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ABSTRACT

A tineoretical study is made of the physics of photoexcited carriers in one
of tue bands of a semiconductor. The emphasis is on pnotoexcited hot carrier
paenomena, for whicn the mean carrier energy deviates significantly from the
thermal equilibrium value in the steady state. Very little previous theoretical

work in this area has been reported.

Two situations are analysed. The first is an investigation of hot photo-
excited carriers in germanium and silicon at low temperatures. The carriers
are excited into the band by a model black-body excitation spectrum having
a mean energy in excess of the thermal energy. Full account is taken of the
interaction of the carriers with impurities and phonons, and recombination is
assuned to occur via a cascade mechanism. Significant carrier heating is
found for trapping densities of the order 1016 cm 3 at lattice temperatures
below about 30°K.  The steady-state carrier distribution functions are derived
numerically from tae Boltzmann equation in the absence of external fields. The
low field transport and trapping parameters are then derived by a perturbation
theory. The assumption of a linear response to applied fields is cihecked by
an adaptation of tie Monte Carlo technique first employed by Kurosawa (1966) and
Boardman et al (1968) in high field studies of semiconductors. The technique
is extensively modified to suit our problem; in particular the conceyt of the

self-scattering device is enlarged.

The theory shows good agreement with the experimentally measured (Rollin
and Rowell 1960) temperature variation of the Hall mobility of photoexcited
noles in germanium. Agreement is also obtained with an experimental curve for

the temperature dependence of the capture cross section for electrons in silicon.



Cxperimentally a 'cut-off' is found in the temperature dependence below

about 30°K. The hot carrier model explains this phenomenon in terms of an
anomalous temperature dependent Hall number which arises from the severe non-
Maxwellian heating of the carriers. However, not all the experimental
results can be explained this way and a tentative alternative mecnanism is

suggested.

The second situation analysed involves monochromatic photoexcitation
leading to the oscillatory photoconductivity effect in many polar semiconductors.
Considerable controversy has existed previously as to the origin of this effect.
The distribution functions and photoconductivity are studied as a function
of pnoton frequency and electric field strength on the basis of an analytical
model and detailed Monte Carlo calculations. Good agreement is found with
experiment as regards tie field dependence of the overall spectral response,
confirming the assumptions of an earlier approximate analytical approach

(Stocker and Kaplan 1966).

For certain photon frequencies the photoexcited carriers can theoretically
exnibit both total and differential negative mobility for certain ranges of
applied electric field, confirming a previous approximate theory (Stocker 1967),
although the effect nas not been observed experimentally. This leads to a
non-uniform field distribution in the semiconductor and the possibility of space-
chérge instabilities. The possibility of steady-state negative photoconductivity
is investigated with particular reference to the spatial distribution of electric
field and the stability of the carrier system. The evolution and form of the
instabilities and steady-states are evaluated numerically. Full account is
taken of the electron and trap dynamics. It is shown that the total negative
resistance state is unstable in the presence of injecting contacts. Instead
either a non-uniform field distribution showing bulk positive resistance is
establisbhed or there occur propagating instabilities leading to positive current

oscillations.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

The basic theme of this thesis is a theoretical study of non-equilibrium-
carrier distributions and their consequences appropriate to non-degenerate
photoexcited carriers in one of the bands of a semiconducter. The objective
is to relate measurements of phototransport and trapping parameters to our
existing knowledge of recombination processes and the interaction of carriers with
rhonons and impurities. Particular emphasis is placed on hot carrier phenomena.
The extensive literature on hot carriers deals almost entirely with their
production by high electric fields: very little theoretical work has been reported
on the optically excited case. Our work has direct relevance to a series cf
experiments conducted over the past ten years and was initiated to provide a

theoretical understanding of the physics of photoexcited hot carriers.

1.2 Hot electrons

The key to understanding many of the transport and trapping properties
of semiconductors is the steady-state momentum distribution of carriers. In
thermal equilibrium this is well known: degenerate carrier assemblies are
described by the Fermi-Dirac distribution function, whilst Maxwell-Boltzmann
statistics apply to non-degenerate systems. Conventional transport theory
(c.f. Ziman 1960) describes the linear response of equilibrium cairier
distributions to weak external agencies such as applied electric and magnetic
fields or temperature gradients. In these circumstances the steady-state
distribution funcztion bears a simple relation to the equilibrium distribution.

There are, however, many physical situations in which the steady-state distribution
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function can become severely distorted from the equilibrium form. .The . most familisar
case occurs under conditions of high applied electric fields (Conwell 1967) which
give rise to 'hot' carriers having a mean energy far greater than the equilibrium
value appropriate to the lattice temperature. The mean carrier energy rises until
in the steady-state.tﬁe rates at which momentum and energy are gained from thte
field balance the corresponding loss rates to the lattice and impurities.. Wherezs
small departures from thermal equilibrium are adequately described by the momentum
relaxation processes, hot electron problems involve both energy and momentim
relaxation. High field hot electron problems are generally characterized by a
breakdown of Ohm's law and involve a non-linear response to the applied field. Im
some circumstances, for example in the Gunn effect (Butcher 1967), this leads to

a decrease of the mean carrier drift velocity with increased applied field.
Instabilities may then develop which give rise to current oscillations under

constant applied bias voltages.

Another situation in which hot carriers may be produced, the subject of this
thesis, arises when the carriers are only maintained in the band by constant
photoexcitation from states exterior to the band, subsequent recombination occurring
into these states. If the photoexcited carriers enter the band with a mean energy
in excess of the thermal equilibrium value they will'require a finite thermalisation
time to lose this excess energy. When the recombination lifetime of the carriers'
is large compared to the thermalisation time an approximate quasi-equilibrium can be
achieved (Shockley 1949, Mattis 1960). The steady-state distribution function thec
closely resembles the equilibrium distribution with a quasi-Fermi level Aatermined
by the steady-state carrier concentration. However for sufficiently shoxr: 1ife-
times the steady-state distribution will show significant heating and quasi-
eduilibrium. cannot be achieved. Instead the distribution will reflect the
detailed nature of the excitation spectrum, recombination pfocesses and energy
relaxation processes within the band. Evidence for the occurrence of this form of

carrier heating may be inferred from the low temperature phototransport measure-
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ments made by Rollin and Rowell (1960), Habeggar and Fan (1964), Stocker et al
(1966) . Discrgpancies between the theoretical and experimental work on the cascade
capture of carriers into shallow traps in germanium and silicon have also been
attributed to such carriers (Mattis 1960, Levitt and Honig 1961, Loewemstein and
Honig 1966). The lack of any quantitative theory to describe these experiments

provided the original motivation for the present work.

The first theoretical investigation of photoexcited hot carriers was made by
Mattis (1960) who discussed the problem of calculating the photoexcited carrier
distribution function within the framework of a variational principle. This study
was based on a simple model involving acoustic deformation scattering of non-—
degenerate carriers in the band in the presence of cascade capture into shallow
impurities. Distribution functions were not derived but Mattis showed that
significant departures from quasi-equilibrium could occur at very low temperatures .
These were to be associated with the rapid decrease of carrier lifetime with

lattice temperature.

A series of papers (Hearn et al 1962, Hearn 1965, 1966) have considered the
criteria for the use of an effective temperature to describe a heated photoexcited
carrier distribution. These studies were concerned with carrier concentratiors
sufficiently large for intercarrier collisions to be important, (but without
degeneracy). The present work deals entirely with carrier concentrations below
the critical concentrations for which intercarrier collisions have importarce.
Other theoretical work of interest is the study of the oscillatory photc-
conductivity effect made by Stocker and Kaplan (1966). This was a qualitaiive
investigation of the monoenergetic excitation of carriers into the valence and
conduction bands of the III-V semiconductors at low temperatures. This problem
has some relation to the present work and is discussed further in section 1.3.

Apart from the above studies, no detailed theory of optically excited hot electron:



has been forthcoming., In this thesis a quantitative treatment is attempted of
specific aspects of the photoexcited hot carrier problem, a brief survey of which

is given in the following sections.

1.3 Scope and plan of thesib

Two situations are analysed in detail. The first described in Chapter II is
a study of the physics of carriers which are photoexcited by a broad spectrum
radiation field with a high effective temperature into the valence or conducticn
bands of germanium and silicon at lattice temperatures below 30°%K. Whilst in
the pand the carriers suffer collisions with impurities and phonons, and are subject
to the influence of external electric and magnetic fields. Recombination is
considered to occur at shallow traps by the phonon cascade mechanism (Lax 1960).
A preliminary investigation of this problem was made by the author as the basis
of an M.Sc. dissertation (Barker 1967) but no quantitative comparison with experiment
was possible. The analysis of Chapter II shows that significant non-Maxwellian
carrier heating occurs below about 30°K for trapping densities of the order
1016cm-3. The effects of heating are most effectively displayed in the low field
transéort properties (linear response regime). Good agreement is found with
experiment for the lattice temperature variation of the Hall mobility, of holes in
germanium.  Agreement is also obtained with an experimental cufve for the
temperature dependence of the capture cross section for electrons in silicon.
Extensive experimental work over the past few years (a complete list of references
is given by Loewenstein and Honig, 1966) has shown that a'cut-off'is presest in
the temperature dependence of the capture cross section below about 20°K. Our
hot carrier model interprets this phenomenon in terms of an anomalous temperature
dependent Hall number which arises from the severe non-Maxwellian heating of the
carriers. However, not all the experimental results can be explained this way and

reasons why the simple model could break down for these cases are suggested at the

end of Chapter II.



The carrier distribution functions for this problem are obtained numerically
from the steady-state Boltzmann equation in the absence of external.fields.
Additional terms enter the Boltzmann equation to incorporate the effects of carrier
generation and recombination. This is a relatively simple problem since the
distribution functions are isotropic. The low field transport properties are
then derived by.a perturbation theory. This involves a linear response to weak
fields, where the presence of the fields does not appreciably alter the isotropic
part of the distribution function. An important problem here is to know how
lafge the external fields may be before this simple theory breaks down. = For
thermalized carriers fields of the order of 10 V/cm set the limit. However,
for photoexcited carriers, as will be‘shown.in~Chapter IV, much smaller fields
may severely distort the iscttopicipart of the distribution function.: One
approach to this problem is to solve the Boltzmann equation with the field terms
bicluded.  This leads to severe computational difficulties: the distribution
fppction is anisotropic and both energy and momentum relaxation processes must be
included.  Drastic approximations must be ﬁade if conventional. numerical techniques

are employed.

To ovércome thse difficulties we have resorted to a Monte Carlo method,
essentially a computer simulation of the motion of carriers in momentum space.
Ihe technique has considerable»flexibility and is not restricted to low field
problems. It was‘firgg introduced into high field transport theory by
Kurosawa (1966) and Boardman et al:(1968). We have extensively modifiecd the
technique to suit our problem and introduced several features which have more
géﬂeralvapplication (Barker and Hearn,:1969a, b). In particular the.concept
of .the self scattering device (Boardman et-al 1968) has been enlarged and the
first proof of its validity offered. 1In view of the potential importance of
this technique,ye devo;eya whole Chapter (Chapter III) to the Monte Carlo method

s

as applied to electron transport theory. The Monte Carlo qalculations‘confirm




the solutions obtqined from the Boltzmann.equation and verify the assumption of

Ohmic conduction uﬁ to fields of 1V/cm which are typical of the field strengths

used in.relevant experimental work. Recent experimental findings (Yariv et

al 1968) support'this:analysis but show the occurrence of non-linear.effects for

fields in excess of 10 V/cm. - These more recent developments are discussed in

Chapter VI. -

The second problem to be analysed is the oscillatory photoconductivity
effect." For this problem a narrow spectrum radiation field (essentially
monochromatic) is used so that carriers enter the band with a well defined energy.
The relevant semiconductors are the III-V compounds which have a strong interaction
between the Opticai phonons and the electrons. If the interaction is sufficiently
-strong the photoconductivity becomes an oscillatory function of injection energy
with ; period equal to the longitudinal optical phonon energy. The effect
éppéars at lattice temperatures below 30°K and is most certainly a hot carrier
pﬁenoménbn. It was first observed by Blunt. (1957) and has s{gce received
“considerable experimental-attention. : The present work was initiated to
‘investigate'the reported strong field dependence of the oscillatory structure. -

" (Habeggar and Fan 1964) and to provide'a quantitative theory.of the basic spectral
‘response, Considerable controversey as to the origins of the effect has existed
“prior to 1966. A theory of oscillatory photoconductivity was given by Stocker
“and Kaplan (1966) using certain approximations regarding.tﬂe form of the carrier

" distribution function but no quantitative coméatison with experiment was possible.
’Infview7of the strong field depéndence of. the effect, even for very low fields,
"we have performed Monte Carlo calculations for the distribution function on the
"basis of a detailed model. "This work is described in Chapter IV. = Good -

" agreement has been found with experiment except for injection energies very close
to a multiple optical.phonon energy (Barker and Hearn 1969a). The distribution

functions. are highly non-equilibrium and show considerable heating. The electric

4



field produces severe distortion in the distributions and under certain

circumstances can act to reduce the mean carrier energy; carrier cooling occurs.

An interesting result which arises from our calculations is the prediction
of total negative conductivity, for a certain range of electric fields, if the
carrierg are excited into the band with an energy of just less than.a multiple
number of optical phonon energies. A simple physical argument which explains
this effect has also been given by Stocker (1967). Detailed calculations, made
on the basis of an exact analytical model and the Monte Carlo technique, confirm
that the negative conductivity is a real effect and not a consequence of .
approximations maqé,in determining the carrier distribution function. The
derived drift velocity-field characteristics for this problem are highly non-

linear with regions of negative differential and total negative mobility.

The velocity-field characteriétics describe the carrier drift velocity
attained in the steady-state for a spatially homogeneous carrier distribution
subjected to a’consthnt‘uniform:efactric.fie}d. It is welllknown, however,
(c.f. Butcher 1967) that if a region of negative differential mobility occurs we
can expect the system to be unstable with respect to space-charge formation. The
field and carrier concentration will no longer be spatially or temporiuy homo-
geneous. Thevstatic,velocity-field characteristic is no longer a good indication
of the current-voltage relation. This problem is investigated in some detail

-in Chapter V (see also Barker and Héarn 1969b). Ideally we would solve the
problem from the standpoint of the full time and space dependent Boltzmann
equﬁtion coupled to Maxwell's equations (which reduce to Poisson's equation

for this problem), This is a problem of formidable complexity, however, and is

not attempted. Instead we adopt a more phenomenological approach.



In Chapter V we investigate the occurrence of negative conductivity with
particular reference to the spatial distribution of electric field and the
stability of the carrier system. This work is of general interest to the under-
standing of the physics of instabilities in semiconductors and to negative
resistance devices., A phenomenological model is used, based on.Poisson's
euqation, the continuity equations for carriers and ionized impurities and .the
static velocity-field characteristic. Spatial dependence is taken care of by
including diffusion terms. Small signal perturbation theory is used to derive
theflinear response of the system to small fluctuations. The qualitative form of
static field distributions which could arise are obtained by topological methods
(phase-plane analysis) applied to the system of non-linear differential equations
deduced from the model. Consideration of the problem of contacts and the
external circuits is essential to the analysis. Diffusion processes are found
to play a crucial role. Detailed numerical calculations are also given for the
time evolution of the steady-state, where it exists, and the non-linear growth
of instabilities in the system. A variety of instabilities are found which
are analysed by phase-plane methods. These give new insight into the general
problem of instabilities in negative resistance materials and bear strong
resemblances to instabilities occurring in gallium arsenide at room temperature
under high.electric field. -We give a comparison between these instabilities
vhich lead to the Gunn effect and the instabilities predicted for the oscillatory.
photoconductivity problem. The major result is that for ordinary contacts a
total negative resistance state does not occur. Instead a non-uniform steady
static field distribution leading to positive conductivity is set up in the
sample, or small amplitude positive current oscillations occur which arise from
the cyclic uniform propagation of weak field domains through the sample. Under
certain conditions of recombination and excitation these domains are suppressed
and the cyclic non-uniform propagation of accumulation layer ins:abilitieq'may

occur.



Chapter VI discusses some of the problems raised by our work and suggest areas
for future research at both the theoretical and experimental level. More recent

experimental work is discussed in.the light of our analysis.

The Appendices contain information of a more mathematical nature, such as the
detailed forms of the scattering processes used in our calculations, Monte Carlo

subroutines and elements of phmse-plane analysis.
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CHAPTER II

HOT PHOTOEXCITED CARRIERS IN. GERMANIUM AND SILICON AT.LOW.

TEMPERATURES

2.1 Introduction

In this chapter we describe the first of two separate investigations
of optically excited hot carriers in semiconductors. The situation considered
is that in which the carrier excitation spectrum has an approximately black
body character with a radiation temperature greater than the lattice temperature.
Recombination is considered to take place via.the cascade capture process
into shallow ionized traps originally proposed by Lax (1960). The details
of the theoretical model are given in section 2.2. The essential approach
is to derive the Boltzmann equation on the basis of a simple model to include
the processesfo£4carrier genefation and recombination. A Monte Carlo technique
(to be described in detail in Chapter 3) is utilized to check the validity of
the solutions obtained from the Boltzmann eduation approa;h. In section 2.3
we describe. the methods used to determine the resultant distribution functions
in the absence of externai electric and magnetic fields. The salient features

of the numerically computed distribution functions are discussed in scction 2.4.

The problem described here has direct relevance to a series of experiments
performed on gérmanium and éilicon made in the last few yearé (Levitt and
Honig 1960, Rollin and Rowell 1960, Betjemann 1965, Loewenstein and Honig 1966).
Accounts of our results have been given in the literatufe (Barker and Hearn,
1968; 1969d). The Lax model predicts that the carrier recombination‘lifeﬁimes

decrease very rapidiy with decreasing lattice temperature so that at
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témperatures below about 30°K, depending on the detailed parameters considéréd,
the carrier distribution can become significantly heated. One of the simplest
and most direct methods of detecting this heating is to measure the Hall
mobility as” a function of lattice temperature. One experiment of this type
has been reported by Rollin and Rowell (1960) for photoexcited holes in
germanium. The theoretical work indicates that the carrier distributions
have an ohmic (linear) response to small electric fields. Consequently,"

we can show by perturbation theory that the Hall mobility involves suitable
~moments of the zero field distribution functions (section 2.5). If all the
important energy and momentum relaxation processes are taken into account

the present model gives results which are in good agreement with those of
Rollin and Rowell (section 2.7). Similar measurements have been reported

by Betjemann (1965) for electrons in silicon. Betjemann interprets the
observed anomalies in the measured Hall mobility as due to carrier heating.
However, the present model suggests that the carrier lifetimes are much

too long for this to be a valid explanation of the results.

In section 2.6 we report a more subtle, and rather more difficult
application of the model to situations in which photoexcited carriers are
used to measure the mean capture cross sections of shallow impurities.

Such experiments have been described by Levitt and Honig (1961), and
Loevenstein and Honig (1966) using electrons in douple doped silicon. Their
results indiéate tha:lthe measﬁred capture cross sections are rough1§

of the correct érde:‘of magnitude as required for thermalised electrons on
_the Lax model but show a serious discrepancy with regard to the lattice
temperature dependence. The ;resent model predicts carrier heating in some
of these experiments. There are two aspects of heating effects wnich are
important in this context. Tﬁe first, which was originally pointed out by

Mattis (1960), is that heating decreases the average capture cross-section

because the capture probability decreases with carrier emergy. This has
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rather-a weak effect on the observed temperature dependence of the cross
sections. Secondly, our model predicts that thé heating is non-Maxwellian.
Consequently the_Halllnumber, which is the "constant" of proportionality
between .the Hall coefficient and reciprdcal carrier concentration, showé a
strong temperature dependence through the energy dependence of the momentum
relaxation processes. The Hall effect is used experimentally to calculate
the concentration of photoexcited carriers, from which the mean cross-section
is determined. Except at the lowest temperatures investigated this second
effect is found to be the‘more.important. Good agreement is obtained with
the measured temperature dependence of the cross section for one_of the samples
used by Levitt and Honig (1961); this gives further support to our model

for carrier heating. However, the majority of samples show a temperature
independent mean recdmbination lifetime which is at vari#nce with both the.
Lax model and the hot carrier model. This represents a considerable problém

and a qualitative attempt to understand these results is given in section 8.

2.2 The basic model:

This section describes the basic equation which leads to the steady state

carrier distribution f£ (k) in k-space, in the absence of any applied fields.
We consider a simple enefgy band characterised by a scalar effective mass m*.
In tefms of an energy band with a multivalley struﬁture the analysis applies
to a single valley. At tnis stage we do not consider the effects qf
anisotropic effective masses. However, these are included in the calculation
of trahSport\parameters.‘ Photoeicited carrierg are assumed to be generated
by an applied exfernal radiation fiéld which:gives rise to a Spatiaily uniform
excitation rate into the band. The e#citation rate is considered to be af‘

function of carrier emergy e(k) only. The distribution function fOQE) is then

only a function of carrier emergy. In which case only the inelastic scattering
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processes, that is electron-phonon interaction, are effective in determining
the form of fo. Low carrier concentrations, typically of the order 108cm-3,
are considered so that intercarrier scattering may be neglected. This

condition also allows us to neglect the effects of non equilibrium phonon

distributions.

The steady state rate equation describing the photoexcitation of carriers

into a single band is

W{w, (k) - wrgc_)} = J(k) 2.2.1

where W is the total excitation rate into the band (equal to the total
recombination rate). The norﬁalised quantities we(g), w (k) are the fractional
rates of excitation and recombination for entering and leaving state k
respectively, The term J(k) is the total rate of intra-band electron—phonon
scattering out of the state k. Summing over all the states k in the band

leads to the sum rule

JJk) =0 | 2.2.2
£ |

which is a consequence of carrier conservation in collisions. The re~
combination and scattering terms are functionals of fo(E)

8o that fo(g) can be determined if the independent function w, (k) is known.

The scattering rate is based on acoustic deformation and non-polar
optical phonon scattering since the model is to be applied to germanium and
silicon; inter equivalent valley scattering, for the case of electrons, is
formally included in the optical phonon term. The detailed form for J
applicable to these processes are discussed considerably in the literature
(for example Paige,1964..Conwe11 1967). For cdmpieteness the form of J is

giﬁen in.Aﬁpendix 2.1. We note that in general J has the structure
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B f'o(lc_)e

e'/k, T e/kBT
} 2.2!3

Jk) =] G {f (k"e
k'
where G(k,k') is a symmetric function in k,k'. It is clear that J vanishes
in thermal equilibrium since fo(k) is then proportional to exp(—e/kBT).

We also point out that our numerical calculations do not involve any

approximations for J.

For clarity we now specialise to the case of photoexcited electroms,
a similar analysis applies for holes in p type material. We consider the
semiconductor to be ddped with a concentration ND of shallow donors, and
partialiy compensated with acceptors of density N, (where N, < ND). The
acceptors are assumed to be fully ionised so that there are NA ionised
donors and N; =N, - N, neutral donors. This is a good approximation at
very low temperatufes. Electrons are excited from the neutral donors
into the band and subsequently recombine with the ionised donors. The
general'scﬁeme is sketched in.Figure 2.1.  Relevant experiments have
employed very low carrier concentrations which enables us to neglect any
change in the fractional ionization of the donors due to the applied
radiation. The rate of generation of carriers by a flux of photons incident
on thé neﬁtralfdonoré is proportional’to the neutral donor concentration,
the photoionization cross section and the intensity of radiation. We comsider
shallow donors for whlch the ionization energy is of the order 0.05eV. The

quantity of interest as regards the excltat1on process is We and this is poorly

known experlmentally. We therefore adopt a model excitation spectrum

we (_]ﬁ) « € exp( E/kBTt) 202.&
based on a black body radiation field with temperature Ti, where ky is

Boltzmann's constant. We recall that the energy ¢ is the energy of state k
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relative to the band edge. The exponent % is a positive constant, the shape
parameter, which in-fact characterizes the selection rules and matrix elements
for the electron—photon interaction. Fortunately, the detailed form of R
does not seem to be very important in the application of the model; the main
requirement is that the spectrum is peaked at some small multiple of kpT
Appendix 2.2 contains a brief derivation of the model spectrum. Intrinsic
black body radiation from the lattice exists at all temperatures and gives
rise to an equilibrium concentration of carriers. However, at very low
temperatures, for which kBT ~ 0.0025 eV, this component may be neglected

in comparison with high temperature extrinsic radiation (for which kpT . =

0.025 eV).

The recombination rate into the ionised donors is written

er(k) = V(e)o(;)NAfo(E)
2.2.5
= £ (k)/1(e)

where o(e) is the capture cross section, V(e) the carrier velocity, and 1 the
carrier recombination lifetime. We assume that the recombination takes
place via the attractive cascade mechanism (Lax 1960) and we neglect the
capture into neuﬁral donors. This latter approximation is generally valid
in our applications since the neutral donor concentration is of the same
order experimentally as NA whilst the cross section is considerably smaller.
We recall that on the cascade theory, the charged aftractive donor centres
are considered to possess a set of excited states whose radii increase
indefinitely in real space (in fact one should really consider a limit to the
size of such "orbital“ states because of screening effects and the possible
overlap between states associated with different centres). Initial capture

of a conduction electron into a highly excited state of large radius may be

followed by cascade into more tightly bound states with the emission of
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acoustic phonons, or the electron may be thermally reionized back into the
pand.. If the electron reaches an excited state of binding energy greater
than kBT (where T is the lattice temperature) it is effectively trapped and
may eventually enter the ground state. ‘Consequently not all the excited
states are effective in the capture of electrons, only those with binding
energies in excess of k,T give a large contribution. This leads to a
capturevcross section which increases rapidly with decreasing temperature as

more states become available for firm capture.

Following Lax (1960) we use the cross section

o(e) = (45/6)010 m*szlkBT)4(kBT/s)¢(e,T) 2.2.6

where § is the longitudinal velocilty ef sound and ol_is a constant cross
section depending on the effective mass, velocity of sound, static dielectric
constant and the acoustic deformation potential. The function ¢ is given

approximately by

o = kBT/e; € > 4 m*sz, 2.2.7

so that o varies approximately as T-2 and s_z. At high lattice temperatures
the cross segtion o is small and the distribution function fo has the usual

Maxwellian form. In that case the form (2.2.7) leads to a divergence in the
total recombination rate; It is therefore necessary to introduce a cut off

in ¢ at low carrier energy. Lax has suggested the more accurate form

¢ = kBT/(e + 6} m*sz); € < 3 m*sz. 2.2.8

where § is a constant in the range 4 < § < 10. However, the actual form

of the cut-off is obscure and a detailed study of the capture of electrons
close to the band edge has not yet been given. In our work we have employed
both (2.2.8) and other empirical form§ but find that the details of the cut

off are unimportant for the predominantly high energy distribution of electrons
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encountered in the study. A particularly useful empirical form for the

recombination lifetime is

——l— « T-x'—-2§7— s X an integer;
1(€) a+e~’2

which has the advantage that by taking a as very large allows the investigation
of energy independent lifetimes with various temperature dependences. For
x = 2, and appropriate choice of a this form is essentially identical to the

Lax model except at very low energies.

The distribution function fo scales in the parameter W and is therefore
conveniently rewritten in terms of the reduced distribution function ¢(K)--defined
by,

3

6(R) = 4moy W L £ (o) 2.2.9

where p is the density of like spin states in k-space and
k% = yA&?= ﬁ2k2/(2m*kBT). 2.2.10

Hence K¢(K)dK2 is the number of electrons per unit excitation rate in the

reduced energy range Kz'to K% + k%,  The rate equation (2,2.1) becomes

Be(K) = $(K)K/1(K) = KI(4(K)) 2.2.11

'3

with ;e(K)dK2 the excitation rate into dK2 i.e.

b, (K) 4rpy 3 Ru (K) 202,12

and where the functional dependence of J on ¢ is indicated explicitly. The

carrier concentration n is given by
n =W r 6(K)KdK? 2.2.13
o

The reduced distribution satisfies the normalisation condition (a consequence

of the sum rule 2,2.2),



18

J KoK) 1 1K) drZ = 1 2.2.14
o
and also
J we(K)dK =1 ‘ 2.2.,15
o :

The latter condition leads to )

2+3/
(T/Tr) 2 K22+1

r(z+3/2)

Ze(K) = exp(-KZT/Tr) 2.2.16

where I' is the gamma function.

We observe that the high temperature Maxwellian limit for ¢ is
]
¢ = exp(-K") 2,2.17

which must be normalised by equation (2.2.14). At low temperatures, scattering

is negligible and recombination dominates leading to the limit
¢ = 1(K)u, (K) /K. 2.2.18

The complete rate equation is written out eiplicitly in Appendix 2.1,

The structure of the rate equation is made more apparent by writing the

scattering rate as

KI($(K)) = Z(K)¢(K) - Y(¢(K)), 2.2.19

we then have
| w, (®) + Y(4(K))
¢(K) - . 202-20
Z(K) + K/1(K)

2.3 Numerical solution

The rate equation (2.2.11) or (2.2.20) is an integral equation for the

distribution function ¢ and is solved numerically by iteration. It is assumed
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that if ¢, is an approximate solution obtained after n iterations, then a

better approximation 41 is given by

o (R) + ¥(¢) } .

