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ANALYSIS OF AN ENERGY-BASED ATOMISTIC/CONTINUUM

APPROXIMATION OF A VACANCY IN THE 2D TRIANGULAR

LATTICE

C. ORTNER AND A. V. SHAPEEV

Abstract. We present an a priori error analysis of a practical energy based
atomistic/continuum coupling method (A. V. Shapeev, Multiscale Model. Simul.,

9(3):905–932, 2011) in two dimensions, for finite-range pair-potential interac-

tions, in the presence of vacancy defects.
We establish first-order consistency and stability of the method, from which

we obtain a priori error estimates in the H1-norm and the energy in terms of

the mesh size and the “smoothness” of the atomistic solution in the continuum
region. From these error estimates we obtain heuristics for an optimal choice

of the atomistic region and the finite element mesh, as well as convergence

rates in terms of the number of degrees of freedom. Our analytical predictions
are supported by extensive numerical tests.

1. Introduction

The purpose of this work is a rigorous study of a new computational multiscale
method coupling an atomistic description of a defect to a continuum model of the
elastic far field.

The accurate computational modelling of crystal defects requires an atomistic
description of the defect core, as well as an accurate resolution of the elastic far
field. Atomistic-to-continuum coupling methods (a/c methods) have been proposed
to combine the accuracy of atomistic modelling with the efficiency of continuum
mechanics (see [14, 21, 31, 32, 34] for selected references, and [19] for a recent
overview).

The construction of accurate energy-based a/c methods has been proven partic-
ularly challenging, due to the so-called “ghost-forces” at the interface between the
atomistic and continuum regions. This issue has been discussed at great length in
[31, 4, 7, 20], and several interface corrections have been proposed to either remove
or reduce the ghost forces [32, 7, 13, 34, 30, 12]. In general, the ghost-force removal
problem remains unsolved.

A growing body of literature exists on the rigorous analysis of a/c methods (we
refer to [30, 22, 18] for recent overviews), which has been largely restricted to one-
dimensional model problems. We are currently aware of only two exceptions: (1) In

Received by the editor March 7, 2012.
2000 Mathematics Subject Classification. 65N12, 65N15, 70C20.

Key words and phrases. atomistic models, atomistic-to-continuum coupling, coarse graining.
This work was supported by the EPSRC Critical Mass Programme “New Frontiers in the Math-

ematics of Solids” (OxMoS), by the EPSRC grant “Analysis of atomistic-to-continuum coupling

methods”, and by the ANMC Chair at EPFL (Prof. Assyr Abdulle).

c©XXXX American Mathematical Society

1



2 C. ORTNER AND A. V. SHAPEEV

[22] it is shown that, in 2D, any a/c method that has no ghost forces is automatically
first-order consistent. This work provides a general consistency analysis, but does
not address stability of a/c methods. (2) In [17], a force-based a/c method with an
overlap region is analyzed, in particular providing sharp stability estimates. How-
ever, the method proposed in [17] is not practical since it requires a prohibitively
wide overlap region; moreover, the analytic methods employed cannot accommo-
date defects, or coarse-graining of the continuum region. Some of these challenges
have been overcome in [16], where it is shown that a fairly narrow blending width
is sufficient to ensure stability of the method, however, a complete analysis of a
practical variant of force-based blending remains open.

In the present work, we give an a priori error analysis of a practical energy-
based a/c method proposed by Shapeev [30]. The formulation of the method and
its analysis are restricted to pair interactions in two dimensions, with periodic
boundary conditions.

For the case of a vacancy defect our analysis requires an assumption on the
magnitude of the deformation field generated by the defect, but is otherwise fully
rigorous. For more general “vacancy sets”, our consistency analysis remains fully
rigorous, however, our stability analysis relies on a so-called vacancy stability index,
which we estimate numerically (we give an analytical estimate for the single vacancy
case).

Finally, we remark that the goal of a/c methods is to simulate far more complex
situations than we can treat rigorously; we employ the example of a vacancy defect
as the simplest non-trivial model problem.

1.1. Outline. In §2 we formulate an atomistic model for the 2D triangular lattice,
with periodic boundary conditions, and two-body interactions. We also introduce
a convenient notation for bonds.

In §3, we formulate the a/c method studied in this paper: the ECC method
introduced in [30], but with periodic boundary conditions. This section contains all
necessary results and notation required for an implementation of the a/c method, as
well as a brief sketch of the proof of the a priori error estimate in order to motivate
the subsequent analysis.

In §4 we collect auxiliary results, which are largely technical results for finite
element spaces. We also introduce a new measure of “smoothness” of discrete
functions.

In §5 we prove consistency error estimates in discrete variants of the W−1,p-norm,
p ∈ [1,∞]. Our estimates are stronger and require fewer technical assumptions than
the general result given in [22].

In §6 we develop the stability analysis. We introduce a “vacancy stability index”,
which reduces the stability of a lattice with vacancies to stability of a lattice without
defects. We provide numerical examples and one analytical estimation of stability
indices.

In §7 we combine our previous steps to a priori error estimates in the H1-norm
and the energy. In §7.2 we translate these error estimates, which are stated in terms
of the smoothness of the solution, into estimates in terms of degrees of freedom.
This provides heuristics on how to optimally choose the atomistic region and the
finite element mesh.
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Finally, in §8, we present extensive numerical examples to confirm our analytical
results, and to provide further discussions of points where our rigorous analysis is
not sharp.

1.2. Notation. For s, t ∈ R, we write s ∧ t := min{s, t}.
The `p-norms in Rk are denoted by | · |p and | · | := | · |2. We do not normally dis-

tinguish between row and column vectors, but instead define three vector products:

if a, b ∈ Rk, then a·b :=
∑k
j=1 ajbj , and a⊗b := (aibj)

k
i,j=1, where i denotes the row

index and j the column index. If a, b ∈ R2, then we also define a× b := a1b2−a2b1.
Matrices are usually denoted by sans serif symbols, A,B,F,G, and so forth. The

set of k × k matrices with positive determinant is denoted by Rk×k+ . The set of
rotations of R2 is denoted by SO(2). Throughout we will denote a rotation through
angle π/2 by Q4 and a rotation through angle π/3 by Q6. If G ∈ Rk×k, then
‖G‖ denotes its `2-operator norm, and |G|p the `p(Rk×k)-norm. In particular, |G|
is the Frobenius norm, with the associated inner product F : G. The symmetric
component of a matrix G ∈ Rk×k is denoted by Gsym := 1

2 (G + G>).

If A ⊂ Rk is (Lebesgue-)measurable, then |A| denotes its measure. If A ⊂ R2

has Hausdorff dimension one, then we will denote its length by length(A). Volume
integrals are denoted by dV, while surface (1D) integrals are denoted by ds. For
bonds, which are specific one-dimensional objects, it will be convenient to introduce
a slightly different notation (see §2.2 and §3.2).

The interior and closure of a set A ⊂ Rk are denoted, respectively, by int(A) and
clos(A). If A ⊂ R2 is understood as a one-dimensional object, then we will also use
int(A) to denote its relative interior, but will normally specify this explicitly.

The Lebesgue norms ‖ ·‖Lp(A) for one- or two-dimensional measurable sets A are

defined in the usual way for scalar functions. If w : A → Rk is measurable, then
‖w‖Lp(A) := ‖|w|2‖Lp(A). If w is differentiable at a point x, then ∇w(x) denotes
its Jacobi matrix. The symbol D is reserved for finite differences, and will be
introduced in §2.2.

2. The Atomistic Model

2.1. The triangular lattice with vacancy defects. The 2D triangular lattice
is the set

L# := A6Z2, where A6 :=
[
a1, a2

]
:=

[
1 1/2

0
√

3/2

]
,

where ai, i = 1, 2, are called the lattice vectors. We furthermore set a3 = (− 1
2 ,
√

3
2 )>

and ai+3 = −ai for i ∈ Z, so that the set of nearest-neighbour directions is given by

Lnn :=
{
aj : j = 1, . . . , 6

}
=
{
Qj−1

6 a1 : j = 1, . . . , 6
}
,

where Q6 ∈ SO(2) denotes the rotation through π/3. Finally, we denote the set
of all lattice directions by L∗ := L# \ {0}. The hexagonal symmetry of L# yields
the following result, which decomposes the triangular lattice into lattice vectors of
equal distance.

Lemma 2.1. There exists a sequence (rn)∞n=1 ⊂ L∗ such that `n := |rn| is
monotonically increasing and the triangular lattice can be written as a union of
disjoint sets L∗ =

⋃∞
n=1

{
Qj6rn : j = 1, . . . , 6

}
.



4 C. ORTNER AND A. V. SHAPEEV
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Figure 1. Lattice and the computational domain with N = 12
and two vacancies. The black disks denote the atoms belonging
to the computational domain L, the white disks denote the atoms
belonging to L# \ L, and the vacancies are denoted by v and v′.

Lemma 2.1 motivates the splitting of lattice sums into hexagonally symmetric
sets. In these calculations the following two identities will prove useful. Their
proofs are given in Appendix A.

Lemma 2.2. Let G ∈ R2×2, and r ∈ R2, |r| = 1; then

6∑
j=1

∣∣GQj6r∣∣2 = 3|G|2, and(2.1)

6∑
j=1

[
(Qj6r)

>G(Qj6r)
]2

= 3
2 |G

sym|2 + 3
4 |trG|

2.(2.2)

Throughout the paper we fix a periodicity parameter N ∈ N. We say that a
set A ⊂ R2 is N -periodic if A + NL# = A. For any set A ⊂ R2 we denote its
periodic continuation by A# = A+NL#. If A is a family of sets, then we define
A # = {A# : A ∈ A }.

We denote the continuous and discrete cells by

Ω := A6(0, N ]2 and L := L# ∩ Ω.

We fix a set of vacancy sites V ⊂ L and define the discrete computational domain
as (cf. Figure 1)

L := L \ V.
A homogeneous deformation of L# is a map yB : L# → R2 defined, for B ∈ R2×2

+ ,

as yB(x) := Bx, x ∈ L#. The space of periodic displacements is denoted by

U =
{
u : L# → R2 : u(x+Naj) = u(x) for x ∈ L# and j = 1, 2

}
.

A map y : L# → R2 is said to be a periodic deformation with underlying macro-
scopic strain B ∈ R2×2

+ if y − yB ∈ U and if y is invertible. To quantify the



ANALYSIS OF AN ENERGY-BASED A/C APPROXIMATION 5

invertibility condition we define

µa(y) = inf
x 6=x′∈L#

|y(x′)−y(x)|
|x−x′|

and denote

YB :=
{
y : L# → R2 : y − yB ∈ U and µa(y) > 0

}
, and

Y :=
⋃

B∈R2×2
+

YB.

2.2. Bonds. A bond is an ordered pair (x, x′) ∈ L#×L#, x 6= x′. When convenient
we identify the bond b = (x, x′) with the line segment conv{x, x′}, for example, to
integrate over the segment, and correspondingly define |b| := |x − x′|. The set of
bonds between atoms in the computational domain L and all other atoms is denoted
by

B :=
{

(x, x′) ∈ L × L# : x 6= x′
}
.

The direction of a bond b will be denoted by rb, that is b = (x, x + rb) for some
x ∈ L#.

For a map v : L# → Rk and a bond b = (x, x+rb), we define the finite difference
operators

(2.3) Dbv := Drbv(x) := v(x+ rb)− v(x).

With this notation, we have µa(y) = minb∈B |Dby|/|b|.
We define the set of all bonds, including vacancy sites, by

B :=
{

(x, x+ r) : x ∈ L, r ∈ L∗
}
.

2.3. The interaction potential. Let ϕ ∈ C2(0,+∞) be an interaction potential,
and let φ ∈ C2(R2 \{0}) be defined as φ(r) := ϕ(|r|). The internal atomistic energy
of a deformation y ∈ Y is given by

Ea(y) =
∑
b∈B

φ(Dby)(2.4)

=
∑
x∈L

∑
x′∈L#\{x}

ϕ
(
|y(x′)− y(x)|

)
.(2.5)

It is crucial in our analysis that φ(r) and its derivatives decay rapidly as |r| →
+∞. For example, our analysis is invalid for the slowly decaying Coulomb interac-
tions. To avoid technicalities associated with the interaction decay altogether we
assume throughout that there exists a cut-off radius scut > 0 such that ϕ(s) = 0 for
all s ≥ scut. The most commonly employed intermolecular potentials satisfy this
property.

Despite the existence of a cut-off radius, we will need to quantify the decay
within the interaction range. To that end we define

(2.6) M2 : (0,+∞)→ [0,+∞], M2(s) = supr∈R2

|r|≥s
‖φ′′(r)‖,

were φ′′ : R2 \ {0} → R2×2 denotes the 2nd Frechet derivative of φ, and ‖ · ‖
the operator norm of a matrix. We remark that, written in terms of ϕ, we have

M2(s) = supt≥s
(∣∣ϕ′′(t)

t2

∣∣2 +
∣∣ϕ′(t)

t

∣∣2)1/2.

Remark 2.1. (a) The more general form of the interaction potential admitted by
(2.4) is useful since it includes plane-strain models of 3D crystals [33]. While our
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consistency results remain valid for this general form of the interaction potential,
the stability analysis relies more heavily on the specific form φ(r) = ϕ(|r|). Hence,
for the purpose of the present paper, we understand (2.4) simply as a convenient
replacement for the more conventional notation (2.5).

(b) External forces are often used to model, for example, a substrate or an inden-
ter. In order to avoid the additional level of complexity they would introduce, we
have decided against incorporating external forces. To obtain non-trivial solutions
in our numerical experiments, we have instead allowed for defects in the atomistic
lattice. �

2.4. The variational problem. The energy functional Ea is twice continuously
differentiable at every point y ∈ Y . We understand the first variation δEa(y) as an
element of U ∗, and the second variation δ2Ea(y) as a linear operator from U to
U ∗, formally defined by〈

δEa(y), u
〉

= d
dtEa(y + tu)|t=0, for u ∈ U , and〈

δ2Ea(y)u, v
〉

= d
dt 〈δEa(y + tu), v〉|t=0, for u, v ∈ U .

For some macroscopic strain B ∈ R2×2
+ , which shall be fixed throughout, the

atomistic problem is to find

(2.7) ya ∈ argmin Ea(YB),

where “argmin” denotes the set of local minimizers. If ya ∈ YB is a solution to
(2.7), then it satisfies the first-order necessary optimality condition

(2.8) 〈δEa(ya), u〉 = 0 ∀u ∈ U .

3. A/C Coupling Method

The a/c method we present is motivated by the quasinonlocal QC method pro-
posed in [32] and generalised in [7]. In the case of 1D second-neighbour pair interac-
tions these methods take a particularly simple form amenable to rigorous analysis
[4, 23, 27]. The generalisation to 2D finite range interactions we present here was
first proposed by Shapeev [30]. Generalisations to 1D finite range interactions were
independently developed in [15].

3.1. Coarse-grained deformations and displacements. The atomistic region
is a closed polygonal set Ωa ⊂ int(Ω), and the continuum region is given by Ωc :=
clos(Ω \ Ωa) ∩ Ω. We assume throughout that all corners of Ωa belong to L, and
that V ⊂ int(Ωa).

Let Lc
rep ⊂ L ∩ Ωc be a set of finite element nodes, or, in the language of the

quasicontinuum method [21], representative atoms. We assume that the corners
of the atomistic region belong to Lc

rep. We also define La
rep = L ∩ int(Ωa), and

Lrep := La
rep ∪ Lc

rep.
Let T c

h be a regular (and shape regular) triangulation of Ωc with vertices be-
longing to (Lc

rep)#, which is extended periodically to a regular triangulation (T c
h )#

of Ω#
c . An example of such a construction is displayed in Figure 2. We adopt

the convention that lattice functions that are piecewise affine with respect to the
triangulation (T c

h )# are understood as piecewise affine functions on all of Ω#
c , that

is, they may be evaluated at any point x ∈ Ω#
c and not only at lattice sites.

