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Abstract

In this thesis we develop computationally e�cient methods to simulate finite dimensional
representations of (jump) di↵usion and (jump) di↵usion bridge sample paths over finite
intervals, without discretisation error (exactly), in such a way that the sample path can be
restored at any desired finite collection of time points. Furthermore, we extend method-
ology for particle filters to the setting in which the transition density of the latent pro-
cess is governed by a jump di↵usion. Finally, we present methodology which allows the
simulation of upper and lower bounding processes which almost surely constrain (jump)
di↵usion and (jump) di↵usion bridge sample paths to any specified tolerance. We demon-
strate the e�cacy of our approach by showing that with finite computation it is possible
to determine whether or not sample paths cross various irregular barriers, simulate to
any specified tolerance the first hitting time of the irregular barrier, and simulate killed
di↵usion sample paths.
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1

Introduction

“I’m going for fearsome here, but I just don’t
feel it! I think I’m just coming o↵ as annoying.”

— Rex, Toy Story

Di↵usions and jump di↵usions are widely used across a number of application areas. An
extensive literature exists in economics and finance, spanning from the seminal Black-
Scholes model (see for instance, Black and Scholes [1973] and Merton [1973, 1976])
to the present (for instance, Eraker et al. [2003] and Barndor↵-Nielsen and Shephard
[2004]). Other applications can be easily found within both the physical sciences (Pic-
chini et al. [2009]) and life sciences (Golightly and Wilkinson [2006, 2008]) to name but
a few. A jump di↵usion V : ! is a Markov process, which in this thesis we define to
be the solution to a stochastic di↵erential equation (SDE) of the following form (denoting
Vt� := lims"t Vs),

dVt = �(Vt-) dt + �(Vt-) dWt + dJ�,µt , V0 = v 2 , t 2 [0,T ], (1.1)

where � : ! and � : ! + denote the (instantaneous) drift and di↵usion co-
e�cients respectively, Wt is a standard Brownian Motion and J�,µt denotes a compound
Poisson process. J�,µt is parameterised with (finite) jump intensity � : ! + and jump
size coe�cient µ : ! with jumps distributed with density fµ. All coe�cients are
themselves (typically) dependent on Vt. Regularity conditions are assumed to hold to
ensure the existence of a unique non-explosive weak solution (see for instance [Øksendal
and Sulem, 2004, Chap. 1] and [Platen and Bruti-Liberati, 2010, Chap. 1.9]). To ap-
ply the methodology developed within this thesis we primarily restrict our attention to
univariate di↵usions and require a number of additional conditions on the coe�cients of
(1.1), details and a discussion of which can be found in Section 1.3.
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Motivated by the wide range of possible applications we are typically interested in (di-
rectly or indirectly) the measure of V on the path space induced by (1.1), denoted v. As

v is typically not explicitly known then in order to compute expected values v [h(V)],
for various test functions h, we can construct a Monte Carlo estimator. In particular, if it is
possible to draw independently V (1),V (2), . . . ,V (N) ⇠ v then by applying the strong law
of large numbers we can construct a consistent estimator of the expectation (unbiasedness
following directly by linearity),

w.p. 1: lim
N!1

1
N

n
X

i=1

h(V (i)) = v [h(V)] . (1.2)

Unfortunately, as di↵usion sample paths are infinite dimensional random variables it isn’t
possible to draw an entire sample path from v – at best we can hope to simulate some fi-
nite dimensional subset of the sample path, denoted Vfin (we further denote the remainder
of the sample path by V rem := V \Vfin). Careful consideration has to be taken as to how to
simulate Vfin as any numerical approximation impacts the unbiasedness and convergence
of the resulting Monte Carlo estimator (1.2). Equally, consideration has to be given to the
form of the test function h, to ensure it’s possible to evaluate it given Vfin.

To illustrate this point we consider some possible applications. In Figures 1.0.1(a),
1.0.1(b) and 1.0.1(c) we are interested in whether a simulated sample path V ⇠ v,
crosses some barrier (i.e. for some set A we have h := (V 2 A)). Note that in all three
cases in order to evaluate h we would require some characterisation of the entire sample
path (or some further approximation) and even for di↵usions with constant coe�cients
and simple barriers this is di�cult. For instance, as illustrated in Figure 1.0.1(c), even in
the case where v is known (for instance when v is Wiener measure) and the barrier is
known in advance and has a simplistic form, there may still not exist any exact approach
to evaluate barrier crossing.

Di↵usion sample paths can be simulated approximately at a finite collection of time points
by discretisation (see for instance Jacod and Protter [2012], Kloeden and Platen [1992]
and Platen and Bruti-Liberati [2010] for an extensive account of such methods), noting
that as Brownian motion has a Gaussian transition density then over short intervals the
transition density of (1.1) can be approximated by one with fixed coe�cients (by a con-
tinuity argument). This can be achieved by breaking the interval the sample path is to be
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simulated over into a fine mesh (for instance, of size �t), then iteratively (at each mesh
point) fixing the coe�cients and simulating the sample path to the next mesh point.

It is hoped the simulated sample path (generated approximately at a finite collection of
mesh points) can be used as a proxy for an entire sample path drawn exactly from v.
More complex discretisation schemes exist, but all su↵er from common problems. In
particular, minimising the approximation error (by increasing the mesh density) comes
at the expense of increased computational cost, and further approximation or interpola-
tion is needed to obtain the sample path at non-mesh points (which can be non-trivial).
As illustrated in Figure 1.0.2, even when our test function h only requires the simula-
tion of sample paths at a single time point, discretisation introduces approximation error
resulting in the loss of unbiasedness of our Monte Carlo estimator (1.2). If v has a
highly non-linear drift, or includes a compound Poisson process, or h requires simulation
of sample paths at a collection of time points, then this problem is exacerbated. In the
case of the examples in Figure 1.0.1, mesh based discretisation schemes don’t su�ciently
characterise simulated sample paths for the evaluation of h.

Recently, a new class of Exact Algorithms for simulating sample paths at finite collec-
tions of time points without approximation error have been developed for both di↵usions
[Beskos and Roberts, 2005; Beskos et al., 2006a, 2008; Chen and Huang] and jump dif-
fusions [Casella and Roberts, 2010; Giesecke and Smelov, Forthcoming; Gonçalves and
Roberts, 2013]. These algorithms are based on rejection sampling, noting that sample
paths can be drawn from the (target) measure v by instead drawing sample paths from
an equivalent proposal measure v, and accepting or rejecting them with probability pro-
portional to the Radon-Nikodým derivative of v with respect to v. However, as with
discretisation schemes, given a simulated sample path at a finite collection of time points
subsequent simulation of the sample path at any other intermediate point may require ap-
proximation or interpolation and may not be exact. Furthermore, we are again unable to
evaluate test functions of the type illustrated in Figure 1.0.1.

The key contribution of this thesis is the introduction of a novel mathematical framework
for constructing exact algorithms which addresses this problem. In particular, instead
of exactly simulating sample paths at finite collections of time points, we focus on the
extended notion of simulating skeletons which in addition characterise the entire sample
path.
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Definition 1 (Skeleton). A skeleton (S) is a finite dimensional representation of a di↵u-
sion sample path (V ⇠ v), that can be simulated without any approximation error
by means of a proposal sample path drawn from an equivalent proposal measure
( v) and accepted with probability proportional to d v

d v , which is su�cient to restore
the sample path at any finite collection of time points exactly with finite computation
where V |S ⇠ v|S. A skeleton typically comprises information regarding the sample
path at a finite collection of time points and path space information which ensures the
sample path is almost surely constrained to some compact interval.

Methodology for simulating skeletons (the size and structure of which is dependent on
exogenous randomness) is driven by both computational and mathematical considerations
(i.e. we need to ensure the required computation is finite and the skeleton is exact).
Central to both notions is that the path space of the proposal measure v can be partitioned
(into a set of layers), and that the layer to which any sample path belongs to can be
simulated.

Definition 2 (Layer). A layer R(V), is a function of a di↵usion sample path V ⇠ v

which determines the compact interval to which any particular sample path V(!) is
constrained.

To illustrate the concept of a layer and skeleton, we could for instance have R(V) = inf{i 2
: 8u 2 [0,T ],Vu 2 [v � i, v + i]} and S = {V0 = v,VT = w,R(V) = 1}.

We show that a valid exact algorithm can be constructed if it is possible to partition
the proposal path space into layers, simulate unbiasedly to which layer a proposal sample
path belongs and then, conditional on that layer, simulate a skeleton. Our exact algorithm
framework for simulating skeletons is based on three principles for choosing a proposal
measure and simulating a path space layer,

Principle 1 (Layer Construction). The path space of the process of interest, can be par-
titioned and the layer to which a proposal sample path belongs can be unbiasedly
simulated, R(V) ⇠ R := v � R�1.

Principle 2 (Proposal Exactness). Conditional on V0 = v, VT and R(V), we can simulate
any finite collection of intermediate points of the trajectory of the proposal di↵usion
exactly, V ⇠ v|R�1(R(V)).

Together Principles 1 and 2 ensure it is possible to simulate a skeleton. However, in addi-
tion we want to characterise the entire sample path and so we construct exact algorithms
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with the following additional principle.

Principle 3 (Path Restoration). Any finite collection of intermediate (inference) points,
conditional on the skeleton, can be simulated exactly, Vt1 , . . . ,Vtn ⇠ v|S.

In developing a methodological framework for simulating exact skeletons of di↵usion
sample paths we make several additional contributions. We make a number of method-
ological improvements to existing exact algorithms with potential for substantial com-
putational benefit and extension of the applicability of existing algorithms. In addition,
we introduce a novel class of adaptive exact algorithms for di↵usions, di↵usion bridges,
jump di↵usions and jump di↵usion bridges, underpinned by new results for simulating
Brownian path space probabilities (which are of separate interest) and layered Brownian
motion (Brownian motion conditioned to remain in a layer).

By application of the results developed in this thesis we present methodology for par-
ticle filtering for partially observed (jump) di↵usions. Furthermore, we present a signifi-
cant extension to ✏-Strong Simulation methodology (recently introduced by Beskos et al.
[2012], and allowing the simulation of upper and lower bounding processes which almost
surely constrain stochastic process sample paths to any specified tolerance), from Brown-
ian motion sample paths to a general class of jump di↵usions, and introduce novel results
to ensure the exactness of the methodology.

Finally, we highlight a number of possible applications of the methodology developed
in this thesis by returning to the examples introduced in Figure 1.0.1. We demonstrate
that it is possible not only to simulate skeletons exactly from the correct target measure
but also to evaluate exactly whether or not non-trivial barriers have been crossed and so
construct Monte Carlo estimators for computing barrier crossing probabilities. It should
be noted that there are a wide range of other possible direct applications of the method-
ology in this thesis, for instance, the evaluation of path space integrals and barrier hitting
times to arbitrary precision, among many others.

The remainder of this introductory chapter is structured as follows: In Section 1.1 we
detail the structure of this thesis and how the content of the chapters relate to one another.
In Section 1.2 we provide a summary of the key contributions of this thesis. Finally, in
Section 1.3 we briefly discuss the recurrent conditions required to implement the method-
ology developed in this thesis.
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Figure 1.0.1: Examples of test functions in which evaluation requires the characterisation
of an entire sample path.
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1.1 Thesis Structure

In Figure 1.1.1 we present a schematic diagram of how the content of each of the chapters
in this thesis relate to one another. This thesis is essentially broken into two key parts:
Part I is primarily a review of relevant existing literature pertinent to this thesis; whereas
in Part II we present our methodology (as discussed in the introductory remarks of this
chapter and summarised in Section 1.2) within the context of existing literature.

Part I is comprised of Chapters 2, 3 and 4. In Chapter 2 we selectively review a number
of elementary Monte Carlo methods employed within this thesis, including Monte Carlo
methods for simulating finite dimensional sample path trajectories of Brownian motion
and related stochastic processes, and Monte Carlo methods for simulating sample paths
of Poisson processes. In Chapter 3 we motivate and present a review of sequential Monte
Carlo methods. We conclude Part I of this thesis in Chapter 4, where we provide an in-
troductory level overview of elements of stochastic calculus required in this thesis and
briefly review existing discretisation methods for simulating di↵usion sample paths.

Part II is comprised of Chapters 5, 6, 7 and 8. In Chapter 5 we present a novel math-
ematical framework for simulating (jump) di↵usion and (jump) di↵usion bridge sample
path skeletons without approximation error (exact algorithms). In Chapter 6 we present
new results for simulating quantities related to various Brownian bridge path space con-
structions, which together allow the simulation of layered Brownian bridge sample path
skeletons, and hence the implementation of the exact algorithms in Chapter 5. In Chapter
7 we present methodology for particle filtering for partially observed (jump) di↵usions.
Finally, we conclude Part II of this thesis in Chapter 8 where we outline methodology
for simulating upper and lower bounding processes which almost surely constrain (jump)
di↵usion and (jump) di↵usion bridge sample paths to any specified tolerance (✏-strong
simulation). We additionally demonstrate that our methodology can be applied to deter-
mine exactly whether a di↵usion or jump di↵usion sample path crosses various types of
non-trivial barrier.

Finally, in Chapter 9 we conclude this thesis, presenting a summary along with avenues
for possible future research.
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Figure 1.1.1: Schematic diagram of thesis structure.

1.2 Thesis Contributions

In summary, the main contributions of this thesis are as follows:

– A mathematical framework for constructing exact algorithms, along with a new
class of adaptive exact algorithms, which allow both (jump) di↵usion and (jump)
di↵usion bridge sample path skeletons to be simulated without discretisation error
(see Chapter 5).

– An extension of existing exact algorithms to satisfy Principle 3 (see Chapter 5 and
in particular Sections 5.1.1, 5.3.1, 5.4 and 6.2), including a number of general
methodological improvements (see Chapters 5 and 6).

– Methodology for simulating unbiasedly events of probability corresponding to var-
ious Brownian path space probabilities and simulating layered Brownian bridge
sample path trajectories (see Chapter 6).

– An extension of methodology for particle filters to the setting in which the transition
density of the latent process is governed by a jump di↵usion (see Chapter 7).
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– Methodology for the ✏-strong simulation of (jump) di↵usion and (jump) di↵usion
bridge sample paths, along with a novel exact algorithm based on this construction
(see Chapter 8).

– A new approach for constructing Monte Carlo estimators to compute irregular bar-
rier crossing probabilities, simulating first hitting times to any specified tolerance
and simulating killed di↵usion sample path skeletons (see Section 8.3). This work
is presented along with examples based on the illustrations in Figure 1.0.1.

Throughout this thesis we make a number of additional minor contributions, which are
pointed out in the relevant sections.

1.3 Thesis Conditions

Throughout this thesis a number of the methodological results and algorithms that we
present share a common set of recurrent conditions. For convenience we briefly intro-
duce these conditions and motivate their requirement in this section, referring back to
them as necessary (a number of the methodological results and algorithms require ad-
ditional conditions, however these are stated and motivated in the appropriate sections).
The motivation for the conditions in this section is to establish a number of results (Re-
sults 1–4) that we also summarise in this section, however these results are revisited as
required and extended upon in later chapters.

To present our work in full generality we assume Conditions 1–5 hold (see below), how-
ever, these conditions can be di�cult to check and so in Section 1.3.1 we discuss verifiable
su�cient conditions under which Results 1–4 hold.

Condition 1 (Solutions). The coe�cients of (1.1) are su�ciently regular to ensure the
existence of a unique, non-explosive, weak solution.

Condition 2 (Continuity). The drift coe�cient � 2 C1. The volatility coe�cient � 2 C2

and is strictly positive.

Condition 3 (Growth Bound). We have that 9K > 0 such that |�(x)|2 + ||�(x)||2  K(1 +
|x|2) 8x 2 .

Condition 4 (Jump Rate). � is non-negative and locally bounded.
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Conditions 2 and 3 are su�cient to allow us to transform our SDE in (1.1) into one with
unit volatility (letting  1, . . . , NT denote the jump times in the interval [0,T ],  0 := 0
and  NT+1� :=  NT+1 := T , and denoting by Vcts as the continuous component of V),

Result 1 (Lamperti Transform [Kloeden and Platen, 1992, Chap. 4.4]). Let ⌘(Vt) =: Xt

be a transformed process, where ⌘(Vt) :=
R Vt

v⇤ 1/�(u) du (where v⇤ is an arbitrary
element in the state space of V). Denoting by Nt :=

P

i�1 { i  t} a Poisson jump
counting process (with respect to F N

t ) and applying Itô’s formula for jump di↵usions
to find dXt we have,

dXt =


⌘0 dVcts
t + ⌘

00 ⇣ dVcts
t

⌘2
/2

�

+
⇥

⌘ (Vt- + µ (Vt-)) � ⌘ (Vt-)
⇤

dNt

=

2

6

6

6

6

6

6

4

�
⇣

⌘�1 (Xt-)
⌘

�
�

⌘�1 (Xt-)
�

�
�0

⇣

⌘�1 (Xt-)
⌘

2

3

7

7

7

7

7

7

5

|                                   {z                                   }

↵(Xt-)

dt + dWt +
⇣

⌘
h

⌘�1 (Xt-) + µ
⇣

⌘�1 (Xt-)
⌘i

� Xt-
⌘

dNt
|                                             {z                                             }

dJ�,⌫t

.

(1.3)

This transformation is typically possible for univariate di↵usions and for a significant
class of multivariate di↵usions (see for instance, Aı̈t-Sahalia [2008]). We revisit the Lam-
perti transform in Section 4.1.2, providing a more detailed account.

As a consequence of Result 1, in this thesis we frequently restrict our attention to SDEs
with unit volatility coe�cient as in (1.3) without loss of generality. As such we introduce
the following simplifying notation. In particular, we denote by x

0,T the measure induced
by (1.3), by x

0,T the measure induced by the driftless version of (1.3), A(u) :=
R u

0 ↵(y) dy
and set �(Xs) := ↵2(Xs)/2 + ↵0(Xs)/2. If � = 0 in (1.3) then x

0,T is Wiener measure.
Furthermore, we impose the following final condition,

Condition 5 (�). There exists a constant � > �1 such that �  inf s2[0,T ] �(Xs).

It is necessary within this thesis to establish that the Radon-Nikodým derivative of x
0,T

with respect to x
0,T exists (Result 2) and can be bounded on compact sets (Results 3

and 4) under Conditions 1–5. We provide a more detailed account of Result 2 and the
Radon-Nikodým derivative of x

0,T with respect to alternate measures in Section 4.1.3.

Result 2 (Radon-Nikodým derivative [Øksendal and Sulem, 2004; Platen and Bruti-Liberati,
2010]). Under Conditions 1–4, the Radon-Nikodým derivative of x

0,T with respect
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to x
0,T exists and is given by Girsanov’s formula.

d x
0,T

d x
0,T

(X) = exp
(

Z T

0
↵ (Xs) dWs � 1

2

Z T

0
↵2(Xs) ds

)

. (1.4)

As a consequence of Condition 2, we have A 2 C2 and so we can apply Itô’s formula
to remove the stochastic integral,

d x
0,T

d x
0,T

(X) = exp

8

>

>

<

>

>

:

A(XT ) � A(x) �
Z T

0
�(Xs) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

9

>

>

=

>

>

;

. (1.5)

In the particular case where we have a di↵usion (� = 0) then,

d x
0,T

d x
0,T

(X) = exp
(

A(XT ) � A(x) �
Z T

0
�(Xs) ds

)

. (1.6)

Result 3 (Quadratic Growth). As a consequence of Condition 3 we have that A has a
quadratic growth bound and so there exists some T0 < 1 such that 8T  T0:

c(y; x,T ) :=
Z

exp
(

A(y) � (y � x)2

2T

)

dy < 1. (1.7)

Throughout this thesis we rely on the fact that upon simulating a path space layer (see
Definition 2) then 8s 2 [0,T ] �(Xs) is bounded, however this follows directly from the
following result,

Result 4 (Local Boundedness). By Condition 2, ↵ and ↵0 are bounded on compact sets.
In particular, suppose 9 `, � 2 such that 8 t 2 [0,T ], Xt(!) 2 [`, �] 9 LX :=
L (X(!)) 2 ,UX := U (X(!)) 2 such that 8 t 2 [0,T ], � (Xt(!)) 2 [LX ,UX].

1.3.1 Verifiable Su�cient Conditions

As discussed in [Øksendal and Sulem, 2004, Thm. 1.19] and [Mao and Yuan, 2006,
Sec. 3.3], to ensure Condition 1 it is su�cient to assume that the coe�cients of (1.1)
satisfy the following linear growth and Lipschitz continuity conditions for some constants
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C1,C2 < 1 (recalling that fµ is the density of the jump sizes),

|�(x)|2+||�(x)||2+
Z

| fµ(x, z)|2�( dz)  C1(1+|x|2), 8x 2 , (1.8)

|�(x)��(y)|2+||�(x)��(y)||2+
Z

| fµ(x, z)� fµ(y, z)|2�( dz)  C2(|x�y|2), 8x, y 2 .

(1.9)

(1.8) and (1.9) together with Condition 2 are su�cient for the purposes of ensuring Con-
ditions 1, 3, 4 and 5 hold, but are not necessary. Although easy to verify, (1.8) and (1.9)
are somewhat stronger than necessary for our purposes and so we impose Condition 1
instead.

It is of interest to note that if we have a di↵usion (i.e. in (1.1) we have � = 0) then,
by application of the Mean Value Theorem, Condition 2 ensures � and � are locally Lips-
chitz and so (1.1) admits a unique weak solution (see Øksendal [2007]) and so Condition
1 holds. In particular, in this setting Results 1–4 will hold under Conditions 2, 3 and 5.
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Literature Review
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2

Monte Carlo Methods

“If the only tool you have is a hammer, you tend
to see every problem as a nail.”

— Abraham Maslow

In this chapter we review a number of elementary Monte Carlo methods which are of
particular relevance to the methodology developed in this thesis as outlined in Chapter 1
and explored later. A fuller account of the methods discussed in this chapter along with
the broader literature and applications can be found in a number of texts (see for instance
Robert and Casella [2004], Kloeden and Platen [1992] and Kingman [1992]).

Monte Carlo methods are a class of statistical algorithms which, by means of exploiting
the comparatively recent introduction of cheap and powerful computing, use the simu-
lation of random processes to draw inference on quantities of interest. To motivate this
we consider expectations of the following form which may, or may not be, analytically
tractable (where h is some test function, ⇡ some probability density and X is a random
variable with law ⇡),

⇡ [h(X)] :=
Z

h(x) · ⇡(x) dx. (2.1)

Employing the notion first proposed by Metropolis and Ulam [1949] (which we term
Naı̈ve Monte Carlo and present in Algorithm 2.0.1), note that if we were to simply sim-
ulate large numbers of random samples1 from the density ⇡ (and this were possible),

1Random Number Generators: In this thesis we assume that it is possible to simulate any number
of independent uniform random variables (u1, u2, . . . ⇠ U[0, 1]). Some care ensuring generated random
variables are truly random has to be taken (see for instance [Ripley, 1987, Chap. 1] and [Robert and Casella,
2004, Chap. 2]). Particular consideration of random number generators in the context of di↵usions can be
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then these could be used to compute an estimate of the expectation in (2.1) (which we
term the Monte Carlo estimator). More precisely, if we were to draw independently
X1, X2, . . . , XN ⇠ ⇡, then by applying the Strong Law of Large Numbers (SLLN) we can
construct a consistent estimator of the expectation (with unbiasedness following directly
by linearity),

w.p. 1: lim
N!1

1
N

N
X

i=1

h (Xi) = ⇡ [h(X)] . (2.2)

Furthermore, provided ar⇡[h(X)] =: �2 < 1, it can be shown by the Central Limit
Theorem (CLT) that we have,

lim
N!1

p
N

2

6

6

6

6

6

4

⇡ [h(X)] � 1
N

n
X

i=1

h (Xi)
3

7

7

7

7

7

5

D
= ⇠, where ⇠ ⇠ N(0,�2). (2.3)

The number of algorithms and applications which stem from this simple simulation ap-
proach is vast. The central di�culty in employing this approach in practice is being able
to simulate independent and identically distributed random variables from the density ⇡.
Addressing this problem is the theme linking the various Monte Carlo methods we review
in the remainder of this chapter.

Algorithm 2.0.1 Naı̈ve Monte Carlo Algorithm (N random samples) [Metropolis and
Ulam, 1949].

1. For i in 1 to N simulate Xi ⇠ ⇡.

2. Compute the Monte Carlo estimator dI(X) :=
1
N

PN
i=1 h (Xi).

2.1 Inversion Sampling

Inversion Sampling (see for example [Devroye, 1986, Part 3 Chap. 2]) is a method of
sampling from a density ⇡, by inverting a randomly drawn uniform random variable u ⇠
U[0, 1]. Denoting F⇡ as the cumulative distribution function (CDF) of ⇡, we define the

found in [Kloeden and Platen, 1992, Chap. 1.9].
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generalised inverse as follows,

F�1
⇡ (u) := inf

x
{F⇡(x) � u} . (2.4)

Noting that F⇡(x) 2 [0, 1] 8x 2 , it is possible to draw from ⇡ by generating and
transforming a uniform random variable u ⇠ U[0, 1] as illustrated in Figure 2.1.1 and
presented in Algorithm 2.1.1.

X

F

⇡
(
X

)

F

�1
⇡ (u)

u

0

1

Figure 2.1.1: An illustration of the simulation of X ⇠ ⇡ by means of Inversion Sampling.

Algorithm 2.1.1 Inversion Sampling Algorithm (N random samples) [Devroye, 1986,
Part 3 Chap. 2].

1. For i in 1 to N simulate ui ⇠ U[0, 1] and set Xi = F�1
⇡ (ui).

17



This notion can be formalised by considering the following,

⇣

F�1
⇡ (u)  x

⌘

= (u  F⇡(x)) = F⇡(x) = (X  x). (2.5)

It should be noted that this algorithm can be extended to draw in a computationally e�-
cient manner from F⇡(x) conditional on x 2 [`, �] (or similarly a percentile of F⇡(x)) by
modifying Algorithm 2.1.1 such that ui ⇠ U

h

F�1
⇡ (`), F�1

⇡ (�)
i

.

2.2 Composition Sampling

Suppose we wish to draw a random sample from a density formed through a weighted
composition of a number of other densities. In particular (denoting w j (� 0) as the con-
tribution of the density ⇡ j to the composition such that

Pn
i=1 wi = 1) suppose we have,

⇡ =
r

X

j=1

w j ⇡ j, (2.6)

an example of which is illustrated in Figure 2.2.1.

As shown in [Ripley, 1987, Chap. 3.2] and as outlined in Algorithm 2.2.1, we can draw
a random sample from ⇡ by first sampling a contributing density ⇡ j with probability pro-
portional to its weight (w j), then drawing from ⇡ j.

Algorithm 2.2.1 Composition Sampling Algorithm (N random samples) [Ripley, 1987].

1. For i in 1 to N sample Ji ⇠ categorical(w1, . . . ,wr) and sample Xi|(Ji = j) ⇠ ⇡ j.

2.3 Demarginalisation

Demarginalisation is a technique whereby artificial extension of a density (with the in-
corporation of auxiliary variables) simplifies sampling from it. To illustrate this consider
the case where we want to draw a sample from ⇡(x), but this is not directly possible.
However, suppose that with the introduction of an auxiliary variable Y , sampling from
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w1⇡1

w2⇡2

w3⇡3

⇡

Figure 2.2.1: An illustration of a density composed of three weighted Normal densities.

⇡(x|y) is possible and ⇡(x, y) admits ⇡(x) as a marginal. In particular, we have,

⇡(x) =
Z

Y
⇡(x|y) · ⇡(y) dy. (2.7)

We can sample from ⇡(x) by first sampling Y from ⇡(y) and then sampling from ⇡(x|y).
This algorithm can be viewed as a black box to generate samples from ⇡(x) – Y can
be simply marginalised out (i.e. ‘thrown’ away). A fuller account of demarginalisation
can be found in [Robert and Casella, 2004, Chap. 5.3], however it is worth noting that
composition sampling (see Section 2.2) is an example of demarginalisation.

2.4 Rejection Sampling

Rejection sampling (von Neumann [1951]) is a Monte Carlo method in which we can
sample from some (inaccessible) target density ⇡ by means of an accessible dominating
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density q, where the distribution of q with respect to the distribution of ⇡ is absolutely
continuous with bounded Radon-Nikodým derivative. In particular, if we can find a bound
M such that,

sup
x2

d⇡
dq

(x)  M < 1, (2.8)

then drawing X ⇠ q and accepting the draw (I = 1) with probability Pq(X) := 1
M

d⇡
dq (X) 2

[0, 1] then (X|I = 1) ⇠ ⇡. This argument is presented in Algorithm 2.4.1.

Algorithm 2.4.1 Rejection Sampling Algorithm (N random samples) [von Neumann,
1951].

1. For i in 1 to N,

(a) Simulate Xi ⇠ q and u ⇠ U[0, 1].

(b) If u  ⇡(Xi)
M · q(Xi)

then accept, else reject and return to Step 1a.

An intuitive way to consider rejection sampling is as follows (which is best read in con-
junction with Figure 2.4.1 and provides useful insight to the more complicated methodol-
ogy later in this thesis). Suppose we wanted to simulate N points uniformly on the graph
GA := {(x, y) 2 ⇥ + : ⇡(x)  y}, however due to the inaccessibility of ⇡ this was not
possible. Now if there existed an accessible density q such that GP := {(x, y) 2 ⇥ + :
M · q(x)  y} ◆ GA, we could simulate points uniformly on GP by employing a two stage

algorithm whereby we first simulate each of their locations on the x-axis, X1, . . .
iid⇠ q, and

then their location on the y-axis, u1, . . .
iid⇠ U

⇥

0,M · q (Xi)
⇤

. Points can be uniformly sim-
ulated on GP and retained if they fall in GA until the N desired samples are obtained. Now
as GA ✓ GP, if we consider the restriction of the set of simulated points to those which
lie in GA then those points will be indistinguishable from an alternate scheme in which
points were uniformly simulated on GA. More formally, if we simulate X1, . . .

iid⇠ q and
for each sample Xi with probability ⇡(Xi)/ (M · q(Xi)) accept the sample, then considering
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the conditional cumulative distribution function we have,

 

X  x
�

�

�

�

�

u  ⇡(X)
M · q(X)

!

=

Z 1

�1

Z 1

0
[�1,x](z) · [0,⇡(z)/Mq(z)](u) · q(z) du dz

Z 1

�1

Z 1

0
[0,⇡(z)/Mq(z)](u) · q(z) du dz

=

Z x

�1
⇡(z)

M · q(z)
· q(z) dz

Z 1

�1
⇡(z)

M · q(z)
· q(z) dz

=
1/M · ⇡(X  x)

1/M · 1 = F⇡(x). (2.9)

X

D
e
n
s
i
t
y

X1 X2

⇡

q · M

w1  ⇡(X1)
q(X1)M

w2 >

⇡(X1)
q(X1)M

Figure 2.4.1: An illustration of the simulation of X ⇠ ⇡ by means of Rejection Sampling.

It is worth noting that upon simulating X ⇠ q, the probability that (X, u) falls on GA

is precisely ⇡(X)/ (M · q(X)). Furthermore, any jointly simulated point (X, u), will fall on
GA with probability Pq(X) := q

h

⇡(X)
M·q(X)

i

= 1/M, which is simply the ratio of GA to GP.
Clearly the number of draws from q required to obtain a single draw from ⇡ is geometri-
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cally distributed with mean M. As such rejection sampling can be made computationally
more e�cient by finding a density q which is as close as possible to ⇡ (i.e., such that the
bound M is as close as possible to 1).

2.5 Importance Sampling

Clearly rejection sampling can be wasteful as a large number of random samples are
drawn and then discarded. In particular, upon evaluating whether to accept or reject any
particular sample, some useful information about the density at that point is gleaned.

A natural approach to incorporating this information (known as Importance Sampling),
is to instead evaluate our Monte Carlo estimator (2.2) using a weighted sample of draws
from some accessible proposal density q (with appropriate conditions which we address
at the end of this section). In particular (denoting w(X) = ⇡(X)/q(X) which we call the
sample weight) we have,

⇡ [h(X)] =
Z 1

�1
h(x) · ⇡(x) dx =

Z 1

�1
h(x) · ⇡(x)

q(x)
· q(x) dx = q [h(X) · w(X)]. (2.10)

Now, in analogous form to the Monte Carlo estimator presented in (2.2), if we were to
draw independently X1, X2, . . . , XN ⇠ q then by applying the SLLN we can construct a
consistent estimator of our desired expectation (with unbiasedness following by linearity),

w.p. 1: lim
N!1

1
N

N
X

i=1

h (Xi) · w (Xi) = ⇡ [h(X)] . (2.11)

Importance sampling is a classical Monte Carlo method which dates back to at least
Goertzel [1949] and Kahn [1949], yet (although a relatively simple extension of Naı̈ve
Monte Carlo) is the central idea behind the more modern Sequential Monte Carlo meth-
ods we discuss in Chapter 3.

One of the key advantages of importance sampling is that we can, rather remarkably,
construct an asymptotically unbiased estimator of ⇡ [h(X)] even if we only know our
target density ⇡ to some normalising constant Z (i.e. we know ⇡⇤ := ⇡ · Z). In particular,
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denoting w⇤(X) := ⇡⇤(X)/q(X) we have,

q [h(X)w⇤(X)]

q [w⇤(X)]
:=

R 1
�1 h(x) · ⇡(x)·Z

q(x) · q(x) dx
R 1
�1

⇡(x)·Z
q(x) · q(x) dx

=

R 1
�1 h(x) · ⇡(x) dx

R 1
�1 ⇡(x) dx

= ⇡ [h(X)] . (2.12)

So, by application of Slutsky’s lemma2, and denoting w(Xi) := w⇤(Xi)/
PN

j=1 w⇤(X j), then
if we draw independently X1, X2, . . . , XN ⇠ q we have our required asymptotically unbi-
ased estimator,

w.p. 1: lim
N!1

N
X

i=1

h (Xi) · w⇤ (Xi)
PN

j=1 w⇤(X j)
= lim

N!1

N
X

i=1

h (Xi) · w�

Xi
�

= ⇡ [h(X)] . (2.13)

We term this particular version of importance sampling as Self-Normalised Importance
Sampling and present the synthesis of the above argument in Algorithm 2.5.1. In Fig-
ure 2.5.1 we present an illustration of random samples being drawn by means of self-
normalised importance sampling.

Algorithm 2.5.1 Self-Normalised Importance Sampling Algorithm (N random samples)
[Goertzel, 1949; Kahn, 1949].

1. For i in 1 to N simulate Xi ⇠ q and set w⇤(Xi) = ⇡⇤(Xi)/q(Xi).

2. For i in 1 to N set w(Xi) = w⇤(Xi)/
PN

j=1 w⇤(X j).

Clearly some care has to be taken when choosing an appropriate proposal density q.
At a minimum we want to ensure that the resulting estimator (2.11) has finite variance,

ar⇡ [h(X)] < 1. As ⇡ [h(X)] = q [h(X) · w(X)] we can determine whether or not our
importance sampler has finite variance by simply considering the second moment,

q
h

(h(X) · w(X))2
i

=

Z 1

�1
h2(x)

⇡2(x)
q2(x)

q(x) dx = ⇡

h

h2(X) · w(X)
i

. (2.14)

2 Slutsky’s lemma (Slutsky [1925]): Let Xn converge in distribution to some random element X and let Yn

converge in probability to a constant c then the following holds - Xn + Yn
D�! X + c; YnXn

D�! cX;
Xn

Yn

D�! X
c

.
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As shown in Geweke [1989] and [Robert and Casella, 2004, Sec. 3.3.2], (2.14) will be
finite provided (i) ⇡/q is bounded by some known M (which in the case of q being cho-
sen as in the rejection sampling approach of Section 2.4 will hold), or (ii) if the sample
space (denoted by ⌦, but in general for our purposes ⌦ := ) is compact and 8x 2 ⌦ we
have ⇡(x)  M(x) < 1 and q(x) > ✏. The general principle upon having found proposal
densities which result in Monte Carlo estimators with finite variance is to choose the one
which results in the lowest variance.

A natural question to ask is when its appropriate to choose an importance sampler over
a rejection sampler (as in Section 2.4). Clearly as importance sampling has weaker con-
ditions than rejection sampling there are settings in which only an importance sampler
can be employed. However, comparison of the Monte Carlo estimator variance under a
rejection and importance sampler in more general settings is not straight forward. If we
are to fix the number of proposed random samples then an importance sampler is sim-
ply a Rao-Blackwellised rejection sampler (see for instance Casella and Robert [1996]).
In particular we could draw N random samples {Xi,w(Xi)}Ni=1 from an importance sam-
pler and then accept or reject each with probability w(Xi). More typically the number
of random samples generated by a rejection sampler is of a random size and this adds
complication to making any comparison (for a more detailed discussion see for instance
Casella and Robert [1996], [Robert and Casella, 2004, Sec. 3.3.3] and Chen [2005]),
however typically we would expect an importance sampler to be an improvement over a
rejection sampler.
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(a) Graph of the proposal density q along with independent random sam-
ples X1, . . . , X4 ⇠ q, overlaid with the target density ⇡.
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X1, . . . , X4. The size of the vertical bar associated with each sample
represents its relative weight.

Figure 2.5.1: An illustration of the simulation of X ⇠ ⇡ by means of Self-Normalised
Importance Sampling.



2.6 Series Sampling

Series Sampling (Devroye [1980], [Devroye, 1986, Part 4 Chap. 5]) is a method of draw-
ing random samples from a target density ⇡ which cannot be evaluated exactly at any
point. We will suppose there exists an accessible dominating density q (as in Section 2.4)
and that we can find some upper and lower monotonically convergent bounding functions
(limn!1 ⇡"n ! ⇡ and limn!1 ⇡#n ! ⇡ such that for any x 2 and ✏ > 0 9 an n⇤(x) such
that 8 n � n⇤(x) we have ⇡"n(x)�⇡#n(x) < ✏). An illustration of such a density can be found
in Figure 2.6.1.
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⇡
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⇡

#
1

⇡
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2

⇡

#
2

Figure 2.6.1: An illustration of a situation in which Series Sampling can be performed,
whereby there exists for the target density ⇡, upper and lower monotonically bounding
functions ⇡" and ⇡#. In this example ⇡ has compact support in the interval [`, �] and the
dominating density q, is a uniform density.

We can begin as with the rejection sampling approach taken in Section 2.4 and draw
a proposal sample from the dominating density, X ⇠ q. However unlike rejection sam-
pling, we can not evaluate the target density at ⇡(X) in order to determine directly whether
to accept or reject the sample (with probability Pq(X) := ⇡(X)

q(X)·M ). Instead we employ a
retrospective approach to simulate unbiasedly an event of probability Pq(X), guided by
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the following theorem,

Theorem 2.6.1 (Series Sampling [Devroye, 1986, Part 4 Chap. 5]). An event of (un-
known) probability p 2 [0, 1], where there exists monotonically increasing and decreas-
ing sequences, (S +k : k 2 �0) and (S �k : k 2 �0) respectively, such that limk!1 S +k # p
and limk!1 S +k " p, can be simulated unbiasedly. In particular, a binary random variable
P := (u  p) can be constructed and simulated (where u ⇠ U[0, 1]), noting that as there
almost surely exists a finite K := inf{k : u < (S �k , S

+
k )} we have (u  p) = (u  S �K)

and [ (u  S �K)] = p.

The key idea is that as for any X ⇠ q we have upper (⇡"n(X)) and lower (⇡#n(X)) convergent
bounding sequences we can iteratively evaluate these sequences (n = 1, 2 . . . ) until such
point that a uniform random variable u ⇠ U

⇥

0, q(X) · M⇤

lies either below ⇡#n(X) (in
which case it must also lie below ⇡(X)) or above ⇡"n(X) (in which case it must also lie
above ⇡(X)). This approach is what is used to construct Algorithm 2.6.1.

Algorithm 2.6.1 Series Sampling Algorithm (N random samples) [Devroye, 1980], [De-
vroye, 1986, Part 4 Chap. 5].

1. For i in 1 to N,

(a) Simulate Xi ⇠ q, u ⇠ U
⇥

0, q(Xi) · M⇤

and set n = 1.

(b) While u 2
⇣

⇡#n(Xi), ⇡"n(Xi)
⌘

then n = n + 1.

(c) If u  ⇡#n(Xi) then accept else return to Step 1a.

2.7 Retrospective Bernoulli Sampling

Retrospective Bernoulli Sampling is a method to simulate unbiasedly an event of some
unknown probability p, where p can be represented as the limit of an alternating Cauchy
sequence (S k : k 2 �0). Without loss of generality, throughout this thesis (unless other-
wise stated), we will assume we have an alternating Cauchy sequence in which the even
terms of the sequence converge from below and the odd terms of the sequence converge
from above as follows,

0 = S 0 < S 2 < S 4 < S 6 < . . . < p < . . . < S 5 < S 3 < S 1  1 (2.15)
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As noted in [Beskos et al., 2008, Prop. 1], we can split the alternating Cauchy sequence
(S k : k 2 �0) into upper and lower subsequences (composed of the odd and even terms
respectively) converging to p (in particular, (S 2k+1 : k 2 �0) and (S 2k : k 2 �0)).
As the upper subsequence will be monotonically decreasing and the lower subsequence
monotonically increasing we can employ a similar approach as in series sampling (see
Section 2.6) and inversion sampling (see Section 2.1) to simulate an event of probability
p.

In particular, we can simply draw a uniform random variable u ⇠ U[0, 1] and evalu-
ate the upper and lower sequences until u < (S 2k, S 2k+1), at which point we know whether
u lies above or below p. This approach is detailed in Algorithm 2.7.1 and an illustrative
example is presented in Figure 2.7.1.

Algorithm 2.7.1 Retrospective Bernoulli Sampling [Beskos et al., 2008].

1. Simulate u ⇠ U[0, 1] and set k = 1.

2. While u 2 (S 2k, S 2k+1), k = k + 1.

3. If u  S 2k then u < p so return 1 else u > p so return 0.

We draw attention to the fact that the indexing in (2.15) does not matter. In particular, if
the index was increased by 1 then the limit of the alternating Cauchy sequence would still
converge to p, albeit the even terms would converge from above and the odd terms from
below. As such a suitably modified version of Algorithm 2.7.1 can be employed instead.

It is of interest to note that this approach can be straightforwardly extended to the case
where p can be represented as the limit of some more general sequence than presented in
(2.15), provided it is possible to find an alternating Cauchy sequence with which to extract
upper and lower subsequences which monotonically converge to p. As will prove partic-
ularly useful later in this thesis, if it is possible to determine that the sequence eventually
becomes an alternating Cauchy sequence, then Algorithm 2.7.1 can be directly employed.
An example of such a situation is illustrated in Figure 2.7.2.

Retrospective Bernoulli sampling can also be employed to simulate unbiasedly an event
of probability p, where p can be represented as a linear transformation of a number
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of constituent alternating Cauchy sequences. More formally, in the case where p :=
f (p1, . . . , pm) for some linear function f and p1, . . . , pm, each of which can be represented
as the limit of alternating Cauchy sequences (S 1

k , . . . , S
m
k where k 2 >0 respectively). In

particular, this is possible by first noting that p can itself be represented as the limit of
an alternating Cauchy sequence. Intuitively this is clear as we can simply align the index
of each of the constituent Cauchy sequences (S i

k where i 2 {1, . . . ,m)) to ensure that the
under and over estimations of p occur on alternating indices. Such an alignment can be
achieved by increasing the index of some of the constituent alternating Cauchy sequences
by 1. As such Algorithm 2.7.1 can be directly applied. We state the argument above more
formally in the following corollary.

Corollary 2.7.1 (Linear Transformation). Probabilities which are linear transformations
or ratios of a collection of probabilities, each of which have upper and lower convergent
sequences can be simulated by extension of Theorem 2.6.1. In particular, suppose f :

m
+ ! + 2 C1 such that |d f / dui(u)| > 0 8 1  i  m and u 2 m

+ and that the
probability p := f (p1, . . . , pm) then defining the sequences (T i,�

k : k 2 �0) and (T i,+
k :

k 2 �0) as follows,

T i,�
k =

8

>

>

<

>

>

:

S i,�
k if d f / dui > 0

S i,+
k if d f / dui < 0

, T i,+
k =

8

>

>

<

>

>

:

S i,+
k if d f / dui > 0

S i,�
k+1 if d f / dui < 0

. (2.16)

we have that S �k := f (T 1,�
k , . . . ,T

m,�
k ) is monotonically increasing and converges to p

from below and S +k := f (T 1,+
k , . . . ,T

m,+
k ) is monotonically decreasing and converges to p

from above.

Clearly as we have that the number of computations required in implementing retrospec-
tive Bernoulli sampling is of stochastic length as a consequence of Algorithm 2.7.1 Step
2, then the e�ciency of the algorithm will be dependent upon the expected number of
iterations of that step which are required (where u ⇠ U[0, 1] as per Algorithm 2.7.1 Step
1),

[K] =
1

X

k=0

(K � k) =
1

X

k=0

(u  |S 2k+1 � S 2k|) =
1

X

k=0

|S 2k+1 � S 2k| . (2.17)

At a minimum for any practical implementation we require that the [K] < 1, which
can’t be ensured without imposing further conditions. However, as we will encounter in
Section 6, the alternating Cauchy sequences which we consider in this thesis converge
exponentially fast and so finiteness is ensured.
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(a) An illustration of the unknown probability p, overlaid with the graph com-
posed of the estimate of p formed with the inclusion of the first k terms of the
alternating Cauchy sequence.
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(c) Case ii) u < p.

Figure 2.7.1: An illustration of the unbiased simulation of an event of unknown probabil-
ity p, which can be represented as the limit of an alternating Cauchy sequence, by means
of Retrospective Bernoulli Sampling.
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(a) An illustration of the unknown probability p, overlaid with the graph com-
posed of the estimate of p formed with the inclusion of the first k terms of an
alternating sequence. Upon the inclusion of the first k̂ terms the sequence
becomes an alternating Cauchy sequence.
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(c) Case ii) u < p.

Figure 2.7.2: An illustration of the unbiased simulation of an event of unknown proba-
bility p, which can be represented as the limit of a sequence, by means of Retrospective
Bernoulli Sampling.

31



2.8 Simulating Brownian Motion and Related Processes

In this section we outline Monte Carlo methods for simulating (finite dimensional) sam-
ple path trajectories of Brownian motion, related stochastic processes and properties of
these stochastic processes. To begin with we provide a brief introduction to this class of
processes before moving on to discuss their simulation.

Brownian Motion (also known as a Wiener process), W = {Wt; t � 0}, is a continuous
time stochastic process which forms the key building block for simulating sample path
trajectories of the di↵usion processes we study throughout this thesis (see Chapter 1).
Many texts provide a detailed discussion of Brownian motion (including [Karatzas and
Shreve, 1991, Chap. 2] and [Øksendal, 2007, Sec. 2.2], with [Kloeden and Platen, 1992,
Sec. 1.8] providing an introduction with a focus on simulating (finite dimensional) sam-
ple path trajectories), however, we restrict our attention to the properties of Brownian
motion which are explicitly used within this thesis.

We call a process (standard) Brownian motion if it satisfies the following properties,

Property 1 (Initial Value). W0 = 0.

Property 2 (Independent and Normally Distributed Increments). If r < r + s  t < t + s
then (Wt+s �Wt) ? (Wr+s �Wr) and Wt+s �Wt

D
= Wr+s �Wr ⇠ N(0, s).

Property 3 (Continuous Paths). With probability 1, Wt is a continuous function of t.

Furthermore, Brownian motion satisfies a number of self-similarity properties. In partic-
ular, if W is Brownian motion, then so are the following,

Self-Similarity 1 (Scaling). Bt =
1
c Wc2t for some constant c > 0.

Self-Similarity 2 (Symmetry). Bt = �Wt.

Self-Similarity 3 (Increments). Bt = Wt+s �Ws for fixed s.

Self-Similarity 4 (Time Inversion). Bt = tW1/t (where B0 := 0).

Although Brownian motion sample paths are continuous, they are nowhere di↵erentiable
and furthermore are infinite dimensional random variables. As such, it isn’t possible to
simulate (and store) entire sample path trajectories (i.e. it is not possible to simulate
W ⇠ x

s,t, where we denote by x
s,t as Wiener measure – the law of Brownian motion
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over the interval [s, t] given Ws = x). However, as a direct consequence of Property 2,
the transition density of Brownian motion is known (over any fixed finite interval) and so
it is possible to simulate a Brownian motion sample path at any finite collection of time
points (q1, . . . , qn) as per Algorithm 2.8.1.

Algorithm 2.8.1 Brownian Motion Simulation (at times {q1, . . . , qn}).

1. For i in 1 to n, simulate Wqi ⇠ N(Wqi�1 , qi � qi�1).

It transpires that given a Brownian motion sample path at a finite collection of time points,
simulated as per Algorithm 2.8.1, then the law of the process between any two consecu-
tive points of the sample path is conditionally independent of the other simulated points
(by the Markov property which follows from Property 2), and furthermore is known to
be the law of a Brownian Bridge. A Brownian bridge is simply a Brownian Motion, W,
which in addition to being conditioned to have a start point (s,Ws = x) is also condi-
tioned to have some end point (t,Wt = y), the law of which we denote by x,y

s,t . If we are
interested in the density of the Brownian bridge at some intermediate time q 2 (s, t) then
it can be shown to also be Gaussian by application of Property 2,

p(Wq = w|Ws = x,Wt = y) / p(Wt = y|Wq = w,Ws = x) · p(Wq = w|Ws = x)

= p(Wt = y|Wq = w) · p(Wq = w|Ws = x)

/ exp
(

� 1
2

(y � w)2

(t � q)

�

· exp
⇢

� 1
2

(w � x)2

(q � s)

)

/ exp
(

�1
2

w2 � 2w
⇥

x + (q � s)(y � x)/(t � s)
⇤

(t � q)(q � s)/(t � s)

)

/ N
 

x +
(q � s)(y � x)

(t � s)
,

(t � q)(q � s)
(t � s)

!

=: N(w̄,�2
w) (2.18)

This result is of fundamental importance throughout this thesis. In particular, although it
is not possible to simulate and store an entire Brownian motion sample path trajectory, it
can instead be characterised by its value at a finite collection of time points and known
tractable transition densities between any two consecutive points. As detailed in Algo-
rithm 2.8.2, the sample path can then be simulated at any other desired time points(s)
(even if the sample path has already been partially simulated). As such, a Brownian mo-
tion sample path simulated as per Algorithms 2.8.1 and 2.8.2 forms the most elementary
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di↵usion skeleton (see Definition 1 on page 4 of Chapter 1). In Figure 2.8.1 we present an
illustration of Brownian motion and Brownian bridge sample path skeletons (simulated
on a fine mesh).

Algorithm 2.8.2 Brownian Bridge Simulation (at times {q1, . . . , qn} given the process at
times {s, p1, . . . , pm, t}).

1. Set S :=
n

(s, Xs), (pi, Xpi)m
i=1, (t, Xt)

o

.

2. For i in 1 to n,

(a) Set l := sup {S : S  qi} and r := inf {S : S � qi}.
(b) Simulate Wqi ⇠ N

 

Wl +
(qi � l)(Wr �Wl)

r � l
,

(r � qi)(qi � l)
(r � l)

!

.

(c) Set S := S [ {qi}.

In the remainder of this section we introduce related stochastic processes which are used
in this thesis. In Section 2.8.1 we detail how to simulate the minimum (or maximum)
of a Brownian bridge sample path. Finally, in Section 2.8.2 we detail how to simulate
an intermediate point of a Brownian bridge sample path conditional on the minimum (or
maximum) that it attains (a so called Bessel Bridge).
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(a) Brownian motion sample path trajectories, W ⇠ 0
0,1
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(b) Brownian bridge sample path trajectories, W ⇠ 0,0
0,1

Figure 2.8.1: An illustration of Brownian motion and Brownian bridge sample path tra-
jectories simulated on a fine mesh.
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2.8.1 Brownian Bridge at its Minimum or Maximum Point

The joint distribution of the minimum value attained by a Brownian bridge sample path
trajectory (m̂ := inf{Wq; q 2 [s, t]} where W ⇠ x,y

s,t ), and the time at which it is attained
(⌧ := sup{q 2 [s, t] : Wq = m̂}) is given in [Karatzas and Shreve, 1991, Chap 2.8 D &
Chap. 4.3 C],

(m̂ 2 dw, ⌧ 2 dq |Ws = x,Wt = y)

/ (w � x)(w � y)
p

(t � q)3(q � s)3
exp

(

� (w � x)2

2(q � s)
� (w � y)2

2(t � q)

)

dw dq. (2.19)

As shown in [Beskos et al., 2006a, Sec. 3.1] (and reformulated here), it is possible to draw
jointly the minimum value and the time it occurs from (2.19). In particular simulating
u1, u2 ⇠ U[0, 1] and setting,

m̂ = x � 1
2

"

q

(y � x)2 � 2(t � s) log(u1) � (y � x)
#

, (2.20)

denoting by IGau(u; µ, �) =
p

�/2⇡u3 exp{��(u � µ)2/2µ2u} with u > 0 as the density of
the inverse Gaussian distribution and setting,

V =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇠1, where ⇠1 ⇠ IGau
 

y � m̂
x � m̂

,
(y � m̂)2

t � s

!

, if u2 <
x � m̂

x + y � 2m̂
,

1
⇠2
, where ⇠2 ⇠ IGau

 

x � m̂
y � m̂

,
(x � m̂)2

t � s

!

, if u2 � x � m̂
x + y � 2m̂

.
(2.21)

then (⌧, m̂) is a sample from (2.19).

It transpires later in this thesis that it is necessary to simulate the sample path minimum
conditional on being within a particular interval, (⌧, m̂)| (m̂ 2 [a1, a2]) where a1 < a2 
(x^y). This can be achieved as suggested in Beskos et al. [2006a] by rejection sampling
(see Section 2.4), in which sample path minima are simulated until one lies in the desired
interval. Alternatively, we note that it is also possible (and computationally more e�cient
when the interval is small) to simulate (⌧, m̂) by inversion sampling (see Section 2.1), by
simply modifying how the uniform random variable u1 is simulated as follows,

u1 ⇠ U [M(a2),M(a1)] , where M(a) := exp {�2(a � x)(a � y)/(t � s)} . (2.22)
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The synthesis of the above argument is presented in Algorithm 2.8.3, along with an il-
lustration of simulated minima (and maxima) points in Figure 2.8.2. Analogously the
maximum point of a Brownian bridge sample path ((⌧, m̌) where m̌ := sup{Wq; q 2 [s, t]})
can be simulated by a standard reflection argument (recalling Self-Similarity Property
2). In particular, if we consider a reflected Brownian bridge with reflected start and end
points ((s0,W0s = �x) and (t0,W0t = �y) respectively) and simulate the minimum point of
this reflected Brownian bridge as per Algorithm 2.8.3, then the reflection of the minimum
point is the maximum point for the unreflected Brownian bridge (⌧ := ⌧0, m̌ := �m̂0).