6. (K) = N {
n+l L g /e(®) + Z(K)

The normalisation constant N is a measure of the convergence of the

n+l
iterative process, and is chosen such that‘¢n+1 satisfies the normalisation
condition (2.2.14). If the norm converges to unity for successive iterations,

then the approximate solutions converge to the exact solution. In practice

the iterative procedure is continued until either (a) the norm satisfies
] N=1 | <V

where v, the tolerance, is an arbitrary small positive number less than unity;
or (b) until an arbitrary number, say P, iterations have been performed.
Typically v is chosen of the order 10-4. and P = 10. In all cases investigated

convergence was at worst to within a tolerance of 10—2.

The inherent difficulty in the iterative procedure is the choice of a
suitable starting function ¢1° The standard approach would involve using
the normalised inhomogeneous part of the integral equation as a starting
function, However, this is not in general a good approximation to the exact
solution and leads to poor convergence. Instead we use a generalisation of
the iterative techniqug due to Hearn (1966) in which a physically acceptable
trial function is used for ¢;. A highly convergent procedure for ;olving
the rate equation over a range of temperatures is to use the normalised

Maxwellian limit as the starting function at the highest temperature, i.e.

2
= -K .
¢1 N1 exp (=K"™)
The resulting solution, when re-normalised, then acts as the starting function

at the next lowest temperature and so on. For a set of very low temperatures

it is more efficient to use ascending temperatures and the other asymptotic

limit, i.e.
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¢, = Nyt (K)Be(K) /X,

In order to check the iterative procedure the zero field distribution
function was obtained for a few particular cases by a Monte Carlo method
which effectively bypasses the Boltzmann equation. This technique is
described in detail in Chapter II. The distribution functions obtained by
the two methods were essentially identical. The Monte Carlo method has very
much slower convergence that the iterative technique, particularly at high
temperatures. This prohibited its use extept at temperatures below about
5°K. However, the Monte Carlo technique is not restricted to low applied
fields, and for high fields is superior to the conventional method of

applying perturbation theory to the Boltzmann equation.

In numerical computation the continuous variable K is replaced by a
discrete variable which spans a uniform discrete mesh in K-space, from zero

up.to a maximum of K = 400A. Here A, the mesh gauge, is chosen as

2m 82 :
Aﬂ-l——-—D———
8 kBT

which represents a small fraction of the typical energy tfansferred in an
electron phonon collision. The various functions appearing in the rate

equation are tabulated at the mesh points and the integrations carried out
by conventional techniques. The rate of convergence is not significantly

improved by increasing the upper energy limit or by using a finer mesh.

Calculations were carried out.on the Chiltdn ATLAS and Warwick Elliott

4130 computers. .



21

2.4 Distribution functions

We have obtained distribution functions for a wide range of parameters
in the temperature range 19K to 40°K.  The general form of the reduced
distribution function, as a function of energy and lattice temperature, is
illustrated in Figure 2.2. These curves were computed for n-germanium
assuming a slope parameter £ = 1, and a radiation temperature '1‘r = 300%K.
The other parameters employed are given in Table 2.1. The main features

are as follows:

(i) at high temperatures, T > 30°K, corresponding to long carrier
lifetimes, the carriers are closely thermalised to the lattice and satisfy
a Maxwellian distribution.

(ii) at lower temperatures the carrier lifetimes are shorter and the
distribution function is non-Maxwellian. It may be approximately
represented by the sum of two Maxwellian distributions, one for low energy
and the other for high energy. The lower energy Maxwellian is characterised
by an effective temperature near to the lattice temperature. On the other
hand, the high energy Maxwellian has an effective temperature closer to the
radiation temperature. For energies above the optical phonon emission
threshold, optical phonon scattering dominates and induces a cut off to the
distribution function (this is not shown in the figure).

(iii) at very low temperatures, T < 3°K, the cascade capture cross
section becomes large, and the distribution of carriers is essentially
determined by competition between the excitation and recombination rates
and reflects their detailed forms. Convergence of the iterated solutions
in this region is slow, reflecting the rapid change of the low energy
distribution with temperature. The curve for T = 1°K in Figure 2.2 shows
the occurrence of a peak to the distribution function. This is partly
a consequence of the depletion . of carriers with very low energies due to the

fast recombination rate for low energy carriers on the Lax model.
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Similar forms are obtained for ¢ by using a constant recombination
lifetime of the same magnitude as the average lifetime on the cascade
model. However, this is a qualitative similarity only and the same

temperature dependence is not obtained.

2.5 Low field tramsport

The low field trapping and transport parameters are obtained from the
isotropic zero field distribution function ¢(K) by the application of
perturbation theory in a similar fashion to conventional low field transport
theory (c.f. Ziman 1960). This approach is justified if the response to
the external fields used experimentally is Ohmic (that is linear). In
general these fields do not exceed about 1 V cm-l'and there is no experimental
evidence of significant non-Ohmic effects. In fact one would not expect
nonlinear effects at these fields because of the dispersed nature of the
distribution of electrons over momentum space (this is to be contrasted with
the situation in the oscillatory photoconductivity effect discussed in
Chapters IVand V). Fortunately we were able to check the assumption of
linear response to external fields in the Monte Carlo calculations discussed
in section 2.3. These calculations were also performed with the inclusion
of a.field of order 1 V cm-lnwhich gave the various transport parameters
directly. It was found that the Monte Carlo calculations were in very
good agreement with those performed on the basis of the perturbatior theory

approach which we now outline.

The basic rate equation for the zero field distribution function fogg)

was shown in section 2 to have the form,
Wo (k) = £ (k)/t(e) - Jk) =0 2.5,1

In the presence of externally applied electric and magnetic fields (denoted
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by F and B) the new steady state distribution function f(k) is no longér
isotropic. The corresponding rate equation is then similar to (2.5.1)

but now contains contributions from the elastic scattering processes and
the accelerating %ffects of the applied fields. The latter term describes
the rate of change of f(k) due to the fields and takes the form (see for

example Paige 1964),

3f (k) 9f (k)
—~ e 1 3¢ —
- ‘K{P(mﬁ 2)} £ 2032

To first order in the electric field the isotropic part of the finite
field distribution function is given by fo(E)' On the other hand the
anisotropic part f1Q§) is determined by the momentum relaxation processes
involving electron-phonon and electron impurity interactions. These
processes are characterised by a total momentum relaxation time 18(5).

(see for example Paige 1964). Using the zero field equation (2.5.1) and the
decomposition f = fo + fl’ we find to first order in electric field the basic

finite field rate equation

af (k) af. (k)
- e .....2 T - E a_e. ~ .__l'._ - 1 1 =
FE- ok §2 [3}_ -I-s-]' ok £ I_TB(E) (3] 0

2.5.3

This equation is iddntical to the conventional Boltzmann traﬁSport equation
(c.f. Ziman 1960) except that the thermal equilibrium distribution function
is replaced by fo(E) and the total momentum relaxation includes a contribution
from the recombination process. In practice this latter term has ﬁegligible_

effect since 1 >> T

Conventional transport theory (e.g. Smith 1960) applied to equation
(2.5.3) gives the low field transport parameters as averages over the zero-

field distribution function fo. For a simple band structure characterised
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by an energy-wave-vector dispersion relation

1%
2n*

€ =

we find the drift mobility u, Hall mobility Hy» Hall number r and magneto-

resistance number X as

= —e— << >> ¢
H " 'TS ’
m
= r .
Mg = T i 2.5.4

2
r = << TS>>/<< Ty >>2 :

2

X = << 13 >5><< T >> /<< 12 >>¢
8 8 8

The averages are defined in terms of the reduced distribution function ¢(K)

rather than fo(g) as

f K3.3¢/6K.r§ (K)dK
P -1l ‘o .
< T >> 3 2.5.5

Jm K2¢(K)dK
(o]

We briefly recall the origin of the above transport parameters. The

drift mobility is simply the average drift velocity acquired by the carriers
in a unit electric field. The Hall coefficient R, which can be directly

measured by experiment, is defined by

Eg=Rj.B
where the Hall field EH is the electric field which is induced at right angles
to a constrained current flow j in the presence of'magnetic field B. A well

known result from conventional transport theory (Paige 1964) then identifies

the experimentally Hall coefficient in terms of the Hall number r and carrier

density n as
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Anothér important experimental observable is the magnetoresistance £ defined
as the fractional increase in resistivity due to the presence of a magnetic
field. The low-field magnetoresistance is related to the magnetoresistance
X, which like the Hall number is generally not available experimentally,

E= (X - l)r2 uz B2,

In applications to electrons in germanium and silicon the transport
formulae (2.5.4) are amended to take into account the realistic energy bands
and effective mass anisotropies (see for example, Paige 1964). This can be
done in a systematic way by using suitably averaged values for the effective
mass in the basic zero field rate equation and also in the expressions for
low field transport properties (see for example Herring 1955). For example,
the effective mass occurring in the scattering rate term arises from the
density of states into which an electron may be scattered. The appropriate
effective mass is My, the density of states effective mass which for electrons

in germanium is given by

Here m,, m, are the longitudinal and_fransverse effective masses describing
the structure of the conduction band minima in the <111> directions in K-
space (these are the minima which are occupied by photoelectrons under the
conditions of our model). Similarly the effective mass appearing in the
expression for drift mobility is the conductivity effective mass m, which

again for germanium is defined by
1/mc - (1/m1 + 2/m2)/3.
The Hall mobility, Hall coefficient and magnetoresistance number are also

modified. Table 2.2 gives the modifications appropriate to electroms in

germanium,  Similar forms arise for silicon (Smith 1960).
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Some caution has to be exercised with regard to the momentum
relaxation processes considered. In hot carrier problems it is not
always known which of the scattering mechanisms are likely to dominate and
the situation may differ'radicallyffom that of thermalised carriers.
Consequently it is difficult to establish a satisfactory model without
including all possible mechanisms. Previously this has led to difficulties
in the interpretation of some experiments. In application to germanium
and silicon the momentum relaxation time is compounded from acoustic
deformation, ionized and neutral impurity scattering. The forms of these
relaxation times are given in Appendix 3.2, and have been described in
detail by Conwell (1967). Optic51 phonon scattering is not significant
as regards momentum loss in view of the low energy character of the
distribution function ¢(K). For ionized impurity scattering we adopt the
Brooks-Hertihg model (Brooks 1955), choosing the effective temperature
appearing in the screening length as the electron témperature T, defined
by

_g_ kB Te = <e> 2.5-6

where <e> is the average carrier energy. This involves the direct average

< > defined by

J e ¢(K) K dK2
<g> = : i 205.7

$(K) K dK>
[o]

This procedure is apparently valid for normal high field Maxwellian heating
(Alba and Das 1968) but is an approximation in our work. Neutral impurity
scattering is handled by Erginsoy's model (1950). Acoustic phonon scattering

is considered on the deformation potential model due to Shockley and

Bardeen (1950)§
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2.6 Lifetimes and cross sections

The steady state equation (2.2.1) may be integrated to give

W=mn <1/t(K)> = n <V(K)o(K)> NA 2.6.1

where n is the carrier concentration. This equation expresses the steady
state balance between the total excitation and recombination rates. As
before we deal with photoexcited electrons; a similar analysis applies
to holes. Here < > is the direct average defined in section 2.5. The

.
average recombination lifetime and cross section are then defined by

<a/t®>"L, | 2.6.2

~
H

Q
n

z <V(K)0(K)>/Vt . 2.6.3

where v, is the mean thermal velocity. We have used here the customary
definition for o which is quoted in most experimental work. Clearly this
is not a very meaningful definition from a physical point of view when the
electrons are heated. For a thermal distribution of carriers it is easy to
show that the temperature dependence of ¢ and T on the Lax model for capture

4 3.5

are approximately T * and T respectively. This follows from equation

(202.6).

There are two basic methods of investigating capture cross sections

and trapping lifetimes which have been used for shallow impurities at low
temperatures. One approach (e.g. Konig 1958) uses a transient technique
involving observation of the time decay of the current following application
of a voltage pulse to the sample. A more accurate method which has been
used recently, and is of particular relevance to the present work, is
typified in the steady state technique employed by Levitt and Honig (1960,
1961) and Loewenstein and Honig (1966). This method involves measurement

of the lifetimes of electrons which are photoexcited from shallow impurities,
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at low temperatures by extrinsic radiation peaked in the 2 to 20 micronm range

» N_ are

(or 0.6 eV to 0.01 eV). Impurity concentrations, that is N D

A
determined by a combined optical and paramagnetic resonance technique at low
temperature together with a room temperature measurement of resistivity. The
carrier densities are kept low so that the neutral impurity concentration can
be taken as NDo = ND - NA' Impurity concentrations are generally kept
between 1013 to 1016 cm_3 in these experiments. The rate W is determined by

an electron spin resonance technique and the trapping parameters T and o

deduced from measurements of W and n - the steady state carrier concentration:

t=n/W; o= W/(NAth) 2.6.4

Similar techniques were employed by Rollin and Rowell (1960) and Betjemann

(1965) .

Experimentally, the carrier concentration is deduced from the Hall
coefficient R as r/(Rg) where the Hall number is inaccessible to experiment.
Usually r is taken td be a coqstant of order unity. In the case of a thermal
distribution or Maxwellian heating this approximation is valid (e.g. for
momentum relaxation determined by ionized impurity scattering only r = 1,93,
and for lattice scattering only r = 1.18), But this assumption fails for
non Maxwellian heating. The carrier heating considefed in our work is non
Maxwellian (see section 2.4), and moreover the shape of the heated distribution
varies rapidly with the lattice temperature. Consequently r becomes strongly
dependent on lattice temperature through the energy dependence of the total
momentum relaxation time T, (for ionized impurity doming;ed relaxation we have
found values for r in excess of 30; although in practice other momentum
relaxation processes act to reduce these large values). It is therefore vital
to interpret the experimental work as actually providing curves of:

T " t/r, n_ = n/r

E

and o, = ro (Barker and Hearn 1968).

E
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Figures 2.3 and 2.4 show the temperature variation of Ogs N as réported
by Levitt and Honig (1961) and Rollin and Rowell (1960). The sample data
are given in Tables 2.3 and 2.4, These results pertain to n-silicon and
p-germanium respectively. Both experiments involved radiation fields of
the type basic to our model. Levitt and Honig used radiation peaked in the
extrinsic radiation range from 0,045 eV (the approximate shallow trap depth)
to 0.6 eV. This radiation was considered to excite electrons from the
neutral donors (Phosphorus donors and compensating Boron acceptors) into the
6-fold degenerate lowest conduction band minima for silicon (see Figure 2.5,
which sketches the conduction band and essential transitions involved).:
Rollin and Rowell used room temperature black body radiation to excite holes
from neutral copper acceptors into the valence band. Copper acés as a
triple acceptor in germanium with th deep levels and one shallow level
(Ei = 0.04 eV, Tyler 1959). The shallow states are compensated and.
recombination occurs at these shallow ionized acceptor levels. The energy
band scheme is sketched in Figure 2.6. It is clear from these results that
for decreasing lattice temperature the temperature variation of o deviates

4. dependence) .

from that predicted by the straightforward Lax model (T
Indeed an apparent cut-off in the temperature dependence occurs at very low ’

temperatures. This takes the form of a 'I.‘-i variation of o, below 3°K in

E
silicon. In the case of holes in germanium the cut-off occurs at a higher
temperature, exhibiting a change of slope of n, (which is proportional to
TE) to T4 near 19°K, followed by a possible peaked region around 15°K, A
similar effect was reported by Betjemann (1965). There have been previous
attempts to explain the observed cut-off (Brown and Rogriguez 1967; Btown
1966) in terms of overlap of the excited states, screening and impurity'
conduction as well as improved calculations of the capture process. But.

although these processes undoubtedly play some part they do not explain the

wide range of experimental results.
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Shown alongside the experimental results are our computed curves for ro,
n/r based on a similar set of parameters. (The data used is given in Tables
2.5, 2.6; the curve for ro corresponds to the data for sample 5 of Table 2.3.)
Despite the simplicity of the model we obtain reasonable agreement with the
experiment of Rollin and Rowell and for sample 5 in Levitt and Honig's work.,
No agreement was found for samples 1 to 4. Only with sample 4 is there any
noticeable carrier heating and this has little effect on the temperature
dependence of ro. In fact samples 1 to 4 give the temperature variation of
op as approximately Tfa, as expected for closely thermalised carriers. We note
that the trap densitites for these samples is much less than for sample 5 so
the overall recombination lifetimes are larger. The temperature dependence
of ro for sample 1 is shown as the dotted line in Figure 2.3. Discussion of
the significance of these anomalous experimental results, which are at
variance with the Lax theory, is deferred until section 8. To some extent
the deviation from the simple Lax model for sample 5 is due to averaging over a
hot carrier distribution which becomes increasingly independe;t of lattice
temperature as the lattice is cooled. In fact Mattis (1961) has previously
suggested that the cut-off is due to carrier heating arising from the capture
process becoming faster than that of thermalisation at low temperatures. An
objection to this interpretation was given by Loewenstein and Honig (1966):
namely that a temperature independent distribution of carriers cannot give rise
-4 since there must remain a residual temperature

to a T * variation of ¢

E’
dependence from the terms in T in equation (2.2.6) which involve the "sticking
probability" in the excited states of the traps. However, the major source of
the cut-off may be attributed to the temperature dependence of the Hall number.
If the Hall number is assumed constant in the calculations we do not find any
close agreement with experiment. The temperature dependence arises from the
non Maxwellian character of the distribution functions (which are similar

to those in Figure 2.2) and the energy dependence of the momentum relaxation

time., The detailed form of the temperature dependence of r is determined by the
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degree of carrier heating and the relative strengths of the various momentum
relaxation processes. The effect is most pronounced in the case of dominant
ionized impurity scattering because of the strong energy dependence of the
associated momentum relaxation time. An extreme case occurs for dominant
neutral impurity scattering which has a constant relaxation time; in this case

the Hall number is a constant at unity.

The general temperature dependence of the Hall number is illustrated in
Figure 2.7 for various admixtures of momentum relaxation processes. The
parameters used in the calculation are given in Table 2.7. Curve (a) is for
ionized impurity scattering only: the extreme case; curve (b) shows the
effect of including lattice scattering; and curve (c) displays the effect of
including neutral impurity scattering. The degree of carrier heating for this
situation is shown in Figure 2.8, by plotting mean carrier energy against lattice
temperature. We note that in the presence of strong non-Maxwellian carrier
heating it is difficult to provide an accurate estimate of the effect of the Hall
number on the trapping parameters because of the critical dependence of r on
the correct admixture of scattering processes. Analytical forms for the
temperature dependence of r, similar to those in Figure 2.7, can be obtained on
the basis of a double-Maxwellian approximation suggested by the results given

in section 4.

2.7 Transport properties

The effect of carrier heating is most pronounced in the temperature
dependence of the low field transport parameters, If only ionized impurity
scattering is preseﬁt the momentun relaxation time T, is a function of carrier
energy only. This leads tc>p'th,order.averages << Tsp >> which are independent
df lattice temperature and hence show very strongly any departures from

thermalisation. In view of the detailed form of the distribution functions
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(c.f. section 4) the higher order moments << Tsp>> sample the high energy hot
tail of the distribution, exhibiting deviations from the thermalised behaviour
at higher temperatures than the lower order moments. For example, the magneto-
resistance number X defined for a simple band structure by equation (2.5.4) is
strongly peaked and shows the effect of carrier heating at higher lattice
temperatures than the Hall mobility By OF the Hall number r. As an example
we display r and X as functions of temperature in Figure 2.9, for the case of
dominant ionized impurity scattering and the very hot distributions shown in
Figure 2.2.r The large values of r and X are a consequence of the single
momentum relaxation process and the large degree of carrier heating. Similar
remarks apply for lattice scattering but Ty then contains a residual dependence
on lattice temperature and a weaker energy dependence. With ionized impurity
scattering, the carrier heating is exhibited by an increase in Hall mobility
with decreasing temperature as compared with the T 2 behaviour for thermalised
carriers. The effect is more complicated for lattice scattering and depends
on the competition between the residual temperature dependence and the increase

in mean carrier energy with decreasing temperature.

When several scattering processes are present, for example lattice, neutral
and ionized impurity scattering, the heating effects are extremely complicated

and depend critically on the relative contributions to Ty

Experimental measurements of the transport parameters for optically excited
hot carriers are unfortunately scarce, and we have only been able to apply the
theory to the work of Rollin and Rowell (1960) and Betjemann (1965). Calculations
for the Hall mobility of holes in germanium based on the parameters given in
Table 2.6, are compared with experiment in Figure 2.10. The heating observed
by Rollin and Rowell is confirmed and reasonable agreement is obtained for the

temperature dependence. Figure 2.11 shows the effectiveelectron temperature
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T.» where T~ = 2<e>/(3kB), as a function of lattice temperature for this problem.
Experimentally, the Hall mobility was found to be proportional to T3/2 for the
thermalised background carriers in the absence of extrinsic radiation. This
indicates the dominance of ionized impurity scattering at low temperatures.
Similar behaviour occurs under extrinsic radiation but for temperatures above
ZAOK, where carriers reach quasi~equilibrium with the lattice. However, the
theoretical calculations indicate that neutral impurity and lattice scattering
play an important role at lower temperatures where carrier heating sets in.
Neglect of these processes leads to a considerable increase in the theoretical
Hall mobility at low temperatures. The major part of the 'temperature independent'
portion of the Hall mobility curve (region A in Figure 2.10) is in fact
attributable to the influence of neutral impurity scattering and not to a
temperature independent distribution of carriers as suggested by Rollin and

Rowell.

Conduction in p-germanium presents special difficulties (Lawaetz 1968) and
must await more detailed knowledge of the scattering processes and refinement of
our simple model before better theoretical agreement can be obtained. We note
finally that for strong carrier heating at very low temperatures, the simple
model breaks down as the detailed form of the excitation spectrum becomes more

important and this is not known with any precision.

Calculations were also performed for the Hall mobility in n-silicon
corresponding to the experiments of Betjemann (1965) but we can find no evidence
for any significant carrier heating. This is a consequence of the low density
of traps (NA = 3 x 1012 cm-3) giving rise to relatively long carrier lifetimes,
We have not been able to find any alternative explanation for the cut-off (which
is manifest as a change from a T.-3/2 dependent mobility to a temperature

independent mobility below 10°K) in the experimental Hall mobility. The radiation

used by Betjemann was room temperature radiation peaked at about 10 micron or
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0.12 eV, and as such no carriers, could have been excited into the higher

minima in the (111) direction which lies some 0.5 eV above the usual (100)

minima.

2.8 Summary and discussion

The simple model for carriers which are photoexcited by black body type
radiation (or broad spectrum radiation) predicts the possibility of observing
hot carrier effects in semiconductors at low temperatures., The origin of the
heating lies in the rapid decrease of carrier lifetime with decreasing lattice
temperature such that thermalisation to the lattice is prohibited. The energy
dependence of the carrier lifetimes as given by the Lax model is irrelevant to
the occurrence of heating, but is vital in its contribution to the temperature
dependence of the total capture cross section and average lifetime. The
general form of the hot carrier distribution function approximates to the sum
of two Maxwellian distributions; at least below the threshold energy for
optical phonon emission. The low energy dependence of the distributions is
governed by an effective temperature close to that of the lattice, whilst the
high energy dependence reflects the excitation spectrum. At sufficiently
high temperatures the theory shows that carriers come into quasi-equilibrium

with the lattice, verifying the earlier qualitative work of Mattis (1960).

Despite the simplicity of the model, reasonable agreement is found with
the experimentally observed transport properties. Application of Monte Carlo
methods for the low field transport properties has confirmed our assumption
that Onm's law holds under the experimental conditions considered and that

carrier heating by the applied fields does not occur.
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The non-Maxwellian nature of the heating requires a careful understanding
of the parameters actually measured in experiment, particularly with regard to
the Hall coefficient and capture cross section. Carrier heating could offer
an explanation in certain cases of the apparent cut off observed in the capture
cross section for cascade capture without a modification of the simple Lax theory.
However, as mentioned in sections 1 and 6 the full problem of this cut off cannot
be solved solely in terms of the present hot carrier model. We conclude this
chapter with a few speculations on the nature of the observed cut-off to the

capture cross section for n-silicon as observed by Levitt and Honig (1961).

Apart from sample 5, the majority of specimens used by Levitt and Honig
show the same temperature dependent cross section corresponding to a temperature
independent mean lifetime. This result is completely at variance with the
predictions of the cascade model, even when carrier heating is considered. There
have been several theoretical attempts to explain these results (Ascarelli and
Rodriguez 1961; Hamann and McWhorter 1963; Brown 1964, 1966; Brown and
Rodriguez 1967), all based on thermalised carriers but giving calculations for
the effects of overlap of excited states, screening and impurity conduction and
also improved calculations for the basic capture process. Only the hot carrier
model of the present work has given any agreement with experiment, and that
only for a single sample, sample 5. It is interesting to note from Table 2.3
that sample 5 is unique in having a very large ratio of neutral to ionized
donors and also the highest ionized donor density. The latter is

responsible for the carrier heating.

Levitt and Honig produce some evidence which suggests that the electrons
in their experiment were not excited predominantly to the lowest (100) minima
(see Figure 2.5) but to the higher (111) minima. This represents a further
aspect of the hot carrier problem which is not considered in our basic model.

However, it appears doubtful that this alternative situation could have a
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serious effect since we would expect the relatively fast non-equivalent inter-
valley optical phonon scattering processes to bring carriers back into the
(100} minima in a time less than the recombination lifetime. This situation
is also complicated by the possibility of impurity assisted intervalley
scattering which at least for equivalent valleys in n-germanium can dominate at

very low temperatures (Weinreich, Sanders Jr., White 1959).

If we neglect intervalley optical phonon scattering and accept Levitt
and Honig's idea that carriers are excited into the higher (111) minima then we
can speculate on the influence of impurity assisted intervalley transitions
on the observed capture cross sections. The following remarks are highly
qualitative., Weinreich et al (1959) have shown that impurity assisted
interequivalent valley transitions can occur in n-germanium. Capture of an
electron into a bound donor state is followed later by re-emission into a new
valley, The scattering is elastic. As one electron is captured another one
nearby is re-emitted, so that from the point of.view of the conduction band
this is an instantaneous process. Neutral donors also participate where
the scattering is essentially exchange scattering. The main features are that
the neutral impurity contribution dominates at low temperatures and has an
effective relaxation time comparable to the Lax cascade recombination lifetimes.
We might expect that a similar process could occur between non-equivalent
valleys in silicon. Presumably this process also includes the possibility
of capture into a metastable state associated with the (111) valley and arising
from the donor level assoicated with the (100) valleys, followed by a transition
into the (100} valley (see Figure 2.12). This would be similar to the

resonant scattering of free electrons from hydrogen like atoms. If these

g
.

processes occur and are largely temperature independent we can give a crude
explanation of the cross section data of Levitt and Honig. Consider the

situation sketched in Figure 2.13. Let the applied radiation excite carriers
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into the (111) minima at a rate S, with no carriers excited into the (100) minima.
The steady state rate equations for the (111) and [100) valleys then take the

simple form:

s =t (111) valley 2.8.1
T
12
"M
0=-—=-— (100) valley 2.8.2
T T
2 12

where n,, n, are the populations of the [111) and (100) valleys respectively,

1o is the impurity assisted intervalley scattering time and Ty is the recombina-
tion lifetime due to the Lax cascade mechanism. Here we suppose that
recombination only occurs from the [100) valley. From equations (2.8.1) and
(2.8.2) we find

12

= H S =

)

. 2.8.3

:'hp

[\

The essential factor in this problem is the ratio of neutral to ionized donors.
The latter are responsible for the cascade capture, the former for the inter-
valley transfer. If this ratio is small then intervalley transfer will be
slower than the recombination process, i.e. 1o > Ty and hence n > n2: most
of the carriers will be in the (111) valley. In which case a Hall coefficient
measurement will essentially measure n, and hence from (2.8.1) will derive 19
the temperature independent recombination lifetime rather than Ty If the
ratio of neutral donors to ionized donors is large then similarly we find

n, > Ny, and a Hall measurement will give Tye At lower temperatures, however,
the cascade recombination lifetime can decrease below leand we return to a
measurement of Tipe Inspection of Table 2.3 shows that sample 5 would satisfy
the latter criterion and our hot carrier model would apply, whereas for samples
1 to 4 the carriers are probably in the (lll)valley and the experiments have
measured T,,. Clearly this idea is very speculative and more theoretical and

12

experimental work is required in this area.
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CHAPTER III

THE MONTE CARLO APPROCACH TO TRANSPORT THEORY

3.1 Introduction

During the last three years Monte Carlo methods have been applied
successfully to highly non equilibrium electron transport problems in
solids. Such situations arise for example, in considering the effects
of high fields where the usual method of solving the Boltzmann equation
using a truncated series of spherical harmonics fails (Pinson and Bray
1964) .  This failure will occur in general whenever the distribution
function of carriers in k-space is strongly asymmetric. Rather than solve
the Boltzmann equation for an ensemble of carriers it is possible to obtain
the steady state distribution function and transport parameters by following
the motion of one carrier for a sufficiently long period of time. The
ensemble average is then essentially replaced by a time average. Kurosawa
(1966) first demonstrated the power of the Monte Carlo method in a simple
simulation study of high field hot carrier effects in p-type germanium.

