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Abstract 

 This thesis investigates the interaction of memory and decision making in 

relative and retrospective judgment. Theories of memory and decision making are 

often rigorously tested using a variety of data sets, and the resulting theories can be 

applied to a large selection of psychological phenomena. In Chapter 1 I argue that 

theoretical development in relative and retrospective judgment is in contrast often 

very specialized. Theories of relative and retrospective judgment cannot easily be 

applied to other memory and decision making phenomena. Another approach is to 

take broad models or principles from the wider literature and apply them to relative 

and retrospective judgment. I suggest that the SIMPLE model of memory (Brown, 

Neath, & Chater, 2007) and the decision by sampling model (DbS; Stewart, Chater, 

& Brown, 2006) can in combination offer a comprehensive and unifying account of 

relative judgment. In Chapter 2 I find that both relative and retrospective judgments 

are consistent with range-frequency theory. I also find evidence for range effects 

which are inconsistent with decision by sampling. Chapter 3 investigates the role of 

similarity in these relative judgments using the distance based sampling model (Qian 

& Brown, 2005). The results show no evidence for distance based sampling. A 

combined SIMPLE and DbS model (SDbS) is applied to data from previous studies 

in Chapter 4. SDbS and range-frequency theory can account for the data – including 

range effects - equally well. In Chapter 5 I use an incentivized free recall task to 

elicit atypical serial position curves in three experiments. SIMPLE is shown to be 

able to fit the effect of output position which appears important in decision making 

behavior. Overall, this thesis suggests that SDbS is a candidate model for unifying 

retrospective and relative judgment with the wider memory and decision making 

literature. 
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Chapter 1 

Memory and Decision Making 
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How are our decisions influenced by our memory? It is self-evident that past 

experiences influence our judgments. We choose to go to our work every day 

assuming that the experience will be similar to that of previous days. People walk 

confidently across a zebra crossing because they expect the traffic to stop and allow 

them to cross the road. Although these examples are trivial, they demonstrate that 

past events are accessed from a memory system when a judgment is made. Given 

these obvious examples, it is surprising that research into decision making has 

generally failed to capitalize on the extensive research on memory in psychology 

(Johnson & Weber, 2009; Weber & Johnson, 2006). There are some exceptions to 

this generalization and I consider them below. 

In this chapter it is argued that formal models of memory have the potential 

to offer a unifying framework for theories of decision making. First, it is shown that 

the memory literature can contribute to the understanding of decision-making 

behavior. Second, the use of memory processes in accounts of retrospective and 

relative judgment is discussed. Theoretical accounts of both retrospective and 

relative judgment generally acknowledge the importance of the memory system. 

Third, a broad decision-making theory called decision by sampling (Stewart et al., 

2006) is outlined. Finally, the SIMPLE (Brown et al., 2007) and MINERVA2 

(Hintzman, 1984) models of memory and their contribution to decision making are 

examined. This thesis investigates the possibility that a combined model of memory 

and decision making can predict both relative and retrospective judgments. The aim 

of this chapter is to motivate this investigation. 

Memory can be conceived as implicit or explicit. Implicit memory influences 

past experiences without conscious awareness (Schacter, Chiu, & Ochsner, 1993). 

An example of implicit memory is the process of reading words which occurs 
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automatically without requiring conscious access to every past reading event. In 

contrast, explicit memory is not automatic and is involved in the recollection of 

specific past events. Explicit memory can be further divided into autobiographical or 

episodic memory. Autobiographical memory is the synthesis of past events into a 

cohesive narrative focused on the self (Fivush, 2011) whereas episodic memory is 

the specific recollection of discrete episodes in the past (Tulving, 2002). 

Distinguishing between different types of recall is useful when examining 

decision-making behavior. Consider the priming effect, where a previous stimulus 

can influence the identification of a degraded cue even when participants cannot 

recall seeing the stimulus (Tulving & Schacter, 1990; Tulving, Schacter, & Stark, 

1982). The implicit memory system is thought to underpin the priming effect and the 

same memory system is used in explanations of social stereotyping (Banaji, Hardin, 

& Rothman, 1993), attitude formation (Greenwald & Banaji, 1995) and consumer 

choice (Coates, Butler, & Berry, 2006). Studies in neuroscience also support the 

distinction between explicit and implicit memory (Rugg et al., 1998).  

Metacognition about memory processes influences decisions and judgments. 

Metacognition is knowledge of one’s own cognitive processes (Flavell, 1979; 

Fleming & Dolan, 2012). Consider the speed with which items are recalled from 

memory and the influence this information has on judgment. The “availability 

heuristic” proposed by Tversky and Kahneman (1973) suggests that the accessibility 

of items in memory is in itself a source of information used by people when forming 

judgments. For example, N. Schwarz et al. (1991) asked participants to recall either 

6 or 12 examples of their own assertiveness and then rate their assertiveness. 

Participants who gave 12 examples rated themselves as less assertive than those who 
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gave 6 examples. In other words, if it was difficult to recall the required number of 

examples then the participant considered themselves to be unassertive.  

These two examples illustrate the importance of the memory literature in 

theoretical accounts of decision-making behavior. In the first example, superficially 

distinct decision-making behaviors were investigated using a common concept, 

implicit memory. In the second example, knowledge about how accessible items are 

in memory influenced decision making. Taken together these examples illustrate a 

crucial point: explanations of decision-making behavior can benefit from 

incorporating extensively studied memory processes. 

Understanding recall processes is important because people appear to make 

judgments based on small samples drawn from memory and the immediate 

environment. Findings from the decision-making literature suggest that people 

behave like “naïve intuitive statisticians” who fail to consider the limitations of 

making judgments based on small samples (Fiedler & Juslin, 2006; Juslin, Winman, 

& Hansson, 2007). For instance, people seem to poorly adjust for sample size in 

judgments and behave as though a small sample is more representative of the 

underlying population than it actually is (Fiedler & Juslin, 2006; Lindskog, Winman, 

& Juslin, 2013). These findings suggest that the retrieval of items from memory is an 

important component of decision making. 

Decision Making 

In this section, the role of memory processes in previous theories of 

retrospective and relative judgment will be reviewed. In the former, the memory 

system influences the accessibility of past events used in summary judgments and 

produces a ‘snapshot’ of the past. In the latter, the contribution and formulation of 

the memory system thought to underpin relative judgment varies considerably. I will 
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argue that theories from both literatures are limited in scope, contain vague 

conceptions of memory and are generally isolated from recent research into episodic 

memory. 

Retrospective Judgments 

We must often form summary judgments of past events. For example, 

consider your last holiday. Upon your return colleagues and relatives may ask how 

enjoyable it was. Here the experience of a complex event which occurred over a 

period of time must be distilled into a single hedonic judgment. The retrospective 

judgment literature relates momentary and summary judgments whilst assuming an 

influence of selective accessibility in memory. In this section the key findings and 

theories from the retrospective judgment literature are reviewed. 

 There are two reasons to review hedonic judgments here. Firstly, hedonic 

experience modulates memory formation. Experiences which are either very pleasant 

or unpleasant are more likely to be recalled (Berridge & Kringelbach, 2011; 

Hamann, Ely, Grafton, & Kilts, 1999) suggesting that pleasure is a distinct 

dimension in memory. Secondly, studies examining retrospective judgment often use 

a hedonic scale (Kahneman, 2000). This second point is particularly important 

because studies of both relative and retrospective judgment have used hedonic scales 

and the phenomena may be linked (Brickman & Campbell, 1971).  

 The goal of research into retrospective judgment is to explain the relationship 

between momentary experiences and summary judgments. In one study patients 

recorded their pain every 60 seconds during a colonoscopy (Redelmeier & 

Kahneman, 1996). At the end of the procedure the patients were asked to judge 

retrospectively how much pain they had experienced. The surprising finding was that 

duration of the procedure was a poor predictor of the retrospective judgment. The 
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researchers called this effect “duration neglect'”. This effect is particularly surprising 

because the duration of the procedure varied considerably (4-67 minutes). Instead of 

the total duration, the pain reported at its peak and in the final few minutes was 

correlated with the remembered pain. Several other studies have found similar results 

with responses to pleasurable or aversive film clips (Fredrickson & Kahneman, 

1993), annoying sounds (Schreiber & Kahneman, 2000), and pain from vice grips 

(Ariely, 1998). 

 A serious limitation of most explanations of duration neglect is that they are 

not explicit about the underlying memory process. Fredrickson and Kahneman 

(1993) argued that participants create a ‘snapshot’ of the previous event which is a 

selective representation of the experience. According to this explanation, the high 

correlation between peak/end and summary judgments are due to these events being 

over-represented in the ‘snapshot’. This explanation describes the data and offers an 

explanation based on distortions in memory. However, the exact process that 

produces these distortions and how this explanation relates to broader research on 

memory is unclear. A later explanation argues that prototypical representations of 

experiences are created and form the basis of judgment (Kahneman, 2000). Again, 

memory processes are invoked but the nature of these memory processes and the 

relation of these phenomena to other psychological processes is unclear. In chapter 2 

I examine the link between memory processes and summary judgments. 

 Other psychological factors such as familiarity and variance can negate 

duration neglect. Morewedge, Kassam, Hsee, and Caruso (2009) asked participants 

to give overall ratings of either a familiar or unfamiliar sound. In their second 

experiment participants judged the pleasantness of a long or short constant sound 

which was either familiar (a rotary telephone ring) or unfamiliar (a synthesized 
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beep). As expected, the length of the sound did not influence judgments of the 

unfamiliar sound. However, the familiar sound was judged as less pleasant when it 

was longer. In other words, participants were influenced by the length of the sound if 

it was familiar. In another study, Ariely (1998) varied the duration and intensity of 

heat produced by a thermode attached to the arm of the participant. Duration 

influenced retrospective judgments and had a greater effect when the intensity of the 

heat varied. Both of these findings illustrate that familiarity and variation influence 

judgments. 

Duration neglect in retrospective judgment can be disrupted by segmenting a 

continuous experience. Ariely and Zauberman (2000) manipulated the structure of a 

series of annoying sounds. The series of sounds were either played one after another 

without a gap between the sounds or played with a small period of silence between 

each sound. In other words, the sounds formed either a series of discrete events or a 

single flowing event. The participants rated each sound for its annoyance and then 

gave an overall rating. The peak and end ratings predicted overall ratings in the 

continuous sound condition. However, the average rating was a better predictor in 

the segmented sound condition. Interestingly, the initial rating influenced overall 

decisions when the volume of the sound increased and then decreased. The study 

demonstrates the influence of segmentation and the initial experience in overall 

ratings. 

These effects are similar to findings from the memory literature. For 

example, improved recall performance is often seen for stimuli that are more isolated 

along a temporal dimension in comparison to other stimuli. Also, many studies from 

the memory literature over the past century have observed improved recall 

performance for items at the start (primacy) and end (recency) of a series when 
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compared to items in the middle (e.g., Lewandowsky & Murdock, 1989; Murdock, 

1962; Ward, Tan, & Grenfell-Essam, 2010). These findings are predicted by formal 

models of memory such as SIMPLE (Brown et al., 2007). 

Including a formal model of memory into an account of retrospective 

judgment may bring several advantages. First, the retrospective judgment literature 

may be integrated into the memory literature. Currently retrospective judgments and 

episodic memory are described in largely disparate literatures. Second, the 

unexplained influences of experience isolation, familiarity, and apparent recency and 

primacy effects in retrospective judgment may be accounted for by using theories 

developed in the memory literature (such as SIMPLE). The current theoretical 

accounts of these effects in retrospective judgment are limited in application to other 

broader theoretical frameworks. Thirdly, other phenomena could be investigated 

under the same framework. Chapter 4 examines the application of a combined 

memory and judgment model which can be applied to a range of memory and 

decision-making phenomena.  

Relative Judgment  

 Judgments of items are often made in relation to other similar items. For 

example, how expensive is a £1 pint of milk? Here a subjective judgment is being 

made about an objective price. Intuitively, our judgment will be influenced by the 

prices of other pints of milk drawn from the environment and memory. If the average 

price of milk is £3 then we might expect a person to judge a £1 pint of milk as not 

very expensive. On the other hand, if the average price is 50p then that same £1 pint 

of milk will be judged as more expensive. In other words, altering the contextual 

information available to the individual may influence the subjective judgment of a 

stimulus. Research in relative judgment investigates the relationship between the 
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objective values of contextual stimuli (e.g., prices of other pints of milk) and 

subjective judgments of a stimulus (e.g., a £1 pint of milk).  

This section on relative judgment is separated into three parts. First, research 

demonstrating the influence of context on judgment and the basic methodology used 

in relative judgment studies is introduced. Second, the highly influential adaptation 

level theory (ALT; Helson, 1964a) and range-frequency theory (RFT; Parducci, 1995) 

are discussed, and the role of memory processes in these accounts is reviewed. Third, 

the multi-domain decision by sampling model (DbS; Stewart et al., 2006) is 

introduced. It is argued that a broad account based on DbS may offer an account 

integrating the relative judgment literature with broader findings from the memory 

and decision-making literature. 

Studying Context Effects. As described above, contextual stimuli influence 

subjective judgments in many domains. In a seminal study, Parducci (1965) asked 

participants to rate the size of a series of squares on a seven point Likert scale 

ranging from 1 (very small) to 7 (very large). All the participants saw the same sized 

squares. The presentation frequency of each square in the context was manipulated. 

If judgments were based on the objective size of a square then the frequency of other 

squares should have no influence on ‘largeness’ ratings. Parducci found that the 

frequency of other squares influenced the subjective judgments that participants gave 

to each square. For example, the same square was judged as larger if most of the 

stimuli were smaller in comparison to the judged square. In other words, Parducci’s 

study demonstrated that context and judgment are interlinked. This link between 

contextual items and both judgment and decision making has been shown in 

economic (Stewart, Chater, Stott, & Reimers, 2003; Ungemach, Stewart, & Reimers, 
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2011), social (Wedell, Parducci, & Geiselman, 1987) and psychophysical judgments 

(for a review, see Wedell, Hicklin, & Smarandescu, 2007). 

 Here I focus on data from the psychophysics literature for several reasons. 

First, relative judgments have been studied in psychophysics for the last 70 years. 

This research has investigated several key phenomena and produced several theories. 

These theories often form the theoretical basis of research into other areas of 

psychology where relative judgment takes place, such as price perception (for a 

review see Mazumdar, Raj, & Sinha, 2005) and social judgment  (e.g., Wedell et al., 

2007).  

Second, studies in psychophysics often aim to describe how objective 

magnitudes are transformed into subjective impressions (for a review see Murray, 

1993). The method for doing this is highly systematic. The context of a stimulus is 

varied along a single physical dimension (e.g., weight or size) and a corresponding 

judgment along a psychological dimension (e.g., heaviness or largeness) is recorded. 

The key to theoretical development in this literature is finding the mathematical 

functions which relate objective properties to subjective impressions. This approach 

shows some similarity to the methodology of retrospective judgment in which the 

aim is to relate past events which occur along either a physical (e.g., sound intensity) 

or psychological (e.g., pain) continuum to the formation of a single subjective 

impression. This commonality between the two literatures provides a suitable 

starting point for the studies into subjective judgment and memory presented in this 

thesis.  

Third, each of the theories of relative judgment include some form of 

memory. Reviewing the contribution of memory to theories of relative judgment is 

important because it motivates the inclusion of memory in a unifying account of 
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relative and retrospective judgment, and it presents another common psychological 

process in both literatures. For these reasons, reviewing data from psychophysics is 

necessary for motivating the investigation carried out in this thesis. 

Adaptation Level Theory. According to ALT, responses are made relative 

to a single internal reference point (Helson, 1964b). This reference point is called the 

‘adaptation level’ (AL). For example, according to ALT the satisfaction derived 

from a £5 payment depends on the distance of £5 from an internal standard (such as 

the mean payment). In the original formulation of the theory the AL is derived from 

the combined intensities of past and present stimuli. In other words, ALT assumes 

that due to the assimilation of past and present stimuli there is a stimulus intensity to 

which an organism is adapted (the AL) and gives a neutral response. If participants 

are asked to rate an item along a 7-point Likert scale then a stimulus at the AL will 

be given a rating of 4. Responses to other stimuli are a function of the deviation of 

the stimulus from the AL. 

 The first formulation of ALT explicitly includes memory processes in the 

calculation of the AL. The ALT was first applied to responses to surfaces of varying 

color and luminance (Helson, 1938). Helson found that several phenomena from the 

vision literature could be predicted using a single unified theory. In this formulation 

the AL is a weighted mean of previous and present stimuli 

 𝐴𝐿 = 𝑃𝑃𝑤𝐹𝐹𝑤𝐵𝐵𝑤 (1) 

where the activation of stimuli in the past, P, foreground, F, and background, B, are 

weighted by three independent parameters, 𝑃𝑤 𝐹𝑤  𝐵𝑤. In this formulation the AL can 

be composed entirely of past stimuli drawn from memory. A key limitation to this 

approach is that the exact memory processes are not made explicit. 
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 Later formulations of ALT calculated the AL as the mean of the stimuli. ALT 

was later extended to responses along psychophysical scales as a frame of reference 

theory (Michels & Helson, 1949). Responses were predicted based on the deviation 

of the stimulus intensity from the mean, 

 𝐴𝐿𝑇𝑖 =  �̅�𝑠 − 𝑆𝑖 (2) 

where the response to a stimulus, 𝐴𝐿𝑇𝑖 , is the deviation of stimulus intensity, 𝑆𝑖 , 

from the mean intensity of the stimuli set, �̅�𝑠 . Once again the memory processes 

underpinning these judgments are not explicit. Numerous variations of the above 

formulation have been successfully applied in several areas of psychophysics 

(Appley, 1971). In each application, a single pooled contribution of memory is 

considered or implicitly inferred.  

 In the price perception and income literature the single reference point 

theories are highly influential (Mazumdar et al., 2005). Within this literature the 

influence of a price on a customer is a function of its deviation from a reference price. 

Some models consider previous prices and memory accessibility, but these accounts 

are largely descriptive (Briesch, Krishnamurthi, Mazumdar, & Raj, 1997). Other 

models such as RFT have been applied to reference price effects (Niedrich, Sharma, 

& Wedell, 2001). 

Range-frequency Theory. Volkmann (1951) noted that stimulus ratings 

could be predicted based on the range position of the stimulus along a dimension of 

interest. According to the range principle, 

 𝑅𝑖 = (𝑆𝑖 − 𝑆𝑚𝑖𝑛)/(𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) (3) 

where the response to a stimulus, 𝑅𝑖 , is the distance of the stimulus, 𝑆𝑖, from the 

smallest stimulus, 𝑆𝑚𝑖𝑛, divided by the range of stimulus intensities, 𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛. 

Consider an example in which a participant is told to expect a payment between £1-
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£6 or £4-£9. Then the participant is given £5 and is asked to judge their satisfaction 

with the payment. The range-based prediction for the £5 payment is .8 (high 

satisfaction) for the £1- £6 range and .2 (low satisfaction) for the £4-£9 range.  A 

higher satisfaction response is predicted in the £1-£6 range because £5 is higher up 

in the expected range. According to the range principle response categories (e.g. 1-7 

on a Likert scale) are evenly distributed across the range of expected stimuli types.  

 The frequency principle predicts responses based on the relative rank of the 

stimulus. According to Parducci (1965) the frequency principle reflects a 

participant’s tendency to use each response category with equal frequency. For 

example, if there are seven stimuli and seven response ratings then the first stimulus 

will be given a rating of 1, the second stimulus a rating of 2, and so on. So the 

predicted response is the relative rank of the stimulus, 

 𝐹𝑖 =  (𝑟𝑖 − 1)/(𝑁 − 1) (4) 

where 𝐹𝑖 is the rank of the stimulus, 𝑟𝑖, minus 1 divided by the number of stimuli, 𝑁, 

minus 1. 

In RFT responses are predicted as a weighted average of the range and rank 

position of a stimulus within the comparison set (Parducci, 1965, 1995),  

 𝑅𝐹𝑇𝑖 = 𝑤𝑅𝑖 + (1 − 𝑤)𝐹𝑖 (5) 

where the prediction of the range-frequency model, 𝑅𝐹𝑇𝑖 , is the weighted average of 

the range, 𝑅𝑖, and rank, 𝐹𝑖 , predictions as described in Equations 3 and 4. The w 

parameter is a free parameter allowed to vary between 0 and 1 which controls the 

weight given to the range or rank principles. When w approaches 1 the responses 

become closer to those based on only the range position of the stimulus. 

Parducci (1965) noticed that the predictions of the range and frequency 

principles would be different if some stimuli occurred more frequently than others. 
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Consider the above £5 example again with an expected distribution of payments of 

either (a) £3 £4 £5 £6 £6 £6 or (b) £3 £3 £3 £4 £5 £6. Distribution (a) is negatively 

skewed and distribution (b) is positively skewed.  

How do the predictions for these distributions differ? Let us consider a £5 

payment and a response between 0 (unsatisfied) to 1 (satisfied). In both payment 

distributions the response predicted by the range principle is .67. This is because the 

distance of the £5 payment to the smallest and largest payment is the same in both 

distributions. The frequency principle predicts different responses for each 

distributions. For the positively skewed distribution (£3 £3 £3 £4 £5 £6) the 

frequency principle predicts a satisfaction rating of .8. For the negatively skewed 

distribution (£3 £4 £5 £6 £6 £6) most of the payments are higher than £5: the 

frequency principle predicts a satisfaction rating of .4. The difference in predictions 

is due to the difference in frequency of each payment. 

In a series of studies Parducci demonstrated that RFT can predict responses 

to skewed distributions (e.g., Parducci, 1956, 1965, 1968; Parducci & Haugen, 

1967). Parducci recorded responses from skewed distributions of stimuli and, as 

predicted, responses were influenced by frequency manipulations. Responses were 

predicted using the weighted average of the range and frequency principles as 

outlined in Equation 5. 

 An advantage of RFT is its ability to predict findings that cannot be predicted 

by either the range principle only or ALT. Parducci (1965) argued that if the AL is 

the mean of the stimuli (see Equation 2) then altering other properties of the stimulus 

distribution, such as the frequency of items, should not influence judgments. He 

asked participants to rate the largeness of squares on a seven-point scale from 1 (very 

small) to 6 (very large). All participants rated the same 9 squares. The sizes of the 
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squares were on a non-linear scale. He manipulated the frequency of square sizes so 

that some squares were more frequently presented than others. These manipulations 

produced 13 stimulus distributions. Here I will focus the bimodal and unimodal 

shaped distributions (see Figure 1 and Figure 2). 

 

Figure 1. Unimodal distribution of square sizes presented in Parducci (1965) 

 

 

Figure 2. Bimodal distribution of square sizes presented in Parducci (1965) 
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The predictions of the range principle and ALT the distributions in Figure 1 

and Figure 2 are the same. The position of each square in the range of the 

experienced squares is the same in both distributions. According to the range model 

(see Equation 3) 13.3 cm square should be given the same rating in both distribution 

conditions. The mean square size for both distributions is 14 cm. If the AL is equal 

to the mean of the stimuli (see Equation 2) then ALT predictions that the square will 

be given the same response rating in both distributions. The difference between the 

two distributions is the frequency of each stimulus type. Due to this difference in 

frequency the relative rank of the stimuli will differ. For example, the rank position 

of squares of size 8.3 cm will be higher in the bimodal distribution because more of 

the squares are a smaller size. 

Parducci (1965) found that the responses to the distributions differed. Figure 

3 shows the mean ratings of each stimulus type from Parducci (1965) for the 

distributions in Figure 1 and Figure 2. The results are inconsistent with both the ALT 

and the range principle. In other words, the rank of a stimulus within the stimuli set 

contributed to the subjective rating of the stimulus. 

Parducci (1965) found that participant responses were best predicted by a 

combination of the range and frequency principles. The predictions of RFT with an 

equal weighting on the range and frequency predictions (w = .5) are plotted on 

Figure 3. In both cases, the RFT predictions closely match the qualitative pattern of 

the data. Figure 4 shows the range principle (w = 1), frequency principle (w = 0) and 

RFT (w = .5) predictions for the U-shaped distribution used by Parducci (1965). 

Neither the range principle or frequency principle predictions fit the average 

responses well. The equally-weighted RFT predictions perform much better. In other 
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words, the range principle or frequency principle alone are poor predictors of 

participant responses in comparison to the weighed mean in RFT. 

 

Figure 3. Mean judgments of each stimulus type and predictions of RFT from 

Parducci (1965) 

 

 

 Similar manipulations with a diverse array of stimuli have supported RFT. 

The model has been applied to psychophysical (Parducci, Perrett, & Marsh, 1969) 

(Parducci, Perrett, & Marsh, 1969), hedonic (Parducci, 1968) and social (Pettibone & 

Wedell, 2007; Wedell et al., 1987) judgments. For example, Wedell, Parducci, and 

Roman (1989) asked students to grade hypothetical results from a 100-point exam 

using an A-F scale. The frequency of low and high marks was varied. RFT predicted 

the grades that the students allocated to the grade marks. All of these studies support 

RFT over ALT and either a range principle only or frequency principle (rank) only. 
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Figure 4. Range principle, frequency principle (relative rank) and RFT predictions of 

responses to the U-shaped distribution of squares from Parducci (1965) 
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distribution of payments with the same total and mean payment. To ensure that the 

mean and total payments were the same the absolute range of the payments were 

different. The average reported satisfaction was higher for participants when the 

payment distribution was negatively skewed (items in the upper portion of the 

payment range were most frequent).  

Smith, Diener, and Wedell (1989) extended RFT to summary judgments. 

Following the findings from Parducci (1968), Smith et al. (1989) asked participants 

to rate the happiness they would expect a waitress to experience after receiving a 

series of either positively or negatively skewed hypothetical tips. After rating all the 

tips the participants were asked to rate how happy the waitress would be with the 

distribution of tips shown to the participant. These summary ratings were higher 

when the distribution of hypothetical tips was negatively skewed, which is consistent 

with the average higher ratings for negatively skewed distribution reported by 

Parducci (1968). These findings led Parducci (1995) to suggest that RFT is a theory 

of both online and summary happiness. These overall skew effects are examined in 

Chapter 2 as they represent a link between retrospective and relative judgment. 

 However, the initial formulation of RFT was unable to account for stimulus 

or category manipulations. Parducci and Wedell (1986) replicated the square size 

estimation experiment whilst varying the number of categories and unique stimuli. 

Increasing the number of rating categories that participants could use decreased the 

effect of frequency (i.e., skewness) on judgments – the category effect. Decreasing 

the number of unique stimuli also decreased the effect of frequency on judgments – 

the stimuli effect. 

 To account for these effects a more explicit account of memory was added to 

RFT. The initial formulation of RFT suggested that memory was involved in 
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judgments (Parducci, 1965; Parducci et al., 1969; Parducci & Perrett, 1971) but 

specific memory processes were not included in the model. Wedell and Parducci 

(1985) extended RFT to accommodate stimuli and category effects by including 

rudimentary memory processes. Central to the extended model is the assumption that 

the distribution of stimuli is recreated from memory for each judgment. The 

presentation frequency of a stimulus is retrieved from memory by accessing each 

presentation event serially and is performed for all the stimulus types in parallel. If 

little time is allowed for search in memory then the recalled frequency of each 

stimulus type was assumed to be similar and the recalled distribution more uniform. 

Wedell and Parducci (1985) argues that increasing the number of response categories 

decreases the time available to search memory. 

When Parducci and Wedell (1986) increased the number of stimulus types 

they reduced the frequency of each stimulus type. If searching for the presentation of 

each stimulus in memory occurs in parallel for each stimulus type then increasing the 

number of stimulus types reduces the time required to build the distribution from 

memory (i.e., the recalled distribution is closer to the actual distribution when each 

stimulus type is less frequent). However, it is unclear how this formulation of 

memory may be applied to wider memory phenomena (e.g., primacy, recency and 

isolation effects). Similar accounts overcome this limitation by incorporating 

memory retrieval and a need for consistency in responses (i.e., responses to the same 

stimulus should be the same) also account for these effects (Haubensak, 1992; 

Parducci & Wedell, 1986). But these other similar are still unable to predict some 

phenomena in the memory literature. 

In summary, incorporating memory processes into models of relative 

judgment improves the ability of these models to predict responses. Price perception 
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models using a single reference price can predict a wider range of behavior if the 

influence of previous prices is considered. RFT without explicit memory processes is 

unable to fully account for judgment behavior. In these cases the memory processes 

are highly specific to relative judgment. At present, there is no model which can 

account for the full range of context effects, remain compatible with the present 

findings in memory, and be applied to the retrospective judgment literature.  

In other words, memory processes appear to be important in relative 

judgment but the current models are generally isolated from the broader memory 

literature. The focus of this thesis is the development of a model that encapsulates a 

contemporary understanding of episodic memory and is able to unite apparently 

disparate decision-making phenomena. In the next section a model of decision 

making which has been applied directly to relative judgment is introduced. 

Decision by Sampling. The decision by sampling (DbS; Stewart et al., 2006) 

model of judgment and choice predicts responses based on simple cognitive 

processes. In DbS a judgment is formed based on the number of stimuli higher and 

lower than a stimulus. Using the number of stimuli above and below a stimulus 

allows the participant to calculate the relative rank of the stimulus 

 
𝐷𝑏𝑆𝑖 =  

𝑁𝑙𝑜𝑤𝑒𝑟

𝑁𝑙𝑜𝑤𝑒𝑟 + 𝑁ℎ𝑖𝑔ℎ𝑒𝑟
 (6) 

This relative rank model is identical to Parducci’s frequency principle (see Equation 

4) if we assume that all of the experimental stimuli are in the memory sample that 

participants recall. 

 There are three main differences between DbS and RFT. First, the range 

position of a stimulus does not directly influence the predictions of DbS. The 

formulation of DbS in Equation 6 is purely the relative rank of a stimulus within the 

stimuli. The implications of this are discussed below. Second, DbS assumes that 
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rudimentary cognitive processes such as long term and working memory are central 

to decision making. The popular formulation of RFT (see Equation 5) does not 

explicitly incorporate cognitive processes. Third, decisions are made dynamically in 

DbS. The RFT model is largely descriptive and assumes that stimuli are categorized 

before the first judgment is made. In contrast, DbS suggests that decisions are made 

on a decision by decision basis.  

 DbS assumes that decisions are formed on the basis of a limited sample 

which is recalled from memory. Stewart et al. (2006) make two assumptions about 

this sampling process. Their first assumption is that a sample of around six values is 

kept in working memory - the limit of around six or seven items in working memory 

is a robust finding in psychology (Baddeley, 1994; Miller, 1956). Their second 

assumption is that the sampling process is stochastic (i.e., random). According to 

DbS, the participants draw on past distributions of values and the current 

environment to form a sample within working memory: Judgments of a stimulus are 

predicted by the relative rank of the stimulus within that sample. 

 Figure 5 illustrates how the range, rank, RFT and DbS models differ. 

Consider an example where a person judges the attractiveness of a £7 price. In this 

example, each model predicts a different response to the £7 price. The range, rank 

and range-frequency models predict responses based on other prices in the present 

environment (£5, £8, and £9). This immediate environment is the other experimental 

stimuli presented either sequentially (such as weights) or simultaneously (as in social 

judgments such as Brown et al, 2009). The range-only model predicts response based 

on the highest and lowest value stimuli (in this case (7-5)/(9-5) = .5). Rank predicts 

responses based on the number of items lower and higher than the judged item ((2-
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1)/(4-1) = .33). Range-frequency theory predicts that responses will be between the 

range and rank model predictions. 

Decision by Sampling predicts responses based on a sample from memory 

which can include items from the present and past environments (see Figure 5). In 

DbS responses are based on rank based comparison. In the figure the DbS 

predictions may be based on the current environment – the same as the rank only 

model (.33) – or include both the present and past environments (in this case, with 

both past and present items the predictions is (5-1)/(8-1) = .57).  

The central difference between the models is that the assumption in DbS that 

sample are drawn from memory. We assume that a rank based process underpins 

judgment. In the original formulation of DbS this was assumed to be a stochastically 

drawn set of stimuli combining both the present and past stimuli. The sampling from 

the past and present stimuli is depicted in the ‘sampling’ box in figure 5. 

 In this thesis I investigate the sampling processed which may underpin 

judgment. The process underpinning sampling from memory may be stochastic and 

the stimuli are evaluated using a rank based processes (see lower right portion of 

figure 5). On the other hand, other processes may mediate this sampling procedure. 

Other factors include sampling based on the distance of other stimuli from the items 

being judged (see chapter 3) and the local distinctiveness of item amongst its 

neighbors (see chapter 4). The GEMS and SIMPLE models offer cohesive accounts 

of these processes which may mediate the sampling of items before rank comparison 

takes place. The main focus of this thesis is the extent to which other cognitive 

processes such as those found in memory research can explain the apparent range 

effects reported in the relative judgment literature. 
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Figure 5. Illustration outlining how RFT, Range-only, Rank-only and DbS use 

different features of the enviroment to predict judgments. 

 

 Consider a simple example that illustrates the different predictions of DbS 

and RFT. Imagine going to a supermarket to buy milk. You have shopped there 

before and the price is normally quite low. However, this time most of the milk is 

expensive. The distributions of prices in the environment and memory for this 
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example are given in Figure 6. In the environment (the supermarket) higher milk 

prices are more frequent. In long-term memory most of the milk prices are low. 

 

Figure 6. Example price distributions in memory and the environment 
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environment. Consider the expensiveness of milk costing 80p and 90p as shown in 

Figure 7. The immediate environment is dominated by milk costing £1 whereas past 

experience is dominated by milk costing 70p (see Figure 6). If responses are based 

only on the environment then milk costing 80p or 90p should appear relative 

inexpensive as predicted by RFT and the frequency principle. One the other hand, if 

past experience influences decisions then milk costing 80p and 90p should be much 

more expensive because past experience is dominated by lower values, as predicted 

by DbS. This example demonstrates a crucial difference between DbS and previous 

models of relative judgment: A psychologically plausible memory mechanism is 

central to DbS. 

 

Figure 7. Predicted milk price expensiveness ratings from the RFT, DbS, and rank-

only models 
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unequally. Participants appear to lose more utility for a loss when compared to a gain 

of the same financial value. Kahneman and Tversky (1979) investigated the 

difference between economic losses and gains. Participants in their study were split 

into Sellers, Choosers and Buyers. Every participant had to choose between going 

home with an attractive mug or a pre-specified amount of money. Sellers were given 

a mug and asked how much they would exchange it for. Choosers chose between 

gaining the mug or money. Buyers indicated the price for which they would purchase 

the mug. The median price for the Sellers was $7.12. For the Choosers it was $3.12 

and the Buyers were willing to pay $2.88.  The difference between the three groups 

was the framing of the decision. For sellers the cash was in exchange for the loss of 

the mug. For both the Choosers and Buyers the cash was in exchange for the gain of 

the mug. The experimenters concluded that losses had a larger subjective impact 

than corresponding gains – loss aversion. Loss aversion has been observed in several 

other scenarios (Neale, Huber, & Northcraft, 1987; Thaler, 1980). The non-linear 

relationship between a loss and a gain was described by Kahneman and Tversky’s 

(1979) value function. The second feature is that high and low probabilities are 

differently weighted in decision making. Kahneman and Tversky (1979) asked 

participants to choose between lottery options. They found that people act as though 

very low probability events are more probable than they actually are, and treat high 

probability events like as less probable than they actually are. 

 DbS offers a process-based account of this behavior. Stewart et al. (2006) 

examined the frequency of cash credits and cash debits in a sample of the UK 

population and the frequency of phrases describing probability from the British 

National Corpus. The credits and debits both followed power law distributions such 

that smaller payments and debits were most common. If these distributions are taken 
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to accurately represent the distribution in memory that people draw upon when 

making decisions then a sharper drop in subjective value is expected for losses 

compared to gains. In other words, DbS predicts the value function from prospect 

theory based on samples drawn from memory. The probability phrases showed that 

phrases like “Never” and “Always” were generally more frequent than phrases 

which representing equal probability. Placing these items on a probability scale 

between 0 and 1 allowed the relative rank of each probability to be calculated. The 

function showed a remarkable similarity to the probability weighting function in 

Kahneman and Tversky (1979). Taken together, these findings suggest that DbS can 

predict similar effects to those described by prospect theory. Crucially, in DbS these 

behaviors are caused by the use of rudimentary cognitive tools (i.e., ordinal 

comparison) and distributions of values drawn from memory. 

 DbS can also predict social judgments. For example, Wood, Brown, and 

Maltby (2012) examined the link between the subjective risk associated with 

drinking alcohol and the relative rank of alcohol consumption. In their first study, 

participants reported (a) their alcohol consumption, (b) their perceived chance of 

developing illness and (c) their subjective distribution of alcohol intake throughout 

the UK. The relative rank of the participant within their recalled distribution of 

alcohol consumption was a significant predictor of their perceived chance of 

developing illness. In a second study Wood et al (2012) experimentally manipulated 

the distribution of alcohol consumption which participant used to make their 

judgments. Participants were shown different distributions of weekly alcohol 

consumption. The distributions were shown one at a time and participants were 

asked to give the probability of long-term illness for each value in the distribution.. 

In both studies relative rank was a better predictor than the distance from the 
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distribution average. Other studies in other domains of social judgment have shown 

similar findings (Brown, Gardner, Oswald, & Qian, 2008; Melrose, Brown, & Wood, 

2012). This work suggests that distributions accessed from long-term memory do 

influence social judgments. 

 However, DbS appears unable to predict range effects in the relative 

judgment literature. As reviewed above, RFT combines two principles. The 

frequency principle is the relative rank of the stimulus and is identical to DbS. The 

range principle is the range position of the stimulus. According to the range principle 

the rating of a stimulus will increase as the distance of the stimulus from the lowest 

and highest value increases. Parducci (1965) demonstrated that a weighted average 

of both principles predicts responses better than either in isolation. If we assume that 

all of the stimuli in an experiment are present in a sample from memory then DbS 

predictions are based on just the relative rank of an item and so DbS appears unable 

to produce range-based effects. Consider the data and predictions in Figure 4. An 

equal compromise between the range and frequency (rank) principles fits responses 

from a U-shaped distribution better than rank alone. 

 Is it possible for DbS to predict these effects predicted by the range principle? 

The participants in Parducci (1965) were shown 45 squares one after another. In the 

formulation of DbS above (which is the same as the frequency principle) we may 

assume that all of the stimuli are equally accessible in memory. For example, the 

23rd square will be given a neutral rating (.5) because 22 smaller squares and 22 

larger squares are considered in the judgment. This seems unlikely. A large literature 

has examined systematic distortions in memory for serially presented items (e.g., 

Hogan, 1975; Laming, 2010; Murdock, 1962; Rundus & Atkinson, 1970). Stewart et 

al. (2006) assumed that the sampling processes from memory was stochastic (i.e., 
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random) and they acknowledged that this was a simplifying assumption which was 

most likely wrong. One possibility which will be examined in this Chapter 4 is that 

DbS may be able to account for range effects if the accessibility of items in memory 

is calculated using a formal model of memory (such as SIMPLE).  

 This section has reviewed the relative judgment literature and illustrated 

several limitations of past findings and theories. In retrospective judgments the 

isolation and serial position of an experience alters summary judgments. These 

effects have been studied in the memory literature. In relative judgment, RFT cannot 

predict a wide range of findings from the memory and decision-making literature 

(e.g., primacy, recency and the economic behavior described by prospect theory). 

Including some memory processes accounts of relative judgment generally improves 

the predictive ability of the models. However, models from both the relative and 

retrospective judgment literature are generally isolated from other literatures. An 

advantage of DbS over these accounts is that it has already been widely applied to 

judgments and decisions from the social and economic literatures, and explicitly 

incorporates episodic memory. The next section considers two models of memory 

which could be combined with DbS to unify these literatures. 

Memory 

SIMPLE 

In this section the SIMPLE model of memory is discussed. To foreshadow, 

the SIMPLE memory may be able to account for both peak and end effects in the 

peak-end literature, and apparent range effects in the relative judgment literature. 

SIMPLE (Brown et al., 2007) has been applied to free and serial recall data. In both 

paradigms the participants are shown a series of items one after another. After being 

shown all the items they are asked to recall as many as they can. In serial recall the 



31 

 

 

items must be recalled in the order that they were presented in. In free recall the 

items can be recalled in any order. Key results from both paradigms are predicted by 

the SIMPLE model (e.g., Brown et al., 2007; Lewandowsky, Duncan, & Brown, 

2004; Lewandowsky, Nimmo, & Brown, 2008). 

Two assumptions are central to the SIMPLE model. First, memories of 

events are located within a multidimensional memory space. In principle, multiple 

dimensions can be included in the model. Second, the probability of recalling an 

item from memory decreases as its confusability with other items increases. 

Let us consider a simple example to illustrate the SIMPLE model. Imagine 

you are buying a pack of biscuits and trying to recall previous biscuit prices. In this 

example price is the dimension of interest. The prices when you last visited the store 

were: 

50p 60p 70p 80p £1 £1.50    £3 

and you want to recall the previous prices before you decide the expensiveness of the 

other biscuits in the store. 

 First, the similarity of each price to the others is calculated, 

 𝜂𝑖𝑗 =  𝑒−𝑐|𝑀𝑖−𝑀𝑗| (7) 

where the similarity of stimuli 𝑖  and 𝑗  is an negative exponential function of the 

absolute differences in magnitude along the dimension of interest, |𝑀𝑖 −  𝑀𝑗|. The 

exponential function transforms external magnitudes into psychological distances 

(Nosofsky, 1986; Shepard, 1957). Applied to the biscuit price example Equation 7 

gives us a matrix of similarity between items. This matrix of similarities is shown in 

Table 1. The £3 biscuit has a much lower overall similarity to all of the other prices. 

Intuitively, we would expect the £3 price to be more easily discriminated and, 

according to SIMPLE, more likely to be recalled. 
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Table 1 

Similarity of the prices of packs of biscuits to one another 

Price 

Price 50 60 70 80 100 150 300 

50 1 .61 .37 .22 .08 .01 0 

60 .61 1 .61 .37 .14 .01 0 

70 .37 .61 1 .61 .22 .02 0 

80 .22 .37 .61 1 .37 .03 0 

100 .08 .14 .22 .37 1 .08 0 

150 .01 .01 .02 .03 .08 1 0 

300 0 0 0 0 0 0 1 
Note: Shading indicates similarity. The c parameter was set to 0.05 for this illustration. 

 

The c parameter reflects the relationship between psychological distance and 

similarity. The relationship between the c parameter and similarity in psychological 

space is shown in Figure 8. In the figure the transformed distance between the 50p 

price and the other prices is shown for multiple c parameter values. Increasing the c 

parameter reduces the similarity of one price to another and changes the impact of 

distance on similarity. From a psychological viewpoint the c parameter modulates 

the steepness of the relationship between distance and confusability.  
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Figure 8. The effect of the c parameter on the similarity of 50p to other prices 

 

In the simplest formulation of SIMPLE the probability of recalling a price is 

given by  

 
𝐷𝑖 =  

1

∑ (𝜂𝑖,𝑗)𝑛
𝑘=1

 (8) 

where the discriminability of the price, 𝐷𝑖, is 1 divided by the sum of the similarity 

of a price to all the other prices. The discriminability of each price is shown in 

Figure 9. 
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Figure 9. The impact of the c parameter on the discriminability of biscuit prices 

 

The recall probabilities in Figure 9 match our earlier intuition. The £3 price is 

most likely to be recalled and the 70p price is least likely. Applied to DbS, the higher 

recall probability of £1.50 and £3 would make them more likely to be in the sample 

drawn from memory.  

The SIMPLE model is able to predict key findings from the memory 

literature. In studies of free and serial recall items at the start and end of a series are 

much more likely to be recalled than items in the middle. These are the primacy – 

the first few items – and recency – the last few items -  effects, which have been 

observed in serial learning, free recall, recognition memory and other paradigms 

(e.g., Crowder, 1976; Healy, Havas, & Parker, 2000; Lansdale, 1998; Murdock, 

1974). In SIMPLE recall is like a discrimination task. Along the temporal dimension 
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the first and last items are more easily discriminated from other items because they 

have no temporal neighbors. The successful application of SIMPLE to serial position 

effects in free recall typically involves two additional parameters, t and s, which 

control an omission threshold that is necessary to fit the free recall data. To ensure 

that the above example was as simple as possible these parameters were not 

considered, but the parameters are used and explained in applications of SIMPLE 

presented in the later chapters. 

In this thesis I examine the application of SIMPLE to judgments phenomena 

for at least two reasons. First, SIMPLE predicts that locally distinctive events are the 

most likely be recalled. Along the temporal dimension these are the first and last 

items in a series, and along other dimensions (e.g., pain and pleasure) these may be 

peak and troughs of a series. These predictions appear to match the peak and end 

effects observed in the summary judgment literature briefly reviewed above. Second, 

SIMPLE is a multidimensional model. Relative judgment stimuli are altered along a 

single dimension. But experiences in contributing to retrospective judgments unfold 

over time and vary in intensity. In other words, they vary along two dimensions. In 

SIMPLE the discriminability of an item in memory space can be multidimensional. 

These reasons are why SIMPLE rather than other models such as MINERVA 2 (see 

below) is applied to judgments in this thesis.  

MINERVA-DM 

MINVERA-DM (MDM; Dougherty, Gettys, & Ogden, 1999) is a model of 

memory applied to decision-making behavior. The decision-making model extends a 

model of memory called MINERVA2 (Hintzman, 1984, 1988) to judgments of 

likelihood and frequency. In MDM recall behavior depends on the similarity of a 

probe to traces in ‘secondary memory’. This subsection has three aims. First, the 
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MINERVA2 model is introduced. Second, the MDM model and its applications are 

discussed. Third, the potential applicability of MDM versus SIMPLE to relative and 

retrospective judgments is considered. 

 Consider the following example, which illustrates MINERVA2. In this 

example a participant is shown the same item twice and is later asked to identify the 

item they saw. Let the item be a pint of milk. In the model this item is represented by 

a vector of feature values such as 

[1 1 -1 0] 

where 0 represents an irrelevant feature, 1 is excitory and -1 is inhibitory. The 

meaning of each vector value is arbitrary and in our case the first two values 

represent the packaging and the last two values represent the shape of the bottle. 

 Every time a memory item is presented to the participant a memory trace is 

encoded into secondary memory. The accuracy of the memory trace depends on the 

value of the L parameter. Each non-zero feature value has an L probability of 

entering the memory trace and a 1-L probability of being a 0 in the trace. The 

resulting memory traces after two presentations of the milk bottle with the L 

parameter set to 0.5 are shown in Figure 10. Roughly half of the features in the 

representation of the milk bottle are present in each of the traces. 

 

Memory Event 1 1 -1 0 

T1 

 

0 1 0 0 

T2 

 

0 1 -1 0 

 

Figure 10. Memory event encoded into secondary memory on two occasions with a 

learning parameter (L) of 0.5 
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 Recall is predicted by the response of all the traces in secondary memory to a 

probe from primary memory. The underlying principle of MINERVA2 is that all of 

the traces in memory respond to a probe simultaneously in the form of an “echo”. 

Recall behavior is a function of the intensity and content of the echo. In turn, the 

content and intensity are influenced by the similarity of the probe to the traces in 

memory. If a probe is more similar to the traces then the echo and content will be 

stronger. Similarity is calculated as  

 

𝑆𝑖 =  ∑ 𝑃𝑖𝑇𝑖𝑗

𝑁

𝑖=1

/𝑁 (9) 

where the similarity of a trace, 𝑆𝑖, is the sum of each feature in the probe multiplied 

by the corresponding feature 𝑖, of trace 𝑗, 𝑃𝑖𝑇𝑖,𝑗 , divided by the number of non-zero 

features in either the trace or the probe, 𝑁.  The similarity of the trace to the probe is 

transformed into the activation by cubing the similarity 

 𝐴𝑖 = 𝑆𝑖
3 (10) 

where the activation of a trace, 𝐴𝑖, is the cube of the similarity of the probe to the 

trace, 𝑆𝑖
3. This allows traces that are more similar to the probe to dominate the echo. 

The intensity of the echo is the sum of the activation of all of the traces. 

 

𝐼 =  ∑ 𝐴𝑖

𝑀

𝑖=1

 (11) 

Let us apply these equations to our milk bottle example (see Figure 10). The 

participant is shown a set of items which contains the original milk bottle and is 

asked to rate the familiarity of the items. The original milk bottle is the retrieval cue 

to which the traces in memory respond. 

As shown in Figure 11, the milk bottle (probe) and the first memory trace 𝑇1 

share only the second out of three non-zero features which gives a similarity of .33 
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and an intensity of .04. The probe and the second trace 𝑇2 share two features out of 

three non-zero features resulting in a similarity of .67 and an activation of .3. Cubing 

the similarity of the trace give a lower activation of traces less similar to the probe 

(trace one) and a higher activation of the more similar trace (trace two). The intensity 

of the echo from the traces given the probe is .34 which is the sum of the activations 

from each memory trace. 

Probe 1 1 -1 0 

 

0 1 0 0 

 

0 1 0 0 

 

1 1 1 0 

 

Probe 1 1 -1 0 

 

0 1 -1 0 

 

0 1 1 0 

 

1 1 1 0 

 

 

Figure 11. Example calculations of similarity and activation in MINERVA2 

 

The intensity of the echo increases as the similarity of the probe to all the 

traces in secondary memory increases. In the MDM model estimates of frequency 

and likelihood are a function of the intensity of the echo. Increasing the L parameter 

increases the correspondence of the trace and the original memory event such that 

𝑇1 

𝑃1𝑇1,𝑗 

𝑁1 

∑ 𝑃1𝑇1,𝑗 =  1 

∑ 𝑁1       =  3 

𝑆1           =  1/3   =  0.33       

𝐴1            =  𝑆1
3 = 0.04            

𝑇2 

𝑁2 

𝑃2𝑇2,𝑗 

∑ 𝑃2𝑇2,𝑗 =  2 

∑ 𝑁2      =  3 

𝑆2           =  2/3  =  0.67       

𝐴2             =  𝑆2

3
= 0.3            

𝐼           =  0.04 + 0.3 =    0.34       
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low value of L result in poor recognition of a stimuli (probe) which has been 

previously encoded into a trace.  

 In MDM the content of the echo does not influence judgments. The content 

of the echo represents a reproduction of the original event and the intensity the 

strength of the recall. The content is calculated as 

 

𝐶𝑖 =  ∑ 𝐴𝑖𝑇𝑖𝑗

𝑀

𝑖=1

 (12) 

where the content of the echo, 𝐶𝑖, is the sum of all the features in all of the traces 

weighted by the trace activation.  

 MDM predicts frequency judgments as a function of the echo intensity. The 

intensity of the echo depends on the similarity of the probe to all of the traces in 

memory. If an item is encoded in secondary memory many times, more of the traces 

in memory will be highly similar to the probe. A trace is created in secondary 

memory every time an item is presented, so more traces which are similar to the 

probe suggests that the probe has been shown to the memory system many times 

before. In other words, if an echo is very intense then the probe was more frequent. 

The model was applied successfully to frequency judgments by Hintzman (1988).  

There are several reasons why SIMPLE might be more suitable than MDM 

for modeling relative and retrospective judgments. Firstly, SIMPLE models predict 

both primacy effects because in the model time is log compressed which decreases 

the confusability of the final items of a series relative to the first or last items. 

Secondly, SIMPLE predicts recall based on distinctiveness and can be extended to 

multiple dimensions. The ability of the peak and end of an experience to predict 

retrospective judgments could reflect the distinctiveness of the end experience along 

the temporal dimension and the distinctiveness of the peak experience along an 
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intensity dimension. SIMPLE is more able to model these properties than 

MINERVA2. Thirdly, SIMPLE may offer a way to predict the range effects 

observed in relative judgment. Changes in the range position of a stimulus alter the 

distance of the stimulus to its neighbors. In other words, range manipulations may 

alter the distinctiveness of an item. Deriving the recall probability of a stimuli using 

SIMPLE may allow DbS to predict range effects (for example, see Brown & 

Matthews, 2011).  

Summary of Remaining Chapters 

 The remaining chapters of this thesis were originally written to be separate 

academic papers. They have remained in this format. To highlight their purpose in 

the thesis as a whole each chapter has an “Introduction to Chapter” section. Here I 

provide a brief overview of the contribution of each chapter within this thesis. 

In Chapter 2 I present experiments that investigate the influence of range 

position on relative and retrospective judgments. I show that the range position of a 

stimulus can influence both types of judgment and that these effects are predicted by 

RFT at an individual level. These range effects are a challenge for DbS. 

 The model comparison in Chapter 3 examines the extent to which these range 

effects can be attributed to distance based sampling. Exemplar models of memory 

predict that contextual items may be weighted by their distance from the item being 

judged. The generalized exemplar model of sampling (GEMS; Qian & Brown, 2005) 

incorporates distance based sampling: RFT as a special case of the GEMS model. 

Individual level model comparison using data from 5 previous studies shows that 

RFT offers a better account of the data and that relative judgment effects may not be 

attributed to distance based sampling. 
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 In Chapter 4 I develop the combined SIMPLE and DbS model (SDbS) and fit 

it to the data from 5 previous studies. The analysis shows that SDbS and RFT can fit 

the qualitative pattern of the data equally well. I suggest that the SDbS should be 

favored when considering the independent empirical support of DbS and SIMPLE. 

 The experiments in Chapter 5 used monetary incentives to elicit atypical free 

recall behavior. Both recency (Kahneman, 2000) and output order (Johnson, Häubl, 

& Keinan, 2007) seem to influence decision making and judgment. Participants 

recalled highly incentivized items in the first output position producing atypical 

serial position curves. I demonstrate that SIMPLE can be used to fit and investigate 

the resulting data. 

 Finally, Chapter 6 summarizes these findings and considers them in relation 

to the wider research area. I discuss directions for future work to investigate an 

integrated and unifying account of relative judgment and decision making. 
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Chapter 2 

Negatively Skewed Distributions Are More Satisfying 
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Introduction to Chapter 

 In the previous chapter I outlined the Decision by Sampling (DbS) model of 

decision making. This model can predict many economic and social decision-making 

phenomena. The aim of this thesis is to investigate if this model can account for 

relative judgment phenomena? However, DbS appears unable to predict range 

effects which are widely reported in the relative judgment literature. As an initial 

step, I investigate the size and reliability of range effects at the level of individual 

participants. 

 In this chapter I present three experiments that investigate a link between 

range effects in relative and retrospective judgment. These experiments demonstrate 

that (a) range effects are present at an individual level, (b) range effects are present 

in retrospective judgments. Model based analysis of the experimental data compares 

adaptation level theory, range-frequency theory, the range principle and the 

frequency principle at an individual level. 

 The findings presented here lay the foundation for later chapters. I go beyond 

previous work by examining range effects at an individual level with sequentially 

presented stimuli. The effect of range on retrospective hedonic judgments of 

sequential stimuli links the relative judgment and peak-end studies literatures. 

Demonstrating range effects at an individual level motivates the model comparisons 

presented in Chapters 3 and 4. 
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Abstract 

How does the structure of a series of payments influence recipient 

satisfaction? One hypothesis is that each payment will be compared with a single 

“standard” or “reference” payment (e.g., the average payment). Applications of 

cognitive models of judgment such as range-frequency theory predict in contrast that 

the entire payment distribution will be influential. Three experiments examined 

satisfaction with a series of payments. Most payments were relatively high in the 

experienced distribution (negatively skewed) or relatively low in the experienced 

distribution (positively skewed). The total and average payment was held constant. 

Experiment 1 found that average satisfaction with individual payments was higher 

when the payments were negatively skewed, extending earlier findings with model-

based analysis at the individual level. We compared range-frequency theory with the 

range and frequency principles.  Experiment 2 examined satisfaction with whole 

sequences of payments and found that a negatively skewed sequence was more 

satisfying than a positively skewed sequence. Experiment 3 replicated the effect with 

dissatisfaction judgments, and found that effects of payment skew on satisfaction 

with overall sequences could not be explained by memory distortions due to 

sampling from real-world payment distributions. It is concluded that negatively 

skewed payment distributions are more satisfying, as predicted by range-frequency 

theory. 
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What effect does payment structure have on payment satisfaction? 

Employees often receive regular payments for work (e.g., weekly or monthly wages) 

punctuated by occasional larger amounts (e.g., monthly or yearly bonuses). Under 

such a system the majority of payments received are at the lower end of the range of 

experienced payments – i.e., the payment distribution is positively skewed. 

However, recipients’ overall evaluations of an experienced sequence of payments 

may be adversely affected under such conditions. Cognitive models of context-based 

judgment suggest that occasional high payments may overshadow the more frequent 

lower payments. Intuitively, it may be dissatisfying to receive, on the majority of 

occasions, payments that are at the lower end of the range of payments ever received 

(Parducci, 1968). If overall amount of payment received is held constant, would 

people be more satisfied with a negatively skewed distribution of payments, in which 

relatively high payments occur most of the time, even if the overall amount of pay 

was the same, as Parducci suggested? 

Here we apply cognitive models of context-based judgment to satisfaction 

with different payment structures. We develop and extend work by Parducci (1995) 

and others to examine (a) whether and under what conditions negatively skewed 

payment structures will be more positively evaluated and (b) whether selective 

memory for particular payments is responsible for such effects. We go beyond 

previous work in using likelihood-based model fitting at the level of individual 

participants (to allow model-based analysis of individual differences) and in 

examining both satisfaction with individual payments and satisfaction with whole 

sequences of payments.  

The structure of the rest of this paper is as follows. First we outline the 

differing predictions made by various cognitive models of contextual judgment for 
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the effects of payment structure skew on satisfaction. We then review previous 

studies that have examined preferences for different payment structures. Three 

experiments are then presented. Experiment 1 replicates an earlier finding that 

negatively skewed payment distributions lead to greater satisfaction (Parducci, 1968), 

and uses individual-level model fitting to demonstrate that there are individual 

differences in sensitivity to the skewness of payment distributions. Experiment 2 

finds that the preference for negatively skewed payment distributions holds when 

whole sequences of payments, rather than individual payments, are evaluated. 

Finally, Experiment 3 finds that the negative-skew preference remains when 

dissatisfaction rather than satisfaction is elicited, and that memory bias in the recall 

of payments does not explain the preference. 

Contextual Models of Judgment 

A central assumption underpinning the present research is that the context 

(here, the payment distribution) within which a payment is received will influence 

the satisfaction judgment associated with its receipt. Within cognitive psychology, 

there are several different models of how judgments are made within a context 

(Vlaev, Chater, Stewart, & Brown, 2011). Here we review the most relevant models 

of contextual judgment. Each model is described and its predictions for the 

evaluation of different payment structures are outlined.  

Reference Level Model 

One possibility is that each payment is compared to some average, “typical”, 

or “reference level” amount. The idea that subjective judgments of payments involve 

comparison of each to a single reference point can be seen as an application of the 

adaptation level theory (ALT; Helson, 1947, 1964a) and is shown in Equation 13,  
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 𝐽𝑖 = 𝑘(𝑆𝑖 − 𝑆̅) (13) 

where the judgment iJ  of a stimulus iS  depends on its distance from the average 

payment S . A constant k scales responses to fit within the range of possible 

responses. 

Within the income satisfaction literature several studies have suggested that 

satisfaction with one’s income depends on its relation to an average or “reference” 

income (Clark & Oswald, 1996; Luttmer, 2005), but these studies relate to across-

individual comparisons rather than the within-individual comparisons that form the 

focus of present paper. 

 The predictions of the reference-level model for positively and negatively 

skewed payment distributions depend on the reference payment to which all 

payments are compared. If the reference payment is the mean payment then the 

single reference point model predicts a neutral overall response to sequences with the 

same mean (Brickman & Campbell, 1971). 

Relative Rank Model 

Alternatively, people may evaluate payments according to their relative rank 

within the distribution of expected or experienced payments. This approach is 

consistent with the decision by sampling model (DbS; Stewart et al., 2006) 

according to which economic quantities such as payments are evaluated by counting 

up the number of higher and lower quantities that are present in a mental comparison 

sample. Several studies support a relative rank account of judgments of wages 

(Brown et al., 2008) and life satisfaction (Boyce, Brown, & Moore, 2010), such that 

people gain satisfaction from an income to the extent that it ranks higher than others 

rather than (or as well as) its absolute amount, but such accounts, like the reference-
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level model, have not generally been applied to within-individual judgments of 

payments. 

Relative rank of the ith payemnt Fi is given by  

 
𝐹𝑖 =

𝑟𝑖 − 1

𝑁 − 1
 (14) 

where 𝑟𝑖 is the rank position of the ith item and N is the total number of items.  The 

relative rank model predicts no difference in overall responses if the number of items 

in the series is the same — distributional changes leave rank information unchanged. 

Consequently, a pure relative rank model predicts no effect of the skewness of the 

payment structure (although see Brown & Matthews, 2011). 

Range Model 

The third type of model assumes that the position of a payment within the 

range of experienced or expected payments will influence satisfaction with the 

payment. Changing the skew of a payment structure alters the range position of the 

payments. In a bonus style payment structure (i.e., a positively skewed structure) 

most payments are in the lower portion of the range. In a negatively skewed payment 

structure most of the payments are in the upper portion of the range. Consequently, 

average responses based on the range position of the payments are higher on average 

in a negatively skewed payment structure (Parducci & Wedell, 1986). Formally, a 

range based prediction is given by the equation below. 

 
𝑅𝑖 =

𝑆𝑖 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
 (15) 

where iR  is the range based judgment of stimulus iS , given the smallest minS  and 

largest maxS stimulus. The range based prediction is thus the distance of a payment 

from the smallest payment divided by the total range of payments. An effect of range 
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on subjective judgments has been reported in the salary literature (Highhouse, Luong, 

& Sarkar-Barney, 1999; Rynes, Schwab, & Heneman III, 1983).  

Range-frequency Theory 

 Range-frequency theory (RFT; Parducci, 1965) combines rank and range 

based predictions. RFT predictions are a weighted compromise between the range 

based and rank based responses as shown in the below equation. 

 𝐽𝑖 = 𝑤𝑅𝑖 + (1 − 𝑤)𝐹𝑖 (16) 

where Ri and Fi are as in Equation 14 and Equation 15. 

The relative weighting of range and rank influence is specified by the w 

parameter. When w equals 1 then predictions are as for the range model. When w 

equals 0 then predictions are as for the relative rank model. Predictions based solely 

on relative rank (w = 0) are the same for two differently skewed payment structures. 

However, predictions based on the range position of stimuli will lead to higher 

average responses in a negatively skewed payment structure because there are more 

payments in the upper portion of the range in a negatively skewed compared to a 

positively skewed structure. In RFT we would expect higher average responses in 

the negatively skewed payment structure as the weighting parameter approaches 1. 

There is considerable support in the wider judgment literature for RFT. 

Studies examining judgments of drink sweetness (Riskey, Parducci, & Beauchamp, 

1979), hypothetical tips (Wedell & Parducci, 1988), payments (Parducci, 1968, 

1995), squares of different sizes (Parducci, 1982) and many other types of stimuli 

(e.g., Birnbaum, Parducci, & Gifford, 1971; Parducci, Calfee, Marshall, & Davidson, 

1960; Wedell & Parducci, 1988; Wedell et al., 1987) show response patterns that are 

predicted by RFT but are inconsistent with either rank only or range only models. 
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The models described here predict different average responses to skewed 

payment structures. The mean comparison and rank based models predict no effect 

of skewness on either response to individual items in the distribution or summary 

judgments. The range only and range frequency models (with w > 0) predict a 

preference for negatively skewed payment structures; these model predictions will be 

compared in Experiment 1.  

Previous Findings 

Skew effects have been studied under a variety of conditions. Some studies 

ask participants to rate their satisfaction with every payment in a series they 

experience (e.g., Parducci, 1968). Other studies, such as preferences for lotteries, ask 

participants to provide a single summary judgment (e.g., Garrett & Sobel, 1999). 

Furthermore, comparisons can be made within the participant’s experienced 

payments or across group payments.  

Lottery Preferences  

One possibility is that a judgment of satisfaction with a wage distribution is 

akin to judgment of a range of risky outcomes (i.e., a lottery), with the different 

payments playing the role of different outcomes and the relative frequency of a given 

payment being its probability. Both humans (Burke & Tobler, 2011a; Golec & 

Tamarkin, 1998; Symmonds, Wright, Bach, & Dolan, 2011) and animals (Caraco & 

Chasin, 1984; Coombs & Pruitt, 1960) prefer lotteries with positively skewed 

outcomes when the mean expected gain is held constant. Moreover, brain regions 

such as the insula appear responsive to lottery skewness (Burke & Tobler, 2011b; 

Wu, Bossaerts, & Knutson, 2011).  

To be consistent with the lottery preference literature, a payment distribution 

offering a low probability of a large payment and a high probability of a small 
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payment would be preferable to the reverse, assuming that the total income is the 

same. Such preferences would be consistent with the underweighting of low 

probabilities described in prospect theory (Kahneman & Tversky, 1979), but 

inconsistent with both the intuitions mentioned earlier and the psychological 

literature reviewed below. 

Responses to payment structures may in any case be quite different to 

preferences for lotteries, for at least two reasons. First, the judgment of risky 

prospects, where the outcome is not under the control of the person making a 

judgment or choice, seems quite different from a case where payments are earned 

and are assumed to reflect effort. Second, several cognitive biases (such as loss 

aversion) characterize anticipated feelings prior to an outcome rather than the 

reactions that are actually experienced following an outcome or outcomes (Gilbert, 

Morewedge, Risen, & Wilson, 2004; Kermer, Driver-Linn, Wilson, & Gilbert, 2006). 

People are subject to “affective forecasting errors” such that for example they 

overestimate the intensity of the negative feelings they will experience when they 

suffer a loss. Moreover, described and experienced outcomes are often differently 

evaluated (Hertwig, Barron, Weber, & Erev, 2004). Therefore people’s preferences 

for positively and negatively skewed outcomes in described lotteries may not relate 

to their satisfaction with experienced distributions of probabilistic payments. 

