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Abstract

The likelihood for the parameters of a generalised linear mixed model involves an

integral which may be of very high dimension. Because of this apparent intractabil-

ity, many alternative methods have been proposed for inference in these models, but

it is shown that all can fail when the model is sparse, in that there is only a small

amount of information available on each random effect.

The sequential reduction method developed in this thesis seeks to fill in this

gap, by exploiting the dependence structure of the posterior distribution of the

random effects to reduce dramatically the cost of approximating the likelihood in

models with sparse structure. Examples are given to demonstrate the high quality

of the new approximation relative to the available alternatives.

Finally, robustness of various estimators to misspecification of the random-

effect distribution is considered. It is found that certain marginal composite likeli-

hood estimators are not robust to such misspecification in situations in which the

full maximum likelihood estimator is robust, providing a counterexample to the no-

tion that composite likelihood estimators will always be at least as robust as the

maximum likelihood estimator under model misspecification.
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Chapter 1

Introduction

When constructing a regression model, it is rarely believed that the covariates

recorded for each item really contain all the information about that item which

might affect the distribution of the response. This may be acknowledged in the

model by the addition of an error term in the regression for each item on its covari-

ates. In the case that a single, separate, observation is made on each item, it is not

possible to distinguish the error in the regression for each item from the uncertainty

in the response given the predictor resulting from that regression. However, if multi-

ple observations are made on some items, it is important to include an item-specific

error term in the model. A model including these extra error terms, called random

effects, is known as a mixed model.

If the original regression takes the form of a generalised linear model, then

the addition of random effects leads to a generalised linear mixed model. For con-

creteness, it is these models which are studied in this thesis, although many of the

same ideas could be transferred to more general mixed models. Chapter 2 gives

a more in-depth introduction to generalised linear mixed models, including as an

example a class of models for competitions between pairs of players, which are used

as the primary example throughout the thesis.

It is easy to write down the conditional likelihood of the parameters given

the value of the random effects. However, the random effects are treated as random

variables, not fixed quantities, so in order to find the marginal likelihood, we must

integrate this conditional likelihood over the assumed distribution of the random

effects. Except in a few special cases, this integral has no analytical form, and direct

numerical integration is not computationally feasible if there are a large number of

random effects. For this reason, the likelihood is often referred to as intractable,

except in cases in which the model has particularly simple structure, when it is
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possible to simplify the integral.

In Chapter 2, a review of some of the alternative methods for inference in

generalised linear mixed models is given. One class of approaches involves replacing

the likelihood with some approximation, for example using Laplace’s method or

importance sampling. However, these approximations can fail badly in cases where

the structure of the model is sparse, in that only a small amount of information is

available on each random effect, especially when the response is discrete, and may

only take a small number of values. The poor quality of approximation can result in

estimators with very poor statistical properties. Composite likelihood methods for

inference are also considered, and are shown to have low efficiency in many cases.

Chapter 3 considers in more detail the situations in which each alternative method

of inference may be expected to perform well, and those in which they will perform

badly. A gap is discovered for some models with sparse structure, for which none of

the currently available methods appears to work well.

Chapter 4 introduces a new method of approximating the likelihood, called

the sequential reduction method, which is designed to bridge this gap. The main

idea of the method is to fully exploit the structure of the model in order to simplify

the computation of the likelihood. This is done using ideas from the field of graph-

ical models, which are introduced at the start of the chapter. The new method is

compared with existing approximation methods through numerical examples, and

is found to perform well in many cases. In particular, it is shown that the sequential

reduction method offers a great improvement over importance sampling approxima-

tions for models with sparse structure.

Chapters 2-4 of the thesis consider the question of how best to conduct in-

ference in a generalised linear mixed model, under the assumption that the model is

correctly specified. In Chapter 5, this assumption is partially dropped, and the ro-

bustness of various estimators to misspecification of the random-effects distribution

is studied. It is shown that estimators from composite likelihoods constructed using

small blocks of components are inconsistent under misspecification of the random-

effects distribution in an asymptotic setting in which the maximum likelihood esti-

mator is consistent. A major motivation for the use of composite likelihoods is their

potential for increased robustness compared to the full likelihood, so this result is

important as a warning that such increased robustness cannot be guaranteed. The

estimator from the sequential reduction approximation to the likelihood inherits

the same robustness as the true maximum likelihood estimator, thereby providing

another justification for its use over the available alternatives.

2



Chapter 2

Generalised linear mixed models

2.1 Generalised linear mixed models

2.1.1 The linear mixed model

Suppose that we wish to construct a regression model for a response Yi measured

on an item i, based on some covariates xi observed on that item. The simplest and

most well-studied of all such regression models is the linear model, in which it is

assumed that

Yi = βTxi + εi,

where εi ∼ N(0, τ2), and β and τ are unknown parameters. Writing ηi = βTxi, so

that we model

Yi = ηi + εi,

we could think of ηi as some underlying quantity about item i which is measured,

with error, by Yi.

Now suppose that instead of making a single observation on each item i, we

make mi repeated observations

Yij , i = 1, . . . , n, j = 1, . . . ,mi.

Thinking of each Yij as an imperfect measurement of ηi, we could model

Yij = ηi + εij ,

where εij ∼ N(0, τ2). If we still assume that

ηi = βTxi,

3



then the value of the observed covariate entirely determines the distribution of the

response. Put another way, if two items i and j have the same covariate values,

then the responses for those items must have the same distribution.

This assumption is clearly unrealistic: there will undoubtedly be information

relevant to the response which is not encoded by the observed covariates. A more

realistic model should acknowledge this extra uncertainty, letting

ηi = βTxi + bi,

where bi represents the error in predicting ηi from the observed covariates. A com-

mon assumption is that bi is also a normal error term, so that bi ∼ N(0, σ2) for

some unknown parameter σ.

In the case that mi = 1, so that there is only one observation on each item,

Yi = βTxi + bi + εi,

where bi ∼ N(0, σ2) and εi ∼ N(0, τ2), and bi and εi are independent. There is

then no way to distinguish the error bi in predicting ηi given xi, and the observation

error εi. We may combine the two errors, to give ei = bi + εi ∼ N(0, σ2 + τ2).

The parameters (σ, τ) are not separately identifiable. Instead, it is only possible to

identify the combination ω2 = σ2 + τ2. So in fact,

Yi = ηi + ei,

where ei ∼ N(0, ω2), and we have returned to the original linear model.

The case of repeated observations on each item is not the only one in which

it is important to recognise the heterogeneity between items with the same covariate

value. Section 2.2 gives some more examples of settings in which it is possible to

detect the difference between the two types of error. In all of these settings, it is

important to include the extra error term bi, usually called a random effect, in the

model.

Writing the linear model in vector form, we have

Y = Xβ + ε,

where X is a known design matrix, and εi ∼ N(0, τ2). To extend this to allow

heterogeneity between items with the same covariate values, we write

Y = Xβ + Zb + ε,

4



where Z is a known design matrix for the random effects, b ∼ N(0, D(ψ)), and ψ is

an unknown parameter. This extension of the linear model, to include random effects

b as well as fixed effects β, is known as a linear mixed model. West et al. (2006) give

a brief history of the development of the linear mixed model. It turns out that full

likelihood inference for the linear mixed model remains relatively straightforward,

as discussed in Section 2.3.2.

2.1.2 Mixed models in general

The same arguments for the addition of random effects to the linear model apply

equally to any regression model, and lead to the definition of mixed models in

a more general setting. The class of generalised linear models provide a natural

extension to the linear model, and are widely used in practice. We now consider

the addition of random effects to generalised linear models, which will lead us to

define the generalised linear mixed model. For concreteness, the focus of this thesis

will be these generalised linear mixed models, although many of the ideas are also

applicable to mixed models outside of this framework.

2.1.3 The generalised linear mixed model

A generalised linear model (Nelder & Wedderburn, 1972) allows the distribution

of a response Y = (Y1, . . . , Ym) to depend on observed covariates through a linear

predictor η, where

η = Xβ,

for some known design matrix X. Conditional on knowledge of the linear predictor,

and possibly an unknown dispersion parameter τ , the components of Y are inde-

pendent, and the distribution of Y is fixed. The distribution of Y is assumed to

have exponential family form, with mean

µ = E(y|η) = g−1(η),

for some known link function g(.).

As in the linear model, an assumption implicit in the generalised linear model

is that the distribution of the response is entirely determined by the values of the

observed covariates. In practice, this assumption is rarely believed: in fact, there

may be other information not encoded in the observed covariates which may affect

the response. If multiple observations are made on some items, or if each observation

involves more than one item, it is important to allow for this extra heterogeneity.

5



A generalised linear mixed model does this by modelling the linear predictor as

η = Xβ + Zb, (2.1)

where X and Z are known design matrices, and b is a sample from a distri-

bution known up to a parameter vector ψ. In most cases, it is assumed that

b ∼ Nn(0, D(ψ)), and some methods rely on this assumption. The idea of adding

random effects to the the linear predictor in particular examples of generalised linear

models first appeared in the 1980s, for example for logistic regression for binary data

in Williams (1982) and for log-linear regression for Poisson data in Breslow (1984).

Schall (1991) discusses the addition of random effects to an arbitrary generalised

linear model.

There are only a relatively small number of named multivariate distributions

to choose from for the distribution of b. Instead, non-normal b could be constructed

by taking

b = A(ψ)u, (2.2)

where the components of u are independent of one another, and may have any

univariate distribution FU (., ψ), possibly depending on the unknown parameter ψ.

Combining (2.1) and (2.2), we write

η = Xβ + Z(ψ)u, (2.3)

where ui ∼ FU (., ψ) and Z(ψ) = ZA(ψ). This thesis concentrates on the case in

which ui ∼ N(0, 1), which allows b to have any multivariate normal distribution

with mean zero. The techniques described in Chapter 4 could be extended easily

for use with other random effect distributions of the form (2.2).

The non-zero elements of the columns of Z(ψ) give us the observations which

involve each random effect. We will say the generalised linear mixed model has

‘sparse structure’ if most of these columns have few non-zero elements, so that most

random effects are only involved in a few observations. These sparse models are

particularly problematic for inference, especially when the response may only take a

small number of values, because the amount of information available on each random

effect is small.

6



2.2 Examples of generalised linear mixed models

2.2.1 Models with nested structure

Suppose that observations are recorded on items which are clustered into groups, so

that we have mi observations for each group i = 1, . . . , n. Consider the model

ηij = β0 + β1x
(1)
ij + . . .+ βpx

(p)
ij + bi0,

where ij denotes the jth item in group i, for j = 1, . . . ,mi, i = 1, . . . n, and bi0 ∼
N(0, σ2) is a group-level random effect. The addition of bi0 to the model allows

for the fact that there may be some error in prediction of ηij from the observed

covariates. The items contained within each group may share characteristics which

are not observed, and bi0 may be thought of as representing those unobserved shared

characteristics of group i. Write m =
∑n

i=1mi for the total number of items.

Written in vector form,

η = Xβ + Z(σ)u,

where X is an m× (p+ 1) matrix with rows

Xr = (1, x
(1)
irjr

, . . . , x
(p)
irjr

)

where r is the jrth item in group ir. The m× n matrix Z(σ) has components

Zrs(σ) =

σ if ir = s

0 otherwise
. (2.4)

This model is called a two-level random intercept model. This is a sparse model if

the number of observations per group, mi, is small for most i.

In a three-level model, the groups themselves are clustered within larger

groups. Models with even more levels can be built by repeatedly clustering the top-

level group within larger groups. It is also possible to allow for interaction between

the observed covariates and the random effects, leading to a model with random

slopes, in addition to a random intercept. These are all examples of a wider class of

multilevel models, and many examples of such models may be found in Goldstein

(2011).
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2.2.2 Pairwise competition models

Consider a tournament among n players, consisting of contests between pairs of

players. Let yij record the outcome of a contest between players i and j. We

suppose that each player i has some ability λi, and that conditional on all the

abilities, the outcomes Yij are independent, with distribution depending on the

difference in abilities of the players i and j, so that

E(Yij |λ) = g−1(λi − λj)

for some link function g(.).

The pairwise competition models used as examples in this thesis all have bi-

nary outcomes, so we observe only which player wins each contest. We consider these

binary models because each observation only provides a small amount of informa-

tion about the random effects, so approximations to the likelihood are most likely to

fail. If g(x) = logit(x), then this describes a Bradley-Terry model (Bradley & Terry,

1952). If g(x) = Φ−1(x) (the probit link), then it describes a Thurstone-Mosteller

model (Thurstone (1927), Mosteller (1951)).

If covariate information xi is available for each player, then interest may lie

in the effect of the observed covariates on ability, rather than the individual abilities

λi themselves. For example, Whiting et al. (2006), conducted an experiment to

determine the effect of covariates on the fighting ability of Augrabies flat lizards,

Platysaurus broadleyi. The scientific hypothesis of interest was whether the spec-

trum of the throat of the lizard had an effect on fighting ability. To investigate this,

Whiting et al. (2006) captured n = 77 lizards, recorded various measurements on

each, and then released them and recorded the outcomes of fights between pairs of

animals.

To model situations of this sort, suppose that the ability of a player may be

modelled as a linear function of their covariates, plus an error term, so that

λi = βTxi + bi

where the bi are independent samples from a N(0, σ2) distribution.

This may be written in generalised linear mixed model form by specifying

that E(Yij) = g−1(ηij), where

ηij = λi − λj = βT (xi − xj) + bi − bj . (2.5)
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To write (2.5) in the form (2.3), we let X be an m×p matrix with components

Xrs = xp1(r)s − xp2(r)s

where p1(r) gives the first player involved in contest r, and p2(r) the second, and

where xis is the sth component of the vector of observed covariates for player i. Let

Z̄ be an m× n matrix with components

Z̄rs =


1 if p1(r) = s

−1 if p2(r) = s

0 otherwise

,

and write Z(σ) = σZ̄. Then

η = Xβ + Z(σ)u,

where u ∼ Nn(0, I).

Notice that the non-zero components of the sth column give the contests

involving player s, so the tournament will have sparse structure if most players only

compete in only a small number of contests.

Such a model for the flat-lizards tournament gives us an example of a gen-

eralised linear mixed model with sparse structure, since we only observe a total of

100 contests among the 77 lizards.

2.2.3 Other pairwise interaction models

There are many other models with a similar structure to these pairwise competition

models, in that the outcome is determined by some interaction between pairs of

items. In fact, many of the generalised linear mixed models which have been noted

to have intractable likelihoods fall into this class. For example, McCullagh & Nelder

(1989) give data gathered on pairs of salamanders from two separate regions. The

experiment consisted of attempts to mate each salamander with other salamanders

from the same region, and with salamanders from the other region. The aim was to

determine whether two salamanders from different regions were less likely to mate

with one another than two salamanders from the same region.

In this case, the linear predictor is determined by sum of the individual

effects of each salamander, plus a term for the interaction between the region of the

salamanders. For instance, if we attempt to mate male i with female j, the linear

9



predictor might be given by

ηij = βTxij + bMi + bFj ,

where bMi ∼ N(0, σ2
M ) and bFj ∼ N(0, σ2

F ), and xij contains the interaction between

the regions of the two salamanders. Written in vector form,

η = Xβ + Z(σM , σF )u,

where

Xr = xm(r)f(r),

where m(r) and f(r) are the male and female salamanders involved in mating at-

tempt r, and

Zrs(σM , σF ) =


σM if m(r) = s

σF if f(r) = s

0 otherwise

.

2.3 Inference in generalised linear mixed models

2.3.1 The likelihood

Let f(.|ηi) be the density of Yi, conditional on knowledge of the value of ηi. Condi-

tional on η, the components of Y are independent, so that

L(β, ψ|y) =

∫
Rn

m∏
i=1

f
(
yi|ηi = XT

i β + Zi(ψ)Tu
) n∏
j=1

φ(uj)duj , (2.6)

where Xi is the ith row of X, and Zi(ψ) is the ith row of Z(ψ).

By using a product of K-point quadrature rules, an n-dimensional integral

may be approximated at cost O(Kn), where the error in the approximation tends

to 0 as K → ∞. Unless n is very small, it will therefore not be possible to ap-

proximate the likelihood well by direct computation of this integral using a product

of quadrature rules. However, while the likelihood may always be written in form

(2.6), there are some occasions where it may be simplified, so that computation of an

n-dimensional integral is not necessary. Example 3.1 demonstrates such a simplifica-

tion in one particular pairwise competition model. The sequential reduction method

developed in Chapter 4 gives a systematic way to check for such simplifications to

the likelihood.
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2.3.2 Laplace approximation to the likelihood

Many alternative methods of inference work by replacing the likelihood with some

approximation to it. The success of these methods depends on the quality of that

approximation. The Laplace approximation is a particularly simple approximation

method.

Write

g(u1, . . . , un|y, β, ψ) =
m∏
i=1

f
(
yi|ηi = XT

i β + Zi(ψ)Tu
) n∏
j=1

φ(uj)

for the integrand of the likelihood. This may be thought of as a non-normalised

version of the posterior density for u, given y, β and ψ.

Pinheiro & Bates (1995) suggest using a Laplace approximation to this in-

tegral. For each fixed θ = (β, ψ), the Laplace approximation approach relies on a

normal approximation to the posterior density of u, given y and θ. To find this

normal approximation, let ûθ maximise

log g(u|y, θ)

over u, and let Hθ = Hθ(û) be the Hessian resulting from this optimisation, where

Hθ(u) = ∇u∇Tu log g(u|y, θ).

The normal approximation to g(.|y, θ) will be proportional to a Nn(ûθ, H
−1
θ ) density.

Writing gna(.|y, θ) for the normal approximation to g(.|y, θ),

gna(u|y, θ) =
g(ûθ|y, θ)

φn(ûθ; ûθ, H
−1
θ )

φn(u; ûθ, H
−1
θ ),

where we write φn(.;µ,Σ) for the Nn(µ,Σ) density.

When we integrate over u, only the normalising constant remains, so that

L̃(θ|y) =
g(ûθ|y, θ)

φn(ûθ; ûθ, H
−1
θ )

= (2π)−
n
2 (detHθ)

− 1
2 g(ûθ|y, θ).

In the case of a linear mixed model,

g(u|y, θ) =

m∏
i=1

φ

(
XT
i β + Zi(ψ)Tu− yi

τ

) n∏
j=1

φ(uj),

which is proportional to a normal density. So in this case, the approximating nor-
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mal density is precise, and there is no error in the Laplace approximation to the

likelihood. In other cases, and particularly when the response is discrete and may

only take a few values, the error in the Laplace approximation can be large.

Validity of the Laplace approximation

Recall that we have n random effects, and m observations, so that the likelihood

may be written as an n-dimensional integral over a integrand containing a product

of m terms. In the case that n is fixed, and m → ∞, the relative error in the

Laplace approximation may be shown to tend to zero. However, in the type of

model we consider here, n is not fixed, but grows with m. The validity of the

Laplace approximation depends upon the rate of this growth. Shun & McCullagh

(1995) study this problem, and conclude that the Laplace approximation should be

reliable, provided that n = o(m1/3). If n grows with m more quickly than o(m1/3),

the relative error in the Laplace approximation may be O(1). These rates are rather

slower than those which are typical of the type of models considered here, in which

a sparse model may have n = O(m) (see Example 3.2), and where we consider a

model with n = O(m1/2) to have dense structure (see Example 3.5).

However, the Laplace approximation to the difference in the log-likelihood

at two nearby points tends to be much more accurate than the approximation to

the log-likelihood itself, and in denser models, where there is more information

available per random effect, the Laplace approximation to the shape of the likelihood

appears to be sufficiently good to give accurate inference, even in cases where the

approximation to the likelihood itself has large relative error. See Example 3.5 for

a demonstration of this, in a situation with n = O(m1/2). The effect that ratios

of Laplace approximations to similar functions tend to be more accurate than each

Laplace approximation individually has been noted before, for example by Tierney

& Kadane (1986) in the context of computing posterior moments. However, in

models with very sparse structure, even the shape of the Laplace approximation

may be inaccurate, so another method is required. The behaviour of the Laplace

approximation in models with differing levels of sparsity is studied in Chapter 3.