The technique was later employed by Boardman, Fawcett and Rees (1968) in

a more sophisticated form to high field effects in GaAs. These ideas have
been refined and adapted to the present studies of photoexcited carriers

at low temperatures in semiconductors, where the carriers have effuctively
a finite lifetime, (Barker and Hearn 1969a,b,c). Application to hot
electron effects in silicon and germanium has already been discussed in
Chapter II, and in Chapter IVwe make full use of the technique to study
oscillatory photoconductivity in the III-V compounds. 1In view of the
potential importance of the Monte Carlo method in electron transport theory
we devote the whole of this chapter to an outline of the basic theory and

the innovations we have introduced.
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In our applications the method involves the computér simulaéion of
the motion of a single electron (or hole) in k-space from injéction
into the band until subsequent recapture. A 1argé numbér of carriér
histories are recorded from which the distribution function and macroscopic
transport properties follow as suitable averages. The basic ideas

involved are described in sections 2 and 3.

In semiconductors the scattering mechanisms are of an extrémély complex
nature and one of the consequences of this is that the total scattering
cross section is an intractable implicit function of the time of free flight.
This difficulty has been overcome by the introduction of a self-scattering
channel (Boardman, Fawcett and Rees 1968) which makes the total scattering
cross section constant in time, and if entered merely feeds the carrier
back into free flight. This work is reviewed in section 4 and the first
proof of the method offered. It has proved necessary to generalise the
simple ideas of the self scattering device in two ways. The first
innovation is the introduction of energy dependent primary self scattering
which provides a time dependent total scattering cross section which can
be handled analytically as regards the time of flight sampling., This
leads to higher convergence and efficiency. A further advance described
in section 5 involves the retention of some of the self scattering within
the individual scattering channels., This secondary self scattering device
greatly facilitates the handling of the differential scattering cross

gsections and removes the problem of storage capacity in the machine.

3.2 Carrier histories

To be specific let us consider a steady state ensemble of photoexcited

carriers within a single band of a non degenerate semiconductor. We suppose
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that the lattice temperature is sufficiently low that thermal éxcitation
into the band is negligible. Each carrier is taken to be complétely
described by its wavevector k within the band. Four competing procésses
determine the properties of the ensemble. They are: (1) the photo-
excitation process: the probability that an injected carriér énters the
band in a given state, either from another band or an impurity lével,
depends on the photoexcitation spectrum. For examplé, with uniform
monochromatic photoexcitation, carriers are injected into states which are
distributed at random on a constant energy surface in k space. (2) The
accelerating effects of external applied fields: we consider only a
constant uniform electric field which induces a uniform drift of carriers

in k space at a rate given by

= er/h 3.2.1

[

where F is the applied field, and e the charge on a carrier. (3) Scattering
processes: collisions with phonons and impurities scatter the carriers
between states within the band. We suppose the collision process to be
instantaneous; in between collisions the carriers drift freely.

(4) Recombination: the carriers have finite lifetimes within the band and
may recombine at impurities or within another band. We shall find it
convenient to regard recombination as a special form of scattering in which
the carrier is removed from the band. All four processes take place during
the history of a particular carrier. Figure 1 shows a simplified history

in k-space for two monoenergetically excited carriers in a simple band.

The essence of the Monte Carlo method is to simulate the four physical
processes mentioned above, and involves tracking carriers from injection
into the band until subsequent recombination. It is presupposed that all
relevant probabilities for the elementary events in the life history of a

carrier are known. A sufficiently large number of carrier histories,
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typically a few thousand, are recorded from the computer simulation to

form a reasonable statistical sample of the much larger ensemble of carriérs
actually present in the semiconductor. The simple macroscopic properties
of the total ensemble are then obtained by suitable averages over the

history of the test ensemble.

The mean carrier lifetime T is calculated as the arithmetic mean

T = z Tj/N ’ 3.2.2

where 1, is the lifetime of the jth test particle and N is the population
of the test ensemble. Assuming a constant average photoexcitation rate W,

the steady state carrier population is deduced as

N = Wr ‘ 3.2.3

(c.f. Chapter II,section2.2). However, calculation of other average

properties of the ensemble is less straightforward.

Consider the experimental measurement of some macroscopic property of
the steady state ensemble, for example the momentum per carrier ﬁh. In
practice the measurement will involve a time average of the total carrier
momentum over a macroscopic time interval T, where T is greater than any
of the characteristic microscopic times associated with the ensemble.
Clearly we are ignoring fluctuation phenomena. The average momentum per
particle is then measured as
h JT&(t)dt

o
N JTdc

)
where N is the average number of carriers,’ﬁh(t) is the momentum of a

3.2.4

<ﬁE?E =

particular carrier at time t, and the summation is over all carriers present

at time t. If we ignore the fluctuations in carrier population and
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consider the number of carriers to be a constant N, we can obtain a more
precise mathematical expression for the experimental average. To do this
we label a particular carrier with index j and suppose that if the carrier
recombines it is instantaneously photoexcited back into the band to maintain
the constant population. Recombination then, is treated as a special form
of inelastic scattering. What we have done is to replace a fluctuating
number of carriers of finite lifetimes with a constant population of quasi-
carriers with infinite lifetimes. The experimental ‘average is then
" N Tj
k.dt
= mm>z% | 3.2.5
1

Fkop = T,
N J I gt
(o}

where we define Tj =T for all j. Since we are dealing with a statistical
system we make the assumption that the individual quasi-carrier average Eﬁ
is the same for all carriers provided the averaging time T is sufficiently

large. Consequently the experimental average is essentially an average

over a single quasi-carrier:

T
gl J k(t)dt
. o
<KE>E = T 30206
[
o}

where we now drop the index j. The Monte Carlo simulation of the problem
involves tracking a single quasi-carrier over a large number of real carrier

lifetimes, say No (where N, << N). The average momentum per particle is then

obtained as
To
ﬁJ k(t)de
o
<Hk> =
=M To_
t 3.2.7
N o
o
om Ll

where 1. is the lifetime of the jth real carrier making up the quasi-carrier.
J

The basic premise in Monte Carlo is the identification of <ﬁ£>M with the

experimental average <ﬁE>E.
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Similar averages are readily found for other properties of interest.
We note that the drift mobility p and conductivity o are immediately obtained

if the average carrier momentum and carrier density n are known:

g = ned 3.2.8

u = Jr'1<k>M/(m*F)

* . . .
Here m” is some appropriate effective mass.

Distribution functions are readily obtained by imposing a suitable
discrete mesh in k-space (Kurosawa 1966). The fractiodal time spent by
a quasi-carrier in a particular element of k-space is proportional to the
steady state distribution function f(k) in that element. If the mesh
element is small, the calculated distribution function will exhibit
pronounced fluctuations unless the quasi-carrier history is simulated over
a long period of time. fhe fluctuations are most severe for the high
energy tail of the distribution function which generally repreSeﬁts a low
population of carriers. Average properties such as the mean carrier drift
velocity are essentially averages over the entire distribution function
and the effect of fluctuations is largely cancelled out.  Consequently
the Monte Carlo calculation of distribution functions generally requires
a longer machine time than calculation of simple ensemble averages.

The actual simulation is commenced by selecting a first test carrier
making up the quasi-carrier with an injection wavevector k and energy ¢
which are sampled from the probability distribution appropriate to the
photoexcitation process. The time of free flight in k-space is then
sampled from a probability distribution determined by the scattering
processes (including recombination as a special case). The carrier has
then evolved to the new state k' = k + QE/E. where t is the time of free

flight. If distribution functions are required the visiting time of the
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carrier in each cell of k-space traversed during free flight is recorded.

The collision channel, corresponding to the mode of scattering, is then
selected by a sampling technique from a knowlédgé of the various collision
channel probabilities associated with state k'.  The scattered state k" is
determined in a similar fashion from the differential scattering cross section
of the chosen channel. This new state acts as the initial state for the
next free flight. The procedure is repéatéd until the recombination channel
is entered at which time the entire carrier history is complete. Thé quasi-
carrier history is continued by generating further test carriers and the
procedure repeated until a sufficiently large sample has been obtained.
Averages are readily calculated as the simulation proceeds; for example, by

storing the cumulative time integral of the quasi-carrier momentum.

No hard and fast rule can be given for how many carrier histories must
be recorded to obtain a reasonablé statistical sample. Each problem has
to be treated on its own merits. For example, the calculation of drift
velocity for very low applied fields requires extremely long simulation times
as the fluctuations are of the same order of magnitude as the derived avéragé.
For high fields the fluctuations are less important and reasonable convergence
is obtained with a much smaller simulation time. In practice the simulation
is continued until the averages of interest converge to within a given
tolerance, typically 1%7. For the problems discussed in this thesis, the
sample size has varied from 1000 to 10000 test carriers and involves a total

number of collisions of the order 105 for each ensemble average.

Figure 2 shows a simplified flow diagram for the simulation routine. The

details of the simulation are given in the following sections.
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3.3 Basic Monte Carlo

The basic simulation is performed as follows. Consider a carrier at
k(0) at time zero. Provided it does not scatter the carrier evolves

according to the dynamical relation
k(t) = k(0) + eFt/h 3.3.1

where F is the applied uniform constant electric field. The probability

density for a first scattering at time t is then

t .
p(t) = A(g(t))exp(-J AR(t"))dt") 3.3.2
o

where A(k) is the total scattering rate out of state k due to all the
scattering mechanisms (capture is regarded as a special form of scattering).
This form arises since p(t) is just the joint probability of the carrier
surviving for a time t and A(k(t)) the probability per unit time for scattering
at that time. The survival probability is determined by considering the rate
at which a number of carriers n(t), belonging to a test group all with the

same wave vector k, are attentuated by collisions. This rate is given by

- = =N
from which we find

t
n(t) = n(0) exp(-j Adt')
o

where n(0) is the population at time zero. Equation (3.3.2) follows when
we identify the survival probability with n(t)/n(0). The time of scattering

is deduced from the equation

t
P(t) = J p(t")dt' = r 3.3.3
o

where r is a computer generated random number, uniformly distributed on
(0,1). The procedure is justified since the probability P(t) that the carrier

will have been scattered by time t is uniformly distributed between O and 1.
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Having determined the scattering time, the scattering channel is

selected by generating a second random number r' and using the inequality

A G (e)) 3, (k(t))
L veoyr T L sy 3.3.4
3<] - j>j' 7=

to decide whether channel j' is entered. 1Integers j label the possible

scattering mechanisms and

Ak(®)) =] A G(e)) 3.3.5
i

The channel probabilities p(j) are given by

p(3) = A/h 2 Jd_lg'KJ.(g,E')/x(p ) 3.3.6

The kernels Kj(EtE') are the usual probabilities per unit time for transition
out of state k into state_&'. Those which are of concern to us are tabulated

in Appendix 3.2. It is not always convenient to calculate a particular

A(k) and this can be avoided by a mathematical device discussed in section 5.

The scattered state k' is determined in a similar fashion by generating
further random numbers satisfying probability distributions appropriate to the
differential scattering rates Kj(h,k') of the channels involved. The new
state k' becomes the initial state for the next free flight. For completeness,

an outline of the Monte Carlo procedure involved is given in Appendix 3.1,

The channel for ionized impurity scattering is a source of some computa-
tional difficulty in that there is a predominance of small angle elastic
scattering, particularly at high energies. From a computational point of
view, the recording of small angle collisions is wasteful as we are mainly
interested in large angle scattering in transport theory. A way round this
problem is to introduce a cut off to the differential cross section for

ioni%ed impurity scattering so as to ignore collisions for which the scattering
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angle is less than some small value. This procedure is sketched in

Appendix 3.2.

To complete the description of the basic simulation process we
review the procedure for carrier injection. In our applications we aré-
concerned with isotropic excitation into isotropic spherical energy bands.
Two cases are of interest, the monoenergetic excitation associated with
oscillatory photoconductivity (ChapterIV) and the black body excitation

discussed in Chapter II.

Suppose that the injection energy e, has been selected (this is trivial
is the case of oscillatory photoconductivity), then we calculate the
direction of the corresponding wave vector__l_c_o as follows. The vectorlc_o
is randomly oriented in k space and the probability distributions for the
cosine of its polar angle 6 and azimuthal angle ¢ in the simulation frame:

are simply
P(cos 0) = cos 68/2; P($) = ¢/2 , 3.3.7

Generation of two random numbers r, r' in the range O to 1 then gives the

angular components °f.50 according to
cos 6= 2r = 1; ¢ = 2mr' 3.3.8

In applications to transport theory we exploit the cylindrical symmetry
about the applied field direction and require only kp,and ké the radial

and polar components_of.50=, which involves only one random number:

. = 2 _ . 24
k = kocos o= ko(Zr 1); kp = (ko k, )¢ 3.3.9

Here k is given by
*_ w2y d
kc = (2m eo/ﬁ )

where m* is the appropriate effective mass.



48

In general it is difficult to sample a given probability distribution
of injection energies P(e) by inverting the relation P(e) = r; and in
some cases only the probability density distribution p(e) is available. Von
Neumann (1951) has developed a routine, the rejection method, which is uséful
in such cases. The technique requires the generation of a sequence of
pairs of random numbers (51,52) which are uniformly distributed on a
rectangle of area A enclosing the curve p(e) as sketched in Figure 3. The
first random number Es is a test energy defined on the energy range of
interest, say O to ¢, (if this range is infinite it is necessary to introduce
a cut off to the excitation spectrum at some appropriate point). The second
random number 52, is uniformly distributed between zero and the maximum
value of p(e). Both numbers are trivially obtained from numbers generated
on the range (0,1). The test energy is selected or rejected as the correct
injection energy according to whether £, is less than or in excess of p(El)-
In the rejection case, the procedure is repeated until the selection condition

is satisfied.

We show that the rejection method correctly selects injection energies
satisfying the probability distribution p(e) by considering a large number of
random points to be thrown into the rectangle. Of the points which fall
below the curve p(e), the proportion that fall in the strip € to € + de tends,
in the limit of large numbers, to the ratio of the area of the strip to the
total area under the curve. This last ratio is just p(e)de, and the

procedure is confirmed.

The fraction of wasted points in the rejection method is clearly 1 - 1/A,
where A is the area of the rectangle. For many applications A may be large
with a consequent large loss in efficiency. 1In these instances it is better

to use the envelope method, developed in section 3.5, which essentially
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minimizes A. The rejection method was employed to sample the excitation

spectrum in the Monte Carlo calculations discussed in Chapter II.

3.4 The self scattering device I - primary self scattering

For certain scattering processes, for example polar optical phonon
scattering, equations (3.3.2) and (3.3.3) cannot be solved analytically
and the determination of free times is difficult. Boardman, Fawcett and
Rees (1968) avoid this problem by introducing a non physical 'self scattering'
device whereby a carrier may scatter from a state k into itself. The
scattering rate for this process is I - A(k) where T is a positive constant
(chosen greater than A(k) for all energies of interest to avoid negative
probabilities). Inclusion of self scattering is equivalent to replacing

A(k) in equation (3.3.2) by I and solution of euqation (3.3.3) for the free

time t is then straightforward. 1In detail we replace A(k) by
I's
b= fd}s'{Z Rile,k™) + (5 = 2(k)6(k - 5')} . 3.4.1
J :
J

The probability for a first collision at time t is then given by
P(t) = 1 - exp(~Tt) 3.4.2
and the free time t is generated from
-1
t=-T loge r. 3.4.3

The disadvantage of this simplification is that there is now a finite
probability of self scattering which does not contribute to the determination
of the transport properties or distribution function. This must be accounted

for at the collision channel stage.

At a collision either real or self scattering may occur, with respective

probabilities Pgs Pg given by
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A (k) A (k)
p =3 p = 1 T T . 304-4
R r S T

The collision channel is selected by the routine described in section 2;
and if the self scattering channel is chosen the carrier state is unchanged,
and a new random time selected. The entire procedure is shown schematically

in Figure 4.

As far as the author is aware, no proof has previously been given that
the distribution of free times between real collisions as generated by the
self scattering device is equivalent to the actual distribution of free times.

We give a proof of this important equivalence in Appendix 3.3.

In practical applications the number of self collisions must be
minimized. This may be achieved, in certain circumstances, by removing
the restriction that T be a constant. For example, in the simulation of
oscillatory photoconductivity, to be described in Chapter IV, it is found
that more rapid convergence is achieved by choosing I' as a step function
of carrier energy. We complete this outline of primary self scattering

by skatching the generalization of T.

Suppose that the total scattering rate is of the form

A = A (k) +6(e = €.), (k) 3.4.5
where
0(e = g) =0 fore <g oy
=1 for © 3-51

Here € =‘ﬁ2k2/2m*, the carrier energy and € =‘ﬁ2k12*2m*. The constant
energy €1, could be for instance, the threshold energy for optical phonon
emission. In situations where A; >> A, (as in oscillatory photoconductivity)

we can usefully exploit the form (3.4.5) by introducing the step function
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behaviour into the self scattering parameter T:

I = Fo + Fle(e - € 3.4.7

x

where Fo, I') are constants. In the presence of a uniform field, T then

1
becomes a function of time. Consider a carrier with energy e at (kp, kz) in
k-space at time zero. Suppose that the applied electric field F is directed

along the negative kz axis in k-space. There are three situations to contend

with as illustrated in Figure 5.

The simplest case occurs for e €1 subject to the constraintlkpl > k1
if kz <.0(see Figﬁre 5(a)). Here the dynamical relation (3.3.1) ensures
that the carrier energy always exceeds threshold provided no scattering
occurs. The time of free flight is then obtained by setting I = I,+ 10

in equation (3.3.3).

The second case (shown in Figure 5(b)) involves ¢ < €q° The self

scattering term T may then be written
= - 31408
=T +re(t-2)

where A, the time required for the carrier to accelerate freely to the

threshold energy, is given by the dynamical relation as
= {- 2y 5l 3.4.9
A { kz + (k1 kp ) }/G

where G = eF/h.

Substituting the expression (3.4.9) for A(k) in equations (3.3.2) and

(3.3.3), and carrying out the integrations gives the time of free flight

according to

.-1 R
t = ~T lo 1 -1 ifr<r

-1 _ g
t = (To + Pl) (Flk log, (1 -n)ifr >er

| g
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where r, is defined by
ry = 1 = exp( -POA) 3.4.11

and r, as before, is a random number on (0,1).

The remaining case (sketched in Figure 5(¢)) involves the initial
carrier energy in excess of the threshold energy, but subject to the

constraints Ikpl<k k, < O. The appropriate self scattering term is

13
T =T + rl(e(x1 -t) + 06(t - AZ)) 3.4.12

where Al’ Az are the times at which the free carrier crosses the energy shell

€, = £2k2/2m*. As before A,, A, are calculated from the dynamical relation

1 1’ "2
as
- 2 _ . 2,4 )
Ay = ( kz(kl kp )4)/6)
- 2 _ ., 24 :
Ay = (-k, + (k1 kp )9 /6 3.4.13

2 214

For this case the time of free flight is given by

-1 .
t = (I‘o + Pl) log, 1 -1 ifr <.r>\l w
_1 .
t=-I "(log, (1 -1r) +T.,x)ifry < r<r
° ¢ 1l 1 "2 3.4.14
-1
t=-(_ +T) {1oge Q-0 -rQ,- Al)}
if r > 1
J
where rxl, rAZ are defined by
T, = 1- exp{-kl(ro + Pl)}
3.4.15

rAZ =1 - exp{—Flkl -FOAZ} .

We note that if A =0 these results reduce to the second case considered.
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The technique may be extended to an arbitrary number of energy
thresholds and is not restricted to isotropic spherical energy bands. The

validity of time dependent self scattering is shown in Appendix 3.3.

3.5 The self scattering device II - secondary self scattering

In some circumstances, for example with inelastic acoustic phonon
scattering, a particular channel scattering rate Ajgg) cannot be evaluated
analytically and determination of the scattered state is therefore difficult.
One approach (c.f. Boardman, Fawcett and Rees 1968) is to tabulate numerically
calculated values for Aj(g) separately at selected points in k-space and to
use interpolation to find intermediate values where required. This procedure
is not always convenient and instead we circumvent the problem by retaining
a finite probability of self scattering within the appropriate scattering
channel.  Suppose that channel j is a 'difficult' channel. Then we
essentially replace the actual scattering rate Aj(k) by a constant Fj(>lj),
so that the probability of scattering into channel j is, if scattering occurs,
p(j) = Fj/F. The decision as to which channel is selected is then trivial
but now involves the probability that the final state is the same as the
initial state, i.e. secondary self scattering may occur. This second
decision is reached by a generalisation of the rejection method which auto-
matically yields the final state parameters. The self scattering devices
are summarized in symbolic form in Figure 6 (for three real scattering

channels).

For high efficiency, the secondary self scattering may be minimized by
replacing T; by an envelope function Ej(E) which is defined in terms of the
J

differential scattering rate Kj(EtE') by
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Ej(g) = J Ej(kth')QE' where
D

Aj(g) = JD Kj(EtE')QE' and Ej(E,k') > Kj(k,k') for all k,k'. Here E, (k,k")
LA S X XX j X
is defined on the same domain of integration D as Kj(ELE') and can be

nandled analytically.

To illustrate the procedure we consider the simple case where channel j is
difficult and the scattering term reduces to the form:

[

2

Aj(p =J L(e,e')de’ | 3.5.1

f1
Here ¢' is a final state parameter such as energy, or a simple function of
energy. The limits'el, e, are in general functions of the initial state

parameter e. An envelope function E(e,c') is chosen such that

€2
J E(e,e')de' = Eo(e) 3.5,2
©1

where Eo(e) can be calculated exactly. The secondary self scattering rate
is then
€2 €2
J de'' {Eo - J L(e,e')da'}d(e-s"). 3.5.3
€ €
1
The probability of secondary self scattering pSS is then

€
PSS =1 - J 2L(e,e')ds'/E0 3.5.4

€

whereas the probability density of real scattering PR(e,e') is given by
PR(e,e')ds' = L(e,e')de'/Eo ) 3.5.5

If we choose E(e,e') ® L(e,e') then PSS becomes very small as required.

The Monte Carlo routine here is the generation of a pair of random numbers 51,

52 where El is uniformly distributed on (51,52) and &, is uniformly distributed on
the interval O to the maximum of E for the range (el,ez). If the random point

(51,52) lies between the curves L and E then we exil. through the self-scattering
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channel, if between O and L through channel j with final state parameter gl,
uotherwise (51,52) is regenerated. The routine may be justified by a similar
rargument to that for the rejection method given in section 3. In certain cases
;it may be possible to sample the envelope function directly in which case only

a single random point (51,52) is required For this situation & is the solution of

€
r = f 1 E(e,e')de'/Eo . re(0,1)
3
1
whilst gz is uniformly distributed on O to E(e,&l). If(&l,gz) lies between

the curves E and L we have self-scattering, otherwise real scattering with final

state parameter gl'

This method may be extended to general situations in which the carrier
state is specified by a large number of parameters, although the choice of

an envelope function may be made more exacting.

The major use we have made of the envelope technique concerns inelastic
acoustic deformation scattering in simulation of the hot carrier problem
in germanium and silicon. The technique was also used in simulation of
oscillatory conductivity. Suitable envelope functions for acoustic deformation

scattering are given in Appendix 3.2.

3.6 Conclusions

We have reviewed the basic ideas of the Monte Carlo method as applied to
electron transport theory and indicated the modifications required to allow for
photoexcitation and recombination processes. The complex nature of electron
collisions with phonons and impurities requires special handling of the time of
flight sampling and collision channel selection. Generalisations of the self

scattering device to overcome these problems has been presented and the validity
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of the methods proved. With the techniques developed any physical scattering
process can be handled without recourse to apbroximation. The method is
therefore a powerful one for testing physical models and more approximate methods
of solution. Unlike the Boltzmann equation approach, Monte Carlo methods are
particularly suited to high field studies or situations involving highly field
dependent distribution functions. Generalisation to include magnetic fields
poses no problem in principle and extension to multivalley processes is

straightforward.

In the following chapter we exploit the techniques of Monte Carlo to

support theoretical studies of the oscillatory photoconductivity effect.

-
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CHAPTER 1V

OSCILLATORY PHOTOCONDUCTIVITY

4.1 Introduction

In this chapter we focus attention on a second situation in which
photoexcited hot carriers may arise, where the applied radiation is responsible
for a narrow band excitation spectrum. The phenomenon has come to be known
as the oscillatory photoconductivity effect. It turns out that this is a
complicated 'mixed' hot carrier problem in which the steady state distribution
functions are highly non-equilibrium due to optical heating and are severely

distorted by applied electric fields.

At low temperatures the photoconductivity of many III-V semiconductors is
an oscillatory function of the energy of the monochromatic incident light, with
a period equal to the longitudinal optical (LO) phonon energy. This effect
is due to the strong polar interaction between the photoexcited carriers and
optical phonons., It was first observed by Blunt (1958) and has since received
considerable experimental attention. The basic theory of the effect has been
presented by Stacker and Kaplan (1966) using certain approximations regarding
the form of the non-equilibrium carrier distribution function. A brief review
of the earlier work is given in‘section 2, The present study was initiated to
investigate the reported strong dependence of the oscillatory structure on

electric field (Habeggar and Fan 1964).

" The major causes of oscillatory photoconductivity are the short carrier
recombination lifetimes and the preferential momentum losses in the direction

of the electric field induced by the strong optical pdlar phonon-electron

interaction. As we shall see the carrier distribution function f(k) is very
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far from equilibrium and shows a highly non linear dependence on electric field.
Consequently the precise calculation of f(k) and the transport parameters from
the Boltzmann equation is a formidable problem unless severe approximations are
made with respect to the form of the distribution function and the scattering
processes. To avoid these difficulties we have performed detailed Monte Carlo
calculations for the photoconductivity as a function of photon energy and
electric field strength. 'These are described in section 3. Provided that the
carriers are not injected into the band with an energy very close to a multiple

number of optical phonon energies, these calculations show good agreement with

experiment (Barker and Hearn 1969a).

An interesting situatioﬁ occurs for carriers which are photoexcited mono-
energetically into the band with an energy just less than an integral number
of LO phonon energies. Our calculations, and also those of Stocker (1967)
suggest that the conductivity and differential conductivity can theoretically
become negative, for a certain range of electric fields (typically from a few
mV/em to a few V/cm). However, this aspect of oscillatory photoconductivity
has not yet been observed experimentally. These effects arise from the
field dependence of the mean drift velocity of the photoexcited carriers.

Our Monte Carlo calculations, and also an exact analysis based on a simple one
dimensional model (section 4), support the form predicted by Stocker for the
variation of conductivity with the strength of the uniform electric field.
This suggests that the occurrence of a negative drift velocity for certain

electric field strengths is a real effect (Barker and Hearn 1969b).

The possibility of observing bulk time independent negative conductance,
in which part of the incident optical energy is transferred to the electric

field, is considered in detail in Chapter V.
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4,2 Oscillatory photoconductivity — a brief review

The earliest reported observations of oscillatory photoconductivity
involved measurements of the low temperature (less than 12°K) extrinsic photo-
conductive spectral response of samples of p-type indium antimonide dopéd with -
either copper, silver or gold (Blunt 1958, Engeler, Levinstein and Stannard, Jr.,
1961a, b). Each of these dopants gives rise to two deep acceptor levels in
InSb. Optically induced transitions between the lower level and the valence
band (heavy hole) are responsible for the photoconductivity. These are
indicated in Figure 4.1, where we sketch the form of the band structure of InSb
and summarize some of its properties. The essential experimental technique
involves exposing the sample to monochromatic radiation (in the 4 to 28 micron
range), chopped at about 200 c.p.s. 'Photocurrents are measured by applying
a d.c. voltage across the sample in series with a load resistance. By
amplifying the a.c. voltage across the load resistance only the photocurrent is
measured and the d.c. dark current due to thermally excited carriers is

suppressed. Typically the doping densities are in the range 1013 - 1015 cm—s,

. . . s 11 -3
and the maximum steady state excess carrier densities are of the order 10" cm °,

so that intercarrier collision effects are expected to be negligible.

Monochromatic radiation induces transitions between the impurity levels
and the valence band such that the photoexcited holes enter the band with a well
defined energy. There is always a slight spread due to the width of the

impurity level and any residual energy spread of the incident light.

