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CONSTRUCTION AND SHARP CONSISTENCY ESTIMATES FOR
ATOMISTIC/CONTINUUM COUPLING METHODS WITH

GENERAL INTERFACES: A 2D MODEL PROBLEM∗

C. ORTNER† AND L. ZHANG‡

Abstract. We present a new variant of the geometry reconstruction approach for the formu-
lation of atomistic/continuum coupling methods (a/c methods). For many-body nearest-neighbour
interactions on the 2D triangular lattice, we show that patch test consistent a/c methods can be
constructed for arbitrary interface geometries. Moreover, we prove that all methods within this class
are first-order consistent at the atomistic/continuum interface and second-order consistent in the
interior of the continuum region.

Key words. atomistic models, quasicontinuum method, coarse graining
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1. Introduction. Atomistic/continuum coupling methods (a/c methods) are a
class of coarse-graining techniques for the efficient simulation of atomistic systems
with localized regions of interest interacting with long-range elastic effects that can
be adequately described by a continuum model. We refer to [7], and references therein,
for an introduction and discussion of applications.

In the present work we are concerned with the construction and rigorous analysis
of energy-based a/c methods in a 2D model problem. Our starting point is the
geometry reconstruction approach proposed by Shimokawa et al [18] and by E, Lu
and Yang [4] for the construction of “consistent” a/c methods in 2D and 3D. We
propose a new variant of that approach to define a modified site potential at the a/c
interface, which has several free parameters. We then “fit” these parameters so that
the resulting a/c hybrid energy satisfies an energy consistency condition and a force
consistency condition (see (2.6) and (2.7) for the precise definition of these terms; in
the terminology of quasicontinuum methods our hybrid energy is free of ghost forces).

Explicit constructions along these lines can be found in [18] for pair potentials
and in [4] for coupling a finite-range many-body potential to a nearest-neighbour
potential, for high-symmetry interfaces. Our focus in the present work is the coupling
to a continuum model and interfaces with corners; both of these cases are only briefly
touched upon in [4].

In recent years there has been considerable activity in the numerical analysis
literature on the classification and rigorous analysis of a/c methods (see [2, 3, 8, 11, 13]
and references therein). Much of this work has been restricted to one-dimensional
problems; only very recently some progress has been made on the analysis of a/c
methods in 2D and 3D [6, 10, 12].

The first rigorous error estimates for the method proposed in [4] (together with a
wider class of related methods), in more than one dimension, are presented in [10] for
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2D finite range many-body interactions. The work [10] assumes the existence of an
interface potential so that the resulting a/c energy satisfies certain energy and force
consistency conditions (a variant of the patch test) and then established first-order
consistency of the resulting a/c method in negative Sobolev norms.

Several important questions remain open: 1. It is yet unclear whether construc-
tions of the type proposed in [4, 18] can be carried out for interfaces with corners. 2.
The error estimates in [10] contain certain non-local terms that enforce unnatural as-
sumptions (e.g., connectedness of the atomistic region). 3. Moreover, this nonlocality
causes suboptimal error estimates; namely, it destroys the second-order consistency
of the Cauchy–Born model (see, e.g., [2, 5, 11]), and an unnatural dependence of the
interface width enters the error estimates. (Moreover, we note that the error estimates
in [12] for a different a/c method are only first-order as well.)

The purpose of the present work is to investigate for a model problem whether
these restrictions are genuine, or of a technical nature. To that end we formulate
an atomistic model on the 2D triangular lattice with nearest-neighbour many-body
interactions (effectively these are third neighbour interactions), and construct new a/c
methods in the spirit of [4, 18]. We then prove that the resulting methods are all first-
order consistent in the interface region and second-order consistent in the interior of
the continuum region, which is the first generalisation of the optimal one-dimensional
result [11, Theorem 3.1] to two dimensions.

Although it may seem restrictive at first glance to consider only nearest-neighbour
potentials, we note that this is in fact an important case to consider. For example,
bond-angle potentials (which are included in our analysis) usually consider only angles
between nearest-neighbour bonds. More generally, many-body effects are usually
restricted to very small interaction neighbourhoods, while long-range effects are often
only displayed in pair potentials (in particular, Lennard-Jones), which can be treated,
for example, using Shapeev’s method [12, 16, 15].

2. Atomistic/Continuum Coupling.

2.1. Atomistic model. We consider a nominally infinite crystal, but restrict
admissible displacements to those with compact support. Thus we avoid any discus-
sion of boundary conditions, which are unimportant for the purpose of this work.

Let Q6 denote a rotation through arclength π/3. As a reference configuration we
choose the triangular lattice (see also Figure 2.1):

L := AZ2, where A := (a1, a2),

a1 := (1, 0)>, and aj := Qj−1
6 a1, j ∈ Z.

We will frequently use the following relationships between the vectors aj :

aj+6 = aj , aj+3 = −aj , and aj−1 + aj+1 = aj for all j ∈ Z.

For future reference we also define a := (aj)
6
j=1, and Fa := (Faj)

6
j=1, for F ∈ R2×2.

Our choice of reference configuration is largely motivated by the fact that L
possesses a canonical triangulation (see Figure 2.1, and §2.2), which will be convenient
in our analysis.

The set of displacements and deformations with compact support are given, re-
spectively, by

U0 : =
{
u : L → R2 : u(x) 6= 0 for at most finitely many x ∈ L

}
, and

Y0 : =
{
y : L → R2 : y − id ∈ U0

}
.
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Fig. 2.1. The 2D triangular lattice and its canonical triangulation.

We remark that deformations are usually required to be at least invertible, but that
we avoid this requirement by making simplifying assumptions on the interaction po-
tential.

A homogeneous deformation is a map yF : L → R2, yF(x) := Fx, where F ∈ R2×2.
We note that yF /∈ Y0 unless F = I.

For a map v : L → R2, we define the forward finite difference operator

Djv(x) := v(x+ aj)− v(x), x ∈ L, j ∈ Z,

and the family of all nearest-neighbour finite differences, Dy(x) := (Djy(x))6
j=1.

We assume that the atomistic interaction is described by a nearest-neighbour
many-body site energy potential V ∈ C3(R2×6), with V (a) = 0, so that the energy of
a deformation y ∈ Y0 is given by

Ea(y) :=
∑
x∈L

V
(
Dy(x)

)
.

This is the most general form of nearest-neighbour interactions in the 2D triangular
lattice.

The assumption V (a) = 0 guarantees that Ea(y) is finite for all y ∈ Y0.

2.2. The Cauchy–Born approximation. For fields y ∈ W1,∞(R2;R2), such
that y − id has compact support, we define the Cauchy–Born energy functional

Ec(y) :=

∫
R2

W (∂y) dx, where W (F) := 1
Ω0
V
(
Fa
)
,

W ∈ C3(R2×2;R), is the Cauchy–Born stored energy function. The factor Ω0 :=
√

3/2
is the volume of one primitive cell of L, that is, W (F) is the energy per unit volume
of the homogeneous lattice FL.

If y ∈ Y0 is a discrete deformation, then we define its Cauchy–Born energy through
piecewise affine interpolation: The triangular lattice L has a canonical triangulation
T into closed triangles depicted in Figure 2.1. Henceforth, we shall always identify a
function v : L → Rk with its P1-interpolant, which belongs to W1,∞(R2;Rk). For a
discrete deformation y ∈ Y0, we can then write the Cauchy–Born energy as

Ec(y) =

∫
R2

W (∂y) dx =
∑
T∈T

|T |W (∂T y), (2.1)

where we define ∂T y := ∂y(x)|x∈T and note that |T | = Ω0/2 for all triangles T ∈ T .
Note that W (I) = 0 and hence Ec(y) is finite for all y ∈ Y0.
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Atomistic Node

Interface Node

Continuum Node

Fig. 2.2. Atomistic-interface-continuum domain decomposition.

Alternatively, Ec can be written in terms of site energies, which will be helpful for
the definition of a/c methods. Each vertex x ∈ L has six adjacent triangles, which we
denote by Tx,j := conv{x, x + aj , x + aj+1}, j = 1, . . . , 6 (cf. Figure 2.3). With this
notation,

Ec(y) =
∑
x∈L

V c(Dy(x)), where V c(Dy(x)) :=
Ω0

6

6∑
j=1

W (∂Tx,jy). (2.2)

Note that V c ∈ C3(R2×6) is well-defined since ∂Tx,j
y is determined by the finite

differences Djy(x) and Dj+1y(x).

2.3. A/c coupling via geometry reconstruction. Let A ⊂ L denote the set
of all lattice sites for which we require full atomistic accuracy. We denote the set of
interface lattice sites by

I :=
{
x ∈ L \ A

∣∣x+ aj ∈ A for some j ∈ {1, . . . , 6}
}
,

and we denote the remaining lattice sites by C := L\ (A∪I); cf. Figure 2.2. We note
that we have a single layer of interface atoms where we can modify the interaction
law to obtain a “consistent” a/c coupling energy. In general, the interface region has
to be widened according to the interaction range [4].