Across-individual Comparisons 

A large literature has examined the effects of income distribution (inequality) 

on various measures of wellbeing (Wilkinson & Pickett, 2010). Given that real-

world income distributions are almost invariably positively skewed, research that has 

examined the effects of income inequality on happiness (e.g., Alesina, Di Tella, & 

MacCulloch, 2004; Hagerty, 2000) is relevant to across-individual comparisons and 
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to preferences for greater or lesser amounts of positive skew. It is therefore of 

limited relevance to the current study though the payment of others can influence 

judgments of one’s own payments (for a review see Gerhart & Rynes, 2003). 

Within-individual Comparisons 

 Most relevant to the present investigation are the few studies that have 

directly examined satisfaction with skewed payment structures. A seminal paper by 

Parducci (1968) gave participants either a positively or negatively skewed payment 

structure. The participants received a payment after selecting one of three cards. 

After each payment the participant rated their satisfaction with that payment. The 

average of the satisfaction ratings was higher when the payment structure was 

negatively skewed. This finding is important because ratings along hedonic scales 

such as satisfaction or well-being may indicate levels of utility (Oswald & Wu, 2010; 

Sandvik, Diener, & Seidlitz, 1993). However, the study did not examine participants’ 

satisfaction with the overall sequence of payments that they received (e.g., by asking 

them for a summary satisfaction judgment at the end of the study). Retrospective 

judgment of an overall sequence of payments might be the most relevant to real-

world applications (e.g., when workers are looking back on a series of payments and 

evaluating their resulting satisfaction, perhaps when deciding whether to move jobs 

or request a raise). The study also did not examine individual differences (i.e., to 

discover whether all participants’ response patterns were individually best described 

by RFT) and does not allow us to determine whether the range-only model, or the 

range-frequency compromise, best fit the data. Experiment 1 below replicates and 

extends Parducci’s important study to answer these additional questions. 

Smith et al. (1989) found that summary evaluations were higher for 

negatively skewed payment structures. Smith et al. asked participants to rate the 
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happiness they would experience with a series of six hypothetical tips and then to 

rate their overall happiness with the distribution of tips. The tips were either 

positively or negatively skewed. The mean of the payments ratings and the summary 

judgment were both higher when the distributions of tips were negatively skewed. 

These results, like those of Parducci (1968; see also Parducci, 1995) are consistent 

with the expectation that negative skewed payment distributions will be preferred, 

but used only hypothetical payments which were not experienced sequentially.  

Overview 

Three experiments are reported here. In all of the experiments the participants 

receive a negatively or positively skewed series of payments and reported their 

satisfaction with the outcome of the payment series. In Experiment 1 the participants 

additionally rated their satisfaction with each payment in the payment structure. RFT 

is fit to each participant’s data and compared to competing models. In Experiment 2 

participant satisfaction with the overall sequence of experienced payments is 

examined without the presence of trial-by-trial ratings. In Experiment 3 we give 

participants monetary payments and ask participants to recall the payment structure 

they received. 

Experiment 11 

In Experiment 1, following Parducci (1968), we asked participants to rate 

their satisfaction with each of a series of credit payments drawn from either a 

positively or negatively skewed payment structure. We extended Parducci (1968) in 

two ways. Firstly, we compared the fit of RFT at both the individual and group level. 

Secondly, we asked participants to rate their satisfaction with the outcome of the 

                                                      
1  As noted in the Declaration, this experiment is not new to this thesis and has 

already formed part of a dissertation. It is reported here for completeness and as part 

of the manuscript (currently under revision) that forms this chapter 
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overall sequence of payments. RFT predicts that (a) mean credit satisfaction will be 

higher in the negatively skewed condition and (b) the RFT will best fit individual 

responses. Following Parducci (1968) we predict that (c) the outcome of a negatively 

skewed payment structure will be more satisfying. 

Method 

Participants. The sample consisted of 40 undergraduates from the 

University of Warwick separated into two groups of 20. Each participant received 

five candies as payment for taking part in the experiment.  

Materials. The materials used in the experiment were two histograms, two 

decks of cards, a satisfaction scale and some paper tokens. The two histograms 

depicted the skewed payment structures used in the experiment (see Figure 12) 

which replicated the payment structures used by Parducci (1968). One deck 

contained cards with the payment values from the negatively skewed payment 

structure, and the other deck contained cards with the payment values from the 

negative skewed payment structure. Each card had a squared pattern on one side and 

a credit value (e.g., “20p”) on the other. The satisfaction scale was a seven point 

Likert scale ranging from 1 (very dissatisfied) to 7 (very satisfied). The scale was 

printed out and placed in front of participants. Paper tokens depicting credit 

payments were 1cm x 1cm in size.  
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Figure 12. Histograms depicting negatively (a) and positively (b) skewed payment 

structures shown to participants in Experiment 1 

 

Procedure. There were three phases in the experiment. First, participants 

were given instructions and performed a practice trial. Then the participants 

completed 69 experimental trials in which they received a credit payment and rated 

their satisfaction with it. Finally, participants traded all their credit payments for five 
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candies and then rated their satisfaction with the overall amount of payment. Here 

we describe each phase in the order experienced by the participants. 

At the start of the experiment, participants were seated at a table with three 

cards placed face down on it. A printed satisfaction scale was placed below the cards. 

Three sets of candies were placed above the cards. The sets of candies contained four, 

five and six candies which were labelled: ‘0-599’, ‘600-1199’ and ‘1200+’. The 

participants were told that they would trade the total number of credits they won in 

the experiment for candies at the end of the experiment – e.g., 800 credits would give 

the participants five candies at the end of the experiment. The participant was shown 

either the negatively or positively skewed payment structure, as shown in Figure 12, 

depending on which experimental group the participant was in. The participant was 

told that they could expect to receive the payments depicted by the histogram in the 

experiment. The histogram was removed after the participant had examined it. From 

this point the procedure was the same as the one used in Parducci (1968). 

Next, the participant performed a practice trial. The participant chose one of 

the three cards in front of them. All three cards had a value of 14 on the other side 

(i.e., the mean of the payment distribution). The participant then turned over their 

chosen card, saw the 14 value on the underside of the card, and then given a 14-

credit token. After receiving the credit token, the experimenter asked the participant 

to rate their satisfaction with the credit payment on the seven point Likert scale. 

The participant then completed 69 experimental trials. First, the three cards 

from the preceding trial were collected and put in the bottom of the deck of cards. 

Then three new cards from the top of the deck were dealt face down. In each trial the 

credit value printed on the face down side of all three cards was (unbeknownst to the 

participant) the same. The deck contained cards with values from the payment 
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structure shown to the participant at the start of the experiment. In each trial, the 

participant turned over one card, received a credit token equal to the value shown on 

the upturned card, and rated their satisfaction with the credit payment. The 

participant completed 69 trials and received every payment in the payment structure. 

At the end of the experiment, the participant was told they had won 966 

credits in total. The 966 credits allowed the participant to exchange the candies for 

the middle prize of 5 candies presented at the start of the experiment. The participant 

gave the experimenter all of the credit tokens that they had received in exchange for 

five candies. The experimenter then asked the participant to rate on the seven point 

Likert scale their satisfaction with the overall amount of candies they had received.  

Results 

The aims of Experiment 1 were to (a) replicate the findings of Parducci 

(1968), (b) to compare the fit of RFT to the fit of competing models at an individual 

level and (c) to examine whether the overall payments gained by participants were 

more satisfying if they were the results of a negatively skewed payment structure. 

The data of three participants were removed from the analysis due to a low 

correlation between the satisfaction rating given to credit payments and the value of 

the credit payments. The Spearman correlation coefficients between payments and 

satisfaction ratings for these participants were all less than .6 which suggests that 

these participants had misunderstood the task. 

Are payments from a negatively skewed payment structure more satisfying, 

on average, than payments from a positively skewed payment structure? The 

participants rated their satisfaction with each of the 69 payments they experienced in 

the experimental trials. The average of these satisfaction ratings was significantly 

higher when the payments were part of a negatively skewed payment structure (M = 
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4.49, SD = 0.31) than when they were part of a positively skewed payment structure 

(M = 3.77, SD = 0.59) skewed, t(35) = 4.66 p < .001. This difference replicates the 

finding of Parducci (1968) that negatively skewed distributions are more satisfying 

on average in comparison to positive skewed distribution. 

We next examined whether the overall outcome of a negatively skewed 

payment structure is more satisfying than the same outcome from a positively 

skewed payment structure. The participants rated how satisfied they were with the 

candies they received in exchange for the payments they were given in the 

experimental trials. The reported satisfaction with the outcome of the positively (M = 

4.88, SD = 0.86) and negatively (M = 4.94, SD = 0.90) skewed payment structures 

were not significantly different, t(35) = 0.41 p = .69. Further analysis found a 

significant correlation between satisfaction ratings for the final credit payment and 

satisfaction ratings with the outcome of the payments structure, Rs(37) = .39, p = .02. 

These findings suggest that participants were influenced more by their recent 

responses than by the skew of the payment structure when making overall judgments.  

Model Comparison. Model-fitting was undertaken to determine whether 

RFT fit the satisfaction ratings for credit payments better than did competing models. 

We answer this question by comparing RFT to rank only and range only models. 

Model fitting and comparison was carried out at both the group, consistent with 

previous work, and individual levels. 

For model comparison we used a maximum likelihood method. Each 

participant’s response is assumed to be the same as a model’s prediction plus 

normally distributed noise. The parameters of the model (i.e., the w parameter in 

RFT) and the standard deviation of the normally distributed noise were allowed to 

vary freely.  
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We varied the weighting parameter in RFT to compare the rank only (w = 0) 

and range only (w = 1) models to RFT (0 ≤ w ≤ 1). First, we compare the model fits 

to the group level data (i.e., average response across the participants). Then we fit the 

models to each participant’s data individually to compare the model and examine 

individual differences in the model fits. Lower values of -2lnL indicate a higher 

probability of the model given the participant’s response and, consequently, a better 

fit of the model to the data. Both range and rank models are nested within RFT, and 

the difference between the model approximates a χ2 distribution. If the -2lnL is more 

than 3.84 lower we can conclude that the fit of the RFT model is significantly better 

than the comparison model because 3.84 is the critical value of the χ2 distribution 

with  2 degrees of freedom. 

To replicate previous model based analysis we fit each model to the average 

responses of the participants in each skew condition. RFT fit the group level data (-

2lnL = 131.9, w = .42) significantly better than did the rank only (-2lnL = 252.41), 

χ2(1,N = 2) = 120.51, p < .001, or range-only (-2lnL = 200.48), χ2(1,N = 2) = 68.58, 

p < .001, models. These findings are consistent with previously reported 

comparisons of RFT. The best fitting RFT prediction is shown in Figure 13. 
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Figure 13. The average rating given to credit payments in Experiment 1 

 

Range, rank and RFT. Is RFT significantly better than its competitors at an 

individual level? We fit the models to each participant’s data (for individual fit 

statistics see Table 2 and Table 3). The satisfaction measure was ordinal so a prior 

distribution of standard deviations was used (see Appendix A for a detailed 

explanation). RFT is significantly better when the -2lnL for the RFT model is at least 

3.84 lower than competing model. We have marked the participants significantly 

better fit by RFT on the tables using bold characters. Overall, RFT best fit individual 

responses. 
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Table 2 

Fit statistics for participants in the negative skew condition 

Range-only   Rank-only   RFT 

SD -2lnL 
 

SD -2lnL 
 

w SD -2lnL 

0.87 161.98 

 

0.43 91.8 
 

.74 0.34 72.38 

0.73 144.59 

 

0.6 124.2 
 

.57 0.39 86.85 

0.88 158.95 

 

0.6 123.13 
 

.66 0.46 102.59 

1.09 180.86 

 

0.43 93.12 
 

.91 0.42 90.87 

1.72 207.97 

 

0.64 125.4 
 

1 0.64 125.4 

0.74 149.42 

 

0.79 155.06 
 

.47 0.55 120.57 

0.79 153.25 

 

0.74 143.4 
 

.54 0.54 115.77 

0.54 118.66 

 

0.9 167.45 
 

.28 0.46 102.99 

0.82 155.2 

 

0.74 143.37 
 

.55 0.55 117.89 

0.78 151.97 

 

0.61 125.87 
 

.61 0.44 97.25 

0.62 128.64 

 

1.22 192.42 
 

.06 0.61 128.11 

1.26 190.28 

 

1.26 186.47 
 

.54 1.11 177.6 

1 175.06 

 

0.36 74.05 
 

.87 0.32 67.85 

0.63 139.24 

 

0.53 119.19 
 

.55 0.3 67.55 

1.07 167.41 

 

1.36 186.47 
 

.14 1.07 166.72 

0.99 179.58 

 

0.85 160.21 
 

.63 0.74 147.48 

1.02 194.3 

 

1.08 201.45 
 

.43 0.91 182.32 

0.8 165.99 

 

1.49 239.19 
 

0 0.8 165.99 

0.93 185.59   1.03 195.75   .42 0.83 172.59 

Note: Bold typeface indicates that RFT performed significantly better than either the 

range or rank only models 
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Table 3 

Fit statistics for participants in the positive skew condition 

Range-only   Rank-only   RFT 

SD -2lnL   SD -2lnL   w SD -2lnL 

2.57 268.96 

 

1.6 218.31 
 

1 1.6 218.31 

0.64 124.66 

 

0.7 138.57 
 

.45 0.45 90.86 

0.56 116.7 

 

0.84 161.78 
 

.3 0.47 99.98 

1.81 224.06 

 

1.26 187.32 
 

1 1.26 187.32 

1.56 211.62 

 

0.83 150.92 
 

1 0.83 150.92 

1.16 197.94 

 

0.51 113.08 
 

.98 0.51 113 

1.58 218.29 

 

0.51 110.23 
 

1 0.51 110.23 

1.01 197.63 

 

1.01 196.35 
 

.51 0.88 180.37 

0.65 131.53 

 

1.25 184.84 
 

.1 0.64 130.23 

1.29 185.91 

 

0.77 140.91 
 

.87 0.75 139.3 

0.95 168.35 

 

0.94 161.28 
 

.54 0.76 144.67 

0.86 153.66 

 

1.74 211.53 
 

0 0.86 153.66 

0.68 139.45 

 

0.86 154.33 
 

.41 0.52 114.34 

1.31 200.14 

 

1.19 188.13 
 

.65 1.11 182.52 

0.99 179.71 

 

0.39 84.75 
 

.87 0.36 79.01 

0.94 159.3 

 

1.54 200.91 
 

0 0.94 159.3 

0.59 130.94 

 

1.07 195.72 
 

.12 0.58 128.62 

0.99 174.52   0.36 78.04   .86 0.33 70.53 

Note: Bold typeface indicates that RFT performed significantly better than either the 

range or rank only models 

 

What is the relationship between individual satisfaction and the range-rank 

compromise? RFT predicts that skew effects – higher mean satisfaction in the 

negative skew and lower mean satisfaction in the positive skew condition - should be 

correlated with the weighting parameter estimates. This is because the skew 

manipulation alters the number of items in the upper and lower portion of the range 

whilst keeping the number of items constant. Predictions based on relative rank 

alone (w=0) will be the same for both skew conditions. However, as the w parameter 

approaches 1 the model predictions are increasingly based on the range-position of 

the payments. When the payments are negatively skewed items –i.e., are most 
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frequent in the upper portion of the range – the mean predicted response increases as 

w approaches 1. When payment are positively skewed – i.e., items are most frequent 

in the lower portion of the range – the mean predicted response decreases as w 

approaches 1. We would expect w to positively correlate with mean satisfaction in 

the negatively skewed condition and negatively correlate with mean satisfaction in 

the positively skewed condition. 

For the participants whose data were best fit by RFT, there was a significant 

correlation between w and mean satisfaction in both the positively, Rs(12) = -0.70, p 

= .01, and negatively, Rs(17) = 0.95, p < .001, skewed conditions. The fact that 

participants showed a strong relationship between the range-rank compromise and 

their satisfaction responses supports RFT. 

Discussion 

The first finding from Experiment 1 was that the average satisfaction with 

individual payments was higher when payments came from a negatively skewed 

distribution. This finding replicates Parducci (1968), and is consistent with the 

predictions of RFT. Model-fitting demonstrated that RFT accounted for the data 

better than did range-only, or rank-only models at both group and individual level. 

However the main finding, that participants preferred a negatively skewed 

payment distribution, must be qualified; participants’ stated satisfaction with the 

distribution as a whole was not affected by skew. Instead, retrospective judgments 

depended on the final credit payment response as predicted by the peak-end rule 

(Langer, Sarin, & Weber, 2005; Tversky & Kahneman, 1981). The significant 

positive correlation between the final and overall response found in Experiment 1 is 

consistent with this explanation. However, the complete absence of a skew effect is 
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inconsistent with the skew preference literature reviewed above and with evidence of 

averaging in summary hedonic evaluations (e.g., Miron-Shatz, 2009). 

Furthermore, the results are consistent with at least two other interpretations. 

Firstly, if participants neglected the skew of the distribution and instead compared 

the candies won to three possible outcomes, then the relative rank or range models 

would predict a neutral response because all participants were given the middle of 

the three possible prizes. Secondly, the use of online responses may have distorted 

the effect of distribution skew on summary responses. Online ratings in some studies 

have reduced or removed the effect of stimuli structure (Ariely, 1998; Ariely & 

Carmon, 2000; Ariely & Zauberman, 2000, 2003). Participants may (having already 

stated their satisfaction with the individual payments they received) interpreted the 

task demands such that they produced an evaluation of different aspects of the 

experiment in their summary evaluation. We address this possibility directly in the 

next experiment by replicating Experiment 1 without the online ratings. 

Experiment 22 

Experiment 1 found no skew effect on the participants’ retrospective 

satisfaction with the outcome of a skewed payment structure. Two explanations 

consistent with RFT were that the use of online ratings or the relative rank of the 

outcome negated the effect of skew. To test these possibilities, the design of 

Experiment 1 was almost identical to that of Experiment 2 except that the online 

ratings used in Experiment 1 were replaced by a task in which the participants 

merely entered the credit payment they received on each trial. This was done to 

ensure attention to the individual rewards. As before, participants provided a 

                                                      
2 As noted in the Declaration, this experiment is not new to this thesis and has 

already formed part of a dissertation. It is reported here for completeness and as part 

of the manuscript (currently under revision) that forms this chapter 
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summary evaluation of their satisfaction with the overall distribution of payments 

they received. Based on previous findings reviewed above, we predict that the 

participants will be more satisfied with an outcome from a negatively skewed 

payment distribution. 

Method 

Participants. The sample consisted of 12 students from Kings College in 

Wembley and 12 from the University of Warwick. Each cohort was divided equally 

into two experimental groups and each participant was paid five candies for their 

participation. 

Materials. The stimuli and instructions were presented to participants using a 

Java program viewed within an internet browser (see procedure). The histograms 

depicting the skewed payment structures were identical to those used in Experiment 

1. 

Procedure. Participants were seated in front of a computer showing 

instructions for the experiment and told that they would receive credits which could 

later be exchanged for candies. The number of credits needed for the candies was the 

same as in Experiment 1. The candies and labels were displayed in front of the 

computer keyboard throughout the experiment.  

Participants gave their consent by ticking a box on the screen and then the 

histogram used in Experiment 1 was displayed onscreen. The histogram displayed 

either a positively or negatively skewed payment distribution (as shown in Figure 12) 

for several seconds before participants could click on the screen and continue with 

the experiment. Next, participants were shown three cards and asked to choose one 

by clicking on it. After the choice was made, a payment (number of credits) was 

shown.  
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The credits received were identical to those of Experiment 1, starting with a 

practice trial of 14 credits. Unlike in Experiment 1, participants had to enter the 

number of credits using the keyboard instead of reporting a satisfaction rating after 

clicking on a card.  

After completing all the trials the participant were told the number of credits 

they had received and exchanged the credits for candies. The next screen asked 

participants to judge how satisfied they were with the candies by selecting a value on 

a seven point Likert scale similar to the one used in Experiment 1.  

Results and Discussion 

The results supported the hypothesis that negatively skewed distributions of 

payments would be more satisfying than positively skewed payment distributions. 

The payment value shown onscreen and payment value entered by the participant 

were correlated (p’s < .001for all participants) which confirmed that each participant 

attended to each payment. In contrast to the findings of Experiment 1, satisfaction 

with the overall received payment was higher in the negative skew condition (M = 

5.36, SD = 1.36) when compared to the positive skew condition (M = 3.83, SD = 

1.47), t(21) = 2.59, p = .02. The higher satisfaction ratings reported by participants in 

the negative skew condition support the summary judgment predictions from 

Parducci (1995) and match the findings reported by Smith et al. (1989). 

 Taken together the results of Experiments 1 and 2 support the conclusion that 

negatively skewed distributions of payments are more satisfying than are positively 

skewed distributions, even when the overall amount of payment is constant. Next, 

we turn to the question of whether the preference for negatively skewed distributions 

might reflect bias in memory for the experienced payments. 
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Experiment 3 

The theories of relative judgment outlined above assume that, when making 

summary judgments, participants accurately recall the distribution of payments they 

have received. This assumption is hard to reconcile with literature from memory 

pointing out distortions in recall such as the ubiquitous primacy and recency effect 

reported in the episodic memory literature. However it is possible that participants’ 

memory for a distribution is distorted by their prior beliefs about the distribution that 

payments typically follow. Experiment 3 was designed to test this possibility, as well 

as to examine whether the preference for negatively skewed distributions would 

remain when dissatisfaction, rather than satisfaction, judgments were elicited. 

More specifically, participants will have considerable experience of 

positively skewed payment distributions in their real-world experience. For detailed 

analysis of the skewness of real world payment distributions see Stewart et al. (2006). 

If they (a) treat the satisfaction judgment as a task that involves reconstructive 

inference, such that they infer the true payment distribution from a combination of 

the payments they remember and their prior beliefs, and (b) have prior beliefs that 

payment distributions are more likely to be positively skewed, an apparent 

preference for negative skew might result.  

This could occur if the best-fitting positively skewed (e.g., lognormal) 

distribution for the negatively skewed stimuli (cf. Figure 12) had a higher mean than 

the best-fitting positively skewed distribution for the positively skewed stimuli. This 

assumes that people distort the stimuli they have experienced based on their 

experience of a positively skewed distribution of payments outside of the 

experimental setting.  In fact it is the case that the relevant estimates of the mean are 

14.7 and 14.0 for the negatively and positively skewed distributions respectively. In 
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the light of such possibilities, and given the likelihood of memory distortions more 

generally, such that the more “distinctive” payments are more likely to be 

remembered at the point of summary evaluation (Brown et al., 2007), it was 

considered important to determine whether participants were able to recall the 

experienced payments accurately. 

Experiment 3 differed from Experiment 2 in three ways. Firstly, at the end of 

the experiment participants recalled the payments they had received. The skew effect 

reported in Experiment 2 may have been a result of the participants misremembering 

the payment distribution. Secondly, credit payments were replaced by direct 

monetary payments. Thirdly, the participants rated either their satisfaction or their 

dissatisfaction with the total payment to investigate any possible effect of framing on 

overall satisfaction evaluations.  

Method 

Participants. The sample consisted of 84 undergraduates from the 

University of Warwick separated into four groups of 21. Each participant was paid 

£4.16 as a result of their participation. 

Design. The three factors manipulated between participants were the 

skewness of payment distribution (positive or negative), the type of scale used by 

participants when judging their total income (satisfaction vs. dissatisfaction), and the 

position of the recall task in the procedure (before or after provision of an overall 

satisfaction rating). We recorded the value that the participants typed into the 

computer in each trial, the participant’s satisfaction/dissatisfaction with their total 

payments, and the payments that the participants recalled at the end of the 

experiment. As in previous experiments, the order of payment permutation was 

random. 
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Materials. The presentation of the stimuli was controlled by a computer 

program written in Blitz3D. The structure of the program and the instructions given 

to the participants were the same as those used in Experiment 2. The values in the 

histogram presented to the participants and the credit payments were half those used 

in Experiment 2. Two Likert scales were used. The dissatisfaction scale ran from 1 

(very satisfied) to 7 (very dissatisfied). The satisfaction scale ran from 1 (very 

dissatisfied) to 7 (very satisfied). 

Procedure. The procedure was separated into four phases. First, a series of 

instructions was displayed which included a histogram depicting the payment 

structure. Second, the participant performed a practice trial to familiarize themselves 

with the procedure. Third, the participant carried out 69 experimental trials with 

monetary payments. Finally, the total of the monetary payments was displayed and 

participants judged their satisfaction/dissatisfaction with the total payment and 

recalled as many monetary payments as they could remember. Throughout the 

experiment the participant sat next to the experimenter in a laboratory cubicle. 

Participants were first given a series of instructions. The participants were 

told they would be given a monetary payment in each experimental trial and that 

they would receive the total of those payments at the end of the experiment. 

Onscreen instructions informed them that in the experiment they would select one of 

three cards which would then be replaced with a payment value which they would 

type into the computer program. Then a histogram depicting the skewed payment 

structure they could expect to receive in the experiment trials was displayed. The 

skew of the payment structure depended on the skew condition that participants were 

in. The histogram was replaced with a screen introducing the practice trial when the 

participant pressed any key on the keyboard. 
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The practice trial familiarized the participants with the procedure. The 

patterned side of three cards was displayed onscreen. When the participants clicked 

on one of the cards the patterned side of that card was replaced with a card outline 

containing the text “14p”. The participants typed in the value displayed in the card 

outline and then pressed enter. The participants were asked if they had any questions 

about the procedure to ensure they understood the experiment. Any questions the 

participants had were addressed by the experimenter. After the experimenter 

answered any questions the participants then proceeded to the experimental trials.  

Participants received monetary payments in each of the 69 experimental trials. 

The procedure of the experimental trials was the same as the practice trials. The text 

displayed within the outline of the card was one value from either the negatively or 

positively skewed payment structure, depending on the skew condition. All of the 69 

payments depicted in the histogram were shown to each participant. 

Participants were then informed of their total payment: A screen informing 

participants that they had received a total of £4.16 was displayed. After participants 

pressed any key the next screen was displayed. The participants then performed a 

recall task either before or after a rating task. In the recall task the participants wrote 

on a piece of paper as many of the monetary payments from the experimental trials 

as they could remember. They were given a 2 minute time limit. In the rating task the 

participants were shown either a satisfaction or dissatisfaction scale onscreen and 

onscreen instructions asked them to click on the scale to indicate their satisfaction 

with the total payment.  

Results and Discussion 

We first examined whether the greater satisfaction for negatively skewed 

distributions (a) replicated the findings of Experiment 2, and (b) survived the shift to 
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judgments of dissatisfaction rather than of satisfaction. Three factors were 

manipulated between participants and factored into an ANOVA analysis: the skew of 

the payment structure (positive or negative), when the recall task was performed 

(before or after overall ratings), and type of response scale 

(satisfaction/dissatisfaction). Overall judgments made on a dissatisfaction scale were 

reversed to allow comparison of all the responses in a single ANOVA analysis.  

A 2 x 2 x 2 ANOVA found a significant main effect of skew, F(1,76) = 13.65, 

MSE = 22.11, p < .001, η2 = 0.15. As expected, participants were more satisfied with 

the same total payment when it was the outcome of a negatively (M = 5.31 SD = 1.2) 

rather than a positively (M = 4.29, SD = 1.29) skewed payment distribution. Neither 

the type of scale, F(1,76) = 0.01, MSE = 0.01, p = 0.94, η2 = 0, nor the position of 

the recall task, F(1,76) = 0.01, MSE = 0.02, p = 0.92, η2 = 0, had a significant main 

effect on overall judgments. There was no significant interaction between payment 

structure skew and scale type, F(1,76) = 0.27, MSE  = 0.44, p = .6, η2 = 0, payment 

structure skew and the position of the recall task, F(1,76) = 3.29, MSE = 5.33, p 

= .08, η2 = 0.04, or scale type and the position of the recall task,  F(1,76) = 0.27, 

MSE  = 0.44, p = .6, η2 = 0. No significant three way interaction was found, F(1,76) 

= .2, MSE = .32, p = .7, η2 = 0. The only main effect found in the analysis was skew 

which replicated the findings reported in Experiment 2 and is consistent with 

previously reported findings. 

Next we examined accuracy of the recalled distributions. The skewness of the 

payment structures recalled by each participant was calculated and entered into a 2 x 

2 x 2 ANOVA which examined the effects of the payment structure skew (positive 

or negative), the type of scale used for overall judgments (satisfaction or 

dissatisfaction) and the position of the recall task (before or after overall judgments). 
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The skewness of the recalled payment structure in the positively (M = 0.46, SD = 

0.32) and negatively (M = -0.7, SD = 0.32) skewed payment structures were 

significantly different, F(1,76) = 200.46, MSE = 33.38, p < .001, η2 = 0.73. This 

difference suggests that participants had correctly encoded the skew of the 

distribution in memory. No significant main effect of either the position of the recall 

task, F(1,76) = 1.15, MSE = 0.19, p = .29, η2 = 0.02, or the type of scale used, F(1,76) 

= 1.65, MSE = 0.28, p = .2, η2 = 0.02, was found. There were no significant 

interactions. 

Then we examined whether participants accurately recalled the payment 

structure that they received in the experimental trials.  In the negative skew condition 

there was a significant difference between the skewness of the experienced (-0.55) 

and recalled (M = -0.76, SD = 0.43) payment structure, t(41) = -3.12, p = .003. In the 

positive skew condition there was no significant difference between the skewness of 

the recalled (M = 0.5, SD = 0.38) and experienced (0.55) payment distribution, t(41) 

= -0.85, p = 0.402. These results show that participants recalled a payment structure 

that was more extremely skewed than the payment structure they experienced. 

Memory models such as SIMPLE predict that recalled distributions should be less 

skewed than the experienced distribution (as in the positive skew condition).  

The mean of the recalled distributions was significantly smaller than the 

experienced mean of 7.5 in both the negatively skewed (M = 7.12, SD = 0.7), t(41) = 

-3.5, p < .001, and positively skewed (M = 7.20, SD = 0.65), t(41) = -3.01, p = .004, 

payments structures. There was no difference between the recalled mean based on 

the skewness of the payment structure, t(82) = 0.51, p = .61. Though the mean was 

underestimated by the participants, the skewness of the distribution did not influence 

the mean of the recalled distribution. 
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 In summary: Experiment 3 confirmed that the total payment from a 

negatively skewed payment distributions is more satisfying, and extended the 

previous findings to show that (a) the effect remains when dissatisfaction rather than 

satisfaction is judged, and (b) that memory distortions due to previously experienced 

positively skewed payment distributions are unlikely to be responsible for the effect. 

General Discussion 

Three experiments showed that negatively skewed payment distributions are 

judged to be more satisfying.  This effect holds when the average satisfaction with 

individual payments is examined (Experiment 1; Parducci, 1968) and is estimated to 

hold for about 90% of participants based on individual-level model-fitting 

(Experiment 1). It is also seen when a whole series of payments must be given a 

summary evaluation (Experiments 2 and 3), and applies when dissatisfaction rather 

than satisfaction judgments are elicited (Experiment 3). 

The results have both theoretical and practical implications. At a theoretical 

level, the findings challenge reference-level models according to which payments are 

judged relative to some mean or reference level payment. Instead, the results appear 

consistent with an interpretation in terms of RFT (e.g., Parducci, 1968, 1995). 

Crucially, we extended earlier work by examining these models at an individual 

level. RFT best predicted the responses of a majority of participants.  

These results also shed light on the role of the memory system in overall 

judgments. Our findings suggest that people do not sample from real-world 

distributions when forming subjective judgments about skewed distributions in an 

experimental setting. Instead, when a single judgment was made the total payment 

was given a higher satisfaction rating. However, satisfaction with the total payment 

was correlated with recent satisfaction judgments. One interpretation of this findings 
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is that people recall their most recent judgment when deciding their overall 

satisfaction with a distribution, which is consistent with findings from the peak-end 

literature (Redelmeier & Kahneman, 1996) and the widely reported recency effects 

from the memory literature (for examples, see Brown et al., 2007). This conclusion 

is however tentative as it relies on correlational analysis and not experimental 

manipulation. At a practical level, the findings suggest that payment satisfaction can 

be altered by manipulating only the skew of the payment structure. The design of 

incentive schemes typically focus on the relation between productivity and payment. 

A typical bonus style scheme in which the highest payments are the least frequent is 

an example of this. Our findings suggest that restructuring these schemes so that 

highest payments are the most frequent may increase the satisfaction of the recipient. 

Existing schemes ignore the possible effects of distribution which may underline the 

effects of incentive schemes. We have demonstrated that payments can be more 

satisfying without cost to the payer due to distribution effects which are predicted by 

a simple contextual judgment model.  
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Chapter 3 

Distance-based Sampling 
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Introduction to Chapter 

 In the previous chapter I found evidence of range effects in both relative and 

retrospective judgments. These findings are hard to reconcile with Decision by 

Sampling (DbS; Stewart et al., 2006). In the present chapter I investigated the role of 

similarity in relative judgment. Models of memory predict that similarity influences 

recall performance in a cued recall task: Items that are more similar to the cue are 

more likely to be recalled. One could argue that relative judgment tasks are similar to 

cued recall. The judged item is the cue in the recall of other items. If this is the case 

then we would expect to see an effect of similarity in judgment. 

 I use the generalized exemplar model of sampling (GEMS; Qian & Brown, 

2005) to examine similarity effects in relative judgment. Within GEMS the Range-

frequency theory (RFT; Parducci, 1965) is a special case. In GEMS the frequency 

principle is altered to produce distance based sampling effects. These effects are set 

by the γ parameter in the model. Similarity effects are modeled when items closest to 

the judged item are most heavily weighted in judgment. Using GEMS I directly 

examine the contribution of the similarity effects predicted by the memory literature 

beyond the range and frequency principles. I do this by comparing the performance 

of RFT with and without the distance based weighting of contextual items. 
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Abstract 

How do individuals use contextual information when making subjective 

magnitude judgments about items, for example, when judging the subjective 

largeness of a square? According to the highly influential Range-Frequency Theory 

(RFT; Parducci, 1965) all contextual items are equally weighted when making 

subjective judgments about any given stimulus. Studies over the past 60 years which 

investigate subjective judgments of items have consistently supported RFT. The 

model predicts that a judgment is a weighted average of the position of a stimulus 

within the range of similar items and the relative rank of the stimulus amongst the 

contextual stimuli. However, findings from the psychophysics of prices directly 

challenge the equal impact assumption. These findings support an alternate 

hypothesis which states that the impact of an item on judgment depends on the 

distance of the item from the stimuli being judged. Furthermore, this “distance 

weighting” hypothesis is consistent with the predictions of exemplar models of 

memory. In this chapter I assess the performance of RFT at an individual level in 

comparison to (a) its range-only and rank-only components, and (b) the generalized 

exemplar model of sampling (GEMS) in which contextual information about similar 

items is weighted by the distance of an item from the judged stimulus. I go beyond 

previous work to examine the limitations and strengths of RFT at an individual level, 

and address the distance based sampling hypothesis directly using data from several 

previous studies (N=370). Furthermore, I examine individual level uncertainty in the 

weighting of the range and frequency components of RFT. The results are discussed 

in relation to recent findings suggesting that people make their subjective judgments 

based on both real world distributions and experimental stimuli. 
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People often make subjective magnitude judgments. For example, how long 

is this chapter? Such judgments may depend upon a comparison set. This chapter is 

short compared to longer review articles which may be 50 pages in length. On the 

other hand, it is long in comparison to short reports which can be four pages in 

length. Intuitively, we would expect that a subjective judgment (e.g., of length) will 

be made relative to a set of contextual items (e.g., other papers). If the set of 

contextual items is changed then the subjective judgment may also change. Here lies 

the key theoretical question: What is the relationship between the changes in 

contextual items along an objective dimension (e.g., number of papers) and the 

subjective judgment given to an item (e.g., the length of a paper)? 

 Studies over the past 60 years have systematically investigated this 

relationship. In typical studies a participant is presented with contextual stimuli and 

then asked to judge each of a set of stimuli along a subjective dimension. Early 

findings suggested that judgments are made relative to a single neutral reference 

point (Helson, 1947). This adaptation level theory (ALT) was widely applied to 

judgments of psychophysical stimuli (for a review see Appley, 1971; Helson, 1964a) 

after success predicting responses in color vision (Helson, 1938; Helson & Jeffers, 

1940), and remains influential in, for example, the price perception literature 

(Briesch et al., 1997; Mazumdar et al., 2005). 

However, later findings from the psychophysics literature strongly support 

and alternative: range-frequency theory (RFT; Parducci, 1965, 1995). Parducci et al. 

(1960) presented participants with a series of numerals on a sheet of paper and asked 

them to judge the size each numeral. He found that judgments were influenced by 

the median and midpoint of the series. However, changing the mean had no effect on 

judgments. These findings were inconsistent with the predictions of ALT but are 
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predicted by RFT (Parducci, 1965). Subsequent studies show that RFT can be 

applied to a diverse range of judgments (e.g., Birnbaum et al., 1971; Parducci, 1968; 

Parducci & Wedell, 1986) and contextual conditions (Parducci, 1982, 1995; Parducci 

& Perrett, 1971). Recent studies suggest that the model can be extended to social 

judgments (Wedell, Santoyo, & Pettibone, 2005), categorization (Wedell, 2008) and 

price perception (Niedrich et al., 2001).  

 Here I examine the strengths and limitations of RFT by addressing two 

questions. First, does RFT predict the judgments of individuals? Previous work 

established that RFT can predict the average response of participants. Establishing 

the individual level performance of the model and individual differences in fits is 

particularly important given recent work which suggests that people sample from 

real world distributions when making judgments about stimuli (Juslin et al., 2007). 

Second, are contextual items weighted by their distance from a judgment stimulus 

when a judgment is made? Consider an intuitive example of buying a TV set where 

one needs to judge the attractiveness the prices of the TV. We might expect people to 

pay more attention to TV sets with a similar price. In other words, nearby prices are 

most heavily weighted in judgment. Evidence from psychophysics and predictions 

from exemplar models of memory suggest that contextual items are weighted by 

their distance from the items being judged. In RFT, either contextual items are 

equally weighted in judgment (frequency principle) or only stimuli at the ends of the 

contextual range (range principle) influence judgment.  

 The paper is divided into two sections. Each section addresses one of the 

above questions. In the first section, RFT is outlined and individual level analysis is 

motivated. Then I report the results of individual level model comparison comparing 

the rage-only and rank-only component of the model to RFT. Uncertainty arising 
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from the maximum likelihood methodology is addressed by carrying out bootstrap 

analysis on the parameter controlling the weight given to the range and rank 

components. In the second section, I note evidence from price psychophysics 

supporting the use of distance based sampling in judgment. I discuss models of 

memory which predicts distance based sampling and then compare RFT to the 

Generalized Exemplar Model of Sampling (GEMS; Qian & Brown, 2005) which 

incorporates distance based sampling in judgments. 

Range-frequency Theory 

 RFT predicts judgments based on two principles. According to the range 

principle, judgments depend on the position of the judged item within the range of 

experimental stimuli (see Equation 15). 

 Parducci (1965) argues that this principle applies because participants subdivide the 

response categories equally across the range of stimuli. For example, payments 

which are in the upper portion of a payment range will be given a higher satisfaction 

rating.  

The frequency principle predicts judgments based on the number of items 

lower and higher than the judged stimulus (see Equation 14). 

. According to Parducci (1965) the frequency principle is a result of 

participant’s tendency to use the response categories with equal frequency in the 

experiment. Intuitively, we might expect a payment to be most satisfying when most 

of the expected payments are lower. The frequency principle is consistent with 

findings from financial decision making (Stewart, 2009; Stewart et al., 2006). 

 Predictions of RFT are a weighted average of the range and frequency 

principles,  

 𝑅𝐹𝑇𝑖 = 𝑤𝑅𝑖 + (1 − 𝑤)𝐹𝑖. (17) 
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When the weight parameter, w, equals 1 predictions are based on the range position 

of the items and when w = 0 predictions are based on relative rank only. In previous 

studies the best fitting w was between 0 and 1, which gives predictions somewhere 

between range-only and rank-only and supports RFT (e.g., Parducci, 1956; Parducci, 

1965; Wedell et al., 1989). 

 Individual level modeling allows us to examine individual variation in the 

weight of the Range and Frequency principles in judgment. The Decision by 

Sampling model (DbS; Stewart et al., 2006) predicts judgments based on the relative 

rank of an item in a sample drawn from memory. If a sample contains only the 

experimental stimuli then DbS predicts the same responses as the rank principle. On 

the other hand, people may draw a combined sample of experimental stimuli and 

items from a real-world distribution of similar items, as appears to be the case in 

financial judgments (Stewart et al., 2003). These judgments based on a combined 

sample from memory may be closer to the range predictions.  

 I ran a simulation to investigate the influence of combined environment and 

experiment sampling on the contextual judgments of items. Consider an experiment 

where participants are shown a bimodal distribution of payments: £2 £3 £4 £12 £13 

£14. They are asked to rate their satisfaction with each payment on a scale ranging 

from 0 (dissatisfied) to 1 (satisfied). In this simulation I assume that the participant’s 

prior distribution of payments from the real world is normally distributed. When 

making a judgment about a payment the participant calculates the relative rank of the 

payment within a memory sample. This memory sample consists of the experimental 

stimuli and N items from the prior distribution. 

 The results of the simulation are shown in Figure 14. When N=0 then 

predictions are the relative rank of each item within the experimental stimuli. This is 
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expected because the sample from memory contains only the experimental stimuli. 

However, the simulation predicts a non-zero value of the w parameter as more items 

from the real world distribution are added to the sample. These variations in N may 

result from between participant differences in memory performance. If people differ 

in how much they are sampling from prior distributions then I would expect 

variation in the best fitting w parameter at the individual level.  

 This first series of model fits will examine RFT at an individual level. The 

performance of both the range-only and rank-only models will be compared to RFT. 

Model comparison will be carried out using data from five previous studies (N=370) 

which ask participants to respond to different stimuli. 



83 

 

 

 

Figure 14. RFT fits of DbS predicted responses given N items sampled from a prior 

normal distribution 

 

Method 

Previous Data. I fit data from five previously published studies. In each 

study participants made subjective judgments of stimuli which varied along a single 

dimension (e.g., monetary value). When making each judgment the participant was 

aware of the entire distribution (see Table 4 for the distribution values and 

participant numbers) and made a subjective judgment for every stimulus. Next I 

consider the method of each study in details and outline the key variables. 
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Brown, Gardner, Oswald and Qian (2008). Participants were asked to rate a 

series of hypothetical wages. They were told that these wage values were prospective 

wages for their first job after finishing their university degree. Each participants was 

shown six wage distributions. The distributions were shown one at a time and the 

wage values for a given distribution were shown simultaneously. Wages were 

written on labels and the participant’s task was to place the label for each payment 

on a 1 to 7 satisfaction scale.  

In the model fitting reported here I kept the parameters of the model constant 

for all of a participant’s responses. Each participant responded to all 11 wages in 

each of the six wage distributions (a total of 66 responses). 

Melrose, Brown and Wood (2012). Participants were asked to give the 

probability of a statement describing a symptom from the diagnostic statistics 

manual being true. They were shown a series of 11 values. Each value represented a 

different person and was the number of days per month that person had experienced 

a symptom. Participants were asked: “For each person, please indicate in the form of 

a percentage how likely you think the following statement is to be true where 100% 

is certain to be true”. The participant was shown all of the distribution values on a 

piece of paper and then assigned percentages to each value. 

This task was repeated for six symptoms. The symptoms were feeling (1) 

depressed, sad, blue, tearful (2) tired and having no energy, and (3) worthless or 

excessively guilty about things you have or have not done, or anxiety, and 

experiencing (1) excessive anxiety about a number of events or activities (2) 

irritability, and (3) muscle tension. Each participant gave 66 responses. Model 

parameters were held constant for each participant across all six symptoms.  
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Wood, Brown and Maltby (2012a). Participants were asked to state their 

perception of the risk (%) of someone developing an alcohol related disorder when 

consuming a given number of alcohol units for 20 years. The participants were 

shown either a unimodal or bimodal distribution of alcohol units on a piece of paper. 

 This task was repeated eight times. The alcohol disorders were (a) any 

alcohol-related illness, (b) any serious psychological difficulties as a direct result of 

alcohol use, (c) a dependency on alcohol and (d) cirrhosis of the liver. Participants 

responded to each disorder for males and females. Model parameters were held 

constant across all eight responses. Each participant gave 44 responses. 

Wood, Brown and Maltby (2012b). Participants read two vignettes in which 

11 hypothetical people volunteered different amounts either time or money to help 

the participant. Participant then rated their gratitude for each value of time/money 

from 1 (not at all grateful) to 10 (extremely grateful). Model parameters were held 

constant across the 22 responses from each participant. 

Maltby, Wood, Vlaev, Taylor and Brown (2012). Participants were shown 

either a bimodal or unimodal distribution of 11 exercise durations on a piece of 

paper. The participants rated on a 1 to 10 scale: (1) how healthy it was for the 

individual, (2) the extent of the health benefits, (3) how sufficient it would be to 

avoid the serious health problems associated with low levels of exercise. Participants 

gave 33 responses. As with previous fits, the model parameters were held constant 

across a participant’s responses to all three questions. 
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Table 4 

Summary of previous studies 

Paper Stimulus Distribution Judgment N Stimuli values 

Wood, Brown 

and Maltby 

(2011a) 

Units of 

alcohol 

Unimodal Chance of 

negative 

consequence 

(%) 

40 5 19 26.5 30 32 33 34 36 39.5 47 61 

Bimodal 41 5 6 8 11.5 19 33 47 54.5 58 60 61 

                

Brown, Gardner, 

Oswald and 

Qian (2008) 

Payments 

(£) 

Positive 

Skew 

Satisfaction 24 

17.2 17.6 18.1 18.7 19.5 20.3 21.4 22.7 24.3 26.1 28.4 

Negative 

Skew 
17.2 19.5 21.3 22.9 24.2 25.3 26.1 26.9 27.5 28 28.4 

Unimodal 17.2 20 21.5 22.2 22.6 22.8 23 23.4 24.1 25.6 28.4 

Bimodal 17.2 17.4 17.8 18.5 20 22.8 25.6 27.1 27.8 28.2 28.4 

Low Range 14.3 17.1 18.6 20 21.4 22.8 25.9 26.8 27.5 28 28.4 

High Range 17.2 17.6 18.1 18.8 19.7 22.8 24.2 25.6 27.1 28.5 31.3 

                

Melrose, Brown 

and Wood 

(2012) 

Symptom 

occurance 

Unimodal Truth of 

DSM 

statement 

(%) 

26 3 10 12 13 14 16 18 19 20 22 29 

Bimodal 26 3 4 6 8 10 16 22 24 26 28 29 

                
Wood, Brown 

and Maltby 

(2011b) 

Time/     

money 

Unimodal 
Gratitude 

38 9 23 27 30 33 36 39 42 45 49 63 

Bimodal 40 9 12 15 19 23 36 49 53 57 60 63 

                
Matlby. Wood, 

Vlaev, Taylor 

and Brown 

(2012) 

Exercise 

Duration 

Unimodal 
Health of 

exercise 

duration 

68 36 92 108 120 132 144 156 168 180 196 252 

Bimodal 67 36 48 60 76 92 144 196 212 228 240 252 
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Model Fitting. The goal of the model fitting was to find the RFT parameters 

which maximized the likelihood of the model. The likelihood of the model was 

calculated assuming a normal distribution for each response. Here we assume that 

response have a normally distribution noise. This normal distribution had a mean 

equal to the prediction of a model for a response. The standard deviation of this 

normal distribution was kept constant across the responses of a participant but 

otherwise allowed to vary.  

I recorded the probability of the data given the assumed normal distributions. 

This gave us the likelihood of the model given the data which was then transformed 

into a negative log likelihood (-2lnL). As the likelihood of the model increases the -

2lnL decreases. A function minimization algorithm in MATLAB (fminsearch) 

altered the w and SD parameters to minimize the -2lnL. This gave us the estimates of 

the most likely parameters given the data. The model parameters and standard 

deviation were held constant for each participant across a participant’s responses to 

different questions or stimuli distributions. 

 To compare the model fits the maximum likelihood of the range-only (w = 

1), rank-only (w = 0) and RFT (0 < w < 1) models were calculated for each 

participant. The predictions of each model were scaled to the data using the 

following equation, 

 𝐽𝑖 = 𝑏𝑀𝑖 + 𝑎 (18) 

where a is the participants lowest response, b is the size of the response range, and 

𝑀𝑖 is the model prediction for stimuli i. 

Results 

 W Parameter Estimates. I examined the between study variation in w 

parameter estimates from the Range-Frequency model. These individual w parameter 
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estimates were analyzed using a Kruskal Wallis test which revealed a significant 

difference between studies: χ2(4) = 113.17, p < .001.  

 A Tamahane’s T2 post-hoc test showed that the w parameter estimates were 

significantly lower (all p’s < .05) for participants from Maltby, Wood, Vlaev, Taylor, 

and Brown (2012), M= .15 , compared to participants from Brown et al. (2008), 

M= .36, Melrose et al. (2012), M = .53, Wood, Brown, and Maltby (2011), M= .61, 

and Wood, Brown, et al. (2012), M= .52. Estimates for participants from  Brown et 

al. (2008) were significantly higher than participants from Maltby et al (2012) and 

significantly lower than the other studies (all p’s < .05). 

 Model Comparison. Likelihood ratio tests were used to compare the fits of 

the range-only, rank-only and RFT models. By varying the w parameter the RFT 

model produces rank-only (w = 0) and range-only (w = 1) predictions. In other words, 

the range-only and rank-only models are specific instances of the more general RFT. 

Consequently, the difference in negative log likelihood (-2lnL) estimates between 

the general and specific model approximates a χ2 distribution with 1 degree of 

freedom. For one model to significantly better fit the data the difference in -2lnLs 

must be at least 3.85 lower (p < .05).  Individual level parameter estimates and 

model fits are shown in Appendix B. 

 Overall RFT best fit a minority of participants. Table 5 shows the percentage 

of participants for whom RFT performs significantly better than either the range-

only or rank-only models. There are notable between study differences in the 

performance of RFT. Most of the participants in the Brown et al (2008) study were 

significantly better fit by RFT. In contrast, less than 2% of participants were 

significantly better fit by RFT in the Wood et al. (2011) and Maltby et al. (2012) 
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studies. These cross study variations have not been examined at an individual level 

before.  

 

Table 5 

Percentage of participants for whom the likelihood ratio test favors RFT 

Study 

Vs 

Range 

Vs 

Rank 
Both 

 Wood, Brown & Maltby 2011a 69 73 43 

Brown, Gardner, Oswald and Qian (2008) 100 92 92 

Melrose, Brown and Wood (2012) 58 58 23 

 Wood, Brown and Maltby (2011b) 8 33 1 

Matlby. Wood, Vlaev, Taylor and Brown (2012) 55 0 0 

Overall 51 37 19 

 

Most surprising is the poor performance of RFT overall. Only 19% of the 

participants across all of the studies were significantly better fit by RFT. RFT 

performed either equally well or worse than the range-only or rank-only model for 

81% of the participants in the analysis. 

 Bootstrap Analysis. I ran individual level bootstrap analysis to quantify the 

uncertainty in the above w parameter estimates. Bootstrap analysis was carried out as 

follows. First, RFT was fit to an individual’s responses. This fit of the model is the 

most likely given the data and provides the maximum likelihood estimates of the w 

and SD parameters. Then a bootstrap sample was created by drawing one sample for 

each response from a normal distribution. These samples were drawn using the 

normrnd function in MATLAB.  The normal distribution had a mean equal to the 

RFT model prediction of a response given the best fitting w and SD estimates from 

the fit of the model to the data.  

 For each participant 1000 bootstrap samples and corresponding parameter 

estimates were generated. For each participant there were therefore 1000 w 
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parameter estimates. Parameter values were considered credible if they were within 

the 95% confidence interval of these bootstrap w parameter estimates. The mean and 

95% confidence intervals of these estimates for each study are shown in Figure 15. 

 

 

Figure 15. Credible w parameter estimates based on bootstrap analysis 

 

Of particular interest are those participants for whom parameter values of 

exactly 0 and 1 are not within the confidence interval. For these participants, the 

RFT is the only credible model based on bootstrap sampling. The percentage of 

participants for whom RFT is the only credible model is 40% overall, notably larger 

than the percentage from the likelihood ratio tests. Consistent with the likelihood 
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ratio tests reported above, the performance of RFT varies depending on the study 

(see Table 6). The participant data from Brown et al. (2008) and Wood, Brown, et al. 

(2012) offer the greatest support for RFT. The data from Maltby et al. (2012) 

generally support the range-only model. Once uncertainty in parameter estimates is 

considered RFT appears more credible, though still for a minority of participants, 

and considerable cross study variation remains. 

 

Table 6 

Percentage of participants for whom each model is credible based on 95% 

confidence interval of bootstrap parameter estimates 

Study Rank-only Range-only Range-Frequency 

 Wood, Brown & Maltby 2011a 20 22 49 

Brown, Gardner, Oswald and Qian (2008) 8 0 92 

Melrose, Brown and Wood (2012) 27 37 35 

 Wood, Brown and Maltby (2011b) 29 41 35 

Matlby. Wood, Vlaev, Taylor and Brown 

(2012) 92 26 26 

Overall 48 28 39 

 

Discussion 

 The results of the first series of model comparisons found mixed support for 

RFT. Less than half of the participants were significantly better fit by RFT. In some 

studies, such as Maltby et al. (2012), far fewer participants were significantly better 

fit by RFT only. These findings at an individual level are quite different to the strong 

support of the model at group level reported in previous studies (e.g., Parducci, 1968, 

1982; Parducci & Haugen, 1967). I consider this to be an important limitation of the 

model. 

 Individual estimates of the w parameter varied considerably within each 

study as predicted by memory based models of relative judgment. In the simulation 
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above I demonstrated that individual memory performance could produce individual 

variation in the w parameter estimates across participants. One interesting possibility 

is that memory performance could influence extent to which responses are closer to 

the range-only model. If the variation is due to recall from real world distributions, 

as suggested by DbS, then I would expect  poor recall of real world distributions to 

produce rank based responses. RFT does not make any specific predictions about 

individual variability in the w parameters, though some individual variation may be 

expected. 

 Cross study differences may be consistent with DbS. Previous findings from 

the DbS literature suggest that people sample from real-world distributions when 

making decisions. For example, payments are often positively skewed: Larger 

payments are less frequently than small payments (Stewart et al., 2006). The five 

studies I examined above ask participants to make judgments about very different 

stimuli (see Table 4). These stimuli may have different real world distributions. If 

people are sampling from these different prior distributions when we would expect 

variation based on study. Though individual difference such as working memory 

(number of items in working memory) may mediate the effect of these prior 

distributions (see Figure 14 for an example).  

There is some precedent in the RFT literature of cross study variation due to 

methodology (Parducci & Wedell, 1986) and stimuli (Parducci, 1995). Parducci and 

Wedell (1986) found that w parameter estimates differ depending on (a) the number 

of response categories, and (b) the number of unique stimuli. These effects were 

observed using frequency manipulations in which some stimuli are more frequent 

than others. Parducci accounted for these effects by extending RFT to include 

sampling from memory. In this process based model participants search through their 
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memory system to build a distribution of stimuli (Parducci & Wedell, 1986; Wedell 

& Parducci, 1985). Task limitations reduce the effectiveness of this search to 

produce distorted (often flat) distributions which gave RFT predictions consistent 

with their findings.  

However, the response categories and number of stimuli were the same or 

similar in the studies used in the current model comparison. In both Maltby et al. 

(2012) and Wood et al. (2011) participants responded on a seven point ordinal scale 

to distributions with the same number of stimuli. Yet the w estimates were 

significantly different in both of these studies. Also, the distributions analysis above 

was created by manipulating the relative spacing of items in the stimuli range so the 

distributions were flat. The process based RFT model (Wedell & Parducci, 1985) is 

applied specifically to frequency manipulations and it is unclear how the model 

would be extended to the spacing manipulations such as those examined above. 

Some memory models, for example SIMPLE (Brown et al., 2007), do predict 

different recall performance for distributions such as those examined above (Brown 

& Matthews, 2011) and I investigate this combined SIMPLE + DbS model in 

Chapter 4. 

In summary, the analysis above documents a notable limitation of RFT. For 

the majority of participants RFT was not the best fitting model. Instead, the range or 

rank only models better fit participant responses. There was considerable variation in 

the best fitting parameters between and within the studies. The poor performance of 

RFT at the individual level may reflect individual differences in sampling. Some 

participants may be influence by the distance of items from the judged item (as 

examined below) or recall items differently (see chapter 4). These variations may 

allow us to distinguish between RFT and other models of relative judgment. In the 
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next section I compare the RFT with a competing account using the same data and 

again at the individual level. 

Distance-based Sampling 

Are contextual items equally weighted when people subjectively judge items? 

According to RFT judgments are the weighted average of the rank position and 

range position of the judged stimulus. The rank principle (which Parducci refers to as 

the frequency principle) assumes that all of the contextual items are equally weighed 

when a judgment is made. In contrast, the range principle predicts judgment based 

on the position the item relative to the highest and lowest item. For the range 

principle only the endpoints influence judgment: the intermediate items have no 

impact. So RFT predicts either equal weighting of contextual items or weighting of 

only the most extreme items. 

 However, empirical findings and theories of memory predict that distance 

from the items being judged will influence judgments. Recent work from the 

psychophysics of prices suggest that items closer or further from the judged item 

have more impact on judgments than the other contextual items. This distance based 

weighting hypothesis directly challenges the assumption in RFT that items are 

equally weighted or only the most extreme items influence judgment.  

 Here I address this tension directly by comparing RFT against the 

generalized exemplar model of sampling (GEMS; Qian & Brown, 2005). GEMS 

incorporates both RFT and the distance based sampling hypothesis as special cases 

of the GEMS model which allows us to directly compare RFT with and without 

distance based sampling. 

 Intuitively, we may expect distance based weighting in relative judgment. 

One example is judging the satisfaction of a wage. According to the frequency 
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principle a person will weight all of the contextual items equally. In other words, the 

wages of everyone the person knows will contribute equally to a satisfaction 

judgment. However, this seems somewhat simplistic. Instead, the wages of ones 

colleagues may have more influence on judgment than the wage of the company 

director and the office intern (i.e., those wages closer to the judged wage are more 

heavily weighted in judgment). Other examples are the attractiveness of TV prices or 

happiness with school grades. In all of these cases we would intuitively expect the 

weight of contextual items in judgment to depend on their distance from the judged 

item. 

 Exemplar models of memory can predict similarity based sampling. 

According to DbS people draw upon a sample from memory when making a 

judgment. One possibility is that the weight of an item is proportional to the 

recallability of that item from memory, and items closer in magnitude to the judged 

stimulus are more likely to be in a recalled sample.  

This task is analogous to a cued recall experiment: the participants is shown a 

cue (the stimuli to be judged) and attempts to recall other items (the contextual 

stimuli). In exemplar models of memory, such as MINERVA2 (Hintzman, 1984), 

PROBEX (Juslin & Persson, 2002) and SIMPLE (Brown et al., 2007), items similar 

to the cue are most likely to be recalled. Table 7 shows the prediction of SIMPLE in 

a cued recall task. I calculated the SIMPLE cued recall predictions for eight items 

along a single dimension. As we would expect SIMPLE predicts that items matching 

the cue are most likely to be recalled: these probabilities are in bold. Also, SIMPLE 

predicts that similar items are more likely be recalled. The table shows that recall 

probability decreases as distance from the cue increases. 
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Table 7 

Similarity in cued recall as predicted by SIMPLE 

  Position 

Cue 1 2 3 4 5 6 7 8 

1 .50 .22 .12 .08 .06 .05 .05 .04 

2 .17 .36 .17 .10 .07 .05 .05 .04 

3 .09 .15 .30 .15 .09 .06 .05 .05 

4 .06 .09 .14 .28 .14 .09 .06 .05 

5 .05 .06 .09 .14 .28 .14 .09 .06 

6 .05 .05 .06 .09 .15 .30 .15 .09 

7 .04 .05 .05 .07 .10 .17 .36 .17 

8 .04 .05 .05 .06 .08 .12 .22 .50 

Note: shading indicates similarity. 

 

Distance based sampling is implemented in the generalized exemplar model 

of sampling (GEMS; Qian & Brown, 2005). The rank-only and range-only models 

are a special case of RFT. Varying the w parameter allows the model to produce 

rank-only (w =0), range-only (w=1) and RFT (0 < w < 1) predictions. In the same 

way, RFT is a special case of the GEMS model. In the GEMS model,  

judgments are a weighted average of two components. As with RFT, the first term is 

the range position of the stimulus (see Equation 18), and when w equals 1 the model 

produces range-only predictions (see Equation 17).  

 
𝐽𝑖(𝑥) = 𝑤𝑅𝑖 + (1 − 𝑤) [0.5 +

∑ (𝑥𝑖 − 𝑥𝑗)
𝑦

−𝑖−1
𝑗=1 ∑ (𝑥𝑖 − 𝑥𝑗)

𝑦𝑁
𝑗=𝑖+1

2(∑ (𝑥𝑖 − 𝑥𝑗)
𝑦

+𝑖−1
𝑗=1 ∑ (𝑥𝑖 − 𝑥𝑗)

𝑦𝑁
𝑗=𝑖+1 )

] 
(19) 
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In GEMS the γ parameter controls distance based sampling in the model. The 

value of the γ parameter determines the distance based weighting of items. Consider 

an example where a participant is judging the fourth of 11 equally spaced items. The 

relative weight of the other items in judgment is shown in Figure 16. In the figure 

darker items carry more weight in a judgment compared to lighter items. When γ = 0 

all of the items carry the same weight and the model produces rank-only predictions. 

Increasing the γ parameter reduces the impact of nearby items. Instead, items are 

furthest from the judged stimulus are given the most weight. The opposite occurs 

when the γ is negative: Items closest to the stimulus carry the most weight. This 

latter case is comparable to the recall probabilities of similar items shown in Table 7. 

 

 

Figure 16. The relative weight given to other stimuli when judging the third stimulus 

for different values of γ. Note: Darker circles indicate a greater relative weight 
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The corresponding model predictions are shown in Figure 17. When the 

model predictions are rank-only (γ=0) the model predicts a straight line because the 

all of the items have an equal impact on judgment. Focusing on the fourth item, the 

predicted response is lower when γ > 0 and higher when γ <0. This is because the 

ratio of ratio of higher and lower items is different when the γ parameter varies due 

to the distance based weighting depicted in Figure 16. For instance, when γ >0 then 

the total weight of the items larger than the fourth item is greater than those which 

are smaller.  

 

Figure 17. Predictions of relative judgments from the GEMS model based solely on 

the rank component (w=0) for varying values of the γ parameter. These predictions 

are for 11 equally spaced stimuli (e.g., square sizes or payments). 

 

The distance based sampling hypothesis is implemented in the second term 

and controlled by the γ parameter. When γ equals 0 this component is reduces to the 
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rank-only model (see Equation 18). Consequently, when γ = 0 and w is allowed to 

vary between 0 and 1 then the model produces RFT predictions.  

 Several studies have shown distance based sampling in relative judgment. 

Qian and Brown (2005) presented participants with a series of hypothetical holiday 

prices and then asked them to rate the attractiveness of each price. In Experiment 1, 

the prices were shown on labels of paper and the ten participants placed the prices 

along a 1 (extremely unattractive) to 7 (extremely attractive) scale. Individual and 

group level fits of the GEMS model found evidence for distance based sampling - 

the model fitted the data best when γ ≠ 0 suggesting that people weight prices by 

their distance from the judged price. For example, some participants appeared to 

attend to only the items closest to the price being judged. . In Experiment 2, the 

prices were shown sequentially on a computer. GEMS fitting again suggested that 

the items closest to the judged stimulus were more heavily weighted in judgment. 

Group level model analysis of the data found that GEMS performed significant 

better than the RFT model. 

 In a subsequent study, Brown et al. (2008) asked participants to rate their 

expected satisfaction with a series of hypothetical wages. The cover story was that 

the values were the wage of their first job after university. Each wage was on a paper 

label and, like the above experiment, participants were asked to place all of the wage 

labels on a 1 (least satisfied) to 7 (most satisfied) scale. Brown et al reported group 

level model fitting comparing the GEMS and RFT models. RFT did perform better 

than the GEMS model. However, the γ parameter of the GEMS model did not equal 

0 even though RFT is nested within the GEMS model. These results were not 

significant. 
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Here I examine the evidence supporting distance-based sampling in 

contextual judgment. I fit both the GEMS and RFT model to the same data used in 

section one. To compare the models I held 𝛾 at 0 and allowed w to vary to find the 

RFT prediction that best fit the data. Then the w parameter was fixed and 𝛾 was 

allowed to vary to contribution of distance based sampling to the model fit. The 

parameters were fixed to avoid possible parameter trade-off between the w and γ 

parameters. The focus of this analysis is to examine the extent to which the GEMS 

model better predicts responses over and above RFT. The models were again fit 

using the maximum likelihood estimation technique outlined above.  

Results 

 Bootstrap analysis. To examine the uncertainty in the parameter estimates I 

carried out bootstrap analysis on the γ parameter. The parameter estimates examined 

above are the most likely parameter estimates given the data. But other γ parameter 

values may also be credible. In our case, the γ parameter value tells us if the 

predictions are consistent with the distance based sampling hypothesis. The 

hypothesis is supported when γ ≠ 0. 

The bootstrap analysis used the same method as was outlined in the first 

series of model fits. A total of 1000 bootstrap samples per participant were generated 

based on the GEMS model parameters which best fit an individual’s data. Then the 

GEMS model was fit to these bootstrap samples and the resulting bootstrap 

parameter estimates were recorded.  

