correlated to the independently obtained morphological estimates of the develop-

ment. The approach was thus able to reduce the prediction error of the sample data,

thus signi�cantly reducing the mean squared error in a cross-validation study.

One approach that has not been used much in biological data are total least squares

(TLS) and errors in variables (EIV) models, which have a wide range of applications in

system theory and signal processing (reviewed in Markovsky and Van Hu�el, 2007 and
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Van Hu�el et al., 2007). In least-squares methods, the response variable is corrected

but not the explanatory, and the sum of squared vertical distances from the data to the

�tted line is minimised. In TLS models, both the response and explanatory variables

can be corrected, and the sum of the squared orthogonal distances from the data points

to �tted line are minimised through the use of singular value decompositions. EIV

models are similar to the TLS methods, but possess less restrictive assumptions on the

error distributions.

7.2. Time shifting

In this analysis, an algorithm was developed that is similar to the process described

by Liu et al. (2010), except using splines, and termed time shifting. Through the use

of an iterative, cross-validation, multivariate regression approach (using non-parametric

smoothing spline models), the true �biological age� of the samples was estimated. Splines

were used in this case as merely a �t for each gene was required, as there was no

need for interpretation of the �tted curve, or a comparison of the shapes. Splines

are constructed from polynomial pieces that are joined at certain x -positions, called the

knots. Speci�cally, in this analysis, penalised splines were used, which possess a B-spline

basis with equally spaced knots, and a di�erence penalty on the estimated regression

coe�cients of adjacent B-splines to adjust the smoothness of the curve (Eilers and Marx,

1996, 2010).

The methodology to calculate the time shifts is shown in Figure 7.2. For each gene in

a given set, a replicate point was removed from each time point, and a spline was �tted

to the remaining data, in a process described in Section 2.1.9. The removed replicates

were then replaced into the data, and the time estimated by �nding the closest x -

value on the spline that corresponds to the y-value of the removed replicate. If the

di�erence in time points between the original value and new, predicted value (termed

the temporal displacement) is within some constraints, the displacement is retained

(Figure 7.3). These constraints were that the temporal displacement was greater than

0.1 time points and less than 1.5 time points, and were used to ensure that the replicates

did not unnecessarily wobble (shift only very slightly), or moving large, unreasonable

distances. That is to say, even though there may be some uncertainty in the true

biological age of a sample, it is unrealistic that a sample would be greater or less than

1.5 time points, given the other experimental constraints, such as sowing time, and

controlled environmental conditions. An addition constraint was added for the �rst and

last time points, where the maximum displacement allowed was 0.5 time points outside

of the observed data points. This was to prevent excessive extrapolation into regions

where there was no information. These data points were still allowed to move 1.5 time

points �inwards�. These constraints also served to act as stopping conditions for the

time shifting process.

The displacement was determined for all the genes, and an average displacement was

calculated for all retained displacements. It was assumed that despite the di�erent

expression pro�le shapes, even if the displacement for one gene is towards the left of the
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Figure 7.2: Schematic of time shifting process.
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Figure 7.3: Figure describing the calculation of temporal displacements. One set of
replicate points are removed from the data (black numbers), and a spline �tted to
the means of the remaining data (dotted line �tted to black dots). The removed
points are shifted to where they would occur on the �tted spline (indicated by the
arrows), and the distance moved is the displacement. If the displacement is greater
than 1.5 time points, the point is not moved (time points 2 and 11).

graph, and another towards the right, the net e�ect would be negligible. The time points

of the removed replicate set were adjusted according to this average displacement. This

process was then performed with the adjusted replicates, and the next set of replicates

are removed. This procedure is performed until no displacements meet the criteria (i.e.

no replicates are moved), or a maximum number of iterations is performed. This is

currently set at 100 iterations. This process is reminiscent of the approach taken with

the spike detection (Section 3.5), except the x -value is being predicted, instead of the

location of the y-value.

Once the overall time shift was calculated, the regression models (Chapter 3) were

used to �t the shifted data, and determine if the shifting process improved the model

�t. This was primarily done by using the residual mean square (RMS) from the model

�t, which provides an indication of the amount of variation that is unexplained by the

model (Section 3.4). Thus the lower the value, the better the �t.
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7.3. Results

7.3.1. E�ect of temporal marker gene set size

In determining the amount to shift the time points, a subset of the total set of genes

was used, as it was assumed that it would not be necessary to use the full dataset

for the time shifting procedure. With the full set of genes, there may be too many

con�icting displacements, which may constrain the shifting process. It was thought

that a much smaller set of genes would be su�cient in estimating the necessary time

shifts. Thus sets of temporal marker genes, were used in the time shifting procedure

to provide an estimate of the overall shifting patterns that are taking place. These

genes were randomly selected sets of genes, so as not to bias the analysis towards a

speci�c molecular process. A variety of di�erent gene set sizes were used to identify the

minimum number of genes required to improve the �ts.

The data from the senescence time course was used as a test of the time shifting

process. The temporal marker genes were selected from genes that were previously

identi�ed as having a good �t, as determined using the techniques described in Section

3.8. That is, the model goodness-of-�t and standard error of estimation of the para-

meters were used to �nd genes that possessed a good model �t. Using the senescence

dataset, this produced a list of 8216 genes that could be used as a estimation of time.