For each T ∈ (T c
h )# we define hT := diam(T ), and we define the mesh size

function h(x) := max{hT : T ∈ (T c
h )#, x ∈ T}, for x ∈ Ω#

c .
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v

Figure 2. Example of a triangulation T c
h of the continuum region

Ωc (shaded area), with nodes on ∂Ωc are such that the mesh can be
extended periodically to a regular triangulation of Ω#

c . Note that
the boundary of the atomistic region need not be aligned with
nearest-neighbour directions.

Whenever we refer to the shape regularity of T c
h (and later Th), we mean the

ratio between the largest and smallest angle between any two adjacent edges in Th.
We will assume throughout that this is moderate.

We define the set of admissible coarse-grained displacements and deformations,
respectively, as

Uh =
{
uh ∈ U : uh is p.w. affine w.r.t. T c

h

}
,

YB,h =
{
yh ∈ Y : yh − yB ∈ Uh and µc(yh) > 0

}
, and

Yh =
⋃

B∈R2×2
+

YB,h,

where µc is defined by

(3.1) µc(yh) := infx,x′∈Ωc

x 6=x′

|yh(x)−yh(x′)|
|x−x′| ≤ ess.inf

x∈Ωc

minr∈R2

|r|=1

|∇yh(x)r|.

Note that, since a continuous interpolant of an invertible atomistic deformation
need not necessarily be invertible, we are requiring a more stringent invertibility
condition on coarse-grained deformations yh.

Finally, we define the nodal interpolation operator Ih : U → Uh by

Ihu(x) = u(x) ∀x ∈ Lrep,

extended to deformations by Ihy − yB = Ih(y − yB), for y ∈ YB.

3.2. Bond integral formulation. There are two steps in the construction of the
a/c method. First, all bonds b that are entirely contained within the continuum
region are replaced by line integrals. We collect these bonds into the set

Bc :=
{
b ∈ B : int(b) ⊂ int(Ω#

c )
}
,

where int(b) denotes the relative interior of a bond b ∈ B#. The set of atomistic
bonds is the complement Ba := B \ Bc.
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For any function v that is measurable on the segment b = (x, x+ rb), we define
the bond integral

−
∫
b

v db = −
∫ x+rb

x

v db =

∫ 1

0

v(x+ trb) dt.

For any function vh ∈ Uh ∪ Yh the following one-sided directional derivatives are
well-defined at almost every point of b = (x, x+ r):

∇bvh(x) := ∇rvh(x) := lim
t↘0

vh(x+ tr)− vh(x)

t
.

If x lies in the interior of an element T , then vh is differentiable at x and hence
∇rvh(x) = (∇vh(x)) r. If x lies on an edge or a vertex of the triangulation, the
one-sided directional derivative of a continuous piecewise affine function is still well-
defined. The directional derivative ∇rvh(x) is only undefined at points x ∈ ∂Ωa

if r points to the interior of Ωa. For future reference we note the following useful
identity:

(3.2) Dryh(x) = −
∫ x+r

x

∇ryh db, for y ∈ Y , x ∈ L#, r ∈ L∗.

Using this notation we see that if ∇yh has small variation along the bond b,
then Dbyh ≈ ∇byh(x) for all x ∈ int(b), and hence we can make the following
approximation:

(3.3) φ(Dbyh) ≈ −
∫
b

φ(∇byh) db,

which naturally leads to the following definition of an a/c coupling method, which
is labelled the ECC method in [30]:

(3.4) Eac(yh) =
∑
b∈Ba

φ(Dbyh) +
∑
b∈Bc

−
∫
b

φ(∇byh) db.

We will use this formulation of the a/c method in our analysis, however, it does not
reduce the complexity of the energy evaluation, which is the purpose of the next
section.

It is again easy to see that Eac is twice continuously differentiable in YB,h, for all

B ∈ R2×2
+ , and we define the first and second variations δEac and δ2Eac analogously

to δEa and δ2Ea in §2.4.

3.3. Practical formulation. To make the a/c energy (3.4) “practical”, we need to
rewrite it in terms of volume integrals over the Cauchy–Born stored energy density.
The tool for achieving this is the bond density lemma [30]. This result is false for
general tetrahedra in 3D.

For any polygonal set U ⊂ R2 we define its characteristic function

(3.5) χU (x) = lim
t→0

|U∩Bt(x)|
|Bt(x)| for x ∈ R2,

where Bt(x) denotes the closed disk with radius t and centre x. From this definition
it follows that, if U1, U2 ⊂ R2 are polygonal sets with |int(U1) ∩ int(U2)| = 0, then
χU1∪U2

= χU1
+ χU2

.



ANALYSIS OF AN ENERGY-BASED A/C APPROXIMATION 9

The following result is a reformulation of [30, Lemma 4.4] for the triangular
lattice with periodic boundary conditions.

Lemma 3.1 (Bond-Density Lemma). Let T ⊂ clos(Ω) be a non-degenerate
triangle with vertices belonging to L#, and let r ∈ L∗, then∑

x∈L
−
∫ x+r

x

χT# db =
1

detA6
|T |.

Proof. A change of coordinates x 7→ A6x in [30, Lemma 4.4] yields the following
bond density formula for the full infinite lattice:∑

x∈L#

−
∫ x+r

x

χT db =
1

detA6
|T |.

Splitting the lattice sum over copies of the cell L, we obtain

1

detA6
|T | =

∑
x∈L#

−
∫ x+r

x

χT db =
∑
x∈L

∑
z∈NL#

−
∫ x+z+r

x+z

χT db.

Upon shifting the integration variable by −z, we can rewrite this as

1

detA6
|T | =

∑
x∈L
−
∫ x+r

x

∑
z∈NL#

χT−z db =
∑
x∈L
−
∫ x+r

x

χT# db. �

Equipped with the periodic bond-density lemma, we derive a practical formu-
lation of the a/c method (3.4). The proof of this result for Dirichlet boundary
conditions is contained in [30]; the modifications for the periodic case are straight-
forward [25, App. A].

Theorem 3.2. The energy Eac, defined in (3.4), can be rewritten as

Eac(yh) =
∑
b∈Ba

φ(Dbyh) +

∫
Ωc

W (∇yh) dV + Φi(yh), where(3.6)

Φi(yh) := −
∑

b∈B\Bc

−
∫
b

χΩ#
c
φ(∇byh) db,

and where W : R2×2 → R ∪ {+∞} is the Cauchy–Born stored energy function,

W (F) :=
1

detA6

∑
r∈L∗

φ(Fr).

Remark 3.1. While the bond-integral formulation (3.4) is easily extended to
higher dimensions and to higher order finite element spaces, Theorem 3.2 holds
only for piecewise affine trial functions in 2D. However, Shapeev [29] has developed
an efficient algorithm for the evaluation of (3.4) in 3D as well. �
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3.4. The coarse grained variational problem. To apply the a/c method we
compute

(3.7) yac ∈ argmin Eac(YB,h).

If yac ∈ YB,h is a solution to (3.7), then it satisfies the first- and second-order
necessary optimality conditions〈

δEac(yac), uh
〉

= 0 ∀uh ∈ Uh, and(3.8) 〈
δ2Eac(yac)uh, uh

〉
≥ 0 ∀uh ∈ Uh.(3.9)

Condition (3.9) is insufficient for error estimates; hence we will aim to prove the
stronger second-order sufficient optimality condition

(3.10)
〈
δ2Eac(yac)uh, uh

〉
≥ γ‖∇uh‖2L2(Ω) ∀uh ∈ Uh

for some γ > 0, where the norm ‖∇uh‖2L2(Ω) is yet to be defined for uh ∈ Uh. The

choice of norm on the right-hand side of (3.10) is motivated by the fact that the
equations (3.8) have a similar structure as finite element discretisations of second-
order elliptic equations.

3.5. Brief outline of the error analysis. We give a brief sketch of the main
result, Theorem 7.1, to motivate the subsequent technical details that we provide
in §5–§7. We stress that this discussion is schematic, and that some steps are not
properly defined at this point.

Let ya be a solution of (2.7), and yac a solution of (3.7), and assume that ya, yac,
and Ihya are “close” in a sense to be made precise. Suppose, moreover, that (3.10)
holds. Let eh := Ihya − yac, then we can estimate

γ‖∇eh‖2L2(Ω) ≤
〈
δ2Eac(yac)eh, eh

〉
≈
〈
δEac(Ihya)− δEac(yac), eh

〉
= 〈δEac(Ihya), eh〉.

The first inequality in the above estimate is the focus of the stability analysis in
§6. The purpose of the consistency analysis §5 is to estimate〈

δEac(Ihya), eh
〉
≤ Econs‖∇eh‖L2(Ω),

which immediately yields an a priori error estimate:

‖∇Ihya −∇yac‖L2(Ω) . γ
−1Econs.

In §4 we will give an interpretation to ∇ya, and establish interpolation error es-
timates, so that we can also estimate ‖∇ya − ∇Ihya‖L2(Ω). In §7, we will make
the above arguments rigorous, and in addition establish an error estimate for the
energy.

4. Auxiliary Results

4.1. Extension to the vacancy set. A substantial simplification of the subse-
quent analysis and notation can be achieved if we extend all function values to the
vacancy set V. Other approaches we have considered are significantly more tech-
nical and would yield only minor improvements. An altogether different approach
might be required to extend the analysis to more general classes of defects.

We define the extension operator as the solution of a variational problem. Let
the set of all displacement extensions be given by

UE :=
{
v : L# → R2 : v(x+Naj) = v(x) for x ∈ L#, j = 1, 2

}
;



ANALYSIS OF AN ENERGY-BASED A/C APPROXIMATION 11

then, for u ∈ U , we define

(4.1) Eu := argmin
v∈UE

v=u on L

ΦBnn
(v), where ΦBnn

(v) :=
∑
b∈Bnn

∣∣rb ·Dbv∣∣2,
where

Bnn :=
{

(x, x+ r) : x ∈ L, r ∈ Lnn}
is the set of nearest-neighbour bonds. This definition of the extension operator is
motivated by the stability analysis, more precisely, the definition of the vacancy
stability index in §6.1.

For the sake of simplicity of notation, we will identify Ew ≡ w, except where we
need to strictly distinguish the original function w and its extension.

Proposition 4.1. The variational problem (4.1) has a unique solution, that is,
the extension operator E is a well-defined linear operator from U to UE.

Proof. To prove that (4.1) has a unique solution it is sufficient to show that ΦBnn

is a positive definite quadratic form on the affine subspace of UE defined through
the constraint v = u on L. The linearity is a straightforward consequence.

To establish this, we need to employ notation that will be properly defined in
§4.2: let T #

a denote the canonical triangulation of L#, and, for each v ∈ UE , let
v̄ denote the corresponding continuous piecewise affine interpolant. In particular,
we then have Dbv = ∇bv̄ for all bonds b ∈ Bnn. Applying the bond density lemma,
and (2.2), we obtain

ΦBnn
(v) =

∫
Ω

∑
r∈Lnn

∣∣r · ∇v̄r∣∣2 dV =

∫
Ω

{
3
2

∣∣(∇v̄)sym
∣∣2 + 3

4

∣∣tr(∇v̄)
∣∣2}dV.

Since v̄ is fixed in the continuum region, Korn’s inequality shows that ΦBnn
is indeed

coercive.
This proof shows that, in fact, E is defined through the solution of an isotropic

linear elasticity problem, with boundary data provided on the edge of a suitably
defined neighbourhood of the vacancy set. �

We extend the definition of E to include deformations y ∈ Y , via E(yB +
u) = yB + Eu for all B ∈ R2×2

+ . We stress, however, that none of our results
depend (explicitly or implicitly) on the extension of deformations. By contrast, the
extension of displacements enters our analysis heavily.

4.2. Micro-triangulation and extension of T c
h . The triangular lattice L# has

a “canonical” triangulation T #
a , which is defined so that every nearest-neighbour

bond is the edge of a triangle; see Figure 3. The subset of triangles τ ∈ T #
a that

are contained in clos(Ω) is denoted by Ta. We will assume throughout that the
following assumption holds, but only cite it explicitly in the main results.

Assumption A. The boundary of Ωa is aligned with edges of Ta and the mesh size
on ∂Ωa is equal to the lattice spacing.

Assumption A implies that any microelement τ ∈ Ta must belong either entirely
to Ωa or to Ωc. This yields a natural extension Th of T c

h , which is obtained by
adding all micro-elements τ ∈ Ta, τ ⊂ Ωa, so that Th and Ta coincide in Ωa. The
requirement that the mesh size on ∂Ωa is equal to the lattice spacing implies that
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v

Figure 3. The micro-triangulation Ta (dotted lines) and the ex-
tension Th of the macro-triangulation to the atomistic domain.
Note that in Ωa, Th coincides with Ta and has no hanging nodes.

the extended mesh Th has no hanging nodes. We emphasize that our subsequent
analysis is valid only for this smaller family of meshes than the a/c coupling method
was formulated for (compare Figure 2 with Figure 3).

The definitions of the element size hT , the mesh size function h(x), and the shape

regularity, from §3.1, are extended to Th and T #
h .

For any lattice function w : L# → Rk we define the P1 micro-interpolant w̄, that
is, w̄ ∈W1,∞

loc (R2)k and w̄(x) = w(x) on the lattice sites x ∈ L#. In particular, the
gradient ∇w̄, which is a piecewise constant function, is also well-defined.

Note that yh ∈ Yh is interpreted as the continuous P1 interpolant with respect to
the mesh Th (the macro-interpolant), while ȳh is understood as the P1 interpolant
with respect to the mesh Ta (the micro-interpolant). In our analysis we will require
some technical results comparing ȳh and yh. Lemma 4.2 gives a global comparison
result, while a local variant is established in Lemma 4.5 below.

Lemma 4.2. Let yh ∈ Yh, and p ∈ [1,∞]; then

‖∇ȳh‖Lp(Ω) ≤ C̄Ω‖∇yh‖Lp(Ω),(4.2)

where C̄Ω = max(3(p−2)/(2p), 3(2−p)/(2p)) ≤
√

3.

Proof. The result follows from an argument analogous to the proof of [22, Lemma
2]. We present the details in [25, App. A]. �

4.3. W2,∞-conforming interpolants. Smoothness of the atomistic solution in
the continuum region is one of the key requirements for error estimates in a/c
methods [6, 23]. In previous 1D analyses of a/c methods smoothness was measured
via second- and third-order finite differences. A direct extension of this approach is
technically and notationally demanding; hence, we propose to measure smoothness
of discrete maps in terms of the smoothness of W2,∞-conforming interpolants. In
fact, it turns out that our analysis requires no explicit construction, and we therefore
define the class of all W2,∞-conforming interpolants of deformations y ∈ YB, B ∈
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R2×2
+ :

Π2(y) :=
{
ỹ ∈W2,∞(R2)2 : ỹ(x) = y(x) for all x ∈ L#, and

ỹ(x+Naj) = B(Naj) + ỹ(x) for all x ∈ R2, j = 1, 2
}
.

Lemma 4.3 (Interpolation Error Estimates). Let p ∈ [1,∞], then there

exists a constant C̃h, depending only on p and on the shape regularity of Th, such
that, for all y ∈ Y ,

(4.3)
∥∥∇ỹ −∇Ihy∥∥Lp(T )

≤ C̃hhT
∥∥∇2ỹ

∥∥
Lp(T )

∀T ∈ Th ∀ỹ ∈ Π2(y).