The early experiments established that oscillations occur in the spectral

response, with minima at photon energies given by
flw = E, + Ilﬁw ) 402-1
i o

where ﬁwo is the long wavelength longitudinal optical (LO) phonon energy.
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The oscillations were originally attributed to an oscillatory structure in

the absorption spectrum. On this model the spectral curves (an example is

shown in Figure 4.2) were interpreted as the superposition of a series of spectral
curves with thresholds separated by a single LO phonon energy. The first thres-—
hold would correspond to a direct impurity to valence band transition. Whereas
the second and higher thfesholds would arise from indirect transitions involving
the emission of one or more LO phonons. Later work (Stocker, Levinstein,
Stannard, Jr., 1966) has shown that no such oscillatory structure exists in

the absorption spectrum.

The first observations of intrinsic oscillatory photoconductivity, involving
valence to conduction band transitions (see Figure 4.1), were made by Habeggar
and Fan (1964) and Stocker et al (1964), again with p-type InSb and for the
temperature range 4°K to 50°K. Similar observations were reported in n-type
InSb by Nasledov et al (1965). The photoconductivity is largely due to the
photoelectrons since the measured light and heavy hole mobilities are some two

orders of magnitude lower than the electron mobility. Extrinsic transitions

are negligible since these involve absorption coefficients of the order 10 2em
as compared with 103cm-1 for intrinsic transitions. The spectral response
again shows minima occurring at photon energies

hu = (1 + mg/mp)ohu + Eg, 4.2.2

where the conduction and valence bands are assumed parabolic with effective masses
'mé, my, respectively. The energy gap is denoted by Eg. The factor (1 + mg/my)

arises from the three body nature of the transition.

No oscillatory structure was observed in the absorption spectrum.
Consequently, Stocker et al (1964) reinterpreted the oscillations in terms of

oscillatory variations in the energy dependence of the lifetime of the photo-
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electrons. Their model assumed that electrons are captured at impurities by
both direct and cascade processes; the trapping being more efficient for

lower energy electrons. Electrons injected with energies close to a multiple
LO phonon energy would cascade rapidly to the bottom of the band by emitting
optical phonons, followed by rapid capture. For injection energies intermediate
to two successive multiple LO phonon energies, the cascade process would still
occur but would leave the electron with a higher residual energy. Hence there

would be a lower probability for capture.

An alternative explanation was advanced by Habeggar and Fan (1964), again of
a qualitative form. They suppose that the electron recombination lifetime is
intermediate between the relaxation time for optical phonon emission and the
energy relaxation time due to acoustic phonons. The electrons then recombine
before losing appreciable energy. If the injection energy exceeds hwo, the
electron loses one or more quanta of‘ﬁwo very rapidly, and with increasing energy,
the steady state energy oscillates in the range O to ﬁwo, going through a minimum
every time b is a multiple of ﬁwo. At low temperatures the mobility is
determined by scattering from ionized impurity centres and varies with energy,
thus giving rise to the oscillations. As in previous explanations no discussion

of the role of the applied field was given.

A comprehensive experimental analysis of oscillatory photoconductivity
was made by Stocker et al (1966) and included measurements of the temperature
and applied field dependence of the intrinsic and extrinsic oscillations in p-
type InSb. This work showed that the oscillatory structure gradually disappeared
for applied fields in excess of about 20 Volts/cm whilst as a function of
increasing temperature the oscillation minima shifted to lower photon energies.
Thé latter shift was interpreted as due to the temperature variation of the

energy gap in InSb. The separation of the minima remained unchanged however.
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Above about 30°K the oscillations decreased rapidly in magnitude and disappéared'
entirely above 60°K. On the basis of these observations Stocker et al concluded
that the minima in the spectral response were due to preferential momentum

losses of cérriers due to optical phonon emission in the opposite direction

to the applied field and that the electron distribution function was very far
from equilibrium. Their argument is very similar to that of Habegger and Fan
and supposes that because of the strong optical polar phonon interaction the
electrons have mean energies in the range O to ﬁwo. However, the minima in the
oscillations are not attributed to the variation of mobility with electron
energy. Instead for injection energies close to the optical phonon emission
threshold, the applied field accelerates a large number of electrons moving
antiparallel to the field to sufficient energies fbr optical phonon emission and
these are scattered rapidly to the bottom of the band. The consequent loss of
momentum to the lattice antiparallel to the field leads to a large reduction in
the average electron momentum and the photocurrent is diminished. For injection
energies intermediate to O and ﬁwo few carriers gain sufficient energy from the
field for optical phonon emission and the average momentum is determined by the

momentum relaxation processes due to the ionized impurities.

These ideas were supported by calculations based on a Boltzmann equation
approach made by Stocker and Kaplan (1966) and Stocker (1967). Their calculations
involved an expansion of the distribution function in a truncated series of
Legendre polynomials about the field direction, only the first two‘polynomials

PO and P, being included. No quantitative comparison was possible with

1
experiment because of the<severe approximations made for the scattering processes.
The calculations did, however, give the qualitative form of the oscillations

and the disappearance of the oscillations at high field strengths was also
displayed. A surprising feature of this work is the prediction of negative

photocurrents for injection energies very close to a multiple number of optical

phonon energies although this effect has not been observed experimentally.
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The occurrence of negative differential conductance and total negaﬁivé conductancé
was investigated theoretically by Stocker (1967). The results of Stocker's
calculation for the variation of electron drift velocity with applied field

are shown in Figure 4.3, and show regions of negative resistance. Stocker
also examined the small signal stability of a uniform field distribution biased
into the negative resistance regions. Unfortunately this analysis is incon-
sistent and leads to a false dispersion relation for the frequency and wave-
vector of small signal space-charge waves and also predicts that recombination
has a stabilising effect. The analysis took no account of diffusion processes
although as we shall see later diffusion plays a critical role in oscillatory
photoconductivity. A similar theoretical treatment of oscillatory photo-

conductivity was given independently by Elesin and Manykin (1966).

4.3 Simulation of oscillatory photoconductivity

Basic model

The Monte Carlo techniques developed in Chapter TTwere used to simulate
oscillatory photoconductivity in indium antimonide taking precise account of the
scattering and recapture processes. Two aspects of this problem have been
investigated. The first concerns the overall spectral response, that is the
variation of photocurrent with photon energy for a fixed electric field strength.
The second concerns the variation of conductivity or mean drift velocity with

electric field strength when photoexcitation occurs at a given energy.

We have adopted the following basic model for steady state oscillatory
photoconductivity. Electrons are considered to be uniformly photoexcited into
a parabolic conduction band, centred on k = 0, by applied monochromatic
radiation from a source external to the band (either a single well defined

impurity level or from the valence band). The excitation spectrum is taken
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to be exactly monoenergetic, a condition very closely realised in experiment,
which implies that electrons enter the conduction band with a random distribution
on a constant energy surface in k-space. We ignore the non-parabolic nature

of the actual conduction band in InSb (see Figure 4.1, where the dotted line
represents the shape the conduction band would have if it were parabolic with a
constant effective mass equivalent to the k = 0 value). The experiments of
Stocker et al (1966) and also the calculations of Kane (1957) suggest that

non parabolic effects are unimportant for electron excitation energies less than
0.5eV relative to the band edge. This involves the first seventeen or so

oscillations in photocurrent whilst we shall be only concerned with the first few.

In between collisions with phonons and impurities the electrons are considered
to drift uniformly in k-space under the influence of a constant uniform applied
field F, according to the dynamical relation (3.2.1).

!

As the experiments considered deal with electron densities less than

lo11cm-3

» we have the non degenerate low density limit as in Chapter II. Therefore
we neglect interelectronic collisions and the effects of non-equilibrium phonon
distributions. The most important scattering mechanisms in InSb in order of
increasing strength are acoustic deformation scattering, ionized and neutral
impurity scattering and longitudinal polar mode optical phonon scattering
(Conwell 1967). The detailed forms for these processes have already been
discussed and are given in Appendix 3.2. The major part of the electron-—
optical phonon scattering involves longitudinal optical phonons with small wave-
vectors, since the electron wavevectors in the neighbourhood of the (OOO)

minima are very small compared to the maximum wavevector of the Brillouin zone
(typically 10-2 of the maximum wavevector). We therefore neglect the dispersion

of the optical phonons since for InSb (and most semiconductors) the longitudinal

optical branch is nearly flat near k = O.
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Several different forms for the recombination lifetime were considered, ranging
from a constant recombination lifetime (i.e. energy independent) to a Lax type
cascade modei. In each instance the mean lifetime was chosen to be of the order
10“10 seconds, the typical experimentally observed value for InSb at low temperatures
The results discussed here are mainly based on the cascade type model since capture

into shallow states is expected to be faster than radiative processes at the low

temperatures considered.

The four basic processes considered above were simulated exactly by the Monte
Carlo technique. The steady state photocurrent is proportional to
nV

where n is the steady state carrier density and V the mean drift velocity. In
practice we calculate 1V where 7 is the mean carrier lifetime since n « 1

in the steady state. The contribution of photoexcited holes (in the intrinsic case)
in the heavy and light hole bands is negligible as the experimentally measured
mobilities are some two orders of magnitude lower for electrons and their contribu-
tion to conductivity is therefoéé neglected: Effects of thermalised carriers

are also neglected as these are largely cancelled out of the actual experimental
measurements, and in any case for the low temperatures considered their concentra-

tion is much less than the photoexcited carrier density.

The step function primary self-scattering device (c.f. ChapterTl, section 4
was employed to enhance numerical convergence for carrier energies in the vicinity
of the threshold for optical phonon emission. The secondary self scattering
device was also employed for the inelastic acoustic deformation scattering channel.
Distribution functions were obtained by using a 50 x 30 mesh in the (kz, kp) plane,
where the electric field F was taken in the negative Z direction. Larger meshes
would have been desirable but the available computer storage space was too small,

The distributions obtained are therefore fairly crude histrograms and do not show
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the detail one would like. Fortunately the calculations for the transport
parameters are carried out independently of the distribution functions, and

have no such restrictions.

Spectral response

Figure 4.43shows a comparison between the theoretical calculations (full
lines) based on the simulation study and the experimental work of Stocker and
Kaplan (1966) (dotted lines) for a similar set of parameters. The results apply
to intrinsic photoconduétivity in p-type InSb at 8°K. Curve (a) is for an
electric field of 1.2 V/cm and curve\(b) for 2.5 V/cm. A complete list of
parameters is given in Table 4.1. The agreement between the theoretical model
and experiment is good as regards both the spectral dependence and field
dependence excépt for injection energies close to a multiple optical phonon
energy. Here the conductivity is highly non linear and may become negative.
This effect was also predicted by Stocker and Kaplan (1966). We shall examine
this interesting result in detail later on. The calculations were extended
to a few higher oscillations and these are shown in Figure 4.4b (no experimental
data was available for this region). Each point on the theoretical curves
required some 2 x 105 simulated collisions of which 757 were self-collisions.

The convergence was well within 17.

Distribution functions

To examine the physics of oscillatory conductivity in more detail it is
useful to calculate the carrier distribution function f(k) as well as the spectral
response. In order to reduce the long computational time we artificially reduce
the number of collisions per electron by choosing a constant recombination life-
time of 10-.11 seconds. Figure 4.5 shows the calculated photocurrent in the
region of the first oscillation for InSb at 10°K, for a constant electric field

of 3 V/cm, corresponding to the data given in Table 4.2. One thousand test
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TABLE 4.1

PARAMBTERS USED IN MONTE CARLO CALCULATIONG

OF OSCILLATORY PHOTOCONDUCTIVITY

SEMICONDUCTOR
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~ TABLE 4.2 PARANETERS USED IN MNONTE CARLO CALCULATIONS

OF OSCILLATORY PHOTOCONDUCTIVITY

SEMICONDUCTOR - InSb

TEMPERATURE 10°
INJECTION ENERGY 0.978 X OPTICAL PHONON -
ENERGY
DINSITY 5,78 G CN>
VELOCITY OF SOUND 5%10° cK Spc™t
D:NSITY OF STATES EFFECTIVE
MAS3 RATIO 0.012
D:FORMATION POTENTIAL (ACOUSTIC
PHONONS ) ) T v
DIELECTRIC CONSTANTS £ 16.8
€0 : 18.7
LO PHONON ENERGY ' 0.0244 EV
NEUTRAL IMPURITY DENSITY 0% o3
| 16 . =3

IONIZED IMPURITY DENSITY 10 CM
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electrons are used in the simulation. Figures 4.6, 4.7, 4.8 show the corréSponding

distribution functions f(k) for the direction k (o, o, kz) in momentum space.
This corresponds to the section kx = ky = 0 and is parallel to the applied field.
The distributions are numbered from 1 to 7 and refer to the points on the
spectral response curve of Figure 4.5. We consider now the physical processes

involved as the injection energy € is increased from zero to nearly ZEwo, where

ﬁwo is the energy of the longitudinal optical phonon.

(i) Injection near k = 0, ¢ = 0

Here the electrons are excited on to a spherical constant energy surface
in k-space, centred on k = 0. The general scheme is illustrated in Figure 4.9,
where the injection shell appears as a circle on a two dimensional section in
k-space. The inelastic collision processes are relatively slow compared with
the recombination lifetime and this prevents thermalisation and dispersal of the
initial distribution. The faster elastic scattering moves electrons around the
energy shell and maintains the sharp distribution. This initial distribution
is displaced in momentum space by the applied field, the displacement being
determined by the recombination and momentum relaxation processes. Electrons
moving antiparallel to the field gain energy, from the field, whilst those
moving parallel to the field lose energy. At the lower injection energies
few carriers survive to cross the energy threshold for optical phonon emission
and we are led to a net positive momentum antiparallel to the field and hence a

positive photocurrent.

(ii) Injection just below threshold, € < ﬁwo

As the injection energy approaches threshold the electric field produces
severe distortion of the injected electron distribution. (Points 1, 2 of

Figures 4.5, 4.6.) Many of the electrons gain sufficient energy from the field
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to reach energies in excess of one optical phonon energy. These eléctrons, which
have momentum antiparallel to the field, rapidly emit a longitudinal optical
phonon and are scattered to the bottom of the band. There is then a net
preferential momentum loss, antiparallel to the field, from the electron assembly

to the lattice. This leads to a reduction in photocurrent. In case 2 of Figures
4.5 and 4.6 the momentum loss is such that the residual net momentum is in the

direction of the applied field and a negative photocurrent occurs.

(iii) Injection above threshold, ﬁwo< € < Zﬁwo

In this case all the electrons are able to emit optical phonons. At injection
energies just above threshold (Point 3 of Figures 4.5 and 4.6) some of the electrons
moving parallel to the field are sufficiently decelerated before interacting
with the optical phonons to reach energies less than ﬁwo. For this situation
the net momentum loss due to optical phonon emission is antiparallel to the
field. The photocurrent is therefore reduced and may become negative. For
higher injection energies (cases 4, 5, 6 in Figures 4.5, 4.6, 4.7) very few of
the injected electrons survive to decelerate to below threshold and the optical
phonon emission is essentially isotropic in momentum space. The net momentum
loss due to optical phonon emission is then close to zero and much less than the
net gain in momentum from the field. Almost all the electrons lose energy
by optical phonon emission (absorption of optical phonons is negligible at 10°K)
and the situation is very similar to case (i). The majority of electrons have
energies less than ﬁwo and populate an approximately spherical shell in momentum
space with the centre of the distribution slightly displaced antiparallel to the
field. There is also a low population outer shell, the remnants of the injected
gshell, with electron energies greater than ﬁwo. The spectral response is almost

exactly a repetition of the response for case (i) with a net positive photocurrent.
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(iv) Injection just below the second threshold, € < 2ﬁwo

This situation is an almost exact repetition of case (ii) but the electrons
injected with momenta antiparallel to the field emit two optical phonons in
succession to cascade.down to energies less than ﬁwo. Figure 4.8, corresponding
to point 7 of Figure 4.5 illustrates this case and we note that the distribution
function is composed of concentric spherical shells in momentum space with energies
at approximately e, € - hw , € - Zﬂwo. Comparison with Figures 4.5, 4.6 (point 1)

shows that the distribution functions and spectral response are almost identical.

The higher order oscillations occur in a similar fashion with the spectral

response showing a repetition of the response for the range O < € < ﬁwo.

Velocity field characteristics

The details of the field dependence of oscillatory photoconductivity are most
clearly revealed by calculating the variation of the mean carrier drift velocity
with applied field for a fixed injection energy. We find that independently of
the energy dependence of the capture cross section, the drift velocity—field
characteristics have the same general form provided that (a) the magnitude of the
capture cross section is sufficiently large; and (b) the lattice temperature
is sufficiently low (typically less than 30°K). The main result is that the
velocity-field characteristics are highly non-linear and, for carriers injected
just below a multiple optical phonon energy, show a region of negative velocity.
Severe difficulties with numerical convergence arise when the drift velocity is
vanishingly small. These arise from the increased importance of the statistical
fluctuations compared with the small mean drift velocity. In order to verify
the occurrence of vanishing and negative drift velocities it has proved necessary
to establish convergence within 0.5%. This was achieved by using between 10

and 105 test carriers in the simulation and involved a considerable increase in

computing time.
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Figuré 4.10 shows the best computed velocity-field curve for photoexcited
electrons in p-type InSb at 10°K, corresponding to.an injection energy of 0.978
times an optical phonon energy. A full list of parameters is given in Table
4.2. The recombination process was assumed to be of the. cascade model type
giving a mean lifetime, under zero field conditions, of 10710 seconds. The
slope of the drift velocity curve is always positive at very low fields until
a threshold field (Ft) is reached where the slope becomes.negative. The velocity
changes from positive to negative at a critical field.(Fc),.reaches a minimum
value at the valley field (Fv)’ and then a restoring. field (Fr) is reached where

v becomes positive again. The labelling is illustrated in Figure 4.11.

Figures 4.12, 4.13 show the form of the distribution function along the
direction (0,0,F) in momentum space corresponding to the fields F = 0.3, 0.9,
5.7 and 15.5 V/cm of Figure 4.10. These calculations were made separately
using 3000 test electrons. At zero field the distribution function is
spherically symmetric about k = 0. At very low fields, the electrons respond
linearly to the applied field, very few electrons gain sufficient energy to emit
an optical phonon, and Ohm's law is obeyed. For F = 0.3 V/cm (Figure 4.12),
a significant number of electrons are accelerated beyond the threshold for
optical phonon emission. There follows a significant loss of momentum to the
lattice antiparallel to the field. The net momentum acquired by the electrons
is thereby reduced, although still positive. Beyond the threshold field Fo»
further increase in field leads to a large loss in momentum to the latrice
and the net momentum is gradually reduced to zero. At F = 0.9 V/cm, the
distortion to the zero field distribution induced by the field is further
increased and the net loss of momentum to the lattice antiparallel to the field
exceeds the net gain from the field: a negative mean drift velocity is set up.
Figure 4.13, shows the situation at F = 5.7 V/cm where the drift velocity is

negative and the electron distribution is smeared out by the field. Here the
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éléctrons which have scattered to the bottom of the band acquire an increasing
amount of momentum from the field which tends to oppose the preferential momentum
losses to the lattice. This process culminates at the restoring field F when the
net gain in momentum from the field again balances the net loss to the lattice.

At larger fields, for example, F = 19.5 V/cm, Figure 4.13, the positive drift
velocity is restored as the net gain of momentum from the field exceeds the loss

to the lattice. The distribution function at these higher fields is considerably

smeared out,
In the next section we describe a simple one dimensional model which can be

solved exactly and leads to forms for the distribution function and drift

velocity which are surprisingly close to those of the Monte Carlo calculations.

4.4 A one-dimensional model for the velocity-field characteristic

Basic model

The qualitative form of the characteristics for injection near a multiple
phonon energy can be reproduced surprisingly well by a simple one dimensional
model which can be handled analytically. This model involves uniform mono-
energetic excitation of carriers into a simple parabolic band characterized

*, centred on k = 0 in a one dimensional k-space. We

by an effective mass m
assume here and throughout the next two chapters that the carriers have a
positive charge e, even though electrons are normally discussed. This is of no
consequence and avoids confusing negative signs. Carriers drift under a uniform
electric field F directed along the +k direction, and are scattered elastically
(i.e. from k to -k) with a constant relaxation time A, or inelastically by
optical phonon emission if the carrier energy ¢ exceeds the emission threshold

£ = ﬁZLZ/(Zm*). To simplify the analysis we choose the probability of optical

phonon emission to be effectively unity if the carrier energy exceeds threshold.
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The points * L in k-space then act as perfectly absorbing barriers which scatter
all carriers reaching threshold to the bottom of the band, k = 0. There is
then an effective source of carriers at k = 0, with a strength depending on the
rate at which carriers cross the thresholds k = ¥ L. The carrier recombination
lifetime is taken to have a constant value 1., Carriers are injected into the
band at a rate G with an energy

%2 2

0

Zm*

£ =

where k < L.
o

Translating the model into mathematical terms we can write the steady state

Boltzmann equation for the distribution function f(k) in the form

3f(k) + £k + A K)
ot field ot excitation °F recombination
+ 2200 » 2200 =0 R
elastic inelastic
scattering scattering
The first four terms are straightforward and give
_edfk) G -
LT * 3 {6k k) + 6(k+k0)} £(k)/t
+ {81 - £} + 2200 =0 4422
t . .
inelastic
scattering

The latter term accounts for the optical phonon scattering and is derived as

follows.

In our approximation optical phonon scattering couples the states k = L

to the state k = 0. Clearly the distribution function f(k) must vanish
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identially for all |k| > L, since the scattering rate is infinite for these
states and where the only solution to the rate equation is the trivial solution.
We then represent the inelastic scattering rate term as the sum of two sources

>

(at k = 0) and two sinks (at k = ¥ L) for carriers. That is

AE(K)

T = P {8(k) - 8(k-L)} + P' {8(k) - 8(k+L)} '4.4.3

inelastic
scattering

where P, P' are positive constants. We determine P by the condition that the
barrier at k = L be.infinitely absorbing; namely the nuﬁber of carriers
drifting into state L per unit time, dué to the field, be equal to the number
of carriers leaving state L per unit time due to optical phonon tr;nsitions (the
elastic scattering and fecombinatfon terms areAnegligibleJin comparison with the
optical phonon te;m). Choosing n as a small positive infinitesimal quantity,

we write this condition as

L+n L+n ¢

+ df
k Ik dk = §(k-L)Pdk

L-n L-n

Integrating, we find

P=-E {f(L+n) - £(L-n)}

where we have used the dynamical relation K = eF/i = E. But f(L+n) : O,
therefore

P = Ef(L-n) _ bbb

A similar analysis applies for P'. We have

-L+n ~L+n
° df '
a2 = - k+ k
k Ik dk S (k+L)P'd
-L-n ' -L-n

giving
P' = -Ef(-L+n) 4.4.5
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since

f(-L-n) =

An important boundary condition on f(k) follows from the asymmetry induced
by the field. The quantities P,P',f(k) and E are all positive so that relation

4.4.5 only holds if
P' = £f(-L+n) = O . 4.4.6

Alternatively, if E had been chosen negative we would have had

P' = f(-L+n) # O; P = £(L-n) = 0. 4ob.7

Inserting the expressions for optical phonon scattering, the complete

Boltzmann equation reads

-Ed 200+ oGk ) + Gk )} + £CO - g {%+%}

+ EF(L){8(k) = §(k-L)} = 0 4.4.8

Lim  £(L=n).
n+0
Integrating equation (4.4.8) over all k-space, and using the condition that

where f£(L)

f(¥=) = 0, we obtain an expression of the conservation of carriers

f f(k)dk = Gt = n 4.4.9

where we adopt the normalisation that n is the carrier demsity.

We proceed now to evaluate the drift velocity v acquired in the applied

field F. The drift velocity is defined by

Ve F‘—;) I f(k)kdk 4.4.10
m n *

To evaluate the integral over momentum ik we decompose the distribution function

as



£(k) = £ () + £, (K)
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4.4.11

where fo(k) is the distribution function obtained in the absence of an applied

field.

Inspection of equation (4.4.8) with E =

£ :
o

£,(k) = (a/2){8(k-k ) + sCksk )}

If we substitute expressions (4.4.11),

Symmetry prescribes that this distribution will not support a current.

0 leads immediately to an expression for

4.4.12

(4.4.12) into equation (4.4.8) for non

zero E, multiply by k and integrate over all k-space we obtain

n d
J“ kE {f(L)(G(k) 8 (k-L)) > 3K (6(k ko) + 6(k+ko))}dk 4.4.13
Performing the integrals we find
kE(k)dk = J kf, () dk = 25— {1 - f(L)L}
{— + —) Gt
— it T A
giving the drift velocity as the exact expression
] 1
v o= SET {1 - f(L)L} - eF*T {1 - f(L)L} RY
m* Gr m n .
As in Chapter II, we find that the recombination process contributes to the
effective momentum relaxation to give a composite relaxation time
r - -1
'tz (/1 + 2/)) 4.4.15
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In equation (4.4.14), there is an apparent dependence of drift velocity on
the generation rate G. This is not so, since the distribution function £(k) and
hence f(L) scales in G, as may be seen from inspection of the basic rate equation
(4.4.8). We note also the expression for drift velocity is unchanged for
negative fields, except that f(L) is replaced by f(-L). However, the most important
point is that there is the possibility of obtaining a negative drift velocity for
a positive applied field. For this to occur the applied field must be
sufficiently strong to accelerate a significant number of carriers up to the
optical phonon emission threshold. We anticipate that recombination and
scattering processes would oppose this tendency although this is not immediately

apparent from equation (4.4.14). To proceed further it is necessary to solve the

Boltzmann equation, (4.4.8) for £(k).

Exact solution

The simplest approach is to solve equation (4.4.8) in the four separate

regions of k-space, I to IV, denoting the distribution function in each region

as follows:

X' = f(k) for kb <k <L Region I
X = f(k) for 0O <k < ko Region 1II
4.,1.16
Y' = f(k) for -L <k < -ko Region III
Y = f(k) for -ko <k <0 Region 1IV
J

The regions are shown in Figure 4.14. Since we exclude the singular noints

k=0, % ko, * L, the functions X, X', Y, Y' must be matched at these points.

The matching conditions are as follows.
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(X' - %), =G/(2E) ; MC1)
(Y-Y'), . =G/(2E) ; MC2
k=k, 4.4.17
(x - Y), o =%X'@ ;  MC 3
Y'(L) =0 ;i MC 4 J

where from now on we adopt the convention that k means modulus of k, and

X'(L) zim+ X'(L-n)
n>0 4.4.18

Y'(L) 2im Y'(L-n)
n»o*

The first matching condition MC 1, is obtained by integrating the rate equation

(4.4.8) from k_ - n to k_+ n and taking the limit n~ 0'. We have

k +n k +n

(o] [o]
- [ gdf g 4 & - J {E@) /1 + (£(k) - £(-K)/A}dk = 0

dk 2
ko n ko n

The right hand term is of order n and vanishes in the limit. Carrying out the
integration in the first term and using the definitions of X, X' we readily obtain
the condition MC 1. The conditions MC 2, MC 3 are found in a similar fashion

whilst MC 4 has already been derived (equation (4.4.6)).

Using the basic rate equation the equations for X(k) and Y(k) in regions II

and IV take the form:

DX = =oX + BY 4.4.19
DY = oY - 8X 4.4.20
-4 . 11,1, gL

where D SR O FE [1 + A) ; B = T -

These equations are decoupled by differentiation with respect to k to give

p?% = ¢?x ; q% = o - 8. | 4.4.21
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The general solution to (4.4.21) is

X = 2% + Be"IE bib.22
where A and B are constants. Substituting for X(k) in (4.4.19) then yields

Y = (a/m)e?® + pre” I 4,4,23

where we define

I = (a-q)/8 4.4.24

Similarly we find for X'(k), Y'(k) in regions I and III

L mqlkekg) | o .q(kkg)
X' = ae + be 4.4.25

v' = are” KK o (b/r)ed ko)

where a and b are constants.

The constants A, B, a and b are determined from the four matching conditions

MC 1 to MC 4. After some algebra we get

(6/2E) (e® + e )/ (1-1)

{e® + re”2%™ - (1+me”?}

as=

b = - 12728, b.h.26
-Ap =26
A = -re %{are™® - 6/(28(1-1)) }

B = eA{a - 6/{2e1-1)}

where we define

A useful check at this stage is to calculate the total recombination rate
R = Jf(k)dk/r. It is found that the particular values for the integration
constants lead to the condition R = G as required by equation (4.4.9). A further

check is to compute the drift velocity v as

syl -
v e [T]{ k(X-Y)dk + k(X"Y')dk} .
man 0 Kk

(o]
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This form reproduces equation (4.4.14) precisely except for the change in notation

X'(L) = £(L).

An explicit exact expression for the drift velocity is obtained by

substituting for X'(L) using relations (4.4.14), (4.4.22), (4.4.26),

4.4'28

eF1" {1 ) FﬁL (1+I‘)e_(s cosh A }
(eA - (1+F)e-6+ re-26e—A)

.