In order to determine the ideal number of genes to use for the time shifting process,

a variety of di�erent set sizes (between 5 and 4000 genes) were used, and 10 random

gene sets were obtained for each sample size. In the interests of time, only 10 sets of

genes were analysed for each size. For each set of genes, the time shifting and re�tting

process takes approximately 3 hours, and requires a large amount of computation power,

meaning only a few can be performed simultaneously. Ideally, at least 100 gene sets at

each size would be analysed.

For each of the gene sets, the time shifting procedure described above was performed.

Using the shifting information, the time points in the data were adjusted, and the

regression models were re�tted to the 23 802 genes in the senescence dataset. The

average residual mean square (RMS) was calculated after the re�tting procedure and

compared to the average RMS value from the original, unshifted data. The results for

this are shown in Figure 7.4. From this it can be seen that the very small gene set sizes

(less than 30 genes) resulted in the average �t being worse than the unshifted data.

Larger gene set sizes produced better �ts, and also required fewer iterations of the time

shifting procedure. It can also be seen that the RMS value does not decrease as much

when using more than approximately 100 genes. The greatest reduction in RMS was

found using a set of 100 genes, and the temporal displacements calculated using these

genes were used in the rest of the analyses. This set of genes is shown in Figure 7.5A,

and the gene list is provided in Appendix C. To contrast, a similar sized set of genes

which did not result in an overall improvement in goodness-of-�t is shown in Figure

7.5B. There are no distinct di�erences between the two sets of genes, where both sets

show a variety of shapes. Some characteristics that are found in Figure 7.5A, but not
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Figure 7.5B include a large number of expression pro�les which change (become up- or

down-regulated) between time points 4-8, there is a more equal distribution of increasing

and decreasing shapes, and there are more genes with a larger range of response. A GO

over-representation analyses of these sets of genes did not reveal anything in particular.

Genes in both sets were involved in general metabolic processes, such as photosynthesis

or amino acid biosynthesis, although there were more over-represented terms found in

the genes in Figure 7.5A. Both sets of genes had roughly the same composition of models,

which indicated that it was not necessarily a particular model that was responsible for

the reduction in RMS.
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A

B

Figure 7.5: The �tted curves of the temporal marker genes. (A)The genes that resulted
in the greatest reduction of RMS. (B) To contrast, a set of genes which did not result
in an improvement in �t.
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7.3.2. Gene displacement

Figure 7.6 shows the magnitude of the displacements across a number of di�erent iter-

ations in the time shifting process. As would be expected, the displacements required

are large at �rst, but rapidly decrease in size, and smaller adjustments are required in

the later iterations. While these boxplots included all calculated displacements, not all

were used in the shifting process. The shifts were constrained to move no more than 1.5

time points, or 0.5 outwards for the �rst and last (time points 1 and 11, respectively),

to prevent excessive and unrealistic movements.

The overall displacement for each time point is shown in Figure 7.7. From this �gure

it can be seen that the �rst and last time points did not have any displacements, likely

due to them requiring a time shift greater than that allowed by the constraints. The

displacements generally moved towards the middle time points, in particular towards

time point 5. Time points adjacent to time point 5 exhibited smaller displacements

than those of time points that were further away.

7.3.3. Re�tted data

After the time shifting process was completed, the displacements were applied to the

original 23 802 gene expression pro�les in the senescence dataset. The shifted data was

�tted using the regression models in the same process as in Section 3.8. However, in

this case, the observed time points were not constrained to the reported time, but the

time shifted values calculated above. Following this process there were 38 time points

in the dataset, where all the replicates, except for those at the �rst and last time points,

moved to a di�erent time point. Using this data, the regression models were �tted, and

the best model determined.

The genes of interest that were investigated in Chapter 6 (ANAC092, ANAC055,

NFYA7, LHCA6, and OXI1 ) were also analysed to determine if there was an e�ect on

the �tted models. All the genes exhibited an improvement in �t, although ANAC092,

OXI1 and LHCA6 did not change much. This is unsurprising since all of these model

�ts were already good �ts (in all cases the unshifted R2 > 0.9). The two remaining

genes, ANAC055 and NYFA7 are discussed in greater detail below (Figure 7.8).

Of these �ve genes, ANAC055 showed the greatest improvement in �ts between the

unshifted and shifted results, where the RMS decreased from 0.90 to 0.54 (Figure 7.8A).

As a result of the time shifts, the �tted model changed from the Gompertz1 model to

the Gaussian model. The time points were moved towards the centre, and as a result

it was possible to better detect the drop in gene expression at time point 10.

The RMS value for NFYA7 remained approximately 0.3 in the �ts to both the shifted

and unshifted data. The �tted models for both the unshifted and shifted datasets are

shown together in Figure 7.8B. In the unshifted data, the �tted model was Gompertz2

had a m parameter (time point of maximum growth) of 3.4, while with the shifted

data, the model changed to logistic with a m parameter of 4.2. This indicates that the

process is predicted to occur almost one time point later than what was indicated by

the original data, and this could have implications for the predicting timing of the gene
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Round 1 Round 8

Round 16 Round 23

Figure 7.6: The distribution of the temporal displacements for the time point, after a
selections of iterations of replicate removals, namely rounds 1, 12, 33, 46. Positive
displacements indicate that the replicate was moved to a later time point, and vice
versa for negative displacements.
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ing arrows indicate that that replicates did not move due to the constraints.
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expression response.