A general form for the constuction of a/c coupling energies is

Eac(y) =
∑
x∈A

V (Dy(x)) +
∑
x∈I

V i
x(Dy(x)) +

∑
x∈C

V c(Dy(x)), (2.3)

where V i
x, x ∈ I, are the interface site potentials that define the method (the atom-

istic site potential and the continuum site potential are determined by the atomistic
model).

For example, if we choose V i
x = V , then we obtain the original quasicontinuum

method [9] (the QCE method). It is well understood that the QCE method suffers from
the occurance of ghost forces, which result in large modelling errors [2, 7, 8, 13, 17].

In the following we present a new variant of the geometry reconstruction approach
[4, 18] for constructing V i. We define the interface potential as

V i
x(Dy(x)) := V (RxDy(x)), (2.4)

where Rx is a geometry reconstruction operator of the general form

RxDy(x) :=
(
RxDjy(x)

)6
j=1

, and RxDjy(x) :=

6∑
i=1

Cx,j,iDiy(x). (2.5)
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Here (Cx,j,i)
6
j,i=1, x ∈ I, are free parameters of the method that can be determined

to improve the accuracy of the coupling scheme.

Remark 2.1. There is no choice of the reconstruction operator Rx so that V i is
equal to V c, whereas V a can be written in the form (2.4) by taking Cx,j,i = δij.

We use the acronym “GR-AC method” (geometry reconstruction-based atomistic-
to-continuum coupling method) to describe methods of the type (2.3) where the in-
terface site potential is of the form (2.4).

We aim to determine parameters Cx,j,i such that the coupling energy Eac satisfies
the following local energy consistency and local force consistency conditions:

V i
x(Fa) = V (Fa) ∀F ∈ R2×2, ∀x ∈ I, and (2.6)

fac(x; yF) = 0 ∀F ∈ R2×2, ∀x ∈ L, (2.7)

where fac(x; y) is the force acting on the atom at site x, initially defined by

fac(x; y) := −∂Eac(y)

∂y(x)
∈ R2 for y ∈ Y0;

however, we immediately see that fac involves only a sum over a finite set of lattice
sites, and hence the formula can be extended to all maps y : L → R2. In particular,
(2.7) is a well-posed condition. Taken together, we call (2.6) and (2.7) the patch test.
A hybrid energy Eac of the form (2.3) is called patch test consistent if it satisfies both
conditions.

In the remainder of the paper, we will determine choices of the parameters Cx,j,i

for general a/c interface geometries that give patch test consistent coupling methods.
Moreover, we will prove that for all parameter choices we determine, the resulting a/c
method is first-order consistent at the interface and second-order consistent in the
interior of the continuum region. This extends the optimal 1D result in [11].

Remark 2.2. 1. To obtain a method with improved complexity one should use a
coarser finite element discretisation in the continuum region. If coarsening is included
in the a/c method, then the consistency analysis involves estimating the coarsening
error as well as the modelling error.

It was seen in [13, 10] that the coarsening step can be understood using standard
finite element methodology, and hence we focus only on the modification of the model,
and the resulting modelling errors. Since the coarsening error is ignored, we will use
the terms modelling error and consistency error interchangably.

2. Realistic interaction potentials have singularities for colliding nuclei, i.e., for
deformations that are not injective. Clearly, our assumption that V ∈ C3(R2×6) con-
tradicts this. It is conceptually easy to admit more general site potentials in our work,
however, this would introduce additional technical steps that are of little relevance to
the problems we wish to study.

2.4. Additional assumptions and notation. We use |·| to denote the `2-norm
on Rn, and the Frobenius norm on Rn×m. Generic constants that are independent
of the potential (and the constants defined in the following paragraphs) and the un-
derlying deformations are denoted by c. Although it is possible in principle to trace
all constants in our proofs, it would require additional non-trivial computations to
optimize them.
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2.4.1. Properties of V . We define notation for partial derivatives of V , for
g ∈ R2×6, as follows:

∂jV (g) :=
∂V (g)

∂gj
∈ R2, and ∂i,jV (g) :=

∂2V (g)

∂gi∂gj
∈ R2×2, for i, j ∈ {1, . . . , 6},

and similarly, the third derivative ∂i,j,kV (g) ∈ R2×2×2, which we will never use ex-
plicitly.

Interpreting the second and third partial derivatives as multi-linear forms we
define the global bounds

M2 :=

6∑
i,j=1

sup
g∈R2×6

sup
h1,h2∈R2

|h1|=|h2|=1

∂i,jV (g)[h1, h2], and

M3 :=

6∑
i,j,k=1

sup
g∈R2×6

sup
h1,h2,h3∈R2

|h1|=|h2|=|h3|=1

∂i,j,kV (g)[h1, h2, h3].

Remark 2.3. For realistic interaction potentials, the energy of colliding nuclei is
infinite. Similarly, it is sometimes convenient to use interaction potentials that grow
superlinearly at infinite. In either of these cases, we would obtain M2 = M3 =∞.

To avoid this difficulty, we could simply restrict g in the definition of M2,M3 to
a neighbourhood of the range of Dy(x) of an appropriate range of deformations y of
interest.

With this notation it is straightforward to show that

6∑
i=1

∣∣∂iV (g)− ∂iV (h)
∣∣ ≤M2 max

j=1,...,6
|gj − hj |, for g,h ∈ R2×6. (2.8)

We also assume that V satisfies the point symmetry

V
(
(−gj+3)6

j=1

)
= V (g) ∀g ∈ R2×6. (2.9)

The following identities are immediate consequences of this condition:

∂iV (Fa) = − ∂i+3V (Fa), for i = 1, . . . , 6, F ∈ R2×2 (2.10)

∂ijV (Fa) = ∂i+3,j+3V (Fa), for i, j = 1, . . . , 6, F ∈ R2×2. (2.11)

We will prove results on the class V , of all site potentials that satisfy (2.9),

V :=
{
V ∈ C3(R2×6)

∣∣ V satisfies (2.9)
}
.

We will frequently use the following shorthand notation for partial derivatives of
V , when there is no ambiguity in their meaning:

Vx,j := ∂jV (Dy(x)), VF,j := ∂jV (Fa), VT,j := V∂T y,j ,

and analogous symbols for other potentials that we will introduce throughout the
text.
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Fig. 2.3. Convention for the symbols Tx,j and xT,j .

2.4.2. Linear functionals. For y ∈ Y0 and u ∈ U0 we denote the directional
derivative of Ea by

〈
δEa(y), u

〉
:= lim

t→0

Ea(y + tu)− Ea(y)

t
.

We call δEa(y) the first variation of Ea and understand it as an element of U ∗0 . We
use analogous notation for other functionals. This paper is largely concerned with
establishing bounds on the modelling error δEa(y)− δEac(y).

To obtain sharp error estimates in W1,p-like norms, one needs to bound modelling
errors in negative Sobolev norms, or, in our case, discrete versions thereof. Let ` :
U0 → R be a linear functional, and let 1

p + 1
p′ = 1, 1 ≤ p, p′ ≤ ∞, then we define

‖`‖U −1,p := sup
u∈U0

‖∂u‖
Lp′=1

〈
`, u
〉
.

2.4.3. Notation for the lattice and the triangulation. L is the set of ver-
tices of T , and we denote the set of edges of T by F , with edge midpoints mf ,
f ∈ F .

For each vertex x ∈ L and direction aj , let Tx,j := conv{x, x+aj , x+aj+1} ∈ T ,
j = 1, . . . , 6 (see Figure 2.3). The edge (x, x + aj) is the intersection of the two
elements Tx,j and Tx,j−1. Moreover, let xT,j ∈ L be the unique lattice point so that
both xT,j , xT,j + aj ∈ T (again, see Figure 2.3).

2.4.4. Discrete regularity. To measure regularity or “smoothness” of discrete
deformations y ∈ Y0, we first define the symbols

|D2y(x)| := max
i,j=1,...,6

|DiDjy(x)|, and |D3y(x)| := max
i,j,k=1,...,6

|DiDjDky(x)|,

for x ∈ L. With mild abuse of notation, we then define the norms

‖D2y‖`p(A) := ‖|D2y|‖`p(A), and ‖D3y‖`p(A) := ‖|D3y|‖`p(A),

for any A ⊂ L and y ∈ Y0. If the label A is omitted, then it is assumed that A = L.