A similar procedure leads to an exact expression for the mean carrier energy e:

e=eFvr + ¢ ~ g eFX' (L) /(Gh) 4.4.,29

*
where € = %212/ (2a*). €, : "ﬁzkoz/(zm ). The first term on the R.H.S. of (4.4.29)
is the net energy gained from or given to the applied field (depending on whether
v is positive or negative), the second term is the injection energy whilst the third

term represents the energy dissipated to the lattice.

Properties of the velocity-field characteristic

Equation (4.4.28) contains a large amount of information on the drift velocity-
field characteristic for a wide range'of physical situations. | Some of the more
important properties are summarized in Table 4.3. It is interesting to note that
for the cases given in the Table, the drift velocity and hence photocurrent is
indebendent of injection energy although the distribution functions are in general
strong functions of injection energy. The general form of the velocity-field
characteristic is sketched in Figure 4.15. The dotted lines (a) and (b) represent
the envelopes for the family of curves obtained by varying ko from O to L. The
straight line (c) is the curve v = eFr'/m*. The velocity is generally linear
in the applied field for very low and very high fields, but at intermediate values

passes through a non-linear region. If the injection energy is close to the



TABLE 4.3

PROPERTIES OF THE VELOCITY FIELD CHARACTERISTIC.. .

eF1' (6L (1 + I‘)e.-(S cosh A
e U A =5 =28 -2
[eFr) (e" = (1 +T)e " + Te e )
LIMIT - DRIFT VELOCITY
(1) L > Vv = eFT'/m*
(2) A 0 v = eFT'/m*
(3 =~0 v = eFr'/m*
() G+0, 1 » = V___,‘EL* [1+’5LJ
with Gt +» n (finite) 2m eF)
AL
(5) F v = __..__.*

2m
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optical phonon energy the non-linear region may involve negative velocities. For
the highest electric fields the velocity saturates, as might be expected, to the
value BL/(2m*). In this situation the electron distribution function is uniformly
smeared out between O and L. Crude velocity-field characteristics can be
deduced from the measurements of Stocker et al (1966) and these have the form of

curve (b) but insufficient experimental data exists for conclusive evidence.

Our main concern is with carriers injected close to the optical phonon
emission threshold, such that ko < L. We now make the approximation that the

momentum gained from the field is much less than the momentum at threshold, i.e.

ﬁko v> 3 k=L 4.4,30

eFt'!

This is a good approximation for low fields. For example with electrons in
InSb, choosing the parameters m* = 0.012 m,» hw = 0,024 eV, 1 = 10-10 seconds,

12 seconds we find that conditions (4.4.30) hold for fields less

A=2x10
than 30 V/em. Considerable simplification follows if we then make the approxi=
mation A <<t, a condition fulfilled in most practical cases. The velocity-field

relation is then approximated by

-k
= 1 - 1+2‘__ ﬁLex -M' 1+.2_1;}
V=Y 21 |eFrt P eF1 A ’
4.4,31
vy " eFr'/m*.

Figure 4.16 shows the family of curves plotted from (4.4.31) for the

12 10

parametric values n* = 0.012 Mg tw = 0.024 eV, A= 10 ~“ seconds, T = 10
seconds, corresponding to electrons in'InSb. The numbers on the curves indicate
the electron injection energies measured in units of one optical phonon erergy.
These forms are analagous to our detailed Monte Carlo calculations and the
results of an approximate Boltzmann equation approach employed by Stocker (1967) .

Three corresponding distribution functions, calculated for an injection ratio of

0.96 are shown in Figure 4.17. Curve (a) is for a field less than the threshold
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field: positive conductivity; curve (b) is for a field intermediate to the
initial field and restoring field: negative conductivity; whilst curve (c)
sho@s the restoration of positive conductivity for a field greater than the

‘ restoring field. The overall conclusions on the processes leading to negative
drift velocities, discussed on the basis of the Monte Carlo calculations are also
valid here and we summarize the scheme in Figure 4.18. For clarity we have left

out the effects of elastic scattering.

4.5 Conclusions

The detailed Monte Carlo calculations strongly support the physical model
proposed for oscillatory photoconductivity by Stocker and Kaplan (1966), but
detailed agreement is found with experiment which was not possible with the earlier
approximate theory. Of particular interest is the predicted occurrence of bulk
negative conductivity for carrier injection sufficiently near the optical phonon
emission thresholds. The negative conductivity results from the field distortion
of the non-equilibrium carrier distribution function and from the thfeshold
character of the optical phohon-electron interaction. The main contribution to
the electronic current comes from carriers having energiés in the range O to
/ﬁwo. If the energy relaxation due to optical phonon emission is much faster
than that due to acoustic phonon scattering, the carriers can contribute to a
reduced or negative current before the energy distribution is smeared out. This

leads to the condition

the requirement for oscillatory conductivity, where N is a time characteristic
of the energy relaxation due to acoustic phonons, and similarly t, for optical
phonons. This is a less restrictive condition that that proposed by Habeggar and

Fan (1964) which was
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T <T <T

where T is the mean carrier lifetime. This conclusion was also reached by
Elesin and Manykin (1966) using a similar approximate method to Stocker and Kaplan

(1966) .

The detailed Monte Carlo calculations, Stocker's model (1966) and the exact
one dimensional model suggest that the negative conductivity effect is a real
one and does not depend on the details of the physical models. The essential
elements of each approach are the sharp distribution of injected carriers and the
short recombination lifetime. The major differences between the velocity
field characteristics obtained by Monte Carlo, Stocker's method and the one
dimensional model are the predicted values of the critical, valley and restoring
fields. This occurs because of the respective approximations made for the
transition probability per unit time for optical phonon scattering. The one
dimensional model, for which this is infinite above threshold, is the extreme

case and yields the lowest values of critical field.
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CHAPTER V

FIELD EFFECTS IN OSCILLATORY PHOTOCONDUCTIVITY.

5.1 Introduction

Both the analytical model and the detailed Monte Carlo calculations discussed
in Chabter IV show that the velocity-field characteristic for the oscillatory
photoconductivity problem is highly non-linear, and for injection energies close
to a multiple optical phonon energy shows a region of negative conductivity.

In this chapter we are concerned with the consequences of the. N-shaped velocity-field
curve illustrated by Figure 4.10. The possibility of observing bulk time
independent negative conductivity, in which part of the incident optical energy

is transferred to the electric field is considered in section 3. This would
involve a static field distribution in the sample, andrphase plane analysis is
applied to a phenomenological model in order to classify the type of field dist-

ributions which could occur.

In section 4 we deal with the stability of the system with respect to space
charge formation, in a long sample. Small signal perturbation theory is
utilized to derive a double branched dispersion relation which describes the linear
response to small fluctuations. We showthat forlong wave-length fluctuations
recombination does not have a stabilizing effect (Barker and Hearn 1969>), contrary

to the predictions of an analysis of this problem due to Stocker (1967).

A complete description of the steady state field distributions can only be
provided by a full time dependent analysis taking into account contacts and the
external circuit. Such an approach, based on numerical solution of the non-

linear phenomenological equations, is described in sections 5, 6, 9. Both the
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evolution of the steady state, where it exists, and the form of thé instabilities
are considered. The numerical results show that a stable negative resistance
steady-state does not exist if ordinary contacts are used. Instead a series of
instabilities can occur, in particular a stable high field domain instability

which gives rise to current oscillations in the external circuit.

The instabilities discovered in this problem bear a strong resemblance to
those occurring in the Gunn effect, and this analogy is discussed in section 7.

The origin of the high field domain instabilities is discussed in section 8 with

the aid of phase plane analysis.

5.2 The velocity-field characteristic

Our main concern is with the case of carriers photoexcited monoenergetically
into the band with an energy just less than an integral number of optical phonon
energies, The drift velocity-field characteristic is highly non linear under
these conditions, and shows a region of negative velocity. The main features
of the N-shaped velocity-field characteristic are sketched in Figure 5.1, where
we have extended the characteristic to negative fields by taking it to be an odd
function of F. The slope of the characteristic is positive at very low positive
fields until a threshold field (Ft) is reached where the slope becomes negative;
we shall generally denote the velocity at Ft as u. The velocity changes from
positive to negative at a critical field (Fc), reaches a minimum value ~f -w at the
valley field (Fv), and then a restoring field (Fr) is reached where v becomes
positive again. The slope of the characteristic is always positive at the

origin and this is of prime importance in determining the form of the static field

distributions.
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5.3 Static field distributions

in a sample of finite length the electric field must be non-uniform because
of the effects of boundary conditions imposed by contacts. For the normal
linear velocity-field characteristic only a minor departure from uniformity occurs,
and this near the cathode. The current-voltage relation is then a suitably
scaled version of the velocity-field characteristic. Shockley (1954) has pointed
out that if the characteristic has a region of negative slope the field will
depart severely from uniformity and the current will never decrease with increasing
applied voltage. This observation has been emphasized more recently by Kroemer
(1964,1966) and McCumber and Chynoweth (1966) in connection with high-field
effects in gallium arsenide. In the present case the distortion of the field
uniformity is extremely severe. Normally the effect of electronic diffusion on
the field distribution is negligible except in very small regions immediately
adjacent to the cathode and anode. In the present case diffusion is of vital
importance, and leads us to a second order non-linear differential equation

for the field and the possibility of negative resistance solutions.

We consider a one dimensional problem with a cathode at x = O and a positive
current density J. The carriers are assumed to have a drift velocity which is
just a function of field F(x) in spite of spatial variations in the field and
carrier concentrations. We thus ignore retardation effects. Let n(x) be the
carrier concentration and let us first consider a constant fixed background

negative space charge density of - en . Then if we define
J=en‘-7 5-301
o

we would expect a uniform saturation field F to occur for which v = v(F). Now
if v is less than u and w there are five values of F, which we may denote by Fi
(where i = 1 to 5), which occur in the order shown in Figure 5.1.  Bulk

negative conductance would occur if saturation to F, or F5 occurred. For a
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highly doped contact, the boundary condition at the cathode x = 0 is F = O and so
the field must fall away from the cathode. Until F falls below - Fc the carrier
drift current cannot be positive so n must decrease rapidly with x to provide

a substantial positive diffusion current. However, extreme difficulties arise
when diffusion enters the problem of contacts because it is no longer possible to
specify a unique set of boundary conditions at x = 0. Intuitively, we might
expect the solution to the problem to involve saturation of the field to

F=F as it would do in an Ohmic material; this is clearly a possible solution.
Its existence does not, however, preclude a solution which saturates at FA or F5
which might be selected by the original time development of the distribution.

If w < u then F4 and F5 cease to exist when v exceeds w. If, however, w > u

and F, disappear when v exceeds u. In this case saturation must involve

1 2

the field passing through a region of negative drift velocity either for

then F

—Fc <F <O0or Fc < F < Fr' When v becomes greater than w and u only F3 remains
and the field must pass through the region between F, and F_. Thus if we
ignore diffusion there is only a solution for the field distribution if v is

less than u.

Difficulty arises when the diffusion current is considered because of our
lack of knowledge of the form of diffusion coefficient appropriate to the
extremely non-equilibrium carrier distributions occurring in this problem.
Future work might usefully calculate the diffusion coefficient as a function of
field by the Monte Carlo method. However, we have resorted to the sinplest

possible form for the current J,
J = nev(F) - eD dn/dx 5.3.2

where D, the effective diffusion coefficient, is a positive constant. We now
relax the restriction on the background space charge density. Because of the

generation and recombination processes the background space charge denmsity p is in
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general a function of n. To be specific we consider that we have electrons
excited from an immobile donor level of uniform density Nps and that the
recombination also occurs into this level. In the steady-state the generation
rate G and recombination rate R are equal. We may further assume the-presence

of compensating acceptors of uniform density NA(< ND). Thus

G = S(ND_NA-p) 505-3

where S is a constant proportional to the optical flux demsity, and
R=o0(F)n (p + NA) 5.3.4
where o is a capture coefficient whose field dependence arises from the field

dependence of the carrier distribution in k-space. Thus

o - ND - NA - (On/S)NA
1+ on/S

We now assume that S >> no, which implies that the optical flux density is
sufficiently high to keep the donors fully ionized. Thus p becomes a constant

which in our previous notation is n o,

n, = Np = N,

and hence Poisson's equation has the simple form

dF  4me
L2 . ATE - 5.3.5
Ix . (n no) _ ,

where e€.is the dielectric constant.

We can combine equations (5.3.1), (5.3.2), (5.3.5) as

dF _
]
dx 5.3.6

D%f= (W + g) v(F) - gv

where g = aneno/s. This set of equations is autonomous for x > O and can be

analysed in the phase plane (F,y). The relevant properties of autonomous
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systems are summarized in Appendix 5.1, where we give the general classification
of singular points for a second order non linear system. Only the half plané

¥ > - g, which corresponds to n > 0, is physically meaningful.  This must be
imposed as a boundary condition at this stage and is a necessary consequence of
our assumption of time-independence. The singular points in the phasé plane are
F=F,(i=1¢to5), y=0; and can be classified (see Appendix 5.1) as saddle,
focus, saddle, focus and saddle respectively. With respect to increasing x the
foci (for i = 2, 4) are both unstable (trajectories leave the singular point).

The foci degenerate into unstable nodes when

0 < 4p/ (Pt (F)]) < 1

where T4 = | g dv/dF|-1 is the dielectric relaxation time at F. However, this
has no significant effect on the topology of the phase plane. The topology is
shown in Figure 5.2 for the case in which all five singular points exist (i.e.

v < u, w), and the trajectories leaving the focus at F4 are entirely contained
within the negative field region of the phase plane. This latter condition
appears to be fulfilled for parameters corresponding to any practical situation.
The arrows indicate increasing x, whilst the positive and negative signs refer

to the sign of dy/dF in particular regions. The broken lines forming the
boundaries between these regions are the zero isoclines dy/dF = 0, and correspond

to the trajectories for the zero diffusion limit.

If we could specify F and ¢y at x = O the phase-plane would furnish the com-—
plete field variation up to the anode.” In practice we have a two-point boundary-
value problem involving the asymptotic behaviour of the field within the cathode
and anode, and the form of the external circuit is important. An exact solution
would therefore necessarily involve numerical calculations. In fact severe
computational difficulties arise from the non linear nature of the equations.
Solutions involving saturation to saddle points are highly unstable with respect

. . , . . tectories
to numerical errors in the field, as may be seen by inspection of the trajec r
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around the saddles in Figure 5.2. The virtue of phase plane analysis is that

it allows us to classify the types of solution which could arise. In-doing this
it is sufficient to state that at x = O we would expect that for an 'ordinary'
cathode F would be very small on the characteristic topological scale of the

phase plane. As we shall see the magnitude of ¢y at x = O is actually topolo-
logically unimportant. The condition on F has been justified by numerical
calculations involving the detailed nature of the illumination and doping

profiles for simple contacts. This approach was based on a time dependent analy-

sis which is numerically stable and will be described in detail in a later

section.

If we consider the case of a linear velocity-field characteristic the
solution is known to involve saturation to the saddle at F. An important
feature of this type of singularity is that it involves a unique line of approach.
The boundary conditions at x = O must therefore adjust so that the system enters
the phase plane at x = O on the unique trajectory leading to the saddle. In the
case of zero diffusion this is the broken line which passes through the point
F = Fl’ Y = 0 and becomes asymptotic to the Y axis, so that for a highly doped

cathode we have F = 0, § + = at x = 0. For finite diffusion a highly doped

cathode would give F = O but finite y.

Let us consider the present N-shaped velocity-field characteristic. We
_see that saturation to the foci at F, and F, is not possible. But saturation
to the foci at F, or F, is possible. We note that the form of the zero iso-
clines shows that saturation to Fq would not be possible from F = O at x = O in
the absence of diffusion. Diffusion is crucial, in that it allows trajectories
to cross the regions of negative velocity. Or, more physically, a positive
net current can only be maintainéd under conditions of negative drift current if

there is a substantial positive electronic diffusion. Saturation to Fg would
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involve entering the phase plane on one of two unique trajectories. The first of
these has F < F5 and ¢y > 0, whilst the second runs from the focus at F4 to FS’

For the first trajectory we would require F > F. at x = 0, and we would therefore

5
exclude this possibility. For the second trajectory the initial value of F must be
negative and comparable with F, for the case shown in Figure 5.2 . If, however,
the trajectories from the focus enter the region of positive field it would be
possible to saturate at F5 from an initially small field. According to the

point of entry on this trajectory the field may saturate monotonically to F5 or
oscillate about F4 and then saturate (these cases are sketched in Figure 5.3).
Consideration of the dependence of the trajectories on the diffusion constant

and the background space charge density shows that the most likely conditions for
negative resistance solutions are low background doping and large diffusion.

For the case shown in Figure 5.2, negative conductivity could still occur without
saturation in the field, but it is observed that, apart from the unique trajectories

leading to the saddle at F5, all the trajectories eventually enter the positive

field region or the non physical half plane.

For larger v either the pair of singularities at F4 and F5 or a pair at Fy
and F2 disappear and when v > u, w both pairs disappear. The phase planes for
these cases are suitably modified forms of Figure 5.2, and we conclude that for
high doping and small diffusion saturation occurs to the saddle at P if this is
present, and if not, to the saddle at F3. The field variation would then be of
the form shown in Figure 5.3. The slope of the curve (b) of Figure 5 3 between

Fcand Fr is determined by the magnitude of the diffusion coefficient; for small

diffusion the slope would be extremely large.

Neglecting considerations of stability, the analysis of the steady state
equations does not provide an unambiguous answer as to which steady state solution

would be realised in practice. Only when a single singularity is present in the
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phase plane would this be possible. A complete description of the steady state,
if it exists, can only be provided by a full time dependent treatment taking into

account contacts and the external circuit.

5.4 Small signal analysis

We have so far considered the possible forms of steady-state field distribu-
tion in a sample with contacts present. We now consider the problem of a long
sample in which the field is initially uniform and constant in time at some value
F. To study the stability of the steady state we examine the time and space
evolution of small perturbations introduced into the density of electrons and
ionized donors. The restriction to small pertubations allows a linear analysis
to be made. For a fixed background space-charge density any space charge
introduced by fluctuations in the electron density propagates with a velocity
V(Fo) and has a time dependence exp (" t/rd(Fo)) controlled by the differential
dielectric relaxation time Td(Fo) defined in section 5.3. If Td(Fo) is positive
as in an Ohmic conductor the space charge is damped and the uniform field is stable;
whilst if rd(Fo) is negative the space-charge grows and the uniform field is un-
stable, as for example in the Gunn effect (Butcher, 1967). If |rd| in the latter
case is small compared to the propagation time through the sample , small signal
space~charge waves can be observed. On the other hand if ltdl is large the non-
linear regime is reached and the final form of the disturbance will be controlled
by the boundary conditions. Our problem is complicated by the variable :>nization
of the donors and this additional degree of freedom leads to a second normal mode
for the system. A simple analysis of the present problem has been given by
Stocker (1967) but unfortunately, this oversimplified treatment contains some

inconsistencies which lead to a false stability criterion.

The equations describing the system are, in the notation of section 5.3,
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AF b4re \

'5{-=—E-(H‘P) (a)
g8 - pon
oy G -R P 1nv(F) D i (b) 5.4.1
QB =G-R (c)
st
J

where G and R are functions of n and p. The first equation is Poisson's
equation, whilst the last two are the continuity equations for electrons and
ionized donors respectively. The initial uniform steady-state solution is

F=F, (arbitrary) and n = p = n_ where n is the solution of G = R with n = p:

no = -g—a- {' 1 - NAC/S + ((1 -NAO/S)Z + 4NDU/S)i]’ .

We consider small perturbations from this solution so that F = Fo + SF(x,t),
p=n_*+ Sp(x,t), n = n + én(x,t). For convenience we neglect the field
dependence of the quantity o which enters into R. Since any initial arbitary
disturbance can be Fourier analysed with respect to its space and time dependence
we look for the normal modes of the linearized form of equation (5.4.1) in which
the space and time dependence of §F, ép and én is described by

exp(i(kx - wt)). This leads to the dispersion relation w(k) for k # O,
wz +w(i(w +w +w)—-kv +1iD kz)
d e W o
N A
- wd(me + wh) 1(kvo iDk )wh =0 S5.4.2

where v, = v(Fo), wy = (rd(Fo)) » W, T T, O(NA + no),w BT S + on .

The quantity o is the electron lifetime i.e. for 6p = 0, 6R = én/Ie. whilst
" is the lifetime of a 'hole' in the donor level so that, for én = O,
ap/at = - 6p/1h. A derivation of the dispersion relation is sketched in

Appendix 5.2. The ratio of én to ép for a particular w is given by (5.4.1) as

w
Sp.__e 5.4.3(a)
dn iw -~ wh

or alternatively,
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-] 16
%ﬁ = we((wh + Im w)2 + (Rew)z] : € 5.4.3(b)

where 6 is a phase factor describing the phase relationship between &p and én given

by

(iw* + wh)

exp(ig) = -

2 2
+ TIm + »
(wh w) (Rew)
Here * denotes complex conjugate, and we write

w = Re w+ 1 Im w.

We denote the two branches of the dispersion relation; corresponding to the

two modes, as Wy and Wyt

wj =~ i (wd ug ey T iZ(k))/Z

2. .2 . 4
+ 0, (- G, *wy —wp® w27+ 28200 + 0, - w))

j=lor2; o =4, 0, ="} Z:-ke + ik,

The usual case in which G and R are zero corresponds to w_  and w vanishing and

this involves w, = 0 and

. ey 2
ml = - 1wd + kvo 1Dk

which describes a wave propagating with velocity A with a time dependent amplitude

exp(-t/rd) suitably modified by diffusion for short wavelengths. This space-charge

wave clearly involves §p = O. In general we note the sum rule,

w, + w

. ey 2
1 9 = 7 1(wd *owg + wh) + kvo iDk". 5.4.4

For disturbances which vary slowly in space we can consider k > 0 and to zero order
in k equation (5.4.2) gives

wy =~ 1wy, wy = = 1(we + wh) .
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For the second mode equation (5.4.3) shows that §p = én which describes a distur-
bance involving no space charge in which electrons are simply moved from donors

to the conduction band. This mode decays with time as exp(—t(l/Te + llrh)}n

The first mode carries space-charge and has a time dependence of exp(-t/xd}as in
the case when generation and recombination are absent, We see therefore that these
processes do not affect the growth factor of the space-charge mode. This is
physically reasonable in so far as electronic transitions do not change the
magnitude of the space-charge and only affect the relative proportions of the space-
charge which are carried by electrons and 'holes'. For an arbitrary small
disturbance of n and p at time t = O+, both modes will be excited. The cases of
physical interest correspond to lifetimes which are very short compared to 'le

and indeed this is a necessary condition for assuming v to be a unique function

of F. The second mode will therefore be rapidly damped out leaving only the
space-charge mode which will decay or grow according to the sign of Tys SO that the
steady-state will be unstable for F < F_ < F_ . This result is different from

that of Stocker (1967) who predicted that the recombination process would stabilize

the space-charge mode.

For mode 1, writing the space-charge as &p, equation (5.4.3) gives

Sn _ Y -9
5o T =S+ ) 5.4.5

where & = we/wd and y = we/wha The usual case of no recombination »: generation
corresponds to 6= 0 so &p = dn. For undamped space-charge waves with fast
recombination, 6§ + - », so én/ép » (1 + y)_l. The fact thap y is positive shows
that only a part of the space-charge is carried by electrons, the remainder

being cagried by holes. We note that for damped waves a special case occurs when
8 = y/(l + vy) i.e. wy = W, ¥ Wy, SO both modes are damped at the same rate. This
leads to én = &p for both modes. We discuss the nature of this resonance condition

in more detail later on. The value of y is dependent on n , Ny and N, and from

equations (5.3.3) and (5.3.4) we find
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N +n N
v = 1________AN ° 1+B'é ) 5.4.6
D o}

Hence for an uncompensated sample y is the fractional neutrality of the donors

and so (1 + y)—lchanges from 4 to 1 as the photo—ionization increases. For a
compensated sample, (1 + y)—l increases from O to 1 as the photo-ionization is
increased. The limit (1 + y)-l + 1 involves 8p » O which corresponds to the
'complete ionization' limit of section 5.3 and involves W 7 ®. An interesting
point is that the quantity no(l + y) is the 'effective concentration' appearing in
the Debye length for screening in a compensated semiconductor (Paige, 1964) and
this results from an effective equilibrium being established between the conduction

band and donors in the limit § > -,

Provided that

22 + 2iZ(wd tw, < wh)

2 <1

(w, *+ w, = wy)
we can expand w(k) as a Taylor series in ascending powers of k. The expansion is
valid for sufficiently small k, except for the ¢riti¢al condition wy = W, b oy
The first order terms in k give the propagation velocities of the two modes.

Thus writing w, = = iw, + kv, and w, = “iw, +owy) + kv,, we find from equation

1
(5.4.4) the sum rule

and equation (5.4.2) gives

Y1 _ 40 _ Y =8
v p Yy = 6(1 +v) .

[}

The propagation velocity of the space-charge waves is reduced, for negative Tg
from v, by the fraction of the space-charge carried by the electrons, and the
other mode propagates at the difference between these two velocities. For the

special case of equal electron and hole lifetimes, i.e. y > 1, corresponding to
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n = NA (VND/NA -1),

the propagation velocities take the form,

1+ 6/(1 - 28)
170 5.4.7

8§/(26 - 1) .

<

~

<
L}

<
N
~
<
[l

These forms are sketched in Figure (5.4), and are seen to be rectangular hyperbolae
centred on (§,4) in the plane (v/vo,d). The regions of physical interest corres-—
pond to our approximation that the electron and hole lifetimes are much shorter
than the dielectric relaxation time, that is the regions for which |§| >1. The

reduction in propagation velocity for both damped and undamped space-charge waves

is apparent.

The second order terms in k of the dispersion relation give the effective
diffusion coefficients for the two modes, describing the spread in the distur-

bances. Expanding the two modes as

. . 2
wl = 1wd + kv1 1D1k and
. s 2 . .
w, = = 1(we + wh) + kv2 1D2k we find from equation (5.4.4) the sum
rule,
D1 + D2 = D

and for the space-charge mode,

3
v v, TV v :
S A S [ [ 1 2] -2 ]} 5.4.8
1 \J LV ov .
o ' o o

The quantity A is a dimensionless diffusion coefficient defined by
6 zv 1, /(4D)
o d

The diffusion term stabilizes waves in the space charge mode for which



-3+ _'
31, |
I
| | 3, /D
|
|
l.
]
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k > {Dl/lwd|}-i 3 D > 0.
For very small values of A, 1.e. D >> vo2 rd/4, the effective dimensionless
diffusion coefficients Dj/D (where j = 1,2) are identical to the dimensionless
propagation velocities vj/vo. In particular the effective diffusion coefficient
for undamped space-charge waves is reduced from D, by the fraction of the space-
charge carried by the electrons. As a consequence the stabilizing influence of
diffusion is reduced. 1In the special case of equal electron and hole lifetimes
(for a compensated sample), the diffusion coefficients for the two modes are:

1+ 6/(1 - 26) =A { L 3}
1-26 (1~ 298)

DI/D

D2/D 1 - Dl/D.

These forms are sketched in Figure 5.5, for the case A = 2. The maximum in the

diffusion coefficient for the undamped space charge mode occurs at

S AL
5= 1qlte =3 [1 ST+ 2iai ] :

In the limit of a very long dielectric relaxation time |A| -> 1, and the maximum
is displaced asymptotically to é§ = =0.361. It is interesting to recall that the
condition |A| » 1 is the condition for the unstable foci to transform into
unstable nodes in the phase plane analysis of section 5.3. The corplicated form
for the diffusion coefficient for the space~charge mode, equation (5.4.8), can be
roughly interpreted as the superposition of two competing diffusion coefficients,

a static part Ds and a dynamic part Dy»

1 s d
v v 2r [v - v 3 v
O N B 1 2] Sl
s Vv ’ d 4 [ v v.é
o o )

The static part Ds’ dominates at low drift velocities A and for undamped waves

is always less than D, reaching the asymptotic value D/2 as the electron lifetime
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approaches zero in the case y = 1. The spreading out of a slowly moving pulse
of space charge is thus inhibited by the recombination process. On the other
hand, for very large drift velocities Vv, the dynamic part Dy dominates and acts
to enhance the diffusion of an undamped space charge pulse. This may be roughly
understood as due to the pinning effect of trapping which tends to smear out

a fast moving pulse.

In summary, the results of the small signal analysis suggest that if the
sample is initially biased into the region F < Fo < F a steady state can be
established but this is unstable since 4 is negative in this region. This
corresponds to the conclusion of section 5.3 that saturation to a steady state
field in this region is not possible. The final form of the disturbance could
be either a steady-state associated with the saddle points discussed in 5.3 or a
propagating non-linear wave. The system is unstable against space-charge
formation over the negative slope regions of the drift-velocity field characteris—
tic (for positive and negative velocities) and the recombination does not directly

stabilize the process. However, for very large values of 7, the quantity &

d

can dominate and the enhanced diffusion may act to stabilize relatively short

wavelength space-charge waves.