To investigate the overall e�ect of the time shifting on the model �ts, the RMS values

of the shifted (illustrated in blue) and unshifted (illustrated in red) are shown in Figure

7.9. From this �gure, it can be seen that there is a slight improvement in the overall

RMS values, with a large number of genes showing a reduction in RMS, meaning that

a greater proportion of the variability was explained with the addition of the time

shifting. The majority of these improvements occurred towards the centre of the graph,

indicating that the �ts in the tails did not change much. That is, neither the genes with

already good �ts (those in the left tail) nor those with poor �ts (right tail) can improve

much with the addition of time shifting. For the models with a large RMS value, this

signi�es that more signi�cant changes are required, such as more complex models. Of

the 23 802 genes that were shifted, approximately half (11 845) showed a reduction in

RMS.

These �ts were further analysed to determine if there was an overall improvement in

the model �ts. This was determined by comparing the number of �good� and �bad� �ts

in the shifted and unshifted datasets, where a good �t was arbitrarily de�ned as a model

with R2
a ≥ 0.6, and R2

a < 0.6 for a poor �t. If a �tted model had a poor �t in both the

shifted and unshifted datasets, this implies that the model used was not the appropriate

to describe the data. Thus, the time shifting was not able to provide any additional

information. Similarly for a model �t that is a good �t in both datasets, the time

shifting is not able to provide more information, although in this situation, it is because

the �tted model was appropriate. For models that were poor in the unshifted dataset

but good in the shifted data set, this indicates that the time shifting was able to improve

the model �t, and vice versa for the models that were good in the unshifted and poor in

the shifted datasets. Using these categories, it was possible to determine the change in

the quality of �ts when performing the time shifting, and are shown in Table 7.1. From

this table, it can be seen that there were a large number of genes that had a poor �t in

the unshifted data and remained poor �ts in the shifted data, as well as those that had

good �ts in both datasets. There were over 500 genes where the time shifting improved

the model �t, and for the majority, the di�erence in R2 value was minor (less than 0.1).

However, for those where the di�erence was larger, it was found that many of these genes

had relatively small ranges of response, and were generally �tted by a linear function.

Thus with the shifted data, the models were better able to estimate the parameters.

On the other hand, there were just under 400 where the model �t was worsened with

the time shifting. In these cases, again the range of response was relatively low, and

application of the time shifting resulted in the expression pro�le �loosing� its shape.

This was particularly the case for the exponential-type curves, where the r (rate of

change) parameter is sensitive to the shape of the expression pro�les. Nonetheless there

was an overall improvement in the �ts by performing the time shifting.

Some examples of these �ts are shown in Figure 7.10. The original data and model

�ts to the data are shown in column 1, and the shifted data is shown in column 2. Row

A represents a gene (AT5G19120 ) where the model �t was worse after performing the
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A1 A2

B

Figure 7.8: (A) ANAC055 showing a change of model from the unshifted data (A1)
to the shifted data (A2), which decreased the RMS and improved �t. The dots
indicate the replicate points, and the black diamonds indicate the means of the
replicates. (B) The NFYA7 expression pro�le remained sigmoid, except the change
in expression was shifted later to a later time point. The shifted data is represented
by the solid line, and the unshifted data is indicated by the dotted line.

Table 7.1: Table comparing the number of genes with good �ts in the shifted and
unshifted datasets. Good indicated genes that had R2

a ≥ 0.6, and Poor indicated
genes had R2

a < 0.6.

Shifted
Poor Good

U
n
sh
if
te
d

P
oo
r 17130 523

G
oo
d 394 5755
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Figure 7.9: Distribution of the RMS values between the shifted (blue) and unshifted
(red) data. The overlaps are shown in purple.

time shifting. The unshifted data �tted a critical-exponential model (A1), with a RMS

of 0.345 and a R2
a value of 0.659. However, upon shifting the data, the best �t became

the linear model (A2), with a RMS of 0.887 and a R2
a value of 0.123. Here, the original

model �tted well, and the time shifting process altered the data points such that the

original model was no longer able to �t the data.

In contrast, row B represents a gene (AT5G66360 ) where the time shifting improved

the model �t. The unshifted data �tted a Gompertz1 model (B1), with a RMS of

0.076 and a R2
a value of 0.568. However, upon shifting the data, the best �t became a

Gaussian model (B2), with a RMS of 0.074 and a R2
a value of 0.684. Thus, while the

overall variability was not reduced by a large amount, there was an improvement in the

�t of model to the data.