Other methods based on the Laplace approximation

Many alternative methods for inference in a generalised linear mixed model are based

on a Laplace approximation to the likelihood. For instance, Breslow & Clayton

(1993) base their Penalised Quasi Likelihood (PQL) on a further approximation

to the Laplace approximation to the likelihood. It is well acknowledged that PQL
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is not suitable for inference in models for binary data, with a small number of

observations for each random effect. Browne & Draper (2006) consider an example

of such a model, and show that PQL gives highly biased estimators and confidence

intervals with low coverage in that case.

2.3.3 Importance sampling approximation to the likelihood

Recall that the likelihood may be written as an integral

L(θ|y) =

∫
Rn

g(u|y, θ)du, (2.7)

where g(.|y, θ) may be approximated by a function gna(.|y, θ) proportional to the

density of a Nn(µθ,Σθ) distribution. Replacing g(.|y, θ) with gna(.|y, θ) in (2.7)

yields the Laplace approximation to the likelihood.

In cases where the Laplace approximation fails, Pinheiro & Bates (1995) sug-

gest constructing an importance sampling approximation to (2.7), based on samples

from the approximating normal distribution Nn(µθ,Σθ). Writing

w(u; θ) =
g(u|y, θ)

φn(u;µθ,Σθ)
,

the likelihood may be written as

L(θ|y) =

∫
Rn

w(u; θ)φn(u;µθ,Σθ)du

= E [w(U; θ)] ,

where U ∼ N(µθ,Σθ). This may be approximated by the importance sampling

approximation

LIS(θ|y) =
1

N

N∑
i=1

w(u(i); θ),

where u(i) ∼ N(µθ,Σθ).

By the weak law of large numbers,

LIS(θ|y)→p L(θ|y)

as N → ∞. Provided that σ2
W = Var (w(U; θ)) < ∞, the central limit theorem

implies that √
N
(
LIS(θ|y)− L(θ|y)

)
→d N(0, σ2

W )
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as N → ∞. So, if the importance weights w(U; θ) have finite variance, the error

in the importance sampling approximation shrinks at rate
√
N , irrespective of the

dimension n of the integral.

Unfortunately, there is no guarantee that the variance of the importance

weights will be finite. It is difficult to check this theoretically in most practical

applications, but in some situations where the normal approximation to g(.|θ) is

poor, it appears that the variance is not finite (see Example 3.2). In such a situation,

the weak law of large numbers still holds, so the importance sampling approximation

will still converge to the true likelihood, but the convergence may be slow and erratic,

and estimates of the variance of the approximation may be unreliable.

Interest lies in approximating the likelihood surface, rather than just the

likelihood at a single point θ. If a new random sample u(1), . . . ,u(N) from Nn(µθ,Σθ)

is used for each θ, the resulting approximation to the likelihood surface will be quite

rough. To ensure a smooth surface, Pinheiro & Bates (1995) suggest sampling

t(i) ∼ Nn(0, I), and letting

u(i) = µθ +Aθt
(i)

for each θ, where Aθ is the Cholesky decomposition of Σθ.

2.3.4 Composite likelihood

If we had only some small subset y(s) of the observations, where y(s) only depends

on a small number, ds, of random effects, then we could evaluate the likelihood

L(θ|y(s)) via an integral of dimension ds.

The idea of a marginal composite likelihood (Lindsay, 1988) is to split the

data up into blocks {y(s)}Ks=1 so that the likelihood based on each block is reasonably

easy to compute. A marginal composite likelihood based on these blocks may be

defined as

LC(θ) =
K∏
s=1

L
(
θ|y(s)

)ws ,

where ws is a weight given to block s.

For instance, for inference in a pairwise competition model, Cattelan & Varin

(2010) suggest using the blocks yijk = (yij , yik) of pairs of contests which share a

common player, with weights ws = 1 for all s.

For an appropriate choice of blocks, this method is fairly fast, and results on

the consistency and asymptotic normality of the estimators are available in some

settings. A review of these results is given in Chapter 3. However, in many cases

the marginal composite likelihood estimators will be much less efficient than the

14



maximum likelihood estimator. This is demonstrated in Example 3.1. It is also

often difficult to decide which blocks of components y(s) and weights ws to use to

construct the composite likelihood in any given setting. Cox & Reid (2004) and

Lindsay et al. (2011) give some initial ideas on answering these questions, but there

is currently no general-purpose method available for selection of good blocks of

components and weights.

Composite likelihood is usually used mainly for computational reasons, but a

secondary motivation is given by the fact that only the marginal distributions of the

blocks used in the composite likelihood need to be specified, rather than requiring

specification of the full joint distribution of the response vector. Varin et al. (2011)

and Xu & Reid (2011) discuss the potential this gives for increased robustness of

the composite likelihood estimator relative to the full maximum likelihood estima-

tor. However, in Chapter 5 we find that in the context of generalised linear mixed

models, certain marginal composite likelihood estimators will be less robust to mis-

specification of the random effects distribution than the full maximum likelihood

estimator.

2.3.5 Bayesian inference

Given a prior distribution π(θ) for the parameter-vector θ, the posterior distribution

of θ is given by

π(θ|y) ∝ L(θ|y)π(θ).

If we were able to obtain a good approximation to the likelihood, then this could be

used to approximate the posterior distribution. However, in the case when no such

approximation is readily available, Markov chain Monte Carlo methods may be used

to find samples θ(i) whose distribution converges to the posterior, once a sufficiently

large number of samples have been taken. Zeger & Karim (1991) describe how such

samples may be obtained by Gibbs sampling in the case of a generalised linear mixed

model.

Such methods have their problems, primarily that it can sometimes take a

long time for the convergence to the posterior distribution to occur, and it is difficult

to check when this convergence has taken place.

To construct the posterior distribution, it is necessary to choose a prior

distribution for θ. In models with binary response and sparse structure, the choice

of prior distribution for the parameters of the random effects distribution often

has a large effect on the posterior distribution. Care should be taken before using

an improper prior in such a setting, since such a prior may result in an improper
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posterior distribution (Hobert & Casella, 1996).

There is certainly much more to be said about Bayesian methods for inference

for generalised linear mixed models, but they are not directly discussed further in

this thesis. The focus is instead on approximations and alternatives to the likelihood,

which may be used in place of the likelihood when conducting inference.
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Chapter 3

Performance of existing

methods of inference

3.1 Asymptotics under independent replication

3.1.1 Estimating equations

In the simple asymptotic framework of an increasing number, R, of independent

replications, the maximum likelihood estimator is consistent and normally dis-

tributed in the limit as R → ∞, as long as certain regularity conditions hold.

Provided that analogues of these conditions continue to hold, and in particular that

the parameter of interest is identifiable from the composite likelihood, the compos-

ite likelihood estimator is also consistent and asymptotically normal as R → ∞.

The variance of the limiting distribution of the composite likelihood estimator is

larger than that of the maximum likelihood estimator, except in cases where the

two estimators are identical.

These results apply in a general setting, not just in the case of generalised

linear mixed models. They can be shown by applying the theory of estimating

equations, which is now reviewed. These results will be applied several times in

the thesis, for example to provide results on the asymptotic behaviour of composite

likelihood estimators, and of estimators found by maximising an approximation to

the likelihood, rather than the likelihood itself.

Suppose that we have R independent, identically distributed observations

y(1), . . . ,y(R), which we model as being samples from a distribution depending on

a p-dimensional parameter θ, taking values in some set Θ. Suppose that θ̂R is the
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estimator of θ solving the estimating equation

vR(θ,y) =
R∑
i=1

v(1)(θ,y(i)).

For instance, in the case of full likelihood, v(1)(θ,y(i)) would be the score function

associated with observing y(i), and vR(θ,y) the overall score function for y. Let

v̄(θ) = E[v(1)(θ; Y)],

where the expectation is taken over the true distribution of each Y(i).

Theorem 1. Suppose that v̄(.) is a continuous function of θ, with unique root θ∗.

Suppose that Θ is compact, that v(1)(θ,y) is a continuous function of θ for each y,

and that ∣∣∣v(1)(θ,y)
∣∣∣ ≤ g(y)

for some integrable function g, for all θ in a neighbourhood of θ∗. Then

θ̂R →p θ∗

as R→∞, where →p denotes convergence in probability.

Proof. See van der Vaart (1998, pp. 44–46)

With a few extra conditions, results on the asymptotic normality of θ̂R may

also be obtained.

Let

H(θ) = E
[
−∇θv(1)(θ,Y)

]
and

J(θ) = E
[
v(1)(θ,Y)

[
v(1)(θ,Y)

]T ]
.

Theorem 2. Suppose that the conditions assumed in Theorem 1 hold, and in addi-

tion that v(1)(θ,y) has continuous second derivatives for each y, and∣∣∣∣∣∂2v(1)(θ,y)

∂θi∂θj

∣∣∣∣∣ ≤ h(y)

for some integrable function h, for all θ in a neighbourhood of θ∗. Then

√
R(θ̂R − θ∗)→d Np(0, H(θ∗)−1J(θ∗)

[
H(θ∗)T

]−1
)
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as R→∞, where →d denotes convergence in distribution.

Proof. See van der Vaart (1998, pp. 51–52)

Note. The regularity conditions given in the statement of Theorems 1 and 2 are

stronger than are needed. See van der Vaart (1998, pp. 46–47, 52–53) for some

weaker conditions which could be used instead.

3.1.2 Maximum likelihood estimator

We may show the consistency and asymptotic normality of the maximum likelihood

estimator θ̂R by application of these results to the score function

u(θ|y) = ∇θ`(θ|y).

Let

ū(θ) = E[u(θ|Y)].

Suppose that the model for the data is correct, so that y(1), . . . ,y(R) really are

samples from the assumed distribution, for some value θ0 of θ. Assuming sufficient

further regularity conditions to allow interchange of differentiation and integration,

the first Bartlett identity

ū(θ0) = 0 (3.1)

may then be shown to hold. Assuming that this root is unique, and that the other

regularity conditions of Theorems 1 and 2 hold with v(1)(θ,y) = u(θ|y), we obtain

that

θ̂R →p θ0,

so the maximum likelihood estimator is consistent, and

√
R(θ̂n − θ0)→d Np(0, H(θ0)−1J(θ0)

[
H(θ0)T

]−1
) (3.2)

as R→∞. In this case, the second Bartlett identity gives that H(θ0) = J(θ0), and

we call this quantity the Fisher information matrix, denoted by I(θ0). Equation

(3.2) then simplifies to the familiar

√
R(θ̂n − θ0)→d Np(0, I(θ0)−1).
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3.1.3 Composite likelihood estimator

The results can also be applied to show consistency and asymptotic normality of

the composite likelihood estimator θ̂CR . Writing

uC(θ|y) = ∇θ`C(θ|y).

for the composite score function, let

ūC(θ) = E[uC(θ|Y)].

Note that

ūC(θ) = E
[
∇θ`C(θ; Y)

]
= E

[
K∑
s=1

∇θ`(θ; Y(s))

]

=
K∑
s=1

E
[
∇θ`(θ; Y(s))

]
.

So if the model is correct with θ = θ0, then uC(θ0) = 0, since the expectation of each

score in the sum is 0, by (3.1). If this solution is unique, and the other regularity

conditions of Theorems 1 and 2 hold with v(1)(θ,y) = uC(θ|y), then

θ̂CR →p θ0,

and √
R(θ̂CR − θ0)→d Np(0, HC(θ0)−1JC(θ0)

[
HC(θ0)T

]−1
)

as R→∞. This time, there is no simplification in the variance term, since the sec-

ond Bartlett equality does not hold. We write GC(θ0) = HC(θ0)TJC(θ0)−1HC(θ0).

GC(.) is known as the Godambe or sandwich information matrix. The asymptotic

variance of the composite likelihood estimator is in general larger than that of the

full likelihood estimator. In the scalar-parameter case p = 1, it is sometimes useful

to consider the asymptotic relative efficiency

r =
avar(θ̂R)

avar(θ̂CR)
=

[HC(θ0)]2

I(θ0)JC(θ0)
∈ (0, 1].

Example 3.1. To demonstrate these asymptotic results in the context of the gen-

eralised linear mixed model, we consider a very simple binary pairwise competition
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Figure 3.1: A star tournament on n players

model, in which the ability of a player is modelled as

λi = σui,

where ui ∼ N(0, 1), and σ is the unknown parameter of interest. That is, we

are interested in the overall spread of abilities among players. Conditional on the

abilities, we assume that Pr(i beats j) = Φ(λi − λj).
This model is simpler than most pairwise competition models of practical

interest, in which we model the effect of some observed covariates on the ability of

a player. However, because of the simplicity of this model, it is relatively easy to

study some statistical properties of the various estimators considered in Section 2.3.

If an estimator of σ in this simple model has poor properties, there is little hope

that the corresponding estimator will be successful in a more complex model.

In order for the asymptotic regime described above to apply, we assume

that the tournament consists of R repetitions of a smaller tournament with fixed

structure, and consider what happens in the limit at R →∞. We assume that the

small tournaments each have an ‘star’ structure, as shown in Figure 3.1. We allow

the number of players n in each star to vary, and consider how the the asymptotic

relative efficiency of the pairwise likelihood estimator changes as it does so.

Figure 3.2 is a plot of the asymptotic relative efficiency of the pairwise like-

lihood estimator relative to the maximum likelihood estimator, for a repeated star

tournament for various values of n. In the case n = 3, the pairwise likelihood is

identical to the full likelihood, and so the pairwise likelihood estimator is fully ef-

ficient. As n increases, the asymptotic relative efficiency of the pairwise likelihood
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Figure 3.2: The asymptotic relative efficiency of the pairwise likelihood estimator
of σ, in a repeated star tournament for various values of n.

estimator drops quickly. For large n, there is a large drop in efficiency incurred by

using this pairwise likelihood instead of the full likelihood, and it seems sensible to

try using some approximation to the likelihood instead.

Note. The structure of the tournament in Example 3.1 was chosen to make it easy

to obtain the limiting distributions of the various estimators. In the case of the star

tournament, it is possible to simplify the likelihood, by noting that conditional on

the value of the random effect for the central player in the star, the contests are

independent. This means that the likelihood for a star on n players may be written

as

L(σ|y) =

∫ ∞
−∞

[
n∏
i=2

∫ ∞
−∞

Φ
(
σ(ui − u1)(−1)yi1+1

)
φ(ui)dui

]
φ(u1)du1.

In fact, ∫ ∞
−∞

Φ
(
σ(ui − u1)(−1)yi1+1

)
φ(ui)dui = Φ

(
σu1(−1)yi1√

1 + σ2

)
,

so the likelihood can be computed by evaluating a single one-dimensional integral.

By differentiating under the integral, the first and second derivatives of the likelihood

with respect to σ are also easy to compute.

The example also has a lot of symmetry, and a sufficient statistic for σ is W1,

the number of times the central player in the star wins. In fact, we would make the

same inference about σ whether we observed the central player to win w1 times, and

lose the remaining n− 1−w1 contests, or to lose w1 times, and win the remainder.
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So

S1 = min {W1, n− 1−W1} ∈
{

0, 1, . . . ,
⌊n− 1

2

⌋}
is a sufficient statistic for σ. It is straightforward to enumerate all the possibilities

for S1, and to find the probability of each occurring under the model. By computing

the likelihood and its derivatives, and the pairwise likelihood and its derivatives, for

a tournament corresponding to each choice of S1, it is therefore possible to find

the asymptotic variance of the full likelihood estimator, and that of the pairwise

likelihood estimator.

3.1.4 Estimators maximising an approximation to the likelihood

Many of the methods for inference considered in Chapter 2 involve replacing the like-

lihood with some approximation to it. The estimators obtained by maximising this

approximated likelihood need no longer be consistent as the number of independent

replications tends to infinity. Suppose that the approximation to the log-likelihood

is smooth, so that we have an approximation ũ(θ|y) to the score function given

data y. The resulting estimator θ̃R maximising the approximation to the likelihood

solves
R∑
i=1

ũ(θ|y(i)) = 0.

Let θ̃ be the solution to

E [ũ(θ|Y)] = 0,

where the expectation is taken under the true distribution. Then, applying Theorem

1,

θ̃R →p θ̃

as R→∞.

Applying Theorem 2 gives that

√
R(θ̃R − θ̃)→d Np

(
0, H̃(θ̃)−1J̃(θ̃)

[
H̃(θ̃)T

]−1
)
.

However, by treating the approximation to the likelihood as if it were the true

likelihood, we will assume that, for large R,
√
R(θ̃n − θ0) is well approximated by a

normal distribution, with variance the inverse of the observed information matrix of

the approximated likelihood at its maximum θ̃R. So, as the estimator tends towards

θ̃, we are more and more sure that the estimator is close to θ0. If θ̃ 6= θ0, this

will eventually cause confidence regions for θ to have coverage much lower than the
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nominal level.

If the approximation to the likelihood is sufficiently good, θ̃ will be very close

to θ0, and the confidence regions for θ will have approximately correct coverage

provided that R is not extremely large. However, poor-quality approximations can

result in an estimator with a very large asymptotic bias, as Example 3.2 shows.

Example 3.2. We return to the star tournaments of Example 3.1. Recall that the

ability of player i is modelled as

λi = σui,

where σ is an unknown parameter of interest. Now we suppose that we do inference

by replacing the likelihood with an approximation, found either by using Laplace’s

method or by importance sampling. Recall that in the limit as the number of

repetitions, R, tends to infinity, the maximum likelihood estimator and the pairwise

likelihood estimator are both consistent. This will not be true for the estimators

found by maximising approximations to the likelihood, so we are interested in how

far the limits of the estimators are from the true value in each case.

Suppose that the number of players in each tournament, n, is fixed at 50.

First, we consider the effect of using the Laplace approximation to the likelihood in

place of the true likelihood. Figure 3.3a shows the limit of the estimator maximising

the Laplace approximation to the likelihood, plotted against the true value of σ.

Even for quite small values of σ, there is a large negative asymptotic bias in the

Laplace estimator of σ.

The Laplace approximation performs badly in this case, so we might instead

choose to use an importance sampling approximation to the likelihood. This re-

quires N evaluations of the function g(.|y, θ), in addition to those required to find

the normal approximation. Thus the method will be considerably more expensive

than using a quadrature rule to compute the one dimensional integral in the sim-

plified version of the likelihood, even for small N . Nonetheless, the method is still

reasonably fast for small N , and importantly it is possible to use the method for

inference in any generalised linear mixed model, where the simplification afforded

by the special structure of this case is not available.

Figure 3.3b shows the limit of an importance sampling estimator, where

the approximation is constructed based on one particular random sample of size

N = 104, using the same samples to approximate the likelihood for each possible

observed tournament. The limit of the estimator would change if a different random

sample were used, but this gives an indication of the level of asymptotic bias incurred

by using an importance sampling approximation with N = 104 samples.
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(b) Importance sampling (Using one sample of size N = 104)
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(c) Importance sampling (Using one sample of size N = 105)

Figure 3.3: The limit of various estimators in a repeated star tournament with
n = 50, as R → ∞. In each case the dotted line is y = x, representing the limit of
a consistent estimator.
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(a) σ = 1.3
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(b) σ = 2.5

Figure 3.4: The distribution of S1 in a star tournament on n = 50 players, for
different values of σ.

The importance sampling approximation seems to offer a real improvement

over the Laplace approximation, but there is still a large asymptotic bias for mod-

erate to large values of σ.

When σ0 = 2.5, the limit of this importance sampling estimator is 1.3. This

limiting value itself is moderately large, and since the distribution of tournaments

will be very similar for all σ sufficiently large, it seems possible that the practical

effects of this asymptotic bias will be small. However, Figure 3.4 shows that there is

a noticeable difference in behaviour between the distribution of S1 for σ = 1.3 and

σ = 2.5, so the difference is an important one.