Moreover, there exists a constant C̃a, depending only on p, such that

(4.4)
∥∥∇ỹ −∇ȳ∥∥

Lp(τ)
≤ C̃a

∥∥∇2ỹ
∥∥

Lp(τ)
∀τ ∈ Ta ∀ỹ ∈ Π2(y).

Proof. Both estimates are standard [1]. The constant C̃a is independent of the
mesh quality since Ta contains only a single element shape. �

Remark 4.1. We show in [25, Remark 4.1], that an explicit W2,∞-interpolant
ỹhct can be constructed (using, e.g., the Hsieh–Clough–Tocher element) such that

(4.5) c1‖∇2ỹhct‖Lp(τ) ≤
∥∥[∇ȳ]

∥∥
Lp(Γτ )

≤ c2‖∇2ỹhct‖Lp(ωτ ),

where ci > 0 are universal constants, Γτ is the union of all edges of the micro-
triangulation touching τ , ωτ the union of all micro-elements touching τ , and where
[∇ȳ] denotes the jump of ∇ȳ across micro-triangulation edges.

The inequalities in (4.5) show a local equivalence between second derivatives of
“good” W2,∞-conforming interpolants and jumps of ∇w̄, which one might consider
the most natural measure of smoothness. �

4.4. Notation for edges. Several estimates in our consistency analysis will be
phrased in terms of the jumps of ∇yh, yh ∈ Yh, across element edges, for which we

now introduce the required notation: let F#
h denote the set of (closed) edges of the

triangulation T #
h , and let

Fh :=
{
f ∈ F#

h : int(f) ⊂ Ω
}
, and Fc

h :=
{
f ∈ Fh : f 6⊂ Ωa

}
,

where, here and throughout, int(f) denotes the relative interior of an edge f . That
is, the set Fh includes one periodic copy of all element edges contained in Ω, and
Fc
h excludes all edges that are subsets of Ωa.

Let f ∈ F#
h , f = T+∩T−, T± ∈ Th, and suppose that w : int(T+)∪int(T−)→ Rk

has well-defined traces w± from T±, then we define the jump [w](x) := |w+(x) −
w−(x)| for all x ∈ int(f). Whenever we write

∫
Fc
h
, Lp(Fc

h), etc., we identify Fc
h

with the union of its elements.
In the next lemma we provide a tool to estimate jumps across edges in terms of

smooth interpolants. The proof is given in Appendix A.

Lemma 4.4. Let y ∈ Y and f ∈ F#
h , f = T+ ∩ T− for T± ∈ Th; then∥∥[∇Ihy]

∥∥
Lp(f)

≤ Cf
∥∥h1/p′∇2ỹ

∥∥
Lp(T+∪T−)

∀ỹ ∈ Π2(y), and(4.6) ∥∥[∇Ihy]
∥∥

Lp(Fc
h)
≤ Cf31/p

∥∥h1/p′∇2ỹ
∥∥

Lp(Ωc)
∀ỹ ∈ Π2(y).(4.7)
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where Cf depends only on the shape regularity of Th.

4.5. Micro- and macro-interpolants. The following local version of Lemma 4.2
and its corollary, Lemma 4.6, are motivated by gradient jumps estimates of Lemma
4.4. The proof of Lemma 4.5 is given in Appendix A. We remark that the constant
C̄a is fairly moderate as the discussion at the end of the proof shows.

Lemma 4.5. Let yh ∈ Yh, τ ∈ Ta, and p ∈ [1,∞]; then

(4.8) ‖∇ȳh‖Lp(τ) ≤ C̄a

(
‖∇yh‖pLp(τ) +

∥∥[∇yh]
∥∥p

Lp(F#
h ∩int(τ))

)1/p

,

where C̄a depends only on the shape regularity of Th.

Combining Lemma 4.5 and Lemma 4.3, we obtain the following result, which is
a critical ingredient of the analysis in §5.1.

Lemma 4.6. Let y ∈ Y and p ∈ [1,∞]; then

(4.9)
∥∥∇ȳ −∇Ihy∥∥Lp(Ωc)

≤ C̄Ih
∥∥h∇2ỹ

∥∥
Lp(Ωc)

∀ỹ ∈ Π2(y),

where C̄Ih depends only on the shape regularity of Th.

Proof. We cannot immediately use the interpolation error estimates (4.3) and (4.4)
to estimate the term ‖∇(ȳ − Ihy)‖Lp(Ω), due to the occurrence of Ihy. Instead, we

first fix a micro-element τ ⊂ Ωc, define z(x) := (∇ȳ|τ )x for all x ∈ R2, and use
(4.8) to estimate∥∥∇(ȳ − Ihy)

∥∥p
Lp(τ)

=
∥∥∇Ih(y − z)

∥∥p
Lp(τ)

≤ C̄pa
[∥∥∇Ih(y − z)

∥∥p
Lp(τ)

+
∥∥[∇Ih(y − z)]

∥∥p
Lp(Fc

h∩int(τ))

]
= C̄pa

[∥∥∇(Ihy − ȳ)
∥∥p

Lp(τ)
+
∥∥[∇Ihy]

∥∥p
Lp(Fc

h∩int(τ))

]
.

We will next sum this estimate for all τ ∈ Ta. Using the fact that ȳ = Ihy in Ωa,
as well as the interpolation error estimates (4.3) and (4.4), and the jump estimate
(4.7), we obtain, for any ỹ ∈ Π2(y),∥∥∇(ȳ − Ihy)

∥∥
Lp(Ω)

≤ C̄a

[∥∥∇(Ihy − ȳ)
∥∥

Lp(Ωc)
+
∥∥[∇Ihy]

∥∥
Lp(Fc

h)

]
≤ C̄a

[∥∥∇(Ihy − ỹ)
∥∥

Lp(Ωc)
+
∥∥∇(ỹ − ȳ)

∥∥
Lp(Ωc)

+
∥∥[∇Ihy]

∥∥
Lp(Fc

h)

]
≤ C̄a

[
C̃h‖h∇2ỹ‖Lp(Ωc) + C̃a‖∇2ỹ‖Lp(Ωc) + Cf31/p‖h1/p′∇2ỹ‖Lp(Ωc)

]
.

Since h ≥ 1, the stated result follows. �

5. Consistency

Recall from our preliminary discussion in §3.5 that the total consistency error
associated with the atomistic solution ya is∥∥δEac(Ihy

a)‖W−1,p
h

=
∥∥δEac(Ihy

a)− δEa(ya)
∥∥

W−1,p
h

=: Econs
p (ya),

where, for Ψ ∈ U ∗h , the negative Sobolev norm is defined as

‖Ψ‖W−1,p
h

:= sup
uh∈Uh

‖∇uh‖Lp′ (Ω)
=1

〈
Ψ, uh

〉
.
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In this section we prove the following estimate. Our assumption that φ has a finite
cut-off radius (see §2.3) guarantees that Ccons is finite.

Theorem 5.1 (Consistency). Suppose that Assumption A holds. Let y ∈ Y
such that µa(y) > 0 and µc(Ihy) > 0. Then, for each p ∈ [1,∞], we have

(5.1) Econs
p (y) ≤ Ccons inf

ỹ∈Π2(y)
‖h∇2ỹ‖Lp(Ωc),

where Ccons depends only on µa(ya), on µc(Ihy), and on the shape regularity of Th.

Outline of the proof. To prove this result, we first split the consistency error into a
coarsening error and a modelling error:

Econs
p (y) =

∥∥δEac(Ihy)− δEa(y)
∥∥

W−1,p
h

≤
∥∥δEac(Ihy)− δEa(Ihy)

∥∥
W−1,p
h

+
∥∥δEa(Ihy)− δEa(y)

∥∥
W−1,p
h

,

=: Emodel
p (y) + Ecoarse

p (y).

We note that, since we estimate the modelling error at the interpolant Ihy, the
mesh dependence is not entirely removed from Emodel.

The estimate for the coarsening error is given in Lemma 5.4, and the estimate
for the modelling error in Lemma 5.9, which together yield (5.1) with Ccons =
Ccoarse +Cmodel. Note that we have ignored the improved mesh size dependence of
the modelling error, and estimated 1 ≤ h to obtain Emodel

p (y) ≤ Cmodel‖h∇2ỹ‖Lp(Ωc)

for all ỹ ∈ Π2(y). �

Remark 5.1. The details of the proof of Theorem 5.1 are technically involved,
due to the relatively weak assumptions that we made on the mesh Th, as well as
the fact that we insisted to estimate the consistency error in terms of ‖h∇2ỹ‖Lp(Ωc)

only. A simplified argument can be given if weaker estimates are sufficient; see [25,
App. B]. �

5.1. Coarsening error. The ingredients in the coarsening error estimate are a
local Lipschitz bound on δEa, and the interpolation error estimate of Lemma 4.6.
We begin by stating a useful auxiliary result.

Lemma 5.2. Let r ∈ L∗, q ∈ [1,∞), uh ∈ Uh and u ∈ U , then∑
x∈L

∣∣Druh(x)
∣∣q ≤∑

x∈L
−
∫ x+r

x

|∇ruh|q db = 1
detA6

‖∇ruh‖qLq(Ω), and(5.2)

∑
x∈L

∣∣Dru(x)
∣∣q ≤∑

x∈L
−
∫ x+r

x

|∇rū|q db = 1
detA6

‖∇rū‖qLq(Ω).(5.3)

Proof. The result is a straightforward application of the bond density lemma. We
give the proof for (5.2), since (5.3) is a particular case.

Jensen’s inequality implies the inequality in (5.2):∣∣Druh(x)
∣∣q =

∣∣∣∣−∫ x+r

x

∇ruh db

∣∣∣∣q ≤ −∫ x+r

x

∣∣∇ruh∣∣q db.
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Using the fact that that {χ#
T : T ∈ Th} is a partition of unity, continuity of ∇ruh

across faces with direction r, and Lemma 3.1, we have∑
x∈L
−
∫ x+r

x

|∇ruh|q db =
∑
T∈Th

∑
x∈L
−
∫ x+r

x

χT# |∇ruh|q db

=
∑
T∈Th

|∇ruh|T |q
∑
x∈L
−
∫ x+r

x

χT# db

=
1

detA6

∑
T∈Th

|T ||∇ruh|T |q. �

The next auxiliary result is a Lipschitz bound on δEa.

Lemma 5.3. Let y, z ∈ Y , and µ := min{µa(y), µa(z)} > 0; then

(5.4)
∣∣〈δEa(y)− δEa(z), uh

〉∣∣ ≤ CL

∥∥∇ȳ −∇z̄∥∥
Lp(Ω)

‖∇uh‖Lp′ (Ω)

for all uh ∈ Uh, where CL = CL(µ) := 1
detA6

∑
r∈L∗ |r|

2M2(µ|r|). The result
remains true if uh is replaced with u ∈ U , and ∇uh with ∇ū.

Proof. Fix uh ∈ Uh and p ∈ (1,∞); then∣∣〈δEa(y)− δEa(z), uh
〉∣∣ ≤ ∑

b∈B

∣∣φ′(Dby)− φ′(Dbz)
∣∣ |Dbuh|

≤
∑
b∈B

M ′|b|
∣∣Dby−Dbz

|b|
∣∣ ∣∣Dbuh
|b|
∣∣,

where M ′ρ = M2(µρ)ρ2. Let w = y − z, then, applying a Hölder inequality, we
obtain that∣∣〈δEa(y)− δEa(z), uh

〉∣∣ ≤ (∑
b∈B

M ′|b|
∣∣Dbw
|b|
∣∣p)1/p(∑

b∈B

M ′|b|
∣∣Dbuh
|b|
∣∣p′)1/p′

.

Each of the two groups can be estimated using Lemma 5.2, for example,∑
b∈B

M ′|b|
∣∣Dbw
|b|
∣∣p ≤ ∑

b∈B
M ′|b|

∣∣Dbw
|b|
∣∣p =

∑
r∈L∗

M ′|r||r|
−p
∑
x∈L

∣∣Drw(x)
∣∣p

≤
∑
r∈L∗

M ′|r|
detA6

|r|−p‖∇rw̄‖pLp(Ω) = ‖∇w̄‖pLp(Ω)

∑
r∈L∗

M ′|r|
detA6

.

By the same argument, using (5.2) instead of (5.3), we obtain∑
b∈B

M ′|b|
∣∣Dbuh
|b|
∣∣p′ ≤ 1

detA6

∑
r∈L∗

M ′|r|‖∇uh‖
p′

Lp′ (Ω)
.

This establishes (5.4) for p ∈ (1,∞). The cases p ∈ {1,∞} are obtained with
minor modifications of the above argument. The proof for u ∈ U is analogous. �

We can now formulate the coarsening error estimate.

Lemma 5.4. Let y ∈ Y and µ := min(µa(y), µa(Ihy)) > 0; then,

(5.5) Ecoarse
p (y) ≤ Ccoarse

∥∥h∇2ỹ
∥∥

Lp(Ωc)
,

for all p ∈ [1,∞] and for all ỹ ∈ Π2(y), where Ccoarse = CL(µ)C̄Ih .
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Proof. According to Lemma 5.3 we have〈
δEa(y)− δEa(Ihy), uh

〉
≤ CL

∥∥∇(ȳ − Ihy)
∥∥

Lp(Ω)
‖∇uh‖Lp′ (Ω).

From Lemma 4.6 we obtain that

‖∇(ȳ − Ihy)‖Lp(Ω) ≤ C̄Ih
∥∥h∇2ỹ

∥∥
Lp(Ωc)

∀ỹ ∈ Π2(y),

which yields (5.5) with Ccoarse = CLC̄Ih . �

Remark 5.2. With an alternative splitting of the consistency error (see, e.g.,
[27, 22]) it would have been necessary to estimate the coarsening error when Ea is
replaced with Eac. In that case, we would have needed a Lipschitz estimate on δEac.
Defining Eac(ȳ) in a canonical way, our proof above is easily modified to yield

∣∣〈δEac(Ihy)− δEac(ȳ), uh
〉∣∣ ≤ { ∑

b∈Ba

M ′|b|−
∫
b

∣∣∇bIhy −∇bȳ∣∣p db

+
∑
b∈Bc

M ′|b|−
∫
b

∣∣∇bIhy −∇bȳ∣∣p db

}1/p

C
1/p′

L ‖∇uh‖Lp′ .

The first group we can again convert into volume integrals and estimate using
Lemma 4.6. However, the second group contains integrals over both macro- and
micro-interpolants, and therefore cannot be converted into volume integrals using
the bond density lemma.

However, as we show in [25, App. B], weaker (though technically less involved)
estimates can be obtained in this way. �

5.2. Modelling error. For the majority of the modelling error analysis we can
replace Ihy by an arbitrary discrete deformation yh ∈ Yh. Hence, we fix yh ∈ Yh
such that µ := min(µa(yh), µc(yh)) > 0. Moreover, we fix constants ar > 0, r ∈ L∗,
which will be determined later, ab := arb for all bonds b ∈ B, and M ′ρ := M2(µρ)ρ2

for all ρ > 0.
With this notation, and using (3.2), we have

〈
δEac(yh)− δEa(yh), uh

〉
=
∑
b∈Bc

−
∫
b

φ′(∇byh) · ∇buh db−
∑
b∈Bc

φ′(Dbyh) ·Dbuh

=
∑
b∈Bc

−
∫
b

[
φ′(∇byh)− φ′(Dbyh)

]
· ∇buh db

≤
∑
b∈Bc

M2(µ|b|)−
∫
b

∣∣∇byh −Dbyh∣∣|∇buh|db

=
∑
b∈Bc

M ′|b|−
∫
b

(
a−1
b |b|

−1
∣∣∇byh −Dbyh∣∣)(ab|b|−1|∇buh|

)
db.
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Following a similar procedure as in the proof of Lemma 5.3 (applying a Hölder
inequality and Lemma 5.2), we obtain〈

δEac(yh)− δEa(yh), uh
〉

≤
( ∑
b∈Bc

M ′|b||b|
−pa−pb −

∫
b

∣∣∇byh −Dbyh∣∣p db

)1/p

C
1/p′

1 ‖∇uh‖Lp′ (Ω)

=: C
1/p′

1 e(yh)‖∇uh‖Lp′ (Ω),(5.6)

where C1 = 1
detA6

∑
r∈L∗M

′
|r|a

p′

r , and where

e(yh)p :=
∑
b∈Bc

M ′|b||b|
−pa−pb eb(yh)p,

eb(yh)p := −
∫
b

∣∣∇byh −Dbyh∣∣p db.