3. Construction of the GR-AC Method. In this section we carry out an
explicit construction of the GR-AC method. Our results are variants of results in [4],
however, since our ansatz is different from the one used in [4], and since we wish to
be precise about the equivalence of certain conditions, we provide details for all our
proofs.
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We assume throughout the remainder of the paper that the reconstructed differ-
ence RxDjy(x) may depend only on the original differences Dj−1y(x), Djy(x), and
Dj+1y(x), that is,

Cx,j,i = 0 for
∣∣(i− j) mod 6

∣∣ > 1, i, j ∈ {1, . . . , 6}, x ∈ I. (3.1)

For future reference, we call (3.1) the one-sidedness condition.

In §3.1 and §3.2 we derive general conditions on the parameters that are indepen-
dent of the choice of the atomistic region. In §3.3 and §3.4 we then compute explicit
sets of parameters.

3.1. Conditions for local energy consistency. We first derive conditions for
the local energy consistency condition (2.6).

Proposition 3.1. Suppose that the parameters Cx,j,i satisfy the one-sidedness
condition (3.1), then the interface potential V i

x satisfies the local energy consistency
condition (2.6) for all potentials V ∈ V if and only if

Cx,j,j−1 = Cx,j,j+1 = 1− Cx,j,j , for j = 1, . . . , 6. (3.2)

Proof. We require that V i
x(Fa) = V (Fa), for arbitrary V ∈ V , which is equivalent

to

Faj =

6∑
i=1

Cx,j,iFai for j = 1, . . . , 6.

Since this has to hold for arbitrary F ∈ R2×2, and in view of (3.1), we obtain the
condition

aj = Cx,j,j−1aj−1 + Cx,j,jaj + Cx,j,j+1aj+1

Since aj = aj−1 + aj+1, this is equivalent to

(Cx,j,j−1 + Cx,j,j − 1)aj−1 + (Cx,j,j+1 + Cx,j,j − 1)aj+1 = 0,

and since aj−1, aj+1 are linearly independent, we obtain the condition that

Cx,j,j−1 + Cx,j,j = 1, and Cx,j,j+1 + Cx,j,j = 1.

Subtracting these two conditions gives Cx,j,j+1 = Cx,j,j−1, and hence we obtain (3.2).

As a consequence of Assumption (3.1), and Proposition 3.1, we have reduced the
number of free parameters to six for each site x ∈ I. To simplify the subsequent
notation, whenever the parameters Cx,j,i are chosen to satisfy (3.2), we will write

Cx,j := Cx,j,j , and note that Cx,j,j−1 = Cx,j,j+1 = 1− Cx,j . (3.3)

Since it is equivalent to (2.6) we call (3.3) the local energy consistency condition as
well, and will subsequently refer to (3.3) instead of to (2.6).
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3.2. Conditions for local force consistency. We rewrite Eac in terms of a
hybrid site potential

Eac(y) =
∑
x∈L

V ac
x (Dy(x)), where V ac

x (g) :=

 V c(g), x ∈ C,
V i
x(g), x ∈ I,
V (g), x ∈ A.

(3.4)

Although there exists no reconstruction opertor R such that V c = V (R(Dy)) for
arbitary deformation y (see Remark 2.1), it can be shown by direct calculation that, if
we take the coefficients of reconstruction operator R as Cx,j := 2/3, then V (R(Dy))
and V c produce same forces for homogenenous deformation yF. Therefore, to enforce
the local force consistency condition, we can assign values of coefficients to atoms in
the atomistic and continuum domain such that

Cx,j := 1 for x ∈ A and Cx,j := 2/3 for x ∈ C, j = 1, . . . , 6, (3.5)

and these coefficents are compatible with (3.1) and (3.3) as well.
Lemma 3.2. Suppose that the parameters (Cx,j,i)

6
i,j=1, x ∈ I, satisfy the one-

sidedness condition (3.1) and local energy consistency (3.3), then

− fac(x; yF) =

6∑
j=1

6∑
i=1

(Cx−ai,j,i − Cx,j,i)VF,j ∀x ∈ L. (3.6)

(3.6) is well-defined if we take values of Cx,j,i from (3.5) when x ∈ A ∪ C.
Proof. Using the notation (3.4), we have

〈δEac(yF), u〉 =
∑
x∈L

6∑
i=1

∂iV
ac
x (Fa) ·Diu(x),

which immediately gives

− fac(x; yF) =

6∑
i=1

[
∂iV

ac
x−ai

(Fa)− ∂iV ac
x (Fa)

]
. (3.7)

With the notation introduced in (3.5), we obtain

6∑
i=1

∂iV
ac
x (Fa) ·Diu(x) =

6∑
j=1

VF,j

6∑
i=1

Cx,j,iDiu(x),

which implies

∂iV
ac
x (Fa) =

6∑
j=1

Cx,j,iVF,j . (3.8)

Combining (3.8) with (3.7) yields (3.6).
Testing (3.6) for all V ∈ V and F ∈ R2×2, we obtain the next result.
Lemma 3.3. Suppose that the parameters (Cx,j,i)

6
i,j=1, x ∈ I, satisfy one-sidedness

(3.1) and local energy consistency (3.2). Then Eac satisfies local force consistency (2.7)
for all V ∈ V if and only if

6∑
i=1

(
Cx−ai,j,i − Cx−ai,j+3,i − Cx,j,i + Cx,j+3,i

)
= 0 ∀ j = 1, 2, 3, ∀x ∈ L. (3.9)
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Fig. 3.1. The flat interface case.

Proof. Using (3.6) and point symmetry (2.10) one readily checks that (3.9) is
sufficient for force consistency (2.7). To show that (3.9) is also necessary we test (3.6)
with

V (g) = 1
2

(
|g1 − a1|2 + |g4 − a4|2

)
,

which clearly belongs to the class V , to obtain

−fac(x; yF) =
∑
j=1,4

6∑
i=1

(Cx−ai,j,i − Cx,j,i)(F− I)aj

=

6∑
i=1

(
Cx−ai,1,i − Cx−ai,4,i − Cx,1,i + Cx,4,i

)
(F− I)a1.

For this expression to vanish for all F ∈ R2×2 we obtain precisely (3.9) for j = 1. For
j = 2, 3 the same argument applies.

Since (3.9) and (2.7) are equivalent under the one-sidedness condition, we will
from now on only refer to (3.9).

3.3. Explicit parameters for flat interfaces. We now give a characterisation,
for a flat a/c interface, of all parameters satisfying the one-sidedness assumption (3.1),
which give a patch test consistent a/c method.

Proposition 3.4. Suppose that A = {x ∈ L |x2 < 0}, I = {x ∈ L |x2 =
0} and C = {x ∈ L |x2 > 0} (see Figure 3.1). Then the parameters (Cx,j,i)

6
i,j=1,

x ∈ I, satisfy the one-sidedness condition (3.1), energy consistency (3.3), and force
consistency (3.9), if and only if

Cx,1 = Cx+a1,4 ∀x ∈ I, and (3.10)

Cx,j = Cx+a1,j ∀x ∈ I, j ∈ {2, 3, 5, 6}, (3.11)

where we have used the reduced parameters defined in (3.3).
Proof. One-sidedness (3.1) and energy consistency (3.3) yields the reduced pa-

rameters (Cx,j)
6
j=1, x ∈ I, satisfying (3.3). Recall also the extension (3.5) of these

parameters for x ∈ A ∪ C.
Let I+ := {x + a2 |x ∈ I} and I− := {x − a2 |x ∈ I}. Clearly, we need to

test (3.9) only for x ∈ I ∪ I− ∪ I+. Exploiting the symmetries of the problem it is
also clear that we only need to consider j = 1, 2.

It is straightforward to verify through direct calculations that any set of coef-
ficients satisfying (3.10), (3.11) satisfies the equivalent force consistency condition
(3.9).
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Let j = 1 and x ∈ I then we obtain that (3.10) is necessary from the force
consistency condition (3.9), applied at x + a2 or x + a6. Let j = 2, then we obtain
Cx,2 = Cx+a1,2 from the force consistency condition (3.9) applied at x+a2. Therefore,
(3.10) and (3.11) are also necessary.

Remark 3.5. We observe that the coefficients (Cx,i,j)
6
i,j=1, x ∈ I, are not unique,

but that we have considerable freedom in the construction of the GR-AC method: For
each direction ai that is not aligned with the interface, there is a free parameter, while
for each edge (x, x+a1) lying on the interface, there is one additional free parameter.

In particular, we notice that the original QCE method (choosing Cx,j = 1 for all
x ∈ I; or, V i(x; •) = V ) is free of ghost forces for flat interfaces. This has also been
observed in [4].

This considerable freedom of reconstruction coefficents will be reduced in the case
of corners.

3.4. Explicit parameters for general interfaces. For general interface ge-
ometries we make the following separation assumption. This assumption requires
that, if the atomistic region can be decomposed into several connected components,
then they must be separated by at least four “lattice hops”.