It is worth seeing what happens when we use an even larger number of

samples N to construct the importance sampling approximation. The limit of the

estimator for one particular sample of size N = 105 is shown in Figure 3.3c. The

asymptotic bias of the estimator is now much larger than in the N = 104 case.

Examining the shape of the approximation for N = 105 for S1 = 15 in Figure

3.5, we can see that the approximated log-likelihood for large σ is much too large.

Figure 3.6 shows a trace plot of the log-likelihood approximation for S1 = 15 and

σ = 2, using from one up to 106 samples. There is a large jump in the likelihood

approximation at around N = 105, after the approximation has already appeared

to converge. This behaviour suggests that the importance weights do not have
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Figure 3.5: An importance sampling approximation to the log-likelihood for a star
tournament with S1 = 15, using N = 105 samples. The dotted line gives the true
log-likelihood.

finite variance, which, as discussed in Section 2.3.3, can lead to slow and unstable

convergence of the approximation.

3.1.5 Hypothesis testing and confidence intervals

It will generally be of interest not just to obtain point estimates for the parameters

of a generalised linear mixed model, but to test hypotheses about these parameters,

or to construct confidence intervals for them.

Suppose that we have a p-dimensional parameter vector θ, and consider test-

ing the hypothesis φ = φ0 for some p0-dimensional subset φ of θ.

We will consider two test statistics for testing such hypotheses, first assuming

that the true likelihood and the corresponding maximum likelihood estimator θ̂ are

available. Write φ̂ for maximum likelihood estimator of φ, and Iφφ(θ̂) =
[
I(θ̂)−1

φφ

]−1
,

where I(θ̂)−1
φφ is the submatrix of I(θ̂)−1 corresponding to φ.

The Likelihood ratio test statistic is defined as

Λ(φ0) = 2

[
sup
θ
`(θ|y)− sup

θ:φ=φ0

`(θ|y)

]
,

and Wald test statistic as

W (φ0) = (φ̂− φ0)T Iφφ(θ̂)(φ̂− φ0).
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Figure 3.6: A trace of the importance sampling approximation to the log-likelihood
at σ = 2, for a star tournament with S1 = 15. The dotted line gives the true
log-likelihood.

Under standard regularity conditions, it can be shown that under the null

hypothesis that φ = φ0, both Λ(φ0)→d χ2
p−p0 and W (φ0)→d χ2

p−p0 as R→∞.

However, one of the regularity conditions needed to prove these results is

sometimes violated in a generalised linear mixed model. If φ0 is on the boundary of

the parameter space, the standard asymptotic distribution of the test statistics need

not apply. Recall that in our definition of a generalised linear mixed model, there is

a parameter ψ controlling how the random effects enter into the linear predictor. We

suppose that ψ = 0 corresponds to the case in which there are no random effects in

the model. If we are interested in testing ψ = 0, then the parameter value of interest

is on the boundary of the parameter space. In this sort of situation, Self & Liang

(1987) show that, if there are an increasing number of independent and identically

distributed observations, Λ has limiting distribution which is a mixture between the

usual χ2
p−p0 distribution and a point mass at 0. In practice, this means that some

adjustment should be made to the assumed null distribution of the test statistic if

the distribution under the null is such that the maximum likelihood estimator will

be on the boundary of the parameter space a non-negligible proportion of the time.

In the more realistic setting in which the replications are not identically distributed,

Crainiceanu & Ruppert (2004) show that using a mixture between χ2
p−p0 distribution

and a point mass at 0 may itself be incorrect. They demonstrate how to find the

correct distribution of the likelihood ratio test statistic in a linear mixed model, but

it remains difficult to obtain a good correction for other generalised linear mixed
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models.

Throughout the remainder of the thesis, the unadjusted χ2
p−p0 distributed

will be used. This will result in a slight over-reluctance to reject the hypothesis that

ψ is small.

To construct a confidence interval (or region, if p0 > 1) for φ with approxi-

mate coverage 1−α, we can invert the hypothesis test, giving a Wald-type confidence

region of

I
(1−α)
W = {φ : W (φ) ≤ cα}

and a likelihood ratio confidence region of

I
(1−α)
Λ = {φ : Λ(φ) ≤ cα},

where cα is chosen so that Pr(χ2
p−p0 > cα) = α. Writing `p(φ0|y) = supθ:φ=φ0 `(θ|y)

for the profile log-likelihood of φ0, the the likelihood ratio statistic may be written

as

Λ(φ0) = 2
[
`p(φ̂|y)− `p(φ0|y)

]
,

and the likelihood ratio confidence region

I
(1−α)
Λ =

{
φ : `p(φ|y) ≥ `p(φ̂|y)− cα

2

}
is just a set of points with sufficiently large profile likelihood.

The Wald test statistic is usually considerably easier to compute than the

likelihood ratio test statistic. However, it exhibits worrying behaviour in some

settings. Hauck & Donner (1977) demonstrate the phenomenon that, as the true

value of a regression parameter in a logistic regression model increases, the power of

the hypothesis test for testing that it is zero eventually starts to fall. Example 3.3

demonstrates similar behaviour for the variance parameter of the random effects in

a generalised linear mixed model.

Example 3.3. Suppose that we have 3 replications of a star tournament on 50

players, as described in Example 3.1, and consider testing σ = σ0, for various values

of σ0. We construct Wald and likelihood ratio tests of nominal size α = 0.05. The

true sizes of these tests are given in Figure 3.7. The Wald test has size much larger

than the nominal size for most values of σ0. On the other hand, the likelihood ratio

test has size smaller than 0.05 for σ very small (since no adjustment was made for

the fact that the parameter is close to the boundary), but for larger σ has the correct

size.

The power curves of the two tests for rejecting σ = 0 are given in Figure 3.8.
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Figure 3.7: The true size of hypothesis tests for σ, of nominal size 0.05, in a repeated
star tournament with n = 50, R = 3.

A similar phenomenon to that observed by Hauck & Donner (1977) may be seen

here: the power of the Wald test for testing σ = 0 diminishes for large σ.

We conclude that the use of the Wald test statistic may be very misleading,

and it is far better to use the likelihood ratio test statistic.

All of the above discussion relates to the situation in which the likelihood

itself is available. When the likelihood is replaced by an approximation, the quality

of inference from the likelihood ratio test will depend on the quality of that ap-

proximation. Figure 3.9 shows the true size of the approximate likelihood ratio test

constructed by using the Laplace approximation, in the repeated star tournament

described in Example 3.3. As expected, the size of the test for large σ is much larger

than the nominal level.

When a composite likelihood is used in place of the full likelihood, the asymp-

totic distribution of the test statistics is no longer χ2
p−p0. A replacement composite

likelihood Wald test statistic could be constructed as

WC = (φ̂C − φ0)TGφφC (θ̂C)(φ̂C − φ0),

where GφφC (θ̂C) =
[
GC(θ̂C)−1

φφ

]−1
and GC(θ̂C)−1

φφ is the submatrix of the estimated

variance matrix
[
GC(θ̂C)

]−1
corresponding to φ. Varin et al. (2011) review some

of the different adjustments to the likelihood ratio test statistic which have been

proposed. We do not discuss these further here, having already concluded that the
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Figure 3.8: The power of hypothesis tests of σ = 0, of nominal size 0.05, in a
repeated star tournament with n = 50, R = 3.
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Figure 3.9: The true size of likelihood ratio tests for σ, of nominal size 0.05, based
on different approximations to the likelihood.
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drop in efficiency in the pairwise likelihood estimator is unacceptably large in some

circumstances.

3.1.6 Penalised forms of the likelihood

In sparse models with binary data, it is fairly common that the maximum likelihood

estimator is not finite. To prevent such problems, it seems sensible to impose some

penalty on the parameters.

In the case of a generalised linear model, where there are no random effects,

Firth (1993) demonstrates how to choose a penalty to remove the first-order asymp-

totic bias in β̂. The penalty suggested here is equal to that bias reduction penalty,

chosen under the assumption of no random effects.

Write

I0(β) = E
[
−∇Tβ∇β`(β, ψ = 0)

]
,

where ψ = 0 corresponds to the case of no random effects, and consider the penalised

likelihood

`p(β, ψ) = `(β, ψ)− p0(β),

where

p0(β) = −1

2
log|I0(β)|.

We call p0(.) the bias reduction penalty in all cases, although it removes the first-

order asymptotic bias only when ψ = 0.

We may use the penalised likelihood in place of the full likelihood to test

hypotheses using the Wald or likelihood ratio tests, because as the amount of infor-

mation on the parameters in the data increases, the influence of the penalty term

shrinks, and the test statistics retain the same limiting distributions.

We will use p0(.) as a penalty in some of the examples in the thesis, and it

avoids infinite parameter estimates in those cases, but we do not claim that this

penalty is optimal in any way. It may be useful to additionally impose some penalty

on ψ, or to construct a joint penalty on β and ψ, so that a larger penalty is given to

parameter values where β is small but ψ is large. One idea for an improved penalty

function is given in Section 6.2.2, but some further work is required to check whether

the inference using this suggested penalty has good properties.
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. . .

(a) Repeated tournament

. . .

(b) Joined tournament

Figure 3.10: Tournament designs for Example 3.4

3.2 Asymptotics without independent replication

In reality, we cannot rely on having a large number of independent replications of the

data. It is common to have few, or no, independent replications. Instead, we often

have a large number of observations, all dependent on one another. We still want to

use the sort of results deduced under R →∞ asymptotics, such as the consistency

and asymptotic normality of the maximum likelihood estimator. Assuming that

there is no independent replication, will these results still hold?

Example 3.4. Consider R repetitions of a star tournament on 3 players, as shown

in Figure 3.10a. Suppose again that

λi = σui,

where ui ∼ N(0, 1) and σ is an unknown parameter. We have already shown that

the maximum likelihood estimator of σ will be consistent in this setting as R→∞.

For large R, the maximum likelihood estimator of σ will be approximately normally

distributed, with variance V
R , for some constant V . The total number of contests is

such a tournament is m = 2R, and we could equally well speak of asymptotics as

m→∞.

Now consider a new tournament is which an additional contest is played

between the central players of consecutive star tournaments, as shown in Figure
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3.10b, so that there are m = 3R− 1 contests in total. Now there is no independent

replication in the tournament. However, knowledge of the outcome of the additional

contests increases the amount of information available about σ, so the maximum

likelihood estimator must remain consistent as R→∞. For large R, the maximum

likelihood estimator of σ should also remain approximately normally distributed,

although the variance will be slightly smaller than V
R , because of the additional

information provided by the extra contests.

This type of argument can be used more generally to deduce whether it is

valid to rely on the usual asymptotic results. Suppose that it is possible to find

some subset of the observations Y(S) = {Yj : j ∈ S} so that Y(S) consists of R in-

dependent blocks of data. If R is large, and the parameter θ is identifiable from the

distribution of each block, then we can expect that the maximum likelihood esti-

mator will be close to the true value θ0, and that it will be approximately normally

distributed. This means that the usual asymptotic distributions of test statistics for

testing hypotheses about θ may be assumed to be approximately valid.

3.3 The effect of sparsity on the quality of the Laplace

approximation

The special structure of the repeated star tournament of Examples 3.1 and 3.2 al-

lowed us to study the asymptotic behaviour of the various estimators in that model.

In this sparse setting, the Laplace and importance sampling approximations give

estimators with poor statistical properties. However, the performance of these es-

timators is unlikely to be this bad in all cases. In dense models, where substantial

information is available on each random effect, we anticipate that the Laplace ap-

proximation may provide inference much closer to the true likelihood inference. A

numerical example is given to provide some insight into situations in which the in-

ference gained using Laplace approximation may be sufficiently accurate, and when

it is necessary to use some other method.

Example 3.5. A complete tournament is one in which every pair from a set of n

players competes exactly once. This is a relatively common tournament design in

practice, for example in sports tournaments where a contest is played between each

pair of teams. There are m =
(
n
2

)
contests in such a tournament, so n = O(m1/2).

For large n, this a relatively dense tournament, although the amount of information

available per random effect is not sufficiently large that the relative error in Laplace

approximation to the likelihood (or equivalently the absolute error in the Laplace
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approximation to the log-likelihood) tends to 0 as n → ∞ (see the discussion in

Section 2.3.2). However, the accuracy of the approximation to the likelihood itself

is unimportant: what matters is that the approximation to the log-likelihood surface

is sufficiently accurate that the resulting inference is close to the inference obtained

from the true likelihood.

To investigate this, we consider tournaments consisting of Rn independent

subtournaments, where each subtournament is a complete tournament among n

players. In such a tournament, there are nRn players and
(
n
2

)
Rn contests overall.

We choose pairs (n,Rn) of (20, 1), (12, 3), (8, 7) and (5, 19), so that the total number

of contests is approximately constant. We do this so that each tournament provides

a similar level of information about the parameters. We simulate a single binary

observed covariate xi for each player, which is 1 with probability 0.5, and 0 otherwise.

We assume a binary pairwise competition model with probit link, so that

Pr(i beats j|λi, λj) = Φ(λi − λj),

where

λi = βxi + σui,

and ui ∼ N(0, 1), and simulate sample tournaments from the model, with β = 1

and σ = 0.5.

For the sparse tournaments, with small n, we anticipate that the Laplace

approximation to the likelihood will not give inference close to the true likelihood.

In order to study the quality of inference from the Laplace approximation in denser

tournaments, we consider testing the hypothesis

H0 : θ = θ∗

for each value of θ∗ on a large two-dimensional grid, based on either the Laplace

approximation to the likelihood, or an importance sampling approximation to the

likelihood based on N = 104 samples. To do this, we construct a likelihood ratio

statistic based on each approximation to the likelihood, letting

ΛL(θ) = 2

({
max
θ
`L(θ)

}
− `L(θ)

)
and

Λ(θ) = 2

({
max
θ
`IS(θ, 104)

}
− `IS(θ, 104)

)
,

where `L(θ) and `IS(θ,N) are respectively the Laplace and importance sampling
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approximations to the log-likelihood for θ.

Although there is no guarantee that inference based on the importance sam-

pling approximation will be fully accurate, if the inference is very similar to that

from the Laplace approximation, then it seems reasonable to conclude that the in-

ference from both methods is accurate. If, however, there is a large difference in

the inference, then the Laplace approximation is not sufficiently accurate. For this

reason, for the purposes of this example, the importance sampling approximation

to the likelihood is treated as if it were the true likelihood.

For any fixed value Λ, those values of θ with ΛL(θ) ≤ Λ give a confidence

region for θ, with approximate coverage p(Λ) = Pr(χ2
2 ≤ Λ), since θ has dimension

2. So, for each fixed Λ (or equivalently, each fixed coverage p(Λ)), we look at the

maximal error in the likelihood ratio statistic for all θ contained in the corresponding

confidence region. That is, we consider the error

eΛ = sup
θ:ΛL(θ)≤Λ

|ΛL(θ)− Λ(θ)|.

Since we only compute ΛL(θ∗) and Λ(θ∗) at each value θ∗ on a grid of points, we

compute eΛ by interpolating values for ΛL(θ) and Λ(θ) for θ not on this grid. We

use the cubic spline interpolation methods described Section 4.6 to do this. Figure

3.11 shows plots of eΛ against Λ for each tournament structure, for 100 simulated

examples in each case. We see that this error diminishes with n: the inference

from the Laplace approximation become more similar to the inference from the true

likelihood as the tournament becomes more dense.

3.4 Conclusions

In the repeated star tournament of Examples 3.1 and 3.2, the pairwise likelihood

estimator was inefficient, and the estimators obtained by maximising the Laplace

and importance sampling approximations to the likelihood had large asymptotic

bias. A better method is clearly required here, and as it happens, a simplification of

the likelihood is available which makes full likelihood inference possible in this case.

However, if just a few edges were added to the star structure, the likelihood would

no longer simplify to a single one-dimensional integral, and to find the likelihood we

would again be forced to evaluate an n-dimensional integral. The addition of these

few edges would be unlikely to have much impact on the properties of the existing

methods of inference: for a large number of players, the pairwise likelihood would

remain inefficient, and the Laplace and importance sampling approximations would
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(c) n = 12, Rn = 3
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(d) n = 20, Rn = 1

Figure 3.11: The error eΛ plotted against Λ, for 100 simulations from each of
various complete tournaments on n players, repeated Rn times. The bold line gives
the average of eΛ across all 100 simulations.
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be of poor quality.

The aim of the sequential reduction method of Chapter 4 is to find simpli-

fications to the likelihood for any generalised linear mixed model. For models with

sparse structure, this method will reduce dramatically the cost of finding a good

approximation to the likelihood.

In models with dense structure, the new sequential reduction method of

likelihood approximation will not provide much simplification of the n-dimensional

integral. However, in such models, the Laplace approximation appears to be suf-

ficiently good that replacing the likelihood with its Laplace approximation yields

close to full likelihood inference (see Example 3.5). The new method will reduce the

cost of likelihood computation in precisely the situations where such a simplification

is needed most.
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Chapter 4

A new method for

approximating the likelihood

4.1 Introduction

The aim of this chapter is to develop a method for simplifying the likelihood. Recall

that the likelihood may be written as the integral of

g(u|y, θ) = f(y|u, θ)
n∏
i=1

φ(ui)

over u. By considering φ(ui) as a prior for ui, we may think of g(.|y, θ) as a non-

normalised posterior density for the random effects u, given y and θ.

Consider once more the example of a star tournament on n players, as shown

in Figure 3.1 on page 21. The discussion in Example 3.1 describes how to simplify

the likelihood in this case. The simplification is possible because, in the posterior

distribution of the random effects, {u2, . . . , un} are conditionally independent, given

u1. It therefore seems worthwhile to study the dependence structure of the posterior

distribution of the random effects in the general case, to see if a similar simplification

may be obtained.

4.2 The posterior dependence graph

Before observing the data y, the random effects u are independent. The information

provided by y about the value of combinations of those random effects induces

dependence between them. Suppose, for example, that we have a model with three

random effects, {u1, u2, u3}, and make two observations, the first involving u1 and u2,
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and the second involving u2 and u3. The first observation provides some information

about the value of some combination of u1 and u2, so u1 and u2 are dependent in

the posterior. Similarly, u2 and u3 are dependent in the posterior. This induces a

dependence between u1 and u3 in the posterior distribution, because being told the

value of u1 tells us something about u2, which in turn provides information about

the likely value of u3. However, if the value of u2 were known, being told the value

of u1 would provide no additional information about the value of u3. That is, u1

and u3 are conditionally independent in the posterior distribution, given u2.

We can generalise this, and say that if there is no observation involving both

ui and uj , then ui and uj are conditionally independent in the posterior distribution,

given the values of all the other random effects.

It is possible to represent this conditional independence structure graphically.

Consider a graph G constructed to have:

1. A vertex for each random effect

2. An edge between two vertices if there is at least one observation involving both

of the corresponding random effects.

By construction of G, there is an edge between i and j in G only if y contains an

observation involving both ui and uj . So if there is no edge between i and j in

G, ui and uj are conditionally independent in the posterior distribution, given the

values of all the other random effects. This property is called the pairwise Markov

property of the posterior distribution of the random effects with respect to G. We

call G the posterior dependence graph for u given y.

In a pairwise competition model, the posterior dependence graph simply

consists of a vertex for each player, with an edge between two vertices if those

players compete in at least one contest. For models in which each observation relies

on more than two random effects, an observation will not be represented by a single

edge in the graph.