The clustering algorithms from Chapter 4 were applied to the shifted data, and the

BHI scores from these clusters are shown in Table 7.2. These scores were compared to

the results from the unshifted data, that was presented in Table 5.10. By applying the

time shifting, it was possible to improve the annotation homogeneity of the exponential,

Gompertz1 increasing, and Gompertz2 increasing shapes. A similar pattern was shown

when using the meta-clustering approaches. This indicates that the shifted data was

able to improve some of the cluster analyses, possibly where some parameter values

changed or the �tted model in the unshifted dataset changed to another model when

using the shifted data.
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A1 A2

B1 B2

Figure 7.10: A comparison of the �ts obtained with the unshifted (column 1) and shifted
(column 2) data. Row (A) represents a gene where the model �t was worse after
performing the time shifting, and row (B) represents a model where the model �t was
improved. Each dot represents a biological replicate, and the diamonds represent
the mean of replicates at the same time point.
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Table 7.2: BHI scores for the shifted and unshifted data for a variety of shapes, using the
simultaneous parameter cluster analysis. For each model, the shapes were separated
into increasing (Inc) and decreasing (Dec) forms, except for the exponential where
all the �ts were used.

Model Parameters
Shifted Unshifted

Inc Dec Inc Dec

Exponential r,b 0.267 0.252

Gaussian m,s 0.244 0.273 0.254 0.288

Gompertz1 5per,grad 0.237 0.281 0.234 0.325

Gompertz2 5per,grad 0.255 0.273 0.252 0.301

Logistic 5per,grad 0.251 0.286 0.299 0.312

7.4. Discussion

Many analysis algorithms assume that the data is obtained from a longitudinal time

series, where each replicate sample was obtained from the same organism, such as in

human or animal studies. In contrast, most plant studies are from a cross-sectional

time series, meaning the replicate samples were taken from di�erent plants at each time

point. This is due to the destructive nature of the sampling, i.e. destroying the leaf

in order to extract the genetic material for analysis. Even though these samples were

taken at the same point in time, there can still be a relatively large amount of variation

due to di�erent developmental rates, genetic variations and environmental conditions

(Bar-Joseph, 2004; Liu et al., 2010).

In this chapter, an iterative, cross-validation analysis was developed to investigate

the variability in the replicate samples due to biological age. This process aimed to

re�ne the underlying signal, by reducing the variability and any random �uctuations

that may be present due to the slight developmental di�erences in the replicate samples.

At each iteration, a set of replicates was removed, and a penalised spline was �tted to

the remaining data. The removed replicates were replaced, and the spline was used

to identify an estimate of the time point where the replicate value should occur. This

process was performed for each of the replicates in a set of genes, and an average

displacement across these genes was used to determine the required time shift.

Since the temporal marker genes were randomly selected, the expression pro�les in the

selected set exhibited a variety of di�erent shapes. When used in the time shifting ana-

lysis, this would result in displacements in di�erent directions, with some displacements

moving towards earlier time points, and some towards later. Thus using the average

provides an overall displacement size and direction. However, this is possibly not the

best statistic to use, since it is prone to outliers. Thus, if there is one displacement that

is large compared to the others, the overall displacement will be biased towards that

large displacement. A better statistic may be to use a weighted mean, where displace-

ments that are closer to the sampled time point are preferential. Alternatives include

using a median or truncated mean.

When assessing the model �ts, the R2
a value was used, indicates how much of the

variance is explained by the model. Conversely, the RMS describes the amount of
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unexplained variance. Thus, a good �t would have a R2 value close to 1, and a RMS

value close to 0. In previous chapters (Chapters 3-5), the R2
LoF was also used. However,

it could not be used for the shifted data, as this metric requires replicate data points

in order to calculate the pure error (i.e. the between-replicate variation). The R2 value

is possibly not the most appropriate statistic to use for comparing the models, as the

shifted and unshifted datasets have di�erent x -values, and are thus not exactly the

same. Despite this, it still gives a rough estimate of the goodness-of-�t of the models.

To perform the time shifting, a small set of genes were used to determine the biological

time, named the temporal marker genes. Fewer genes were used since it was thought

larger sets would overly constrain the shifting process. When the full set of 8216 genes

were used, it was found that the time shifting improved the RMS, but not as much as

the smaller set sizes. To determine the number of genes that were required, a series

of simulations were performed, and the average RMS was calculated after applying the

time shifts. It was found that approximately 100 genes su�ciently reduces the overall

RMS value for all the genes. The addition of more genes was unnecessary as there

was no signi�cant reduction in RMS with an increase in the number of genes used to

determine biological time. Furthermore, how genes are selected can also in�uence the

shifting process. Here, the genes were randomly selected, but an improved set could

be found using some systematic process, for example identifying genes that exhibit a

large range of response, or behaving in a particular manner. There was no obvious

di�erence between the gene sets that were used for the time shifting. In all the cases,

a variety of di�erent models were used to determine time. The few possible di�erences

were that sets which improved the overall �t had more genes that changed (became up-

or down-regulated) between time points 4 to 6, had a large range of response. This

could also explain the migration of the displacements towards time point 5. The sets

of genes which resulted in poorer �ts overall had a more even distribution of when the

genes changed, and this possibly added more noise when trying to determine the size

and direction of the displacements.