Assumption 3.6. Each vertex x ∈ I has exactly two neighbours in I, and at
least one neighbour in C.

As in the flat interface case, we can completely characterise all parameters within
the one-sidedness assumption, which satisfy the patch test.

Proposition 3.7. Let A ⊂ L be defined in such a way that the interface set
I satisfies Assumption 3.6, and is not planar. Then the parameters (Cx,j,i)

6
i,j=1,

x ∈ I, satisfy the one-sidedness condition (3.1), energy consistency (3.3), and force
consistency (3.9), if and only if

Cx,j = Cx+aj ,j+3 ∀x ∈ I, x+ aj ∈ I, (3.12)

Cx,j = 1 ∀x ∈ I, x+ aj ∈ A, and (3.13)

Cx,j = 2/3 ∀x ∈ I, x+ aj ∈ C, (3.14)

where (Cx,j)
6
j=1, x ∈ I, are the reduced parameters defined in (3.3).

Proof. As in the flat interface case, one-sidedness (3.1) and energy consistency
(3.3) are equivalent to having the reduced parameters (Cx,j)

6
j=1, x ∈ I, satisfying

(3.3). Recall also the extension (3.5) of these parameters for x ∈ A ∪ C.
Let I+ := {x ∈ C | ∃aj , x + aj ∈ I} and I− := {x ∈ A | ∃aj , x + aj ∈ I}. We

need to test (3.9) only for x ∈ I ∪ I− ∪ I+. The necessity of (3.12) follows as in the
flat interface case. The necessity of (3.13) and (3.14) can be obtained by testing the
corner sites in I± in the interface geometry depicted in Figure 2.2.

To see that (3.12)–(3.14) are also sufficient one notes, first, that the correspond-
ing coefficients always provide zero contribution on each edge for the sum in (3.9).
Computing the force at x ∈ I+ we see that the contribution from V i is the same as
from V c, and must therefore cancel, since the pure Cauchy–Born model passes (3.9).
For x ∈ I− the same argument applies.

It remains to test (3.9) for x ∈ I, at corners. Since (3.9) is a local condition, and
due to Assumption 3.6, one may assume that the interface has only one corner. Since
all other sites are in equilibrium, and since the forces are conservative, it follows that
the corner must also be in equilibrium.

Remark 3.8. We observe that, for a general interface, we only have freedom to
choose the geometric reconstruction parameters along the interface, namely, for each
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interface edge there is one free parameter.

4. Consistency of the Cauchy–Born Approximation. Before we embark on
the analysis of the GR-AC method (2.3), we establish a sharp consistency estimate for
Cauchy–Born approximation. Related results were established in [5], which require
more stringent conditions on the smoothness of the deformation field. For the analysis
of a/c methods a sharp consistency estimate, such as Theorem 4.2, is useful. In
the remainder of the section we establish technical results that are useful for the
subsequent consistency analysis of the GR-AC method.

Throughout this section and the next we will introduce several equivalent rep-
resentations of first variations of the atomistic, Cauchy–Born and coupled energies.
While an edge-based formulation is convenient to obtain a second-order consistency
estimate for the Cauchy–Born model, we use an element-based formulation to study
the consistency of the a/c coupling. The latter is convenient to take advantage of
characterisations of divergence-free tensor fields (see Lemma 4.5).

4.1. Second-order consistency. A natural way to represent the first variation
of Ea is

〈
δEa(y), u

〉
=
∑
x∈L

6∑
j=1

∂jV (Dy(x)) ·Dju(x) =
∑
x∈L

6∑
j=1

Vx,j ·Dju(x), (4.1)

where we use the notation Vx,j := ∂jV (Dy(x)). This representation can be interpreted
as a sum over mesh edges. By contrast, the most natural representation of δEc is〈

δEc(y), u
〉

=
∑
T∈T

|T |∂W (∂T y) : ∂Tu. (4.2)

To estimate δEa − δEc we will rewrite (4.2) in a form mimicking (4.1). The opposite
approach is also possible, but does not lead as easily to second-order consistency
estimates.

Lemma 4.1. For y ∈ Y0, T ∈ T , let VT,j := ∂jV (∂T y · a); then

〈
δEc(y), u

〉
=

∑
x∈L

3∑
j=1

(
VTx,j ,j + VTx,j−1,j

)
·Dju(x), ∀u ∈ U0, and (4.3)

〈
δEa(y), u

〉
=

∑
x∈L

3∑
j=1

(
Vx,j − Vx+aj ,j+3

)
·Dju(x), ∀u ∈ U0. (4.4)

Proof. It is easy to see that

∂W (F) =
1

Ω0

6∑
j=1

∂jV (Fa)⊗ aj , (4.5)

and hence, using Ω0 = 2|T | and ∂Tu · aj = Dju(xT,j),

〈
δEc(y), u

〉
=

1

Ω0

∑
T∈T

|T |
6∑

j=1

[
VT,j ⊗ aj

]
: ∂Tu =

1

2

∑
T∈T

6∑
j=1

VT,j ·Dju(xT,j).
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Fig. 4.1. Visualisation of the proof of Theorem 4.2.

Every edge appears twice in this sum since it is shared between two elements; hence
we obtain the edge representation

〈
δEc(y), u

〉
=
∑
x∈L

6∑
j=1

1
2

(
VTx,j ,j + VTx,j−1,j

)
·Dju(x) ∀u ∈ U0. (4.6)

Since Dj+3u(x + aj) = −Dju(x), and using VT,j+3 = −VT,j (see (2.10)) we can
reduce this sum as follows:

〈
δEc(y), u

〉
=
∑
x∈L

3∑
j=1

1
2

(
VTx,j ,j + VTx,j−1,j − VTx,j ,j+3 − VTx,j−1,j+3

)
·Dju(x)

=
∑
x∈L

3∑
j=1

(
VTx,j ,j + VTx,j−1,j

)
·Dju(x).

This concludes the proof of (4.3).

For the proof of (4.4) one only needs to use the identity Dj+3u(x+aj) = −Dju(x).

Theorem 4.2. Let y ∈ Y0, then∥∥δEa(y)− δEc(y)
∥∥

U −1,p ≤ c
(
M2‖D3y‖`p +M3‖D2y‖2`2p

)
(4.7)

where M2,M3 are defined in §2.4.1.

Proof. It is useful to visualize this proof using Figure 4.1, and Figure 2.3 for
additional detail. From Lemma 4.1 we obtain

〈
δEa(y)− δEc(y), u

〉
=

∑
x∈L

3∑
j=1

δj(x) ·Dju(x),

where δj(x) := Vx,j − Vx+aj ,j+3 − VTx,j ,j − VTx,j−1,j . (4.8)

In the following we estimate δ1(x) only; the remaining estimates follow by symmetry.

Let F+ := ∂Tx,1
y and F− := ∂Tx,6

y, then VTx,1,1 = VF+,1 and VTx,6,1 = VF−,1.
Moreover we can Taylor expand

Vx,1 = VF+,1 +

6∑
i=1

VF+,1i(Diy(x)− F+ai) +O
(
|D2y(x)|2

)
,
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and similarly,

−Vx+a1,4 = − VF−,4 −
6∑

j=1

VF−,4i(Diy(x+ a1)− F−ai) +O
(
|D2y(x)|2

)
= VF−,1 −

6∑
j=1

VF−,1(i+3)(Diy(x+ a1)− F−ai) +O
(
|D2y(x)|2

)
= VF−,1 +

6∑
j=1

VF−,1i(−Di+3y(x+ a1)− F−ai) +O
(
|D2y(x)|2

)
.

An analysis of the remainder shows thatO(|D2y(x)|2) ≤ 1
2

∑6
i,j=1 |∂1ijV (θ)| |D2y(x)|2

for some θ ∈ R2×6. In the remainder of the proof we will suppress the argument θ.
Clearly, VF−,1i − VF+,1i = O(|D2y(x)|) ≤

∑6
j=1 |∂1ijV | |D2y(x)|, and hence we

can deduce that

δ1(x) =

6∑
i=1

VF+,1i

(
Diy(x)− F+ai −Di+3y(x+ a1)− F−ai

)
+O

(
|D2y(x)|2

)
=

6∑
i=1

VF+,1i

(
Diy(x)−Diy(x+

i ) +Diy(x+ a1 − ai)−Diy(x−i )
)

+O
(
|D2y(x)|2

)
=:

6∑
i=1

VF+,1i εi +O
(
|D2y(x)|2

)
,

where x+
i := xTx,1,i and x−i := xTx,6,i. (These are simply the vertices in the two

adjacent elements such that the identities F±ai = Diy(x±i ) hold.)
Carrying out the previous Taylor expansions in detail, we find that, in the last

estimate, O(|D2y(x)|2) ≤ 2
∑6

i,j=1 |∂1ijV | |D2y(x)|2.
We compute ε3 in detail but only give the results for the remaining coefficients:

ε3 = D3y(x)−D3y(x+ a1) +D3y(x+ a1 − a3)−D3y(x− a3)

= −D1D3y(x) +D1D3y(x− a3) = D6D1D3y(x).