5.5. Time development of the field distributions

So far we have classified the possible forms of steady-state field distribu-
tions for a sample with contacts and examined the small-signal stability of the
homogeneous field distributions by linear analysis. In this section we turn
to the full non-linear problem of the time evolution to a steady-state field
distribution and the formation and growth of instabilities in the system, The
highly non-linear nature of the problem prevents an analytical approach and we

have to resort to numerical techniques. Numerical solutions to non-linear
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partial integgo-differential equations can often lead to spurious results because
of numerical instabilities associated with the finite-difference schemes adopted.
Fortunately, the system under investigation bears some resemblance to the systems
responsible for the Gunn effect. We can therefore test the numerical procedures
adopted by applying them to the Gunn effect, for which the form of solutions are
now well known (Butcher 1967). In the complete ionization limit this procedure
comes down to inserting the velocity-field characteristic associated with the
Gunn effect into our equations, testing the numerical technique, and if successful
re-inserting the velocity-field characteristic for oscillatory photoconductivity.
We choose as the basis for our investigation the simplest situation of a finite
length sample with simple contacts connected to a constant external voltage
supply. A homogeneous field distribution of value F, is introduced into the

sample at time t = O and its time evolution then followed.

We first cast the full time - dependent equations for the system (equations
5.4,1) into a form more suitable for analysis. Combining equations (b) and (c)
of the set (5.4.1) and eliminating (n = p) via Poisson's equation (equation (a))

we obtain,

82F rel [nv(F) S L 5,5,.1
— ~ ax L ox
4n 3¥xat

A partial integration with respect to x then gives

an ;
- — 'f‘rSn
T + env(F) eD x 2

)

5]

c(t) =

£
4

[o¥)

The terms on the R.H.S. of equation (5.5.2) are recognised as the displacement,
drift and diffusion current densities respectively. The integration constant
Cc(t) is then identified with J(t), the total current density. Conservation

of charge is then implicit in the relation 3J/3x = O. As in previous sections

.

we consider D to be a constant. At this stage it is convenient to introduce an

important boundary condition imposed by the form of the external circuit. The
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circuit consists of a constant voltage source of strength Vo connected in series
with the sample. The circuit condition is then

2

v =
o J F dx 5.5.3

o}
where £ is the length of the sample plus contacts (we neglect any potential drop
down the connecting wires). Since Vo is constant we have

BVO JR, 5F
ot
o

which combined with equation (5.5.2) and Possion's equation allows us to eliminate

J and n from the equations. We find,

2

oF _ [dF |

St = X[ax ’ p’ FJ -_‘QT J X dX 5«504
)

where
’ 2
. [4ne AF - 3"F , 4me 9p
X = [ - P axJ v(F) - D {;;5 = Bx) ‘ 55345

The time development of p follows from the continuity equation (5.4.1b) as

P _ gy -N - - e OF
T S( b A p) - o (p + NA) P+ Irs Bx) 5.5.6

where we have again eliminated n viaPoisson's equation. The carrier density n

is easily recovered from Poisson's equation if p(x,t) and F(x,t) are specified,

. & IF
n = Zre ax P

Equations (5.5.4) ‘and (5.5.6) are the basic equations for studying the .ime
evolution of the system. 1In the complete ionization limit we have S/o -> n which
prescribes the electron and 'hole' lifetimes and dielectric relaxation time by

the inequality

. For this approximation-%g -0

0 <1 << T << |1
- e I d

h

and we are left with the single equation (5.5.4) where p is replaced by
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To fully specify the system we must impose suitable boundary conditions at
the contacts. Two situations have been investigated. In the first we treat the
problem of contacts in a somewhat cavalier fashion by assuming a sample of length
2 subject to a constant external voltage Vo(= Fok) with the boundary condition

2). The second, and more

oF/3x = 0 at either end of the sample (x = O and x
realistic situation, involves an attempt to simulate the presence of centacts by
increasing the doping density (and hence the carrier density in the steady-state)

A D

involves choosing n, to be 10 x larger in the contacts than in the sample (in the

via N, and N_ at the ends of the sample. In the complete ionization limit this

general case NA is held fixed whilst N, is increased in the contacts). The
contacts are considered to be illuminated so that the same velocity-field charac~
teristic applies to both the contacts and the sample, The boundary conditions
are 9F/39x = 3p/dx = O at the outer ends of the contacts; these are based on the
assumption that the field is uniform and that there is no space-charge well within
the contact regions. Choice of boundary conditions at the contact-sample
boundaries is then avoided as these are determined automatically by the time
development of the system. The stability of the sample is tested by the intro-
duction of a permanent doping discontinuity in a small notch in the sample which
simulates the microscope doping fluctuations always present in real materials.

The discontinuity introduces a built in space-charge perturbation to the system.
Typically the doping in the notch is reduced by 0.17 from the otherwise uniform

doping density in the sample. The doping density profiles used are illustrated

in Figure 5.6.

We adopt an idealised three line form for the OPC velocity-field characteris-

tic given by

v = uF (0 <F < Ft)
=u-~-u'(F - Ft) (Ft < F < Fv) 5.5.9
=-w + u(F - Fv) (F » Fv);
v(-F)= -v(F) ; )
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6 -] - -— -
where y = 2,058 x 10 cm2 stat volt 1 sec 1, p' = 8.928 x 105 cm2 stat volt l sec 1
Ft = 10.83 stat volt cm_l, Fv = 50 stat volt cm-1
u= 2,23 x 107 cm sec-l, w=1.267 x 107 cm sec-l°

This form is shown in Figure 5.7 and is a modification of the analytical approxi-
mation for the Gunn effect velocity-field characteristic (Butcher and Fawcett 1966).

This latter characteristic is discussed in section 5.7 and is defined by

v = uF (0O <F < Ft) )

=u-=-yu'(F - Ft) (Ft <F < FI) 5.5.8

3
A + a(Fv F) (FI < F < Fv)

=, (F > Fv) .
where p = 2,058 x 106 cm2 stat volt:-1 sec_l, u' = 8.928 x 105 cm2 stat volt:-1 sec.1
F, = 10.83 stat volt ca |, F_ = 66.66 stat volt cm |
v, = 8.6 x 10% cm sec”}, a = 60.21 stat volt 3 cm 2
FI = 18.33 stat volt cm—l.

We point out that whilst the differential mobility dv/dF for the velocity-
field characteristic (5.5.7) is of the correct order for the oscillatory photo-
conductivity effect, the values of threshold, critical, valley and restoring field
are three orders of magnitude too large. Similarly the velocities involved are
103 x too large., Consequently the time, space, electric field and carrier density
scales involved in our numerical calculatiéns must be suitably scaled in order to
apply to the OPC problem. A consistent scheme is reached if we cast tha basic
equations into dimensionless form. For simplicity consider the complete
ionization limit in which p = n, = Ny - N, = constant. Defining new dimensionless

D A

quantities (primed) by the transformations

x=1Lx"'; t=Tt'y F = fF';

v=v(F)v'; J=env(f)J'; D= L2r1p/;

-1
where T = [i’.'_e_ M n ] s L= v(f)T
€ f o
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and f is any characteristic field strength in v, the basic current equation

reduces to

N2 , '
- D' o F + v'(F") ﬁf;_+ EET = J'(t") - v'(F').
%! ax' ot

This equation is characterized by the single dimensionless comstant D' given by

(no I

i
LEv ()

D' = [Qne] D
J

consequently any solution of the dimensional equations (5.5.4), for particular
physical systems with different parameters, will be related by the above
transformations provided the value of D' is the same for each system.

Fortuitously the system descriBing oscillatory photoconductivity in InSb has an
almost identical value for D' as does the system describing the Gunn effect in

1 ohm cm GaAds, provided we choose the same value for the diffusion coefficient D

in each system. As we have no information on D for the OPC problem we choose

D =178 cm2 s-1 which has been used by Butcher and Fawcett (1966) in their Gunn
effect studies. The characteristic field f is chosen as the threshold field for
the two systems. Typical values of D',no, v, £, € for the two cases are shown

in Table 5.1. Our numerical studies are based on values of n s f etc. appropriate
to the Gunn effect and to obtain the corresponding OPC solutions the transformations

shown in Table 5.1 must be applied. The static dielectric constant is chosen

as € = 47,

The basic time dependent equations are solved by standard finite difference
numerical techniqueswhere we adopt forward differences for first order «.rivatives

and central differences for second order derivatives. For example,

OF it - F(x + 0tx,t) = F(x,t)

ax o AX

3°F F(x + 0x,t) = 2F(x,t) + F(x - Ax,t)
7 (et - 2

dx (8%)

3F F(x,t_+ At) = F(x,t)

Y (x,t) ~ e



TABLE 5.1 CONPARISON OF PARAIETERS ENTERING TIIZ GUNN ErfiicT
PROBLEN ALD Tili OPC PROBLEN

PARANETER orc . GUNN
n, 1010 cm-'3 1049 cm-3
f . ' 1072 statvolt em~t 10 statvolt cm >
v(t) 2X10° cm seo™t 2%107 cm sec™t
D 200 cm? Bec-l 200 em? aec-l
D' ~O.5 ' ~Oo5
T, ~10—8 8eo '~-10'"12 sac
L v ~ 10-3 cm a»lOm5 cm
CONVERSION IFMACTORS
QUANTITY IN OPC - FACTOR X QUANTITY IN GUNN EFFZCT
PROBLLEI{ PROBLEM .
. -~ 2
LENGTHS ~ 10
ree 4
TIMIS ~ 10
FIELDS ~1073

CARRIER DZNSITIES ~10~°
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where A%, At are the basic finite difference meshes in space and time.  Numerical
stability is only achieved if the velocity of the numerical disturbances Ax/At
exceeds the maximum velocity expected for the physical disturbances in the model.
In practice we choose Ax = 10-5 cms, At = 5 x 10-14 seconds giving Ax/At = 2 X 108
cm/sec whicn is 10 x faster than the maximum drift velocities anticipated for
physical instabilities. To speed up the computation, the calculations reported
here were all carried out for short samples of length % = 12 microns, contacts

of length 2 microns, and a perturbation notch of width 1.2 microns. The
corresponding sample length in the real OPC problem is of the order 1200 microns,
by the similarity transformations given in Table 5.1. The initial conditions

at t = O are chosen such that a uniform bias field FO exists in the sample

under conditions of space charge neutrality n =p = n, (solution of G = R) every-
where, with the fields in the contacts and perturbation notch chosen to satisfy

en(x) v(F) = J where J is the drift current in the sample. The last condition

implies continuity of the drift current.

5.6 Time development in the complete ionization limit

The simplest situation in oscillatory photoconductivity occurs when p the
background density of positive charge is a constant in time. We denote this
constant by n0(= Ny - NA for a compensated semiconductor). In gencral we allow

n, to be a function of x to allow for the doping changes in the perturbation

notcn and the contacts.

We first consider the trivial case of an Ohmic sample in which the velocity-
field characteristic is of the form v = uF, where u the mobility is a constant.
The analysis of section 5.4 showed that in this case a unique steady-state exists
in which the field in the sample rises rapidly near the cathode and saturates

to a constant field in the bulk of the sample. The saturation field is given
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approximately by VO/E. The trajectory involved saturatés to the single saddle
point singularity present in the phase plane. Figure 5.8(a) shows a computed
field distribution for such a case after an elapsed time of 10_11 seconds for
tihe parameters u = 2,058 x 106 cm2 stat volt:—1 sec—l, D = 178 cm2 sec—l,

F o= 9 stat volts/ecm. The initially imposed field distribution quickly adjusts
to the stable steady state distribution shown in a time the order of the di-
electric relaxation time for the contacts. The dip in the field near the
cathode boundary and the peak near the anode are due to the effects of diffusion
arising from the rapid change in carrier density across the electrode-sample
boundaries. Figure 5.8(b) shows a sketch of the qualitative space-charge
distribution estimated from Poisson's equation. The characteristic features
are tne presence of a pinned depletion layer of electrons just within the
contacts and associated accumulation layers a short distance within the sample.
The perturbation notch leads to a built in dipole of space-charge formed from
adjacent accumulation and depletion layers. We note the important feature that
the field is very small at the cathode boundary, whilst the field gradient 3F/3x
is very large. This feature is maintained even for the complex velocity-field

characteristics associated with oscillatory photoconductivity and the Gunn effect.

We turn now to the velocity-field characteristic for oscillatory photo-
conductivity. For a bias field F. in the range 0 < F o <F., the field

distributions evolve precisely as for the case of an Ohmic sample and are stable.

The first interesting case arises for an initial bias field F in the range
Ft < Fo < Fc' As anticipated in sections 5.3 and 5.4, this situation does not
admit a steadi-state and is unstable. Figure 5.9 shows selected frames from
tie time development of the field distribution for Fo =15 état volts/cm. The

relevant doping profile is shown in Figure 5.6(b). The initial behaviour is

reminiscent of the Ohmic case, witih a rapid adjustment of the field distribution
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near the contacts such that the field rises rapidly from near zero at the cathode
to an almost uniform field (above threshold) in the bulk of the sample. The usual
effects of ditfusion at the contacts are apparent. However, there are two
signiticant diffecences from the Ohmic case. The first is that the initial rise
in field near the cathode has a step in it, corresponding to an additional
accumulation layer of electrons. In the absence of the perturbation notch the
accumulation layer grows non-linearly and travels across the sample with

a non-uniform velocity. The layer is then absorbed at the znode and the entire
process repeats cyclically. This benaviour is entirely analogous to the
accumulation layer instability discovered by Kroemer (1966) in theoretical

studies of the Gunn effect. We shall come back to this analecgy later. The
second difference from the Ohmic case is that the initial field in the bulk

of the sample is above threshold and by tune linear analysis of section 5.4 is
unstable with respect to space-charge perturbations. This can be seen in the first
few frames of Figure 5.9 where the disturbance introduced by the perturbation
notch grows with an initial growth rate of 1/|rd] and travels towards the anode

at tae drift-velocity Vg Both 4 and v, are associated with the field

immediately adjacent to the disturbance which we denote by F However, the

R’
accumulation layer instability, nucleated at the cathode, travels faster than

the dipole pertutrbation and after a short time (of the order 14) combines with it
to nucleate a high field domain. This behaviour is shown in the first few frames
of Figure 5.9. The presence of the depletion layer at the perturbarion notch
appears to be crucial for the nucleation of a domain. The initial <omain

shape is roughly triangular but changes to the flat topped domain shown in the
last few frames when the peak domain field exceeds F, the restoring field. The
flat-topped form is stable and reached within a time the order of a few 4 where
4 is associated with the final outside field FR' Once the domain is fully
formed, it propagates uniformly along the sawple at a velocity V(FR). We note

that the leading and trailing edges of the domain have fields in the range

Fc to Fr which implies tinat the electrons in these sections have negative drift
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velocities. The total current is positive however, and this achieved by large
diffusion currents present in these regions induced by the very steep domain
walls. Figure 5.10 shows the directions of the diffusior and drift cucreat

in tbhe flat-topped domain., As noted in section 5.3, diffusion is crucial

to this problem in that it allows the field to cross regicns of negative drift
velocity. At the anode the domain is slowly absorbed and a new domain
nucleates as before and tne whole process repeats. Tie total current tehavicur
i3 shown in Figure 5.11. The total current falls initially as the domatn
nucleates and is constant whilst the fully formed domain propagates along the
sample, finally rising again as the domain is absorbed at the anode. The
overall current thus shows an oscillatory structure in time with a period close

to the domain transit time.

The crucial role of the contacts is well illustrated if we consider a
similar case but for no contacts present, Figure 5.12. Here, the initial field
is uniform everywhere, and the space-—charge perturbation at the notch grows into
an unstable flat topped domain which is followed by a large depletion layer of
electrons. The system finally reaches a non-uniform steady-state when the
domain collapses near the anode wall. This final state has a stationary shock-—
wave structure; the corresponding phase plane trajectory connects the two saddle
points F and Fq where F, < F_ and Fy < F.. The time development cf the total

current is shown in Figure 5.13, the two peaks being associated witl: the domain

nucleation and final collapse.

For an initial bias field in the range F < F_ < F , the system supports an

initially negative current. As before the field quickly adjusts to F ~ O near
the contacts. Figure 5.14 shows the time development for this case, where

F 42 stat volts/cm. Whilst the total current is negativz the cathode

o
(x

from the anode (x = 2). In the extended velocity-field characteristic scheme

0) exchanges roles with the anode and electrons are brought into the sample

it
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(c.f. section 5.3) in which we only consider positive total currents, the
corresponding field distributions are obtained by rotating Figure 5.14 by 180°
(see Figure 5.16), This.fgllows from tne invariance of the basic equations under
the transformation J» -J, F» -F, x> -Xx. The most important feature here is
the accumulation layer formed near the new anode (x=0)., This layer is essentially
the trailing edge of a large flat topped high field domain. The trailing edge
of the domain moves away from the new anode against the total current flow.

To maintain the total potential across the sample the peak field in the domain
rises. Eventually the peak domain field exceeds F, the restoring field, and

a positive drift current is regained. At the same time the field outside the
domain and within the contacts builds up such that the total current J increases
from negative values into the positive region and bulk positive resistance is
restored. The behaviour of the total current is shown in Figure 5.15.  The
perturbation introduced by the notch is initially amplified as predicted by the
linear theory, but is rapidly absorbed into the accumulation iayera It appears
at first sight that with the restoration of positive resistance the field
distribution reaches a steady-state in which there are two plateaux of low and
high field within the sample. This would be analagous to the shock-wave
solution in the no contacts case discussed earlier. However, the low field
plateau has a value within the range Ft to Fc and is unstable., Consequently

the built in perturbation at the notch is amplified and a narrow domain forms
which propagates into the high field plateau. The two plateau regions appear to
be a persistent feature of the ultimate field distribution. The final aituation
involves the cyclic nucleation, propagation (within the low field plateau) and
absorption (into the high field plateau) of a narrow high field domain. The
total current thus oscillates somewhere in the range enov(Ft) to enov(FC), whilst
the high field plateau oscillates in value at fields in excess of F . The total
negative resistance state is never regained. There is a possibility that

for a sample of suitable length, the low field plateau might be below threshold
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and we would obtain a steady-state, but this has not teen observed in the limited

numerical experiments carried out.

Again a different behaviour is found if the contacts are removed. 1In this
case an inverted domain is nucleated at the perturbation notch with a minimum
field greater than zero as shown in Figure 5.17. The domain is stable but
is absorbed into the anode and the final state is a non-uniform steady state in
the form of a stationary shock wave. Again the negative resistance state is

rejected (the behaviour of the total current is shown in Figure 5.18).

The phase plane analysis and small signal analysis suggest that if the
sample is biased into the region FV < Fo < Fr then a negative resistance steady
state could be possible. However, the numerical calculations for such an
initial bias field lead to the development of a non-uniform steady state of the
shock-wave form, as shown in Figure 5.19 for an initial bias field of Fo = 53
stat volts/cm. The negative resistance state is rejected in a similar fashion
to the case Fc < Fo < Fr, but the perturbation induced by the notch is damped_
out, The total current evolution is shown in Figure 5.20. The final state
consists of a two-plateau distribution, one at a high field in excess of Fs
the other at a low field which lies below the threshold field F . The fields
are approximately related by the condition v(Fa) = V(Fb) where a and b refer to
the low and high field plateaux respectively. The corresponding trajectory in
the phase-plane is shown in Figure 5.21, and involves a near saturaticn to the
saddle point F (*F)) and final saturation to the saddle Fo(5F ). This
significant result shows that saturation to the negative field solution FS (in
tﬁe terminology of section 5.3) is not possible and appears to be a consequence
of the boundary condition F * 0, 3F/0x large and positive at the cathode. As
anticipatéd in section 5.3 all our numerical calculations show that this boundary

condition is upheld when ordinary contacts are used. In the case where contacts
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are absent a uniform stable negative resistance steady state occurs.

The final cases involve Fo > F.. These all lead to stable steady-states of
the type predicted by the phase-plane analysis and involve saturation to the
saddle point at Fj. The final state for F o= 60 stat volt/cm is shown in

Figure 5.22. A stable uniform steady state occurs in the absence of contacts.

5,7 Analogies with the Gunn effect

In the complete ionization limit several features of the instabilities
discussed in section 5.6 bear a marked resemblance to those found in materials
exnibiting the Gunn effect. Indeed some of the theory applicable to the Gunn
effect can be carried over to the present problem. The Gunn effect involves the
occurrence of microwave current oscillations in n-type multivalley polar semi-
conductors, notably in gallium arsenide, at room temperatures and in the presence
of high electric fields. The effect was first observed by Gunn (1963) and partly
because of its important applications has received considerable experimental and
theoretical attention (a review has been given by Butcher 1967, and a recent
bibliography is given by Gaylord et al 1968). The basic physical process
involves the electron transfer mechanism first proposed by Ridley and Watkins
(1961) and Hilsum (1962). At high electric field strengths hot electrons within the
central high mobility valley in the conduction band structure are transferred to
satellite low mobility valleys as the electric field increases. This gives rise
to a negative differential mobility in the sample characterized by an N-shaped
drift velocity-field characteristic and the electron system is unstable. The
current oscillations are produced by the cyclic nucleation, uniform prcpagation
and absorption of narrow high field domains, and occur for bias fields in excess of

a threshold field.
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Theoretical treatments of the Gunn effect have proposed two slightly different
forms for the drift velocity-field characteristic, an N-shaped form (Conwell and
Vassal 1966, McCumber and Cnynoweth 1966), and a saturating characteristic (Butcher
and Fawcett 1966). The latter gives better agreement with experiment. These forms
are shown in Figure 5.23 where they are comp#red with the approximate c¢scillatory
photoconductivity (OPC) characteristic (curve (c)) used in our numerical experiments.
Curve (a) is the analytical approximation due to Butcher and Fawcett (1966), whilst
curve (b) is qualitatively similar to the form suggested by McCumber and
Chynoweth (1966). We adopt the same nomenclature as in section 5.3 to describe

the threshold, critical, valley and restoring fields where these exist.

The phase-plane for the general case of an N-shaped Gunn characteristic is
shown in Figure 5.24 for a steady state total current J = en v , where v _< v
and ng is the background density of positive charge. Three singular points occur
and are classified as saddle (Fl) unstable focus (Fz) and saddle (F3) and are
analogous to the OPC case. For the saturating Gunn characteristic Fq is at
infinity. The phenomenological space-charge and field equations are the same as
for the OPC problem in the complete ionization limit, but v{(F) now refers to the

Gunn characteristic.

Small signal perturbation theory shows that a uniform field distribution of
value F in an infinite sample is stable if F,o< Fis unstable if Ft < F<F
and stable if F > F,. The unstable situation for a finite sample wiil contacts
is illustrated in Figure 5.25 for an initial bias field F = 11 stat volts/cm
(>Ft) for the saturating Gunn characteristic.  Our numerical calculation shows the
nucleation of a narrow 'triangular' high field domain which propagates uniformly
along the sample. The process repeats cyclically with a well defined frequency.
The total current evolution shown is Figure 5.25. If the perturbation notch is

removed the instability takes the form of an accumulation layer instability which
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propagates non uniformly, and corresponds to the instability predicted by Kroémer
(1964) . The domain nucleation is exactly the same as in the OPC problem for bias
fields in the range F. to F . The total current shows a spikey waveform as shown
in Figure 5.26,the spikes occurring during the nucleation-absorption stage. Our
numerical calculations also show the occurrence of stable domains for the non-
saturating Gunn characteristic. One such example, for a sample with contacts is
shown in Figure 5.27 for an initial bias field Fo = 11 stat volts/cm. The flat
topped form is a consequence of the non-saturating characteristic and its origin

is discussed in the next section. For the same sample but with a bias field of

15 stat volts/cm there occurs an initial accumulation layer instability followed

by the cyclic nucleation and propagation of an unstable domain which travels non
uniformly along the sample. For bias fields above the valley field, a non-uniform
steady state is achieved rather similar to the OPC steady states. An example, for

: Fo = 20 stat volts/cm is shown in Figure 5.28.

An analysis of uniformly propagating stable domains due to Butcher and Fawcett
(1966) shows that if the diffusion coefficient is constant the fully-formed domain
travels at a velocity v equal to the drift velocity A2 of the electrons in the
esgentially uniform field Fp outside the domain. The numerical experiments confirm
this result. The same argument holds for domains in the OPC problem. For a
constant diffusion coefficient D, the peak domain field FD varies with FR the out-
side field according to an equal areas rule (Butcher and Fawcett 1966). This rule

is illustrated in Figure 5.29. For a constant diffusion coefficient D, the exact

analysis of Butcher and Fawcett gives the stable domain shape as

e [f _ar 5.7.1

Y ®4re F.O T,
D
where y = x - vpts and n is given as a function of F by
F

n__ D._1. 'y -y )9E 5.7.2
n loge n 1 4men J (V(F ) vR)D

o o o'F

R
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These equations are derived from Poisson's equation and the current continuity

equation.  Since 3F/dx (S3F/3y) is zero at the peak domain field Fy. Poisson's
equatioa shows tuat n = n,at F= F,, Substituting F = Py into (5.7.2) tnen
shows that
FD
' - -
JF v(F')dF VR(FD FR)' 5,7.3
R

Consequently the two areas shown in Figure 5.29 are equal. For outside fields
F. belov a critical field Fy tne equal areas rule cannot be satisfied for the non-
saturating characteristic and stable domain propagation is impossible. The
dotted curve (a) in Figure 5.29 is called the dynamic characteristic and is a

plot of Fy against v as given by the equal areas rule. The termination of

R

this curve corresponds to Fp = Fy and gives Fg as the maximum peak domain field.
From the domain shape equation (5.7.1) we can calculate ¢D the domain
potential defined as the area under the domain above the outside field Fpe For

a finite sample of length & (no contacts) we have
¢p =V, ~ Fpt (the load-line equation) 5.7.4

where Vo is the external voltage. The qualitative variation of ¢p with Fy for
a typical case is shown in Figure 5.30. The working point (FR, FD) is given
by the intersection of the load line (5.7.4) with the domain potential curve
and defines the outside and peak domain field for a given voltage and sample

length.

The geometric condition (5.7.3) and the concept of ioad lines carry over
without change to the OPC problem, but the equal areas rule for stable dom;in type
instabilities requires some modification. For peak domain fields less than or
equal to FC the equal areas rule holds but breaks down for higher peak domain

fields. The geometric condition is still fulfilled for peak fields in excess of

Fc and leads to a generalized areas rule illustrated by Figure 5.31(a). Here
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the areas A, B, C are related by C = A-B. All the stable domain solutions
found numerically saticfy this rule. Al ouvr calculations were based on a velocity-

field -hsractesistic in which

kfﬁ Fy
I'd wy :‘ ol
w{F)dr - 1 w{F)ZF.
JjO i U
£

The OPC problem does bowsver admit velpcity-field curves in wihich this inequality
is reversed, in which cage one might ewpect negative domaing aaticfying the
geometric condition shown in Figure 5.31{b), where again € = A-B. No numcrical
calculations were, however, made for this circumstance. The geometric condition
(5.7.3) also holds for the inverted domain of Figure 5.17, wheze in this case

D The geometric condition

has the form shown in Figure 5.31(c). We note that for the sample length

the outside field FR is larger than the domain field F
chosen in the OPC nweerical experiments the load line condition and equal

areas rule leads to peak domain fields in excess of the restoring field F .

Lower peak fields would require considerably shorter samples.

5.8 Origin of the stable domain solutions

In both the Gunn effect and oscillatory photoconductivity effect we find the
possibility of stable uniformly propagating high field domains, where the
domain velocity v is equal to the drift velocity v, of electrons in the outside

ficld Foe During propagation of the domaln the total current is positive and

constant with a value en v, for an infinite sample (or contactless sawple). We
may then transform the partial differential equations for the system jnio

ordinary differential equations by setting y = x - vpte That is we go into the

moving frame of reference in which the domain is stationary. Under this

transformation we find

dFf JF _ dF 5.8.1

SF __, 4 dF
3t YD dy ’ 9x dy

and combining Poisson's equation with the total current equation (in the complete
v

ionization limit for the OPC problem) we obtain
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dy dF
D — + - . T e
dy (g + y)(v(F) vD).w dy 5.8.2
where as before g = 4nen0/e. This system is autoncmcus and is amengble to

analysis in the phase plane (F,vy).