From these bootstrap γ estimates I calculated the 95% confidence intervals 

shown in Figure 18. The qualitative pattern of the figure suggests that a γ parameter 

of 0 was credible for most participants. For the majority of participants a γ parameter 

of 0 was credible, though there is some between-study variation. Taken together, the 
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qualitative pattern of the bootstrap analysis suggests that a pure RFT model without 

distance based sampling best is most credible for most of the participants. Next I 

compare the models directly to establish if RFT outperforms the distance based 

sampling model (GEMS). 

 

Figure 18. Credible γ parameter estimates based on bootstrap analysis 

 

Model Comparison. In the comparison reported here the GEMS models has 

one more parameter, γ, than RFT. We would expect the GEMS model to better fit the 

data based on this additional parameter alone (for a discusion of model complexity 

see Myung, 2000). In the model fitting, lower -2lnL values correspond to better 

model fits. To penalize these fits a penalty must be added to the model fit statistic (-

2lnL) that depended on the 2 parameters in RFT (w, SD) and 3 parameters in GEMS 

(w, γ, SD). Individual fit statistics and model comparison are shown in Appendices C 

and D. 
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I penalized the fit (-2lnL) of each model by calculating the Akaike 

Information Criterion (AIC) and the Bayes information Criterion (BIC). Both criteria 

penalize the fit of each model based on the number of parameters. The AIC is 

calculated as 

 𝐴𝐼𝐶 = −2𝑙𝑛𝐿 + 2𝑘 (20) 

where k is the number of model parameters. When applied to our model comparison 

the AIC penalty is 4 for the RFT model and 6 for GEMS. In the studies reported here 

the number of data points is low (11) per person. Burnham and Anderson (2002) 

recommend using a modification of the AIC for small samples, 

 
𝐴𝐼𝐶𝑐 = −2𝑙𝑛𝐿 + 2𝑘 (

𝑁

𝑁 − 𝐾 − 1
) 

(21) 

where N is the number of data points and k is the number of parameters. In our case, 

AICc increases the -2lnL by 5.5 for RFT and 8.25 for GEMS. The BIC is an 

alternative to the AIC first proposed by G. Schwarz (1978) motivated by Bayesian 

theory. The BIC is calculated as, 

 𝐵𝐼𝐶 = −2𝑙𝑛𝐿 + 𝑘 ln 𝑁 (22) 

where k is the number of parameters and N is the number of data points. BIC 

penalizes RFT by 9.59 and GEMS by 14.39. Of these three information criteria the 

BIC most harshly penalizes model complexity. I calculated the AIC, AICc and BIC 

for each participant individually. 

 First, I compared the models by calculating the percentage of the participants 

for whom GEMS better fit the data. Burnham and Anderson (2002) suggest that a 

difference in the criterion of greater than 3 suggests that the data favor one model 

over the other. In the model comparison I fit RFT to the data and then GEMS, 

allowing γ to vary. Given the present method the GEMS model could only do better 

than or as well as the RFT model. 
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 I counted up the number of participants for whom the -2lnL, AIC, AICc and 

BIC were more than 3 points lower for the GEMS model as compared to the RFT 

model. The percentage of participants significantly better fit by GEMS is shown in 

Table 8. 

 

Table 8 

Percentage of participants better fit by the GEMS model (criterion difference > 3) 

            

Paper -2lnL AIC AICc BIC N 

Wood, Brown and Maltby (2011a) 4 2 2 1 81 

Brown, Gardner, Oswald and Qian (2008) 13 8 8 4 24 

Melrose, Brown and Wood (2012) 4 2 2 0 52 

Wood, Brown and Maltby (2011b) 7 5 3 3 86 

Maltby, Wood, Vlaev, Taylor and Brown 

(2012) 
23 15 15 14 135 

% of total sample 12 8 7 6 378 

 

As expected fewer people were significantly better fit by the model as the 

criterion more harshly penalized the GEMS model for complexity. Overall, less than 

10% of the participants were significantly better fit by the GEMS model once the 

criteria were applied. GEMS did perform best when fit to the data from Maltby et al. 

(2012), but this was for 15% of the participants. The analysis based on the difference 

in criteria do not support the distance based weighting hypothesis. 

 Next, I calculated the relative posterior probability of the models given the 

data. The differences in BIC estimates for the two models (ΔBIC) can be interpreted 

as the log of the Bayes factor for these two models (Lewandowsky & Farrell, 2010). 

In Bayesian statistics the Bayes factor, 

 
𝐵 =

𝑝(𝑀1|𝑦)

𝑝(𝑀2|𝑦)
 

(23) 
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 is the ratio of the probabilities of each model given the data. We can calculate the 

Bayes factor from the BIC differences as: 

 
𝐵 = exp (−

1

2
𝛥𝐵𝐼𝐶). 

(24) 

 This Bayes factor can then be used to calculate the Bayesian model weights, 

 

𝐵𝐼𝐶𝑤 =
𝑒𝑥𝑝 (−

1
2 𝛥𝐵𝐼𝐶𝑀)

∑ 𝑒𝑥𝑝 (−
1
2 𝛥𝐵𝐼𝐶𝑖)𝑖

. (25) 

where BICw is the Bayesian model weight, ΔBICM is the difference in BIC between 

model M and the best model, and BICi is an array of differences between the BIC of 

each model and the best model. The BICw can be interpreted as the posterior 

probability of a given model assuming that RFT and GEMS are the only models 

which can explain the data. 

 A similar approach can be taken with AIC differences. The AIC and BIC 

differ in their theoretical underpinnings so the AICw cannot be interpreted in terms of 

posterior probabilities. However, Burnham and Anderson (2002) suggest that AICw 

can be interpreted as giving the weight of evidence for the a model given the data. 

The calculations for AICw are the same as Equation 27 with ΔAIC replacing ΔBIC. 

 To compare the models, I calculated the AICw and BICw for each participant. 

The average AICw and BICw for participants in each study is shown in Table 9. In all 

of the studies the criterion weights favor RFT over GEMS. Consistent with the 

above analysis the data do not support the distance based weighting hypothesis and 

offer unanimous support for RFT. 
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Table 9 

Average criterion weights from individual level model fits 

  AICw   BICw 

Paper GEMS RFT   GEMS RFT 

Wood, Brown and 

Maltby (2011a) 
.34 .66 

 
.15 .85 

Brown, Gardner, 

Oswald and Qian 

(2008) 

.41 .59 
 

.23 .77 

Melrose, Brown and 

Wood (2012) 
.32 .68 

 
.14 .86 

Wood, Brown and 

Maltby (2011b) 
.34 .66 

 
.25 .75 

Maltby, Wood, Vlaev, 

Taylor and Brown 

(2012) 

.46 .54   .33 .67 

 

Discussion 

 In this second series of model fits the data do not support the distance based 

weighting hypothesis. The fits of the GEMS model were consistent with the heavier 

weighting of items furthest from the judged item. However, bootstrap analysis found 

that a purely RFT account was credible for many of the participants. Direct model 

comparison of RFT with and without distance based sampling strongly supports the 

RFT model. Based on these findings, I conclude that distance based sampling does 

not influence judgments. Instead, RFT offered a better account of the data.  

General Discussion 

In this chapter I investigated at an individual level (a) the performance of RFT 

when compared to the range-only and rank-only models, and (b) the evidence for 

distance based weighting in subjective judgments. The findings from the first series 

of model comparisons show that RFT performs better than the range-only and rank-

only models for a minority of participants, and the performance of the model differs 

considerably across studies. The second series of model comparisons found little 
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evidence of distance based sampling in judgment. When compared with the GEMS 

model the data strongly favored RFT across all of the studies. 

This chapter presented an investigation of RFT at an individual level. A large 

body of work has shown that RFT accurately predicts the average responses of 

participants in subjective judgment tasks (Parducci, 1995). One might assume that 

RFT would also fit individual level responses equally well. However, RFT did not fit 

all of the participant data when compared with the range-only and rank-only models. 

If responses of individual participants are generally not as predicted by RFT, then 

this represents a considerable limitation of the model. 

These individual differences may have theoretical applications. Individual level 

analysis requires a given model to fit many more data points compared to group level 

analysis of average responses. Consequently, a given model needs to account for a 

richer set of data when analysis is at individual level. The poor performance of RFT 

at the individual level (as above) leads one to wonder if other models can better 

capture the response patterns in this data. 

A variety of models predict subjective judgments based on previous responses. 

For example, a variety of models predict judgments based on an internal referent 

based on the responses to a previous trial (for reviews see Laming, 1997; Petzold & 

Haubensak, 2004; Sarris, 2004). Unfortunately the sequence of judgments was not 

recorded in the above data set so it is unclear how these models can be evaluated 

using the above data. 

Other models predict responses based on recollection of items from memory. 

According to the multiple-standard model responses are a combination of previous 

responses and the recollection of extreme values from the memory system (Petzold 

& Haubensak, 2004). Similarly, the consistency model predicts that participants try 
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to be consistent with previous stimulus-response pairs drawn from memory 

(Haubensak, 1992).  

In the data analyzed above the participants were shown the stimuli 

simultaneously and were able to see their previous judgments throughout the 

experiment. Given this methodology it is unclear how these memory based models 

could be applied to this data set. However, models could apply to the current data if 

recallability is a function of the local distinctiveness of a given item within a stimuli 

set (Brown & Matthews, 2011). I apply the SIMPLE model to these data in the next 

chapter. 
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Chapter 4 

Decision by Sampling and SIMPLE 
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Introduction to Chapter 

 In the previous chapter I demonstrated that range-frequency theory (Parducci, 

1965) can predict relative judgments using individual level data from five previous 

studies. The effect of context on judgment could not be attributed to distance based 

weighting of contextual items – an effect predicted by exemplar models of memory. 

 In this chapter I investigate another type of memory effect in contextual 

judgment. According to the SIMPLE model of memory (Brown et al., 2007) the 

relative spacing of items influences recall: Items which are more distinct along a 

dimension of interest are more likely to be recalled. Previous work suggests that 

Decision by Sampling (Stewart et al., 2006) can predict range effects if the 

probability of a contextual item entering a memory sample is derived from SIMPLE 

(Brown & Matthews, 2011). I investigate this interesting possibility and whether the 

range component is necessary at all in this combined model. 
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Abstract 

 It is well established that subjective judgments of the magnitudes of stimuli 

are strongly influenced by the magnitudes of other stimuli in the context of judgment. 

According to one recent model of context-based judgment, decision by sampling, the 

subjective magnitude of an item is given by its relative ranked position within the 

comparison context. According to the longer-established range-frequency theory, in 

contrast, the subjective magnitude of an item is given partly by its relative ranked 

position within the comparison context and is also influenced by the “range position” 

of the item – i.e., by where it stands in relation to the highest and lowest contextual 

values. Here I examined whether the rank-only process assumed by decision by 

sampling can account for effects that have previously been attributed to range. It was 

shown by model comparison based on the results of five previously published 

experiments that when the relative distinctiveness of contextual items is taken into 

account, as predicted by an independently-motivated distinctiveness model of 

memory (SIMPLE), a rank-only process can account for apparent range effects. It 

was concluded that a rank-only model can account for data that have hitherto been 

taken to implicate range-based processes. 
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Subjective magnitude judgments are heavily influenced by the relevant context 

of comparison. Thus the judged magnitude of a simple psychophysical stimulus, 

such as a square, brightness, or number, is influenced by the range and distribution 

of other to-be-judged stimuli (Parducci, 1963, 1995; Parducci et al., 1960; Wedell & 

Parducci, 1985). Contextual effects are also seen in judgments of everyday stimuli. 

Here I investigate the processes underlying such contextual effects and, in particular, 

attempt to adjudicate between two widely-used models: the decision by sampling 

model (DbS; Stewart et al., 2006) and range frequency theory (RFT; e.g., Parducci, 

1963, 1965, 1995). 

According to DbS, judgments of the magnitudes of stimuli within a comparison 

context depend only on the relative ranked position of the stimulus within the 

remembered or experienced context of judgment. According to RFT, in contrast, the 

position of a stimulus with respect to the highest and lowest stimuli in the context 

(its range position) also matters. Thus the models differ in terms of whether they 

predict that the distribution of stimuli within a fixed range will affect judgments of 

individual items within the context. A rank-only model such as DbS must, by 

definition, predict no effect of distribution per se - if a stimulus is (e.g.) the 3rd 

largest in a context, that is all that can matter; the distribution of other stimuli can 

have no effect and the mean judgment of a set of contextual stimuli must always 

be .5 (on a 0-1 scale). However, a number of studies — reviewed below — have 

found effects of skew, such that the mean judgment of a set of negatively skewed 

stimuli, in which most of the items are clustered near the upper end of the range, is 

higher than the mean judgment of a set of positively skewed stimuli, in which most 

of the items are clustered near the lower end of the range (e.g., Parducci, 1968). 

Effects of skew are well described by RFT, suggesting that a rank-only account may 
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be inadequate. Here I examine whether a purely rank-based approach can account for 

apparent range effects when the relative distinctiveness of contextual items, as 

independently determined by a memory model (Brown et al., 2007), is taken into 

account.  

The structure of this paper is as follows. First, I review models of relative 

judgment. I motivate and then introduce the combined SIMPLE and decision by 

sampling model (SDbS; Brown & Matthews, 2011) of judgment. Then I report 

results from two model comparisons. The first directly compares the performance of 

RFT and SDbS. The second compares SDbS with and without a range component. 

Decision by Sampling 

According to DbS, items are evaluated based on the number of smaller and 

larger items in a sample of items present in working memory (WM) memory at the 

time of judgment. Samples can be drawn from a combination of previously 

experienced items and experimental stimuli. Each to-be-judged item is compared, 

ordinally, with each sample item present in WM. Consider the problem of 

determining the expensiveness of a cup of coffee costing £1.50. According to DbS, 

one might call to mind two occasions on which a lower price is or has been charged 

for a cup of similar-quality coffee (Nlower = 2), and three higher prices (Nhigher = 3). 

That is, the present price is the i’th most expensive out of n, where i = 3 and n = 6. 

The resulting estimate of the expensiveness of the present price, 𝑀𝑖, is according to 

DbS simply: 

 

 
𝑀𝑖 =

𝑖 − 1

𝑛 − 1
=

𝑁𝑙𝑜𝑤𝑒𝑟

𝑁𝑙𝑜𝑤𝑒𝑟 + 𝑁ℎ𝑖𝑔ℎ𝑒𝑟
= 0.4 

(26) 
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DbS has been successfully applied both to key economic phenomena (Stewart, 

2009; Stewart et al., 2006; Stewart & Simpson, 2008; Ungemach et al., 2011) and to 

real life social judgments (Maltby et al., 2012; Melrose et al., 2012; Wood et al., 

2011).  

However, as noted above DbS appears unable to predict a key finding in the 

relative judgment literature. Findings from psychophysics show that subjective 

judgments appear to be influenced by the distance of the judged item from the most 

extreme items in the immediate environment. In a seminal study, Parducci (1965) 

asked people to rate the ‘largeness’ of a series of squares. Each participant was 

shown the all of the squares they would rate. The responses of the participants were 

best fit by RFT, according to which judgments are a weighted average of the relative 

rank of the item (similar to DbS) and the distance of the item from the highest and 

lowest items in the experiment. The relative rank of stimuli was unable to capture the 

qualitative pattern of the data. Numerous studies have found range effects in 

subjective judgment (e.g., Smith et al., 1989; Wedell & Parducci, 1985; Wedell et al., 

1987; Wedell et al., 1989).  

Range-frequency Theory 

According to RFT judgments are a weighted average of quantities 

representing the range and frequency principles. According to the frequency 

principle, 

 𝐹𝑖 =  (𝑟𝑖 − 1)/(𝑁 − 1) (27) 

the judgment of stimuli i is the rank of the item within the contextual items, 𝑟𝑖  , 

divided by the number of context items, N. The prediction of the frequency principle 

depends on the number of items in the immediate context which are higher and lower 

on the objective dimension of interest. For example, the frequency principle predicts 
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that the subjective “tallness” of a building will be high if most of the buildings are 

comparatively smaller. The predictions of the frequency principle are the same as 

those of DbS and are typically attributed to participants trying to use each response 

category with equal frequency throughout an experiment.  

According to the range principle, judgments also depend on the position of 

the judged item relative to the lowest and highest item, 

 
𝑅𝑖 =

𝑆𝑖 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
 (28) 

where 𝑆𝑚𝑖𝑛  is the lowest item and 𝑆𝑚𝑎𝑥  is the highest item. The range principle 

predicts that the same stimulus will be judged as higher on the subjective scale if it is 

close to the highest items and far from the lowest item.  

  The final judgment is assumed by RFT to be a weighted compromise of the 

range and frequency principles: 

 𝑅𝐹𝑇𝑖 = 𝑤𝑅𝑖 + (1 − 𝑤)𝐹𝑖 (29) 

where 𝑅𝐹𝑇𝑖 depends on the value of a weighting parameter, w. As the w parameter 

approaches 1 the predictions of the model become closer to those of the range 

principle alone. 

 Later formulations of RFT incorporated memory processes into the model of 

judgment formation. Parducci and Wedell (1986) found greater context effects on 

judgment when there were more stimuli or fewer categories. Wedell and Parducci 

(1985) presented a model predicting such effects based on an incomplete recollection 

of the stimuli distribution. Parducci and Wedell (1986) extended the model and 

showed it could predict responses to spacing-based manipulations of the stimuli 

distribution (see below). These accounts retain the range and frequency principle 

from the original theory. However, the predictions are different because the recalled 
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distribution differed based on a sample drawn from memory. These samples are 

drawn solely from the stimuli presented in an experiment. 

 RFT has received empirical support from a wide range of domains (e.g., 

Niedrich et al., 2001; Parducci, 1965, 1968; Pettibone & Wedell, 2007; Riskey et al., 

1979; Smith et al., 1989; Wedell & Parducci, 1985; Wedell & Parducci, 1988; 

Wedell et al., 1989; Wedell et al., 2005). Here I focus on range effects, as they are 

key to discriminating between RFT and DbS. 

 Range effects are widely reported in the relative judgment literature. 

Volkmann (1951) first suggested that the range position of an item within a context 

may influence social judgments. Subsequent work by Parducci and colleagues show 

that a combination of the frequency and range principles predicts responses better 

than relative rank alone (Parducci, 1965, 1968, 1982; Parducci et al., 1960; Parducci 

& Wedell, 1986). Wedell and colleague showed similar effects of range position in 

social judgments (Pettibone & Wedell, 2007; Wedell et al., 1989). In these studies 

the stimulus distributions were skewed by changing the frequency of different 

stimuli. 

Range effects are also present in overall judgments of a series of stimuli. 

According to RFT the average judgment in a negatively skewed distribution will be 

higher than a positively skewed distribution because most of them are in the upper 

portion of the range (Parducci, 1968, 1995). In studies examining satisfaction and 

happiness judgments the skew of the distribution does influence overall and mean 

judgments (Parducci, 1968; Smith et al., 1989). The only difference between the 

positively and negatively skewed distributions in these studies was the frequency of 

the items. The number of items was the same. If the number of stimuli is the same 
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then the frequency principle predicts the same average judgments. Consequently, 

these skew effects on overall judgments must be attributed to range effects. 

Relatively recent studies show range effects by instead manipulating the 

spacing between the stimuli along the dimension of interest. In these studies each 

stimuli is presented once. For example, an equally spaced distribution can be skewed 

by moving most items close together in the upper portion of the range. These 

manipulations produce individual level range effects in health (Melrose et al., 2012), 

payment (Brown et al., 2008) and social (Maltby et al., 2012; Wood et al., 2011) 

judgments. All of these range effects appear inconsistent with a pure relative rank 

principle as assumed by the frequency principle and DbS. 

Is the inability of DbS to predict these ubiquitous range effects a serious 

limitation of the model? Next, following Brown and Matthews (2011), I report two 

series of model comparisons to determine whether a model resulting from the 

combination of a memory model (Brown et al, 2007) with the rank-only DbS model 

can predict range effects. In the first I compare the combined model with the RFT. 

Based on a preliminary group level analysis reported by Brown and Matthews (2011) 

on the data of just one experiment, we expect a combined model to fit the data as 

well as RFT at a group level. Here I report individual level analysis of data from a 

series of experiments. In the second I compare the combined SDbS model with and 

without the range principle from RFT. If adding a range component to the model 

does not improve the model fit then this would suggest that the combined model best 

predicts the range effects in the data. 

SIMPLE and Decision by Sampling 

 The initial application of DbS to economic decision making assumed that 

sampling from memory is stochastic and unbiased (Stewart et al., 2006; Stewart & 
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Simpson, 2008). They acknowledged that this was a simplifying assumption which is 

most likely wrong. Instead, sampling from memory is often biased. For example, in 

free recall items presented first and last in a series are most likely to be recalled (e.g., 

Murdock, 1962). DbS is unable to predict range effects if the sample drawn from 

memory is completely unbiased and is comprised of experimental stimuli. However, 

if the probability of recalling items is calculated using a formal model of memory 

then DbS may be able to predict range effects. 

 Brown and Matthews (2011) derived the probability of an item entering a 

memory sample from SIMPLE (Brown et al., 2007). In Brown and Matthews (2011) 

the predictions were based on the magnitude each stimulus along a dimension of 

interest (wage value). According to the SIMPLE model of memory the recall of an 

item from memory is a discrimination task. Stimuli which are most unlike other 

stimuli along a dimension of interest are more likely to be recalled or attended to. 

The model can be applied to any dimension of interest, such as time (as in the case of 

primacy and recency effects) or stimulus magnitude. 

In SIMPLE the confusability of items in psychological space is an 

exponential function of the distance between them, 

 𝜂𝑖,𝑗 = 𝑒−𝑐𝑑𝑖,𝑗  (30) 

where 𝑑𝑖,𝑗 is the distance between stimuli i and j along a dimension of interest, and c 

is a free parameter. The discriminability of an item, 𝐷𝑖, is assumed to be inversely 

proportional to its summed similarity to all of the other items in the stimuli set, 

 
𝐷𝑖 =

1

∑ (𝜂𝑖,𝑘)𝑛
𝑘=1

 (31) 

where 𝑛 is the number of comparison stimuli. The probability of recalling an item 

from memory is the discriminability of an item after considering possible omissions, 
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𝑃𝑖 =

1

1 + 𝑒−𝑠(𝐷𝑖−𝑡)
 (32) 

where 𝑃𝑖 is the probability of recalling stimulus i given its discriminability 𝐷𝑖 and the 

free s and t parameters. The t parameter is the threshold and s is the slope of the 

transforming function. 

 As noted above, range effects occur in distributions where each item is 

shown once and the relative spacing of items in the distribution is manipulated. 

Consider the three panels in Figure 19. Each circle represents a single stimulus along 

a dimension of interest. In panel (a) the stimuli are equidistant. Both the range and 

frequency principles predict the same response (as shown above and below the 

stimuli). In panel (b) most of the stimuli are grouped together in the upper portion of 

the stimuli range: The distribution is negatively skewed. The frequency based 

predictions in panels (a) and b are the same because the number of stimuli has not 

changed. However, the range principle predicts higher ratings for the items because 

their positions in the stimulus range have changed. DbS with unbiased sampling 

from memory produces frequency only (relative rank) predictions. 

 However, according to SIMPLE some of these items are more likely than 

others to be present in WM and hence contribute to the context of judgment. In 

SIMPLE, recall is akin to a discrimination task. Changing the distance between the 

items in the stimuli range alters their discriminability. The item in the middle of the 

items that are grouped together in Figure 19 is less distinct than are two lower value 

stimuli. The color of the circles in panel c corresponds to the recall probability of 

these items calculated using SIMPLE (c= 0.22, s=5.67, t=0.91).  
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Figure 19. The predictions of the range and frequency principles when the 

distribution of stimuli is (a) equally spaced and (b) negatively skewed, and (c) 

decision by sampling predictions for the same distributions 

 

We can calculate the SIMPLE and DbS (SDbS) prediction by summing the 

probabilities of items higher and lower than the item being judged, 

where p is the probability of recalling each item. The bottom values in panel c show 

the predicted responses from the combined SDbS model. In this case the SDbS 

 
𝑆𝐷𝑏𝑆𝑖 =  

∑ 𝑝𝑗
𝑖−1
𝑗=1

∑ 𝑝𝑗
𝑖−1
𝑗=1 + ∑ 𝑝𝑗

𝑁
𝑗=𝑖+1

 
(33) 
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model can produce predictions which are similar to those made by the range 

principle. 

 Here I examine the ability of this combined SIMPLE and DbS model to 

predict range effects at an individual level. First, the combined model is compared to 

RFT. Then I extend the combined model to include the range principle and evaluate 

the additional contribution of the range component. 

Range-frequency Theory and SDbS 

 Here I compare the combined SIMPLE and DbS model (SDbS) with RFT. 

Both models are fit using a maximum likelihood method (Myung, 2003). 

Method 

Previous Data. I fit data from five previously published studies. In each 

study participants made subjective judgments of stimuli which varied along a single 

dimension (e.g., monetary value). When making each judgment the participant was 

aware of the entire distribution (see Table 4 for the distribution values and 

participant numbers) and made a subjective judgment for every stimulus. For some 

studies (e.g., Brown et al, 2008) the participants were shown a series of different 

distributions one after another. For other studies the participant gave multiple 

responses for each distribution. Next I consider the method of each study in details 

and outline the key variables. In each description the number of distribution and the 

number of responses is outlined (also see Table 4). 

Brown, Gardner, Oswald and Qian (2008). Participants were asked to rate a 

series of hypothetical wages. They were told that these wage values were prospective 

wages for their first job after finishing their university degree. Each participant was 

shown six wage distributions. The distributions were shown one at a time and the 

wage values for a given distribution were shown simultaneously. Wages were 
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written on labels and the participant’s task was to place the label for each payment 

on a 1 to 7 satisfaction scale.  

In the model fitting reported here I kept the parameters of the model constant 

for all of a participant’s responses. Each participant responded to all 11 wages in 

each of the six wage distributions (a total of 66 responses). 

Melrose, Brown and Wood (2012). Participants were asked to give the 

probability of a statement describing a symptom from the diagnostic statistics 

manual being true. They were shown a series of 11 values. Each value represented a 

different person and was the number of days per month that person had experienced 

a symptom. Participants were asked: “For each person, please indicate in the form of 

a percentage how likely you think the following statement is to be true where 100% 

is certain to be true”. 

This task was repeated for six symptoms. The symptoms were feeling (1) 

depressed, sad, blue, tearful (2) tired and having no energy, and (3) worthless or 

excessively guilty about things you have or have not done, or anxiety, and 

experiencing (1) excessive anxiety about a number of events or activities (2) 

irritability, and (3) muscle tension. Each participant gave 66 responses. Model 

parameters were held constant for each participant across all six symptoms.  

Wood, Brown and Maltby (2012a). Participants were asked to state their 

perception of the risk (%) of someone developing an alcohol related disorder when 

consuming a given number of alcohol units for 20 years. The participants were 

shown either a unimodal or bimodal distribution of alcohol units on a piece of paper. 

 This task was repeated eight times. The alcohol disorders were (a) any 

alcohol-related illness, (b) any serious psychological difficulties as a direct result of 

alcohol use, (c) a dependency on alcohol and (d) cirrhosis of the liver. Participants 
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responded to each disorder for males and females. Model parameters were held 

constant across all eight responses. Each participant gave 44 responses. 

Wood, Brown and Maltby (2012b). Participants read two vignettes in which 

11 hypothetical people volunteered different amounts either time or money to help 

the participant. Participant then rated their gratitude for each value of time/money 

from 1 (not at all grateful) to 10 (extremely grateful). Model parameters were held 

constant across the 22 responses from each participant. 

Maltby, Wood, Vlaev, Taylor and Brown (2012). Participants were shown 

either a bimodal or unimodal distribution of 11 exercise durations on a piece of 

paper. The participants rated on a 1 to 10 scale: (1) how healthy it was for the 

individual, (2) the extent of the health benefits, (3) how sufficient it would be to 

avoid the serious health problems associated with low levels of exercise. Participants 

gave 33 responses. As with previous fits, the model parameters were held constant 

across a participant’s responses to all three questions. 

 Model Fitting. For both models the fit was calculated as the probability of 

the data using a normal distribution with a mean equal to a model prediction and a 

standard deviation which was allowed to vary freely. The model parameters and 

standard deviation were held constant for each participant. 

 The model parameters were varied using the fminsearch algorithm in 

MATLAB. In RFT the w parameter was allowed to vary between 0 and 1. For the 

SDbS model the c and s parameters were allowed to vary freely and the t parameter 

was restricted to between 0 and 1, as specified by the SIMPLE model3. 

                                                      
3 Initial fits found that the best fitting t parameter was often close to 1. This was 

quite unlike previous model fits of the SIMPLE model and a prior distribution was 

used to penalize such high t values (see Appendix A for more information). 
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 The predictions of each model were scaled to the response range of the 

participant. The model predictions were between 0 and 1, and the following equation 

was used to scale the predictions to the response range of the participant, 

 𝐽𝑖 = 𝑏𝑀𝑖 + 𝑎 (34) 

where a is the participant’s lowest response, b is the size of the response range, and 

𝑀𝑖 is the model prediction for stimuli i. 

Results 

 Model Parameters. Both models were fit to the data from all five previous 

studies. The average best fitting model parameters are shown in Table 10. The w 

parameter fits are the same as those presented in Chapter 3 and the SIMPLE 

parameter estimates are consistent with previous SIMPLE parameter estimates. 

Individual fit statistics are in Appendix E and model comparisons are in Appendix F. 

 

Table 10 

Means of the best fitting model parameters across participants 

  RFT   SDbS 

Paper Noise w   Noise c s t 

Wood, Brown and 

Maltby (2011a) 
8.45 .52 

 
8.38 0.83 19.02 .60 

Brown, Gardner, 

Oswald and Qian 

(2008) 

0.36 .36 
 

0.35 2.54 15.88 .62 

Melrose, Brown and 

Wood (2012) 
8.02 .53 

 
7.92 0.65 24.70 .62 

Wood, Brown and 

Maltby (2011b) 
0.20 .59 

 
0.21 0.97 34.69 .56 

Matlby. Wood, Vlaev, 

Taylor and Brown 

(2012) 

1.11 .12   1.05 4.68 20.42 .50 

 

 Log likelihood comparison. To investigate the fit of the model to the date I 

examined the difference in -2lnL between the models. As suggested by Burnham and 



124 

 

 

Anderson (2002) I considered a model to better fit the data if the -2lnL was 3 lower 

than the other model.  

 The percentage of participants for whom either RFT, SDbS or neither model 

better fit the data is shown in Table 11. For most of the participants there was no 

significant difference between the -2lnLs for the models. For most of the remaining 

participants SDbS was more probable than RFT (see third column of Table 11). This 

pattern is consistent with the group level model fit reported by Brown and Matthews 

(2011) and suggests that the DbS model can predict the range effects observed in 

individual level data. 

 

Table 11 

Summary of model fits based on -2lnL 

  % of participants   

Paper RFT SDbS Neither N 

Wood, Brown and Maltby (2011a) 2 20 78 81 

Brown, Gardner, Oswald and Qian 

(2008) 
21 38 42 24 

Melrose, Brown and Wood (2012) 0 21 79 52 

Wood, Brown and Maltby (2011b) 0 12 88 86 

Maltby, Wood, Vlaev, Taylor and 

Brown (2012) 
2 3 95 135 

 

 Model Complexity. The analysis presented above does not consider the 

complexity of the models being compared. Model complexity is an important topic 

in model selection (for a review see Myung, 2000). Ideally, when faced with 

multiple models which fit data equally well one would follow the principles of 

Occam’s razor and choose the simplest model.  

 In our case the combined SDbS model is the most complex. RFT has two free 

parameters: the standard deviation of the likelihood function and the w parameter. 
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SDbS has four free parameters: the standard deviation of the likelihood function and 

c, s and t. Consequently, SDbS is the more complex based purely on the number of 

free parameters. 

To penalize the model fits for model complexity I calculated the AIC, AICc 

and BIC for each participant (see Equations 22, 23, and 24 detailing each 

information criterion). I then counted up the number of participants for whom the 

combined model outperformed RFT after the complexity penalties had been applied. 

As shown in Table 12 a minority of participants were best fit by the combined model 

after the complexity penalties were applied. 

 

Table 12 

Percentage of participants for whom the penalized fits are at least 3 points lower for 

the SDbS model 

  
% of participants   

Paper AIC AICc BIC N 

Wood, Brown and Maltby 

(2011a) 
7 7 4 81 

Brown, Gardner, Oswald and 

Qian (2008) 
17 17 0 24 

Melrose, Brown and Wood 

(2012) 
12 12 4 52 

Wood, Brown and Maltby 

(2011b) 
7 3 3 86 

Maltby, Wood, Vlaev, Taylor 

and Brown (2012) 
1 1 1 135 

 

 However, what is the relative support for each model across all participants 

once complexity is incorporated into the model fitting? The AIC and BIC weights 

were calculated for each participant. The BIC weight can be interpreted as the 

posterior probability of each model if we assume that RFT and SDbS are the only 

candidate models. The AIC weight can be interpreted as the relative evidence for 
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each model. The calculation and interpretation of these weights is described in more 

detail in Chapter 3 (see Equation 27). These weights are based on the performance of 

each model after being penalized for complexity for all participants and are between 

0 and 1. The support for the model increases as the weight approaches 1. The 

average criterion weights are shown in Table 13 and suggest that the data support 

RFT. 

 

Table 13 

Average criterion weights for RFT and SDbS 

  AICw   BICw 

Paper RFT SDbS   RFT SDbS 

Wood, Brown and Maltby 

(2011a) 
.73 .27 

 
.89 .11 

Brown, Gardner, Oswald and 

Qian (2008) 
.63 .37 

 
.92 .08 

Melrose, Brown and Wood 

(2012) 
.72 .28 

 
.90 .10 

Wood, Brown and Maltby 

(2011b) 
.77 .23 

 
.87 .13 

Maltby, Wood, Vlaev, Taylor 

and Brown (2012) 
.86 .14   .95 .05 

 

Discussion 

 The results of the first series of model comparisons show that the combined 

SIMPLE and DbS model can predict range effects at an individual level. For most 

participants both RFT and SDbS were equally likely given the data. This findings 

confirms that RFT and SDbS can produce the same predictions as previously 

reported by Brown and Matthews (2011). For many participants the combined model 

was more likely than RFT. 
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 One interpretation of these findings is that the RFT is the best model based 

on the individual level analysis of the data. However, the complexity penalties ignore 

the theoretical scope of the models under consideration. One may consider the ability 

of a model to fit the data and the theoretical contribution of a model. In our case the -

2lnLs reported above show that the predictions of the two models are 

indistinguishable when fit to the data from the majority of participants. The 

combined SIMPLE and DbS model offers a unifying account of decision making and 

judgment phenomena in social, psychophysical and economic domains using 

rudimentary cognitive processes. Ifboth models perform equally well and SDbS can 

account for a wider selection of phenomena then one may argue that SDbS should be 

preferred. In the next section, I adopt an alternative approach. 

SDbS and the Range Principle 

 In the combined SIMPLE and DbS model (SDbS) judgments are purely 

based on the relative rank of an item within a sample drawn from memory. The 

absence of a range based component is inconsistent with other memory based models 

of relative judgment such as the consistency model (Haubensak, 1992) and the 

multiple standards model (Petzold & Haubensak, 2001, 2004). In these models the 

range position of an item is a major component of judgment. 

 In this first series of model comparisons the RFT and SDbS models were 

equally probable given the data. One interpretation of these findings is that SDbS is 

able to predict range effects and a range component is unnecessary in the SDbS 

model. However, it may be the case that there are range effects in the individual 

level data which are not accounted for in the combined model. 

 In a second series of model comparisons I examined the contribution of a 

range component in the combined model. It may be the case that judgments are a 
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combination of the relative rank of an item in a memory sample and the position of 

the item relative to the highly discriminable range endpoints. I address this 

possibility directly by comparing the fit of SDbS with and without the range 

principle from RFT,  

 𝐽𝑖 = 𝑤𝑅𝑖 + (1 − 𝑤)𝑆𝐷𝑏𝑆𝑖 (35) 

where judgments are the weighted average of the range principle and SDbS. For ease 

of reference I refer to this model as SDbS + Range.  As the w parameter increases 

the range component is more heavily weighted. If SDbS captures all of the range 

effects in the data then SDbS should perform equally well when compared to 

SDbS+Range. 

Method 

 To examine the contribution of the range principle I manipulated the w 

parameter. First, the w parameter was fixed to 0 which produced SDbS only 

predictions. Then the w parameter was allowed to vary freely between 0 and 1.When 

w>0 the model predictions are a combination of SDbS and the Range principle.  

Results and Discussion 

 W Parameter Estimates. Do the w parameter estimates differ between 

studies? A Kruskal Wallis test revealed that the w parameter estimates differed 

significantly between studies, χ2(4) = 64.89, p < .001. The results of post-hoc 

Tamhane T2 analysis are shown in Table 14. Notably, the w parameter estimates 

appear lower than those reported in Chapter 3 which is consistent with the notion 

that the combined SDbS model predicts range effects. 
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Table 14 

Average w parameter estimate from model fits of the SDbS+range model 

 
Mean w estimate 

Wood, Brown and Maltby (2011a) .23a 

Brown, Gardner, Oswald and Qian (2008) .22a 

Melrose, Brown and Wood (2012) .35ab 

Wood, Brown and Maltby (2011b) .39b 

Maltby, Wood, Vlaev, Taylor and Brown (2012) .11c 

Note: means not sharing same superscript are significantly difference p < .05 

 

 

 Model comparison. Does the SDbS model perform better with a range 

component? I first calculated the -2lnL of the model with SDbS only (w=0). Then I 

allowed the w parameter to vary. For individual level parameter estimates see 

Appendix G and for model comparison statistics see Appendix H. 

The difference in -2lnLs is the improvement in model performance due to the 

range component of the model. We can examine the statistical significance of this 

difference using a likelihood ratio test because SDbS is nested within the generalized 

SDbS+Range model. The percentage of participants significantly better fit by the 

SDbS+Range model is shown in Table 15. Participant data are significantly better fit 

by SDbS+Range model if the difference in -2lnL is greater than 3.85. The 3.85 value 

is chosen because the difference between nested models is approximately a χ2 

distribution with K degree of freedom, where K is the difference in parameters 

between the models (Lewandowsky & Farrell, 2010). In our case, there is one 

parameter which differs between the models (w). The critical value of χ2 with 1 

degree of freedom for p < .05 is 3.85. Table 15 shows that for the majority of 

participants the range component does not significantly improve the performance of 

the model.  
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Table 15 

Percentage of participants better fit by the SDbS+Range model 

Paper % N 

Wood, Brown and Maltby (2011a) 0 81 

Brown, Gardner, Oswald and Qian (2008) 33 24 

Melrose, Brown and Wood (2012) 6 52 

Wood, Brown and Maltby (2011b) 2 86 

Maltby, Wood, Vlaev, Taylor and Brown 

(2012) 
15 135 

 

 An alternative approach to likelihood ratio tests is to calculate the criterion 

weights. The weight based comparison of SDbS with and without the range principle 

is shown in Table 16 and strongly favors the SDbS model. In summary, the results 

show that SDbS captures the range effects previous attributed to the range principle. 

 

Table 16 

Criterion weight based comparison of SDbS with and without a range based 

component 

  AICw   BICw 

Paper SDbS +range   SDbS +range 

Wood, Brown and 

Maltby (2011a) 
.70 .30 

 
.85 .15 

Brown, Gardner, 

Oswald and Qian 

(2008) 

.44 .56 
 

.61 .39 

Melrose, Brown and 

Wood (2012) 
.70 .30 

 
.97 .03 

Wood, Brown and 

Maltby (2011b) 
.73 .27 

 
.98 .02 

Maltby, Wood, Vlaev, 

Taylor and Brown 

(2012) 
.67 .33   .94 .06 
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Bootstrap analysis. The parameter estimates calculated above are the most 

likely parameter estimates. To examine the uncertainty in these estimates I carried 

out bootstrap analysis on the w parameter. The mean and 95% CI of these estimates 

is shown in Figure 20. For most participants a w parameter value of 0 is within the 

95% CI; for these participants the SDbS model alone is credible when parameter 

uncertainty is considered. 

 
Figure 20. The w bootstrap estimates for the SDbS + range model 

 

General Discussion 

 The aim of this chapter was to investigate the extent to which DbS can 

predict range effects in subjective judgments. I applied a model combining DbS and 

the SIMPLE model of memory to the individual level data analyzed in Chapter 3. In 
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the first model comparison the SDbS model was compared to RFT. I found that for 

the majority of participants the models were equally likely, but model comparison 

favored RFT when the fit were penalized for model complexity. In the second model 

comparison I compared the performance of SDbS with and without the range 

principle from RFT. The results show that for many participants the range 

component was not necessary. 

 An advantage of the SIMPLE and DbS model (SDbS) is that it offers a 

unifying framework for understanding apparently disparate phenomena. 

Independently, these models can account for many psychological phenomena. 

SIMPLE can predict key memory phenomena such as serial position effects (Brown 

et al., 2007) and interference based forgetting (Lewandowsky et al., 2004). DbS can 

account for social decision making (Maltby et al., 2012; Moore, Wood, Brown, & 

Shepherd, 2012; Wood, Boyce, Moore, & Brown, 2012; Wood, Brown, et al., 2012).  

In this thesis I have shown that DbS can account for many key relative 

judgment phenomena. Chapter 2 showed range effects do occur in overall judgments. 

Chapter 3 found range effects at an individual level in studies manipulating item 

spacing. In this chapter the findings show that range effects can be accounted for 

using the combined SIMPLE and DbS model.  

However, there are limitations to the results presented here. First, many range 

effects occur when the frequency of stimuli is manipulated. SIMPLE and DbS has 

not yet been extended to examine these frequency effects4. Second, the SIMPLE 

model may be restricted to only accounting for serial position effects. A major 

confound in the serial position curve is output position. Items recalled first are more 

                                                      
4 Preliminary analysis suggests that range effects from frequency manipulations are 

consistent with a combined SDbS model. 
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likely to be recalled irrespective of their input (serial) position. In the next chapter I 

address this confound directly. 
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Chapter 5 

The Cost of Recall 
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Introduction to Chapter 

 In this chapter I continue the examination of SIMPLE, using economic 

incentives, to investigate the relationship between serial position effects and output 

interference. Both of these are important in the study of judgment and decision 

making: recency effects may play a role in the peak-end effects (Fredrickson & 

Kahneman, 1993) and forgetting due to output interference is an important 

component of query theory (Johnson et al., 2007). 

First, I investigate the extent to which recall is influenced by output order 

effects. To do this I carry out three free recall experiments. The novel methodology 

associates input position with monetary payments. Consistent with previous 

literature I establish that output position appears to influence recall performance. I 

illustrate recall behavior with atypical serial position curves. Second, I examine if 

SIMPLE can be extended to account for atypical recall behavior. I fit a modified 

version of the SIMPLE model to this atypical data.  

 Our implementation of SIMPLE has several advantages over other previously 

reported implementations. First, as in previous chapters I fit the model at an 

individual level. Second, the SIMPLE architecture is used to compare the 

performance of two versions of the model. In one, forgetting during output is due to 

the passage of time alone; in the other, output interference occurs. Finally, I 

incorporate the observed output order of items from participant data into the model. 
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Abstract 

 How accessible are items in memory? The ubiquitous serial position effects 

in free recall suggest that items at the start and end of a list are more accessible in 

memory than those in the middle. However, these serial position effects do not 

provide an unambiguous measure of memory strength. Items in the first and last 

input positions are the most likely to be recalled overall. Here I report three free 

recall experiments in which input position was associated with a monetary incentive. 

Participants received differential monetary incentives for recalling items from 

particular portions (thirds) of the presented list. Experiment 1 found that items 

associated with higher payments were recalled earlier. Experiment 2 shows that this 

effect survives rapid presentation. Experiment 3 found that recall strategies can be 

altered when incentives are shown just before recall. Formal modeling using the 

SIMPLE model of memory investigates the extent to which these recall effects can 

be attributed to output interference or time based forgetting. I go beyond previous 

work by fitting the models at an individual level and incorporating the observed 

output order of recalled items. 
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 Here I investigate the interaction of input and output position in a free recall 

task. In a series of experiments I use a novel paradigm in which I pay people for 

recalling items. Payment depends on the input positions of the recalled words in a 

series. The payment for words in the first, second and final third of the word list is 

manipulated. Then I use a formal model to examine whether the effect of output 

position on recall performance can be attributed to (a) the passage of time or (b) 

output interference. I extend and adapt a previous implementation of the SIMPLE 

model (Lewandowsky et al., 2004) and conduct model fitting at an individual level 

using maximum likelihood estimation (Myung, 2003). 

 The plan for this paper is as follows. First, I briefly review the literature on 

the effect of input and output position in free recall. Second, I consider previous 

work that has attempted to control the order of recall in both free and serial recall 

tasks. This is followed by a report of three experiments using financial incentives to 

direct recall behavior. Then the results of individual level model fit of SIMPLE are 

presented. I use the SIMPLE architecture to compare the performance of time-based 

forgetting and output interference based models. 

Input Position Effects 

 In studies of free recall the input position of an item seems to influence 

overall recall performance. In the free recall paradigm participants are shown a series 

of items one after another and are then asked to recall as many of these items as they 

can in any order. The task was first introduced by Kirkpatrick (1894) and 

subsequently has become a key paradigm in memory research (for reviews see 

Bhatarah, Ward, & Tan, 2008; Greene et al., 1986; Murdock, 1974; Roberts, 1972).  

Free recall tasks are particularly useful for researchers because they allow the 

examination of the relationship between the input position of the item (position in 



138 

 

 

the list) and number of items correctly recalled. Many studies have found that items 

at the start and end of a series are more likely to be recalled when compared to items 

in the middle (e.g., Deese & Kaufman, 1957; Murdock, 1962; Murdock, 1974). 

These input position effects have been separated into the primacy - first few input 

positions– and recency – final few input positions – effects. 

Primacy effects are robust. Studies manipulating the number of items in a 

series have shown primacy effects across list lengths (Murdock, 1962; Postman & 

Phillips, 1965; Ward et al., 2010). Primacy in recall has been attributed to the 

rehearsal of items in the first input positions throughout subsequent encoding. 

Initially, primacy was taken as evidence of a dual-store model of memory (Atkinson 

& Shiffrin, 1971; Raaijmakers & Shiffrin, 1981). In one free recall study supporting 

this interpretation, Rundus and Atkinson (1970) asked participants to rehearse items 

out loud. The average number of rehearsals was highest for items in the first output 

positions. In all but the final input positions a higher number of rehearsals was 

associated with better recall performance. These results suggest that rehearsal of 

items moved items in an early input position into long-term memory. 

However, Tan and Ward (2000) argue that primacy may be due to when these 

items are rehearsed. Instead, rehearsal may create instances of items in early input 

positions that are closer to the point of recall (e.g., Brodie & Murdock, 1977; 

Laming, 2010). Tan and Ward (2000) found that items rehearsed closer to the point 

of recall were more likely to be recalled. If rehearsals strengthen the memory trace 

then the number of rehearsals should be the determining factor in recall performance. 

Tan and Ward (2000) suggest instead that the primacy effect can be explained using 

a similar mechanism as explains the recency effect.  
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Output Position effects 

 Recency effects may be due to the output position of items. In the free recall 

paradigm items can be recalled in any order. A robust finding in the literature is that 

items presented last are general recalled first (Beaman & Morton, 2000; Bhatarah et 

al., 2008; Farrell, 2010; Hogan, 1975; Ward et al., 2010). Intuitively, we might 

expect recall performance to be best for items recalled first.  

 Here I investigate two sources of these output position effects. In most 

models of memory the recall of an item decreases as a function of time alone. In 

trace decay accounts this is due to a degradation in the memory impression of an 

event. Other models, such as SIMPLE, predict that as time passes items become 

more easily confused with one another and are less likely to be recalled correctly for 

that reason (Brown et al., 2007). A second source may be output interference. The 

act of recalling an item creates additional noise or degrades the memory 

representation of other items. In effect, the outputting of an item interferes with the 

recall of the next. Both output interference predict that recall performance will 

decrease as a function of output position. I later apply individual level model fitting 

to the data from Experiments 4, 5 and 6, comparing both mechanisms within the 

SIMPLE model of memory. 

 Crucially, output position effects can confound the serial position curve. 

Based purely on the frequency of recall a researcher may conclude that items in the 

first and last input positions are more accessible in memory. However, this does not 

consider the output order of items. It may the case that items at the end and middle of 

a list are equally likely to be recalled when they are recalled in the first output 

position. The recency effect may be entirely or partially due to output position alone.  
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Directing Recall 

 In serial recall the experimenter can determine output order. Cowan, Saults, 

Elliott, and Moreno (2002) asked participants to start recall at specific input 

positions. They found that primacy effects could be attributed to output interference. 

Output interference may however depend on the modality of input and output, as 

shown by  Harvey and Beaman (2007). Furthermore, Oberauer and Lewandowsky 

(2008) found that in delayed recall the degradation in performance was best 

explained by output interference. 

 In free recall items can be recalled in any order. Unlike in serial recall, the 

experimenter does not specific the order in which items are recalled. In many ways 

this type of recall more closely resembles everyday recall tasks. For instance, when 

shopping the order of recalling the items one needs to buy may not be important. As 

we might expect recency effects are most notable in free recall tasks where people 

recall the final list items in the first output positions. In an early study,  Dalezman 

(1976) showed participants 15 words and used written instructions to direct their 

recall. He asked participants to recall either the first (input: 1-5), middle (input: 6-10) 

or last (input: 11-15) items, and then to recall any other items. Items recalled first 

were more likely to be recalled correctly. 

 Here I further develop the directed recall paradigm by associating input 

positions with financial incentives. Many previous studies have used incentive to 

influence recall behavior. These studies usually use incentives to improve recall by 

associating items with incentives or increasing the number of rehearsals for a given 

item (e.g., Cuvo, 1974; Eysenck & Eysenck, 1982; Haines & Torgesen, 1979; 

Hartley & Walsh, 1980; Hill, Storandt, & Simeone, 1990; Kunzinger III & Witryol, 
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1984; Rundus & Atkinson, 1970; Wilson, Witryol, & Hust, 1975). Here I use 

economic incentives by associating them with input positions. 

Experiment 4 

The methodology of the experiment is similar to the methodology used by  

Dalezman (1976). Participants were shown 15 item word lists. One item was 

presented per second. Recall was incentivized for a specific third of the list. The 

main difference between the work here and the work carried out by Dalezman (1976) 

was the use of financial incentives rather than directive instructions. 

Method 

Participants. Seventy five participants took part in the study. Participant 

payment varied depending on their payment schedule and recall performance. 

Materials. Words from the Toronto word pool (Friendly, Franklin, Hoffman, 

& Rubin, 1982) were presented using a computer program written in Blitz3D. The 

words presented were randomly selected from the 1000 word noun subset of the 

Toronto word pool. Each word was two syllables in length. 

Design. I manipulated the payment schedule between participants. There 

were five payment schedules (see Table 17). Payment depended on the presentation 

position of the words that were recalled in the increasing, decreasing and middle 

high conditions. The participant was paid for each word correctly recalled. The 

payment for each participant varied depending on the payment schedule. In the none 

condition the participant received a £3 payment irrespective of their performance and 

in the same condition the payment was two pence per word correctly recalled. In the 

remaining conditions the payment for each word varied. Table 17 shows the payment 

associated with input position in each condition. The recall accuracy and order of 

recall were recorded. 
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Table 17 

Payment schedule used in Experiment 4 and Experiment 5 

  Serial Position 

Payment 

Schedule 
1 - 5 6 - 10 11 - 15 

Increasing 1 2 3 

Decreasing 3 2 1 

Middle High 2 3 1 

None £3 for the experiment 

Same 2 2 2 

Note: payments are in pence unless otherwise specified 

 

Procedure. The participants were seated beside the experimenter and in front 

of a computer monitor in an experimental cubicle. Each participant was shown a 

series of instructions followed by 19 experimental trials. 

Onscreen instructions informed the participant that they would be presented 

with a series of words which would be presented one after another after which they 

would be asked to recall the presented words. A second screen told the participants 

that their payment in the task might depend on the input positions of the words they 

recalled. The next screen differed depending on the participant’s payment schedule. 

In all but the none payment schedule condition a bar chart depicting the payment 

schedule was shown. Those in the none condition were told they would receive £3 

from taking part irrespective of their recall performance. Participants were then 

given the opportunity to ask the experimenter any questions. 

Each participant completed 19 experimental trials. The bar chart or text 

reminding the participant of their payment schedule was displayed at the start of 

every trial until the participant pressed the space bar. Then a series of 15 words was 

shown onscreen one after another. Each word was displayed for 1000 ms. After all 
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15 words had been shown, an onscreen prompt told participants that they had one 

minute to write down as many words as they could recall on a piece of paper. The 

participant told the experimenter when they had recalled as many as they could. The 

experiment then pressed the space key to display the words presented on one screen 

and marked on the piece of paper the correct responses. In all but the none condition 

the experimenter told the participant how much money they had earned based on 

their performance and payment schedule. 

Results and Discussion 

 To examine the effect of monetary incentives I analyzed three measures of 

recall: serial position curves, probability of first recall, and lag recency. Each of 

these measures is important for examining the overall performance and the output 

dynamics of recall.  

 Input Position Effects. To examine the effect of payment schedule I 

performed a repeated measures ANOVA on the probability of recalling items in each 

serial position. There was no significant main effect of payment schedule, F(1,4) = 

0.41, p = .80, ηp
2 = 0.02. However, there was a significant main effect of serial 

position, F(14,980) = 28.67, p < .001, ηp
2 = 0.29, and a significant interaction 

between serial position and payment schedule, F(56,980) = 2.45, p < .001, ηp
2 = 0.12. 

These results show that the payment manipulation influenced the probability of 

recall with different effects depending on the serial position of an item. 

 A repeated measures ANOVA on the data from the same and none conditions 

revealed no significant effect of payment schedule, F(1,1) = 0.03, p = .88, ηp
2 = 

0.001, and no significant interaction of payment schedule and serial position, 

F(14,420) = 1.31, p = .20, ηp
2 = 0.04. There was a significant main effect of serial 

position, F(14,420) = 25.80, p < .001, ηp
2 = 0.46, as shown in the serial position 
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curve in Figure 21. Thus recall probability of words was similar when participants 

were paid £3 for the experiment compared to a uniform incentive of 2 pence per 

word. 

To investigate the effect of differing incentives (increasing, decreasing, 

middle high) I ran a repeated measures ANOVA which revealed no significant main 

effect of payment schedule, F(2,40) = 0.67, p = .52, ηp
2 = 0.32, a significant main 

effect of serial position, F(14,560) = 10.66, p < .001, ηp
2 = 0.21, and a significant 

interaction between serial position and payment schedule, F(28,560) = 3.11, p < .001, 

ηp
2 = 0.13. The interaction is shown in Figure 21, where items associated with the 

highest payment were generally more likely to be recalled. 

 

Figure 21. Serial position effects in Experiment 4 
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Effect of Incentive. To examine the effect of incentive I calculated the 

average proportion of items recalled in each third of the word list. A 3 (third of list) x 

5 (payment schedule) repeated measures ANOVA on the average proportion correct 

found a significant main effect of list third, F(2,140) = 39.20, p < .001, ηp
2 = 0.36, no 

significant main effect of payment schedule, F(4,70) = 1.53, p = .20, ηp
2 = 0.08, and 

a significant interaction between payment schedules and third of list, F(8,140)  = 

18.32, p < .001, ηp
2 = 0.51. To explore this interaction I carried out one-way 

ANOVAs for each payment condition. In all of the conditions except middle high 

there was a significant main effect of third (all p < .05).  

Table 18 shows the mean proportion correct in each third of the word list. 

The results of the post-hoc analysis are shown in the table. Thirds within each 

condition which share a superscript are not significantly different (p > .05). 

Participants recalled more of the items which were highly incentivized. However, 

performance was similar across thirds in the middle high condition. 

Table 18 

Mean proportion of items recalled in each third of the word list  

  Third of list 

  First Middle Last 

None 
.48a .35b .55a 

.18 .13 .12 

    

Same 
.55a .35b .65a 

.11 .14 .13 

    

Increasing 
.34a .41a .71b 

.17 .13 .15 

    

Decreasing 
.70a .26b .39c 

.16 .14 .19 

    

Middle High 
.55 .55 .49 

.11 .15 .17 
Note: standard deviations are in italics. 
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Probability of First Recall. Are highly incentivized items the first to be 

recalled? We would expect this to be the case if people are trying to maximize their 

payment. To examine which items are recalled first I calculated the probability of 

first recall (see Figure 22). In other words, this measure is the proportion of items in 

each input position which were recalled first.  

I ran a repeated measures ANOVA on the first recall probability of items in 

each serial position. The ANOVA showed no significant main effect of payment 

schedule, F(4,70) = 0.47, p = .79, ηp
2 = 0.03, a significant main effect of serial 

position, F(14,980) = 22.80, p < .001, ηp
2 = 0.27, and a significant interaction 

between serial position and payment schedule, F(56,980) = 3.84, p < .001, ηp
2 = 0.18.  

Figure 22 shows the effect of incentives on the probability of first recall. In 

the same and none conditions the participants were most likely to first the last items 

presented to them. This is similar to the findings of previous studies (Bhatarah et al., 

2008; Ward et al., 2010). When items are associated with a financial incentive 

participants tend to start recall with high incentive items. 
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Figure 22. Probability of recalling items in output position 1 in Experiment 4 

 

 To examine the influence of incentives on the first recall probability of items 

in each third of the list I ran a 3 (third of list) x 5 (payment schedule) repeated 

measures ANOVA. This found a significant main effect of serial position, F(2,140) 

= 63.86, p < .001, ηp
2 = 0.47, no significant main effect of payment schedule, F(1,70) 

= 0.46, p = .77, ηp
2 = 0.02, and a significant interaction between payment schedule 

and third of list, F(8,140)  = 11.27, p < .001, ηp
2 = 0.39.  

To explore this interaction I carried out one-way ANOVAs on the proportion 

of correct recall for each payment condition. In all of the conditions except middle 
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high there was a significant main effect of third. Thirds within each condition which 

do not share a superscript are significantly different (p < .05).  

 

Table 19 

Mean probability of first recall for items in each third of the word list  

  Third of list 

  First Middle Last 

None 
.03a .03a .14b 

.03 .03 .05 

    

Same 
.02a .03a .15b 

.02 .02 .04 

    

Increasing 
.01a .04b .15c 

.01 .04 .05 

    

Decreasing 
.12a .01b .07a 

.06 .01 .06 

    

Middle High 
.06 .06 .08 

.06 .04 .05 
Note: standard deviations are in italics. 

 

Lag Recency. Previous studies have examined the conditional response 

probabilities of output position in free recall (Kahana, 1996). When people recall 

items it is informative to calculate how people move between input positions during 

recall. For instance, people may “jump” erratically between input positions when 

recalling items. On the other hand, people may recall items in the sequence that they 

were presented in (e.g., recalling the 4th presented item after the 3rd presented item).  

I calculated these conditional response probabilities for each condition 

separately as shown in Figure 23. As we can see in the figure the most likely lag is 

+1 for all of the participants irrespective of condition.  In other words, participants 
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generally recalled items in input position order and this pattern of recall was not 

influenced by the incentives associated with input position. 

 

Figure 23. Lag recency of items in Experiment 4. Note: a lag recency of +1 indicates 

recall of a pair of items in input position order 

 

 Taken together, the results show that economic incentives can alter recall 

behavior. Items associated with the highest incentives were the most likely to be 

recalled. The first item in the highest incentive position of the list was more likely to 

be recalled first. One recall was initialized the items were generally recalled in input 

order. 
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Experiment 5 

 The results of Experiment 4 show that financial incentives can influence 

recall behavior. One aim of this paper is to examine the extent to which output 

position influences recall performance. In Experiment 4 each word was displayed for 

1000 ms and participants knew which words were associated with the highest 

monetary incentives before encoding. It may the case that items were selectively 

rehearsed. In Experiment 5 the items were shown for only 500 ms to decrease 

rehearsal time. 

Method 

Participants. A total of 50 participants took part in the experiment with ten 

participants in each condition. As in Experiment 4 the participant payment depended 

on the payment schedule and the recalled words. 

Procedure. Unlike Experiment 4 each word was presented for 500 ms. In all 

other ways the procedure of Experiment 5 was the same as that of Experiment 4. 

Results and Discussion 

 To examine the influence of financial incentives I calculated the serial 

position curve, probability of first recall and lag recency. These are the same as 

presented in Experiment 3.    

Input Position Effects. A repeated measure ANOVA using all of the data 

revealed a significant main effect of serial position, F(14,630) = 22.69, p < .001, ηp
2 

= 0.33, no significant main effect of payment schedule, F(4,45) = 0.76, p = .56, ηp
2 = 

0.01, and a significant interaction between payment schedule and serial position, 

F(56,630) = 5.41, ηp
2 = 0.33. As with Experiment 4, associating payments with 

words based on their serial position influenced how often the items were recalled. I 

next examined the uniform and differential payment schedules separately. 
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 A repeated measures ANOVA examining responses from participants with 

the same and none payment schedules showed no significant main effect of payment 

schedule, F(1,18) = 1.37, p = .23, ηp
2 = 0.07, or significant main interaction between 

serial position and payment schedule, F(14,252) = 1.22, p = .26, ηp
2 = 0.06. However, 

there was a main effect of serial position, F(14,238) = 13.02, p < .001, ηp
2 = 0.43 , as 

shown in Figure 24. As expected both recency and primacy effects were present in 

the data. Thus a small uniform incentive did not influence recall performance. 

 Do differential incentives direct recall performance even when the encoding 

duration is reduced? A repeated measures ANOVA showed a significant main effect 

of serial position, F(14,378) = 11.27, p < .001, ηp
2 = 0.29, no significant main effect 

of payment schedule, F(1,27) = 0.65, p = .53, ηp
2 = 0.05, and a significant interaction 

between payment schedule and input position, F(28,378) = 9.38, p < .001, ηp
2 = 0.41. 

As shown in Figure 24, the participants were much more likely to recall items 

associated with the highest incentive. 
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Figure 24. Serial position effects in Experiment 5 

 

Effect of incentive. To examine the overall effect of incentive on the 

proportion of items recalled I calculated the average proportion correct for each third 

of the word list. A 3 (third of list) x 5 (payment schedule) repeated measures 

ANOVA found a significant main effect of list third, F(2,90) = 21.14, p < .001, ηp
2 = 

0.32, no significant main effect of payment schedule, F(4,45) = 0.76, p = .56, ηp
2 = 

0.06, and a significant interaction between payment schedules and third of list, 

F(8,90)  = 9.68, p < .001, ηp
2 = 0.46. To explore this interaction I carried out one-

way ANOVAs on the proportion of correct recall for each payment condition. In the 

same, decreasing and increasing payment schedule conditions there was a significant 
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main effect of third. However, the effect of third was not statistically significant in 

the none condition (p = .06) and not significant in the middle high condition. 

Table 20 shows the mean proportion correct in each third of the word list. 

The results of the post-hoc analysis are shown in the table. Thirds within each 

condition which do not share a superscript are significantly different (p < .05). These 

results clearly show that differential incentives can influence recall performance.  

 

Table 20 

Mean proportion of items recalled from each third of the word list 

  Third of list 

  First Middle Last 

None 
.43 .33 .46 

.10 .04 .05 

    

Same 
.38a .23b .50a 

.10 .04 .05 

    

Increasing 
.28a .25a .66b 

.15 .04 .05 

    

Decreasing 
.58a .21b .34c 

.18 .04 .05 

    

Middle High 
.32 .40 .33 

.10 .04 .05 

Note: standard deviations are in italics. 

 

Probability of First Recall. Next I examined the first recall probability items 

in each input position. If incentives influence recall then I would expect the high 

incentive items to be recalled first. A repeated measures ANOVA on the first recall 

probability of items based on their serial position showed a significant main effect of 

serial position, F(14,630) = 12.66, p < .001., ηp
2 = 0.22, no significant main effect of 

payment schedule, F(4,45) = 1.37, p = .26, ηp
2 = 0.11, and a significant interaction 
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between payment schedule and serial position, F(56,630) = 2.77, p < .001, ηp
2 = 0.17. 

The general pattern of the results was similar to that found in Experiment 4 (see 

Figure 25). Participants appear most likely to recall items associated with a high 

incentive first. 

 

Figure 25. Probability of recalling items in output position 1 in Experiment 5 

 

To examine the overall influence of incentive I calculated the average first 

recall probability for each third of the list. A 3 (third of list) x 5 (payment schedule) 

repeated measures ANOVA found a significant main effect of third of list, F(2,90) = 

14.65, p < .001, ηp
2 = 0.25, no significant main effect of payment schedule, F(4,45) 

= 1.37, p = .26, ηp
2 = 0.11, and a significant interaction between payment schedules 
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and third of list, F(8,90)  = 3.87, p = .001, ηp
2 = 0.26. To explore this interaction I 

carried out one-way ANOVAs on the probability of first recall for each payment 

condition. In all of the conditions except middle high and same there was a 

significant main effect of third. Thirds within each condition which do not share a 

superscript are significantly different (p < .05). These results show that incentives 

influenced which item was recalled first. 

 

Table 21 

Mean proportion of items recalled in each third of the word list 

  Third of list 

  First Middle Last 

None 
.06 .05 .09 

.05 .02 .04 

    

Same 
.05ab .04a .12b 

.05 .02 .06 

    

Increasing 
.01a .06b .14c 

.01 .04 .04 

    

Decreasing 
.12ac .00b .07bc 

.06 .03 .05 

    

Middle High 
.06 .05 .08 

.06 .04 .06 

Note: standard deviations are in italics. 

 

Lag Recency. The probability of first recall shows us that people have a 

tendency to start their recall with the first high incentive item that they are shown. 

The serial position effects show that people recall more of the high inventive items. 

However, I have not examined the order in which successive pairs of items are 

recalled. I examined this by calculating lag recency. In Figure 26 shows that people 
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generally recalled items in their serial position order because a lag recency of +1 is 

most common.  