By performing similar calculations for i = 1, 2, 4, 5, 6, one finds

ε1 = ε2 = ε6 = 0, ε4 = D1D1D4y(x), and ε5 = D1D2D5y(x);

hence we obtain that δj(x) = O(|D2y(x)|2 + |D3y(x)|) (recall that we assumed, with-
out loss of generality, that j = 1), where O(|D3y(x)|) ≤

∑
i=3,4,5 |∂1,iV ||D3y(x)|.

Combining these estimates, we obtain

〈
δEa(y)− δEc(y), u

〉
≤
(∑

x∈L

3∑
j=1

|δj(x)|p
)1/p (∑

x∈L

3∑
j=1

|Dju(x)|p
′
)1/p′

.

Finally, elementary estimates yield(∑
x∈L

3∑
j=1

|δj(x)|p
)1/p

≤ M2‖D3y‖`p +M3‖D2y‖2`2p , and

(∑
x∈L

3∑
j=1

|Dju(x)|p
′
)1/p′

≤
(
2
√

3
)1/p′( ∑

T∈T

|T |
∣∣∂Tu∣∣p′)1/p′

,
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Fig. 4.2. Notation for neighbouring triangles of T ∈ T .

from which the result follows immediately.
In the following subsections, we derive technical results related to Theorem 4.2,

in preparation for the proof of consistency of the GR-AC method.

4.2. Stress tensors. If there exist tensor fields Σa(y; •),Σc(y; •) ∈ P0(T )2×2,
for some y ∈ Y0, which satisfy the identities

〈δEa(y), u〉 =
∑
T∈T

|T |Σa(y;T ) : ∂Tu, and (4.9)

〈δEc(y), u〉 =
∑
T∈T

|T |Σc(y;T ) : ∂Tu (4.10)

then we call Σa an atomistic stress tensor and Σc a continuum stress tensor.
It follows from (4.1) and (4.2) that

Σa(y;T ) :=
1

Ω0

6∑
j=1

VxT,j ,j ⊗ aj , and (4.11)

Σ1
c(y;T ) := ∂W (∂T y) =

1

Ω0

6∑
j=1

VT,j ⊗ aj (4.12)

satisfy, respectively, (4.9) and (4.10), however, they are not unique choices.
In the following calculation (and later on as well) we denote by Tj the unique

neighbouring element of T ∈ T , which shares an edge with direction aj with T ; see
Figure 4.2. With this notation, and using the fact that Dju(xT,j) = Dju(xTj ,j), we
observe that

〈
δEc(y), u

〉
=

∑
T∈T

|T | 1

Ω0

6∑
j=1

VT,j ·Dju(xT,j) (4.13)

=
∑
T∈T

|T | 1

Ω0

6∑
j=1

1

2

(
VT,j + VTj ,j

)
·Dju(xT,j)

=
∑
T∈T

|T |
{

1

Ω0

6∑
j=1

1

2

(
VT,j + VTj ,j

)
⊗ aj

}
: ∂Tu ∀u ∈ U0,

which yields the alternative continuum stress tensor

Σ2
c(y;T ) :=

1

Ω0

6∑
j=1

1

2

(
VT,j + VTj ,j

)
⊗ aj . (4.14)
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Furthermore, if we write the Cauchy–Born energy in terms of the site energy
(2.2), and apply the procedure used to derive Σa, then we obtain a third variant of
the continuum stress tensor:

Σ3
c(y;T ) :=

1

Ω0

6∑
j=1

V c
xT,j ,j ⊗ aj . (4.15)

We see that stress tensors are not uniquely defined by (4.10) and (4.9). This
causes analytical difficulties when deriving modelling error estimates, which strongly
depend on the choice of the stress tensors. For example we will show in the following
result that Σ2

c is second-order consistent. By contrast, Σ1
c and Σ3

c are only first-order
consistent (cf. Remark 4.4).

Lemma 4.3. Let y ∈ Y0, then∣∣Σa(y;T )− Σ2
c(y;T )

∣∣ ≤ c(M3|D2y(x)|2 +M2|D3y(x)|
)

(4.16)

for all T ∈ T , x ∈ T .
Proof. This estimate is obtained by reversing the construction of Σ2

c in (4.13),
and applying the estimates obtained in the proof of Theorem 4.2.

Remark 4.4. Taylor expansions show that Σk
c , k = 1, 3, are only first-order

consistent, ∣∣Σa(y;T )− Σk
c (y;T )

∣∣ ≤ cM2|D2y(x)| for x ∈ T,

but that a second-order estimate such as (4.16) would be false. The first-order estimate
can also be obtained from the fact that Σa(yF; •) = Σk

c (yF; •) = ∂W (F) for all F ∈
R2×2.

4.3. Divergence-free stress tensors. In the previous subsection, we have seen
that the stress functions defined in (4.9) and (4.10) are not unique. It is therefore
crucial to characterize all divergence-free tensors, which is the purpose of the present
section. We call a piecewise constant tensor σ ∈ P0(T )2×2 divergence free, if it
satisfies ∫

R2

σ : ∂udx =
∑
T∈T

|T |σ(T ) : ∂Tu = 0 ∀u ∈ Uc. (4.17)

Divergence-free tensors can be characterised as 2D-curls of non-conforming Crouzeix–
Raviart finite elements. Let N1(T ) be defined by

N1(T ) :=
{
v : R2 → R

∣∣∣ v|int(T ) is linear for each T ∈ T
v is continuous at all edge midpoints

}
. (4.18)

The degrees of freedom for functions w ∈ N1(T ) are the nodal values at edge mid-
points, w(qf ), f ∈ F , and the associated nodal basis functions are denoted by ζf .

We have the following characterization lemma for divergence free tensor fields,
which is a variant of results in [1, 14]. Although we will never use the equivalence of
the characterisation explicitly, it motivates much of our subsequent analysis.

Lemma 4.5. A tensor field σ ∈ P0(T )2×2 is divergence-free (i.e., satisfies (4.17))
if and only if there exists ψ ∈ N1(T )2, such that σ = ∂ψJ, where J is the rotation by
π/2.

Proof. It is easy to show that every tensor of the form σ = ∂wJ, w ∈ N1(T )2

satisfies (4.17), by checking the result for a single nodal basis function ψ = ζf .
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To show the reverse, let Ω be a simply connected domain, which is a union of
triangles T ∈ T . Suppose that the number of vertices in Ω is #V , the number of
interior vertices is #VI , the number of edges in Ω is #E, and the number of triangles
in Ω is #T .

We test (4.17) for all u ∈ U0 that are non-zero only in the interior of Ω. The
dimension of all σ ∈ P0(Ω)2×2 satisfying (4.17) for those u can be at most 4#T−2#VI .
On the other hand, the dimension of N1(Ω)2 is 2#E and the dimension of rotated
gradients of Crouzeix–Raviart functions, denoted by ∂N1(Ω)2J, is 2#E − 2. We will
show below that the following formula holds:

4#T − 2#VI ≤ 2#− 2, (4.19)

which immediately implies that the subspace of divergence-free tensor coincides with
∂N1(Ω)2J. Moreover, the representation is of course unique (up to a shift) and there-
fore independent of the choice of the domain.

To prove (4.19), we use the identities (the first is Euler’s formula),

#V −#E + #T = 1, and (4.20)

3#F = 2#E −#V + #VI , (4.21)

which is obtained by a simple counting argument. (Note that #V −#VI is the number
of boundary edges.) Subtracting (4.20) from (4.21) yields (4.19).

4.4. Continuum stress tensor correctors. We have different forms of con-
tinuum stress Σ1

c , Σ2
c and Σ3

c , which all can be used to represent δEc in the form
(4.10), and hence their differences must be divergence free. Lemma 4.5 characterises
the form of these differences and motivates the following result.

Lemma 4.6. Let y ∈ Y0, then there exists a corrector ψ23(y; •) ∈ N1(T )2 satis-
fying the following two properties:

Corrector property: Σ3
c(y;T )− Σ2

c(y;T ) = ∂ψ23(y;T )J ∀T ∈ T ; (4.22)

Lipschitz property:
∣∣ψ23(y;mf )

∣∣ ≤ 1
6M2‖D2y‖`∞(f∩L) ∀f ∈ F . (4.23)

Proof. Property (4.22) follows of course from Lemma 4.5, however, to estab-
lish (4.23) we require an explicit expression of ψ23. We give the details of the proof
for the case of an upward pointing triangle T ∈ T (cf. the left configuration in Fig-
ure 4.2). An elementary computation, starting from (4.14) and (4.15) and using the
symmetry property (2.10), yields

Σ3
c(y;T )− Σ2

c(y;T ) =
1

3Ω0

[
(VT,1 − VT1,1) + (VT,3 − VT1,3) + (VT,5 − VT1,5)

]
⊗ a1

+ . . . ,

where “. . . ” stands for terms that are symmetric to the ones in the first line. The
directions a1, a3, a5 are chosen anti-clockwise with respect to the element T .