Algorithm 2.8.3 Brownian Bridge Simulation at its Minimum Point (constrained to the
interval [a1, a2] where a1 < a2  x ^ y and conditional on Ws = x and Wt = y (denoting
IGau(µ, �) as the inverse Gaussian distribution with mean µ and shape parameter �).

1. Simulate u1 ⇠ U [M(a1),M(a2)] where M(a) := exp {�2(a � x)(a � y)/(t � s)} and
u2 ⇠ U[0, 1].

2. Set m̂ := x �
h

p

(y � x)2 � 2(t � s) log(u1) � (y � x)
i

/2.

3. If u2  x � m̂
x + y � 2m̂

then V ⇠ IGau
 

y � m̂
x � m̂

,
(y � m̂)2

t � s

!

else
1
V

⇠

IGau
 

x � m̂
y � m̂

,
(x � m̂)2

t � s

!

.

4. Set ⌧ :=
sV + t
1 + V

.
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(a) Minimum or maximum without restriction.
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(b) Minimum with restriction, W ⇠ 0,0
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Figure 2.8.2: An illustration of the minimum of 5,000 Brownian bridge sample path
trajectories, and the maximum of 5,000 Brownian bridge sample path trajectories.



2.8.2 Bessel Bridge

Conditional on a Brownian bridge sample path minimum or maximum point ((⌧, m̂) or
(⌧, m̌), simulated as per Section 2.8.1 where W ⇠ x,y

s,t ), the law of the remainder of
the trajectory is that of a Bessel bridge, which can be constructed by means of a 3-
dimensional Brownian bridge of unit length conditioned to start and end at zero. A de-
tailed proof is outlined in [Asmussen et al., 1995, Prop. 2] with the formulation that we
present being that of [Beskos et al., 2006a, Thm. 2]. To guide intuition for the result
presented in Beskos et al. [2006a], lets first consider the case where we are interested in
simulating the sample path at some intermediate time q 2 (⌧, t).

Note that we are in e↵ect simulating the value of a Brownian bridge path at time q, condi-
tioned to start at the point (⌧, m̂), end at the point (t, y) and remain above m̂. By rescaling
location and time (as per Self-Similarity Properties 1 and 3), we find that this is equivalent
to simulating the value of a Brownian bridge sample path at time q0 := (q � ⌧)/(t � ⌧)
with start point (0, 0) and end point (1, y0 := y � m̂) conditioned to remain above 0, pro-
vided the simulated value is rescaled appropriately (w := Wq0 + m̂). Simulation is possible
by first simulating 3 independent realisations of a Brownian bridge of unit length condi-
tioned with start and end points of zero at time q0, denoted {b1, b2, b3}. Noting that we
additionally require an o↵set so that the terminal value of the Bessel bridge is y � m̂ we
have,

w = m̂ +

s

(t � ⌧)
"

(y � m̂)(q � ⌧)
(t � ⌧)(t � ⌧)1/2 + b1

#2

+ (t � ⌧)b2
2 + (t � ⌧)b2

3. (2.23)

Now in the case where we are interested in simulating the sample path at the intermediate
time q 2 (s, ⌧), then by reversing time and applying the same argument as above then,

w = m̂ +

s

(⌧ � s)
"

(x � m̂)(⌧ � q)
(⌧ � s)(⌧ � s)1/2 + b1

#2

+ (⌧ � s)b2
2 + (⌧ � s)b2

3. (2.24)

The synthesis of the above argument is presented in Algorithm 2.8.4, along with an illus-
tration of example Bessel bridge sample paths simulated on a fine mesh in Figure 2.8.3. If
we are instead interested in simulating an intermediate point of a Brownian bridge sample
path conditional on the maximum attained point (⌧,W⌧ = m̌), then this can be achieved
by the standard reflection argument we detailed in Section 2.8.1.
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Algorithm 2.8.4 (Minimum) Bessel Bridge Simulation (at time q 2 (s, t) given Ws =

x,Wt = y and W⌧ = m̂) [Asmussen et al., 1995].

1. If q < ⌧ then r = s else r = t. Simulate b1, b2, b3
iid⇠ N

 

0,
|⌧ � q| · |q � r|

(⌧ � r)2

!

.

2. Set Wq := m̂ +
p|⌧ � r| ·

s

 

(Wr � m̂) · |⌧ � q|
|⌧ � r|3/2 + b1

!2

+ b2
2 + b2

3.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Time (t)

W

Figure 2.8.3: An illustration of Bessel bridge sample path trajectories, W ⇠ 0,0
0,1

�

�

�

�

(⌧, m̂)
where ⌧ = 0.5 and m̂ = �1, simulated on a fine mesh.
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2.9 Simulating Poisson Processes

In this section we outline Monte Carlo methods for simulating Poisson processes, begin-
ning with a brief overview of this class of stochastic processes.

A Poisson Process is a continuous time stochastic process {N(t) : t � 0}, parameterised
with rate function (or intensity) �(t), which counts the number of events which occur in
the interval [0, t] and satisfies the following properties:-

Property 1. N(0) = 0

Property 2 (Poisson Distributed Number of Events). N(t+ s)�N(t) ⇠ Poi
⇣

R t+s
t �(u) du

⌘

.

In particular we have, (N(t+ s)�N(t) = k) = exp
n

� R t+s
t �(u) du

o

·
⇣

R t+s
t �(u) du

⌘k
/k!

Property 3 (Independent Increments). If r < r + s  t < t + s then [N(t + s) � N(t)] ?
[N(r + s) � N(r)].

A fuller account of Poisson processes can be found in a number of texts (see for instance
[Cox and Isham, 1980; Kingman, 1992; Daley and Vere-Jones, 2003, 2008]). However,
in this section we detail how to simulate Poisson process sample paths, an example of
which is illustrated in Figure 2.9.1.

As suggested by Figure 2.9.1, in order to simulate a sample path it is su�cient to sim-
ulate the sample path event times and so we focus on this in this section. For ease of
exposition we consider separately the simulation of sample paths of Poisson processes
with constant intensity (a time homogeneous Poisson process) and non-constant intensity
(a time inhomogeneous Poisson process) in Sections 2.9.1 and 2.9.2 respectively. Finally,
in Section 2.9.3 we introduce and detail how to simulate sample paths from the related
class of Compound Poisson Processes.

2.9.1 Time Homogeneous Poisson Processes

In this section we outline two alternate approaches for simulating sample paths of a time
homogeneous Poisson process with constant intensity �, each of which is used in di↵er-
ent contexts throughout this thesis. As a consequence of Properties 2 and 3 of Poisson
processes given in Section 2.9, a time homogeneous Poisson process has the following
additional property, which is what we exploit in our two simulation approaches.
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Figure 2.9.1: An illustration of a sample path of a time homogeneous Poisson process
with intensity � = 1 over the interval [0, 5], where each asterisk indicates an event time.

Property 4 (Independent and Identically Distributed Increments). If r < r + s  t < t + s
then [N(t + s) � N(t)] ?? [N(r + s) � N(r)] ?? N(s) ⇠ Poi(�s)

To introduce our first approach note that, as a consequence of Property 4, for any given
sample path we can directly simulate the number of events that occur in the interval [0, t]
(in particular, N(t) ⇠ Poi(�t)), but not when they occur. However, it can be shown that
conditional on the number of events that occur in [0, t] that they are independently and
uniformly distributed on the interval (see for instance [Kingman, 1992, Chap. 2.4]). To
show this suppose we know that a total of n events occur (N(t) = n), and we are interested
in how many of those n events occur in the subinterval [0, r] ✓ [0, t]. Noting that at most
k  n events could occur in this subinterval and recalling that we have independent and
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identically distributed increments (Property 4), then we have,

(N(r) = k |N(t) = n) =
(N(r) = k) · (N(t) � N(r) = n � k)

(N(t) = n)

=
n!

(n � k)!k!
·
h

exp{��r} (�r)k
i

·
h

exp{��(t � r)} (�(t � r))n�k
i

exp{��t} (�t)n

=
n!

(n � k)!k!
· rk(t � r)n�k

tn , (2.25)

which is the probability that k out of n independent U[0, t] random variables fall in the
interval [0, r]. As such, the event times of a time homogeneous Poisson process sample
path (and hence the process itself) can be simulated by means of a two stage algorithm
whereby we first simulate the number of events that occur in in [0, t] and then uniformly
scatter them, as detailed in Algorithm 2.9.1.

Algorithm 2.9.1 Time Homogeneous Poisson Process Simulation Algorithm (Condi-
tional Uniform Dispersal Approach) [Kingman, 1992].

1. Simulate n ⇠ Poi(�t).

2. If n , 0, simulate u1, . . . , un
iid⇠ U[0, t].

3. If n , 0, set q1, . . . , qn to be the order statistics of the set {u1, . . . , un}.

Our second approach for simulating a time homogeneous Poisson process relies on the
fact that for any given sample path the waiting time between successive events is expo-
nentially distributed (see for instance [Kingman, 1992, Chap. 4.1]). To show this suppose
the (n � 1)th event occurred at time qn�1 and consider the probability that in an additional
period of length s there has been no further events (denoting T1, . . . ,Tn as the interval
time before each successive event),

(Tn > s |T1 = q1,T2 = q2 � q1, . . . ,Tn�1 = qn�1 � qn�2)

= (N(qn�1 + s) = n � 1 |N(tn�1) = n � 1)

= (N(s) = 0) = exp{��s}, (2.26)

which is precisely the probability that an Exp(�) distributed random variable is greater
than s. As a result, sample path event times (q1, . . . , qn) in the interval [0, t] can be sim-
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ulated by simply simulating successive Exp(�) waiting times while
P

i Ti  t, as detailed
in Algorithm 2.9.2.

Algorithm 2.9.2 Time Homogeneous Poisson Process Simulation Algorithm (Exponen-
tial Waiting Time Approach) [Kingman, 1992].

1. Set i = 0 and T0 = 0. While
P

i Ti  t,

(a) Set i = i + 1 and simulate Ti ⇠ Exp(�).

(b) If
P

i Ti  t then set qi =
P

i Ti.

2. Set n = i � 1

2.9.2 Time Inhomogeneous Poisson Processes

It is possible to simulate sample paths of a time inhomogeneous Poisson process, with
intensity �(t), by means of simulating a dominating time homogeneous Poisson process
with constant intensity ⇤ (such that 8u 2 [0, t] �(u)  ⇤) and conducting Poisson Thin-
ning (see for instance [Kingman, 1992, Chap. 5.1]). Poisson thinning can be thought of as
a method similar to rejection sampling (as discussed in Section 2.4), whereby simulated
events of a sample path from a dominating time homogeneous Poisson process are used
as proposals, which are then accepted or rejected as events arising from the target time
inhomogeneous Poisson process.

To justify this consider a time homogeneous Poisson process {N(t), t � 0}, with inten-
sity ⇤, such that each event that arises can be classified either as a ‘Type 1’ event (with
probability p) or a ‘Type 2’ event (with probability (1 � p)). Now, if we consider the
stochastic process counting the number of each type of event which occurs in the interval
[0, t] (N1(t) and N2(t) respectively), then by applying a partitioning argument we have,

(N1(t) = m,N2(t) = n) =
1

X

k=0

(N1(t) = m,N2(t) = n |N(t) = k) · (N(t) = k)

= (N1(t) = m,N2(t) = n |N(t) = m + n) · (N(t) = m + n)

=

 

(m + n)!
m!n!

pm(1 � p)n
!

· exp{�⇤t}(⇤t)m+n

(m + n)!

=
exp{�⇤pt} (⇤pt)m

m!
· exp{�⇤(1 � p)t} (⇤(1 � p)t)n

n!
, (2.27)
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and so we can conclude that {N1(t), t � 0} is a Poisson process with intensity ⇤p,
{N2(t), t � 0} is a Poisson process with intensity ⇤(1 � p) and they are independent.

We can alternatively view the time homogeneous Poisson process with intensity ⇤ as
arising from the superposition of a target time inhomogeneous Poisson process with in-
tensity �(t) and another with intensity (⇤� �(t)). Any event arising (say at time q) can be
assigned to the target time inhomogeneous Poisson process with probability �(q)/⇤. As
such the target time inhomogeneous Poisson process can be simulated by first simulating
a sample path from the time homogeneous Poisson process (using either Algorithm 2.9.1
or Algorithm 2.9.2) and then conducting Poisson thinning, as illustrated in Figure 2.9.2
and detailed in Algorithms 2.9.3 and 2.9.4. The reason for the two alternate algorithms
will become apparent later in this thesis. Clearly, Algorithm 2.9.3 is a more natural im-
plementation, however it transpires that there is computational advantage in simulating
each event separately which is what leads to Algorithm 2.9.4.
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Figure 2.9.2: An illustration of a sample path of a time inhomogeneous Poisson process
with intensity �(t) = | sin(t)| over the interval [0, 5]. Each asterisk indicates an event
simulated under the dominating time homogeneous Poisson process, with those in green
denoting the accepted events arising under the target Poisson process.
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Algorithm 2.9.3 Time Inhomogeneous Poisson Process Simulation Algorithm [Kingman,
1992].

1. Simulate proposal event times (p1, . . . , pn) of a time homogeneous Poisson process
with intensity ⇤, as per Algorithm 2.9.1 or Algorithm 2.9.2.

2. If n , 0, then set j = 0 and for i in 1 to n,

(a) With probability � (pi) /⇤ set j = j + 1 and q j = pi.

Algorithm 2.9.4 Time Inhomogeneous Poisson Process Simulation Algorithm (Exponen-
tial Waiting Time Approach) [Kingman, 1992].

1. Set i = 0, j = 0 and T0 = 0. While
P

i Ti  t,

(a) Find ⇤i � supu2[Pi Ti,t] �(u), set i = i + 1 and simulate Ti ⇠ Exp(⇤i).

(b) If
P

i Ti  t then with probability �
�P

i Ti
�

/⇤i set j = j + 1 and q j =
P

i Ti.

2.9.3 Compound Poisson Processes

A Compound Poisson Process, {J�

t
�

: t � 0}, parameterised with intensity �(t) and jump
size function ⌫(t), is a continuous time stochastic process which sums in the interval [0, t]
a collection of f⌫(t) distributed random variables (or jumps), the number of which are
Poisson distributed with intensity �(t). Typically each of these parameters are themselves
parameterised by some other stochastic process, for instance the compound Poisson pro-
cess itself (however to ease notation we omit this at this stage). In particular, we have,

J(t) :=
N(t)
X

i=1

⌫(qi), where N(t) ⇠ Poi
 

Z t

0
�(u) du

!

and ⌫(qi) ⇠ f⌫ (qi) . (2.28)

In the case where the parameters of the compound Poisson process are not themselves
parameterised by the process then simulating a sample path is relatively straight-forward.
In particular, as detailed in Algorithm 2.9.5, we can first simulate over the interval [0, t]
the jump times (Poisson events) and then simulate and sum the f⌫ distributed random vari-
ables of the sample path. If instead the compound Poisson process is self-parameterised,
then simulating each jump time and then the jump size iteratively is advantageous as for
each subinterval a dominating time homogeneous Poisson process with lower intensity
can be found which, in analogous fashion to finding a tighter dominating proposal den-
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sity in rejection sampling (see Section 2.4), will be more computationally e�cient. This
alternate algorithm is presented in Algorithm 2.9.6, with illustrative examples of com-
pound Poisson process sample paths given in Figure 2.9.3.

Algorithm 2.9.5 Time Inhomogeneous Compound Poisson Process Simulation Algo-
rithm [Kingman, 1992].

1. Set J(0) = 0.

2. Simulate jump times (q1, . . . , qn) as per Algorithm 2.9.3.

3. If n , 0, for i in 1 to n simulate ⌫(qi) ⇠ f⌫ (qi) and set J(qi) = J(qi�1) + ⌫(qi).

Algorithm 2.9.6 Self-Parameterised Time Inhomogeneous Compound Poisson Process
Simulation Algorithm [Kingman, 1992].

1. Set J(0) = 0, i = 0, j = 0 and T0 = 0. While
P

i Ti  t,

(a) Find ⇤i � supu2[Pi Ti,t] �(u), set i = i + 1 and simulate Ti ⇠ Exp(⇤i).

(b) If
P

i Ti  t, then with probability �
�P

i Ti
�

/⇤i set j = j + 1, q j =
P

i Ti,
simulate ⌫(q j) ⇠ f⌫ (qi) and set J(q j) = J(q j�1) + ⌫(q j).
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Figure 2.9.3: An illustration of sample paths of a compound Poisson process with inten-
sity �(t) = | cos (J(t)) | and jump sizes µ(t) ⇠ N(�J(t�)/2, ⇡), over the interval [0, 5]. The
colour of each asterisk corresponds to the jump times of the similarly coloured compound
Poisson process sample path.



3

Sequential Monte Carlo Methods

“Study the past, if you would divine the future.”

— Confucius

As discussed in Chapter 1, in this thesis we develop methodology for filtering jump di↵u-
sions observed discretely with error. Underpinning this methodology is existing literature
on the application of Sequential Monte Carlo methods (SMC) to Hidden Markov Models
(HMMs). In this chapter we provide a brief overview of this background material.

To motivate this class of Monte Carlo methods we begin by introducing HMMs in Sec-
tion 3.1. HMMs are the natural and flexible framework under which the jump di↵usions
we consider in thesis are observed, whereby at discrete points in time we observe some
underlying evolving process of interest with error. HMMs are particularly appealing due
to their suitability in tackling online problems (whereby sequential information must be
processed on arrival without loss of computational e�ciency) which is a consequence of
the recursive nature in which various inferential problems can be represented. In Section
3.1.1 we draw particular attention to the filtering problem that we tackle in this thesis (in
which we use all observations to any point in time to make a probabilistic interpretation
of the state of the process at that point in time), highlighting in Section 3.1.4 the situations
in which solutions can be found. Unfortunately, for our purposes in this thesis we require
methodology for problems in which analytic solutions can’t be found, which motivates
our use of Monte Carlo methodology.

SMC methods are a class of Monte Carlo methods in which in order to draw inference
on some quantity of interest we would require the simulation of a distribution which is
di�cult to simulate directly, but can be simulated by means of constructing a sequence
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of intermediate distributions (in which for each distribution simulation is comparatively
simple). The key idea is that by sampling some initial distribution (either directly or using
one of the Monte Carlo methods in Section 2), these samples (or particles) can be used
as proposals in an importance sampler (see Section 2.5) for the next distribution in the
sequence. This approach is then applied iteratively until we reach the target distribution,
at which point the importance weighted particles (which jointly form an empirical repre-
sentation of the target density) can be used to draw inference on the problem of interest.

The application of SMC methodology to tackle the filtering problem in HMMs we use in
this thesis, which is also known as Particle Filtering methodology, has gained traction in
recent years as the inherent time structure in HMMs is particularly well suited to SMC. In
the most simplistic setting time itself is used to sequence the intermediate distributions,
with particles being propagated between observation times using the dynamics of the un-
derlying process and importance weighted according to the information obtained from
the noisy observations.

In the second half of this chapter we review particle filtering methodology pertinent for
our needs. In Section 3.2 we introduce Sequential Importance Sampling (SIS). As with
importance sampling, care has to be taken in SIS in choosing an appropriate dominating
proposal density (importance function), which is a topic we discuss in detail in Section
3.3. In Section 3.4 we draw attention to the problem of importance weight degeneracy
that occurs in SIS over long sequences of intermediate distributions (in particular, the
resulting empirical representation of the target density is reliant on a small number of
particles of large weight if SIS is used). To remedy this degeneracy we outline the stan-
dard resampling approaches taken and the alternate Sequential Importance Sampling /
Resampling (SISR) algorithm that can be taken instead of SIS in Sections 3.4 and 3.5.
Finally, in Section 3.6 we motivate and introduce the Auxiliary Particle Filter (APF).

The development of particle filtering methodology is rather disjointed as it was driven
primarily by applications in a broad range of areas. Within this chapter we consider ex-
isting literature within the context of importance sampling (see Section 2.5) as in this
manner it is clear to see that they are variations on a single idea. It is worth noting that
a number of more detailed tutorials and texts exist (such as Doucet et al. [2000], Doucet
and Johansen [2011], Maskell and Gordon [2001] and Doucet et al. [2001]).
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3.1 Hidden Markov Models

Hidden Markov models (HMMs) are classes of models which have broad applicability
in a number of diverse areas (see Cappé et al. [2005] for a general overview), such as
genome analysis (Krogh et al. [2001]), robotics (Hovland and McCarragher [1998]), neu-
ral networks (de Freitas et al. [2000]) and financial modelling (Mamon and Elliot [2007]).
Advancement of this area has been rapid with, for example, consideration to problems of
the control of linear systems in the 1980s (see for instance Davis and Vinter [1985] and
Hannan and Deistler [1988]) and sequential Monte Carlo in the 1990s (see Doucet et al.
[2001]).

HMMs assume that there is some latent (hidden or unobserved) underlying X -valued
generating process {Xt}t�0 of interest known to satisfy the Markov property. However,
the latent process is not observed directly and instead is observed with error through a
Y -valued observation process {Yt}t�1. In general we want to conduct inference on the
latent process by using information from the observation process.

Throughout this section we will assume we are considering HMMs with p-valued la-
tent processes and q-valued observation processes and will further assume the following
State Space Dynamics (SSDs) hold for some static parameter ✓ 2 ⇥,

Property 1 (Initial Latent Process SSD). The latent process has a known initial density.
In particular we have, X0 ⇠ µ✓(·).

Property 2 (Latent Process SSD). The latent process {Xt}t�0 is a first order1 Markov
chain which, conditional on the prior latent state, has a known transition density. In
particular we have, Xt|(Xt�1 = xt�1, . . . , X0 = x0) = Xt|(Xt�1 = xt�1) ⇠ f✓(·|xt�1).

Property 3 (Observation Process SSD). The observation process {Yt}t�1 is conditionally
independent given the latent process, with known density. In particular we have,
Yt|(Xt = xt�1,Yt�1 = yt�1, . . . ,Y0 = y0) = Yt|(Xt = xt�1) ⇠ g✓(·|xt�1).

The relationship between the latent and observation process in a HMM is illustrated as a
directed acyclic graph in Figure 3.1.1.

For ease of exposition, in the remainder of this chapter we introduce some simplify-
ing notation. We denote by xa:b := (xa, xa+1, . . . , xb�1, xb) (where 0  a  b) and

1 n-th order Markov property: The process is dependent on the current state and the n � 1 prior states.
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x0 // x1

✏✏

// · · · // xt�1

✏✏

// xt

✏✏

// · · ·

y1 yt�1 yt

Figure 3.1.1: Directed acyclic graph representing the latent and observation processes of
a Hidden Markov Model.

p✓(·) as a density. We additionally denote from the known SSDs that µ✓(x0) := p✓(x0),
f✓(xt|xt�1) := p✓(xt|xt�1) 8t and g✓(yt|xt) := p✓(yt|xt) 8t. We reserve ⇡✓(·) to denote a
(context specific) target density or a primitive form of the target density. Furthermore we
assume all densities are parameterised by ✓2.

The Markov property of the latent process (Property 2) is particularly useful as it al-
lows the joint density of a sequence of latent states to be represented as the product of
states conditional on a finite number of prior states. In particular, by application of Bayes
rule we have,

⇡✓(x0:t) = p✓(xt|x0:t�1) · p✓(xt�1|x0:t�2) · . . . · p✓(x0)

= µ✓(x0) ·
t

Y

i=1

f✓(xi|xi�1). (3.1)

The manner in which the latent process of a HMM forms this recursive decomposition
is what makes it particularly appealing for tackling online problems. In particular, it is
possible to extend inference to include further observations by reusing existing inference,
so avoiding increased computational cost with increasing numbers of observations. For
instance, considering the joint density of the latent and observation process to the time t
(X0:t and Y1:t respectively) then by applying Bayes rule, conditional probability arguments

2For instance, we more formally have,
R

✓2⇥ p✓(x0:t |y1:t) · �(dx0:t) · µ(d✓) = (x0:t 2 dx0:t |y1:t, ✓ 2 ⇥).
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and the Markov property this can be represented by the following recursion,

⇡✓(x0:t, y1:t) = p✓(y1:t|x0:t) · p✓(x0:t)

= p✓(yt|x0:t) · p✓(y1:t�1|yt, x0:t) · p✓(xt|x0:t�1) · p✓(x0:t�1)

= g✓(yt|xt) · p✓(y1:t�1|x0:t�1) · f✓(xt|xt�1) · p✓(x0:t�1)

= ⇡✓(x0:t�1, y1:t�1) · f✓(xt|xt�1) · g✓(yt|xt) = . . . (3.2)

= µ✓(x0) ·
t

Y

k=1

⇥

f✓(xk|xk�1) · g✓(yk|xk)
⇤

, (3.3)

and so at each time point the joint density can be simply updated by the application of the
latent process transition density convoluted with the likelihood given by the observation
as suggested by (3.2).

Typical inferential problems for HMMs include filtering (where we use the entire ob-
servation process to any point in time to make a probabilistic interpretation of the state of
the latent process at that point in time), prediction (where we use the observation process
to the current point in time to make probabilistic interpretations of the latent process at
future time points) and smoothing (where we make improved probabilistic interpretations
of the latent process at some time point given the observation process before and after that
time point). Within a HMM framework the filtering, prediction and smoothing problems
can all be represented in a recursive manner which we present in Sections 3.1.1, 3.1.2 and
3.1.3 respectively. Finally, in Section 3.1.4 we outline situations in which analytic solu-
tions to these recursive representations can be found (in particular the filtering problem),
highlighting the di�culty in finding solutions in more generalised situations.

3.1.1 The Filtering Problem

The filtering problem is that of making a probabilistic interpretation of the state of the
latent process at a point in time, using the information obtained from the observation
process up to that point in time. We will consider two variants of this problem: the joint
filtering problem, in which we consider the latent process at all times up to that point in
time; and the marginal filtering problem, in which we consider the latent process solely
at that point in time. First considering the joint filtering problem then if we again apply
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Bayes rule and recall (3.2) we have,

⇡✓(x0:t|y1:t) =
p✓(x0:t�1, y1:t�1) · f✓(xt|xt�1) · g✓(yt|xt)

p✓(yt|y1:t�1) · p✓(y1:t�1)

= ⇡✓(x0:t�1|y1:t�1) · f✓(xt|xt�1) · g✓(yt|xt)
p✓(yt|y1:t�1)

, (3.4)

which can be easily interpreted as the normalised recursion of the solution to the joint
filtering problem at the prior time point, with the known latent and observation process
densities (see HMM Properties 2 and 3). Clearly, we can again apply this decomposition
to the joint filtering problem at the prior time point iteratively backwards until such point
that (3.4) is expressed in terms of the known initial latent process density (see Property 1).

Similarly for the marginal filtering problem, by marginalisation and the same arguments
as above we have,

⇡✓(xt|y1:t) =
Z

p✓(xt�1:t|y1:t) dxt�1 (3.5)

=

Z

p✓(xt�1|y1:t) · p✓(xt|xt�1, y1:t) dxt�1

=

Z

"

⇡✓(xt�1|y1:t�1) · p✓(yt|xt�1)
p✓(yt|y1:t�1)

#

·
"

f✓(xt|xt�1) · g✓(yt|xt)
p✓(yt|xt�1)

#

dxt�1

=

Z

⇡✓(xt�1|y1:t�1) · f✓(xt|xt�1) · g✓(yt|xt)
p✓(yt|y1:t�1)

dxt�1 (3.6)

which has a similar interpretation to the joint filtering problem in (3.4).

3.1.2 The Prediction Problem

The prediction problem is that of making probabilistic interpretations of the latent process
at future time points given information about the observation process up to the current
time point. Supposing we are interested in the latent state in p time-steps (given at time t
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the state of the latent process is Xt = xt), then by the same arguments as before we have,

⇡✓(xt+p|y1:t) =
Z

p✓(xt:t+p|y1:t) dxt:t+p�1

=

Z

⇡✓(xt|y1:t) · p✓(xt+1:t+p|xt, y1:t) dxt:t+p�1

=

Z

⇡✓(xt|y1:t) · p✓(xt+1:t+p|xt) dxt:t+p�1 = . . .

=

Z

⇡✓(xt|y1:t) ·
p

Y

k=1

f✓(xt+k|xt+k�1) dxt:t+p�1. (3.7)

This recursive representation is intuitively appealing as it can be thought of simply as the
current filtered distribution propagated p time-steps into the future using the known latent
process transition density (see Property 2).

3.1.3 The Smoothing Problem

Finally, the smoothing problem is that of using all information from the observed pro-
cess currently available to make revised estimates of the marginal filtering problem for
states of the latent process at some prior time. The intuition is that we would expect to
achieve better estimates of the latent state than in the filtering problem as more (future)
information is available. In particular, we are interested in the marginal distribution of
the latent process Xk (for some k 2 [0, t)) conditional on Y1:t, which by applying the same
arguments as before we can find as follows (where we slightly abuse our notation and
denote by ⇡m

✓ the solution to the marginal filtering problem from Section 3.1.1),

⇡✓(xk|y1:t) =
Z

p✓(xk:k+1|y1:t) dxk+1

=

Z

p✓(xk+1|y1:t) · p✓(xk|xk+1, y1:t) dxk+1

=

Z

p✓(xk+1|y1:t) · p✓(xk|xk+1, y1:k) · p✓(yk+1:t|xk:k+1, y1:k)
p✓(yk+1:t|xk+1, y1:k)

dxk+1

=

Z

p✓(xk+1|y1:t) · p✓(xk|xk+1, y1:k) dxk+1

=

Z

p✓(xk+1|y1:t) · p✓(xk|y1:k) · p✓(xk+1|xk, y1:k)
p✓(xk+1|y1:k)

dxk+1

= ⇡m
✓ (xk|y1:k) ·

Z

⇡✓(xk+1|y1:t) · f✓(xk+1|xk)
R

⇡m
✓ (xk|y1:k) · f✓(xk+1|xk) dxk

dxk+1. (3.8)
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Again the solution is intuitively appealing as it is simply the initial estimate of the fil-
tering problem with a backwards recursive modification representing currently observed
information (the terms of which are known).

3.1.4 Implementational Problems and the Kalman Filter

Although the properties of HMMs outlined in Section 3.1 provide explicit recursive rep-
resentations for various inferential problems (as shown in Section 3.1.1 – Section 3.1.3),
explicit calculation relies on the tractability of the constituent densities. When dealing
with high dimensional or highly non-linear set-ups these issues are compounded.

In the specific case of the joint and marginal filtering problems (see (3.4) and (3.5)) the
lack of tractability of the normalising constant p✓(y1:t), is what causes particular prob-
lems. A number of instances where direct and explicit calculation of the filtering problem
is possible exist (namely those illustrated by Vidoni [1999]), however, by far the most
studied is the formulation of the SSDs given within the context of the Kalman filter which
was developed in Kálmán [1960] and Kálmán and Bucy [1961]. In this instance the SSDs
are are all Gaussian, which allows the filtering problem to be solved without the need to
find the normalising constant (although the normalising constant can be found as a by-
product).

A brief illustration of the Kalman filter is considered as it neatly illustrates the use of
HMMs and is useful later when considering both the optimal marginal importance func-
tion (see Section 3.3.1) and the Auxiliary Particle Filter (see Section 3.6). A fuller
account of the Kalman filter can be found in a number of texts, for instance, Meinhold
and Singpurwalla [1983].

To introduce the Kalman filter, suppose the following Gaussian SSDs hold 8t � 1 (de-
noting matrices by upper case emboldened letters and MVN as the multivariate Gaussian
density),

X0 ⇠ MVN (m0,C0) , (3.9)

Xt| (Xt�1 = xt�1) ⇠ MVN (Axt�1,Vt) , (3.10)

Yt| (Xt = xt) ⇠ MVN (Bxt,Wt) , (3.11)
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and further suppose we are interested in the marginal filtering problem of (3.5), noting
that it can be re-expressed as follows,

⇡✓(xt|y1:t) =
g✓(yt|xt) · p✓(xt|y1:t�1)

p✓(yt|y1:t�1)
. (3.12)

Following an induction argument it can be shown that,

Xt| (Y1:t = y1:t) ⇠ MVN (mt,Ct) . (3.13)

Trivially, for t = 0 we have X0 ⇠ MVN(m0,C0) which agrees with (3.13). Assuming the
solution to the marginal filtering problem at time t � 1 is,

Xt�1|(Y1:t�1 = y1:t�1) ⇠ MVN(mt�1,Ct�1), (3.14)

we will show that (3.13) holds by computing analytically the density of (3.12) and show-
ing it is Gaussian.

First considering the predictive density p✓(xt|y1:t�1) in (3.12), it can be shown that it is
also Gaussian. In particular, applying a marginalisation argument, the latent process tran-
sition density (3.10) and the density of the marginal filtering problem at time t � 1 (3.14),
we have,

p✓(xt|y1:t�1) =
Z

p✓(xt�1:t|y1:t�1) dxt�1 =

Z

f✓(xt|xt�1) · ⇡✓(xt�1|y1:t�1) dxt�1

/
Z

exp
(

�1
2

h

(xt�Axt�1)T V�1
t (xt�Axt�1)+(xt�1�mt�1)T C�1

t�1 (xt�1�mt�1)
i

)

dxt�1

=

Z

exp
(

�1
2

h

xT
t�1

⇣

AT V�1
t A+C�1

t�1

⌘

xt�1�2xT
t�1

⇣

AT V�1
t xt+C�1

t�1mt�1
⌘

+xT
t V�1

t xt
i

)

dxt�1,

denoting by Q�1
t := AT V�1

t A+C�1
t�1 and nt := Qt(AT V�1

t xt+C�1
t�1mt�1), then we have,

p✓(xt|y1:t�1) / exp
(

�1
2

h

xT
t V�1

t xt�nT
t Q�1

t nt
i

)

Z

exp
(

�1
2

(xt�1�nt)T Q�1
t (xt�1�nt)

)

dxt�1

|                                                    {z                                                    }

/1

/ exp
(

�1
2

h

xT
t

⇣

V�1
t �V�1

t AQtAT V�1
t

⌘

xt�2xT
t

⇣

V�1
t AQtC�1

t�1mt�1
⌘i

)

,
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denoting by P�1
t := V�1

t �V�1
t AQtAT V�1

t and applying the Woodbury Matrix Identity
(see Woodbury [1950]) we have Pt = Vt +ACt�1AT . Now, noting that V�1

t AQt = (V�1
t �

P�1
t )Vt(AT )�1 then we have directly that Pt(V�1

t AQtC�1
t�1mt�1) = Amt�1, and so we have,

p✓(xt|y1:t�1) / exp
(

�1
2

(xt � Amt�1)T P�1
t (xt � Amt�1)

)

/ MVN (xt; Amt�1,Pt) , (3.15)

and so we have shown the predictive density p✓(xt|y1:t�1) is Gaussian as desired.

Returning to the marginal filtering density in (3.12) and applying the known observation
process error density (3.11) and the result in (3.15), we find,

⇡✓(xt|y1:t) =
g✓(yt|xt) · p✓(xt|y1:t�1)

p✓(yt|y1:t�1)
/ g✓(yt|xt) · p✓(xt|y1:t�1) (3.16)

/ exp
(

�1
2

h

(yt � Bxt)T W�1
t (yt � Bxt) + (xt � Amt�1)T P�1

t (xt � Amt�1)
i

)

/ exp
(

�1
2

h

xT
t

⇣

P�1
t + BT W�1

t B
⌘

xt � 2xT
t

⇣

P�1
t Amt�1 + BT W�1

t yt
⌘i

)

, (3.17)

denoting by C�1
t := P�1

t + BT W�1
t B = (Vt + ACt�1AT )�1 + BT W�1

t B and by mt :=
Ct(P�1

t Amt�1 + BT W�1
t yt) = Ct[(Vt + ACt�1AT )�1Amt�1 + BT W�1

t yt], then we have,

⇡✓(xt|y1:t) / exp
(

�1
2

(xt � mt)T C�1
t (xt � mt)

)

/ MVN(xt; mt,Ct). (3.18)

As a consequence we have shown that the marginal filtering density in (3.12) is Gaussian
and so (3.13) holds by induction as desired.

Intuitively the Kalman filter can be thought of (rather simply) as the recursion of a prior
Gaussian state and Gaussian information to give a Gaussian posterior, which is then used
at the next time point as the prior. In Figure 3.1.2 we present an example of a Kalman fil-
ter applied to a simulated observation process overlaid with the underlying latent process.

Although a HMM with Gaussian SSDs may seem limiting various extensions have been
made which generalise the methodology to more complicated HMMs which have non-
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linear and non-Gaussian SSDs. This is achieved by modifying the SSDs to fit them
within the framework of the Kalman filter. Examples of such extensions include the
Extended Kalman Filter, in which in cases where the SSDs are non-linear but su�ciently
smooth considers a linearised version of them (see Anderson and Moore [1979] and Sec-
tion 3.3.1.2 for a more detailed discussion), and the Unscented Kalman Filter, in which
for highly non-linear SSDs involves deterministically sampling from the prior density
(drawing so called Sigma Points) propagating the samples through the model SSDs and
reconstructing the mean and covariance of the posterior (see Julier and Uhlmann [2004]).
However, in all of these modifications to the Kalman filter we are making implicit approx-
imations which, depending on the degree of true non-linearity and non-Gaussianity in the
HMM, result in the particular choice of modified Kalman filter performing arbitrarily
badly (without any grasp on how badly that may be).
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(b) Trace of the process variances over time (the latent and observation
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marginal variance).

Figure 3.1.2: An illustrative example of the Kalman filter applied to the HMM filtering
problem with SSDs as follows, X0 ⇠ N(0, 10), Xt|(Xt�1 = xt�1) ⇠ N(0, 1) and Yt|(Xt =

xt) ⇠ N(0, 7.5).



3.2 Sequential Importance Sampling

Sequential Importance Sampling (SIS) (which in its simplest form dates back to at least
Hammersley and Morton [1954] and Rosenbluth and Rosenbluth [1955], where the focus
was on developing Monte Carlo methods for simulating long chain polymers), is sim-
ply an application of importance sampling (see Section 2.5) to the joint filtering problem
(3.4), which as noted in Section 3.1.1 can be represented as the normalised recursion of
the joint filtering density at the prior time point with the transition density of the latent
process and the observation process error density. As briefly discussed in Section 3.1.4,
the key problem to finding a representation of the filtering density is calculating the nor-
malising constant, which in the case of the Kalman filter does not need to be calculated
directly as the Gaussian SSDs and the resulting Gaussian densities which arise from the
multiplication and convolution of these SSDs allows for it to be calculated indirectly.
However, this is not possible for more general SSDs. The key idea presented in Gordon
et al. [1993] is that evaluating the normalising constant can be circumvented by using
importance sampling as the resulting importance weighted samples can jointly provide
an unbiased estimate of the normalising constant (as we highlighted in (2.12) on page 23
of Section 2.5). As such we can restrict our attention to the unnormalised joint filtering
problem,

⇡✓(x0:t|y1:t) / ⇡✓(x0:t�1|y1:t�1) · f✓(xt|xt�1) · g✓(yt|xt). (3.19)

Proceeding in the same manner as Section 2.5 we will suppose there exists some domi-
nating density q✓(x0:t|y1:t) (which we will term the joint importance function), which has
support including that of ⇡✓(x0:t|y1:t). Furthermore, we will choose the joint importance
function in such a way that it allows recursive updates in time as subsequent observations
from the observation process become available,

q✓(x0:t|y1:t) = q✓(x0:t�1|y1:t�1) · q✓(xt|x0:t�1, y1:t). (3.20)

To avoid confusion we term the primitive q✓(x0:t�1|y1:t�1) as the prior joint importance
function and q✓(xt|x0:t�1, y1:t) as the marginal importance function. We avoid at this stage
discussing the explicit form of the importance functions, which we discuss later in Sec-
tion 3.3.

Now, suppose we want to evaluate expectations of the following form (where h is some
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test function),

⇡✓(x0:t |y1:t) [h(X0:t)] :=
Z

h(x0:t) · ⇡✓(x0:t|y1:t) dx0:t, (3.21)

then re-expressing this expectation as an expectation with respect to our joint importance
function q✓(x0:t|y1:t), and applying (3.19) and (3.20) we have,

⇡✓(x0:t |y1:t) [h(X0:t)] =
Z

h(x0:t) · ⇡✓(x0:t|y1:t)
q✓(x0:t|y1:t)

· q✓(x0:t|y1:t) dx0:t

/
Z

h(x0:t) · ⇡✓(x0:t�1|y1:t�1)
q✓(x0:t�1|y1:t�1)

· f✓(xt|xt�1) · g✓(yt|xt)
q✓(xt|x0:t�1, y1:t)

|                                            {z                                            }

:=w⇤t (x0:t) :=w⇤t�1(x0:t�1)·w⇤t | (t�1)(x0:t)

·q✓(x0:t|y1:t) dx0:t (3.22)

= q✓(x0:t |y1:t)
⇥

h(X0:t) · w⇤t (X0:t)
⇤

, (3.23)

and so by applying the same argument as in (2.12) we have,

q✓(x0:t |y1:t)
⇥

h(X0:t) · w⇤t (X0:t)
⇤

q✓(x0:t |y1:t)
⇥

w⇤t (X0:t)
⇤ = ⇡✓(x0:t |y1:t) [h(X0:t)] . (3.24)

We could, provided q✓(x0:t|y1:t) is accessible, draw X(1)
0:t , X

(2)
0:t , . . . , X

(N)
0:t

iid⇠ q✓(x0:t|y1:t) and
assign the samples importance weights wt(X(i)

0:t) := w⇤t (X(i)
0:t)/

PN
j=1 w⇤t (X( j)

0:t ) in order to
construct an asymptotically unbiased estimator of the target expectation in (3.21) (as
we did in Section 2.5). By convention within the literature these samples are termed
particles and the set of importance weighted particles (the particle set) are denoted by
{x(i)

0:t,w
(i)
t }Ni=1 := {X(i)

0:t,wt(X(i)
0:t)}Ni=1. In e↵ect the particle set forms a discrete approximation

of the joint filtering density (denoting � as the Dirac delta measure),

⇡✓(x0:t|y1:t) dx0:t ⇡ ⇡N
✓ (dx0:t|y1:t) :=

N
X

i=1

w(i)
t · �x(i)

0:t
(dx0:t). (3.25)

The problem with simulating the particle set as suggested above is three-fold: q✓(x0:t|y1:t)
may not be directly accessible (typically this density is accessible by construction, but
in the setting we consider in this thesis, as detailed in Chapter 7, this density is not ac-
cessible); evaluating the weight function in (3.22) requires access to the prior joint fil-
tering problem; and, with increasing observations the computational cost of constructing
the unbiased estimator will increase (we would ideally have instead an online solution).
Note however that the joint importance function has a recursive form by construction (see
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(3.20)), and the unnormalised particle weights also have a recursive form as suggested by
(3.22),

w⇤(i)t := w⇤(i)t�1 ·
f✓

⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

q✓
⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

. (3.26)

As suggested by these recursive representations, given a particle set for the prior filtering
density {x(i)

0:t�1,w
(i)
t�1}Ni=1 (which forms a discrete approximation of ⇡✓(x0:t�1, y1:t�1)), the

trajectory of each particle can be extended to time t, re-weighted and then the weights
normalised. Extension of each particle trajectory to time t can be preformed by sampling
the marginal importance function, x(i)

t ⇠ q✓(xt|x(i)
0:t�1, y1:t) (which, as discussed later in

Section 3.3, is typically accessible by construction), and then setting x(i)
0:t := {x(i)

0:t�1, x
(i)
t }.

Updating the unnormalised importance weights can be performed as per (3.26) and nor-
malised such that w(i)

t := w⇤(i)t /
PN

j=1 w⇤( j)
t . The resulting particle set then forms a discrete

approximation of the current joint filtering density (as in (3.25)).

In order to simulate an initial particle set we can exploit the known SSDs (see Section
3.1 Properties 1–3) and simply draw x(1)

0 , x
(2)
0 , . . . , x

(N)
0

iid⇠ µ✓(x0), which will either be
possible directly or by employing one of the Monte Carlo methods presented in Chapter
2. Following an inductive argument it is possible to extend the particle set at any point in
time to include further observations, and in doing so provide an online solution to filtering
sequential observations. Calculating the normalising constant is entirely circumvented as
suggested by (3.24), as the particle weights themselves jointly form an unbiased estimate
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of p✓(y1:t),

q✓(x0:t |y1:t)
⇥

w⇤t
⇤

= q✓(x0:t�1 |y1:t�1)

"

q✓(x0:t |y1:t)

 

w⇤t�1 ·
f✓(xt|xt�1) · g✓(yt|xt)

q✓(xt|x0:t�1, y1:t)

�

�

�

�

�

x0:t�1

!#

= q✓(x0:t�1 |y1:t�1)

"

w⇤t�1 · q✓(xt |x0:t�1,y1:t)

 

f✓(xt|xt�1) · g✓(yt|xt)
q✓(xt|x0:t�1, y1:t)

!#

= q✓(x0:t�1 |y1:t�1)
h

w⇤t�1 · p✓(yt|xt�1)
i

(3.27)

= q✓(x0:t�2 |y1:t�2)

"

q✓(x0:t�1 |y1:t�1)

"

w⇤t�2 ·
f✓(xt�1|xt�2) · g✓(yt�1|xt�1)

q✓(xt�1|x0:t�2, y1:t�1)
· p✓(yt|xt�1)

�

�

�

�

�

x0:t�2

##

= q✓(x0:t�2 |y1:t�2)

"

w⇤t�2 ·
Z

f✓(xt�1|xt�2) · g✓(yt�1|xt�1) · p✓(yt|xt�1) dxt�1

#

= q✓(x0:t�2 |y1:t�2)

"

w⇤t�2 ·
Z

p✓(xt�1, yt�1:t|xt�2) dxt�1

#

= q✓(x0:t�2 |y1:t�2)
h

w⇤t�2 · p✓(yt�1:t|xt�2)
i

= · · ·
=

Z

p✓(y1:t|x0) · µ✓(x0) dx0 = p✓(y1:t). (3.28)

The above argument leads to the SIS algorithm which we present in Algorithm 3.2.1,
which can be used for tackling filtering problems for a broader class of SSDs than the
Kalman filter in Section 3.1.4 (which was limited to Gaussian SSDs).

It should be noted that there are a number of implementational considerations which we
have not yet discussed but instead address later in this chapter. In particular, in analogous
fashion to importance sampling, it is critical to choose an appropriate marginal impor-
tance function. In the context of SIS this can be interpreted as ensuring the prior particle
set is propagated into areas of the sample space which are su�ciently likely, which is
an issue we address in Sections 3.3 and 3.6. Another closely related issue is that of par-
ticle degeneracy, whereby the particle set becomes increasingly dominated by heavily
weighted particles over increasing numbers of observations, thereby resulting in coarse
approximations to the joint filtering density. This can be addressed by resampling and
the alternate Sequential Importance Sampling / Resampling (SISR) algorithm which we
discuss in Section 3.4.
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Algorithm 3.2.1 Sequential Importance Sampling (SIS) Algorithm [Gordon et al., 1993].

Initialisation Step (t = 0):-

1. For i in 1 to N simulate x(i)
0 ⇠ µ✓(x0) and set w(i)

0 = 1/N.

2. Set ⇡N
✓ (dx0) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. For i in 1 to N,

(a) Simulate x(i)
t ⇠ q✓

⇣

xt

�

�

�

�

x(i)
0:t�1, y1:t

⌘

and set x(i)
0:t :=

n

x(i)
0:t�1, x

(i)
t

o

.

(b) Set w⇤(i)t = w⇤(i)t�1 ·
f✓

⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

q✓
⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

.

2. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

3. Set ⇡N
✓ (dx0:t|y1:t) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).

3.3 Marginal Importance Function Selection

As outlined briefly in Section 3.2, in order to implement Algorithm 3.2.1 we need to
choose an appropriate marginal importance function, q✓(xt|x0:t�1, y1:t). As with impor-
tance sampling (see Section 2.5), a natural choice of the marginal importance function
is the one that minimises the variance of the importance weights, or noting the follow-
ing representation, minimises the marginal increase in the variance of the importance
weights,

arq✓(x0:t | y1:t)
⇥

w⇤t
�

�

� x0:t�1
⇤

=
⇣

w⇤t�1

⌘2 · arq✓(xt | x0:t�1,y1:t)

"

f✓(xt|xt�1) · g✓(yt|xt)
q✓(xt|x0:t�1, y1:t)

#

. (3.29)

Denoting by w⇤t | (t�1)(x0:t) := f✓(xt|xt�1) ·g✓(yt|xt)/q✓(xt|x0:t�1, y1:t) – which is the marginal
change in the weight function from (3.22) – we want to choose q✓(xt|x0:t�1, y1:t) to min-
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imise the following expression,

arq✓(xt |x0:t�1,y1:t)
h

w⇤t | (t�1)(x0:t)
i

= q✓(xt |x0:t�1,y1:t)



⇣

w⇤t | (t�1)(x0:t)
⌘2

�

�
⇣

q✓(xt |x0:t�1,y1:t)
h

w⇤t | (t�1)(x0:t)
i⌘2

=

Z

( f✓(xt|xt�1) · g✓(yt|xt))2

q✓(xt|x0:t�1, y1:t)
dxt �

 

Z

f✓(xt|xt�1) · g✓(yt|xt) dxt

!2

=

 

Z

( f✓(xt|xt�1) · g✓(yt|xt))2

q✓(xt|x0:t�1, y1:t)
dxt

!

� (p✓(yt|xt�1))2 . (3.30)

In the rest of this section we present a number of alternate choices for the marginal impor-
tance function. In Section 3.3.1 we present the Optimal Marginal Importance Function
along with illustrative examples of SSDs in which it can be found in Sections 3.3.1.1 and
3.3.1.2. In practice finding a tractable representation for the optimal importance function
can be di�cult, so we also introduce the Prior Marginal Importance Function in Section
3.3.2 (which was the selection originally proposed in Gordon et al. [1993] for inclusion
within the SIS algorithm of Section 3.2) and, for completeness, the Fixed Marginal Im-
portance Function in Section 3.3.3.

3.3.1 Optimal Marginal Importance Function

Selection of the marginal importance function q✓(xt|x0:t�1, y1:t) := p✓(xt|xt�1, yt) was first
introduced in Zaritskii et al. [1975] and Akashi and Kumamoto [1977]. It was further
shown in Doucet et al. [2000] that it is the Optimal Marginal Importance Function as
substituting it into (3.30) and applying Bayes’ rule reduces the variance of the marginal
importance weight function to zero,

arq✓(xt |x0:t�1,y1:t)
h

w⇤t | (t�1)(x0:t)
i

=

 

Z

( f✓(xt|xt�1) · g✓(yt|xt))2

p✓(xt|xt�1, yt)
dxt

!

� (p✓(yt|xt�1))2

=

 

Z

f✓(xt|xt�1) · g✓(yt|xt) · p✓(yt|xt�1) dxt

!

� (p✓(yt|xt�1))2

=

 

p✓(yt|xt�1) ·
Z

p✓(xt, yt|xt�1) dxt

!

� (p✓(yt|xt�1))2

= (p✓(yt|xt�1))2 � (p✓(yt|xt�1))2 = 0. (3.31)
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Furthermore, with this selection of marginal importance function the importance weights
in Algorithm 3.2.1 Step 1b are updated as follows,

w⇤(i)t := w⇤(i)t�1 ·
f✓

⇣

xt

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

p✓
⇣

xt

�

�

�

�

x(i)
t�1, yt

⌘

= w⇤(i)t�1 · p✓
⇣

yt

�

�

�

�

x(i)
t�1

⌘

. (3.32)

The optimal marginal importance function is typically not implementable directly as
samples are required from the future state p✓(xt|xt�1, yt) and additionally the generally
intractable p✓(yt|xt�1) has to be evaluated. Techniques to overcome these issues are typi-
cally analogous to techniques used for the Kalman filter such as local linearisation of the
HMM (similar to the extended Kalman filter) and local linearisation of the optimal im-
portance function (using a Taylor expansion) as illustrated in Doucet et al. [2000]. Note
however that unlike analytic approximations of the filter, the approximation error intro-
duced here is controlled. In particular, it results in an increase in Monte Carlo variance
which can be reduced by simply increasing the size of the particle set.

3.3.1.1 Linear Gaussian State Space Dynamics Example

As discussed in Section 3.3.1, in order to implement Algorithm 3.2 with the optimal
marginal importance function we require access to both p✓(xt|xt�1, yt) and p✓(yt|xt�1). In
order to illustrate a simple example of this lets consider a HMM with the same linear
Gaussian SSDs as the Kalman filter in Section 3.1.4 (see (3.9), (3.10) and (3.11)).

First considering the density p✓(xt|xt�1, yt) note that, in a similar manner to Section 3.1.4,
by applying Bayes rule then under the SSDs of (3.9) – (3.11) it can be represented as the
multiplication of two Gaussian densities and hence is Gaussian itself,

p✓(xt|xt�1, yt) / f✓(xt|xt�1) · g✓(yt|xt)

/ exp
(

�1
2

h

(xt � Axt�1)T V�1
t (xt � Axt�1) + (yt � Bxt)T W�1

t (yt � Bxt)
i

)

/ exp
(

�1
2

h

xT
t

⇣

V�1
t + BT W�1

t B
⌘

xt � 2xT
t

⇣

V�1
t Axt�1 + BT W�1

t yt
⌘i

)

/ MVN
✓

⇣

V�1
t +BT W�1

t B
⌘�1 ⇣

V�1
t Axt�1+BT W�1

t yt
⌘

,
⇣

V�1
t +BT W�1

t B
⌘�1

◆

. (3.33)
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Now considering the density p✓(yt|xt�1), it can be shown to be the convolution of two
Gaussian densities and hence also Gaussian. In particular, we have,

p✓(yt|xt�1) =
Z

p✓(xt, yt|xt�1) dxt =

Z

f✓(xt|xt�1) · g✓(yt|xt) dxt

/
Z

exp
(

�1
2

h

xT
t

⇣

V�1
t +BT W�1

t B
⌘

xt�2xT
t

⇣

V�1
t Axt�1+BT W�1

t yt
⌘

+yT
t W�1

t yt
i

)

dxt,

now, following the same calculation as in (3.15) and again applying the Woodbury Matrix
Identity (see Woodbury [1950]), we have (denoting by Z�1

t := V�1
t +BT W�1

t B and st :=
Zt(V�1

t Axt�1+BT W�1
t yt)),

p✓(yt|xt�1) / exp
(

�1
2

h

yT
t W�1

t yt�sT
t Z�1

t st
i

)

Z

exp
(

�1
2

(xt�st)T Z�1
t (xt�st)

)

dxt

|                                           {z                                           }

/1

/ exp
(

�1
2

h

yT
t

⇣

W�1
t �W�1

t BZtBT W�1
t

⌘

yt�2yT
t

⇣

W�1
t BZtV�1

t Axt�1
⌘i

)

/ exp
(

�1
2

(yt � BAxt�1)T
⇣

Wt + BVtBT
⌘�1

(yt � BAxt�1)
)

/ MVN
⇣

BAxt�1,Wt + BVtBT
⌘

. (3.34)

We conclude this subsection by providing an illustrative example of a particle filter with
optimal marginal importance function in Figure 3.3.1.
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(a) The observation process, particle filter and Kalman filter with confi-
dence interval, overlaid with the underlying latent process.
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(b) Trace of the process variances over time (the latent and observa-
tion process being conditional variances, whereas the particle filter is
the posterior variance estimate).