After the time shifting process, it was found that the majority of the model �ts could

be improved solely by the use of the time shifting, either because the model �t was

already a good �t, or the model �t was poor due to the model being inappropriate for

the data. However, it was possible to explain more of the variability for several hundred

of the model �ts. In these cases, the original model �t could not su�ciently describe the

expression pro�les, but using the time shifting, it allowed the �tting algorithms to better

estimate the parameters. For some of the model �ts, particularly the exponential-type

functions (exponential, critical exponential, linear+exponential), the application of the

time shifting resulting in the model no longer able to �t to the data. This is due to the r

parameter being sensitive to the data. Nonetheless, it was possible to reduce the RMS

for a number of genes, thus explaining more of the variability. This indicates that the

di�erences in biological age between replicate samples results in a small but describable

amount of the total variability.

The cluster analysis from the previous chapters was applied to the shifted data, and
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it was found that the BHI score improved for some of the shapes. It is possible that

some the �ts that were in the clusters using the unshifted data were changed to di�erent

shapes, and this resulting in clusters with di�erent members. Alternatively, the value

of some of the parameters could have changed and this resulted in moving to a di�erent

cluster.

The advantage of using this approach was that is possible to analyse a large (genome-

wide) scale set of genes, in a simple manner, and using a few genes as a representation

of time in the di�erent samples. Ultimately, this analysis provided an estimation of

the true biological age of the replicate samples, which could provide a higher resolution

time series data for use in further analyses, such as gene network modelling.
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8. General discussion

With high-throughput technologies becoming ubiquitous, it is possible to perform large,

genome-scale analyses to investigate a variety of research areas, including diagnosis of

diseases, transcription factor binding interactions, and e�ects on the transcriptome,

proteome or metabolome after a treatment. While this large amount of data is vital to

uncovering new discoveries, the vast amounts of data that is generated can often obscure

the underlying signal. As a result, many analysis pipelines have been developed to aid

in the examination of the underlying processes. However, the danger of these pipelines

is that researchers often view them as black box analyses, where the analysis method is

obfuscated. Thus, the analyses presented here emphasise the biological interpretability

of the results.

In the biological sciences, the underlying processes are complex and generally not well

understood, and so are modelled using a function that relates the relationship as closely

as possible. Nonparametric models, such as splines, are often used to model expression

pro�les, as they are �exible, and make no assumptions about the underlying response.

However, this is also its disadvantage, as prior information about the expression pro�les

does exist, namely the shape of the response. Therefore, using this information provides

a better means to utilise all the available information.

Parametric models have previously been used to describe gene expression data. East-

wood et al. (2008) presented a methodology where the gene expression pro�les were

�tted with a critical-exponential model, whose parameters could be used to interpret

the time of maximum gene expression. Chechik and Koller (2009) developed a �exible

parametric model which was product of two sigmoid functions, and was used to capture

the responses of genes to environmental perturbations. However, the models parameters

were not directly connected to a mechanism. Jenkins et al. (2013) presented a model

which used the �switch� times of gene expression, that is, the times where genes become

up- or down-regulated. Using these timing points, it was possible to interpret the data

in terms of transcription and degradation rates.

In this thesis, a high-throughput parametric regression analysis approach was de-

veloped to describe the gene expression pro�les from a number of time course exper-

iments. The regression models were used to describe the shape of the response, and

may potentially provide a more mechanistic description of the underlying biological pro-

cesses. A variety of di�erent models were used to represent a range of di�erent shapes,

such as the exponential and sigmoid models, and each of these models re�ect a di�erent

mode of action in the gene expression pro�le. Thus, each model provides information

regarding the shape of the response. For example, the increasing sigmoid model shapes

represent an expression pro�le similar to a growth response, where the initial lag phase
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indicates the start of the up-regulation of a gene, the exponential growth phase is where

the gene is being rapidly transcribed, the linear phase indicates the maximal growth

rate, before �nally decreasing to an asymptote where the transcript production and

degradation rates are equal. Since the model parameters identify the features of the

responses, they are thus able to inform about when and how the expression pro�les are

changing. For example, in the sigmoid curves, the m parameter in�uences the time

point of maximal growth rate. From these parameters, it is also possible to derive other

features of the response, such as the 5per parameter. For increasing sigmoid shapes, this

is de�ned as the time at which 5% of the maximum response was attained, indicating

the time that the gene is being activated. Similarly it is possible to identify other times

of expression levels, for example the time of 90% of the maximum response, indicating

the time where the gene is becoming repressed and the rate of gene expression is slowing

down. While this analysis does provide a greater level of �exibility to the analyses, it is

also possible that there may be too much �exibility, that is, there are too many di�erent

ways to analyse the data. As a result, a number of recommendations were provided in

Table 4.15 to aid in the analysis depending on the biological question to be answered.

Finally, most analysis methods average out replicate samples taken at the same time

point and only model the relationships between the means. In contrast, the regression

analysis was able to assess the variability between the replicates and use it to test the

lack of model �t.