Example 4.1. Consider a four-level random intercept model. A typical example

might be of observations being recorded on schoolchildren, who are grouped into

classes, which themselves are contained within schools, and then within larger dis-

tricts. Figure 4.1a gives a small example of this sort of structure, where the points

represent the individual children in each class. An observation on a child depends

on the random effects associated with the class, school and district to which that

child belongs. The posterior dependence graph will contain a triangle on the vertices

representing those three groups, for each possible combination of the groups. Figure
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(a) Model structure

Class 1 Class 2 Class 3 Class 4

School 1 School 2

District 1

(b) Posterior dependence graph

Figure 4.1: A four-level model

4.1b shows the posterior dependence graph for this example. If there were more than

one district, the posterior dependence graph would contain separate components for

each district, with no edges between these components.

The posterior dependence graph provides a useful visualisation of the con-

ditional independence structure of the posterior distribution of the random effects,

but does not immediately gives us a simplification of the likelihood. However, the

problem of computing the likelihood has now been transformed to that of finding

a normalising constant of a density associated with an undirected graphical model.

Methods are available to simplify the computation of such a normalising constant,

which we now review.

4.3 Factorising the posterior density

The Hammersley-Clifford theorem (Hammersley & Clifford (1971), Besag (1974))

gives a relationship between the pairwise Markov property and the form of g(.|y, θ).
To state the result, we first need a few definitions. A complete graph is

one in which there is an edge from each vertex to every other vertex. A clique of

a graph G is a complete subgraph of G. A clique is said to be maximal if it is not

itself contained within a larger clique. Figure 4.2 illustrates these definitions. For

any graph G, the set of all maximal cliques of G is unique, and we write M(G) for

this set.

Theorem 3 (Hammersley-Clifford theorem). Suppose u = (u1, . . . , un) is a random

vector, with density f(.). Suppose that f(u) > 0 for all u ∈ Rn. Then u has the
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(a) A non-maximal clique (b) A maximal clique (c) A maximal clique

Figure 4.2: Illustration of some graph theory definitions

pairwise Markov property with respect to G if and only if f(.) factorises over the

maximal cliques of G, so that we may write

f(u) =
∏

C∈M(G)

fC(uC)

for some functions fC(.).

Proof. See Besag (1974)

Note. If f(.) factorises over the maximal cliques of G, it immediately follows that

any non-normalised density g(u) ∝ f(u) must also factorise in this way.

We may apply this result to the non-normalised posterior density of u. Since

φ(ui) > 0 for all ui, we do indeed have that g(u|y, θ) > 0 for all u, so g(.|y, θ)
must factorise over the maximal cliques of the posterior dependence graph. In fact,

we may show that such a factorisation exists directly, without the requirement that

g(.|y, θ) is positive everywhere. One particular such factorisation is constructed in

Section 4.5.2, and would be valid even if we assigned zero prior density to some

values of ui.

4.4 Exploiting the clique factorisation

Jordan (2004) reviews how to use a find marginal density of a density factorised

over the maximal cliques of a graph. These methods are well known in the graph-

ical modelling literature, although their use is limited to certain special classes of

distribution, such as discrete or normal distributions. We will use the same ideas,

combined with a method for approximate storage of functions, to approximate the

marginals of the continuous distribution with density proportional to g(.|y, θ), and

so find an approximation to the likelihood.

Recall that our aim is to find the likelihood

L(θ|y) =

∫
Rn

g(u|y, θ)du.
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We take an iterative approach to the problem, first integrating out u1 to find the

non-normalised marginal posterior density of {u2, . . . , un}. We start with a fac-

torisation of g(.|y, θ) over the maximal cliques of the posterior dependence graph

of {u1, . . . , un}, and the idea will be to write the marginal posterior density of

{u2, . . . , un} as a product over the maximal cliques of a new marginal posterior de-

pendence graph. Once this is done, the process may be repeated n times to find

the likelihood. We will write Gi for the posterior dependence graph of {ui, . . . , un},
so we start with posterior dependence graph G1 = G. Write Mi = M(Gi) for the

maximal cliques of Gi.
Factorising g(.|y, θ) over the maximal cliques of G1 gives

g(u|y, θ) =
∏
C∈M1

g1
C(uC),

for some functions g1
C(.). To integrate over u1, note that it is only necessary to

integrate over maximal cliques containing vertex 1, leaving the functions on other

cliques unchanged. Let N1 be the set of neighbours of vertex 1 in G (including vertex

1 itself). Then∫
g(u|y, θ)du1 =

∫ ∏
C∈M1:C⊆N1

g1
C(uC)du1

∏
C̃∈M1:C̃ 6⊆N1

g1
C̃

(uC̃)

=

∫
g1
N1

(uN1)du1

∏
C̃∈M1:C̃ 6⊆N1

g1
C̃

(uC̃).

Thus g1
N1

(.) is obtained by multiplication of all the functions on cliques which are

subsets of N1. This is then integrated over u1, to give

g2
N1\1(uN1\1) =

∫
g1
N1

(u1,uN1\{1})du1.

The functions on all cliques C̃ which are not subsets of N1 remain unchanged, with

g2
C̃

(uC̃) = g1
C̃

(uC̃).

This defines a new factorisation of g(u2, . . . un|y, θ) over the maximal cliques

M2 of the posterior dependence graph for {u2, . . . , un}, where M2 contains N1 \ 1,

and all the remaining cliques in M1 which are not subsets of N1. The same process

may then be followed to remove each ui in turn.
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4.5 The sequential reduction method for likelihood ap-

proximation

4.5.1 A general algorithm

We now give the general form of a sequential reduction method for approximating

the likelihood. We highlight the places where choices must be made to use this

method in practice. The following sections then discuss each of these choices in

detail.

1. The ui may be integrated out in any order. Section 4.7 discusses how to

choose a good order, with the aim of minimising the cost of approximating

the likelihood. Reorder the random effects so that we integrate out u1, . . . , un

in that order.

2. Factorise g(u|y, θ) over the maximal cliques M1 of the posterior dependence

graph, as

g(u|y, θ) =
∏
C∈M1

g1
C(uC).

This factorisation is not unique, so we must choose one particular factorisation

{g1
C(.) : C ∈M1}. Section 4.5.2 gives the factorisation we use in practice.

3. Once u1, . . . ui−1 have been integrated out (using some approximate method),

we have the factorisation

g̃(ui, . . . , un|y, θ) =
∏
C∈Mi

giC(uC),

of the (approximated) non-normalised posterior for ui, . . . , un. Write

gNi(uNi) =
∏

C∈Mi:C⊆Ni

giC(uC).

We then must integrate gNi(.) over ui. We need to store an approximate

representation of the resulting integrated function gNi\i(.). Assuming that it

is not possible to compute the integral analytically, for each fixed uNi\i, we

could use a numerical integration technique to do the integration. We could

then store the result of the numerical integration at some fixed points for uNi\i,

and specify some means of interpolating the value of gNi\i(.) between those

points.
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In fact, to combine the two approximations of numerical integration and inter-

polation into one, we first store an approximate representation g̃Ni(.) of gNi(.).

We need to ensure that it is easy to obtain the integral of this approximate rep-

resentation over ui, to give an approximate representation g̃Ni\i(.) of gNi\i(.).

In Section 4.5.3 we consider the type of error we wish to minimise when con-

structing g̃Ni(.). Motivated by this, in Section 4.5.4, we make a change of

variable so that we can use combinations of a standard set of points to store

each function. In Section 4.6 we consider the choice of such a set of standard

points, and the method which may be used to interpolate between them.

4. Write

g̃(ui+1, . . . , un|y, θ) = g̃Ni\i(uNi\i)
∏

C∈Mi:C 6⊆Ni

giC(uC),

defining a factorisation of the (approximated) non-normalised posterior den-

sity of {ui+1, . . . , un} over the maximal cliques Mi+1 of the new posterior

dependence graph Gi+1.

5. Repeat steps 3 and 4 for i = 1, . . . , n− 1, then integrate g̃(un|y, θ) over un to

give the approximation to the likelihood.

4.5.2 A specific clique factorisation

The general method described in Section 4.5.1 is valid for an arbitrary factorisation

of g(u|y, θ) over the maximal cliques M1 of the posterior dependence graph. To use

the method in practice, we must first define the factorisation used.

Given an ordering of the vertices, order the cliques in M1 lexicographically

according to the set of vertices contained within them. The observation vector y

is partitioned over the cliques in M1 by including in yC all the observations only

involving items in the clique C, which have not already been included in yB for

some earlier clique in the ordering, B. Write a(C) for the set of vertices appearing

for the first time in clique C. Let

g1
C(uC) = f(yC |uC)

∏
j∈a(C)

φ(uj)

=
g(uC |yC)∏

j∈{C\a(C)} φ(uj)

Then

g(u|y, θ) =
∏
C∈M1

g1
C(uC),
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so
{
g1
C(.) : C ∈M1

}
does define a factorisation of g(.|y, θ).

4.5.3 Minimising the error in the likelihood approximation

Suppose we use the factorisation described in Section 4.5.2. At stage i, the non-

normalised posterior distribution of the remaining random effects is

gi(ui, . . . , un|y, θ) =
∏
C∈Mi

giC(uC)

= giNi
(uNi)

∏
C̃∈Mi:C̃ 6⊆Ni

gi
C̃

(uC̃).

Redefine the partition of the observation vector by

yNi =
⋃

C∈Mi:C⊆Ni

{yC},

and let

a(Ni) =
⋃

C∈Mi:C⊆Ni

a(C),

keeping yC̃ and a(C̃) unchanged for all C̃ 6⊆ Ni.

Then, for each C̃ ∈Mi,

gi
C̃

(uC̃) =
g(uC̃ |yC̃)∏

j∈{C̃\a(C̃)} φ(uj)
,

where g(uC |yC) is the non-normalised posterior distribution of uC given yC . Write

N I
i for ‘internal’ nodes only contained in C ⊆ Ni, N

E
i for ‘external’ nodes contained

both in some C ⊆ Ni and in some C̃ ∈ Mi 6⊆ Ni, and Ri = {2, . . . , n} \N I
i for the

nodes which remain after removal of the internal nodes. Notice that⋃
C̃∈Mi:C̃ 6⊆Ni

a(C̃) = {i, . . . , n} \ a(Ni) = Ri \ {a(Ni) ∩NE
i }.

Writing a(NE
i ) = a(Ni) ∩NE

i , we have that

∏
C̃∈Mi:C̃ 6⊆Ni

gi
C̃

(uC̃) =
g(uRi |y \ yNi)∏
j∈a(NE

i ) φ(uj)
.

Then, noting that {Ni, Ri \NE
i } is a partition of {i, . . . , n}, the likelihood is
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given by

L(θ|y) =

∫
giNi

(uNi)
g(uRi |y \ yNi)∏
j∈a(NE

i ) φ(uj)
duRi\NE

i
duNi

=

∫
giNi

(uNi)

[∫
g(uRi |y \ yNi)duRi\NE

i∏
j∈a(NE

i ) φ(uj)

]
duNi

=

∫
giNi

(uNi)h
i(uNE

i
)duNi ,

where

hi(uNE
i

) =
g(uNE

i
|y \ yNi)∏

j∈a(NE
i ) φ(uj)

.

So a representation g̃iNi
(.) of giNi

(.) should be found so that, given the function

hi(uNE
i

) exactly, the error∫ (
g̃iNi

(uNi)− giNi
(uNi)

)
hi(uNE

i
)duNi

is as small as possible. However, at stage i, hi(uNE
i

) will not be known exactly. Since

the role of hi(.) is to determine the location of points ũNi where it is important to

store gi(ũNi) accurately, a rough approximation to hi(.) will suffice.

Let gna(uNE
i
|y \yNi) be a normal approximation to g(uNE

i
|y \yNi). Writing

h̃i(uNE
i

) =
gna(uNE

i
|y \ yNi)∏

j∈a(NE
i ) φ(uj)

and ri(uNi ; h̃
i) = giNi

(uNi)h̃
i(uNE

i
), we will aim to make the error∫

r̃i(uNi ; h̃
i)− ri(uNi ; h̃

i)duNi =

∫ (
g̃iNi

(uNi)− giNi
(uNi)

)
h̃i(uNE

i
)duNi

as small as possible.

To do this, we will store a (sufficiently accurate) representation r̃i(.; h̃i) of

ri(.; h̃i), then extract the representation of giNi
(.) by setting

g̃iNi
(uNi) =

r̃i(uNi ; h̃
i)

h̃i(uNE
i

)
.
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4.5.4 Transformation to a new basis

Recall that the Laplace approximation to the likelihood is formed by approximating

g(u|y, θ) with a function proportional to the N(µθ,Σθ) density.

If we transform to a new basis z = D−1(u−µ), where D is a diagonal matrix

with Dii =
√

[Σθ]ii, then we may write

gz(z|y, θ) = gu(Dz + µ|y, θ) det(D),

and factorise as before as

gz(z|y, θ) =
∏
C∈M1

g1
C(zC)

where

g1
C(zC) = f(yC |uC = DCzC + µC)

∏
j∈a(C)

Djjφ(Djjzj + µj).

Then the likelihood is just
∫
gz(z|y, θ)dz. The new normal approximation to gz(z|y, θ)

is N(0,Ω), where Ω is the correlation matrix D−1Σθ. We write

riz(zNi) = giz(zNi)h̃
i(DNE

i
zNE

i
+ µNE

i
),

so that riz(.) may be roughly approximated by using the N(0,ΩNi) density.

4.5.5 Storing a modifier to the normal approximation

After the transformation described in Section 4.5.4 has taken place, at stage i we

want to store an approximate representation of riz(.), so that the error in
∫
riz(zNi)dzNi

is as small as possible. A rough normal approximation to riz(.) is already available,

so we use this as a starting point for our representation of riz(.).

We will store the modifiers

log ciz(zNi) = log riz(zNi)− log φ|Ni|(zNi , 0,ΩNi)

at some fixed grid of points for zNi , and use cubic splines to interpolate between the

grid points.

The construction of this grid of points, and the method for interpolating

between them are discussed in Section 4.6. The grid of points will be constructed

using combinations of a fixed set of knots in each direction. Since we will always have

a standard normal approximation for each direction, this set of knots will remain
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unaltered throughout the algorithm, and interpolation between grid points will only

be required when we have to integrate over zi. Furthermore, the knots which are

used do not vary with θ, so we can reuse some computations when we approximate

the likelihood at each new value of θ.

Note. The INLA method of Rue et al. (2009) provides a way to approximate the

marginal posterior density of each random effect in a latent Gaussian model, by

integrating out all the other random effects using the Laplace approximation, and

storing the resulting approximated marginal density using a spline modification

to a normal approximation. This has some similarities to the approach taken here,

although INLA only uses a one-dimensional modification to a normal approximation,

whereas we consider storage of a function of arbitrary dimension.

4.6 Interpolation methods

Suppose that f(.) is a function on Rd, for which we want to store an approximate

representation. In the case of the sequential reduction method, we take f(.) to

be log ciz(.). We now give a brief overview of the interpolation methods based on

full and sparse grids of evaluation points. Some of the notation we use is taken

from Barthelmann et al. (2000), although there are some differences: notably that

we assume f(.) to be a function on Rd, rather than on the d-dimensional hyper-

cube [−1, 1]d, and we will use cubic splines, rather than (global) polynomials for

interpolation.

4.6.1 Full grid interpolation

First we consider a method for interpolation for a one-dimensional function f : R→
R. We evaluate f(.) at ml points s1, . . . , sml

and write

U l(f) =

ml∑
j=1

f(sj)a
l
j , (4.1)

where the alj are basis functions. The approximate interpolated value of f(.) at any

point x is then given by U l(f)(x). A very simple case is given by piecewise constant

interpolation, in which case alj(x) is an indicator that the closest interpolation point

to x is sj . In Section 4.6.3, we describe how cubic splines may be written in this

form.

Here l denotes the level of approximation, and we suppose that the set of

evaluation points is nested so that at level l, we simply use the first ml points of a
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fixed set of evaluation points

S = {s1, s2, . . .}.

We assume that m1 = 1, so at the first level of approximation, only one point is

used, and ml = 2l − 1 for l > 1, so there is an approximate doubling of the number

of points when the level of approximation is increased by one.

The full grid method of interpolation is to take mlj points in dimension j,

and compute f(.) at each possible combination of those points. We write

(U1 ⊗ . . .⊗ Ud)(f) =

ml1∑
j1=1

. . .

mld∑
jd=1

f(sj1 , ..., sjd)
(
al1j1 ⊗ . . .⊗ a

ld
jd

)
,

where

(al1j1 ⊗ . . .⊗ a
ld
jd

)(x1, . . . , xd) = al1j1(x1)× . . .× aldjd(xd).

Thus, in the full grid method, we must evaluate f(.) at

d∏
j=1

mlj = O

 d∏
j=1

2lj

 = O
(

2
∑
lj
)

points. This will not be possible if
∑d

j=1 lj is too large.

4.6.2 Sparse grid interpolation

In order to construct an approximate representation of f(.) in reasonable time, we

could limit the sum
∑d

j=1 lj used in a full grid to be at most q, for some q ≥ d.

If q > d, there are many possibilities for ‘small full grids’ indexed by the levels

l = (l1, . . . , ld) which satisfy this constraint. A natural question is how to combine

the information given by each of these small full grids to give a good representation

overall. Such a representation may be built up sequentially, by specifying a method

to update an approximate representation of f(.), given the values of f(.) evaluated

at each new small full grid of points.

For a univariate function f(.), let

∆l(f) = U l(f)− U l−1(f)

=

ml−1∑
j=1

f(sj)
[
ajl − a

j
l−1

]
+

ml∑
j=ml−1+1

f(sj)a
j
l ,

50



● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

(a) Full grid

●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ● ●

● ● ●

● ● ●

(b) Sparse grid

Figure 4.3: A full and sparse grid, in two dimensions.

for l > 1, and ∆1 = U1. Then ∆i(f) gives the quantity we should add to the

approximate storage of f(.) at level l− 1, to incorporate the new information given

by the knots added at level l.

Writing k = q − d, the sparse grid interpolation of f(.) is given by

[f ]k =
∑

l:
∑
li≤d+k

(∆l1 ⊗ . . .⊗∆ld)(f).

In the sparse grid method using all small full grids with
∑
li ≤ d + k, we

must evaluate f(.) at O
(
dk+1

)
points, which allows approximate storage for much

larger dimension d than is possible using a full grid method.

Figure 4.3 gives a two-dimensional example of a full grid with l1 = l2 = 3,

and the corresponding sparse grid with k = 2, which contains full grids indexed by

levels (l1, l2) such that l1 + l2 ≤ 4.

4.6.3 Interpolation using cubic splines

In order to make use of these interpolation methods, it is first necessary to write

the one-dimensional interpolant in the form (4.1). We first consider how to do this

for the cubic spline interpolant. This requires a little work, since the obvious form
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of cubic splines is

finterp(x) =


α0 + β0(x− s1) + γ0(x− s1)2 + δ0(x− s1)3 if x < s1

αi + βi(x− si) + γi(x− si)2 + δi(x− si)3 if x ∈ [si, si+1)

αn + βn(x− sn) + γn(x− sn)2 + δn(x− sn)3 if x ≥ sn.

Stacking the coefficients as c = (α0, β0, γ0, δ0, α1, β1, γ1, δ1, . . . , αn, βn, γn, δn), we

may write c = Dy, where yi = f(si) for a 4(n + 1) × n matrix D. The form of D

varies according to the choice of end conditions. The method used to construct D

for natural cubic splines is given in Appendix A.

Writing bij(x) = 1 {x ∈ [si, si+1)} (x− si)j , for i = 2, . . . , n− 1, and b1j(x) =

1 {x < s1} (x − si)j , bnj(x) = 1 {x ≥ sn} (x − si)j , we may stack the original basis

functions as b(x) = (b00, b01, b02, b03, b10, b11, b12, b13, . . . , bn0, bn1, bn2, bn3). Then

finterp(x) = cTb(x) = [Dy]Tb(x) = yT [DTb(x)] =
n∑
i=1

f(si)ai(x)

if we write a(x) = DTb(x), so a is the set of basis functions we require for sparse

grid interpolation.