(5.7)

We will estimate the terms eb(yh)p in terms of the jumps of ∇yh. To that end,
we define the jump sets

(5.8) J(b) :=
{
f ∈ Fh : #(f ∩ int(b)) = 1

}
.

Faces parallel to b are ignored since the directional derivative ∇rbyh is continuous
across these faces. For each f ∈ J(b) we define the weights

wb,f :=

{
1, if f ∩ int(b) ⊂ int(f),

1/2, otherwise;

that is, wb,f = 1 if b crosses f in its relative interior, and wb,f = 1/2 if b crosses f
at one of its endpoints. Finally we define the quantities

(5.9) nj(b) :=
∑
f∈J(b)

wb,f , and nj(r) := max
b∈Bc
rb=r

nj(b).

Lemma 5.5. Let b ∈ Bc, then

(5.10) eb(yh)p ≤ nj(b)
p−1

∑
f∈J(b)

wb,f
∣∣[∇byh]f

∣∣p.
Proof. Define ψ(t) = ∇byh(x + trb) and let Jψ ⊂ (0, 1) be the set of jumps of ψ,
then

(5.11) eb(yh)p =

∫ 1

0

∣∣∣∣ψ(t)−
∫ 1

0

ψ(s) ds

∣∣∣∣p dt.

For any point t ∈ (0, 1) \ Jψ we can estimate∣∣∣∣ψ(t)−
∫ 1

0

ψ(s) ds

∣∣∣∣ ≤ ∫ 1

0

∣∣ψ(t)− ψ(s)
∣∣ds ≤ ∫ 1

0

∫
r∈(t,s)

|ψ′|dr ds

≤
∫ 1

0

|ψ′|dr =
∑
r∈Jψ

|ψ(r+)− ψ(r−)|,
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where |ψ′|dr is understood as the measure that represents the distributional deriv-
ative of ψ. Inserting this estimate into (5.11), yields

eb(yh)p ≤
∣∣∣ ∑
r∈Jψ

|ψ(r+)− ψ(r−)|
∣∣∣p ≤ (#Jψ)p−1

∑
r∈Jψ

∣∣ψ(r+)− ψ(r−)
∣∣p,

which translates directly into (5.10), in the case that b does not intersect any faces
in their endpoints.

If b does intersect certain faces in endpoints then one replaces the path {x+ trb :
t ∈ (0, 1)} by two paths that “circle” around the endpoints, each weighted with a
factor 1/2. �

Recall the detail of the definition of Fc
h from §4.4. Since only bonds b ∈ Bc

contribute to the consistency error, it follows that only jumps across faces f ∈ Fc
h

occur in the following estimate. Interchanging the order of summation, we obtain

e(yh)p ≤
∑
b∈Bc

M ′|b||b|
−pa−pb nj(b)

p−1
∑
f∈J(b)

wb,f
∣∣[∇byh]f

∣∣p
≤
∑
r∈L∗

M ′|r||r|
−pa−pr nj(r)

p−1
∑
b∈Bc
rb=r

∑
f∈J(b)

wb,f
∣∣[∇byh]f

∣∣p
=
∑
r∈L∗

M ′|r||r|
−pa−pr nj(r)

p−1
∑
f∈Fc

h

ncross(f, r)
∣∣[∇ryh]f

∣∣p,(5.12)

where ncross(f, r) is the (weighted) number of bonds b with direction r and crossing
the face f ; more precisely,

ncross(f, r) :=
∑

b∈Bc,rb=r
f∈J(b)

wb,f .

Lemma 5.6. Let f ∈ Fc
h and r ∈ L∗; then

(5.13) ncross(f, r) ≤ 1
detA6

2|r| length(f).

Proof. Let f = {z + ts : t ∈ [0, 1]}, and define the parallelogram

P = {z + t1s+ t2r : t1 ∈ [0, 1], t2 ∈ (−1, 1)},
then we have

ncross(f, r) =
∑

b∈Bc,rb=r
f∈J(b)

−
∫
b

χP db ≤
∑
x∈L#

−
∫ x+r

x

χP db = 1
detA6

|P |,

where, in the last equality, we have used the fact that P is the union of two triangles,
which implies that the bond density lemma holds for P as well. To obtain the result
we simply note that |P | ≤ 2|r|length(f). �

Estimate (5.13) and |[∇ryh]f | ≤ |r||[∇yh]f | yield

(5.14) e(yh)p ≤ C2

( ∑
f∈Fc

h

hf
∣∣[∇yh]f

∣∣p),
where C2 = 1

detA6

∑
r∈L∗ 2M ′|r||r|a

−p
r nj(r)

p−1 and hf := length(f).
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Choosing the constants ar so that C1 = C2,

2|r|a−pr nj(r)
p−1 = ap

′

r = (2|r|)1/pnj(r)
1/p′ ,

we obtain

(5.15) C1 = C2 = 1
detA6

21/p
∑
r∈L∗

M2(µ|r|)|r|2+1/pnj(r)
1/p′ .

To obtain a more explicit constant, we estimate nj(r) next. The following result is
unsurprising, but its proof rather technical; hence we have postponed it to Appendix
A.

Lemma 5.7. There exists a constant Cnj
, which depends only on the shape

regularity of Th, such that

(5.16) nj(b) ≤ Cnj(|b|+ 1) ∀b ∈ Bc.

Combining (5.14), (5.15), and (5.16), we deduce the following intermediate result,
which is interesting in its own right, since it could serve as a basis for a posteriori
error estimates.

Lemma 5.8. Let yh ∈ Yh, µ := min(µa(yh), µc(yh)) > 0; then

(5.17)
〈
δEac(yh)− δEa(yh), uh

〉
≤ Cmodel

1

∥∥[∇yh]
∥∥

Lp(Fc
h)
‖∇uh‖Lp′ (Ω)

for all uh ∈ Uh, where Cmodel
1 = C ′

∑
r∈L∗Mr(µ|r|)|r|3 and C ′ depends only on the

shape regularity of Th.

Applying Lemma 4.4 to estimate ‖[∇yh]‖Lp(Fc
h) in (5.17), we obtain the final

modelling error estimate.

Lemma 5.9 (Modelling Error). Let y ∈ Y and suppose that

µ := min(µa(Ihy), µc(Ihy)) > 0;

then

(5.18) Emodel
p (y) ≤ Cmodel

∥∥h1/p′∇2ỹ
∥∥

Lp(Ωc)
,

where Cmodel = C
∑
r∈L∗M2(µ|r|)|r|3 and C depends only on the shape regularity

of Th.

Remark 5.3. At first glance it may seem that the terms ‖[∇yh]‖Lp(Fc
h) in (5.17)

and ‖h1/p′∇2ỹ‖Lp(Ωc) in (5.18) are not scale invariant. This is, however, deceiving.
Since the atomic scale is 1 in our case, one should read (5.18) as∥∥h1/p′∇2ỹ

∥∥
Lp(Ωc)

=
∥∥11/ph1/p′∇2ỹ

∥∥
Lp(Ωc)

,

which is again scale invariant if 1 is scaled in the same way as h. Indeed, it can be
checked that, had we formulated the entire analysis with scaled quantities x→ εx,
y → εy, and

∑
→ ε2

∑
, then we would have obtained ‖ε1/ph1/p′∇2ỹ‖Lp(Ωc). �
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6. Stability

6.1. Main results. The most natural notion of stability for variational problems
is positivity of the second variation (at certain deformations of interest).

We first state the main stability result for the case of a homogeneous deformation
and V = ∅. This serves as reference point and motivation for the general stability
result below, which has a more involved formulation.

Theorem 6.1. Suppose that Assumption A holds, and that V = ∅. Let B ∈ R2×2
+

with singular values 0 < m ≤M ; then〈
δ2Eac(yB)uh, uh

〉
≥ γhom‖B>∇uh‖2L2(Ω) ∀uh ∈ Uh,

where γhom = γhom(m,M) := min( 3
4c+ 9

4c
⊥, 9

4c+ 3
4c
⊥),

c(⊥) = c(⊥)(m,M) := 1
detA6

∑∞
n=1c

(⊥)
n , and

cn :=

{
mins∈[m,M ]

ϕ′′(s)
s2 , n = 1,

0 ∧mins∈[m,M ]
`2nϕ
′′(s`n)
s2 , n > 1,

c⊥n :=

{
mins∈[m,M ]

ϕ′(s)
s3 , n = 1,

0 ∧mins∈[m,M ]
`nϕ
′(s`n)
s3 , n > 1.

(6.1)

Theorem 6.1 is a special case of Theorem 6.2 below, restricted to homogeneous lat-
tices without defects. A direct proof can be given by first specializing the definition
of H(yh) in (6.11) to yh = yB and V = ∅, and then applying Lemma 6.4, with H
replaced with H(yB).

Our generalisation to defects uses the concept of a vacancy stability index. Using
the extension operator E : U → UE (see §4.1) we define

κ(V) := max
{
k > 0 :

∑
b∈Bnn

∣∣rb ·Dbu∣∣2 ≥ k ∑
b∈Bnn

∣∣rb ·DbEu∣∣2 for u ∈ U
}
.(6.2)

We present numerically computed lower bounds on κ(V) in Table 1, and in §6.7
rigorously prove the bound κ(V) ≥ 2/7 if V consists of separated vacancies.

Remark 6.1 (Optimality of the extension operator). Recall the definition
of ΦBnn

from §4.1, and let ΦBnn
be defined analogously, then (6.2) can be rewritten

as

κ(V) = max
{
k > 0 : ΦBnn

(u) ≥ kΦBnn
(Eu) for all u ∈ U

}
.

Since Eu is chosen to minimize the value of ΦBnn(Eu), it gives the largest possible
stability index among all possible extensions.

Moreover, we can characterise κ(V) in terms of an operator norm of E. Let U
be equipped with the norm

√
ΦBnn

and UE with the norm
√

ΦBnn
, then κ(V) =

infu∈U \{0}
ΦBnn (u)

ΦBnn (Eu) = ‖E‖−2
L(U ,UE). �
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Separation distance 4 8 12

V = ∅ 1
Vacancies 0.28 0.39 0.41

Divacancies 0.16 0.26 0.29

Table 1. Numerically computed lower bounds on vacancy stabil-
ity indices (rounded down to two significant digits) when V consists
of either single vacancies, or divacancies separated by “separation
distance”.

To state the main stability result, we define a family of regions in the space of
deformations: for 0 < m ≤M and ∆ > 0 let

SB,h(m,M,∆) :=
{
yh ∈ YB,h : µa(yh) ≥ m and µc(yh) ≥ m;

|Dbyh| ≤M |b| ∀b ∈ Ba and ‖∇yh|T ‖ ≤M ∀T ∈ T c
h ;

|B−1Dbyh − rb| ≤ ∆|b| ∀b ∈ Ba and ‖B−1∇yh|T − 1‖ ≤ ∆ ∀T ∈ T c
h

}
.

Theorem 6.2. Suppose that Assumption A holds and suppose that yh ∈ SB,h(m,M,∆)

for 0 < m ≤M and 0 ≤ ∆ ≤
√
κ(V)/2; then〈

δ2Eac(yh)uh, uh
〉
≥ γ‖B>∇uh‖2L2(Ω) for all uh ∈ Uh,

where γ = γ(m,M,∆, κ(V)) is defined by (6.32), and by (6.35)–(6.38).

Theorem 6.2 is our main stability result for nonlinear deformations with defects.
Its proof is contained in §6.2–§6.6. In §6.2 we estimate δ2Eac below by an operator
H that localizes all finite differences of test functions. In §6.3 we use a perturbation
argument to reduce the problem to a homogeneous deformation with a defect. In
§6.4 we employ the definition of the stability index to reduce the problem to one
without defect, which is then analyzed in §6.5. In the perturbation argument we
introduce several free parameters, which are finally optimized in §6.6.

In §6.8 we will investigate the range of parameters for which γ > 0, and in
particular show numerically that non-trivial solutions exist to which Theorem 6.2
applies.

6.2. Stability proof 1: a general lower bound. The representation (3.4) of the
a/c energy Eac yields the following expression for the second variation δ2Eac:

〈δ2Eac(yh)uh, uh〉 =
∑
b∈Ba

Dbu
>
hφ
′′(Dbyh)Dbuh

+
∑
b∈Bc

−
∫
b

∇bu>hφ′′(∇byh)∇buh db,
(6.3)

for all uh ∈ Uh, where we recall that φ′′(r) is understood as the Hessian matrix of
φ. A straightforward calculation shows that φ′′ can be written, in terms of ϕ′ and
ϕ′′, as

(6.4) φ′′(r) = ϕ′′(|r|) r
|r| ⊗

r
|r| + ϕ′(|r|)

|r|
(
1− r

|r| ⊗
r
|r|
)
.



ANALYSIS OF AN ENERGY-BASED A/C APPROXIMATION 23

We will use the fact that r
|r|⊗

r
|r| is the orthogonal projection onto the space span{r}

and that (1− r
|r| ⊗

r
|r| ) is the orthogonal projection onto span{r}⊥. Recalling the

notation a× b = (Q4a) · b, where Q4 denotes a rotation through angle π/2, we have

h>
(
r
|r| ⊗

r
|r| )h =

∣∣h · r|r| ∣∣2, and h>
(
1− r

|r| ⊗
r
|r|
)
h =

∣∣h× r
|r|
∣∣2.

Hence, we can rewrite (6.3) as

〈δ2Eac(yh)uh, uh〉

=
∑
b∈Ba

{
ϕ′′(|Dbyh|)
|Dbyh|2 |Dbyh ·Dbuh|

2 + ϕ′(|Dbyh|)
|Dbyh|3 |Dbyh ×Dbuh|

2
}

(6.5)

+
∑
b∈Bc

−
∫
b

{
ϕ′′(|∇byh|)
|∇byh|2 |∇byh · ∇buh|

2 + ϕ′(|∇byh|)
|∇byh|3 |∇byh ×∇buh|

2
}

db.

Next, we construct a relatively crude lower bound on the Hessian δ2Eac, which
will nevertheless be sufficient to obtain stability estimates in a range of interesting
deformations. Our goal is to “localise” the finite differences Dbuh occurring in
the Hessian representation (6.5), and to render the scalar coefficients hexagonally
symmetric.

Since yh ∈ SB,h(m,M,∆), we can estimate the coefficients in (6.5) by

ϕ′′(|Dbyh|)
|Dbyh|2 ≥ C|b| and ϕ′(|Dbyh|)

|Dbyh|3 ≥ C⊥|b|, for b ∈ Ba,

with analogous estimates for b ∈ Bc, where

Cρ :=

{
mins∈[m,M ]

ϕ′′(ρs)
(ρs)2 , ρ = 1,

0 ∧mins∈[m,M ]
ϕ′′(ρs)
(ρs)2 , ρ > 1,

and

C⊥ρ :=

{
mins∈[m,M ]

ϕ′(ρs)
(ρs)3 , ρ = 1,

0 ∧mins∈[m,M ]
ϕ′(ρs)
(ρs)3 , ρ > 1.