A weakness to the regression analysis is that the models need to be speci�ed before

they can be used. While the models used in this analysis covered a range of response

shapes, it is not an exhaustive set. Nonetheless, it is relatively simple to extend the

regression analysis to include more models, although more complex shapes would re-

quire more complex models with more parameters, and these can become di�cult to

interpret. Alternatively, it is also possible to modify a pre-existing model to include

more information. One example of this was the use of spikes. The spikes were described

in Chapter 3, and were identi�ed in genes where the expression pro�le followed one

of the models, except for a sharp increase or decrease of expression at a single time

point. This phenomenon was thought to occur due to a rapid and sudden activation

or repression of a gene. By removing the expression values at this time point, it was

possible to improve the model �t. This information is valuable as it describes an under-

lying process that is interrupted at a single time point. Identifying expression pro�les

which have spikes at the same time, or are consecutive to each other could provide a

better indication of the processes that are taking place. Detecting the spikes required

additional considerations such as determining if the spike is a signi�cant feature, when

the spike occurs, and how many spikes are present. The spikes add an additional set

of parameters that are not estimated in the other models, but by analysing the other

model parameters and interpreting the spikes separately, it is possible to integrate these

models. Another type of model that was not described by the current models were the

expression pro�les which also showed oscillatory behaviour. A possible solution would

be to impose a sine function on top of the regression models.
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Typically when analysing gene expression data, expression pro�les are clustered to-

gether to �nd genes that are potentially involved in the same biological processes (re-

viewed in Bar-Joseph, 2004). In time series gene expression, the expression pro�les are

�tted across the entire time series. While this has identi�ed genes that are co-expressed,

there is no biological reason why genes that are involved in related biological processes

should have exactly the same expression pro�le across the time course. As described

above, the �tted model parameters identify features of the response, such as time of

gene activation. Thus a novel approach to the clustering of genes, based on using

particular features (parameters) of the gene expression pro�les, was developed. This

cluster analysis, called ShapeCluster, �rst requires the selection of one of the regression

models, and then a set of parameters with which to cluster upon. In this way, the

biological interpretation is at the forefront. By identifying a model to use, the response

shape is speci�ed. That is, the analysis speci�cally investigates the expression pro�les

that follow, for example, a sigmoid or exponential response pattern. Since the model

parameters identify features of the response, clustering on di�erent combinations of

parameters would result in di�erent sets of genes. For example, when trying to identify

genes that are co-regulated, it might be bene�cial to investigate the timings of gene

expression changes, since genes that are activated at early time points, may in turn be

activating genes at later time points. Alternately, investigating genes that are changing

at the same rate may be indicative of TFs which are driving the activation of genes

in waves. A possible extension would be to perform the cluster analysis on multiple

models which have parameters that describe similar features.

The regression and cluster analyses were applied to three time course gene expression

experiments, namely a yeast dataset as a validation of the clustering methodology, and

two larger Arabidopsis datasets - a dataset investigating the molecular responses during

the senescence process, and a dataset investigating the response to the necrotrophic

pathogen, Botrytis cinerea. Assessment of these showed that clusters were produced

with informative biological function, and by using the timing parameters, it was possible

to construct a timeline of the various molecular responses, which was consistent with

the published results. Investigation of the clusters showed that there were multiple

transcription factors that co-clustered with the genes encoding NAC domain proteins,

and these could provide new lines of research, particularly in identifying the genes that

are co-regulated in stress responses. NAC proteins have been identi�ed in a variety

of plant species, and have been found to be involved in a number of stress responses

(Balazadeh et al., 2010; Fujita et al., 2004; Hickman et al., 2013; Meng et al., 2009; Ooka

et al., 2003; Xue et al., 2011). In the Botrytis dataset, a large number of genes were

found that were related to light responses, and this could indicate a relation between

Botrytis infection and the underlying circadian rhythms. Some research has shown

that there is a relationship between the circadian clock and the plant immune response

(Roden and Ingle, 2009; Wang et al., 2011).

The quality of clusters was evaluated through the use of GO annotation terms and the

Biological Homogeneity Index (BHI), which determines the similarity of annotations of
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the genes within a clusters. While the BHI score was useful in determining which cluster

method produced better annotation terms, it is not ideal. It does not take cluster size

into account, nor the number of common annotations between the genes in the clusters.

Thus, even if a pair of genes had a generic �biological process� term in common, this

would score as well as a pair of genes that had a large proportion of descriptive terms

in common. In addition the score itself can be di�cult to interpret, particularly when

comparing scores between two di�erent cluster analyses. With metrics such as the R2,

it is simpler to interpret the di�erence between two R2 values. For example, for a given

dataset, it is clear that a model with a R2 value of 0.9 explains 10% more of the variance

than a model with a R2 of 0.8. It is not as straightforward with the BHI. Therefore,

further work needs to be done to identify an easy to interpret method to assess the

biological quality of a cluster analysis.

Using the �tted models for the single stresses, the e�ect of the combined response

was predicted, and experiments were performed to validate the predictions. Through

the use of properly designed experiments, it was possible to �t a factorial model, and

by identifying the signi�cant model e�ects, a predicted model could be identi�ed. Had

the experiment not been properly designed it would not have been as simple (if at all

possible) to extract the signi�cant e�ects. When �tting models, researchers generally

plot the means of the data. However, there can be a large amount of noise in the

data, obscuring the underlying signal. By calculating and plotting the predicted model,

the noise is removed and this gives a clearer indication of the underlying mechanisms

in the system. From the predicted and regression models, it was possible to identify

that the multiple stresses are generally additive, where the e�ect of a later stress is

added to the current expression level. However, this did depend on the gene, and is

possibly in�uenced by other factors, such as upstream regulators of the gene of interest.