Barthelmann et al. (2000) use global polynomial interpolation for a function

defined on a hypercube, with Chebyshev knots. We prefer to use a spline-based

approach, since the positioning of the knots is less critical. The choice of knots is

discussed briefly in Section 4.6.4.

4.6.4 Choice of knots

We use sparse grid interpolation to store the function log ciz(.), which is a modifier

to a N(0,Ω) density. The function will be stored using a sparse grid at level k,

composed of small full grids with
∑

i li ≤ |Ni| + k. Each small full grid will be

constructed using a set of mli knots in each direction i. Since we have a standard

normal approximation for each direction, we use the same knots in each direction,

and choose these standard knots sl at level l to be ml quantiles of a N(0, τ2
k ) dis-

tribution. As k increases, we choose larger τk, so that the size of the region covered

by the sparse grid increases with k. However, the rate at which τk increases should

be sufficiently slow to ensure that the distance between the knots sk decreases with

k. Somewhat arbitrarily, we choose

τk = 1 +
k

2
,
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which appears to work reasonably well in practice. Appendix B gives a small nu-

merical investigation of the impact of the choice of τk on the errors in the sequential

reduction approximation to the likelihood.

4.7 Computational complexity of the sequential reduc-

tion algorithm

If the storage is done on a full grid with level l = k + 1 in each direction, or m =

2k+1− 1 points in each direction, the cost of stage i of the algorithm is O
(
m|Ni|

)
=

O
(
2k|Ni|

)
. The total cost of finding the likelihood is therefore O

(∑n
i=1 2k|Ni|

)
.

If the storage is done using a sparse grid composed of small full grids satis-

fying
∑

i li ≤ d+ k, the cost of stage i reduces to O(|Ni|k). In either case, the cost

will be large if maxi |Ni| is large.

The random effects may be removed in any order, so it makes sense to use the

ordering that allows approximation of the likelihood at minimal cost. This problem

may be reduced to a problem in graph theory: to find an ordering of the vertices

of a graph, such that when these nodes are removed in order, joining together all

neighbours of the vertex to be removed at each stage, the largest clique obtained at

any stage is as small as possible. This is known as the triangulation problem, and

the smallest possible value, over all possible orderings, of the largest clique obtained

at some stage is known as the treewidth of the graph.

Note. Treewidth is usually defined as one less than the size of this maximal clique.

We follow Jordan (2004) in our definition of treewidth.

Unfortunately, algorithms available to calculate the treewidth of a graph on

n vertices can take at worst O(2n) operations, so to find the exact treewidth may

be too costly for n at all large. However,

1. There are special structures of graph which have known treewidth. The sub-

graph formed by taking some set of nodes and all edges involving only those

nodes is called an induced subgraph. A hole in a graph is an induced

subgraph which is a cycle of length 4 or greater. A graph is called chordal

if it does not contain any holes. See Figure 4.4 for an illustration of these

properties. The treewidth of a chordal graph is the size of its maximal clique.

Furthermore, an elimination ordering achieving this treewidth can be found

quickly, in O(n+ e) time, where e is the number of edges in the graph.

2. Upper bounds can be found on the treewidth by finding elimination orderings

by certain heuristic algorithms, and finding the corresponding maximal clique
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(a) A hole, so the graph is not chordal (b) A chordal graph

Figure 4.4: Illustration of the notion of a chordal graph

in the graph at any step. See, for example, Bodlaender & Koster (2008) for

details of some of these algorithms.

3. Lower bounds can be found on the treewidth. See, for example, Bodlaender

& Koster (2010) for details of some algorithms.

In a typical case, where there is no special structure of the posterior de-

pendence graph which may be exploited, we first find a lower bound and an upper

bound on the treewidth. If this upper bound equals the lower bound, then we

have found the treewidth exactly, and take the elimination ordering corresponding

to that bound. If not, we might try some different methods for finding an upper

bound to see if a better bound can be found, before using an elimination ordering

corresponding to the best upper bound available.

Example 4.2. We return to the four-level random intercept model of Example 4.1.

The posterior dependence graph of one such model is shown in Figure 4.1b. The

graph is chordal, and its maximal cliques are triangles, so it has treewidth 3. This

result may be extended to an l-level random intercept model, which has posterior

dependence graph with treewidth l − 1.

Example 4.3. We return to a few of the examples of pairwise competition models

we have already seen. A star tournament on n players has treewidth 2. A star is a

special case of a tree: a connected graph with no cycles. Any tree has treewidth

2. An elimination ordering of the vertices which achieves this treewidth is given by

removing a leaf vertex at each stage — a vertex with degree 1 in the remaining

graph.

A complete tournament among n players has posterior dependence graph

which is a complete graph on n vertices. The treewidth of this graph is n, and so

the sequential reduction method does not provide a simplification of the likelihood

in this case.
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Figure 4.5: The posterior dependence graph after two different transformations in
Example 4.4

Example 4.4. Suppose that we have a number of observations each of n items,

where the distribution of an observation on item i depends on ηi, where

ηi = βTxi + bi.

We suppose that b = (b1, . . . , bn) ∼ N(0, σ2Ω(ρ)), where Ω(ρ) is a correlation matrix

with off-diagonal elements ρ. In all the examples given up to this point, the model

has been specified with independent random effects. In this case, in order to use

the sequential reduction method, we must first transform to a setting in which the

random effects are independent.

To do this, we look for a matrix A = A(σ, ρ), and a random effects vector

u ∼ N(0, I) so that Au ∼ N(0, σ2Ω(ρ)). Then we may write

η = Xβ +Au.

The non-zero components of the rows of A determine which random effects are

involved in each observation, which in turn determines the posterior dependence

graph for u. There are multiple choices for A and u, and the aim of the example is

to demonstrate that the choice of this transformation matters.

An obvious choice is to take A to be the Cholesky decomposition of σ2Ω(ρ),

so that ATA = σ2Ω(ρ), and A is upper triangular. In this case, if σ > 0 and

ρ > 0, the first row of A has no non-zero components, so every component of u is

involved in the first observation. The posterior dependence graph for u is therefore

a complete graph on n vertices, as shown in Figure 4.5a, which has treewidth n.

Now we consider a different transformation, using a vector of independent

random effects u of length n + 1. We let bi = σ1ui + σ2un+1 for i = 1, . . . , n, or
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equivalently let A be the (n+ 1)× n matrix with components

Aij =


σ1 if i = j

σ2 if j = n+ 1

0 otherwise,

where σ2
1 = 2ρσ2 and σ2

2 = (1 − 2ρ)σ2 are chosen to given Au the correct distri-

bution. Now ηi only involves two random effects: ui and un+1. The new posterior

dependence graph is shown in Figure 4.5b, and has treewidth 2.

Notice that Figure 4.5a gives the posterior dependence graph of Figure 4.5b,

after integrating out un+1. However, the optimal ordering is to remove un+1 only af-

ter removing all the other random effects. This example shows that it is important

to be careful about the method used to transform a model given with correlated

random effects into one with independent random effects. Often, models with corre-

lated random effects disguise a nested structure of a larger number of independent

random effects. In such situations, the model should be written directly in terms of

the full set of these independent random effects.

4.8 Using the sequential reduction method in practice

4.8.1 A program for the sequential reduction method

We have written code to implement one version of the sequential reduction method

in R (R Core Team, 2012). In order to do this, it was also necessary to write code

for sparse grid interpolation using cubic splines.

Example 4.6 gives a comparison of the sequential reduction method with an

importance sampling approximation. Part of that comparison is the total time taken

to maximise the likelihood approximation: using the ADMB package of Fournier

et al. (2012) to maximise an importance sampling approximation, and the program

developed here to maximise a sequential reduction approximation. As a comparison

of the methods themselves, as apposed to any particular implementation of them,

this is slightly unfair to the sequential reduction method, since the ADMB package

has been carefully designed to be as computationally efficient as possible. An equally

efficient implementation of the sequential reduction method may well be faster than

the program that we have developed and used here. Nonetheless, the comparison

turns out to be a favourable one for the sequential reduction method.
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4.8.2 Maximising the approximated likelihood

It is faster to obtain a sequential reduction approximation to the likelihood using

small k than it is with large k. For this reason, we first find the maximum of the

approximation to the likelihood with k = 0 (equivalent to maximising the Laplace

approximation to the likelihood), and then use the resulting estimator as a starting

point for the optimisation of the approximation to the likelihood with k = 2 (we

skip k = 1 since it typically gives similar results to k = 0). We continue in this

manner, increasing k and using the previous maximum as the starting point for the

optimisation, until the location of the maximum of the approximated likelihood has

stabilised, or until some maximum permissable level of approximation kmax has been

reached. Some ideas for modifications to this basic method are discussed in Section

4.10, which could potentially speed up the process of obtaining an approximation

to the maximum likelihood estimator.

The sequential reduction method as implemented in the program we have

developed and used here gives an approximation to the likelihood which is slightly

rough for parameter values which are very close together. For this reason, we use the

Nelder-Mead method for optimisation (Nelder & Mead, 1965), rather than a quasi-

Newton method, since numerical differentiation methods are unreliable in such a

setting.

4.8.3 Approximating the Hessian at the maximum

If we want to construct Wald-type hypothesis tests and confidence intervals, it is

necessary to have an approximation to the Hessian matrix of the log-likelihood at

its maximum. Since the sequential reduction approximation to the likelihood is not

entirely smooth, it will not be possible to obtain a good approximation the sec-

ond derivatives of the log-likelihood at its maximum using numerical differentiation

methods directly. Instead, we make use of having a program to do sparse grid inter-

polation. The log-likelihood is evaluated at a sparse grid of points surrounding the

maximum, and a cubic spline is fitted through these points. The Hessian is then

approximated with the second derivatives of this spline at its maximum.

It was shown in Section 3.1.5 that Wald-type hypothesis tests have poor

properties in some generalised linear mixed models, so we prefer to use likelihood

ratio tests where possible, which do not require this Hessian matrix.
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4.9 Examples

Example 4.5. We return to Example 3.2, and consider the asymptotic bias of

estimators resulting from various likelihood approximations in a repeated star tour-

nament. Recall Figure 3.3, showing that the Laplace and importance sampling

approximations (using a fixed sample t to find the approximation for each possible

observed tournament) both give estimators with a large asymptotic bias. Figure 4.6

shows the asymptotic bias in the estimators maximising the sequential reduction

approximation to the likelihood, for various values of k. As k increases, the range of

σ0 for which asymptotic bias is close to 0 becomes progressively larger. The sequen-

tial reduction approximation gets gradually better with k, which is far preferable to

the unstable convergence of the importance sampling approximation. Nonetheless,

the method is not as accurate as using the ‘manual’ simplification of the likelihood

described in Example 3.1. On the computer used here (a PC with a 3.4GHz Intel

Core i7-2600 processor), the sequential reduction approximation of the likelihood at

each point takes about 0.9 seconds for k = 2, 1.2 seconds for k = 3, 1.8 seconds for

k = 4 and 3.6 seconds for k = 5, compared with just 0.03 seconds for the manual

method. This suggests that improvements to the current version of the sequential

reduction method may be possible, to create a general method which behaves more

like the manual method in this special case.

Example 4.6. Consider observing a tournament with binary outcomes and struc-

ture as shown in Figure 4.7a. Suppose that there is a single observed covariate xi

for each player. A reasonable model for this tournament might be Pr(i beats j) =

Φ(λi − λj), where λi = βxi + σui, and ui ∼ N(0, 1). This is a Thurstone-Mosteller

model, as described in Section 2.2.2.

We consider one particular tournament with this tree structure, simulated

from the model with the moderately large parameter values β = 1.5 and σ = 1.5.

The covariates xi are independent draws from a Bernoulli(1
2) distribution. We aim

to maximise the likelihood, penalised by the bias reduction penalty described in

Section 3.1.6.

We compare the available options for approximating the likelihood. One

possibility is to use an importance sampling approximation. We use the ADMB

package (Fournier et al., 2012) to maximise the importance sampling approximation

to the penalised likelihood, and to output the Hessian at the maximum. From

this, we can construct approximated standard errors for the parameters. Table 4.1

shows the output of this process, for different numbers of samples, N , used in the

importance sampling approximation. The time taken by ADMB to maximise the
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Figure 4.6: The limit of estimators maximising sequential reduction approximations
to the likelihood, for various k, in a repeated star tournament with n = 50, as
R→∞. In each case the dotted line is y = x, representing the limit of a consistent
estimator.

(a) Tree tournament (b) Lizards tournament

Figure 4.7: Some tournament designs
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approximation to the penalised likelihood is also given.

Another option is to use the sequential reduction method to approximate the

likelihood. The posterior dependence graph of a tree tournament is a tree, so has

treewidth 2, as described in Example 4.3. Using sparse grid storage at level k, the

cost of approximating the likelihood will therefore be O(n2k). The results of opti-

mising the sequential reduction approximation to the penalised likelihood for this

observed tournament, using sparse grid storage for various levels of approximation

k, are also given in Table 4.1. Table 4.2 shows the average time required for each

likelihood approximation, for each k.

We also consider testing for β = 0 or σ = 0 by using a likelihood ratio

test, using the Laplace and sequential reduction approximations with bias reduction

penalty. The p-values for the test of σ = 0 have not been adjusted for the non-

standard asymptotic null distribution of the likelihood ratio test — see the discussion

in Section 3.1.5. Although a likelihood ratio test could also be constructed for the

importance sampling approximation, this method is not available in the ADMB

software package used to obtain the importance sampling estimators.

Figure 4.8 shows the trace of an importance sampling approximation to the

likelihood at its maximum (1.20, 1.06). Notice that the number of samples, N , used

in the approximation is plotted on a logarithmic scale, so that the approximation at

each value of N marked on the axis takes 10 times longer than the previous value

to compute. The sequential reduction approximations for different k are overlaid

on the same plot. The first point corresponds to k = 2, and its x-coordinate N2 is

chosen so that the time to maximise the likelihood using sequential reduction with

k = 2 is approximately the same as using ADMB with an importance sampling

approximation using N2 samples. The steps in the plot indicate an increase in the

value of k, from k = 2 to k = 5, and the positions are multiples of N2, where

the multiple is chosen according to time taken for each likelihood approximation, as

given in Table 4.2. There is no visible change at this scale in the sequential reduction

approximations for k = 4 and k = 5, so we do not increase k any further.

Example 4.7. Recall that in Example 3.5 it was shown that for a complete tour-

nament with a large number of players, the inference obtained from the Laplace

approximation is quite accurate. We return to that example again, this time to

demonstrate that we can use the sequential reduction method to detect the level of

adjustment of the Laplace approximation which is required in any given case.

First, we simulate a complete tournament with n = 20 players, with β = 1

and σ = 0.5. The is a relatively dense model, and we have already demonstrated that

the Laplace approximation gives inference close to the true likelihood in this setting.
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k Time for each likelihood approximation Number of evaluations at level k

2 1.3 seconds 61

3 1.6 seconds 37

4 2.4 seconds 37

5 4.2 seconds 33

Table 4.2: The average time to approximate the likelihood, for each value of k, in
the tree tournament described in Example 4.6.
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Figure 4.8: An importance sampling approximations to `(1.20, 1.06), plotted against
the number of samples, N , on a logarithmic scale. The sequential reduction ap-
proximations for different k are overlaid, with x-coordinates chosen to give a time
comparison between the two methods.
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We now show that it is possible to detect this using the sequential reduction method,

and so deduce that it is not necessary to increase k above 2 in this case. We choose

an example which is typical of the 100 cases simulated in Example 3.5, in terms of

the level of error in the likelihood ratio test statistic. We first maximise the Laplace

approximation to the likelihood, and find the corresponding confidence intervals for

β and σ. The Laplace estimate is (0.79, 0.45), with 95% confidence interval for β

of (0.03, 1.59), and for σ of (0.16, 0.92). We use the sequential reduction method

with k = 2 to improve the approximation to the likelihood, and maximise the

approximated likelihood once more, using the Laplace estimator as a starting point.

The resulting estimator is (0.79, 0.45), which is equal to the Laplace estimator to

two decimal places. This suggests that it may not be necessary to increase k any

further to give good inference, but the location of the estimate alone is not sufficient

to deduce this. Instead, we also recalculate 95% confidence intervals using the

sequential reduction method with k = 2. This gives a confidence interval for β of

(0.03, 1.59), and for σ of (0.16, 0.93), which again are very close to those obtained

using the Laplace approximation. This allows us to conclude that there is no need

to increase k any further.

Now we consider a sparser tournament: 19 repetitions of a complete tour-

nament with n = 5 players. This example is less dense than the previous one, but

not as sparse as the star tournament, where the Laplace approximation failed badly.

It is therefore unclear how much modification to the Laplace approximation will

be required. We repeat a similar procedure to that described above. The estimate

maximising the Laplace approximation is (1.03, 0.51). When we use the sequential

reduction method with k = 2, the new estimate is (1.04, 0.55). There has been a

moderate change in the estimator, so we now increase k to 3 to see if the estimate

stabilises. The resulting estimate is (1.04, 0.55), which is the same as the estimate

from k = 2 to two decimal places. We then check that the confidence intervals for

each parameter have also stabilised. For k = 2, we get a 95% confidence interval for

β of (0.45, 1.81), and for σ of (0, 1.09). For k = 3, we get a 95% confidence interval

for β of (0.45, 1.81), and for σ of (0, 1.08). We may deduce that the inference has

stabilised by k = 3, so it is unnecessary to increase k any further.

Example 4.8. Whiting et al. (2006) conducted an experiment to determine the

factors affecting the fighting ability of male flat lizards. They observed a tournament

consisting of 100 contests between n = 77 lizards. Various covariate information

was collected on each lizard, and the aim of the study was to create a model for the

fighting ability of a lizard, based on these covariates. The data are available in R

as part of the BradleyTerry2 package (Turner & Firth, 2010). This package allows
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analysis of pairwise competition models, both with and without random effects.

When random effects are present, inference is conducted by using the Penalised

Quasi Likelihood (PQL) of Breslow & Clayton (1993).

Whiting et al. (2006) assume a model with no random effects, so that the

ability of lizard i,

λi = βTxi,

is entirely determined by the value of some observed covariates, xi. This assumption

is unrealistic in practice, so Turner & Firth (2012) suggest the introduction of a

random effect for each lizard, letting

λi = βTxi + σui,

where ui ∼ N(0, 1). The model without random effects is a special case of this

model, where σ = 0.

Conditional on the abilities λ, Whiting et al. (2006) assume

Pr(i beats j|λi, λj) = logit−1(λi − λj).

After the addition of a normal random effect, it seems slightly more natural to

assume a probit link, so that

Pr(i beats j|λi, λj) = Φ(λi − λj).

The choice of link function is unlikely to make any real difference to the results,

after appropriate transformation of the parameter estimates.

The covariates included in the final model are the first (PC1) and third

(PC3) principal components of the spectrum of the throat, the head length and the

snout vent length (SVL) of each lizard. We consider fitting the model above using

those covariates. Two lizards have missing values in some of these covariates, so we

follow the suggestion of Turner & Firth (2012), and introduce a new covariate for

each of those lizards, to allow their abilities to be modelled separately. The first

row of Table 4.3 gives the estimators under the assumption of no random effects,

and Wald-type p-values for testing the hypothesis that each parameter is zero. The

second row provides the PQL estimators and the corresponding Wald type p-values,

found using the BradleyTerry2 package. This is a reproduction of the analysis given

in Turner & Firth (2012).