Figure 3.3.1: An illustrative example of a particle filter (with an optimal marginal im-
portance function selection) of 100 particles applied to the HMM filtering problem with
SSDs as follows, X0 ⇠ N(0, 10), Xt|(Xt�1 = xt�1) ⇠ N(0, 1) and Yt|(Xt = xt) ⇠ N(0, 7.5).



3.3.1.2 Non-linear Gaussian State Space Dynamics Example

In a similar fashion to the extension of the Kalman filter to the extended Kalman filter it
is worthwhile considering cases where the HMM has non-linear SSDs,

X0 ⇠ MVN(m0,C0), (3.35)

Xt|(Xt�1 = xt�1) ⇠ MVN (a(xt�1),Vt) , (3.36)

Yt|(Xt = xt) ⇠ MVN (b(xt),Wt) . (3.37)

Assuming that both a and b are di↵erentiable, then as per Doucet et al. [2000] and An-
derson and Moore [1979], applying a first order approximation of the observation mean
we have (letting D represent some constant),

b(xt) ⇡ b (a(xt�1)) +
@b(xt)
@xt

�

�

�

�

�

�

xt=a(xt�1)
(xt � a(xt�1))

=
@b(xt)
@xt

�

�

�

�

�

�

xt=a(xt�1)
xt +

0

B

B

B

B

B

@

b (a(xt�1)) � @b(xt)
@xt

�

�

�

�

�

�

xt=a(xt�1)
a(xt�1)

1

C

C

C

C

C

A

=: Mxt + D. (3.38)

Now considering the approximated optimal marginal importance function
q✓(xt|x0:t�1, y1:t) := p̂✓(xt|xt�1, yt) (or more intuitively the optimal marginal importance
function for the approximated HMM), then in a similar manner to (3.33) we find,

p̂✓(xt|xt�1, yt) / f✓(xt|xt�1) · ĝ✓(yt|xt)

/ exp
(

�1
2

h

(xt � a(xt�1))T V�1
t (xt � a(xt�1)) + (yt �Mxt � D)T W�1

t (yt �Mxt � D)
i

)

/ MVN
✓

⇣

V�1
t +MT W�1

t M
⌘�1 ⇣

V�1
t a(xt�1) +MT W�1

t (yt � D)
⌘

,
⇣

V�1
t +MT W�1

t M
⌘�1

◆

.

Now considering the approximated density p̂✓(yt|xt�1), in analogous fashion to (3.15) and
(3.34), we have,

p̂✓(yt|xt�1) =
Z

f✓(xt|xt�1) · ĝ✓(yt|xt) dxt

/ exp
(

�1
2



(yt � D)T W�1
t (yt � D) �

⇣

V�1
t a(Xt) +MT W�1

t (yt � D)
⌘T

⇣

V�1
t +MT W�1

t M
⌘�1 ⇣

V�1
t a(Xt) +MT W�1

t (yt � D)
⌘

�

)

/ MVN
⇣

Ma(xt�1),Wt +MVtMT
⌘

. (3.39)
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It should be noted that although many of the techniques employed to the optimal marginal
importance function in order to broaden its application are similar to those of the Kalman
filter, particle filters have the distinct advantage that the sub-optimality of any given
marginal importance function proposed is captured within the state estimates (as an in-
crease in Monte Carlo variance) whereas the Kalman filter simply provides an approxi-
mation to the Gaussian case without any explicit evaluation of the discrepancy.

To finish this section, we provide an example of a particle filter (with linearised optimal
marginal importance function) applied to a highly non-linear HMM in Figure 3.3.2.
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(a) The observation process and particle filter, overlaid with the under-
lying latent process.
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(b) A heat map of the empirical marginal filtering density over time
(from blue indicating low density, to red indicating high density), over-
laid with the underlying latent process (black line).

Figure 3.3.2: An illustrative example of a particle filter (with a linearised optimal
marginal importance function selection) of 1000 particles applied to a highly non-linear
HMM filtering problem with SSDs as follows, X0 ⇠ N
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3.3.2 Prior Marginal Importance Function

The Prior Importance Function with the importance function selection q✓(xt|x0:t�1, y1:t) :=
f✓(xt|xt�1), was introduced in Handschin and Mayne [1969] and is so called as the choice
of importance function does not take into account the current observation. It should be
noted that the original particle filter proposed in Gordon et al. [1993] (the bootstrap fil-
ter), in e↵ect used a prior marginal importance function. The importance weights for
implementation in Algorithm 3.2 can be shown to be,

w⇤(i)t = w⇤(i)t�1 ·
f✓

⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

f✓
⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

= w⇤(i)t�1 · g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

. (3.40)

The prior marginal importance function is considerably easier to evaluate as the update to
the importance weights is a known element of the SSDs. However it su↵ers from more
rapid degeneracy (see Section 3.4) as it is overly sensitive to the current observation. In
e↵ect information regarding the observation process is incorporated one step later than
optimal resulting in poor propagation of the prior samples to the posterior state. More
formally the results relating to importance weight variance in the optimal case (Section
3.3.1) show the prior importance function to be sub-optimal. On the other hand it is
very intuitively appealing as the new importance weights are simply the prior importance
weights adjusted for the new observation.

3.3.3 Fixed Marginal Importance Function

The Fixed Marginal Importance Function with the marginal importance function selec-
tion q✓(xt|x0:t�1, y1:t) := p✓(xt) was first proposed in Tanizaki [1993] and Tanizaki and
Mariano [1994] and is arguably an even simpler importance function selection. However,
as it in no way incorporates the observation, or the sample path dynamics, it performs
very poorly. For completeness, the importance weights can be found as follows,

w⇤(i)t = w⇤(i)t�1 ·
f✓

⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

p✓
⇣

x(i)
t

⌘ . (3.41)
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3.4 Sequential Importance Sampling / Resampling

The Sequential Importance Sampling algorithm detailed in Algorithm 3.2 su↵ers from
particle degeneracy, whereby the particle set on average becomes increasingly dominated
by heavily weighted particles over increasing numbers of observations, thereby resulting
in coarse approximations to the joint filtering density. As shown in Kong et al. [1994] and
Doucet et al. [2000], the variance of the sample path importance weights stochastically
increases as the random observation process evolves.

To show this we can consider the ith particle process, which can be thought of as evolving
as per the directed acyclic graph in Figure 3.4.1, and examine how its associated impor-
tance weight changes over one time step with the inclusion of one further observation. To
begin note that the joint density of the ith particle process and the observation process is
as follows,

x0 // x1

✏✏

// x2

✏✏

// · · · // xt�1

✏✏

// xt

✏✏

// · · ·

y1

✏✏

y2

✏✏

· · · yt�1

✏✏

yt

✏✏

· · ·

x(i)
0

// x(i)
1

// x(i)
2

// · · · // x(i)
t�1

// x(i)
t

// · · ·

Figure 3.4.1: Directed acyclic graph representing the observation process of a Hidden
Markov Model and the ith particle process under the SIS algorithm.
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. (3.42)
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Now, under the random evolution of this process the importance weight of the ith particle
is a martingale,

q✓
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x(i)
t ,yt

�

�

�

�

x(i)
0:t�1,y1:t�1

⌘

2

6

6

6

6

6

4

w⇤(i)t
p✓(y1:t)

3

7

7

7

7

7

5

=

Z Z w⇤(i)t�1
p✓(y1:t�1)

·
f✓

⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

p✓(yt|y1:t�1) · q
⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

·
✓

p✓(yt|y1:t�1) · q
⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

◆

dx(i)
t dyt

=
w⇤(i)t�1

p✓(y1:t�1)
·
Z Z

p✓
⇣

x(i)
t , yt

�

�

�

�

x(i)
0:t�1

⌘
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, (3.43)

and so by the law of total variance we have that the variance of the importance weight is
stochastically increasing over time,
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Resampling is the natural solution to particle degeneracy. If the importance weights
are deemed to have degenerated su�ciently then new sample paths are drawn from the
weighted empirical distribution of the current state and the importance weights are reset
to have equal weighting. In order to decide at which point to resample the heuristic is
that we compare the number of particles of the particle set of size N which e↵ectively
contribute to the state estimates, Ne↵, to some user specified threshold, Nth. As proposed
by Kong [1992] and extended in Kong et al. [1994], a natural approach to choosing and
calculating Ne↵ (or the E↵ective Sample Size) is to set it equal to the number of equally
weighted independent samples drawn from the joint filtering density (⇡✓(x0:t|y1:t)) that
would be required in order to achieve the same Monte Carlo variance as the existing N
particles from the joint importance function (q✓(x0:t|y1:t)). This leads to the following
heuristic,

Ne↵ := N · ar⇡✓(x0:t |y1:t) [h(X0:t)]
arq✓(x0:t |y1:t) [h(X0:t) · wt(X0:t)]

. (3.45)
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As (3.45) can’t readily be evaluated, Kong et al. [1994] apply the delta method using the
first two moments of w and h which results in the following approximation,

Ne↵ ⇡ N
1 + arq✓(x0:t |y1:t) [wt(X0:t)]

(3.46)

=
N

⇣

q✓(x0:t |y1:t) [wt(X0:t)]
⌘2
+ arq✓(x0:t |y1:t) [wt(X0:t)]

=
N

q✓(x0:t |y1:t)
⇥

(wt(X0:t))2⇤

⇡ 1
PN

i=1

⇣

w(i)
t

⌘2 =: dNe↵. (3.47)

In summary, it can be shown that the importance weights in the SIS algorithm (see Al-
gorithm 3.2.1) are stochastically increasing over time (see (3.44)) and that to combat this
a resampling mechanism can be introduced whereby resampling occurs whenever the ef-
fective sample size degenerates below some threshold level. The precise manner in which
resampling is conducted is addressed in Section 3.5. This leads to the extension of the SIS
algorithm to the Sequential Importance Sampling / Resampling (SISR) algorithm which
we present in Algorithm 3.4.1. In its simplest form the SISR algorithm was proposed
in Gordon et al. [1993], however, the algorithm we present accounts for the insight of-
fered by the e↵ective sample size argument presented above (as proposed by Kong et al.
[1994]), along with the importance function selection discussed in Section 3.3 and the
resampling algorithms which are presented in Section 3.5.

Additional complications arise from the SISR algorithm that are not present in the SIS
algorithm. As illustrated in Figure 3.4.2, as an artefact of resampling a number of the par-
ticles at any time point will share common ancestors and so sample paths are no longer
independent. Furthermore this problem is exacerbated over time as at resampling times
there is some probability that entire ancestor paths are lost. As such obtaining conver-
gence results is more involved in this setting (although there exists an extensive literature,
for instance, Chopin [2004], Künsch [2005] and [Del Moral, 2004, Chap. 9]). These
issues however are not addressed in this thesis.
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Algorithm 3.4.1 Sequential Importance Sampling / Resampling (SISR) Algorithm [Gor-
don et al., 1993].

Initialisation Step (t = 0):-

1. For i in 1 to N simulate x(i)
0 ⇠ µ✓(x0), set w(i)

0 = 1/N.

2. Set ⇡N
✓ (dx0) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. If dNe↵  Nth then for i in 1 to N sample x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t�1) (as per Algorithm
3.5.1, 3.5.2, 3.5.3 or 3.5.4) and set w(i)

t�1 = 1/N.

2. For i in 1 to N,

(a) Simulate x(i)
t ⇠ q✓

⇣

xt

�

�

�

�

x(i)
0:t�1, y1:t

⌘

and set x(i)
0:t :=

n

x(i)
0:t�1, x

(i)
t

o

.

(b) Set w⇤(i)t = w(i)
t�1 ·

f✓
⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣
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�

�

�

�

x(i)
t

⌘

q✓
⇣

x(i)
t

�

�
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�

x(i)
0:t�1, y1:t

⌘

.

3. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

4. Set ⇡N
✓ (dx0:t|y1:t) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).

3.5 Resampling Methods

Within the Sequential Importance Sampling / Resampling algorithm (Algorithm 3.4) and
as discussed in Section 3.4, in order to combat importance weight degeneracy the par-
ticle set is resampled if the e↵ective sample size (Ne↵) falls below some user specified
threshold (Nth). This ensures that future state estimation isn’t reliant on only a small pro-
portion of the particles in the particle set (which are relatively heavily weighted), and that
computation isn’t spent on updating particles which have negligible weight. However,
resampling necessarily increases current state estimate variance as the resampled state
estimate is merely an approximation of the original state estimate. Indeed, for this reason
in any particular iteration of SISR the particle set which is resampled is that which forms
the state estimate of the prior state, {x(i)

0:t�1,w
(i)
t�1}Ni=1, and is conducted prior to the propa-

gation and re-weighting of the particle set at the current iteration.
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Figure 3.4.2: An illustration of 250 particle sample paths arising from the Sequential
Importance Sampling / Resampling algorithm under the SSDs in Figure 3.3.1 over the in-
terval [1, 30] using the optimal marginal importance function and multinomial resampling
(see Section 3.5.1). Sample paths in black denote the ancestry of the particles constituting
the empirical joint filtering density at time 30, whereas sample paths in red indicate those
which were no longer included after a resampling point.

Now, addressing how to best resample the particle set (x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t�1)), we
follow some guiding principles. To begin with we would typically want the resampled
particle set, {x̃(i)

0:t�1, 1/N}Ni=1, to be composed of N particles as having a stable number of
particles at all times is advantageous for implementational reasons. Furthermore, as we
are sampling from the existing particle set we naturally consider the number of o↵spring
O(i)

t�1 of each existing particle (the number of times each particle sample path is resam-
pled). Considering the o↵spring gives us some traction in determining how to resample.
In particular, it is clearly desirable to ensure unbiasedness, (O(i)

t�1|w(i)
t�1) = N ·w(i)

t�1 8i 2 N,
while minimising the introduction of additional variance, ar(O(i)

t�1|w(i)
t�1).

In the remainder of this section we consider a number of standard resampling methods.
In Section 3.5.1 we consider Multinomial Resampling, which is the intuitively appeal-
ing method originally proposed for inclusion within the SISR algorithm by Gordon et al.
[1993]. However, multinomial resampling typically performs very poorly against other
popular resampling methodologies such as Systematic Resampling, Stratified Resampling
and Residual Resampling which we detail in Sections 3.5.2, 3.5.3 and 3.5.4 respectively
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(see for instance Douc et al. [2005] for a comparison). An extensive literature on re-
sampling methods is outlined in Doucet et al. [2001], including unequally resampled
importance weights [Kitagawa, 1996] and partial resampling [Carpenter et al., 1999b].
It is worth noting that there are also methods which seek to minimise mean square er-
ror as opposed to variance (resulting in bias) [Kitagawa, 1996], however, the methods
considered within this section are the most popular ones.

3.5.1 Multinomial Resampling

Intuitively, in order to draw a single particle from the empirical estimate of the prior
filtering density ⇡N

✓ (dx0:t�1|y1:t�1), constructed from the particle set {x(i)
0:t�1,w

(i)
t�1}Ni=1, one

could simply draw randomly one of the particles (where the probability of any individual
particle being selected corresponds to its weight). Multinomial Resampling, as detailed in
Algorithm 3.5.1 and first employed in the context of the SISR algorithm by Gordon et al.
[1993], is simply the extension of this notion to the simulation of N particles. Clearly
employing this algorithm results in the desired unbiasedness, (O(i)

t�1|w(i)
t�1) = N.w(i)

t�1, and
furthermore results in the following resampled empirical density estimate,

⇡̃✓
N( dx0:t�1|y1:t�1) =

N
X

i=1

O(i)
t�1
N
· �x̃(i)

0:t�1
( dx0:t�1). (3.48)

Algorithm 3.5.1 Multinomial Resampling Algorithm [Gordon et al., 1993].

1. For i in 1 to N sample J ⇠ categorical(w(1)
t�1, . . . ,w

(N)
t�1) and set x̃(i)

0:t�1 := x(J)
0:t�1.

3.5.2 Systematic Resampling

Systematic Resampling, as introduced by Kitagawa [1996] and detailed in Algorithm
3.5.2, is a resampling method that partitions the cumulative distribution function (CDF)
of the empirical joint filtering density into equal segments of size corresponding to the
size of a fairly weighted particle (i.e. of size 1/N), as illustrated in Figure 3.5.1(a) on
page 82. As illustrated in Figure 3.5.1(b), one particle sample path is then drawn from
each of the segments at equally spaced points on the CDF, the first draw in the sequence
being uniformly chosen in the first segment to ensure inherent structure in the CDF isn’t
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missed.

Algorithm 3.5.2 Systematic Resampling Algorithm [Kitagawa, 1996].

1. Set C := 0. Set j := 1. Simulate u ⇠ U[0, 1].

2. For i in 1 to N,

(a) Set C := C + w(i)
t�1.

(b) While
u + j � 1

N
 C set x̃( j)

0:t�1 := x(i)
0:t�1 and set j := j + 1.

3.5.3 Stratified Resampling

Stratified Resampling, as introduced by Carpenter et al. [1999a] and detailed in Algorithm
3.5.3, is a similar resampling method to systematic resampling (see Section 3.5.2). In
particular, the CDF of the empirical joint filtering density is similarly partitioned into
equal segments of size 1/N (as illustrated in Figure 3.5.2(a) on page 83), however, one
particle is drawn uniformly from each of the segments (as illustrated in Figure 3.5.2(b)).

Algorithm 3.5.3 Stratified Resampling Algorithm [Carpenter et al., 1999a].

1. Set C := 0 and j := 1.

2. For i in 1 to N simulate ui ⇠ U[0, 1] and set Bi :=
ui + i � 1

N
.

3. For i in 1 to N,

(a) Set C := C + w(i)
t�1.

(b) While Bi  C set x̃( j)
0:t�1 := x(i)

0:t�1 and set j := j + 1.

3.5.4 Residual Resampling

Residual Resampling, as proposed by [Higuchi, 1997; Liu and Chen, 1998] and detailed
in Algorithm 3.5.4, is in e↵ect a resampling scheme which is broken into a purely de-
terministic step and a step which introduces randomness. As illustrated in Figure 3.5.3
on page 84, to begin with any sample paths which have weighting greater than their fair
share (1/N) are resampled at least as many times as increments thereof deterministically.
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In the second step, the remaining required draws (N � R) are resampled using another
resampling method from the sample paths with modified weights taking into account any
selection in the first step.

Algorithm 3.5.4 Residual Resampling Algorithm [Higuchi, 1997; Liu and Chen, 1998].

1. Set j = 1.

2. For i in 1 to N, if w(i)
t�1 � 1/N,

(a) Set x̃
⇣

j:
h

j+
j

N·w(i)
t�1

k

�1
i⌘

0:t�1 := x(i)
0:t�1 and set j := j +

j

N · w(i)
t�1

k

.

(b) w̃(i)
t�1 := w(i)

t�1 �
j

N · w(i)
t�1

k

/N.

3. For i in 1 to N set w̃(i)
t�1 =

w̃(i)
t�1

PN
k=1 w̃(k)

t�1

.

4. Set r(dx0:t�1|y1:t�1) :=
PN

i=1 w̃(i)
t�1 · �x(i)

0:t�1
( dx0:t�1).

5. For i in j to N sample x̃(i)
0:t�1 ⇠ r(dx0:t�1|y1:t�1) (as per Algorithm 3.5.1, 3.5.2 or

3.5.3).
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Figure 3.5.1: An illustration of Systematic Resampling.
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Figure 3.5.2: An illustration of Stratified Resampling.
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pling (Algorithm 3.5.4 Step 3).

Figure 3.5.3: An illustration of Residual Resampling, where each vertical black line rep-
resents the location of a particle and its associated weight.
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3.6 Auxiliary Particle Filter

Within the Sequential Importance Sampling / Resampling algorithm (Algorithm 3.4) we
determine whether to resample the particle set (which forms the prior empirical joint
filtering density) and if necessary resample at each iteration, before propagating and re-
weighting this particle set to the next time point to form an updated empirical joint filter-
ing density (as motivated in Sections 3.4 and 3.5). As discussed in Sections 3.3 and 3.3.1,
we would ideally propagate the particle set according to the optimal marginal importance
function, however di�culties arise in evaluating explicitly the density p✓(yt|xt�1). As such
this choice of marginal importance function is typically unavailable and instead the prior
marginal importance function is typically chosen (as discussed in Section 3.3.2). The ad-
vantage in trying to select the optimal marginal importance function for propagating the
particle set is that it incorporates the next observation – so the natural question that arises
is if it is unavailable then is it instead possible to find an alternative to the SISR algorithm
which incorporates the next observation.

The Auxiliary Particle Filter (APF) introduced by Pitt and Shephard [1999, 2001], so
called as the original formulation was justified by the introduction of auxiliary variables,
addresses this notion. In essence the APF attempts to selectively resample particle sam-
ple paths from the prior particle set which are consistent with the next observation. The
APF has proven to be a popular alternative to the SISR algorithm, however, as shown in
[Johansen and Doucet, 2008; Doucet and Johansen, 2011], it can be interpreted within
the framework of the SISR algorithm. We introduce the APF within this framework in
this section as doing so is consistent with the rest of this chapter and has the added benefit
that existing analysis for the SIS and SISR algorithms can be directly extended to the
APF (for example, convergence results which we do not address in this thesis but can be
found in a number of texts such as Del Moral [2004]).

We begin by noting that although it is not typically possible to find p✓(yt|xt�1), we can
find an approximation to this density,

bp✓(yt|xt�1) ⇡ p✓(yt|xt�1) =
Z

f✓(xt|xt�1) · g✓(yt|xt) dxt. (3.49)
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Now, the APF can be thought of as an SISR algorithm targeting the density,

bp✓(x0:t|y1:t+1) / ⇡(x0:t|y1:t) · bp✓(yt+1|xt), (3.50)

which by construction is an approximation of the density p✓(x0:t|y1:t+1). Choosing the
decomposable joint importance function q✓(x0:t|y1:t) in order to construct our SISR algo-
rithm (recalling from (3.20) on page 61 in Section 3.2 that q✓(x0:t|y1:t) = q✓(x0:t�1|y1:t�1) ·
q✓(xt|x0:t�1, y1:t)), note that if we want to evaluate expectations of the following form
(where h is some test function),

bp✓(x0:t |y1:t+1) [h(X0:t)] :=
Z

h(x0:t) · bp✓(x0:t|y1:t+1) dx0:t, (3.51)

then, in the same manner as Section 3.2, we can re-express this expectation as an expec-
tation with respect to our joint importance function q✓(x0:t|y1:t),

bp✓(x0:t |y1:t+1) [h(X0:t)] =
Z

h(x0:t) · bp✓(x0:t|y1:t+1)
q✓(x0:t|y1:t)

· q✓(x0:t|y1:t) dx0:t

/
Z

h(x0:t) · bp✓(x0:t�1|y1:t)
q✓(x0:t�1|y1:t�1)

· f✓(xt|xt�1) · g✓(yt|xt) · bp✓(yt+1|xt)
bp✓(yt|xt�1) · q✓(xt|x0:t�1, y1:t)

|                                                            {z                                                            }

:=w⇤t (x0:t) :=w⇤t�1(x0:t�1)·w⇤t | (t�1)(x0:t)

·q✓(x0:t|y1:t) dx0:t

(3.52)

= q✓(x0:t |y1:t)
⇥

h(X0:t) · w⇤t (X0:t)
⇤

. (3.53)

Proceeding by the same inductive argument as presented in Section 3.2 we arrive directly
at our desired SISR algorithm, which is detailed in Algorithm 3.6.1.

The particle set which arises from Algorithm 3.6.1 forms an empirical representation
of the density bp✓(x0:t|y1:t+1), however, we require an empirical representation of the joint
filtering density ⇡✓(x0:t|y1:t) instead. Noting that the joint filtering density decomposes as
follows,

⇡✓(x0:t|y1:t) = p✓(x0:t�1|y1:t) · p✓(xt|xt�1.yt), (3.54)
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Algorithm 3.6.1 Sequential Importance Sampling / Resampling Algorithm for
bp✓(x0:t|y1:t+1) [Johansen and Doucet, 2008; Doucet and Johansen, 2011].

Initialisation Step (t = 0):-

1. For i in 1 to N, simulate x(i)
0 ⇠ µ✓(x0) and set w⇤(i)t = bp✓

⇣

y1

�

�

�

�

x(i)
0

⌘

.

2. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

3. Set ⇡N
✓ (dx0|y1) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. If dNe↵  Nth then for i in 1 to N sample x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t) (as per Algorithm
3.5.1, 3.5.2, 3.5.3 or 3.5.4) and set w(i)

t�1 = 1/N.

2. For i in 1 to N,

(a) Simulate x(i)
t ⇠ q✓

⇣

xt

�

�

�

�

x(i)
0:t�1, y1:t

⌘

and set x(i)
0:t :=

n

x(i)
0:t�1, x

(i)
t

o

.

(b) Set w⇤(i)t = w(i)
t�1 ·

f✓
⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

· bp✓
⇣

yt+1

�

�

�

�

x(i)
t

⌘

bp
⇣

yt

�

�

�

�

x(i)
t�1

⌘

· q✓
⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

.

3. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

4. Set ⇡N
✓ (dx0:t|y1:t+1) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).

then importance sampling can applied (see Section 2.5) where it is appropriate to use the
following dominating density,

bq✓(x0:t|y0:t) := bp✓(x0:t�1|y0:t) · q✓(xt|x0:t�1, y1:t). (3.55)
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In particular we have,

⇡(x0:t |y1:t) [h(X0:t)] =
bq✓(x0:t |y0:t)

"

h(X0:t) · ⇡(x0:t|y1:t)
bq✓(x0:t|y0:t)

#

/
bq✓(x0:t |y0:t)

"

h(X0:t) · ⇡✓(x0:t�1|y1:t�1) · f✓(xt|xt�1) · g✓(yt|xt)
bp✓(x0:t�1|y0:t) · q✓(xt|x0:t�1, y1:t)

#

=
bq✓(x0:t |y0:t)

"

h(X0:t) · ⇡✓(x0:t�1|y1:t�1)
⇡✓(x0:t�1|y1:t�1)

· f✓(xt|xt�1) · g✓(yt|xt)
bp✓(yt|xt�1) · q✓(xt|x0:t�1, y1:t)

#

=
bq✓(x0:t |y0:t)

"

h(X0:t) · f✓(xt|xt�1) · g✓(yt|xt)
bp✓(yt|xt�1) · q✓(xt|x0:t�1, y1:t)

#

. (3.56)

As a consequence, at each iteration of Algorithm 3.6.1 we obtain an empirical repre-
sentation of the density bp✓(x0:t�1|y1:t), which can be used as part of the proposal in an
importance sampler to construct an empirical representation of the joint filtering den-
sity ⇡✓(x0:t|y1:t). Note that the proposal density used (3.55), is precisely what is obtained
at each iteration after the propagation step in Algorithm 3.6.1 (Step 2a) but before the
importance weighting step (Step 2b). The importance weight function in (3.56) has a
form similar to the marginal importance weight function in Algorithm 3.6.1. As such,
it is easy to construct our desired algorithm targeting the joint filtering density by iterat-
ing over each time step between constructing the empirical representation of the density
bp✓(x0:t�1|y1:t) and the target joint filtering density ⇡✓(x0:t|y1:t). We present the synthesis of
this argument in Algorithm 3.6.2. As the motivation for the APF was to avoid spending
unnecessary computation propagating particles from the prior particle set which are not
consistent with the next observation, it is typical within the APF literature to conduct a
resampling step at every iteration, which is what we present in Algorithm 3.6.2.

We conclude this section by providing an illustrative example of an auxiliary particle
filter in Figure 3.6.1.
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Algorithm 3.6.2 Auxiliary Particle Filter (APF) Algorithm [Pitt and Shephard, 1999,
2001; Johansen and Doucet, 2008; Doucet and Johansen, 2011].

Initialisation Step (t = 0):-

1. For i in 1 to N simulate x(i)
0 ⇠ µ✓(x0), set w(i)

0 = 1/N.

2. Set ⇡N
✓ (dx0) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. For i in 1 to N sample x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t) / ⇡N
✓ (dx0:t�1|y0:t�1) · bp✓(yt|xt�1) :=

PN
i=1 w(i)

t�1 ·bp✓(yt|x(i)
t�1) · �x(i)

0:t�1
(dx0:t�1) (as per Algorithm 3.5.1, 3.5.2, 3.5.3 or 3.5.4)

and set w(i)
t�1 = 1/N.

2. For i in 1 to N,

(a) Simulate x(i)
t ⇠ q✓

⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

and set x(i)
0:t :=

n

x(i)
0:t�1, x

(i)
t

o

.

(b) Set w⇤(i)t = w(i)
t�1 ·

f✓
⇣

x(i)
t

�

�

�

�

x(i)
t�1

⌘

· g✓
⇣

yt

�

�

�

�

x(i)
t

⌘

bp✓
⇣

yt

�

�

�

�

x(i)
t�1

⌘

· q✓
⇣

x(i)
t

�

�

�

�

x(i)
0:t�1, y1:t

⌘

.

3. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

4. Set ⇡N
✓ (dx0:t|y1:t) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).
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Figure 3.6.1: “Bearings-Only Tracking” example of Gordon et al. [1993] – An illustra-
tive example of an auxiliary particle filter of 2000 particles in which we wish to track a
four dimensional target xt = (zx, z̄x, zy, z̄y)T which moves on the x-y plane (where (zx, zy)
denotes the targets position and (z̄x, z̄y) denotes the targets velocity) according to the fol-
lowing HMM SSDs, X0 ⇠ MVN(m0,M0), Xt|(Xt�1 = xt�1) ⇠ MVN(�xt�1,�Vt) and
Yt|(Xt = xt) ⇠ N(tan�1(zy/zx),Wt) (where m0,M0,�,�,V and W are parameterised as in
Gordon et al. [1993]).



4

An Introduction to Simulating

Diffusions and Jump Diffusions

“I turn with terror and horror from this
lamentable scourge of continuous functions

with no derivatives.”

— Charles Hermite

To recap from Chapter 1, a jump di↵usion V : ! is a Markov process, which in
this thesis we define to be the solution to a stochastic di↵erential equation (SDE) of the
following form (denoting Vt� := lims"t Vs),

dVt = �(Vt-) dt + �(Vt-) dWt + dJ�,µt , V0 = v 2 , t 2 [0,T ], (4.1)

where � : ! and � : ! + denote the (instantaneous) drift and di↵usion coe�-
cients respectively, Wt is a standard Brownian Motion (see Section 2.8) and J�,µt denotes
a compound Poisson process (see Section 2.9). J�,µt is parameterised with (finite) jump
intensity � : ! + and jump size coe�cient µ : ! with jumps distributed with
density fµ. We briefly note that the notation J�,µt to denote a compound Poisson process is
a minor abuse of standard notation in this field, however it is equivalent and is more suited
to our focus on simulation. Further note that all coe�cients of (4.1) are themselves typi-
cally dependent on Vt. In essence the SDE above describes the instantaneous behaviour
of the process and can be interpreted in integrated form,

VT = V0 +

Z T

0
�(Vt-) dt +

Z T

0
�(Vt-) dWt +

Z T

0
dJ�,µt . (4.2)

As discussed in Chapter 1, regularity conditions on the coe�cients of (4.1) are assumed
to hold to ensure the existence of a unique non-explosive weak solution (see for instance
[Øksendal and Sulem, 2004, Chap. 1] and [Platen and Bruti-Liberati, 2010, Chap. 1.9]).
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A discussion of conditions su�cient to allow the application of the methodology pre-
sented within this thesis were given in Section 1.3.

The objective of this chapter is two-fold. In the first half of this chapter (Section 4.1)
we provide a brief introductory level overview of elements of stochastic calculus per-
tinent to this thesis. In the second half of this chapter (Section 4.2) we briefly review
existing discretisation methods for simulating sample paths from the measure induced by
V , denoted by v.

4.1 Stochastic Calculus Preliminaries

In this section we outline some material which is central to the development of the
methodology in this thesis. In particular: in Section 4.1.1 we introduce and motivate
the Itô integral and Itô calculus, in Section 4.1.2 we introduce the Lamperti transform, in
Section 4.1.3 we provide a informal proof of Girsanov’s theorem and the Radon-Nikodým
derivative for a class of di↵usions and jump di↵usions, and finally, in Section 4.1.4 we
find a representation of the transition density for this class of di↵usions and jump di↵u-
sions.

4.1.1 The Itô Integral & Itô’s Formulae

Motivated by the integrated form of our target SDE (4.2), we would like to find a defini-
tion for integrals of the following form,

Z T

0
f (t) dWt, (4.3)

where f is some suitable function which may be additionally parameterised by some
other stochastic process (for instance, a Brownian motion sample path) and W ⇠ 0

0,T
(as we introduced in Section 2.8). Of course, in order to define such an object we must
first prove its existence, which is what we provide an informal outline of in this section
(in the style of [Øksendal, 2007, Chap. 3]).

In general to evaluate an integral with respect to a process H we can partition the in-
terval [0,T ] into a fine mesh (i.e. divide it into N sub-intervals of length T/N and denote
by ti = t(N)

i := iT/N) then, provided H is of bounded variation on compact time intervals
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(which as shown in Banach and Steinhaus [1927] is a necessary condition),

V[0,T ](H) := lim
N!1

N
X

i=1

�

�

� H(ti) � H(ti�1)
�

�

� < 1, (4.4)

we can define our integral in the Riemann-Stieljes sense,

Z T

0
f (t) dH(t) := lim

N!1

N
X

i=1

f (si) · [H(ti) � H(ti�1)] , where si 2 [ti�1, ti]. (4.5)

However, Brownian motion has infinite variation (w.p. 1: V[0,T ](W) = 1) and so the
definition in (4.5) isn’t suitable. In particular, selecting di↵erent evaluation points in the
partition when evaluating the function f in the integral (4.5) produces di↵erent answers.
For instance, recalling the Brownian motion properties from Section 2.8 and considering
the expectation of (4.5) with respect to the measure 0

0,T in the case where f (t) := Wt

and si := ti�1, then we have,
2

6

6

6

6

6

6

4

N
X

i=1

Wti�1 ·
⇥

Wti �Wti�1

⇤

3

7

7

7

7

7

7

5

=

N
X

i=1

⇥

Wti�1 ·
⇥

Wti �Wti�1

⇤⇤

=

N
X

i=1

⇥

Wti�1

⇤ · ⇥

Wti �Wti�1

⇤

= 0 (4.6)

whereas, if we instead consider the evaluation point si := ti we have,

2

6

6

6

6

6

6

4

N
X

i=1

Wti ·
⇥

Wti �Wti�1

⇤

3

7

7

7

7

7

7

5

=

N
X

i=1

h

W2
ti �Wti�1 ·Wti

i

=

N
X

i=1

(ti � ti�1) = T. (4.7)

The approximation in (4.6) to (4.5) leads to the Itô integral (which we consider in the
remainder of this section), whereas selecting the evaluation point si := (ti�1 + ti)/2 and
approximating (4.5) as above leads to the Stratonovich integral (which we do not cover in
this thesis). The approximation in (4.6) is intuitively more appealing for our purposes as it
is not only non-anticipative, but the independence of the increments of Brownian motion
can be exploited (see Brownian motion Property 2). The key to finding an appropriate
definition of (4.3) is to note that although Brownian motion has infinite variation, the
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quadratic variation of Brownian motion is finite1,

w.p. 1: [W]T := lim
N!1

N
X

i=1

�

Wti �Wti�1

�2 = T. (4.9)

In particular, following the approach taken in [Øksendal, 2007, Chap. 3], we construct
the Itô integral by first considering the integration of simple processes of the following
form (where the ei are Fti�1 -measurable random variables),

YN(t) =
N

X

i=1

ei · [t 2 [ti�1, ti)] , (4.10)

and defining
R T

0 YN(t) dWt :=
PN

i=1 ei · ⇥Wti �Wti�1

⇤

. With this definition we can establish
the following identity,

2

6

6

6

6

6

4

 

Z T

0
YN(t) dWt

!23
7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

4

0

B

B

B

B

B

B

@

N
X

i=1

ei · ⇥Wti �Wti�1

⇤

1

C

C

C

C

C

C

A

23
7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

N
X

i=1

e2
i ·

⇥

Wti �Wti�1

⇤2 +

N
X

i=1

N
X

j=1
j,i

ei · ⇥Wti �Wti�1

⇤ · e j ·
h

Wt j �Wt j�1

i

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

N
X

i=1

h

e2
i

i

·
h

⇥

Wti �Wti�1

⇤2
i

=

N
X

i=1

h

e2
i

i

· (ti � ti�1)

=

"

Z T

0
Y2

N(t) dt
#

. (4.11)

As discussed in [Øksendal, 2007, Chap. 3], it transpires that any continuous adapted
process f (t) with



R T
0 f 2(t) dt

�

< 1 can be approximated by a sequence of simple
processes in the sense that there exists a sequence of simple processes {YN : N 2 },
each defined as in (4.10) such that,

w.p. 1: lim
N!1

"

Z T

0

�

�

� f (t) � YN(t)
�

�

� dt
#

= 0, (4.12)

1In general considering the variation of Brownian motion over the time interval [0,T ] we have,

w.p. 1: lim
N!1

N
X

i=1

�

�

�Wti �Wti�1

�

�

�

p
=

8

>

>

>

<

>

>

>

:

1 if p = 1
T if p = 2
0 if p � 3

(4.8)
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and so together with (4.11) we can conclude that there exits a limit to
R T

0 YN(t) dWt (which
we denote by I(T )) such that,

w.p. 1: lim
N!1

2

6

6

6

6

6

4

�

�

�

�

�

�

Z T

0
YN(t) dWt � I(T )

�

�

�

�

�

�

23
7

7

7

7

7

5

= 0. (4.13)

We consequently define our integral in (4.3) to be this limit,

Z T

0
f (t) dWt := I(T ) = lim

N!1

Z T

0
YN(t) dWt, (4.14)

additionally noting that (4.11) still holds for this limit (which is a property known as Itô’s
isometry),

2

6

6

6

6

6

4

 

Z T

0
f (t) dWt

!23
7

7

7

7

7

5

=

"

Z T

0
f 2(t) dt

#

. (4.15)

Now, denoting by F as the anti-derivative of f and supposing F 2 C2, then by considering
a Taylor series expansion of F and recalling footnote 1 we arrive at a result known as Itô’s
formula,

F(T ) = F(0) + lim
N!1

2

6

6

6

6

6

6

4

N
X

i=1

f (ti) · ⇥Wti �Wti�1

⇤

+
1
2!

N
X

i=1

f 0(ti) · ⇥Wti �Wti�1

⇤2

+
1
3!

N
X

i=1

f 00(ti) · ⇥Wti �Wti�1

⇤3 + · · ·
3

7

7

7

7

7

7

5

= F(0) +
Z T

0
f (t) dWt +

1
2

Z T

0
f 0(t) dt + 0, (4.16)

or alternatively in (the more usual) di↵erential form we have,

d (F(t)) =
1
2

f 0(t) dt + f (t) dWt. (4.17)

Considering more generally di↵usions of the following form (where


R T
0 �2(Vt) dt

�

<

1),

dVt = �(Vt) dt + �(Vt) dWt, (4.18)
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then we are often interested in finding the di↵erential form of Xt := g(t,Vt) where g 2 C2.
Again, considering a Taylor series expansion of X we find (where the derivatives of g are
evaluated at the points (ti,Vti)),

XT = X0 + lim
N!1

2

6

6

6

6

6

6

4

N
X

i=1

@g
@t
· (ti � ti�1) +

N
X

i=1

@g
@v
· �Vti � Vti�1

�

+
1
2

N
X

i=1

@2g
@t2 · (ti � ti�1)2

+

N
X

i=1

@2g
@t@v

· (ti � ti�1) · �Vti � Vti�1

�

+
1
2

N
X

i=1

@2g
@v2 ·

�

Vti � Vti�1

�2 + · · ·
3

7

7

7

7

7

7

5

. (4.19)

Noting that over small time intervals of length h > 0 that Vt+h �Vt ⇡ �(Vt) · ((t + h) � t)+
�(Vt) · (Wt+h �Wt), we have,

lim
N!1

2

6

6

6

6

6

6

4

N
X

i=1

@g
@v
· �Vti � Vti�1

�

3

7

7

7

7

7

7

5

= lim
N!1

2

6

6

6

6

6

6

4

N
X

i=1

@g
@v
· �(Vti) · (ti � ti�1) +

N
X

i=1

@g
@v
· �(Vti) ·

�

Wti �Wti�1

�

3

7

7

7

7

7

7

5

=

Z T

0

@g(t,Vt)
@v

· �(Vt) dt +
Z T

0

@g(t,Vt)
@v

· �(Vt) dWt, (4.20)

lim
N!1

2

6

6

6

6

6

6

4

N
X

i=1

@2g
@v2 ·

�

Vti � Vti�1

�2

3

7

7

7

7

7

7

5

= lim
N!1

2

6

6

6

6

6

6

4

N
X

i=1

@2g
@v2 · �2(Vti) · (ti � ti�1)2 +

N
X

i=1

@2g
@v2 · �2(Vti) ·

�

Wti �Wti�1

�2

+2
N

X

i=1

@2g
@v2 · �(Vti) · �(Vti) · (ti � ti�1) · �Wti �Wti�1

�

3

7

7

7

7

7

7

5

= 0 +
Z T

0

@2g(t,Vt)
@v2 · �2(Vt) dt + 0, (4.21)

and so by substituting (4.20) and (4.21) into (4.19), we arrive at a result known as Itô’s
formula for di↵usions,

XT = X0 +

Z T

0

 

@g(t,Vt)
@t

+
@g(t,Vt)
@v

�(Vt) +
1
2
@2g(t,Vt)
@v2 �2(Vt)

!

dt

+

Z T

0

@g(t,Vt)
@v

· �(Vt) dWt, (4.22)
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which in its more common di↵erential form is as follows,

dXt =

 

@g(t,Vt)
@t

+
@g(t,Vt)
@v

�(Vt) +
1
2
@2g(t,Vt)
@v2 �2(Vt)

!

dt

+
@g(t,Vt)
@v

· �(Vt) dWt. (4.23)

Finally, considering jump di↵usions of the following form (where again


R T
0 �2(Vt) dt

�

<

1),

dVt = �(Vt-) dt + �(Vt-) dWt
|                      {z                      }

dVcts
t

+ dJ�,µt , (4.24)

then the di↵erential form of Xt := g(t,Vt) (where again g 2 C2) is given by Itô’s formula
for jump di↵usions (see for instance [Kloeden and Platen, 1992, Chap. 1.5]). The key ob-
servation in this case is that jump di↵usion sample paths can be decomposed into a con-
tinuous di↵usion component ( dVcts

t ) and a compound Poisson process. Informally, if we
solely consider the compound Poisson process we have (denoting by Nt :=

P

i�1 { i  t}
as a Poisson jump counting process with respect to Ft),

dJ�,µt =
⇥

(Vt- + µ(Vt-)) � Vt-
⇤

dNt, (4.25)

and so considering the continuous component (4.23) together with compound Poisson
process component (4.25) we arrive at the following result,

dXt =

 

@g(t,Vt-)
@t

+
@g(t,Vt-)

@v
�(Vt-) +

1
2
@2g(t,Vt-)

@v2 �2(Vt-)
!

dt

+
@g(t,Vt-)

@v
· �(Vt-) dWt +

⇥

g (Vt- + µ(Vt-)) � Xt-
⇤

dNt. (4.26)

4.1.2 Lamperti Transformation

As briefly discussed in Chapter 1, throughout this thesis we develop methodology for
simulating di↵usions and jump di↵usions with unit volatility. However, we are interested
in the broader class of di↵usions and jump di↵usions with non-unit volatility (see (4.1)).
In order to consider this broader class we first transform the target di↵usion (4.1) into
one with unit volatility and then, after applying the methodology developed in this thesis,
project any simulations by the inverse of this transformation.
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To perform this transformation we exploit Itô’s formula for jump di↵usions. In particular
note that from (4.26) we can deduce that if we define Xt := g(t,Vt) then the di↵erential
form of Xt will only have unit volatility if @g(t,Vt)/@v = 1/�(Vt).

This particular transformation is known as the Lamperti transform (see for instance [Kloe-
den and Platen, 1992, Chap. 4.4], Casella and Roberts [2010] and Giesecke and Smelov
[Forthcoming] for a more extensive discussion). In particular, denoting by Xt := ⌘(Vt)
as the transformed process, where ⌘(Vt) :=

R Vt

v⇤ 1/�(u) du (v⇤ is an arbitrary element in
the state space of V), assuming ⌘ is invertible and denoting by ⌘�1 as the inverse of the
function ⌘, and applying Itô’s formula for jump di↵usions (4.26) to find dXt we have,

dXt =

 

@⌘(t, ⌘�1(Xt-))
@t

+
@⌘(t, ⌘�1(Xt-))

@v
�(⌘�1(Xt-)) +

1
2
@2⌘(t, ⌘�1(Xt-))

@v2 �2(⌘�1(Xt-))
!

dt

+
@⌘(t, ⌘�1(Xt-))

@v
· �(⌘�1(Xt-)) dWt +

h

⌘
⇣

⌘�1(Xt-) + µ(⌘�1(Xt-))
⌘

� Xt-
i

dNt

=

"

�(⌘�1(Xt-))
�(⌘�1(Xt-))

� �
0(⌘�1(Xt-))

2

#

|                                {z                                }

↵(Xt-)

dt + dWt +
h

⌘
⇣

⌘�1(Xt-) + µ(⌘�1(Xt-))
⌘

� Xt-
i

dNt
|                                           {z                                           }

dJ�,⌫t

(4.27)

=: ↵(Xt-) dt + dWt + dJ�,⌫t (4.28)

This transformation is typically possible for univariate di↵usions and for many multi-
variate di↵usions (see Aı̈t-Sahalia [2008]), however, as discussed in Section 1.3 and in
particular Result 1, under the conditions assumed in this thesis it is possible to apply the
Lamperti transformation to any target di↵usion of interest.

4.1.3 Girsanov’s Theorem

In this section we state and then provide a informal derivation of Girsanov’s theorem for
a specific class of jump di↵usions. Recall that the methodology we develop in this thesis
assumes Conditions 1 – 5 in Section 1.3 hold and so, as discussed briefly in Section 1.3,
Conditions 2 and 3 are su�cient to allow us to transform our SDE in (4.1) into one with
unit volatility (as per Section 4.1.2). As such, in this section we can restrict our attention
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to the following class of jump di↵usions with unit volatility,

dXt = ↵(Xt-) dt + dWt + dJ�,⌫t , X0 = x 2 , t 2 [0,T ]. (4.29)

Denoting by x
0,T the measure induced by (4.29), in this thesis we are interested in the

Radon-Nikodým derivative of x
0,T with respect to x

0,T (as discussed in Chapter 1),
where x

0,T is the measure induced by a driftless jump di↵usion with unit volatility,

dXt = dWt + dJ⇤,�t , X0 = x 2 , t 2 [0,T ], (4.30)

where J⇤,�t is a compound Poisson process parameterised with constant finite jump in-
tensity ⇤ > 0, jump size coe�cient � : ! and with jumps distributed with density
f�. We further assume that 9M < 1 such that f⌫(x)/ f�(x)  M 8x 2 . Together with
the fact that (4.29) and (4.30) both have unit volatility coe�cient this ensures that x

0,T is
absolutely continuous with respect to x

0,T .

Recalling that NT denotes the number of jumps in the interval [0,T ],  1, . . . , NT de-
notes the jump times (where we set  0 := 0 and  NT+1� :=  NT+1 := T ), �(Xs) :=
↵2(Xs)/2 + ↵0(Xs)/2 and further introducing the notation A(u) :=

R u
0 ↵(y) dy, we arrive at

the following theorem.

Theorem 4.1.1 (Radon-Nikodým derivative (see Øksendal and Sulem [2004] and Platen
and Bruti-Liberati [2010]). Under Conditions 1–4, the Radon-Nikodým derivative of

x
0,T with respect to x

0,T exists and is given by Girsanov’s formula as follows,

d x
0,T

d x
0,T

(X) = exp

8

>

>

<

>

>

:

A(XT ) � A(x) �
Z T

0
�(Xs�) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

9

>

>

=

>

>

;

· exp
(

�
Z T

0
[�(Xs�) � ⇤] ds

)

·
NT
Y

i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

⇤ · f�
⇣

X i ; X i�
⌘ (4.31)

Proof. (Sketch). We begin by recalling that by construction x
0,T is absolutely continuous

with respect to x
0,T . Now, the informal derivation will proceed as follows: Firstly, we

consider the behaviour under the two measures of a sample path X over small time inter-
vals; Next, we employ a mesh based argument to consider the approximate behaviour of
a sample path over the interval [0,T ] under the two measures; Finally, we consider the
desired change of measure and the limit as the mesh interval size decreases to zero.
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Now, considering the approximate behaviour under x
0,T and x

0,T of a sample path
X over small time intervals, we begin by noting that the underlying SDEs inducing both
measures ((4.29) and (4.30) respectively) have finite jump intensity. As such, in any
given finite interval there can only (almost surely) ever occur a finite number of jumps
(NT < 1), and so there will exist some h > 0 such that in any given interval [t, t + h]
there will either be a single jump (with probability �(Xt-) ·h) or no jump (with probability
1��(Xt-)·h). If within the interval there is a jump then any change in X in that interval will
be dominated by the jump and the contribution to the change from the continuous compo-
nent will be negligible. As such, denoting by [t,t+h] :=

�

[t, t + h]
T �

 1, . . . , NT

 

, ;�
as indicating the occurrence of a jump in the interval [t, t + h], we have,

x
0,T (Xt+h 2 dy | Xt) ⇡

 

1p
2⇡h

exp
(

� (y�Xt�↵(Xt) · h)2

2h

)

· (1��(Xt) · h) · �1� [t,t+h]
�

+ (�(Xt) · h) · f⌫(y; Xt) · [t,t+h]

!

dy, (4.32)

x
0,T (Xt+h 2 dy | Xt) ⇡

 

1p
2⇡h

exp
(

� (y � Xt)2

2h

)

· (1 � ⇤ · h) · �1 � [t,t+h]
�

+ (⇤ · h) · f�(y; Xt) · [t,t+h]

!

dy. (4.33)

The approximate behaviour of the sample path X over the interval [0,T ] under x
0,T and

x
0,T can be considered in the same manner by first partitioning [0,T ] into T/h intervals
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of length h and applying the Markov property,

x
0,T

�

XT/h 2 dy1, X2T/h 2 dy2 . . . , XT 2 dyT/h | X0
�

=

T/h
Y

k=1

x
0,T

�

Xkh 2 dyk | X(k�1)h
�

⇡
T/h
Y

k=1

 

1p
2⇡h

exp

8

>

>

<

>

>

:

�
�

yk�X(k�1)h�↵ �

X(k�1)h
� · h�2

2h

9

>

>

=

>

>

;

· �1�� �

X(k�1)h
� · h� · �1� [(k�1)h,kh]

�

+
�

�
�

X(k�1)h
� · h� · f⌫

�

yk; X(k�1)h
� · [(k�1)h,kh]

!

dyk, (4.34)

x
0,T

�

XT/h 2 dy1, X2T/h 2 dy2 . . . , XT 2 dyT/h | X0
�

=

T/h
Y

k=1

x
0,T

�

Xkh 2 dyk | X(k�1)h
�

⇡
T/h
Y

k=1

 

1p
2⇡h

exp

8

>

>

<

>

>

:

�
�

yk � X(k�1)h
�2

2h

9

>

>

=

>

>

;

· (1 � ⇤ · h) · �1� [(k�1)h,kh]
�

+ (⇤ · h) · f�
�

yk; X(k�1)h
� · [(k�1)h,kh]

!

dyk. (4.35)

Now, considering the change of measure we have,

d x
0,T

d x
0,T

�

XT/h, X2T/h, . . . , XT | X0
� ⇡

x
0,T

�

XT/h 2 dy1, X2T/h 2 dy2 . . . , XT 2 dyT/h | X0
�

x
0,T

�

XT/h 2 dy1, X2T/h 2 dy2 . . . , XT 2 dyT/h | X0
�

⇡
T/h
Y

k=1

2

6

6

6

6

6

4

exp

8

>

>

<

>

>

:

�

yk�X(k�1)h
�2��

yk�X(k�1)h�↵ �

X(k�1)h
�

h
�2

2h

9

>

>

=

>

>

;

· 1�� �

X(k�1)h
�

h
1�⇤h

�

1� [(k�1)h,kh]
�

+
�

�

X(k�1)h
� · f⌫

�

yk; X(k�1)h
�

⇤ · f�
�

yk; X(k�1)h
� [(k�1)h,kh]

#

= exp

8

>

>

<

>

>

:

T/h
X

k=1

"

↵
�

X(k�1)h
� · �yk � X(k�1)h

� � 1
2
↵2 �

X(k�1)h
� · h

#

· �1� [(k�1)h,kh]
�

9

>

>

=

>

>

;

· exp

8

>

>

<

>

>

:

T/h
X

k=1

⇥

log
�

1 � �(X(k�1)h) · h� � log (1 � ⇤ · h)
⇤ · �1 � [(k�1)h,kh]

�

9

>

>

=

>

>

;

·
T/h
Y

k=1

"

�
�

X(k�1)h
� · f⌫

�

yk; X(k�1)h
�

⇤ · f�
�

yk; X(k�1)h
� · [(k�1)h,kh] +

�

1� [(k�1)h,kh]
�

#

. (4.36)

Applying a MacLaurin series expansion ( f (x) =
P

0[ f i(0)xi/i!) to the second exponen-
tial term in (4.36), recalling that log(1 � x) =

P1
i=1 �xi/i! and considering this result as
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h! 0 noting that limh!0
h

ST/h
i=1 [(k � 1)h, kh]

i

= [0,T ], we have,

lim
h!0

2

6

6

6

6

6

6

4

exp

8

>

>

<

>

>

:

T/h
X

k=1

⇥

log
�

1 � �(X(k�1)h) · h� � log (1 � ⇤ · h)
⇤ · �1 � [(k�1)h,kh]

�

9

>

>

=

>

>

;

3

7

7

7

7

7

7

5

= lim
h!0

2

6

6

6

6

6

6

4

exp

8

>

>

<

>

>

:

T/h
X

k=1

⇥� �

�
�

X(k�1)h
� � ⇤� · h⇤ · �1 � [(k�1)h,kh]

�

+

T/h
X

k=1

2

6

6

6

6

6

4

1
X

m=2

� �

�m �

X(k�1)h
� � ⇤m� · hm

m!