We now observe that, if f is an edge of T with direction aj , j ∈ {1, 3, 5}, then

∂ζfJ =

{
− 2

Ω0
a>j , in T,

2
Ω0
a>j , in Tj .

(4.24)
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Let f be the edge of T with direction a1, then choosing

ψ23(y;mf ) :=
1

6
(VT,1 − VT1,1) +

1

6
(VT,3 − VT1,3) +

1

6
(VT,5 − VT1,5), (4.25)

and making analogous choices for the remaining edges, we obtain (4.22).
With this explicit representation we can now prove the Lipschitz property (4.23).

Let f denote the edge of T with direction a1, F := ∂T y and F1 := ∂T1
y; then∣∣ψ23(y;mf )

∣∣ ≤ 1
6

∣∣VF1,1 − VF,1
∣∣+ 1

6

∣∣VF1,2 − VF,2
∣∣+ 1

6

∣∣VF1,3 − VF,3
∣∣ (4.26)

≤ 1
6

6∑
j=1

(
|V,1j |+ |V,2j |+ |V,3j |

)∣∣(F1 − F)aj
∣∣ ≤ 1

6M2 max
j=1,...,6

∣∣(F1 − F)aj
∣∣,

where V,1j = ∂1jV (Gj · a) for some Gj ∈ R2×2, and M2 is defined in §2.4.1. One now
verifies that

(F1 − F)a1 = 0, (F1 − F)a2 = D6D2y(xT,1), and (F1 − F)a3 = D5D3y(xT,5),

which implies

max
j=1,...,6

∣∣(F1 − F)aj
∣∣ ≤ max

(
|D2y(xT,1)|, |D2y(xT,4)|

)
.

Combining this estimate with (4.26) we obtain (4.23) for edges aligned with a1. The
remaining cases follow from symmetry considerations.

5. Consistency of the GR-AC Method. We are now ready to state the
second main result of this paper. The proof is established in §5.1 through §5.3. For
the remainder of this section we assume that the hypotheses stated in Theorem 5.1
hold.

Theorem 5.1. Let Eac be defined by (3.4), with parameters (Cx,i,j)
6
i,j=1, x ∈ I,

satisfying the one-sidedness condition (3.1), as well as the patch test conditions (3.3)
and (3.9). Suppose in addition that the parameters are bounded, that is,

sup
x∈I

max
j,i∈{1,...,6}

|Cx,j,i| =: C̄ < +∞.

Then there exists a constant CI = CI(C̄), such that∥∥δEac(y)− δEa(y)
∥∥

U −1,p ≤ c
(
CIM2‖D2y‖`p(Iext) +M2‖D3y‖`p(C) +M3‖D2y‖2`2p(C)

)
,

(5.1)
where Iext := {x ∈ L

∣∣ dist(x, I) ≤ 1} is an extended interface region.

5.1. An a/c stress tensor. Following the construction of Σa in (4.11) (with Ea

replaced by Eac), we obtain a representation of δEac in terms of an a/c stress Σac: let
y ∈ Y0 and u ∈ U0, then〈

δEac(y), u
〉

=
∑
T∈T

|T |Σac(y;T ) : ∂Tu, where (5.2)

Σac(y;T ) :=
1

Ω0

6∑
j=1

V ac
xT,j ,j ⊗ aj , (5.3)
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and we recall that V ac
x,j = ∂jV

ac(x;Dy(x)). We now require the following additional
notation:

TA := {T ∈ T |T ∩ (I ∪ C) = ∅}, FA := F ∩TA,

TC := {T ∈ T |T ∩ (I ∪ A) = ∅}, FC := F ∩TC , (5.4)

TI := T \ (TC ∪TA), and FI := F \ (FC ∪FA).

Lemma 5.2. (i) Let Σac be defined by (5.3), then, for all y ∈ Y0,

Σac(y;T ) = Σa(y;T ) ∀T ∈ TA, and (5.5)

Σac(y;T ) = Σ3
c(y;T ) ∀T ∈ TC . (5.6)

(ii) Let F ∈ R2×2; then there exists a unique ψac(F; •) ∈ N1(T )2 such that

Σac(yF;T )− Σa(yF;T ) = ∂ψac(F;T )J ∀T ∈ T , and (5.7)

ψac(F;mf ) = 0 ∀f ∈ FA ∪FC . (5.8)

Moreover, there exists Lac depending only on C̄ such that the following Lipschitz
property holds:∣∣ψac(F;mf )− ψac(G;mf )

∣∣ ≤ LacM2|F− G| ∀F,G ∈ R2×2, f ∈ FI . (5.9)

Proof. (i) Properties (5.5) and (5.6) follow immediately from the definitions of
the three tensors and the sets TA and TC , and are independent of the choice of the
reconstruction parameters at the interface.

(ii) Since Eac is assumed to satisfy local force consistency (3.9), we have

0 =
〈
δEac(yF)− δEa(yF), u

〉
=
∑
T∈T

|T |(Σac(yF;T )− Σa(yF;T )) : ∂Tu ∀u ∈ U0,

and hence Σac(yF; •) − Σa(yF; •) is divergence free. According to Lemma 4.5 there
exists a function ψac ∈ N1(T )2, which is unique up to a constant shift, such that
(5.7) holds. Property (5.8) uniquely determines the shift.

As a matter of fact, it is highly non-trivial whether (5.8) can be satisfied, and
it is in principle possible that the corrections “propagate” into the continuum region
[10]. We postpone the detailed computations required to prove this to Appendix 6.1
and 6.2, where we then also give a proof of the Lipschitz property (5.9).

5.2. The modified a/c stress. The function ψac(F; •) obtained in Lemma 5.2
provides the divergence-free corrector for Σac − Σa for homogeneous deformations.
We now construct a corrector for nonlinear deformations. We will define Σ̂ac(y;T ) :=

Σac(y;T )−∂ψ̂ac(y;T )J, where we choose ψ̂ac in such a way that Σ̂ac(yF;T ) = Σa(yF;T ),

which can be achieved by ensuring that ψ̂ac(yF;mf ) = ψac(F;mf ) for all edge mid-

points mf . In addition, we will impose other convenient properties of Σ̂ac, summarized
in Lemma 5.3 below.

First, for each f ∈ FI , f = T+ ∩ T−, we set

Ff (y) := 1
2

(
∂T+

y + ∂T−y
)
.

We can now define the corrector function for y ∈ Y0 as

ψ̂ac(y; •) :=
∑

f∈FI

ψac
(
Ff (y);mf

)
ζf +

∑
f∈FC

ψ23
(
y;mf

)
ζf , (5.10)
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where mf is the midpoint of edge f , and the corresponding modified stress function

Σ̂ac(y;T ) := Σac(y;T )− ∂ψ̂ac(y;T )J, for T ∈ T . (5.11)

where ζf is the nodal basis of the non-conforming Crouzeix–Raviart finite elements

N1(T ) (4.18). By Lemma 4.5, ∂ζfJ and ∂ψ̂ac(y;T )J are divergence free.

We show in Remark 6.1, that ψ̂ac is non-trivial, that is, there exists no choice of
parameters for which ψ̂ac = 0, even under purely homogeneous deformations.

Lemma 5.3. Let Σ̂ac be defined by (5.11), and y ∈ Y0; then the following identities
hold:

〈δEac(y), u〉 =
∑
T∈T

|T |Σ̂ac(y;T ) : ∂Tu ∀u ∈ U0; (5.12)

Σ̂ac(y;T ) = Σa(y;T ) ∀T ∈ TA; (5.13)

Σ̂ac(y;T ) = Σ2
c(y;T ) ∀T ∈ TC ; and (5.14)

Σ̂ac(yF; •) = Σa(yF; •) ∀F ∈ R2×2. (5.15)

Moreover, there exists a constant L̂ac, which depends only on C̄, such that∣∣Σ̂ac(y;T )− Σ̂ac(yF;T )
∣∣ ≤ L̂acM2‖D2y‖`∞(T∩L) ∀T ∈ TI , F = ∂T y. (5.16)

Proof. Identity (5.12) follows from (5.2) and the fact that Σ̂ac−Σac is divergence-
free.