In order to use the sequential reduction method, we must first attempt to

find an ordering in which to remove the players, an ordering which will minimise
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the cost of the algorithm. The posterior dependence graph is not chordal, so more

work is required to find the treewidth. Methods to find upper and lower bounds

for the treewidth give that the treewidth is either 4 or 5. The upper bound gives

us an ordering which may be used to evaluate the likelihood at cost O(n5k), using

sequential reduction with sparse grid storage. The likelihood approximations took

on average 2.38 seconds for k = 2, 3.81 seconds for k = 3 and 9.42 seconds for

k = 4. The estimators from maximising the sequential reduction approximation to

the likelihood, with bias-reduction penalty, are given in Table 4.3. The p-values

from a (penalised) likelihood ratio test for the presence of each parameter are also

given. The estimators and p-values are both quite stable for all k ≥ 2. Even the

Laplace approximation gives reasonably good inference in this case. However, the

p-values from Wald tests based on PQL are highly inaccurate.

4.10 Some ideas for improving the method

The version of the sequential reduction method described in the last chapter, as

programmed in R by the author, gives a substantial improvement on other approxi-

mation methods in sparse models, and also works reasonably well for denser models.

There are, however, some areas in which the method, and the implementation of

it, could be improved. Getting rid of inefficiencies in the code to approximate the

likelihood has the potential to speed up the resulting program significantly. Some

more specific ideas for improvements to the method are now considered.

Problems for large variance parameters

The current version of the sequential reduction method to approximate the likelihood

sometimes fails completely at parameter values for which a variance parameter of

the random effect is very large. For instance, in the tree tournament of Example

4.6, the method often fails for σ > 3. For such large values of σ, the normal density

used as a basis for the sequential reduction method is a very poor approximation to

g(.|y, θ). An alternative baseline approximation may be useful in such cases.

Knot choice

Section 4.6.4 gives the method used to select knots to use for approximate storage.

This method uses the quantiles of a N(0, τ2
k ) distribution, where the default choice

for τk = 1 + k
2 . These choice was fairly arbitrary, and the numerical investigation

in Appendix B suggests that the default choice of τk may grow slightly too quickly
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with k. It would also be worth investigating knots which are not the quantiles of

a normal distribution. A better choice of knots could also help avoid problems in

approximating the likelihood at extreme parameter values. If a variance parameter

is large, it seems that the knots used should be closer together than those used for

approximating the likelihood for smaller values of the variance parameter. Further

work is needed to construct an improved default choice of knots, which may vary

smoothly with θ.

Maximising the approximated likelihood

Even if we had an entirely efficient version of the sequential reduction method to

approximate the likelihood, the question of how best to use the method to approx-

imate the location of the maximum of the true likelihood would remain. Section

4.8.2 describes how this is done in the current version of the program developed for

this work, using the estimate maximising the sequential reduction approximation to

the likelihood at level k as a starting point for optimisation of the approximation at

level k+ 1. This sort of strategy seems sensible, but there are some inefficiencies in

the current method:

1. It should not be necessary to run the optimisation algorithm to completion at

each stage k, since the location of the maximiser of the approximation only

needs to be known roughly, to be used as a starting point for the next stage.

As k gets larger, we should seek the location of the maximum with higher

precision.

2. We should make more use of what we have learnt about the shape of the

true likelihood surface based on previous iterations. For instance, it would

be useful to be able to identify regions of the parameter space which we may

be confident have very low likelihood compared to the maximum. If such a

region had been identified at level k, it would not be necessary to revisit this

part of the parameter space again at level k + 1. To determine these regions,

we would need an estimate of the error in the approximation at level k of the

difference in the likelihood between any two points.

Profile likelihood confidence intervals

We would like to use the profile likelihood to construct more reliable confidence in-

tervals of a parameter θi. To find the profile likelihood, we hold θi fixed, and seek to

maximise the likelihood over the remaining components of θ. The maximiser of this
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constrained likelihood, θ̂(θi), may be found in a similar way to the unconstrained

maximum likelihood estimator, starting by maximising the Laplace approximation,

and gradually increasing the level of approximation, using the estimate from the

previous level as a starting point. In the method currently implemented, we spec-

ify a level of approximation, k, used to construct the profile likelihood confidence

interval, and stop the algorithm to approximate θ̂(θi) when that level is reached.

The approximation to the profile likelihood is then given by the level-k sequential

reduction approximation to the likelihood at θ̂(θi).

We do not necessarily need a good approximation to the profile likelihood

value at any given point, but only to the shape of profile likelihood surface. The

method currently used in our program does not use any information about the shape

of the profile likelihood which could be gained using lower levels of approximation.

Even for small k, there are many points θi which we could confidently place either

inside or outside a confidence region of some given coverage. It is only those points

around the boundary for which we need a more accurate approximation of the profile

likelihood surface. Even then, if the set of points which we cannot confidently classify

as either inside or outside the confidence region is small, simply including them in

the region will only result in a slightly conservative confidence region for θi. Again,

the availability of an estimate of the error in the sequential reduction approximation

would be very useful here.

It is no longer the precise location of θ̂(θi) which concerns us, but rather

the value of the likelihood at that point. This means that it is unnecessary for

the optimisation procedure to spend a long time finding the precise location of

the maximum, if the maximum value of the approximated likelihood has already

converged to within an acceptable tolerance.

In the current version of our program, it is too time consuming to find profile

likelihood confidence intervals if the number of parameters is moderately large. For

example, in the lizards tournament of Example 4.8, it was only possible to compute

the profile likelihood at a single point for each parameter, in order to test for the

necessity of including each term in the model. It would be useful to obtain a full

confidence interval for each parameter. Improvements to the methods both for

approximating the likelihood, and for finding profile-likelihood confidence intervals

based on those approximations, could help to achieve this goal.

In cases where finding a profile-likelihood confidence interval for each pa-

rameter remains prohibitively expensive, an alternative would be to store the log-

likelihood at a sparse grid of parameter values, and use an approximated log-

likelihood surface, found by interpolating between these points, to compute ap-
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proximate profile-likelihood confidence intervals.

Error estimation in the sequential reduction method

In order to improve the methods for maximising the approximated likelihood, it

would be useful to have a method of estimating the error in the approximation to

the likelihood. We are interested in the shape of the log-likelihood surface, rather

than the value of the log-likelihood at any one point, so we might estimate the error

in the approximation of the difference `(θ)−`(θ̃) between the log-likelihood at θ, and

at some reference parameter value θ̃. To estimate the error in the approximation to

`(θ)− `(θ̃) found by using the sequential reduction method at level k, we could also

approximate the same quantity at level k−1, and use the difference between the two

approximations as a (conservative) estimate of the error of the level-k approximation.

4.11 Conclusions

The sequential reduction method described in this chapter allows a good approx-

imation to the likelihood to be found in many models with sparse structure —

precisely the situation in which currently used approximation methods perform the

worst. This is achieved by exploiting the dependence structure of the random effects

in the posterior distribution, and making full use of the factorisation of the non-

normalised posterior density which is implied by this structure. By rephrasing the

problem of approximating the likelihood as that of finding the normalising constant

of a non-normalised density with conditional independence structure represented

by an undirected graphical model, we are able to apply methods from graphical

modelling to approximate the likelihood.

We have written code in R to implement one version of the sequential reduc-

tion method. This method uses sparse grid interpolation to store a modifier to the

normal approximation used to construct the Laplace approximation. There was no

package available in R for sparse grid interpolation, so we developed our own code,

enabling cubic spline interpolation on a sparse grid in a fairly general setting. This

has many potential uses, not only in approximating the likelihood for a generalised

linear mixed model.

Little modification to the normal approximation used to construct the Laplace

approximation is required in models with dense structure, so it is possible to use

a sequential reduction method with sparse grid storage to get a sufficiently good

approximation to the likelihood to use for inference in a wide range of models. Fur-

thermore, it is possible to detect the level of modification, k, which is required in
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any particular case, by checking the stability of inference from the sequential reduc-

tion method. There is some scope for further improvements to the method, in order

reduce the time required to make reliable inference about the model parameters.
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Chapter 5

Robustness to model

misspecification

5.1 Introduction

In Chapter 2, generalised linear mixed models were introduced as an extension to

generalised linear models, allowing for extra heterogeneity between items through

the inclusion of random effects. Up until now, we have usually made the assumption

that these random effects are normally distributed, but there is often no good reason

to suppose that this should be true. It is therefore of interest to study the sensitivity

of inference to deviations from this assumed random-effects distribution.

In Section 5.2.1, we apply the asymptotic results reviewed in Section 3.1.1,

which provide a derivation of some well-known results on the limit and asymptotic

distribution of the maximum likelihood estimator under model misspecification.

These results tell us that the maximum likelihood estimator is typically not ex-

actly consistent under misspecification of the random-effects distribution, but they

do not give an indication of how large the asymptotic bias might be in practical

settings. A substantial amount of research has been conducted into these practi-

cal consequences of random-effects misspecification, and in Section 5.2.2 we review

some of the relevant literature.

In Section 5.3 we consider how the level of sparsity of a model affects the

susceptibility of the maximum likelihood estimator to random-effect misspecifica-

tion. We conclude that estimators of regression coefficients in models with sparse

structure are more sensitive to the assumed random-effect distribution than those

in dense models.

Moving to a more general framework, in Section 5.4 we consider the robust-
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ness of composite likelihood estimators (as introduced in Section 2.3.4) to model

misspecification. One motivation for the use of low-order marginal composite like-

lihoods is that they only require the specification of the distributions of some small

subsets of the data, rather than the entire distribution of the data. This means that

in some cases composite likelihood estimators have potential for increased robust-

ness over the full maximum likelihood estimator. In Section 5.4, we consider the

sort of setting in which such increased robustness holds.

We then return to the issue of robustness to misspecification of the random-

effects distribution in a generalised linear mixed model. It is shown that if a low-

order marginal composite likelihood is used for inference in a model with dense

structure, it can be inconsistent even though the maximum likelihood estimator is

consistent. This provides a warning that it should not be assumed that a composite

likelihood estimator will always be at least as robust to model misspecification as

the full maximum likelihood estimator.

5.2 The impact of misspecification of the random-effects

distribution

5.2.1 Asymptotics under independent replication

Suppose that we have a generalised linear mixed model, where the distribution of

the observations Y = (Y1, . . . , Ym) depends on the linear predictor

η = Xβ + Z(ψ)u,

where β and ψ are unknown parameters, u = (u1, . . . , un), and we model the ui as

independent N(0, 1) variables.

Now suppose that each ui does not actually have N(0, 1) distribution, but

instead has some other distribution, with density fu(.), where E(ui) = 0 and

Var(ui) = 1. We assume that the rest of the model is correctly specified, and

that we are primarily interested in the quality of inference made about β, which has

true value β0.

In order to study the asymptotics of the maximum likelihood estimator un-

der misspecification, we return to the results reviewed in Section 3.1.1, which give

the limit and asymptotic distribution of an estimator found by solving an estimat-

ing equation, under independent replication. We can use these general results to

derive the limiting distribution of the maximum likelihood estimator under model

misspecification, giving the well-known results of White (1982).
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If we write ˜̀(θ|y) for the log-likelihood of θ under the (incorrect) assump-

tion of normal random effects, and ũ(θ|y) = ∇θ ˜̀(θ|y) for the corresponding score

function, then Theorem 1 tells us that, as the number of independent replications

R→∞, the maximum (misspecified) likelihood estimator θ̃R, tends towards a value

θ∗ which solves

E [ũ(θ|Y)] = 0,

where the expectation is taken over the true distribution of Y.

If we write

H̃(θ) = E [−∇θũ(θ|Y)]

and

J̃(θ) = E
[
ũ(θ|Y)[ũ(θ|Y)]T

]
,

then Theorem 2 tells us that

√
R(θ̃R − θ∗)→d Np

(
0, H̃(θ∗)−1J̃(θ∗)[H̃(θ∗)T ]−1

)
as R→∞. Under misspecification, the second Bartlett identity no longer holds, so

we may not simplify the variance of this limiting distribution.

When can as estimator of β, or inference about β more generally, said to

be robust against misspecification of the random-effects distribution? There are

various properties which may be of interest:

1. Consistency. Does the estimator of β still tend towards β0 as the amount of

information in the data increases? The estimator will be consistent if β∗ = β0.

2. Efficiency. Does the estimator of β have the same asymptotic variance as if

we had correctly specified the random-effects distribution? This will be the

case if [G̃(θ∗)−1]ββ = [I(θ0)−1]ββ , where I(θ) is the Fisher information matrix

under the correctly specified model, and G̃(θ∗) = H̃(θ∗)T J̃(θ∗)−1H̃(θ∗) is the

Godambe information matrix under the misspecified model.

3. Correct distribution of test statistics. Is the assumed asymptotic distribution

of test statistics for β still valid under the misspecification of the random-

effects distribution? For this to be true, in addition to requiring that β∗ = β0,

we need the estimate of the variance of β̂ (found by using the misspecified

likelihood) to be accurate. This will be the case if the relevant component of

the inverse of the Godambe information matrix, [G̃(θ∗)−1]ββ , is equal to the

respective component of the inverse information matrix of the misspecified

likelihood, [H̃(θ0)−1]ββ .

73



Often, under misspecification of the random effects, these properties will not hold

exactly. Instead, we check whether the impact of misspecification is small. For

instance, if an estimator is inconsistent, but has small asymptotic bias, the practical

consequences of this bias will often be small.

In the case in which assuming the misspecified model leads to an incor-

rect estimate of the variance of β̂, standard test statistics do not have their usual

asymptotic distributions, and various modified versions have been proposed. For

instance, Kent (1982) studies the properties of the likelihood ratio test under model

misspecification, and proposes a modified version which has the usual chi-squared

distribution. However, this modification requires estimation of the asymptotic vari-

ance of the maximum likelihood estimator under misspecification, G̃(θ∗)−1. If the

data consists of a large number of independent replications, it will be fairly easy

to obtain such an estimate. However, we also consider some cases with no inde-

pendent replication, in which G̃(θ∗) becomes difficult to estimate. This is related

to the problem of how to construct versions of test statistics based on a composite

likelihood, as discussed briefly in Section 3.1.5.

5.2.2 Review: sensitivity to random-effects distribution

Neuhaus et al. (1992) consider the impact of misspecification of the random-effect

distribution on inference in a two-level random intercept model, with binary re-

sponse. In this case, with a fixed number of observations in each cluster, the maxi-

mum likelihood estimator is shown to be inconsistent as the number of items tends

to infinity, but an approximation to the limiting value shows that the asymptotic

bias is usually small. Many other authors have studied the impact of misspecifica-

tion of the random-effect distribution in a two-level model. McCulloch & Neuhaus

(2011) give a review of a large number of such studies, and conclude that the asymp-

totic bias under misspecification of the random-effect distribution results is typically

small, unless the misspecification is quite severe. Some examples of cases when the

asymptotic bias may be moderately large are if the true random-effect distribu-

tion is binary, with a large variance (Agresti et al., 2004), or when the variance of

the true random-effect distribution varies with the observed covariates (Heagerty

& Kurland, 2001). An exception to this is when estimating an intercept, when the

asymptotic bias can be quite large, for only moderate departures from the assumed

random-effects distribution (Heagerty & Kurland, 2001).

Some authors have also considered the impact of misspecification on efficiency

or on the validity of standard hypothesis tests, although the body of work in these

areas is far smaller than that for the asymptotic bias. Zhang & Davidian (2001)
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investigate the impact of misspecification on efficiency in a linear mixed model, and

find that although the asymptotic bias of the maximum likelihood estimator is very

small, there is some increase in the variance of the estimator due to misspecification.

Litière et al. (2008) discuss problems with hypothesis testing, concluding that

although the asymptotic bias of regression coefficients is typically small, the power

and type I error rate of tests are severely affected by misspecification. Verbeke &

Lesaffre (1997) consider modified test statistics based on an approximation to G̃(θ∗),

which are shown to offer a great improvement on standard test statistics. However,

if there is no independent replication in the data, it may not be easy to obtain a

good approximation to G̃(θ∗).

Most of these studies use a fixed model structure, and examine the effect

of varying the true random-effect distribution. In Section 5.3 we consider how the

model structure itself could affect the sensitivity of inference to fixed changes in the

random-effects distribution.

5.2.3 Review: testing for non-normality of random effects

If it is possible that the incorrect specification of the random-effects distribution

could have serious consequences for inference, then it makes sense to check if there

is any evidence in the data to suggest that such a misspecification has occurred.

In the context of a linear mixed model, Lange & Ryan (1989) suggested estimating

the values of each of the random effects u1, . . . , un, after fixing θ at the maximum

likelihood estimate θ̂, and checking the distribution of these fitted values against the

supposed normal random-effects distribution. In the case where there is a different

amount of information available on each random effect, they suggest weighting the

estimated random effects to reflect the variance of each estimated random effect.

However, Verbeke & Lesaffre (1996) consider the quality of the estimates of the

random effects in a linear mixed model, and show that there is often substantial

shrinkage towards the supposed distribution, making it hard to detect deviations

from the assumed distribution by examining these fitted values alone. Jiang (2001)

explicitly discusses the role of the sparsity of the model in such methods, and con-

cludes that they can only be expected to be successful if the amount of information

available in the data on each random effect is large.

Instead of testing for non-normality, it is possible to fit a model with a

more flexible random-effect distribution. For instance, Verbeke & Lesaffre (1996)

suggest using a finite mixture of normal distributions in place of a single normal

distribution. There is a tradeoff between robustness and consistency inherent in

all such approaches, since the more parameters there are in the model, the more
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difficult it becomes to estimate those parameters well. Thus, if there is no evidence

in the data to suppose that the normal random-effects distribution is a poor fit, it

seems preferable to use this instead of some more complicated distribution.

Verbeke & Molenberghs (2013) suggest checking for non-normality of the

random-effect distribution using the gradient function, a statistic which may be used

to check whether using a finite mixture of normal distributions would substantially

improve the model fit. In the case where a single normal distribution fits well,

the gradient function is close to 1, otherwise it is substantially larger than 1. One

difficulty in this approach is that there is no formal test provided to determine how

much larger than 1 the gradient function must be in order to reject the hypothesis

that the random effects have a normal distribution.

5.2.4 Review: linear models with non-normal errors

We will show later than in a model with dense structure, misspecifying the random-

effects distribution is asymptotically equivalent to misspecifying the distribution of

the error term in a linear model. It is therefore useful to study the robustness of

inference in a linear model to such misspecification.

Suppose that we have n observations η1, . . . , ηn, with

ηi = βTxi + σui,

where ui are uncorrelated errors, with mean E(ui) = 0, and variance Var(ui) = 1.

Making no further assumption about the form of ui, the Gauss-Markov theorem

states that the ordinary least squares estimator of β is unbiased, and has the lowest

variance of all unbiased estimators of β which are linear in η. If we make the as-

sumption that ui ∼ N(0, 1), the maximum likelihood estimator of β is this ordinary

least squares estimator.

So, if assume that the error distribution is normal, then even if this as-

sumption is false, the maximum likelihood estimator is consistent as n → ∞. The

Gauss-Markov theorem does not guarantee that the estimator will be entirely effi-

cient, only that it is at least as efficient as any estimator which is linear in the data.

However, in practice the estimator often retains high efficiency.

It is not necessarily the case that an estimate of the variance of β̂, constructed

assuming the misspecified model were correct, is equal to the true variance of β.

This means that standard test statistics no longer have their assumed asymptotic

distributions, and modified versions are required.

Alternatively, we may check the assumed distribution of the error ui by
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examining the fitted residuals

ûi = ηi − β̂Txi

to check that they appear to be normally distributed, and that their distribution

does not vary with xi.

5.3 The impact of model structure on robustness

5.3.1 Two-level models

To investigate the effect of sparsity on the sensitivity of inference to the assumed

random-effect distribution, we first consider a simple two-level model. Suppose that

there are mi observations y(i) = (yi1, . . . , yimi) on each of n items i = 1, . . . , n. The

distribution of Yij depends on ηi = βTxi + σui, where ui are independent random

effects, with density fu(.). We suppose that E(ui) = 0 and Var(ui) = 1. The model

becomes more dense as the number of observations on each item, mi, increases. We

want to study the degree of sensitivity of the inference about β to the specification

of fu(.), and the impact of the sparsity of the model on this sensitivity.