3

7

7

7

7

7

5

· �1 � [(k�1)h,kh]
�

9

>

>

=

>

>

;

3

7

7

7

7

7

7

5

= exp
(

�
Z T

0
[� (Xs�) � ⇤] ds + 0

)

. (4.37)

Now, considering the limit as h ! 0 of (4.36) and substituting in (4.37), further not-
ing that in the limit the third term in (4.36) will simply be a product at the jump times
 1, . . . , NT , we have (recalling that  0 := 0 and  NT+1 := T ),

d x
0,T

d x
0,T

(X) = exp

8

>

>

<

>

>

:

NT+1
X

i=1

Z  i�

 i�1

↵ (Xs) dWs � 1
2

Z T

0
↵2 (Xs�) ds

9

>

>

=

>

>

;

· exp
(

�
Z T

0
[� (Xs�) � ⇤] ds

)

·
NT
Y

i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

⇤ · f�
⇣

X i ; X i�
⌘ (4.38)

To evaluate each of the stochastic integrals in (4.38) we can apply Itô’s formula to A(u) :=
R u

0 ↵(s) ds (as per (4.17) noting that as a consequence of Condition 2 on page 10 we have
that A 2 C2),

A(X i�) � A(X i�1 ) =
Z  i�

 i�1

dA(Xs) =
1
2

Z  i�

 i�1

↵0(Xs) ds +
Z  i�

 i�1

↵(Xs) dWs. (4.39)

Rearranging (4.39) we have,

Z T

0
↵ (Xs�) dWs =

NT+1
X

i=1

Z  i�

 i�1

↵ (Xs) dWs

=

NT+1
X

i=1

"

A(X i�) � A(X i�1 ) � 1
2

Z  i�

 i�1

↵0(Xs) ds
#

= A(XT ) � A(x) � 1
2

Z T

0
↵0 (Xs�) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

, (4.40)
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which upon substituting into (4.38) and recalling that �(Xs) := ↵2(Xs)/2 + ↵0(Xs)/2 we
arrive at our desired result,

d x
0,T

d x
0,T

(X) = exp

8

>

>

<

>

>

:

A(XT ) � A(x) �
Z T

0
�(Xs�) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

9

>

>

=

>

>

;

· exp
(

�
Z T

0
[�(Xs�) � ⇤] ds

)

·
NT
Y

i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

⇤ · f�
⇣

X i ; X i�
⌘ . (4.41)

Similarly, we can find the following two special cases of the Radon-Nikodým derivative
of x

0,T with respect to x
0,T which are used within this thesis.

Corollary 4.1.1 (Radon-Nikodým derivative for jump di↵usions with common jump in-
tensity and size coe�cients). Under Conditions 1–4 and if � = ⇤ and f⌫ = f�, the
Radon-Nikodým derivative of x

0,T with respect to x
0,T exists and is given by Girsanov’s

formula as follows,

d x
0,T

d x
0,T

(X) = exp

8

>

>

<

>

>

:

A(XT ) � A(x) �
Z T

0
�(Xs�) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

9

>

>

=

>

>

;

, (4.42)

which can alternatively be represented as follows,

d x
0,T

d x
0,T

(X) =
NT+1
Y

i=1

"

exp
(

A(X i�) � A(X i�1 ) �
Z  i�

 i�1

�(Xs) ds
)#

. (4.43)

Corollary 4.1.2 (Radon-Nikodým derivative for di↵usions). Under Conditions 1–3 and
if � = 0, the Radon-Nikodým derivative of x

0,T with respect to x
0,T exists and is given

by Girsanov’s formula as follows,

d x
0,T

d x
0,T

(X) = exp
(

A(XT ) � A(x) �
Z T

0
�(Xs) ds

)

. (4.44)

4.1.4 Transition Density

As discussed in the introduction to this chapter, we are interested in finding a represen-
tation for the transition density of jump di↵usions. Noting again that we can restrict
our attention to jump di↵usions with unit volatility (under the conditions assumed in this
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thesis in Section 1.3 and as discussed in Sections 4.1.2 and 4.1.3), we are interested in
finding a representation for the following transition density,

pt�s(x, y) := (Xt 2 dy | Xs = x) / dy, where 0  s < t. (4.45)

We approach this problem in the manner introduced by Dachuna-Castelle and Florens-
Zmirou [1986], by expressing (4.45) as an expectation with respect to Brownian bridge
measure with jumps. Recalling that we denote by x

s,t and x
s,t as the measures induced

by the target and driftless jump di↵usions ((4.29) and (4.30) respectively) initialised at
Xs = x over the interval [s, t], we further denote by x,y

s,t and x,y
s,t the measures x

s,t

and x
s,t with the additional restriction that Xt = y and denote by wt�s(x, y) the transition

density of the driftless jump di↵usion (4.30)), we have,

d x
s,t

d x
s,t

(X) =
pt�s(x, y)
wt�s(x, y)

d x,y
s,t

d x,y
s,t

(X), (4.46)

which upon taking expectations with respect to x,y
s,t we have,

x,y
s,t

" d x
s,t

d x
s,t

(X)
#

= x,y
s,t

2

6

6

6

6

4

pt�s(x, y)
wt�s(x, y)

d x,y
s,t

d x,y
s,t

(X)
3

7

7

7

7

5

=
pt�s(x, y)
wt�s(x, y)

· 1, (4.47)

and so after rearrangement we arrive at our desired representation of (4.45),

pt�s(x, y) = wt�s(x, y) · x,y
s,t

" d x
s,t

d x
s,t

(X)
#

. (4.48)

In the specific case where the target jump di↵usion has zero jump intensity (� = 0), x,y
s,t

is Brownian bridge measure and so (with reference to Section 2.8 and Corollary 4.1.2)
we more explicitly have,

pt�s(x, y) =
1p

2⇡(t � s)
exp

(

� (y � x)2

2(t � s)

)

· x,y
s,t

"

exp
(

A(y)�A(x)�
Z t

s
� (Xu) du

)#

=
1p

2⇡(t � s)
exp

(

A(y)�A(x)� (y � x)2

2(t � s)

)

· x,y
s,t

"

exp
(

�
Z t

s
� (Xu) du

)#

(4.49)

As we discuss in Section 4.2, typically the expectation with respect to Brownian bridge
measure renders the transition density intractable. However, the methodology we present
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in Chapter 5 and Chapter 7 enables simulation from the transition density without any
form of error.

4.2 Approximate Methods for Simulating Di↵usions and Jump
Di↵usions

In this section we briefly review existing discretisation methods for simulating sample
paths from the measure induced by (4.1) (denoted by v),

dVt = �(Vt-) dt + �(Vt-) dWt + dJ�,µt , V0 = v 2 , t 2 [0,T ]. (4.50)

This problem has garnered much attention as v is typically not explicitly known and so
to compute expected values with respect to this measure for various test functions h (or
more precisely compute v [h(V)]), a Monte Carlo approach is often taken. In partic-
ular, following the Monte Carlo method discussed in Chapter 2, if it is possible to draw
independently V (1),V (2), . . . ,V (N) ⇠ v then a consistent estimator of the expectation can
be constructed as follows,

w.p. 1: lim
N!1

1
N

N
X

i=1

h(V (i)) = v [h(V)] , (4.51)

with convergence in N as given in (2.3). However, as it isn’t possible to draw entire
sample paths from v (as discussed in Chapter 1, sample paths are infinite dimensional
random variables), consideration has typically only been given to computing expecta-
tions for test functions which require the simulation of sample paths at a predefined finite
collection of time points in the interval [0,T ]. As such the emphasis on research has tra-
ditionally been focused on simulating from the transition density of V (see for instance
[Kloeden and Platen, 1992; Platen and Bruti-Liberati, 2010]),

pt(v, z) := (Vt 2 dz |V0 = v) / dz. (4.52)

Unfortunately, in all but a small number of trivial cases (such as Brownian motion as
discussed in Section 2.8) there exists no closed form representation of (4.52), and so it
is not possible to draw sample paths even at a finite collection of time points in order to
construct a Monte Carlo estimator as in (4.51). As such a number of numerical methods
have been developed in order to approximately simulate from (4.52). These numerical
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methods are generally categorised as strong schemes (in which a realisation is a path-
wise approximation of a di↵usion sample path) and weak schemes (in which a realisation
approximates v).

The general strategy employed in order to simulate a sample path at some time T us-
ing either a strong or weak scheme (i.e. simulate from the transition density pT ), is to
hope that as Brownian motion has a Gaussian transition density (see Section 2.8) then
over short intervals (4.52) it is well approximated by one with fixed drift, volatility and
jump process coe�cients (by a continuity argument). As such, by breaking the interval
the sample path is to be simulated over into a fine mesh (for instance, of regular size �),
then iteratively (at each mesh point) fixing the coe�cients and simulating the sample path
to the next mesh point using an approximation of the transition density pA

�
⇡ p�, then the

resulting realisation will be an approximate draw from (4.52). The adequacy of any given
strong or weak scheme is typically measured using the strong or weak convergence cri-
terion respectively (where we denote by V� as the approximation of V and Cl

P( d, ) as
the class of l times continuously di↵erentiable functions h : d! with their partial
derivatives up to order l having polynomial growth).

Convergence Criteria 1 (Strong Convergence [Kloeden and Platen, 1992]). The discrete
time approximation V� converges strongly to V at time T if,

lim
�#0

h

�

�

�VT � V�T
�

�

�

i

= 0. (4.53)

Furthermore, we say that V� converges strongly to V with order � > 0 at time T if
there exists constants C > 0 and �0 > 0 such that,

h

�

�

�VT � V�T
�

�

�

i

 C��, (4.54)

for each � 2 (0,�0).

Convergence Criteria 2 (Weak Convergence [Kloeden and Platen, 1992]). The discrete
time approximation V� converges weakly to V at time T with respect to a class of test
functions h : d! if,

lim
�#0

�

�

�

�

[h(VT )] �
h

h(V�T )
i

�

�

�

�

= 0. (4.55)

Furthermore, we say that V� converges weakly to V with order � > 0 at time T as
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� # 0 if for every h 2 C2(�+1)
P ( d, ) there exists constants C > 0 and �0 > 0 such

that,

�

�

�

�

[h(VT )] �
h

h(V�T )
i

�

�

�

�

 C��, (4.56)

for each � 2 (0,�0).

In the following subsections we briefly detail some of the more common discretisation
schemes (a more detailed account can be found in a number of texts, for instance, in Kloe-
den and Platen [1992], Iacus [2008] and Platen and Bruti-Liberati [2010]). However, our
exposition is restricted to discretisation schemes for unconditioned di↵usions (as opposed
to di↵usion bridges, unconditioned jump di↵usions and jump di↵usion bridges) so that
the key ideas are conveyed without the considerable and unnecessary complications in-
troduced in broader settings (note that in the case of unconditioned jump di↵usions with
bounded jump intensity, then by a trivial extension of Section 2.9.3 approximate simu-
lation is possible as detailed in Algorithm 4.2.1). In particular, we consider di↵usions
which are solutions to the following SDE,

dVt = �(Vt) dt + �(Vt) dWt, V0 = v 2 , t 2 [0,T ]. (4.57)

It is important to note at this point that we are omitting details on discretisation schemes
as there does not exist any existing discretisation scheme which can be used to directly
compare with the methodology developed in this thesis. In particular, unlike the exact
algorithms (which we introduce and discuss in Chapter 5), discretisation schemes su↵er
from a number of inherent problems.

To emphasise this point we return to and extend the discussion of the weaknesses of
discretisation schemes (for our purposes) that we made in Chapter 1. To begin with we
note that all discretisation schemes introduce implicit approximation error and output
some finite dimensional subset of an approximated sample path. Although this approxi-
mation error can be reduced by increasing the mesh size (i.e. decreasing �), it comes at
the expense of increased computational cost and further approximation or interpolation
is needed to obtain the sample path at non-mesh points (which can be non-trivial). As
discussed in Chapter 1 and illustrated in Figure 4.2.1 (which is a reproduction of Figure
1.0.2 included here again for convenience), even when our test function h only requires
the simulation of sample paths at a single terminal time point, discretisation introduces

107



approximation error resulting in the loss of unbiasedness of our Monte Carlo estimator
(4.51) (the Euler discretisation scheme with which we make a comparison is introduced
and discussed in Section 4.2.1). If v has a highly non-linear drift, includes a compound
Poisson process component or is the measure induced by a di↵usion bridge; or the test
function h itself requires simulation of sample paths at a collection of time points, then
this problem is exacerbated. Note that unbiasedness itself is a desirable characteristic of
a Monte Carlo estimator and is necessary in the context of a number of applications (for
instance, within the pseudo-marginal MCMC framework of Andrieu and Roberts [2009]).

Furthermore, although discretisation schemes output a finite dimensional subset of an
approximated sample path, they don’t su�ciently characterise the entire sample path for
the evaluation of some test functions. As noted in Chapter 1, this point is well illustrated
by Figures 4.2.2(a), 4.2.2(b) and 4.2.2(c) (which again is a reproduction of Figure 1.0.1
included here for convenience) in which we are interested in whether a simulated sample
path V ⇠ v, crosses some barrier (i.e. for some set A we have h := (V 2 A)). Note
that in all three cases in order to evaluate h we would require some characterisation of the
entire sample path (or some further approximation) and even for di↵usions with constant
coe�cients and simple barriers this is di�cult. The alternate methodology we develop in
this thesis can be used to address these types of applications (as we discuss in Chapter 8).

Algorithm 4.2.1 Generic Jump Di↵usion Discretisation Scheme.

1. Set j = 0 and  0 = 0. While  j < T ,

(a) Simulate ⌧ ⇠ Exp(⇤). Set j = j + 1 and  j =  j�1 + ⌧.

(b) For i in 1 to
jh

( j ^ T ) �  j�1
i

/�
k

,

i. Simulate V�
 j�1+i� ⇠ pA

�
(V�
 j�1+(i�1)�, z).

(c) Simulate V�( j^T )� ⇠ pA
 j� j�1�i�(V�

 j�1+i�, z).

(d) If  j > T then set V�T = V�T� else,

i. With probability �
⇣

V� j�
⌘

/⇤ simulate ⌫ ⇠ f⌫
⇣

V� j�
⌘

and set V� j
= V� j� +

⌫, else set V� j
= V� j�.
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Figure 4.2.1: Density of V⇡ and approximations given by an Euler discretisation with
various mesh sizes, given V0=0 where dVt=sin(Vt) dt+ dWt.
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Figure 4.2.2: Examples of test functions in which evaluation requires the characterisation
of an entire sample path.
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4.2.1 Strong Taylor Schemes

The most common (and simplest) discretisation scheme for simulating di↵usions of the
form in (4.57) is the Euler-Maruyama scheme (proposed by Maruyama [1955]), in which
a sample path is approximated at each point in time on a mesh by means of the following
recursion,

V�t+� = V�t + �(V�t ) · � + �(V�t ) · ⇠, where ⇠ ⇠ N(0,�). (4.58)

The intuition behind the Euler-Maruyama scheme is based on the integrated form of
(4.57), noting that if � is small enough then the coe�cients of (4.57) will be well ap-
proximated by a di↵usion with constant coe�cients. Indeed, under Conditions 2 and 3
the Euler-Maruyama scheme converges strongly (see Convergence Criteria 1) with or-
der � = 0.5 (see [Kloeden and Platen, 1992, Thm. 10.2.2]). Implementing the Euler-
Maruyama scheme is straightforward as the transition density has a closed form repre-
sentation,

pE
�(v, z) := N

⇣

z; v + �(v)�,�2(v)�
⌘

. (4.59)

Clearly the assumption that the coe�cients of (4.57) will be well approximated by a
di↵usion with constant coe�cients is unsound for highly non-linear drift and volatil-
ity coe�cients (unless the mesh is much finer and � is much smaller). The Milstein
scheme (proposed by Milstein [1979]) is an alternate discretisation scheme which con-
verges strongly with order � = 1 (under suitable conditions and as detailed in [Kloeden
and Platen, 1992, Chap. 10.3 Thm. 19.3.5]) and is obtained by approximating the sample
path at each point on a mesh by means of the following recursion,

V�t+� = V�t + �(V�t ) · � + �(V�t ) · ⇠ + 1
2
· �(V�t ) · �0(V�t ) ·

h

⇠2 � �
i

, where ⇠ ⇠ N(0,�).

(4.60)

It was shown in [Elerian, 1998, Thm. 2.1] that the transition density of the Milstein
scheme has the following closed form representation,

pM
� (v, z) :=

exp {�B/2}
| A | · p2⇡

·
r

A
z �C

· exp
⇢

�z �C
2A

�

· cosh
0

B

B

B

B

B

@

r

(z �C) · B
A

1

C

C

C

C

C

A

, (4.61)
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where,

A :=
�(v) · �0(v) · �

2
, B :=

1
(�0(v))2 · � , (4.62)

C := � �(v)
2�0(v)

+ v + �(v) · � � A. (4.63)

Both the Euler-Maruyama and Milstein schemes are examples of the class of Strong Tay-
lor Schemes, which are obtained by applying Itô’s formulae (see Section 4.1.1) to conduct
a stochastic Taylor expansion of the integrated form of (4.57) and truncating the expan-
sion at various levels [Kloeden and Platen, 1992, Chap. 10]. In principle, any order
of strong convergence can be obtained (� 2 {0.5, 1, 1.5, 2 . . . }) by including more terms
within the truncated stochastic Taylor expansion (under suitable conditions).

4.2.2 Other Discretisation Schemes

A number of alternative discretisation schemes to the strong Taylor schemes exist, which
in various settings will outperform the strong Taylor schemes.

The Runge-Kutta discretisation schemes (see [Kloeden and Platen, 1992, Chap. 11])
are a class of explicit strong schemes which avoid the need to evaluate derivatives (of
various orders) of the drift and volatility coe�cients at each mesh point in the simulation
of an approximated sample path. For each strong Taylor scheme there exists an analogous
Runge-Kutta scheme (of the same strong order) in which derivatives are approximated.
For instance, in the Runge-Kutta analog of the Milstein scheme the sample path is ap-
proximated at each point in time on a mesh by means of the following recursion,

V�t+� = V�t + �(V�t ) · � + �(V�t ) · ⇠ + 1
2
· �(V�t ) ·

�
⇣

V̂�t+�
⌘

� �(V�t )
p
�

·
h

⇠2 � �
i

, (4.64)

where,

V̂�t+� := V�t + �(V�t ) · � + �(V�t ) · p�, and ⇠ ⇠ N(0,�). (4.65)

The Shoji-Ozaki scheme (as proposed in Shoji [1995, 1998] and Shoji and Ozaki [1998])
is a discretisation scheme in which the target di↵usion is first transformed into one with
unit volatility coe�cient (under suitable conditions and as per Section 4.1.2) and then an
approximated sample path is simulated on a mesh by means of a Taylor expansion of the
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drift coe�cient. The transformed approximate sample path is then projected by the in-
verse of this transformation resulting in an approximate sample path simulated under the
target measure v. It was shown in Shoji and Ozaki [1997] that in numerical comparison
the Shoji-Ozaki scheme compares favourably to other discretisation schemes (including
the Euler-Maruyama scheme) in settings where it can be applied.

A related transformation based scheme is the Hermite polynomial expansions proposed
by Aı̈t-Sahalia [2002, 2008], in which in addition to transforming the di↵usion into one
with unit volatility (under suitable conditions and as per Section 4.1.2) a second time
transformation is also conducted so that the resulting transition density over small time
intervals is well approximated by a standard Normal density. The transformed transition
density is then approximated by a Hermite polynomial expansion which is truncated at
some user specified level.

Implicit strong Taylor schemes (see [Kloeden and Platen, 1992, Chap. 12.2] are discreti-
sation schemes in which the approximate sample path, which is generated recursively
on a mesh, includes within the recursion the subsequent state of the approximate sample
path. For instance, the implicit Euler scheme converges strongly with order � = 0.5 and
has the following form (where ⇣ 2 (0, 1] is a tuning parameter which characterises the
degree of implicitness),

V�t+� = V�t + (1 � ⇣) · �(V�t ) · � + ⇣ · �(V�t+�) · � + �(V�t ) · ⇠, where ⇠ ⇠ N(0,�).
(4.66)

Finally, we conclude this section by noting (but not detailing) that there is also an exten-
sive literature on weak discretisation schemes (see [Kloeden and Platen, 1992, Chap. 14
and Chap. 15]) which, as discussed in Section 4.2, output sample paths which approxi-
mate v (as opposed to strong schemes in which a simulated sample path is a path-wise
approximation of a di↵usion sample path). Many strong discretisation schemes have a
weak analog, however, weak schemes can be simpler to implement as we only need to
approximate the measure induced by the target di↵usion. For instance, the Gaussian in-
crements of Brownian motion (see Section 2.8) could be substituted by other more easily
generated random variables (with similar moment properties).
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Part II

Methodology
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5

Exact Algorithms for Simulating

Diffusions and Jump Diffusions

“The surface of things gives enjoyment, their
interiority gives life.”

— Piet Mondrian

In this chapter we introduce a novel mathematical framework for simulating (jump) dif-
fusion and (jump) di↵usion bridge sample path skeletons (see Definition 1) without ap-
proximation error (so called exact algorithms). As discussed in Chapter 1, existing exact
algorithms for di↵usions [Beskos and Roberts, 2005; Beskos et al., 2006a, 2008; Chen
and Huang] and jump di↵usions [Casella and Roberts, 2010; Giesecke and Smelov, Forth-
coming; Gonçalves and Roberts, 2013] focus on the problem of simulating sample paths
at finite collections of time points. However, our extended notion of simulating sample
path skeletons which characterise the entire sample path not only provides potential com-
putational improvement over existing exact algorithms, but provides a far more flexible
structure for use within a variety of applications (as we explore in Chapters 8 and 9).

This chapter is organised as follows: In Section 5.1 and Section 5.3 we outline method-
ology for simulating di↵usion and jump di↵usion sample path skeletons respectively,
whereas in Sections 5.2 and 5.4 we outline methodology for simulating di↵usion and
jump di↵usion bridge sample path skeletons.

5.1 Exact Algorithms for Unconditioned Di↵usions

In this section we outline how to simulate skeletons for di↵usion sample paths which can
be represented (under the conditions in Section 1.3 and following the Lamperti transfor-
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mation in Section 4.1.2), as the solution to SDEs with unit volatility,

dXt = ↵(Xt) dt + dWt, X0 = x 2 , t 2 [0,T ]. (5.1)

As discussed in Chapter 1, exact algorithms are a class of rejection samplers (see Sec-
tion 2.4) operating on di↵usion path space. We begin by outlining an idealised rejection
sampler originally proposed in Beskos and Roberts [2005] for simulating entire di↵u-
sion sample paths. However, for computational reasons this idealised rejection sampler
can’t be implemented so instead, with the aid of new results and algorithmic step reorder-
ing, we address this issue and construct a rejection sampler for simulating sample path
skeletons which only requires finite computation. A number of existing exact algorithms
exist based on this approach (for instance those introduced in Beskos and Roberts [2005],
Beskos et al. [2006a] and Beskos et al. [2008]), however, in this thesis we present two
novel algorithmic interpretations of this rejection sampler. In Section 5.1.1 we present
the Unbounded Exact Algorithm (UEA) which is a methodological extension of existing
exact algorithms, and in Section 5.1.2 we introduce the novel Adaptive Unbounded Exact
Algorithm (AUEA).

Recalling the rejection sampling approach outlined in Section 2.4, we could simulate sam-
ple paths from our target measure (the measure induced by (5.1) and denoted by x

0,T ) by
means of a proposal measure which we can simulate proposal sample paths from. A natu-
ral equivalent measure to choose as a proposal is Wiener measure, x

0,T (see Section 2.8),
as (5.1) has unit volatility. In particular, drawing X ⇠ x

0,T and accepting the sample path

(I = 1) with probability P x
0,T

(X) := 1
M

d x
0,T

d x
0,T

(X) 2 [0, 1] (where
d x

0,T
d x

0,T
(X) is as given

in Corollary 4.1.2) then (X | I = 1) ⇠ x
0,T . On average sample paths are accepted with

probability P x
0,T

:= x
0,T

h

P x
0,T

(X)
i

. However, the function A(XT ) in (4.44) only has a
quadratic growth bound (see Result 3), so typically no appropriate bound (M < 1) exists.

To remove the unbounded function A(XT ) from the acceptance probability one can use
biased Brownian motion (as introduced in Beskos and Roberts [2005]) as the proposal
measure and consider the resulting modification to the acceptance probability.

Definition 5.1.1. Biased Brownian motion is the process Zt
D
= (Wt |W0 = x,WT :=y⇠h)

with measure x
0,T , where x, y 2 , t 2 [0,T ] and h is defined as follows (by Result 3 we
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have 8T  T0, h(y; x,T ) is integrable),

h(y; x,T ) :=
1

c(x,T )
exp

(

A(y) � (y � x)2

2T

)

. (5.2)

Theorem 5.1.1 (Biased Brownian Motion [Beskos and Roberts, 2005, Prop. 3]). x
0,T is

equivalent to x
0,T with Radon-Nikodým derivative:

d x
0,T

d x
0,T

(X) / exp
(

�
Z T

0
�(Xs) ds

)

. (5.3)

Proof. Denoting by x,y
0,T and x,y

0,T as the measures induced by Z and Wiener measure
respectively on [0,T ] with initial condition X0 = x 2 and terminal condition XT = y 2

, we have (noting that x,y
0,T =

x,y
0,T ),

d x
0,T

d x
0,T

(X) =
h (y; x,T )
wT (x, y)

d x,y
0,T

d x,y
0,T

(X) / exp {A(y)} . (5.4)

Now, noting that d x
0,T/ d x

0,T (X) =
⇣

d x
0,T/ d x

0,T (X)
⌘

/
⇣

d x
0,T/ d x

0,T (X)
⌘

(see for
instance [Halmos, 1974, Sec. 32, Thm. A]) and recalling (4.44) then we arrive at (5.3) as
required.

Sample paths can be drawn from x
0,T in two steps by first simulating the end point

XT := y ⇠ h (although h doesn’t have a tractable form, a rejection sampler with Gaussian
proposal can typically be constructed) and then simulating the remainder of the sample
path in (0,T ) from the law of a Brownian bridge,

�

X(0,T )
�

�

� X0 = x, XT = y
� ⇠ x,y

0,T . Then

if the sample path is accepted (I = 1) with probability P x
0,T

(X) := 1
M

d x
0,T

d x
0,T

(X) 2 [0, 1]
then (X | I = 1) ⇠ x

0,T . More formally we have,

P x
0,T

:= x
0,T

h

P x
0,T

(X)
i

= h



x
0,T

h

P x
0,T

(X)
�

�

�

�

XT
i

�

=: h



x,y
0,T

h

P x
0,T

(X)
i

�

(5.5)

We can now construct an (idealised) rejection sampler to draw sample paths from x
0,T

as outlined in Algorithm 5.1.1, noting that as infu2[0,T ] �(Xu) � � (see Condition 5) we
can choose M := exp{��T } to ensure P x

0,T
(X) 2 [0, 1].

Unfortunately, Algorithm 5.1.1 can’t be directly implemented as it isn’t possible to draw
entire sample paths from x,y

0,T in Step 1b (they’re infinite dimensional random variables)
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Algorithm 5.1.1 Idealised Di↵usion Rejection Sampler [Beskos and Roberts, 2005].

1. Simulate X ⇠ x
0,T ,

(a) Simulate XT := y ⇠ h.

(b) Simulate X(0,T ) ⇠ x,y
0,T .

2. With probability P x
0,T

(X) = exp
⇢

� R T
0 �(Xs) ds

�

· exp{�T } accept, else reject and
return to Step 1.

and it isn’t possible to evaluate the integral expression in the acceptance probability in
Step 2.

The key to constructing an implementable algorithm (which requires only finite com-
putation), is to note that by first simulating some finite dimensional auxiliary random
variable F := F(X) ⇠ (the details of which are in Sections 5.1.1 and 5.1.2), an unbi-
ased estimator of the acceptance probability can be constructed which can be evaluated
using only a finite dimensional subset of the proposal sample path. More formally we
have x,y

0,T
[P x

0,T
(X)] = [ x,y

0,T | F[P x
0,T

(X)]]. As such, we can use the simulation of
F to inform us as to what finite dimensional subset of the proposal sample path to simulate
(Xfin ⇠ x,y

0,T ) in Step 1b in order to evaluate the acceptance probability. The remainder of
the sample path can be simulated as required after the acceptance of the sample path from
the proposal measure conditional on the simulations performed, Xrem ⇠ x,y

0,T

�

�

� (Xfin, F)
(noting that X = Xfin [ Xrem). The synthesis of this argument is presented in Algorithm
5.1.21. It should be noted that this is related to the notion of demarginalisation (see Sec-
tion 2.3), in which the addition of an auxiliary random variable simplifies sampling. In
this case as we are interested in evaluating acceptance of a proposal sample path, but not
simulating it in its entirety, this enables a practical implementation (Algorithm 5.1.2) as
opposed to the impractical Algorithm 5.1.1.

In conclusion, although it isn’t possible to simulate entire sample paths from x
0,T , it

1Note that Algorithm 5.1.2 Step 5 is separated from the rest of the algorithm and asterisked. This conven-
tion is used within this thesis to indicate the final step within an Exact Algorithm, which cannot be conducted
in its entirety as it involves simulating an infinite dimensional random variable. However, as noted in the
introductory remarks to this section, our objective is to simulate a finite dimensional sample path skeleton,
with which we can simulate the accepted sample path at any other finite collection of time points without
error. This final step simply indicates how this subsequent simulation may be conducted.
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Algorithm 5.1.2 Implementable Exact Algorithm [Beskos and Roberts, 2005; Beskos
et al., 2006a].

1. Simulate XT := y ⇠ h.

2. Simulate F ⇠ .

3. Simulate Xfin ⇠ x,y
0,T

�

�

�

�

F .

4. With probability P x
0,T | F (X) accept, else reject and return to Step 1.

5. * Simulate Xrem ⇠ x,y
0,T

�

�

�

�

(Xfin, F) .

is possible to simulate exactly a finite dimensional subset of the sample path, charac-
terised by its skeleton S(X) := {X0, Xfin, XT , F}. Careful consideration has to be taken to
construct which existing exact algorithms [Beskos and Roberts, 2005; Beskos et al.,
2006a, 2008] achieve by applying Principles 1 and 2. However, no existing exact algo-
rithm addresses how to construct under the conditions in Section 1.3 to additionally
perform Algorithm 5.1.2 Step 5. We address this in Sections 5.1.1 and 5.1.2.

In the next two sections we present two distinct, novel interpretations of Algorithm 5.1.2.
In Section 5.1.1 we present the Unbounded Exact Algorithm (UEA) which is a method-
ological extension of existing exact algorithms and direct interpretation of Algorithm
5.1.2. In Section 5.1.2 we introduce the Adaptive Unbounded Exact Algorithm (AUEA)
which takes a recursive approach to Algorithm 5.1.2 Steps 2, 3 and 4.

5.1.1 Bounded & Unbounded Exact Algorithms

In this section we present the Unbounded Exact Algorithm (UEA) along with the Bounded
Exact Algorithm (BEA) (which can viewed as a special case of the UEA) by revisiting
Algorithm 5.1.2 and considering how to construct a suitable finite dimensional random
variable F ⇠ .

As first noted in Beskos et al. [2006a], it is possible to construct and simulate the ran-
dom variable F required in Algorithm 5.1.2, provided �(X[0,T ]) can be bounded above
and below (where we denote by X[0,T ] as the trajectory of the sample path X in the in-
terval [0,T ]). It was further noted in Beskos et al. [2008] that F could be constructed
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and simulated provided it were possible to simulate a Brownian bridge proposal sample
path in conjunction with information as to an interval in which it was contained, and that
conditional on this interval, �(X[0,T ]) was bounded above and below. Finding a suitable
set of information that establishes an interval in which �(X[0,T ]) is contained (by means
of finding and mapping an interval in which the sample path X[0,T ] is contained), is the
primary motivation behind the notion of a sample path layer (see Definition 2). In this
thesis we discuss two alternative layer constructions (see Sections 6.2 and 6.3), both of
which complicate the key ideas behind the UEA and so are only discussed in abstract
terms at this stage.

Further to Beskos et al. [2008], we note that �(X[0,T ]) is bounded on compact sets (see
Result 4) and so if, after simulating the end point from biased Brownian motion, we par-
tition the path space of x

0,T

�

�

� XT =
x,y
0,T into disjoint layers and simulate the layer to

which our proposal sample path belongs (see Principle 1, denoting R := R(X) ⇠ R as
the simulated layer the precise details of which are given in Section 6.2), then an upper
and lower bound for �(X[0,T ]) can always be found conditional on this layer (UX 2 and
LX 2 respectively, which are functions of the simulated layer R). As such we have,

P x
0,T

:= x
0,T

h

P x
0,T

(X)
i

= h x,y
0,T

h

P x
0,T

(X)
i

= h R x,y
0,T |R

h

P x
0,T

(X)
i

= h R x,y
0,T |R

"

exp
(

�
Z T

0
�(Xs) ds

)

· e�T
#

. (5.6)

Proceeding in a similar manner to Beskos et al. [2006b] to construct our finite dimensional
unbiased estimator of the acceptance probability of a sample path, we consider a Taylor
series expansion of the exponential function in (5.6),

P x
0,T

(X) = e�(LX��)T · e�(UX�LX)T exp
(

Z T

0
UX��(Xs) ds

)

= e�(LX��)T ·
2

6

6

6

6

6

6

6

4

1
X

j=0

e�(UX�LX)T ⇥

(UX�LX)T
⇤ j

j!

(

Z T

0

UX��(Xs)
(UX�LX)T

ds
) j

3

7

7

7

7

7

7

7

5

, (5.7)
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again employing methods found in Beskos et al. [2006b], we note that if we let R be the
law of  ⇠ Poi((UX � LX)T ),  the distribution of (⇠1, . . . , ⇠)

iid⇠ U[0,T ] we have,

P x
0,T

(X) = e�(LX��)T · R

" 

Z T

0

UX��(Xs)
(UX�LX)T

ds
! �

�

�

�

�

�

X
#

= e�(LX��)T · R 

2

6

6

6

6

6

4


Y

i=1

 

UX��(X⇠i)
UX�LX

!

�

�

�

�

�

�

�

X

3

7

7

7

7

7

5

. (5.8)

The key observation to make from (5.8) is that the acceptance probability of a sample
path X ⇠ x

0,T can be evaluated without the need of the sample path in its entirety, and
can instead be evaluated using a finite dimensional realisation, Xfin. Simulating a finite di-
mensional proposal as suggested by (5.6) and (5.8) and incorporating it within Algorithm
5.1.2 results directly in the UEA presented in Algorithm 5.1.3. A number of alternate
methods for simulating unbiasedly layer information (Step 2), layered Brownian bridges
(Step 4), and the sample path at further times after acceptance (Step 6), are given in Sec-
tion 6.2.

Algorithm 5.1.3 Unbounded Exact Algorithm (UEA).

1. Simulate skeleton end point XT := y ⇠ h.

2. Simulate layer information R ⇠ R.

3. With probability
�

1 � exp {�(LX � �)T }� reject path and return to Step 1.

4. Simulate skeleton points
⇣

X⇠1 , . . . , X⇠
⌘

�

�

�

�

R ,

(a) Simulate  ⇠ Poi
�

(UX � LX)T
�

and skeleton times ⇠1, . . . , ⇠
iid⇠ U[0,T ].

(b) Simulate sample path at skeleton times X⇠1 , . . . , X⇠ ⇠ x,y
0,T

�

�

�

�

R .

5. With probability
Q

i=1

h⇣

UX � �(X⇠i)
⌘

/ (UX � LX)
i

, accept entire path, else reject
and return to Step 1.

6. * Simulate Xrem ⇠
✓

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

◆

�

�

�

�

�

R .

The UEA can be viewed as a nested rejection sampler in which the acceptance proba-
bility is broken into a computational inexpensive step (Step 3), and a computationally
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expensive step (Step 5) which to evaluate requires partial simulation of the proposal sam-
ple path (Step 4). Unlike existing exact algorithms (EA3 in Beskos et al. [2008]), the
UEA conducts early rejection to avoid any further unnecessary simulation of the rejected
sample path.

The skeleton of an accepted sample path includes any information simulated for the pur-
pose of evaluating the acceptance probability (any subsequent simulation must be con-
sistent with the skeleton). As such, the skeleton is composed of terminal points, skeletal
points (X⇠1 , . . . , X⇠) and layer R (denoting ⇠0 := 0 and ⇠+1 := T ),

SUEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,R

�

. (5.9)

An illustrative example of an accepted sample path skeleton simulated by means of the
UEA is given in Figure 5.1.1.

After simulating an accepted sample path skeleton we may want to simulate the sam-
ple path at further intermediate points. In the particular case in which �(X[0,T ]) is almost
surely bounded there is no need to simulate layer information in Algorithm 5.1.3, the
skeleton (5.10) can be simulated from the law of a Brownian bridge and given the skele-
ton we can simulate further intermediate points of the sample path from the law of a
Brownian bridge (so we satisfy Principle 3). This leads to the Exact Algorithm 1 (EA1)
proposed in Beskos et al. [2006a], which we term the BEA.

SBEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0

�

. (5.10)

A second exact algorithm (EA2) was also proposed in Beskos et al. [2006a] (the details
of which we omit from this thesis), in which simulating the sample path at further inter-
mediate points after accepting the sample path skeleton was possible by simulating from
the law of two independent Bessel bridges. However, EA1 (BEA) and EA2 both have
very limited applicability and are the only existing exact algorithms which directly sat-
isfy Principle 3.

Unlike existing exact algorithms [Beskos and Roberts, 2005; Beskos et al., 2006a, 2008],
after accepting a sample path skeleton using the UEA it is possible to simulate the sample
path at further finite collections of time points without approximation under the full gener-
ality of the conditions outlined in Section 1.3 (so satisfying Principle 3). Algorithm 5.1.3
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Step 6 can’t be conducted in existing exact algorithms as the layer imparts information
across the entire interval. However, in Section 6.2 we show that Step 6 is possible (with
additional computation), by augmenting the skeleton with sub-interval layer information
(denoting R[a,b]

X as the layer for the sub-interval [a, b] ✓ [0,T ]),

S0UEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,R,

⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

�

=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

�

. (5.11)

The augmented skeleton allows the sample path to be decomposed into conditionally in-
dependent paths between each of the skeletal points and so the layer R no longer imparts
information across the entire interval [0,T ]. As such, simulating the sample path at fur-
ther times after acceptance as in Algorithm 5.1.3 Step 6 is direct,

Xrem ⇠ x,y
0,T

�

�

�

�

S0UEA = ⌦+1
i=1

✓

X⇠i�1 ,X⇠i
⇠i�1,⇠i

�

�

�

�

R[⇠i�1,⇠i]
X

◆

. (5.12)

It should be noted that it is possible to simulate Algorithm 5.1.3 Steps 2 and 3 jointly by
suitably modifying the mechanism by which layers are proposed and accepted from that
outlined in Section 6.2. However, it is unclear if this is computationally advantageous
and so we omit details.

5.1.1.1 Implementational Considerations – Interval Length

It transpires that the computational cost of simulating a sample path doesn’t scale linearly
with interval length. However, this problem can be addressed by exploiting the fact that
sample paths can be simulated by successive simulation of sample paths of shorter length
over the required interval by applying the strong Markov property, noting the Radon-
Nikodým derivative in (4.44) decomposes as follows (for any t 2 [0,T ]),

d x
0,T

d x
0,T

(X) =
"

exp
(

A(Xt) � A(x) �
Z t

0
�(Xs) ds

)#

·
"

exp
(

A(XT ) � A(Xt) �
Z T

t
�(Xs) ds

)#

.

(5.13)

A direct application of this decomposition is used in Section 5.3.
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(a) Example sample path skeleton SUEA (X), overlaid with example
sample path trajectories.
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)

(b) � mapping of example sample path skeleton SUEA (X), and example
sample path trajectories.

Figure 5.1.1: Illustrative sample path skeleton output from the Unbounded Exact Algo-
rithm (UEA; Algorithm 5.1.3), SUEA (X) = {(⇠i, X⇠i)+1

i=0 ,R}, overlaid with example sample
path trajectories Xrem ⇠

⇣

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

⌘

�

�

� R. Hatched regions indicate layer information,
whereas the asterisks indicate skeletal points.



5.1.2 Adaptive Unbounded Exact Algorithm

Within this section we outline a novel Adaptive Unbounded Exact Algorithm (AUEA).
To motivate this we revisit Algorithm 5.1.2 noting that the acceptance probability (5.6)
can be re-written as follows,

P x
0,T
= h R x,y

0,T |R

"

exp
(

�
Z T

0
(�(Xs) � LX) ds

)#

=: h R x,y
0,T |R

h

e�(LX��)T · P̃ x
0,T |R(X)

i

. (5.14)

Now following Algorithm 5.1.3, after simulating layer information (Step 2) and condi-
tionally accepting the proposal sample path in the first (inexpensive) part of the nested
rejection sampler (Step 3), the probability of accepting the sample path is,

P̃ x
0,T |R(X) 2

h

e�(UX�LX)T , 1
i

✓ [0, 1]. (5.15)

Reinterpreting the estimator in (5.8) in light of (5.15) and with the aid of Figure 5.1.2,
we are exploiting the fact that P̃ x

0,T |R(X) is equal to the probability a Poisson process of
intensity 1 on the graph GA := {(x, y) 2 [0,T ] ⇥ [LX ,1) : y  �(x)} contains no points.
As this is a di�cult space in which to simulate a Poisson process (we don’t even know
the entire trajectory of X), we are instead simulating a Poisson process of intensity 1 on
the larger graph GP := [0,T ] ⇥ [LX ,UX] ◆ GA (which is easier as UX � LX is a constant)
and then conducting Poisson thinning (see Section 2.9.2), by first computing �(X) at a
finite collection of points (accepting the entire sample path if there are no Poisson points
in GA ✓ GP). This idea was first presented in Beskos et al. [2006a] and formed the basis
of the Bounded Exact Algorithm (BEA) discussed in Section 5.1.1.

As an aside, it should be noted that conditional acceptance of the proposal sample path
with probability e�(LX��)T in Algorithm 5.1.3 Step 3 is simply the probability that a
Poisson process of intensity 1 has no points on the graph GR := [0,T ] ⇥ [�, LX] (the
crosshatched region in Figure 5.1.2).

In some settings GP can be much larger than GA and the resulting exact algorithm can
be ine�cient and computationally expensive. In this section we propose an adaptive
scheme which exploits the simulation of intermediate skeletal points of the proposal sam-
ple path in Algorithm 5.1.3 Step 4. In particular, note that each simulated skeletal point
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Figure 5.1.2: Example trajectory of �(X) where X ⇠ x,y
0,T

�

�

�

�

R(X) .

implicitly provides information regarding the layer the sample path is contained within in
both the sub-interval before and after it. As such, by simulating each point separately we
can use this information to construct a modified proposal GM

P such that GA ✓ GM
P ✓ GP,

composed of a Poisson process with piecewise constant intensity, for the simulation of
the remaining points.

In Algorithm 5.1.3 Step 4a we simulate a Poisson process of intensity �XT := (UX�LX)T
on the interval [0,T ] to determine the skeletal points (⇠1, . . . , ⇠). Alternatively we can ex-
ploit the exponential waiting time property between successive events (see Section 2.9.1).
In particular, denoting T1, . . . ,T as the time between each event ⇠1, . . . , ⇠, then the tim-
ing of the events can be simulated by successive Exp(�X) waiting times while

P

i Ti  T .

The independence of events of a Poisson process allows us to simulate them in any conve-
nient order. In our case it is likely the sample path at points closer to the mid-point of the
interval will contain more information about the layer structure of the entire sample path.
As such, there is an advantage in simulating these points first. If we begin at the interval
mid-point (T/2), we can find the skeletal point closest to it by simulating an Exp(2�X)
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random variable, ⌧ (we are simulating the first point at either side of the mid-point). As
such, the simulated point (denoted ⇠) will be with equal probability at either T/2 � ⌧ or
T/2 + ⌧. Considering this in the context of (5.15), upon simulating ⇠ we have simply
broken the acceptance probability into the product of three probabilities associated with
three disjoint sub-intervals, the realisation of the sample path at X⇠ providing a binary
unbiased estimate of the probability corresponding to the central sub-interval (where the
expectation is with respect to u ⇠ U[0, 1]),

P̃ x
0,T |R,X⇠ (X) = exp

(

�
Z T/2�⌧

0

⇥

�(Xs) � LX
⇤

ds �
Z T

T/2+⌧

⇥

�(Xs) � LX
⇤

ds
)

·
 "

u  UX � �(X⇠)
UX � LX

#

�

�

�

�

�

�

X⇠
!

. (5.16)

If the central sub-interval is rejected the entire sample path can be discarded. However,
if it is accepted then the acceptance of the entire sample path is conditional on the accep-
tance of both the left and right hand sub-intervals in (5.16), each of which have the same
structural form as we originally had in (5.15). As such, for each we can simply iterate the
above process until we have exhausted the entire interval [0,T ].

As outlined above our approach is an algorithmic reinterpretation, but otherwise iden-
tical, to Algorithm 5.1.3. However, we now have the flexibility to exploit the simulated
skeletal point X⇠, to simulate new layer information for the remaining sub-intervals con-
ditional on the existing layer RX (which we detail in Section 6.3). In particular, con-
sidering the left hand sub-interval in (5.16), we can find new layer information (de-
noted R[0,⇠]

X ) which will contain tighter bound information regarding the sample path
(`X  `[0,⇠]

X  X[0,⇠](!)  �[0,⇠]
X  �X) and so (as a consequence of Result 4) can be

used to compute tighter bounds for �(X[0,⇠]) (denoted U[0,⇠]
X ( UX) and L[0,⇠]

X (� LX)),

P̃[0,⇠]
x
0,⇠ |R[0,⇠]

X ,X⇠
(X) = exp

8

>

>

<

>

>

:

�
Z T

2 �⌧

0

⇥

�(Xs)�LX
⇤

ds

9

>

>

=

>

>

;

= exp
⇢

�
⇣

L[0,⇠]
X �LX

⌘

✓T
2
�⌧

◆�

exp

8

>

>

<

>

>

:

�
Z T

2 �⌧

0

h

�(Xs)�L[0,⇠]
X

i

ds

9

>

>

=

>

>

;

. (5.17)

The left hand hand exponential in (5.17) is a constant and it is trivial to immediately
reject the entire path with the complement of this probability. The right hand expo-
nential of (5.17) has the same form as (5.15) and so the same approach as outlined
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above can be employed, but over the shorter interval [0,T/2 � ⌧] and with the lower
rate �[0,⇠]

X

⇣

:= U[0,⇠]
X � L[0,⇠]

X  �X
⌘

. As a consequence, the expected number of interme-
diate points required in order to evaluate the acceptance probability in (5.15) is lower than
the Unbounded Exact Algorithm (UEA) in Algorithm 5.1.3.

This leads to the novel AUEA detailed in Algorithm 5.1.4, the recursive nature of the
algorithm being illustrated in Figure 5.1.3 which is an extension to the example in Figure
5.1.2. We outline how to simulate (unbiasedly) layer information (Step 2), intermediate
skeletal points (Step 4(b)ii) and new layer information (Step 4(b)iv) in a variety of ways
in Section 6.3. Our iterative scheme outputs a skeleton comprising skeletal points and
layer information for the intervals between consecutive skeletal points. The AUEA with
this skeleton has the distinct advantage that Principles 1, 2 and 3 are satisfied directly.
In particular, any finite collection of intermediate points required after the skeleton has
been simulated can be simulated directly (by application of Algorithm 5.1.4 Step 4(b)ii
and Step 4(b)iv), without any augmentation of the skeleton (as in Algorithm 5.1.3). If
necessary, further refinement of the layers given the additionally simulated points can be
performed as outlined in Section 6.3. An illustrative example of an accepted sample path
skeleton simulated by means of the AUEA is given in Figure 5.1.4.

SAUEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

�

(5.18)

In Algorithm 5.1.4 we introduce simplifying notation, motivated by its recursive nature in
which (as shown in (5.16)) the acceptance probability is iteratively decomposed into inter-
vals which have been estimated and are yet to be estimated. ⇧ denotes the set comprising
information required to evaluate the acceptance probability for each of the intervals still to
be estimated, ⇧ := {⇧i}|⇧|i=1. Each⇧i contains information regarding the time interval it ap-
plies to, the sample path at known points at either side of this interval and the associated
simulated layer information, which we denote

⇥

s⇧(i), t⇧(i)
⇤

, x⇧(i) := X⇧(i)
s� , y⇧(i) := X⇧(i)

t+

and R⇧(i)
X respectively (where s�⇧(i)  s⇧(i) < t⇧(i)  t+⇧(i)). This distinction is necessary as

known points of the sample path at either end of a given sub-interval do not necessarily
align with the end points of the sub-intervals corresponding to the remaining probabilities
requiring simulation. As before, R⇧(i)

X can be used to directly compute bounds for � for
this specific sample path over the interval

⇥

s⇧(i), t⇧(i)
⇤

(namely L⇧(i)
X , U⇧(i)

X and �⇧(i)
X ). We

further denote m⇧(i) :=
�

s⇧(i) + t⇧(i)
�

/2, d⇧(i) :=
�

t⇧(i) � s⇧(i)
�

/2 and ⌅ := ⇧1.

128



5.1.2.1 Implementational Considerations – Known Intermediate Points

It should be noted that if a number of intermediate points of a sample path are required
and the time points at which they occur are known in advance, then rather than simulat-
ing them after the acceptance of the sample path skeleton in Algorithm 5.1.4 Step 6, their
simulation can be incorporated into Algorithm 5.1.4. In particular, if these points are sim-
ulated immediately after Algorithm 5.1.4 Step 3 (this can be performed using Algorithm
6.3.7), then we have additional layer information regarding the sample path which can
be used to compute tighter bounds for �(X[0,T ]) leading to a more e�cient algorithm (as
in Section 5.1.2). The drawback of this approach is that these additional points of the
sample path constitute part of the resulting skeleton.
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Step 3)
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(c) After simulating ⇠2
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L
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[⇠3,T ]
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(d) After simulating ⇠3

Figure 5.1.3: AUEA applied to the trajectory of �(X) in Figure 5.1.2 (where X ⇠
x,y
0,T

�

�

�

�

R(X) ).
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Algorithm 5.1.4 Adaptive Unbounded Exact Algorithm (AUEA).

1. Simulate skeleton end point XT := y ⇠ h.

2. Simulate initial layer information RX ⇠ R, setting⇧ := {⌅} := {{[0,T ], X0, XT ,RX}}
and  = 0.

3. With probability
�

1 � exp {�(LX � �)T }� reject path and return to Step 1.

4. While
�

�

�⇧
�

�

� , 0,

(a) Set ⌅ = ⇧1.

(b) Simulate ⌧ ⇠ Exp
⇣

2�⌅X
⌘

. If ⌧ > d⌅ then set ⇧ := ⇧ \ ⌅ else,

i. Set  =  + 1 and with probability 1/2 set ⇠0 = m⌅ � ⌧ else ⇠0 = m⌅ + ⌧.

ii. Simulate X⇠0 ⇠ x(⌅),y(⌅)
s�(⌅),t+(⌅)

�

�

�

�

R⌅X .

iii. With probability
⇣

1 �
h

U⌅
X � �

⇣

X⇠0
⌘i

/�⌅X
⌘

reject path and return to Step
1.

iv. Simulate new layer information R[s�(⌅),⇠0]
X and R[⇠0,t+(⌅)]

X conditional on
R⌅X .

v. With probability
✓

1 � exp
⇢

�


L[s�(⌅),⇠0]
X + L[⇠0,t+(⌅)]

X � 2L⌅X
�

[d⌅ � ⌧]
�◆

reject path and return to Step 1.

vi. Set ⇧ := ⇧
S

⇢

[s⌅,m⌅�⌧] , X⌅s�, X⇠0 ,R
[s�(⌅),⇠0]
X

�

S

⇢

[m⌅+⌧, t⌅] , X⇠0 , X
⌅
t+,R

[⇠0,t+(⌅)]
X

�

\ ⌅.

5. Define skeletal points ⇠1, . . . , ⇠ as the order statistics of the set
n

⇠01, . . . , ⇠
0


o

.

6. * Simulate Xrem ⇠
✓

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

�

�

�

�

R[⇠i�1,⇠i]
X

◆

.
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(a) Example sample path skeleton SAUEA (X), overlaid with example
sample path trajectories.
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(b) � mapping of example sample path skeleton SAUEA (X), and exam-
ple sample path trajectories.

Figure 5.1.4: Illustrative sample path skeleton output from the Adaptive Unbounded Ex-
act Algorithm (AUEA; Algorithm 5.1.4), SAUEA (X) :=

n⇣

⇠i, X⇠i

⌘+1

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

o

, over-

laid with example sample path trajectories Xrem ⇠
⇣

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

�

�

�

�

R[⇠i�1,⇠i]
X

⌘

. Hatched
regions indicate layer information, whereas the asterisks indicate skeletal points.



5.2 Exact Algorithms for Conditioned Di↵usions

In this section we outline how to simulate skeletons of di↵usion bridge sample paths
which can be represented as the solution to the following SDE,

dXt = ↵(Xt) dt + dWt, X0 = x 2 , XT = y 2 , t 2 [0,T ]. (5.19)

A di↵usion bridge is simply a di↵usion which in addition to being conditioned to have a
given start point is also conditioned to have some specified end point (note in (5.19) we
have that XT = y).

Denoting by x,y
0,T as the measure induced by (5.19) then, as noted in Beskos et al. [2006a],

a similar rejection sampling approach as presented in Section 5.1 can be employed to draw
sample path skeletons from x,y

0,T . In particular, proposal sample path skeletons can be
drawn from the equivalent measure x,y

0,T (Brownian bridge measure as in Section 2.8)
and accepted with probability proportional to the Radon-Nikodým derivative of x

0,T with
respect to x

0,T .