Identity (5.13) follows from (5.5) and the fact that ψ̂ac(y;mf ) = 0 for all f ∈ FA,

which implies that Σ̂ac(y;T ) = Σac(y;T ) = Σa(y;T ) for all T ∈ TA. Similarly, (5.14)

follows from (5.6), and the fact that ψ̂ac = ψ23 in all elements T ∈ TC .
Fix F ∈ R2×2. To prove (5.15) we first note that, since ψ23(yF; •) = 0, we have

ψ̂ac(yF; •) = ψac(F; •). Using (5.7), we obtain

Σ̂ac(yF; •) = Σac(F; •)− ∂ψac(F; •)J = Σa(yF; •).

We are only left to prove the Lipschitz property (5.16). With F := ∂T y, we have∣∣Σ̂ac(y;T )−Σ̂ac(yF;T )
∣∣ ≤ ∣∣Σac(y;T )−Σac(yF;T )

∣∣+∣∣∂ψ̂ac(y;T )−∂ψ̂ac(yF;T )
∣∣. (5.17)

From its definition (5.3), and the fact that second partial derivatives of V are globally
bounded, it is clear that Σac satisfies a Lipschitz property of the form∣∣Σac(y;T )− Σac(yF;T )

∣∣ ≤ L1M2‖D2y‖`∞(T∩L) (5.18)

where L1 depends only on C̄; see also [10, Lemma 19] for a similar result. (If the
reconstruction parameters satisfy the one-sidedness condition (3.1), as well as the
patch test conditions (2.6), (2.7), one may show that L1 = 3C̄/Ω0.)

To bound the second term on the right-hand side in (5.17) we invoke the inverse
inequality ∣∣∂ψ̂ac(y;T )− ∂ψ̂ac(yF;T )

∣∣ ≤ 2

Ω0

∑
f∈F
f⊂T

∣∣ψ̂ac(y;mf )− ψ̂ac(yF;mf )
∣∣,
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where we used the fact that |∂ζf | = 2/Ω0 for all f ∈ F . If f ∈ FA, then ψ̂ac(•;mf ) =

0. If f ∈ FC , then ψ̂ac(•;mf ) = ψ23(•;mf ) and hence, using (4.23),∣∣ψ̂ac(y;mf )− ψ̂ac(yF;mf )
∣∣ =

∣∣ψ23(y;mf )
∣∣ ≤ 1

6M2‖D2y‖`∞(T∩L).

If f ∈ FI , then ψ̂ac(y;mf ) = ψac(Ff ;mf ) and ψ̂ac(yF;mf ) = ψac(F;mf ). We can
therefore employ (5.9) to estimate∣∣ψ̂ac(y;mf )− ψ̂ac(yF;mf )

∣∣ =
∣∣ψac(Ff ;mf )− ψac(F;mf )

∣∣
≤ LacM2

∣∣Ff − F
∣∣ ≤ LacM2

2Ω0
‖D2y‖`1(T∩L).

The last inequality can be verified through straightforward geometric arguments.
Without explicit constants its validity is obvious.

Combining the two foregoing estimates, we obtain∣∣∂ψ̂ac(y;T )− ∂ψ̂ac(yF;T )
∣∣ ≤ cmax(Lac, 1)M2‖D2y‖`∞(L∩T ). (5.19)

Combining (5.17), (5.18) and (5.19), yields (5.16).

5.3. Proof of Theorem 5.1. With the preparations of the foregoing sections it
is now easy to complete the proof of the main consistency result, Theorem 5.1. Again,
we drop the dependence on y whenever possible. We begin by splitting the modelling
error into a continuum contribution and an interface contribution,

〈δEac − δEa, u〉 =
∑
T∈T

|T |
[
Σ̂ac(T )− Σa(T )

]
: ∂Tu

=
∑

T∈TC

|T |
[
Σ̂ac(T )− Σa(T )

]
: ∂Tu+

∑
T∈TI

|T |
[
Σ̂ac(T )− Σa(T )

]
: ∂Tu

=: EC + EI ,

and estimate EC and EI separately. Note also that we used (5.13) to drop the sum
over elements in the atomistic region.

Using the fact that Σ̂ac = Σ2
c in TC , (5.14), and the stress estimate (4.16), we

obtain

EC ≤
∑

T∈TC

|T |
∣∣Σ2

c(T )− Σa(T )
∣∣ |∂Tu|

≤ c
(∑

x∈C

[
M2|D3y(x)|+M3|D2y(x)|2

]p)1/p( ∑
T∈TC

|T ||∂Tu|p
′
)1/p′

≤ c
(
M2‖D3y‖`p(C) +M3‖D2y‖2`2p(C)

)( ∑
T∈T

|T ||∂Tu|p
′
)1/p′

. (5.20)

To estimate EI , we employ the Lipschitz property (5.16) for Σ̂ac and the fact
that Σac = Σa under homogeneous deformations (see (5.15)). Using (2.8) it is also
straightforward to prove∣∣Σa(y;T )− Σa(yF;T )

∣∣ ≤ 1
Ω0
M2‖D2y‖`∞(T∩L) ∀T ∈ T , F = ∂T y. (5.21)

Using (5.15), (5.16) and (5.21),we obtain, for any T ∈ TI ,∣∣Σ̂ac(y;T )− Σa(y;T )
∣∣ ≤ ∣∣Σ̂ac(y;T )− Σ̂ac(yF;T )

∣∣+
∣∣Σa(y;T )− Σa(yF;T )

∣∣
≤ L̂acM2‖D2y‖`∞(T∩L) + 1

Ω0
M2‖D2y‖`∞(T∩L),
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and summing over T ∈ TI yields

EI ≤
∑

T∈TI

|T |(L̂ac + 1
Ω0

)M2‖D2y‖`∞(T∩L) |∂Tu|

≤ cCIM2‖D2y‖`p(Iext)

( ∑
T∈T

|T | |∂Tu|p
′
)1/p′

, (5.22)

where CI depends only on L̂ac, which depends only on C̄.
Combining (5.22) and (5.20) we finally obtain the desired modelling error estimate

(5.1). This concludes the proof of Theorem 5.1.

6. Appendix: Proof of Lemma 5.2 (ii). In this appendix, we provide the
remaining details for the proof of Lemma 5.2 (ii). Throughout this proof we fix a
homogeneous deformation yF, F ∈ R2×2, and drop the argument y = yF whenever
possible. For example, we will write Σac(T ) = Σac(yF;T ).

We begin by computing an expression for Σac − Σa in terms of the parameters
Cx,j . Equation (3.8), in the proof of Lemma 3.2, can be rewritten in the form

V ac
x,F,j := ∂jV

ac
x (Fa) = (1− Cx,j−1)VF,j−1 + Cx,jVF,j + (1− Cx,j+1)VF,j+1.

Recalling also (4.11) and using aj = aj−1 + aj+1, we obtain

Σac(T )− Σa(T ) =

6∑
j=1

[
V ac
xT,j ,F,j − VF,j

]
⊗ aj

=
1

Ω0

6∑
j=1

[
(1− CxT,j ,j−1)VF,j−1 + (CxT,j ,j − 1)VF,j + (1− CxT,j ,j+1)VF,j+1

]
⊗ aj

=
1

Ω0

6∑
j=1

VF,j ⊗
[
(1− CxT,j−1,j)aj−1 + (CxT,j ,j − 1)aj + (1− CxT,j+1,j)aj+1

]
=

1

Ω0

6∑
j=1

VF,j ⊗
[
− CxT,j−1,jaj−1 + CxT,j ,jaj − CxT,j+1,jaj+1

]
. (6.1)

The explicit evaluation of (6.1) for interface elements is carried out separately for flat
interfaces and interfaces with corners.

For triangles not intersecting the interface, Σac(yF;T )− Σa(yF;T ) = 0, hence we
need to compute the stress errors only for interface elements.

6.1. Flat interface. Consider the flat interface configuration in Figure 6.1. Ac-
cording to (3.10) and (3.11) the free parameters are cj := Cx,j (for x ∈ I and
j ∈ {2, 3, 5, 6}), and di, i ∈ Z, where d1 = CxT2,1,1 = CxT2,4,4, and so forth. We
calculate the a/c stress for the elements T1, T2, and collect the results in Table 6.1.

From Table 6.1 we can read off the stress differences Σac − Σa in the elements
T1, T2:

Σac(T1)− Σa(T1) =
{

( 2
3 − d2)VF,1 + (c2 − 2

3 )VF,2 + ( 2
3 − c3)VF,3

}
⊗ a2

Ω0

+
{

(d1 − 2
3 )VF,1 + ( 2

3 − c2)VF,2 + (c3 − 2
3 )VF,3

}
⊗ a3

Ω0
,
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Fig. 6.1. Visualisation of the flat interface analysis in §6.1.