The likelihood for θ = (β, σ) is given by

L(θ|y) =
n∏
i=1

Li(θ|y(i)),

where

Li(θ|y(i)) =

∫ ∞
−∞

mi∏
j=1

fy(yij |ηi = βTxi + σui)

 fu(ui)dui.

We now consider the behaviour of Li(θ|y(i)) as mi increases.

Intuitively, for large mi, it should possible to obtain an estimate of the value

of the linear predictor ηi from the data y(i), which will be close to the true value η0
i ,

whatever the assumed distribution for ui. This means that for sufficiently large mi,

inference given the data y(i) should be similar to the inference we would obtain if

we were given the true value η0
i of each linear predictor ηi. Thus, for large mi, the

problem is reduced to studying the impact of incorrectly assuming that the errors

in a linear model are normally distributed, as reviewed in Section 5.2.4. We now

provide some more detail to further justify this argument.

We first reparameterize the integral, to write the likelihood as an integral
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over ηi. Let

gi(ηi|y(i), θ) =

mi∏
j=1

fy(yij |ηi)

 1

σ
fu

(
ηi − βTxi

σ

)
,

so that

Li(θ|y(i)) =

∫ ∞
−∞

gi(ηi|y(i), θ)dηi.

We may think of gi(.|y(i), θ) as a non-normalised posterior density for ηi, given a

prior 1
σfu(ηi−β

Txi

σ ) which shrinks ηi towards βTxi. Provided that σ > 0, as mi

increases, the
∏mi
j=1 fy(yij |ηi) term, which does not depend on θ, dominates the

prior, so that the maximiser of gi(.|y(i), θ) over ηi, η̂i(θ), loses its dependence on θ,

and tends towards its true value η0
i = βT0 xi + σ0u

0
i .

As mi increases, gi(.|y(i), θ) becomes well approximated by a normal density

about η̂i(θ), and the relative error in the Laplace approximation tends to zero.

Writing `i(θ|y(i)) = logLi(θ|y(i)), as mi →∞,

`i(θ|y(i)) = log gi(η̂i(θ)|y(i), θ) +
1

2
logHθ(η̂i(θ))−

1

2
log 2π + o(1),

where

Hθ(ηi) =
∂2

∂η2
i

log gi(ηi|y(i), θ).

So, for any two distinct θ1, θ2, the difference in log-likelihoods `i(θ1|y(i))−`i(θ2|y(i))

is equal to

log gi(η̂i(θ1)|y(i), θ1)− log gi(η̂i(θ2)|y(i), θ2) +
1

2
logHθ1(η̂i(θ1))− 1

2
logHθ2(η̂i(θ2)) + o(1)

= log gi(η
0
i |y(i), θ1)− log gi(η

0
i |y(i), θ2) +

1

2
logHθ1(η0

i )−
1

2
logHθ2(η0

i ) + o(1)

since for any θ, η̂i(θ)→p η0
i as mi →∞. But

Hθ2(ηi)

Hθ1(ηi)
=

1
mi

{∑mi
j=1

∂2

∂η2i
log fy(yij |ηi) + ∂2

∂η2i
log
[

1
σ2
fu

(
ηi−βT

2 xi

σ2

)]}
1
mi

{∑mi
j=1

∂2

∂η2i
log fy(yij |ηi) + ∂2

∂η2i
log
[

1
σ1
fu

(
ηi−βT

1 xi

σ1

)]} →p 1

as mi →∞, so

`i(θ1|y(i))− `i(θ2|y(i)) = log gi(η
0
i |y(i), θ1)− log gi(η

0
i |y(i), θ2) + o(1)

= log

[
1

σ1
fu

(
η0
i − βT1 xi
σ1

)]
− log

[
1

σ2
fu

(
η0
i − βT2 xi
σ2

)]
+ o(1).

Up to the o(1) term, this is exactly the difference in log-likelihoods which
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would be obtained if we had observed ηi directly, from the linear model ηi = βTxi+

σui, where ui is assumed to be a sample from a distribution with density fu(.). In

this linear model setting, the impact of the distribution of the error term has been

well studied, and was reviewed in Section 5.2.4. The maximum likelihood estimator

of β remains consistent as n → ∞, even if fu(.) is misspecified. Returning to the

two-level model, this means that if mi is the same for all items i, the asymptotic

bias in the estimator of β will tend to 0 as mi →∞.

5.3.2 A numerical example

We now give a simple numerical example to demonstrate the impact of increasing

mi on the maximum likelihood estimator in a two-level model.

Example 5.1. Consider making mi repeated observations on each of n items i =

1, . . . , n, each of which has a binary covariate xi associated with it, where xi ∼
Bernoulli(1

2). Suppose that each observation is binary, and that

Pr(Yij = 1|α, β, σ, ui, xi) = Φ(α+ βxi + σui),

where we suppose ui ∼ N(0, 1). We start with a slightly unrealistic example, which

nonetheless provides some insight. Instead of treating σ as an unknown parameter of

interest, we fix it at some constant value σ̃. We suppose that in truth, ui ∼ N(0, 1)

as assumed, but that σ = σ0 6= σ̃, and consider the impact of this misspecification.

Suppose that σ̃ = 1, σ0 = 0.5, α0 = 0.5, and β0 = 1. The limits of α̂

for different mi are given in Table 5.1a, and the limits of β̂ in Table 5.1b. The

asymptotic variance of the estimators of each parameter are also given, both under

correct model specification σ = σ0 and under misspecification σ = σ̃. We also give

the value of the asymptotic variance which would be obtained if the misspecified

model were assumed to be true. If this is different from the true variance under

misspecification, the conclusions of hypothesis tests may by invalid. As mi increases,

the asymptotic bias in the estimator diminishes, and the variance of the estimator

under misspecification converges towards that under correct model specification.

However, the estimated variance is larger than the true variance of the estimator.

In Section 5.5, we consider the model used in Example 5.1 again, but with

some more realistic deviations from the assumed random-effects distribution.
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Correct model Misspecified model
mi Limit Variance Limit Variance Estimated variance

α0

[
I−1(θ0)

]
11

α∗
[
G̃−1(θ∗)

]
11

[
H̃−1(θ∗)

]
11

2 -0.50 7.24 -0.57 9.33 10.69

5 -0.50 3.43 -0.56 4.32 6.40

10 -0.50 2.16 -0.54 2.58 4.94

20 -0.50 1.53 -0.52 1.71 4.22

50 -0.50 1.14 -0.51 1.21 3.81

100 -0.50 1.02 -0.51 1.04 3.68

200 -0.50 0.95 -0.50 0.96 3.61

(a) Inference for α

Correct model Misspecified model
mi Limit Variance Limit Variance Estimated variance

β0

[
I−1(θ0)

]
22

β∗
[
G̃−1(θ∗)

]
22

[
H̃−1(θ∗)

]
22

2 1.00 14.48 1.14 18.33 21.18

5 1.00 6.87 1.11 8.69 12.82

10 1.00 4.33 1.08 5.15 9.88

20 1.00 3.05 1.05 3.42 8.45

50 1.00 2.29 1.02 2.41 7.62

100 1.00 2.03 1.01 2.09 7.35

200 1.00 1.90 1.01 1.93 7.22

(b) Inference for β

Table 5.1: Inference under misspecification of σ in a two-level model
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5.3.3 Other generalised linear mixed models

The same sort of argument will apply to other generalised linear mixed models.

As the amount of information available on each random effect increases, the im-

pact of the specification of fu(.) on the maximum likelihood estimator shrinks. The

maximum likelihood estimator will be consistent in the limit as both the number

of random effects, and the amount of information available per random effect, si-

multaneously tend to infinity. In sufficiently dense models, the impact of model

misspecification on the maximum likelihood estimator should therefore be small.

However, in sparse models, the maximum likelihood estimator may be considerably

more sensitive to the random-effects distribution. We demonstrate this sensitivity

using a pairwise competition model with sparse structure.

Example 5.2. Consider a binary repeated star tournament, with three players in

each star. The structure of this model is shown in Figure 3.10a on page 33. Notice

that there are only 2 observations for every 3 random effects, so this model is sparser

than the two-level model, where there were mi ≥ 2 observations for each random

effect i. Suppose that each player has a binary covariate, simulated as independent

draws from a Bernoulli
(

1
2

)
distribution. We assume that Pr(i beats j) = Φ(λi−λj),

where

λi = βxi + σui,

and ui ∼ N(0, 1). As in Example 5.1, suppose that ui really are N(0, 1) samples, but

we fix σ at some constant value σ̃ 6= σ0. Table 5.2 gives the limit of the maximum

likelihood estimator of β, when β0 = 1 and σ0 = 0.5, for various values of σ̃. It also

gives the asymptotic variance of the estimator, which grows with σ̃. The estimated

asymptotic variance is also given. In this model, this estimated variance is a good

approximation to the true variance of the estimator.

Limit Variance Estimated variance

σ̃ β∗ G̃−1(β∗) H̃−1(β∗)

0.1 0.82 2.14 2.06

0.2 0.85 2.26 2.19

0.4 0.94 2.75 2.73

0.5 = σ0 1.00 3.12 3.12

0.6 1.07 3.58 3.60

1 1.40 6.23 6.32

1.5 1.88 11.45 11.53

Table 5.2: Inference under misspecification of σ in a repeated star tournament.
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Example 5.3. We consider exactly the same type of misspecification as used in

Example 5.2, but now suppose that we have R repetitions of a complete tournament

among n players, for various values of n ≥ 10. These tournaments are much denser

than the repeated star tournament of Example 5.2, and we want to investigate

how this change in model structure affects the asymptotic bias of the maximum

likelihood estimator of β. We recall from Example 3.5 that inference from the true

likelihood is very well approximated by inference from the Laplace approximation

to the likelihood in a complete tournament between a large number of players, so

we use the Laplace approximation in place of the full likelihood here.

We simulate Nn tournaments for each n ∈ {10, 20, 40, 100}, with the ability

of each player simulated as

λi = β0xi + σ0ui,

where xi ∼ Bernoulli
(

1
2

)
and ui ∼ N(0, 1). We (wrongly) suppose that

λi = βxi + σ̃ui,

and try to estimate β. We take the number of simulations Nn large enough that we

can be confident of the limiting value of the maximum likelihood estimator of β, as

R→∞.

Suppose that β0 = 1 and σ0 = 0.5, but σ̃ = 1. Under the same misspecifica-

tion, the limit of β̂ in the repeated star tournament of Example 5.2 was 1.40. The

limits of the Laplace estimator as R → ∞ for each repeated complete tournament

are given in Table 5.3. For n = 10, there is a small asymptotic bias in the estimator

even in the correct model. This is because the estimator is computed by maximis-

ing the Laplace approximation to the likelihood, rather than the true likelihood.

However, the magnitude of this bias is negligible compared to that induced by the

misspecification of σ.

As n increases, the limit of maximum likelihood estimator of β becomes

closer to β0. In this case, the variance of the maximum likelihood estimator under

misspecification tends towards the variance under correct model specification as n

increases. However, the estimated variance under misspecification is too large in

each case, which would make standard hypothesis tests too conservative.

Note. We have demonstrated that if there are R independent replications of a

complete tournament among n players, the asymptotic bias in β̂ tends to zero as n

grows. In fact, we do not need a growing number of independent replications in order

for this result to hold. To see this, note that a complete tournament among n players

contains within it
√
n tournaments, each with

√
n players. For a single replication
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Correct model Misspecified model
n Limit Variance Limit Variance Estimated variance Nn

β0 I−1(β0) β∗ G̃−1(β∗) H̃−1(β∗)

10 1.01 0.23 1.24 0.36 0.59 10000

20 1.00 0.08 1.13 0.10 0.23 5000

40 1.00 0.03 1.07 0.03 0.11 100

100 1.00 0.01 1.04 0.01 0.04 100

Table 5.3: Inference under misspecification of σ in a repeated complete tournament

R = 1, by an argument similar to those given in Section 3.2, the maximum likelihood

estimator of β will therefore be consistent as n → ∞, even under misspecification

of the random-effects distribution.

Note. In dense models, the Laplace, importance sampling and sequential reduc-

tion approximations to the likelihood will all give inference very close to the true

likelihood (see the discussion of Section 3.3). This means that the robustness of

the maximum likelihood estimator in a dense model is inherited by the estimators

maximising any of these approximations.

5.4 Robustness of composite likelihood estimators

5.4.1 Robustness in a marginal framework

Suppose that we observe a vector of (dependent) observations y = (y1, . . . , ym).

We might be confident in specifying a good model for the marginal distributions of

some subsets of data,
{
Y(s)

}K
s=1

, but be unsure about how to model the dependence

between these subsets. If we have to specify a full model for Y, we may end up

with a correct model for the marginal distribution of each Y(s), depending on a

‘marginal’ parameter θ, but an incorrect model for the whole vector of observations,

Y.

In such a setting, if we construct a marginal composite likelihood based on{
y(s)

}K
s=1

, then the corresponding estimator of θ will be consistent as the amount

of information on θ increases, since the model distribution for the subsets used to

construct the composite likelihood is correctly specified. There is, however, no guar-

antee that the maximum likelihood estimator will be consistent, since the likelihood

relies on the full, misspecified, distribution of Y. Such potential for increased ro-

bustness of a composite likelihood estimator is discussed by Varin et al. (2011) and

Xu & Reid (2011).
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Example 5.4. Suppose that Yi are binary responses, and that, marginally, we are

confident that

Pr(Yi = 1|b,xi) = Φ(bTxi)

for some parameter b, but that we are unsure about the dependence between Yi. In

such a setting, we could use the onewise likelihood

Lonewise(b|y) =
n∏
i=1

Pr(Yi = yi|b,xi)

to give a consistent estimator of b, irrespective of the true dependence structure of

Y.

A marginal composite likelihood gives potential for increased robustness in

situations where certain marginal distributions are correctly specified by the model,

but the full distribution is not. If the marginal distributions are themselves mis-

specified, the full distribution of Y must also be incorrect. From this, it is tempting

to conclude that a marginal composite likelihood estimator must always be at least

as robust to model misspecification as the full likelihood estimator, but this is not

the case. We will demonstrate this using a generalised linear mixed model, under

misspecification of the random-effects distribution.

5.4.2 Another view of marginal composite likelihood

Recall that we construct a marginal composite likelihood by taking a product of the

densities of some subsets of the observed data. It is possible to construct a new data

vector ỹ, with model density f̃(., θ), so that the likelihood for θ given ỹ is identical

to the composite likelihood for θ given y. To do this, we write ỹ = (y(s), s =

1, . . . ,K), and model the components indexed by different s as independent, with

Y(s) having the same marginal distribution as in the original model. The composite

likelihood estimator on observing y under the original model will be identical to the

full likelihood estimator on observing ỹ under the alternative model.

Note. It is not claimed that the inference about θ based on a composite likelihood

given y should be the same as the inference based on the full likelihood given ỹ.

Recall from Section 3.1.5 that adjustments must be made to standard test statistics

before they may be used for inference from a composite likelihood.

Example 5.5. Suppose we observe a complete tournament on n players, and con-

struct the pairwise likelihood based on this tournament. Then ỹ would consist of all
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3
(
n
3

)
pairs of matches involving a common player. Figure 5.1 gives ỹ for a complete

tournament with 4 players.

Example 5.6. We return to misspecification in a range of complete tournaments,

as in Example 5.3. Recall that the asymptotic bias in the maximum likelihood esti-

mator became smaller with n. Under the same misspecification, the limit of β̂ in the

repeated star tournament of Example 5.2 was 1.40. By the construction described

in Example 5.5, this will also be the limit of the pairwise likelihood estimator in

a repeated complete tournament, irrespective of the number of players, n, in each

complete sub-tournament.

For a complete tournament, as n → ∞, the maximum likelihood estimator

of β is consistent under the misspecification of σ, whereas the pairwise likelihood

estimator is inconsistent.

5.5 Some more realistic examples

All of the examples so far have involved fixing the parameter σ at an incorrect value

σ̃. In practice, this is unrealistic, and instead σ will be treated as an unknown

parameter, and estimated from the data. We now consider the impact of some more

realistic deviations from the assumed random-effects distribution in each case.

We first review the different model structures we will use.

Two-level model

Suppose that we have mi binary observations yi1, . . . , yimi on each item i = 1, . . . , n,

and that Pr(Yij = 1) = Φ(ηi), where ηi = α + βxi + σui. We suppose that ui ∼
N(0, 1), and α, β and σ are unknown parameters, which we must estimate. We

consider various different values of mi ∈ {2, 5, 10, 20, 50}.

Pairwise competition models

Suppose that we observe a tournament between players as in Examples 5.2 and 5.3,

where there is a single covariate xi, taking values in {0, 1}, for each player. We

suppose that Pr(Yij = 1|λi, λj) = Φ(λi − λj), where we model the ability of each

player as

λi = βxi + σui,

where we suppose that ui ∼ N(0, 1), and β and σ are unknown parameters, which

we must estimate.
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(a) y

(b) ỹ

Figure 5.1: Construction of ỹ for a complete tournament among 4 players
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We consider various different tournament structures. The sparse example is

that of a repeated star tournament, with each sub-tournament being between three

players. We also consider repeated complete tournaments, with n ∈ {10, 20, 40, 100}
players in each sub-tournament.

5.5.1 Non-normal random effects

Suppose that, in truth, ui are independent and identically distributed, but have some

non-normal distribution. We consider the same alternative random-effects distribu-

tions as used in the simulations of Neuhaus et al. (1992). These are transformed

versions of t distributions with 5 or 3 degrees of freedom, and gamma distributions

with scale parameter 1, and shape parameter 6 or 0.5. The transformation is so that

in each case ui has mean 0 and variance 1. The densities of the various distributions

are shown in Figure 5.2.

For the two-level model, we suppose that α, β and σ take true values

α0 = −0.5, β0 = 1 and σ0 = 1. The (approximate) limits of the estimators of

α, β and σ for different values of mi are given in Table 5.4. The limits may be

slightly inaccurate for large mi, because of the accumulation of small inaccuracies

in numerical integration. The asymptotic bias in the estimator of β is extremely

small for all mi. In the cases in which the random effects have a non-symmetric dis-

tribution, some asymptotic bias is present in α̂, which shrinks as mi grows. Finally,

σ̂ has a moderate bias for the t3 and Γ(0.5, 1) cases. Again, this bias shrinks with

mi, but only very slowly.

In the repeated 3-star tournament, with β0 = 1 and σ0 = 1, the limit of β̂

was 1.01 for t5, 1.00 for t3, 0.98 for Γ(6, 1) and 0.87 for Γ(0.5, 1). In the Γ(0.5, 1)

case, which has the largest asymptotic bias of all the cases in the sparse tournament,

the limit of the maximum likelihood estimator in a repeated complete tournament

with 10 players is 0.98. In all the other cases, the asymptotic bias is very small even

in the sparse repeated 3-star tournament, so we do not consider the limits of the

estimator in the complete tournament.

In the cases we have considered so far, the asymptotic bias of β̂ has been

quite small. In order to find an example in which there is a moderately large bias in

β̂ for sparse models, we consider an example in which σ may vary with the observed

covariate xi.
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Figure 5.2: The densities of the true distributions for ui. The dotted line gives the
assumed N(0, 1) density.

mi α∗ β∗ σ∗
2 -0.50 1.00 0.90
5 -0.50 1.00 0.90
10 -0.50 0.99 0.90
20 -0.49 0.98 0.91
50 -0.50 1.00 0.91
100 -0.51 1.02 0.93

(a) t5

mi α∗ β∗ σ∗
2 -0.50 1.00 0.76
5 -0.50 1.00 0.76
10 -0.50 0.99 0.77
20 -0.49 0.99 0.78
50 -0.49 0.98 0.80
100 -0.49 0.99 0.81

(b) t3

mi α∗ β∗ σ∗
2 -0.56 1.00 0.97
5 -0.55 1.00 0.97
10 -0.55 1.00 0.97
20 -0.54 1.00 0.97
50 -0.53 0.98 0.99
100 -0.51 1.02 0.99

(c) Γ(6, 1)

mi α∗ β∗ σ∗
2 -0.63 1.00 0.75
5 -0.63 1.00 0.75
10 -0.61 1.00 0.76
20 -0.58 0.99 0.78
50 -0.52 0.99 0.80
100 -0.51 1.00 0.83

(d) Γ(0.5, 1)

Table 5.4: The limits of estimators for a repeated star tournament, with various
non-normal random-effect distributions. The true parameter values are α0 = −0.5,
β0 = 1 and σ0 = 1.