 

Figure 26. Conditional response probability in Experiment 5 

 

Experiment 6: Postcued Recall Schedule 

 Experiments 4 and 5 showed that participants are able to selectively retrieve 

items in order to maximize their payment. Items associated with a high incentive 

were more likely to be recalled correctly and in the first output position. In both of 

these experiments the payment schedule was displayed immediately before the 

words were shown to the participant. The recall performance of high incentive items 

may have been due to increased attention on those items. 
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Experiment 6 was designed to examine how well people could selectively 

recall items when they had no knowledge of the payment schedule until the point of 

recall (i.e., after encoding). The order of the payment schedules shown at recall was 

random which will prevent participants from selectively rehearsing or attending to 

only the high incentive items. 

Method 

Participants. Nineteen participants took part and were paid according to 

their recall performance. 

Materials. The materials were the same as those used in Experiment 4 and 

Experiment 5. 

Design. The payment schedule was manipulated within participants. In the 

payment schedules the participant was paid 6 pence per word correctly recalled in 

the first, middle, or last five serial positions (see Table 22)5. The order in which the 

participant experienced each payment schedule was random. 

 

Table 22 

Payment schedules shown to participants in Experiment 6 

  Serial Position of Word 

Payment 

Schedule 
1 - 5 6 - 10 11 - 15 

First 6 0 0 

Middle 0 6 0 

Last 0 0 6 

 

 

                                                      
5  Preliminary experiments found that participants became confused when the 

payment schedules used in Experiment 4 and Experiment 5 were post-cued. Due to 

this we used a simpler payment schedule in Experiment 5. 
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Procedure. The procedure of Experiment 6 differed from Experiment 5 in 

two ways. First, the payment schedule was shown after the 15 words had been 

displayed onscreen. Second, participants experienced a total of 21 trials consisting of 

seven trials per payment schedule. 

Results and Discussion 

 In Experiment 6 participants were shown a payment schedule just before 

initiating recall. The aim of the analysis presented here is to investigate if people 

altered their behavior depending on the payment schedule. 

Input Position Effects. A repeated measures ANOVA revealed a significant 

main effect of payment schedule, F(2,28) = 4.67, p = .02., ηp
2 = 0.25, a significant 

main effect of serial position, F(14,196) = 9.02, p < .001., ηp
2 = 0.39, and a 

significant interaction between payment schedule and serial position, F(28,392) = 

11.88, p < .001., ηp
2 = 0.46. The interaction between payment and serial position is 

shown in Figure 27.  
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Figure 27. Recall performance of participants in differing incentive conditions 

 

Effect of incentive. To examine the overall effect of incentive on recall 

performance I calculated the average proportion of items recalled in each third of the 

word list. A 3 (third of list) x 3 (payment schedule) repeated measures ANOVA was 

carried out using the average proportion of correct items recalled. There was a 

significant main effect of list third, F(2,56) = 11.37, p < .001, ηp
2 = 0.45, a 

significant main effect of payment schedule, F(2,56) = 4.67, p = .02, ηp
2 = 0.25, and 

a significant interaction between payment schedules and third of list, F(4,56)  = 

26.98, p < .001, ηp
2 = 0.66. To explore this interaction I carried out one-way 

ANOVAs for each payment condition. In the first and last conditions there was a 

significant main effect of third (all p’s < .05).  
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Table 23 shows the mean proportion correct in each third of the word list. 

The results of the post-hoc analysis are shown in the table. Thirds within each 

condition which share a superscript are not significantly different (p < .05). These 

results show that incentive did influence recall. In the first and last conditions the 

participant recalled more of the items which were highly incentivized.   

 

Table 23 

Mean proportion of items recalled in each third of the word list 

  Third of list 

Payment Schedule  First Middle Last 

First 
.46a .16b .23b 

.17 .06 .19 

    

Middle 
.32 .29 .31 

.17 .13 .17 

    

Last 
.23a .17a .60b 

.16 .12 .09 

    

Note: standard deviations are in italics. 

 

 Probability of First Recall. A 3 (payment schedule) x 15 (serial position) 

repeated measures ANOVA showed a significant main effect of payment schedule, 

F(2,36) = 7.28, p = .002, ηp
2 = 0.29, a significant main effect of serial position, 

F(14,252) = 13.15, p < .001, ηp
2 = 0.42, and a significant interaction of payment 

schedule and serial position, F(28,504) = 6.93, p < .001, ηp
2 = 0.28. This interaction 

is shown in Figure 28. 
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Figure 28. Probability of first recall for items in Experiment 6 

 

I examined the number of items that participant recalled in the first output 

position. A 3 (third of list) x 3 (payment schedule) repeated measures ANOVA 

found a significant main effect of third of list, F(2,36) = 23.91, p < .001, ηp
2 = 0.57,  

no significant main effect of payment schedule, F(2,36) = 7.28, p = .002, ηp
2 = 0.29, 

and a significant interaction between payment schedules and third of list, F(4,72)  = 

24.47, p < .001, ηp
2 = 0.58. To explore this interaction I carried out one-way 

ANOVAs on the average number of items correctly recalled in the first output 

position in each third of the word list. In all of the conditions except middle high and 

same there was a significant main effect of third. The average first recall probability 
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of items in each third is shown in Table 24. Thirds within each condition which do 

not share a superscript are significantly different (p < .05). As we might expect, the 

first items recalled were generally those associated with a high incentive. 

 

Table 24 

Average number of items recalled in the first output position for each third of the 

word list 

  Third of list 

Payment Schedule  First Middle Last 

First 
0.74a 0.19ab 0.36b 

0.38 0.16 0.40 

    

Middle 
0.36 0.43 0.58 

0.24 0.38 0.42 

    

Last 
0.11a 0.11a 1.20b 

0.14 0.14 0.19 

    
Note: standard deviations are in italics. 

 

 Lag Recency. The lag recency effects were similar to those in Experiment 4 

and Experiment 5. As shown in Figure 29, participants were most likely to recall 

items in forward neighboring input positions.  
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Figure 29. Lag recency observed in Experiment 6 

 

Model Based analysis 

 The above findings show that output position does influence recall 

performance. Items associated with high incentives were the most likely to be 

recalled first and the most likely to be recalled overall. This effect persisted when 

rehearsals were reduced by either increasing the presentation rate or associating 

items with incentives after encoding. 

Yet there remains a key theoretical question: Is the advantage of items in the 

first few output positions due to output interference or time-based forgetting? In this 

study I have incentivized recall to produce atypical serial position effects. The 
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SIMPLE model offers an account of memory which may be extended to decision 

making (see Chapter 4 and Brown & Matthews, 2011). However, previous 

applications of the SIMPLE model have focused on typical serial position effects. 

Here I examine if SIMPLE can be extended to the atypical serial position effect 

reported above. An advantage of the SIMPLE model is that it allows us to examine 

the extent to which decreases in recall performance can be attributed to output 

interference or time based forgetting.  

According to event-based models, the decrease in recall performance over 

output position cannot be attributed to the passage of time (Murdock, 1995; Neath & 

Crowder, 1990). One mechanism proposed by these event-based models is output 

interference (Lewandowsky & Farrell, 2008; Oberauer & Lewandowsky, 2008) in 

which the recollection of items from memory interferes with subsequent recall 

attempts. 

Time-based models predict a decrease in recall performance due to the 

passage of time. As more items are recalled by participants the time between 

encoding and retrieval increases. In some models memory are assume to decay with 

the passing of time (Baddeley, 1992; Page & Morris, 1998). Other accounts, such as 

SIMPLE (Brown et al., 2007), predict poorer recall performance due to a decreased 

distinctiveness of items along a temporal dimension. 

Here I use an implementation of SIMPLE to compare output interference and 

time based forgetting accounts using the data collected from Experiments 4, 5 and 6. 

This implementation is similar to that of Lewandowsky et al. (2004). The model 

predicts a decrease in recall performance as a function of output position due to 

either (a) output interference or (b) the passage of time. Unlike Lewandowsky et al. 
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(2004) I fit the model to individual level data and use the observed output position of 

items for each participant to weight the predictions of the model. 

Before reporting the results of the model fitting I will outline the model. First, 

I detail the output interference model in which time has no effect on the recall 

probability of items. Instead, the memory representations of items becomes less 

discriminable with each recalled item. Second, the time based forgetting model is 

described. In this model the time between item presentation and recall is log 

compressed (as detailed in Brown et al., 2007). With each output position the 

presented items are more distant in time. When logged the result is less local 

distinctiveness between presented items and lower recall probabilities. Finally, I use 

data from a participant in Experiment 4 to demonstrate how the observed output 

position of items is used to weight the model predictions. 

An advantage of using SIMPLE as a common framework is that the model 

can generate predictions due to both output interference and time-based Forgetting. 

SIMPLE allows recall to be a function of the local distinctiveness of an item along 

any particular dimension. In the implementation applied here the temporal and input 

position dimensions are used. Predictions can be made based on a weighted average 

of these dimensions, 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 = 𝑤|log 𝑇𝐷𝑖 − log 𝑇𝐷𝑗| + (1 − 𝑤)|𝐼𝑃𝑖 − 𝐼𝑃𝑗| (36) 

where the distance in psychological space between items i and j is a function of their 

distance from the point of recall, TD, and input position, IP. The weight of these 

dimensions is controlled by the w parameter. When w = 1 the predictions are based 

purely on the temporal distance. If w = 0 then the predictions are based solely on the 

input position of the item. The predictions are based on a weighted average of the 

two dimensions when 0<w<1.  
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Output Interference 

 In SIMPLE recall is a discrimination task. In principle this discrimination can 

be based on any particular dimension. Following Lewandowsky et al. (2004) the 

dimension of interest in the output interference model is the input position of the 

item. The psychological distance between items is the absolute difference between 

input positions, 

 𝐼𝑖,𝑗 =  |𝐼𝑃𝑖 − 𝐼𝑃𝑗| (37) 

given the input positions (IP) of items i and j. When applied to the 15 word list used 

in the above experiments we get the absolute distances shown in Table 25. 

 

Table 25 

Absolute distance of items along input position dimension 

  Input 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 

4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 

5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 

6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 

8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 

11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 

12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

These absolute distances are transformed into similarities using the following 

equation, 



167 

 

 

 𝜂𝑖,𝑗 =  𝑒−𝑐𝐼𝑖,𝑗 . (38) 

In the output interference model we assume that the confusability of the presented 

words depends on their input position. The confusability of item is controlled by the 

c parameter in Equation 40. The value of c given output position n is, 

 𝑐𝑛 =  𝑘𝑜𝑛−1  (39) 

where k is a constant and o is a value between 0 and 1. When o is 1 there is no output 

interference because the value of c is the same in all output positions. If o < 1 then c 

decreases with each output position.  

As a result items are more confusable in later output positions. When k = 1.5 

and o = .8 the c parameter for the second output position is 1.2. The similarity of the 

items when c = 1.2 is shown in Table 26. The shading of the table cells correspond to 

the similarity of the items. The darkest cells are the most similar based on the 

absolute distance of the items in Table 25.  

Table 27 shows the similarity of items when c = 0.2. As shown by the cell 

shading the items are much more similar in output position 10.  In other words, it 

will be harder to discriminate between the items at later output positions. 



168 

 

 

Table 26 

Similarity of items along the input position dimension in the second output position 

  Input 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 .30 .09 .03 .01 0 0 0 0 0 0 0 0 0 0 

2 .30 1 .30 .09 .03 .01 0 0 0 0 0 0 0 0 0 

3 .09 .30 1 .30 .09 .03 .01 0 0 0 0 0 0 0 0 

4 .03 .09 .30 1 .30 .09 .03 .01 0 0 0 0 0 0 0 

5 .01 .03 .09 .30 1 .30 .09 .03 .01 0 0 0 0 0 0 

6 0 .01 .03 .09 .30 1 .30 .09 .03 .01 0 0 0 0 0 

7 0 0 .01 .03 .09 .30 1 .30 .09 .03 .01 0 0 0 0 

8 0 0 0 .01 .03 .09 .30 1 .30 .09 .03 .01 0 0 0 

9 0 0 0 0 .01 .03 .09 .30 1 .30 .09 .03 .01 0 0 

10 0 0 0 0 0 .01 .03 .09 .30 1 .30 .09 .03 .01 0 

11 0 0 0 0 0 0 .01 .03 .09 .30 1 .30 .09 .03 .01 

12 0 0 0 0 0 0 0 .01 .03 .09 .30 1 .30 .09 .03 

13 0 0 0 0 0 0 0 0 .01 .03 .09 .30 1 .30 .09 

14 0 0 0 0 0 0 0 0 0 .01 .03 .09 .30 1 .30 

15 0 0 0 0 0 0 0 0 0 0 .01 .03 .09 .30 1 

 

Table 27 

Similarity of items along the input position dimension in the tenth output position 

  Input 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 .82 .67 .55 .45 .37 .30 .24 .20 .16 .13 .11 .09 .07 .06 

2 .82 1 .82 .67 .55 .45 .37 .30 .24 .20 .16 .13 .11 .09 .07 

3 .67 .82 1 .82 .67 .55 .45 .37 .30 .24 .20 .16 .13 .11 .09 

4 .55 .67 .82 1 .82 .67 .55 .45 .37 .30 .24 .20 .16 .13 .11 

5 .45 .55 .67 .82 1 .82 .67 .55 .45 .37 .30 .24 .20 .16 .13 

6 .37 .45 .55 .67 .82 1 .82 .67 .55 .45 .37 .30 .24 .20 .16 

7 .30 .37 .45 .55 .67 .82 1 .82 .67 .55 .45 .37 .30 .24 .20 

8 .24 .30 .37 .45 .55 .67 .82 1 .82 .67 .55 .45 .37 .30 .24 

9 .20 .24 .30 .37 .45 .55 .67 .82 1 .82 .67 .55 .45 .37 .30 

10 .16 .20 .24 .30 .37 .45 .55 .67 .82 1 .82 .67 .55 .45 .37 

11 .13 .16 .20 .24 .30 .37 .45 .55 .67 .82 1 .82 .67 .55 .45 

12 .11 .13 .16 .20 .24 .30 .37 .45 .55 .67 .82 1 .82 .67 .55 

13 .09 .11 .13 .16 .20 .24 .30 .37 .45 .55 .67 .82 1 .82 .67 

14 .07 .09 .11 .13 .16 .20 .24 .30 .37 .45 .55 .67 .82 1 .82 

15 .06 .07 .09 .11 .13 .16 .20 .24 .30 .37 .45 .55 .67 .82 1 

 

The discriminability of item from the a given memory location is, 

 𝐷𝑖|𝐼𝑗 =  
𝜂𝑖,𝑗

∑ 𝜂𝑖,𝑘
𝑛
𝑘=1

  (40) 
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where 𝜂𝑖,𝑗 is calculated from Equation 40. Applying this equation to Table 26 we 

divide each similarity in a row by the row total.  

Next we apply a thresholding function to calculate the recall probabilities, 

 
𝑃(𝑅𝑖|𝐷𝑖) =

1

1 + 𝑒−𝑠(𝐷𝑖−𝑡)
 

(41) 

where s and t are the parameters for the slope and threshold. Here s = 10 and t = .4. 

The resulting cued recall probabilities for output position two are shown in Table 28. 

Following Lee and Pooley (2012) given n cues the probability of recalling item i is 

 
𝜃𝑖 = 1 − ∏(1 − 𝑃𝑖,𝑗)

𝑛

𝑗=1

 
(42) 

where 𝑃𝑖,𝑗 is the probability of recalling item i given cue j. The overall probability of 

recalling a given item in the second output position is shown at the bottom of Table 

28. In this case the model predicts a high recall probability for all of the items. Items 

in the first and last input position are most likely to be recalled. 

Table 28 

Cued recall probabilities and overall recall probability in output position two 

  Input 

Cue 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 .95 .13 .03 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 

2 .09 .85 .09 .03 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 

3 .03 .09 .82 .09 .03 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 

4 .02 .03 .09 .80 .09 .03 .02 .02 .02 .02 .02 .02 .02 .02 .02 

5 .02 .02 .03 .08 .80 .08 .03 .02 .02 .02 .02 .02 .02 .02 .02 

6 .02 .02 .02 .03 .08 .80 .08 .03 .02 .02 .02 .02 .02 .02 .02 

7 .02 .02 .02 .02 .03 .08 .80 .08 .03 .02 .02 .02 .02 .02 .02 

8 .02 .02 .02 .02 .02 .03 .08 .80 .08 .03 .02 .02 .02 .02 .02 

9 .02 .02 .02 .02 .02 .02 .03 .08 .80 .08 .03 .02 .02 .02 .02 

10 .02 .02 .02 .02 .02 .02 .02 .03 .08 .80 .08 .03 .02 .02 .02 

11 .02 .02 .02 .02 .02 .02 .02 .02 .03 .08 .80 .08 .03 .02 .02 

12 .02 .02 .02 .02 .02 .02 .02 .02 .02 .03 .09 .80 .09 .03 .02 

13 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .03 .09 .82 .09 .03 

14 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .03 .09 .85 .09 

15 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .03 .13 .95 

  .97 .91 .88 .87 .87 .87 .87 .87 .87 .87 .87 .87 .88 .91 .97 
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However, the recall probability of items decreases as the output position 

increases. As described in Equation 41 the value of the c parameter depends on the 

output position of the item. Later output positions will have a lower c parameter 

value which decreases the local distinctiveness of all of the items. This captures the 

intuition that each additional recall decreases the ease with which later items can be 

recalled. 

Table 29 shows the overall recall probability of each input and output 

position. To produce these values I applied the above calculations to every output 

position. As expected the output interference model predicts that the probability of 

recalling a word in any input position will decrease as a function of the output 

position. This effect is produced by decreasing the value of the c as output position 

increases. 

Table 29 

Recall probability of items based on input and output position 

  Output 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 .98 .97 .93 .86 .76 .65 .56 .49 .44 .42 .40 .40 .39 .39 .39 

2 .95 .91 .84 .76 .67 .60 .54 .49 .46 .43 .42 .41 .40 .40 .40 

3 .94 .88 .79 .69 .61 .55 .51 .48 .46 .44 .43 .42 .41 .41 .41 

4 .94 .87 .77 .66 .58 .53 .49 .47 .45 .44 .43 .42 .42 .42 .41 

5 .94 .87 .76 .65 .57 .51 .48 .46 .45 .44 .43 .43 .42 .42 .42 

6 .94 .87 .76 .64 .56 .51 .48 .46 .45 .44 .43 .43 .43 .42 .42 

7 .94 .87 .76 .64 .56 .50 .47 .45 .44 .44 .43 .43 .43 .42 .42 

8 .94 .87 .76 .64 .55 .50 .47 .45 .44 .44 .43 .43 .43 .43 .42 

9 .94 .87 .76 .64 .56 .50 .47 .45 .44 .44 .43 .43 .43 .42 .42 

10 .94 .87 .76 .64 .56 .51 .48 .46 .45 .44 .43 .43 .43 .42 .42 

11 .94 .87 .76 .65 .57 .51 .48 .46 .45 .44 .43 .43 .42 .42 .42 

12 .94 .87 .77 .66 .58 .53 .49 .47 .45 .44 .43 .42 .42 .42 .41 

13 .94 .88 .79 .69 .61 .55 .51 .48 .46 .44 .43 .42 .41 .41 .41 

14 .95 .91 .84 .76 .67 .60 .54 .49 .46 .43 .42 .41 .40 .40 .40 

15 .98 .97 .93 .86 .76 .65 .56 .49 .44 .42 .40 .40 .39 .39 .39 
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Time Based Forgetting 

 In the time based model there is no output interference. Instead, any effect of 

output position is due to the passage of time alone. In the time based forgetting 

model discrimination in memory is performed along the temporal dimension. The 

psychological distance between items is the log compressed absolute distance of 

items on the temporal dimension,  

 𝑇𝐼𝑖,𝑗 =  |ln 𝑇𝐷𝑖 − ln 𝑇𝐷𝑗| (43) 

given the temporal distance (TD) of items i and j from the point of recall. As a result 

of log transformation there will be less difference between the temporal distances of 

items as their distance from the point of recall increases.  

As more items are recalled the distance between the presented items and 

point of recall increases. Also, participants correctly recall fewer items over time  

(for a review see Wixted & Rohrer, 1994). I implement this in the model by 

increasing the recall interval, RI, as a function of output position, 

 𝑅𝐼𝑛 =  𝑘𝑙𝑛−2  (44) 

where n is output positions 2 to 15, k is the recall interval between the first and 

second output position, and l is a latency constant. When l = 1 the recall interval is 

equal to k  and is constant across all output positions. Increasing the l parameter 

results in a larger temporal interval between output positions. This is illustrated in 

Figure 30 which shows the increase in recall interval as l varies between 1 and 1.2.  
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Figure 30. Change in recall interval as a function of the l parameters 

 

 Increasing the recall interval with each output position influence the 

predicted recall probability of all the items. For this example, I set k to 1.5 and l to 

1.2. The presentation of the items is one per second and the retention interval is two 

seconds. In the SIMPLE model time is log compressed. As time passes the items all 

of the items appear more similar. The similarity of the items when c = 7 is shown in 

Table 30 and Table 31. The similarity of items increases as a function of the output 

position. This is because the temporal distance between presentation and recall for 

all items is larger. 

Items that are recalled in later output positions are less likely to be recalled. 

The recall probability of each input and output position is shown in Table 32. These 

values were calculated using Equations 42, 43, and 44 with t = .4 and s = 10. In all of 

the output positions there is more recency than primacy. In other words, items in the 
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final output positions are most likely to be recalled. This is due to the log 

transformation of the distances between the items. Also, the time between 

presentation and recall increases with output position. The log compression 

decreases the distinctiveness of items and makes them more confusable as time 

passes. The result is a decrease in the probability of recalling all items as output 

position increases. Note that in the time based forgetting model these output 

positions effects are purely due to temporal distance.  

 

Table 30 

Similarity of items at output position two 

  Input 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 .66 .43 .27 .16 .09 .05 .03 .01 .01 0 0 0 0 0 

2 .66 1 .65 .40 .25 .14 .08 .04 .02 .01 0 0 0 0 0 

3 .43 .65 1 .63 .38 .22 .12 .07 .03 .01 .01 0 0 0 0 

4 .27 .40 .63 1 .61 .35 .20 .10 .05 .02 .01 0 0 0 0 

5 .16 .25 .38 .61 1 .58 .33 .17 .09 .04 .02 .01 0 0 0 

6 .09 .14 .22 .35 .58 1 .56 .30 .15 .07 .03 .01 0 0 0 

7 .05 .08 .12 .20 .33 .56 1 .53 .26 .12 .05 .02 .01 0 0 

8 .03 .04 .07 .10 .17 .30 .53 1 .50 .23 .09 .03 .01 0 0 

9 .01 .02 .03 .05 .09 .15 .26 .50 1 .46 .19 .07 .02 .01 0 

10 .01 .01 .01 .02 .04 .07 .12 .23 .46 1 .42 .15 .05 .01 0 

11 0 0 .01 .01 .02 .03 .05 .09 .19 .42 1 .37 .11 .03 0 

12 0 0 0 0 .01 .01 .02 .03 .07 .15 .37 1 .31 .08 .01 

13 0 0 0 0 0 0 .01 .01 .02 .05 .11 .31 1 .25 .04 

14 0 0 0 0 0 0 0 0 .01 .01 .03 .08 .25 1 .17 

15 0 0 0 0 0 0 0 0 0 0 0 .01 .04 .17 1 
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Table 31 

Similarity of items from output position ten 

  
Input 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 .73 .52 .37 .25 .17 .11 .07 .05 .03 .02 .01 0 0 0 

2 .73 1 .72 .50 .35 .24 .16 .10 .06 .04 .02 .01 .01 0 0 

3 .52 .72 1 .70 .49 .33 .22 .14 .09 .05 .03 .02 .01 0 0 

4 .37 .50 .70 1 .69 .47 .31 .20 .12 .08 .04 .02 .01 .01 0 

5 .25 .35 .49 .69 1 .68 .45 .29 .18 .11 .06 .04 .02 .01 0 

6 .17 .24 .33 .47 .68 1 .66 .43 .27 .16 .09 .05 .03 .01 .01 

7 .11 .16 .22 .31 .45 .66 1 .64 .40 .24 .14 .08 .04 .02 .01 

8 .07 .10 .14 .20 .29 .43 .64 1 .63 .38 .22 .12 .06 .03 .01 

9 .05 .06 .09 .12 .18 .27 .40 .63 1 .61 .35 .20 .10 .05 .02 

10 .03 .04 .05 .08 .11 .16 .24 .38 .61 1 .58 .32 .17 .08 .04 

11 .02 .02 .03 .04 .06 .09 .14 .22 .35 .58 1 .56 .29 .15 .07 

12 .01 .01 .02 .02 .04 .05 .08 .12 .20 .32 .56 1 .53 .26 .12 

13 0 .01 .01 .01 .02 .03 .04 .06 .10 .17 .29 .53 1 .49 .23 

14 0 0 0 .01 .01 .01 .02 .03 .05 .08 .15 .26 .49 1 .46 

15 0 0 0 0 0 .01 .01 .01 .02 .04 .07 .12 .23 .46 1 

 

Table 32 

Probability of recall in each input and output position with time based forgetting 

  
Output 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 .67 .63 .62 .61 .60 .59 .58 .56 .55 .53 .51 .50 .48 .46 .45 

2 .63 .60 .60 .59 .58 .57 .56 .55 .54 .53 .52 .50 .49 .48 .46 

3 .59 .57 .56 .56 .55 .55 .54 .53 .52 .52 .51 .50 .48 .47 .46 

4 .57 .55 .54 .54 .53 .53 .52 .52 .51 .50 .49 .48 .48 .47 .46 

5 .57 .54 .54 .53 .53 .52 .51 .51 .50 .49 .48 .48 .47 .46 .46 

6 .58 .54 .54 .53 .53 .52 .51 .50 .49 .49 .48 .47 .46 .46 .45 

7 .60 .56 .55 .54 .53 .52 .51 .50 .49 .49 .48 .47 .46 .46 .45 

8 .64 .58 .57 .56 .55 .54 .52 .51 .50 .49 .48 .47 .46 .45 .45 

9 .70 .62 .60 .59 .57 .56 .54 .53 .51 .50 .48 .47 .46 .45 .45 

10 .77 .66 .65 .63 .61 .59 .57 .55 .53 .51 .49 .48 .47 .46 .45 

11 .84 .73 .71 .68 .66 .63 .60 .58 .55 .53 .51 .49 .47 .46 .45 

12 .91 .80 .78 .75 .72 .69 .65 .62 .58 .55 .53 .51 .49 .47 .46 

13 .96 .88 .86 .83 .80 .77 .72 .68 .64 .60 .57 .54 .51 .49 .47 

14 .99 .95 .93 .91 .89 .86 .82 .78 .73 .68 .64 .59 .55 .52 .49 

15 1 .99 .98 .98 .97 .96 .94 .92 .88 .82 .76 .68 .61 .55 .50 
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Output Order 

 Our implementation of the Lewandowsky et al. (2004) model incorporates 

the observed output order of the recalled items. In the experiments above I recorded 

the output and input position of each item for every participant. For example, here I 

apply the output interference and time based forgetting models to data from just one 

participant, participant 23, in Experiment 4.  

 For each participant I calculate an output-input matrix. Table 33 shows this 

matrix for participant 23. This matrix tells us for each input position the proportion 

of the correct recall in for each input position. For example, when participant 23 

recalled the first presented item is was recalled in the second output position 26% of 

the time. 

 

Table 33 

Proportion of correctly recalled items in each output position 

 
Output 

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 .37 .26 .16 .05 .05 .11 0 0 0 0 0 0 0 0 0 

2 .06 .28 .22 .11 .17 .06 .06 0 0 0 0 .06 0 0 0 

3 .05 0 .16 .21 .05 .11 .11 .05 .16 0 .05 .05 0 0 0 

4 .07 .07 0 .20 .20 0 .13 .13 0 .07 .07 0 .07 0 0 

5 0 0 .25 .17 0 .25 0 .17 0 .08 .08 0 0 0 0 

6 .08 .08 .08 0 0 0 .33 0 .25 0 .17 0 0 0 0 

7 0 0 0 .38 0 .13 .13 .13 .13 0 0 .13 0 0 0 

8 0 .11 0 0 0 .11 .22 .22 0 .11 .11 0 .11 0 0 

9 0 0 0 .20 .30 .10 0 .10 .10 .10 0 0 0 .10 0 

10 0 0 0 .08 .08 .31 0 .23 0 .23 .08 0 0 0 0 

11 0 0 0 0 .25 0 .25 .13 0 .25 .13 0 0 0 0 

12 0 0 0 0 .14 .29 0 .14 .14 .14 .14 0 0 0 0 

13 .20 0 .30 .10 0 .10 .10 .10 0 .10 0 0 0 0 0 

14 .25 .25 0 0 .08 .08 0 .25 0 .08 0 0 0 0 0 

15 .20 .20 .13 0 .13 0 .20 0 .13 0 0 0 0 0 0 

 

 The output probabilities can be used to weight the predictions of either model. 

Both the output interference and time based forgetting models produce predictions 
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for every each input and output position combination (see Table 29 and Table 32). 

These models predictions are weighted by the observed output probabilities (Table 

33) by multiplying the corresponding probabilities together. When an item is not 

recalled in an input-output position then the predicted probability will be 0. 

Multiplying the corresponding probabilities gives the probability of the participant 

recalling an input-output combination and the model prediction. 

  The aim of this section is to compare the time-based forgetting and output 

interference accounts of the incentive effects reported above. Both models predict a 

decrease in recall performance as a function of output position. However, as I have 

shown above these models make quite different predictions. The time-based 

forgetting model predicts strong recency effects and a gradual decline in recall 

performance over time (see Table 32). The recency effect is due to the log 

transformation of the temporal dimension, whereas the gradual decrease in 

performance depends on the increase in interval between recalls. On the other hand, 

the output interference model predicts equal primacy and recency effects because the 

input position dimension is not log transformed (see Table 29). 

Method 

 I compare three models: time-based forgetting, output interference, and both 

time-based forgetting and output interference. These models are all specific instances 

of the general model outlined above. Consequently, I can generate predictions from 

any of the models by changing the values of the parameters of the general model. 

 The general model has six parameters which I vary. The c, s, and t 

parameters are from the original formulation of SIMPLE (Brown et al., 2007). These 

parameters are allowed to vary in all of the model fitting below. The w parameter 

controls the “attentional weight” given to the temporal and input position dimensions. 
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Increases in confusability increasing with output position - which implements output 

interference - is determined by the o parameter. The rate of the increase in the 

durations between output positions – which contributes to time based forgetting - is 

controlled by the l parameter. Here I set the l parameter to 1.2 because higher values 

produce unrealistic increases in the inter output duration.  

Table 34 shows the parameters which could vary in each model. For example, 

in the time-based forgetting model the attentional weight was entirely focused on the 

temporal dimension (w = 1), there was no output interference (o = 0) and the 

temporal interval between output positions gradually increased (l = 1.2). Setting the 

range of parameter values allowed us to compare the performance of each model. 

 

Table 34 

Range of parameter values allowed to vary in the model fitting function 

    Parameter 

Model 
 

c s t w o l 

Output interference  0 - 100 0 - 100 0 - 1 0 0 - 1 1 
  

Time-based 

forgetting 

 

 

0 - 100 0 - 100 0 - 1 1 0 1.2 
 

Time-based 

forgetting and 

output Interference 

  0 - 100 0 - 100 0 - 1 0 - 1 0 - 1 1.2 

 

To calculate the fit of the model I used a maximum likelihood estimation 

methodology (see Myung, 2003). In this method the fminsearch algorithm varied 

the parameter values within a pre-set range (see Table 34) to minimize the negative 

log likelihood (-2lnL).  

These -2lnLs were calculated using the binomial probability function. The 

model produces a weighted input-output grid (for an example see Table 33). Taking 
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the total of these probability predictions across output position gives us the overall 

predicted probability of recalling an item in each input position. Then the binomial 

probability function returns the probability of the observed number of correct recalls 

in each input position given the data.  

Results 

 Experiment 4. In the model fitting I allowed the parameters to vary for each 

participant. The average best fitting parameter estimates across participants are 

shown in Table 35. To visualize the model fit I calculated the average of the 

individual level data and model predictions.  

The average predictions are shown in Figure 31. The time-based forgetting 

model is unable to capture the strong primacy shown in the decreasing and same 

conditions. This is because the log transformation of the temporal dimension 

produces a larger recency than primacy effect. In the output interference model the 

position dimension is not log transformed allowing an equal primacy and recency 

effect to be predicted. The individual level fits are detailed in Appendices I and J. 

 

Table 35 

Average parameter estimates for model fits to data from Experiment 4 

  Time-based  Output Interference   Both 

Schedule c s t  c s t o 
 

c s t o w 

None 8.30 29.22 .57  37.14 23.53 .63 .52 
 

14.63 15.80 .53 .72 .50 

Same 9.61 37.23 .50  35.47 43.45 .51 .76 
 

9.64 29.78 .45 .91 .40 

Increasing 22.94 11.13 .71  62.31 26.46 .64 .50 
 

35.91 36.06 .56 .78 .66 

Decreasing 4.82 32.47 .55  35.55 26.45 .49 .55 
 

25.43 38.14 .47 .58 .35 

Middle 

High 
12.79 16.51 .45  18.70 30.94 .79 .61 

 
23.45 18.73 .51 .56 .59 

Overall 11.69 25.31 .56  37.83 30.17 .61 .59   21.81 27.70 .50 .71 .50 

 



179 

 

 

 

Figure 31. Mean data and model fit from Experiment 4 

 

 To compare the performance of the models I calculated two information 

criteria. The Bayes Information Criterion (BIC) and Akaike Information Criterion 

(AIC) penalize the models based on their complexity (Myung, 2000). In maximum 

likelihood estimation the -2lnL is measure of fit in which smaller values represent 

higher likelihood of the model given the data (better model fit).  The BIC and AIC 

penalties add an additional value to the -2lnL as shown in Table 36. As a result of 

applying these penalties the time-based forgetting model will have an advantage 

because it has the fewest free parameters.  
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Table 36 

Penalties applied by AIC and BIC based on the number of free model parameters (k) 

and number of observations 

    Criterion 

Model k AIC BIC 

Time-based forgetting 3 6.00 8.12 

Output interference 4 8.00 10.83 

Time and output interference 5 10.00 13.54 

 

 Comparison of the models was carried out using the criterion weights. The 

AICw and BICw give an easily understood measure of the relative performance of a 

model given the data. The weights in a comparison will add up to 1. Higher values of 

the weights suggest that the data favor that model.   

The criterion weights in Table 37 show that overall the data support the 

output-interference model. However, in the increasing and middle high conditions 

the data support the time-based forgetting model. As mentioned above, the time-

based forgetting model can predict stronger recency effects which are seen in the 

increasing incentive condition. Despite task specific differences the data support the 

output-interference account. 
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Table 37 

Criterion weights for each model based on the data collected in Experiment 4. Note: 

the highest weight in a comparison is indicated in bold 

  AICw   BICw 

  Time Output Both   Time Output Both 

None .31 .36 .32 
 

.37 .36 .27 

Same .13 .53 .35 
 

.16 .55 .29 

Increasing .38 .27 .36 
 

.45 .27 .28 

Decreasing .15 .53 .32 
 

.18 .56 .26 

Middle 

High 
.43 .41 .16   .48 .41 .11 

Overall .28 .42 .30   .33 .43 .24 

 

Experiment 5: Precued fast. Next I compared the models using data from 

Experiment 5 in which the items were presented at a faster rate. The average best 

fitting parameter estimates are shown in Table 38. The mean data and model 

predictions are shown in Figure 32. The time based forgetting model appears unable 

to capture the primacy effects in the decreasing and same conditions. This is because 

the temporal dimension is log compressed in the time based model and this produces 

large recency effects but small primacy effects. On the other hand, the position 

dimension in the output interference model is not log compressed and can produce 

symmetrical serial position curves. 
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Table 38 

Average parameter estimates for model fits to data from Experiment 5 

  Time-based Forgetting   Output Interference 
 

Both 

Schedule c s t 
 

c s t o 
 

c s t o w 

None 12.61 9.50 .82 
 

31.63 22.63 .78 .64 
 

14.06 19.20 .49 .80 .50 

Same 8.04 25.49 .53 
 

34.55 39.16  .60 .67 
 

14.22 29.55 .46 .86 .70 

Increasing 17.46 20.13 .64 
 

40.33 27.99 .43 .58 
 

26.71 19.63 .56 .78 .76 

Decreasing 5.32 42.13 .46 
 

50.22 29.43 .61 .49 
 

30.59 40.88 .42 .48 .29 

Middle 

High 
3.90 50.81 .33 

 
35.13 26.00 .61 .41 

 
19.15 20.65 .44 .51 .46 

Overall 9.47 29.61 .56   38.37 29.04 .61 .56   20.95 25.98 .48 .69 .54 

 

 

Figure 32. Mean data and model fit from Experiment 5 
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Again, I used criterion weights to gauge the extent to which the data 

supported each of the models. The criterion weights are shown in Table 39. These 

criterion weights suggest that both the time-based forgetting and output interference 

models are equally consistent with the data. 

 

Table 39 

Criterion weights for each model based on the fit of each model to data from 

Experiment 5 

  AICw   BICw 

Schedule Time Output Both   Time Output Both 

None .34 .34 .32 
 

.41 .34 .25 

Same .41 .31 .28 
 

.41 .44 .16 

Increasing .42 .33 .25 
 

.41 .44 .16 

Decreasing .20 .49 .31 
 

.44 .45 .11 

Middle 

High 
.45 .39 .17   .45 .44 .11 

Overall .36 .37 .27   .42 .42 .16 

 

Experiment 6: Postcued. In this experiment the payment schedule was 

manipulated within participant. To incorporate this into the model fitting procedure I 

kept the model parameters constant across all of the responses of one participant. 

The average best fitting parameter values are shown in Table 40. These parameter 

values are generally consistent with the values in the previous model fits. However, 

for some participants the s parameter was at the highest possible value suggesting 

some difficulty in fitting the data. The comparative performance of the models is 

shown in Figure 33. 
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Table 40 

Average parameter estimates across participants from Experiment 6 

  Parameter 

Model c s t o w 

Time-based Forgetting 6.76 50.02 .47 - - 

Output Interference 16.16 21.47 .53 .59 - 

Both 9.66 27.43 .41 .76 .70 

 

 

 

Figure 33. Mean data and model fit from Experiment 6 
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 Which model is most likely given the data? To compare the models I again 

calculated criterion weights. Table 41 show us that the data favors the output 

interference model. As we would expect, this difference is greater in the AICw 

because AIC is a more lenient penalty of complexity (Lewandowsky & Farrell, 

2010).   

 

Table 41 

Criterion weights for model comparison based on data from Experiment 6 

  Model 

Weight Time Output Both 

AICw .33 .42 .25 

BICw .40 .43 .17 

 

General Discussion 

 In this study I first examined how monetary incentives can be used to direct 

free recall. Experiment 4 showed that items associated with monetary incentives are 

more likely to be recalled. This effect was also shown in Experiments 5 and 6. In all 

of these experiment the participants generally recalled high incentive items first and 

there was a strong sequential effect in recall (e.g., the fifth item was recalled after the 

fourth item). 

 Our financial incentive methodology has many advantages. First, the 

experimenter does not decide the order of recall. In both serial recall and directed 

free recall tasks the output order of items is prescribed by the experimenter. The 

findings may represent a more naturalistic strategy in recall. This is particularly 

pertinent given the debate encouraging more “naturalistic” approaches to memory 

research (Koriat & Goldsmith, 1996). Second, the approach offers a link between 
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literature in behavioral economics and free recall. The use of incentives to direct 

behavior is widely applied in behavioral economics (Camerer, Loewenstein, & Rabin, 

2011). In these tasks participants often adopt strategies to maximize their financial 

return.  

 Our findings suggest an advantage of the first and last items irrespective of 

output position. When items in the middle of the item list were highly incentivized 

the serial position curve was more flat despite a tendency to recall these items first. 

These findings are consistent with the local distinctiveness principles of the SIMPLE 

model. 

 There was a marked effect of output position in the primacy and recency 

effects. In the experiments the primacy and recency effects were amplified if the first 

or last few items was associated with the highest incentive. When recalled, these 

items were most likely to be recalled in the first few output positions. SIMPLE 

predicts large recency effect and small primacy effects. 

 Using model based analysis I showed that SIMPLE can be applied to the 

atypical data. I found that a pure output Interference account was slightly more 

supported by the data than time-based forgetting. although this varied depending on 

the incentive condition.  
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Chapter 6: General Discussion 
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Review of Rationale and Aims 

This thesis has been concerned with the interplay between memory, judgment 

and decision making. A critical question running throughout has been: to what extent 

are memory processes involved in decision making? In some decisions memory has 

a minimal influence in decision making (Bechara & Martin, 2004). Yet in other areas 

memory and decision making are closely linked (Hinson, Jameson, & Whitney, 

2003).  

  This thesis has focused on decision-making phenomena related to relative 

and retrospective judgments. Participants often make subjective judgments in 

response to a context of events. In relative judgment these events may be stimuli 

similar to the one being judged, as when the “largeness” of a square is judged with 

knowledge of other squares in an experiment (Parducci, 1965). A large literature 

from psychophysics has investigated these effects for the past 60 years (Helson, 

1964a; Parducci, 1995). Retrospective judgments are summary responses to a series 

of events (for a review, see Kahneman, Wakker, & Sarin, 1997). In this case, the 

contextual events are spread out over time, as when a summary judgment of the 

discomfort of a series of sounds is made (Schreiber & Kahneman, 2000).  

 Theoretical accounts of both phenomena acknowledge the role of memory in 

the formation of judgments. Theories of relative judgment such as adaptation level 

theory (ALT; Helson, 1964a) and range-frequency theory (RFT; Parducci, 1965) 

incorporate memory into their models of judgment.  The “snapshot” and “prototype” 

theories of retrospective judgment suggest that memory is central to peak end effects 

(Fredrickson & Kahneman, 1993; Kahneman, 2000).  

All of these models, however, suffer from a potentially serious limitation: 

They are typically not explicit in their account of the relevant memory processes. 
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Rather, each of the models is designed to account for a specific phenomenon. In 

ALT it is the combination of multiple sources of information into a single adaptation 

level (Helson, 1938; Helson & Jeffers, 1940). In the “snapshot” theory of 

retrospective judgment the focus is on the impact of the peak and end components of 

an experience (Fredrickson & Kahneman, 1993). These ad hoc models of memory 

processes are not easily extended to phenomena in other areas of psychology such as 

serial position effects in memory (Murdock, 1962) or economic judgments 

(Kahneman & Tversky, 1979).  

 In this thesis I examined the role of memory processes in relative and 

retrospective judgments. To overcome the potential limitation of models with a 

narrow empirical focus I applied more general theories of memory and decision 

making. Specifically, I examined two models. The first model is the SIMPLE model 

of memory (Brown et al., 2007). In SIMPLE, recall is akin to a discrimination task 

along a dimension of interest. SIMPLE has been widely applied to various memory 

phenomena (Lewandowsky et al., 2004). Notably, it has been applied extensively to 

serial position curves. In retrospective judgments there is evidence of recency, 

primacy and distinctiveness (Langer et al., 2005; Miron-Shatz, 2009). All three of 

these memory effects can be accounted for in SIMPLE. The second model is 

Decision by Sampling (DbS; Stewart et al., 2006). In the model a decision is based 

on a small sample of items drawn from memory. The model has been successfully 

applied to both economic decision making (Stewart, 2009; Stewart & Simpson, 2008) 

and social judgments (Melrose et al., 2012; Moore et al., 2012; Wood et al., 2011). 

Both of these models are able to explain many phenomena in their respective 

literatures. 
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 The combined SIMPLE and DbS model has several theoretical advantages. 

First, it has the potential to offer an internally consistent account of memory, 

decision making and relative judgment phenomenon. Second, the underlying 

mechanisms involved in making relative judgments can be made explicit. Third, the 

model will benefit from future theoretical development in a wider area of study. The 

components of the model (e.g., SIMPLE) are actively being examined within their 

specific field of study. For example, modifications of the SIMPLE model in response 

to new data in the memory literature can be applied to the combined model. For all 

of these reasons a combined model made up of SIMPLE and DbS is desirable. A key 

aim of this thesis has been to examine the extent to which this combined model can 

account for relative and retrospective judgment data. 

 In Chapter 2 I examined a link between relative and retrospective judgment. 

According to RFT, a negatively and positively skewed distribution of items should 

attract different subjective judgments (Parducci, 1965). This prediction results from 

the model’s assumption that judgments will be determined by a weighted average of 

the range and rank position of each item. RFT predicts that the average judgment 

will differ as a function of skew: The average rating of stimuli will be higher in 

negatively skewed distributions. Parducci (1995) goes further and suggests that 

overall ratings (i.e., of the whole series) will differ. Smith et al. (1989) asked 

participants to rate the happiness they would expect a waitress to experience for a 

positively or negatively skewed distribution of hypothetical payments. The data 

matched Parducci’s prediction: participants expected a waitress to be happier with a 

negatively skewed distribution of tips. These findings suggest a link between relative 

and retrospective judgments. 
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 To investigate this link between relative and summary judgment I replicated 

and extended the classic experiment of Parducci (1968). Participants received a 

series of payments from either a negatively or positively skewed distribution. I 

extended Parducci (1968) by asking participants to rate their satisfaction after 

receiving all of the payments in the distribution. I found that satisfaction was higher 

for negatively skewed distributions. Like peak end studies (Redelmeier & Kahneman, 

1996), the experiments in Chapter 2 asked participants to make hedonic judgments. 

These findings demonstrated that theories of relative judgments are applicable to 

summary judgments. 

 Model comparison confirmed that relative judgments effects were present at 

an individual level. I used maximum likelihood estimation to compare range-only, 

frequency-only and RFT models of judgment at an individual level using data from 

Experiment 1. One finding from the study was particularly relevant: None of the 

participants were best fit by the frequency principle. On its own the DbS model 

produces predictions which are the same as the frequency principle. It appears that 

the DbS model performs worse than the RFT. 

These findings suggested that DbS alone does not predict the judgment 

effects found in Chapter 2. Also, DbS did not predict the overall effects on judgment 

reported in Chapter 2. Table 42 shows that DbS alone (i.e., the frequency principle) 

cannot account for the overall effect of negative skew on summary judgments. If we 

assume that the sample of items in memory consists of the experimental stimuli and 

these items are equally weighted, then DbS alone predicts no effect of skew at all. 

The effect of skew is due to the inclusion of the range principle in the model. 
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Table 42 

Average rating predicted by RFT for the skewed distributions presented to 

participants in Chapter 2 

  
w 

 

0 .5 1 

  Decision by sampling 
Range-frequency 

Theory 
Range only 

Negative Skew .50 .58 .65 

Positive Skew .50 .43 .35 

 

 

 Summary ratings were influenced by the penultimate ratings. There was a 

strong correlation between the summary judgment and the last payment judgment in 

Experiment 1. RFT does not predict this finding. However, the finding is consistent 

with both the peak-end rule and SIMPLE. According to the peak-end rule the last 

experience of a series has a large impact on summary judgments. On the other hand, 

SIMPLE can predict this effect due to local distinctiveness along the temporal 

dimension.  

However, there were findings which are difficult to explain in terms of the 

SIMPLE model. Experiment 3 required participants to recall as many payments as 

they remembered receiving. I calculated the skewness of this recalled distribution. 

The analysis shows that participants overestimated the skewness of the negatively 

skewed distribution and accurately recalled the skewness of the positively skewed 

distribution. SIMPLE predicts that the skewness of the distribution should be 

underestimated in both conditions. Yet it is also difficult to explain these effects in 

terms of the peak-end or range-frequency theories. 
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 Chapter 2 showed a link between relative and retrospective judgments. One 

of the main findings was that the DbS model could not fit the individual level data. It 

may be the case that DbS cannot predict relative judgments. In Chapter 3 I examined 

whether similarity between items does influence relative judgment. 

 Many models of memory predict that similarity influences recall. In other 

words, when given a cue, items similar to the cue are more accessible in memory 

(Hintzman, 1984). Applied to relative judgment it may be the case that items similar 

to the stimuli being judged are more accessible in memory and therefore more 

heavily weighted in judgment. The effect of accessibility on judgment is well known 

(N. Schwarz et al., 1991; Tversky & Kahneman, 1973). The generalized exemplar 

model of sampling (GEMS) implements distance based sampling using the 

frequency principle. Items are weighted in judgment based on their distance to the 

judged item. In the GEMS model RFT is a special case. I used the GEMS model to 

compare RFT with and without distance based sampling at an individual level. 

 The analysis was divided into two sections. To compare the models I used 

data from five previously reported studies. In these studies stimuli were presented 

sequentially to the participants. In the first section I compared the RFT to the range 

principle and frequency principle. Surprisingly, likelihood ratio tests found that RFT 

best fit only 20% of participants overall, although bootstrap analysis showed that the 

RFT parameters (0<w<1) were within the 95% confidence intervals for the bootstrap 

samples for 40% of participants. In the second section I used the GEMS model to 

compare RFT with and without distance based sampling. The results of this model 

comparison strongly supported RFT without distance based sampling. 

 These findings have two implications for the thesis as a whole. First, the 

performance of the GEMS based model suggests that similarity has little influence 



194 

 

 

on relative judgments.  The absence of distance based sampling goes against 

previous reported findings in price psychophysics (Qian & Brown, 2005). This 

finding also suggests that we cannot easily apply a memory model in which 

similarity is a central component of recall (Hintzman, 1984). I conclude that there is 

little evidence for similarity based sampling in relative judgment. Second, the poor 

fit of RFT to the data is unexpected. One possibility is that with simultaneously 

presented items other cognitive processes may underpin judgment. One possible 

account is SIMPLE. Unlike other models of memory, SIMPLE can be applied to 

distinctiveness along any dimension of interest. 

 Chapter 4 examined the ability of a combined SIMPLE and DbS model to 

account for the relative judgment effects examined in Chapter 3. In Chapter 3 RFT 

performed poorly at an individual level. A meta-analysis of the data found range 

effects at an individual level, however. An important point is that a pure relative rank 

based account of the data did not outperform RFT. To examine if DbS can predict 

these effects when combined with a memory model I applied a combined SIMPLE 

and DbS model (SDbS) to the data.  

 Our findings show that RFT and SDbS fit the data equally well. Maximum 

likelihood estimation showed that for most participants neither model was most 

likely. Brown and Matthews (2011) also showed that both models can produce the 

same predictions, albeit on a more limited dataset and without comparing model fits 

at an individual level.  

This result is particularly important because in SDbS responses are due to 

rank comparison. Range effects are due to the local distinctiveness of items. The 

results make a theoretical contribution because the latter process appears to underpin 

behavior in perception and memory (Brown et al, 2008).  
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However, when complexity penalties were applied to the model fits RFT 

outperformed the combined model. One interpretation of these findings is that the 

combined model should be rejected and RFT accepted. Such an approach does not 

consider the scope of the models under comparison. RFT can account several 

phenomena outside the domain of relative judgment, such as binary categorization 

(Wedell, 2008) and price perception (Niedrich et al., 2001). On the other hand, 

SIMPLE and DbS have been widely applied in many different fields (Brown et al., 

2008; Brown et al., 2007; Stewart et al., 2006; Wood et al., 2011).  

Further analysis found that SDbS accounts for range effects in the data. SDbS 

was compared with and without the range principle. The findings showed adding a 

range component did not improve the performance of the model. Taken together the 

model comparison indicates that the previous reported range effects can be captured 

by a local distinctiveness process also found in other areas of Psychology. Based on 

this analysis I concluded that SDbS should be preferred because it offers a 

comprehensive account of relative judgment based a rank comparison processes (as 

found in the economic literature) and local distinctiveness (as reported in the 

perception and memory literature). In other words, SDbS can produce the predictions 

of RFT and is supported by convergent evidence from other literatures. 

 In summary, Chapter 4 demonstrated SDbS can predict range effects. An 

advantage of SDbS is that it can be applied to memory phenomena which may 

influence decision making.  

In Chapter 4 I argue that local distinctiveness offer a common explanation 

which links the memory, perception and relative judgment literature. Chapter 5 

addresses a potential limitation of the SIMPLE model – that SIMPLE can only 

predict normal serial position curves and is unable to predict atypical recall 
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performance. If local distinctiveness is a common mechanism underpinning 

perceptual and judgment tasks then SIMPLE must be able to account for the serial 

position curves resulting from widely reported phenomena such as output 

interference. 

In Chapter 5 I investigated the relationship between serial position and output 

interference. Both of these are important for judgment and decision making. Recency 

may play a role in peak end effects, and forgetting due to output interference is an 

important component of theories such as Query Theory (Johnson et al., 2007).  To 

investigate the relationship between serial position and output interference I used a 

novel methodology. In three experiments I used monetary incentives to direct free 

recall. Differential incentives were associated with each third of a 15 word list. The 

payment each participant received depended on the words they recalled. For example, 

a participant recalling three words from the first five words might receive three 

pence per word.  

 I found that associating payment with serial position influenced recall 

performance. Items associated with high payment were more likely to be recalled in 

earlier output positions. These items were also more likely to be recalled correctly. 

The effect of payment on recall was present when items were presented slowly (1s), 

quickly (0.5s) and when the payment schedule was presented after encoding. These 

results show that economic incentives can applied to direct free recall behavior. 

 Monetary incentives influenced the shape of the serial position curve. 

Associating a high incentive with the last few items resulted in a larger recency 

effect. When high incentives were associated with the first few items an increased 

primacy effect was observed. Interestingly, increasing the incentive associated with 

the middle items produced a flatter serial position curve.  
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 Next, the SIMPLE model was used to investigate the impact of output 

position on recall performance. I used an extended version of SIMPLE to examine 

the evidence in the data of output interference and time based forgetting 

Lewandowsky et al. (2004). In both accounts later output positions are generally 

associated with decreased recall performance. According to time based forgetting, 

recall performance decreases as a function of time from initial presentation. This 

approach is consistent with trace decay theories of memory, as well as with temporal 

distinctiveness accounts such as SIMPLE. The version I implemented gradually 

increased the time between output positions to simulate the decrease in recall output 

observed in studies of memory (Wixted & Rohrer, 1994). On the other hand, output 

interference states that the act of recalling items will interfere with subsequent recall 

attempts. 

 Model comparison generally favored an output interference account. I 

compared both output interference and time-based forgetting at an individual level. 

The findings show that for most incentive manipulations the output interference 

model performed best. Incorporating output put interference in SIMPLE suggests 

that it may provide a process-level account of some of the key mechanisms theories 

of judgment such as Query Theory (Johnson et al., 2007). 

Summary 

 This thesis examined the relationship between memory and decision making. 

I focused on relative judgment. It was shown that relative and retrospective judgment 

may be linked, and that SDbS is applicable to both phenomena. Taken together, the 

results suggest that memory and decision making are closely linked, and models in 

one area are directly applicable to the other. 
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Future Studies 

 In the first future study SDbS could be fit to frequency based manipulations. 

Many of the studies in the RFT literature altered the frequency of items in the range 

of stimuli (Parducci, 1968; Parducci et al., 1969; Riskey et al., 1979). Chapter 2 

replicated one of these studies. In order to validate the conclusions of Chapter 5 

SDbS and RFT could be fit data from frequency manipulations. The results of this fit 

would be particularly interesting from a memory perspective. In the RFT there is no 

speculation about the role of rehearsal in decision making. A possible application of 

the combined model would involve weighting an item in DbS based on its frequency 

in the model. 

 Another possible study could extend the model to sequential judgments. 

SIMPLE has been applied to serial position effects (Brown et al., 2007). In studies of 

both retrospective and relative judgment stimuli are sometimes presented 

sequentially. In SIMPLE one could model these effects using a weighted 

compromise of the temporal and magnitude position of a stimulus. The 

implementation of the model would be similar to the multidimensional approach 

adopted in Chapter 5.  

Extending the model to the temporal dimension would allow more subtle 

manipulations of temporal effects in judgment. Studies in free recall show that items 

which are temporally isolated are more likely to be recalled (Lewandowsky et al., 

2008). The combined model includes SIMPLE which predicts temporal isolation 

effects. Other models of relative judgment do not appear to predict temporal 

isolation effects (Haubensak, 1992; Petzold & Haubensak, 2004). Using temporal 

isolation I could directly test the combined SIMPLE and DbS model. 
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Finally, future work could examine the DbS component of the combined 

model. DbS assumes that values in the environment influence subjective judgments. 

For example, Ungemach et al. (2011) found that lottery choices were influenced by 

incidental payments at a supermarket, and Stewart (2009) showed a link between 

choices and distributions of economic quantities in the environment.  

Model of relative judgment such as the consistency model (Haubensak, 1992) 

and RFT are restricted to the immediate context in decision making. I briefly 

suggested in Chapter 2 that individual differences in responses could result from a 

person sampling from prior distributions. We could elicit a participant’s external 

distribution using a percentile task (Melrose et al., 2012; Moore et al., 2012; Wood 

et al., 2011). Participants would then carry out a standard relative judgment task. The 

extent to which people are sampling from a combination of their subjective 

distribution and the experimental stimuli could be estimated using simulations or 

individual level model analysis. 

The aim of the present thesis was to investigate the relationship between 

memory and judgment. The findings suggest that relative judgment can be 

investigated using the same framework applied to economic decision-making, free 

recall and social judgment. The results of the studies above show that (a) relative and 

retrospective judgments are linked, (b) similarity does not influence relative 

judgment, (c) relative judgment can be predicted from a combined memory and 

decision making model, and (d) both recency and output interference effects can be 

investigated using this combined account. Taken together, I have demonstrated that 

memory and decision making are indeed intertwined. Utilizing theoretical 

developments in both areas has allowed us to contribute to the unification of 

disparate literatures. 



200 

 

 

  



201 

 

 

References 

Alesina, A., Di Tella, R., & MacCulloch, R. (2004). Inequality and happiness: Are 

Europeans and Americans different? Journal of Public Economics, 88(9), 

2009-2042.  

Appley, M. H. (1971). Adaptation-level theory: A symposium. New York: Academic 

Press. 

Ariely, D. (1998). Combining experiences over time: The effects of duration, 

intensity changes and on-line measurements on retrospective pain evaluations. 

Journal of Behavioral Decision Making, 11(1), 19-45.  

Ariely, D., & Carmon, Z. (2000). Gestalt characteristics of experiences: The defining 

features of summarized events. Journal of Behavioral Decision Making, 

13(2), 191-201.  

Ariely, D., & Zauberman, G. (2000). On the making of an experience: The effects of 

breaking and combining experiences on their overall evaluation. Journal of 

Behavioral Decision Making, 13(2), 219-232.  

Ariely, D., & Zauberman, G. (2003). Differential partitioning of extended 

experiences. Organizational Behavior and Human Decision Processes, 91(2), 

128-139.  

Atkinson, R. C., & Crothers, E. J. (1964). A comparison of paired-associate learning 

models having different acquisition and retention axioms. Journal of 

Mathematical Psychology, 1(2), 285-315.  

Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. 

Scientific American, 225(2), 82-90.  

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.  



202 

 

 

Baddeley, A. (1994). The magical number seven: still magic after all these years? 

Psychological Review, 101(2), 353-356.  

Banaji, M. R., Hardin, C., & Rothman, A. J. (1993). Implicit stereotyping in person 

judgment. Journal of Personality and Social Psychology, 65(2), 272-281.  

Beaman, C. P., & Morton, J. (2000). The separate but related origins of the recency 

effect and the modality effect in free recall. Cognition, 77(3), B59-B65.  

Bechara, A., & Martin, E. M. (2004). Impaired decision making related to working 

memory deficits in individuals with substance addictions. Neuropsychology, 

18(1), 152-162.  

Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure 

and well-being. Psychology of Well-being, 1(1), 1-26.  

Bhatarah, P., Ward, G., & Tan, L. (2008). Examining the relationship between free 

recall and immediate serial recall: The serial nature of recall and the effect of 

test expectancy. Memory & Cognition, 36(1), 20-34.  

Birnbaum, M. H., Parducci, A., & Gifford, R. K. (1971). Contextual effects in 

information integration. Journal of Experimental Psychology, 88(2), 158-170.  

Boyce, C. J., Brown, G. D. A., & Moore, S. C. (2010). Money and happiness: Rank 

of income, not income, affects life satisfaction. Psychological Science, 21(4), 

471-475.  

Brickman, P., & Campbell, D. T. (1971). Hedonic relativism and planning the good 

society. In M. H. Appley (Ed.), Adaptation-level theory: A symposium (pp. 

287-303). New York: Academic Press. 

Briesch, R. A., Krishnamurthi, L., Mazumdar, T., & Raj, S. P. (1997). A 

comparative analysis of reference price models. Journal of Consumer 

Research, 24(2), 202-214.  



203 

 

 

Brodie, D. A., & Murdock, B. B. (1977). Effect of presentation time on nominal and 

functional serial-position curves of free recall. Journal of Verbal Learning 

and Verbal Behavior, 16(2), 185-200.  

Brown, G. D. A., Gardner, J., Oswald, A. J., & Qian, J. (2008). Does wage rank 

affect employees’ well‐being? Industrial Relations: A Journal of Economy 

and Society, 47(3), 355-389.  

Brown, G. D. A., & Matthews, W. J. (2011). Decision by sampling and memory 

distinctiveness: Range effects from rank-based models of judgment and 

choice. Frontiers in Psychology, 2.  

Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. 

Psychological Review, 114(3), 539-576.  

Burke, C. J., & Tobler, P. N. (2011a). Coding of reward probability and risk by 

single neurons in animals. Frontiers in Neuroscience, 5(121).  

Burke, C. J., & Tobler, P. N. (2011b). Reward skewness coding in the insula 

independent of probability and loss. Journal of Neurophysiology, 106(5), 

2415-2422.  

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model 

inference: a practical information-theoretic approach. New York: Springer-

verlag. 

Camerer, C. F., Loewenstein, G., & Rabin, M. (2011). Advances in behavioral 

economics. New York: Russell Sage Foundation. 

Caraco, T., & Chasin, M. (1984). Foraging preferences: response to reward skew. 

Animal Behaviour, 32(1), 76-85.  

Clark, A. E., & Oswald, A. J. (1996). Satisfaction and comparison income. Journal 

of Public Economics, 61(3), 359-381.  



204 

 

 

Coates, S. L., Butler, L. T., & Berry, D. C. (2006). Implicit memory and consumer 

choice: The mediating role of brand familiarity. Applied Cognitive 

Psychology, 20(8), 1101-1116.  

Coombs, C. H., & Pruitt, D. G. (1960). Components of risk in decision making: 

Probability and variance preferences. Journal of Experimental Psychology, 

60(5), 265-277.  

Cowan, N., Saults, J. S., Elliott, E. M., & Moreno, M. V. (2002). Deconfounding 

serial recall. Journal of Memory and Language, 46(1), 153-177.  

Crowder, R. G. (1976). Principles of learning and memory. Oxford, England: 

Lawrence Erlbaum Associates. 

Cuvo, A. J. (1974). Incentive level influence on overt rehearsal and free recall as a 

function of age. Journal of Experimental Child Psychology, 18(1), 167-181.  

Dalezman, J. J. (1976). Effects of output order on immediate, delayed, and final 

recall performance. Journal of Experimental Psychology: Human Learning 

and Memory, 2(5), 597-608.  

Deese, J., & Kaufman, R. A. (1957). Serial effects in recall of unorganized and 

sequentially organized verbal material. Journal of Experimental Psychology, 

54(3), 180-187.  

Dougherty, M. R. P., Gettys, C. F., & Ogden, E. E. (1999). MINERVA-DM: A 

memory processes model for judgments of likelihood. Psychological Review, 

106(1), 180-209.  

Eysenck, M. W., & Eysenck, M. C. (1982). Effects of incentive on cued recall. The 

Quarterly Journal of Experimental Psychology, 34(4), 489-498.  



205 

 

 

Farrell, S. (2010). Dissociating conditional recency in immediate and delayed free 

recall: A challenge for unitary models of recency. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 36(2), 324-347.  

Fiedler, K., & Juslin, P. (2006). Information sampling and adaptive cognition. 

Cambridge, UK: Cambridge University Press. 

Fivush, R. (2011). The development of autobiographical memory. Annual Review of 

Psychology, 62, 559-582.  

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of 

cognitive–developmental inquiry. American Psychologist, 34(10), 906-011.  

Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 

367(1594), 1338-1349.  

Fredrickson, B. L., & Kahneman, D. (1993). Duration neglect in retrospective 

evaluations of affective episodes. Journal of Personality and Social 

Psychology, 65(1), 45-55.  

Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982). The Toronto 

Word Pool: Norms for imagery, concreteness, orthographic variables, and 

grammatical usage for 1,080 words. Behavior Research Methods & 

Instrumentation, 14(4), 375-399.  

Garrett, T. A., & Sobel, R. S. (1999). Gamblers favor skewness, not risk: Further 

evidence from United States’ lottery games. Economics Letters, 63(1), 85-90.  

Gerhart, B., & Rynes, S. L. (2003). Compensation: Theory, evidence, and strategic 

implications. London: SAGE Publications. 



206 

 

 

Gilbert, D. T., Morewedge, C. K., Risen, J. L., & Wilson, T. D. (2004). Looking 

forward to looking backward The misprediction of regret. Psychological 

Science, 15(5), 346-350.  

Golec, J., & Tamarkin, M. (1998). Bettors love skewness, not risk, at the horse track. 

Journal of Political Economy, 106(1), 205-225.  

Greene, R. L., Crowder, R. G., Sherry, D. F., Glenberg, A. M., Bradley, M. M., 

Kraus, T. A., . . . Toppino, T. C. (1986). Sources of recency effects in free 

recall. Psychological Bulletin, 99(2), 221-228.  

Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: Attitudes, self-

esteem, and stereotypes. Psychological Review, 102(1), 4-27.  