(6.6)

We note that these lower bounds are independent of yh, and moreover, all coeffi-
cients for non-nearest neighbour bonds are non-positive.

With this notation, we obtain from (6.5) that

〈δ2Eac(yh)uh, uh〉 ≥
∑
b∈Ba

{
C|b||Dbyh ·Dbuh|2 + C⊥|b||Dbyh ×Dbuh|

2
}

+
∑
b∈Bc

−
∫
b

{
C|b||∇byh · ∇buh|2 + C⊥|b||∇byh ×∇buh|

2
}

db.(6.7)

We now observe that we have constructed the extended mesh Th in such a way that
in the atomistic region every nearest-neighbour bond b ∈ Bnn lies on the edge of a
triangle. As a result we have the identity

(6.8) Dbuh = ∇buh(x) for all x ∈ int(b), for all b ∈ Ba ∩ Bnn,

which we will use heavily throughout. In particular, this implies that∑
b∈Bnn∩Ba

{
C1|Dbyh ·Dbuh|2 + C⊥1 |Dbyh ×Dbuh|2

}
(6.9)

=
∑

b∈Bnn∩Ba

−
∫
b

{
C1|Dbyh · ∇buh|2 + C⊥1 |Dbyh ×∇buh|2

}
db.
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Our second observation is that, since C|b|, C
⊥
|b| ≤ 0 for b ∈ Ba \ Bnn we can use

(3.2) and Jensen’s inequality to estimate∑
b∈Ba\Bnn

{
C|b||Dbyh ·Dbuh|2 + C⊥|b||Dbyh ×Dbuh|

2
}

=
∑

b∈Ba\Bnn

{
C|b|

∣∣Dbyh · −∫b∇buh db
∣∣2 + C⊥|b|

∣∣Dbyh × −∫b∇buh db
∣∣2}

≥
∑

b∈Ba\Bnn

−
∫
b

{
C|b|

∣∣Dbyh · ∇buh∣∣2 + C⊥|b|
∣∣Dbyh ×∇buh∣∣2}db.(6.10)

Inserting (6.9) and (6.10) into (6.7) we obtain the following estimate:〈
δ2Eac(yh)uh, uh

〉
≥〈H(yh)uh, uh〉

:=
∑
b∈Bc

−
∫
b

{
C|b||∇byh · ∇buh|2 + C⊥|b||∇byh ×∇buh|

2
}

db(6.11)

+
∑
b∈Ba

−
∫
b

{
C|b||Dbyh · ∇buh|2 + C⊥|b||Dbyh ×∇buh|

2
}

db,

where C|b|, C
⊥
|b| are defined in (6.6).

6.3. Stability proof 2: the perturbation argument. In the next step, we will
estimate the effect of replacing Dryh and ∇ryh with Br. To that end, the following
lemma will be helpful.

Lemma 6.3. Suppose that yh ∈ SB,h(m,M,∆); then, for all g ∈ R2, x ∈ Ω, r ∈
R2, and for all possible choices of α > 0,

(6.12)
∣∣ |∇ryh(x) · g|2 − |Br · g|2

∣∣ ≤ α∣∣Br · g∣∣2 +
(
1 + 1

α

)
∆2|r|2|B>g|2.

Similarly, for all g ∈ R2, x ∈ L, r ∈ L∗, and α > 0, we have

(6.13)
∣∣ |Dryh(x) · g|2 − |Br · g|2

∣∣ ≤ α∣∣Br · g∣∣2 +
(
1 + 1

α

)
∆2|r|2|B>g|2.

The same inequalities hold if “·” is replaced with “×”.

Proof. We verify the bound (6.12) by a straightforward algebraic manipulation
(suppressing the argument x), using ‖B−1∇yh − 1‖ ≤ ∆:∣∣ |∇ryh · g|2 − |Br · g|2∣∣ =

∣∣ (|∇ryh · g|+ |Br · g|) (|∇ryh · g| − |Br · g|)
∣∣

≤ (|(∇ryh − Br) · g|+ 2|Br · g|) |(∇ryh − Br) · g|

≤ 2|Br · g|∆|r||B>g|+ ∆2|r|2|B>g|2.

Applying a weighted Cauchy inequality 2ab ≤ αa2 + α−1b2 we obtain (6.12). The
proofs of (6.13), and of the inequalities where “·” is replaced with “×” are analogous.

�
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Applying Lemma 6.3 to the operator H(yh), defined in (6.11), we obtain, for
constants α|b|, α

⊥
|b| > 0,

〈H(yh)uh, uh〉 ≥ 〈H(yB)uh, uh〉(6.14)

−
∑
b∈B

−
∫
b

{
α|b||C|b||

∣∣Brb · ∇buh∣∣2 + α⊥|b||C
⊥
|b||
∣∣Brb ×∇buh∣∣2}db

−∆2
∑
b∈B
|b|2
{(

1 + 1
α|b|

)
|C|b||+

(
1 + 1

α⊥|b|

)
|C⊥|b||

}
−
∫
b

∣∣B>∇buh∣∣2 db,

for all yh ∈ SB,h(m,M,∆) and uh ∈ Uh. Note that, in the third term, we have
estimated the sum over B below by the sum over B. We also remark that, for the
time being, we retain maximal flexibility in our choice of the constants α|b| and α⊥|b|.

We will (partially) optimize over all possible choices in the last step of our proof.
From here on, to simplify the notation, we define the transformed displacement

vh := B>uh.

This means that we can replace (Brb · ∇buh) by (rb · ∇bvh), and so forth.
Since the algebraic structure of the first and second term in (6.14) is identical it

is natural to combine them. Hence, we define

〈H̃uh, uh〉 :=
∑
b∈B

−
∫
b

{
C̃|b|

∣∣rb · ∇bvh∣∣2 + C̃⊥|b|
∣∣rb ×∇bvh∣∣2}db,(6.15)

〈L̃ uh, uh〉 :=
∑
b∈B
|b|2
{(

1 + 1
α|b|

)
|C|b||+

(
1 + 1

α⊥|b|

)
|C⊥|b||

}
−
∫
b

∣∣∇bvh∣∣2 db,

where C̃
(⊥)
ρ := C

(⊥)
ρ − α(⊥)

ρ |C(⊥)
ρ |. (Here and throughout the superscript (⊥), e.g.,

in C
(⊥)
ρ , is used to refer simultaneously to Cρ or C⊥ρ .)

Employing the periodic bond-density lemma, the decomposition of the triangular

lattice described in Lemma 2.1, and the definition of the constants c
(⊥)
n := `4nC

(⊥)
`n

,

the operator L̃ can be rewritten as

〈L̃ uh, uh〉 = (L̃+ L̃⊥)‖∇vh‖2L2(Ω), where

L̃(⊥) = 3
detA6

∑∞
n=1

(
1 + 1/α

(⊥)
`n

)
|c(⊥)
n |.

(6.16)

In summary, we have obtained that, if yh ∈ SB,h(m,M,∆), then

(6.17) 〈δ2Eac(yh)uh, uh〉 ≥ 〈H̃uh, uh〉 −∆2(L̃+ L̃⊥)‖∇vh‖2L2 ,

for all uh ∈ Uh, where H̃ is defined in (6.21), and and L̃(⊥) in (6.16).

6.4. Stability proof 3: extension to B. In the next step, we apply the extension
operator (see §4.1) and the definition of the stability index κ := κ(V) (see §6.1).

Distinguishing whether C̃1 is positive or negative, and using the definition of κ
in the first case, we obtain∑

b∈Bnn

C̃1

∣∣rb ·Dbvh∣∣2 ≥ {
κ
∑
b∈Bnn

C̃1

∣∣rb ·Dbvh∣∣2, C̃1 ≥ 0,∑
b∈Bnn

C̃1

∣∣rb ·Dbvh∣∣2, C̃1 < 0,

which can be rewritten as

(6.18)
∑
b∈Bnn

C̃1−
∫
b

∣∣rb · ∇bvh∣∣2 db ≥ min(C̃1, κC̃1)
∑
b∈Bnn

−
∫
b

∣∣rb · ∇bvh∣∣2 db.
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For the “perpendicular” nearest-neighbour terms the same argument (we now need
to use (6.2) with u = Q>4B

>uh = Q>4 vh) yields

(6.19)
∑
b∈Bnn

C̃⊥1 −
∫
b

|rb ×∇bvh|2 db ≥ min(C̃⊥1 , κC̃
⊥
1 )

∑
b∈Bnn

−
∫
b

|rb ×∇bvh|2 db.

Since the non-nearest-neighbour terms in H̃ are non-positive, we have∑
b∈B\Bnn

−
∫
b

C̃|b||rb · ∇bvh|2 db ≥
∑

b∈B\Bnn

−
∫
b

C̃|b||rb · ∇bvh|2 db, and

∑
b∈B\Bnn

−
∫
b

C̃⊥|b||rb ×∇bvh|
2 db ≥

∑
b∈B\Bnn

−
∫
b

C̃⊥|b||rb ×∇bvh|
2 db.

Hence, defining the constants

(6.20) C
(⊥)

ρ :=

{
min(C̃

(⊥)
ρ , κC̃

(⊥)
ρ ), ρ = 1,

C̃
(⊥)
ρ , ρ > 1,

we arrive at (recall that vh = B>uh)〈
H̃uh, uh

〉
≥ 〈Huh, uh〉(6.21)

:=
∑
b∈B
−
∫
b

{
C |b||rb · ∇bvh|2 + C

⊥
|b||rb ×∇bvh|2

}
db ∀uh ∈ Uh.

We note that H depends only on m,M,∆, κ.

6.5. Stability proof 4: homogeneous lattice. Combining (6.21) and (6.17), we
have that, for all yh ∈ SB,h(m,M,∆), uh ∈ Uh,

(6.22)
〈
δ2Eac(yh)uh, uh

〉
≥
〈
Huh, uh

〉
−∆2(L̃+ L̃⊥)‖B>∇uh‖2L2(Ω).

Lemma 6.4. The operator H, defined in (6.21), satisfies

(6.23) 〈Huh, uh〉 ≥ γ‖B>∇uh‖2L2(Ω) ∀uh ∈ Uh,

where γ := min( 3
4 c̄+ 9

4 c̄
⊥, 9

4 c̄+ 3
4 c̄
⊥) and c̄(⊥) := 1

detA6

∑∞
n=1`

4
nC

(⊥)

`n .

The proof of Lemma 6.4 is given at the end of the present subsection.

Remark 6.2. The estimate (6.23) is sharp in the sense that, if Th = Ta, then

(6.24) lim
N→∞

inf
u∈U

〈HBu, u〉
‖B>∇ū‖2

= γ.

This statement follows immediately from the proof of Lemma 6.4. �

Application of the bond-density lemma yields

〈Huh, uh〉 =
∑
T∈Th

|T |
{ ∑
r∈L∗

C|r|
detA6

∣∣r · ∇rvh|T ∣∣2 +
∑
r∈L∗

C
⊥
|r|

detA6

∣∣r ×∇rvh|T ∣∣2}
=:

∑
T∈Th

|T |
{
HT [vh] +H⊥T [vh]

}
.(6.25)
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Let G := ∇vh = B>∇uh, and GT := ∇vh|T , then we can rewrite HT [vh], using
Lemma 2.1, in the form

(6.26) HT [uh] =
∑
r∈L∗

C|r|
detA6

[
r>GT r

]2
=

∞∑
n=1

C`n
detA6

6∑
j=1

[
(Qj4rn)>GT (Qj4rn)

]2
.

Exploiting the hexagonal symmetry of the inner sum, using (2.2), and recalling the
definition of c̄ from Lemma 6.4, we obtain

(6.27) HT [vh] = 1
detA6

{∑∞
n=1`

4
nC`n

}
|GT |2el = c̄|GT |2el,

where |G|el := 3
2 |G

sym|2 + 3
4 |trG|

2 (cf. (2.2)). Replacing r with Q4r in the above
computations yields

(6.28) H⊥T [vh] = 1
detA6

{∑∞
n=1 `

4
nC
⊥
`n

}∣∣Q4GT
∣∣2
el

= c̄⊥
∣∣Q4GT

∣∣2
el
.

Lemma 6.5. Let | · |el be defined as in (2.2), and let G ∈ R2×2, then

|G|2el = 3
4 |G|

2 + 3
2 (G11 + G22)2 − 3

2 detG, and∣∣Q4G
∣∣2
el

= 3
4 |G|

2 + 3
2 (G12 − G21)2 − 3

2 detG,

and in particular,

c̄|G|2el + c̄⊥|Q4G|2el = 3
4 (c̄+ c̄⊥)|G|2 + 3

2 c̄|G11 + G22|2

+ 3
2 c̄
⊥|G12 − G21|2 − 3

2 (c̄+ c̄⊥) detG.
(6.29)

Proof. The first identity can be verified by a straightforward algebraic manipu-
lation. The second identity is an immediate consequence of the first. The third
identity follows by combining the first two. �

Proof of Lemma 6.4. We define the fourth-order tensor C, using summation con-

vention, by CjβiαGiαGjβ := c̄|G|2el + c̄⊥
∣∣Q4G

∣∣2
el

.

The Legendre–Hadamard condition (see, e.g., [10]) states that

inf
v∈H1

#(Ω)2

‖∇v‖L2=1

∫
Ω

Cjβiα(∇v)iα(∇v)jβ dV = min
w,k∈R2

|w|=|k|=1

Cjβiαwiwjkαkβ =: γ.

Thus, we have reduced the task to testing C with rank-1 matrices w⊗k. Using the
definition of C, identity (6.29), and noting that det(w ⊗ k) = 0, we obtain

(6.30) Cjβiαwiwjkαkβ = 3
4 (c̄+ c̄⊥)|w|2|k|2 + 3

2 c̄(w · k)2 + 3
2 c̄
⊥(w × k)2.

If c̄ ≥ c̄⊥ then (6.30) is minimised for w ⊥ k, and

γ = 3
4 (c̄+ c̄⊥) + 3

2 c̄
⊥ = 3

4 c̄+ 9
4 c̄
⊥.

If c̄ ≤ c̄⊥ then (6.30) is minimised for w = k, and

γ = 3
4 (c̄+ c̄⊥) + 3

2 c̄ = 9
4 c̄+ 3

4 c̄
⊥.

Combining the two cases gives the stated result. �
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6.6. Stability proof 5: optimizing the parameters. Combining Lemma 6.4
with (6.22), we obtain the stability estimate

(6.31) 〈δ2Eac(yh)uh, uh〉 ≥ γ‖B>∇uh‖2L2 , where γ = γ −∆2(L̃+ L̃⊥),

for all yh ∈ SB,h(m,M,∆) and uh ∈ Uh. The constant γ still depends on the

free parameters α
(⊥)
`n

. Ideally, we would like to optimize γ over all possible choices,
however, the double-minimization problem in the definition of γ makes this imprac-
tical. We will choose the parameters so that they are optimal in the case, which is
the most important in our numerical computations. For the following discussion,

recall the definition of c
(⊥)
n from (6.1) and let α

(⊥)
n := α

(⊥)
`n

.
We begin by noting that γ can be rewritten in the form

γ = min
(
γ1 + γ⊥1 , γ2 + γ⊥2

)
,(6.32)

where

γ1 := 3
4 c̄−∆2L̃, γ⊥1 := 9

4 c̄
⊥ −∆2L̃⊥,

γ2 := 9
4 c̄−∆2L̃, γ⊥2 := 3

4 c̄
⊥ −∆2L̃⊥.

Near global minima of Eac we expect that c1 > 0 and c⊥1 ≈ 0, which suggests to

optimise the parameters α
(⊥)
n for the case γ = γ1 + γ⊥1 .