Table 6.1
Table of coefficients of VF,j in (6.1), in interfacial triangles, on flat interfaces.

j CxT,j−1,j CxT,j ,j CxT,j+1,j −CxT,j−1,jaj−1 + CxT,j ,jaj − CxT,j ,j+1aj+1

T1

1 2
3

2
3

d2 − 2
3
a6 + 2

3
a1 − d2a2 = ( 2

3
− d2)a2

2 2
3

c2 c2 − 2
3
a1 + c2a2 − c2a3 = (− 2

3
+ c2)(a2 − a3)

3 c3 c3
2
3

−c3a2 + c3a3 − 2
3
a4 = ( 2

3
− c3)(a2 − a3)

4 d1
2
3

2
3

−d1a3 + 2
3
a4 − 2

3
a5 = ( 2

3
− d1)a3

5 2
3

2
3

2
3

0

6 2
3

2
3

2
3

0

T2

1 2
3

d1 d1 − 2
3
a6 + d1a1 − d1a2 = ( 2

3
− d1)a3

2 c2 c2 c2 0
3 c3 c3 c3 0
4 d1 d1

2
3

−d1a3 + d1a4 − 2
3
a5 = ( 2

3
− d1)a2

5 c5
2
3

2
3

−c5a4 + 2
3
a5 − 2

3
a6 = (c5 − 2

3
)a1

6 2
3

2
3

c6 − 2
3
a5 + 2

3
a6 − c6a1 = ( 2

3
− c6)a1

and

Σac(T2)− Σa(T2) =
{

(d1 − 2
3 )VF,1 + ( 2

3 − c5)VF,2 + (c6 − 2
3 )VF,3

}
⊗ a1

Ω0

=
{

(d1 − 2
3 )VF,1 + ( 2

3 − c2)VF,2 + (c3 − 2
3 )VF,3

}
⊗ a2

Ω0

−
{

(d1 − 2
3 )VF,1 + ( 2

3 − c2)VF,2 + (c3 − 2
3 )VF,3

}
⊗ a3

Ω0

+
{

(c2 − c5)VF,2 + (c6 − c3)VF,3
}
⊗ a1

Ω0
.

Note that we have provided two alternative representations of Σac(T2)−Σa(T2), since
the first representation is in general insufficient to construct the corrector.

Since the atomistic region is a mirror image of the continuum region with respect
to the interface, we can obtain stress function Σac(yF; ·) for T3 and T4 from symmetry
considerations:

Σac(T4)− Σa(T4) =
{

(1− d0)VF,1 + (c5 − 1)VF,2 + (1− c6)VF,3
}
⊗ a2

Ω0

+
{

(d1 − 1)VF,1 + (1− c5)VF,2 + (c6 − 1)VF,3
}
⊗ a3

Ω0
,

and

Σac(T3)− Σa(T3) =
{

(d1 − 1)VF,1 + (1− c2)VF,2 + (c3 − 1)VF,3
}
⊗ a1

Ω0

=
{

(d1 − 1)VF,1 + (1− c5)VF,2 + (c6 − 1)VF,3
}
⊗ a2

Ω0

−
{

(d1 − 1)VF,1 + (1− c5)VF,2 + (c6 − 1)VF,3
}
⊗ a3

Ω0

−
{

(c2 − c5)VF,2 + (c6 − c3)VF,3
}
⊗ a1

Ω0
.
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Fig. 6.2. Interface configuration with corner.

From the proof Lemma 4.6 recall that ∂ζf (T )J = − 2
Ω0
aj if f is an edge of T and

aj the counter-clockwise direction of the edge (relative to T ). We can therefore choose
ψac explicitly, for example, for f = T1 ∩ T2:

ψac(F;mf ) := 1
2

{
(d1 − 2

3 )VF,1 + ( 2
3 − c2)VF,2 + (c3 − 2

3 )VF,3
}
. (6.2)

For the remaining edges, similar choices can be made, the crucial observation being
that the terms in neighbouring elements associated with an edge cancel each other
out.

We observe, moreover, that for the triangles T1 and T4, the a1 components of the
stresses vanish, which means that ψac(F;mf ) = 0 for all f ∈ FA ∪FC . This proves
(5.8) in the flat interface case.

It remains to prove the Lipschitz bound (5.9). From (6.2) (and the corresponding
formulas for the remaining edges), it is straightforward to show that ψac is Lipschitz
continous for any fixed set of parameters with a Lipschitz constant of the form LM2,
where L can be bounded in terms of C̄. This concludes the proof of Lemma 5.2 (ii)
in the flat interface case.

Remark 6.1 (Correctors are neccessary). From the calculation in this section,
it is clear that one cannot choose parameters such that Σac(yF;T ) = Σa(yF;T ) for all
T ∈ T and for all potentials V ∈ V . For example, if Σac(yF;T2) = Σa(yF;T2) for all
V , then d1 = 2/3, whereas if Σac(yF;T3) = Σa(yF;T3), then d1 = 1. This demonstrates
that the divergence-free corrector fields are in fact necessary, and that it is impossible
in our current framework to construct an a/c method where Σac(yF;T ) = Σa(yF;T )
holds for all T ∈ T ,F ∈ R2×2, and V ∈ V .

6.2. General interface. We now turn to the proof of (5.7)– (5.9) for interface
configurations with corners. Consider the corner configuration displayed in Figure 6.2,
which is concave from the point of view of the atomistic region. The reconstruction
coefficients found in Proposition 3.7 are displayed in the figure as well. Recall that
the reconstructions of bonds into the atomistic or continuum regions are now uniquely
determined, while the bonds lying at the interfaces (parameters a and b) are still free.

Using (6.1), and defining a′j := aj/Ω0, the stress errors Σac − Σa in the elements
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Fig. 6.3. All possible corner configurations (up to translation, rotation and reflection).

T1, . . . , T6 can again be computed explicitly:

Σac(T1)− Σa(T1) = ( 1
3VF,3 −

1
3VF,2)⊗ a′1 + (a− 2

3 )VF,1 ⊗ a′2 − (a− 2
3 )VF,1 ⊗ a′3,

Σac(T2)− Σa(T2) = (a− 2
3 )VF,1 ⊗ a′3,

Σac(T3)− Σa(T3) = (b− 2
3 )VF,3 ⊗ a′1,

Σac(T4)− Σa(T4) = −(b− 2
3 )VF,3 ⊗ a′1 + (b− 2

3 )VF,3 ⊗ a′2 + ( 1
3VF,1 −

1
3VF,2)⊗ a′3,

Σac(T5)− Σa(T5) = ( 1
3VF,2 −

1
3VF,1)⊗ a′3 + [(1− a)VF,1 + (b− 1)VF,3]⊗ a′2

−(b− 1)VF,3 ⊗ a′1, and

Σac(T6)− Σa(T6) = ( 1
3VF,2 −

1
3VF,3)⊗ a′1 +

[
(a− 1)VF,1 + (1− b)VF,3

]
⊗ a′2

−(a− 1)VF,1 ⊗ a′3.

Following the argument in §6.1, we can check again that the associated edge contri-
butions from neighbouring elements cancel, and hence we can explicitly construct the
corrector function ψac. Note that Σac(T2) has no a′1 component and Σac(T5) has no
a′3 component, which implies (5.8).

For a corner that is convex from the point of view of the atomistic region, the
result follows by symmetry (interchanging the coefficients 1 and 2

3 ). The Lipschitz
bound (5.9) can be obtained from the above formulas, under the assumption that the
reconstruction coefficients a, b are bounded above by C̄.

Finally, we have to convince ourselves that our above argument applies to all
possible interface geometries. In Figure 6.3 we present an exhaustive list, up to trans-
lations, rotations and reflections, of local interface geometries. (Recall our geometric
requirements formulated in Assumption 3.6.) By inspecting the calculation of the
stress differences Σac − Σa for the case presented in Figure 6.2, one observes that
the formulas are local, and do not depend on the extended geometry of the interface.
We note, however, that this only holds due to the separation Assumption 3.6. The
subsequent construction of the corrector now follow of course verbatim.

This concludes the proof of Lemma 5.2 (ii) in the general interface case.

7. Conclusion. We have shown for a 2D model problem that it is possible to
construct patch test consistent a/c coupling method for many-body potentials, in
interface geometries with corners, using a new variant of the geometry reconstruction
technique introduced in [4, 18], which we labelled the GR-AC method. Moreover, we
have proven a quasi-optimal modelling error estimate for the GR-AC method(s) we
constructed.

We see this work as a first step towards a general theory of GR-AC method(s).
Our goal is to show eventually that the free parameters in the method can always
(that is, in any dimension, for any interface geometry) be determined so as to satisfy
the energy and force consistency conditions, and that the resulting GR-AC method(s)
will have the same consistency properties that we establish in the present case.

An important issue that we have left entirely open in the present work is the
stability of the GR-AC method: Under which conditions on the reconstruction pa-
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rameters does the GR-AC method have sharp stability properties as discussed in [3]?
This issue is the topic of ongoing research.
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