88



5.5.2 A binary, heteroscedastic random-effects distribution

Suppose that in truth

ui =

1 with probability 0.5

−1 with probability 0.5
.

Recall that ui enters the linear predictor through σui, where in the model σ is

assumed to be constant for all values of the observed covariate xi. We now suppose

that in truth σ = σ(xi) varies with xi, and study the case in which σ(1) = 1,

σ(0) = 0.1.

For the pairwise competition models, we assume that β has true value β0 = 1.

For a repeated star tournament with 3 players in each star, the limit of the maximum

likelihood estimator of β in this case is 0.85.

We also consider the limit of the maximum likelihood estimator of β in a

repeated complete tournament, with various choices for the number of players, n,

in each tournament. For n = 10, β̂ tends towards 0.89, for n = 20, 0.89, for n = 40,

0.96, and for n = 100, 0.97. As n increases, the asymptotic bias in the estimator of

β becomes smaller, although the convergence is quite slow. The limit of the pairwise

likelihood estimator remains fixed at 0.85, irrespective of n.

We also consider the two-level model with the same type of misspecification,

where α and β again have true values α0 = −0.5 and β0 = 1. The maximum

likelihood estimator for β is approximately unbiased for all mi in this case, but the

estimator for α (which has true value −0.5) tends towards −0.61 for mi = 2, −0.58

for mi = 5, −0.55 for mi = 10, −0.53 for mi = 20, and −0.51 for mi = 50. The

asymptotic bias in α̂ again shrinks as mi grows.

5.6 Conclusions

The level of sparsity of a generalised linear mixed model affects how sensitive the

maximum likelihood estimator is to the assumed random-effects distribution. In

models with sufficiently dense structure, a lot of information is provided by the

data about the true value of each random effect, and the assumed distribution from

which these random effects were drawn has little impact. The maximum likelihood

estimator has small asymptotic bias, and the variance of the estimator is often

similar to that of the estimator which would have been obtained using the true

random-effects distribution. However, if we assume that the model is correctly

specified, and use standard hypothesis tests, the resulting inference may be incorrect.
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In a model with dense structure, the maximum likelihood estimator itself is quite

robust to misspecification of the random-effects distribution, but the inference found

using the misspecified likelihood need not be. It is therefore worthwhile to attempt to

test for evidence of non-normal random effects, even for models with dense structure.

Methods for testing assumptions about the random-effects distribution which rely

on estimates of the values of the random effects will be reliable if the model is

sufficiently dense.

In a sparse model, the maximum likelihood estimator itself need not be

robust to misspecification, since in this case the data only provide a small amount

of information on each random effect, and the assumed distribution of the random

effects still has a sizeable impact on the likelihood. Furthermore, it is more difficult

to check for departures from the assumed normal random-effects distribution in a

sparse model.

These results have implications for the robustness of low-order composite

likelihood estimators. We can construct a new sparse dataset so that the composite

likelihood estimator given the original data is identical to the full maximum likeli-

hood estimator for the new data. In a model with sufficiently dense structure, the

maximum likelihood estimator is robust to model misspecification, but the compos-

ite likelihood estimator need not be. By only making use of marginal distributions

of small sets of components, a low-order composite likelihood typically discards a

large amount of available information on each random effect. This provides a coun-

terexample to the notion that a composite likelihood estimator must always be at

least as robust to model misspecification as the maximum likelihood estimator.

These findings have little practical impact for many possible deviations from

the assumed normal random-effects distribution, since in many cases the asymptotic

bias of the maximum likelihood estimator is very small, even in sparse models.

However, in some slightly more extreme settings, such as if the true random-effect

distribution may depend on the value of the observed covariates, the asymptotic bias

of the maximum likelihood estimator may be non-negligible in some sparse models.
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Chapter 6

Concluding remarks and further

work

6.1 The thesis in brief: an overview of the main findings

In this thesis we have discussed various aspects of inference in generalised linear

mixed models. Much of the thesis has focussed on alternatives and approximations

to the likelihood, for use in models in which there is no obvious simplification to the

high-dimensional integral involved in the likelihood. In Chapter 3, the performance

of some of these alternatives was examined, with particular attention paid to the

role that the sparsity of the model has on the success of each method. The Laplace

approximation to the likelihood was shown to fail in very sparse models, in which

little information is available on each random effect. However, the empirical evidence

of Example 3.5 suggests that inference based on the Laplace approximation will be

close to that from the true likelihood in models with m = O(n2) observations and n

random effects, even though in that setting the relative error in the approximation

to the likelihood at each point need not tend to zero as n→∞.

The other alternatives we considered for inference were also shown to fail in

some cases: in Example 3.2 the convergence of the importance sampling approxi-

mation was slow and unstable, and in Example 3.1 the pairwise likelihood estimator

which has been suggested for use in generalised linear mixed models suffered a large

loss of efficiency compared to the full maximum likelihood estimator.

Motivated by these results, in Chapter 4 a method was developed for ap-

proximating the likelihood of the parameters of a generalised linear mixed model,

designed to give a good approximation to the likelihood in sparse models, where

other approximation methods fail. This sequential reduction method exploits the
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dependence structure of the model by expressing the problem of finding the like-

lihood in terms of finding a normalising constant of a density with dependence

structure represented by an undirected graphical model. The method suggested

uses sparse grid interpolation to store modifiers to the baseline normal approxima-

tion used to obtain the Laplace approximation, in order to make approximating the

likelihood feasible in models with both sparse and dense structure. Several examples

were given to demonstrate the new method. Example 4.6 compared the performance

of the various alternatives in one model with sparse structure, and the sequential

reduction approximation to the likelihood was shown to have much faster and more

stable convergence than the importance sampling approximation in this case.

Despite the emphasis of the thesis on models in which the likelihood is in-

tractable, some of the findings remain relevant if the likelihood is easy to compute.

Wald-type hypothesis tests are commonly used in practice, yet we demonstrated in

Example 3.3 that they perform very badly in some cases. This finding is especially

relevant to situations in which the likelihood is tractable, in which it will typically

be easy to use likelihood ratio tests instead of Wald tests for hypothesis testing. In

sparse models, penalised forms of the likelihood have potential to substantially im-

prove the inference, and prevent infinite parameter estimates, although the penalty

described in Section 3.1.6 places insufficient penalty on some parameter values. In

Section 6.2.2 we give an idea for an improved penalty.

In Chapter 5, the robustness of inference to deviations from the assumed

random-effects distribution was studied. We concluded that the maximum likeli-

hood estimator will be robust to such deviations in models which are sufficiently

dense, but might not retain this robustness in sparse models. By using the equiva-

lence between a low-order composite likelihood estimator in a dense model and the

maximum likelihood estimator in an alternative sparse model, we were able to pro-

vide an example of a situation in which a low-order composite likelihood estimator

is not robust to misspecification of the random-effects distribution, even though the

maximum likelihood estimator is robust in the same setting.

6.2 Suggestions for further work

6.2.1 Quality of inference from the Laplace approximation

The numerical results of Example 3.5 show that the inference based on the Laplace

approximation to the likelihood is close to that from the true likelihood in one

particular model with m = O(n2) observations and n random effects. It is claimed

that this finding will extend to any model with dense structure, so that the inference
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from the Laplace approximation will become more similar to that from the true

likelihood as the number of random effects increases, provided that the number of

observations m increases more quickly than n. However, theoretical results are still

required to support this claim.

6.2.2 Penalised likelihoods for generalised linear mixed models

In Section 3.1.6, a penalised form of the log-likelihood for a generalised linear mixed

model was introduced, which is identical to the bias reduction penalty of Firth

(1993) in the case in which there are no random effects. However, we do not claim

that this penalty removes the first-order asymptotic bias in the maximum likelihood

estimator. In fact, the penalised likelihood estimator is no longer guaranteed to be

finite. Too small a penalty is imposed on parameter values where β is small but the

variance parameter ψ is large.

One idea for a better penalty is to subtract

p̃(θ) = pext(θ|µθ)− pext(0|µθ)

from the log-likelihood, where pext(θ|u) = −1
2 log

∣∣∣Iext(θ|u)
∣∣∣ is the bias reduction

penalty for the generalised linear model which would be obtained if u were known,

and could be treated as an additional observed covariate. We fix u at µθ, the

maximiser of g(.|θ,y) over u. In some preliminary investigations, this new penalty

appears to offer an improvement on the penalty introduced in Section 3.1.6, and the

estimator maximising the new penalised likelihood is guaranteed to be finite. How-

ever, more investigation into the performance of the suggested penalty is required

before its use should be advocated.

6.2.3 Improvements to the sequential reduction method

While the current version of the sequential reduction method has been shown to far

outperform existing approximation methods in models with sparse structure, there

is still potential for improvements to the method. Some ideas for such improvements

were listed in Section 4.10. A better choice of the knots for the sparse grid storage

could improve the accuracy of the approximation, particularly at extreme parameter

values. Potential improvements to the algorithm for maximising the approximated

likelihood were also given, which rely on having an estimate of the error in the

approximated difference in the log-likelihood at two parameter values. A suggestion

was given of how to estimate this error, using the difference in the approximated

values at consecutive levels of approximation, k.
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6.2.4 Sparse grid interpolation in R

In order to implement the sequential reduction method in R, it was necessary to

write code to perform cubic spline interpolation between a sparse grid of points.

Such code has many potential uses aside from approximating the likelihood, and

it would be useful to create an R package for sparse grid interpolation, in order to

make it easy for others to use these methods in practice.

6.2.5 Approximate likelihood ratio tests

In Chapter 3, we showed that Wald tests can behave very badly in some models

with sparse structure, and concluded that a likelihood ratio test should be used

instead wherever possible. It is more expensive to compute a likelihood ratio test

statistic than a Wald test statistic, and with the methods currently used to find and

optimise the sequential reduction approximation to the likelihood, it is infeasible to

find profile likelihood confidence interval for each parameter if there are more than a

few parameters in the model. For example, in the flat-lizards example (Example 4.8),

it is not currently computationally feasible to find full profile-likelihood confidence

intervals for all 7 parameters. Some ideas for improving the method to find profile-

likelihood confidence intervals were given in Section 4.10. One idea worth further

consideration is to find approximate profile-likelihood confidence intervals by using

an approximation to the log-likelihood surface found by interpolating between values

stored at a sparse grid of points. This is an example of a potential application of

sparse grid interpolation outside of its use in the sequential reduction method for

approximating the likelihood.

6.2.6 Asymptotic results on robustness

In Section 5.3.1, it was shown that the asymptotic bias in the maximum likelihood

estimator in a two-level model tends to zero as the number of observations on each

random effect increases, even if the distribution of the random effects is incorrectly

specified. Intuition and numerical studies indicate that similar results will hold

more generally, so that the maximum likelihood estimator will be consistent if the

number of random effects n, and the number of observations m tend simultaneously

to infinity, provided that m grows at a faster rate than n. However, no formal proof

of this result has yet been achieved. In the same asymptotic setting, we would

also like to study the accuracy of inference from the Laplace approximation to the

likelihood under correct model specification, as discussed in Section 6.2.1, and it

seems likely that the same ideas will be useful to prove results in both cases.
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6.2.7 Hypothesis testing under model misspecification

Even in a dense model, inference is not fully robust to misspecification of the random-

effects distribution, since test statistics typically do not have their standard asymp-

totic distributions under such misspecification. Further work is still required to

construct modified versions of these test statistics, which account for possible model

misspecification. The difficulty lies in the computation of the Godambe information

matrix, which would allow us to find an accurate approximation of the variance of

the maximum likelihood estimator under misspecification. In cases where there is

no independent replication, it is not obvious how to estimate this matrix. This prob-

lem is linked to that of estimating the variance of a composite likelihood estimator,

which is one of the largest barriers to the routine use of composite likelihoods in

practice.
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Appendix A

The form of D for natural cubic

splines

Suppose that are give the value yi = f(si) of f(.) at each of n knots si, and wish to

construct a cubic spline finterp(.) to interpolate between those knots. To do this, we

want to find the matrix D so that the stacked coefficients c of the cubic polynomial

in each segment of a cubic spline may be written as c = Dy. The form of D

varies according to the choice of end conditions. All of the results used below are

well known (see, for example Knott (2000)), but usually only the coefficients c are

needed, rather than the explicit form of the matrix D, which we use to extend to

interpolation on a sparse grid. The coefficients c are usually computed in several

steps, first solving a linear system for the second derivatives of the cubic spline at its

knots, then using these second derivatives to construct the coefficients of the cubic

spline. To find D we need to combine those steps.

Writemi = f ′′interp(si) for the second derivative at knot i, and hi = si+1−si for

the distance between knots i and i+1. For each of the interior knots i = 2, . . . , n−1,

we have

hi−1mi−1 + 2(hi − hi−1)mi + himi+1 =
6(yi+1 − yi)

hi
− 6(yi − yi−1)

hi−1
. (A.1)

To be able to solve this system for m = {m1, . . . ,mn}, we must specify an

extra two end conditions. If we specify that mn = m1 = 0, so that the cubic spline

will be linear beyond the range of the knots, this gives a natural cubic spline.

Write

ri =
6(yi+1 − yi)

hi
− 6(yi − yi−1)

hi−1

for the right hand side of (A.1), for i = 2, . . . , n − 1, and let r1 = rn = 0, for the
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end conditions. Then the linear system of equations may be written

Am = r,

where A is the n× n matrix with elements

Aij =



1 if i = j = 1 or i = j = n,

2(hi − hi−1) if i = j = 2, . . . , n− 1,

hi−1 if i = 3, . . . , n− 1 and j = i− 1,

hi if i = 2, . . . , n− 2 and j = i+ 1,

0 otherwise.

We may write r = By, where B is the n× n matrix with elements

Bij = 6



h−1
i if j = i, i = 2, . . . , n− 1

h−1
i − h

−1
i+1 if j = i+ 1, i = 2, . . . , n− 1

h−1
i+1 if j = i+ 2, i = 2, . . . , n− 1

0 otherwise.

Combining these, we get that

m = A−1By.

Write c(i) = (αi, βi, γi, δi) for the coefficients of the cubic between knots si and si+1.

The coefficients may be obtained as a linear combination of the second derivatives

mi and mi+1, and the values yi and yi+1, for i = 1, . . . , n − 1. Define the 4 × n
matrices Q(i) and R(i), so that the columns (i, i+ 1) of Q(i) are given by

Q(i)
∣∣∣
i,i+1

=


0 0
−hi

3
−hi

6
1
2 0
−1
6hi

1
6hi

 ,

the columns (i, i+ 1) of R(i) are

R(i)
∣∣∣
i,i+1

=


1 0
−1
hi

1
hi

0 0

0 0

 ,
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and the remaining components of Q(i) and R(i) are zero. Then

c(i) = Q(i)m +R(i)y

=
[
Q(i)A−1B +R(i)

]
y

= D(i)y.

for i = 1, . . . , n − 1. It only remains to write the coefficients c(0) and c(n) for the

linear functions outside of the range of the knots in terms of y. By matching the

gradients at the external knots, we get that

D
(0)
ij =


1 if i = 1, j = 1,

−D(1)
2,j if i = 2, j = 1, 2,

0 otherwise,

and

D
(n)
ij =


1 if i = 1, j = n,

3h2
n−1D

(n−1)
4,j + 2hn−1D

(n−1)
3,j +D

(n−1)
2,j if i = 2, j = n− 1, n,

0 otherwise.

The required matrix D may then be obtained by stacking the D(i) on top of one

another, so that c = Dy.
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Appendix B

Choice of knots for sparse grid

interpolation

Recall from Section 4.6.4 that in the sequential reduction method at level k, we use

knots which are quantiles of a N(0, τ2
k ) distribution to construct sparse grids for stor-

age. For the same tree tournament which is used in Example 4.6, we approximate the

log-likelihood using the sequential reduction method with k ∈ {0, 2, 3, 4, 5, 6}, using

knots of this form, with τk fixed at each of several possible values. In each case, we

look at the difference between the approximation for each k and the approximation

at k = 6. This gives the approximate error in the log-likelihood approximation ob-

tained for each k, although when τk is fixed at a very small value, the approximation

has not quite converged by k = 6.

Table B.1 gives these errors at each combination of k and τ , for approxima-

tions to the likelihood at several different values of β and σ. The cells corresponding

to τk = 1+ k
2 , which is the default choice in our program for the sequential reduction

method, are highlighted in each table. In most cases, the error shrinks reasonably

quickly for this choice. Table B.1c indicates that this default choice τk may be

growing slightly too quickly with k, since the error for k = 5 is greater than that

for k = 4 with this default choice for τk. However, the error for k = 5 is nonetheless

very small (relative to the approximated log-likelihood, which is −36.9 in this case).
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k
0 2 3 4 5

τ

1 -2 -1.6 -0.53 -0.2 -0.066
1.25 -2.1 -1.2 -0.24 -0.068 -0.018
1.5 -2.1 -0.75 -0.028 -0.0049 -0.0024
1.75 -2.1 -0.26 0.079 0.011 0.0015

2 -2.1 0.19 0.11 0.0094 0.0015
2.25 -2.1 0.61 0.11 0.0059 0.00039
2.5 -2.1 1 0.12 0.0023 0.0002
2.75 -2.1 1.4 0.16 0.0011 0.0002

3 -2.1 1.8 0.23 0.0014 0.00002
3.25 -2.1 2.1 0.33 0.0022 0.00011
3.5 -2.1 2.5 0.62 0.0037 0.00038

(a) β = 1.5, σ = 2

k
0 2 3 4 5

τ

1 -0.61 -0.35 -0.15 -0.063 -0.021
1.25 -0.63 -0.25 -0.08 -0.027 -0.0084
1.5 -0.64 -0.15 -0.035 -0.0096 -0.0022
1.75 -0.64 -0.063 -0.013 -0.0026 -0.0005

2 -0.64 -0.0034 -0.0044 -0.00058 0.000046
2.25 -0.64 0.032 -0.0015 0.00013 -0.000013
2.5 -0.64 0.048 -0.0014 0.000075 0.0000031
2.75 -0.64 0.051 -0.0029 -0.000029 -0.000003

3 -0.64 0.045 -0.0059 -0.000019 0.000006
3.25 -0.64 0.035 -0.01 -0.00008 0.0000014
3.5 -0.64 0.023 -0.016 -0.00017 -0.0000067

(b) β = 1, σ = 1

k
0 2 3 4 5

τ

1 -0.82 -0.66 -0.27 -0.11 -0.039
1.25 -0.86 -0.54 -0.16 -0.05 -0.014
1.5 -0.87 -0.35 -0.069 -0.015 -0.0036
1.75 -0.87 -0.16 -0.02 -0.0021 -0.00065

2 -0.87 0.017 -0.0003 0.00055 0.00023
2.25 -0.87 0.17 0.006 0.0011 -0.0000089
2.5 -0.87 0.3 0.011 0.00029 0.00000029
2.75 -0.87 0.42 0.021 -0.0000088 0.0000069

3 -0.87 0.53 0.039 0.000085 -0.0000032
3.25 -0.87 0.63 0.066 -0.000099 -0.000062
3.5 -0.87 0.73 0.1 -0.0006 -0.00014

(c) β = 2, σ = 1.5

Table B.1: Approximate errors in the sequential reduction approximation to the
log-likelihood, for different k and τ .
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