Recalling from (6.16) the definition of L̃, and recalling that cn ≤ 0 for n ≥ 2, we
can rewrite γ1 in the form

γ1 = 1
detA6

(
min

{
3
4 (c1 − α1|c1|), 3

4κ(c1 − α1|c1|)
}
− 3
(
1 + 1

α1

)
∆2|c1|

)
+ 1

detA6

∞∑
n=2

(
3
4 + 3

4αn + 3
(
1 + 1

αn

)
∆2
)
cn(6.33)

=: 1
detA6

ψ1(α1) + 1
detA6

∞∑
n=2

(
3
4 + 3

4αn + 3
(
1 + 1

αn

)
∆2
)
cn.

We see immediately that αn = 2∆ is optimal for n ≥ 2. For n = 1, the situation is
more complicated and we treat it separately in the following lemma. We omit the
straightforward proof and refer to [25, Lemma 6.7] for the details of the argument.

Lemma 6.6. Suppose that ∆ ≤
√
κ/2; then

(6.34) max
α1>0

ψ1(α1) = min
{

( 3
4κ− 3

√
κ∆− 3∆2)c1, (

3
4 + 3∆ + 3∆2)c1

}
,

which is attained for α1 = 2∆/
√
κ if c1 > 0 and for α1 = 2∆ if c1 ≤ 0.

If we insert αn = 2∆ for n ≥ 2, and the value for α1 for which (6.34) is attained,
into (6.33), then we obtain

γ1 = 1
detA6

min
{

( 3
4κ− 3

√
κ∆− 3∆2)c1, (

3
4 + 3∆ + 3∆2)c1

}
+ 1

detA6

∑∞
n=2

(
3
4 + 3∆ + 3∆2

)
cn.

(6.35)

Using analogous arguments, we choose α⊥n = 2∆/
√

3 for n ≥ 2 and for n = 1 if

c⊥1 ≤ 0; and α⊥1 = 2∆/
√

3κ if c⊥1 > 0 (note that under the assumption ∆ ≤
√
κ/2

we also get α⊥1 ≤ 1). Inserting these values into γ⊥1 , we obtain

γ⊥1 = 1
detA6

min
{

( 9
4κ− 3

√
3κ∆− 3∆2)c⊥1 , (

9
4 + 3

√
3∆ + 3∆2)c⊥1

}
+ 1

detA6

∑∞
n=2

(
9
4 + 3

√
3∆ + 3∆2

)
c⊥n .

(6.36)
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Figure 4. Neighbourhood of a void to illustrate the proof of The-
orem 6.7. The bonds B1 are dashed, the bonds B2 are solid.

A tedious but straightforward computation, for which we skip the details, shows

that, if γ2, γ
⊥
2 are defined by (6.32), then the above choices for α

(⊥)
n yield

γ2 := 1
detA6

min
{

( 9
4κ− 6

√
κ∆− 3∆2)c1, (

9
4 + 6∆ + 3∆2)c1

}
+ 1

detA6

∑∞
n=2

(
9
4 + 6∆ + 3∆2

)
cn, and(6.37)

γ⊥2 := 1
detA6

min
{

( 3
4κ− 2

√
3κ∆− 3∆2)c⊥1 , (

3
4 + 2

√
3∆ + 3∆2)c⊥1

}
+ 1

detA6

∑∞
n=2

(
3
4 + 2

√
3∆ + 3∆2

)
c⊥n .(6.38)

Conclusion of the proof of Theorem 6.2. Combining (6.31) and (6.32) with the choice

of α
(⊥)
n made above, we obtain the statement of Theorem 6.2. �

6.7. Stability index of separated vacancies. In Table 1 we have provided nu-
merical (i.e., non-rigorous) lower bounds for vacancy stability indices. In this sec-
tion, we prove that κ(V) ≥ 2/7 if V consists only of single vacancy sites, which are
separated by a short distance.

Theorem 6.7. Suppose that V satisfies the separation condition

(6.39) x1 ∈ V, x2 ∈ V# \ {x1} ⇒ |x1 − x2| ≥ 4,

then κ(V) ≥ 2
7 .

Proof. We define the alternative extension operator (cf. Figure 4)

(6.40) (Ẽw)(x) :=
1

6

∑
r∈Lnn

w(x+ r) ∀x ∈ V#.

Using the notation introduced in Figure 4 we aim to prove that

(6.41)
∑
b∈B2

|rb ·Dbu|2 ≥
2

7

∑
b∈B1∪B2

∣∣rb ·DbẼu∣∣2 ∀u ∈ U ,

Before we prove (6.41), let us discuss why this establishes the result. Firstly,
(6.41) and the separation condition (6.39) imply that

(6.42)
∑
b∈B

|rb ·Dbu|2 ≥ κ
∑
b∈B

∣∣rb ·DbẼu∣∣2 ∀u ∈ U .
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Since the actual extension operator minimizes the right-hand side, we can replace
Ẽ with E in (6.42), and hence obtain the result.

Proof of (6.41): We begin by noting that 18 vertices of Th are involved in (6.41),
which correspond to 36 degrees of freedom for a transformed displacement u. We
construct a basis of the space of these degrees of freedom {w(k,j) : −2 ≤ k ≤ 3, 1 ≤
j ≤ 6} as follows: Firstly, we require that all basis functions satisfy the symmetry

(6.43) w(k,j)(Q6ξ) = eik arg(ξ)Q6w
(k,j)(ξ).

Secondly, we define ck := cos(kπ/6), and sk := sin(kπ/6), and prescribe the nodal
values

w(k,1)(1, 0) = (−
√

3, 0), w(k,4)( 3
2 ,
√

3
2 ) = −

√
3i eik π6 (s1, c1),

w(k,2)(1, 0) = (0, 3i), w(k,5)(2, 0) = (
√

3, 0),

w(k,3)( 3
2 ,
√

3
2 ) = 3 eik π6 (c1,−s1), w(k,6)(2, 0) = (0, 3i).

Finally, for all remaining vertices ξ we define w(k,j)(ξ) = (0, 0).
Consider the two quadratic forms

a[u] =
∑
b∈B2

|rb ·Dbu|2, and b[u] =
∑

b∈B1∪B2

|rb ·Dbu|2.

The corresponding “stiffness matrices” with respect to the basis {w(k,j)} have a

block-diagonal structure: if u =
∑3
k=−2

∑6
j=1 Uk,jw

(k,j) then

a[u] =

3∑
k=−2

6∑
j,j′=1

A
(k)
j,j′Uk,jUk,j′ and b[u] =

3∑
k=−2

6∑
j,j′=1

B
(k)
j,j′Uk,jUk,j′

with the blocks

A(k) =


4 + c2k s2k ck sk 2 0
s2k 2− c2k −sk ck 0 0
ck −sk 1 0 0 0
sk ck 0 5 2sk 2ck
2 0 0 2sk 3 0
0 0 0 2ck 0 1

, and

B(k) = A(k)

+


2− 1

2

(
1− (−1)k

)
(1 + c2k) 1

6

(
1− (−1)k

)
s2k 0 0 0 0

1
6

(
1− (−1)k

)
s2k

1
18

(
1− (−1)k

)
(1 + c2k) 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

We need to find a maximal positive κ such that A(k) ≥ κB(k), in the sense of
Hermitian matrices, for all k. Such a constant exists if KerA(k) ⊂ KerB(k) for all
k. An explicit constant κ can be obtained if we can find minimal constants λ(k)

such that, for some vector v(k) /∈ KerA(k),

A(k)v(k) = λ(k)(B(k) −A(k))v(k).

In that case we would obtain κ = λ/(1 + λ), where λ = mink λ
(k). We perform

these calculations separately for k = 0,±1,±2, 3.
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M

Figure 5. Regions of stability in (m,M) parameter space. Dot-
ted line: (m,M)-region such that yB is stable in the full atomistic
model for all B with singular values {m,M}. Solid line: 0-level set
of γ(m,M, 0, 1). Dot-dashed line: 0-level set of γ(m,M, 0, 2/7).
Dashed line: zero level set of γ(m,M, 0.02, 2/7), where 2/7 corre-
sponds to a vacancy. The black dot corresponds to the numerical
solution described in §8.1.

Case k = 0: Ker(A(0)) = Ker(B(0)) = span{v0}, with v0 = (0, 1, 0,−1, 0, 2);
therefore we add v0 ⊗ v0 to A(0) to make it strictly positive definite and solve

0 = det
(
v0 ⊗ v0 +A(0) − λ(B(0) −A(0))

)
= 72(4− 3λ),

to obtain that λ(0) = 4
3 .

Case k = ±1: Ker(A(0)) = Ker(B(0)) = span{v0}, with v0 = (∓1,
√

3,±
√

3,−1,±1,
√

3);
therefore we add v0 ⊗ v0 to A(±1) and solve

0 = det(v0 ⊗ v0 +A(±1) − λ(B(±1) −A(±1))) = 24(24− 5λ),

from where we find λ(±1) = 24
5 .

Case k = ±2: In this case KerA(±2) = KerB(±2) = {0}; hence we solve

0 = det(A(2) − λ(B(2) −A(2))) = 6(2− 5λ),

to obtain that λ(±2) = 2
5 .

Case k = 3: In this case KerA(3) = KerB(3) = {0}; hence we solve

0 = det(A(3) − λ(B(3) −A(3))) = 4(9− 11λ),

to obtain that λ(3) = 9
11 .

Conclusion: The smallest of the eigenvalues is given by

λ = min
k=−2,...,3

λ(k) = 2
5 ,

which gives the coercivity constant κ = λ
1+λ = 2

7 . �
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6.8. Sharpness of the stability estimate. To understand whether Theorem 6.2
is sharp, we consider a homogeneous deformation yh = yB. If B is a multiple of
the identity (exact triangular lattice), then it is not too difficult to see analytically
that our estimate cannot be sharp, that is, the actual region of stability of δ2Eac is
a strict superset of the region where γhom is positive (see [25, Section 6.6]).

However, the gap for exact triangular lattices is small as the numerical experi-
ment shown in Figure 5 demonstrates. By contrast, if B contains a non-negligible
shear component, then our estimates are not very sharp. In Figure 5 we plot the zero
level line of γ in (m,M) parameter space for κ ∈ {2/7, 1}, and for ∆ ∈ {0, 0.02}.
The case κ = 2/7,∆ = 0.02 corresponds to our numerical experiment in §8.1.

7. A Priori Error Estimates

7.1. Main result. Having established consistency and stability of the a/c method
introduced in §3, we can now prove an a priori error estimate. For the statement of
the following result recall the definitions of SB,h(m,M,∆) from §6.1, Π2(y) from
§4.3, and γ from (6.32).

Theorem 7.1. Suppose that Assumption A holds. Let B ∈ R2×2
+ , and let ya ∈ YB

be a solution of (2.8) and yac ∈ YB,h a solution of (3.7), such that the following
stability assumption holds:

There exist 0 < m ≤ M and ∆ > 0 such that γ = γ(m,M,∆, κ(V)) is positive
and such that

(7.1) (1− t)yac + tIhya ∈ SB,h(m,M,∆) ∀t ∈ [0, 1].

Then, there exist constants c1, c2, which depend only on the shape regularity of
Th, on m, and on µa(ya), such that∥∥∇ȳa −∇yac

∥∥
L2(Ω)

≤ c1
γ

inf
ỹa∈Π2(ya)

∥∥h∇2ỹa

∥∥
L2(Ωc)

, and(7.2) ∣∣Ea(ya)− Eac(yac)
∣∣ ≤ c2

γ2
inf

ỹa∈Π2(ya)

∥∥h∇2ỹa

∥∥2

L2(Ωc)
.(7.3)

Remark 7.1 (The Stability Assumption). The main assumption in Theorem
7.1 that we have not justified rigorously is the stability condition (7.1). It is a
natural assumption since it requires, essentially, that yac belongs to the same basin
of stability as ya.

One would prefer to be able to prove (7.1) rigorously, however, short of proving
the existence of atomistic and a/c solutions ya, yac such that

(7.4) ‖∇ȳa −∇yac‖L∞ + ‖∇ȳa −∇Ihya‖L∞ is “sufficiently small”,

one cannot hope to remove it, except by postulating even stronger requirements,
e.g., phrasing (7.4) itself as an assumption.

A rigorous estimate on ‖∇ȳa −∇Ihya‖L∞ requires a regularity theory for atom-
istic systems with defects, and we are currently unaware of any results in this
direction.

A rigorous estimate on ‖∇ȳa − ∇yac‖L∞ could, in principle, be achieved using
the inverse function theorem [26, 18, 23], but requires stability of δ2Eac(Ihya) as an
operator from (discrete variants of) W1,∞ to W−1,∞. For the discretized Laplace
operator such results are classical for quasiuniform meshes [28] and have recently
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been extended to locally refined meshes [3]. These results give legitimate hope that
assumption (7.1) might be (partially) removed with substantial additional work. �

Proof. 1. Error in the H1-norm. Let eh = Ihya − yac, then there exists θh ∈
conv{Ihya, yac} such that

〈
δ2Eac(θh)eh, eh

〉
=

∫ 1

0

〈
δ2Eac(yac + teh)eh, eh

〉
dt

=
〈
δEac(Ihya)− δEac(yac), eh

〉
.

Using the stability assumption (7.1) to bound
〈
Eac(θh)eh, eh

〉
from below, and the

fact that 〈δEac(yac), eh〉 = 0, we obtain

m2γ‖∇eh‖2L2(Ω) ≤
〈
δEac(Ihya), eh

〉
.

We employ the consistency result, Theorem 5.1, to estimate

(7.5) m2γ‖∇eh‖2L2(Ω) ≤ C
cons inf

ỹa∈Π2(ya)

∥∥h∇2ỹ
∥∥

L2(Ωc)
‖∇eh‖L2 ,

where Ccons depends on µa(ya) and µc(Ihya).
Employing the interpolation error bounds (4.3) and (4.4) to estimate

‖∇ȳa −∇yac‖L2 ≤ ‖∇ȳa −∇Ihya‖L2(Ω) + ‖∇eh‖L2(Ω)

≤ inf
ỹa∈Π2(ya)

[
‖∇ȳa −∇ỹa‖L2(Ωc) + ‖∇ỹa −∇Ihya‖L2(Ωc)

]
+ ‖∇eh‖L2(Ω)

≤ inf
ỹa∈Π2(ya)

∥∥(C̃a + C̃hh)∇2ỹa

∥∥
L2(Ωc)

+ ‖∇eh‖L2(Ω),

applying (7.5), and noting that h ≥ 1, we obtain (7.2) with constant c1 = m−2(Ccons+

γ(C̃a + C̃h)), which depends indeed only on the shape regularity of Th, on µa(ya),
and on µc(Ihya) ≥ m.

2. Error in the energy. To estimate the error in the energy we split

|Ea(ya)− Eac(yac)| ≤ |Ea(ya)− Ea(Ihya)|+ |Ea(Ihya)− Eac(Ihya)|
+ |Eac(Ihya)− Eac(yac)|

=: E1 + E2 + E3,

and estimate the three terms Ej , j = 1, 2, 3, separately.
2.1. The term E1. Since ya ∈ YB, and δEa(ya) = 0, we can estimate∣∣Ea(Ihya)− Ea(ya)

∣∣ =

∣∣∣∣〈δEa(ya), Ihya − ya

〉
+

∫ 1

0

〈
δEa

(
(1− t)ya + tIhya

)
− δEa(ya), Ihya − ya

〉
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣〈δEa

(
(1− t)ya + tIhya

)
− δEa(ya), Ihya − ya

〉∣∣∣dt
For each t ∈ [0, 1] we use Lemma 5.3 (replacing uh with u in its formulation) to
further estimate∣∣〈δEa

(
(1− t)ya + tIhya

)
− δEa(ya), Ihya − ya

〉∣∣ ≤ tCL

∥∥∇ȳa −∇Ihya

∥∥2

L2 ,
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where CL depends on µa(ya) and µa(Ihya) ≥ min{µa(ya),m}, and apply Lemma
4.6, to obtain∣∣Ea(Ihya)− Ea(ya)

∣∣ ≤ max
t∈[0,1]

∣∣〈δEa

(
(1− t)ya + tIhya

)
− δEa(ya), Ihya − ya

〉∣∣
≤ C1 inf

ỹa∈Π2(ya)

∥∥h∇2ỹa

∥∥2

L2(Ωc)
,(7.6)

where C1 depends only on µa(ya) and on m.
2.2 The term E3. The term E3 can be estimated in a similar manner as E1.