We begin by noting that as a consequence of Corollary 4.1.2 and Theorem 5.1.1 we have
that under Conditions 1–3 the Radon-Nikodým derivative of x,y

0,T with respect to x,y
0,T

is as follows,

d x,y
0,T

d x,y
0,T

(X) / exp
(

�
Z T

0
�(Xs) ds

)

. (5.20)

Noting that d x,y
0,T/ d x,y

0,T (X) = d x
0,T/ d x

0,T (X) (see (5.3)) then simulating a di↵usion
bridge skeleton can be performed in precisely the same manner as a di↵usion sample
path skeleton after the simulation of the end point from Biased brownian motion. As
such we can proceed directly to presenting the Conditioned Unbounded Exact Algorithm
(CUEA) in Algorithm 5.2.1 and the Adaptive Unbounded Exact Algorithm (CAUEA)
in Algorithm 5.2.2, which are direct extensions of Algorithm 5.1.3 and Algorithm 5.1.4
respectively and output skeletons with the same structure as their unconditioned di↵usion
counterparts,

SCUEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,R

�

, SCAUEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

�

. (5.21)
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In Figures 5.2.1 and 5.2.2 we present illustrative examples of accepted sample path skele-
tons simulated by means of the CUEA and CAUEA respectively.

Algorithm 5.2.1 Conditioned Unbounded Exact Algorithm (CUEA).

1. Simulate layer information R ⇠ R.

2. With probability
�

1 � exp {�(LX � �)T }� reject path and return to Step 1.

3. Simulate skeleton points
⇣

X⇠1 , . . . , X⇠
⌘

�

�

�

�

R ,

(a) Simulate  ⇠ Poi
�

(UX � LX)T
�

and skeleton times ⇠1, . . . , ⇠
iid⇠ U[0,T ].

(b) Simulate sample path at skeleton times X⇠1 , . . . , X⇠ ⇠ x,y
0,T

�

�

�

�

R .

4. With probability
Q

i=1

h⇣

UX � �(X⇠i)
⌘

/ (UX � LX)
i

, accept entire path, else reject
and return to Step 1.

5. * Simulate Xrem ⇠
✓

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

◆

�

�

�

�

�

R .
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Algorithm 5.2.2 Conditioned Adaptive Unbounded Exact Algorithm (CAUEA).

1. Simulate initial layer information RX ⇠ R, setting⇧ := {⌅} := {{[0,T ], X0, XT ,RX}}
and  = 0.

2. With probability
�

1 � exp {�(LX � �)T }� reject path and return to Step 1.

3. While
�

�

�⇧
�

�

� , 0,

(a) Set ⌅ = ⇧1.

(b) Simulate ⌧ ⇠ Exp
⇣

2�⌅X
⌘

. If ⌧ > d⌅ then set ⇧ := ⇧ \ ⌅ else,

i. Set  =  + 1 and with probability 1/2 set ⇠0 = m⌅ � ⌧ else ⇠0 = m⌅ + ⌧.

ii. Simulate X⇠0 ⇠ x(⌅),y(⌅)
s�(⌅),t+(⌅)

�

�

�

�

R⌅X .

iii. With probability
⇣

1 �
h

U⌅
X � �

⇣

X⇠0
⌘i

/�⌅X
⌘

reject path and return to Step
1.

iv. Simulate new layer information R[s�(⌅),⇠0]
X and R[⇠0,t+(⌅)]

X conditional on
R⌅X .

v. With probability
✓

1 � exp
⇢

�


L[s�(⌅),⇠0]
X + L[⇠0,t+(⌅)]

X � 2L⌅X
�

[d⌅ � ⌧]
�◆

reject path and return to Step 1.

vi. Set ⇧ := ⇧
S

⇢

[s⌅,m⌅�⌧] , X⌅s�, X⇠0 ,R
[s�(⌅),⇠0]
X

�

S {[m⌅+⌧, t⌅] ,

X⇠0 , X
⌅
t+,R

[⇠0,t+(⌅)]
X

�

\ ⌅.

4. Define skeletal points ⇠1, . . . , ⇠ as the order statistics of the set
n

⇠01, . . . , ⇠
0


o

.

5. * Simulate Xrem ⇠
✓

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

�

�

�

�

R[⇠i�1,⇠i]
X

◆

.
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(a) Example sample path skeleton SCUEA (X), overlaid with example
sample path trajectories.
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(b) � mapping of example sample path skeleton SCUEA (X), and exam-
ple sample path trajectories.

Figure 5.2.1: Illustrative sample path skeleton output from the Conditioned Unbounded
Exact Algorithm (CUEA; Algorithm 5.2.1), SCUEA (X) =

n⇣

⇠i, X⇠i

⌘+1

i=0
,R

o

, overlaid with

example sample path trajectories Xrem ⇠
⇣

⌦+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

⌘

�

�

�

�

R. Hatched regions indicate
layer information, whereas the asterisks indicate skeletal points.
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(a) Example sample path skeleton SCAUEA (X), overlaid with example
sample path trajectories.
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(b) � mapping of example sample path skeleton SCAUEA (X), and exam-
ple sample path trajectories.

Figure 5.2.2: Illustrative sample path skeleton output from the Conditioned Adap-
tive Unbounded Exact Algorithm (CAUEA; Algorithm 5.2.2), SCAUEA (X) =
n⇣

⇠i, X⇠i

⌘+1

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

o

, overlaid with example sample path trajectories Xrem ⇠
⇣
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⇠i�1,⇠i
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�
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. Hatched regions indicate layer information, whereas the asterisks
indicate skeletal points.



5.3 Exact Algorithms for Unconditioned Jump Di↵usions

In this section we extend the methodology of Section 5.1, constructing exact algorithms
for simulating skeletons of jump di↵usion sample paths which can be represented as the
solution to the following SDE (denoting Xt� := lims"t Xs),

dXt = ↵ (Xt-) dt + dWt + dJ�,⌫t , X0 = x 2 , t 2 [0,T ]. (5.22)

Denoting by x
0,T the measure induced by (5.22), we can draw sample paths from x

0,T
by instead drawing sample paths from an equivalent proposal measure x

0,T (a natural
choice being a driftless version of (5.22)), and accepting them with probability propor-
tional to the Radon-Nikodým derivative of x

0,T with respect to x
0,T . The resulting

Radon-Nikodým derivative ((4.42) in Corollary 4.1.1) di↵ers from that for di↵usions
(4.44) with the inclusion of an additional term, so the methodology of Section 5 can’t
be applied. However, as discussed in Corollary 4.1.1, (4.43) can be re-expressed in a
product form similar to (5.13) (with  1, . . . , NT denoting the jump times in the interval
[0,T ],  0 := 0,  NT+1 := T and Nt :=

P

i�1 { i  t}),

d x
0,T

d x
0,T

(X) =
NT+1
Y

i=1

"

exp
(

A(X i�) � A(X i�1 ) �
Z  i�

 i�1

�(Xs) ds
)#

. (5.23)

This form of the Radon-Nikodým derivative is the key to constructing Jump Exact Algo-
rithms (JEA). Recall that in Section 5.1.1.1, decomposing the Radon-Nikodým derivative
for di↵usions justified the simulation of sample paths by successive simulation of sample
paths of shorter length over the required interval (see (5.13)). Similarly, jump di↵usion
sample paths can be simulated by simulating di↵usion sample paths of shorter length be-
tween consecutive jumps.

In this section we present three novel JEAs. In contrast with existing algorithms (Casella
and Roberts [2010], Giesecke and Smelov [Forthcoming] and Gonçalves and Roberts
[2013]), we note that the Bounded, Unbounded and Adaptive Unbounded Exact Algo-
rithms in Section 5.1 can all be incorporated within any of the JEAs we develop (with an
appropriate choice of layered Brownian bridge construction from Chapter 6). In Section
5.3.1 we present the Bounded Jump Exact Algorithm (BJEA), which is a reinterpretation
and methodological extension of Casella and Roberts [2010], addressing the case where
there exists an explicit bound for the intensity of the jump process. In Section 5.3.2 we
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present the Unbounded Jump Exact Algorithm (UJEA) which is an extension to existing
exact algorithms (as introduced in Giesecke and Smelov [Forthcoming] and Gonçalves
and Roberts [2013]) in which the jump intensity is only locally bounded. Finally, in Sec-
tion 5.3.3 we introduce an entirely novel Adaptive Unbounded Jump Exact Algorithm
(AUJEA) based on the adaptive approach of Section 5.1.2.

5.3.1 Bounded Jump Intensity Jump Exact Algorithm

The case where the jump di↵usion we want to simulate (5.22) has an explicit jump inten-
sity bound (supu2[0,T ] �(Xu)  ⇤ < 1) is of specific interest as the proposal jump times
can be simulated in advance. In particular, proposal jump times,  1, . . . , N⇤T

can be sim-
ulated according to a Poisson process with the homogeneous intensity ⇤ over the interval
[0,T ] and then a simple Poisson thinning argument can be used to accept proposal jump
times with probability �(X i)/⇤ (as detailed in Section 2.9.2 by application of Algorithm
2.9.3 or Algorithm 2.9.4). As noted in Casella and Roberts [2010], this approach allows
the construction of a highly e�cient algorithmic interpretation of the decomposition in
(5.23). The interval can be broken into segments corresponding precisely to the intervals
between proposal jump times, then iteratively between successive times, an exact algo-
rithm (as outlined in Section 5.1) can be used to simulate a di↵usion sample path skeleton.
The terminal point of each skeleton can be used to determine whether the proposal jump
time is accepted (and if so a jump simulated).

The Bounded Jump Exact Algorithm (BJEA) we outline in Algorithm 5.3.1 is a modifica-
tion of that originally proposed in Casella and Roberts [2010] (where we define  0 := 0
and  N⇤T +1 := T ). In particular, we simulate the proposal jump times iteratively (exploit-
ing the exponential waiting time property of Poisson processes as in Section 2.9.1), noting
that the best proposal distribution may be di↵erent for each sub-interval. Furthermore, we
note that any of the exact algorithms introduced in Section 5.1 can be incorporated in the
BJEA (and so the BJEA will satisfy at least Principle 1 and Principle 2). In particular,
the BJEA skeleton is a concatenation of exact algorithm skeletons for the intervals be-
tween each proposal jump time, so to satisfy Principle 3 and simulate the sample path at
further intermediate time points (Step 3), we either augment the skeleton if the exact al-
gorithm chosen is the Unbounded Exact Algorithm (UEA) (as discussed in Sections 5.1.1
and 6.2), or, if the exact algorithm chosen is the Adaptive Unbounded Exact Algorithm
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(AUEA) then simulate them directly (as discussed in Sections 5.1.2 and 6.3),

SBJEA (X) :=
N⇤T +1
[

j=1

S j
EA(X). (5.24)

An illustrative example of an accepted sample path skeleton simulated by means of the
UEA incorporated within the BJEA is given in Figure 5.3.1.

Algorithm 5.3.1 Bounded Jump Exact Algorithm (BJEA).

1. Set j = 0. While  j < T ,

(a) Simulate ⌧ ⇠ Exp(⇤). Set j = j + 1 and  j =  j�1 + ⌧.

(b) Apply exact algorithm to the interval
h

 j�1,
⇣

 j^T
⌘⌘

, obtaining skeleton
S j

EA.

(c) If  j > T then set XT = XT� else,

i. With probability �(X i)/⇤ set X j := X j� + f⌫
⇣

X j�
⌘

else set X j :=
X j�.

2. Accept sample path skeleton.

3. * Simulate Xrem ⇠ ⌦N⇤T +1
j=1

✓

⌦ j+1
i=1

X⇠ j,i�1 ,X⇠ j,i
⇠ j,i�1,⇠ j,i

�

�

�

�

�

REA
X[⇠ j,0,⇠ j, j+1]

◆

.
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(a) Example sample path skeleton SBJEA (X), overlaid with example
sample path trajectories.
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(b) �mapping of example sample path skeletonSBJEA (X), and example
sample path trajectories.

Figure 5.3.1: Illustrative sample path skeleton output from the Unbounded Exact Algo-
rithm (UEA; Algorithm 5.1.3) incorporated within the Bounded Jump Exact Algorithm
(BJEA; Algorithm 5.3.1), SBJEA (X) =

SN⇤T +1
j=1

n⇣

⇠ j
i , X⇠ j

i

⌘ j+1

i=0
, R[ j�1, j]

X

o

, overlaid with ex-

ample sample path trajectories Xrem ⇠ x,y
0,T

�

�

�

�

SBJEA. Hatched regions indicate layer
information, whereas the asterisks indicate skeletal points.



5.3.2 Unbounded Jump Intensity Jump Exact Algorithm

Considering the construction of a JEA under the weaker Condition 4 (in which we assume
only that the jump intensity in (5.22) is locally bounded), it is not possible to first simulate
the jump times as in Section 5.3.1. However, (as in Section 5.1 and as noted in Giesecke
and Smelov [Forthcoming] and Gonçalves and Roberts [2013]), it is possible to simulate
a layer R(X) ⇠ R, and then compute a jump intensity bound (�  ⇤X < 1) conditional on
this layer. As such we can construct a JEA in this case by simply incorporating the jump
intensity bound simulation within the layer framework of the UEA and AUEA.

The Unbounded Jump Exact Algorithm (UJEA) which we present in Algorithm 5.3.2 is
a JEA construction based on the UEA and extended from Gonçalves and Roberts [2013].
The UJEA is necessarily more complicated than the BJEA as simulating a layer in the
UEA requires first simulating an end point. Ideally we would like to segment the interval
the jump di↵usion is to be simulated over into sub-intervals according to the length of
time until the next jump (as in the BJEA), however, as we have simulated the end point in
order to find a jump intensity bound then this is not possible. Instead we need to simulate
a di↵usion sample path skeleton over the entire interval (along with all proposal jump
times) and then determine the time of the first accepted jump (if any) and simulate it. If a
jump is accepted another di↵usion sample path has to be proposed from the time of that
jump to the end of the interval. This process is then iterated until no further jumps are
accepted. The resulting UJEA satisfies Principle 1 and Principle 2, however, as a conse-
quence of the layer construction, the jump di↵usion skeleton is composed of the entirety
of each proposed di↵usion sample path skeleton. In particular, we can’t apply the strong
Markov property to discard the sample path skeleton after an accepted jump because of
the interaction between the layer and the sample path before and after the time of that
jump.

SUJEA (X) :=
N�

T
[

j=0

8

>

>

<

>

>

:

✓

⇠ j
i , X⇠ j

i

◆ j+1

i=0
,
✓

 
j
1, X j

1

◆N⇤, jT

i=1
,R j

X[ j,T ]

9

>

>

=

>

>

;

. (5.25)

The UJEA doesn’t satisfy Principle 3 unless the skeleton is augmented (as with the UEA
outlined in Sections 5.1.1 and 6.2). As this is computationally expensive it is not recom-
mended in practice. Alternatively we could use the AUEA within the UJEA to directly
satisfy Principle 3, however it is more e�cient in this case to implement the Adaptive
Unbounded Jump Exact Algorithm (AUJEA) which will be described in Section 5.3.3.
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Algorithm 5.3.2 Unbounded Jump Exact Algorithm (UJEA).

1. Set j = 0 and  j = 0,

(a) Simulate skeleton end point XT := y ⇠ h(y; X j ,T �  j).

(b) Simulate layer information R j
X[ j,T ] ⇠ R and compute ⇤ j

X[ j,T ].

(c) With probability
✓

1 � exp
⇢

�
✓

L j
X[ j,T ] � �

◆

· (T �  j)
�◆

reject path and return
to Step 1a.

(d) Simulate proposal jump times N⇤, jT ⇠ Poi
✓

⇤
j
X[ j,T ](T �  j)

◆

and

 
j
1, . . . , 

j
N⇤, jT

iid⇠ U[ j,T ].

(e) Simulate skeleton points and di↵usion at proposal jump times
✓

X⇠ j
1
, . . . , X⇠ j


, X
 

j
1
, . . . , X

 
j
N(⇤, j,T )

◆

�

�

�

�

�

R j
X[ j,T ] ,

i. Simulate  j ⇠ Poi
✓

U j
X[ j,T ] � L j

X[ j,T ]

�

· (T �  j)
◆

and skeleton times

⇠ j
1, . . . , ⇠

j


iid⇠ U[ j,T ].
ii. Simulate sample path at times X⇠ j

1
, . . . , X⇠ j


, X
 

j
1
, . . . , X

 
j
N(⇤, j,T )

⇠
x,y
 j,T

�

�

�

�

R j
X[ j,T ] .

(f) With probability
✓

1 �Q j
i=1

✓

U j
X[ j,T ] � �

✓

X⇠ j
i

◆◆

/
✓

U j
X[ j,T ] � L j

X[ j,T ]

◆�◆

, re-
ject and return to Step 1a.

(g) For i in 1 to N⇤, jT ,

i. With probability �(X
 

j
i
)/⇤ j

X[ j,T ] set X
 

j
i� = X

 
j
i
, X

 
j
i

:= X
 

j
i�+ f⌫

✓

X
 

j
i

◆

,

 j+1 :=  j
i , j = j + 1, and return to Step 1a.

2. Accept sample path skeleton.

3. * Simulate Xrem ⇠ ⌦N�
T

j=0

✓

⌦ j+1
i=1

X⇠ j,i�1 ,X⇠ j,i
⇠ j,i�1,⇠ j,i

◆

�

�

�

�

�

R j
X[ j,T ]

�

.
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5.3.3 Adaptive Unbounded Jump Intensity Jump Exact Algorithm

The novel Adaptive Unbounded Jump Exact Algorithm (AUJEA) which we present in
Algorithm 5.3.3 is based on the AUEA and a reinterpretation of the UJEA. Considering
the UJEA, note that if we simulate di↵usion sample path skeletons using the AUEA then,
as the AUEA satisfies Principle 3 directly, we can simulate proposal jump times after
proposing and accepting a di↵usion sample path as opposed to simulating the proposal
times in conjunction with the sample path (see Algorithm 5.3.2 Step 1(e)ii). As such, we
only need to simulate the next proposal jump time (as opposed to all of the jump times),
which (as argued in Section 5.1.2), provides further information about the sample path.
In particular, the proposal jump time necessarily lies between two existing skeletal times,
⇠�    ⇠+, so the layer information for that interval, R[⇠�,⇠+]

X can be updated with layer
information for each sub-interval R[⇠�, ]

X and R[ ,⇠+]
X (the mechanism is detailed in Section

6.3.5). Furthermore, upon accepting a proposal jump time  , the sample path skeleton in
the sub-interval after  contains no information regarding the skeleton preceding  (so it
can be discarded). As such, the AUJEA satisfies Principles 1, 2 and 3 and the skeleton is
composed of only the accepted segments of each AUEA skeleton,

SAUJEA (X) :=
N�

T+1
[

j=1

S[ j�1, j)
AUEA (X) . (5.26)

An illustrative example of an accepted sample path skeleton simulated by means of the
AUJEA is given in Figure 5.3.2.
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Algorithm 5.3.3 Adaptive Unbounded Jump Exact Algorithm (AUJEA).

1. Set j = 0 and  j = 0.

2. Apply AUEA to interval
h

 j,T
i

, obtaining skeleton S[ j,T ]
AUEA.

3. Set k = 0 and  j
k =  j. While  j

k < T ,

(a) Compute ⇤ j
X[ j

k ,T ]
.

(b) Simulate ⌧ ⇠ Exp
 

⇤
j
X[ j

k ,T ]

!

. Set k = k + 1 and  j
k =  

j
k�1 + ⌧.

(c) If  j
k  T ,

i. Simulate X
 

j
k
⇠ X j ,XT

 j,T

�

�

�

�

�

S[ j,T ]
AUEA .

ii. Simulate R
[⇠ j
�, 

j
k]

X and R
[ j

k ,⇠+]
X and set S[ j,T ]

AUEA := S[ j,T ]
AUEA [

(

X
 

j
k
,R

[⇠ j
�, 

j
k]

X ,R
[ j

k ,⇠+]
X

)

\ R[⇠ j
�,⇠+]

X .

iii. With probability �(X
 

j
k
)/⇤ j

X[ j
k�1,T ]

set X
 

j
k� = X

 
j
k
, X

 
j
k

:= X
 

j
k� +

f⌫
✓

X
 

j
k

◆

,  j+1 :=  j
k, retain S[ j, j+1)

AUEA , discard S[ j+1,T ]
AUEA , set j = j + 1

and return to Step 2.

4. Accept sample path skeleton.

5. Let skeletal points �1, . . . ,�m denote the order statistics of the time points in
SAUJEA :=

S j+1
i=1 S[ i�1, i)

AUEA .

6. * Simulate Xrem ⇠
✓

⌦m+1
i=1

X�i�1 ,X�i
�i�1,�i

�

�

�

�

R[�i�1,�i]
X

◆

.
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(a) Example sample path skeleton SAUJEA (X), overlaid with example
sample path trajectories.

Time
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y
)

(b) � mapping of example sample path skeleton SAUJEA (X), and exam-
ple sample path trajectories.

Figure 5.3.2: Illustrative sample path skeleton output from the Adaptive Unbounded Jump
Exact Algorithm (AUJEA; Algorithm 5.3.3), SAUJEA (X) :=

SN�
T+1

j=1 S
[ j�1, j)
AUEA (X), overlaid

with example sample path trajectories Xrem ⇠
⇣

⌦m+1
i=1

X�i�1 ,X�i
�i�1,�i

�

�

�

�

R[�i�1,�i]
X

⌘

. Hatched re-
gions indicate layer information, whereas the asterisks indicate skeletal points.



5.3.4 An Extension to the Unbounded & Adaptive Unbounded Jump Exact
Algorithms

In both the UJEA and AUJEA we are unable to segment the interval the jump di↵usion
is to be simulated over into sub-intervals according to the length of time until the next
jump (in contrast with the BJEA). As a consequence we simulate di↵usion sample paths
which are longer than necessary (so computationally more expensive), then (wastefully)
partially discard them. To avoid this problem we could break the interval into segments
and iteratively simulate di↵usion sample paths of shorter length over the interval (as in
(5.13)), thereby minimising the length of discarded segments beyond an accepted jump.
However, the computational cost of simulating a sample path does not scale linearly with
the interval it has to be simulated over, so the optimal length to decompose the interval is
unknown.

It is possible to extend the UJEA and AUJEA based on this decomposition and Pois-
son superposition (see Kingman [1992]). In particular, if it is possible to find a lower
bound for the jump intensity �# 2 (0, �), then we can consider the target jump process as
being the superposition of two jump processes (one of homogeneous intensity �# and the
other with inhomogeneous intensity � � �#). As such we can simulate the timing of an
accepted jump in the jump di↵usion sample path under the homogeneous jump intensity
�# by means of a ⌧ ⇠ Exp(�#) random variable. If ⌧ 2 [0,T ] then there is no need to sim-
ulate proposal di↵usion skeletons over the entire interval [0,T ], instead we can simulate
them over [0, ⌧]. Furthermore, we can modify the bounding jump intensity in the UJEA
and AUJEA for generating the proposal jump times in the proposal di↵usion sample path
skeletons from ⇤X to ⇤X � �#.
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5.4 Exact Algorithms for Conditioned Jump Di↵usions

In this section we extend the methodology of Section 5.1 and Section 5.3 to construct an
exact algorithm for simulating skeletons of jump di↵usion bridge sample paths which can
be represented as the solution to the following SDE (denoting Xt� := lims"t Xs),

dXt = ↵(Xt-) dt + dWt + dJ�,⌫t , X0 = x 2 , XT = y 2 , t 2 [0,T ]. (5.27)

The approach we take in this section in constructing our exact algorithm is based on the
recent methodology developed in Gonçalves and Roberts [2013]. However, we reformu-
late the exact algorithm presented in Gonçalves and Roberts [2013] to ensure that upon
accepting a sample path skeleton then it is possible to simulate the sample path at further
finite collections of time points without approximation (i.e. so that it satisfies Principle
3 in addition to Principles 1 and 2). Furthermore, the exact algorithm which we present
o↵ers some potential for computational improvement over existing exact algorithms.

To guide intuition, recall that if we were to employ the approach in Section 5.1 for con-
structing an exact algorithm to simulate sample skeletons from x,y

0,T (the measure induced
by (5.27)), we require an equivalent proposal measure from which it is possible to propose
sample path skeletons (which are then accepted or rejected with probability proportional
to the Radon-Nikodým derivative of x,y

0,T with respect to the chosen proposal measure).
As before, a natural equivalent proposal measure to choose is that induced by a drift-
less di↵usion with unit volatility (with measure denoted by x,y

0,T and where ⇤ and � are
chosen to satisfy the conditions in Section 4.1.3),

dXt = dWt + dJ⇤,�t , X0 = x 2 , XT = y 2 , t 2 [0,T ]. (5.28)

Unfortunately, x,y
0,T can’t be chosen as a proposal measure in general as it is typically

not possible to simulate a compound Poisson process conditioned to hit a specified end
point. In particular, in contrast to the simulation of jump di↵usions in Section 5.3 (i.e.
the unconditioned end point case), the Markov property can’t be exploited in simulating
proposal sample path skeletons. To illustrate this, note that if we consider a sample path
simulated from the measure x,y

0,T to some intermediate time point, then as the end point
is known the number of jumps and size of jumps changes to ensure the end point is hit.

The key contribution of Gonçalves and Roberts [2013] was to note that an alternate equiv-
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alent measure (denoted by x,y
0,T ) could be constructed to ensure the end point is hit. In

particular, if a compound Poisson process is simulated first (J[0,T ]) then, to ensure the
end point is hit (XT = y), a Brownian bridge conditioned to start at X00 = x and end at
X0T = y � JT could be used as the continuous component in the proposal sample path.
Considering the superposition of the compound Poisson process sample path and the
Brownian bridge sample path (Xt = Jt + X0t ), then the resulting sample path starts and
ends at the desired points (X0 = x and XT = JT + (y � JT ) = y). More formally, the
proposal measure is the measure induced by the following SDE,

dXt = dZt + dJ⇤,�t , X0 = x 2 , XT = y 2 , t 2 [0,T ], (5.29)

where,

dZt = dWt, Z0 = x 2 , ZT = y � JT 2 , t 2 [0,T ]. (5.30)

Note that this approach necessitates that the chosen proposal jump intensity and jump
size function (⇤ and �) can’t be parameterised by any variable which depends upon the
continuous component of the sample path.

Now, proceeding as in Section 5.1, as we have an equivalent proposal measure with which
we can simulate sample path skeletons from ( x,y

0,T ), we now require the Radon-Nikodým
derivative of x,y

0,T with respect to x,y
0,T .

Theorem 5.4.1 (Radon-Nikodým derivative for conditioned jump di↵usions [Gonçalves
and Roberts, 2013, Lemma 2]). x,y

0,T is equivalent to x,y
0,T with Radon-Nikodým deriva-

tive:

d x,y
0,T

d x,y
0,T

(X) / exp

8

>

>

<

>

>

:

�1
2

(y � JT � x)2

T
�

Z T

0
�(Xs�) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

9

>

>

=

>

>

;

· exp
(

�
Z T

0
[�(Xs�) � ⇤] ds

)

·
NT
Y

i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

⇤ · f�
⇣

X i � X i�
⌘ . (5.31)

Proof. We begin by noting that we can express the Radon-Nikodým derivative of x,y
0,T
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with respect to x,y
0,T as follows,

d x,y
0,T

d x,y
0,T

(X) =
d x,y

0,T

d x,y
0,T

(X) ·
d x,y

0,T

d x,y
0,T

(X)

=
wT (x, y)
pT (x, y)

·
d x

0,T

d x
0,T

(X) ·
d x,y

0,T

d x,y
0,T

(X). (5.32)

Now, as the only term in (5.32) which we don’t have a representation for is the Radon-
Nikodým derivative of x,y

0,T with respect to x,y
0,T we focus on this. In particular we

informally have (denoting by Xcts as the continuous component of X),

d x,y
0,T

d x,y
0,T

(X) = lim
( dX)#0

x,y
0,T ( dX)
x,y
0,T ( dX)

= lim
( dX)#0

x,y
0,T

�

dXcts, dJ[0,T ]
�

x,y
0,T

�

dXcts, dJ[0,T ]
�

= lim
( dX)#0

x,y
0,T

�

dXcts
�

�

� J[0,T ]
� · x,y

0,T
�

dJ[0,T ]
�

x,y
0,T

�

dXcts
�

�

� J[0,T ]
� · x,y

0,T
�

J[0,T ]
�

= lim
( dX)#0

x,y
0,T

�

dXcts
�

�

� J[0,T ], XT
� · x

0,T
�

dJ[0,T ]
�

�

� XT
�

x
0,T

�

dXcts
�

�

� J[0,T ], XT
� · x

0,T
�

dJ[0,T ]
�

�

� XT
�

. (5.33)

Noting under the measure x
0,T we have that for any given sample path the compound

Poisson process is independent of the continuous di↵usion component we have,

d x,y
0,T

d x,y
0,T

(X) = lim
( dX)#0

x
0,T

�

dJ[0,T ]
�

�

� XT
�

x
0,T

�

dJ[0,T ]
�

= lim
( dX)#0

x
0,T

�

dXT
�

�

� J[0,T ]
� · x

0,T
�

dJ[0,T ]
�

/ x
0,T ( dXT )

x
0,T

�

dJ[0,T ]
�

= lim
( dX)#0

x
0,T

⇣

dXcts
T = dXT � dJT

�

�

� JT
⌘

x
0,T ( dXT )

=
1

wT (x, y)
· 1p

2⇡T
exp

(

�1
2

(y � JT � x)2

T

)

, (5.34)

additionally noting that x,y
0,T is equivalent to x,y

0,T . Furthermore, with reference to (5.32)
and noting from Theorem 4.1.1 we have that x

0,T is equivalent to x
0,T , we can conclude

that x,y
0,T is equivalent to x,y

0,T as stated.

Now considering the Radon-Nikodým derivative of x,y
0,T with respect to x,y

0,T we re-
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turn to (5.32) and apply the results from Theorems 4.1.1 and 5.1.1, additionally noting
that x

0,T is absolutely continuous with respect to x
0,T , to arrive at our desired result,

d x,y
0,T

d x,y
0,T

(X) =
wT (x, y)
pT (x, y)

·
d x

0,T

d x
0,T

(X) ·
d x,y

0,T

d x,y
0,T

(X)

/ exp
(

�1
2

(y � JT � x)2

T

)

·
d x,y

0,T

d x
0,T

(X)

/ exp
(

�1
2

(y � JT � x)2

T

)

·
d x,y

0,T

d x,y
0,T

(X)

/ exp

8

>

>

<

>

>

:

�1
2

(y � JT � x)2

T
�

Z T

0
�(Xs�) ds �

NT
X

i=1

h

A(X i) � A(X i�)
i

9

>

>

=

>

>

;

· exp
(

�
Z T

0
[�(Xs�) � ⇤] ds

)

·
NT
Y

i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

⇤ · f�
⇣

X i � X i�
⌘ . (5.35)

Now that we have derived the Radon-Nikodým derivative of x,y
0,T with respect to x,y

0,T
we can construct an idealised jump di↵usion bridge rejection sampler (as in Algorithm
5.1.1 of Section 5.1). In particular, drawing X ⇠ x

0,T and accepting the sample path

(I = 1) with probability P x,y
0,T

(X) := 1
M

d x,y
0,T

d x,y
0,T

(X) 2 [0, 1] (where M is a bound such that

supX
d x,y

0,T
d x,y

0,T
(X)  M < 1) then (X | I = 1) ⇠ x,y

0,T .

In order to find an appropriate bound M < 1 for our idealised rejection sampler, we
impose the following condition (in addition to the conditions in Section 1.3).

Condition 6 ({). We have that 9 { < 1 such that,

�(X i�) · f⌫
⇣

X i ; X i�
⌘

· exp
n

�
h

A(X i) � A(X i�)
io

⇤ · f�
⇣

X i � X i�
⌘  { (5.36)

As all exact algorithms are fundamentally rejection samplers on di↵usion path space and
in this particular scenario the user only has control over the choice of the functions ⇤ and
� then, in a similar manner to choosing the dominating density in rejection sampling (see
Section 2.4), ⇤ and � should be chosen to ensure that Condition 6 holds and { is as close
to 1 as possible (i.e. the dominating density should be chosen to closely bound the target
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density). It is possible to choose an appropriate ⇤ and � such that Condition 6 will hold in
a variety of settings, for instance, if the target jump intensity is bounded, the target jump
size density is time homogeneous and the function A is Lipschitz.

Now, returning to our idealised rejection sampler, an appropriate bound M can be found
for the Radon-Nikodým derivative of x,y

0,T with respect to x,y
0,T by noting that a separate

bound for each component of the Radon-Nikodým derivative in (5.31) can be found,

d x,y
0,T

d x,y
0,T

(X) / exp
(

�1
2

(y � JT � x)2

T

)

|                         {z                         }

1

· exp
(

�
Z T

0
�(Xs�) ds

)

|                       {z                       }

 exp{��T }

· exp
(

�
Z T

0
[�(Xs�) � ⇤] ds

)

|                                {z                                }

exp{⇤T }

·
NT
Y

i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

· exp
n

�
h

A(X i) � A(X i�)
io

⇤ · f�
⇣

X i � X i�
⌘

|                                                                    {z                                                                    }

 {NT

, (5.37)

and so we can find an explicit representation for the acceptance probability of our ide-
alised rejection sampler,

P x,y
0,T

(X) :=
1

1 · exp {�T } · exp {⇤T } · {NT

d x,y
0,T

d x,y
0,T

(X) 2 [0, 1]. (5.38)

As in Section 5.1, the idealised rejection sampler described above can’t be implemented
as to do so would require the simulation of an entire infinite dimensional proposal sam-
ple path from x,y

0,T . However, we can once again construct and simulate some finite
dimensional auxiliary random variable F ⇠ such that the acceptance probability can be
unbiasedly estimated using only a finite dimensional subset of the proposal sample path.
In particular we have,

P x,y
0,T

:= x,y
0,T



P x,y
0,T

(X)
�

= x,y
0,T |F



P x,y
0,T

(X)
�

. (5.39)

Now, considering how to construct a suitable finite dimensional random variable F ⇠ ,
note that if we let J be the law of the compound Poisson process component of x,y

0,T
then upon simulating J[0,T ] ⇠ J (using for instance Algorithm 2.9.5 or Algorithm 2.9.6)
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we have,

P x,y
0,T
= J x,y

0,T



P x,y
0,T

(X)
�

�

�

�

J[0,T ]

�

= J x,y
0,T



P x,y
0,T

(X)
�

�

�

�

NT , 1, . . . , NT , � 1 , . . . , � NT

�

. (5.40)

Further denoting byW|J as the law induced by simulating (X0 1
, . . . , X0 NT

) ⇠ ˜ x,(y�JT )
0,T

(where we denote by ˜ x,(y�JT )
0,T as Brownian bridge measure as in Section 2.8 and simu-

lated as per Algorithm 2.8.2) then we have,

P x,y
0,T
= J x,y

0,T



P x,y
0,T

(X)
�

�

�
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· exp
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, (5.41)

where (denoting by  0 := 0 and  NT+1 := T ),

P̃ x,y
0,T

(X) = exp
(

�
Z T

0
�(Xs�) + �(Xs�) ds

)

· e�T

=

NT+1
Y

i=1

 

exp
(

�
Z  i

 i�1

�(Xs�) + �(Xs�) ds
)

· e�( i� i�1)
!

. (5.42)

Noting that between any two jump times with known end points that no further jumps
occur and the sample path is a Brownian bridge, then each component of (5.42) can be
considered directly using the methodology developed Sections 5.1.1 and 5.1.2. In partic-
ular, recalling that �(X[ i�1, i]) is bounded on compact sets (see Result 4) and furthermore
�(X[ i�1, i]) 2 [0,⇤], then in a similar manner to Section 5.1 we can partition the path
space of  i�1, i

�

�

� (X i�1 , X i) into disjoint layers and simulate the layer to which our
proposal sample path belongs (see Principle 1, denoting Ri := RX[ i�1, i] ⇠ R as the sim-
ulated layer, the precise details of which are given in Section 6.2 and Section 6.3). Once

153



again, an upper and lower bound for (�(X[ i�1, i]) + �(X[ i�1, i])) can always be found
conditional on Ri (UX[ i�1, i] 2 and LX[ i�1, i] 2 respectively) and so we have,

P̃  i�1 , i
:=  i�1 , i

h

P̃  i�1 , i
(X)

i

= R  i�1 , i |Ri

h

P̃  i�1 , i
(X)

i

:= R  i�1 , i |Ri

"

exp
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�
Z  i

 i�1

�(Xs) + �(Xs) ds
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· e�( i� i�1)
#

. (5.43)

Letting R(i) be the law of (i) ⇠ Poi
⇣

(UX[ i�1, i] � LX[ i�1, i]) · ( i �  i�1)
⌘

and (i)

the distribution of (⇠i,1, . . . , ⇠i,(i))
iid⇠ U[ i�1, i] we can find an unbiased estimate of our

acceptance probability which only requires a finite dimensional realisation of the proposal
sample path (in a similar fashion to the approach taken in Section 5.1.1),
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Simulating a finite dimensional proposal sample path as suggested by (5.41 – 5.44) and
incorporating the ideas of either the Unbounded Exact Algorithm (UEA, Algorithm 5.1.3)
in Section 5.1.1 or Adaptive Unbounded Exact Algorithm (AUEA, Algorithm 5.1.4) in
Section 5.1.2, results directly in the Conditional Unbounded Jump Exact Algorithm (CU-
JEA) presented in Algorithm 5.4.1 or Conditional Adaptive Unbounded Jump Exact Al-
gorithm (CAUJEA) presented in Algorithm 5.4.1.

SCUJEA (X) :=
SNT+1

i=1

⇢

⇣

⇠i, j, X⇠i, j

⌘(i)+1

j=0
,RX[ i�1, i]

�

.

SCAUJEA (X) :=
SNT+1

i=1

⇢

⇣

⇠i, j, X⇠i, j

⌘(i)+1

j=0
,
⇣

R[⇠i, j�1,⇠i, j]
X[ i�1, i]

⌘(i)+1

j=1

�

.
(5.45)

In Figures 5.4.1 and 5.4.2 we present illustrative examples of accepted sample path skele-
tons simulated by means of the CUJEA and CAUJEA respectively.

First considering the CUJEA, then note that we present a number of alternate methods
for simulating unbiasedly layer information (Algorithm 5.4.1 Step 5a), layered Brownian
bridges (Step 3 and Step 5(c)ii), and the sample path at further times after acceptance
(Step 7), in Section 6.2. Unlike existing exact algorithms for simulating jump di↵usion
bridges [Gonçalves and Roberts, 2013], the CUJEA conducts early rejection to avoid any
further unnecessary simulation of the rejected sample path (in a similar manner to the
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UEA (Algorithm 5.1.3), the CUJEA is a nested rejection sampler). The early rejection
steps in Algorithm 5.4.1 are Steps 2, 4, 5b and 5d.

Now considering the CAUJEA which is based on the AUEA (Algorithm 5.1.4) presented
in Section 5.1.2, then recall that we outline how to simulate (unbiasedly) layer informa-
tion (Algorithm 5.4.2 Step 2a), intermediate skeletal points (Step 2(c)iiB) and new layer
information (Step 2(c)iiD) in a variety of ways in Section 6.3. After the skeleton has been
accepted the sample path can be simulated at any other desired finite collection of time
points and the layers refined as necessary (by application of Algorithm 5.1.4 Step 4(b)ii
and Step 4(b)iv and as detailed in Section 6.3).

In analogous fashion to the di↵erence between the UEA and AUEA, the CAUJEA is
an iterative scheme which outputs a skeleton which satisfies Principles 1, 2 and 3 directly
(i.e. it outputs a skeleton comprising skeletal points and layer information for the inter-
vals between consecutive skeletal points), whereas the CUJEA only satisfies Principles 1
and 2 directly and requires the skeleton to be augmented in order to simulate the sample
path at any additional point. Whether in practise the CUJEA or CAUJEA should be im-
plemented is dependent on the particular problem and whether or not layer information is
of use.
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Algorithm 5.4.1 Conditioned Unbounded Jump Exact Algorithm (CUJEA).

1. Simulate compound Poisson process J[0,T ] ⇠ J ,

(a) Simulate number of jumps NT ⇠ Poi(⇤ · T ).

(b) Simulate jump times  1, . . . , NT
iid⇠ U[0,T ].

(c) Simulate jump sizes – For i in 1 to NT , � i ⇠ f�.

2. With probability
⇣

1 � exp
n

� (y � JT � x)2 /2T
o⌘

reject path and return to Step 1.

3. Simulate X0 1
, . . . , X0 NT

⇠ ˜ x,y�JT
0,T , setting X 1 := X0 1

+ J 1 , . . . , X NT
:= X0 NT

+

J NT
.

4. With probability

0

B

B

B

B

B

B

@

1 �QNT
i=1

�(X i�) · f⌫
⇣

X i ; X i�
⌘

· exp
n

�
h

A(X i) � A(X i�)
io

⇤ · f�
⇣

X i � X i�
⌘

· {

1

C

C

C

C

C

C

A

reject path and return to Step 1.

5. For i in 1 to (NT + 1),

(a) Simulate layer information Ri := RX[ i�1, i] ⇠ R.

(b) With probability
⇣

1 � exp
n

�(LX[ i�1, i] � �) · ( i �  i�1)
o⌘

reject path and re-
turn to Step 1.

(c) Simulate skeleton points
⇣

X⇠i,1 , . . . , X⇠i,i

⌘

�

�

�

�

Ri ,

i. Simulate i ⇠ Poi
⇣⇣

UX[ i�1, i] � LX[ i�1, i]
⌘

· ( i �  i�1)
⌘

and skeleton

times ⇠i,1, . . . , ⇠i,i
iid⇠ U

⇥

 i�1, i
⇤

.
ii. Simulate sample path at skeleton times X⇠i,1 , . . . , X⇠i,i

⇠
 i�1, i

�

�

�

�

⇣

Ri, X i�1 , X i

⌘

.

(d) With probability

0

B

B

B

B

B

B

@

1 �Qi
j=1

⇣

UX[ i�1, i] � �(X⇠i, j) � �(X⇠i, j)
⌘

⇣

UX[ i�1, i] � LX[ i�1, i]
⌘

1

C

C

C

C

C

C

A

, reject path and

return to Step 1.

6. Accept sample path skeleton.

7. * Simulate Xrem ⇠
✓

⌦NT+1
i=1

✓

⌦i+1
j=1

X⇠i, j�1 ,X⇠i, j
⇠i, j�1,⇠i, j

◆

�

�

�

�

�

Ri

◆

.
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Algorithm 5.4.2 Conditioned Adaptive Unbounded Jump Exact Algorithm (CAUJEA).

1. Simulate compound Poisson process (J[0,T ] ⇠ J) and the skeleton at jump times
(X 1 , . . . , X NT

) as per Algorithm 5.4.1 Steps 1 – 4.

2. For i in 1 to (NT + 1),

(a) Simulate initial layer information Ri := RX[ i�1, i] ⇠ R, setting ⇧ := {⌅} :=
nn

[ i�1, i], X i�1 , X i ,Ri
oo

and i = 0.

(b) With probability
⇣

1 � exp
n

�(LX[ i�1, i] � �) · ( i �  i�1)
o⌘

reject path and re-
turn to Step 1.

(c) While
�

�

�⇧
�

�

� , 0,

i. Set ⌅ = ⇧1.
ii. Simulate ⌧ ⇠ Exp

⇣

2�⌅X
⌘

. If ⌧ > d⌅ then set ⇧ := ⇧ \ ⌅ else,
A. Set i = i + 1 and with probability 1/2 set ⇠0i

= m⌅ � ⌧ else ⇠0i
=

m⌅ + ⌧.
B. Simulate X⇠0i ⇠

x(⌅),y(⌅)
s�(⌅),t+(⌅)

�

�

�

�

R⌅i .

C. With probability
⇣

1 �
h

U⌅
X[ i�1, i] � �

⇣

X⇠0i
⌘

� �
⇣

X⇠0i
⌘i

/�⌅X[ i�1, i]

⌘

reject path and return to Step 1.

D. Simulate new layer information R
h

s�(⌅),⇠0i
i

i and R
h

⇠0i ,t+(⌅)
i

i conditional
on R⌅i .

E. With probability
 

1 � exp
(

�
"

L
h

s�(⌅),⇠0i
i

X[ i�1, i]
+ L

h

⇠0i ,t+(⌅)
i

X[ i�1, i]

�2L⌅X[ i�1, i]

i

[d⌅ � ⌧]
o⌘

reject path and return to Step 1.

F. Set ⇧ := ⇧
S

(

[s⌅,m⌅�⌧] , X⌅s�, X⇠0i ,R
h

s�(⌅),⇠0i
i

i

)

S {[m⌅+⌧, t⌅] ,

X⇠0i , X
⌅
t+,R

h

⇠0i ,t+(⌅)
i

i

)

\ ⌅.

(d) Define skeletal points ⇠i,1, . . . , ⇠i,i as the order statistics of the set
n

⇠0i,1, . . . , ⇠
0
i,i

o

.

3. Accept sample path skeleton.

4. * Simulate Xrem ⇠
✓

⌦NT+1
i=1

✓

⌦i+1
j=1

X⇠i, j�1 ,X⇠i, j
⇠i, j�1,⇠i, j

�

�

�

�

�

R[⇠i, j�1,⇠i, j]
i

◆◆

.
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(a) Example sample path skeleton SCUJEA (X), overlaid with example
sample path trajectories.
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(b) � mapping of example sample path skeleton SCUJEA (X), and exam-
ple sample path trajectories.

Figure 5.4.1: Illustrative sample path skeleton output from the Conditioned Unbounded
Jump Exact Algorithm (CUJEA; Algorithm 5.4.1), SCUJEA (X) :=

SNT+1
i=1

n⇣

⇠i, j, X⇠i, j

⌘(i)+1

j=0
,

RX[ i�1, i]
o

, overlaid with example sample path trajectories Xrem ⇠
⇣

⌦NT+1
i=1

⇣

⌦i+1
j=1

X⇠i, j�1 ,X⇠i, j
⇠i, j�1,⇠i, j

⌘

�

�

�

�

Ri
⌘

. Hatched regions indicate layer information, whereas the asterisks indi-
cate skeletal points.
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(a) Example sample path skeleton SCAUJEA (X), overlaid with example
sample path trajectories.
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(b) � mapping of example sample path skeleton SCAUJEA (X), and ex-
ample sample path trajectories.

Figure 5.4.2: Illustrative sample path skeleton output from the Conditioned Adap-
tive Unbounded Jump Exact Algorithm (CAUJEA; Algorithm 5.4.2), SCAUJEA (X) :=
SNT+1

i=1

n⇣

⇠i, j, X⇠i, j

⌘(i)+1

j=0
,
⇣

R[⇠i, j�1,⇠i, j]
X[ i�1, i]

⌘(i)+1

j=1

o

, overlaid with example sample path trajectories

Xrem ⇠
⇣

⌦NT+1
i=1

⇣

⌦i+1
j=1

X⇠i, j�1 ,X⇠i, j
⇠i, j�1,⇠i, j

�

�

�

�

R[⇠i, j�1,⇠i, j]
i

⌘⌘

. Hatched regions indicate layer informa-
tion, whereas the asterisks indicate skeletal points.



6

Brownian Bridge Path Space

Constructions and Simulation

“Very often the laws derived by physicists from
a large number of observations are not

rigorous, but approximate.”

— Augustin Louis Cauchy

In Chapter 5 we introduced novel methodology for simulating skeletons of di↵usion and
jump di↵usion sample paths (the exact algorithms). Each of the algorithms presented in
Chapter 5 is dependent on being able to simulate Layered Brownian Bridge sample path
skeletons. In particular, we require methodology for simulating (without discretisation
error) skeletons of Brownian bridge sample paths with various restrictions, which will
include some interval(s) within which they are almost surely constrained. Details on how
to simulate layered Brownian bridge sample path skeletons were omitted from the exact
algorithms presented in Chapter 5 in order to avoid entangling the key ideas.

In this chapter we present new results for simulating quantities related to various Brow-
nian Bridge Path Space constructions, which together allow the simulation of layered
Brownian bridge sample path skeletons, and hence the implementation of the exact algo-
rithms in Chapter 5.

In Section 6.1 we detail how to simulate events of probability corresponding to the prob-
ability that Brownian and Bessel bridge sample paths, with various restrictions, are con-
strained within particular interval(s). In Section 6.2 we present methodology for simulat-
ing the layered Brownian bridge sample path skeletons required within the Unbounded
and Conditioned Unbounded Exact Algorithms (Algorithms 5.1.3 and 5.2.1). Finally
in Section 6.3 we present methodology for simulating the Adaptive Layered Brownian
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Bridge sample path skeletons required within the Adaptive and Conditioned Adaptive
Unbounded Exact Algorithms (Algorithms 5.1.4 and 5.2.2), along with the Adaptive
and Conditioned Adaptive Unbounded Jump Exact Algorithms (Algorithms 5.3.3 and
5.4.2). Both the layered and adaptive layered Brownian bridge constructions (Sections
6.2 and 6.3 respectively) rely upon the results detailed in Section 6.1, in which we demon-
strate how to simulate unbiasedly unknown probabilities which can be represented as the
limit of alternating Cauchy sequences (as in Section 2.7 and by employing retrospective
Bernoulli sampling).

6.1 Simulating Brownian Bridge Path Space Probabilities

Simulating events corresponding to the probability that Brownian and Bessel bridge sam-
ple paths are constrained within particular intervals (or alternatively the complement of
the probability they exceed particular boundaries) is typically non-trivial. In particular, as
discussed in detail in Pötzelberger and Wang [1997], it is typically only possible to rep-
resent such probabilities as the limit of alternating Cauchy sequences (of the form found
in (2.15) of Section 2.7 and excluding a small number of special cases such as one-sided
piecewise linear boundaries). Consequently, although these unknown probabilities can be
approximated to arbitrary precision, simulating an event of these probabilities by truncat-
ing the alternating Cauchy sequences results in the introduction of bias. However, as first
proposed by Beskos et al. [2008], the alternating Cauchy sequence representations can be
exploited to simulate unbiasedly events of these unknown probabilities by application of
retrospective Bernoulli sampling (see Section 2.7).

In this section we introduce both existing and novel methodology for simulating events
corresponding to various Brownian path space probabilities (based on the retrospective
Bernoulli sampling approach taken by Beskos et al. [2008]), which we require in order to
construct the layered Brownian bridges we introduce in Sections 6.2 and 6.3.

We conclude the introductory comments in this section by providing an illustrative ex-
ample of why the probabilities we are interested in simulating can be represented as the
limit of alternating Cauchy sequences, and how the retrospective Bernoulli sampling ap-
proach can be employed. This will provide some insight to the key steps required in the
more advanced Brownian path space constructions which we consider later.
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Now, suppose we are interested in simulating an event of probability corresponding
to the probability that a Brownian motion sample path W (see Section 2.8), starting
at W0 = 0, is constrained to the interval [�1, 1] at all times t 2 [0, 1]. Noting that

(Wt < �1) = (Wt > 1) by symmetry (see Self-Similarity Property 2) our desired prob-
ability can be represented as follows (where we denote by sup |W[s,t]| := supu2[s,t] |Wu|),

�

sup |W[0,1]|  1
�

= 1 � �

sup |W(0,1]| > 1
�

= 1 �
h

2 · �

sup W[0,1] > 1
� �

⇣

�

inf W[0,1] < �1
 

\

�

sup W[0,1] > 1
 

⌘i

. (6.1)

Now, by reflection of Brownian motion (see for instance the argument in Section 2.8.1
recalling from Section 2.8 that Brownian motion has the Markov property, or alternatively
[Rogers and Williams, 2000, Chap. I.13]) and as illustrated in Figure 6.1.1, we can equate
the probability that a sample path exits the interval [�1, 1] from both above (1) and below
(�1) to the probability that a sample path exceeds a one-sided boundary of distance at
least that to one boundary and then the di↵erence between the boundaries (in e↵ect three
times the distance). In particular we have,

⇣

�

inf W[0,1] < �1
 

\

�

sup W[0,1] > 1
 

⌘

=
�

sup |W[0,1]| > 3
�

, (6.2)

and so by applying this argument recursively and noting that (sup W[s,t] > � |Ws = x) =
�([� � x]/

p
t � s) � �([x � �]/

p
t � s) (see for instance Pötzelberger and Wang [1997]

where � denotes the CDF of the standard Normal distribution and � � x) we have,

�

sup |W[0,1]|  1
�

= 1�2
⇥ �

sup W[0,1]>1
�� �

sup W[0,1]>3
�

+
�

sup W[0,1]>9
��. . .⇤

= 1 � 2
1

X

i=0

(�1)i
⇣

sup W[0,1] > 3i
⌘

= 1 � 2
1

X

i=0

(�1)i
h

�(3i) � �(�3i)
i

. (6.3)

Now, noting that our desired probability can be represented as the limit of an infinite
sequence,

�

sup |W[0,1]|  1
�

= lim
k!1 S W

k , where S W
k := 1 � 2

k�1
X

i=0

(�1)i
h

�(3i) � �(�3i)
i

, (6.4)

and further noting that each subsequent term in the sequence S W
k has alternating sign and

is decreasing in size then, it can be easily shown that, our desired probability can be rep-
resented as the limit of an alternating Cauchy sequence of the form found in (2.15) of
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Figure 6.1.1: An illustration of the reflection of a Brownian motion sample path around a
boundary.

Section 2.7 (albeit one in which the even terms of the sequence converge from above and
the odd terms of the sequence converge from below). As such, events of probability cor-
responding to our desired probability can be simulated unbiasedly by direct application
of retrospective Bernoulli sampling (see Section 2.7) and as detailed in Algorithm 6.1.1.

In the remainder of this section we consider an analogous partitioning for Brownian
and Bessel bridges for more generalised settings with non-symmetric upper and lower
boundaries. The complication arising from non-symmetric boundaries being that when
considering the probability of reaching both boundaries the probability the upper bound-
ary is reached first will not be equal to the probability the lower boundary is reached first.
As such the symmetry argument of the above example no longer holds and more sophis-
ticated arguments are required (which are not within the scope of this thesis but can be
found in a number of papers, for instance Anderson [1960])).
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Algorithm 6.1.1 Simulating an event corresponding to the probability that W[0,1] 2
[�1, 1] where W ⇠ 0

0,1.

1. Simulate u ⇠ U[0, 1] and set k = 1.

2. While u 2
⇣

S W
2k+1, S

W
2k

⌘

(where S W
k := 1 � 2

Pk�1
i=0 (�1)i[�(3i) � �(�3i)]), k = k + 1.

3. If u  S W
2k+1 then u < p so return 1 else u > p so return 0.

6.1.1 Simulating Elementary Brownian Path Space Probabilities

In this section we outline existing and novel methodology for simulating events of proba-
bility corresponding to the probability that Brownian and Bessel bridge sample paths are
constrained within particular intervals.