The singular points for the system (5.8.2) occur for the simultaneous
conditions y = O and v(F) = vy Since vh lies in the range O to u there are
thus five singular points in the OPC problem which in the notation of section
5.3 are labelled Fi (i =1 to5), whilst for the Gunn effect there are three
singular points (F,, Fy» F3). In order of increasing field they are classified
on linear analysis as saddle, centre, saddle, centre, saddle respectively.
Higher order analysis suggests that the centres are in fact closely packed
unstable foci, and if the diffusion coefficient is field dependent then this
is certainly the case. The boundary conditions for the trajectories corres-~
ponding to a domain solution are F = FR, ¢y =0at y=1t o, The phase planes
for the OPC and Gﬁnn effect systems are sketched in Figure 5.32. The zero
isoclines are the lines v(F) = v, and the line ¢ = - g. We note that in
contrast to the phase planes of section 5.3, none of the trajectories in the
physical region (¢ > - g) cross into the non-physical (n < 0) region. This is

because we have included the time dependence in our basic equations. We also

note that F;1 = F

R

In the Gunn effect problem, for a saturating characteristic F3 + o, The
domain solution for this case is recognised as the unique re-entrant trajectory
leaving the saddle at F, (see Figure 5.33). This result was first obtained by
Knight ana Peterson (1967) in an extensive analysis of the Gunn effect. But
this interpretation is true only if F2 is exactly a centre. If not, the domain
solution is most probably a Poincaré limit cycle, (i.e. an isolated closed
trajectory such that no trajectory sufficiently near to it is closed; a good

discussion of these objects is given by Minorsky, (1962) surrounding F,
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with one boundary asymptotic to Fl’ the other at FD the peak dcmain field. The
limit cycle corresponds to a non-linear wave of infinite period (this period would
pe finite if the locus of the cycle did not touck a singular point). For the
non-saturating Gunan characteristic we can also get ‘flat toepped' domains and this
feature may also be fournd in the phase-plane. In this case the saddle at F3
distorts the trajectory flow for fields just less than F3. Trajectories passing
close to Fq involve a very slow variation of F with y, a property of singular
points. If the domain trajectory passes close to Fq the peak domain field changes
slowly within the domain and we obtain the flat topped effect. A classification
of the possible domain solutions for the Gunn effect is shown in Figure 5.34.

The shaded areas illustrate the equal areas rule for the different cases. The
total external current decreases in the diagrams in the order (1), (2), (3).

The critical case (2) of (5.34) involves separate accumulation and depletion

layer solutions where the two saddle points Fl and F3 are connected., Case (3)

is a possible low field domain, which again satisfies the equal areas rule; this

type has not been observed experimentally or in numerical calculations.

Similar remarks apply to tne OPC problem, which has an almost identical
phase plane. The domain solutions are égain interpreted as closed trajectories
or limit cycles in analogy with those for the Gunn effect. We remark that
various criteria for the non-existence of a limit c¢ycle in this problem, notably
the Bendixson theorem (see Minorsky p82, 1962) are not satisfied but an exact proof
of the existence of a limit cycle has not been possible (although when £ and F2
are foci we have not been able to construct a consistent phase~plane topolcgy
without assuming its existence). A classification of some possible domain like

solutions in the OPC problem is given in Figure 5.35 for the two situatioas

in which
F F
c r
J v(F)dF > J |v(F)|dF (Type I characteristic)
° c
Fe Fr
and J v(F)dF < J |v(F) |dF. (Type II characteristic).
o F

c
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The domains observed in the numerical experiments were of the flat toppéd variéty
and satisfy the generalised equal areas rule. In the diagram the areas A, B, C
are related by C=A-B, Only the solutions (2) and (3) of Figure 5.35 have been
found numerically where solution (3) is for the no contacts case and does not
arise when contacts are included. As noted previously the complete family of
OPC velocity-field characteristics contains characteristics of the non-saturating

Gunn type and the Gunn effect analysis is directly applicable to thase situations.

5.9 Time development for the general case

The general problem of the nature of the field distribution when the back-
ground density of charge p is time dependent is extremely complicated. Only a
few calculations have been made for this situation and a complete picture has
not emerged. The calculations reported in this section apply to the other
extreme to the complete ionization limit in which the characteristic times for

the space-charge, electron and hole densities are related by the inequalities

Te >> ITdI

™h 2 ITdI ’

Under these circumstances the assumption that v is a unique function of F is
suspect, but the calculations do reflect the méin effects of the recombination

and generation processes. Four situations have been investigated which we label
I, II, III and IV, corresponding to bias fields F, for four regions of interest

on the velacity-field cnaracteristic: these regions are indicated in Table

5.2, Four sets of‘data are involved which we label A, B,C, D. These correspond
to four choices for the generation and recombination parameters S and o, and lead
to different values for n, T, and T ¢ these values are displayed in Table 5.2.

15 -3
In each case the donor and acceptor densities are chosen as ND =.1,1 x 100" em



TABLE 5,2

-\ ' _|
BIAS FIELD ;| pata | Tu(R) [ 6 L4
F, statvolt/om scoonds |z Ye/Yd | Th /T¥d |Z Te/Th
T+ B s fbasmo®| 40 | -0 100
x -12
<P, | B Lo -30 -30 1
| ¢ Foaxio™2| 300 | -300 1
3 _ S :
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=12 ;
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-12
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F 0 Py
At m = 0,94 10" on™> .
Bt n = 232X 10" on™
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15 =3 .
NA = 0.1 x 107" cm ~ respectively so as to correspond to the data used in sections

5.6, 5.7 in the complete ionization limit.

Section I refers to bias fields in the range F, <T_ <TF. Figure 5.36

- shows the calculated field distributions after 10-11 seconds for an initial bias
field Fo = 15 stat volts/cm, correspondirg to the parameters given in Table 5.2.
These results may be contrasted with the field distribution near the complete
ionization limit, (no x 1015 cm-3) illustrated by the dotted line in Figure 5.36.
Curve A corresponds most closely to the complete ionization case and involves

a 'hole' lifetime 1% less than the dielectric relaxation time. In case A, a stable
flat topped domain analogous to those discussed in section 5.6, is formed and
propagates uniformly along the sample. However, the growth rate is considerably
smaller than for the complete ionization limit and the space-charge formation
around the perturbation notch is retarded. Cases B, C, and D, in which both the
electron and hole lifetimes are much longer than the dielectric relaxation time,
are characterized by the non-uniform propagation of an accumulation layer in-
stability. In these cases, the perturbation notch has no apparent effect on the
system, and domain like solutions do not occur. The linear analysis of section
5.4 allows us to calculate v, the velocity of propagation of the space-charge

mode in the limit of small signals. We find that vy increases in the order

IB, IA, IC, ID for the cases given in Table 5.2, where in each case vy is just less
than Vo(=v(Fo))° Inspection of the initial motion of the accumulation layer
instabilities shows that this is indeed the case. Similarly the effective
diffusion coefficient D, for the space-charge mode is found to be enhanced

the most for case IB(D1 = 1.5D) and least for case IC (D1 = D). The enhancement
of diffusipn is seen most clearly as a smearingof the field distribution. The
behaviour of the total current is shown in Figure 5.37.

11

Figure 5.38 shows the field distributions after an elapsed time of 10

seconds for bias fields in the range F, < F < F (cases II, III of Table 5.2).
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The time evolution of the total current is shown in Figure 5.39. In.all three
cases shown the initial negative resistance state is rejected and the overall
"time evolution is similar to the complete ionization limit of section 5,6. The
major difference is the lack of space-charge growth in the vicinity of the

perturbation notch.

Case IV involves Fo > Fr and we find a stable field distribution analogous
to those predicted by the phase-plane analysis in the complete ionization limit.
Figure 5.40 shows the steady-state field distribution reached for the bias field

Fo = 60 stat volts/cm.

The most surprising feature of these general calculations is the lack of
influence of the perturbation notch. Apart from case IA, which shows a re-
tardation of space-charge formation not predicted by the growth rate term of the
small signal dispersion relation, no space-charge growth is detectable, and
domain nucleation does not occur, although if space-charge does form at the notch
the small signal analysis predicts that it will grow for bias fields between the
threshold and valley fields. On the other hand the accumulation layer instabili-
ties have the general features predicted by the small signal theory. The
probable answer to this problem lies with the dispersion relation w(k) which
controls the linear part of the growth of small perturbations. We first observe
that domain nucleation generally requires the presence of a depleticn-layer,
usually found at the perturbation notch. The form of the perturbation notch
makes it impossible for an accumulation layer to form there without an associated
depletion layer. We therefore interpret the numerical results by supposing that
some process is operative which suppresses the nucleation and growth of a
depletion layer at the notch. We have already seen (section 5.4) that the

2 of w(k) for the space-charge mode give the growth rate,

terms in ko, kl, k
velocity and spread of a small space-charge perturbation as functions of the

electron and 'hole' lifetimes. In the complete ionization limit these three
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terms complete the dispersion relation, but in the general case terms in k occur up
to infinite order. These higher order terms control the symmetry of the space-
charge perturbation. For the short wavelength perturbaticn at the notch k is

large and the higher order terms in k3 etc. may be important. We suspect then
that the higher order temms in w(k) act to suppress the growth of large k
depletion layers and that space-charge formation at the potch is prohibited. Some
evidence for the suppression of the depletion layers may be seen in Figures 5.36,
5.38 where the depletion layers near the anode (x = g) are considerably smeared

out compared with the accumulation layers in the vicinity of the cathode. There

is clearly considerable scope fér further investigation of the higher order terms

in the dispersion relations.

5.10 Conclusions

The calculations described in Chapter IV have demonstrated that the local
conductivity can become negative, for a certain range of electric fields, provided
that carrier injection occurs close to a multiple optical phonon energy. The
phase-plane analysis applied to the problem of the form of static field
distributions in a sample with ordinary contacts does not rule out the possibility
of bulk negative conductivity under d.c. conditions although the possibility
appears doubtful. Such a phenomenon would involve energy flow from the radiation
to the field. However, the small signal theory shows that the system is unstable
against’ space-charge formation over the negative slope region of the velccity-
field characteristic (for positive and negative velocities) and the recombination
does not stabilize the process. Numerical calculations for the time development
of the field in a sample showing oscillatory conductivity confirm these findings.
Instabilities, analogous to the high field domains in the Gunn effect, occur for
bias fields on the negative slope regions of the velocity-field characteristic,

and if ordinary contacts are used the negative resistance state is rejected. Small
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signal analysis suggests that for uniform bias fields on the positive slope,
negative velocity region of the velocity-field characteristic the system is

stable agains local space charge formation. However, when contacts are included,
the numerical calculations show that the field non unifommity near the contacts,
if ordinary contacts are used, leads to a rejection of this negative resistance
state. Instead a stable nen-uniform field distribution is reached and the

sample supports bulk positive resistance.

We conclude that bulk negative conductivity cannot be observed under d.c.
conditions if ordinary contacts are used. Instead stable non-uniform fields are
set up in the sample which lead to bulk positive resistance, although for small
regions in the sample the electronic drift current is negative. In these latter
regions the electronic diffusion currents reach sufficient proportions to maintain
a total positive current. TFor a certain range of bias fields, between the
threshold and valley vield strengths, the samples do not admit static field
distributions and positive current oscillations occur. The oscillations have
a frequency which is roughly the reciprocal of the domain transit times when the
domain instabilities occur. The transit velocity is of the order of the drift
velocity at the threshold field, and for a 1200 micron sample'the transit time
would be of the order of 10-4 to 10-5 seconds. The oscillations are therefore

expected to be outside the microwave region.

These conclusions are consistent with the experimental observations that
bulk negative resistance does not occur in the oscillatory photoconductivity
effect. The current oscillations predicted by our analysis are of small

anplitude and would be only apparent experimentally as enhanced noise in the

0.0l to 0.1 Megacycles range.
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CHAPTER VI

DISCUSSTON

6.1 Introduction

Earlier chapters have outlined some of the origins and comsequences of non-
équilibrium distributions of carriers which can arise in semiconductors under photo-
illumination at low temperatures. In this chapter we discuss some of the problems
raised by our work and make suggestions for future research in these areas. The
discussion is divided into two parts dealing with the general photoexcited hot
electron phenomena (section 2) and instabilities and non-linear problems
(section 3). We also include a brief discussion of relevant experimental findings

which were not available during the completion of this work.

6.2 Hot electron phenomena

The major result of this thesis is that hot carrier distributions will occur
in semiconductors provided the mean photoexcitation enexgy exceeds the mean thermal
equilibrium energy and the carrier lifetime is sufficiently short compared to
the thermalization time. In the absence of external fields the heated steady-
state distribution function is markedly different from the equilibrium form and

‘reflects the general form of the excitation spectrum. A broad excitation spectrum
leads to a dispersed population of carriers qver a wide range of momentum states,
generally characterised by an increase in the mean carrier energy from the
equilibrium value. The dispersed nature of the distribution function in turn
leads to a linear response to weak applied ffelds. This Ohmic behaviour means
that the isotropic part of the finite-field distribution function is very nearly
the zero field distribution function. Transport and trapping parameters deviate

from those expected for closely thermalised carriers: a consequence of averaging
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over a non—equilibrium distribution function. Narrow spectrum photoexcitation
gives rise to a population of carriers closely localized to a constant energy
surface in momentum space under carrier heating conditions. The behaviour

with respeét to applied electric fields is more complicated here and is critically
dependent on the mean carrier energy and the threshold character of the optical
phonon scattering. Under appropriate conditions the low field respense is highly

non-linear and the semiconductor exhibits negative resistence.

The problem of the observed cut-off to the recombination lifetime and capture
cross section for carriers in germanium and silicon -is re-emphasised by the ‘failure
of the hot-electronimodel to explain-all.the experimental data. Resolution of this
problem is clearly of importance. A discussion of an alternative approach
to the problem was given in Chapter ITIin terms of photo-excitation into more
than one valley (for silicon). This behaviour is un;ikely for photoexcited
holes in germanium, but the sparsity of experimental data does not allow confirma-
tion of the predicted cut-offs due to carrier heating. However, a recent experi-
ment reported by Yariv et al (1968) may be of relevance. The experiment involved
measurements of the recombination lifetime of photoexcited holes in compensated
germanium (mercury doped with ND = 1.9 x 1014 cm-3, NA = 5.4 x 1015 cm-3) as
a function of electric field strength (from 2 to 1000 V/cm) at low temperatures
(from 5°K to 32°K). Photoexcitation was monoenergetic and effected by a 10.6
micron laser source. The low field recombination lifetimes were deduced from

photo-Hall measurements of the carrier concentration, so if heating cccurred

we might expect a Hall number anamaly. Two results are of interest. The low

}

field (less than 10 V/cm) measurements show an approximately T® dependence for
the recombination lifetime at low temperatures, with the kinked appearance
reminiscent of the Hall number anomaly discussed in Chapter ILI. Secondly, the

Hall mobility and recombination lifetime are field independent up to 10V/cm,

beyond which there is strong evidence of electric field induced heating. This
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result supports the Monte Carlo calculations of Chapter IIwhich suggests that
field effects are not important up to at least 1 V/em. It would be useful

if further theoretical calculations on the lines of Chapter II were carried out
for this experiment, taking account of the monoenergetic radiation source.
Certainly the hot carrier model would appear appropriate: the measured
recombination lifetimes are sufficiently short for photo-heating to have
occurred. Further experiments, similar to Yariv et al (1968), would be of
interest, particularly if the mobility as well as the recombination lifetime

can be measured as functions of temperature. This would allow definite observa-

tion of carrier heating if it occurs.

Further theoretical work on the. photoexcited hot carrier problem in
germanium and silicon would not be justified until more experiﬁental data on
carrier heating effects is forthcoming. In particular it would be of interest
to see future experimental work specifically aimed at detecting the anomalies in
Hall number and magnetoresistance number. There remains considerable scope for

widening the theoretical investigation of Chapter IIto take into account:

(a) non-spherical energy surfaces;

(b) contributions to electron-phonon scatteriﬁg from bofh the transverse
and longitudinal mode phonons (a consequence of (a));

(c) intervalley scattering;

(d) multiple band structure (e.g. the excitation of holes into the heavy and
light hole bands in germanium);

(e) different excitation spectra;

(f) excitation into more than one valley;

(g) the effects of non-equilibrium phonon distributions;

(h) high electric field effects;

(i) high magnetic field effects;

(3) high light intensities (this would give large electron concentrations and
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and lead to consideration of intercarrier scattering and free carrier

absorption).
The latter proposition (j) could be usefully extended to the experimental problem
of measuring carrier distribution functions by light scattering. This technique
was suggested by Mooradian (1968) and a feasibility study was reported recently
by Healey and McLean (1969) in connection with distribution functions in gallium
arsenide. If this technique proves possible it should be feasible to directly
confirm the non-Maxwellian form predicted for the distribution functions

in germanium and silicon.

There have been several recent experimental measﬁrements of oscillatory
photoconductivity (a list of references in given by Mears et al., 1968). In
particular Mears.et al report observations of two distinct oscillatory series .
in n-type cadmium telluride. These are attributed to the presence of two
alternative capture processes at shallow donor sites. One series can be
accounted for by the mechanism discussed in Chapter IV, the other is accounted

for by direct capture into the shallow donors involving optical phonon emission.

Mears and Stradling (private communication 1968) have also found evidence of a
non-linear photocurrent-voltage characteristic for monoenergetic excitation in
CdTe at 4.2°K at injection energies close to a multiple optical phonon energy.

- These results are very similar to the current-voltage characteristics expected
when the non-linear drift~-velocity field characteristic does not show the regions
of negative mobility (the current-voltage relation then scales with the velocity-

field characteristic). Negative photocurrents were not observed.

Further experimental work involving high intensity strongly monochromatic
photoexcitation would be of value in understanding the physics of the oscillatory

photoconductivity problem for injection energies close to a multiple number of
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optical phonon energies. These experiments would ideally involve accurate
measurement of photocurrent-voltage characteristics coupled with noise spectrum
analysis to detect the predicted instability phenomena. It is desirable to
minimize the number of background thermal carriers in these experiments: this

could be achieved by suitable doping and operatingat very low temperatures.

The general theory of oscillatory photoconductivity (Chapter IV)is in good
agreemenﬁ with e;periment, but several problems remain to be resolved. These
include: (a) a determination of the diffusion coefficient as a function of
electric field strength. Monte Carlo techniques would be appropriate here;

(b) the influence of background thermalised carriers on the stability
of the system;

(c) the effects of ﬁon-equilibrium phonon distributions,

(d) the effects of multiple trapping levels;

(e) the influence of magnetic fields on the distribution functions;

(£) theeffect of the non-parabolic energy bands in the III-V

campounds.

The theoretical discussion given in Chapter VIgives reasons why the spectral
response does not show negative photocurrents, although these are predicted by
the uniform field analysis of Chapter V. It would be useful if theoretical.
calculations, based on non-uniform field distributions; could be extended to
allow quantitative comparison with experiment in the vicinity of the minima in the
spectral response oscillations. A discussion of the theoretical problems to be

resolved in this context is given in the following section.

6.3 Non-linear problems and instabilities

One of the most interesting features of the oscillatory photoconductivity
calculations is the prediction of highly non-linear drift velocity-field

characteristics showing regions of negative mobility under appropriate conditions
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at low field strengths. The usual assumption of a uniform electric field
distribution in the semiconductor breaks down when the sample is biased into

the negative mobility regions. This seriously complicates the microscopic
calculations of transport parameters and carrier distribution functions. A
complete ;nalysis would necessarily include the spatial dependence of the field
and carrier distribution function. The relevant equation is Boltzmann's

equation coupled through the field to Poisson's equation. For steady-state
calculations the total photoexcitation rate balances the recombination rate so
that the spatially dependent background density of positive charge can be
eliminated from the equations. However the problem of stability necessitates

the introduction of the full time dependent Boltzmann equation and the rate
equation for the background density of positive charge. A further complication
is the need to specify boundary conditions appropriate to the external circuit
conditions and the contacts. Such a theoretical programme would seem impossible
at present by analytical or numerical methods. The alternative is the phenomeno-
logical approach used in Chapter V. The phenomenological equations involve
averaging the Boltzmann equation over momentum space to obtain the contituity
equations for electrons and the background density of positive charge. For example
the electronic equation is

an

where n is the carrier density, R and G are the net recombination and generation
rates and v is the average electron velocity. All four quantities are functions
of space and time and through Poilson's equation of electric field. It is normal
practice to divide the electron velocity into a drift componeﬁt involving the
electric field and an electronic diffusion component which vanishes for uniform

fields involving the spatial gradient of the electron density:
Y F Varige ¥ Ydiffusion

This decomposition is really only meaningful for small departures from local thermal
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equilibrium. In the latter case Virift Fepresents the coherent motion of electrons

induced by the electric field, whilst v is related to the random '"thermal"

diffusion

and v

motion. Suitable forms for v . .
—diffusion

—drift

must be found before the phenomenological equations can be used. The one

» hased on separate calculations,

dimensional analysis of Chapter V uses the static velocity-field characteristic
f°r~xdri£t’ the space and time dependence then entering implicitly through the

dépéndence on field.

The electronic diffusion current env

Y 11 ffusion has an important influence

both for the existence and stability of the steady-state field distributions and
for the growth and propagation of instabilities. The precise form for this ierm
is unknown for the oscillatory photoconductivity problem. The analysis of
Chapter V involves a diffusion current proportional to D-%% (x,t), where D, tbe
diffusion coefficient is a constant independent of field. This constant is
unknown for the problem and the numerical calculations of Chapter V are based on
a choice of D appropriate to high temperature thermalised electrons. This simple
form can be precisely justified for small departures from local equilibrium. In
which case D is given by the Einstein relation (Kubo 1965) in terms of the
electron temperature and drift mobility. The exact form for the general non-
equilibrium problem can only be obtained by averaging over the Boltzmann
equation. It would involve knowledge of the detailed form of the spatially
dependent carrier distribution function. The strong field dependence of the
distribution function suggests a similar strong field dependence in tha diffusion
current. A reasonable approximation would be to retain the simple. form for the
diffusion current but allow D to be field dependent. Fawcett and Rees (1969)
have recently made Monte Carlo calculations for the field dependence of the
diffusion coefficient for electrons in gallium arsenide at high field gtrengths.
Similar calculations appropriate to the oscillatory photoconductivity problem
would clearly be of value. There is considerable scope for research into the

general problem of diffusion in systems very far from thermal equilibrium.
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Classification of the possible steady-state field distributions by analysing
the basic non-linear pihenomenclogical equations in the phase-plane (F,%F/dx)
is a useful technique for one-dimensional systems, but does not supply criteria
for the stability of such states. Small signal analysis is restricted to uniform
field distributions in long samples and does not give stability criteria for the
non-uniform field distributions which occur in practice. Only a full time-
dependent solution of the basic equations, necessarily by numerical techniques,
can explore the problem of stability. There is considerable need for an
extension of the phase-plane technique to higher dimensions. For example, it
would be useful if the integral curves of the full time dependent problem could
be studied in the phase space (F, 9F/dx, 3F/3t). This problem can be made
autonomous in the variables x and t if the effects of contacts are replaced
by suitable boundary conditions. The resultant topology would ideally indicate
the existence or otherwise of stable steady-states asymptotic to points along the

72 = 0 axis. However, this extension of non-lirear analysis is fraught with

ot
difficulties and is at present unexplored. Theoretical research in this area
must however be one of the growing points of Physics if the present day

difficulties with the wide range of non-linear problems are to be overcome.

It was shown in Chapter V that the phase-plane analysis is also useful
in discussing stable uniformly propagating instabilities of the domain or non-
linear wave category. The comments there on the interpretation of the stable
high field domains can be amplified by a recent analysis of the Gunn ~ffect
problem due to Rowlands (private communication 1969). Rowlands has shown by
an exact analysis based on a Liapunov function technique (see Minorsky 1962) that
the trajectories around the singularity F2 in the (F,3F/3y) phase-plane are closed
curves. This implies that F2 is exactly a centre. The result is valid only
if the diffusion coefficient is a constant independent of field. The analysis

applies equally well to the oscillatory photoconductivity problem and we must
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therefore interpret the domain solutions for the two problems as closed trajectories

passing through the saddle point singularity at F A further class of solutions

10
is thereby admitted. These are the finite period uniformly propagating non-
linear waves, represented by the set of closed trajectories around F2. These are

not observed in the numerical experiments and are probably unstable. Further

investigation of the stability of such phenomena is clearly warranted.

As yet no experimental evidence for the occurrence of instabilities in the
oscillatory photoconductivity problem has been forthcoming. Detailed work in
this area is required. A possible line of attack is through analysis of the
current noise measured in the spectral response experiments. This would involve
examination of both the a.c. and d.c. components of the photocurrent. Such
investigations, coupled with further theoretical work on the lines indicated
above, would be of advantage to the general problem of instabilities in semi-
conductors. In particular the role of recombination processes in influencing the
growth of instabilities in both the linear and non-linear regimes is of

considerable interest.
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APPENDIX 2.1

THE CARRILR SCATTERING RATE

' We give here formulae for the inelastic scattering rate J(k) appropriate
to non-degenerate electron scattering by acoustic and non-polar optical phonons
when the distribution function f(k) is a function of energy only. These
scattering processes have been discussed considerably in the literature and for
details we refer to recent review articles by Reik and Risken (1962), Paige

(1964), Conwell (1967).

The rate of change of f(k) with time due to scattering may be written
TEW =3 = TR LR A-E)
k
- K(k,k") £(k)(1-£f(k"))} (1)

where K(k,k') is the transition probability per unit time for an electron in
momentum state LE> (with probability f(k)) scattering into an empty state

|k'> (with probability (1-f(k')). For a non-degenerate semiconductor we can

ignore the restrictions due to the Pauli principle since f(k) << 1 and approxi-
mate (1-f) by unity. A similar interpretation holds for K(k', k). In thermal
equilibrium f(k) is given by the Maxwell-Boltzmann distribution and is proportional
to eXp(-e/kBT), where € is the carrier energy. Furthermore, in equiliorium the
total scattering rate vanishes identically and the principle of detailed

balance gives

K(k',k) exp(-e'/k T) = K(k,k") exp(-e/k,T). (2)
— = B == B

This result suggests that we define a new kernel G(k,k'), symmetric in k,k', by

G(_liyl_(_') = K(E’l(_') exp(-E/kBT) (3)
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The scattering rate (1) has then the symmetric form

J) = - ] G,k {£kDexp(e! /kT) - £()exp(e/kyD) ], (4)
kl

from which we immediately deduce the sum rule

] Jk) =0 (5)

|=

Referrring to acoustic and optical phonons by the suffices 1 and 2 respectivel;

we can decompose J as Jl + J2 and set

2 2
K(,k') = ] K (kk') ; R(k'\k) = ] K (k'k) . (6)
pl P p=l P

The transition rates Kp are calculated from the matrix elements of the electron
plus phonon states with respect to the electron-phonon interaction Hamiltonian
Hp on the basis of first order time dependent perturbation theory (only single
phonon processes are considered). For example, we find

\ 20 [|<k',N__|H_|k,N +1>|?
K (k6 = )31~ a0 p'="qp
P h
x 6(e"-e~hw_ )

qr

+ |<«', N _|H |k, N - Nk
= 9 PT 9r

x 6(6'-e+ﬁeﬂp)}, 7N

where ﬁegp is the energy of a phonon of type p with wavevector g.

The state vector ]E, §9p> describes an electron Qith wavevector k and ggp phonons
with wavevector gq. The first term in (7) represents scattering with the emission
of a phonon, whilst the second term involves phonon absorption. A similar
expression holds for Kp(&,&'). We choose forms for the Hp appropriate to the
deformation potential approach to the electron-phonon interaction. For acoustic

phonons this involves the approximation that H, is locally equivalent to the
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energy shift in the band edge produced by a homogeneous strain equal in magnitude
to the local strain induced by the lattice vibration (Shockley 1951). A similar
concept applies for optical phonons (Shockley 1951, Harrison 1956, Meyer 1958)
for which one can define an optical strain in terms of the relative displacement
of the sublattices within a unit cell. The matrix elements for both types of

scattering can be written in the same form, for example,

2
<k', N H k, N + 1
l = Nap I p'-—' qp >|
2
D ﬁw
p ap
2082 [.‘IP ' ) k'sk+q ’ ®

where Dp is the effective deformation potential, p is the density of the crystal
and s is the longitudinal longwave velocity of sound. We assume here that we
have spherical constant energy surfaces for which symmetry considerations
eliminate a contribution from the transverse phonon modes. In our approximation
the phonons are considered to be in thermal equilibrium for which ng is given by

the Bose-Einstein distribution,

Nﬂp z [exp(ﬁuﬂp/kBT) - 1)'1 (9)

For acoustic phonons, we are largely concerned with long wavelength (small q)

phonons which have the linear dispersion relation

w_gl = g |q|, (10)

whereas for optical phonons we assume the 'flat' dispersion relation (a good

approximation for germanium and silicon)

w9 = w = constant. (1)
o

4

With these considerations in mind we can readily evaluate J, and J,. In

terms of the dimensionless variable K = (e/kBT)i we find for Jl’



2
5 = -2 { Jb_ Jd} D SN {(UTS
! K a ‘¢’ 1~ exp(K2 - K'?)
b E®) 20 {Jb - [d} K' (K2 - K'2)ax!
K a c exp(K'2 - Kz)-l
where -3/2 5/2 4} 2
2 (kgT) m* D,
D = .
0 ()fls)ap

The ranges of integration are defined as follows,

a=Kk (K->—Ka/2) }
=K -K (R <K /2) ;
b=K +K ;
a
c =K (K:—KG/Z)
-KQ-K (Ka/Zf_Kf_K)
=K-~-K (K>K) ;-
) - o
d =K :
J

where K = (e /k T)i z (2m*sz/k T)i.
o o B B

The expression for J2 is

(Dzz m*3/2 hu
0
lZinﬁasZp

JZ(K) -

-1
[eM - 1] (kBT)ix

[K+{er(K*) - £} +eDK {£E) - & f(K)})

"where

«2 £ w?, and

t
M = hwo/kBT, K

86(K) =0 for K <0, =1 for K > 0.
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(12)

(13)

(14)

(15)
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APPENDIX 2.2

THE MODEL EXCITATION SPECTRUM

We assume that a single electron is excited into the band for each photon
absorbed from the applied radiation by the neutral donors. In such a case, thé
rate of generation of carriers by a flux of photons of energy fu is proportional
to the concentration of neutral donors, the photoionization cross séction
(possibly energy dependent) and the intensity of radiation. In our problem the
ionization energy E; for the donors is small, typically E, < 0.05 eV. We therefore
require extrinsic radiation with a significant distribution of photons with
energies in excess of E;e In principle an unlimited set of radiation fields may
be devised to satisfy this criterion. For convenience, we adopt a radiation
field approximating to black body radiation from a high temperature (~300°K)
source. For black body radiation the number of photons dn in the energy range

(Bw, Tiw + dﬁw) is of the Planck form,
dn « (ﬁw)zdﬁw {exp(ﬁw/kBTr) - 1}-1, (1)

where Tr is the radiation temperature. Room temperature radiation corresponds,
in the main to infra-red radiation peaked in the wavelength distribution of
energy at about 10 microns, or in terms of energy at about 0.13 eV. The maximum

number of photons in such radiation occurs for photon energies of about 0.04 eV.