For example, the predicted model for ANAC055 and ANAC092 were very similar, and

the di�erent ages of plant clearly had an additive e�ect on the overall gene expression

response. It was shown in the cluster analysis that these two gene co-cluster together,

and so genes that have the same signi�cant models e�ects could also be functionally

related. This would act as an extension of the cluster analysis, except instead of grouping

the expression pro�les by the �tted model parameters, the pro�les would be grouped

by the signi�cant model e�ects.

qPCR is often used as a validation of results from microarrays, as it is thought that

qPCR provides a more accurate determination of gene expression (Morey et al., 2006).

However, qPCR experiments have their own biases, such as ampli�cation biases during

the PCR process with di�erent primer sets. As a result, the data can be equally noisy.

Nonetheless, both technologies are equally valuable. It may be interesting to perform

the predicted model analysis using microarrays, and thus obtain the combined stress

expression pro�les for a greater number of genes.

In this analysis, only two stresses were combined, although it may be possible to

extend the combined stress response to predict more complicated combinations. In many

ways, the combined stress analyses are similar to algorithms which integrate multiple
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datasets from di�erent experiments. For example Kirk et al. (2012) described a Bayesian

correlated clustering approach to combine the datasets from di�erent sources, including

gene expression, chromatin immunoprecipitation�chip and protein�protein interaction

data. Similar approaches could thus be used to predict the e�ect of combined stresses

from single stress data.

In plant-based, cross-sectional time course experiments, samples at each time point

are collected destructively, and this introduces an additional source of variability into

the observed response - that of variation in the true biological age of each plant at the

time of sampling. All current analyses assume that all between-observation variation

is associated with variability in the level of gene expression, but measurement error

associated with the true age of the plant at sampling could contribute massively to

this variability. Thus a cross-validation multivariate regression approach was developed

to estimate the biological time and reduce this variability, thereby providing better

estimates of the shape of the gene expression pro�les, and as a consequence provide

higher resolution time-series data (more time-points, fewer biological replicates) for use

in identifying gene networks. In the temporal marker genes that were used in the time

shifting analyses, most of the expression pro�les were becoming up- or down-regulated

between time points 4 and 6, and it is likely this is where many of the gene changes occur.

Thus it is possible that the replicate points were moving towards the time points where

there is the greatest amount of change, and this is what allowed for the improvement of

the model �ts. It would thus be interesting to perform the analysis on other datasets

where the expression pro�les are changing at di�erent time points.

There has not been much research performed into estimating the biological time in the

models. The most similar method to the time shifting is the Gaussian process regression

approach by Liu et al. (2010). This approach uses a probabilistic model to account for

the uncertainty regarding the biological age of each replicate, and both are similar in

that they both shift replicate points along the x -axis. Regression models which allow

both the response and explanatory variables to be corrected, such total least squares

(TLS) and error in variable (EIV) models, would be an interesting extension of the

regression analysis (discussed in Markovsky and Van Hu�el, 2007), particularly since

these approaches have not currently been applied to gene expression data.

Current methods to infer gene regulatory networks generally use a correlation type

approach where the expression pro�les are matched between subsequent time points.

Examples include a penalised spline based, semi-parametric Bayesian model, which

infers the time-invariant network structure from longitudinal data (Morrissey et al.,

2010, 2011), and a hierarchical, non-parametric Bayesian approach which leverages data

from multiple time series (Penfold and Wild, 2011; Penfold et al., 2012). By using the

�tted parameters from the regression, a potentially mechanistic approach could be used

to better determine which genes are related by using speci�c aspects of their expression

pro�les, such as the rate of change, or the timings of the responses. In this way, the

network model that relates the mechanisms behind the expression pro�le between genes

may provide a better indication of which genes are regulating each other.

229



The development of these new tools has provided a detailed means of investigating

plant responses to environmental stress. While the analyses were primarily performed

using data from Arabidopsis, it may be possible to apply these �ndings to other closely

related brassica crop species such oilseed rape, cauli�ower, and broccoli. Thus these

tools have made it possible to perform a detailed assessment of plant stress responses,

which will assist in future breeding of brassica (and other crop) species with improved

yields in a changing climate.

Although only the long day senescence and Botrytis infection datasets were used,

there are several other datasets from the PRESTA project that could be exploited to

investigate responses to stress, such as the Pseudomonas dataset to investigate the

di�erences between the di�erent types of pathogens. In addition, related datasets, such

as the short and long day senescence response could be compared. In a broader context,

while the analyses in this thesis were performed using data obtained from microarrays, it

is easily extensible for use with data from other time series gene expression analyses, such

as RNA-Seq (Oh et al., 2013). Moreover, this approach is applicable to any time series

data, both biological and nonbiological, such as the quantitative analysis of economic

phenomena.

In this thesis, a set of novel analysis approaches were presented, where a large number

of gene expression pro�les could be investigated using a simple regression approach, and

were modelled using a small number of parameters. These parameters were biologically

interpretable, and allowed the investigation of multiple aspects of the expression pro�les.

The analyses provided the user with greater �exibility, while also providing informa-

tion that would be more di�cult to extract using other analysis methodologies. Thus

by investigating the same data in a di�erent way it was possible to obtain more and

better information. Through the use of these analyses, a more biological paradigm was

produced, whereby a simple and direct means of interrogating the data was provided.