We begin by presenting known results pertaining to the probability that a Brownian
bridge sample path is constrained within a particular interval (see Anderson [1960] and
Pötzelberger and Wang [2001]) and how to simulate events of this probability (as first
detailed in Beskos et al. [2008]). We reproduce this result (with a more detailed proof) as
it is used and extended extensively throughout the remainder of this chapter. In particular,
we are interested in the probability that {Wu : s  u  t} 2 [`, �] for some sample path
W ⇠ x,y

s,t (where in the remainder of this thesis, with a slight abuse of notation, we
instead write {W 2 [`, �]} to mean {Wu : s  u  t} ✓ [`, �]).

In Figure 6.1.2 we show example sample path trajectories of a Brownian bridge (W ⇠
x,y
s,t ), which remain in the interval [`, �].

Theorem 6.1.1 ([Pötzelberger and Wang, 2001, Theorem 3]). The probability that a
Brownian bridge sample path W ⇠ x,y

s,t , remains in the interval [`, �] (i.e. W 2 [`, �])
can be represented by the following infinite series,

�`,�s,t (x, y) := (W 2 [`, �]) = 1 �
1

X

j=1

n

&`,�s,t ( j; x, y) � '`,�s,t ( j; x, y)
o

=: 1 � ⇣`,�s,t (x, y), (6.5)

where we denote by &`,�s,t ( j; x, y) := &̄`,�s,t ( j; x, y)+ &̄�`,��s,t ( j;�x,�y), '`,�s,t ( j; x, y) := '̄`,�s,t ( j; x, y)+
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Figure 6.1.2: Example sample path trajectories W ⇠ x,y
s,t

�

�

� (W 2 [`, �]) .

'̄�`,��s,t ( j;�x,�y) and,

&̄`,�s,t ( j; x, y) := exp
(

� 2
t � s

⇣

�

�

�� � `��� j + (` ^ �) � x
⌘

·
⇣

�

�

�� � `��� j + (` ^ �) � y
⌘

)

, (6.6)

'̄`,�s,t ( j; x, y) := exp
(

� 2 j
t � s

✓

�

�

�� � `���2 j +
�

�

�� � `��� (x � y)
◆

)

. (6.7)

Corollary 6.1.1 ([Beskos et al., 2008, Prop. 2]). �`,�s,t (x, y) can be represented as the limit
as k ! 1 of the following alternating Cauchy sequence,

S �
2k := 1 �

k
X

j=1

n

&`,�s,t ( j; x, y) � '`,�s,t ( j; x, y)
o

, S �
2k+1 := S �

2k � &`,�s,t (k + 1; x, y). (6.8)

Proof. Considering (6.6) and (6.7), clearly we have 8 j &`,�s,t ( j; x, y) > 0 and '`,�s,t ( j; x, y) >
0 as a consequence of the exponential form of each of these terms. As such, to show that
(6.5) can be represented as the limit of an alternating Cauchy sequence it is su�cient to
show that 8 j we have &`,�s,t ( j; x, y) � '`,�s,t ( j; x, y) � &`,�s,t ( j+ 1; x, y) � '`,�s,t ( j+ 1; x, y) � . . . ,
which can be proved inductively by first showing that 8 j &`,�s,t ( j; x, y)/'`,�s,t ( j; x, y) � 1 and
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then 8 j '`,�s,t ( j; x, y)/&`,�s,t ( j + 1; x, y) � 1.

First considering &̄`,�s,t ( j; x, y)/'̄`,�s,t ( j; x, y), we have (denoting by Z := 2|��`| j+(`^�)�y),

&̄`,�s,t ( j; x, y)

'̄`,�s,t ( j; x, y)
=

exp
(

� 2
t � s

⇣

�

�

�� � `��� j + (` ^ �) � x
⌘

·
⇣

�

�

�� � `��� j + (` ^ �) � y
⌘

)

exp
(

� 2 j
t � s

✓

�

�

�� � `���2 j +
�

�

�� � `��� (x � y)
◆

)

= exp
(

� 2
t � s

⇣

2
�

�

�� � `��� j(` ^ �) + [(` ^ �)]2 � (` ^ �)y � 2
�

�

�� � `��� jx � (` ^ �)x + xy
⌘

)

= exp
(

� 2
t � s

(Z(` ^ �) � Zx)
)

= exp
(

� 2Z
t � s

[(` ^ �) � x]
)

. (6.9)

Noting that y � (` ^ �)  (` _ �) � (` ^ �) =: |� � `| we have that Z � 0 and furthermore
(` ^ �) � x  0. As such &̄`,�s,t ( j; x, y)/'̄`,�s,t ( j; x, y) � 1 and so by direct consequence 8 j
&`,�s,t ( j; x, y)/'`,�s,t ( j; x, y) � 1.

Now, considering '̄`,�s,t ( j; x, y)/&̄`,�s,t ( j + 1; x, y) we similarly have,

'̄`,�s,t ( j; x, y)

&̄`,�s,t ( j+1; x, y)
=

exp
(

� 2 j
t � s

✓

�

�

�� � `���2 j +
�

�

�� � `��� (x � y)
◆

)

exp
(

� 2
t � s

⇣

�

�

�� � `��� ( j+1) + (` ^ �) � x
⌘

·
⇣

�

�

�� � `��� ( j+1) + (` ^ �) � y
⌘

)

= exp
(

2
t � s

✓

�

�

�� � `���2 (2 j+1) + 2
�

�

�� � `��� ( j+1)(` ^ �) � �

�

�� � `��� y

+ (` ^ �)
�

�

�� � `��� ( j+1) + [(` ^ �)]2 � (` ^ �)y � �

�

�� � `��� (2 j+1)x � (` ^ �)x + xy
◆

)

= exp
(

2
t � s

✓

�

�

�� � `���
h

�

�

�� � `��� (2 j+1) + 2( j+1)(` ^ �)�y
i

+ (` ^ �)
h

�

�

�� � `��� ( j+1) + (` ^ �)�y
i

� x
h

�

�

�� � `��� (2 j+1) + (` ^ �)�y
i

◆

)

. (6.10)

Again, noting that max{x � (` ^ �), y � (` ^ �)}  (` _ �) � (` ^ �) =: |� � `| we have that
'̄`,�s,t ( j; x, y)/&̄`,�s,t ( j+1; x, y) � 1 and so by direct consequence we have '`,�s,t ( j; x, y)/&`,�s,t ( j+
1; x, y) � 1. As a result we have that 8 j &`,�s,t ( j; x, y) � '`,�s,t ( j; x, y) � &`,�s,t ( j + 1; x, y) �
'`,�s,t ( j + 1; x, y) � . . . and so �`,�s,t (x, y) can be represented as the limit of the alternating
Cauchy sequence in (6.8) as desired.
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As a consequence of Corollary 6.1.1, events of probability �`,�s,t (x, y) can be simulated
unbiasedly by retrospective Bernoulli sampling (see Section 2.7 and Algorithm 2.7.1) as
detailed in Algorithm 6.1.2.

Algorithm 6.1.2 Simulating an event of probability �`,�s,t (x, y) [Beskos et al., 2008].

1. Simulate u ⇠ U[0, 1] and set k = 1.

2. While u 2
⇣

S �
2k+1, S

�
2k

⌘

(where S �
2k := 1 � Pk

j=1

n

&`,�s,t ( j; x, y) � '`,�s,t ( j; x, y)
o

and
S �

2k+1 := S �
2k � &`,�s,t (k + 1; x, y)) then k = k + 1.

3. If u  S �
2k+1 then u < p so return 1 else u > p so return 0.

Now, it is of interest to note that it is similarly possible to find a representation for the
probability that a Brownian bridge sample path remains within an interval between a
piecewise linear upper and lower boundary (as shown in Pötzelberger and Wang [2001]).
As we will encounter later in this chapter, there is some merit in considering what upper
and lower boundary pair would for any given probability constrain the smallest volume
of path space. As we are restricted to linear boundaries such a pair would clearly have
gradient (y � x)/(t � s). In Figure 6.1.3 we show example sample path trajectories of
a Brownian bridge constrained within these non-zero gradient boundaries. This notion
results in the following modification of (6.5),

�̃`,�s,t (x, y) :=
 

Wu 2
"

x+
(y�x)(u�s)

t�s
+`, x+

(y�x)(u�s)
t�s

+�

#

8u 2 [s, t]
�

�

�

�

�

�

Ws= x,Wt=y
!

= 1 �
1

X

j=1

n

&̃`,�s,t ( j; x, y) � '̃`,�s,t ( j; x, y)
o

=: 1 � ⇣̃`,�s,t (x, y), (6.11)

where,

&̃`,�s,t ( j; x, y) = exp
(

� 2
t � s

⇥

j(� � `) + `⇤2
)

+ exp
(

� 2
t � s

⇥

j(� � `) � �⇤2
)

, (6.12)

'̃`,�s,t ( j; x, y) = 2 exp
(

� 2
t � s

⇥

j(� � `)⇤2
)

. (6.13)
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Figure 6.1.3: Example sample path trajectories
W ⇠ x,y

s,t

�

�

�

�

Wu 2 ⇥

x+ (y� x) · (u� s)/(t� s)+ `,x+ (y� x) · (u� s)/(t� s)+�
⇤

,8u 2 [s, t]
�

.

�̃`,�s,t (x, y) can be represented as the limit of an alternating Cauchy sequence (simply con-
sider a transformation of (6.5) where x = y). As such, in analogous fashion to Algorithm
6.1.2, retrospective Bernoulli sampling (see Section 2.7) can be employed as detailed in
Algorithm 6.1.3 to simulate events of probability �̃`,�s,t (x, y) unbiasedly by means of the
following alternating Cauchy sequence (for k � 0),

S �⇤
2k := 1 �

k
X

j=1

n

&̃`,�s,t ( j; x, y) � '̃`,�s,t ( j; x, y)
o

, S �⇤
2k+1 := S �⇤

2k � &̃`,�s,t (k + 1; x, y). (6.14)

We now consider how to simulate events of probability corresponding to the probabil-
ity that a Bessel bridge sample path, with known minimum (or maximum) point, stays
within a particular interval. In Figure 6.1.4 we show example sample path trajectories of
a Brownian bridge W ⇠ x,y

s,t

�

�

� (X⌧ = m̂ ) (i.e. a Bessel bridge as in Section 2.8.2), which
remains in the interval [m̂, �]. In Theorems 6.1.2 and 6.1.3 we outline a result (first shown
in Beskos et al. [2008]) that shows that such a probability can be represented as the limit
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Algorithm 6.1.3 Simulating an event of probability �̃`,�s,t (x, y).

1. Simulate u ⇠ U[0, 1] and set k = 1.

2. While u 2
⇣

S �⇤
2k+1, S

�⇤
2k

⌘

(where S �⇤
2k := 1 � Pk

j=1

n

&̃`,�s,t ( j; x, y) � '̃`,�s,t ( j; x, y)
o

and
S �⇤

2k+1 := S �⇤
2k � &̃`,�s,t (k + 1; x, y)) then k = k + 1.

3. If u  S �⇤
2k+1 then u < p so return 1 else u > p so return 0.

of an infinite series. However, we critically show (in Corollary 6.1.3 and Algorithms 6.1.4
and 6.1.5) that it is possible to simulate events of such a probability without assumption
on the size of the interval (unlike existing methods [Beskos et al., 2008, Prop. 3] in which
one requires that the interval is of size greater than 3(� � m̂)2/(t � s)).

Time

W

m̂

x

y

�

s

t

⌧

Figure 6.1.4: Example sample path trajectories W ⇠ x,y
s,t

�

�

� (X⌧ = m̂, m̌ 2 [(x _ y), �]) .

We begin with Definition 6.1.1, as it transpires that it is convenient to consider two pos-
sible cases of our desired probability in which either of the end points attain the sample
path minimum (or maximum) or neither of them attains the minimum (or maximum).
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Definition 6.1.1. We allow �m̂,�
s,t (x, y) to denote the probability that a Bessel bridge sample

path W ⇠ x,y
s,t

�

�

� m̂ , (with minimum m̂) remains in the interval [m̂, �]. We further denote
�m̂,�

s,t (1; x, y) := (W 2 [m̂, �] |W � m̂, (x^y) > m̂) and �m̂,�
s,t (2; x, y) := (W 2 [m̂, �] |

W � m̂, (x^y) = m̂) noting that �m̂,�
s,t (x, y) = {m̂< (x^y)} · �m̂,�

s,t (1; x, y) + {m̂= (x^y)} ·
�m̂,�

s,t (2; x, y).

Note that we can similarly consider the probability that a Bessel bridge sample path
W ⇠ x,y

s,t

�

�

� m̌ (with maximum m̌) remains in the interval [`, m̌] (8 u 2 [s, t] Wu 2 [`, m̌])
by a simple reflection argument (see the argument presented in Section 2.8.1).

We first consider the case where neither end point attains the Bessel bridge minimum
(or maximum).

Theorem 6.1.2 ([Beskos et al., 2008, Prop. 3]). The probability that a Bessel bridge
sample path W ⇠ x,y

s,t

�

�

� m̂ , (with minimum m̂ < (x^y)) remains in the interval [m̂, �] (i.e.
8 u 2 [s, t] we have Wu 2 [m̂, �]) can be represented by the following infinite series,

�m̂,�
s,t (1; x, y) := (W 2 [m̂, �] |W � m̂, (x^y) > m̂)

=
�m̂,�

s,t (x, y)

1 � exp
(

�2
(x � m̂) · (y � m̂)

t � s

) . (6.15)

Proof. We begin by considering the behaviour of a Brownian bridge in the interval [m̂, �]
conditioned on remaining in the interval [m̂,U] whereU � �. Denoting by �m̂,�

s,t (x, y | U)
as the probability that a sample path from a Brownian bridge starting at Ws = x and
ending at Wt = y remains in the interval [m̂, �] conditioned on it remaining in the interval
[m̂,U] we have (noting that m̂  (x^y)  (x_y)  �  U),

�m̂,�
s,t (x, y | U) :=

⇣

W x,y
s,t 2 [m̂, �]

�

�

� W x,y
s,t 2 [m̂,U]

⌘

=

⇣

W x,y
s,t 2 [m̂, �]

⌘

⇣

W x,y
s,t 2 [m̂,U]

⌘ =:
�m̂,�

s,t (x, y)

�m̂,U
s,t (x, y)

. (6.16)

Now, considering the limit as U ! 1 (recalling that in this case (x^y) > m̂ and from
Pötzelberger and Wang [2001] we have that �m̂,1

s,t (x, y) = 1�exp{�2(x�m̂)(y�m̂)/(t� s)})
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we arrive at our desired result,

�m̂,�
s,t (1; x, y) := (W 2 [m̂, �] |W � m̂, (x^y) > m̂)

= lim
U!1

h

�m̂,�
s,t (1; x, y | U)

i

=
�m̂,�

s,t (x, y)

1 � exp
(

�2
(x � m̂) · (y � m̂)

t � s

) . (6.17)

Corollary 6.1.2. Events of probability �m̂,�
s,t (1; x, y) can be represented as the limit as

k ! 1 of the following alternating Cauchy sequence,

S �,1
k :=

S �
k

1 � exp
(

�2
(x � m̂) · (y � m̂)

t � s

) . (6.18)

Proof. We begin by noting that limk!1 S �,1
k = �

m̂,�
s,t (1; x, y). To show that S �,1

k is an alter-
nating Cauchy sequence note that as S �

k is an alternating Cauchy sequence (see Corollary
6.1.1) and 1�exp{�2(x�m̂)(y�m̂)/(t� s)} is a constant then S �,1

k is a linear transformation
of an alternating Cauchy sequence. As such, by direct application of Corollary 2.7.1 we
have that S �,1

k is an alternating Cauchy sequence.

We now consider the case where either one of the end points attains the Bessel bridge
minimum (or maximum).

Theorem 6.1.3 ([Beskos et al., 2008, Prop. 3]). The probability that a Bessel bridge
sample path W ⇠ x,y

s,t

�

�

� m̂ , (with minimum m̂ = x < y) remains in the interval [m̂, �]
(8 u 2 [s, t], Wu 2 [m̂, �]) can be represented by the following infinite series,

�m̂,�
s,t (2; x, y) := (W 2 [m̂, �] |W � m̂)

= 1 � 1
(y � m̂)

1
X

j=1

n

 m̂,�
s,t ( j; y) � �m̂,�

s,t ( j; y)
o

, (6.19)

171



where we denote,

 m̂,�
s,t ( j; y) :=

⇣

2
�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

9

>

>

=

>

>

;

, (6.20)

�m̂,�
s,t ( j; y) :=

⇣

2
�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

9

>

>

=

>

>

;

. (6.21)

Proof. Recall from the proof of Theorem 6.1.2 that we considered our desired probability
by means of consideration of a Brownian bridge in the interval [m̂, �] conditioned on
remaining in the interval [m̂,U]. In particular, supposing that x = m̂ < y (without loss of
generality), we have,

�m̂,�
s,t (m̂, y | U) =

�m̂,�
s,t (m̂, y)

�m̂,U
s,t (m̂, y)

. (6.22)

Now, considering the infinite series representation of the probability �m̂,�
s,t (m̂, y) (see The-

orem 6.1.1), note that a number of the constituent elementary terms will cancel with one
another. In particular,

&̄m̂,�
s,t ( j; m̂, y) = exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

9

>

>

=

>

>

;

= '̄m̂,�
s,t ( j; m̂, y), (6.23)

&̄�m̂,��
s,t ( j;�m̂,�y) = exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� ( j � 1)
t � s

⇣

�

�

�� � m̂
�

�

� ( j � 1) + (y � m̂)
⌘

9

>

>

=

>

>

;

= '̄�m̂,��
s,t ( j � 1;�m̂,�y), (6.24)

and so we have,

�m̂,�
s,t (m̂, y) = 1 �

1
X

j=1

n

&̄m̂,�
s,t ( j; m̂, y) + &̄�m̂,��

s,t ( j;�m̂,�y) � '̄m̂,�
s,t ( j; m̂, y) � '̄�m̂,��

s,t ( j;�m̂,�y)
o

= 1 � &̄�m̂,��
s,t (1;�m̂,�y) = 0. (6.25)

Similarly we have �m̂,U
s,t (m̂, y) = 0 and so we can not directly consider the limit asU ! 1

in (6.22). Instead we consider the limit as x! m̂ and apply l’Hôpital’s rule1 and introduce

1l’Hôpital’s rule: If limx!c f (x) = limx!c g(x) = 0 and 9 limx!c
f 0(x)
g0(x)

and g0(x) , 0 then limx!c
f (x)
g(x)

=
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the following notation to denote the di↵erentials of the elementary functions,

&0j(+, �) :=
d
dx
&̄m̂,�

s,t ( j; x, y)
�

�

�

�

�

�

x=m̂

=
2

t � s

⇣

�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

h

�

�

�� � m̂
�

�

� j � (y � m̂)
i

9

>

>

=

>

>

;

,

&0j(�, �) :=
d
dx
&̄�m̂,��

s,t ( j;�x,�y)
�

�

�

�

�

�

x=m̂

= � 2
t � s

⇣

�

�

�� � m̂
�

�

� ( j � 1) + (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� ( j � 1)
t � s

⇣

�

�

�� � m̂
�

�

� ( j � 1) + (y � m̂)
⌘

9

>

>

=

>

>

;

,

'0j(+, �) :=
d
dx
'̄m̂,�

s,t ( j; x, y)
�

�

�

�

�

�

x=m̂
= �2

�

�

�� � m̂
�

�

� j
t � s

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

9

>

>

=

>

>

;

,

'0j(�, �) :=
d
dx
'̄�m̂,��

s,t ( j;�x,�y)
�

�

�

�

�

�

x=m̂
=

2
�

�

�� � m̂
�

�

� j
t � s

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

9

>

>

=

>

>

;

,

and so we find the following representation of our desired probability by reconsidering
(6.22),

�m̂,�
s,t (2; x, y) := (W 2 [m̂, �] |W � m̂) = lim

U!1
h

�m̂,�
s,t (m̂, y | U)

i

= lim
U!1

2

6

6

6

6

6

4

lim
x!m̂

�m̂,�
s,t (x, y)

�m̂,U
s,t (x, y)

3

7

7

7

7

7

5

= lim
U!1

2

6

6

6

6

6

4

lim
x!m̂

d
dx�

m̂,�
s,t (x, y)

d
dx�

m̂,U
s,t (x, y)

3

7

7

7

7

7

5

= lim
U!1

2

6

6

6

6

6

6

6

4

�P1
j=1

n

&0j(+, �) + &0j(�, �) � '0j(+, �) � '0j(�, �)
o

�P1
j=1

n

&0j(+,U) + &0j(�,U) � '0j(+,U) � '0j(�,U)
o

3

7

7

7

7

7

7

7

5

= lim
U!1

2

6

6

6

6

6

6

6

6

6

6

4

t � s
2

h

�&01(�, �) �P1
j=1

n

&0j(+, �) + &0j+1(�, �) � '0j(+, �) � '0j(�, �)
oi

t � s
2

h

�&01(�,U) �P1
j=1

n

&0j(+,U) + &0j+1(�,U) � '0j(+,U) � '0j(�,U)
oi

3

7

7

7

7

7

7

7

7

7

7

5

= lim
U!1

2

6

6

6

6

6

6

4

(y � m̂) �P1
j=1

n

 m̂,�
s,t ( j; y) � �m̂,�

s,t ( j; y)
o

(y � m̂) �P1
j=1

n

 m̂,U
s,t ( j; y) � �m̂,U

s,t ( j; y)
o

3

7

7

7

7

7

7

5

= 1 �
P1

j=1

n

 m̂,�
s,t ( j; y) � �m̂,�

s,t ( j; y)
o

(y � m̂)
, (6.26)

limx!c
f 0(x)
g0(x)

.
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where we denote,

 m̂,�
s,t ( j; y) :=

⇣

2
�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

9

>

>

=

>

>

;

, (6.27)

�m̂,�
s,t ( j; y) :=

⇣

2
�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

9

>

>

=

>

>

;

. (6.28)

Remark 6.1.1 ([Beskos et al., 2008, Prop. 3]). As before, we can consider the probability
a Bessel bridge sample path W ⇠ x,y

s,t

�

�

� m̂ , (with minimum m̂ = y < x) remains in the
interval [m̂, �] by a simple reflection argument of Theorem 6.1.3.

We conclude this section by showing that it is possible to simulate events with probability
corresponding to the probability a Bessel bridge sample path is contained within a partic-
ular interval, without any further assumption regarding the interval size (unlike existing
methods [Beskos et al., 2008, Prop. 3] in which one requires that 3(� � m̂)2 > (t � s)).

Corollary 6.1.3. After the inclusion of the first k̂ :=
p

(t � s) + |� � m̂|2/ (2|� � m̂|) terms,
�m̂,�

s,t (2; x, y) can be represented as the limit as k ! 1 of the following alternating Cauchy
sequence (where k 2 such that k � k̂),

S �,2
2k := 1� 1

(y � m̂)

k
X

j=1

n

 m̂,�
s,t ( j; y)��m̂,�

s,t ( j; y)
o

, S �,2
2k+1 := S �,2

2k �
1

y � m̂
 m̂,�

s,t (k+1; y).

(6.29)

Proof. As (y � m̂) 2 (0, (� � m̂)] then 8 j we have  m̂,�
s,t ( j; y), �m̂,�

s,t ( j; y) � 0. As such
to show that after the inclusion of the first k̂ that �m̂,�

s,t (2; x, y) can be represented as
the limit of an alternating Cauchy sequence it is su�cient to show that 8 j � k̂ that
 m̂,�

s,t ( j; y) � �m̂,�
s,t ( j; y) �  m̂,�

s,t ( j + 1; y) � �m̂,�
s,t ( j + 1; y) � . . . which can be proved

inductively by first showing that 8 j � k̂ that  m̂,�
s,t ( j; y)/�m̂,�

s,t ( j; y) � 1 and then 8 j � k̂ that
�m̂,�

s,t ( j; y)/ m̂,�
s,t ( j + 1; y) � 1.

174



We begin by considering  m̂,�
s,t ( j; y)/�m̂,�

s,t ( j; y),

 m̂,�
s,t ( j; y)

�m̂,�
s,t ( j; y)

=

⇣

2
�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

9

>

>

=

>

>

;

⇣

2
�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j + (y � m̂)
⌘

9

>

>

=

>

>

;

=

⇣

2
�

�

�� � m̂
�

�

� j � (y � m̂)
⌘

⇣

2
�

�

�� � m̂
�

�

� j + (y � m̂)
⌘ exp

8

>

>

<

>

>

:

4
�

�

�� � m̂
�

�

� (y � m̂) j
t � s

9

>

>

=

>

>

;

=: f (y). (6.30)

Now, as we have that |� � m̂| > 0, (y � m̂) > 0 and (t � s) > 0 and we are interested in
showing conditions for which  m̂,�

s,t ( j; y)/�m̂,�
s,t ( j; y) � 1 then we naturally consider the be-

haviour of  m̂,�
s,t ( j; y)/�m̂,�

s,t ( j; y) as a function of y. In particular we consider the derivative
of f (y),

f 0(y) =
4
�

�

�� � m̂
�

�

� j
h

2
�

�

�� � m̂
�

�

� j + (y � m̂)
i2 · (t � s)

exp

8

>

>

<

>

>

:

4
�

�

�� � m̂
�

�

� (y � m̂) j
(t � s)

9

>

>

=

>

>

;

·
h

4
�

�

�� � m̂
�

�

�

2 j2 � (y � m̂)2 � (t � s)
i

>
4 j

�

�

�� � m̂
�

�

� · (2 j + 1)2 · (t � s)

h

�

�

�� � m̂
�

�

�

2
⇣

4 j2 � 1
⌘

� (t � s)
i

, (6.31)

and so we have that f 0(y) > 0 if [|� � m̂| 2(4 j2 � 1) � (t � s)] � 0 which is ensured if
j � k̂ =

p

(t � s) + |� � m̂|2/ (2|� � m̂|). As f 0(y) > 0 with this selection of j we have an
increasing function and so f (y) is minimised by selecting y = m̂ where, with reference to
(6.30), we find that f (m̂) = 1. As such we have that 8 j � k̂ that  m̂,�

s,t ( j; y)/�m̂,�
s,t ( j; y) � 1

as desired.

Now, considering �m̂,�
s,t ( j; y)/ m̂,�

s,t ( j + 1; y) we similarly have,

�m̂,�
s,t ( j; y)

 m̂,�
s,t ( j+1; y)

=

⇣

2
�

�
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�
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⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� j
t � s

⇣

�

�

�� � m̂
�

�

� j+(y�m̂)
⌘

9

>

>

=

>

>

;

⇣

2
�

�

�� � m̂
�

�

� ( j+1)�(y�m̂)
⌘

exp

8

>

>

<

>

>

:

�2
�

�

�� � m̂
�

�

� ( j+1)
t � s

⇣

�

�

�� � m̂
�

�

� ( j+1)�(y�m̂)
⌘

9

>

>

=

>

>

;

=

⇣

2
�

�

�� � m̂
�

�

� j+(y�m̂)
⌘

⇣

2
�

�

�� � m̂
�

�
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⌘ exp
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:

2
�

�

�� � m̂
�

�

� (2 j+1)
t � s

h

�

�

�� � m̂
�

�

��(y�m̂)
i

9

>

>

=

>

>

;

=: g(y). (6.32)
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As before we have that |� � m̂| > 0, (y � m̂) > 0 and (t � s) > 0 and so we consider the
behaviour of (6.32) as a function of y and find the derivative of g(y),

g0(y) =
2
�

�

�� � m̂
�

�

� (2 j + 1)
h

2
�

�

�� � m̂
�

�

� ( j + 1) � (y � m̂)
i2 · (t � s)

exp
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>
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>

>

:

2
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�
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i
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>

=

>

>

;

·
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h

(t � s) � 4
�

�

�� � m̂
�

�

�

2 j2
i

· exp

8

>
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<
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=
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;

, (6.33)

and so we have that g0(y) < 0 if [(t � s) � 4|� � m̂| 2 j2]  0 which is ensured if
j � p(t � s)/(2|� � m̂|). As g0(y) < 0 with this selection of j we have a decreasing
function and so g(y) is minimised by selecting y = � where, with reference to (6.32) we
have g(�) = 1. As such 8 j � k̂ >

p
(t � s)/(2|��m̂|) we have that  m̂,�

s,t ( j; y)/�m̂,�
s,t ( j; y) � 1

as desired.

As a result we have 8 j � k̂ that  m̂,�
s,t ( j; y) � �m̂,�

s,t ( j; y) �  m̂,�
s,t ( j+1; y) � �m̂,�

s,t ( j+1; y) � . . .
and so �m̂,�

s,t (2; x, y) can be represented as the limit of the alternating Cauchy in (6.29).

As a consequence of Corollaries 6.1.2 and 6.1.3, events of probability �m̂,�
s,t (x, y) can be

simulated unbiasedly by retrospective Bernoulli sampling (see Section 2.7) as detailed in
Algorithm 6.1.4. Similarly, events of probability �`,m̌s,t (x, y) can be simulated unbiasedly as
detailed in Algorithm 6.1.5 by applying the reflection argument detailed in Section 2.8.1.

6.1.2 Simulating Brownian Path Space Probabilities

In this section we establish that the probability a Brownian bridge sample path, condi-
tioned on a number of intermediate points (q1, . . . , qn), has a minimum in a lower interval
and a maximum in an upper interval (or in each sub-interval a minimum in a lower interval
and a maximum in an upper interval) can be represented as an infinite series (Theorems
6.1.4 and 6.1.5 respectively), and events of this probability can be simulated (Corollaries
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Algorithm 6.1.4 Simulating an event of probability �m̂,�
s,t (x, y).

1. Simulate u ⇠ U[0, 1].

2. If (x ^ y) > m̂ then,

(a) Set k = 1

(b) While u 2
⇣

S �,1
2k+1, S

�,1
2k

⌘

(where S �,1
k :=

S �
k

1 � exp {�2(x � m̂) · (y � m̂)/(t � s)} )
then k = k + 1.

(c) If u  S �,1
2k+1 then u < p so return 1 else u > p so return 0.

3. If (x ^ y) = m̂ then,

(a) Set k =
l

p

(t � s) + |� � m̂|2/ (2|� � m̂|)
m

(b) While u 2
⇣

S �,2
2k+1, S

�,2
2k

⌘

, where S �,2
2k := 1 � 1

|x�y|
Pk

j=1

n

 m̂,�
s,t ( j; (x_y))

��m̂,�
s,t ( j; (x_y))

o

and S �,2
2k+1 := S �,2

2k �
1
|x�y| 

m̂,�
s,t (k + 1; (x_y)) then k = k + 1.

(c) If u  S �,2
2k+1 then u < p so return 1 else u > p so return 0.

Algorithm 6.1.5 Simulating an event of probability �`,m̌s,t (x, y).

1. Set x0 := �x, y0 := �y, m̂0 := �m̌ and �0 := �`.
2. Simulate event of probability �m̂0,�0

s,t (x0, y0) as per Algorithm 6.1.4.

6.1.4 and 6.1.5 respectively).

We begin by introducing the following simplifying notation, q1:n := {q1, . . . , qn}, q0 := s
and qn+1 := t. We further denote m̂s,t := inf{Wq; q 2 [s, t]}, m̌s,t := sup{Wq; q 2 [s, t]},
W :=

n

Wq1 = w1, . . . ,Wqn = wn
o

,L :=
n

m̂s,q1 2 [`#s,q1 , `
"
s,q1 ], . . . , m̂qn,t 2 [`#qn,t, `

"
qn,t]

o

,U :=
n

m̌s,q1 2 [�#s,q1 , �
"
s,q1 ], . . . , m̌qn,t 2 [�#qn,t, �

"
qn,t]

o

. We also use the following abuse of nota-
tion

�

W[s,t] 2 [`, �]
 

:= {Wu 2 [`, �]8u 2 [s, t]}, noting that
�

W[s,t] 2 [`, �]
 

= {m̂s,t 2
[`, (x^y)], m̌s,t 2 [(x_y), �]}.

Theorem 6.1.4. The probability a Brownian bridge sample path W ⇠ x,y
s,t

�

�

�W has
a minimum m̂s,t 2 [`#, `"] and a maximum m̌s,t 2 [�#, �"] can be represented by the
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following infinite series,

(n)⇢`#,`",�#,�"s,t,x,y (q1:n,W) :=
�

m̂s,t 2 [`#, `"], m̌s,t 2 [�#, �"] �

�

�W�

=
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6

6

6
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n
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7

7
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�`",�#qi,qi+1 (Xqi , Xqi+1 )
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7

7

5

. (6.34)

Proof. We begin by noting that by an inclusion-exclusion argument our desired probabil-
ity can be represented as follows,

(n)⇢`#,`",�#,�"s,t,x,y (q1:n,W) = (W 2 [`#, �"] |W) � (W 2 [`", �"] |W)

� (W 2 [`#, �#] |W) + (W 2 [`", �#] |W) . (6.35)

Now, considering (W 2 [`#, �"] |W), by applying the strong Markov property we have,

(W 2 [`#, �"] |W) =
⇣

W[s,q1] 2 [`#, �"] , . . . ,W[qn,t] 2 [`#, �"] �

�

�W
⌘

=

n
Y

i=0

⇣

W[qi,qi+1] 2 [`#, �"] �

�

� Wqi = wi,Wqi+1 = wi+1
⌘

=:
n

Y

i=0

�`#,�"qi,qi+1 (Xqi , Xqi+1 ). (6.36)

As each of the terms in (6.35) can be similarly considered we arrive at (6.34) as desired.

As we have (n)⇢`#,`",�#,�"s,t,x,y (q1:n,W) =
�

m̂s,t 2 [`#, `"], m̌s,t 2 [�#, �"],W�

/ (W) it is
of interest to consider of those Brownian bridge sample paths with the restriction W,
which of those also have the restriction

�

m̂s,t 2 [`#, `"], m̌s,t 2 [�#, �"] (sample paths of
which are illustrated in Figure 6.1.5).

Corollary 6.1.4. Events of probability (n)⇢`#,`",�#,�"s,t,x,y (q1:n,W) can be represented as the
limit as k ! 1 of the following alternating Cauchy sequence,

S ⇢(n)
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+
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Y
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k
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.

(6.37)

Proof. As shown in (6.34), the probability (n)⇢`#,`",�#,�"s,t,x,y (q1:n,W) can be represented as a
function of � probabilities, each of which can be represented as the limit of an alternating
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Cauchy sequence. As such, as a consequence of Corollary 2.7.1, we have that (6.37)
follows directly by alignment of the indices of the Cauchy sequence representations of
the � probabilities in (6.34), and is itself an alternating Cauchy sequence.

Definition 6.1.2. We define ⇢(s, q, t, x,w, y, `#, `", �#, �") := (1)⇢`#,`",�#,�"s,t,x,y ({q} , {w}), which
coincides with ⇢ in Beskos et al. [2012].

As a consequence of Corollary 6.1.4, events of probability (n)⇢`#,`",�#,�"s,t,x,y (q1:n,W) can be
simulated unbiasedly by retrospective Bernoulli sampling (see Section 2.7) as detailed in
Algorithm 6.1.6.

Algorithm 6.1.6 Simulating an event of probability (n)⇢`#,`",�#,�"s,t,x,y (q1:n,W).

1. Simulate u ⇠ U[0, 1] and set k = 1.

2. While u 2
⇣

S ⇢(n)
2k+1, S

⇢(n)
2k

⌘

, where S ⇢(n)
k =

h

Qn
i=0 S �(qi,qi+1,#,")

k

i

�
h

Qn
i=0 S �(qi,qi+1,",")

k+1

i

�
h

Qn
i=0 S �(qi,qi+1,#,#)

k+1

i

+
h

Qn
i=0 S �(qi,qi+1,",#)

k

i

, then k = k + 1.

3. If u  S ⇢(n)
2k+1 then u < p so return 1 else u > p so return 0.
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Figure 6.1.5: Example sample path trajectories
W ⇠ x,y

s,t

�

�

� (m̂ 2 [`#, `"], m̌ 2 [�#, �"], q1:n,W) .
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Theorem 6.1.5. The probability that a Brownian bridge sample path W ⇠ x,y
s,t

�

�

�W ,
has in the sub-intervals between successive points a minimum and maximum in particular
intervals (L andU respectively), can be represented by the following infinite series,

(n)�L,Us,t,x,y(q1:n,W) := (L,U |W)
h

:=
⇣

m̂s,q1 2 [`#s,q1 , `
"
s,q1 ], m̌s,q1 2 [�#s,q1 , �

"
s,q1 ], . . . , m̂qn,t 2 [`#qn,t, `

"
qn,t], m̌qn,t 2 [�#qn,t, �

"
qn,t]

�

�

� Ws = x,Wq1 = w1, . . . ,Wqn = wn,Wt = y
⌘i

=

n
Y

i=0

h

�`#,�"qi,qi+1 (Xqi , Xqi+1 ) � �`",�"qi,qi+1 (Xqi , Xqi+1 ) � �`#,�#qi,qi+1 (Xqi , Xqi+1 ) + �`",�#qi,qi+1 (Xqi , Xqi+1 )
i

.

(6.38)

Proof. By the strong Markov property we have,

(L,U |W) =
n

Y

i=0



⇣

m̂qi,qi+1 2
h

`#qi,qi+1 , `
"
qi,qi+1

i

, m̌qi,qi+1 2
h

�#qi,qi+1 , �
"
qi,qi+1

i

�

�

�

�

Wqi ,Wqi+1

⌘

�

.

Now, applying a sample path inclusion-exclusion argument in a similar manner to the
proof of Theorem 6.1.4 (i.e. we have (m̂ 2 [`#, `"], m̌ 2 [�#, �"]) = (W 2 [`#, �"]) �

(W 2 [`", �"]) � (W 2 [`#, �#]) + (W 2 [`", �#]) then (6.38) follows directly.

As before, note that (n)�L,Us,t,x,y(q1:n,W) = (L,U,W) / (W), so it is of interest to
consider of those Brownian bridge sample paths with the restrictionW which of those
also have the restriction {L,U} (sample paths of which are illustrated in Figure 6.1.6).

Corollary 6.1.5. Events of probability (n)�L,Us,t,x,y(q1:n,W) can be represented as the limit
as k ! 1 of the following alternating Cauchy sequence,

S �(n)
k :=

n
Y

i=0

h

S �(qi,qi+1,`#,�")
k � S �(qi,qi+1,`",�")

k+1 � S �(qi,qi+1,`#,�#)
k+1 + S �(qi,qi+1,`",�#)

k

i

. (6.39)

Proof. Follows by Corollary 2.7.1 in the same manner as in the proof of Corollary 6.1.4.

Definition 6.1.3. We define �(s, t, x, y, `#, `", �#, �") := (0)�L,Us,t,x,y(;, ;), which coincides
with � in Beskos et al. [2012].

As a consequence of Corollary 6.1.4, events of probability (n)�L,Us,t,x,y(q1:n,W) can be sim-
ulated unbiasedly by retrospective Bernoulli sampling as detailed in Algorithm 6.1.7.
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Algorithm 6.1.7 Simulating an event of probability (n)�L,Us,t,x,y(q1:n,W).

1. Simulate u ⇠ U[0, 1] and set k = 1.

2. While u 2
⇣

S �(n)
2k+1, S

�(n)
2k

⌘

(where S �(n)
k =

Qn
i=0

h

S �(qi,qi+1,`#,�")
k � S �(qi,qi+1,`",�")

k+1

�S �(qi,qi+1,`#,�#)
k+1 + S �(qi,qi+1,`",�#)

k

i

), then k = k + 1.

3. If u  S �(n)
2k+1 then u < p so return 1 else u > p so return 0.
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Figure 6.1.6: Example sample path trajectories W ⇠ x,y
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6.2 Layered Brownian Bridge Constructions

In this section we outline how to construct and simulate finite dimensional skeletons of
layered Brownian bridges for use within the Unbounded Exact Algorithm (UEA; Algo-
rithm 5.1.3) and Conditioned Unbounded Exact Algorithm (CUEA; Algorithm 5.2.1),
which in turn are used within the Bounded Jump Exact Algorithm (BJEA; Algorithm
5.3.1), Unbounded Jump Exact Algorithm (UJEA; Algorithm 5.3.2) and Conditioned
Unbounded Jump Exact Algorithm (CUJEA; Algorithm 5.4.1). As the layered Brow-
nian bridge construction for each of the exact algorithms above is identical, without loss
of generality we relate the construction to the UEA (Algorithm 5.1.3). In particular, we
address the simulation of layer information (Algorithm 5.1.3 Step 2), intermediate skele-
tal points (Algorithm 5.1.3 Step 4) and the process at further times after acceptance of the
proposed sample path (Algorithm 5.1.3 Step 6).

We present two alternate layered Brownian bridge constructions based on extensions to
existing exact algorithms. In Section 6.2.1 we present the Bessel Approach, which is a
reinterpretation of part of the Exact Algorithm 3 (EA3) proposed by Beskos et al. [2008],
in which we incorporate the methodological improvements outlined in Chapter 5 and
Section 6.1 and introduce a novel approach for conducting Algorithm 5.1.3 Step 6 (which
could not previously be achieved). As a consequence, the resulting (complete) UEA, with
the inclusion of the Bessel approach, satisfies Principles 1, 2 and 3 (as opposed to only
Principles 1 and 2 in EA3 [Beskos et al., 2008]). Finally, in Section 6.2.2 we briefly
outline a Localised Approach for constructing a layered Brownian bridge (based on the
Localised Exact Algorithm (LEA) of Chen and Huang), showing that the resulting UEA
only satisfies Principles 1 and 2 and discussing the di�culties in conducting Algorithm
5.1.3 Step 6 and satisfying Principle 3.

In neither the Bessel nor the Localised approaches is it possible to directly simulate inter-
mediate points conditional on a simulated layer (as required in Algorithm 5.1.3 Step 2).
Instead, proposal sample path skeletons are simulated by other Monte Carlo techniques,
including rejection sampling (see Section 2.4) and demarginalisation (see Section 2.3).

In the context of the exact algorithms of Chapter 5, demarginalisation allows us to simu-
late any (auxiliary) aspect of the proposal di↵usion sample path in addition to the skele-
ton to aid sampling. Provided the auxiliary information does not influence the acceptance
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probability then it is not part of the skeleton and doesn’t need to be retained.

6.2.1 Bessel Approach

The central idea in the Bessel Approach is that finite dimensional subsets of Brownian
bridge sample paths can be simulated jointly with information regarding the interval in
which they are constrained (Algorithm 5.1.3 Step 2), by means of a partitioning of Brow-
nian bridge path space with an (arbitrary) increasing sequence, {a◆}◆�0, a0 = 0, which
radiates outwards from the interval [(x ^ y), (x _ y)], demarcating layers (recalling the
definition of a layer from Definition 2). We term this particular layer construction the
Bessel layer. For instance, the ◆th Bessel layer is defined as follows,

I◆ = ⇥

(x ^ y) � a◆, (x _ y) + a◆
⇤

. (6.40)

The (smallest) Bessel layer, I = ◆, in which a particular Brownian bridge sample path
is constrained can be simulated unbiasedly by retrospective Bernoulli sampling and in-
version sampling (see Section 2.1) as detailed in Algorithm 6.2.1 (where we denote by
S �

k (s, t, x, y, `, �) as the alternating Cauchy sequence whose limit as k ! 1 is �`,�s,t (x, y)).
The CDF of ◆ can be written as follows (with reference to Theorem 6.1.1 and as shown in
Beskos et al. [2008]),

(I  ◆) =
⇣

W x,y
s,t 2

⇥

(x ^ y) � a◆, (x _ y) + a◆
⇤

⌘

= �(x^y)�a◆,(x_y)+a◆
s,t (x, y). (6.41)

Algorithm 6.2.1 Simulation of a Brownian Bridge Bessel Layer [Beskos et al., 2008].

1. Simulate u ⇠ U[0, 1] and set ◆ = 1, k = 0.

2. While u 2
⇣

S �
2k+1(s, t, x, y, (x^y)�a◆, (x_y)+a◆) , S

�
2k (s, t, x, y, (x^y)�a◆, (x_y)+a◆)

⌘

,
k = k + 1.

3. If u � S �
2k set ◆ = ◆ + 1 and return to Step 2 else set I = ◆ and end.

Now, we require a method of simulating intermediate points (Algorithm 5.1.3 Step 4)
from a Brownian bridge sample path restricted to remain in the Bessel layer simulated
in Algorithm 6.2.1. In particular, denoting with D◆ the set of sample paths which are
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contained in the ◆th Bessel layer we have,

D◆ :=
 (

W[s,t] : m̂s,t 2


(x ^ y) � a◆, (x ^ y)
�

)

\

(

W[s,t] : m̌s,t 2


(x _ y), (x _ y) + a◆
�

)!

\

 (

W[s,t] : m̂s,t 2


(x ^ y) � a◆�1, (x ^ y)
�

)

\

(

W[s,t] : m̌s,t 2


(x _ y), (x _ y) + a◆�1

�

)!C

=

 (

W[s,t] : m̂s,t 2


(x ^ y) � a◆, (x ^ y)
�

)

\

(

W[s,t] : m̌s,t 2


(x _ y), (x _ y) + a◆
�

)!

\

 (

W[s,t] : m̂s,t 2
✓

�1, (x ^ y) � a◆�1

◆

)

[

(

W[s,t] : m̌s,t 2
✓

(x _ y) + a◆�1,1
◆

)!

= L◆ [ U◆, (6.42)

where,

L◆ :=
(

W[s,t] : m̂s,t 2


(x^y) � a◆, (x^y) � a◆�1

◆

)

\

(

W[s,t] : m̌s,t 2


(x_y), (x_y) + a◆
�

)

,

(6.43)

U◆ :=
(

W[s,t] : m̂s,t 2


(x ^ y) � a◆, (x ^ y)
�

)

\

(

W[s,t] : m̌s,t 2
✓

(x _ y) + a◆�1, (x _ y) + a◆
�

)

.

(6.44)

Directly simulating intermediate points from from a sample path with law D◆, (denoted

◆) is not possible. Instead denoting by,

M̂◆ =

(

W[s,t] : m̂s,t 2
h

(x^y) � a◆, (x^y) � a◆�1
i

)

, (6.45)

M̌◆ =

(

W[s,t] : m̌s,t 2
h

(x_y) + a◆�1, (x_y) + a◆
i

)

, (6.46)

and following the approach taken in Beskos et al. [2008], we can propose sample paths
from the mixture measure ◆ := ˆ

◆/2 + ˇ
◆/2 ( ˆ

◆ and ˇ
◆ being the law induced by the

restriction of x,y
s,t to the sets M̂◆ and M̌◆, respectively) and accept them with probability

given by the Radon-Nikodým derivative of ◆ with respect to ◆.

It was shown in Beskos et al. [2008] that ◆ is absolutely continuous with respect to
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◆ with Radon-Nikodým derivative,

d ◆

d ◆
(x) / (W 2 D◆)

1 + (W 2 M̂◆ \ M̌◆)
. (6.47)

Sample paths can be drawn from ◆ by proposing them from ◆ := ˆ
◆/2+ ˇ

◆/2 and then
accepting them with probability given by (6.47). For instance, with probability 1/2 we
sample from ˆ

◆ and accept with probability 1 if the sample path maximum is contained
within the (◆ � 1)th Bessel layer or with probability 1/2 if it is contained between the
(◆�1)th and ◆th Bessel layer (and 0 otherwise). In practice we first simulate the sample path
minimum X⌧ = m̂s,t (or maximum X⌧ = m̌s,t) as per Algorithm 2.7.1, and subsequently
simulate any required intermediate points ⇠1, . . . , ⇠ from a Bessel bridge as per Algorithm
2.8.4. As we can only simulate our sample path at a finite collection of points we can’t
directly evaluate (6.47). However, we can obtain an unbiased estimate and so simulate an
event of this probability by application of Corollaries 6.1.2 and 6.1.3 and Lemmata 6.1.2
and 6.1.3 (letting �1, . . . ,�+3 as the order statistics of {⇠1, . . . , ⇠, s, ⌧, t}),

ˆ ◆
(X 2 D◆) =

⇣

X 2 [(x ^ y) � a◆, (x _ y) + a◆]
�

�

� X�1 , . . . , X�+3

⌘

=

+2
Y

i=1

�m̂,(x_y)+a◆
�i,�i+1

⇣

X�i , X�i+1

⌘

, (6.48)

ˆ ◆

⇣

X 2 M̂◆ \ M̌◆

⌘

= ˆ ◆
(X 2 D◆) �

+2
Y

i=1

�m̂,(x_y)+a◆�1
�i,�i+1

⇣

X�i , X�i+1

⌘

. (6.49)

As both (6.48) and (6.49) are probabilities which can be represented as a linear function
of � probabilities, events of this probability can be simulated unbiasedly by retrospective
Bernoulli sampling (as per Section 2.7, Corollary 2.7.1 and Algorithm 2.7.1). The syn-
thesis of the above approach for simulating a Brownian bridge conditional on the Bessel
layer simulated in Algorithm 6.2.1 (i.e. conducting Algorithm 5.1.3 Step 4) leads to Al-
gorithm 6.2.2.

Upon accepting a proposed sample path skeleton within the UEA (as simulated by Algo-
rithm 6.2.1 and Algorithm 6.2.2 and so satisfying Principles 1 and 2), we need to be able
to simulate the sample path at further times (Algorithm 5.1.3 Step 2) in order to satisfy
Principle 3. Any further simulation is conditional on information obtained constructing
the sample path skeleton. In particular, our sample path belongs to D◆ (by Algorithm
6.2.1), the sample path minimum (or maximum) belongs to a particular interval (as a con-
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Algorithm 6.2.2 Layered Brownian Bridge Simulation (Bessel Approach) – Sampling X
at times ⇠1, . . . ⇠.

1. Simulate u1, u2 ⇠ U[0, 1], set j = k = 0.

2. Simulate Auxiliary Information (conditional on I = ◆),

(a) If u1  1/2 simulate minimum point (⌧, m̂s,t) and set `1 = `2 = m̂s,t, �1 =

(x _ y) + a◆�1 and �2 = (x _ y) + a◆.

(b) If u1 > 1/2 simulate maximum (⌧, m̌s,t) and set `1 = (x ^ y) � a◆�1, `2 =

(x ^ y) � a◆�1 and �1 = �2 = m̌s,t.

3. Simulate intermediate times X⇠1 , . . . , X⇠ from a Bessel Bridge conditional on X⌧.

4. While u2 2
✓

Q+2
i=1 S �

2 j+1

⇣

`1, �1
⌘

,
Q+2

i=1 S �
2 j

⇣

`1, �1
⌘

◆

, j = j + 1,

(a) If u2 Q+2
i=1 S �

2 j+1

⇣

`1, �1
⌘

then accept sample path.

(b) If u2 � Q+2
i=1 S �

2 j

⇣

`1, �1
⌘

while u2 2
✓

Q+2
i=1 S �

2k+1

⇣

`2, �2
⌘

,
Q+2

i=1 S �
2k

⇣

`2, �2
⌘

◆

,
k = k + 1,

i. If u2 Q+2
i=1 S �

2k+1

⇣

`2, �2
⌘

then with probability 1/2 accept sample path,
else return to Step 1.

ii. If u2 �Q+2
i=1 S �

2k

⇣

`2, �2
⌘

then reject sample path and return to Step 1.

5. Discard or Retain Auxiliary Information.

sequence of the mixture proposal in (6.46) and (6.45)), we have simulated the sample path
minimum (or maximum) (either X⌧ = m̂s,t or X⌧ = m̌s,t by Algorithm 2.7.1) and skeletal
points (X⇠1 , . . . , X⇠) and finally we have simulated whether the sample path maximum
(or minimum) is contained in the first (◆ � 1) Bessel layers or in the ◆th Bessel layer (by
evaluating the Radon-Nikodým derivative in (6.47) by means of (6.48) and (6.49)). In
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summary, we have four possible sets of conditional information for our sample path,

S 1 :=
n

Xs, Xt, X 2 D◆, m̂s,t 2
h

(x^y) � a◆, (x^y) � a◆�1
i

, X⌧ = m̂s,t,

X⇠1 , . . . , X⇠ , m̌s,t 2
h

(x_y), (x_y) + a◆�1
io

, (6.50)

S 2 :=
n

Xs, Xt, X 2 D◆, m̂s,t 2
h

(x^y) � a◆, (x^y) � a◆�1
i

, X⌧ = m̂s,t,

X⇠1 , . . . , X⇠ , m̌s,t 2
h

(x_y) + a◆�1, (x_y) + a◆
io

, (6.51)

S 3 :=
n

Xs, Xt, X 2 D◆, m̌s,t 2
h

(x_y) + a◆�1, (x_y) + a◆
i

, X⌧ = m̌s,t,

X⇠1 , . . . , X⇠ , m̂s,t 2
h

(x^y) � a◆�1, (x^y)
io

, (6.52)

S 4 :=
n

Xs, Xt, X 2 D◆, m̌s,t 2
h

(x_y) + a◆�1, (x_y) + a◆
i

, X⌧ = m̌s,t,

X⇠1 , . . . , X⇠ , m̂s,t 2
h

(x^y) � a◆, (x^y) � a◆�1
io

. (6.53)

The di�culty in simulating the process at further intermediate times conditional on the
above is that information pertaining to the sample path minimum and maximum induces a
dependancy between the sub-interval in which we want to simulate an intermediate point,
and all other sub-intervals. An additional complication arises as we know precisely the
minimum (or maximum) of the sample path, so the law we need to simulate further points
from is that of a Bessel bridge conditioned to remain in a given interval.

However, the minimum (or maximum) simulated in Algorithm 6.2.2 Step 2 is auxiliary
sample path information (as in (2.7)) and doesn’t constitute an essential part of the exact
algorithm skeleton, so can be discarded. Furthermore, information regarding the sample
path minimum and maximum is su�cient in determining an interval for the entire sample
path. As such, reconsidering S 1 (S 2, S 3, S 4 can be similarly considered) we have,

S̃ 1 :=
n

Xs, Xt, X⇠1 , . . . , X⇠ , m̂s,t 2
h

(x^y) � a◆, (x^y) � a◆�1
i

,

m̌s,t 2
h

(x_y), (x_y) + a◆�1
io

. (6.54)

Now, to remove the induced dependency between sub-intervals of time we can simulate,
for each sub-interval of time, an interval of path space in which the sample path minimum
and maximum is constrained as outlined in Section 6.3.3 and Algorithm 6.3.5. Further
intermediate points can then be simulated as outlined in Section 6.3.5.
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6.2.2 Localised Approach

The Localised Approach is based on the layered Brownian bridge construction found in
the Localised Exact Algorithm (LEA) originally proposed in [Chen and Huang; Giesecke
and Smelov, Forthcoming]. The LEA is an alternative exact algorithm based on the math-
ematical framework of EA3 (see Beskos et al. [2008]). However, we don’t go into detail
as to its construction as in the context of this thesis it su↵ers from a number of compu-
tational weaknesses (in particular significant computation is required in order to satisfy
Principle 3) so is not well suited for the purposes of this thesis. Instead, we briefly outline
its construction and highlight which aspects of its construction present di�culties.