If a photon of energy'ﬁw excites an electron into the band with energy

¢ we have from energy conservation:
€ + Ei < Aw. (2)

A strict inequality does not hold since phonons must also participate to conserve
crystal momentum. Following absorption of a photon at a donor, the probability

per unit time for an electron to make a transition into the band with energy in
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the range (e,e + de) is, from perturbation theory,
2 2 .
'ﬁ—n' M|€ gle) (3)

where g(e) is the density of final energy states and M is the matrix element

for the transition. For the conduction band states g(e) is proportional to

ei. Only photons with energies in the range (e + E;p €+ E, + de) may excite
electrons into the band with energies in the range (e,e + de).. The number of
photons in this range, which are absorbed is proportional to dn. The excitation

rate into (e,e + de) is therefore proportional to

2
dan ]MI g(e) atw) ,
where a(fw) is the probability that a correct photon is absorbed. But this
rate is just equal to
W we(g) g(e)de

where W, w, are defined in Chapter II. We find therefore

2 2
W wg g(e)dex Bw® M|° g(e) athw) ddw) . “

exp(ﬁw/kBTr) -1

From (2) we find de = d(hw), and substituting for Hu in (4) we have

(e + Ei)2 IMI2 ale + Ei)
W w, = . (5)
e + Ei

exp |
kBTr

-1

For room temperature radiation, kBTr ~ 0.025 eV and Ei/kBTr ~ 2, so that we can

make the approximation

2 12 B €
Wo, «(c+ E;) [M|© ale + Ei) exp |- 1| e*P |- T .
B'r B'r

For this form, most of the carriers enter the band with energies e < E, and

we approximate (¢ + Ei)2 by Eiz. A complete description of the excitation rate
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would demand a knowledge of the donor states and the operative selection rules

for donor-conduction band transitions. The general effect, however, is to excite
electrons into the band with an energy spectrum peaked at an energy of the order

L With these considerations in mind we make the approximation that the

excitation rate depends only on energy and choose,

L
Wa, «c¢ exp( s/kBTr)

where % is essentially determined by the selection rules and the matrix elements

for the electron-photon interaction.



141

APPENDIX 3.1

SCATTERING CHANNELS - GENERAL PROCEDURE

The basic scattering problem is the calculation of the scattered state
wavevector k' in the frame of reference for the simulation (this frame exploits
the cylindrical symmetry of the transport problem by having the polar axis
kz directed parallel (for holes) or antiparallel (for electrons) to the applied
electric field). The state k' is determined by the initial state k aﬁd the
differential cross section o for the scattering process involved. We here
suppose that the energy e' of the scattered state (and hence k'= [E'I) is
known, and defer a discussion of the determination of ¢' for individual processes

to Appendix 3.2,

In our applications the scattering cross section ¢(0,¢) is independent of
azimuthal angle ¢, where we consider the scattering in a polar coordinate

system with k, the initial wavevector aligned along the polar axis. The

scattering angle 0 is defined by
cos © =k . k' [(|k[|k']) (1)

(see also Figure A3.1.1). Since there is no azimuthal dependence, the total

cross section O is given by

1 .
o = 27 J 0(e) d(cos ©). (2)
t -1 '

The probability density for scattering with cosine cos © follows as

p(cos 0) d(cos ©) = 21 o(cos Q) d(cos (0) / CAE (3)

The corresponding probability distribution function is

cos ©
P(cos Q) = J p(cos @') d(cos @'). ~(4)
-1
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The Monte Carlo procedure generates a random number r on (0,1), and sétting

r = P(cos 0), we solve for cos ©. The azimuthal angle ¢ is randomly distributed
on (0,2m) with probability density p(¢) = 1/2n. Monte Carlo.yields ¢ as

¢ = 2nr' where r' is a further random number on (0,1). The wavevector k' is

now completely determined in the scattering frame, and the next step is to

transform back to the simulation frame.

Let k,k' have spherical polar components (k,6,¢) and (k',8',¢') in the

"

simulation frame, or in cartesian coodinates k = (kx’ky’kz)’~5' (kx',ky',kz').
The scattering frame is obtained by two successive rotations of the simulation
frame of reference (represented by xyz in cartesian coordinates). The first
transformation is a rotation by ¢ about the z-axis, to define an intermediate
frame x'y'z' (where z' = z). A secondrotationthrough 6 about the y' axis
generates the scattering frame x''y''z'' (where y'' = y'), in which k lies along
the polar axis z''. The scattering angles 0,¢ are measured in this frame, where
é is defined relative to the x'' axis. The transformations are sketched in

Figure A3.1.2. The cartesian components of k' in the simulation frame, are

then easily calculated as

(kx'w (cos ®sin O cos ¢ cos 8 - sin ¢ sin O sin ¢ + cos O cos ¢ sin o)
k '| =k' [cos ¢ sin®@ sin ¢ cos6é + sin ¢ sin O cos ¢ + cos O sin ¢ sin 9

k' " |cos © cos 8§ - cos ¢ sin O sin 6
\ J .\ (5) )

This relation is too general for our purposes, and we only require the radial

and polar components kp', kz' of k' in the simulation frame. From (5) these are
just

kz' = k' (cos O cos 6 - cos ¢ sin O sin 6)

(6)

= k' cos 8' ;

and kp' = k' gsin 8' = (k'2 - k'zz)i
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APPENDIX 3.2

SCATTERING CHANNELS -~ INDIVIDUAL PROCESSES

1. Introduction and notation

We collect here formulae for the calculation of channel probabilities and
final state parameters appropriate to the scattering of free carriers by
phonons and impurities. The results quoted are valid within the approximation
of spherical constant energy surfaces and a parabolic energy-wavevector dis-
persion relation. Only single phonon processes are considered. In principle
the formulae can be adapted to more general situations such as non parabolic
bands, no fundamental change in technique is required. Useful reviews of the
scattering processes considered here have been given by Smith (1960), Paige (1964)

and Conwell (1967).

The following notation is adopted:

(i) r, r' etc: random numbers, uniformly distributed on (0,1).

(ii) v € carrier energies immediately before and after a collision.
(iii) Ei' Ef : same as (ii) but for carrier wavevectors.
(iv) T : the primary self-scattering parameter.

(v) All scattering angles O, ¢ are defined in the

scattering frame of reference.

2. TIonized Impurity Scattering

This process is highly elastic and the differential scattering cross
section ol(O) is indepéendent of azimuthal angle ¢. The probability per unit

time that a carrier in ki scatters via an ionized impurity may be written
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(2n rl
A G = Npv(k) | de

. J ? (0) d(cos ©), (1)
lo -

1

where NI is the density of ionized impurities, v is the carrier speed. Within
the Born approximation for scattering from a hydrogenic model impurity (c.f. Paige

1964),

2 2 -24-2
01(0) =27 {2 ki (L - cos @) + 2 “) (2)

where A, the Debye screening length is given by

}

'\
€ kBT

n'e2

A 0=

and

- om* Zqi

ﬁzéne
r

where €. is the dielectric constant for the host lattice and Ze is the charge on
the impurity. The effective electron concentration n' is given by the Brooks-

Herring (1955) expression

n+ N

A . . ,
n' =n+ (n+ NA)(l i ) where n is the actual carrier density
D
and NA’ N, are the acceptor and donor concentrations. For hole scattering, n'

has a similar form but with N, and Np interchanged. The effective temperature T'

is the electron temperature. In bighly non equilibrium situations the concept
of carrier temperature is ambiguous and in such situations we choose T' as

proportional to the mean carrier energy < € > ,

<e > [k

wlro

r _
T = B

This result is true for Maxwellian heating (Das and Alba 1968) but is an

approximation otherwise.

The total cross section cltiis found from (2) as



(A-4 ZA—Z)

RS

o= ae 22 )

“1t 1 * aki

giving tbe channel probability for ionized impurity scattering as
2 2

4w R NI Zl A ki . .
p(l) = - =2 2 (R
m [ A + 4 ki

cos O = (5

whereas ¢ = 2nr' (€

Cut off procedure

In general, ionized impurity scattering is characterized by predominant small
angle scattering, particularly at high energies. High energy carriers are
therefore hardly affected by ionized impurity scattering although the frequency
of real collisions may be large. This is wasteful from a computational point
of view and we have found it convenient, in some circumstances to introduce
a cut off to the differential cross section so as to ignore collisions for which
the scattering angle 0 is less than some very small value Oo say, Defining
§  cos 9, we then find the new channel probability p*(l) as

1 (1 +96)
2 1+ 2ki2A2(1 - §))

p*(1) = p(1)

and the scattering angle 0 as

L1+ G2 2ki2) - 2. 2ki2(1"o))
-2

cos O =

20(1 + OKZ + (W72 + %1 -6))

so that 0O is defined on (@o,ﬂ)-
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3. Neutral Impurity scattering

This channel is highly elastic to a good order of approximation and is
characterized by a transition probability per unit time for scattering out of

state_lgi given by,

20 1
Az(Ei) = No V(ki) Jo d¢ f_ld(cos ©) 02(6) n

where No is the density of neutral impurities and

204h 3
~ (8)

*
4mm v(ki)

02(@) =

Here a; is the Bohr radius of the ground state of the impurity on the hydrogenic

* and dielectric constant of the host

model (modified by the effective mass m
lattice). This result is due to Erginsoy (1950). The channel probability and

scattering angles follow immediately as

20 N ﬁa \
(2) = A.(k.) Jp = —2 L .
P 2-1 * ’
m T
cos O = 2r -1 3 9)
¢ = 2nr'
J

4., 1Inelastic acoustic phonon scattering

We recall from Appendix 2.l that within the approximation of spherical
energy bands only longitudinal phonons (LA phonons) contribute to the intra-
valley acoustic phonon-electron interaction. In our applications only the
long wavelength phonons are considered. The suffices 3 and 4 are used to
denote phonon absorption and emission respectively. From Appendix 2.1 we
obtain the following expressions for the channel and final state probabilities.

We also include suitable envelope functions for the secondary self-scattering

device.
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Phonon absorption

The scattering rate is,
Z
_ 3 -4 2
Ay(k;) = A T ¢, f g4(2)dz (10)

where
m*i D2 kB3
A = RN (in the notation of Appendix 2.1),
rhs)? p2°°

L1

g, @ =225 -1,

[
[}

(e, - si)/kBTl.

f

The quantity Z is essentially the energy of the scattered phonon expressed in
dimensionless form. The permitted range of phonon energies Z1 to Z2 is given

in Table A3.2.1. The channel probability is given by

Assuming a scattering event involving absorption of an LA phonon, the probability

density of final state parameter Z is

—{?415— (12)
e -1 Zle -1

2 2
p(2) = [

and the final state energy €p is obtained from

Ef =¥ kBT Z. (13

Phonon emission

The scattering rate is

z
3 -4 (™2

A G) = A T g fz g, (2)dz
1

where ga(z) z ZZ/(l - e_z) and the permitted range of Z is given in Table A3.2.1.
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RANGE OF FINAL STATES FOR ACOUSTIC PIONON SCATTERING

ABSORPTION EISSION

Z, =0 for €L 2&N |  Z=0 for €L L &aly
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The channel probability is
p(4) =1, /1, | (14)

and the probability density for final state parameter Z is

Z
22 2tzdt
-2

p(Z) = e (15)
1 -e Z1 - e
1
winere the final state energy €¢ is obtained from
€ ™ €5 ~ kBT A (16)
Scattering angles
The scattering angle O is determined from €gs by applying energy and
somentum conservation to the collision. This procedure yields the frequency
w and wavevector q of the participant phonon,
he = |e, = €]
f i Qan

. 2 2
hq = [k, - k| = |kp + k7 - 2Kk, cos o],

In the long wavelength limit w = sq, where s is the long wavelength velocity of

sound, and using the dispersion relation ¢ = ‘szZ/Zm* we find from (17),

}
€4 € €.1% €. 2(e.e.)
cosO=—1~[—~£) (1-—£)+[—£) [1-——1-)+—--1——f—-} (18)
2 SO €, ef Ea €
ere ¢ 2 Zm*sz, and equation (18) is valid for emission and absorption processes.

Within our approximation the azimuthal angle is isotropically distributed and we
rind

¢ = 21 r.
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Secondary self-scattering

A useful envelope function for g3(z) is
- -Z
E4(2) = Z(1 + 2)e (20)

with the properties,

(i) ~ Z for Z >0

g (2),E (2) -
3 3 ~ 22e z for Z » =

(ii) E3(Z) > g3(Z) for all Z (equality holds for Z » 0, «)

(iii) f E4(2)dZ = e 2@z% v 3z + 3)

Jm E3(Z)dZ = 3 (whereas Jm g4(2)dz = 2.404104)
(o] (o]

(iv) The new channel probability is

3 -4
A Te, - YA
p(3) = ° 2 [-e Z(Z2 + 3Z + 3)] 2,
r 21

An appropriate envelope function for gA(Z) is
E (2) = 2% + E,(2) (21)
4 3 '

with the properties

~2Z for Z +0

@ 5@, B,@| o

(ii) Ea(Z) > 34(2) for all Z.

(iii) jE4(Z)dZ e 2332l v 3z 4 ).

(iv) The new channel probability

3 -4
A T7e, _ Z
p(4) = 22—t 2373 - 222 4+ 3z + 3)) 2
r 2,
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5. Non polar optical phonon scattering

We adopt the deformation potential model for longitudinal non polar optical
phonon scattering due to Shockley (1951) and Harrison (1956). Harrison has
shown that the matrix elements for the scattering processes may be either of zero
or higher order in the wavevector of the phonon or of the carrier. We consider
only the zero order situation, which dominates in our applications (a good
discussion of this point is given by Conwell 1967). A further approximation
is to neglect phonon dispersion and we consider the optical mode frequency to be
a constant w independent of phonon wavevector q. As a consequence the

scattering is isotropic in the scattering frame of reference and we have

cos 0=1-2r, & = 27r' (22)

Phonon absorption

The transition probability per unit time for leaving state'ki is

D 2 m*3/2 w (e. + o )i
10 0 i 0
240 mps exp(ﬁwo/kBT) -1
with channel probability
p(5) = XS/F (24)
and final state energy
= 25
€g = g5 + Kmo . (25)

The quantity D__ is the effective deformation potential.

LO

Phonon emission

The transition probability per unit time for leaving statelhi is
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Aglks) =0 for e, <‘ﬁmo
(26)
2 3/2
) [DLO m* / Wy (si -'ﬁwo)iexpCﬁwo/kBT)
= 1.3 2 for e, >‘ﬁ@ .
lZ o s exp(ﬁuo/kBT) -1 : °
with channel probability
p(6) = A /T. (27)
The final state energy, if e # 0, is
€ = €5 two (28)

We note that intervalley scattering may be treated in a similar fashion to
non-polar optical phonon scattering, with appropirate modifications for the
number of valleys involved and the effective mass variations in different valleys

(Conwell 1967).

6. Polar optical phonon scattering

This scattering process arises in polar materials from the polarization of
the crystal induced by the longitudinal optical mode vibrations of the lattice.
We consider the case of a spherical band centred on k = O such that the carriers
have s-wave symmetry. The results quoted are based on Ehrenreich's (1957)
derivation of the matrix elements for this scattering process. As in non-polar

optical phonon scattering we assume a constant phonon frequency Wy

Phonon absorption

The transition probability per unit time for scattering out of state k. is

- -1 (Y
A, (k) = Woogg } (exp(ﬁwo/kBT) -1 1 fy_dy/y (29)
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eZm*hu
where W = o 1
° 2’62(2m*)‘1‘ & %o
2
t
y = {(ei + ﬁwo)i * eii} ’

€ and € are the dielectric constants for zero and infinite frequencies respectively.

The quantity y is related to the phonon wavevector q involved in the collision by

y = ﬁ2q2/2m* + Performing the integral in (29) we find the channel

probability as
(7) = 4W ¢ —i(expCﬁw /k.T) - 1)_1 sinh-1 i i r (30)
P o 1 o B fw_
The final state energy is given by

€. = €5 * ﬁwo. (3L

£

The probability distribution for final state parameter y is readily found from

(29) as
P(y) = loge(y/y_)/loge(y+/y-). Setting r = P(y) we find
ye=y (5 Iy)F (32)

Applying energy and momentum conservation to the collision then yields the
scattering angle O as

-yt (2e, ¢+ ﬁwo) (33)
Z(ei(ei + ﬁwo))i

cos Q =

where y is given by (31). The asimuthal angle ¢ is trivially generated as
¢ = 2nr' (34)

Phonon emission (ei > ﬁwo)

A similar analysis gives the channel probability as
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) e, - o )}
p(8) = 4W e, J {1 + L } sinh ! |L—20 (35)
o1 exp(fuoo/kBT) -1 ’Flwo

The azimuthal angle is given by (34), whilst the scattering angle O is found as

-y + (2e. - hw)
cos Q = L ; (36)
Z(ei(ei - fw ))

Q

where
y=y (¢ /y)F (37)

and

yt = {eii * (e - ﬁwo)i}z- (38)
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APPENDIX 3.3

VALIDITY OF THE SELF SCATTERING DEVICE

In Monte Carlo simulations of transport problems it is vital to generate
times of free flight between real scattering events. The essence of the self-
gscattering device is the generation of free times from the simple.probability
density distribution pr(t), which describes the probability density.for a first
real or self-scattering event to occur in the time intervhl (t, t + dt). The
physical free times between real collisions, corresponding.to the-.correct
provability density distribution pA(t)’ are obtained by summing over .all inter-
mediate self-scattering events between two successive real collisions. We now

prove that this procedure does indeed generate free times satisfying pA(t)'

Mathematically, the prescription for summing over all intermediate self-
scattering events is equivalent to treating pA(t) as the joint probability,

t
pk(t) z pr(t) pp(t) + Jo dt, pr(tl) ps(tl)pr(t'tl)pR(t) + e

t t1 th-1
+ Jo dtl fo dt2 coe fo dtn pr(tl‘tz) oo pr(tn_l-tn)pr(tn)

(t_ <t X eeseilto < t) 1) -

n— "n-1 1

The probabilities pR(t) = A(t)/T and ps(t) :1- pR(t), are respectively, the
probabilities for real or self-scattering to take place if a scattering event
occurs. The first term in the series (1) is just the probability demnsity that the

carrier evolves freely for a time t and at that time suffers a real collision.
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The second term is the probability density, summed over all possible. intermediate

times e that the carrier evolves freely to time t, <t suffers.a self-collision,

evolves freely to time t at which time a real‘coliféiog;occurs.;»aHigher terms
seccur

are similarly interpreted. A graphical representation of the series is given

in Figure A3.3.1.

We now pove the identity (1). The series simplifies considerably when

we consider the explicit form of pF(t)’
pr(t) = T exp(-Tt) (2)

which has the group property

pr(t‘t') pr(t"t") pr(t't")

(3)

r r r

Using (3) we factorize (1) to obtain

p.(t) A(t) t
L 1+ J dt, (r = aep) + ...
r o

t ty t-1
+ j dt, J dt, ... J de_(r - aep) ooo(r - ae))
) o ) ;

+veees } (4)

Consider now the nth integral in the series (4). We observe that it is essentially
an integral over the entire time interval O to t, with the restriction that L, be
earlier than ti_l(i <mn). We can rewrite this term as

t t t
J dt, J dt, ... J dt e(t1 - t2) cee e(tn_1 - tn) x
(o] (o) (o]

x (P = ae)) o (r =ace ), (5)

where 6(t) is the step function for which 6(t) = 1 if t > O and 6(t) = 0 if t < O.

Since it is permissible to interchange the order of integration, the nth integral

becomes,
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t t

[ [

AT} Aty e ] ode T (r A(tj)]. (6)
to} o j=1

We illustrate this equivalence for the case n = 2. Consider the integral
de, J de, V(ep) V(t,) (7)

where V(t) : I' = x(t). This may be written as

t ' ‘
X dt, V(tl) V(tz) (8)

t t t
J dt1 J dt2 V(tl)V(tz) + J dt1 j
(o] (o] 1

Q

The second term in (8) is rewritten by interchanging the order of integration to

give
!rL rt
bode
J 2
(¢} ‘0

2dt1 V(e V(e 9

The expression (8) is then, relabelling t1, t, in (9)
dt2 V(tl) V(tz)

and confirms the result (6). We can extend the argument to any order by

induction. The series (4) is now written, with the aid of (6) as the sum

plr) a(t) = t n
4 7 L [J de'(r - A(t')]) (10)
n.
[ n=0 o
and summing the series we obtain

p.(t) Aa(t) t
£ exp [J de'(r - A(t'))]. (11)

r o

Using (2}, expression (1ll) reduces to
t
a(t) exp {- J at' A(t')]n
o

which is just pl(t)° The identity (1) is thus proved.
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A similar approach was used by Dyson (1949) in deriving the perturbation series

for the S-matrix in quantum field theory.

Energy dependent self-scattering may be justified in a similar.fashion.
Because of the energy dependence [' becomes a function of time I'(t) and we

generalize the probability density for self-scattering to

t
pF(t,to) = T(t) exp[ - J I‘(t')dt') (12)

t
(o]

t <t
(o]

with the group property,

pr(t.t") pp(e,t')  pp(e',e'")

r(t) r(e) r(e")

The rest of the proof follows as before.
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APPENDIX 5.1

PHASE PLANE ANALYSIS

Consider the system of equations,

gar

4y,
R R L) eH

where Q(F,y) is a nonlinear function of y and F. These equations have the
important property of not containing the independent variable x explicitly. That
is, they belong to the class of nonlinear autonomous differential equations, for
whieh a variety of useful techniques exist (see for example Minorsky, 1962). It

is possible to eliminate the differential dx between these equations to obtain

4. QEmD oy, (2)

Equation (2) is a first order differential equation for the integral curves of

(1). The introduction of the variable y = %g allows investigation of the integral
curves in the plane of the variables (F,¢), called the phase plane. The
representation of the integral curves in parametric form F = F(x); v = P(x),

is called a trajectory. We state here a few important definitions and results

from the tbeory of autonomous systems which are relevant to the analysis of

Chapter V.

(1) A point (F,y) for which ¢, Q(F,y) do not vanish simultaneously

is called an ordinary point.

(2) A point (F,y) for which y = Q = 0 is called a singular point.

(3) Application of the Cauchy-Lipshitz theorem regarding the existence
and uniqueness of a solution of the differential equations has as a consequence
that cne, and only one, trajectory passes through each ordinary point in the

phase plane.
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(4) Trajectories only meet at singular points of the phase plane.

(5) Singular points in the phase plane represent stationary points of the
"flow' along trajectories. In our case they correspond to the homogeneous
time independent states of the physical system.

(6) If a trajectory passes through an ordinary point it cannot approach
a singular point in a finite distance x.

(7) A singular point for which all the trajectories sufficiently close to

it terd Lo it asymptotically as x + « is asymptotically stable. If the

trajectories read to the singular point as x + -», then the singular point is

asymptutically unstable.

(8) The direction of motion of a state point (F,y) along a trajectory
(i.e. for x increasing) is specified uniquely by equation (2).
(9) An isocline of the system is a curve in the phase plane satisfying the

equation
dy/dF = Q(F,¥)/y = K = constant, (3)

and represents a curve of constant slope for the trajectories.

Suppuse the singular points of the system (1) to be labelled by the integer

i and given by

V=Y, =0 3 F=F i=1, 2, 3etc. (%)
The F. are clearly the roots of

Q(F,y = 0) = 0 (5)

The nature of the stationary solution in the neighbourhood of a singular point

is exhibited by performing a Taylor expansion of y and F about the point. We

aenl
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’P=¢i+5w=5\%

(6)
Ft + GF ’
1

o]
ft

where &8F, &y are 'small'. Equation (2) is then linearized to give

2 £
LT, LF e - 0, (7)
d

a L2 dx

where the coefficients a, b, ¢ are functions of Fi' Solutions of this linear
equation bave the form exp(Aax).  Substituting this into equation (7) gives the

so-called characteristic equation,

akz + 2b) + ¢ = 0, (8)

with roots
A= {-b¢ % - ac)i}/a . 9)

The form of the trajectories around an isolated singular point depends then
entirely on the values of the roots, Al’ Az of the characteristic equation.
Figure 5.1shows the classification of singular points according to the roots
and also illustrates the form of the corresponding trajectories. Arrows

Xl, AZ

denote the direction of motion of a state point along a trajectory as x increases.
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APPENDIX 5.2

DISPERSION RELATIONS FOR THE STEADY-STATE

Let Fo, ﬂo’ p°(=n°) denote the steady-state values of field, carrier density
and ionized donor density; For small departures from the steady-state we may
write n(x,t) = n, + Sn(x,t), p(x,t) = n + Sp(x,t), F(x,t) = F + SF(x,t).
Constant current density conditions are assumed, that is 8J = 0. The small
fluctuations satisfy the linearised versions of Poisson's equation and the
continuity equations (equations 5.4.1 of Chapter V), which after some re-

arrangement take the form,

3 &F _ 4re (6n - 6p) , (L
ax €

3 ‘e
{re-é-g+7t-;} §p =~ 6n (2)
2 {6n - 6p} +n XX 9—”+v-§—6“-n-3-2—5“-0 (3)
at P o dF|_. x o 3x 2 g

F )
o .
In these equations v, " v(Fo) the steady state drift velocity, and we assume

that the velocity fluctuations §v(x,t) are instantaneously related to the local

electric field fluctuations by

dv| SF(x,t) - | W

dF F
(o}

sv(x,t) =

The variables T Ty have the dimensions of time and are defined by

-!Il—'

%-'z wy, = o(N, +n); 2w =S +mno. )

e h

The diffusion coefficient D and capture coefficient o are taken to be constant

and independent of field.
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Equations (1), (2) and (3) are readily manipulated to eliminate the variable
6F and give two simultaneous differential equations for én and 6p. We represent

these equations in matrix form as,

Fl(Dx.Dt) FZ(DX.Dt) 8p o}
- (6)
F3(Dx.Dt) Fa(Dx,Dt) én 0

where the operators Fl,etc., are defined by

. -.p -1, - 1. -ppl -
Fp2 =D Ty Fpe D+ Ty * YDy ~ DDy
7
1 1
F,z D_ +— H F, =z — .
3 t 12N 4 Te
Here Dx = 3/5x, Dt s 3/at; the differential dielectric relaxation time is
. =1 4Ten, gy -1
defined as Tq T Uy = — dF .

Consider a travelling wave perturbation to the steady state solution of the
form én = én exp(i(kx - ut)). In general such a perturbation may be Fourier

analysed as

én --%; dw Sn (w) exp(i(kx - wt)).

-0

The fluctuation in ionized donor density must have a similar form for equation

(6) to be satisfied for all space and time, i.e.
§p = Sp exp (i(kx - wt)).

Substituting these forms into the matrix equation, the necessary and sufficient

conditon for the system to have a non-trivial solution for Tp and 6n is
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1 1
.(S_p- Fl Sp Y F2 én
det - 0 (8)
1 F,ép -1
5p 3 30 F4 én

This yields the dispersion relation
w2 +w (i(w +w +w) - kv + kaz)
d e~ “n o

- wylo, + w) - il - kaZ)wh - 0. 9)

There are two branches to the dispersion relation. The relation between

§p and én for the separate branches may be obtained by inserting the roots of

(9) into the matrix equation (6). In the limit ~§ + o ye obtain the single

branched relation

w=kv -1 {L— + Dk2]
0 T

(10)
d
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