Hagerty, M. R. (2000). Social comparisons of income in one's community: Evidence 

from national surveys of income and happiness. Journal of Personality and 

Social Psychology, 78(4), 764-771.  

Haines, D. J., & Torgesen, J. K. (1979). The effects of incentives on rehearsal and 

short-term memory in children with reading problems. Learning Disability 

Quarterly, 2(2), 48-55.  

Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity 

related to enhanced memory for pleasant and aversive stimuli. Nature 

Neuroscience, 2(3), 289-293.  

Hartley, J. T., & Walsh, D. A. (1980). The effect of monetary incentive on amount 

and rate of free recall in older and younger adults. Journal of Gerontology, 

35(6), 899-905.  

Harvey, A. J., & Beaman, C. P. (2007). Input and output modality effects in 

immediate serial recall. Memory, 15(7), 693-700.  



207 

 

 

Haubensak, G. (1992). The consistency model: A process model for absolute 

judgments. Journal of Experimental Psychology: Human Perception and 

Performance, 18(1), 303-309.  

Healy, A. F., Havas, D. A., & Parker, J. T. (2000). Comparing serial position effects 

in semantic and episodic memory using reconstruction of order tasks. Journal 

of Memory and Language, 42(2), 147-167.  

Helson, H. (1938). Fundamental problems in color vision. I. The principle governing 

changes in hue, saturation, and lightness of non-selective samples in 

chromatic illumination. Journal of Experimental Psychology, 23(5), 439-476.  

Helson, H. (1947). Adaptation-level as frame of reference for prediction of 

psychophysical data. The American Journal of Psychology, 60(1), 1-29.  

Helson, H. (1964a). Adaptation-level theory. New York: Harper & Row. 

Helson, H. (1964b). Current trend and issues in adaptation-level theory. American 

Psychologist, 19(1), 26-38. 

Helson, H., & Jeffers, V. B. (1940). Fundamental problems in color vision. II. Hue, 

lightness, and saturation of selective samples in chromatic illumination. 

Journal of Experimental Psychology, 26(1), 1-27.  

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience 

and the effect of rare events in risky choice. Psychological Science, 15(8), 

534-539.  

Highhouse, S., Luong, A., & Sarkar-Barney, S. (1999). Research design, 

measurement, and effects of attribute range on job choice: More than meets 

the eye. Organizational Research Methods, 2(1), 37-48.  



208 

 

 

Hill, R. D., Storandt, M., & Simeone, C. (1990). The effects of memory skills 

training and incentives on free recall in older learners. Journal of 

Gerontology, 45(6), P227-P232.  

Hinson, J. M., Jameson, T. L., & Whitney, P. (2003). Impulsive decision making and 

working memory. Journal of Experimental Psychology. Learning, memory, 

and Cognition, 29(2), 298-306.  

Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. 

Behavior Research Methods, Instruments, & Computers, 16(2), 96-101.  

Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a 

multiple-trace memory model. Psychological Review, 95(4), 528-551.  

Hogan, R. M. (1975). Interitem encoding and directed search in free recall. Memory 

& Cognition, 3(2), 197-209.  

Johnson, E., Häubl, G., & Keinan, A. (2007). Aspects of endowment: A query theory 

of value construction. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 33(3), 461-474.  

Johnson, E., & Weber, E. (2009). Mindful judgment and decision making. Annual 

Review of Psychology, 60, 53-85.  

Juslin, P., & Persson, M. (2002). PROBabilities from EXemplars (PROBEX): A 

“lazy” algorithm for probabilistic inference from generic knowledge. 

Cognitive Science, 26(5), 563-607.  

Juslin, P., Winman, A., & Hansson, P. (2007). The naïve intuitive statistician: A 

naïve sampling model of intuitive confidence intervals. Psychological Review, 

114(3), 678-703.  

Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & 

Cognition, 24(1), 103-109.  



209 

 

 

Kahneman, D. (2000). Evaluation by moments: Past and future. In D. Kahneman & 

A. Tversky (Eds.), Choices, values, and frames (pp. 693-708). New York: 

Cambridge University Press and the Russell Sage Foundation. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision 

under risk. Econometrica: Journal of the Econometric Society, 47(2), 263-

291.  

Kahneman, D., Wakker, P. P., & Sarin, R. (1997). Back to Bentham? Explorations of 

experienced utility. The Quarterly Journal of Economics, 112(2), 375-406.  

Kermer, D. A., Driver-Linn, E., Wilson, T. D., & Gilbert, D. T. (2006). Loss 

aversion is an affective forecasting error. Psychological Science, 17(8), 649-

653.  

Kirkpatrick, E. A. (1894). An experimental study of memory. Psychological Review, 

1(6), 602-609.  

Koriat, A., & Goldsmith, M. (1996). Memory metaphors and the real-life/laboratory 

controversy: Correspondence versus storehouse conceptions of memory. 

Behavioral and Brain Sciences, 19(2), 167-187.  

Kunzinger III, E. L., & Witryol, S. L. (1984). The effects of differential incentives 

on second-grade rehearsal and free recall. The Journal of Genetic Psychology, 

144(1), 19-30.  

Laming, D. (1997). The measurement of sensation. New York: Oxford University 

Press. 

Laming, D. (2010). Serial position curves in free recall. Psychological Review, 

117(1), 93-133.  



210 

 

 

Langer, T., Sarin, R., & Weber, M. (2005). The retrospective evaluation of payment 

sequences: Duration neglect and peak-and-end effects. Journal of Economic 

Behavior & Organization, 58(1), 157-175.  

Lansdale, M. W. (1998). Modeling memory for absolute location. Psychological 

Review, 105(2), 351-378.  

Lee, M. D., & Pooley, J. P. (2012). Correcting the SIMPLE model of free recall. 

Psychological Review, 120(1), 293-296.  

Lewandowsky, S., Duncan, M., & Brown, G. D. A. (2004). Time does not cause 

forgetting in short-term serial recall. Psychonomic Bulletin & Review, 11(5), 

771-790.  

Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. 

Psychology of Learning and Motivation, 49, 1-48.  

Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cognition: 

Principles and practice. London: Sage. 

Lewandowsky, S., & Murdock, B. B. (1989). Memory for serial order. Psychological 

Review, 96(1), 25-57.  

Lewandowsky, S., Nimmo, L. M., & Brown, G. D. A. (2008). When temporal 

isolation benefits memory for serial order. Journal of Memory and Language, 

58(2), 415-428.  

Lindskog, M., Winman, A., & Juslin, P. (2013). Naïve point estimation. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 39(3), 782-800.  

Luttmer, E. F. P. (2005). Neighbors as negatives: Relative earnings and well-being. 

The Quarterly Journal of Economics, 120(3), 963-1002.  



211 

 

 

Maltby, J., Wood, A. M., Vlaev, I., Taylor, M. J., & Brown, G. D. A. (2012). 

Contextual effects on the perceived health benefits of exercise: The exercise 

rank hypothesis. Journal of Sport and Exercise Psychology, 34(6), 828-841.  

Mazumdar, T., Raj, S. P., & Sinha, I. (2005). Reference price research: review and 

propositions. Journal of Marketing, 84-102.  

Melrose, K. L., Brown, G. D. A., & Wood, A. M. (2012). Am I abnormal? Relative 

rank and social norm effects in judgments of anxiety and depression 

symptom severity. Journal of Behavioral Decision Making, 26(2), 174-184.  

Michels, W. C., & Helson, H. (1949). A reformulation of the Fechner law in terms of 

adaptation-level applied to rating-scale data. The American Journal of 

Psychology, 62(3), 355-368.  

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on 

our capacity for processing information. Psychological Review, 63(2), 81-97.  

Miron-Shatz, T. (2009). Evaluating multiepisode events: Boundary conditions for 

the peak-end rule. Emotion, 9(2), 206-213.  

Moore, S. C., Wood, A. M., Brown, G. D. A., & Shepherd, J. (2012). Relatively 

drunk: subjective intoxication and estimated health consequences of alcohol 

consumption are conditional on the presence of less intoxicated individuals, 

not level of intoxication. Addiction Science & Clinical Practice, 7(Suppl 1), 

A29.  

Morewedge, C. K., Kassam, K. S., Hsee, C. K., & Caruso, E. M. (2009). Duration 

sensitivity depends on stimulus familiarity. Journal of Experimental 

Psychology: General, 138(2), 177-186.  

Murdock, B. B. (1962). The serial position effect of free recall. Journal of 

Experimental Psychology, 64(5), 482-488.  



212 

 

 

Murdock, B. B. (1974). Human memory: Theory and data. New York: Lawrence 

Erlbaum Associates. 

Murdock, B. B. (1995). Developing TODAM: Three models for serial-order 

information. Memory & Cognition, 23(5), 631-645.  

Murray, D. J. (1993). A perspective for viewing the history of psychophysics. 

Behavioral and Brain Sciences, 16(1), 115-186.  

Myung, I. J. (2000). The importance of complexity in model selection. Journal of 

Mathematical Psychology, 44(1), 190-204.  

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of 

Mathematical Psychology, 47(1), 90-100.  

Neale, M. A., Huber, V. L., & Northcraft, G. B. (1987). The framing of negotiations: 

Contextual versus task frames. Organizational Behavior and Human 

Decision Processes, 39(2), 228-241.  

Neath, I., & Crowder, R. G. (1990). Schedules of presentation and temporal 

distinctiveness in human memory. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 16(2), 316-327.  

Niedrich, R. W., Sharma, S., & Wedell, D. H. (2001). Reference price and price 

perceptions: A comparison of alternative models. Journal of Consumer 

Research, 28(3), 339-354.  

Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization 

relationship. Journal of Experimental Psychology: General, 115(1), 39-57.  

Oberauer, K., & Lewandowsky, S. (2008). Forgetting in immediate serial recall: 

Decay, temporal distinctiveness, or interference? Psychological Review, 

115(3), 544-576.  



213 

 

 

Oswald, A. J., & Wu, S. (2010). Objective confirmation of subjective measures of 

human well-being: Evidence from the USA. Science, 327(5965), 576-579.  

Page, M. P. A., & Morris, D. (1998). The Primacy Model: A new model of 

immediate serial recall. Psychological Review, 105(4), 761-781.  

Parducci, A. (1956). Direction of shift in the judgment of single stimuli. Journal of 

Experimental Psychology, 51(3), 169-178.  

Parducci, A. (1963). Range-frequency compromise in judgment. Psychological 

Monographs: General and Applied, 77(2), 1-50.  

Parducci, A. (1965). Category judgment: a range-frequency model. Psychological 

Review, 72(6), 407-418.  

Parducci, A. (1968). The relativism of absolute judgments. Scientific American, 

219(6), 84-90.  

Parducci, A. (1982). Category ratings: Still more contextual effects! In B. Wegener 

(Ed.), Social attitudes and psychophysical measurement (pp. 89-105). 

Hillsdale, New Jersey: Lawrence Erlbaum Associates. 

Parducci, A. (1992). Comment on Haubensak's associative theory of judgment. 

Journal of Experimental Psychology: Human Perception and Performance, 

18(1), 310-313.  

Parducci, A. (1995). Happiness, pleasure, and judgment: The contextual theory and 

its applications. Mahweh, New Jersey: Lawrence Erlbaum Associates. 

Parducci, A., Calfee, R. C., Marshall, L. M., & Davidson, L. P. (1960). Context 

effects in judgment: Adaptation level as a function of the mean, midpoint, 

and median of the stimuli. Journal of Experimental Psychology, 60(2), 65-77.  

Parducci, A., & Haugen, R. (1967). The frequency principle for comparative 

judgments. Attention, Perception, & Psychophysics, 2(2), 81-82.  



214 

 

 

Parducci, A., Perrett, D. S., & Marsh, H. W. (1969). Assimilation and contrast as 

range-frequency effects of anchors. Journal of Experimental Psychology, 

81(2), 281-288.  

Parducci, A., & Perrett, L. F. (1971). Category rating scales: Effects of relative 

spacing and frequency of stimulus values. Journal of Experimental 

Psychology, 89(2), 427-452.  

Parducci, A., & Wedell, D. H. (1986). The category effect with rating scales: 

Number of categories, number of stimuli, and method of presentation. 

Journal of Experimental Psychology: Human Perception and Performance, 

12(4), 496-516.  

Pettibone, J. C., & Wedell, D. H. (2007). Of gnomes and leprechauns: The 

recruitment of recent and categorical contexts in social judgment. Acta 

Psychologica, 125(3), 361-389.  

Petzold, P., & Haubensak, G. (2001). Higher order sequential effects in 

psychophysical judgments. Attention, Perception & Psychophysics, 63(6), 

969-978. 

Petzold, P., & Haubensak, G. (2004). Short-term and long-term frames of reference 

in category judgments: A multiple-standards model. In C. Kaernbach, E. 

Schröger & H. Müller (Eds.), Psychophysics beyond sensation: Laws and 

invariants of human cognition (pp. 45-68). Mahweh, New Jeresy: Lawrence 

Erlbaum Associates. 

Postman, L., & Phillips, L. W. (1965). Short-term temporal changes in free recall. 

Quarterly Journal of Experimental Psychology, 17(2), 132-138.  



215 

 

 

Qian, J., & Brown, G. D. A. (2005). Similarity-based sampling: Testing a model of 

price psychophysics. Paper presented at the Proceedings of the 27th Annual 

Conference of the Cognitive Science Society  

Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory. 

Psychological Review, 88(2), 93-134.  

Redelmeier, D. A., & Kahneman, D. (1996). Patients' memories of painful medical 

treatments: Real-time and retrospective evaluations of two minimally 

invasive procedures. Pain, 66(1), 3-8.  

Riskey, D. R., Parducci, A., & Beauchamp, G. K. (1979). Effects of context in 

judgments of sweetness and pleasantness. Attention, Perception, & 

Psychophysics, 26(3), 171-176.  

Roberts, W. A. (1972). Free recall of word lists varying in length and rate of 

presentation: A test of total-time hypotheses. Journal of Experimental 

Psychology, 92(3), 365-372.  

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. 

(1998). Dissociation of the neural correlates of implicit and explicit memory. 

Nature, 392(6676), 595-598.  

Rundus, D., & Atkinson, R. C. (1970). Rehearsal processes in free recall: A 

procedure for direct observation. Journal of Verbal Learning and Verbal 

Behavior, 9(1), 99-105.  

Rynes, S. L., Schwab, D. P., & Heneman III, H. G. (1983). The role of pay and 

market pay variability in job application decisions. Organizational Behavior 

and Human Performance, 31(3), 353-364.  



216 

 

 

Sandvik, E., Diener, E., & Seidlitz, L. (1993). Subjective well‐ being: The 

convergence and stability of self‐report and non‐self‐report measures. 

Journal of Personality, 61(3), 317-342.  

Sarris, V. (2004). Frame of reference models in psychophysics: A perceptual-

cognitive approach. In C. Kaernbach, E. Schroger & H. Muller (Eds.), 

Psychophysics beyond sensation: Laws and invariants of human cognition 

(pp. 69-88). Mahweh, New Jersey: Lawrence Erlbaum Associates. 

Schacter, D. L., Chiu, C.-Y. P., & Ochsner, K. N. (1993). Implicit memory: A 

selective review. Annual Review of Neuroscience, 16(1), 159-182.  

Schreiber, C. A., & Kahneman, D. (2000). Determinants of the remembered utility of 

aversive sounds. Journal of Experimental Psychology: General, 129(1), 27-

42.  

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 

6(2), 461-464.  

Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. 

(1991). Ease of retrieval as information: Another look at the availability 

heuristic. Journal of Personality and Social Psychology, 61(2), 195-202.  

Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model 

relating generalization to distance in psychological space. Psychometrika, 

22(4), 325-345.  

Smith, R. H., Diener, E., & Wedell, D. H. (1989). Intrapersonal and social 

comparison determinants of happiness: A range-frequency analysis. Journal 

of Personality and Social Psychology, 56(3), 317-325.  



217 

 

 

Stewart, N. (2009). Decision by sampling: The role of the decision environment in 

risky choice. The Quarterly Journal of Experimental Psychology, 62(6), 

1041-1062.  

Stewart, N., Chater, N., & Brown, G. D. A. (2006). Decision by sampling. Cognitive 

Psychology, 53(1), 1-26.  

Stewart, N., Chater, N., Stott, H. P., & Reimers, S. (2003). Prospect relativity: How 

choice options influence decision under risk. Journal of Experimental 

Psychology: General, 132(1), 23-46.  

Stewart, N., & Simpson, K. (2008). A decision-by-sampling account of decision 

under risk. In N. Chater & M. Oaksford (Eds.), The probabilistic mind: 

Prospects for Bayesian cognitive science (pp. 261-276). London, UK: Oxford 

University Press. 

Symmonds, M., Wright, N. D., Bach, D. R., & Dolan, R. J. (2011). Deconstructing 

risk: Separable encoding of variance and skewness in the brain. Neuroimage, 

58(4), 1139-1149.  

Tan, L., & Ward, G. (2000). A recency-based account of the primacy effect in free 

recall. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 26(6), 1589-1625.  

Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of 

Economic Behavior & Organization, 1(1), 39-60.  

Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of 

Psychology, 53(1), 1-25.  

Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 

247(4940), 301-306.  



218 

 

 

Tulving, E., Schacter, D. L., & Stark, H. A. (1982). Priming effects in word-

fragment completion are independent of recognition memory. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 8(4), 336-342.  

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging 

frequency and probability. Cognitive Psychology, 5(2), 207-232.  

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology 

of choice. Science, 211(4481), 453-458.  

Ungemach, C., Stewart, N., & Reimers, S. (2011). How incidental values from the 

environment affect decisions about money, risk, and delay. Psychological 

Science, 22(2), 253-260.  

Vlaev, I., Chater, N., Stewart, N., & Brown, G. D. A. (2011). Does the brain 

calculate value? Trends in Cognitive Science, 15(11), 546-554.  

Volkmann, J. (1951). Scales of judgment and their implications for social 

psychology. In J. H. Rohrer & M. Sherif (Eds.), Social psychology at the 

crossroads (pp. 279-274). New York: Harper & Row. 

Ward, G., Tan, L., & Grenfell-Essam, R. (2010). Examining the relationship between 

free recall and immediate serial recall: The effects of list length and output 

order. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 36(5), 1207-1241.  

Weber, E., & Johnson, E. (2006). Constructing preferences from memory. In S. 

Lichtenstein & P. Slovic (Eds.), The construction of preference (pp. 397-410). 

New York: Cambridge University Press. 

Wedell, D. H. (2008). A similarity-based range—frequency model for two-category 

rating data. Psychonomic Bulletin & Review, 15(3), 638-643.  



219 

 

 

Wedell, D. H., Hicklin, S. K., & Smarandescu, L. O. (2007). Contrasting models of 

assimilation and contrast. In D. A. Stapel & J. Suls (Eds.), Assimilation and 

contrast in social psychology (pp. 45-74). New York: Psychology Press. 

Wedell, D. H., & Parducci, A. (1985). Category and stimulus effects: A process 

model for contextual memory in judgment. In G. d'Ydewalle (Ed.), Cognition, 

information processing, and Motivation (pp. 55-70). New York: North 

Holland. 

Wedell, D. H., & Parducci, A. (1988). The category effect in social judgment: 

Experimental ratings of happiness. Journal of Personality and Social 

Psychology, 55(3), 341-356.  

Wedell, D. H., Parducci, A., & Geiselman, R. E. (1987). A formal analysis of ratings 

of physical attractiveness: Successive contrast and simultaneous assimilation. 

Journal of Experimental Social Psychology, 23(3), 230-249.  

Wedell, D. H., Parducci, A., & Roman, D. (1989). Student perceptions of fair 

grading: A range-frequency analysis. The American Journal of Psychology, 

102(2), 233-248.  

Wedell, D. H., Santoyo, E. M., & Pettibone, J. C. (2005). The thick and the thin of it: 

Contextual effects in body perception. Basic and Applied Social Psychology, 

27(3), 213-228.  

Wilkinson, R., & Pickett, K. (2010). The spirit level: Why equality is better for 

everyone. London, UK: Penguin. 

Wilson, W. P., Witryol, S. L., & Hust, B. E. (1975). Differential incentive 

motivation in recency and primacy during children's free recall. The Journal 

of Genetic Psychology, 127(1), 131-145.  



220 

 

 

Wixted, J. T., & Rohrer, D. (1994). Analyzing the dynamics of free recall: An 

integrative review of the empirical literature. Psychonomic Bulletin & Review, 

1(1), 89-106.  

Wood, A. M., Boyce, C. J., Moore, S. C., & Brown, G. D. A. (2012). An 

evolutionary based social rank explanation of why low income predicts 

mental distress: A 17 year cohort study of 30,000 people. Journal of Affective 

Disorders, 136(3), 882-888.  

Wood, A. M., Brown, G. D. A., & Maltby, J. (2011). Thanks, but I'm used to better: 

A relative rank model of gratitude. Emotion, 11(1), 175-180.  

Wood, A. M., Brown, G. D. A., & Maltby, J. (2012). Social norm influences on 

evaluations of the risks associated with alcohol consumption: applying the 

rank-based decision by sampling model to health judgments. Alcohol and 

Alcoholism, 47(1), 57-62.  

Wu, C. C., Bossaerts, P., & Knutson, B. (2011). The affective impact of financial 

skewness on neural activity and choice. PloS one, 6(2), e16838.  

 

  



221 

 

 

 

 

 

 

 

 

Appendices 

  



222 

 

 

 

 

 

 

 

 

 

Appendix A 

  



223 

 

 

In Chapter 3 I used a prior distribution of standard deviation (SD) parameters 

when fitting models to the data at an individual level. Here I explain what prior 

distribution was used and why it was required. First, I will outline how the models 

were fit to the data. Then I discuss why allowing the SD parameter to vary freely 

gave inappropriate model fits. Finally, I introduce the prior distribution of SD 

parameters used in Chapter 3. 

The aim was to compare model predictions when they were closest to the 

observed data using a maximum likelihood estimation method. For each data point I 

recorded the probability of the data on a normal distribution with a mean equal to the 

prediction of each model. Consider the example in Figure A1, where the vertical line 

represents an observed response of 4 on a continuous scale. The predictions of the 

adaptation level and the range-frequency models are 3.8 and 4.4. In this example, the 

response is more probable on the normal distribution with a mean equal to the 

predictions of range-frequency model (solid black line) and the corresponding -2lnL  

is the lowest of the compared models. 

Model fitting of the experiment used an interval method because the response 

scale was ordinal with discrete response options. The only ratings that participants 

can give are 1,2,3,4,5,6 and 7. A participant may wish to give a response of 4.25 to a 

stimulus and choose a rating of 4 instead. I incorporated this into the model fitting 

procedure. The likelihood of a model was given by the area of the normal 

distribution within a .49 interval of a response rating. As shown in Figure A2, more 

of the normal distribution representing the range-frequency model prediction of 3.8 

is within the interval and the corresponding -2lnL will still be the lowest. 
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Figure A1. The relationship between a satisfaction response of four and two normal 

probability distributions (σ = 0.25) representing either range-frequency theory (RFT; 

solid line, µ = 3.8) or adaptation level theory (ALT; dashed line, µ = 4.4). 

  



225 

 

 

 

Figure A2. The +/- 0.49 interval used to calculate the -2lnL of ordinal data given a 

model prediction. 
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However, allowing an algorithm to freely vary the SD of the normal 

distribution can cause the measure of fit to be inappropriate. As shown in Figure A3 

if the SD of a normal distribution is small enough then the entire distribution will fit 

within the response interval. If the predictions of both models are very close to the 

observed responses, as in Figure A3, then the -2lnL of the distribution area within 

the interval will incorrectly suggest that both models are equally probable given the 

data. 

I resolved this issue by using a prior distribution of standard deviations. Tripp 

and Brown (unpublished) have used a similar method to fit the range-frequency 

model to individual data made on a continuous scale. Plots of this data show that 

these prior standard deviations can be fit using a log normal distribution (µ = -1.3, σ 

= 0.3) where an SD of 0.29 is most likely (see Figure A4). First, the models were fit 

by minimizing the -2lnL of the data given a normal distribution with a mean equal to 

a model prediction and the -2lnL of the SD parameter on the prior log normal 

distribution. Then, only the former -2lnL was used for model comparison. 
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Figure A3. Graphical depiction of conditions in which two models may appear 

equally likely despite different predictions. 
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Figure A4. Histogram of standard deviation values from individual level fits of 

Brown et al. (2008) and Melrose et al. (2012), and the best fitting log-normal 

distribution (µ = -1.3, σ = 0.3). 
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RFT, Range and Rank 

  



230 

 

 

Table B1  

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Brown et al. (2008). Note: each row is the data for one participant. 

Range Frequency RFT w bootstrap Likelihood Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

0.95 179.85 0.45 80.68 0.45 .00 80.68 .03 .00 .13 99.17 0.00 

0.52 99.88 0.51 97.89 0.32 .49 34.95 .50 .41 .59 64.94 62.94 

0.55 108.30 0.66 131.67 0.44 .60 80.21 .60 .47 .74 28.08 51.45 

0.43 76.36 0.50 95.68 0.23 .55 -5.59 .55 .48 .61 81.95 101.28 

0.59 118.45 0.29 23.30 0.17 .29 -49.96 .29 .24 .35 168.40 73.25 

0.72 144.30 0.47 88.14 0.42 .27 72.29 .27 .14 .39 72.01 15.84 

0.56 110.98 0.35 49.66 0.21 .35 -20.43 .35 .29 .41 131.41 70.08 

0.59 118.24 0.71 142.23 0.51 .62 97.51 .61  .46 .77 20.73 44.72 

0.63 127.32 0.75 148.78 0.56 .62 109.72 .62 .46 .80 17.60 39.06 

0.74 147.71 0.55 109.06 0.49 .31 93.64 .31 .16 .46 54.06 15.41 

0.59 118.36 0.59 117.87 0.43 .50 77.00 .50 .37 .62 41.36 40.87 

0.77 152.43 0.46 84.68 0.43 .21 75.15 .21 .08 .33 77.29 9.53 

0.56 111.01 0.62 124.77 0.43 .56 76.53 .55 .42 .70 34.49 48.24 

0.52 101.76 0.46 84.53 0.28 .45 19.05 .45 .37 .53 82.72 65.49 

0.70 139.63 0.24 -3.77 0.19 .17 -30.79 .17 .11 .23 170.42 27.03 

0.75 148.51 0.54 104.84 0.48 .29 90.52 .29 .14 .43 57.98 14.32 

0.67 134.41 0.23 -7.68 0.17 .20 -50.13 .19 .15 .24 184.53 42.45 

0.62 123.48 0.47 88.18 0.36 .38 52.35 .38 .27  .48 71.14 35.83 

1.01 188.48 0.58 115.03 0.58 .00 115.03 .04 .00 .17 73.45 0.00 

0.62 123.32 0.35 47.86 0.25 .30 3.66 .30 .23 .38 119.65 44.20 

0.51 98.51 0.61 122.65 0.39 .59 62.24 .59 .47 .70 36.27 60.40 

0.55 109.12 0.48 90.73 0.32 .44 37.95 .44 .35 .54 71.18 52.79 

0.61 121.98 0.31 33.09 0.21 .29 -21.07 .29 .23 .35 143.04 54.16 

0.70 140.95 0.33 39.02 0.28 .20 20.33 .20 .12 .29 120.62 18.69 
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Table B2  

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Melrose et al. (2012). Note: each row is the data for one participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

4.16 375.44 3.69 359.66 3.27 .40 343.83 .40 .22 .59 343.61 0.18 

9.99 491.05 7.27 449.11 7.07 .19 445.45 .19 .00 .40 445.45 0.19 

18.90 575.30 16.20 554.93 16.20 .00 554.93 .09 .00 .42 554.93 0.09 

6.11 426.19 4.14 374.66 3.99 .19 369.95 .19 .03 .36 369.93 0.17 

14.28 538.29 16.00 553.31 14.24 .87 537.92 .84 .46 1 537.46 0.38 

15.84 551.99 13.82 533.97 13.77 .13 533.45 .16 .00 .49 533.45 0.16 

19.90 582.06 20.44 585.59 19.71 .67 580.84 .63 .06 1 580.78 0.57 

15.49 548.97 15.05 545.21 14.55 .42 540.78 .43 .07 .80 540.71 0.36 

11.17 505.86 10.64 499.46 9.87 .43 489.50 .43 .16 .67 489.34 0.27 

15.44 548.57 14.11 536.70 14.00 .22 535.61 .23 .00 .59 535.61 0.23 

10.84 501.92 5.98 423.28 5.98 .00 423.28 .04 .00 .17 423.28 0.03 

17.88 567.95 19.22 577.51 17.83 .85 567.59 .81 .31 1 567.28 0.50 

9.97 490.85 9.93 490.38 9.68 .48 486.98 .48 .00 .98 486.98 0.48 

9.81 488.72 9.90 489.95 8.98 .51 476.99 .51 .26 .76 476.73 0.25 

10.86 502.14 8.48 469.50 8.48 .00 469.50 .08 .00 .37 469.50 0.08 

7.42 451.86 10.92 502.83 7.35 .89 450.68 .88 .69 1 450.00 0.20 

8.79 474.14 11.27 506.97 8.71 .86 472.94 .85 .60 1 472.34 0.25 

8.55 470.58 7.15 446.90 7.15 .00 446.90 .08 .00 .39 446.90 0.08 

9.74 487.70 4.48 385.33 4.48 .00 385.33 .03 .00 .13 385.33 0.03 

6.10 426.10 6.01 423.98 5.41 .48 410.18 .48 .24 .71 409.94 0.24 

8.64 471.95 8.31 466.75 7.81 .43 458.56 .43 .14 .72 458.42 0.30 

15.58 549.74 14.34 538.79 14.19 .24 537.46 .25 .00 .64 537.46 0.25 

13.76 533.34 13.04 526.29 12.51 .39 520.75 .39 .08 .68 520.67 0.31 

9.62 486.17 5.85 420.58 5.60 .18 414.70 .18 .03 .33 414.67 0.15 

9.98 490.94 9.43 483.53 9.00 .40 477.35 .40 .09 .72 477.25 0.31 

9.63 486.19 9.10 478.83 8.03 .45 462.21 .45 .24 .67 461.97 0.21 

3.90 367.12 6.09 425.69 3.27 .71 343.61 .71 .59 .81 343.02 0.11 

6.29 430.00 6.76 439.64 5.96 .62 423.02 .62 .35 .91 422.67 0.27 

3.19 340.52 6.45 433.43 3.19 1 340.52 .97 .84 1 339.68 0.13 

7.62 455.40 9.18 479.99 7.62 .97 455.37 .92 .63 1 454.75 0.29 

5.45 411.00 4.08 372.83 4.05 .11 371.98 .12 .00 .34 371.98 0.12 

7.48 452.86 5.90 421.68 5.89 .09 421.28 .12 .00 .37 421.28 0.12 

(continued) 
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Table B2 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Melrose et al. (2012). Note: each row is the data for one participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

5.83 419.90 7.70 456.72 5.31 .70 407.78 .70 .54 .85 407.25 0.16 

2.95 330.08 3.69 359.56 2.95 1 330.08 .93  .66 1 329.42 0.27 

7.54 454.04 2.55 310.61 2.38 .11 301.66 .11 .04 .18 301.62 0.07 

11.18 506.00 11.10 505.00 10.98 .43 503.54 .45 .00 1 503.54 0.45 

7.52 453.58 3.31 345.47 3.13 .14 337.90 .14 .05 .23 337.85 0.09 

5.52 412.69 5.10 402.44 4.76 .40 393.36 .40 .14 .66 393.22 0.25 

6.49 434.21 9.60 485.91 6.49 1 434.21 .94 .71 1 433.50 0.23 

8.91 476.03 8.03 462.35 8.03 0 462.35 .14 0 .69 462.35 0.14 

6.02 424.17 11.71 512.11 6.02 1 424.17 .96 .81 1 423.36 0.15 

10.93 502.92 14.94 544.21 10.92 1 502.92 .91 .58 1 502.34 0.33 

14.77 542.74 15.45 548.65 14.77 1 542.74 .82 .14 1 542.59 0.67 

3.32 345.88 2.80 323.25 1.84 .43 267.53 .43 .34 .52 267.18 0.09 

2.38 301.57 3.01 332.89 2.38 1 301.57 .93 .67 1 300.90 0.26 

9.82 488.90 12.75 523.29 9.82 1 488.90 .94 .68 1 488.21 0.25 

12.21 517.58 14.58 541.00 12.21 1 517.58 .90 .54 1 517.04 0.36 

8.24 465.64 8.89 475.76 7.79 .62 458.34 .62 .35 .89 457.99 0.26 

3.12 337.35 3.40 348.91 1.66 .53 254.16 .53 .46 .60 253.70 0.07 

4.71 391.94 10.64 499.38 4.71 1 391.94 .97 .87 1 391.07 0.10 

5.51 412.51 8.50 469.74 5.37 .84 409.18 .84 .68 1 408.51 0.17 

7.58 454.59 10.51 497.84 7.58 1 454.59 .94 .73 1 453.86 0.21 
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Table B3 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Wood et al. (2011a). Note: each row is the data for one participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

1.50 321.06 1.64 336.84 1.46 .69 316.32 .68 .40 .97 315.92 0.28 

6.15 569.37 4.98 532.29 4.91 .19 529.64 .19 .00 .41 529.63 0.19 

14.75 723.36 14.27 717.54 13.61 .43 709.18 .43 .15 .73 709.04 0.28 

4.56 516.71 5.28 542.58 3.65 .58 477.66 .58 .46 .70 477.20 0.12 

7.23 597.98 6.23 571.81 6.22 .09 571.49 .12 0 .40 571.49 0.12 

5.41 546.94 5.11 536.67 4.33 .45 507.69 .46 .29 .61 507.40 0.17 

11.29 676.31 9.55 646.89 8.89 .33 634.29 .34 .16 .54 634.13 0.18 

8.59 628.16 9.84 652.20 7.69 .62 608.69 .62 .47 .78 608.23 0.15 

4.01 494.16 7.79 611.12 4.01 1 494.16 .98 .87 1 493.29 0.10 

14.72 723.04 16.61 744.32 14.43 .74 719.50 .73 .47 1 719.03 0.26 

5.08 535.92 5.35 545.05 4.78 .58 525.21 .58 .33 .82 524.88 0.25 

10.54 664.31 9.85 652.30 9.72 .28 650.08 .27 .00 .60 650.08 0.27 

9.61 647.99 9.19 640.21 8.79 .41 632.20 .40 .13 .67 632.07 0.27 

4.10 498.16 5.49 549.36 2.96 .62 440.65 .62 .54 .70 440.11 0.08 

14.71 722.88 13.94 713.39 13.15 .41 703.14 .41 .16 .64 702.98 0.25 

12.32 691.76 11.29 676.28 11.15 .25 674.11 .25 0 .59 674.11 0.25 

10.82 668.91 9.52 646.29 9.38 .23 643.76 .23 0 .51 643.76 0.23 

15.97 737.39 18.23 760.71 15.80 .80 735.54 .79 .51 1 735.03 0.28 

7.07 594.06 9.56 647.08 6.47 .71 578.42 .71 .58 .84 577.84 0.13 

7.83 612.04 8.72 630.94 6.80 .58 587.24 .59 .43 .75 586.80 0.15 

3.80 484.79 7.02 592.67 3.68 .86 478.97 .86 .75 .97 478.22 0.11 

4.90 529.56 7.57 605.99 4.19 .71 501.81 .71 .61 .82 501.20 0.10 

6.21 571.07 9.71 649.81 5.44 .73 547.76 .73 .62 .83 547.13 0.11 

7.78 610.75 11.25 675.80 7.71 .89 609.25 .89 .73 1 608.52 0.16 

5.95 563.73 9.30 642.14 5.78 .84 558.43 .84 .70 .97 557.73 0.14 

5.09 536.04 11.06 672.74 5.09 1 536.04 .98 .89 1 535.15 0.09 

9.04 637.18 7.86 612.54 7.02 .38 592.83 .38 .23 .55 592.60 0.16 

7.52 604.90 11.21 675.04 7.28 .82 599.23 .82 .68 .96 598.55 0.14 

16.17 739.56 17.92 757.69 16.12 .86 739.02 .84 .49 1 738.53 0.35 

6.98 591.69 8.24 620.81 5.97 .61 564.11 .62 .48 .75 563.62 0.13 

8.62 628.94 8.14 618.81 7.60 .42 606.69 .42 .18 .65 606.51 0.23 

4.99 532.53 8.23 620.71 4.87 .86 528.47 .86 .73 .99 527.74 0.13 

(continued) 
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Table B3 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Wood et al. (2011a) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

5.24 541.40 10.27 659.61 5.23 .95 540.80 .95 .84 1 539.96 0.11 

7.14 595.80 10.84 669.16 7.02 .86 592.83 .86 .71 1 592.12 0.15 

6.29 573.34 6.81 587.47 4.98 .55 532.21 .55 .42 .67 531.78 0.12 

17.70 755.47 17.11 749.56 16.48 .42 742.95 .41 .12 .73 742.83 0.29 

5.08 535.84 6.66 583.33 4.32 .65 507.08 .65 .54 .76 506.54 0.11 

10.16 657.75 14.16 716.27 10.16 1 657.75 .94 .72 1 657.03 0.23 

10.97 671.26 15.02 726.53 10.96 .97 671.17 .94 .74 1 670.43 0.20 

1.31 297.10 1.49 320.18 1.18 .62 279.11 .61 .44 .79 278.67 0.17 

18.03 758.73 12.90 699.78 12.90 0 699.78 .06 0 .27 699.78 0.05 

9.51 646.11 11.40 678.10 8.94 .69 635.18 .69 .51 .87 634.67 0.18 

8.14 618.85 8.22 620.52 7.46 .51 603.34 .52 .29 .73 603.05 0.23 

9.95 654.05 9.47 645.37 8.66 .44 629.73 .45 .24 .65 629.49 0.21 

2.13 382.89 3.19 453.85 2.07 .83 378.20 .84 .69 .99 377.52 0.15 

8.08 617.43 7.29 599.29 7.04 .32 593.17 .32 .07 .59 593.09 0.25 

15.59 733.08 8.53 626.99 8.53 0 626.99 .04 0 .19 626.99 0.04 

18.05 758.91 12.90 699.78 12.90 0 699.78 .04 0 .22 699.78 0.04 

8.80 632.43 6.61 582.11 6.03 .30 566.00 .30 .16 .44 565.84 0.14 

27.46 832.80 29.66 846.31 27.45 .93 832.73 .87 .48 1 832.24 0.38 

3.30 460.10 3.48 469.15 3.15 .60 451.88 .60 .33 .85 451.55 0.27 

10.16 657.81 10.51 663.77 9.84 .59 652.06 .60 .27 .91 651.79 0.33 

8.72 630.91 7.37 601.28 7.23 .23 597.91 .23 0 .47 597.91 0.23 

10.11 656.99 10.31 660.32 9.80 .56 651.39 .56 .22 .94 651.16 0.33 

8.45 625.37 8.33 622.83 7.30 .49 599.59 .48 .29 .67 599.30 0.20 

1.29 294.17 1.09 264.28 1.07 .18 262.44 .18 0 .46 262.44 0.18 

5.28 542.64 5.27 542.21 4.98 .49 532.12 .49 .21 .80 531.92 0.28 

7.42 602.47 7.48 603.93 6.24 .51 572.09 .51 .36 .67 571.73 0.15 

6.73 585.28 5.61 553.17 5.48 .23 549.04 .24 .01 .45 549.03 0.22 

19.59 773.30 13.40 706.49 13.40 0 706.49 .05 0 .23 706.49 0.05 

23.68 806.73 24.42 812.16 23.54 .72 805.69 .70 .14 1 805.55 0.56 

15.09 727.44 14.55 720.94 14.24 .37 717.18 .37 0 .72 717.18 0.37 

18.23 760.68 11.49 679.48 11.49 0 679.48 .04 0 .20 679.47 0.04 

(continued) 
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Table B3 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Wood et al. (2011a) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

16.75 745.74 17.89 757.32 16.43 .69 742.42 .68 .34 1 742.08 0.34 

13.46 707.26 11.59 681.00 11.32 .26 676.80 .26 .02 .49 676.77 0.23 

7.21 597.49 6.23 571.57 5.99 .30 564.79 .30 .07 .51 564.72 0.22 

10.72 667.24 8.26 621.41 8.26 0 621.41 .05 0 .25 621.41 0.05 

10.20 658.55 6.49 578.77 6.44 .09 577.41 .10 0 .25 577.41 0.09 

10.93 670.67 12.62 695.99 10.65 .73 666.09 .74 .49 .99 665.60 0.24 

8.60 628.52 7.69 608.89 6.83 .40 587.77 .40 .24 .56 587.52 0.16 

10.12 657.09 7.82 611.69 7.37 .27 601.22 .28 .12 .44 601.10 0.16 

14.90 725.13 17.04 748.83 14.83 .86 724.38 .84 .54 1 723.84 0.30 

14.53 720.69 14.62 721.87 13.88 .52 712.73 .52 .19 .83 712.54 0.33 

10.16 657.77 6.63 582.76 6.28 .21 573.03 .21 .09 .34 572.94 0.13 

10.28 659.80 12.12 688.79 10.13 .79 657.25 .79 .55 1 656.70 0.24 

9.63 648.36 9.81 651.59 8.23 .52 620.74 .51 .34 .67 620.40 0.17 

9.65 648.77 10.97 671.25 9.00 .64 636.47 .64 .43 .84 636.04 0.21 

7.92 613.90 7.32 600.03 6.04 .45 566.37 .45 .31 .59 566.06 0.14 

15.91 736.69 18.68 765.01 15.91 1 736.69 .92 .58 1 736.11 0.34 

8.20 620.16 9.83 651.88 7.80 .70 611.36 .70 .51 .90 610.86 0.20 
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Table B4 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Wood et al. (2011b). Note: each row is the data for one participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

0.34 24.38 0.36 26.00 0.30 .56 21.71 .56 .24 .92 21.47 0.32 

0.00 18.00 0.31 28.60 0.00 1 18.00 1 .99 1 17.01 0.00 

0.22 16.67 0.72 37.47 0.22 1 16.67 .96 .82 1 15.85 0.14 

0.35 25.94 0.32 24.68 0.29 .42 22.52 .44 .04 .82 22.48 0.40 

0.13 24.55 0.06 19.93 0.02 .15 19.38 .15 .13 .17 19.25 0.02 

0.11 12.86 0.00 8.00 0.00 .01 8.00 .01 0 .01 8.00 0.00 

0.54 31.29 0.36 26.48 0.24 .38 20.44 .37 .23 .51 20.22 0.15 

0.17 15.95 0.31 26.37 0.17 1 15.95 .95 .76 1 15.19 0.19 

0.79 37.67 0.96 40.35 0.78 .86 37.59 .79 .15 1 37.44 0.64 

0.00 10.00 0.28 21.56 0.00 1 10.00 1 1 1 9.00 0.00 

0.22 32.90 0.05 27.03 0.03 .08 25.97 .08 .06 .10 25.91 0.02 

0.32 23.24 0.73 36.04 0.32 1 23.24 .93 .68 1 22.57 0.25 

0.09 14.18 0.53 31.59 0.07 .94 13.61 .94 .89 .99 12.72 0.05 

0.70 34.00 0.01 26.00 0.01 0 26.00 0 0 .01 26.00 0.00 

0.23 20.76 0.63 34.85 0.23 1 20.76 .96 .80 1 19.96 0.16 

0.07 14.81 0.21 19.85 0.07 .86 14.78 .86 .76 .96 14.02 0.10 

0.35 25.85 1.06 41.64 0.35 1 25.85 .93 .67 1 25.18 0.26 

1.29 44.26 2.20 47.62 1.29 1 44.26 .78 0 1 44.26 0.78 

0.06 11.69 0.07 15.00 0.09 .48 11.80 .49 .39 .58 11.41 0.10 

0.00 6.00 0.30 23.72 0.00 1 6.00 1 1 1 5.00 0.00 

0.00 8.00 0.29 24.85 0.00 1 8.00 1 1 1 7.00 0.00 

0.03 25.38 0.26 26.38 0.26 0 26.38 .07 0 .34 26.38 0.07 

0.24 34.59 0.01 32.00 0.01 0 32.00 0 0 .01 32.00 0.00 

0.09 27.12 0.04 25.24 0.04 0 25.24 .01 0 .05 25.24 0.01 

0.24 18.83 0.16 15.88 0.04 .22 11.12 .22 .19 .25 10.94 0.04 

0.00 20.00 0.28 27.24 0.00 .80 18.00 .80 .79 .80 17.21 0.00 

0.07 11.32 0.30 25.28 0.05 .80 11.19 .80 .75 .84 10.44 0.05 

0.06 17.15 0.18 23.29 0.06 1 17.15 .99 .95 1 16.20 0.04 

0.08 15.30 0.25 23.98 0.08 1 15.30 .98 .91 1 14.40 0.07 

0.49 31.50 0.75 37.34 0.49 1 31.50 .90 .49 1 31.01 0.41 

0.11 10.24 0.15 11.62 0.04 .58 5.96 .58 .53 .63 5.43 0.05 

0.11 6.84 0.17 13.58 0.00 .67 2.00 .67 .67 .67 1.33 0.00 

(continued) 
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Table B4 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Wood et al. (2011b) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

1.28 45.75 2.43 49.04 1.28 1 45.75 .79 0 1 45.75 0.78 

0.19 14.81 0.70 36.03 0.19 1 14.81 .97 .86 1 13.96 0.11 

0.43 28.54 0.56 33.38 0.38 .67 26.78 .67 .37 .96 26.41 0.30 

0.00 26.00 0.85 37.83 0.00 1 26.00 1 1 1 25.00 0.00 

0.14 21.77 0.24 26.30 0.01 .34 20.00 .34 .33 .36 19.67 0.01 

0.25 22.27 0.34 24.95 0.25 .66 20.50 .66 .45 .86 20.04 0.21 

0.51 31.85 0.35 25.54 0.35 0 25.54 .09 0 .45 25.53 0.09 

0.50 31.68 0.35 25.89 0.35 .04 25.88 .11 0 .46 25.88 0.11 

0.30 30.32 0.24 28.21 0.24 0 28.21 .05 0 .25 28.21 0.05 

1.12 40.83 0.53 32.00 0.53 0 32.00 .10 0 .46 32.00 0.10 

0.11 16.18 0.08 16.40 0.11 1 16.18 .90 .49 1 15.69 0.40 

0.19 13.92 0.16 14.44 0.02 .63 4.55 .63 .60 .66 3.95 0.03 

0.34 23.15 0.35 25.92 0.32 .74 22.79 .71 .15 1 22.64 0.56 

0.84 39.62 0.99 40.31 0.84 .82 39.57 .73 0 1 39.57 0.73 

0.69 36.92 0.48 31.05 0.48 0 31.05 .11 0 .57 31.05 0.10 

0.36 32.06 0.24 26.30 0.24 0 26.30 .06 0 .28 26.30 0.05 

0.22 16.36 0.31 23.51 0.22 1 16.36 .90 .46 1 15.90 0.44 

0.01 30.00 0.18 31.61 0.00 .67 30.00 .67 .67 .67 29.33 0.00 

0.00 20.00 0.01 20.00 0.01 0 20.00 0 0 .01 20.00 0.00 

0.06 9.76 0.15 18.58 0.00 .79 10.00 .79 .79 .79 9.21 0.00 

0.46 31.56 0.45 31.12 0.42 .46 29.99 .47 0 1 29.99 0.47 

0.25 24.02 0.16 17.88 0.16 0 17.88 .02 0 .11 17.88 0.02 

0.20 14.32 0.43 27.69 0.20 1 14.32 .96 .78 1 13.53 0.17 

0.00 20.00 0.01 18.00 0.01 0 18.00 0 0 .01 18.00 0.00 

0.00 8.00 0.13 15.14 0.01 .45 8.00 .45 .44 .46 7.56 0.01 

0.09 14.37 0.34 26.96 0.09 1 14.37 .97 .84 1 13.53 0.13 

0.00 22.00 0.36 31.64 0.00 .95 22.00 .95 .94 .95 21.06 0.00 

0.10 9.26 0.28 21.38 0.10 1 9.26 .97 .84 1 8.42 0.13 

0.15 21.30 0.43 31.24 0.15 1 21.30 .97 .86 1 20.45 0.11 

0.12 11.17 0.35 25.77 0.12 1 11.17 .96 .81 1 10.36 0.15 

0.17 16.50 0.27 20.32 0.17 .77 15.66 .77 .59 .95 15.07 0.19 

0.15 20.41 0.01 20.00 0.01 0 20.00 .01 0 .03 20.00 0.01 

(continued) 
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Table B4 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Wood et al. (2011b) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap 
Likelihood 

Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

0.09 4.69 0.05 5.07 0.09 1 4.69 .91 .55 1 4.14 0.36 

0.03 12.68 0.05 11.86 0.05 0 11.86 .02 0 .09 11.86 0.02 

0.61 34.42 0.49 31.42 0.49 .06 31.40 .17 0 .76 31.40 0.17 

0.20 19.10 0.37 27.42 0.08 .75 17.94 .75 .67 .82 17.27 0.08 

0.38 26.74 0.30 22.65 0.29 .22 22.20 .24 0 .68 22.20 0.24 

0.00 20.00 0.18 22.85 0.00 .79 20.00 .79 .79 .79 19.21 0.00 

0.51 33.09 0.65 36.97 0.50 .82 32.84 .76 .20 1 32.63 0.56 

0.29 19.70 0.19 16.21 0.09 .28 13.16 .28 .17 .39 12.99 0.10 

0.36 24.50 0.17 16.72 0.15 .21 15.38 .21 .05 .35 15.33 0.15 

0.30 21.95 0.36 26.14 0.30 1 21.95 .87 .32 1 21.62 0.54 

0.22 17.72 0.13 12.95 0.04 .50 7.85 .50 .45 .54 7.40 0.05 

0.00 30.00 0.26 31.92 0.26 0 31.92 .05 0 .28 31.92 0.05 

0.09 9.86 0.25 17.84 0.09 1 9.86 .97 .86 1 9.00 0.12 

0.25 15.72 0.24 18.27 0.18 .52 12.05 .52 .31 .72 11.74 0.21 
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Table B5 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Maltby et al. (2012). Note: each row is the data for one participant. 

Range Frequency RFT w bootstrap Likelihood Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

0.25 29.60 0.03 11.27 0.03 0 11.27 .01 0 .05 11.27 0.01 

0.43 44.65 0.27 32.02 0.27 .02 32.01 .07 0 .33 32.01 0.07 

0.78 57.81 0.57 50.73 0.56 .16 50.37 .18 0 .56 50.37 0.18 

3.99 74.08 4.87 74.94 3.99 1 74.08 .63 0 1 74.08 0.63 

3.19 71.61 4.17 73.25 3.19 1 71.61 .71 0 1 71.61 0.71 

6.19 74.88 7.33 75.48 6.19 1 74.88 .59 0 1 74.88 0.59 

0.78 56.93 0.28 33.15 0.28 0 33.15 .04 0 .18 33.15 0.03 

0.46 44.29 0.05 12.52 0.05 0 12.52 .01 0 .04 12.52 0.01 

0.76 56.42 0.66 53.31 0.66 .18 53.13 .24 0 .81 53.13 0.24 

0.43 48.08 0.49 47.88 0.42 .47 46.12 .47 0 .77 45.95 0.30 

1.88 70.24 1.10 64.35 1.10 0 64.35 .14 0 .66 64.35 0.13 

1.08 65.19 0.60 55.37 0.60 .11 55.09 .14 0 .46 55.09 0.14 

1.00 61.43 0.38 45.26 0.38 0 45.26 .04 0 .23 45.26 0.04 

0.51 52.04 0.28 39.99 0.28 .04 39.97 .06 0 .21 39.97 0.05 

1.25 63.51 0.29 39.29 0.29 0 39.29 .03 0 .15 39.29 0.03 

0.93 59.88 0.37 40.14 0.37 0 40.14 .04 0 .19 40.14 0.04 

0.88 58.67 0.23 31.29 0.23 0 31.29 .03 0 .15 31.29 0.03 

1.29 63.33 1.28 63.25 1.24 .48 62.83 .50 0 1 62.83 0.50 

2.85 73.71 2.82 73.59 2.63 .46 73.23 .47 0 1 73.23 0.47 

2.08 72.72 1.39 69.57 1.38 .09 69.52 .20 0 .83 69.52 0.20 

2.52 74.19 1.71 71.88 1.67 .17 71.72 .25 0 .87 71.72 0.25 

0.67 53.26 0.33 35.26 0.33 .05 35.20 .06 0 .22 35.20 0.06 

0.94 59.76 0.26 30.62 0.26 .03 30.53 .04 0 .16 30.53 0.04 

1.30 65.77 0.84 59.31 0.84 0 59.31 .12 0 .57 59.31 0.11 

0.63 52.76 0.30 37.64 0.29 .08 37.46 .09 0 .28 37.46 0.09 

0.88 58.78 0.63 51.83 0.63 .04 51.82 .11 0 .49 51.82 0.11 

0.75 54.58 0.20 36.70 0.20 0 36.70 .03 0 .14 36.70 0.03 

2.14 71.18 0.70 56.94 0.70 0 56.94 .06 0 .27 56.94 0.06 

1.27 64.25 0.53 50.09 0.51 .12 49.44 .13 0 .34 49.44 0.13 

1.53 67.27 0.63 53.86 0.63 0 53.86 .06 0 .27 53.86 0.06 

2.59 70.37 2.19 68.74 2.18 .05 68.73 .21 0 1 68.73 0.21 

1.47 66.00 0.47 45.17 0.47 0 45.17 .05 0 .23 45.17 0.05 

(continued) 
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Table B5 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Maltby et al. (2012) (continued). Note: each row is the data for one 

participant. 

Range Rank RFT w bootstrap Likelihood Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

2.06 70.28 0.98 61.30 0.98 0 61.30 .09 0 .47 61.30 0.09 

0.33 41.08 0.05 24.06 0.02 .14 23.40 .14 .12 .15 23.27 0.01 

1.53 65.72 0.80 55.94 0.80 0 55.94 .09 0 .46 55.94 0.09 

1.19 61.37 0.69 52.44 0.69 0 52.44 .06 0 .30 52.44 0.06 

1.24 64.70 0.42 43.93 0.42 .04 43.84 .06 0 .21 43.84 0.06 

1.50 64.27 1.47 64.24 1.44 .48 63.90 .50 0 1 63.90 0.49 

0.20 45.94 0.01 46.00 0.01 0 46.00 0 0 .01 46.00 0.00 

2.93 73.47 1.08 64.41 1.08 0 64.41 .09 0 .47 64.40 0.09 

2.70 70.80 0.98 60.06 0.98 0 60.06 .09 0 .43 60.06 0.09 

2.22 68.65 1.11 61.09 1.11 0 61.09 .09 0 .43 61.09 0.09 

1.33 66.75 0.90 60.86 0.87 .17 60.53 .21 0 .59 60.53 0.21 

1.97 69.11 0.32 35.73 0.32 0 35.73 .03 0 .13 35.73 0.03 

2.63 71.35 1.08 62.10 1.08 0 62.10 .11 0 .50 62.10 0.11 

1.87 68.56 0.41 45.58 0.41 0 45.58 .04 0 .17 45.58 0.04 

1.31 62.70 0.23 37.11 0.23 0 37.11 .02 0 .11 37.11 0.02 

2.21 69.04 0.51 50.80 0.51 0 50.80 .05 0 .21 50.80 0.04 

2.47 67.67 1.74 64.17 1.74 0 64.17 .16 0 .71 64.17 0.16 

2.19 68.46 2.39 68.91 2.18 .66 68.27 .58 0 1 68.27 0.58 

0.40 50.41 0.15 45.18 0.15 0 45.18 .01 0 .06 45.18 0.01 

0.89 58.63 0.29 42.29 0.29 0 42.29 .03 0 .14 42.29 0.03 

1.02 61.60 0.31 37.54 0.31 0 37.54 .03 0 .15 37.54 0.03 

0.42 45.04 0.33 39.37 0.26 .41 35.61 .41 .26 .55 35.34 0.14 

0.75 56.98 0.30 34.15 0.30 .00 34.15 .05 0 .25 34.15 0.05 

0.34 50.31 0.05 38.82 0.00 .25 38.00 .25 .25 .25 37.75 0.00 

1.08 61.32 0.18 31.28 0.19 .08 31.14 .08 0 .15 31.13 0.07 

2.03 66.30 0.79 55.78 0.79 0 55.78 .08 0 .37 55.78 0.08 

3.71 71.76 3.76 71.70 3.65 .46 71.57 .50 0 1 71.57 0.49 

1.14 60.26 0.52 45.60 0.52 0 45.60 .05 0 .27 45.60 0.05 

0.68 55.21 0.36 40.14 0.35 .14 39.40 .14 0 .36 39.40 0.14 

2.66 68.21 2.86 68.88 2.66 1 68.21 .72 0 1 68.21 0.72 

0.50 49.45 0.45 45.16 0.42 .31 44.38 .30 0 .62 44.38 0.30 

0.82 58.27 0.45 45.52 0.44 .05 45.46 .10 0 .38 45.46 0.10 

(continued) 
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Table B5 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Maltby et al. (2012) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap Likelihood Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

0.38 47.59 0.01 34.00 0.01 0 34.00 0 0 .01 34.00 0.00 

0.00 42.00 0.19 47.11 0.19 0 47.11 .03 0 .13 47.11 0.02 

1.89 65.31 0.28 48.08 0.28 0 48.08 .02 0 .12 48.08 0.02 

0.61 53.36 0.52 51.43 0.52 0 51.43 .13 0 .67 51.43 0.13 

3.79 74.61 2.24 71.76 2.24 0 71.76 .25 0 1 71.75 0.25 

0.63 51.89 0.26 29.48 0.26 0 29.48 .06 0 .28 29.48 0.06 

1.27 67.52 0.80 60.98 0.80 0 60.98 .13 0 .61 60.98 0.13 

2.42 71.63 2.23 70.89 2.12 .34 70.60 .40 0 1 70.59 0.40 

0.43 49.23 0.49 50.46 0.43 .86 49.18 .82 .43 1 48.75 0.40 

1.73 68.64 0.67 55.57 0.67 0 55.57 .09 0 .42 55.57 0.09 

1.11 65.93 0.71 59.01 0.71 0 59.01 .15 0 .70 59.01 0.15 

2.00 71.31 0.92 62.74 0.92 0 62.74 .12 0 .58 62.74 0.12 

0.78 55.73 0.46 46.08 0.46 0 46.08 .08 0 .37 46.08 0.07 

1.37 67.15 0.85 60.28 0.85 0 60.28 .15 0 .72 60.28 0.15 

1.28 65.37 0.54 50.55 0.54 0 50.55 .06 0 .29 50.55 0.06 

6.10 77.21 3.36 75.86 3.36 0 75.86 .32 0 1 75.86 0.32 

1.33 65.71 0.78 57.28 0.78 0 57.28 .11 0 .52 57.28 0.11 

0.99 61.32 0.62 52.52 0.62 0 52.52 .09 0 .44 52.52 0.09 

3.73 73.58 2.33 70.47 2.33 0 70.47 .21 0 1 70.47 0.21 

1.02 61.76 0.30 33.32 0.30 0 33.32 .04 0 .19 33.32 0.04 

0.80 58.01 0.35 42.73 0.35 0 42.73 .04 0 .21 42.73 0.04 

1.07 60.20 0.65 50.67 0.65 .02 50.67 .07 0 .31 50.67 0.07 

4.63 75.15 2.75 72.68 2.75 0 72.68 .26 0 1 72.68 0.26 

1.39 66.98 0.63 54.01 0.63 0 54.01 .08 0 .38 54.01 0.08 

1.18 61.20 0.78 54.10 0.78 0 54.10 .08 0 .38 54.10 0.08 

1.44 66.03 0.04 5.59 0.04 0 5.59 0 0 .02 5.59 0.00 

1.11 62.26 0.04 7.18 0.04 0 7.18 0 0 .02 7.18 0.00 

1.29 64.62 0.31 33.61 0.31 0 33.61 .03 0 .15 33.61 0.03 

1.42 65.72 0.31 37.07 0.31 0 37.07 .03 0 .14 37.07 0.03 

0.73 55.36 0.33 37.43 0.33 .11 36.97 .11 0 .26 36.97 0.11 

1.74 68.55 0.66 53.64 0.66 0 53.64 .08 0 .35 53.64 0.08 

1.21 63.01 0.40 48.03 0.40 0 48.03 .05 0 .23 48.03 0.05 

(continued) 
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Table B5 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Maltby et al. (2012) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap Likelihood Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

2.09 68.50 1.49 65.25 1.49 0 65.25 .18 0 .89 65.25 0.18 

1.29 64.15 0.43 46.23 0.43 0 46.23 .04 0 .20 46.23 0.04 

2.17 70.39 0.99 61.00 0.99 0 61.00 .10 0 .48 61.00 0.10 

2.12 70.18 1.15 63.60 1.15 0 63.60 .12 0 .57 63.60 0.12 

2.39 72.50 1.14 65.65 1.14 0 65.65 .12 0 .59 65.65 0.11 

1.37 65.32 0.16 17.81 0.16 0 17.81 .01 0 .07 17.80 0.01 

4.32 74.49 3.57 73.66 3.57 0 73.66 .37 0 1 73.66 0.37 

1.58 65.38 0.62 52.32 0.62 0 52.32 .08 0 .34 52.31 0.07 

4.51 73.64 3.88 72.78 3.88 0 72.78 .35 0 1 72.78 0.35 

0.48 48.72 0.24 33.04 0.24 0 33.04 .05 0 .21 33.04 0.05 

1.75 64.63 1.56 62.60 1.56 0 62.60 .18 0 .87 62.60 0.18 

1.06 60.60 0.63 51.51 0.63 0 51.51 .08 0 .39 51.51 0.08 

1.97 69.82 0.98 61.18 0.98 0 61.18 .11 0 .55 61.18 0.11 

1.60 66.60 0.88 58.31 0.88 0 58.31 .11 0 .55 58.31 0.11 

9.60 77.53 7.87 77.26 7.87 0 77.26 .40 0 1 77.26 0.39 

0.63 53.93 0.41 48.89 0.41 0 48.89 .04 0 .20 48.89 0.04 

0.60 51.87 0.77 52.38 0.60 1 51.87 .92 .61 1 51.26 0.31 

1.97 66.61 1.62 64.20 1.62 0 64.20 .23 0 1 64.20 0.23 

1.10 63.42 0.86 59.43 0.86 .07 59.40 .19 0 .80 59.40 0.19 

1.17 61.67 0.50 47.36 0.50 0 47.36 .05 0 .24 47.36 0.05 

1.31 63.64 0.18 29.06 0.18 0 29.06 .02 0 .09 29.06 0.02 

0.85 58.36 1.26 58.27 0.94 .72 58.17 .69 .25 1 57.92 0.45 

0.16 37.55 0.01 38.00 0.01 0 38.00 0 0 .01 38.00 0.00 

3.75 73.64 3.06 72.54 3.06 0 72.54 .33 0 1 72.54 0.33 

0.00 42.00 0.21 45.57 0.00 .88 42.00 .88 .88 .89 41.12 0.00 

4.23 73.43 3.72 72.61 3.72 0 72.61 .39 0 1 72.61 0.39 

6.09 75.19 5.07 74.49 5.07 0 74.49 .42 0 1 74.49 0.42 

0.69 52.88 0.31 37.06 0.31 0 37.06 .03 0 .16 37.06 0.03 

6.46 75.10 5.95 74.76 5.95 0 74.76 .43 0 1 74.76 0.42 

0.22 43.68 0.19 43.01 0.10 .56 40.84 .56 .50 .63 40.33 0.06 

0.41 51.11 0.22 44.79 0.22 .36 42.59 .36 .25 .46 42.34 0.11 

1.55 65.10 0.81 55.96 0.81 0 55.96 .10 0 .51 55.96 0.09 

(continued) 
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Table B5 

Statistics for the model fit of range, frequency and RFT to individual participant 

data from Maltby et al. (2012) (continued). Note: each row is the data for one 

participant. 