The key notion in the Localised approach is that rather than proposing sample path skele-
tons from x (where the end point XT := y ⇠ h is first simulated), the interval to be sim-
ulated ([0,T ]) can be instead broken into a number of bounded segments (as in (5.13)).
Each segment is successively simulated by means of simulating the first hitting time ⌧, of
a Brownian motion proposal sample path (as outlined in Burq and Jones [2008]) of some
user specified boundary symmetric around its start point (for instance, if X0 = x with
boundary ✓ then ⌧ := inf{s : Xs < [x � ✓, x + ✓]}), and simulating and accepting a sample
path skeleton conditional on the simulated boundary (with a suitable modification of the
acceptance probability to account for the modified proposal measure).

The benefit of the Localised approach is that simulating the first hitting time of a bound-
ary acts as a layer for the bounded segment (i.e. 8u 2 [0, ⌧], Xu(!) 2 [x � ✓, x + ✓]) and
so �(X0,⌧) is conditionally bounded (as per Result 4) and a bound can be found for A(X⌧)
in (4.44). As such it is possible to bound the Radon-Nikodým derivative without the need
for Condition 5, however the acceptance rate of proposal sample paths can be low as
each component of the Radon-Nikodým derivative needs to be bounded (the incongruity
being that this can be particularly problematic in the case where the di↵usion doesn’t
satisfy Condition 5). Moreover, as with the UJEA and AUJEA this approach to simulat-
ing sample path skeletons can result in simulating skeletons for intervals exceeding that
required (which is computationally wasteful), further complicated by the need to specify
the boundary ✓. Furthermore, this methodology can’t be used to simulate conditioned
di↵usion and jump di↵usion sample path skeletons. Finally, unlike the Bessel approach,
the minimum or maximum that is simulated forms part of the skeleton and so can not
be discarded. As such, the demarginalisation strategy taken in Section 6.2.1 in order to
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extend the UEA (with the Bessel approach for simulating layered Brownian bridges) to
satisfy Principle 3 can’t be conducted.

6.3 Adaptive Layered Brownian Bridge Constructions

In Section 5.1.2 we proposed the Adaptive Unbounded Exact Algorithm (AUEA; Algo-
rithm 5.1.4) as an alternative to the UEA (Algorithm 5.1.3). In this section we outline
how to simulate finite dimensional skeletons of layered Brownian bridges for use within
the AUEA and Conditioned Adaptive Unbounded Exact Algorithm (CAUEA; Algorithm
5.2.2), and by extension the Bounded Jump Exact Algorithm (BJEA; Algorithm 5.3.1),
Adaptive Unbounded Jump Exact Algorithm (AUJEA; Algorithm 5.3.3) and Conditioned
Adaptive Unbounded Jump Exact Algorithm (CAUJEA; Algorithm 5.4.2). As the layered
Brownian bridge construction for each of these exact algorithms is identical, without loss
of generality we relate the construction to the AUEA (Algorithm 5.1.4). In particular, we
present new results for simulating an initial intersection layer (Algorithm 5.1.4 Step 2 –
Section 6.3.1), intermediate points conditional on the layer (Algorithm 5.1.4 Step 3.1.2
– Section 6.3.2) and finally, new intersection layers for each sub-interval created by the
intermediate point (Algorithm 5.1.4 Step 3.1.4 – Section 6.3.3).

We use the results we present in Sections 6.3.1–6.3.3 to outline novel layered Brownian
bridge constructions in Section 6.3.5 which can be used within the AUEA, all of which
satisfy Principles 1, 2 and 3.

6.3.1 Simulating an Initial Intersection Layer

Upon simulating a proposal Brownian bridge layer as per Algorithm 6.2.1 in Section
6.2.1, we know that our entire Brownian bridge sample path is contained within the ◆th

Bessel layer, but is not contained within the (◆ � 1)th Bessel layer. Simulating sample
path intermediate points is complicated by this conditional information (and as discussed
in Section 6.2, it is not possible to simulate intermediate points directly). The novel
approach we take in this thesis is to simulate further layer information regarding the min-
imum and maximum of the proposed sample path (which together provide a sample path
layer). To achieve this recall (with reference to Section 5 and (6.42, 6.43, 6.44)) that,
having simulated a layer for our proposal Brownian bridge sample path as per Algorithm
6.2.1, we know the sample path is restricted to the layer D◆. We can then simply decom-
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pose the set D◆ into a disjoint union and simulate to which our sample path belongs,

D◆ = L◆ [ U◆ = (L◆ \ U◆)
|    {z    }

D◆,1

]
⇣

UC
◆ \ L◆

⌘

|     {z     }

D◆,2

]
⇣

LC
◆ \ U◆

⌘

|     {z     }

D◆,3

, (6.55)

where,

D◆,1 := L◆ \ U◆ =

(

W[s,t] : m̂s,t 2


(x ^ y) � a◆, (x ^ y) � a◆�1

◆

)

\

(

W[s,t] : m̌s,t 2
✓

(x _ y) + a◆�1, (x _ y) + a◆
�

)

, (6.56)

D◆,2 := UC
◆ \ L◆ =

(

W[s,t] : m̂s,t 2


(x ^ y) � a◆, (x ^ y) � a◆�1

◆

)

\

(

W[s,t] : m̌s,t 2


(x _ y), (x _ y) + a◆�1

�

)

, (6.57)

D◆,3 := LC
◆ \ U◆ =

(

W[s,t] : m̂s,t 2


(x ^ y) � a◆�1, (x ^ y)
�

)

\

(

W[s,t] : m̌s,t 2
✓

(x _ y) + a◆�1, (x _ y) + a◆
�

)

. (6.58)

This decomposition can be interpreted as the sample path attains the ◆th Bessel layer at
both its minimum and maximum (D◆,1) or its minimum (D◆,2) or its maximum (D◆,3). We
can simulate to which set our sample path belongs by application of the following results
and Algorithm 6.3.1. Recalling the definition of a layer from Definition 2, we term this
particular layer construction the Intersection Layer.

Theorem 6.3.1 (Initial Intersection Layer). The probability a Brownian bridge sample
path is in D◆,1, given it is in D◆, can be represented as follows (denoting `# := (x^y) � a◆,
`" := (x^y) � a◆�1, �# := (x_y) + a◆�1, �" := (x_y) + a◆),

pD◆,1 :=
�

D◆,1,
�

�

� D◆,Ws= x,Wt=y
�

=
� (s, t, x, y, `#, `", �#, �")

� (s, t, x, y, `#, `", �#, �") + � (s, t, x, y, `#, `", (x_y), �#)
+ � (s, t, x, y, `", (x^y), �#, �")

(6.59)

Proof. By Bayes rule we have (recalling the decomposition of D◆ in (6.55)),

�

D◆,1,
�

�

� D◆,Ws= x,Wt=y
�

=

�

D◆,1
�

�

� Ws= x,Wt=y
�

P3
j=1

⇣

D◆, j
�

�

� Ws= x,Wt=y
⌘ (6.60)

192



and so (6.59) follows directly from Theorem 6.1.5 and Definition 6.1.3.

Corollary 6.3.1. Events of probability pD◆,1 can be represented as the limit as k ! 1 of
the following alternating Cauchy sequence,

S D(◆,1)
k :=

S �
k (s, t, x, y, `#, `", �#, �")

S �
k+1 (s, t, x, y, `#, `", �#, �") + S �

k+1 (s, t, x, y, `#, `", (x_y), �#)
+ S �

k+1 (s, t, x, y, `", (x^y), �#, �")

. (6.61)

Proof. Follows by Corollary 2.7.1 in the same manner as in the proof of Corollary 6.1.4.

As a consequence of Corollary 6.3.1, events of probability pD◆,1 can be simulated unbias-
edly by retrospective Bernoulli sampling (as per Algorithm 2.7.1 in Section 2.7). Now,
noting that by symmetry we have pD◆,2 := (D◆,2 |D◆,Ws = x,Wt = y) = (D◆,3 |D◆,Ws =

x,Wt=y) =: pD◆,3 and furthermore pD◆,2 + pD◆,3 = 1 � pD◆,1 then it is possible to determine
which disjoint set (D◆,1. D◆,2 or D◆,3) our sample path belongs by direct application of
Theorem 6.3.1, Corollary 6.3.1 and the following Algorithm 6.3.1.

Algorithm 6.3.1 Simulation of an Initial Brownian Bridge Intersection Layer.

1. Simulate layer I = ◆ as per Algorithm 6.2.1, simulate u ⇠ U[0, 1] and set k = 0.

2. While u 2
⇣

S D(◆,1)
2k+1 , S

D(◆,1)
2k

⌘

, k = k + 1.

3. If u  S D(◆,1)
2k+1 then set D◆ = D◆,1.

4. If u � S D(◆,1)
2k then with probability 0.5 set D◆ = D◆,2 else set D◆ = D◆,3.

6.3.2 Simulating Intersection Layer Intermediate Points

Having simulated an intersection layer we require a sampling scheme for simulating the
conditional Brownian bridge at some intermediate time q 2 (s, t). As shown in Beskos
et al. [2012], the density of the sample path at the intermediate time point q can be written
as follows (where µw and �2

w denote the mean and variance of a Brownian bridge as in
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Section 2.8),

⇡(w) :=
⇣

Wq = w
�

�

�

�

Ws = x,Wt = y, m̂s,t 2
h

`#s,t, `
"
s,t

i

, m̌s,t 2
h

�#s,t, �
"
s,t

i⌘

(6.62)

/ ⇢
⇣

s, q, t, x,w, y, `#s,t, `
"
s,t, �

#
s,t, �

"
s,t

⌘

· N
⇣

w; µw,�
2
w

⌘

. (6.63)

A method of simulating from ⇡(w) was outlined in Beskos et al. [2012] based on in-
version sampling and numerical methods, however, this scheme is formally inexact and
given particular parameter values can be computationally extremely ine�cient. Clearly
for our purposes ensuring exactness is necessary and so we provide a number of alterna-
tive schemes which are exact.

In Section 6.3.2.1 we present a method of simulating from (6.63) by finding a bound
constructed from a mixture of Normal densities which can be easily simulated from and
conducting rejection sampling. It transpires that this scheme is typically highly compu-
tationally e�cient, however, for a small number of parameter values the acceptance rate
of the rejection sampler is very low. As such, in Section 6.3.2.2 we present an alternate
rejection sampling scheme which exploits the known Lipschitz constants of the bound-
ing sequence in (6.63) to construct an arbitrarily tight bound of the target density. This
however comes at some computational expense, so we advocate using some mixture of
these two approaches (which we discuss later in Sections 6.3.2.4 and 6.3.5). Finally, for
completeness, in Section 6.3.2.3 we construct a third scheme inspired by the Bessel layer
constructions found in Section 6.2.1 and Beskos et al. [2008]. This third scheme provides
some insight as to how the di↵erent layered Brownian bridge constructions of Section 6.2
and Section 6.3 relate to one another.

6.3.2.1 Bounding Cauchy Sequence Approach

Here we show that it is possible to extend Beskos et al. [2012], and simulate from this
density exactly by means of composition sampling (see Section 2.2) and rejection sam-
pling (see Section 2.4). We will begin by considering the upper convergent bounding
sequence of ⇢ (8k 2 �0 we have ⇢  S ⇢

2k and limk!1 S ⇢
2k = ⇢). Considering the de-

composition of (6.37) into its elementary form in terms of &̄ and '̄ (see (6.6) and (6.7)
respectively) note that it is composed of K = 64(k + 1)2 of these elementary terms.

Recalling that &`,�s,t ( j; x, y) := &̄`,�s,t ( j; x, y)+&̄�`,��s,t ( j;�x,�y) and '`,�s,t ( j; x, y) := '̄`,�s,t ( j; x, y)+
'̄�`,��s,t ( j;�x,�y) it can be shown that each of the functions &̄ and '̄ has the structural form
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exp (ai + biw), with known coe�cients ai and bi (see Appendix A for further details). As
such, we can find a bound for our unnormalised target density (6.63) as follows (ci 2 {0, 1}
determines the sign of the density contribution),

⇡(w)  S ⇢
2k · N

⇣

w; µw,�
2
w

⌘

=

K
X

i=1

h

(�1)ci · exp {ai + biw} · (w 2 [`i, �i]) · N
⇣

w; µw,�
2
w

⌘i

=

K
X

i=1

h

(�1)ci · exp
n

ai + µwbi + bi�
2
w/2

o

|                                     {z                                     }

:=!i

· (w 2 [`i, �i]) · N
⇣

w; µw + bi�
2
w,�

2
w

⌘

|                     {z                     }

:=N(w; µi,�2
w)

i

.

(6.64)

Here we have a mixture of positively and negatively weighted truncated Normal densities
(with common variance). Although each truncated Normal in the mixture is unique (due
to the truncation points), for any given parameterisation a large proportion of them will
have common mean. We exploit this by partitioning the interval that provides support for
the target density (6.63) into sections corresponding to the truncation points (in particular,
we consider the following partitioning

n

[`#s,t, `
"
s,t], [`

"
s,t, �

#
s,t], [�

#
s,t, �

"
s,t]

o

which we denote
by j 2 {1, 2, 3} respectively). As a consequence, the resulting mixture density has a
number of positive and negative elements which cancel each other out (i.e. they can be
netted from one another). Defining !i, j as the weight associated with partition j and
!+i, j := (!i, j _ 0) we can find an upper bound by solely considering the mixture formed
from the positive weights,

⇡(w) 
K

X

i=1

!i · N
⇣

w; µi,�
2
w

⌘

· (w 2 [`i, �i])

·
h ⇣

w 2 [`#s,t, `
"
s,t]

⌘

+
⇣

w 2 [`"s,t, �
#
s,t]

⌘

+
⇣

w 2 [�#s,t, �
"
s,t]

⌘i

(6.65)


K

X

i=1

N
⇣

w; µi,�
2
w

⌘

· (w 2 [`i, �i]) ·
h

!+i,1 ·
⇣

w 2 [`#s,t, `
"
s,t]

⌘

+!+i,2 ·
⇣

w 2 [`"s,t, �
#
s,t]

⌘

+!+i,3 ·
⇣

w 2 [�#s,t, �
"
s,t]

⌘i

(6.66)

=: S ⇢,+
2k · N

⇣

w; µi,�
2
w

⌘

. (6.67)

By application of composition sampling (see Section 2.2) we can simulate from S ⇢,+
2k ·

N(µw,�2
w) by first choosing one of the truncated Normal densities partitioned on the in-
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terval [L ,U ] with probability proportional to,

!+i, j ·
h

�
⇣

U
�

�

� µi,�
2
w

⌘

� �
⇣

L
�

�

� µi,�
2
w

⌘i

. (6.68)

As w ⇠ S ⇢,+
2k · N

⇣

w; µw,�2
w

⌘

/ZD and we require w ⇠ ⇢ · N
⇣

w; µw,�2
w

⌘

/ZT (where ZT

and ZD denote the normalising constants of the target and dominating densities respec-
tively, noting that the rejection sampling bound M = ZD/ZT ) we accept this draw with
probability,

P =
⇢(w) · N

⇣

w
�

�

� µw,�2
w

⌘

/ZT

M · S ⇢,+
2k (w) · N

⇣

w
�

�

� µw,�2
w
⌘

/ZD
=

⇢(w)
S ⇢,+

2k (w)
 1. (6.69)

Events of probability P can be simulated unbiasedly by retrospective Bernoulli sampling
(as per Corollary 2.7.1 and Algorithm 2.7.1), noting that P is a linear transformation of
⇢. The complete rejection sampler is presented in Algorithm 6.3.2.

Algorithm 6.3.2 Simulation of Intersection Layer Intermediate Points (Bounded Cauchy
Sequence Approach).

1. Simulate u ⇠ U[0, 1] and set j = 1.

2. Simulate w ⇠ S ⇢,+
2k · N

⇣

µw,�2
w

⌘

/ZD for some k 2 �0.

3. While u 2
0

B

B

B

B

B

B

@

S ⇢
2 j+1(w)

S ⇢,+
2k (w)

,
S ⇢

2 j(w)

S ⇢,+
2k (w)

1

C

C

C

C

C

C

A

, j = j + 1.

4. If u 
S ⇢

2 j+1(w)

S ⇢,+
2k (w)

then accept else reject.

6.3.2.2 Lipschitz Approach

Simulating intermediate points as per Algorithm 6.3.2 is (typically) highly e�cient as
S ⇢,+

2 ·N(µw,�2
w) typically tightly bounds ⇡(w) (as noted in Beskos et al. [2012]). If this is

not the case (which occurs in a small number of parameter configurations), then sampling
from the bounding density with k > 1 isn’t usually e↵ective as S ⇢,+

2k is only formed by
the positive netted components of S ⇢

2k. In this section we propose an alternative scheme
in which we exploit the known Lipschitz constants of the bounding sequence in (6.63) to
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construct a tight bound of the target density.

If the rejection sampling scheme proposed in Section 6.3.2 is not e�cient then typically
we have that S ⇢

2 ·N(µw,�2
w) does not tightly bound ⇡(w). In this case the natural question

to ask is at what level the alternating Cauchy sequence approximation (S ⇢
2k) of ⇢ needs to

be evaluated such that S ⇢
2k · N(µw,�2

w) does form a tight bound of ⇡(w). To address this
we note that in analogous form to Section 6.3.2 it is possible to also find a lower bound
of the target density,

S ⇢
2k+1 · N

⇣

w; µw,�
2
w

⌘

 ⇡(w)  S ⇢
2k · N

⇣

w; µw,�
2
w

⌘

. (6.70)

The lower bound of the target density also has the form of a mixture of positively and neg-
atively weighted Normal densities with known parameter values (recall the upper bound
comprises K" = 64(k+1)2 terms, similarly the lower bound comprises K# = 64(k+1)2�48
terms). As such, the normalising constants of the upper and lower bounds of the tar-
get density can be calculated and this information used to determine whether the upper
bound tightly bounds the target density. In particular, we advocate evaluating the Cauchy
sequence S ⇢

k until such time that it exceeds some user specified threshold,

TZ 
Z⇢2k+1

Z⇢2k
:=

R �"s,t
`#s,t

S ⇢
2k+1 · N

⇣

w; µw,�2
w

⌘

dw

R �"s,t
`#s,t

S ⇢
2k · N

⇣

w; µw,�2
w
⌘

dw
. (6.71)

Upon finding an appropriately tight upper bound, a subset of the positive and negative
Normal densities can be netted from one another leaving the following bounding density
form (as argued in Section 6.3.2 and shown in (6.65)),

⇡(w) 
K"
X

i=1

N
⇣

w; µi,�
2
w

⌘

· (w 2 [`i, �i]) ·
h

!i,1 ·
⇣

w 2 [`#s,t, `
"
s,t]

⌘

+!i,2 ·
⇣

w 2 [`"s,t, �
#
s,t]

⌘

+!i,3 ·
⇣

w 2 [�#s,t, �
"
s,t]

⌘i

=: g(x). (6.72)

For any given interval [q, r] (where q < r), it is possible to explicitly calculate for each
of the contributing Normal densities (for instance, N(µi,�2

w)) the local Lipschitz constant
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(we denote I := [µi � �w, µi + �w] \ [q, r]),

↵i(q, r) := sup
w2[q,r]

d
dw

N(w; µi,�
2
w)

= (I , {;}) · d
dw

N(µi � �w; µi,�
2
w)

+ (I = {;}) ·max
(

d
dw

N(q; µi,�
2
w),

d
dw

N(r; µi,�
2
w)

)

. (6.73)

As such, it is possible to find for the bounding density (g(w) in (6.72)) the local Lipschitz
constant for the interval [q, r] (where ↵ is set to zero when considering an interval of zero
length),

sup
u,v2[q,r]

g(u)�g(v)
u � v


K"
X

j=1

h

�

�

�! j,1
�

�

� · ↵ j
⇣

q_`#s,t, r^`"s,t
⌘

+
�

�

�! j,2
�

�

� · ↵ j
⇣

q_`"s,t, r^�#s,t
⌘

+
�

�

�! j,3
�

�

� · ↵ j
⇣

q_�#s,t, r^�"s,t
⌘i

=: �(q, r), (6.74)

and consequently, having evaluated the density at g(q) and g(r), we can find a bound for
the upper bound of the target density for the interval [q, r] (noting that the line y = g(q)+�t
and the line y = g(r)+ �(r� q)� �t both bound the target density on the interval [q, r] and
intersect at t = [g(r) � g(q) + �(r � q)]/2� 2 [q, r]),

sup
w2[q,r]

g(w)  g(r) + �(q, r) · t

=
g(r) + g(q)

2
+ �(q, r) · r � q

2
=: M(q, r). (6.75)

As the support of the target density ⇡(w) is contained within the interval [`#s,t, �
"
s,t], if we

construct a suitably fine mesh on this interval (for simplicity we assume a mesh of size N
with regular interval size � := (�"s,t � `#s,t)/N), we can find a piecewise constant bound of
this density with which to conduct rejection sampling,

g(w)  m(w) :=
N

X

i=1

(w 2 [`#s,t + (i � 1)�, `#s,t + i�]) · M
⇣

`#s,t + (i � 1)�, `#s,t + i�
⌘

.

(6.76)
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As in (6.71) we can calculate the normalising constant of this bounding density, so we
advocate choosing the size of the mesh to be at least as fine as the following user specified
threshold,

TM 
Z⇢2k+1

ZN
M

:=
Z⇢2k+1

PN
i=1 � · M

⇣

`#s,t + (i � 1)�, `#s,t + i�
⌘ . (6.77)

We present the synthesis of the above argument in Algorithm 6.3.3. Clearly the accep-
tance rate of Algorithm 6.3.3 is at least TZ · TM and furthermore is more robust to di↵er-
ent parameter values than the Cauchy sequence approach outlined in Algorithm 6.3.2, as
given su�cient computation an arbitrarily tight bound of the target density can be found
with which to conduct rejection sampling. In Figure 6.3.1 we present an example of a set
of parameter values in which the acceptance rate under the Cauchy sequence approach
was less than 10�8, whereas with the approach outlined in Algorithm 6.3.3 a small mesh
of size 20 was su�cient to find a tight upper bound of the target density.

Algorithm 6.3.3 Simulation of Intersection Layer Intermediate Points (Lipschitz Ap-
proach).

1. Set k = 0, N = 0.

2. While TZ �
Z⇢2k+1

Z⇢2k
, k = k + 1.

3. While TM �
Z⇢2k

ZN
M

, increase N.

4. Simulate mesh interval i with probability � · M
⇣

`#s,t + (i � 1)�, `#s,t + i�
⌘

/ZN
M.

5. Simulate w ⇠ U
h

`#s,t + (i � 1)�, `#s,t + i�
i

, u ⇠ U
h

0,M
⇣

`#s,t + (i � 1)�, `#s,t + i�
⌘i

and set j = k.

6. While u 2
⇣

S ⇢
2 j+1(w), S ⇢

2 j(w)
⌘

, j = j + 1.

7. If u  S ⇢
2 j+1(w) then accept, else reject and return to Step 4.
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Figure 6.3.1: Density of intersection layer intermediate point overlaid with piecewise
constant bound calculated using a mesh of size 20 over the interval [`#, �"] and the cor-
responding local Lipschitz constants.

6.3.2.3 Bessel Approach

An alternative scheme to simulate a single intermediate point from (6.62) is to apply an
analogous decomposition of the law of the sample path as was constructed in the Bessel
approach for layered Brownian bridge outlined in Section 6.2.1. Recall in Section 6.2.1
that in order to simulate intermediate points from the sample path that we first simulated
the minimum or maximum of the sample path conditional on the Bessel layer (with prob-
ability 1/2) and then simulated proposal intermediate points from the law of a Bessel
bridge. The proposal intermediate points were then accepted if the sample path remained
in the appropriate Bessel layer.

We apply the same notion described in Section 6.2.1, however, a modification has to
be made to the acceptance probability as the intersection layer provides more precise in-
formation regarding the interval in which both the minimum and maximum is contained
than the Bessel layer. In particular, if we have simulated intersection layer D◆,1 then with
probability 1/2 we propose the auxiliary minimum (else maximum) in the ◆th layer and
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then only accept the proposal sample path if the sample path maximum (else minimum)
is contained between the (◆ � 1)th and ◆th Bessel layer. In the case where we have either
simulated intersection layer D◆,2 or D◆,3 then with probability 1/2 we propose the auxil-
iary minimum (else maximum) in the ◆th (else (◆ � 1)th) layer and then only accept the
proposal sample path if the sample path maximum (else minimum) is contained within
the (◆ � 1)th (else (◆ � 1)th) Bessel layer. The synthesis of the above argument which is
based on Section 6.2.1 can be found in Algorithm 6.3.4.

Although given particular parameter values in (6.62) the Bessel approach can compu-
tationally outperform the Cauchy sequence approach or Lipschitz approached described
in Section 6.3.2.1 and Section 6.3.2.2 respectively, as we will discuss in Section 6.3.2.4
we advocate a mixture of these two approaches instead. The Bessel approach can be
particularly ine�cient whenever a large intersection layer is proposed, however, we have
included this here for completeness and for the insight it o↵ers into the similarities and
constructions of the di↵erent layered Brownian bridge approaches discussed in Sections
6.2 and 6.3.

6.3.2.4 Implementational Considerations – Recommended Approach

In Sections 6.3.2.1, 6.3.2.2 and 6.3.2.3 we outlined three separate approaches and algo-
rithms for simulating from the density of a conditional Brownian bridge at some interme-
diate time q 2 (s, t) (6.63). As each of these algorithms is a rejection sampler in which
independent proposals are drawn and then accepted or rejected, if a proposal is rejected
one can change to another of these algorithms without introducing any bias. As typically
Algorithm 6.3.2 is highly computationally e�cient compared to the other algorithms, but
for a small number of parameters values has a very low acceptance rate, we suggest that
on implementation a user specified threshold number of potential proposals from this
algorithm is chosen (say TN). If after the first TN proposals there has been no accep-
tance then this suggests that the acceptance rate for the particular parameter configuration
is low. As such, at this point we suggest switching to Algorithm 6.3.3 which requires
a significant initial computational e↵ort to find a tight bound to the target density, but,
the acceptance rate will be higher and the algorithm more robust to di↵erent parameter
values than Algorithm 6.3.2. This particular combination of algorithms is advocated as
Algorithm 6.3.4 can be ine�cient whenever a large intersection layer is proposed.
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Algorithm 6.3.4 Simulation of Intersection Layer Intermediate Points (Bessel Approach).

1. Simulate u1, u2 ⇠ U[0, 1], set j = k = 0.

2. Simulate Auxiliary Information as per Algorithm 2.8.4,

(a) If u1  1/2 simulate minimum (⌧, X⌧ = m̂ 2 [`#s,t, `
"
s,t]) setting c# := �#s,t and

c" := �"s,t.

(b) If u1 > 1/2 simulate maximum (⌧, X⌧ = m̌ 2 [�#s,t, �
"
s,t]) setting c# := `#s,t and

c" := `"s,t.

3. Simulate Xq from a Bessel bridge conditional on X⌧ as per Algorithm 2.8.3.

4. While u2 2
✓

Q+2
i=1 S �

2 j+1

⇣

X⌧, c#
⌘

,
Q+2

i=1 S �
2 j

⇣

X⌧, c#
⌘

◆

, j = j + 1,

(a) If u2 Q+2
i=1 S �

2 j+1

⇣

X⌧, c#
⌘

then reject sample path and return to Step 1.

5. While u2 2
✓

Q+2
i=1 S �

2 j+1

⇣

X⌧, c"
⌘

,
Q+2

i=1 S �
2 j

⇣

X⌧, c"
⌘

◆

, k = k + 1 ,

(a) If u2 �Q+2
i=1 S �

2k

⇣

X⌧, c"
⌘

then reject sample path and return to Step 1.

6. Discard Auxiliary Information.

6.3.3 Dissecting an Intersection Layer

Upon simulating intermediate points of a Brownian bridge sample path conditional on an
intersection layer (for instance in Section 6.3.2), simulating further intermediate points in
a sub-interval between any two existing consecutive points is more complicated as there
is a dependancy between all sub-intervals (induced by the intersection layer). To simplify
this problem we can dissect an intersection layer into separate intersection layers for each
pair of consecutive points by considering all possible dissections and unbiasedly simulat-
ing which one of these occurs.

To guide intuition we first consider the case where we have a single intermediate point
(Wq = w) within an existing intersection layer (Ws = x,Wt = y, m̂s,t 2 [`#s,t, `

"
s,t], m̌s,t 2

[�#s,t, �
"
s,t]) and we want to simulate separate intersection layers for the intervals [s, q] and

[q, t] conditional on the known intersection layer and the simulated point. We begin by
noting that the simulated point provides further detail on the interval in which the min-
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imum and maximum lies. In particular, if w 2 [`#s,t, `
"
s,t] we have that m̂s,t 2 [`#s,t,w]

and similarly if w 2 [�#s,t, �
"
s,t] then we have that m̌s,t 2 [w, �"s,t]. As such we denote

`"⇤s,t := (`"s,t^ w), �#⇤s,t := (�#s,t_ w) and we now have,

D⇤|(Wq = w) =
n

W[s,t] : m̂s,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,t] : m̌s,t 2
h

�#⇤s,t, �
"
s,t

io

. (6.78)

The attainment of a particular layer in the interval [s, t] by either the minimum or the
maximum implies that the same layer is attained by the sample path in at least one of the
sub-intervals [s, q] or [q, t]. As such, in our case there are 9 possible (disjoint) bisections
(which we denote as B1–B9 where B := D⇤|(Wq = w) = ]9

i=1Bi) as illustrated in Figure
6.3.2. For instance, our sample path may lie in B6, which more formally has the form2,

B6 :=
⇣n

W[s,q] : m̂s,q 2
h

`"⇤s,t, (x ^ w)
io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

(w _ y), �#⇤s,t
io⌘

. (6.79)

This notion can be extended to the case where we have multiple intermediate points
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Figure 6.3.2: Illustration of 9 possible (disjoint) bisections.

2For a full list of the sets B1 � B9 we refer the interested reader to Appendix B.
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(W := {Wq1 = w1, . . . ,Wqn = wn}), and want to dissect the interval into separate in-
tersection layers. In particular, we are dissecting a single intersection layer into (n + 1)
intersection layers, each with a layer for the minimum and maximum in their own sub-
interval. As the sample path minimum and maximum must exist in one of the intersection
layers there are b := (2(n+1) � 1)2 possible dissections Bn

1, . . . , B
n
b. We can simulate which

of these dissections our sample path lies in by application of the following results and
Algorithm 6.3.5.

Theorem 6.3.2 (Intersection Layer Dissection). The probability a Brownian bridge sam-
ple path is in Bn

i conditional on B andW is as follows (denoting by L(i) and U(i) the
lower and upper layer sets for Bn

i ),

pBn
i

:=
⇣

Bn
i

�

�

� m̂s,t 2 [`#s,t, `
"
s,t], m̌s,t 2 [�#s,t, �

"
s,t],Ws= x,Wt=y,W

⌘

=

(n)�L(i),U(i)
s,t,x,y (q1:n,W)

(n)⇢`#,`",�#,�"s,t,x,y (q1:n,W)
. (6.80)

Proof. Follows directly by Bayes rule, Theorems 6.1.4 and 6.1.5.

Remark 6.3.1 (Intersection Layer Bisection). In the particular case where we have a
single intermediate point then the probability a Brownian bridge sample path is in Bi

(conditional on B and Wq = w) reduces to the following (denoting `#,is,q, `",is,q �
#,i
s,q, �

",i
s,q and

`#,iq,t, `
",i
q,t �

#,i
q,t, �

",i
q,t as the bounds for Bi in the interval [s, q] and [q, t] respectively),

pBi =
�

⇣

s, q, x,w, `#,is,q, `
",i
s,q, �

#,i
s,q, �

",i
s,q

⌘

· �
⇣

q, t,w, y, `#,iq,t, `
",i
q,t, �

#,i
q,t, �

",i
q,t

⌘

⇢
⇣

s, q, t, x,w, y, `#s,t, `
"⇤
s,t, �

#⇤
s,t, �

"
s,t

⌘ . (6.81)

Corollary 6.3.2. Events of probability pBn
i

can be represented as the limit as k ! 1 of
the following alternating Cauchy sequence,

S B(n,i)
k :=

S �(n)
k (s, t, x, y, q1:n,W,L(i),U(i))

S ⇢(n)
k+1

⇣

s, t, x, y, q1:n,W, `#s,t, `"s,t, �#s,t, �"s,t
⌘ . (6.82)

Proof. Follows by Corollary 2.7.1 in the same manner as in the proof of Corollary 6.1.4.

As a consequence of Corollary 6.3.2, events of probability pBn
i

can be simulated unbias-
edly by retrospective Bernoulli sampling (as per Algorithm 2.7.1 in Section 2.7). Unbi-
ased simulation of the dissection the sample path lies in can be conducted by inversion
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sampling (see Section 2.1) and an alternating Cauchy sequence representation of the CDF
of B (see (6.83)) as detailed in Algorithm 6.3.5.

CB(n, j)
k :=

j
X

i=1

S B(n,i)
k . (6.83)

Algorithm 6.3.5 Dissecting an Intersection Layer.

1. Simulate u ⇠ U[0, 1] and set j = 1 and k = 0.

2. While u 2
⇣

CB(n, j)
2k+1 ,C

B(n, j)
2k

⌘

, k = k + 1.

3. If u  CB(n, j)
2k+1 set dissection layer B = Bj else set j = j + 1 and return to Step 2.

6.3.4 Refining an Intersection Layer

Suppose we have already simulated layers for the maximum and minimum of our pro-
posal Brownian bridge sample path (m̂s,t 2 [`#s,t, `

"
s,t] and m̌s,t 2 [�#s,t, �

"
s,t]), but we re-

quire more refined layer information (i.e. we want a set of narrower layers
�

�

�

�

`"
⇤

s,t � `#
⇤

s,t

�

�

�

�


�

�

�

�

`"s,t � `#s,t
�

�

�

�

or
�

�

�

�

�"
⇤

s,t � �#
⇤

s,t

�

�

�

�


�

�

�

�

�"s,t � �#s,t
�

�

�

�

). This can be achieved by first noting that the sam-
ple path falls in one of the following 4 possible (disjoint) intersection layer refinements
(where R := ]4

i=1Ri as illustrated in Figure 6.3.3, `ls,t 2 [`#s,t, `
"
s,t] and �ls,t 2 [�#s,t, �

"
s,t]),

R1 =
n

W[s,t] : m̂s,t 2
h

`#s,t, `
l
s,t

io

\
n

W[s,t] : m̌s,t 2
h

�ls,t, �
"
s,t

io

,

R2 =
n

W[s,t] : m̂s,t 2
h

`ls,t, `
"
s,t

io

\
n

W[s,t] : m̌s,t 2
h

�ls,t, �
"
s,t

io

,

R3 =
n

W[s,t] : m̂s,t 2
h

`#s,t, `
l
s,t

io

\
n

W[s,t] : m̌s,t 2
h

�#s,t, �
l
s,t

io

,

R4 =
n

W[s,t] : m̂s,t 2
h

`ls,t, `
"
s,t

io

\
n

W[s,t] : m̌s,t 2
h

�#s,t, �
l
s,t

io

.

In a similar fashion to Section 6.3.3 we can simulate unbiasedly which of the intersec-
tion layer refinements our sample path lies in by application of the following established
results and Algorithm 6.3.6 (where we denote by `#,is,t , `

",i
s,t , �

#,i
s,t , �

",i
s,t with a superscript

i 2 {1, 2, 3, 4} as the corresponding parameter selections from R1 – R4).
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Figure 6.3.3: Illustration of 4 possible refinements.

Theorem 6.3.3 (Intersection Layer Refinement [Beskos et al., 2012, Section 5.3]). The
probability a Brownian bridge sample path is in Ri conditional on R is as follows,

pRi :=
✓

Ri

�

�

�

�

m̂s,t 2
h

`#s,t, `
"
s,t

i

, m̌s,t 2
h

�#s,t, �
"
s,t

i

,Ws= x,Wt=y
◆

=
�

⇣

s, t, x, y, `#,is,t , `
",i
s,t , �

#,i
s,t , �

",i
s,t

⌘

�
⇣

s, t, x, y, `#s,t, `
"
s,t, �

#
s,t, �

"
s,t

⌘ . (6.84)

Proof. Follows directly by Bayes rule and Theorem 6.1.5.

Corollary 6.3.3 ([Beskos et al., 2012, Section 5.3]). Events of probability pRi can be
represented as the limit as k ! 1 of the following alternating Cauchy sequence,

S R(i)
k :=

S �
k

⇣

s, t, x, y, `#,is,t , `
",i
s,t , �

#,i
s,t , �

",i
s,t

⌘

S �
k+1

⇣

s, t, x, y, `#s,t, `
"
s,t, �

#
s,t, �

"
s,t

⌘ . (6.85)

Proof. Follows by Corollary 2.7.1 in the same manner as in the proof of Corollary 6.1.4.
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As a consequence of Corollary 6.3.3, events of probability pRi can be simulated by retro-
spective Bernoulli sampling (as per Algorithm 2.7.1 in Section 2.7). As such, unbiased
simulation of the refinement the sample path lies in can be conducted by inversion sam-
pling (see Section 2.1) and an alternating Cauchy sequence representation of the CDF of
R (see (6.86)) in the same manner as Section 6.3.3 and as detailed in Algorithm 6.3.6

CR( j)
k :=

j
X

i=1

S R(i)
k . (6.86)

Algorithm 6.3.6 Refining an Intersection Layer [Beskos et al., 2012].

1. Simulate u ⇠ U[0, 1] and set j = 1 and k = 0.

2. While u 2
⇣

CR( j)
2k+1,C

R( j)
2k

⌘

, k = k + 1.

3. If u  S R( j)
2k+1 set layer R = R j else set j = j + 1 and return to Step 2.

6.3.5 Simulating Layered Brownian Bridges

The Intersection Layer Approach for constructing a layered Brownian bridge is a direct
application of the algorithms of Sections 6.3.1, 6.3.2 and 6.3.3. In particular, we simulate
initial intersection layer information for the sample path (Algorithm 5.1.4 Step 2) by ap-
plication of Algorithm 6.3.1. In Algorithm 5.1.4 Step 4 we iteratively simulate skeletal
(intermediate) points, then new intersection layer information conditional on these points.
This can be achieved directly by either Algorithm 6.3.2, 6.3.3, 6.3.4 or some mixture of
these algorithms to simulate the intermediate point (as discussed in Section 6.3.2 and in
particular Section 6.3.2.4) and Algorithm 6.3.5 to bisect the interval.

We present the iterative Algorithm 5.1.4 Step 4 in Algorithm 6.3.7 which can be addition-
ally used to conduct Algorithm 5.1.4 Step 6. S denotes the set containing all intersection
layer information. The set is composed of (n� 1) elements corresponding to the intervals
between n existing time points. In particular, each element (Sa,b) between two successive
time points (a < b) contains information regarding the sample path at the end points and
an upper and lower bound for both the minimum and maximum of the sample path in that
interval

⇣

Sa,b :=
n

a, b, Xa, Xb, `
#
a,b, `

"
a,b, �

#
a,b, �

"
a,b

o⌘

.
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Algorithm 6.3.7 Layered Brownian Bridge Simulation (Intersection Layer Approach).

1. For each intermediate point required (q),

(a) Select the appropriate existing intersection layer Sa,b from S such that q 2
(a, b).

(b) Simulate Xq as per Algorithm 6.3.2 or 6.3.3 or 6.3.4.

(c) Bisect interval as per Algorithm 6.3.5 to find new intersection layers Sa,q and
Sq,b.

(d) Set S = S [
n

Sa,q,Sq,b
o

\ Sa,b.

It should be noted that further refinements to Algorithm 6.3.7 could be made when consid-
ering any particular application, however, we have omitted the explicit algorithms here.
For instance, if the simulation of intermediate points is required for the AUEA (Algo-
rithm 5.1.4), then refining the intersection layers as outlined in Section 6.3.4 and detailed
in Algorithm 6.3.6 would result in tighter upper and lower bounds for the sample path.
As a consequence tighter upper and lower bounds for �(X) could be computed, resulting
in a more e�cient algorithm. Similar notions to this are explored in Chapter 8.
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7

Particle Filtering for Diffusions and

Jump Diffusions

“Alive without breath,
As cold as death;

Never thirsty, ever drinking,
All in mail never clinking.”

— J.R.R. Tolkien, The Hobbit

In this chapter we present methodology for particle filters with jump di↵usion latent tran-
sition density. In particular, referring to the illustration of a HMM in Figure 3.1.1 (which
we reproduce here for convenience as Figure 7.0.1) and recalling from Section 3.1 that
{Xt}t�0 is some latent (hidden or unobserved) process of interest which is observed indi-
rectly through an observation process {Yt}t�1, we are interested in the filtering problem,
in which we want to make a probabilistic interpretation of the state of the latent process
at a point in time, using the information obtained from the observation process up to that
point in time.

x0 // x1

✏✏

// · · · // xt�1

✏✏

// xt

✏✏

// · · ·

y1 yt�1 yt

Figure 7.0.1: Directed acyclic graph representing the latent and observation processes of
a Hidden Markov Model.
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In the particular setting we consider in this chapter the latent process initial SSD (µ✓,
see HMM Property 1) and observation process SSD (g✓, see HMM Property 3) are as
found in Section 3.1 and Chapter 3, however the latent process SSD ( f✓, see HMM Prop-
erty 2) is governed by a jump di↵usion. Recalling from Section 4.1.4 that we found a
(typically intractable) representation for the transition density of a jump di↵usion, then in
this setting the transition density of the latent process of interest is as follows,

pt�s(x, y) := (Xt 2 dy | Xs = x) / dy

= wt�s(x, y) · x,y
s,t

" d x
s,t

d x
s,t

(X)
#

, (7.1)

where x
s,t and x

s,t are the measures induced by the target and driftless jump di↵usions
((4.29) and (4.30) respectively) initialised at Xs = x over the interval [s, t], x,y

s,t is the
measure x

s,t with the additional restriction that Xt = y, and finally wt�s(x, y) is the tran-
sition density of the driftless jump di↵usion (4.30)).

Building upon the exact algorithm methodology developed in Chapters 5 and 6, an obvi-
ous approach to the filtering problem is to employ the Sequential Importance Sampling
/ Resampling algorithm (Algorithm 3.4.1) of Section 3.4, with a prior marginal impor-
tance function (see Section 3.3.2), and simply propagate each particle between observa-
tion points using an appropriate exact algorithm (for instance, the Bounded Jump Exact
Algorithm (BJEA; Algorithm 5.3.1), Unbounded Jump Exact Algorithm (UJEA; Algo-
rithm 5.3.2) or Adaptive Unbounded Jump Exact Algorithm (AUJEA; Algorithm 5.3.3)).
Indeed this is precisely what we present as the Exact Propagation Particle Filter (EPPF)
in Algorithm 7.2.1 of Section 7.2 (following the naming convention of Fearnhead et al.
[2008]).

Simulating exactly from the transition density of a jump di↵usion in (7.1) using an ex-
act algorithm and for application within a particle filter is a novel approach extending
upon Fearnhead et al. [2008] (which considers particle filtering for partially observed
di↵usions). The methodology we present in this chapter has the distinct advantage over
competing methodology employing an approximate method to simulate from the transi-
tion density (as detailed in Section 4.2) as it avoids introducing any implicit discretisation
error to latent state estimates.
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Extending upon the EPPF we introduce in Section 7.2, and employing the same approach
as in Fearnhead et al. [2008], we can construct a more sophisticated particle filter by
considering an importance sampling analog of the exact algorithms in Chapter 5. In
particular, rather than for each particle proposing a sample path simulated from the dom-
inating measure and accepting or rejecting it, we can instead assign it an importance
weight. In Section 7.1 (which is a summary of Fearnhead et al. [2008]) we formalise this
approach before returning in Section 7.2 to present alternative algorithms to the EPPF.
As an aside we note at this stage that, unlike the methodology presented in Fearnhead
et al. [2008] for particle filters with di↵usion transition density, jump di↵usions lose the
necessary tractability which enables the direct application of an auxiliary particle filter
based approach (see Section 3.6) without the inclusion of onerous additional conditions.

7.1 Poisson Estimators

In this section we restrict our attention to the (typically intractable) expectations encoun-
tered in the introductory remarks of Chapter 7,

x,y
s,t

" d x
s,t

d x
s,t

(X)
#

, (7.2)

considering the specific case outlined in (4.49) of Section 4.1.4 (where x
s,t is the measure

induced by a di↵usion, x
s,t is Wiener measure with start point (s,Ws = x) and x,y

s,t is
the measure induced by a Brownian bridge with start point (s,Ws = x) and terminal point
(t,Wt = y)), to outline general methodology for simulating an unbiased estimator for
functions of the following form,

 (X) :=
d x

s,t

d x
s,t

(X) = exp
(

�
Z t

s
�(Xu) du

)

, where X ⇠ x,y
s,t . (7.3)

Recall that throughout Chapter 5 that similar expectations and functions frequently arise
when evaluating whether to accept or reject a proposal sample path as a sample path from
some target measure (i.e. assign a simulated sample path with weight 1 or weight 0).
As such, much of the methodology we detail in this section has a common link with the
methodology in Chapter 5.

We require an estimator for  (X) (which we denote by  ̂(X)) as it is not possible to
simulate an entire (infinite dimensional) sample path X ⇠ x,y

s,t in order to evaluate  (X)
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in (7.3). In particular, the estimator  ̂(X) should be constructed such that it has finite vari-
ance and can be evaluated using a finite dimensional realisation of a sample path (Xfin).
Clearly having an unbiased estimator is desirable (particularly in the particle filtering set-
ting which we consider in this chapter) and as a consequence of the exponential form
of (7.3) it is also desirable that the estimator is positive (again, in the particle filtering
setting this is particularly important as the natural interpretation of this estimate is as an
importance weight). Given more than one estimator which satisfies these properties, then
a natural comparison to make in order to select between estimators is to consider the com-
parative variances of the estimators.

One naı̈ve approach to construct an estimator for  (X) (as proposed by Nicolau [2002]),
is to simply use a Riemannian sum to approximate the integral in (7.3). In particular,
partitioning the interval [s, t] into a fine mesh (for instance, into M sub-intervals of length
� = (t � s)/M) and simulating a Brownian bridge sample path at the mesh points (as per
Algorithm 2.8.2), then we arrive at the following estimator,

 ̂M(X) := exp

8

>

>

<

>

>

:

��
M�1
X

i=0

� (Xs+i�) du

9

>

>

=

>

>

;

. (7.4)

Unfortunately, this estimator is biased as a result of both the interval discretisation and
the exponential function. An improvement to this estimator can be made by noting that
instead of simulating the sample path on a deterministic mesh, an unbiased estimate of
the path integral can be obtained by simulating a uniform random variable (denoting by

as the distribution of ⇠ ⇠ U[s, t]),

h

�(X⇠)
�

�

� X
i

=
1

t � s

Z t

s
�(Xu) du. (7.5)

As a consequence of the exponential function, such a construction for an estimator is still
biased (i.e. [exp{��(X⇠)} | X] , exp{ 1

t�s

R t
s �(Xu) du}), however it o↵ers an important

insight in how to construct an unbiased estimator.

Poisson Estimators are a class of unbiased estimators proposed by Beskos et al. [2006b],
Fearnhead et al. [2008] and Fearnhead et al. [2010]. In Section 7.1.1 we introduce the
(Vanilla) Poisson Estimator proposed by Beskos et al. [2006b], which although unbiased
is not necessarily positive and does not necessarily have finite variance. In Section 7.1.2
we explore the Generalised Poisson Estimator introduced by Fearnhead et al. [2008],
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which is an estimator which in addition to being unbiased can be constructed to ensure
positivity and finite variance. As in this thesis we restrict our attention to expectations
of the form (7.2) and constructing unbiased estimators for (7.3), we omit the Wald Pois-
son Estimator proposed by Fearnhead et al. [2010] which addresses the construction of
positive unbiased estimators with finite variance in broader settings.

7.1.1 Vanilla Poisson Estimator

The (Vanilla) Poisson Estimator (VPE) introduced by Beskos et al. [2006b] is constructed
by conducting a Taylor series expansion of the exponential function in (7.3), noting that
the resulting expression takes the form of a Poisson distribution. In particular, letting
c 2 and � 2 + be user specified constants and denoting by as the law of  ⇠
Poi (�(t � s)), we have,

 (X) = exp
(

�
Z t

s
�(Xu) du

)

= e�c(t�s) · exp
(

�(t � s)
Z t

s

c � �(Xu)
�(t � s)

du
)

= e�c(t�s)
1

X

j=0

2

6

6

6

6

6

4

1
j!

 

�(t � s)
Z t

s

c � �(Xu)
�(t � s)

du
! j3

7

7

7

7

7

5

= e(��c)·(t�s)
1

X

j=0

2

6

6

6

6

6

4

exp {��(t � s)} ��(t � s)
� j

j!

 

Z t

s

c � �(Xu)
�(t � s)

du
! j3

7

7

7

7

7

5

= e(��c)·(t�s) ·
" 

Z t

s

c � �(Xu)
�(t � s)

du
! �

�

�

�

�

�

X
#

. (7.6)

Now, recalling from (7.5) that an unbiased estimate of a path integral can be obtained by
simulating uniform random variables, then we have (denoting by  as the distribution
of (⇠1, . . . , ⇠)

iid⇠ U[s, t], and noting that the expectation of the product of  independent
estimates of a random variable is the expectation of the estimate of the random variable
to the th power),

 (X) = e(��c)·(t�s) · 

2

6

6

6

6

6

4


Y

i=1

c � �(X⇠i)
�

�

�

�

�

�

�

�

X

3

7

7

7

7

7

5

. (7.7)

As such, as suggested by (7.7) and detailed in Algorithm 7.1.1, we can construct an
unbiased estimate of  (X) by simply uniformly scattering  ⇠ Poi (�(t � s)) points on the
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interval [s, t], evaluating a sample path X ⇠ x,y
s,t at these points and setting,

 ̂VPE(X) := e(��c)·(t�s)


Y

i=1

c � �(X⇠i)
�

. (7.8)

Algorithm 7.1.1 Vanilla Poisson Estimator (VPE) [Beskos et al., 2006b].

1. Choose c and � > 0.

2. Simulate  ⇠ Poi (�(t � s)) and skeleton times ⇠1, . . . , ⇠
iid⇠ U[s, t].

3. Simulate Brownian bridge sample path at skeleton times X⇠1 , . . . , X⇠ ⇠ x,y
s,t .

4. Set  ̂VPE(X) = e(��c)·(t�s) Q
i=1

⇥

c � �(X⇠i)
⇤

/�.

The second moment of the VPE can be derived as follows,
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⇥
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 �
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X
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0
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⇥
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1
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C
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X

j=0

2

6

6

6

6

6

6

4

1
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0

B

B

B

B

B

@

Z t

s

⇥

c � �(Xu)
⇤2

�
du

1

C

C

C

C

C

A

j3
7

7

7

7

7

7

5

= e(��2c)·(t�s) exp
(

1
�

Z t

s

⇥

c � �(Xu)
⇤2 du

)

. (7.9)

Although the VPE is unbiased (which is desirable), it is clear that the positivity of the
estimator (see (7.7)) depends on the particular selection of c and �. Furthermore, as a
consequence of (7.9), the VPE need not necessarily have finite variance.

It was noted in Beskos et al. [2006b] that in the particular setting where � is almost surely
bounded (i.e 8u 2 [s, t], �(Xu) 2 [L,U]), then c and � can be chosen such that the VPE
is positive and has finite variance (which we call the Bounded Vanilla Poisson Estimator
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(BVPE)). In particular, selecting c := U we ensure positivity as (with reference to (7.7))
we have that infu2[s,t] U � �(Xu) � 0. Now, selecting � := U � L � supu2[s,t] (U � �(Xu))
and reconsidering the second moment (7.9) we have,
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= e�(L+U)·(t�s) exp
(

1
U � L

Z t

s

⇥

U � �(Xu)
⇤2 du

)

 exp {�2L(t � s)} < 1, (7.10)

and so we can conclude that the BVPE has finite variance. Returning to (7.8) we find with
this particular selection (c := U and � := U � L) the unbiased estimate of  (X) obtained
by the Poisson estimator is,

 ̂BVPE(X) := e�L(t�s)


Y

i=1

U � �(X⇠i)
U � L

. (7.11)

The BVPE has a strong connection with the construction of the Bounded Exact Algorithm
(BEA) detailed in Section 5.1.1 in the setting where the target measure is that induced by
a di↵usion which, in addition to having a start point (Xs = x), is further conditioned to
have some specified end point (Xt = y) (i.e. we want to simulate a di↵usion bridge as
per Algorithm 5.2.1 in Section 5.2 in the setting where � is almost surely bounded). In-
deed, the BVPE can be thought of as an importance sampling analog in which rather than
accepting or rejecting a proposal sample path, it is instead assigned an importance weight.

Note that as a consequence of Condition 5 we have by assumption that 9� > �1 such
that 8u 2 [s, t], �(Xu) � �. However, as will become apparent later in this chapter, un-
like the exact algorithms presented in Section 5 finding a tight lower bound (which can
be non-trivial) is not critical, and instead it su�ces to identify that there exists a lower
bound.

7.1.2 Generalised Poisson Estimator

The Generalised Poisson Estimator (GPE) introduced in [Fearnhead et al., 2008, Chap.
4] is an extension to the Vanilla Poisson Estimator discussed in Section 7.1.1, and is an
estimator which in addition to being unbiased is also positive and has finite variance.
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As we noted in Result 4 of Section 1.3 and exploited in Section 5.1.1, �(X) is bounded
on compact sets. As such, if we can identify an interval in which the sample path X
is almost surely constrained, we can find (conditionally) an upper and lower bound for
�(X) (which we denote by UX 2 and LX 2 respectively). Following the approach
taken in Section 5.1.1 we can partition the path space of x,y

s,t into disjoint layers and
simulate the layer to which our proposal sample path belongs (see Principle 1, denoting
as before R := R(X) ⇠ R as the simulated layer). In particular, returning to the (typically
intractable) expectations encountered in the introductory remarks of Chapter 7 we have,

x,y
s,t

" d x
s,t

d x
s,t

(X)
#

= R x,y
s,t

" d x
s,t

d x
s,t

(X)
�

�

�

�

�

�

R
#

, (7.12)

and so we can instead focus on finding an unbiased estimator for functions of the follow-
ing form,

 (X|R) :=
d x

s,t

d x
s,t

(X) = exp
(

�
Z t

s
�(Xu) du

)

, where X ⇠ x,y
s,t

�

�

� R . (7.13)

Recall that methodology on how to simulate a path space layer, and conditional on the
path space layer simulate a finite dimensional realisation of a Brownian bridge sample
path, was detailed in Sections 6.2 and 6.3.