Following closely the proof of the Lipschitz estimate for δEa, Lemma 5.3, one can

prove that, if y
(j)
h ∈ Yh, j = 1, 2, then∣∣〈δEac(y
(1)
h )− δEac(y

(2)
h ), uh

〉∣∣ ≤ CL‖∇y(1)
h −∇y

(2)
h ‖L2(Ω)‖∇uh‖L2(Ω)

for uh ∈ Uh, where CL = CL(min{µc(y
(1)
h ), µc(y

(2)
h )}). Repeating the first part of

the argument in step 2.1, and using the H1-norm error estimate (7.2), we obtain

|Eac(Ihya)− Eac(yac)| ≤ C ′3
∥∥∇Ihya −∇yac

∥∥2

L2

≤ C3 inf
ỹa∈Π2(ya)

∥∥h∇2ỹa

∥∥2

L2(Ωc)
,(7.7)

where C ′3 and C3 depend on m and on the shape regularity of Th, and C3 depends
also on γ.

2.3. The term E2. Estimating this term requires more work. In Lemma 7.2
below, we prove that

(7.8)
∣∣Ea(Ihya)− Eac(Ihya)

∣∣ ≤ C2 inf
ỹ∈Π2(ya)

∥∥h1/2∇2ỹ
∥∥2

L2(Ωc)
,

where C2 depends on µc(Ihya) ≥ m, and on the shape regularity of Th.
2.4. Conclusion. Combining (7.6), (7.7), and (7.8) yields the energy error

estimate (7.3) and concludes the proof of the theorem. �

Lemma 7.2. Let y ∈ Y such that µc(Ihy) > 0, then

(7.9)
∣∣Ea(Ihy)− Eac(Ihy)

∣∣ ≤ CE2 inf
ỹ∈Π2(y)

∥∥h1/2∇2ỹ
∥∥2

L2(Ωc)
,

where CE2 = c′2
∑
r∈L∗M2(µc(Ihy)|r|)|r|4, and c′2 depends only on the shape regu-

larity of Th.

Proof. First note that the difference Ea(yh) − Eac(yh) depends only on continuum
bonds:

Ea(yh)− Eac(yh) =
∑
b∈Bc

{
φ(Dbyh)−−

∫
b

φ(∇byh) db

}
.

For each b ∈ Bc, we have

φ(∇byh) = φ(Dbyh) + φ′(Dbyh) · (∇byh −Dbyh)

+

∫ 1

0

[
φ′
(
t∇byh + (1− t)Dbyh

)
− φ′(Dbyh)

]
dt · (∇byh −Dbyh).
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Since φ′(Dbyh) is a constant on the bond b and using (3.2) and a Lipschitz bound
for φ′ inside the integral over t, we obtain∣∣∣∣−∫

b

[
φ(∇byh)− φ(Dbyh)

]
db

∣∣∣∣ ≤ 1
2M|b|−

∫
b

∣∣∇byh −Dbyh∣∣2 db,

where M|b| = M2(µc(yh)|b|).
Summing over all bonds b ∈ Bc yields the estimate

(7.10)
∣∣Ea(yh)− Eac(yh)

∣∣ ≤ 1

2

∑
b∈Bc

M|b|−
∫
b

∣∣∇byh −Dbyh∣∣2 db,

which is identical to e(yh)2 defined in (5.7), with p = 2 and ab = 1. Hence, we can
use (5.14) and (5.16) to obtain

(7.11)
∣∣Ea(yh)− Eac(yh)

∣∣ ≤ CE1 ∥∥[∇yh]
∥∥2

L2(Ωc)
,

where CE1 = c′1
∑
r∈L∗M2(µc(yh)|r|)|r|4, and c′1 depends only on the shape regu-

larity of Th.
The estimate (7.9) follows immediately from Lemma 4.4. �

7.2. Optimal mesh design. In this section we develop heuristics on the choice
of atomistic region sizes and coarsening rates of the finite element mesh, in order
to obtain error estimates in terms of the number of degrees of freedom. For the
sake of generality we will slightly deviate from the assumptions and results of our
analysis. Throughout this section, we will liberally make use of the symbols . and
h to indicate bounds up to constants that are independent of the mesh parameters
(but may depend on the shape regularity).

Recall that Ω has diameter O(N), and consider an atomistic region of diameter
O(K) such that K

N ≤ C < 1 (i.e., the atomistic region does not occupy most of the
domain Ω), with a defect in the centre of the atomistic region. We conjecture that
(7.2) holds for general p ∈ [1,∞],

(7.12)
∥∥∇ȳa −∇yac

∥∥
Lp(Ω)

. inf
ỹa∈Π2(ya)

∥∥h∇2ỹa

∥∥
Lp(Ωc)

.

We assume that, for some “good” interpolant ỹa (e.g., the HCT interpolant
discussed in [25, Remark 4.1]) we have the decay property

(7.13)
∣∣∇2ỹa(x)

∣∣ h r−β ,

where β > 0, and where r denotes the distance from the defect. For example, it can
be observed numerically that β = 2 for a dislocation [9], and β = 3 for a vacancy
(§8).

Suppose that mesh Th has mesh size function h(r) h hK(r/K)α, where hK ≥ 1
and α > 0 are the refinement parameters that we want to optimize. We have
shown (7.2) only under the assumption that h = 1 on ∂Ωa, which would require us
to choose hK h 1, however, for the sake of argument, we might assume that (7.12)
still holds for more general hK . Our analysis below shows that hK h 1 is in fact a
quasi-optimal choice.

In terms of the parameters K,hK , α, (7.12) can be rewritten as∥∥∇ȳa −∇yac

∥∥
Lp(Ω)

.

(∫ N

K

(
hK
(
r
K

)α
r−β

)p
r dr

)1/p

=: Err,(7.14)
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Parameter Regime Err DoF

1. β > 1 and p > 2
β−1 DoF1/p−β/2 K2

2. β > 1 and p = 2
β−1 DoF−1/2(log N

K )1/2+1/p K2 log N
K

3. β ≤ 1 or p < 2
β−1 DoF−1/2N1/2+1/p−β/2 K2

(
N
K

)2−2α

Table 2. Convergence rates in terms of degrees of freedom for
optimised choices of the atomistic region and finite element mesh.
In all cases α = βp/(2 + p) and hK h 1 are quasi-optimal, leaving
the atomistic domain size, K, as the remaining free parameter. All
quantities are understood as approximate orders of magnitude.

and the number of degrees of freedom approximated by

(7.15) K2 +

∫ N

K

1

h(r)2
r dr h K2 +

∫ N

K

r

h2
K(r/K)2α

dr =: DoF.

In the following paragraphs we will obtain heuristic optimal choices for the mesh
parameters, α and hK , in terms of K, p, and β. It turns out that α = βp/(2 + p)
and hK h 1 are always quasi-optimal. The remaining results are summarized in
Table 2. In the case p = 2 and β = 3 (vacancy), for which the error estimate (7.12)
was rigorously proved, we obtain Err h DoF−1.

1. Equidistribution principle: We begin by applying the error equidistribution
principle to obtain the optimal value for α (see [2, Sec. 5] for the case p = 2, which
is readily generalized).

Consider a vertex q at distance r from the defect, with local mesh size h(q) ≡
h(r). The error contribution of a degree of freedom associated with this vertex can
be approximately estimated as∣∣h(r)∇2ỹa

∣∣ph(r)2 h
(
r
K

)2α(
hK
(
r
K

)α
r−β

)p
h2
K = rα(2+p)−βpK−α(2+p) hp+2

K .

According to the equidistribution principle, this quantity should be independent of
r, i.e., α(2 + p)− βp = 0, which implies α = p

2+p β.

We now consider three cases: α > 1, α = 1, and α < 1. If β > 1 then these
three cases correspond, respectively, to p > 2

β−1 , p = 2
β−1 , and p < 2

β−1 . If β ≤ 1

then α < 1 always holds.
2. Case 1: α > 1 ⇔ (β > 1 and p > 2

β−1 ): In this case, since 2 − 2α < 0, the

approximate number of degrees of freedom is given by

DoF h K2 +
N2−2α −K2−2α

h2
K(2− 2α)

h K2 + h−2
K K2 h K2.

The error can be estimated as

Err = 1
p(β−α)−2 hKK

2/p−β
(

1−
(
K
N

)p(β−α)−2
)1/p

(7.16)

h hKK
2/p−β h hKDoF1/p−β/2.
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Since the estimate for DoF does not depend on hK , the optimal choice for hK is

hK h 1, and the resulting convergence rate is Err h DoF1/p−β/2.

Remark 7.2. (a) In the present case one can show directly (without using the
equidistribution principle) that hK h 1 and any α such that 1 < α < β − 2

p ,

including α = p
p+2 β, are quasi-optimal, i.e., the error for this choice differs from

the error for the best choice by at most a constant factor. This constant, however,
tends to infinity as α tends to 1 or to β − 2

p .

(b) Dropping the error equidistribution assumption and allowing α = 1, while
still assuming p > 2/(β − 1), yields

(7.17) Err h DoF1/p−β/2 ( log N
K

)β/2−1/p
,

which is suboptimal in comparison with (7.16), but still acceptable if log N
K is

moderate. For instance, in §8 we used 4 ≤ K ≤ 64, N = 128, β = 3, and p = 2, in
which case the error estimate is at most 4 times larger than for the optimal mesh.

The advantage of the choice α = 1 is that it is easier to construct such a mesh:
e.g., for a hexagonal region one can consider a mesh Th consisting of hexagonal
layers (i.e., hexagonal rings), each of the 6 sides of the layer is refined M times, so
that the typical size of a triangle at distance r is hT h r

M ; see Figure 6(a). The
condition hK h 1 corresponds to M h K. �

Case 2: α = 1⇔ (β > 1 and p = 2
β−1 ): In this case, we obtain h(r) h rhK/K,

and hence the error and the number of degrees of freedom can be estimated as

Err h hKK
−1
(

log N
K

)1/p
, and DoF h K2 + log N

Kh
−2
K K2.

For fixed Err, we choose K and hK to minimize DoF by solving the corresponding
constrained minimization problem in two variables (a slightly tedious but straight-
forward computation). We obtain for the optimal choices of K and hK that
KErr h (log N

K )1/p, and hence hK h 1. Inserting these into the above expres-
sion for DoF one obtains

Err h DoF−1/2
(

log N
K

)1/2+1/p
and DoF h K2 log N

K .

Case 3: α < 1 ⇔ (β ≤ 1 or p < 2
β−1 ): In this case we obtain the following

estimates on Err and DoF:

Err h hKK
−pβ/(2+p)N2/p−2β/(2+p) = hKK

−αN2(1−α)/p, and

DoF h K2 + h−2
K K2pβ/(2+p)N2−2pβ/(2+p) = K2 + h−2

K K2αN2−2α.

Solving again the constrained optimization problem of minimizing DoF subject
to keeping Err fixed, we obtain KErr h K1−αN (1−α)/p, which yields once again
hK h 1,

Err h DoF−1/2N1/2+1/p−β/2, and DoF h K2
(
N
K

)2−2α
.

8. Numerical Examples

We conducted several numerical experiments to confirm the convergence rates
obtained in §7.2, and to experimentally verify stability of the a/c method near
bifurcation points, where our stability analysis does not apply.

In all tests, the region of periodicity is a hexagon centered at the origin with
each side of the length N = 128, with a defect placed near the origin (cf. Fig. 6).
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Figure 6. (a) Radially refined mesh, α = 1; (b) Algebraically
refined mesh, α = 3/2; (c) Closeup of the atomistic region, K = 8
and hK = 2.

The different shape of the computational domain does not affect the results of the
analysis.

The atomistic region forms a smaller hexagon, also centered at the origin, with
side lengths K (cf. Fig. 6(c)). In the continuum region, either an algebraically
refined mesh with h(r) h hK(r/K)3/2 (where r is the distance from the defect) or
a radial mesh with h(r) h hK(r/K) is used (cf. Fig. 6). The parameter α = 3

2 is
optimal for β = 3 and p = 2 (see Table 2).

In all experiments, the interaction potential is a Lennard-Jones potential with
cut-off distance 3.1, measured in the reference hexagonal configuration. A nonlinear
conjugate gradient solver with linesearch, and Laplace preconditioner to accelerate
convergence, is used to find a stable equilibrium of the atomistic system.



ANALYSIS OF AN ENERGY-BASED A/C APPROXIMATION 39

ç

ç

ç

ç

ç

ç

ó

ó

ó

ó

ó

í

í

í

í

á

á

á

1 ´ 104 5 ´ 104100 1000
DoF

0.001

0.01

0.1

error

corr’d asym.

OH1�DoFL
á hK=8

í hK=4

ó hK=2

ç hK=1

(a)

+

+

+

+

+

+

´

´

´

´

´

á

á

á

á

á

á

í

í

í

í

í

1 ´ 104 5 ´ 104100 1000
DoF

0.001

0.01

0.1

1

error

í A: hK=2

á A: hK=1

´ R: hK=2

+ R: hK=1

(b)

Figure 7. Error of the computed solutions as a function of the
number of degrees of freedom (DoF) in the vacancy example (§8.1):
(a) Comparison of choices of hK ; (b) Comparison of algebraically
refined (“A”) and radial (“R”) meshes.

8.1. Vacancy. We consider an example with a single vacancy defect. The macro-
scopic strain B is chosen as

B =

(
1.01 0.01

0 0.99

)
.

In Figure 7(a) we plot the relative error,
‖∇ȳa−∇yac‖L2(Ω)

‖∇ȳa−∇yB‖L2(Ω)
against the number

of degrees of freedom (DoF). We observe first-order convergence, for the optimal
choices hK = 1 or hK = 2, which is in full agreement with predictions made
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in §7.2, and indicates that the error estimates obtained in the present paper are
qualitatively sharp.

It is also interesting to compare the algebraically refined mesh with α = 3
2 and

the radial mesh with α = 1. The error for these two meshes is plotted in Figure
7(b). We observe that there is only a negligible difference in the error. This is in
correspondence with the estimate (7.17): the effect of the term log N

K can only be
observed only for large ratios N/K.

8.2. Collapsed Cavity. The second test case is a collapsed cavity defect, as con-
sidered in [30]. This defect is formed by removing eight atoms and applying a
macroscopic compression to force the cavity to collapse and form two edge disloca-
tions (see Figure 8(a) and [30] for a detailed test case description). Since they have
opposite Burgers’ vectors we obtain again β = 3 for the analysis in §7.2.

The results, presented in Figure 8(b) are similar to the single vacancy case, the
main difference being that one requires larger K to represent the defect and that,
for fixed (K,hK), the error is higher than for the single vacancy case due to a
slightly “stronger” defect. In particular, we observe again a first-order convergence
in DoF.