Range Frequency RFT w bootstrap Likelihood Ratio 

SD -2lnL SD -2lnL SD w -2lnL Mean 95% CI 
vs 

Range 

vs 

Rank 

2.70 68.14 2.43 66.59 2.43 0 66.59 .29 0 1 66.59 0.29 

0.40 46.10 0.38 45.94 0.36 .47 44.43 .47 .14 .80 44.29 0.34 

7.91 75.84 6.32 75.07 6.32 0 75.07 .38 0 1 75.07 0.37 

5.66 74.42 4.88 73.66 4.88 0 73.66 .37 0 1 73.66 0.36 

1.55 64.40 1.45 63.14 1.45 0 63.14 .30 0 1 63.14 0.30 

0.35 49.72 0.41 53.06 0.35 1 49.72 .95 .77 1 48.96 0.18 

0.00 48.00 0.01 50.00 0.01 0 50.00 0 0 .01 50.00 0.00 
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Table C1 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Brown et al. (2008). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

0.45 .00 80.68 0.44 0 0.08 77.86 0.08 -0.01 0.18 

0.32 .49 34.95 0.30 .49 -0.16 28.87 -0.15 -0.27 -0.03 

0.44 .60 80.21 0.44 .60 0.12 79.35 0.13 -0.12 0.42 

0.23 .55 -5.59 0.23 .55 0.00 -5.60 0.00 -0.10 0.12 

0.17 .29 -49.96 0.17 .29 0.00 -49.96 0.00 -0.05 0.06 

0.42 .27 72.29 0.42 .27 0.04 71.92 0.04 -0.08 0.17 

0.21 .35 -20.43 0.21 .35 0.02 -20.77 0.02 -0.05 0.10 

0.51 .62 97.51 0.49 .62 0.39 92.99 0.40 0.04 0.85 

0.56 .62 109.72 0.55 .62 0.12 109.28 0.14 -0.19 0.56 

0.49 .31 93.64 0.49 .31 -0.06 93.14 -0.05 -0.20 0.12 

0.43 .50 77.00 0.43 .50 -0.04 76.82 -0.04 -0.22 0.16 

0.43 .21 75.15 0.43 .21 0.04 74.77 0.04 -0.09 0.17 

0.43 .56 76.53 0.43 .56 0.07 76.06 0.08 -0.14 0.35 

0.28 .45 19.05 0.28 .45 0.08 17.27 0.08 -0.04 0.19 

0.19 .17 -30.79 0.19 .17 0.02 -31.66 0.02 -0.03 0.07 

0.48 .29 90.52 0.48 .29 0.05 90.12 0.05 -0.10 0.23 

0.17 .20 -50.13 0.17 .20 0.00 -50.14 0.00 -0.05 0.04 

0.36 .38 52.35 0.36 .38 -0.01 52.30 -0.01 -0.13 0.12 

0.58 0 115.03 0.46 0 -0.30 84.45 -0.30 -0.39 -0.21 

0.25 .30 3.66 0.24 .30 -0.06 1.29 -0.06 -0.13 0.01 

0.39 .59 62.24 0.39 .59 -0.03 62.16 -0.03 -0.23 0.18 

0.32 .44 37.95 0.32 .44 0.05 37.41 0.05 -0.08 0.18 

0.21 .29 -21.07 0.21 .29 0.03 -21.78 0.03 -0.03 0.09 

0.28 .20 20.33 0.28 .20 -0.03 19.70 -0.03 -0.11 0.04 
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Table C2 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Melrose et al. (2012). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

3.27 .40 343.83 3.25 .40 -0.19 342.97 -0.18 -0.53 0.24 

7.07 .19 445.45 6.93 .19 0.29 442.79 0.31 -0.05 0.76 

16.20 .00 554.93 16.12 .00 0.27 554.28 0.33 -0.38 1.52 

3.99 .19 369.95 3.98 .19 -0.08 369.65 -0.06 -0.32 0.22 

14.24 .87 537.92 14.24 .87 0.67 537.86 1.68 -10.00 10.00 

13.77 .13 533.45 13.76 .13 0.05 533.43 0.08 -0.49 0.93 

19.71 .67 580.84 19.70 .67 -0.34 580.75 0.10 -2.61 5.18 

14.55 .42 540.78 14.55 .42 -0.01 540.78 0.14 -0.74 1.95 

9.87 .43 489.50 9.83 .43 -0.22 488.96 -0.20 -0.72 0.49 

14.00 .22 535.61 13.93 .22 0.29 535.05 0.38 -0.39 1.82 

5.98 .00 423.28 5.81 .00 0.26 419.47 0.27 0.02 0.60 

17.83 .85 567.59 17.83 .85 -0.36 567.56 0.02 -10.00 10.00 

9.68 .48 486.98 9.68 .48 0.03 486.98 0.27 -1.09 3.01 

8.98 .51 476.99 8.97 .51 -0.14 476.84 -0.08 -0.75 0.86 

8.48 .00 469.50 8.04 .00 0.96 462.51 1.02 0.21 2.10 

7.35 .89 450.68 7.31 .89 -0.84 449.88 -0.62 -3.77 3.86 

8.71 .86 472.94 8.61 .86 -1.17 471.53 -1.38 -10.00 2.71 

7.15 .00 446.90 7.08 .00 0.30 445.75 0.35 -0.21 1.38 

4.48 .00 385.33 4.45 .00 0.09 384.39 0.09 -0.09 0.29 

5.41 .48 410.18 5.40 .48 -0.18 409.80 -0.17 -0.69 0.49 

7.81 .43 458.56 7.81 .43 0.04 458.54 0.11 -0.59 1.25 

14.19 .24 537.46 14.17 .24 0.16 537.28 0.25 -0.47 1.67 

12.51 .39 520.75 12.50 .39 0.10 520.68 0.18 -0.54 1.46 

5.60 .18 414.70 5.60 .18 -0.03 414.65 -0.02 -0.24 0.23 

9.00 .40 477.35 9.00 .40 0.03 477.34 0.10 -0.57 1.12 

8.03 .45 462.21 8.02 .45 -0.02 462.21 0.01 -0.43 0.67 

3.27 .71 343.61 3.27 .71 -0.02 343.56 -0.02 -0.16 0.14 

5.96 .62 423.02 5.96 .62 0.00 423.02 0.01 -0.28 0.34 

3.19 1 340.52 3.19 1 10.00 340.52 1.72 -10.00 10.00 

7.62 .97 455.37 7.62 .97 -0.35 455.36 0.28 -10.00 10.00 

4.05 .11 371.98 4.05 .11 0.00 371.98 0.00 -0.10 0.12 

5.89 .09 421.28 5.89 .09 0.00 421.28 0.01 -0.12 0.14 

(continued) 
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Table C2 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Melrose et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

5.31 .70 407.78 5.31 .70 0.02 407.75 0.02 -0.19 0.26 

2.95 1 330.08 2.95 1 1.81 330.08 1.67 -10.00 10.00 

2.38 .11 301.66 2.37 .11 0.01 301.46 0.01 -0.02 0.04 

10.98 .43 503.54 10.98 .43 -0.01 503.54 0.03 -0.43 0.64 

3.13 .14 337.90 3.13 .14 0.01 337.79 0.01 -0.04 0.06 

4.76 .40 393.36 4.76 .40 0.01 393.34 0.02 -0.15 0.20 

6.49 1 434.21 6.49 1 9.99 434.21 0.79 -10.00 10.00 

8.03 0 462.35 7.99 0 -0.11 461.56 -0.10 -0.35 0.17 

6.02 1 424.17 6.02 1 9.99 424.17 1.25 -10.00 10.00 

10.92 1 502.92 10.92 1 10.00 502.92 -0.87 -10.00 10.00 

14.77 1 542.74 14.77 1 -10.00 542.74 -1.10 -10.00 10.00 

1.84 .43 267.53 1.83 .43 -0.01 267.40 -0.01 -0.07 0.05 

2.38 1 301.57 2.38 1 2.99 301.57 1.30 -10.00 10.00 

9.82 1 488.90 9.82 1 2.07 488.90 -0.68 -10.00 10.00 

12.21 1 517.58 12.21 1 1.11 517.58 -2.03 -8.08 8.55 

7.79 .62 458.34 7.79 .62 0.00 458.34 0.02 -0.27 0.36 

1.66 .53 254.16 1.66 .53 0.00 254.14 -0.01 -0.07 0.06 

4.71 1 391.94 4.71 1 6.08 391.94 0.20 -9.97 9.42 

5.37 .84 409.18 5.37 .84 0.02 409.17 0.02 -0.38 0.48 

7.58 1 454.59 7.58 1 1.85 454.59 0.49 -10.00 10.00 
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Table C3 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Wood et al. (2011a). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

1.46 .69 316.32 1.46 .69 0.02 316.32 0.06 -0.32 0.56 

4.91 .19 529.64 4.91 .19 0.01 529.62 0.01 -0.11 0.15 

13.61 .43 709.18 13.60 .43 0.01 709.18 0.02 -0.19 0.29 

3.65 .58 477.66 3.65 .58 0.03 477.47 0.03 -0.09 0.17 

6.22 .09 571.49 6.22 .09 0.00 571.49 0.00 -0.14 0.17 

4.33 .45 507.69 4.33 .45 0.02 507.56 0.03 -0.09 0.17 

8.89 .33 634.29 8.89 .33 0.01 634.26 0.01 -0.10 0.14 

7.69 .62 608.69 7.67 .62 0.05 608.37 0.06 -0.12 0.27 

4.01 1 494.16 4.01 1 1.25 494.16 0.27 -10.00 10.00 

14.43 .74 719.50 14.43 .74 0.01 719.50 0.09 -0.39 0.78 

4.78 .58 525.21 4.78 .58 0.04 525.12 0.05 -0.20 0.35 

9.72 .28 650.08 9.72 .28 -0.02 650.04 -0.01 -0.22 0.24 

8.79 .41 632.20 8.78 .41 0.02 632.15 0.02 -0.17 0.23 

2.96 .62 440.65 2.96 .62 0.00 440.65 0.00 -0.09 0.09 

13.15 .41 703.14 13.14 .41 0.01 703.13 0.02 -0.16 0.22 

11.15 .25 674.11 11.15 .25 0.01 674.11 0.01 -0.17 0.22 

9.38 .23 643.76 9.38 .23 0.00 643.76 0.01 -0.14 0.17 

15.80 .80 735.54 15.80 .80 0.01 735.54 0.39 -0.57 10.00 

6.47 .71 578.42 6.47 .71 0.02 578.36 0.03 -0.17 0.28 

6.80 .58 587.24 6.79 .58 0.04 586.93 0.04 -0.10 0.22 

3.68 .86 478.97 3.68 .86 0.06 478.85 0.09 -0.25 0.57 

4.19 .71 501.81 4.19 .71 0.01 501.77 0.02 -0.14 0.18 

5.44 .73 547.76 5.44 .73 -0.01 547.75 0.00 -0.16 0.19 

7.71 .89 609.25 7.71 .89 0.03 609.24 0.51 -0.56 10.00 

5.78 .84 558.43 5.77 .84 0.07 558.28 0.10 -0.30 0.61 

5.09 1 536.04 5.09 1 0.49 536.04 0.16 -10.00 10.00 

7.02 .38 592.83 7.03 .38 0.00 592.83 0.00 -0.11 0.12 

7.28 .82 599.23 7.27 .82 0.10 598.91 0.14 -0.26 0.65 

16.12 .86 739.02 16.11 .86 0.13 738.96 1.53 -0.97 10.00 

5.97 .61 564.11 5.95 .61 0.05 563.59 0.05 -0.10 0.22 

7.60 .42 606.69 7.60 .42 0.02 606.65 0.02 -0.14 0.21 

4.87 .86 528.47 4.87 .86 0.10 528.19 0.16 -0.29 0.82 

(continued) 
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Table C3 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

5.23 .95 540.80 5.23 .95 0.05 540.79 1.34 -0.94 10.00 

7.02 .86 592.83 7.02 .86 0.05 592.80 0.17 -0.39 0.93 

4.98 .55 532.21 4.97 .55 0.03 531.98 0.03 -0.09 0.15 

16.48 .42 742.95 16.48 .42 0.01 742.94 0.02 -0.21 0.30 

4.32 .65 507.08 4.31 .65 0.04 506.75 0.05 -0.10 0.21 

10.16 1 657.75 10.16 1 10.00 657.75 -1.68 -10.00 10.00 

10.96 .97 671.17 10.96 .97 10.00 671.06 3.95 -10.00 10.00 

1.18 .62 279.11 1.18 .62 0.03 279.01 0.04 -0.15 0.25 

12.90 0 699.78 12.70 0 4.18 697.11 3.72 -0.71 5.37 

8.94 .69 635.18 8.91 .69 2.50 634.61 1.99 -0.79 5.03 

7.46 .51 603.34 7.38 .51 2.35 601.40 2.05 -0.40 4.37 

8.66 .44 629.73 8.28 .44 2.37 621.87 2.12 -0.28 3.97 

2.07 .83 378.20 2.03 .83 2.30 374.40 2.03 -1.17 6.28 

7.04 .32 593.17 7.04 .32 0.11 593.11 0.87 -0.60 3.81 

8.53 0 626.99 7.84 0 4.67 612.06 4.59 3.63 5.57 

12.90 0 699.78 13.12 0 3.01 702.76 2.91 0.37 4.13 

6.03 .30 566.00 6.01 .30 0.19 565.49 0.45 -0.27 2.83 

0.00 0 -1054.03 0.00 0 0.00 -1054.03 0.00 0.00 0.00 

27.45 .93 832.73 27.45 .93 2.17 832.70 -2.02 -10.00 7.94 

3.15 .60 451.88 3.11 .60 2.35 449.35 2.08 -0.80 5.74 

9.84 .59 652.06 9.83 .59 0.30 651.99 1.07 -1.39 5.00 

7.23 .23 597.91 7.23 .23 0.12 597.81 0.78 -0.54 3.53 

9.80 .56 651.39 9.70 .56 2.31 649.70 1.63 -1.34 5.16 

7.30 .49 599.59 7.15 .49 2.30 595.94 2.03 -0.12 3.86 

1.07 .18 262.44 1.06 .18 2.11 259.43 1.81 -0.02 3.63 

4.98 .49 532.12 4.92 .49 2.29 530.01 1.94 -0.63 4.85 

6.24 .51 572.09 6.19 .51 2.24 570.53 2.05 -0.05 3.85 

5.48 .23 549.04 5.48 .23 0.05 549.02 0.64 -0.58 3.72 

13.40 0 706.49 13.06 0 3.17 701.92 3.09 0.79 4.25 

23.54 .72 805.69 23.49 .72 2.39 805.31 0.62 -10.00 6.64 

14.24 .37 717.18 14.20 .37 2.29 716.65 1.97 -0.78 4.75 

11.49 0 679.48 12.26 0 3.32 690.85 3.25 2.24 4.29 

(continued) 
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Table C3 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

16.43 .69 742.42 16.43 .69 -0.18 742.40 0.68 -2.43 5.82 

11.32 .26 676.80 11.20 .26 2.24 674.98 2.03 0.06 3.84 

5.99 .30 564.79 6.01 .30 2.12 565.50 1.88 -0.05 3.46 

8.26 .00 621.41 8.23 .00 -0.27 620.60 0.04 -0.83 3.61 

6.44 .09 577.41 6.42 .09 0.13 577.04 0.38 -0.22 2.75 

10.65 .73 666.09 10.65 .73 1.95 666.06 1.50 -1.39 5.17 

6.83 .40 587.77 6.84 .40 2.18 588.08 2.02 0.10 3.50 

7.37 .27 601.22 7.51 .27 2.15 604.61 2.01 0.23 3.20 

14.83 .86 724.38 14.80 .86 2.24 724.01 0.35 -10.00 6.63 

13.88 .52 712.73 13.86 .52 2.41 712.40 1.91 -0.91 5.14 

6.28 .21 573.03 6.27 .21 -0.10 572.75 0.04 -0.42 2.54 

10.13 .79 657.25 10.10 .79 2.06 656.66 1.19 -2.38 5.56 

8.23 .52 620.74 8.17 .52 2.14 619.46 1.85 -0.27 3.70 

9.00 .64 636.47 8.93 .64 2.29 635.13 1.81 -0.69 4.68 

6.04 .45 566.37 6.04 .45 0.11 566.25 0.57 -0.43 3.28 

15.91 1 736.69 15.91 1 1.21 736.69 -3.71 -10.00 7.55 

7.80 .70 611.36 7.65 .70 2.16 607.91 1.78 -0.79 4.84 

 

  



251 

 

 

Table C4 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Wood et al. (2011b). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

0.30 .56 21.71 0.30 .56 0.92 21.03 0.98 -0.96 3.62 

0.00 1 18.00 0.00 1 -0.59 18.00 -0.67 -10.00 10.00 

0.22 1 16.67 0.22 1 10.00 16.67 2.76 -10.00 10.00 

0.29 .42 22.52 0.28 .42 -0.49 22.32 -0.58 -4.28 1.42 

0.02 .15 19.38 0.02 .15 1.65 17.55 1.65 1.59 1.70 

0.00 .01 8.00 0.00 .01 -0.12 8.00 -0.12 -0.13 -0.12 

0.24 .38 20.44 0.24 .38 0.11 20.41 0.14 -0.37 0.71 

0.17 1 15.95 0.17 1 -1.82 15.95 2.60 -10.00 10.00 

0.78 .86 37.59 0.67 .86 10.00 36.60 5.59 -7.31 10.00 

0.00 1 10.00 0.00 1 0.91 10.00 2.18 -10.00 10.00 

0.03 .08 25.97 0.00 .08 0.45 24.00 0.45 0.45 0.46 

0.32 1 23.24 0.32 1 -1.83 23.24 2.19 -10.00 10.00 

0.07 .94 13.61 0.07 .94 -0.57 13.60 -0.80 -6.13 1.98 

0.01 0 26.00 0.00 0 0.25 26.00 0.25 0.24 0.25 

0.23 1 20.76 0.23 1 -0.15 20.76 2.46 -10.00 10.00 

0.07 .86 14.78 0.08 .86 1.30 14.76 1.45 -0.62 4.17 

0.35 1 25.85 0.35 1 -1.95 25.85 2.24 -10.00 10.00 

1.29 1 44.26 1.29 1 -2.02 44.26 2.67 -10.00 10.00 

0.09 .48 11.80 0.09 .48 0.12 11.80 0.14 -0.28 0.64 

0.00 1 6.00 0.00 1 -0.65 6.00 0.59 -10.00 10.00 

0.00 1 8.00 0.00 1 0.91 8.00 2.26 -10.00 10.00 

0.26 0 26.38 0.07 0 5.31 19.14 5.31 4.95 5.68 

0.01 0 32.00 0.01 0 8.09 20.00 8.09 8.03 8.16 

0.04 0 25.24 0.07 0 5.31 21.14 5.30 4.90 5.69 

0.04 .22 11.12 0.07 .22 -1.51 10.83 -1.51 -1.71 -1.33 

0.00 .80 18.00 0.00 .80 -0.59 18.00 -0.59 -0.61 -0.56 

0.05 .80 11.19 0.05 .80 -0.92 11.16 -0.93 -1.46 -0.44 

0.06 1 17.15 0.06 1 -2.25 17.15 2.09 -10.00 10.00 

0.08 1 15.30 0.08 1 -10.00 15.30 2.66 -10.00 10.00 

0.49 1 31.50 0.49 1 0.39 31.50 2.66 -10.00 10.00 

0.04 .58 5.96 0.06 .58 0.52 5.86 0.52 0.12 1.00 

0.00 .67 2.00 0.01 .67 0.78 2.00 0.78 0.68 0.88 

(continued) 
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Table C4 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

1.28 1 45.75 1.28 1 -2.19 45.75 2.49 -10.00 10.00 

0.19 1 14.81 0.19 1 -2.45 14.81 2.31 -10.00 10.00 

0.38 .67 26.78 0.37 .67 0.84 26.43 0.91 -1.38 4.06 

0.00 1 26.00 0.00 1 -0.59 26.00 2.04 -10.00 10.00 

0.01 .34 20.00 0.00 .34 -0.31 20.00 -0.31 -0.32 -0.29 

0.25 .66 20.50 0.18 .66 -10.00 17.60 -7.65 -10.00 -0.24 

0.35 .00 25.54 0.35 .00 -0.05 25.43 -0.05 -0.25 0.12 

0.35 .04 25.88 0.35 .04 0.01 25.88 0.00 -0.15 0.17 

0.24 0 28.21 0.01 0 -0.49 22.00 -0.49 -0.50 -0.49 

0.53 0 32.00 0.03 0 -0.67 15.29 -0.67 -0.68 -0.66 

0.11 1 16.18 0.11 1 9.44 16.18 0.41 -10.00 9.97 

0.02 .63 4.55 0.02 .63 0.00 4.55 0.00 -0.02 0.03 

0.32 .74 22.79 0.32 .74 0.21 22.67 0.67 -0.74 10.00 

0.84 .82 39.57 0.83 .82 0.34 39.52 2.03 -5.57 10.00 

0.48 0 31.05 0.48 0 -0.02 31.03 -0.02 -0.24 0.19 

0.24 0 26.30 0.00 0 -0.22 20.00 -0.22 -0.22 -0.22 

0.22 1 16.36 0.22 1 9.98 16.36 1.22 -10.00 10.00 

0.00 .67 30.00 0.00 .67 5.39 28.00 5.52 4.76 7.15 

0.01 0 20.00 0.02 0 0.35 20.00 0.35 0.34 0.35 

0.00 .79 10.00 0.00 .79 5.39 8.00 6.74 3.79 10.00 

0.42 .46 29.99 0.42 .46 -0.01 29.99 0.00 -0.48 0.52 

0.16 0 17.88 0.05 0 -0.13 16.33 -0.13 -0.14 -0.11 

0.20 1 14.32 0.20 1 9.96 14.32 1.39 -10.00 10.00 

0.01 0 18.00 0.01 0 -0.13 16.00 -0.13 -0.13 -0.13 

0.01 .45 8.00 0.01 .45 0.00 8.00 0.00 -0.01 0.01 

0.09 1 14.37 0.09 1 10.00 14.37 0.63 -10.00 10.00 

0.00 .95 22.00 0.00 .95 5.39 22.00 6.72 3.78 10.00 

0.10 1 9.26 0.10 1 7.69 9.26 1.09 -10.00 10.00 

0.15 1 21.30 0.15 1 10.00 21.30 1.38 -10.00 10.00 

0.12 1 11.17 0.12 1 6.62 11.17 1.40 -10.00 10.00 

0.17 .77 15.66 0.17 .77 -0.02 15.66 -0.02 -0.35 0.31 

0.01 0 20.00 0.01 0 1.71 20.00 1.71 1.67 1.76 

(continued) 
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Table C4 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

0.09 1 4.69 0.09 1 9.95 4.69 0.27 -10.00 9.99 

0.05 0 11.86 0.05 0 -0.03 11.85 -0.03 -0.06 0.01 

0.49 .06 31.40 0.49 .06 0.00 31.40 0.00 -0.30 0.34 

0.08 .75 17.94 0.08 .75 0.01 17.94 0.01 -0.12 0.14 

0.29 .22 22.20 0.29 .22 0.04 22.14 0.04 -0.19 0.33 

0.00 .79 20.00 0.01 .79 0.00 20.00 0.00 -0.02 0.02 

0.50 .82 32.84 0.50 .82 0.10 32.82 1.13 -1.24 10.00 

0.09 .28 13.16 0.09 .28 0.00 13.16 0.00 -0.06 0.06 

0.15 .21 15.38 0.16 .21 0.02 15.35 0.02 -0.06 0.10 

0.30 1 21.95 0.30 1 0.61 21.95 1.18 -10.00 10.00 

0.04 .50 7.85 0.04 .50 0.01 7.85 0.01 -0.03 0.04 

0.26 0 31.92 0.01 0 3.83 20.00 3.83 3.62 4.08 

0.09 1 9.86 0.09 1 1.64 9.86 0.39 -10.00 9.99 

0.18 .52 12.05 0.19 .52 0.05 11.97 0.05 -0.15 0.23 
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Table C5 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Maltby et al. (2012). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

0.03 0 11.27 0.04 0 2.14 11.25 2.14 1.95 2.32 

0.27 .02 32.01 0.26 .02 0.36 31.64 0.37 -0.36 1.26 

0.56 .16 50.37 0.55 .16 -0.37 50.08 -0.42 -1.61 0.96 

3.99 1 74.08 3.99 1 -1.87 74.08 2.16 -10.00 10.00 

3.19 1 71.61 3.19 1 -1.52 71.61 2.24 -10.00 10.00 

6.19 1 74.88 6.19 1 -1.06 74.88 1.35 -9.92 10.00 

0.28 0 33.15 0.26 0 0.55 32.41 0.55 0.13 1.04 

0.05 0 12.52 0.01 0 0.43 7.95 0.43 0.42 0.45 

0.66 .18 53.13 0.66 .18 0.03 53.13 0.04 -2.18 2.17 

0.42 .47 46.12 0.39 .47 -1.71 45.08 -1.90 -4.87 -0.41 

1.10 0 64.35 1.08 0 0.50 64.14 0.57 -0.90 2.61 

0.60 .11 55.09 0.59 .11 -0.30 54.75 -0.32 -1.20 0.83 

0.38 .00 45.26 0.38 .00 -0.07 45.23 -0.07 -0.57 0.49 

0.28 .04 39.97 0.28 .04 0.26 39.72 0.28 -0.14 0.74 

0.29 0 39.29 0.16 0 1.32 29.80 1.32 1.05 1.61 

0.37 0 40.14 0.37 0 -0.05 40.13 -0.03 -0.44 0.45 

0.23 0 31.29 0.15 0 1.15 29.02 1.14 0.84 1.44 

1.24 .48 62.83 1.22 .48 1.21 62.69 1.39 -10.00 10.00 

2.63 .46 73.23 2.60 .46 -0.69 73.18 -0.58 -10.00 10.00 

1.38 .09 69.52 1.38 .09 -0.13 69.50 -0.22 -4.98 2.43 

1.67 .17 71.72 1.67 .17 -0.16 71.70 -0.37 -6.88 2.53 

0.33 .05 35.20 0.31 .05 0.53 33.64 0.55 0.08 1.09 

0.26 .03 30.53 0.24 .03 -0.47 26.91 -0.47 -0.71 -0.25 

0.84 0 59.31 0.83 0 -0.27 59.20 -0.42 -4.47 1.25 

0.29 .08 37.46 0.29 .08 0.15 37.37 0.16 -0.31 0.72 

0.63 .04 51.82 0.60 .04 -0.59 51.24 -0.62 -1.66 0.37 

0.20 0 36.70 0.05 0 1.73 29.50 1.73 1.60 1.86 

0.70 0 56.94 0.69 0 0.27 56.45 0.30 -0.32 1.03 

0.51 .12 49.44 0.49 .12 -0.31 48.66 -0.31 -0.75 0.16 

0.63 0 53.86 0.63 0 0.20 53.69 0.23 -0.38 0.98 

2.18 .05 68.73 2.16 .05 -0.33 68.69 -0.51 -7.13 3.18 

0.47 0 45.17 0.46 0 0.49 44.19 0.50 -0.05 1.14 

(continued) 
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Table C5 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

0.98 0 61.30 0.92 0 1.02 60.24 1.02 -0.18 2.56 

0.02 .14 23.40 0.04 .14 0.56 23.27 0.56 0.49 0.64 

0.80 0 55.94 0.80 0 1.19 55.34 1.23 -0.03 2.67 

0.69 0 52.44 0.69 0 0.01 52.44 0.02 -0.68 0.75 

0.42 .04 43.84 0.41 .04 -0.20 43.40 -0.20 -0.61 0.22 

1.44 .48 63.90 1.43 .48 0.73 63.85 0.90 -10.00 10.00 

0.01 .65 42.00 0.02 .65 0.29 42.00 0.30 0.22 0.38 

1.08 0 64.41 0.88 0 1.45 61.16 1.50 0.38 2.85 

0.98 0 60.06 0.26 0 4.00 27.33 4.01 3.55 4.47 

1.11 0 61.09 1.10 0 1.52 59.50 1.50 0.05 2.97 

0.87 .17 60.53 0.83 .17 -0.54 59.87 -0.64 -3.40 0.58 

0.32 0 35.73 0.00 0 2.09 0.00 2.09 2.09 2.09 

1.08 0 62.10 0.58 0 2.35 52.27 2.37 1.41 3.33 

0.41 0 45.58 0.40 0 0.74 42.10 0.75 0.30 1.26 

0.23 0 37.11 0.04 0 2.09 25.25 2.09 2.03 2.15 

0.51 0 50.80 0.44 0 1.18 47.08 1.19 0.61 1.79 

1.74 0 64.17 1.66 0 1.40 63.54 1.54 -0.50 4.23 

2.18 .66 68.27 2.18 .66 0.89 68.24 1.52 -10.00 10.00 

0.15 0 45.18 0.22 0 3.69 40.69 3.70 3.34 4.07 

0.29 0 42.29 0.01 0 3.36 31.73 3.36 3.34 3.37 

0.31 0 37.54 0.30 0 -0.25 37.01 -0.24 -0.53 0.08 

0.26 .41 35.61 0.26 .41 0.00 35.61 0.02 -0.51 0.69 

0.30 0 34.15 0.21 0 2.03 24.60 2.02 1.43 2.63 

0.00 .19 38.00 0.00 .19 5.42 34.00 5.42 5.41 5.42 

0.19 .08 31.14 0.07 .08 1.55 30.30 1.55 1.45 1.65 

0.79 0 55.78 0.35 0 2.34 45.74 2.34 1.83 2.90 

3.65 .46 71.57 3.64 .46 1.23 71.51 1.47 -10.00 10.00 

0.52 0 45.60 0.27 0 2.42 36.29 2.42 1.91 2.90 

0.35 .14 39.40 0.35 .14 -0.21 39.16 -0.21 -0.75 0.36 

2.66 1 68.21 2.66 1 9.99 68.21 2.56 -10.00 10.00 

0.42 .31 44.38 0.42 .31 -0.21 44.33 -0.21 -1.25 0.99 

0.44 .05 45.46 0.43 .05 -0.28 45.10 -0.28 -0.93 0.46 

(continued) 
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Table C5 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

0.00 .05 34.00 0.00 .05 9.98 26.00 9.98 9.97 9.99 

0.00 1 42.00 0.00 1 -0.59 42.00 -0.48 -10.00 10.00 

0.28 0 48.08 0.01 0 8.53 34.00 8.53 8.49 8.56 

0.52 0 51.43 0.46 0 4.83 49.84 4.97 2.61 8.15 

2.24 0 71.76 1.61 0 -0.44 68.92 -0.45 -0.87 -0.07 

0.26 0 29.48 0.00 0 -0.29 4.00 -0.29 -0.29 -0.29 

0.80 0 60.98 0.79 0 -0.02 60.96 -0.02 -0.24 0.23 

2.12 .34 70.60 2.12 .34 0.02 70.59 0.05 -0.61 0.95 

0.43 .86 49.18 0.43 .86 -0.46 49.11 -0.52 -6.68 1.73 

0.67 0 55.57 0.49 0 -0.23 48.53 -0.23 -0.34 -0.12 

0.71 0 59.01 0.68 0 -0.15 58.12 -0.15 -0.42 0.13 

0.92 0 62.74 0.71 0 -0.24 58.29 -0.24 -0.41 -0.07 

0.46 0 46.08 0.44 0 -0.10 45.33 -0.10 -0.24 0.04 

0.85 0 60.28 0.78 0 -0.20 58.70 -0.20 -0.44 0.05 

0.54 0 50.55 0.54 0 -0.06 49.99 -0.07 -0.19 0.05 

3.36 0 75.86 2.33 0 -0.38 74.47 -0.39 -0.91 0.10 

0.78 0 57.28 0.76 0 -0.08 56.86 -0.08 -0.28 0.12 

0.62 0 52.52 0.62 0 -0.06 52.32 -0.05 -0.23 0.13 

2.33 0 70.47 2.03 0 -0.27 69.36 -0.27 -0.64 0.10 

0.30 0 33.32 0.25 0 -0.12 27.81 -0.12 -0.18 -0.06 

0.35 0 42.73 0.35 0 -0.01 42.72 -0.01 -0.08 0.07 

0.65 .02 50.67 0.65 .02 -0.01 50.66 -0.01 -0.13 0.12 

2.75 0 72.68 2.01 0 -0.40 70.53 -0.40 -0.76 -0.05 

0.63 0 54.01 0.57 0 -0.13 51.93 -0.13 -0.26 0.01 

0.78 0 54.10 0.78 0 -0.05 53.98 -0.05 -0.20 0.11 

0.04 0 5.59 0.13 0 -0.11 4.58 -0.11 -0.13 -0.09 

0.04 0 7.18 0.04 0 0.00 7.16 0.00 -0.01 0.00 

0.31 0 33.61 0.28 0 -0.13 26.58 -0.13 -0.18 -0.08 

0.31 0 37.07 0.30 0 -0.07 34.68 -0.07 -0.13 -0.01 

0.33 .11 36.97 0.34 .11 0.03 36.85 0.03 -0.05 0.10 

0.66 0 53.64 0.40 0 -0.28 41.86 -0.28 -0.36 -0.19 

0.40 0 48.03 0.37 0 -0.11 45.78 -0.11 -0.19 -0.02 

(continued) 
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Table C5 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

1.49 0 65.25 1.42 0 -0.22 64.57 -0.21 -0.54 0.11 

0.43 0 46.23 0.42 0 -0.03 45.99 -0.03 -0.11 0.05 

0.99 0 61.00 0.77 0 -0.23 56.55 -0.23 -0.38 -0.09 

1.15 0 63.60 1.05 0 -0.17 62.28 -0.16 -0.37 0.05 

1.14 0 65.65 1.04 0 -0.14 64.42 -0.14 -0.34 0.08 

0.16 0 17.81 0.17 0 -0.01 17.74 -0.01 -0.04 0.02 

3.57 0 73.66 3.24 0 -0.48 73.10 -0.60 -4.08 0.72 

0.62 0 52.32 0.40 0 -0.28 43.23 -0.28 -0.36 -0.20 

3.88 0 72.78 3.81 0 -0.18 72.67 -0.10 -0.97 0.72 

0.24 0 33.04 0.24 0 -0.06 32.46 -0.06 -0.14 0.02 

1.56 0 62.60 1.52 0 -0.15 62.43 -0.15 -0.46 0.20 

0.63 0 51.51 0.58 0 -0.15 50.24 -0.15 -0.28 -0.01 

0.98 0 61.18 0.83 0 -0.22 58.16 -0.22 -0.39 -0.06 

0.88 0 58.31 0.77 0 -0.22 55.73 -0.22 -0.41 -0.04 

7.87 0 77.26 7.49 0 -0.25 77.19 0.00 -9.41 10.00 

0.41 0 48.89 0.31 0 -0.29 44.86 -0.29 -0.34 -0.23 

0.60 1 51.87 0.60 1 2.77 51.87 0.13 -9.29 7.01 

1.62 0 64.20 1.56 0 -0.21 63.76 -0.21 -0.58 0.20 

0.86 .07 59.40 0.86 .07 -0.03 59.37 -0.02 -0.29 0.29 

0.50 0 47.36 0.39 0 -0.18 44.56 -0.18 -0.25 -0.11 

0.18 0 29.06 0.00 0 -0.27 12.00 -0.27 -0.27 -0.27 

0.94 .72 58.17 1.27 .72 -1.12 58.24 -1.69 -9.88 -0.12 

0.00 .77 32.00 0.00 .77 0.01 32.00 0.01 0.01 0.01 

3.06 .00 72.54 2.79 .00 -0.38 72.01 -0.40 -1.36 0.48 

0.00 1 42.00 0.00 1 2.52 42.00 1.56 -10.00 10.00 

3.72 0 72.61 3.04 0 -1.13 71.16 -2.01 -10.00 0.14 

5.07 0 74.49 3.70 0 -1.04 73.03 -1.98 -10.00 0.13 

0.31 0 37.06 0.31 0 0.00 37.05 -0.01 -0.07 0.06 

5.95 0 74.76 5.48 0 -0.63 74.45 -1.24 -10.00 10.00 

0.10 .56 40.84 0.01 .56 0.13 39.62 0.13 0.12 0.14 

0.22 .36 42.59 0.22 .36 0.02 42.55 0.02 -0.04 0.09 

0.81 0 55.96 0.45 0 -0.40 46.95 -0.40 -0.51 -0.31 

(continued) 
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Table C5 

Statistics for the model fit of RFT and GEMS to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS γ bootstrap 

SD w -2lnL SD w γ -2lnL Mean 95% CI 

2.43 0 66.59 2.25 0 -0.52 65.67 -0.54 -1.15 -0.02 

0.36 .47 44.43 0.36 .47 0.06 44.40 0.06 -0.18 0.31 

6.32 0 75.07 4.66 0 -0.88 73.77 -1.34 -9.12 -0.04 

4.88 0 73.66 4.34 0 -0.55 73.06 -0.75 -4.73 0.43 

1.45 0 63.14 1.43 0 -0.35 62.69 -0.35 -1.06 0.33 

0.35 1 49.72 0.35 1 8.92 49.72 0.58 -10.00 10.00 

0.00 1 48.00 0.00 1 5.39 48.00 1.29 -10.00 10.00 
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Table D1 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Brown et al. (2008). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

80.68 84.68 84.87 89.06 77.86 83.86 84.25 90.43 .40 .60 .67 .33 

34.95 38.95 39.14 43.33 28.87 34.87 35.26 41.44 .12 .88 .28 .72 

80.21 84.21 84.41 88.59 79.35 85.35 85.73 91.92 .64 .36 .84 .16 

-5.59 -1.59 -1.40 2.78 -5.60 0.40 0.79 6.97 .73 .27 .89 .11 

-49.96 -45.96 -45.77 -41.58 -49.96 -43.96 -43.57 -37.39 .73 .27 .89 .11 

72.29 76.29 76.48 80.67 71.92 77.92 78.30 84.49 .69 .31 .87 .13 

-20.43 -16.43 -16.24 -12.05 -20.77 -14.77 -14.39 -8.20 .70 .30 .87 .13 

97.51 101.51 101.70 105.88 92.99 98.99 99.38 105.56 .22 .78 .46 .54 

109.72 113.72 113.91 118.10 109.28 115.28 115.66 121.85 .69 .31 .87 .13 

93.64 97.64 97.84 102.02 93.14 99.14 99.53 105.71 .68 .32 .86 .14 

77.00 81.00 81.19 85.38 76.82 82.82 83.21 89.39 .71 .29 .88 .12 

75.15 79.15 79.34 83.53 74.77 80.77 81.15 87.34 .69 .31 .87 .13 

76.53 80.53 80.72 84.91 76.06 82.06 82.45 88.63 .68 .32 .87 .13 

19.05 23.05 23.24 27.42 17.27 23.27 23.66 29.84 .53 .47 .77 .23 

-30.79 -26.79 -26.60 -22.41 -31.66 -25.66 -25.27 -19.09 .64 .36 .84 .16 

90.52 94.52 94.71 98.90 90.12 96.12 96.50 102.68 .69 .31 .87 .13 

-50.13 -46.13 -45.93 -41.75 -50.14 -44.14 -43.75 -37.57 .73 .27 .89 .11 

52.35 56.35 56.54 60.73 52.30 58.30 58.69 64.87 .73 .27 .89 .11 

115.03 119.03 119.22 123.41 84.45 90.45 90.83 97.02 0 1 0 1 

3.66 7.66 7.85 12.04 1.29 7.29 7.68 13.86 .45 .55 .71 .29 

62.24 66.24 66.43 70.62 62.16 68.16 68.55 74.73 .72 .28 .89 .11 

37.95 41.95 42.14 46.32 37.41 43.41 43.80 49.98 .68 .32 .86 .14 

-21.07 -17.07 -16.88 -12.69 -21.78 -15.78 -15.39 -9.21 .66 .34 .85 .15 

20.33 24.33 24.52 28.71 19.70 25.70 26.09 32.27 .67 .33 .86 .14 
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Table D2 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Melrose et al. (2012). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

343.83 347.83 348.02 352.21 342.97 348.97 349.35 355.54 .64 .36 .84 .16 

445.45 449.45 449.64 453.83 442.79 448.79 449.18 455.36 .42 .58 .68 .32 

554.93 558.93 559.12 563.31 554.28 560.28 560.67 566.85 .66 .34 .85 .15 

369.95 373.95 374.14 378.33 369.65 375.65 376.04 382.22 .70 .30 .87 .13 

537.92 541.92 542.11 546.30 537.86 543.86 544.25 550.43 .72 .28 .89 .11 

533.45 537.45 537.64 541.83 533.43 539.43 539.82 546.00 .73 .27 .89 .11 

580.84 584.84 585.03 589.22 580.75 586.75 587.13 593.31 .72 .28 .89 .11 

540.78 544.78 544.97 549.16 540.78 546.78 547.17 553.35 .73 .27 .89 .11 

489.50 493.50 493.69 497.88 488.96 494.96 495.35 501.53 .68 .32 .86 .14 

535.61 539.61 539.80 543.99 535.05 541.05 541.43 547.62 .67 .33 .86 .14 

423.28 427.28 427.47 431.66 419.47 425.47 425.85 432.03 .29 .71 .55 .45 

567.59 571.59 571.78 575.97 567.56 573.56 573.95 580.13 .73 .27 .89 .11 

486.98 490.98 491.17 495.36 486.98 492.98 493.36 499.55 .73 .27 .89 .11 

476.99 480.99 481.18 485.37 476.84 482.84 483.23 489.41 .72 .28 .88 .12 

469.50 473.50 473.69 477.88 462.51 468.51 468.89 475.08 .08 .92 .20 .80 

450.68 454.68 454.88 459.06 449.88 455.88 456.27 462.45 .65 .35 .84 .16 

472.94 476.94 477.13 481.32 471.53 477.53 477.91 484.10 .57 .43 .80 .20 

446.90 450.90 451.09 455.28 445.75 451.75 452.14 458.32 .60 .40 .82 .18 

385.33 389.33 389.52 393.71 384.39 390.39 390.78 396.96 .63 .37 .84 .16 

410.18 414.18 414.37 418.56 409.80 415.80 416.18 422.37 .69 .31 .87 .13 

458.56 462.56 462.75 466.93 458.54 464.54 464.93 471.11 .73 .27 .89 .11 

537.46 541.46 541.65 545.84 537.28 543.28 543.67 549.85 .71 .29 .88 .12 

520.75 524.75 524.94 529.13 520.68 526.68 527.07 533.25 .72 .28 .89 .11 

414.70 418.70 418.89 423.08 414.65 420.65 421.04 427.22 .73 .27 .89 .11 

477.35 481.35 481.54 485.73 477.34 483.34 483.72 489.91 .73 .27 .89 .11 

462.21 466.21 466.40 470.59 462.21 468.21 468.59 474.77 .73 .27 .89 .11 

343.61 347.61 347.80 351.99 343.56 349.56 349.95 356.13 .73 .27 .89 .11 

423.02 427.02 427.21 431.40 423.02 429.02 429.40 435.58 .73 .27 .89 .11 

340.52 344.52 344.71 348.90 340.52 346.52 346.91 353.09 .73 .27 .89 .11 

455.37 459.37 459.57 463.75 455.36 461.36 461.75 467.93 .73 .27 .89 .11 

371.98 375.98 376.17 380.36 371.98 377.98 378.37 384.55 .73 .27 .89 .11 

421.28 425.28 425.48 429.66 421.28 427.28 427.67 433.85 .73 .27 .89 .11 

(continued) 
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Table D2 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Melrose et al. (2012) (continued). Note: each row is the data for one 

participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

407.78 411.78 411.97 416.16 407.75 413.75 414.14 420.32 .73 .27 .89 .11 

330.08 334.08 334.27 338.46 330.08 336.08 336.46 342.65 .73 .27 .89 .11 

301.66 305.66 305.85 310.04 301.46 307.46 307.85 314.03 .71 .29 .88 .12 

503.54 507.54 507.73 511.92 503.54 509.54 509.93 516.11 .73 .27 .89 .11 

337.90 341.90 342.09 346.28 337.79 343.79 344.18 350.36 .72 .28 .88 .12 

393.36 397.36 397.55 401.74 393.34 399.34 399.72 405.91 .73 .27 .89 .11 

434.21 438.21 438.40 442.59 434.21 440.21 440.60 446.78 .73 .27 .89 .11 

462.35 466.35 466.54 470.73 461.56 467.56 467.95 474.13 .65 .35 .85 .15 

424.17 428.17 428.36 432.55 424.17 430.17 430.56 436.74 .73 .27 .89 .11 

502.92 506.92 507.11 511.30 502.92 508.92 509.30 515.49 .73 .27 .89 .11 

542.74 546.74 546.93 551.11 542.74 548.74 549.12 555.30 .73 .27 .89 .11 

267.53 271.53 271.72 275.91 267.40 273.40 273.78 279.97 .72 .28 .88 .12 

301.57 305.57 305.76 309.95 301.57 307.57 307.96 314.14 .73 .27 .89 .11 

488.90 492.90 493.09 497.28 488.90 494.90 495.28 501.47 .73 .27 .89 .11 

517.58 521.58 521.77 525.96 517.58 523.58 523.97 530.15 .73 .27 .89 .11 

458.34 462.34 462.53 466.72 458.34 464.34 464.73 470.91 73 .27 .89 .11 

254.16 258.16 258.35 262.54 254.14 260.14 260.52 266.71 .73 .27 .89 .11 

391.94 395.94 396.13 400.32 391.94 397.94 398.33 404.51 .73 .27 .89 .11 

409.18 413.18 413.37 417.56 409.17 415.17 415.56 421.74 .73 .27 .89 .11 

454.59 458.59 458.78 462.97 454.59 460.59 460.98 467.16 .73 .27 .89 .11 
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Table D3 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Wood et al. (2011a). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

316.32 320.32 320.61 323.89 316.32 322.32 322.92 327.67 .73 .27 .87 .13 

529.64 533.64 533.93 537.20 529.62 535.62 536.22 540.97 .73 .27 .87 .13 

709.18 713.18 713.48 716.75 709.18 715.18 715.78 720.53 .73 .27 .87 .13 

477.66 481.66 481.95 485.23 477.47 483.47 484.07 488.82 .71 .29 .86 .14 

571.49 575.49 575.78 579.06 571.49 577.49 578.09 582.84 .73 .27 .87 .13 

507.69 511.69 511.98 515.26 507.56 513.56 514.16 518.91 .72 .28 .86 .14 

634.29 638.29 638.58 641.86 634.26 640.26 640.86 645.61 .73 .27 .87 .13 

608.69 612.69 612.99 616.26 608.37 614.37 614.97 619.73 .70 .30 .85 .15 

494.16 498.16 498.46 501.73 494.16 500.16 500.76 505.52 .73 .27 .87 .13 

719.50 723.50 723.80 727.07 719.50 725.50 726.10 730.85 .73 .27 .87 .13 

525.21 529.21 529.50 532.78 525.12 531.12 531.72 536.48 .72 .28 .86 .14 

650.08 654.08 654.37 657.65 650.04 656.04 656.64 661.39 .73 .27 .87 .13 

632.20 636.20 636.49 639.77 632.15 638.15 638.75 643.51 .73 .27 .87 .13 

440.65 444.65 444.95 448.22 440.65 446.65 447.25 452.00 .73 .27 .87 .13 

703.14 707.14 707.43 710.70 703.13 709.13 709.73 714.48 .73 .27 .87 .13 

674.11 678.11 678.40 681.68 674.11 680.11 680.71 685.46 .73 .27 .87 .13 

643.76 647.76 648.06 651.33 643.76 649.76 650.36 655.11 .73 .27 .87 .13 

735.54 739.54 739.83 743.11 735.54 741.54 742.14 746.89 .73 .27 .87 .13 

578.42 582.42 582.71 585.99 578.36 584.36 584.96 589.71 .73 .27 .87 .13 

587.24 591.24 591.53 594.81 586.93 592.93 593.53 598.29 .70 .30 .85 .15 

478.97 482.97 483.26 486.54 478.85 484.85 485.45 490.20 .72 .28 .86 .14 

501.81 505.81 506.10 509.38 501.77 507.77 508.37 513.13 .73 .27 .87 .13 

547.76 551.76 552.05 555.33 547.75 553.75 554.35 559.11 .73 .27 .87 .13 

609.25 613.25 613.54 616.82 609.24 615.24 615.84 620.59 .73 .27 .87 .13 

558.43 562.43 562.73 566.00 558.28 564.28 564.88 569.63 .72 .28 .86 .14 

536.04 540.04 540.33 543.61 536.04 542.04 542.64 547.39 .73 .27 .87 .13 

592.83 596.83 597.12 600.40 592.83 598.83 599.43 604.18 .73 .27 .87 .13 

599.23 603.23 603.53 606.80 598.91 604.91 605.51 610.26 .70 .30 .85 .15 

739.02 743.02 743.32 746.59 738.96 744.96 745.56 750.31 .72 .28 .87 .13 

564.11 568.11 568.40 571.67 563.59 569.59 570.19 574.94 .68 .32 .84 .16 

606.69 610.69 610.99 614.26 606.65 612.65 613.25 618.00 .73 .27 .87 .13 

528.47 532.47 532.76 536.04 528.19 534.19 534.79 539.54 .70 .30 .85 .15 

(continued) 
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Table D3 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

540.80 544.80 545.10 548.37 540.79 546.79 547.39 552.15 .73 .27 .87 .13 

592.83 596.83 597.12 600.40 592.80 598.80 599.40 604.15 .73 .27 .87 .13 

532.21 536.21 536.50 539.77 531.98 537.98 538.58 543.33 .71 .29 .86 .14 

742.95 746.95 747.24 750.51 742.94 748.94 749.54 754.30 .73 .27 .87 .13 

507.08 511.08 511.37 514.65 506.75 512.75 513.35 518.10 .70 .30 .85 .15 

657.75 661.75 662.05 665.32 657.75 663.75 664.35 669.11 .73 .27 .87 .13 

671.17 675.17 675.47 678.74 671.06 677.06 677.66 682.42 .72 .28 .86 .14 

279.11 283.11 283.41 286.68 279.01 285.01 285.61 290.36 .72 .28 .86 .14 

699.78 703.78 704.07 707.35 697.11 703.11 703.71 708.47 .42 .58 .64 .36 

635.18 639.18 639.47 642.75 634.61 640.61 641.21 645.96 .67 .33 .83 .17 

603.34 607.34 607.63 610.91 601.40 607.40 608.00 612.75 .51 .49 .72 .28 

629.73 633.73 634.03 637.30 621.87 627.87 628.47 633.23 .05 .95 .12 .88 

378.20 382.20 382.50 385.77 374.40 380.40 381.00 385.75 .29 .71 .50 .50 

593.17 597.17 597.46 600.73 593.11 599.11 599.71 604.46 .73 .27 .87 .13 

626.99 630.99 631.28 634.56 612.06 618.06 618.66 623.41 .00 1 0 1 

699.78 703.78 704.07 707.35 702.76 708.76 709.36 714.11 .92 .08 .97 .03 

566.00 570.00 570.29 573.57 565.49 571.49 572.09 576.84 .68 .32 .84 .16 

832.73 836.73 837.02 840.30 832.70 838.70 839.30 844.05 .73 .27 .87 .13 

451.88 455.88 456.17 459.45 449.35 455.35 455.95 460.70 .43 .57 .65 .35 

652.06 656.06 656.36 659.63 651.99 657.99 658.59 663.34 .72 .28 .86 .14 

597.91 601.91 602.20 605.48 597.81 603.81 604.41 609.16 .72 .28 .86 .14 

651.39 655.39 655.68 658.96 649.70 655.70 656.30 661.05 .54 .46 .74 .26 

599.59 603.59 603.88 607.16 595.94 601.94 602.54 607.29 .30 .70 .52 .48 

262.44 266.44 266.73 270.01 259.43 265.43 266.03 270.78 .38 .62 .60 .40 

532.12 536.12 536.42 539.69 530.01 536.01 536.61 541.36 .49 .51 .70 .30 

572.09 576.09 576.38 579.66 570.53 576.53 577.13 581.89 .56 .44 .75 .25 

549.04 553.04 553.33 556.61 549.02 555.02 555.62 560.38 .73 .27 .87 .13 

706.49 710.49 710.78 714.06 701.92 707.92 708.52 713.27 .22 .78 .40 .60 

805.69 809.69 809.98 813.26 805.31 811.31 811.91 816.66 .69 .31 .85 .15 

717.18 721.18 721.47 724.75 716.65 722.65 723.25 728.00 .68 .32 .84 .16 

679.48 683.48 683.77 687.04 690.85 696.85 697.45 702.21 1 0 1 0 

(continued) 
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Table D3 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

742.42 746.42 746.71 749.99 742.40 748.40 749.00 753.75 .73 .27 .87 .13 

676.80 680.80 681.09 684.37 674.98 680.98 681.58 686.33 .52 .48 .73 .27 

564.79 568.79 569.08 572.36 565.50 571.50 572.10 576.85 .79 .21 .90 .10 

621.41 625.41 625.71 628.98 620.60 626.60 627.20 631.95 .64 .36 .82 .18 

577.41 581.41 581.70 584.98 577.04 583.04 583.64 588.39 .69 .31 .85 .15 

666.09 670.09 670.39 673.66 666.06 672.06 672.66 677.41 .73 .27 .87 .13 

587.77 591.77 592.06 595.34 588.08 594.08 594.68 599.43 .76 .24 .89 .11 

601.22 605.22 605.51 608.79 604.61 610.61 611.21 615.96 .94 .06 .97 .03 

724.38 728.38 728.67 731.95 724.01 730.01 730.61 735.36 .69 .31 .85 .15 

712.73 716.73 717.03 720.30 712.40 718.40 719.00 723.75 .70 .30 .85 .15 

573.03 577.03 577.32 580.59 572.75 578.75 579.35 584.11 .70 .30 .85 .15 

657.25 661.25 661.54 664.82 656.66 662.66 663.26 668.01 .67 .33 .83 .17 

620.74 624.74 625.04 628.31 619.46 625.46 626.06 630.81 .59 .41 .78 .22 

636.47 640.47 640.77 644.04 635.13 641.13 641.73 646.48 .58 .42 .77 .23 

566.37 570.37 570.66 573.94 566.25 572.25 572.85 577.60 .72 .28 .86 .14 

736.69 740.69 740.98 744.26 736.69 742.69 743.29 748.04 .73 .27 .87 .13 

611.36 615.36 615.65 618.93 607.91 613.91 614.51 619.26 .33 .67 .54 .46 
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Table D4 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Wood et al. (2011b). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

21.71 25.71 26.34 27.89 21.03 27.03 28.36 30.30 .66 .34 .77 .23 

18.00 22.00 22.63 24.18 18.00 24.00 25.33 27.27 .73 .27 .82 .18 

16.67 20.67 21.31 22.86 16.67 22.67 24.01 25.95 .73 .27 .82 .18 

22.52 26.52 27.15 28.70 22.32 28.32 29.65 31.59 .71 .29 .81 .19 

19.38 23.38 24.01 25.56 17.55 23.55 24.89 26.83 .52 .48 .65 .35 

8.00 12.00 12.63 14.18 8.00 14.00 15.33 17.27 .73 .27 .82 .18 

20.44 24.44 25.08 26.63 20.41 26.41 27.74 29.68 .73 .27 .82 .18 

15.95 19.95 20.58 22.13 15.95 21.95 23.28 25.22 .73 .27 .82 .18 

37.59 41.59 42.22 43.77 36.60 42.60 43.93 45.87 .62 .38 .74 .26 

10.00 14.00 14.63 16.18 10.00 16.00 17.33 19.27 .73 .27 .82 .18 

25.97 29.97 30.60 32.15 24.00 30.00 31.33 33.27 .50 .50 .64 .36 

23.24 27.24 27.88 29.43 23.24 29.24 30.58 32.52 .73 .27 .82 .18 

13.61 17.61 18.24 19.79 13.60 19.60 20.93 22.87 .73 .27 .82 .18 

26.00 30.00 30.63 32.18 26.00 32.00 33.33 35.27 .73 .27 .82 .18 

20.76 24.76 25.39 26.94 20.76 26.76 28.09 30.03 .73 .27 .82 .18 

14.78 18.78 19.41 20.96 14.76 20.76 22.09 24.03 .73 .27 .82 .18 

25.85 29.85 30.48 32.03 25.85 31.85 33.18 35.12 .73 .27 .82 .18 

44.26 48.26 48.89 50.44 44.26 50.26 51.60 53.54 .73 .27 .82 .18 

11.80 15.80 16.43 17.98 11.80 17.80 19.13 21.07 .73 .27 .82 .18 

6.00 10.00 10.63 12.18 6.00 12.00 13.33 15.27 .73 .27 .82 .18 

8.00 12.00 12.63 14.18 8.00 14.00 15.33 17.27 .73 .27 .82 .18 

26.38 30.38 31.01 32.56 19.14 25.14 26.47 28.41 .07 .93 .11 .89 

32.00 36.00 36.63 38.18 20.00 26.00 27.33 29.27 .01 .99 .01 .99 

25.24 29.24 29.87 31.42 21.14 27.14 28.47 30.41 .26 .74 .38 .62 

11.12 15.12 15.76 17.31 10.83 16.83 18.17 20.11 .70 .30 .80 .20 

18.00 22.00 22.63 24.18 18.00 24.00 25.33 27.27 .73 .27 .82 .18 

11.19 15.19 15.82 17.38 11.16 17.16 18.50 20.44 .73 .27 .82 .18 

17.15 21.15 21.78 23.33 17.15 23.15 24.48 26.42 .73 .27 .82 .18 

15.30 19.30 19.94 21.49 15.30 21.30 22.64 24.58 .73 .27 .82 .18 

31.50 35.50 36.13 37.68 31.50 37.50 38.83 40.77 .73 .27 .82 .18 

5.96 9.96 10.59 12.14 5.86 11.86 13.19 15.13 .72 .28 .82 .18 

2.00 6.00 6.63 8.18 2.00 8.00 9.33 11.27 .73 .27 .82 .18 

(continued) 
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Table D4 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

45.75 49.75 50.38 51.93 45.75 51.75 53.08 55.02 .73 .27 .82 .18 

14.81 18.81 19.44 20.99 14.81 20.81 22.15 24.09 .73 .27 .82 .18 

26.78 30.78 31.41 32.96 26.43 32.43 33.76 35.70 .70 .30 .80 .20 

26.00 30.00 30.63 32.18 26.00 32.00 33.33 35.27 .73 .27 .82 .18 

20.00 24.00 24.63 26.18 20.00 26.00 27.33 29.27 .73 .27 .82 .18 

20.50 24.50 25.13 26.68 17.60 23.60 24.94 26.88 .39 .61 .52 .48 

25.54 29.54 30.17 31.72 25.43 31.43 32.76 34.70 .72 .28 .82 .18 

25.88 29.88 30.51 32.06 25.88 31.88 33.21 35.15 .73 .27 .82 .18 

28.21 32.21 32.84 34.39 22.00 28.00 29.33 31.27 .11 .89 .17 .83 

32.00 36.00 36.63 38.19 15.29 21.29 22.62 24.56 0 1 0 1 

16.18 20.18 20.81 22.36 16.18 22.18 23.51 25.45 .73 .27 .82 .18 

4.55 8.55 9.18 10.73 4.55 10.55 11.88 13.82 .73 .27 .82 .18 

22.79 26.79 27.42 28.97 22.67 28.67 30.01 31.95 .72 .28 .82 .18 

39.57 43.57 44.20 45.75 39.52 45.52 46.86 48.80 .73 .27 .82 .18 

31.05 35.05 35.68 37.23 31.03 37.03 38.36 40.30 .73 .27 .82 .18 

26.30 30.30 30.93 32.48 20.00 26.00 27.33 29.27 .10 .90 .17 .83 

16.36 20.36 20.99 22.54 16.36 22.36 23.69 25.63 .73 .27 .82 .18 

20.00 24.00 24.63 26.18 20.00 26.00 27.33 29.27 .73 .27 .82 .18 

10.00 14.00 14.63 16.18 8.00 14.00 15.33 17.27 .50 .50 .63 .37 

29.99 33.99 34.62 36.17 29.99 35.99 37.32 39.26 .73 .27 .82 .18 

17.88 21.88 22.51 24.06 16.33 22.33 23.66 25.60 .56 .44 .68 .32 

14.32 18.32 18.95 20.50 14.32 20.32 21.65 23.59 .73 .27 .82 .18 

18.00 22.00 22.63 24.18 16.00 22.00 23.33 25.27 .50 .50 .63 .37 

8.00 12.00 12.63 14.18 8.00 14.00 15.33 17.27 .73 .27 .82 .18 

14.37 18.37 19.00 20.55 14.37 20.37 21.70 23.64 .73 .27 .82 .18 

22.00 26.00 26.63 28.18 22.00 28.00 29.33 31.27 .73 .27 .82 .18 

9.26 13.26 13.89 15.44 9.26 15.26 16.59 18.53 .73 .27 .82 .18 

21.30 25.30 25.93 27.49 21.30 27.30 28.64 30.58 .73 .27 .82 .18 

11.17 15.17 15.80 17.35 11.17 17.17 18.50 20.44 .73 .27 .82 .18 

15.66 19.66 20.29 21.84 15.66 21.66 22.99 24.93 .73 .27 .82 .18 

20.00 24.00 24.63 26.18 20.00 26.00 27.33 29.27 .73 .27 .82 .18 

(continued) 
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Table D4 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

4.69 8.69 9.32 10.87 4.69 10.69 12.02 13.96 .73 .27 .82 .18 

11.86 15.86 16.50 18.05 11.85 17.85 19.18 21.12 .73 .27 .82 .18 

31.40 35.40 36.04 37.59 31.40 37.40 38.74 40.68 .73 .27 .82 .18 

17.94 21.94 22.57 24.12 17.94 23.94 25.27 27.21 .73 .27 .82 .18 

22.20 26.20 26.83 28.38 22.14 28.14 29.47 31.41 .73 .27 .82 .18 

20.00 24.00 24.63 26.18 20.00 26.00 27.33 29.27 .73 .27 .82 .18 

32.84 36.84 37.47 39.02 32.82 38.82 40.15 42.09 .73 .27 .82 .18 

13.16 17.16 17.79 19.34 13.16 19.16 20.49 22.43 .73 .27 .82 .18 

15.38 19.38 20.01 21.56 15.35 21.35 22.68 24.62 .73 .27 .82 .18 

21.95 25.95 26.58 28.13 21.95 27.95 29.28 31.22 .73 .27 .82 .18 

7.85 11.85 12.48 14.03 7.85 13.85 15.18 17.12 .73 .27 .82 .18 

31.92 35.92 36.55 38.10 20.00 26.00 27.33 29.27 .01 .99 .01 .99 

9.86 13.86 14.49 16.04 9.86 15.86 17.19 19.13 .73 .27 .82 .18 

12.05 16.05 16.69 18.24 11.97 17.97 19.30 21.24 .72 .28 .82 .18 
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Table D5 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Maltby et al. (2012). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

11.27 15.27 15.67 18.27 11.25 17.25 18.08 21.74 .73 .27 .85 .15 

32.01 36.01 36.41 39.01 31.64 37.64 38.47 42.13 .69 .31 .83 .17 

50.37 54.37 54.77 57.37 50.08 56.08 56.91 60.57 .70 .30 .83 .17 

74.08 78.08 78.48 81.08 74.08 80.08 80.91 84.57 .73 .27 .85 .15 

71.61 75.61 76.01 78.60 71.61 77.61 78.43 82.10 .73 .27 .85 .15 

74.88 78.88 79.28 81.87 74.88 80.88 81.71 85.37 .73 .27 .85 .15 

33.15 37.15 37.55 40.14 32.41 38.41 39.24 42.90 .65 .35 .80 .20 

12.52 16.52 16.92 19.51 7.95 13.95 14.78 18.44 .22 .78 .37 .63 

53.13 57.13 57.53 60.12 53.13 59.13 59.96 63.62 .73 .27 .85 .15 

46.12 50.12 50.52 53.11 45.08 51.08 51.91 55.57 .62 .38 .77 .23 

64.35 68.35 68.75 71.35 64.14 70.14 70.97 74.63 .71 .29 .84 .16 

55.09 59.09 59.49 62.09 54.75 60.75 61.58 65.24 .70 .30 .83 .17 

45.26 49.26 49.66 52.26 45.23 51.23 52.06 55.72 .73 .27 .85 .15 

39.97 43.97 44.37 46.96 39.72 45.72 46.55 50.21 .71 .29 .84 .16 

39.29 43.29 43.69 46.28 29.80 35.80 36.62 40.28 .02 .98 .05 .95 

40.14 44.14 44.54 47.14 40.13 46.13 46.96 50.62 .73 .27 .85 .15 

31.29 35.29 35.69 38.29 29.02 35.02 35.85 39.51 .47 .53 .65 .35 

62.83 66.83 67.23 69.82 62.69 68.69 69.52 73.18 .72 .28 .84 .16 

73.23 77.23 77.63 80.23 73.18 79.18 80.01 83.67 .73 .27 .85 .15 

69.52 73.52 73.92 76.51 69.50 75.50 76.33 79.99 .73 .27 .85 .15 

71.72 75.72 76.12 78.72 71.70 77.70 78.53 82.19 .73 .27 .85 .15 

35.20 39.20 39.60 42.20 33.64 39.64 40.47 44.13 .55 .45 .72 .28 

30.53 34.53 34.93 37.52 26.91 32.91 33.74 37.40 .31 .69 .48 .52 

59.31 63.31 63.71 66.30 59.20 65.20 66.03 69.69 .72 .28 .84 .16 

37.46 41.46 41.86 44.45 37.37 43.37 44.20 47.86 .72 .28 .85 .15 

51.82 55.82 56.22 58.81 51.24 57.24 58.07 61.73 .67 .33 .81 .19 

36.70 40.70 41.10 43.69 29.50 35.50 36.33 39.99 .07 .93 .14 .86 

56.94 60.94 61.34 63.93 56.45 62.45 63.28 66.94 .68 .32 .82 .18 

49.44 53.44 53.84 56.43 48.66 54.66 55.49 59.15 .65 .35 .80 .20 

53.86 57.86 58.26 60.85 53.69 59.69 60.52 64.18 .71 .29 .84 .16 

68.73 72.73 73.13 75.72 68.69 74.69 75.52 79.18 .73 .27 .85 .15 

45.17 49.17 49.57 52.16 44.19 50.19 51.02 54.68 .62 .38 .78 .22 
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Table D5 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