Using this approach potentially revealed more about the biology in a mechanistic man-

ner, where more information regarding the underlying biology was uncovered.
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A. PUX1 gene expression pro�le

Figure A.1: Gene expression pro�les for PUX1, from the Botrytis (top) and senescence
(bottom) experiments. In the Botrytis experiment, the blue line is the mock inocu-
lation, and the red line is the infected inoculation.

231



B. Primers

Table B.1: Table of primer sequences used for the qPCR. All sequences are 5' -> 3'.

Sequence Function

TGCCGATGGTACAAAGGTTC ANAC092 qPCR forward primer

TTTCTTGGTCGGAGAAGCAG ANAC092 qPCR reverse primer

AACCGGGTTTCAGGGTTTAG ANAC055 qPCR forward primer

ATCCCCTCAGTTTGTTGCTG ANAC055 qPCR reverse primer

GCAACAAGGCGTTCCTTTAC NF-YA7 qPCR forward primer

CTTGATTGTCTGCGCCTTAG NF-YA7 qPCR reverse primer

TTAAACCGGGGTCTGTTGAC LHCA6 qPCR forward primer

ATCGAACCACAAACCTCCAG LHCA6 qPCR reverse primer

TTAGAGGCCATGACCAAAGC PUX1 qPCR forward primer

TCTGTGGATTTACGCTCGTG PUX1 qPCR reverse primer

Table B.2: Table of primer sequences in the creation of a luciferase reporter. All se-
quences are 5' -> 3'.

Sequence Function

AAAAAAGCAGGCTTCATACATTG-
TTTTCACGAGATGGATAACATTTG

ANAC092 promoter
forward primer

CAAGAAAGCTGGGTCTTTATCCT-
AATAGGGTTTCTAAAAATGATC

ANAC092 promoter
reverse primer

AAAAAAGCAGGCTTCGTAACAG-
ACAGAACCTGAGCTTC

NFYA7 promoter
forward primer

CAAGAAAGCTGGGTCTTTATCC-
TAATAGGGTTTCTAAGATC

NFYA7 promoter
reverse primer

GGGGACAAGTTTGTACAAA-
AAAGCAGGCT

Gateway sequence
forward primer

GGGGACCACTTTGTACAAG-
AAAGCTGGGT

Gateway sequence
reverse prime

GTAAAACGACGGCCAG Colony PCR forward
primer (M13 forward)

CAGGAAACAGCTATGAC Colony PCR reverse
primer (M13 reverse)

CTTCAACGTTGCGGTTCTG pBGWL7 sequencing
primer

232



C. Time shifting genes

Table C.1: List of the 100 genes that were used as temporal marker genes, and which
resulted in the greatest reduction of residual mean square.

AT3G10270 AT1G51550 AT2G42260 AT1G07170

AT3G13730 AT1G27620 AT1G78310 AT5G45350

AT3G23710 AT3G61600 AT1G53250 AT3G17840

AT1G22280 AT3G06420 AT2G45550 AT3G60530

AT5G55160 AT5G39720 AT1G03687 AT4G32800

AT5G07030 AT3G09850 AT2G19500 AT2G07676

AT5G17210 AT2G35980 AT3G12080 AT1G30210

AT5G49740 AT1G76100 AT1G80560 AT1G23870

AT2G34430 AT1G20850 AT5G01450 AT2G43030

AT1G23060 AT3G20800 AT4G30360 AT3G55400

AT1G23960 AT4G38670 AT1G49850 AT5G17920

AT1G48450 AT2G37300 AT2G23450 AT2G22190

AT1G72710 AT5G01410 AT3G58610 AT1G18170

AT5G05740 AT3G08880 AT1G26150 AT2G39470

AT3G16000 AT1G76720 AT4G03390 AT1G77370

AT1G51090 AT1G54350 AT4G20430 AT4G40030

AT1G31190 AT5G45680 AT5G40380 AT2G38400

AT5G08330 AT2G38695 AT3G61310 AT5G52100

AT3G28200 AT1G73290 AT1G26650 AT4G32920

AT3G07460 AT1G20950 AT2G36990 AT4G36650

AT5G45020 AT2G18950 AT4G30020 AT4G25260

AT5G23060 AT4G38160 AT2G25830 AT3G01670

AT4G01050 AT4G38040 AT2G17630 AT5G05750

AT2G32520 AT3G57550 AT5G01630 AT2G39360

AT1G70100 AT5G16000 AT4G15560 AT2G40435
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D. Additional results

Additional results are provided on the CD, and include:

Cluster results

Yeast

� Gaussian - m,s

Senescence and Botrytis

� Exponential - r,b

� Gaussian - m,s

� Gompertz1 - 5per, grad

� Gompertz2 - 5per, grad

� Logistic - 5per, grad

� Linear - m

Figures of the clusters, the gene lists, and over-represented GO terms for the simultan-

eous parameter clustering, cross meta-clustering, and sequential meta-clustering results

are provided.

In addition, some of the code that was written and used in the analyses is given.

qPCR results

Spreadsheet of the −∆Ct values for all the primer pairs are provided.
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