Now, following a similar approach to Section 7.1.1 and denoting by q(|R),  = 0, 1, . . .
as the pdf of a discrete random variable  with law , we have,

 (X|R) = exp
(

�
Z t

s
�(Xu) du

)

= e�UX(t�s)
1

X

j=0
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j!
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! j3
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! · q(|R)
·
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t � s
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! �
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�
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�

X
#

= 

2

6
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4

e�UX(t�s) · (t � s)

! · q(|R)
·
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h

UX � �(X⇠i)
i

�

�

�
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�

X
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7
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. (7.14)

As such, as outlined in Algorithm 7.1.2, we can construct an unbiased estimate of  (X|R)
by uniformly scattering  ⇠ q(|R) points on the interval [s, t], evaluating a sample path
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X ⇠ x,y
s,t

�

�

� R at these points and setting,

 ̂GPE(X) = e�UX(t�s) · (t � s)

! · q(|R)
·


Y

i=1

h

UX � �(X⇠i)
i

. (7.15)

Algorithm 7.1.2 Generalised Poisson Estimator (GPE) [Fearnhead et al., 2008].

1. Simulate R ⇠ R.

2. Simulate  ⇠ q(|R) and skeleton times ⇠1, . . . , ⇠
iid⇠ U[s, t].

3. Simulate sample path at skeleton times X⇠1 , . . . , X⇠ ⇠ x,y
s,t

�

�

� R .

4. Set  ̂GPE(X) = e�UX(t�s) · (t � s)

! · q(|UX , LX)
·Q

i=1

h

UX � �(X⇠i)
i

.

The second moment of the GPE can be derived as follows,
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(7.16)

Now, as we have in this setting flexibility over the precise choice of the discrete probabil-
ity density q( j|R), then we choose q( j|R) to minimise (7.16). In particular, using Lagrange
multipliers, we want to optimise,
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, (7.17)
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so we have,

@
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As q j 2 [0, 1] we have q j =
p

f j/�. Now, finding �, note that we have
P1

j=0 q j = 1, and

so
P1

j=0
p

f j/� = 1 and � =
⇣

P1
j=0

p

f j
⌘2

so we have q j =
p

f j/
⇣

P1
i=0

p

fi
⌘

. Substituting
this result into (7.16) we find the second moment is minimised by selecting the discrete
probability density as follows (recall that LX and UX are selected with reference to R),
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(7.19)

Noting that (7.19) is the pdf of a Poisson distribution, then (7.16) is minimised by select-
ing q( j|R) to be a Poisson distribution with intensity,

�R :=
 

(t � s)
Z t

s

⇥

UX � �(Xu)
⇤2 du

!1/2

. (7.20)

Unfortunately, the integral expression in (7.20) precludes this choice. The most natural
selection of q( j|R) in this setting (which following the convention in Fearnhead et al.
[2008] we call GPE-1) is therefore to choose a Poisson distribution with intensity �S ,
which bounds the intensity �R. In particular, noting that �(Xu) � LX , we have,

 

(t � s)
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⇤2 du
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Z t
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= (UX � LX) · (t � s) =: �S . (7.21)
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With this selection we ensure our estimator is unbiased and positive,

 ̂GPE-1(X) = e�UX(t�s) · (t � s)

! · q(|R)
·


Y
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h
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i

:= e�LX(t�s) ·


Y

i=1

UX � �(X⇠i)
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2
h

0, e�LX(t�s)
i

, (7.22)

with finite second moment,
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An alternate selection for q( j|R), GPE-2, was proposed in Fearnhead et al. [2008]. Since
the optimal selection for q( j|R) is a Poisson distribution with (stochastic) optimal inten-
sity �R, Fearnhead et al. [2008] instead propose the selection of the heavier tailed nega-
tive binomial distribution (NBin( j; �R, �r), where �R is the mean parameter and �R is the
dispersion parameter), setting the mean parameter of the negative binomial distribution
equal to an approximation of the optimal intensity. This selection results in the following
unbiased and positive estimator,

 ̂GPE-2(X) = e�UX(t�s) · (t � s)

! · q(|R)
·


Y

i=1

h

UX � �(X⇠i)
i

:= e�UX(t�s) · (t � s) · �(�R) · (�R + �R)�R+

�(�R + ) · �R · ��R
R

·


Y

i=1

UX � �(X⇠i)
UX � LX

. (7.24)

Fearnhead et al. [2008] propose using the following approximation of the optimal inten-
sity (motivated by Jensen’s inequality),

�R ⇡ �R := UX(t � s) �
Z t

s
�

✓

x · t � s � u
t � s

+ y · u
t � s

◆

du, (7.25)

noting that in simulations it compares favourably to both the VPE and GPE-1. Further-
more, in settings in which the VPE has finite variance then the GPE-2 also has finite vari-
ance, suggesting that in such settings the GPE-2 should be the favoured choice. However,
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as noted in Section 7.1.1, settings in which it can be shown the VPE has finite variance
are limiting and so throughout this chapter we employ the GPE-1.

7.2 Particle Filtering Algorithms for Jump Di↵usions

Returning to the introductory remarks of this chapter, in this section we present a number
of particle filtering algorithms for jump di↵usions. We begin by presenting the Exact
Propagation Particle Filter (EPPF; Algorithm 7.2.1) as motivated in the introductory re-
marks.

Noting that the GPE-1 presented in Section 7.1.2 can be used to assign an unbiased pos-
itive importance weight to a di↵usion sample path conditioned to hit an end point simu-
lated according to Biased Brownian motion (see Theorem 5.1.1), then the methodology
developed for jump exact algorithms in Section 5.3 can be directly applied in this setting
by appropriately substituting steps for accepting or rejecting proposal sample paths with
an importance weight given by the GPE-1.

In Algorithm 7.2.2 we present the Bounded Random Weight Particle Filter (BRWPF) for
jump di↵usions with bounded jump intensity, which is based upon a direct application
of the Sequential Importance Sampling / Resampling algorithm (SIS/R; Algorithm 3.4.1)
and employing the ideas used in constructing the Bounded Jump Exact Algorithm (Al-
gorithm 5.3.1). In Algorithm 7.2.3 we present the Unbounded Random Weight Particle
Filter (URWPF) for jump di↵usions with locally bounded jump intensity (see Condition
4), which is based upon the SIS/R algorithm and instead employing the ideas used in
constructing the Unbounded Jump Exact Algorithm (Algorithm 5.3.2). Finally, in Figure
7.2.1 we present an illustrative example of the EPPF and BRWPF applied to a HMM.
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Algorithm 7.2.1 Exact Propagation Particle Filter for Jump Di↵usions (EPPF).

Initialisation Step (t = 0):-

1. For i in 1 to N simulate x(i)
0 ⇠ µ✓(x0), set w(i)

0 = 1/N.

2. Set ⇡N
✓ (dx0) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. If dNe↵  Nth then for i in 1 to N sample x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t�1) (as per Algorithm
3.5.1, 3.5.2, 3.5.3 or 3.5.4) and set w(i)

t�1 = 1/N.

2. For i in 1 to N,

(a) Simulate x(i)
t ⇠ p1

⇣

x(i)
t�1, z

⌘

as per the BJEA (Algorithm 5.3.1), UJEA (Algo-
rithm 5.3.2) or AUJEA (Algorithm 5.3.3), and set x(i)

0:t :=
n

x(i)
0:t�1, x

(i)
t

o

.

(b) Set w⇤(i)t = w(i)
t�1 · g✓

⇣

yt

�

�

�

�

x(i)
t

⌘

.

3. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

4. Set ⇡N
✓ (dx0:t|y1:t) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).
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Algorithm 7.2.2 Random Weight Particle Filter for Jump Di↵usions with Bounded Jump
Intensity (BRWPF).

Initialisation Step (t = 0):-

1. For i in 1 to N simulate x(i)
0 ⇠ µ✓(x0), set w(i)

0 = 1/N.

2. Set ⇡N
✓ (dx0) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. If dNe↵  Nth then for i in 1 to N sample x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t�1) (as per Algorithm
3.5.1, 3.5.2, 3.5.3 or 3.5.4) and set w(i)

t�1 = 1/N.

2. For i in 1 to N,

(a) Set j = 0 and  j = t � 1.

(b) While  j < t,

i. Simulate ⌧ ⇠ Exp(⇤). Set j = j + 1 and  j =  j�1 + ⌧.

ii. Simulate x(i)
( j^t)� ⇠ h

⇣

z; x(i)
 j�1
, ( j ^ t) �  j�1

⌘

.

iii. Simulate t j:=  ̂GPE-1
⇣

x(i)
[ j�1,( j^t))

⌘

as per Algorithm 7.1.2.

iv. If  j > t then set x(i)
t = x(i)

t� and x(i)
0:t :=

n

x(i)
0:t�1, x

(i)
t

o

else,

A. With probability �
⇣

x(i)
 j

⌘

/⇤ set x(i)
 j

:= x(i)
 j�+ f⌫

⇣

x(i)
 j�

⌘

, else set x(i)
 j

:=

x(i)
 j�.

(c) Set w⇤(i)t = w(i)
t�1 · g✓

⇣

yt

�

�

�

�

x(i)
t

⌘

·Q j
k=1 tk.

3. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

4. Set ⇡N
✓ (dx0:t|y1:t) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).
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Algorithm 7.2.3 Random Weight Particle Filter for Jump Di↵usions with Unbounded
Jump Intensity (URWPF).

Initialisation Step (t = 0):-

1. For i in 1 to N simulate x(i)
0 ⇠ µ✓(x0), set w(i)

0 = 1/N.

2. Set ⇡N
✓ (dx0) :=

PN
i=1 w(i)

0 · �x(i)
0

(dx0).

Update Steps (t > 0):-

1. If dNe↵  Nth then for i in 1 to N sample x(i)
0:t�1 ⇠ ⇡N

✓ (dx0:t�1|y1:t�1) (as per Algorithm
3.5.1, 3.5.2, 3.5.3 or 3.5.4) and set w(i)

t�1 = 1/N.

2. For i in 1 to N,

(a) Set j = 0 and  j = t � 1,

i. Simulate skeleton end point x(i)
t ⇠ h(z; x(i)

 j
, t �  j).

ii. Simulate layer information Ri, j
X[ j,t]

⇠ R and compute ⇤i, j
X[ j,t]

.

iii. Simulate proposal jump times N⇤,i, jt� j
⇠ Poi

✓

⇤
i, j
X[ j,t]

(t �  j)
◆

and

 
i, j
1 , . . . , 

i, j
N⇤,i, jt� j

iid⇠ U[ j, t].

iv. Simulate i, j ⇠ Poi
✓

Ui, j
X[ j,t]

� Li, j
X[ j,t]

�

· (t �  j)
◆

and skeleton times

⇠ i, j
1 , . . . , ⇠

i, j


iid⇠ U[ j, t].

v. Simulate x(i)
⇠ i, j

1

, . . . , x(i)
⇠ i, j


, x(i)
 

i, j
1

, . . . , x(i)
 

i, j
N(⇤,i, j,t� j)

⇠ x j (i),xt(i)
 j,t

�

�

�

�

�

Ri, j
X[ j,t]

.

vi. Set t j:=  ̂GPE-1
⇣

x(i)
[ j�1,t]

⌘

.

vii. For k in 1 to N⇤,i, jt� j
,

A. With probability �
⇣

x(i)
 

i, j
k

⌘

/⇤i, j
X[ j,t]

set x(i)
 

i, j
k �
= x(i)

 
i, j
k

, x(i)
 

i, j
k

:= x(i)
 

i, j
k �
+

f⌫
⇣

x(i)
 

i, j
k �

⌘

,  j+1 :=  i, j
k , j = j + 1, and return to Step 2(a)i.

(b) Set w⇤(i)t = w(i)
t�1 · g✓

⇣

yt

�

�

�

�

x(i)
t

⌘

·Q j
k=1 tk.

3. For i in 1 to N set w(i)
t =

w⇤(i)t
PN

j=1 w⇤( j)
t

.

4. Set ⇡N
✓ (dx0:t|y1:t) :=

PN
i=1 w(i)

t · �x(i)
0:t

(dx0:t).
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X

(a) The observation process, EPPF and BRWPF, overlaid with the underlying
latent process.

(b) EPPF particle ancestral paths. (c) BRWPF particle ancestral paths.

Figure 7.2.1: An illustrative example of an Exact Propagation Particle Filter (EPPF;
Algorithm 7.2.1) and a Bounded Random Weight Particle Filter (BRWPF; Algorithm
7.2.2) of 2,000 particles applied to the HMM filtering problem with SSDs as follows,
X0 ⇠ N(0, 5), Yt|(Xt = xt) ⇠ N(0, 10) and the latent process is governed by a jump di↵u-
sion with the following SDE, dXt = sin(Xt-) dt+ dWt + dJ�,⌫T where �(Xt) = cos2(Xt) and
f⌫(Xt) = N(sin(Xt), 1). In subfigures (b) and (c) we show for this example the ancestral
paths of the particles. Paths in black denote ancestral paths of the particles comprising
the empirical filtering density at time 100, whereas those in other colours indicate that
they are no longer included after some resampling point.



8

✏-Strong Simulation of Diffusions and

Jump Diffusions

“Judges must beware of hard constructions and
strained inferences, for there is no worse

torture than that of laws.”

— Francis Bacon

In this chapter we outline a novel approach for simulating upper and lower bounding
processes which almost surely constrain (jump) di↵usion and (jump) di↵usion bridge
sample paths to any specified tolerance. We do this by means of a significant extension
to the ✏-Strong Simulation algorithm proposed in Beskos et al. [2012], which we present
in Section 8.1. In Section 8.2 we present an entirely novel approach to constructing an
exact algorithm based on the ✏-strong simulation methodology in Section 8.1.

Finally, in Section 8.3 we present a number of applications of the methodology devel-
oped throughout this chapter and the thesis in general. In particular we show that it is
possible to determine exactly whether a di↵usion or jump di↵usion sample path, simu-
lated as per one of the adaptive exact algorithms in Chapter 5, crosses various types of
barriers. The flexibility of the adaptive exact algorithms developed in this thesis allows
us to by extension simulate various non-trivial quantities, for instance, we can construct
an unbiased estimate of the probability that any barrier is crossed, an unbiased estimate
of the probability a barrier is crossed by any particular time, and simulate (without dis-
cretisation error) from the transition density of killed (or un-killed) di↵usions and jump
di↵usions, among many other interesting possibilities.
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8.1 ✏-Strong Simulation Methodology

As originally proposed in Beskos et al. [2012] and presented in Algorithm 8.1.1, ✏-strong
simulation is an algorithm which simulates upper and lower convergent bounding pro-
cesses (X" and X#) which enfold almost surely Brownian motion sample paths over some
finite interval [0,T ]. In particular, we obtain a sequence of ever closer bounds such that
8 u 2 [0,T ] and some counter n,

X#u(n)  X#u(n + 1)  Xu  X"u(n + 1)  X"u(n), (8.1)

Algorithm 8.1.1 is not exactly that presented in Beskos et al. [2012], but incorporates
a number of extensions based on the results in Section 6.3. In particular, in contrast to
Beskos et al. [2012], we can now simulate an initial intersection layer (Algorithm 8.1.1
Step 2) and simulate the intermediate points exactly (Algorithm 8.1.1 Step 3(a)i).

Algorithm 8.1.1 ✏-Strong Simulation of Brownian Motion sample paths (n bisections).

1. Simulate XT := y ⇠ N(0,T ) and set i = 1.

2. Simulate initial intersection layer S := S0,T =
n

0,T, X0, XT , `
#
0,T , `

"
0,T , �

#
0,T , �

"
0,T

o

as
per Algorithm 6.3.1.

3. While i  n,

(a) For each of the 2i�1 intersection layers in S (denoted S j
s,t :=

n

s j, t j, X j
s , X

j
t , `

j,#
s,t , `

j,"
s,t , �

j,#
s,t , �

j,"
s,t

o

),

i. Simulate Xq where q := (s j + t j)/2 conditional on S j
s,t as per Algorithm

6.3.2.
ii. Bisect S j

s,t into S j,1
s,q and S j,2

q,t as per Algorithm 6.3.5.

iii. For S j,1
s,q and S j,2

q,t , while
�

�

�

�

` j,⇤,"
s,t � ` j,⇤,#

s,t

�

�

�

�

>
p

(t j � s j)/2 or
�

�

�

�

� j,⇤,"
s,t � � j,⇤,#

s,t

�

�

�

�

>
p

(t j � s j)/2 then refine intersection layer as per Algorithm 6.3.6.

(b) Set S :=
S2i�1

j=1

n

S j,1
s,q

SS j,2
q,t

o

and i = i + 1.

The intersection layer information can be used to find the bounding processes in (8.1)
and, as shown in [Beskos et al., 2012, Prop. 3.1], convergence in the supremum norm
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holds,

w.p. 1: lim
n!1 sup

u

�

�

�

�

X"u(n) � X#u(n)
�

�

�

�

! 0, (8.2)

where,

X"u(n) :=
2n�1
X

i=1

�i,"
s,t · (u 2 [si, ti]), X#u(n) :=

2n�1
X

i=1

`i,#
s,t · (u 2 [si, ti]). (8.3)

The (seemingly arbitrary) square root term in Algorithm 8.1.1 Step 3(a)iii used to deter-
mine whether or not to continue refining an intersection layer (as per Algorithm 6.3.6),
is chosen as it is su�cient to ensure convergence of the upper and lower bounding pro-
cesses (X" and X#) to X, while striking a balance computationally between bisecting an
intersection layer (as per Algorithm 6.3.5) and refining an intersection layer (as per Al-
gorithm 6.3.6). As noted by Beskos et al. [2012], as the range of Brownian motion on an
interval of length 2�n scales as O(2�n/2), if we were able to identify for each interval the
minimum and maximum of the sample path within that interval (using the minimum and
maximum as the lower and upper convergent bounding processes) and conduct ✏-strong
simulation, then this (idealised) algorithm would have a rate of convergence of O(2�n/2).
As Algorithm 8.1.1 Step 3(a)iii ensures that for each intersection layer the lower and up-
per bounding processes are within O(2�n/2) of the minimum and maximum of the sample
path within that interval (respectively), then the rate of convergence of the idealised algo-
rithm is preserved in the implementable algorithm (Algorithm 8.1.1).

It was further shown in [Beskos et al., 2012, Prop. 3.2] that the dominating processes
converge in the L1 norm with rate of the order O(2�n/2),

2n/2 ⇥
h

�

�

�X"(n) � X#(n)
�

�

�

1

i

= O(1), (8.4)

where,

�

�

�X"(n) � X#(n)
�

�

�

1 =

Z T

0

�

�

�

�

X"u(n) � X#u(n)
�

�

�

�

du. (8.5)
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As the upper and lower bounding processes are piecewise constant functions then it is
useful to note that we simply have,

X"(n) =
2n�1
X

i=1

�i,"
s,t · (ti � si), X#(n) =

2n�1
X

i=1

`i,"
s,t · (ti � si). (8.6)

Now, considering the ✏-Strong Simulation of Jump Di↵usions, note that upon simulating
a (jump) di↵usion or (jump) di↵usion bridge sample path skeleton (as per the AUEA,
CAUEA, AUJEA or CAUJEA), it has a form (see (5.18), (5.21), (5.26) and (5.45)) that
can be used in Algorithm 8.1.1. As such, Algorithm 8.1.1 can be extended to jump dif-
fusions (Algorithm 8.1.2) by using the strategies presented earlier in Section 6.3, noting
that (8.2) and (8.4) still hold.

Algorithm 8.1.2 ✏-Strong Simulation of Jump Di↵usion sample paths (n bisections).

1. Simulate jump di↵usion skeleton as per Algorithm 5.1.4 to obtain initial intersec-
tion layer.

2. Simulate further intersection layers as required (n bisections) as per Algorithm
8.1.1.

As far as we are aware there are no existing methods for the ✏-strong simulation of jump
di↵usions. The class of jump di↵usions this methodology can be applied to is broad (the
conditions outlined in Section 1.3 are su�cient) and motivate a number of avenues for
future research. In particular, non-trivial characteristics of the di↵usion path can be sim-
ulated (for instance extrema, hitting times, integrals) and can be applied to areas such
as option pricing and the simulation of stochastic volatility models (which are currently
being explored in related work). The precise implementation of Algorithm 8.1.2 can be
tailored to the specific application. For instance, in Figure 8.1.1 we present the ✏-strong
simulation of a jump di↵usion sample path as detailed in Algorithm 8.1.2, whereas in
Figure 8.1.2 we instead consider an alternate tolerance based ✏-strong simulation of a
jump di↵usion sample path in which we are instead interested in minimising (for any
given computational budget) the L1 distance. In particular, at each point in the ✏-strong
simulation algorithm the next intersection layer of the existing set of intersection layers
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(for convenience, numbered as 1, . . . ,M) to be chosen to bisect, is the interval,

i⇤ := arg max
i2{1,...,M}

h⇣

�i,"
s,t � `i,"

s,t

⌘

· (ti � si)
i

. (8.7)
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Figure 8.1.1: Illustration of standard ✏-strong simulation of a jump di↵usion sample path,
overlaid with sample path.
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Figure 8.1.2: Illustration of modified tolerance based ✏-strong simulation of a jump dif-
fusion sample path, overlaid with sample path.



8.2 An ✏-Strong Exact Algorithm for Di↵usions

In this section we detail a novel approach for constructing an exact algorithm based on
the ✏-strong simulation methodology in Section 8.1. We begin by recalling from the
introductory remarks of Section 5.1 the key steps in constructing an exact algorithm. In
particular, returning to our initial Implementable Exact Algorithm (Algorithm 5.1.2), then
recall that after simulating the end point from biased Brownian motion (Algorithm 5.1.2
Step 1), the remainder of the proposal sample path can be simulated exactly from the law
of a Brownian bridge (see Theorem 5.1.1). In order to determine whether to accept or
reject a sample path simulated from our proposal measure (X ⇠ x

0,T ) as a sample path
from our target measure (denoted by x

0,T ) we accept the sample path with probability
P x

0,T
(X). In Section 5.1 we explored how to simulate an event of probability P x

0,T
(X)

using only a finite dimensional realisation of the proposal sample path, however, it is
interesting to note that if we reconsider the simulation of the proposal sample path in
light of Algorithm 8.1.1 we can find upper and lower convergent bounding sequences for
P x

0,T
(X) (in analogous fashion to (8.1)) by directly mapping the upper and lower bounds

of the underlying proposal sample path X obtained from ✏-strong simulation,

0  . . .  �#n  �#n+1  . . .  P x
0,T

(X)  . . .  �"n+1  �"n  . . .  1, (8.8)

where we define P x
0,T

(X) and the bounding sequences as follows (recalling �(X) is bounded
on compact sets (Result 4)),

P x
0,T

(X) := exp
(

�
Z T

0
(�(Xs) � �) ds

)

, (8.9)

�#n := exp

8

>

>

>

<

>

>

>

:

�
n

X

i=1

0

B

B

B

B

B

B

B

B

@

sup
u2

h

`i,#
s,t ,�

i,"
s,t

i

(�(u) � �)

1

C

C

C

C

C

C

C

C

A

· (ti � si)

9

>

>

>

=

>

>

>

;

, (8.10)

�"n := exp

8

>

>

<

>

>

:

�
n

X

i=1

0

B

B

B

B

B

B

@

inf
u2

h

`i,#
s,t ,�

i,"
s,t

i

(�(u) � �)

1

C

C

C

C

C

C

A

· (ti � si)

9

>

>

=

>

>

;

. (8.11)

As such we can simulate events of probability P x
0,T

(X) by direct application of series
sampling (see Section 2.6) and hence construct an ✏-Strong Exact Algorithm (✏EA) as
outlined in Algorithm 8.2.1. The precise implementation of Algorithm 8.2.1 di↵ers from
that of Algorithm 8.1.1 as at each iteration of the algorithm we want to select an interval
to bisect and refine from the existing finite dimensional realisation of the proposal sample
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path in order to find bounds for P x
0,T

(X) which are as tight as possible (this is similar
to the tolerance based ✏-strong simulation illustrated in Figure 8.1.2). More precisely, at
step (n + 1) we choose to bisect and refine interval,

i⇤ := arg max
i2{1,...,n}

2

6

6

6

6

6

6

6

6

4

0

B

B

B

B

B

B

B

B

@

sup
u2

h

`i,#
s,t ,�

i,"
s,t

i

�(u) � inf
u2

h

`i,#
s,t ,�

i,"
s,t

i

�(u)

1

C

C

C

C

C

C

C

C

A

· (ti � si)

3

7

7

7

7

7

7

7

7

5

. (8.12)

Algorithm 8.2.1 ✏-Strong Exact Algorithm (✏EA).

1. Simulate skeleton end point XT := y ⇠ h.

2. Simulate initial intersection layer S := S0,T =
n

0,T, X0, XT , `
#
0,T , `

"
0,T , �

#
0,T , �

"
0,T

o

as
per Algorithm 6.3.1.

3. Simulate u ⇠ U[0, 1], set n = 1 and compute �#n and �"n.

4. While u 2 (�#n, �
"
n),

(a) Select interval i⇤ as per (8.12).

(b) Simulate Xqn where qn := (si⇤ + ti⇤)/2 conditional on Si⇤
s,t as per Algorithm

6.3.2.

(c) Bisect and refineSi⇤
s,t intoSi⇤,1

s,qn andSi⇤,2
qn,t as per Algorithm 6.3.5 and Algorithm

8.1.1 Step 3(a)iii.

(d) Set S := S [ Si⇤,1
s,qn [ Si⇤,2

qn,t \ Si⇤
s,t, set n = n + 1 and compute �#n and �"n.

5. If u  �#n accept skeleton, defining ⇠0, ⇠1, . . . , ⇠n+1 as the order statistics of the set
{s, q1, . . . , qn, t} else if u � �"n reject and return to Step 1.

6. * Simulate Xrem ⇠
✓

⌦n+1
i=1

X⇠i�1 ,X⇠i
⇠i�1,⇠i

�

�

�R[⇠i�1,⇠i]
X

◆

.

Algorithm 8.2.1 can be employed to simulate the same class of di↵usions as outlined
in Section 1.3 and furthermore satisfies Principles 1, 2 and 3. The resulting skeleton
comprises all simulated intersection layers as shown in (8.13) and admits the further sim-
ulation of intermediate points by direct application of Algorithm 6.3.7. It should be noted
that extension of this exact algorithm to di↵usion bridges, jump di↵usions and jump di↵u-
sion bridges can be straight forwardly performed in an analogous fashion to the extension
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of the exact algorithms in Section 5 to those exact algorithms presented in Sections 5.2,
5.3 and 5.4.

S✏EA (X) :=
⇢

⇣

⇠i, X⇠i

⌘+1

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘+1

i=1

�

. (8.13)

The natural extension to Algorithm 8.2.1 is the AUEA presented in Algorithm 5.1.4 of
Section 5.1.2, which on implementation is far more computationally e�cient than Algo-
rithm 8.2.1 due to the slow convergence of the bounding sequences enfolding P x

0,T
(X) in

(8.8). However, we have included this algorithm here as in addition to providing a direct
application of ✏-strong simulation as presented in Section 8, it is a novel approach to the
exact algorithm which opens up interesting avenues to tackle related problems.

8.3 Unbiased Estimation of Irregular Barrier Crossing Prob-
abilities

In this section we present a number of applications demonstrating that it is possible to
determine exactly whether a jump di↵usion sample path simulated as per the Adaptive
Unbounded Jump Exact Algorithm (AUJEA; Algorithm 5.3.3) crosses various types of
barriers. This is in contrast to existing works which are restricted to considering either
piecewise linear barriers and Brownian motion sample paths (see Pötzelberger and Wang
[1997] and Pötzelberger and Wang [2001]) or introducing approximation error (see for
instance Milstein and Tretyakov [1999]). In Section 8.3.1 we consider a nonlinear two
sided barrier, in Section 8.3.2 we consider the crossing of two jump di↵usion sample
paths from di↵erent laws, and finally in Section 8.3.3 we consider the crossing of a circu-
lar barrier by a 2 dimensional jump di↵usion sample path.

In addition, for each example we construct and simulate other non-trivial quantities, such
as an unbiased estimate of the probability that the barrier is crossed, an unbiased estimate
of the probability that the barrier is crossed by any particular time, and the killed (or un-
killed) di↵usion transition density.

In each of our examples we employ variants of Algorithm 8.3.1. For simplicity in Al-
gorithm 8.3.1 we only consider the crossing of an upper barrier by a one dimensional
jump di↵usion, however, as we will discuss later in this section and in Sections 8.3.1–
8.3.3 this can be straight forwardly extended. To simplify notation we define Bu as the
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evaluation of the upper barrier at time point u. As before we denote S as the skeleton
comprising intersection layer information and introduce the notation C as the set of inter-
vals in which the sample path crosses the barrier, B as the set of intervals in which there
is no crossing andU as the set in which for each interval crossing is undetermined.

Algorithm 8.3.1 Unbiased Estimation of Upper Barrier Crossing.

1. Simulate skeleton SAUJEA (X) :=
⇢

⇣

⇠i, X⇠i

⌘

P

j( j+1)

i=0
,
⇣

R[⇠i�1,⇠i]
X

⌘

P

j( j+1)

i=1

�

as per Algo-
rithm 5.3.3.

2. Set S := SAUJEA (X), C := ;, B := ; andU :=
nh

s1, t1
i

, . . . ,
h

s|S|, t|S|
io

.

3. While |C| = 0 and |B| < |S|,
(a) For i in 1 to |U|,

i. If Xi
s � Bi

s or Xi
t � Bi

t or �i,#
s,t � supu2[s(i),t(i)] Bu then C := C[

nh

si, ti
io

and
U := U \

nh

si, ti
io

.

ii. If �i,"
s,t  infu2[s(i),t(i)] Bu then B := B [

nh

si, ti
io

andU := U \
nh

si, ti
io

.

iii. If [si, ti] 2 U then,
A. Simulate Xq where q := (si + ti)/2 conditional on Si

s,t as per Algo-
rithm 6.3.2.

B. Bisect and refine Si
s,t into Si,1

s,q and Si,2
q,t as per Algorithm 6.3.5 and

Algorithm 8.1.1 Step 3(a)iii.
C. Set S := S[Si,1

s,q[Si,2
q,t \Si

s,t andU := U[
nh

si, q
i

,
h

q, ti
io

\
nh

si, ti
io

.

4. If |C| > 0 then barrier crossed, else (if |B| = |S|) barrier not crossed.

8.3.1 Example 1 - Nonlinear two sided barrier

In this section we consider the simulation of jump di↵usion sample paths which can be
represented as solutions to the following SDE,

dXt = sin Xt- dt + dWt + dJ�,⌫t X0 = 1 t 2 [0, 2⇡],
�(Xt) = |Xt/4| f⌫(Xt) = N(�Xt/2, 2),

(8.14)
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determining whether or not they cross the following nonlinear two sided barrier (where
B#u and B"u denote the lower and upper barriers at time point u respectively),

B#u = �4.5 � cos(u), B"u = 4 + 0.5 cos(u), u 2 [0, 2⇡]. (8.15)

In this case, as the jump intensity of (8.14) can’t be bounded we simulate sample paths
using the AUJEA (see Algorithm 5.3.3). In particular, we have �(Xt) := (sin2(Xt) +
cos(Xt))/2 2 [�1/2, 5/8], �(Xt)| (LX ,UX)  max{L2

X ,U
2
X}/4 and the end point is sim-

ulated as follows, XT := y ⇠ h / exp{� cos(y) � y2/6}. In Figure 8.3.1 we present
illustrations of whether the two sided barrier (8.15) has been crossed using finite dimen-
sional realisations of sample paths simulated according to the measure induced by (8.14)
and by applying a modified version of Algorithm 8.3.1. This example is motivated by a
number of possible applications in finance, such as the pay-o↵ of barrier options.

In this example we simulated 100000 sample paths from the measure induced by (8.14)
and determined whether the barrier (8.15) was crossed for each sample path. For each
sample path we additionally determined whether one or both barriers were crossed and
if both, which barrier was crossed first. From these simulations we calculated unbiased
estimates of various barrier crossing probabilities, the results of which are summarised in
Table 8.1.

In Figure 8.3.2(a) we present kernel density estimates of the transition densities of vari-
ous subsets of the sample paths simulated, including that for killed di↵usions (i.e. sample
paths from the measure induced by (8.14) with the restriction that they remain within the
interval between the barriers in (8.15)). In Figure 8.3.2(b) we additionally determine for
each sample path an interval of length ✏  10�4, in which the first crossing time occurs
(by modifying the ✏-strong algorithms presented in Section 8.1) to construct upper and
lower bounds for the empirical CDF of the first barrier crossing time.
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Crossing Type Empirical Probability 95% Clopper-Pearson
Confidence Interval

Neither barrier 18.09% [17.85%, 18.36%]
Either barrier 81.91% [81.67%, 82.15%]

Upper barrier only 43.98% [43.67%, 44.29%]
Lower barrier only 29.02% [28.74%, 29.30%]

Both barriers 8.92% [8.74%, 9.09%]
Upper first given both barriers 80.45% [79.61%, 81.27%]
Lower first given both barriers 19.55% [18.73%, 20.39%]

Table 8.1: Nonlinear two sided barrier example: Barrier crossing probabilities (computed
using 100000 sample paths).
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Figure 8.3.1: Illustration of the determination of whether a 2-sided non-linear barrier has
been crossed by a sample path using a finite dimensional sample path skeleton, overlaid
with an illustration of the underlying sample path.
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(b) Empirical CDF of barrier crossing probability by time (crossing
time evaluated within interval of length ✏  10�4). Upper and lower
black lines indicate upper and lower bounds for the empirical CDF,
whereas the red dotted line indicates the average of the two bounds.

Figure 8.3.2: Nonlinear two sided barrier example: Summary figures computed using
100000 sample paths.



8.3.2 Example 2 - Jump di↵usion barrier

In this section we consider the simulation of jump di↵usion sample paths which can be
represented as solutions to the following SDE,

dXt = �Xt- dt + dWt + dJ�,⌫t , t 2 [0, 2],
�(Xt) = sin2(Xt), f⌫(Xt) = N(�Xt/2, 1).

(8.16)

We consider sample paths simulated from the measure induced by (8.16) initialised at
two possible starting values X`

0 = �2 and X�
0 = 2 (where X` and X� denote the lower

and upper di↵usions respectively). In this case the jump intensity of (8.16) is bounded so
we simulate sample paths using the AUEA (see Algorithm 5.1.4) within the BJEA (see
Algorithm 5.3.1). Recall that in the BJEA the interval the sample path is to be simu-
lated over (t 2 [0, 2]), is broken into segments corresponding to the proposed jump times
( 1, . . . ). As such, if we consider the simulation of a di↵usion sample path in the in-
terval [ 1, 2] conditional on X 1 then the proposed end point is simulated as follows,
X 2 ⇠ h(X 2 ; X 1 , 2 �  1) / exp{�X2

 2
/2 � (X 2 � X 1 )2/[2( 2 �  1)]}. Further-

more, we have �(Xt) := (X2
t � 1)/2, �(Xt)| (LX ,UX) 2 [�1/2, (max{L2

X ,U
2
X} � 1)/2] and

�(Xt)  1 =: ⇤.

In Figure 8.3.3 we present illustrations of two sample paths simulated from the mea-
sure induced by (8.16), initialised at X`

0 = �2 and X�
0 = 2, which do not cross and cross

respectively, determined using only a finite dimensional realisation of the sample paths.
This example is motivated by Bladt and Sørensen [Forthcoming], in which (in part) the
authors are interested in the probability that two Brownian motion sample paths cross one
another.

In this example we simulated 100000 pairs of sample paths from the measure induced
by (8.16) initialised at X`

0 = �2 and X�
0 = 2 and determined whether or not they crossed.

We present a summary of the unbiased estimates calculated from these sample paths in
Table 8.2. In Figure 8.3.4(a) we present kernel density estimates of the transition densi-
ties of various subsets of the sample paths simulated. In Figure 8.3.4(b) we determine for
each sample path an interval of length ✏  10�4 in which the first crossing time occurs
in order to construct upper and lower bounds for the empirical CDF of the first crossing
time.
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Crossing Type Empirical Probability 95% Clopper-Pearson
Confidence Interval

No crossing 22.52% [22.26%, 22.78%]
Crossing 77.48% [77.22%, 77.74%]

Table 8.2: Jump di↵usion crossing example: Crossing probabilities (computed using
100000 sample paths).
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Figure 8.3.3: Illustration of the determination of whether two di↵usion sample paths cross
one another using finite dimensional sample path skeletons, overlaid with an illustration
of the underlying sample paths.
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(a) Kernel density estimates of the transition densities of subsets of
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(b) Empirical CDF of jump di↵usion crossing probability (crossing
time evaluated within interval of length ✏  10�4). Upper and lower
black lines indicate upper and lower bounds for the empirical CDF,
whereas the red dotted line indicates the average of the two bounds.

Figure 8.3.4: Jump di↵usion crossing example: Summary figures computed using 100000
sample paths.



8.3.3 Example 3 - 2-D jump di↵usion with circular barrier

In this section we consider the simulation of jump di↵usion sample paths which can be
represented as solutions to the following SDE,

X :=
⇣

X(1), X(2)
⌘

, X0 = (0, 0.5), t 2 [0, 3]
dX(1)

t = �X(1)
t� dt + dW(1)

t + dJ�(X),⌫(X(1))
t , dX(2)

t = �X(2)
t� dt + dW (2)

t + dJ�(X),⌫(X(2))
t ,

�(Xt) =
q

⇣

X(1)
t

⌘2
+

⇣

X(2)
t

⌘2
, Z ⇠ U

"

0,
q

⇣

X(1)
t

⌘2
+

⇣

X(2)
t

⌘2
#

,

f⌫
⇣

X(1)
t

⌘

= � cos
⇣

arctan
⇣

X(2)
t /X

(1)
t

⌘⌘

· Z, f⌫
⇣

X(2)
t

⌘

= � sin
⇣

arctan
⇣

X(2)
t /X

(1)
t

⌘⌘

· Z
(8.17)

determining whether or not they cross the following circular barriers,

x2 + y2 = r, where r = {0.8, 1, . . . , 2.8, 3}. (8.18)

Intuitively, the compound Poisson process component of the jump di↵usion in (8.17) can
be interpreted as having increasing jump intensity as the jump di↵usion moves away from
the origin, however, if a jump occurs then the jump di↵usion moves to a point uniformly
distributed between the origin and its current location.

The jump intensity of this SDE (8.17) can’t be bounded so we simulate sample paths us-
ing the AUJEA (see Algorithm 5.3.3). In Figure 8.3.5 we present illustrations of whether
one particular circular barrier (r = 1.6) has been crossed using finite dimensional real-
isations of sample paths simulated according to the measure induced by (8.17) and by
applying a modified version of Algorithm 8.3.1.

In this example we simulated 50000 sample paths from the measure induced by (8.17),
determining for each circular barrier (8.18) whether or not it was crossed. In addition, for
each circular barrier we simulated the time within an interval of length ✏  10�3 in which
the barrier was first crossed and an interval of length ✓  10�3 in which the exit angle lies.
Calculating all circular barriers for a common collection of sample paths ensures that the
calculated probabilities retain any natural ordering (for instance, the first crossing time
of a circular barrier of a given radius must occur before one of larger radius). In Figures
8.3.6 and 8.3.7 we present various results obtained from our simulations which may be of
interest in any given application.
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Figure 8.3.5: Illustration of the determination of whether a 2-D sample path crosses a cir-
cular barrier using a finite dimensional sample path skeleton. Inscribed rectangles denote
regions where for some time interval sample paths are constrained. Black and infilled red
rectangles denote intervals constrained entirely within or out-with the circle respectively.
Dotted black and red rectangles denote intervals with undetermined or partial crossing
respectively.
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(a) Contour plot of kernel density estimate of killed di↵usion transition
density with circular barrier of radius 1.6.
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(b) Empirical probabilities of crossing centred circles of increasing ra-
dius (indicated by crosses) using a common collection of sample paths,
overlaid with 95% Clopper-Pearson confidence intervals (indicated by
blue bar).

Figure 8.3.6: 2-D jump di↵usion with circular barrier example: Figures computed using
50000 sample paths.
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(b) Circle exit time by circle radius (crossing time evaluated within
interval of length ✏  10�3).

Figure 8.3.7: 2-D jump di↵usion with circular barrier example: Exit point figures (com-
puted using a common collection of 50000 sample paths).



9

Concluding Remarks

“I hope we’ll be able to solve these problems
before we leave.”

— Paul Erdős

In this thesis we have developed exact algorithms for simulating finite dimensional rep-
resentations of (jump) di↵usion and (jump) di↵usion bridge sample paths over finite in-
tervals, in such a way that the sample path can be restored at any desired finite collection
of time points (Chapters 5 and 6).

In Chapter 7 we presented methodology for particle filters with jump di↵usion latent
transition density, and in Chapter 8 we presented an exact and methodologically extended
version of ✏-strong simulation for (jump) di↵usions and (jump) di↵usion bridges.

Finally, in Section 8.3 we presented a novel approach for determining (with finite com-
putation) whether or not (jump) di↵usion and (jump) di↵usion bridge sample paths cross
various irregular and non-trivial barriers, simulate to any specified tolerance the first hit-
ting time of the barrier by a sample path, and simulate killed di↵usion sample paths.

9.1 Future Directions

We believe there is considerable scope in investigating practical applications of the method-
ology developed in Section 8.3 (whereby we determine whether or not (jump) di↵usions
cross various irregular barriers). In particular, the methodology should be directly ap-
plicable in a flexible manner to tackling classical Dirichlet problems (see [Mörters and
Peres, 2010, Chap. 4] for a discussion on Brownian motion and Dirichlet problems)
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and problems in rare event simulation (see for instance Cérou and Guyader [2007] and
Lagnoux-Renaudie [2009]). Other avenues of possible direct research for this methodol-
ogy lie in finance (for instance, option pricing) and survival modelling.

One possible methodological application of Section 8.3 (and more generally of Chap-
ter 8) is to address the time scaling issues of exact algorithms for simulating di↵usion
and jump di↵usion bridges. In particular, as the exact algorithms are rejection based
schemes the computational cost of simulating a di↵usion sample path does not scale lin-
early with the time interval with which it has to be simulated over (which can be noted
as a consequence of the form of the acceptance probability, recalling from Section 5.2
that X ⇠ x,y

0,T with acceptance probability P x,y
0,T

(X) = exp{� R T
0 �(Xs) ds} · exp{�T }),

rendering the approach impractical for very large time intervals. In the case of di↵usions
with unconditioned end point the Markov property can be exploited to break the interval
into a number of smaller intervals. The sample path can then be simulated by concatenat-
ing a simulated di↵usion sample path over each interval. Currently the choice of interval
size is not well understood, and so one possible avenue of research is how to determine
the ‘optimal’ size. In the case of conditioned di↵usions this approach can not be taken,
however, a recent novel time discretisation approach introduced by Bladt and Sørensen
[Forthcoming], proposes the simulation and merging of two unconditioned di↵usion sam-
ple paths, one simulated forwards in time and one backwards in time from the end point.
If it were possible to adapt such an approach to fit within the exact algorithm framework
then this would address the time scaling issues of (jump) di↵usion bridges.

Another possible methodological application of Section 8.3 is to utilise the almost sure
bounds the methodology provides on the first hitting time of an irregular barrier by a
(jump) di↵usion, in order to construct a retrospective algorithm to unbiasedly simulate
the first hitting time with finite expected computation.

Recent exact algorithm methodology for simulating jump di↵usion bridges has been used
to extend MCMC methodology (see for instance Gonçalves [2011] and Gonçalves and
Roberts [2013]), so one possible area of research would be to similarly extend the method-
ology developed within this thesis (in particular Chapters 5 and 6). Possible applications
of such an extension include electricity pricing (see for instance Culot et al. [2006]).

A natural avenue of research for the particle filtering methodology in Chapters 3 and
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7 is to investigate the smoothing and prediction problems (see Sections 3.1.3 and 3.1.2
respectively) in the context of HMMs with di↵usion latent transition density. To motivate
this note that the methodology developed in this thesis provides a finite dimensional rep-
resentation of entire di↵usion sample paths, and so in this particular setting each particle
in the particle set contains rich information on the trajectory of the entire latent process.

Finally we note that the class of processes for which the exact algorithm methodology
developed within this thesis can be applied is limited by the conditions imposed in Sec-
tion 1.3. Clearly it would desirable to develop methodology enabling the simulation of
sample path skeletons from a broader class of processes, including di↵usions and jump
di↵usions with discontinuous drift and stochastic volatility models among others.
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A

Elementary Cauchy Sequence

Functions

“I can believe anything provided it’s
incredible.”

— Oscar Wilde

In Section 6.1 we define the functions &̄ and '̄ which form the building blocks for the
construction of all other alternating Cauchy sequences in this thesis. In Section 6.3.2
we exploit the full representation of ⇢ found in Theorem 6.1.4 and Definition 6.1.2 in
terms of &̄ and '̄. In particular, we make the remark that each can be represented in the
form exp(ai + biw), where each function ai and bi can be explicitly calculated. Further-
more, note that the multiple of any two such functions can also be represented in the form
exp(a j + b jw).

In this appendix we briefly detail the possible functions that can arise and show an explicit
representation for each in terms of ai and bi. With reference to Section 6.1 and Section
6.1.2, note that in addition to functions listed below there are also the corresponding neg-
ative versions, a set for each of the possible layer combinations ([`#, �"], [`", �"], [`#, �#]
and [`", �#]) as well as various multiples of these functions. Denoting D := |�i � `i| and
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M := (`i ^ �i) we have,

&̄`i,�i
s,q ( j; x,w) = exp

⇢

� 2
q � s

⇣

D2 j2 + 2DM j + M2 � D jx � Mx
⌘

|                                                   {z                                                   }

ai,1

� 2
q � s

(�D j � M + x)
|                       {z                       }

bi,1

w
�

,

&̄`i,�i
q,t ( j; w, y) = exp

⇢

� 2
t � q

⇣

D2 j2 + 2DM j + M2 � D jy � My
⌘

|                                                  {z                                                  }

ai,2

� 2
t � q

(�D j � M + y)
|                      {z                      }

bi,2

w
�

,

'̄`i,�i
s,q ( j; x,w) = exp

⇢

� 2 j
q � s

⇣

D2 j + Dx
⌘

|                  {z                  }

ai,3

+
2 j

q � s
D

|    {z    }

bi,3

w
�

,

'̄`i,�i
q,t ( j; w, y) = exp

⇢

� 2 j
t � q

⇣

D2 j � Dy
⌘

|                  {z                  }

ai,4

� 2 j
t � q

D
|    {z    }

bi,4

w
�

.
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B

Bisections & Dissections

“To live e↵ectively is to live with adequate
information.”

— Norbert Wiener

In Section 6.3.3 we noted that if we consider sample paths which belonged to the set
D⇤|(Wq = w), where q 2 (s, t) and,

D⇤ :=
⇣n

W[s,t] : m̂s,t 2
h

`#s,t, `
"
s,t

io

\

n

W[s,t] : m̌s,t 2
h

�#s,t, �
"
s,t

io⌘

, (B.1)

then any given sample path must belong to one of 9 possible disjoint sets D⇤|(Wq = w) =
]9

i=1Bi (so called bisections). In Section 6.3.3 we provided a graphical illustration of the
bisections (which we reproduce here for convenience in Figure B.0.1). In this appendix
we formally list the sets B1 � B9, which are as follows,

B1 :=
⇣n

W[s,q] : m̂s,q 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

�#⇤s,t, �
"
s,t

io⌘

. (B.2)

B2 :=
⇣n

W[s,q] : m̂s,q 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`"⇤s,t, (w ^ y)
io

\

n

W[q,t] : m̌q,t 2
h

�#⇤s,t, �
"
s,t

io⌘

. (B.3)

B3 :=
⇣n

W[s,q] : m̂s,q 2
h

`"⇤s,t, (x ^ w)
io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

�#⇤s,t, �
"
s,t

io⌘

. (B.4)

B4 :=
⇣n

W[s,q] : m̂s,q 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

(w _ y), �#⇤s,t
io⌘

. (B.5)
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Figure B.0.1: Illustration of 9 possible (disjoint) bisections.

B5 :=
⇣n

W[s,q] : m̂s,q 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`"⇤s,t, (w ^ y)
io

\

n

W[q,t] : m̌q,t 2
h

(w _ y), �#⇤s,t
io⌘

. (B.6)

B6 :=
⇣n

W[s,q] : m̂s,q 2
h

`"⇤s,t, (x ^ w)
io

\

n

W[s,q] : m̌s,q 2
h

�#⇤s,t, �
"
s,t

io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

(w _ y), �#⇤s,t
io⌘

. (B.7)

B7 :=
⇣n

W[s,q] : m̂s,q 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,q] : m̌s,q 2
h

(x _ w), �#⇤s,t
io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

�#⇤s,t, �
"
s,t

io⌘

. (B.8)

B8 :=
⇣n

W[s,q] : m̂s,q 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[s,q] : m̌s,q 2
h

(x _ w), �#⇤s,t
io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`"⇤s,t, (w ^ y)
io

\

n

W[q,t] : m̌q,t 2
h

�#⇤s,t, �
"
s,t

io⌘

. (B.9)

B9 :=
⇣n

W[s,q] : m̂s,q 2
h

`"⇤s,t, (x ^ w)
io

\

n

W[s,q] : m̌s,q 2
h

(x _ w), �#⇤s,t
io⌘

[

⇣n

W[q,t] : m̂q,t 2
h

`#s,t, `
"⇤
s,t

io

\

n

W[q,t] : m̌q,t 2
h

�#⇤s,t, �
"
s,t

io⌘

. (B.10)
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E. Slutsky. Über stochastische asymptoten und grenzwerte. Amministrazione del “Metron”, 1925.

H. Tanizaki. Nonlinear filters: Estimation and applications. In Lecture Notes in Economics and
Mathematical Systems, Vol. 400. Springer, 1993.

H. Tanizaki and R.S. Mariano. Prediction, filtering and smoothing in non-linear and non-normal
cases using Monte Carlo integration. Journal of Applied Econometrics, 9:163–179, 1994.

262



P. Vidoni. Exponential family state space models based on a conjugate latent process. Journal of
the Royal Statistical Society, Series B (Statistical Methodology), 61(1):213–221, 1999.

J. von Neumann. Various techniques used in connection with random digits. National Bureau of
Standards – Applied Mathematics Series, 12:36–38, 1951.

M.A. Woodbury. Inverting modified matrices. Technical Report 42, Statistical Research Group,
Princeton University, Princeton, N.J., 1950.

V.S. Zaritskii, V.B. Svetnik, and L.I. Shimelevich. Monte Carlo technique in problems of optimal
data processing. Automation and Remote Control, 12:95–103, 1975.

263



“We live on an island surrounded by a sea of ignorance. As our island of knowledge grows, so
does the shore of our ignorance.” — John Archibald Wheeler


	coverpollock.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	140327_085627_PhD.pdf
	Contents
	Declarations
	Acknowledgments
	Abstract
	List of Algorithms
	List of Figures
	List of Tables
	Chapter Introduction
	Structure
	Contributions
	Conditions
	Verifiable Sufficient Conditions


	I Literature Review
	Chapter Monte Carlo Methods
	Inversion Sampling
	Composition Sampling
	Demarginalisation
	Rejection Sampling
	Importance Sampling
	Series Sampling
	Retrospective Bernoulli Sampling
	Simulating Brownian Motion and Related Processes
	Brownian Bridge at its Minimum or Maximum Point
	Bessel Bridge

	Simulating Poisson Processes
	Time Homogeneous Poisson Processes
	Time Inhomogeneous Poisson Processes
	Compound Poisson Processes


	Chapter Sequential Monte Carlo Methods
	Hidden Markov Models
	The Filtering Problem
	The Prediction Problem
	The Smoothing Problem
	The Kalman Filter

	Sequential Importance Sampling
	Marginal Importance Function Selection
	Optimal Marginal Importance Function
	Prior Marginal Importance Function
	Fixed Marginal Importance Function

	Sequential Importance Sampling / Resampling
	Resampling Methods
	Multinomial Resampling
	Systematic Resampling
	Stratified Resampling
	Residual Resampling

	Auxiliary Particle Filter

	Chapter An Introduction to Simulating Diffusions and Jump Diffusions
	Stochastic Calculus Preliminaries
	The Itô Integral & Itô's Formulae
	Lamperti Transformation
	Girsanov's Theorem
	Transition Density

	Approximate Methods for Simulating Diffusions and Jump Diffusions
	Strong Taylor Schemes
	Other Discretisation Schemes



	II Methodology
	Chapter Exact Algorithms for Simulating Diffusions and Jump Diffusions
	Exact Algorithms for Unconditioned Diffusions
	Bounded and Unbounded Exact Algorithms
	Adaptive Unbounded Exact Algorithm

	Exact Algorithms for Conditioned Diffusions
	Exact Algorithms for Unconditioned Jump Diffusions
	Bounded Jump Intensity Jump Exact Algorithm
	Unbounded Jump Intensity Jump Exact Algorithm
	Adaptive Unbounded Jump Intensity Jump Exact Algorithm
	Incorporating the Jump Intensity Lower Bound

	Exact Algorithms for Conditioned Jump Diffusions

	Chapter Brownian Bridge Path Space Constructions and Simulation
	Simulating Brownian Bridge Path Space Probabilities
	Simulating Elementary Brownian Path Space Probabilities
	Novel Brownian Path Space Constructions

	Layered Brownian Bridge Constructions
	Bessel Approach
	Localised Approach

	Adaptive Layered Brownian Bridge Constructions
	Initial Intersection Layer
	Intersection Layer Intermediate Points
	Dissecting an Intersection Layer
	Refining an Intersection Layer
	Layered Brownian Bridges


	Chapter Particle Filtering for Diffusions and Jump Diffusions
	Poisson Estimators
	Vanilla Poisson Estimator
	Generalised Poisson Estimator

	Particle Filtering Algorithms for Jump Diffusions

	Chapter -Strong Simulation of Diffusions and Jump Diffusions
	-Strong Simulation Methodology
	-Strong Exact Algorithm
	Barrier Crossing
	Example 1 - Nonlinear two sided barrier
	Example 2 - Jump diffusion barrier
	Example 3 - 2-D jump diffusion with circular barrier


	Chapter Concluding Remarks
	Future Directions


	III Appendices & Bibliography
	Appendix Elementary Cauchy Sequence Functions
	Appendix Bisections & Dissections
	Bibliography