61.30 65.30 65.70 68.29 60.24 66.24 67.07 70.73 .62 .38 .77 .23 

23.40 27.40 27.80 30.39 23.27 29.27 30.10 33.76 .72 .28 .84 .16 

55.94 59.94 60.34 62.93 55.34 61.34 62.17 65.83 .67 .33 .81 .19 

52.44 56.44 56.84 59.44 52.44 58.44 59.27 62.93 .73 .27 .85 .15 

43.84 47.84 48.24 50.84 43.40 49.40 50.23 53.89 .69 .31 .82 .18 

63.90 67.90 68.30 70.89 63.85 69.85 70.68 74.34 .73 .27 .85 .15 

46.00 50.00 50.40 52.99 36.00 42.00 42.83 46.49 .02 .98 .04 .96 

64.41 68.41 68.81 71.40 61.16 67.16 67.99 71.65 .35 .65 .53 .47 

60.06 64.06 64.46 67.05 27.33 33.33 34.16 37.82 0 1 0 1 

61.09 65.09 65.49 68.08 59.50 65.50 66.33 69.99 .55 .45 .72 .28 

60.53 64.53 64.93 67.52 59.87 65.87 66.70 70.36 .66 .34 .81 .19 

35.73 39.73 40.13 42.72 0.00 6.00 6.83 10.49 0 1 0 1 

62.10 66.10 66.50 69.09 52.27 58.27 59.10 62.76 .02 .98 .04 .96 

45.58 49.58 49.98 52.57 42.10 48.10 48.93 52.59 .32 .68 .50 .50 

37.11 41.11 41.51 44.10 25.25 31.25 32.08 35.74 .01 .99 .02 .98 

50.80 54.80 55.20 57.80 47.08 53.08 53.91 57.57 .30 .70 .47 .53 

64.17 68.17 68.57 71.16 63.54 69.54 70.37 74.03 .67 .33 .81 .19 

45.18 49.18 49.58 52.18 40.69 46.69 47.52 51.18 .22 .78 .38 .62 

42.29 46.29 46.69 49.29 31.73 37.73 38.56 42.22 .01 .99 .03 .97 

37.54 41.54 41.94 44.53 37.01 43.01 43.84 47.50 .68 .32 .82 .18 

35.61 39.61 40.01 42.60 35.61 41.61 42.43 46.09 .73 .27 .85 .15 

34.15 38.15 38.55 41.14 24.60 30.60 31.43 35.09 .02 .98 .05 .95 

38.00 42.00 42.40 44.99 34.00 40.00 40.83 44.49 .27 .73 .44 .56 

31.14 35.14 35.54 38.13 30.30 36.30 37.12 40.79 .64 .36 .79 .21 

55.78 59.78 60.18 62.78 45.74 51.74 52.57 56.23 .02 .98 .04 .96 

71.57 75.57 75.97 78.57 71.51 77.51 78.34 82.00 .72 .28 .85 .15 

45.60 49.60 50.00 52.59 36.29 42.29 43.12 46.78 .03 .97 .05 .95 

39.40 43.40 43.80 46.40 39.16 45.16 45.99 49.65 .71 .29 .84 .16 

68.21 72.21 72.61 75.20 68.21 74.21 75.04 78.70 .73 .27 .85 .15 

44.38 48.38 48.78 51.37 44.33 50.33 51.16 54.82 .73 .27 .85 .15 

45.46 49.46 49.86 52.45 45.10 51.10 51.92 55.59 .69 .31 .83 .17 
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Table D5 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

34.00 38.00 38.40 40.99 26.00 32.00 32.83 36.49 .05 .95 .10 .90 

47.11 51.11 51.51 54.10 30.00 36.00 36.83 40.49 0 1 0 1 

48.08 52.08 52.48 55.07 34.00 40.00 40.83 44.49 0 1 .01 .99 

51.43 55.43 55.83 58.42 49.84 55.84 56.67 60.33 .55 .45 .72 .28 

71.76 75.76 76.16 78.75 68.92 74.92 75.74 79.41 .40 .60 .58 .42 

29.48 33.48 33.88 36.47 4.00 10.00 10.83 14.49 0 1 0 1 

60.98 64.98 65.38 67.97 60.96 66.96 67.79 71.45 .73 .27 .85 .15 

70.60 74.60 75.00 77.59 70.59 76.59 77.42 81.08 .73 .27 .85 .15 

49.18 53.18 53.58 56.17 49.11 55.11 55.94 59.60 .72 .28 .85 .15 

55.57 59.57 59.97 62.57 48.53 54.53 55.36 59.02 .07 .93 .15 .85 

59.01 63.01 63.41 66.00 58.12 64.12 64.94 68.61 .64 .36 .79 .21 

62.74 66.74 67.14 69.74 58.29 64.29 65.12 68.78 .23 .77 .38 .62 

46.08 50.08 50.48 53.08 45.33 51.33 52.16 55.82 .65 .35 .80 .20 

60.28 64.28 64.68 67.27 58.70 64.70 65.52 69.19 .55 .45 .72 .28 

50.55 54.55 54.95 57.54 49.99 55.99 56.82 60.48 .67 .33 .81 .19 

75.86 79.86 80.26 82.85 74.47 80.47 81.30 84.96 .58 .42 .74 .26 

57.28 61.28 61.68 64.28 56.86 62.86 63.69 67.35 .69 .31 .82 .18 

52.52 56.52 56.92 59.52 52.32 58.32 59.14 62.81 .71 .29 .84 .16 

70.47 74.47 74.87 77.46 69.36 75.36 76.19 79.85 .61 .39 .77 .23 

33.32 37.32 37.72 40.31 27.81 33.81 34.64 38.30 .15 .85 .27 .73 

42.73 46.73 47.13 49.72 42.72 48.72 49.55 53.21 .73 .27 .85 .15 

50.67 54.67 55.07 57.66 50.66 56.66 57.49 61.15 .73 .27 .85 .15 

72.68 76.68 77.08 79.67 70.53 76.53 77.36 81.02 .48 .52 .66 .34 

54.01 58.01 58.41 61.01 51.93 57.93 58.76 62.42 .49 .51 .67 .33 

54.10 58.10 58.50 61.09 53.98 59.98 60.81 64.47 .72 .28 .84 .16 

5.59 9.59 9.99 12.59 4.58 10.58 11.41 15.07 .62 .38 .78 .22 

7.18 11.18 11.58 14.17 7.16 13.16 13.99 17.65 .73 .27 .85 .15 

33.61 37.61 38.01 40.61 26.58 32.58 33.41 37.07 .07 .93 .15 .85 

37.07 41.07 41.47 44.06 34.68 40.68 41.51 45.17 .45 .55 .63 .37 

36.97 40.97 41.37 43.97 36.85 42.85 43.68 47.34 .72 .28 .84 .16 

53.64 57.64 58.04 60.63 41.86 47.86 48.69 52.35 .01 .99 .02 .98 

48.03 52.03 52.43 55.02 45.78 51.78 52.60 56.26 .47 .53 .65 .35 
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Table D5 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

65.25 69.25 69.65 72.24 64.57 70.57 71.40 75.06 .66 .34 .80 .20 

46.23 50.23 50.63 53.22 45.99 51.99 52.81 56.47 .71 .29 .84 .16 

61.00 65.00 65.40 68.00 56.55 62.55 63.38 67.04 .23 .77 .38 .62 

63.60 67.60 68.00 70.59 62.28 68.28 69.11 72.77 .58 .42 .75 .25 

65.65 69.65 70.05 72.64 64.42 70.42 71.25 74.91 .60 .40 .76 .24 

17.81 21.81 22.21 24.80 17.74 23.74 24.57 28.23 .72 .28 .85 .15 

73.66 77.66 78.06 80.65 73.10 79.10 79.93 83.59 .67 .33 .81 .19 

52.32 56.32 56.72 59.31 43.23 49.23 50.06 53.72 .03 .97 .06 .94 

72.78 76.78 77.18 79.77 72.67 78.67 79.49 83.15 .72 .28 .84 .16 

33.04 37.04 37.44 40.03 32.46 38.46 39.29 42.95 .67 .33 .81 .19 

62.60 66.60 67.00 69.59 62.43 68.43 69.26 72.92 .71 .29 .84 .16 

51.51 55.51 55.91 58.51 50.24 56.24 57.07 60.73 .59 .41 .75 .25 

61.18 65.18 65.58 68.18 58.16 64.16 64.99 68.65 .37 .63 .56 .44 

58.31 62.31 62.71 65.31 55.73 61.73 62.56 66.22 .43 .57 .61 .39 

77.26 81.26 81.66 84.25 77.19 83.19 84.02 87.68 .72 .28 .85 .15 

48.89 52.89 53.29 55.88 44.86 50.86 51.69 55.35 .27 .73 .43 .57 

51.87 55.87 56.27 58.86 51.87 57.87 58.70 62.36 .73 .27 .85 .15 

64.20 68.20 68.60 71.20 63.76 69.76 70.58 74.25 .68 .32 .82 .18 

59.40 63.40 63.80 66.39 59.37 65.37 66.19 69.86 .73 .27 .85 .15 

47.36 51.36 51.76 54.36 44.56 50.56 51.39 55.05 .40 .60 .59 .41 

29.06 33.06 33.46 36.06 12.00 18.00 18.83 22.49 0 1 0 1 

58.17 62.17 62.57 65.16 58.24 64.24 65.07 68.73 .74 .26 .86 .14 

38.00 42.00 42.40 44.99 38.16 44.16 44.99 48.65 .75 .25 .86 .14 

72.54 76.54 76.94 79.53 72.01 78.01 78.84 82.50 .68 .32 .82 .18 

42.00 46.00 46.40 48.99 42.00 48.00 48.83 52.49 .73 .27 .85 .15 

72.61 76.61 77.01 79.61 71.16 77.16 77.98 81.65 .57 .43 .73 .27 

74.49 78.49 78.89 81.48 73.03 79.03 79.86 83.52 .57 .43 .73 .27 

37.06 41.06 41.46 44.05 37.05 43.05 43.88 47.54 .73 .27 .85 .15 

74.76 78.76 79.16 81.76 74.45 80.45 81.28 84.94 .70 .30 .83 .17 

40.84 44.84 45.24 47.83 39.62 45.62 46.45 50.11 .60 .40 .76 .24 

42.59 46.59 46.99 49.58 42.55 48.55 49.38 53.04 .73 .27 .85 .15 

55.96 59.96 60.36 62.95 46.95 52.95 53.78 57.44 .03 .97 .06 .94 
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Table D5 

Model comparison statistics comparing range-frequency theory (RFT) and the 

generalized exemplar model of sampling (GEMS) using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT GEMS AICw BICw 

-2lnL AIC AICc BIC -2lnL AIC AICc BIC RFT GEMS RFT GEMS 

66.59 70.59 70.99 73.58 65.67 71.67 72.50 76.16 .63 .37 .78 .22 

44.43 48.43 48.83 51.42 44.40 50.40 51.22 54.88 .73 .27 .85 .15 

75.07 79.07 79.47 82.06 73.77 79.77 80.59 84.26 .59 .41 .75 .25 

73.66 77.66 78.06 80.66 73.06 79.06 79.88 83.55 .67 .33 .81 .19 

63.14 67.14 67.54 70.14 62.69 68.69 69.52 73.18 .68 .32 .82 .18 

49.72 53.72 54.12 56.72 49.72 55.72 56.55 60.21 .73 .27 .85 .15 

50.00 54.00 54.40 56.99 30.00 36.00 36.83 40.49 0 1 0 1 
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Table E1  

Best fit statistics for the RFT and SDbS models to individual participant data from 

Brown et al. (2008). Note: each row is the data for one participant. 

RFT 
 

SDbS 

SD w -2lnL SD c s t -2lnL 

0.45 0 80.68 0.40 11.35 73.49 .91 65.31 

0.32 .49 34.95 0.30 0.84 5.00 .85 28.17 

0.44 .60 80.21 0.44 2.49 7.50 .67 79.27 

0.23 .55 -5.59 0.25 1.15 17.00 .40 4.57 

0.17 .29 -49.96 0.18 0.69 11.65 .34 -40.57 

0.42 .27 72.29 0.41 1.44 15.83 .38 70.23 

0.21 .35 -20.43 0.18 2.15 9.39 .52 -38.44 

0.51 .62 97.51 0.49 1.57 11.80 .50 94.40 

0.56 .62 109.72 0.55 0.56 30.77 .28 108.58 

0.49 .31 93.64 0.49 1.09 15.04 .35 93.31 

0.43 .50 77.00 0.44 1.20 5.58 .67 77.83 

0.43 .21 75.15 0.42 3.73 8.24 .60 73.71 

0.43 .56 76.53 0.44 3.62 7.87 .77 77.87 

0.28 .45 19.05 0.26 3.92 6.03 .85 10.06 

0.19 .17 -30.79 0.19 6.74 6.07 .83 -34.74 

0.48 .29 90.52 0.47 1.01 13.57 .35 88.98 

0.17 .20 -50.13 0.17 1.38 3.47 .84 -45.82 

0.36 .38 52.35 0.36 1.44 4.99 .68 51.57 

0.58 0 115.03 0.50 0.08 100.00 .13 96.44 

0.25 .30 3.66 0.24 0.80 4.38 .87 -2.70 

0.39 .59 62.24 0.38 2.73 5.43 .84 60.68 

0.32 .44 37.95 0.34 4.82 7.86 .84 43.72 

0.21 .29 -21.07 0.22 4.70 5.28 .84 -13.07 

0.28 .20 20.33 0.27 1.53 4.91 .59 15.34 
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Table E2 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Melrose et al. (2012). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

3.27 .40 343.83 3.25 0.37 9.53 .43 342.96 

7.07 .19 445.45 7.08 0.08 20.56 .50 445.59 

16.20 0 554.93 16.20 0.98 0.00 .50 554.93 

3.99 .19 369.95 3.98 0.61 6.97 .47 369.55 

14.24 .87 537.92 14.29 0.14 14.89 .51 538.35 

13.77 .13 533.45 13.75 0.89 83.68 .51 533.26 

19.71 .67 580.84 19.69 0.10 21.13 .50 580.66 

14.55 .42 540.78 14.56 0.90 8.91 .58 540.87 

9.87 .43 489.50 9.77 0.07 34.09 .50 488.18 

14.00 .22 535.61 13.99 0.08 20.94 .50 535.61 

5.98 0 423.28 5.88 0.02 81.17 .54 420.35 

17.83 .85 567.59 17.83 0.19 11.18 .50 567.55 

9.68 .48 486.98 9.68 0.79 100.00 .50 487.01 

8.98 .51 476.99 8.97 0.35 8.14 .51 476.86 

8.48 0 469.50 8.48 0.52 0.00 .50 469.50 

7.35 .89 450.68 7.18 0.89 11.58 .66 447.44 

8.71 .86 472.94 8.61 0.39 11.70 .46 471.42 

7.15 0 446.90 7.14 0.99 100.00 .53 446.73 

4.48 0 385.33 4.41 0.03 69.59 .46 383.96 

5.41 .48 410.18 5.38 0.64 8.34 .54 409.45 

7.81 .43 458.56 7.82 0.18 9.55 .50 458.81 

14.19 .24 537.46 14.19 0.08 20.91 .50 537.41 

12.51 .39 520.75 12.50 0.10 17.96 .50 520.67 

5.60 .18 414.70 5.58 0.06 31.49 .51 414.27 

9.00 .40 477.35 8.97 0.88 38.19 .54 476.83 

8.03 .45 462.21 8.03 0.13 12.93 .50 462.24 

3.27 .71 343.61 3.27 0.48 7.04 .79 343.52 

5.96 .62 423.02 5.96 0.78 9.09 .69 423.02 

3.19 1 340.52 3.12 0.82 8.79 .88 337.62 

7.62 .97 455.37 7.77 0.45 7.64 .85 455.49 

4.05 .11 371.98 4.05 0.32 7.14 .52 372.00 

5.89 .09 421.28 5.88 1.25 8.85 .55 421.23 

(continued) 
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Table E2 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Melrose et al. (2012) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

5.31 .70 407.78 5.32 0.95 8.14 .80 408.02 

2.95 1 330.08 2.85 1.20 28.39 .81 325.44 

2.38 .11 301.66 2.31 2.45 10.23 .82 297.98 

10.98 .43 503.54 10.96 0.66 31.13 .55 503.38 

3.13 .14 337.90 3.06 2.06 10.03 .78 335.10 

4.76 .40 393.36 4.76 1.03 8.12 .70 393.33 

6.49 1 434.21 6.11 1.13 14.21 .88 426.08 

8.03 0 462.35 7.93 0.03 90.44 .44 460.94 

6.02 1 424.17 5.46 1.09 12.55 .90 411.44 

10.92 1 502.92 9.54 0.85 30.21 .74 485.02 

14.77 1 542.74 13.93 0.90 100.00 .70 535.03 

1.84 .43 267.53 1.79 0.36 7.71 .68 263.95 

2.38 1 301.57 2.37 0.63 14.39 .64 301.04 

9.82 1 488.90 9.43 0.82 44.35 .67 483.52 

12.21 1 517.58 12.19 0.71 10.99 .76 517.42 

7.79 .62 458.34 7.85 0.52 7.53 .69 459.22 

1.66 .53 254.16 1.63 0.68 6.52 .76 251.48 

4.71 1 391.94 4.39 1.18 11.82 .92 382.53 

5.37 .84 409.18 5.44 0.88 7.69 .85 410.29 

7.58 1 454.59 7.14 1.17 27.84 .80 446.81 
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Table E3  

Best fit statistics for the RFT and SDbS models to individual participant data from 

Wood et al. (2011a). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

1.46 .69 316.32 1.46 0.49 35.30 .55 316.45 

4.91 .19 529.64 4.92 0.00 85.47 .52 529.16 

13.61 .43 709.18 13.58 0.48 14.07 .53 708.84 

3.65 .58 477.66 3.58 0.96 10.37 .77 474.07 

6.22 .09 571.49 6.22 0.26 5.52 .50 571.48 

4.33 .45 507.69 4.26 1.35 22.19 .80 504.61 

8.89 .33 634.29 8.89 0.99 9.31 .69 634.33 

7.69 .62 608.69 7.31 1.24 29.96 .80 599.77 

4.01 1 494.16 4.02 0.58 9.74 .78 494.44 

14.43 .74 719.50 14.45 0.41 9.32 .63 719.74 

4.78 .58 525.21 4.74 0.84 14.91 .70 523.76 

9.72 .28 650.08 9.71 0.15 9.71 .46 649.79 

8.79 .41 632.20 8.81 0.92 8.52 .70 632.64 

2.96 .62 440.65 2.97 0.45 7.27 .69 441.30 

13.15 .41 703.14 13.15 0.62 5.68 .76 703.12 

11.15 .25 674.11 11.15 0.76 10.90 .58 674.09 

9.38 .23 643.76 9.37 0.52 16.77 .49 643.58 

15.80 .80 735.54 16.02 0.51 6.63 .84 735.69 

6.47 .71 578.42 6.46 0.67 8.62 .75 578.08 

6.80 .58 587.24 6.55 1.13 15.83 .79 580.44 

3.68 .86 478.97 3.63 0.80 10.04 .82 476.65 

4.19 .71 501.81 4.09 0.68 6.53 .87 500.23 

5.44 .73 547.76 5.46 0.38 7.85 .68 548.59 

7.71 .89 609.25 7.73 0.49 9.56 .70 609.72 

5.78 .84 558.43 5.72 0.83 10.71 .80 556.73 

5.09 1 536.04 4.99 0.58 12.43 .72 532.65 

7.02 .38 592.83 7.03 0.37 7.59 .57 593.04 

7.28 .82 599.23 6.86 0.83 24.53 .73 588.55 

16.12 .86 739.02 15.86 0.66 100.00 .63 736.12 

5.97 .61 564.11 5.54 1.18 16.74 .81 551.08 

7.60 .42 606.69 7.59 0.74 9.03 .65 606.40 

4.87 .86 528.47 4.63 0.78 32.80 .70 519.48 
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Table E3 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

5.23 .95 540.80 5.33 0.47 7.94 .78 544.28 

7.02 .86 592.83 7.06 0.53 8.87 .73 593.76 

4.98 .55 532.21 4.93 1.03 8.87 .80 530.54 

16.48 .42 742.95 16.48 0.45 8.85 .56 742.90 

4.32 .65 507.08 4.23 1.24 12.94 .85 503.49 

10.16 1 657.75 9.86 0.31 15.18 .62 652.42 

10.96 .97 671.17 10.85 0.22 13.01 .53 669.40 

1.18 .62 279.11 1.18 0.82 9.53 .75 278.47 

12.90 0 699.78 12.80 0.01 54.35 .77 694.89 

8.94 .69 635.18 8.95 0.42 8.71 .58 635.45 

7.46 .51 603.34 7.37 0.52 13.39 .49 601.18 

8.66 .44 629.73 8.22 0.72 100.00 .50 620.41 

2.07 .83 378.20 1.95 0.40 20.92 .48 367.12 

7.04 .32 593.17 7.04 0.37 6.93 .51 593.26 

8.53 0 626.99 8.53 13.66 49.63 .50 626.99 

12.90 0 699.78 12.77 0.00 80.90 .51 698.41 

6.03 .30 566.00 5.98 0.47 8.48 .47 564.63 

0.00 0 -1054.03 0.10 8.47 34.17 .50 -243.52 

27.45 .93 832.73 27.45 0.28 11.97 .51 832.68 

3.15 .60 451.88 3.09 0.54 22.06 .50 448.46 

9.84 .59 652.06 9.83 0.35 9.18 .52 652.03 

7.23 .23 597.91 7.22 0.51 6.79 .50 597.71 

9.80 .56 651.39 9.69 0.57 24.40 .50 649.37 

7.30 .49 599.59 7.15 0.53 13.55 .49 595.88 

1.07 .18 262.44 1.07 0.55 8.94 .45 261.00 

4.98 .49 532.12 4.91 0.56 16.15 .50 529.89 

6.24 .51 572.09 6.19 0.44 8.48 .54 570.55 

5.48 .23 549.04 5.48 0.22 6.34 .50 549.07 

13.40 0 706.49 13.16 0.00 80.51 .51 704.22 

23.54 .72 805.69 23.47 0.48 18.68 .50 805.11 

14.24 .37 717.18 14.18 0.53 11.09 .48 716.46 

11.49 0 679.48 11.49 3.37 0.01 .50 679.48 

(continued) 
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Table E3 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

16.43 .69 742.42 16.42 0.25 7.44 .61 742.35 

11.32 .26 676.80 11.21 0.70 12.90 .49 675.10 

5.99 .30 564.79 5.97 0.42 7.62 .49 564.16 

8.26 0 621.41 8.20 0.01 81.52 .48 620.62 

6.44 .09 577.41 6.41 1.07 11.41 .50 576.81 

10.65 .73 666.09 10.58 0.21 13.99 .40 665.40 

6.83 .40 587.77 6.76 0.38 10.16 .45 586.11 

7.37 .27 601.22 7.35 0.40 6.70 .51 600.86 

14.83 .86 724.38 14.81 0.49 8.50 .69 723.62 

13.88 .52 712.73 13.84 0.48 11.36 .49 712.23 

6.28 .21 573.03 6.26 0.15 6.53 .50 572.53 

10.13 .79 657.25 10.06 0.27 12.69 .46 655.97 

8.23 .52 620.74 8.14 0.30 11.89 .42 618.74 

9.00 .64 636.47 8.91 0.43 9.24 .56 635.15 

6.04 .45 566.37 6.08 0.39 6.86 .57 567.30 

15.91 1 736.69 15.77 0.28 20.22 .50 735.21 

7.80 .70 611.36 7.53 0.33 16.93 .43 605.12 
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Table E4 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Wood et al. (2011b). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

0.30 .56 21.71 0.30 0.05 16.73 .51 21.38 

0.00 1 18.00 0.10 0.24 18.60 .50 18.06 

0.22 1 16.67 0.20 0.07 16.04 .64 15.15 

0.29 .42 22.52 0.28 0.20 8.94 .45 22.39 

0.02 .15 19.38 0.10 0.03 33.51 .50 19.83 

0.00 .01 8.00 0.10 0.35 100.00 .48 8.75 

0.24 .38 20.44 0.24 0.04 24.37 .50 20.15 

0.17 1 15.95 0.16 0.02 77.48 .50 15.54 

0.78 .86 37.59 0.76 0.06 15.94 .52 37.42 

0.00 1 10.00 0.16 0.12 84.05 .50 9.50 

0.03 .08 25.97 0.10 0.03 32.39 .50 26.19 

0.32 1 23.24 0.17 0.07 19.44 .51 17.16 

0.07 .94 13.61 0.10 0.13 10.35 .49 13.75 

0.01 0 26.00 0.10 5.03 0.00 .50 27.20 

0.23 1 20.76 0.10 0.07 17.96 .51 14.42 

0.07 .86 14.78 0.10 0.06 16.49 .50 14.84 

0.35 1 25.85 0.21 0.19 16.35 .50 15.31 

1.29 1 44.26 1.00 0.21 89.10 .50 41.76 

0.09 .48 11.80 0.10 0.05 17.31 .50 11.79 

0.00 1 6.00 0.10 0.07 18.87 .50 5.27 

0.00 1 8.00 0.10 0.07 16.33 .52 9.42 

0.26 0 26.38 0.26 2.83 0.00 .50 26.38 

0.01 0 32.00 0.17 3.43 0.00 .50 32.06 

0.04 0 25.24 0.10 8.26 0.66 .50 25.57 

0.04 .22 11.12 0.10 0.39 20.13 .50 11.35 

0.00 .80 18.00 0.10 0.31 15.41 .48 18.27 

0.05 .80 11.19 0.10 0.06 17.16 .50 11.24 

0.06 1 17.15 0.10 0.23 11.64 .51 17.16 

0.08 1 15.30 0.10 0.07 14.89 .50 15.30 

0.49 1 31.50 0.49 0.06 17.50 .50 31.34 

0.04 .58 5.96 0.10 0.05 17.96 .50 6.37 

0.00 .67 2.00 0.10 0.05 18.02 .50 2.93 

(continued) 
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Table E4 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

1.28 1 45.75 1.04 0.19 16.22 .50 44.06 

0.19 1 14.81 0.10 0.23 18.35 .51 7.25 

0.38 .67 26.78 0.37 0.06 16.76 .51 26.40 

0.00 1 26.00 0.13 0.23 100.00 .50 21.07 

0.01 .34 20.00 0.10 0.02 48.02 .51 20.33 

0.25 .66 20.50 0.16 0.28 100.00 .42 18.42 

0.35 0 25.54 0.32 0.32 100.00 .53 24.76 

0.35 .04 25.88 0.33 0.32 99.64 .53 25.08 

0.24 0 28.21 0.24 9.46 1.30 .50 28.21 

0.53 0 32.00 0.10 0.04 99.99 .46 15.23 

0.11 1 16.18 0.14 0.12 39.55 .50 16.12 

0.02 .63 4.55 0.10 1.06 50.30 .96 6.33 

0.32 .74 22.79 0.29 0.98 90.98 .94 20.63 

0.84 .82 39.57 0.83 0.42 100.00 .64 39.35 

0.48 0 31.05 0.48 0.40 100.00 .58 30.98 

0.24 0 26.30 0.10 0.11 100.00 .35 18.01 

0.22 1 16.36 0.18 0.09 37.52 .50 15.26 

0.00 .67 30.00 0.10 0.11 91.16 .50 20.00 

0.01 0 20.00 0.10 0.21 100.00 .50 18.00 

0.00 .79 10.00 0.10 0.12 72.65 .50 8.00 

0.42 .46 29.99 0.42 0.19 10.51 .52 29.95 

0.16 0 17.88 0.16 7.68 0.09 .50 17.88 

0.20 1 14.32 0.10 0.16 17.69 .53 11.81 

0.01 0 18.00 0.13 7.90 0.49 .50 17.96 

0.01 .45 8.00 0.10 0.15 11.07 .65 8.67 

0.09 1 14.37 0.13 0.12 98.54 .50 7.07 

0.00 .95 22.00 0.10 0.16 13.65 .72 19.43 

0.10 1 9.26 0.10 0.42 12.91 .79 9.32 

0.15 1 21.30 0.10 0.66 100.00 .88 15.21 

0.12 1 11.17 0.10 0.50 18.67 .81 8.63 

0.17 .77 15.66 0.12 0.14 12.36 .62 15.22 

0.01 0 20.00 0.10 7.25 18.00 .50 20.39 

(continued) 
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Table E4 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

0.09 1 4.69 0.14 0.12 59.90 .50 4.58 

0.05 0 11.86 0.10 4.24 0.00 .50 11.97 

0.49 .06 31.40 0.49 0.09 11.92 .50 31.38 

0.08 .75 17.94 0.10 0.17 8.68 .72 18.77 

0.29 .22 22.20 0.29 0.56 10.88 .67 22.19 

0.00 .79 20.00 0.18 0.15 7.01 .64 22.00 

0.50 .82 32.84 0.52 0.18 9.39 .66 33.43 

0.09 .28 13.16 0.12 0.07 42.51 .50 12.96 

0.15 .21 15.38 0.15 0.16 6.70 .61 15.71 

0.30 1 21.95 0.30 0.15 11.32 .64 22.52 

0.04 .50 7.85 0.10 0.17 7.51 .69 9.63 

0.26 0 31.92 0.26 5.18 0.01 .50 31.92 

0.09 1 9.86 0.10 0.17 10.38 .66 10.56 

0.18 .52 12.05 0.12 1.01 39.86 .94 11.82 
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Table E5  

Best fit statistics for the RFT and SDbS models to individual participant data from 

Maltby et al. (2012). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

0.03 0 11.27 0.10 13.57 6.18 .50 12.39 

0.27 .02 32.01 0.27 1.89 1.30 .50 32.02 

0.56 .16 50.37 0.54 0.09 100.00 .50 49.88 

3.99 1 74.08 3.36 0.00 99.21 .48 63.42 

3.19 1 71.61 3.01 0.02 22.18 .50 70.82 

6.19 1 74.88 0.31 0.01 62.66 .91 58.32 

0.28 0 33.15 0.28 7.03 10.72 .50 33.15 

0.05 0 12.52 0.10 7.29 20.59 .50 13.79 

0.66 .18 53.13 0.66 0.03 6.44 .50 53.13 

0.42 .47 46.12 0.37 0.08 24.74 .52 44.71 

1.10 0 64.35 1.10 4.58 18.07 .50 64.35 

0.60 .11 55.09 0.58 0.10 29.96 .50 54.69 

0.38 0 45.26 0.38 1.05 0.40 .50 45.26 

0.28 .04 39.97 0.28 29.52 8.79 .50 39.99 

0.29 0 39.29 0.29 6.05 11.14 .50 39.29 

0.37 0 40.14 0.36 0.00 70.84 .50 39.87 

0.23 0 31.29 0.23 22.89 3.86 .50 31.29 

1.24 .48 62.83 1.24 0.01 16.15 .50 62.83 

2.63 .46 73.23 2.58 0.09 16.76 .50 73.15 

1.38 .09 69.52 1.38 0.09 100.00 .50 69.48 

1.67 .17 71.72 1.67 0.11 11.05 .50 71.68 

0.33 .05 35.20 0.32 0.00 52.24 .50 34.61 

0.26 .03 30.53 0.26 1.02 0.29 .50 30.62 

0.84 0 59.31 0.84 0.49 5.98 .50 59.31 

0.29 .08 37.46 0.29 0.10 4.34 .55 37.47 

0.63 .04 51.82 0.61 0.09 79.80 .50 51.46 

0.20 0 36.70 0.20 21.79 2.86 .50 36.70 

0.70 0 56.94 0.70 4.32 15.68 .50 56.94 

0.51 .12 49.44 0.47 0.08 100.00 .43 47.72 

0.63 0 53.86 0.63 2.61 8.90 .50 53.86 

2.18 .05 68.73 2.17 0.09 100.00 .50 68.69 

0.47 0 45.17 0.47 2.93 14.19 .50 45.17 

(continued) 
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Table E5 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

0.98 0 61.30 0.98 0.24 0.01 .50 61.30 

0.02 .14 23.40 0.10 0.01 29.89 .50 23.63 

0.80 0 55.94 0.80 5.37 15.23 .50 55.94 

0.69 0 52.44 0.69 14.06 4.30 .50 52.44 

0.42 .04 43.84 0.42 1.70 4.49 .50 43.93 

1.44 .48 63.90 1.44 0.01 17.55 .50 63.88 

0.01 0 46.00 0.21 1.21 2.60 .50 46.03 

1.08 0 64.41 0.91 0.00 81.15 .46 62.04 

0.98 0 60.06 0.98 4.78 14.00 .50 60.06 

1.11 0 61.09 1.12 0.00 88.36 .51 59.69 

0.87 .17 60.53 0.83 0.09 62.53 .50 59.81 

0.32 0 35.73 0.32 2.37 1.08 .50 35.73 

1.08 0 62.10 1.08 7.09 0.49 .50 62.10 

0.41 0 45.58 0.39 0.00 78.46 .54 40.43 

0.23 0 37.11 0.23 22.95 3.97 .50 37.11 

0.51 0 50.80 0.51 3.20 0.34 .50 50.80 

1.74 0 64.17 1.74 15.28 2.98 .50 64.17 

2.18 .66 68.27 2.18 0.03 8.65 .58 68.26 

0.15 0 45.18 0.15 18.72 5.83 .50 45.18 

0.29 0 42.29 0.26 0.08 100.00 .44 41.10 

0.31 0 37.54 0.31 0.88 2.20 .50 37.54 

0.26 .41 35.61 0.33 13.88 0.18 .50 39.37 

0.30 0 34.15 0.30 2.27 0.78 .50 34.15 

0.00 .25 38.00 0.10 5.91 15.27 .50 39.20 

0.19 .08 31.14 0.18 12.88 0.22 .50 31.28 

0.79 0 55.78 0.79 15.07 3.51 .50 55.78 

3.65 .46 71.57 3.65 0.01 17.62 .50 71.56 

0.52 0 45.60 0.52 3.22 0.43 .50 45.60 

0.35 .14 39.40 0.36 1.67 0.00 .50 40.14 

2.66 1 68.21 2.65 0.02 17.32 .50 68.18 

0.42 .31 44.38 0.42 0.09 8.39 .50 44.15 

0.44 .05 45.46 0.43 0.09 76.11 .50 45.15 

(continued) 
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Table E5 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

0.01 0 34.00 0.10 6.19 11.26 .50 35.18 

0.19 0 47.11 0.19 12.28 9.73 .50 47.11 

0.28 0 48.08 0.23 0.00 70.18 .51 46.87 

0.52 0 51.43 0.52 4.65 13.51 .50 51.43 

2.24 0 71.76 2.24 15.35 2.20 .50 71.76 

0.26 0 29.48 0.26 2.81 6.05 .50 29.48 

0.80 0 60.98 0.80 0.42 6.13 .50 60.98 

2.12 .34 70.60 2.14 0.08 10.13 .55 70.63 

0.43 .86 49.18 0.40 0.02 69.54 .50 47.82 

0.67 0 55.57 0.67 1.97 0.13 .50 55.57 

0.71 0 59.01 0.67 0.00 80.30 .51 58.01 

0.92 0 62.74 0.92 2.51 1.92 .50 62.74 

0.46 0 46.08 0.46 5.31 14.47 .50 46.08 

0.85 0 60.28 0.85 2.75 3.60 .50 60.28 

0.54 0 50.55 0.54 14.24 13.77 .50 50.55 

3.36 0 75.86 2.09 0.01 84.54 .50 73.94 

0.78 0 57.28 0.78 2.35 0.25 .50 57.28 

0.62 0 52.52 0.62 0.09 40.92 .48 52.52 

2.33 0 70.47 2.25 0.00 99.33 .48 69.48 

0.30 0 33.32 0.30 2.08 0.16 .50 33.32 

0.35 0 42.73 0.35 1.43 0.03 .50 42.73 

0.65 .02 50.67 0.65 2.73 0.26 .50 50.67 

2.75 0 72.68 2.75 0.25 0.00 .50 72.68 

0.63 0 54.01 0.63 3.19 0.26 .50 54.01 

0.78 0 54.10 0.78 2.20 0.23 .50 54.10 

0.04 0 5.59 0.10 14.21 5.76 .50 7.35 

0.04 0 7.18 0.10 6.59 17.41 .50 9.26 

0.31 0 33.61 0.31 2.57 8.88 .50 33.61 

0.31 0 37.07 0.31 0.01 29.09 .50 35.76 

0.33 .11 36.97 0.33 1.38 4.29 .50 37.43 

0.66 0 53.64 0.66 36.10 16.62 .50 53.64 

0.40 0 48.03 0.40 2.70 9.98 .50 48.03 

(continued) 
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Table E5 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

1.49 0 65.25 1.49 4.71 13.07 .50 65.25 

0.43 0 46.23 0.43 15.17 4.07 .50 46.23 

0.99 0 61.00 0.99 4.63 15.38 .50 61.00 

1.15 0 63.60 1.15 1.78 0.19 .50 63.60 

1.14 0 65.65 1.14 12.01 3.51 .50 65.65 

0.16 0 17.81 0.16 7.28 13.31 .50 17.81 

3.57 0 73.66 3.57 0.39 0.00 .50 73.66 

0.62 0 52.32 0.62 2.50 0.35 .50 52.32 

3.88 0 72.78 3.88 2.71 17.39 .50 72.78 

0.24 0 33.04 0.24 5.25 12.04 .50 33.04 

1.56 0 62.60 1.56 2.67 17.02 .50 62.60 

0.63 0 51.51 0.55 0.02 36.57 .47 49.71 

0.98 0 61.18 0.98 0.15 0.01 .50 61.18 

0.88 0 58.31 0.88 2.57 0.12 .50 58.31 

7.87 0 77.26 7.87 10.08 0.57 .50 77.26 

0.41 0 48.89 0.41 2.53 11.69 .50 48.89 

0.60 1 51.87 0.67 0.05 11.82 .56 52.07 

1.62 0 64.20 1.62 9.26 7.98 .50 64.20 

0.86 .07 59.40 0.83 0.02 30.30 .50 58.63 

0.50 0 47.36 0.50 2.75 0.39 .50 47.36 

0.18 0 29.06 0.18 10.64 13.43 .50 29.06 

0.94 .72 58.17 1.12 0.08 100.00 .55 58.15 

0.01 0 38.00 0.10 0.04 22.17 .43 32.81 

3.06 0 72.54 3.06 14.40 1.75 .50 72.54 

0.00 .88 42.00 0.21 4.73 2.15 .50 45.57 

3.72 0 72.61 3.72 12.24 1.50 .50 72.61 

5.07 0 74.49 5.07 1.96 9.98 .50 74.49 

0.31 0 37.06 0.31 13.16 5.92 .50 37.06 

5.95 0 74.76 5.95 3.82 5.41 .50 74.76 

0.10 .56 40.84 0.19 12.12 1.40 .50 43.01 

0.22 .36 42.59 0.22 0.04 7.71 .63 43.25 

0.81 0 55.96 0.81 6.45 14.99 .50 55.96 

(continued) 
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Table E5 

Best fit statistics for the RFT and SDbS models to individual participant data from 

Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

RFT SDbS 

SD w -2lnL SD c s t -2lnL 

2.43 0 66.59 2.43 10.02 20.69 .50 66.59 

0.36 .47 44.43 0.36 0.04 8.24 .62 44.83 

6.32 0 75.07 6.32 12.83 2.16 .50 75.07 

4.88 0 73.66 4.88 9.97 0.00 .50 73.66 

1.45 0 63.14 1.45 3.63 12.74 .50 63.14 

0.35 1 49.72 0.42 0.04 8.35 .45 52.92 

0.01 0 50.00 0.16 0.97 2.44 .50 50.07 
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Table F1  

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Brown et al. (2008). Note: each row is the data for one 

participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

84.68 84.87 89.06 73.31 73.96 90.07 0 1 .62 .38 

38.95 39.14 43.33 36.17 36.83 52.93 .20 .80 .99 .01 

84.21 84.41 88.59 87.27 87.93 104.03 .82 .18 1 0 

-1.59 -1.40 2.78 12.57 13.23 29.33 1 0 1 0 

-45.96 -45.77 -41.58 -32.57 -31.91 -15.81 1 0 1 0 

76.29 76.48 80.67 78.23 78.89 94.99 .73 .27 1 0 

-16.43 -16.24 -12.05 -30.44 -29.78 -13.68 0 1 .31 .69 

101.51 101.70 105.88 102.40 103.06 119.16 .61 .39 1 0 

113.72 113.91 118.10 116.58 117.23 133.33 .81 .19 1 0 

97.64 97.84 102.02 101.31 101.97 118.07 .86 .14 1 0 

81.00 81.19 85.38 85.83 86.49 102.59 .92 .08 1 0 

79.15 79.34 83.53 81.71 82.36 98.47 .78 .22 1 0 

80.53 80.72 84.91 85.87 86.52 102.63 .94 .06 1 0 

23.05 23.24 27.42 18.06 18.72 34.82 .08 .92 .98 .02 

-26.79 -26.60 -22.41 -26.74 -26.08 -9.98 .51 .49 1 0 

94.52 94.71 98.90 96.98 97.63 113.74 .77 .23 1 0 

-46.13 -45.93 -41.75 -37.82 -37.16 -21.06 .98 .02 1 0 

56.35 56.54 60.73 59.57 60.23 76.33 .83 .17 1 0 

119.03 119.22 123.41 104.44 105.10 121.20 0 1 .25 .75 

7.66 7.85 12.04 5.30 5.96 22.06 .23 .77 .99 .01 

66.24 66.43 70.62 68.68 69.34 85.44 .77 .23 1 0 

41.95 42.14 46.32 51.72 52.37 68.47 .99 .01 1 0 

-17.07 -16.88 -12.69 -5.07 -4.42 11.69 1 0 1 0 

24.33 24.52 28.71 23.34 24.00 40.10 .38 .62 1 0 
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Table F2.  

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Melrose et al. (2012). Note: each row is the data for one 

participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

347.83 348.02 352.21 350.96 351.62 359.72 .83 .17 .98 .02 

449.45 449.64 453.83 453.59 454.24 462.35 .89 .11 .99 .01 

558.93 559.12 563.31 562.93 563.58 571.69 .88 .12 .99 .01 

373.95 374.14 378.33 377.55 378.21 386.31 .86 .14 .98 .02 

541.92 542.11 546.30 546.35 547.01 555.11 .90 .10 .99 .01 

537.45 537.64 541.83 541.26 541.92 550.02 .87 .13 .98 .02 

584.84 585.03 589.22 588.66 589.31 597.42 .87 .13 .98 .02 

544.78 544.97 549.16 548.87 549.53 557.63 .89 .11 .99 .01 

493.50 493.69 497.88 496.18 496.84 504.94 .79 .21 .97 .03 

539.61 539.80 543.99 543.61 544.26 552.37 .88 .12 .99 .01 

427.28 427.47 431.66 428.35 429.01 437.11 .63 .37 .94 .06 

571.59 571.78 575.97 575.55 576.21 584.31 .88 .12 .98 .02 

490.98 491.17 495.36 495.01 495.67 503.77 .88 .12 .99 .01 

480.99 481.18 485.37 484.86 485.51 493.62 .87 .13 .98 .02 

473.50 473.69 477.88 477.50 478.15 486.26 .88 .12 .99 .01 

454.68 454.88 459.06 455.44 456.10 464.20 .59 .41 .93 .07 

476.94 477.13 481.32 479.42 480.08 488.18 .78 .22 .97 .03 

450.90 451.09 455.28 454.73 455.38 463.49 .87 .13 .98 .02 

389.33 389.52 393.71 391.96 392.62 400.72 .79 .21 .97 .03 

414.18 414.37 418.56 417.45 418.11 426.21 .84 .16 .98 .02 

462.56 462.75 466.93 466.81 467.46 475.56 .89 .11 .99 .01 

541.46 541.65 545.84 545.41 546.07 554.17 .88 .12 .98 .02 

524.75 524.94 529.13 528.67 529.33 537.43 .88 .12 .98 .02 

418.70 418.89 423.08 422.27 422.92 431.02 .86 .14 .98 .02 

481.35 481.54 485.73 484.83 485.49 493.59 .85 .15 .98 .02 

466.21 466.40 470.59 470.24 470.90 479.00 .88 .12 .99 .01 

347.61 347.80 351.99 351.52 352.17 360.27 .88 .12 .98 .02 

427.02 427.21 431.40 431.02 431.67 439.78 .88 .12 .99 .01 

344.52 344.71 348.90 345.62 346.27 354.38 .63 .37 .94 .06 

459.37 459.57 463.75 463.49 464.15 472.25 .89 .11 .99 .01 

375.98 376.17 380.36 380.00 380.66 388.76 .88 .12 .99 .01 

425.28 425.48 429.66 429.23 429.88 437.99 .88 .12 .98 .02 

(continued) 
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Table F2 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Melrose et al. (2012) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

411.78 411.97 416.16 416.02 416.67 424.77 .89 .11 .99 .01 

334.08 334.27 338.46 333.44 334.09 342.20 .42 .58 .87 .13 

305.66 305.85 310.04 305.98 306.63 314.74 .54 .46 .91 .09 

507.54 507.73 511.92 511.38 512.04 520.14 .87 .13 .98 .02 

341.90 342.09 346.28 343.10 343.76 351.86 .65 .35 .94 .06 

397.36 397.55 401.74 401.33 401.98 410.08 .88 .12 .98 .02 

438.21 438.40 442.59 434.08 434.73 442.83 .11 .89 .53 .47 

466.35 466.54 470.73 468.94 469.59 477.70 .78 .22 .97 .03 

428.17 428.36 432.55 419.44 420.10 428.20 .01 .99 .10 .90 

506.92 507.11 511.30 493.02 493.68 501.78 0 1 .01 .99 

546.74 546.93 551.11 543.03 543.69 551.79 .14 .86 .58 .42 

271.53 271.72 275.91 271.95 272.60 280.71 .55 .45 .92 .08 

305.57 305.76 309.95 309.04 309.70 317.80 .85 .15 .98 .02 

492.90 493.09 497.28 491.52 492.17 500.28 .33 .67 .82 .18 

521.58 521.77 525.96 525.42 526.08 534.18 .87 .13 .98 .02 

462.34 462.53 466.72 467.22 467.87 475.98 .92 .08 .99 .01 

258.16 258.35 262.54 259.48 260.14 268.24 .66 .34 .95 .05 

395.94 396.13 400.32 390.53 391.19 399.29 .06 .94 .37 .63 

413.18 413.37 417.56 418.29 418.95 427.05 .93 .07 .99 .01 

458.59 458.78 462.97 454.81 455.46 463.56 .13 .87 .57 .43 
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Table F3  

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Wood et al. (2011a). Note: each row is the data for one 

participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

320.32 320.61 323.89 324.45 325.47 331.58 .89 .11 .98 .02 

533.64 533.93 537.20 537.16 538.19 544.30 .85 .15 .97 .03 

713.18 713.48 716.75 716.84 717.86 723.97 .86 .14 .97 .03 

481.66 481.95 485.23 482.07 483.09 489.21 .55 .45 .88 .12 

575.49 575.78 579.06 579.48 580.50 586.61 .88 .12 .98 .02 

511.69 511.98 515.26 512.61 513.64 519.75 .61 .39 .90 .10 

638.29 638.58 641.86 642.33 643.36 649.47 .88 .12 .98 .02 

612.69 612.99 616.26 607.77 608.79 614.91 .08 .92 .34 .66 

498.16 498.46 501.73 502.44 503.46 509.57 .89 .11 .98 .02 

723.50 723.80 727.07 727.74 728.77 734.88 .89 .11 .98 .02 

529.21 529.50 532.78 531.76 532.79 538.90 .78 .22 .96 .04 

654.08 654.37 657.65 657.79 658.81 664.92 .86 .14 .97 .03 

636.20 636.49 639.77 640.64 641.67 647.78 .90 .10 .98 .02 

444.65 444.95 448.22 449.30 450.33 456.44 .91 .09 .98 .02 

707.14 707.43 710.70 711.12 712.14 718.26 .88 .12 .98 .02 

678.11 678.40 681.68 682.09 683.11 689.22 .88 .12 .98 .02 

647.76 648.06 651.33 651.58 652.61 658.72 .87 .13 .98 .02 

739.54 739.83 743.11 743.69 744.72 750.83 .89 .11 .98 .02 

582.42 582.71 585.99 586.08 587.11 593.22 .86 .14 .97 .03 

591.24 591.53 594.81 588.44 589.46 595.57 .20 .80 .59 .41 

482.97 483.26 486.54 484.65 485.67 491.79 .70 .30 .93 .07 

505.81 506.10 509.38 508.23 509.25 515.36 .77 .23 .95 .05 

551.76 552.05 555.33 556.59 557.62 563.73 .92 .08 .99 .01 

613.25 613.54 616.82 617.72 618.74 624.86 .90 .10 .98 .02 

562.43 562.73 566.00 564.73 565.76 571.87 .76 .24 .95 .05 

540.04 540.33 543.61 540.65 541.68 547.79 .58 .42 .89 .11 

596.83 597.12 600.40 601.04 602.06 608.17 .89 .11 .98 .02 

603.23 603.53 606.80 596.55 597.58 603.69 .03 .97 .17 .83 

743.02 743.32 746.59 744.12 745.14 751.25 .63 .37 .91 .09 

568.11 568.40 571.67 559.08 560.11 566.22 .01 .99 .06 .94 

610.69 610.99 614.26 614.40 615.42 621.53 .86 .14 .97 .03 

532.47 532.76 536.04 527.48 528.51 534.62 .08 .92 .33 .67 

(continued) 
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Table F3 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Wood et al. (2011a) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

544.80 545.10 548.37 552.28 553.31 559.42 .98 .02 1 0 

596.83 597.12 600.40 601.76 602.79 608.90 .92 .08 .99 .01 

536.21 536.50 539.77 538.54 539.56 545.67 .76 .24 .95 .05 

746.95 747.24 750.51 750.90 751.92 758.04 .88 .12 .98 .02 

511.08 511.37 514.65 511.49 512.51 518.62 .55 .45 .88 .12 

661.75 662.05 665.32 660.42 661.45 667.56 .34 .66 .75 .25 

675.17 675.47 678.74 677.40 678.43 684.54 .75 .25 .95 .05 

283.11 283.41 286.68 286.47 287.49 293.60 .84 .16 .97 .03 

703.78 704.07 707.35 702.89 703.92 710.03 .39 .61 .79 .21 

639.18 639.47 642.75 643.45 644.48 650.59 .89 .11 .98 .02 

607.34 607.63 610.91 609.18 610.21 616.32 .72 .28 .94 .06 

633.73 634.03 637.30 628.41 629.43 635.55 .07 .93 .29 .71 

382.20 382.50 385.77 375.12 376.14 382.25 .03 .97 .15 .85 

597.17 597.46 600.73 601.26 602.28 608.39 .89 .11 .98 .02 

630.99 631.28 634.56 634.99 636.01 642.13 .88 .12 .98 .02 

703.78 704.07 707.35 706.41 707.43 713.54 .79 .21 .96 .04 

570.00 570.29 573.57 572.63 573.66 579.77 .79 .21 .96 .04 

-1050.03 -1049.74 -1046.46 -235.52 -234.50 -228.39 1 0 1 0 

836.73 837.02 840.30 840.68 841.71 847.82 .88 .12 .98 .02 

455.88 456.17 459.45 456.46 457.49 463.60 .57 .43 .89 .11 

656.06 656.36 659.63 660.03 661.05 667.16 .88 .12 .98 .02 

601.91 602.20 605.48 605.71 606.73 612.85 .87 .13 .98 .02 

655.39 655.68 658.96 657.37 658.39 664.50 .73 .27 .94 .06 

603.59 603.88 607.16 603.88 604.91 611.02 .54 .46 .87 .13 

266.44 266.73 270.01 269.00 270.03 276.14 .78 .22 .96 .04 

536.12 536.42 539.69 537.89 538.92 545.03 .71 .29 .94 .06 

576.09 576.38 579.66 578.55 579.57 585.68 .77 .23 .95 .05 

553.04 553.33 556.61 557.07 558.09 564.20 .88 .12 .98 .02 

710.49 710.78 714.06 712.22 713.25 719.36 .70 .30 .93 .07 

809.69 809.98 813.26 813.11 814.14 820.25 .85 .15 .97 .03 

721.18 721.47 724.75 724.46 725.49 731.60 .84 .16 .97 .03 

683.48 683.77 687.04 687.48 688.50 694.61 .88 .12 .98 .02 

(continued) 
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Table F3 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Wood et al (2011a) (continued). Note: each row is the data for 

one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

746.42 746.71 749.99 750.35 751.38 757.49 .88 .12 .98 .02 

680.80 681.09 684.37 683.10 684.13 690.24 .76 .24 .95 .05 

568.79 569.08 572.36 572.16 573.19 579.30 .84 .16 .97 .03 

625.41 625.71 628.98 628.62 629.65 635.76 .83 .17 .97 .03 

581.41 581.70 584.98 584.81 585.83 591.94 .85 .15 .97 .03 

670.09 670.39 673.66 673.40 674.42 680.53 .84 .16 .97 .03 

591.77 592.06 595.34 594.11 595.13 601.24 .76 .24 .95 .05 

605.22 605.51 608.79 608.86 609.89 616.00 .86 .14 .97 .03 

728.38 728.67 731.95 731.62 732.64 738.75 .83 .17 .97 .03 

716.73 717.03 720.30 720.23 721.26 727.37 .85 .15 .97 .03 

577.03 577.32 580.59 580.53 581.56 587.67 .85 .15 .97 .03 

661.25 661.54 664.82 663.97 664.99 671.10 .80 .20 .96 .04 

624.74 625.04 628.31 626.74 627.76 633.87 .73 .27 .94 .06 

640.47 640.77 644.04 643.15 644.17 650.29 .79 .21 .96 .04 

570.37 570.66 573.94 575.30 576.33 582.44 .92 .08 .99 .01 

740.69 740.98 744.26 743.21 744.24 750.35 .78 .22 .95 .05 

615.36 615.65 618.93 613.12 614.15 620.26 .25 .75 .66 .34 
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Table F4 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Wood et al. (2011b). Note: each row is the data for one 

participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

25.71 26.34 27.89 29.38 31.74 33.75 .86 .14 .95 .05 

22.00 22.63 24.18 26.06 28.41 30.42 .88 .12 .96 .04 

20.67 21.31 22.86 23.15 25.50 27.51 .78 .22 .91 .09 

26.52 27.15 28.70 30.39 32.74 34.75 .87 .13 .95 .05 

23.38 24.01 25.56 27.83 30.18 32.20 .90 .10 .97 .03 

12.00 12.63 14.18 16.75 19.10 21.12 .91 .09 .97 .03 

24.44 25.08 26.63 28.15 30.50 32.51 .86 .14 .95 .05 

19.95 20.58 22.13 23.54 25.90 27.91 .86 .14 .95 .05 

41.59 42.22 43.77 45.42 47.78 49.79 .87 .13 .95 .05 

14.00 14.63 16.18 17.50 19.86 21.87 .85 .15 .94 .06 

29.97 30.60 32.15 34.19 36.54 38.56 .89 .11 .96 .04 

27.24 27.88 29.43 25.16 27.52 29.53 .26 .74 .51 .49 

17.61 18.24 19.79 21.75 24.10 26.11 .89 .11 .96 .04 

30.00 30.63 32.18 35.20 37.55 39.57 .93 .07 .98 .02 

24.76 25.39 26.94 22.42 24.77 26.78 .24 .76 .48 .52 

18.78 19.41 20.96 22.84 25.20 27.21 .88 .12 .96 .04 

29.85 30.48 32.03 23.31 25.66 27.67 .04 .96 .10 .90 

48.26 48.89 50.44 49.76 52.11 54.12 .68 .32 .86 .14 

15.80 16.43 17.98 19.79 22.14 24.15 .88 .12 .96 .04 

10.00 10.63 12.18 13.27 15.63 17.64 .84 .16 .94 .06 

12.00 12.63 14.18 17.42 19.78 21.79 .94 .06 .98 .02 

30.38 31.01 32.56 34.38 36.73 38.74 .88 .12 .96 .04 

36.00 36.63 38.18 40.06 42.41 44.42 .88 .12 .96 .04 

29.24 29.87 31.42 33.57 35.92 37.93 .90 .10 .96 .04 

15.12 15.76 17.31 19.35 21.70 23.71 .89 .11 .96 .04 

22.00 22.63 24.18 26.27 28.62 30.63 .89 .11 .96 .04 

15.19 15.82 17.38 19.24 21.59 23.60 .88 .12 .96 .04 

21.15 21.78 23.33 25.16 27.52 29.53 .88 .12 .96 .04 

19.30 19.94 21.49 23.30 25.65 27.66 .88 .12 .96 .04 

35.50 36.13 37.68 39.34 41.69 43.71 .87 .13 .95 .05 

9.96 10.59 12.14 14.37 16.72 18.73 .90 .10 .96 .04 

6.00 6.63 8.18 10.93 13.28 15.29 .92 .08 .97 .03 

(continued) 
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Table F4 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Wood et al. (2011b) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

49.75 50.38 51.93 52.06 54.42 56.43 .76 .24 .90 .10 

18.81 19.44 20.99 15.25 17.60 19.61 .14 .86 .33 .67 

30.78 31.41 32.96 34.40 36.76 38.77 .86 .14 .95 .05 

30.00 30.63 32.18 29.07 31.42 33.43 .39 .61 .65 .35 

24.00 24.63 26.18 28.33 30.69 32.70 .90 .10 .96 .04 

24.50 25.13 26.68 26.42 28.77 30.78 .72 .28 .89 .11 

29.54 30.17 31.72 32.76 35.11 37.12 .83 .17 .94 .06 

29.88 30.51 32.06 33.08 35.44 37.45 .83 .17 .94 .06 

32.21 32.84 34.39 36.21 38.56 40.58 .88 .12 .96 .04 

36.00 36.63 38.19 23.23 25.58 27.59 0 1 0 1 

20.18 20.81 22.36 24.12 26.48 28.49 .88 .12 .96 .04 

8.55 9.18 10.73 14.33 16.68 18.69 .95 .05 .98 .02 

26.79 27.42 28.97 28.63 30.99 33.00 .72 .28 .88 .12 

43.57 44.20 45.75 47.35 49.70 51.72 .87 .13 .95 .05 

35.05 35.68 37.23 38.98 41.33 43.34 .88 .12 .96 .04 

30.30 30.93 32.48 26.01 28.36 30.37 .10 .90 .26 .74 

20.36 20.99 22.54 23.26 25.61 27.62 .81 .19 .93 .07 

34.00 34.63 36.18 28.00 30.35 32.36 .05 .95 .13 .87 

24.00 24.63 26.18 26.00 28.36 30.37 .73 .27 .89 .11 

14.00 14.63 16.18 16.00 18.35 20.36 .73 .27 .89 .11 

33.99 34.62 36.17 37.95 40.30 42.31 .88 .12 .96 .04 

21.88 22.51 24.06 25.88 28.23 30.24 .88 .12 .96 .04 

18.32 18.95 20.50 19.81 22.17 24.18 .68 .32 .86 .14 

22.00 22.63 24.18 25.96 28.32 30.33 .88 .12 .96 .04 

12.00 12.63 14.18 16.67 19.03 21.04 .91 .09 .97 .03 

18.37 19.00 20.55 15.07 17.42 19.43 .16 .84 .36 .64 

26.00 26.63 28.18 27.43 29.78 31.79 .67 .33 .86 .14 

13.26 13.89 15.44 17.32 19.67 21.68 .88 .12 .96 .04 

25.30 25.93 27.49 23.21 25.57 27.58 .26 .74 .51 .49 

15.17 15.80 17.35 16.63 18.99 21.00 .68 .32 .86 .14 

19.66 20.29 21.84 23.22 25.58 27.59 .86 .14 .95 .05 

24.00 24.63 26.18 28.39 30.75 32.76 .90 .10 .96 .04 

(continued) 
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Table F4 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Wood et al. (2011b) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

8.69 9.32 10.87 12.58 14.93 16.94 .87 .13 .95 .05 

15.86 16.50 18.05 19.97 22.32 24.33 .89 .11 .96 .04 

35.40 36.04 37.59 39.38 41.73 43.75 .88 .12 .96 .04 

21.94 22.57 24.12 26.77 29.13 31.14 .92 .08 .97 .03 

26.20 26.83 28.38 30.19 32.55 34.56 .88 .12 .96 .04 

24.00 24.63 26.18 30.00 32.36 34.37 .95 .05 .98 .02 

36.84 37.47 39.02 41.43 43.78 45.79 .91 .09 .97 .03 

17.16 17.79 19.34 20.96 23.32 25.33 .87 .13 .95 .05 

19.38 20.01 21.56 23.71 26.06 28.07 .90 .10 .96 .04 

25.95 26.58 28.13 30.52 32.87 34.88 .91 .09 .97 .03 

11.85 12.48 14.03 17.63 19.99 22.00 .95 .05 .98 .02 

35.92 36.55 38.10 39.92 42.27 44.28 .88 .12 .96 .04 

13.86 14.49 16.04 18.56 20.91 22.93 .91 .09 .97 .03 

16.05 16.69 18.24 19.82 22.17 24.18 .87 .13 .95 .05 
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Table F5  

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Maltby et al. (2012). Note: each row is the data for one 

participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

15.27 15.67 18.27 20.39 21.82 26.38 .93 .07 .98 .02 

36.01 36.41 39.01 40.02 41.45 46.01 .88 .12 .97 .03 

54.37 54.77 57.37 57.88 59.30 63.86 .85 .15 .96 .04 

78.08 78.48 81.08 71.42 72.85 77.41 .03 .97 .14 .86 

75.61 76.01 78.60 78.82 80.25 84.81 .83 .17 .96 .04 

78.88 79.28 81.87 66.32 67.75 72.31 0 1 .01 .99 

37.15 37.55 40.14 41.15 42.58 47.14 .88 .12 .97 .03 

16.52 16.92 19.51 21.79 23.22 27.78 .93 .07 .98 .02 

57.13 57.53 60.12 61.13 62.56 67.12 .88 .12 .97 .03 

50.12 50.52 53.11 52.71 54.14 58.70 .79 .21 .94 .06 

68.35 68.75 71.35 72.35 73.78 78.34 .88 .12 .97 .03 

59.09 59.49 62.09 62.69 64.12 68.67 .86 .14 .96 .04 

49.26 49.66 52.26 53.26 54.69 59.25 .88 .12 .97 .03 

43.97 44.37 46.96 47.99 49.42 53.98 .88 .12 .97 .03 

43.29 43.69 46.28 47.29 48.72 53.28 .88 .12 .97 .03 

44.14 44.54 47.14 47.87 49.30 53.85 .87 .13 .97 .03 

35.29 35.69 38.29 39.29 40.72 45.28 .88 .12 .97 .03 

66.83 67.23 69.82 70.83 72.26 76.81 .88 .12 .97 .03 

77.23 77.63 80.23 81.15 82.57 87.13 .88 .12 .97 .03 

73.52 73.92 76.51 77.48 78.91 83.46 .88 .12 .97 .03 

75.72 76.12 78.72 79.68 81.11 85.67 .88 .12 .97 .03 

39.20 39.60 42.20 42.61 44.04 48.60 .85 .15 .96 .04 

34.53 34.93 37.52 38.62 40.05 44.61 .89 .11 .97 .03 

63.31 63.71 66.30 67.31 68.74 73.29 .88 .12 .97 .03 

41.46 41.86 44.45 45.47 46.90 51.46 .88 .12 .97 .03 

55.82 56.22 58.81 59.46 60.89 65.45 .86 .14 .97 .03 

40.70 41.10 43.69 44.70 46.13 50.68 .88 .12 .97 .03 

60.94 61.34 63.93 64.94 66.37 70.92 .88 .12 .97 .03 

53.44 53.84 56.43 55.72 57.15 61.70 .76 .24 .93 .07 

57.86 58.26 60.85 61.86 63.29 67.85 .88 .12 .97 .03 

72.73 73.13 75.72 76.69 78.12 82.68 .88 .12 .97 .03 

49.17 49.57 52.16 53.17 54.60 59.16 .88 .12 .97 .03 

(continued) 
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Table F5 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

65.30 65.70 68.29 69.30 70.73 75.28 .88 .12 .97 .03 

27.40 27.80 30.39 31.63 33.06 37.62 .89 .11 .97 .03 

59.94 60.34 62.93 63.94 65.37 69.93 .88 .12 .97 .03 

56.44 56.84 59.44 60.44 61.87 66.43 .88 .12 .97 .03 

47.84 48.24 50.84 51.93 53.36 57.91 .89 .11 .97 .03 

67.90 68.30 70.89 71.88 73.30 77.86 .88 .12 .97 .03 

50.00 50.40 52.99 54.03 55.46 60.02 .88 .12 .97 .03 

68.41 68.81 71.40 70.04 71.47 76.03 .69 .31 .91 .09 

64.06 64.46 67.05 68.06 69.49 74.04 .88 .12 .97 .03 

65.09 65.49 68.08 67.69 69.11 73.67 .79 .21 .94 .06 

64.53 64.93 67.52 67.81 69.24 73.80 .84 .16 .96 .04 

39.73 40.13 42.72 43.73 45.16 49.72 .88 .12 .97 .03 

66.10 66.50 69.09 70.10 71.53 76.09 .88 .12 .97 .03 

49.58 49.98 52.57 48.43 49.86 54.42 .36 .64 .72 .28 

41.11 41.51 44.10 45.11 46.54 51.10 .88 .12 .97 .03 

54.80 55.20 57.80 58.80 60.23 64.79 .88 .12 .97 .03 

68.17 68.57 71.16 72.17 73.60 78.15 .88 .12 .97 .03 

72.27 72.67 75.26 76.26 77.69 82.24 .88 .12 .97 .03 

49.18 49.58 52.18 53.18 54.61 59.17 .88 .12 .97 .03 

46.29 46.69 49.29 49.10 50.53 55.08 .80 .20 .95 .05 

41.54 41.94 44.53 45.54 46.97 51.52 .88 .12 .97 .03 

39.61 40.01 42.60 47.37 48.80 53.36 .98 .02 1 0 

38.15 38.55 41.14 42.15 43.58 48.13 .88 .12 .97 .03 

42.00 42.40 44.99 47.20 48.62 53.18 .93 .07 .98 .02 

35.14 35.54 38.13 39.28 40.70 45.26 .89 .11 .97 .03 

59.78 60.18 62.78 63.78 65.21 69.77 .88 .12 .97 .03 

75.57 75.97 78.57 79.56 80.98 85.54 .88 .12 .97 .03 

49.60 50.00 52.59 53.60 55.02 59.58 .88 .12 .97 .03 

43.40 43.80 46.40 48.14 49.57 54.12 .91 .09 .98 .02 

72.21 72.61 75.20 76.18 77.61 82.16 .88 .12 .97 .03 

48.38 48.78 51.37 52.15 53.58 58.14 .87 .13 .97 .03 

49.46 49.86 52.45 53.15 54.58 59.14 .86 .14 .97 .03 

(continued) 
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Table F5 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