8.3. Stability Test for a Vacancy. In addition to investigating the error in the
a/c method, in terms of the number of degrees of freedom, we also conduct a series
of numerical tests to explore the stability region of the a/c method (3.4). We used
only radial mesh refinement in these tests.

Our first test case we set V = {0}, and

B =

(
1 0
0 1 + t

)
, 0 ≤ t.

For increasing values of t the atomistic and a/c solutions are computed using New-
ton’s method taking the previous critical point as the initial guess. The lowest
eigenvalue of δ2Ea (respectively, δ2Eac), ignoring the two zero eigenvalues corre-
sponding to translations, is used to determine whether the computed solution is a
stable equilibrium, and thus determine the critical parameter ta (respectively, tac)
at which the solution becomes unstable.

The results of the experiment are displayed in Table 3. We observe at least
a quadratic convergence rate |ta − tac| . DoF−2, and in particular, that the a/c
method is stable up to this bifurcation point.

8.4. Stability Test for a Bravais Lattice. Our second stability test is conducted
with a two parameter family of the macroscopic strains

(8.1) B =

(
1 + s 0.1

0 1 + t

)
for a lattice with no defects. In the (s, t)-plane we compare two regions of stability:
the region of the stability of the atomistic model (as N → ∞; cf. [11]), and the
region of stability of the a/c method for K = 16 and hK = 2. The results are
shown in Figure 9. We observe that the stability region of the a/c method contains
the stability region for the atomistic model, but that they are comparable up to
numerical errors.
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Figure 8. Error of the computed solutions for the collapsed cavity
test (§8.2) as a function of the number of degrees of freedom (DoF)
for various choices of hK .

K DoF tac, ta a
4 288 0.06104434
8 912 0.05962851 2.15

16 2976 0.05950837 2.19
32 9984 0.05949904 2.53
64 32256 0.05949861 2.57

exact 105338 0.05949859

Table 3. Stability test described in §8.3. K and hK = 2 are the
mesh parameters, DoF the number of degrees of freedom, tac, ta
the computed critical parameters, and a the estimated convergence
rate: |tac − ta| ≈ DoFa.
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Figure 9. Stability regions of the atomistic model (solid line) and
the a/c method for K = 16 and M = 8 (dashed line). The axis
variables, s and t, are the parameters for the macroscopic strain
(8.1). One can observe that the stability region of the a/c method
contains the stability region for the atomistic model, and that the
discrepancy is “small”.

We believe that the minor visual difference between the two regions is caused by
a finite size of the domain and the discretization of the continuum region. It would
require extensive calculations to verify that the stability region of the a/c method
indeed converges to the stability region of the atomistic model as DoF→∞.

Conclusion

We have presented a comprehensive a priori error analysis of a practical en-
ergy based atomistic/continuum coupling method, recently proposed in [30]. The
method and the analysis are valid in two dimensions, for pair-potential interactions,
and in the presence of simple defects.

The main theoretical question left open in our analysis is whether the a/c method
is stable up to bifurcation points. This is a question first posed in [5] as a funda-
mental ingredient in understanding a/c methods. Our numerical experiments in
§8.3 and §8.4 indicate that the error in the stability regions between the atomistic
model and the a/c method is indeed “small”, however, establishing such a result
rigorously appears to be challenging.

Among the other interesting questions motivated by our analysis are: (1) Rig-
orously establishing the stability assumption (7.1), for example, following the dis-
cussion in Remark 7.1. (2) Developing a regularity theory for crystal defects, to
make the analysis in §7.2 rigorous. In particular, this would allow for optimal a
priori mesh refinement and remove the need for mesh adaptivity. (3) Extending the
analysis to other classes of defects. While treating impurities should be straight-
forward with the present techniques, other defects with zero Burgers vector such
as interstitials, or dislocation dipoles, require a more advanced account of stability.



ANALYSIS OF AN ENERGY-BASED A/C APPROXIMATION 43

An extension to dislocations would in addition require a more general consistency
analysis as dislocations do not have an underlying reference configuration, which is
a Bravais lattice.

Appendix A. Proofs of Some Auxiliary Results

Proof of Lemma 2.2. 1. Proof of (2.1): The first result is motivated by the obser-

vation that the quadratic form a[r] :=
∑6
j=1

∣∣GQj6r∣∣2 has hexagonal symmetry, that

is, a[Q6r] = a[r] for all r ∈ R2. Suppose that a is represented by the symmetric
matrix A ∈ R2×2, a[r] = r>Ar, then Q>6AQ6 = A. By equating the entries in this
matrix one obtains that A must in fact be a multiple of the identity. In particular,
this implies that a[r] = |r|a[e1], and a direct computation yields (2.1).

2. Proof of (2.2): The second result is motivated by the observation that

the map G 7→
∑6
j=1

[
(Qj6r)

>G(Qj6r)
]2

defines a fourth-order tensor with hexagonal
symmetry, and the usual major and minor symmetries. It is well-known that such
a tensor is isotropic and must therefore take the form given in (2.2), though with
still undermined Lamé parameters, which can be computed by judicious testing. In
[25, App. A] we present a proof by a direct algebraic computation. �

The following well-known trace identity (see, e.g., in the proof of Lemma 2 in
[24]) is used in the proof of Lemma 4.4 and Lemma 4.5.

Lemma A.1. Let f be a face of a non-degenerate simplex T ⊂ Rd, qf the corner
of T not contained in f , and |f | the (d− 1)-dimensional area of f ; then

(A.1)
|T |
|f |

∫
f

w ds =

∫
T

w dV +
1

2

∫
T

(x− qf ) · ∇w dV ∀w ∈W1,1(T ).

Proof of Lemma 4.4. Let yh = Ihy and ỹ ∈ Π2(y). Since ỹ ∈ C1(Rd), we have the
following estimate,

hf [∇yh]f =

∣∣∣∣ ∫
f

(
∇(yh − ỹ)+ −∇(yh − ỹ)−

)
ds

∣∣∣∣
≤
∣∣∣∣ ∫
f

∇(yh − ỹ)+ ds

∣∣∣∣+

∣∣∣∣ ∫
f

∇(yh − ỹ)− ds

∣∣∣∣.
We deduce from (A.1), choosing w = ∇(yh − ỹ) and T = T±, that

|T±|
hf

∣∣∣∣ ∫
f

∇(yh − ỹ)± ds

∣∣∣∣ ≤ ∥∥∇yh −∇ỹ∥∥L1(T±)
+ 1

2hT±
∥∥∇2ỹ

∥∥
L1(T±)

.

Note, moreover, that |T±|/hf ≥ 1
C′f
hT , where C ′f depends only on the shape regu-

larity of T±.
Recalling that yh = Ihy, we can use Lemma (4.3) to deduce that

hT±

C ′f

∣∣∣∣ ∫
f

∇(yh − ỹ)± ds

∣∣∣∣ ≤ (C̃h + 1
2

)
hT±

∥∥∇2ỹ
∥∥

L1(T±)
,

which immediately yields (4.6) for p = 1:

(A.2)
∥∥[∇yh]f

∥∥
L1(f)

≤ C ′f
(
C̃h + 1

2

)∥∥∇2ỹ
∥∥

L1(T+∪T−)
.
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Using similar calculations it is also easy to prove, for p =∞:∣∣[∇yh]f
∣∣ ≤ 2C̃h

∥∥h∇2ỹ
∥∥

L∞(T+∪T−)
.

Applying the Riesz–Thorin interpolation theorem, we obtain (4.6) for all p. The
estimate (4.7) is an immediate consequence of (4.6). �

Lemma A.2. Let f ∈ Fa, f ⊂ τ ∈ Ta and let w : τ → Rk be piecewise constant
with respect to the mesh Th; then

|τ |
∣∣∣ ∫
f

w ds
∣∣∣ ≤ ∥∥w∥∥

L1(τ)
+ 1

2

∥∥[w]
∥∥

L1(F#
h ∩int(τ))

.

Proof. Assume, first, that wε ∈W1,1(τ)k, then (A.1) implies

|τ |
∣∣∣∣ ∫
f

wε ds

∣∣∣∣ ≤ ∫
τ

|wε|dV +
1

2

∫
τ

|∇wε|dV.

Since W1,1(τ)k is dense in BV(int(τ))k (which contains piecewise constant func-
tions) in the strict topology [8, Sec. 5.2.2], it follows that

|τ |
∣∣∣∣ ∫
f

w ds

∣∣∣∣ ≤ ∫
τ

|w|dV +
1

2
|D′w|(int(τ))

as well, where |D′w| denotes the total variation measure of w. Using integration
by parts it is straightforward to show that

|D′w|(int(τ)) := sup
ψ∈C1

0(τ)k×2

|ψ|≤1

∫
τ

w · divψ dV ≤
∥∥[w]

∥∥
L1(F#

h ∩int(τ))
. �

Proof of Lemma 4.5. Fix an edge f ∈ Fa, f ⊂ τ , f = (q, q+aj); then, using Lemma
A.2, we have∣∣(∇ȳh|τ )aj

∣∣ =
∣∣Dajyh(q)

∣∣ =

∣∣∣∣ ∫
f

∇yhaj ds

∣∣∣∣
≤ |τ |−1

[
‖∇yhaj‖L1(τ) + 1

2

∥∥[∇yhaj ]
∥∥

L1(F#
h ∩int(τ))

]
.

There exists a constant C3, depending only on the shape regularity of Th, such

that length(F#
h ∩ int(τ)) ≤ C3; hence, Hölder’s inequality yields∣∣(∇ȳh|τ )aj
∣∣ ≤ |τ |1/p′−1‖∇yhaj‖Lp(τ) + 1

2C
1/p′

3 |τ |−1
∥∥[∇yhaj ]

∥∥
Lp(F#

h ∩int(τ))
.

Summing over j = 1, 2, 3, applying Lemma 2.2, (2.1), and noting that all constants
can be bounded independently of p, we obtain the result.

We also remark that, for p = 2, a careful computation yields

‖∇ȳh‖2L2(τ) ≤ 2‖∇yh‖2L2(τ) + 2
31/4C3

∥∥[∇yh]
∥∥2

L2(F#
h ∩int(τ))

. �

Proof of Lemma 5.7. We will prove a stronger statement, that (5.16) is true for any
segment b = (x, x + r), x ∈ R2, r ∈ L∗. We hence extend the definitions of J(b)
and nj(b) canonically to all such segments b.

Throughout this proof, we denote the set of vertices of Th by Vh. An inequality
. denotes a bound up to a constant that may only depend on the mesh regularity.
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Α

Β

x

x+r

vik-1-1

vik-1

fik-1

fik

fik+1

vik+1-1

vik+1

Figure 10. Illustration of counting the number of faces crossing
a bond b = (x, x + r). The bond b and the faces fik−1

, fik and
fik+1

are bold lines. The rest of the faces f ∈ J(b) are normal
lines.

We will first reduce the statement to the case int(b)∩Vh = ∅ (where int(b) always
denotes the relative interior) and nj(b) 6= 0, and then estimate the lengths between
points of intersections of b with f ∈ J(b) and compare these lengths to |b|.

Case 1. (int(b) ∩ Vh 6= ∅) Denote x0 = x, xn = x + r and let int(b) ∩ Vh =
{x1, . . . , xn−1}, n > 1, where x1, . . . , xn are sorted by increasing distance to x.
Since any two points in Vh have at least distance 1, n ≤ |b|.

If (5.16) holds for all bi = (xi−1, xi) (i = 1, . . . , n) then we can estimate nj(b) by
respective contributions of bi and contributions of those f ∈ Fh that contain any
of points xi. We will show that nj(bi) . |bi|+ 1 (it falls under Case 2), and hence
we can estimate

nj(b) . n+

n∑
i=1

nj(bi) . n+

n∑
i=1

(|bi|+ 1) = 2n+ |b| ≤ 3|b|+ 2,

which proves (5.16) for b.
Case 2.1. (int(b) ∩ Vh = ∅ and nj(b) = 0) The estimate (5.16) is trivial in this

case.
Case 2.2. (int(b) ∩ Vh = ∅ and nj(b) 6= 0) In this case, nj := nj(b) is simply

the number of faces that cross b. Let J(b) = {f1, . . . , fm}, where fi are sorted by
increasing distance of fi ∩ b to x. We need to prove that nj . |b| + 1. Any two
faces, fi and fi+1, share exactly one common vertex vi ∈ Vh, i = 1, . . . , nj − 1. We
also denote by v0 the vertex of f1 other than v1, and by vnj

the vertex of fnj
other

than vnj−1.
It is of course possible that vi coincides with vi+1 for some i = 1, . . . , nj − 2.

Hence, denote the indices i of unique vertices vi as

I =
{
i ∈ {1, . . . , nj − 2} : vi 6= vi+1

}
∪ {0, nj − 1, nj},

and let I = {i1, . . . , iK}, where ik is an increasing sequence.
If K = 2, then nj = 1. If K = 3 then nj is bounded by the number of faces

touching the vertex vi2 , which is bounded by a constant depending only on the
shape regularity of Th. Hence, we assume in the following that K ≥ 4.

Split all faces in J(b) into groups of faces between fik−1
and fik+1

(k = 2, 4, . . . , 2
⌊
K
2

⌋
)

and, if K is odd, the faces between fiK−1
and fiK . The number of faces in each
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group is bounded by a finite number that depends only on the shape regularity of
Th. To estimate the number of groups, notice that the distance between b ∩ fik−1

and b∩ fik+1
can be bounded below in the following way (see illustration on Figure

10):

dist(b ∩ fik−1
, b ∩ fik+1

) ≥ dist(fik−1
, fik+1

)

= min{dist(vik−1−1, fik+1
), dist(vik−1

, fik+1
)}

≥ min{dist(vik−1−1, fik), dist(vik−1
, fik+1

)},

Denote α and β to be angles formed by, respectively, the vertices vik−1−1, vik−1
, vik+1−1

and vik−1
, vik+1−1, vik+1

(cf. Fig. 10); then we have

dist(b ∩ fik−1
, b ∩ fik+1

) ≥ min{|fik−1
| sinα, |fik | sinβ} ≥ min{sinα, sinβ},

which is bounded below by a positive number that depends only on the shape
regularity of Th. Thus, the number of such groups,

⌊
K
2

⌋
, is bounded by a constant

multiple of |b|.
This finally establishes the estimate nj(b) = #(J(b)) . |b|+ 1. �
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18. C. Makridakis, C. Ortner, and E. Süli, A priori error analysis of two force-based atom-
istic/continuum models of a periodic chain, Numer. Math. 119 (2011), no. 1, 83–121.

MR 2824856

19. R. Miller and E. Tadmor, A unified framework and performance benchmark of fourteen mul-
tiscale atomistic/continuum coupling methods, Modelling Simul. Mater. Sci. Eng. 17 (2009).

20. P. Ming and J. Z. Yang, Analysis of a one-dimensional nonlocal quasi-continuum method,

Multiscale Modeling & Simulation 7 (2009), no. 4, 1838–1875.
21. M. Ortiz, R. Phillips, and E. B. Tadmor, Quasicontinuum analysis of defects in solids, Philo-

sophical Magazine A 73(6) (1996), 1529–1563.

22. C. Ortner, The role of the patch test in 2D atomistic-to-continuum coupling methods,
arXiv:1101.5256v2.

23. C. Ortner, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in
1D, Math. Comp. 80 (2011), no. 275, 1265–1285. MR 2785458

24. C. Ortner and D. Praetorius, On the convergence of adaptive nonconforming finite element

methods for a class of convex variational problems, SIAM J. Numer. Anal. 49 (2011), no. 1,
346–367.

25. C. Ortner and A. V. Shapeev, Analysis of an Energy-based Atomistic/Continuum Coupling

Approximation of a Vacancy in the 2D Triangular Lattice, arXiv:1104.0311v1.
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