38.00 38.40 40.99 43.18 44.61 49.17 .93 .07 .98 .02 

51.11 51.51 54.10 55.11 56.54 61.10 .88 .12 .97 .03 

52.08 52.48 55.07 54.87 56.30 60.86 .80 .20 .95 .05 

55.43 55.83 58.42 59.43 60.85 65.41 .88 .12 .97 .03 

75.76 76.16 78.75 79.76 81.18 85.74 .88 .12 .97 .03 

33.48 33.88 36.47 37.48 38.91 43.47 .88 .12 .97 .03 

64.98 65.38 67.97 68.98 70.41 74.97 .88 .12 .97 .03 

74.60 75.00 77.59 78.63 80.06 84.62 .88 .12 .97 .03 

53.18 53.58 56.17 55.82 57.25 61.81 .79 .21 .94 .06 

59.57 59.97 62.57 63.57 65.00 69.56 .88 .12 .97 .03 

63.01 63.41 66.00 66.01 67.43 71.99 .82 .18 .95 .05 

66.74 67.14 69.74 70.74 72.17 76.73 .88 .12 .97 .03 

50.08 50.48 53.08 54.08 55.51 60.07 .88 .12 .97 .03 

64.28 64.68 67.27 68.28 69.71 74.26 .88 .12 .97 .03 

54.55 54.95 57.54 58.55 59.98 64.53 .88 .12 .97 .03 

79.86 80.26 82.85 81.94 83.37 87.93 .74 .26 .93 .07 

61.28 61.68 64.28 65.28 66.71 71.27 .88 .12 .97 .03 

56.52 56.92 59.52 60.52 61.95 66.50 .88 .12 .97 .03 

74.47 74.87 77.46 77.48 78.91 83.47 .82 .18 .95 .05 

37.32 37.72 40.31 41.32 42.75 47.31 .88 .12 .97 .03 

46.73 47.13 49.72 50.73 52.16 56.71 .88 .12 .97 .03 

54.67 55.07 57.66 58.67 60.10 64.66 .88 .12 .97 .03 

76.68 77.08 79.67 80.68 82.11 86.66 .88 .12 .97 .03 

58.01 58.41 61.01 62.01 63.44 68.00 .88 .12 .97 .03 

58.10 58.50 61.09 62.10 63.53 68.08 .88 .12 .97 .03 

9.59 9.99 12.59 15.35 16.78 21.34 .95 .05 .99 .01 

11.18 11.58 14.17 17.26 18.69 23.24 .95 .05 .99 .01 

37.61 38.01 40.61 41.61 43.04 47.60 .88 .12 .97 .03 

41.07 41.47 44.06 43.76 45.18 49.74 .79 .21 .94 .06 

40.97 41.37 43.97 45.43 46.86 51.41 .90 .10 .98 .02 

57.64 58.04 60.63 61.64 63.07 67.62 .88 .12 .97 .03 

52.03 52.43 55.02 56.03 57.46 62.02 .88 .12 .97 .03 
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Table F5 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

69.25 69.65 72.24 73.25 74.67 79.23 .88 .12 .97 .03 

50.23 50.63 53.22 54.23 55.66 60.21 .88 .12 .97 .03 

65.00 65.40 68.00 69.00 70.43 74.99 .88 .12 .97 .03 

67.60 68.00 70.59 71.60 73.03 77.59 .88 .12 .97 .03 

69.65 70.05 72.64 73.65 75.07 79.63 .88 .12 .97 .03 

21.81 22.21 24.80 25.81 27.23 31.79 .88 .12 .97 .03 

77.66 78.06 80.65 81.66 83.09 87.65 .88 .12 .97 .03 

56.32 56.72 59.31 60.32 61.74 66.30 .88 .12 .97 .03 

76.78 77.18 79.77 80.78 82.21 86.77 .88 .12 .97 .03 

37.04 37.44 40.03 41.04 42.47 47.02 .88 .12 .97 .03 

66.60 67.00 69.59 70.60 72.03 76.59 .88 .12 .97 .03 

55.51 55.91 58.51 57.71 59.14 63.69 .75 .25 .93 .07 

65.18 65.58 68.18 69.18 70.61 75.17 .88 .12 .97 .03 

62.31 62.71 65.31 66.31 67.74 72.30 .88 .12 .97 .03 

81.26 81.66 84.25 85.26 86.69 91.25 .88 .12 .97 .03 

52.89 53.29 55.88 56.89 58.32 62.88 .88 .12 .97 .03 

55.87 56.27 58.86 60.07 61.50 66.05 .89 .11 .97 .03 

68.20 68.60 71.20 72.20 73.63 78.19 .88 .12 .97 .03 

63.40 63.80 66.39 66.63 68.06 72.61 .83 .17 .96 .04 

51.36 51.76 54.36 55.36 56.79 61.35 .88 .12 .97 .03 

33.06 33.46 36.06 37.06 38.49 43.05 .88 .12 .97 .03 

62.17 62.57 65.16 66.15 67.57 72.13 .88 .12 .97 .03 

42.00 42.40 44.99 40.81 42.24 46.80 .36 .64 .71 .29 

76.54 76.94 79.53 80.54 81.97 86.53 .88 .12 .97 .03 

46.00 46.40 48.99 53.57 55.00 59.56 .98 .02 .99 .01 

76.61 77.01 79.61 80.61 82.04 86.60 .88 .12 .97 .03 

78.49 78.89 81.48 82.49 83.92 88.48 .88 .12 .97 .03 

41.06 41.46 44.05 45.06 46.49 51.04 .88 .12 .97 .03 

78.76 79.16 81.76 82.76 84.19 88.75 .88 .12 .97 .03 

44.84 45.24 47.83 51.01 52.44 57.00 .96 .04 .99 .01 

46.59 46.99 49.58 51.25 52.68 57.23 .91 .09 .98 .02 

59.96 60.36 62.95 63.96 65.39 69.94 .88 .12 .97 .03 

(continued) 
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Table F5 

Penalized model fit statistics comparing the RFT and SDbS model using individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

RFT SDbS AICw BICw 

AIC AICc BIC AIC AICc BIC RFT SDbS RFT SDbS 

70.59 70.99 73.58 74.59 76.02 80.58 .88 .12 .97 .03 

48.43 48.83 51.42 52.83 54.25 58.81 .90 .10 .98 .02 

79.07 79.47 82.06 83.07 84.50 89.06 .88 .12 .97 .03 

77.66 78.06 80.66 81.66 83.09 87.65 .88 .12 .97 .03 

67.14 67.54 70.14 71.14 72.57 77.13 .88 .12 .97 .03 

53.72 54.12 56.72 60.92 62.34 66.90 .97 .03 .99 .01 

54.00 54.40 56.99 58.07 59.50 64.06 .88 .12 .97 .03 
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Table G1  

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Brown et al. (2008). Note: each row is the data for one 

participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

0.40 11.35 73.49 .91 65.31 0.40 11.35 73.49 .91 0 65.31 .06 0 .25 

0.30 0.84 5.00 .85 28.17 0.29 0.60 5.45 .79 .25 24.81 .31 0 .52 

0.44 2.49 7.50 .67 79.27 0.44 2.57 7.42 .63 .27 78.67 .50 0 .73 

0.25 1.15 17.00 .40 4.57 0.20 0.19 100.00 .15 .46 -24.64 .50 .26 .61 

0.18 0.69 11.65 .34 -40.57 0.16 0.08 88.37 .12 .28 -55.47 .26 .09 .33 

0.41 1.44 15.83 .38 70.23 0.41 0.70 31.24 .24 .18 68.71 .16 0 .38 

0.18 2.15 9.39 .52 -38.44 0.18 2.15 9.35 .52 0 -38.44 .18 0 .41 

0.49 1.57 11.80 .50 94.40 0.49 1.57 11.81 .50 0 94.40 .50 0 .76 

0.55 0.56 30.77 .28 108.58 0.53 0.32 54.79 .20 .38 103.24 .53 0 .79 

0.49 1.09 15.04 .35 93.31 0.49 0.74 27.47 .24 .23 92.12 .22 0 .46 

0.44 1.20 5.58 .67 77.83 0.42 0.06 65.26 .39 .47 74.21 .37 0 .60 

0.42 3.73 8.24 .60 73.71 0.42 4.51 11.94 .57 .13 73.18 .12 0 .33 

0.44 3.62 7.87 .77 77.87 0.43 5.24 11.32 .73 .44 74.37 .51 .02 .69 

0.26 3.92 6.03 .85 10.06 0.26 4.16 5.90 .86 .07 10.00 .29 0 .53 

0.19 6.74 6.07 .83 -34.74 0.18 14.05 17.47 .94 .11 -39.50 .10 0 .20 

0.47 1.01 13.57 .35 88.98 0.48 4.16 75.16 .50 .28 90.30 .21 0 .45 

0.17 1.38 3.47 .84 -45.82 0.17 4.70 100.00 .51 .19 -50.23 .16 0 .23 

0.36 1.44 4.99 .68 51.57 0.36 0.71 4.80 .66 .24 50.61 .23 0 .46 

0.50 0.08 100.00 .13 96.44 0.50 0.08 98.00 .13 0 96.51 .09 0 .26 

0.24 0.80 4.38 .87 -2.70 0.23 0.60 4.62 .83 .13 -4.12 .20 0 .34 

0.38 2.73 5.43 .84 60.68 0.37 0.20 15.34 .61 .47 54.71 .43 0 .66 

0.34 4.82 7.86 .84 43.72 0.31 14.47 69.76 .96 .36 32.29 .43 .16 .55 

0.22 4.70 5.28 .84 -13.07 0.20 13.13 11.34 .92 .25 -24.69 .23 .04 .35 

0.27 1.53 4.91 .59 15.34 0.27 0.16 14.35 .51 .17 15.59 .13 0 .27 
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Table G2  

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Melrose et al. (2012). Note: each row is the data for one 

participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

3.25 0.37 9.53 .43 342.96 3.27 2.62 0.34 .50 .40 343.83 .35 0 .59 

7.08 0.08 20.56 .50 445.59 7.06 0.03 60.90 .35 .26 444.69 .16 0 .39 

16.20 0.98 0.00 .50 554.93 16.13 0.01 79.36 .52 .05 554.50 .03 0 .29 

3.98 0.61 6.97 .47 369.55 3.98 0.61 6.96 .47 0 369.55 .11 0 .38 

14.29 0.14 14.89 .51 538.35 13.30 0.02 99.34 .49 .89 528.92 .96 .69 1 

13.75 0.89 83.68 .51 533.26 13.75 0.88 99.39 .50 .01 533.26 .14 0 .47 

19.69 0.10 21.13 .50 580.66 19.69 0.04 67.43 .50 0 580.65 .58 0 1 

14.56 0.90 8.91 .58 540.87 14.55 0.83 68.25 .49 .32 540.70 .34 0 .79 

9.77 0.07 34.09 .50 488.18 9.83 0.22 6.30 .76 .15 488.62 .36 0 .70 

13.99 0.08 20.94 .50 535.61 13.98 0.01 84.17 .52 .33 535.24 .20 0 .57 

5.88 0.02 81.17 .54 420.35 5.84 0.01 76.62 .56 .06 420.39 .02 0 .14 

17.83 0.19 11.18 .50 567.55 17.82 0.21 10.40 .50 .33 567.53 .73 0 1 

9.68 0.79 100.00 .50 487.01 9.67 0.82 100.00 .50 .31 486.78 .39 0 .95 

8.97 0.35 8.14 .51 476.86 8.97 0.38 7.79 .50 .17 476.83 .40 0 .77 

8.48 0.52 0.00 .50 469.50 8.37 0.01 78.94 .52 0 466.86 .02 0 .21 

7.18 0.89 11.58 .66 447.44 7.15 0.78 15.22 .58 .18 447.42 .70 0 1 

8.61 0.39 11.70 .46 471.42 8.62 0.34 13.73 .41 .02 471.42 .67 0 1 

7.14 0.99 100.00 .53 446.73 7.13 0.01 81.00 .54 .14 446.31 .08 0 .38 

4.41 0.03 69.59 .46 383.96 4.48 20.70 18.21 .50 0 385.33 .03 0 .19 

5.38 0.64 8.34 .54 409.45 5.38 0.64 8.73 .51 .05 409.45 .43 0 .71 

7.82 0.18 9.55 .50 458.81 7.81 0.01 72.03 .50 .50 458.54 .37 0 .73 

14.19 0.08 20.91 .50 537.41 14.19 0.01 85.07 .51 .35 537.30 .20 0 .60 

12.50 0.10 17.96 .50 520.67 12.49 0.07 26.37 .50 .28 520.64 .34 0 .71 

5.58 0.06 31.49 .51 414.27 5.64 0.04 54.43 .55 .02 414.29 .15 0 .36 

8.97 0.88 38.19 .54 476.83 8.96 0.81 100.00 .50 .18 476.73 .33 0 .68 

8.03 0.13 12.93 .50 462.24 8.03 19.55 0.27 .50 .45 462.21 .38 0 .64 

3.27 0.48 7.04 .79 343.52 3.23 0.24 12.84 .55 .54 341.95 .70 .47 .82 

5.96 0.78 9.09 .69 423.02 5.96 0.77 19.77 .57 .45 422.78 .58 .13 .89 

3.12 0.82 8.79 .88 337.62 3.02 0.26 99.79 .50 .87 333.18 .98 .71 1 

7.77 0.45 7.64 .85 455.49 7.60 0.16 71.79 .50 .86 455.07 .84 .10 1 

4.05 0.32 7.14 .52 372.00 4.05 0.40 0.23 .50 .11 371.98 .13 0 .44 

5.88 1.25 8.85 .55 421.23 5.88 1.25 11.21 .54 .04 421.23 .11 0 .43 

(continued) 
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Table G3 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Melrose et al. (2012) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

5.32 0.95 8.14 .80 408.02 5.28 1.09 11.70 .70 .50 406.93 .67 .31 .85 

2.85 1.20 28.39 .81 325.44 2.84 1.01 100.00 .73 .38 325.14 .93 0 1 

2.31 2.45 10.23 .82 297.98 2.30 2.77 21.40 .88 .01 297.89 .07 0 .18 

10.96 0.66 31.13 .55 503.38 10.96 0.65 100.00 .54 .22 503.30 .39 0 1 

3.06 2.06 10.03 .78 335.10 3.06 2.06 10.03 .78 0 335.10 .07 0 .23 

4.76 1.03 8.12 .70 393.33 4.77 0.01 81.27 .54 .38 392.81 .40 .04 .64 

6.11 1.13 14.21 .88 426.08 6.49 5.35 9.09 .50 1 434.21 .89 .39 1 

7.93 0.03 90.44 .44 460.94 8.03 6.89 59.58 .50 0 462.35 .13 0 .61 

5.46 1.09 12.55 .90 411.44 6.02 25.26 2.60 .50 1 424.17 .93 .57 1 

9.54 0.85 30.21 .74 485.02 10.92 8.39 2.20 .50 1 502.92 .85 .07 1 

13.93 0.90 100.00 .70 535.03 13.93 0.90 100.00 .70 0 535.03 .94 .01 1 

1.79 0.36 7.71 .68 263.95 1.84 5.69 0.00 .50 .43 267.53 .41 .20 .52 

2.37 0.63 14.39 .64 301.04 2.36 0.62 100.00 .57 .64 300.42 .88 0 1 

9.43 0.82 44.35 .67 483.52 9.41 0.77 100.00 .64 .26 483.28 .92 0 1 

12.19 0.71 10.99 .76 517.42 12.10 0.26 100.00 .50 .85 516.37 .97 .59 1 

7.85 0.52 7.53 .69 459.22 7.79 0.03 74.27 .50 .72 458.28 .58 .04 .89 

1.63 0.68 6.52 .76 251.48 1.62 0.55 10.65 .52 .27 250.91 .40 .02 .59 

4.39 1.18 11.82 .92 382.53 4.26 1.31 48.44 .86 .66 378.65 1. 1 1 

5.44 0.88 7.69 .85 410.29 5.36 0.82 14.65 .63 .70 408.88 .79 .33 1 

7.14 1.17 27.84 .80 446.81 7.58 4.93 1.43 .50 1 454.59 .90 .40 1 
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Table G3  

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Wood et al. (2011a). Note: each row is the data for one 

participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

1.46 0.49 35.30 .55 316.45 1.46 0.53 100.00 .54 .44 315.79 .56 0 .96 

4.92 0.00 85.47 .52 529.16 4.89 0.70 11.09 .54 0 529.17 .15 0 .41 

13.58 0.48 14.07 .53 708.84 13.58 0.49 14.52 .53 .03 708.84 .35 0 .70 

3.58 0.96 10.37 .77 474.07 3.56 1.21 14.50 .78 .23 473.48 .57 .24 .70 

6.22 0.26 5.52 .50 571.48 6.22 3.72 0.00 .50 .09 571.49 .11 0 .42 

4.26 1.35 22.19 .80 504.61 4.26 1.95 12.91 .90 .19 504.61 .44 .02 .64 

8.89 0.99 9.31 .69 634.33 8.87 1.14 11.45 .64 .21 633.95 .30 0 .52 

7.31 1.24 29.96 .80 599.77 7.31 1.24 29.96 .80 0 599.77 .41 0 .75 

4.02 0.58 9.74 .78 494.44 3.99 0.52 100.00 .58 .75 493.17 .93 .31 1 

14.45 0.41 9.32 .63 719.74 14.43 0.78 7.57 .51 .70 719.49 .68 .01 1 

4.74 0.84 14.91 .70 523.76 4.74 0.87 15.29 .71 .08 523.74 .57 .04 .85 

9.71 0.15 9.71 .46 649.79 9.66 0.04 94.68 .55 .40 649.50 .23 0 .61 

8.81 0.92 8.52 .70 632.64 8.77 0.01 75.55 .50 .53 632.00 .36 0 .70 

2.97 0.45 7.27 .69 441.30 2.96 0.49 7.66 .51 .52 440.55 .58 .05 .73 

13.15 0.62 5.68 .76 703.12 13.14 0.51 7.38 .52 .27 703.09 .37 0 .64 

11.15 0.76 10.90 .58 674.09 11.14 0.89 11.12 .55 .14 674.04 .23 0 .58 

9.37 0.52 16.77 .49 643.58 9.37 0.52 16.77 .49 0 643.58 .21 0 .52 

16.02 0.51 6.63 .84 735.69 15.82 0.01 25.43 .50 .80 735.54 .75 .06 1 

6.46 0.67 8.62 .75 578.08 6.43 0.83 16.32 .67 .47 577.23 .63 0 .85 

6.55 1.13 15.83 .79 580.44 6.61 1.47 11.40 .91 .05 580.38 .47 0 .73 

3.63 0.80 10.04 .82 476.65 3.60 0.72 27.36 .66 .50 475.37 .78 .22 .96 

4.09 0.68 6.53 .87 500.23 4.11 0.49 10.62 .60 .25 500.17 .69 .18 .81 

5.46 0.38 7.85 .68 548.59 5.43 0.14 7.58 .59 .64 547.60 .71 .53 .83 

7.73 0.49 9.56 .70 609.72 7.70 0.53 54.34 .55 .74 608.95 .77 0 1 

5.72 0.83 10.71 .80 556.73 5.70 0.89 17.66 .74 .43 556.02 .71 .01 .95 

4.99 0.58 12.43 .72 532.65 4.98 0.50 22.81 .62 .42 532.11 .85 .01 1 

7.03 0.37 7.59 .57 593.04 7.02 1.47 6.57 .51 .36 592.82 .35 0 .55 

6.86 0.83 24.53 .73 588.55 6.90 1.17 18.57 .85 .02 588.44 .54 0 .94 

15.86 0.66 100.00 .63 736.12 15.85 0.68 100.00 .64 .08 736.09 .76 0 1 

5.54 1.18 16.74 .81 551.08 5.54 1.19 16.73 .81 0 551.07 .54 0 .74 

7.59 0.74 9.03 .65 606.40 7.58 0.91 9.74 .64 .19 606.30 .35 0 .65 

4.63 0.78 32.80 .70 519.48 4.59 0.68 100.00 .63 .34 517.98 .69 0 .98 

(continued) 
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Table G3 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Wood et al. (2011a) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

5.33 0.47 7.94 .78 544.28 5.22 0.61 100.00 .59 .88 540.64 .84 .11 1 

7.06 0.53 8.87 .73 593.76 7.02 0.69 14.16 .62 .74 592.64 .76 .06 1 

4.93 1.03 8.87 .80 530.54 4.90 1.65 15.71 .85 .28 529.34 .54 .25 .66 

16.48 0.45 8.85 .56 742.90 16.48 0.49 9.42 .51 .19 742.89 .35 0 .74 

4.23 1.24 12.94 .85 503.49 4.24 1.95 31.21 .90 .30 501.27 .64 .24 .77 

9.86 0.31 15.18 .62 652.42 10.16 0.06 0.14 .50 1 657.75 .88 0 1 

10.85 0.22 13.01 .53 669.40 10.97 0.06 62.27 .80 .65 669.39 .91 .39 1 

1.18 0.82 9.53 .75 278.47 1.17 1.08 13.51 .74 .34 277.91 .52 0 .78 

12.80 0.01 54.35 .77 694.89 12.60 0.01 85.57 .49 0 695.42 0 0 .05 

8.95 0.42 8.71 .58 635.45 8.89 0.67 20.65 .49 .50 634.22 .53 0 .85 

7.37 0.52 13.39 .49 601.18 7.37 0.54 14.03 .49 .05 601.17 .38 0 .72 

8.22 0.72 100.00 .50 620.41 8.22 0.72 100.00 .50 .00 620.41 .31 0 .67 

1.95 0.40 20.92 .48 367.12 1.95 0.15 92.19 .23 .01 367.12 .41 0 .97 

7.04 0.37 6.93 .51 593.26 7.03 0.86 100.00 .50 .25 593.01 .26 0 .56 

8.53 13.66 49.63 .50 626.99 8.53 2.46 88.48 .50 0 626.99 .05 0 .23 

12.77 0.00 80.90 .51 698.41 12.80 0.00 67.57 .51 0 698.43 .01 0 .09 

5.98 0.47 8.48 .47 564.63 5.99 0.45 9.09 .45 .01 564.63 .23 0 .43 

0.10 8.47 34.17 .50 -243.52 0.10 29.10 7.42 .50 0 -243.52 0 0 0 

27.45 0.28 11.97 .51 832.68 27.44 0.31 12.57 .50 .49 832.66 .74 0 1 

3.09 0.54 22.06 .50 448.46 3.09 0.54 22.05 .50 0 448.46 .43 0 .83 

9.83 0.35 9.18 .52 652.03 9.83 0.61 9.11 .49 .44 651.90 .46 0 .93 

7.22 0.51 6.79 .50 597.71 7.22 0.58 6.69 .50 .04 597.71 .17 0 .43 

9.69 0.57 24.40 .50 649.37 9.69 0.57 24.40 .50 0 649.37 .39 0 .88 

7.15 0.53 13.55 .49 595.88 7.15 0.54 13.02 .50 0 595.88 .34 0 .67 

1.07 0.55 8.94 .45 261.00 1.07 0.14 68.14 .20 0 260.98 .11 0 .44 

4.91 0.56 16.15 .50 529.89 4.91 0.56 16.15 .50 0 529.89 .45 0 .77 

6.19 0.44 8.48 .54 570.55 6.22 0.67 13.43 .49 .27 570.46 .44 0 .67 

5.48 0.22 6.34 .50 549.07 5.47 0.90 100.00 .51 .19 548.94 .18 0 .48 

13.16 0.00 80.51 .51 704.22 13.29 0.00 98.56 .43 .01 704.23 0 0 .03 

23.47 0.48 18.68 .50 805.11 23.46 0.52 26.35 .50 .17 805.09 .57 0 1 

14.18 0.53 11.09 .48 716.46 14.18 0.53 11.09 .48 0 716.46 .29 0 .75 

11.49 3.37 0.01 .50 679.48 11.28 0.01 86.45 .50 0 676.17 0 0 .02 

(continued) 
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Table G3 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Wood et al. (2011a) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

16.42 0.25 7.44 .61 742.35 16.43 19.96 21.84 .50 .69 742.42 .62 0 1 

11.21 0.70 12.90 .49 675.10 11.21 0.70 12.90 .49 0 675.10 .23 0 .50 

5.97 0.42 7.62 .49 564.16 5.97 0.43 7.50 .49 0 564.16 .23 0 .50 

8.20 0.01 81.52 .48 620.62 8.23 0.01 77.08 .50 0 620.62 .02 0 .18 

6.41 1.07 11.41 .50 576.81 6.41 1.07 11.41 .50 0 576.81 .08 0 .26 

10.58 0.21 13.99 .40 665.40 10.61 0.25 11.18 .47 0 665.40 .58 0 .99 

6.76 0.38 10.16 .45 586.11 6.80 0.33 11.88 .40 .01 586.10 .33 0 .56 

7.35 0.40 6.70 .51 600.86 7.35 0.88 74.73 .51 .19 600.73 .23 0 .43 

14.81 0.49 8.50 .69 723.62 14.77 0.35 13.25 .50 .11 723.61 .80 .01 1 

13.84 0.48 11.36 .49 712.23 13.84 0.56 12.30 .49 .18 712.16 .38 0 .82 

6.26 0.15 6.53 .50 572.53 6.28 20.49 0.26 .50 .21 573.03 .17 0 .35 

10.06 0.27 12.69 .46 655.97 10.06 0.27 12.69 .46 0 655.97 .60 0 1 

8.14 0.30 11.89 .42 618.74 8.14 0.34 10.15 .47 0 618.75 .36 0 .67 

8.91 0.43 9.24 .56 635.15 8.93 0.47 11.62 .49 .25 635.01 .45 0 .82 

6.08 0.39 6.86 .57 567.30 6.03 0.90 18.12 .50 .36 565.91 .41 0 .59 

15.77 0.28 20.22 .50 735.21 15.77 0.28 20.32 .50 0 735.21 .96 .33 1 

7.53 0.33 16.93 .43 605.12 7.53 0.33 16.93 .43 0 605.12 .52 0 .90 
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Table G4  

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Wood et al. (2011b). Note: each row is the data for one 

participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

0.30 0.05 16.73 .51 21.38 0.30 0.02 60.29 .52 .03 21.48 .51 0 .96 

0.10 0.24 18.60 .50 18.06 0.10 0.29 99.49 .50 .32 18.05 .91 .65 1 

0.20 0.07 16.04 .64 15.15 0.22 19.39 32.36 .50 1 16.67 .84 .62 1 

0.28 0.20 8.94 .45 22.39 0.26 0.30 100.00 .43 .14 21.75 .42 0 .95 

0.10 0.03 33.51 .50 19.83 0.10 9.41 12.13 .50 .10 19.97 .34 .07 .45 

0.10 0.35 100.00 .48 8.75 0.10 9.68 1.41 .50 .27 8.84 .46 .37 .48 

0.24 0.04 24.37 .50 20.15 0.24 6.47 0.10 .50 .38 20.44 .37 .09 .59 

0.16 0.02 77.48 .50 15.54 0.16 0.02 86.85 .51 .17 15.54 .78 .61 1 

0.76 0.06 15.94 .52 37.42 0.76 0.07 14.14 .52 .20 37.46 .68 0 1 

0.16 0.12 84.05 .50 9.50 0.16 0.13 66.86 .50 0 9.50 .90 .27 1 

0.10 0.03 32.39 .50 26.19 0.10 10.61 11.47 .50 .13 26.56 .37 .13 .46 

0.17 0.07 19.44 .51 17.16 0.18 0.09 49.56 .50 .57 17.31 .98 .74 1 

0.10 0.13 10.35 .49 13.75 0.10 0.36 100.00 .49 .93 13.76 .67 .62 .82 

0.10 5.03 0.00 .50 27.20 0.10 9.80 7.37 .50 .01 27.20 .18 .04 .33 

0.10 0.07 17.96 .51 14.42 0.23 95.93 80.78 .50 1 20.76 .84 .61 1 

0.10 0.06 16.49 .50 14.84 0.10 9.01 5.90 .50 .88 14.88 .61 .60 .63 

0.21 0.19 16.35 .50 15.31 0.35 97.05 2.74 .50 1 25.85 .84 .16 1 

1.00 0.21 89.10 .50 41.76 1.00 0.02 99.86 .49 .21 41.99 .91 0 1 

0.10 0.05 17.31 .50 11.79 0.10 9.49 3.57 .50 .47 11.81 .49 .48 .53 

0.10 0.07 18.87 .50 5.27 0.10 0.09 52.58 .50 .54 5.28 .84 .63 1 

0.10 0.07 16.33 .52 9.42 0.10 0.07 16.36 .54 0 9.43 .86 .67 1 

0.26 2.83 0.00 .50 26.38 0.10 0.31 100.00 .52 0 22.45 .96 .63 1 

0.17 3.43 0.00 .50 32.06 0.17 13.76 72.19 .50 0 32.06 .13 0 .30 

0.10 8.26 0.66 .50 25.57 0.15 0.01 91.17 .47 0 25.15 .15 0 .41 

0.10 0.39 20.13 .50 11.35 0.10 0.39 20.14 .50 0 11.35 .40 .23 .47 

0.10 0.31 15.41 .48 18.27 0.10 2.77 15.12 .50 .75 18.63 .62 .60 .66 

0.10 0.06 17.16 .50 11.24 0.10 0.06 17.16 .50 0 11.24 .78 .63 .99 

0.10 0.23 11.64 .51 17.16 0.10 0.26 13.56 .51 .35 17.16 .68 .60 .95 

0.10 0.07 14.89 .50 15.30 0.10 0.02 85.04 .50 .79 15.31 .63 .59 .69 

0.49 0.06 17.50 .50 31.34 0.49 0.06 17.51 .50 0 31.34 .87 0 1 

0.10 0.05 17.96 .50 6.37 0.10 0.07 12.25 .51 .07 6.38 .49 .48 .53 

0.10 0.05 18.02 .50 2.93 0.10 0.01 86.02 .51 .52 2.94 .49 .48 .61 

(continued) 
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Table G4 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Wood et al. (2011b) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

1.04 0.19 16.22 .50 44.06 1.04 0.20 33.81 .50 .34 44.06 .91 0 1 

0.10 0.23 18.35 .51 7.25 0.10 0.25 82.52 .50 .37 7.19 .99 1 1 

0.37 0.06 16.76 .51 26.40 0.38 0.06 0.20 .50 .67 26.78 .61 0 1 

0.13 0.23 100.00 .50 21.07 0.13 0.23 100.00 .50 0 21.07 1 1 1 

0.10 0.02 48.02 .51 20.33 0.10 0.05 17.53 .50 0 20.31 .49 .48 .61 

0.16 0.28 100.00 .42 18.42 0.17 0.28 100.00 .42 .01 18.42 .55 .03 .83 

0.32 0.32 100.00 .53 24.76 0.32 0.32 100.00 .53 0 24.76 .29 0 .81 

0.33 0.32 99.64 .53 25.08 0.33 0.32 100.00 .53 0 25.08 .26 0 .73 

0.24 9.46 1.30 .50 28.21 0.10 0.04 99.85 .54 .03 20.44 .01 0 .09 

0.10 0.04 99.99 .46 15.23 0.53 15.89 7.81 .50 0 32.00 .10 0 .45 

0.14 0.12 39.55 .50 16.12 0.14 0.17 98.05 .50 .07 16.12 .71 .59 1 

0.10 1.06 50.30 .96 6.33 0.10 0.00 82.25 .52 .52 6.86 .53 .48 .61 

0.29 0.98 90.98 .94 20.63 0.29 0.49 100.00 .70 .24 21.94 .51 0 1 

0.83 0.42 100.00 .64 39.35 0.82 0.40 100.00 .62 .28 39.33 .50 0 1 

0.48 0.40 100.00 .58 30.98 0.48 0.40 100.00 .58 0 30.98 .14 0 .69 

0.10 0.11 100.00 .35 18.01 0.24 10.15 23.01 .50 0 26.30 .18 0 .46 

0.18 0.09 37.52 .50 15.26 0.19 0.00 96.87 .48 .88 12.19 .56 0 1 

0.10 0.11 91.16 .50 20.00 0.10 39.63 26.34 .50 1 30.12 .67 .61 .86 

0.10 0.21 100.00 .50 18.00 0.10 4.54 0.04 .50 1 20.06 .67 .61 .86 

0.10 0.12 72.65 .50 8.00 0.10 0.12 100.00 .50 0 8.00 .96 .29 1 

0.42 0.19 10.51 .52 29.95 0.42 96.92 5.90 .50 .46 29.99 .42 0 1 

0.16 7.68 0.09 .50 17.88 0.10 0.07 30.74 .50 .01 16.27 .02 0 .15 

0.10 0.16 17.69 .53 11.81 0.20 0.46 10.20 .50 1 14.32 .77 .60 1 

0.13 7.90 0.49 .50 17.96 0.13 66.69 76.13 .50 0 17.96 .21 .01 .44 

0.10 0.15 11.07 .65 8.67 0.10 0.01 80.77 .50 .94 8.38 .62 .60 .68 

0.13 0.12 98.54 .50 7.07 0.13 0.12 100.00 .50 0 7.07 .98 1 1 

0.10 0.16 13.65 .72 19.43 0.10 1.80 3.10 .50 1 24.24 .74 .66 .93 

0.10 0.42 12.91 .79 9.32 0.10 0.12 100.00 .50 .92 8.82 .62 .60 .68 

0.10 0.66 100.00 .88 15.21 0.15 9.79 16.96 .50 1 21.30 .71 .60 1 

0.10 0.50 18.67 .81 8.63 0.10 0.12 100.00 .50 .85 8.98 .64 .60 .88 

0.12 0.14 12.36 .62 15.22 0.17 7.93 64.80 .50 .77 15.66 .63 .51 .94 

0.10 7.25 18.00 .50 20.39 0.10 6.29 4.39 .50 0 20.39 .48 .43 .50 

(continued) 
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Table G4 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Wood et al. (2011b) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

0.14 0.12 59.90 .50 4.58 0.14 0.12 100.00 .50 .01 4.58 .74 .60 1 

0.10 4.24 0.00 .50 11.97 0.10 13.62 1.37 .50 .08 11.96 .48 .39 .50 

0.49 0.09 11.92 .50 31.38 0.49 98.39 55.90 .50 .06 31.40 .19 0 .99 

0.10 0.17 8.68 .72 18.77 0.10 0.00 0.10 .50 .76 17.97 .61 .60 .64 

0.29 0.56 10.88 .67 22.19 0.29 0.70 7.03 .52 .20 22.18 .27 0 .80 

0.18 0.15 7.01 .64 22.00 0.10 57.44 23.12 .50 .82 20.77 .62 .60 .68 

0.52 0.18 9.39 .66 33.43 0.50 1.83 9.67 .50 .82 32.84 .70 0 1 

0.12 0.07 42.51 .50 12.96 0.10 7.46 2.99 .50 .28 13.17 .48 .44 .50 

0.15 0.16 6.70 .61 15.71 0.15 9.86 7.66 .50 .21 15.38 .40 .19 .49 

0.30 0.15 11.32 .64 22.52 0.30 52.25 34.78 .50 1 21.95 .74 0 1 

0.10 0.17 7.51 .69 9.63 0.10 0.00 85.14 .50 .39 8.78 .48 .48 .49 

0.26 5.18 0.01 .50 31.92 0.20 0.01 8.27 .50 1 30.01 .76 .60 1 

0.10 0.17 10.38 .66 10.56 0.10 1.33 10.92 .50 1 9.89 .61 .60 .63 

0.12 1.01 39.86 .94 11.82 0.17 0.01 81.21 .52 .49 11.72 .50 .31 .65 

 

  



314 

 

 

Table G5  

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Maltby et al. (2012). Note: each row is the data for one 

participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

0.10 13.57 6.18 .50 12.39 0.10 6.87 77.99 .50 0 12.39 .46 .31 .50 

0.27 1.89 1.30 .50 32.02 0.27 98.32 45.92 .50 .02 32.01 .13 0 .48 

0.54 0.09 100.00 .50 49.88 0.56 14.53 22.35 .50 .16 50.37 .18 0 .64 

3.36 0.00 99.21 .48 63.42 3.99 2.95 33.26 .50 1 74.08 .48 0 1 

3.01 0.02 22.18 .50 70.82 0.41 0.00 96.27 .50 .45 57.40 .88 .19 1 

0.31 0.01 62.66 .91 58.32 5.17 0.02 97.08 .50 0 74.14 .60 0 1 

0.28 7.03 10.72 .50 33.15 0.26 0.00 39.45 .34 0 31.08 .02 0 .16 

0.10 7.29 20.59 .50 13.79 0.10 13.00 6.68 .50 0 13.79 .34 .18 .47 

0.66 0.03 6.44 .50 53.13 0.66 9.72 2.48 .50 .18 53.13 .21 0 .86 

0.37 0.08 24.74 .52 44.71 0.42 0.96 1.57 .50 .47 46.12 .44 0 .81 

1.10 4.58 18.07 .50 64.35 1.10 19.08 4.81 .50 0 64.35 .13 0 .72 

0.58 0.10 29.96 .50 54.69 0.60 9.80 41.04 .50 .11 55.09 .13 0 .45 

0.38 1.05 0.40 .50 45.26 0.38 21.39 20.09 .50 0 45.26 .06 0 .28 

0.28 29.52 8.79 .50 39.99 0.28 1.61 31.43 .50 .04 39.97 .08 0 .32 

0.29 6.05 11.14 .50 39.29 0.29 60.65 24.69 .50 0 39.29 .05 0 .23 

0.36 0.00 70.84 .50 39.87 0.37 2.57 7.25 .50 0 40.14 .05 0 .26 

0.23 22.89 3.86 .50 31.29 0.15 0.00 44.73 .93 .11 25.43 .01 0 .07 

1.24 0.01 16.15 .50 62.83 1.24 0.08 0.01 .50 .48 62.83 .42 0 1 

2.58 0.09 16.76 .50 73.15 2.58 0.09 16.76 .50 0 73.15 .40 0 1 

1.38 0.09 100.00 .50 69.48 1.38 12.89 6.07 .50 .09 69.52 .18 0 .83 

1.67 0.11 11.05 .50 71.68 1.67 5.19 0.62 .50 .17 71.72 .23 0 .92 

0.32 0.00 52.24 .50 34.61 0.33 98.81 8.04 .50 .05 35.20 .07 0 .29 

0.26 1.02 0.29 .50 30.62 0.26 14.01 19.08 .50 .03 30.53 .07 0 .27 

0.84 0.49 5.98 .50 59.31 0.84 0.00 37.31 .50 0 59.27 .09 0 .53 

0.29 0.10 4.34 .55 37.47 0.29 51.04 34.29 .50 .08 37.46 .11 0 .38 

0.61 0.09 79.80 .50 51.46 0.63 6.56 4.23 .50 .04 51.82 .11 0 .49 

0.20 21.79 2.86 .50 36.70 0.20 10.77 19.31 .50 0 36.70 .12 0 .34 

0.70 4.32 15.68 .50 56.94 0.70 74.64 22.19 .50 0 56.94 .06 0 .29 

0.47 0.08 100.00 .43 47.72 0.51 14.67 4.87 .50 .12 49.44 .13 0 .37 

0.63 2.61 8.90 .50 53.86 0.63 6.94 8.33 .50 0 53.86 .06 0 .31 

2.17 0.09 100.00 .50 68.69 2.18 11.49 1.19 .50 .05 68.73 .20 0 1 

0.47 2.93 14.19 .50 45.17 0.47 25.75 0.53 .50 0 45.17 .05 0 .26 

(continued) 
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Table G5 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

0.98 0.24 0.01 .50 61.30 0.98 29.49 37.76 .50 0 61.30 .09 0 .49 

0.10 0.01 29.89 .50 23.63 0.10 4.28 2.31 .50 .15 23.72 .39 .27 .47 

0.80 5.37 15.23 .50 55.94 0.80 4.73 34.89 .50 0 55.94 .09 0 .44 

0.69 14.06 4.30 .50 52.44 0.69 15.59 11.60 .50 0 52.44 .06 0 .33 

0.42 1.70 4.49 .50 43.93 0.42 35.44 49.26 .50 .04 43.84 .06 0 .25 

1.44 0.01 17.55 .50 63.88 1.44 0.01 28.67 .50 .28 63.88 .42 0 1 

0.21 1.21 2.60 .50 46.03 0.10 0.09 15.62 .50 .47 42.02 .61 .60 .65 

0.91 0.00 81.15 .46 62.04 1.08 27.56 0.60 .50 0 64.41 .08 0 .45 

0.98 4.78 14.00 .50 60.06 0.98 16.96 1.34 .50 0 60.06 .09 0 .44 

1.12 0.00 88.36 .51 59.69 1.11 2.68 49.22 .50 0 61.09 .09 0 .45 

0.83 0.09 62.53 .50 59.81 0.87 11.61 3.91 .50 .17 60.53 .17 0 .57 

0.32 2.37 1.08 .50 35.73 0.19 0.00 46.95 .60 0 18.11 .01 0 .04 

1.08 7.09 0.49 .50 62.10 0.58 0.00 55.63 .76 .04 52.24 0 0 0 

0.39 0.00 78.46 .54 40.43 0.41 13.76 4.80 .50 0 45.58 .04 0 .19 

0.23 22.95 3.97 .50 37.11 0.23 12.76 16.07 .50 0 37.11 .06 0 .24 

0.51 3.20 0.34 .50 50.80 0.32 0.00 88.88 .48 0 44.92 0 0 0 

1.74 15.28 2.98 .50 64.17 1.50 0.01 90.30 .61 .43 62.58 .57 0 1 

2.18 0.03 8.65 .58 68.26 2.18 71.50 31.30 .50 .66 68.27 .51 0 1 

0.15 18.72 5.83 .50 45.18 0.10 0.00 53.42 .50 .40 44.90 .48 .45 .49 

0.26 0.08 100.00 .44 41.10 0.22 0.00 71.93 .58 0 41.69 .00 0 .03 

0.31 0.88 2.20 .50 37.54 0.31 78.69 15.40 .50 0 37.54 .05 0 .23 

0.33 13.88 0.18 .50 39.37 0.26 0.03 6.51 .51 .26 35.60 .40 .16 .65 

0.30 2.27 0.78 .50 34.15 0.27 0.00 57.27 .26 0 29.91 .03 0 .23 

0.10 5.91 15.27 .50 39.20 0.10 0.00 82.39 .50 0 38.52 .13 0 .28 

0.18 12.88 0.22 .50 31.28 0.19 5.92 46.87 .50 .08 31.14 .12 0 .29 

0.79 15.07 3.51 .50 55.78 0.77 0.00 95.02 .49 0 50.00 0 0 0 

3.65 0.01 17.62 .50 71.56 3.65 0.63 0.00 .50 .46 71.57 .39 0 1 

0.52 3.22 0.43 .50 45.60 0.52 51.07 30.13 .50 0 45.60 .06 0 .31 

0.36 1.67 0.00 .50 40.14 0.35 0.11 12.77 .51 0 38.98 .17 0 .45 

2.65 0.02 17.32 .50 68.18 2.65 0.02 17.32 .50 0 68.18 .61 0 1 

0.42 0.09 8.39 .50 44.15 0.42 20.48 5.26 .50 .31 44.38 .29 0 .66 

0.43 0.09 76.11 .50 45.15 0.44 99.81 0.01 .50 .05 45.46 .10 0 .41 

(continued) 
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Table G5 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

0.10 6.19 11.26 .50 35.18 0.10 12.46 6.48 .50 0 35.18 .30 .15 .46 

0.19 12.28 9.73 .50 47.11 0.10 0.03 14.51 .43 0 42.23 .83 .68 1 

0.23 0.00 70.18 .51 46.87 0.24 0.00 84.67 .49 0 46.77 0 0 .02 

0.52 4.65 13.51 .50 51.43 0.52 85.23 0.00 .50 0 51.43 .12 0 .65 

2.24 15.35 2.20 .50 71.76 2.24 8.36 5.79 .50 0 71.76 .22 0 1 

0.26 2.81 6.05 .50 29.48 0.26 97.74 41.49 .50 0 29.48 .12 0 .46 

0.80 0.42 6.13 .50 60.98 0.80 72.40 1.61 .50 0 60.98 .13 0 .64 

2.14 0.08 10.13 .55 70.63 2.13 0.00 15.67 .49 .30 70.58 .34 0 1 

0.40 0.02 69.54 .50 47.82 0.41 0.02 89.12 .67 .49 48.04 .78 .11 1 

0.67 1.97 0.13 .50 55.57 0.67 0.75 55.01 .50 0 55.57 .09 0 .43 

0.67 0.00 80.30 .51 58.01 0.71 31.30 39.50 .50 0 59.01 .16 0 .79 

0.92 2.51 1.92 .50 62.74 0.92 15.58 11.86 .50 0 62.74 .11 0 .61 

0.46 5.31 14.47 .50 46.08 0.46 56.61 95.72 .50 0 46.08 .09 0 .44 

0.85 2.75 3.60 .50 60.28 0.85 39.48 0.12 .50 0 60.28 .15 0 .76 

0.54 14.24 13.77 .50 50.55 0.54 41.54 52.75 .50 0 50.55 .06 0 .29 

2.09 0.01 84.54 .50 73.94 3.36 16.24 23.02 .50 0 75.86 .29 0 1 

0.78 2.35 0.25 .50 57.28 0.78 1.61 32.20 .50 0 57.28 .12 0 .59 

0.62 0.09 40.92 .48 52.52 0.62 18.46 0.17 .50 0 52.52 .10 0 .51 

2.25 0.00 99.33 .48 69.48 2.03 0.00 95.71 .51 0 69.39 .03 0 .32 

0.30 2.08 0.16 .50 33.32 0.30 53.95 40.55 .50 0 33.32 .06 0 .29 

0.35 1.43 0.03 .50 42.73 0.35 59.65 1.22 .50 0 42.73 .05 0 .28 

0.65 2.73 0.26 .50 50.67 0.65 50.55 0.26 .50 .02 50.67 .08 0 .37 

2.75 0.25 0.00 .50 72.68 2.75 66.52 24.30 .50 0 72.68 .24 0 1 

0.63 3.19 0.26 .50 54.01 0.63 4.48 8.21 .50 0 54.01 .10 0 .45 

0.78 2.20 0.23 .50 54.10 0.77 0.02 19.56 .49 0 53.93 .04 0 .33 

0.10 14.21 5.76 .50 7.35 0.10 4.71 13.87 .50 0 7.35 .17 .02 .29 

0.10 6.59 17.41 .50 9.26 0.10 16.11 33.64 .50 0 9.26 .18 .03 .29 

0.31 2.57 8.88 .50 33.61 0.31 34.19 55.15 .50 0 33.61 .05 0 .25 

0.31 0.01 29.09 .50 35.76 0.31 45.88 32.86 .50 0 37.07 .04 0 .23 

0.33 1.38 4.29 .50 37.43 0.33 0.61 5.82 .50 .11 36.97 .12 0 .34 

0.66 36.10 16.62 .50 53.64 0.66 18.88 3.12 .50 0 53.64 .08 0 .38 

0.40 2.70 9.98 .50 48.03 0.40 43.42 22.45 .50 0 48.03 .06 0 .29 

(continued) 
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Table G5 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

1.49 4.71 13.07 .50 65.25 1.49 21.50 43.82 .50 0 65.25 .17 0 .87 

0.43 15.17 4.07 .50 46.23 0.43 10.28 5.35 .50 0 46.23 .05 0 .24 

0.99 4.63 15.38 .50 61.00 0.65 0.01 68.93 .48 .20 53.27 .01 0 .21 

1.15 1.78 0.19 .50 63.60 1.02 0.01 31.42 .50 .01 62.09 .02 0 .28 

1.14 12.01 3.51 .50 65.65 1.14 16.74 34.88 .50 0 65.65 .12 0 .63 

0.16 7.28 13.31 .50 17.81 0.16 57.71 0.51 .50 0 17.81 .11 0 .26 

3.57 0.39 0.00 .50 73.66 3.57 0.80 51.37 .50 0 73.66 .35 0 1 

0.62 2.50 0.35 .50 52.32 0.62 36.15 2.51 .50 0 52.32 .08 0 .37 

3.88 2.71 17.39 .50 72.78 0.18 0.01 59.59 .85 .14 58.06 .02 0 .12 

0.24 5.25 12.04 .50 33.04 0.24 68.70 15.33 .50 0 33.04 .12 0 .39 

1.56 2.67 17.02 .50 62.60 1.56 10.79 53.11 .50 0 62.60 .18 0 .90 

0.55 0.02 36.57 .47 49.71 0.63 36.51 18.82 .50 0 51.51 .09 0 .45 

0.98 0.15 0.01 .50 61.18 0.98 11.91 22.70 .50 0 61.18 .11 0 .57 

0.88 2.57 0.12 .50 58.31 0.88 30.02 45.18 .50 0 58.31 .12 0 .64 

7.87 10.08 0.57 .50 77.26 7.42 0.01 46.24 .50 0 77.18 .25 0 1 

0.41 2.53 11.69 .50 48.89 0.41 1.12 31.73 .50 0 48.89 .05 0 .23 

0.67 0.05 11.82 .56 52.07 0.60 36.86 91.36 .50 1 51.87 .91 .50 1 

1.62 9.26 7.98 .50 64.20 1.62 14.87 4.64 .50 0 64.20 .21 0 1 

0.83 0.02 30.30 .50 58.63 0.86 4.32 23.12 .50 .07 59.40 .18 0 .81 

0.50 2.75 0.39 .50 47.36 0.50 10.62 1.78 .50 0 47.36 .06 0 .27 

0.18 10.64 13.43 .50 29.06 0.18 27.66 10.14 .50 0 29.06 .09 0 .27 

1.12 0.08 100.00 .55 58.15 1.02 0.08 100.00 .55 .38 58.14 .51 0 1 

0.10 0.04 22.17 .43 32.81 0.10 0.04 22.17 .43 0 32.81 .60 .45 .68 

3.06 14.40 1.75 .50 72.54 3.06 19.42 0.85 .50 0 72.54 .31 0 1 

0.21 4.73 2.15 .50 45.57 0.10 1.12 9.18 .50 .93 42.37 .65 .61 .78 

3.72 12.24 1.50 .50 72.61 0.10 0.00 75.45 .60 .12 53.19 .00 0 0 

5.07 1.96 9.98 .50 74.49 5.07 45.77 0.46 .50 0 74.49 .34 0 1 

0.31 13.16 5.92 .50 37.06 0.31 78.85 25.40 .50 0 37.06 .05 0 .23 

5.95 3.82 5.41 .50 74.76 5.18 0.01 100.00 .50 0 74.21 .19 0 1 

0.19 12.12 1.40 .50 43.01 0.10 14.98 16.18 .50 .56 40.84 .53 .48 .61 

0.22 0.04 7.71 .63 43.25 0.22 0.45 1.30 .50 .36 42.59 .37 .18 .53 

0.81 6.45 14.99 .50 55.96 0.47 0.01 75.83 .50 0 47.48 .01 0 .11 

(continued) 
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Table G5 

Best fitting model parameters of the SDbS and SDbS+ Range models to individual 

participant data from Maltby et al. (2012) (continued). Note: each row is the data 

for one participant. 

SDbS SDbS+Range w bootstrap 

SD c s t -2lnL SD c s t w -2lnL Mean 95% CI 

2.43 10.02 20.69 .50 66.59 2.43 21.89 27.01 .50 0 66.59 .26 0 1 

0.36 0.04 8.24 .62 44.83 0.36 0.11 0.05 .50 .47 44.43 .47 .03 .88 

6.32 12.83 2.16 .50 75.07 6.32 25.96 8.62 .50 0 75.07 .32 0 1 

4.88 9.97 0.00 .50 73.66 4.88 18.17 14.55 .50 0 73.66 .32 0 1 

1.45 3.63 12.74 .50 63.14 1.45 2.51 6.38 .50 0 63.14 .27 0 1 

0.42 0.04 8.35 .45 52.92 0.35 24.61 4.83 .50 1 49.72 .92 .63 1 

0.16 0.97 2.44 .50 50.07 0.18 54.47 99.20 .50 1 48.64 .87 .67 1 
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Table H1  

Model comparison of SDbS and SDbS + Range using individual participant data 

from Brown et al. (2008). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

73.31 73.96 82.07 75.31 76.31 86.26 .73 .27 .89 .11 

36.17 36.83 44.93 34.81 35.81 45.76 .34 .66 .60 .40 

87.27 87.93 96.03 88.67 89.67 99.61 .67 .33 .86 .14 

12.57 13.23 21.33 -14.64 -13.64 -3.69 0 1 0 1 

-32.57 -31.91 -23.81 -45.47 -44.47 -34.52 0 1 0 1 

78.23 78.89 86.99 78.71 79.71 89.66 .56 .44 .79 .21 

-30.44 -29.78 -21.68 -28.44 -27.44 -17.49 .73 .27 .89 .11 

102.40 103.06 111.16 104.40 105.40 115.35 .73 .27 .89 .11 

116.58 117.23 125.33 113.24 114.24 124.18 .16 .84 .36 .64 

101.31 101.97 110.07 102.12 103.12 113.07 .60 .40 .82 .18 

85.83 86.49 94.59 84.21 85.21 95.16 .31 .69 .57 .43 

81.71 82.36 90.47 83.18 84.18 94.13 .68 .32 .86 .14 

85.87 86.52 94.63 84.37 85.37 95.32 .32 .68 .59 .41 

18.06 18.72 26.82 20.00 21.00 30.95 .73 .27 .89 .11 

-26.74 -26.08 -17.98 -29.50 -28.50 -18.55 .20 .80 .43 .57 

96.98 97.63 105.74 100.30 101.30 111.25 .84 .16 .94 .06 

-37.82 -37.16 -29.06 -40.23 -39.23 -29.28 .23 .77 .47 .53 

59.57 60.23 68.33 60.61 61.61 71.55 .63 .37 .83 .17 

104.44 105.10 113.20 106.51 107.51 117.46 .74 .26 .89 .11 

5.30 5.96 14.06 5.88 6.88 16.83 .57 .43 .80 .20 

68.68 69.34 77.44 64.71 65.71 75.66 .12 .88 .29 .71 

51.72 52.37 60.47 42.29 43.29 53.24 .01 .99 .03 .97 

-5.07 -4.42 3.69 -14.69 -13.69 -3.74 .01 .99 .02 .98 

23.34 24.00 32.10 25.59 26.59 36.54 .75 .25 .90 .10 
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Table H2  

Model comparison of SDbS and SDbS + Range using individual participant data 

from Melrose et al. (2012). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

350.96 359.62 376.37 353.83 364.83 385.78 .81 .19 .99 .01 

453.59 462.24 479.00 454.69 465.69 486.64 .63 .37 .98 .02 

562.93 571.58 588.34 564.50 575.50 596.45 .69 .31 .98 .02 

377.55 386.21 402.96 379.55 390.55 411.50 .73 .27 .99 .01 

546.35 555.01 571.77 538.92 549.92 570.87 .02 .98 .39 .61 

541.26 549.92 566.67 543.26 554.26 575.21 .73 .27 .99 .01 

588.66 597.31 614.07 590.65 601.65 622.60 .73 .27 .99 .01 

548.87 557.53 574.29 550.70 561.70 582.64 .71 .29 .98 .02 

496.18 504.84 521.60 498.62 509.62 530.57 .77 .23 .99 .01 

543.61 552.26 569.02 545.24 556.24 577.19 .69 .31 .98 .02 

428.35 437.01 453.77 430.39 441.39 462.34 .74 .26 .99 .01 

575.55 584.21 600.97 577.53 588.53 609.48 .73 .27 .99 .01 

495.01 503.67 520.43 496.78 507.78 528.73 .71 .29 .98 .02 

484.86 493.51 510.27 486.83 497.83 518.78 .73 .27 .99 .01 

477.50 486.15 502.91 476.86 487.86 508.81 .42 .58 .95 .05 

455.44 464.10 480.86 457.42 468.42 489.36 .73 .27 .99 .01 

479.42 488.08 504.84 481.42 492.42 513.37 .73 .27 .99 .01 

454.73 463.38 480.14 456.31 467.31 488.26 .69 .31 .98 .02 

391.96 400.62 417.38 395.33 406.33 427.28 .84 .16 .99 .01 

417.45 426.11 442.87 419.45 430.45 451.40 .73 .27 .99 .01 

466.81 475.46 492.22 468.54 479.54 500.49 .70 .30 .98 .02 

545.41 554.07 570.83 547.30 558.30 579.24 .72 .28 .99 .01 

528.67 537.33 554.09 530.64 541.64 562.59 .73 .27 .99 .01 

422.27 430.92 447.68 424.29 435.29 456.24 .73 .27 .99 .01 

484.83 493.49 510.25 486.73 497.73 518.68 .72 .28 .99 .01 

470.24 478.90 495.66 472.21 483.21 504.16 .73 .27 .99 .01 

351.52 360.17 376.93 351.95 362.95 383.90 .55 .45 .97 .03 

431.02 439.67 456.43 432.78 443.78 464.73 .71 .29 .98 .02 

345.62 354.27 371.03 343.18 354.18 375.13 .23 .77 .89 .11 

463.49 472.15 488.91 465.07 476.07 497.02 .69 .31 .98 .02 

380.00 388.66 405.42 381.98 392.98 413.93 .73 .27 .99 .01 

429.23 437.88 454.64 431.23 442.23 463.18 .73 .27 .99 .01 

(continued) 
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Table H2 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Melrose et al. (2012) (continued). Note: each row is the data for one 

participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

416.02 424.67 441.43 416.93 427.93 448.88 .61 .39 .98 .02 

333.44 342.09 358.85 335.14 346.14 367.09 .70 .30 .98 .02 

305.98 314.63 331.39 307.89 318.89 339.84 .72 .28 .99 .01 

511.38 520.04 536.80 513.30 524.30 545.24 .72 .28 .99 .01 

343.10 351.76 368.52 345.10 356.10 377.05 .73 .27 .99 .01 

401.33 409.98 426.74 402.81 413.81 434.76 .68 .32 .98 .02 

434.08 442.73 459.49 444.21 455.21 476.16 .99 .01 1 0 

468.94 477.59 494.35 472.35 483.35 504.30 .85 .15 .99 .01 

419.44 428.10 444.85 434.17 445.17 466.12 1 0 1 0 

493.02 501.68 518.44 512.92 523.92 544.87 1 0 1 0 

543.03 551.69 568.44 545.03 556.03 576.98 .73 .27 .99 .01 

271.95 280.60 297.36 277.53 288.53 309.48 .94 .06 1 0 

309.04 317.70 334.45 310.42 321.42 342.37 .67 .33 .98 .02 

491.52 500.17 516.93 493.28 504.28 525.23 .71 .29 .98 .02 

525.42 534.08 550.84 526.37 537.37 558.32 .62 .38 .98 .02 

467.22 475.87 492.63 468.28 479.28 500.23 .63 .37 .98 .02 

259.48 268.14 284.90 260.91 271.91 292.86 .67 .33 .98 .02 

390.53 399.19 415.95 388.65 399.65 420.60 .28 .72 .91 .09 

418.29 426.95 443.71 418.88 429.88 450.82 .57 .43 .97 .03 

454.81 463.46 480.22 464.59 475.59 496.54 .99 .01 1 0 
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Table H3  

Model comparison of SDbS and SDbS + Range using individual participant data 

from Wood et al. (2011a). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

324.45 325.47 331.58 325.79 327.37 334.71 .66 .34 .83 .17 

537.16 538.19 544.30 539.17 540.75 548.09 .73 .27 .87 .13 

716.84 717.86 723.97 718.84 720.42 727.76 .73 .27 .87 .13 

482.07 483.09 489.21 483.48 485.05 492.40 .67 .33 .83 .17 

579.48 580.50 586.61 581.49 583.07 590.41 .73 .27 .87 .13 

512.61 513.64 519.75 514.61 516.19 523.53 .73 .27 .87 .13 

642.33 643.36 649.47 643.95 645.53 652.87 .69 .31 .85 .15 

607.77 608.79 614.91 609.77 611.35 618.69 .73 .27 .87 .13 

502.44 503.46 509.57 503.17 504.75 512.09 .59 .41 .78 .22 

727.74 728.77 734.88 729.49 731.07 738.42 .71 .29 .85 .15 

531.76 532.79 538.90 533.74 535.32 542.66 .73 .27 .87 .13 

657.79 658.81 664.92 659.50 661.08 668.42 .70 .30 .85 .15 

640.64 641.67 647.78 642.00 643.58 650.92 .66 .34 .83 .17 

449.30 450.33 456.44 450.55 452.13 459.47 .65 .35 .82 .18 

711.12 712.14 718.26 713.09 714.67 722.02 .73 .27 .87 .13 

682.09 683.11 689.22 684.04 685.62 692.96 .73 .27 .87 .13 

651.58 652.61 658.72 653.58 655.16 662.50 .73 .27 .87 .13 

743.69 744.72 750.83 745.54 747.12 754.46 .72 .28 .86 .14 

586.08 587.11 593.22 587.23 588.81 596.15 .64 .36 .81 .19 

588.44 589.46 595.57 590.38 591.96 599.30 .73 .27 .87 .13 

484.65 485.67 491.79 485.37 486.95 494.29 .59 .41 .78 .22 

508.23 509.25 515.36 510.17 511.75 519.09 .73 .27 .87 .13 

556.59 557.62 563.73 557.60 559.18 566.52 .62 .38 .80 .20 

617.72 618.74 624.86 618.95 620.53 627.88 .65 .35 .82 .18 

564.73 565.76 571.87 566.02 567.60 574.94 .66 .34 .82 .18 

540.65 541.68 547.79 542.11 543.69 551.04 .68 .32 .84 .16 

601.04 602.06 608.17 602.82 604.40 611.74 .71 .29 .86 .14 

596.55 597.58 603.69 598.44 600.02 607.36 .72 .28 .86 .14 

744.12 745.14 751.25 746.09 747.67 755.01 .73 .27 .87 .13 

559.08 560.11 566.22 561.07 562.65 569.99 .73 .27 .87 .13 

614.40 615.42 621.53 616.30 617.88 625.22 .72 .28 .86 .14 

527.48 528.51 534.62 527.98 529.56 536.90 .56 .44 .76 .24 

(continued) 
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Table H3 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

552.28 553.31 559.42 550.64 552.22 559.56 .31 .69 .52 .48 

601.76 602.79 608.90 602.64 604.22 611.56 .61 .39 .79 .21 

538.54 539.56 545.67 539.34 540.92 548.26 .60 .40 .78 .22 

750.90 751.92 758.04 752.89 754.46 761.81 .73 .27 .87 .13 

511.49 512.51 518.62 511.27 512.85 520.19 .47 .53 .69 .31 

660.42 661.45 667.56 667.75 669.33 676.67 .98 .02 .99 .01 

677.40 678.43 684.54 679.39 680.97 688.31 .73 .27 .87 .13 

286.47 287.49 293.60 287.91 289.49 296.83 .67 .33 .83 .17 

702.89 703.92 710.03 705.42 707.00 714.34 .78 .22 .90 .10 

643.45 644.48 650.59 644.22 645.80 653.14 .59 .41 .78 .22 

609.18 610.21 616.32 611.17 612.75 620.09 .73 .27 .87 .13 

628.41 629.43 635.55 630.41 631.99 639.33 .73 .27 .87 .13 

375.12 376.14 382.25 377.12 378.69 386.04 .73 .27 .87 .13 

601.26 602.28 608.39 603.01 604.59 611.93 .71 .29 .85 .15 

634.99 636.01 642.13 636.99 638.57 645.91 .73 .27 .87 .13 

706.41 707.43 713.54 708.43 710.01 717.35 .73 .27 .87 .13 

572.63 573.66 579.77 574.63 576.21 583.55 .73 .27 .87 .13 

-235.52 -234.50 -228.39 -233.52 -231.94 -224.60 .73 .27 .87 .13 

840.68 841.71 847.82 842.66 844.24 851.58 .73 .27 .87 .13 

456.46 457.49 463.60 458.46 460.04 467.38 .73 .27 .87 .13 

660.03 661.05 667.16 661.90 663.48 670.82 .72 .28 .86 .14 

605.71 606.73 612.85 607.71 609.29 616.63 .73 .27 .87 .13 

657.37 658.39 664.50 659.37 660.95 668.29 .73 .27 .87 .13 

603.88 604.91 611.02 605.88 607.46 614.81 .73 .27 .87 .13 

269.00 270.03 276.14 270.98 272.56 279.90 .73 .27 .87 .13 

537.89 538.92 545.03 539.89 541.47 548.81 .73 .27 .87 .13 

578.55 579.57 585.68 580.46 582.04 589.38 .72 .28 .86 .14 

557.07 558.09 564.20 558.94 560.52 567.86 .72 .28 .86 .14 

712.22 713.25 719.36 714.23 715.81 723.15 .73 .27 .87 .13 

813.11 814.14 820.25 815.09 816.67 824.02 .73 .27 .87 .13 

724.46 725.49 731.60 726.46 728.04 735.38 .73 .27 .87 .13 

687.48 688.50 694.61 686.17 687.75 695.09 .34 .66 .56 .44 

(continued) 
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Table H3 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Wood et al. (2011a) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

750.35 751.38 757.49 752.42 754.00 761.34 .74 .26 .87 .13 

683.10 684.13 690.24 685.10 686.68 694.02 .73 .27 .87 .13 

572.16 573.19 579.30 574.16 575.74 583.08 .73 .27 .87 .13 

628.62 629.65 635.76 630.62 632.20 639.54 .73 .27 .87 .13 

584.81 585.83 591.94 586.81 588.38 595.73 .73 .27 .87 .13 

673.40 674.42 680.53 675.40 676.98 684.32 .73 .27 .87 .13 

594.11 595.13 601.24 596.10 597.68 605.03 .73 .27 .87 .13 

608.86 609.89 616.00 610.73 612.30 619.65 .72 .28 .86 .14 

731.62 732.64 738.75 733.61 735.19 742.54 .73 .27 .87 .13 

720.23 721.26 727.37 722.16 723.74 731.09 .72 .28 .87 .13 

580.53 581.56 587.67 583.03 584.61 591.95 .78 .22 .89 .11 

663.97 664.99 671.10 665.97 667.55 674.89 .73 .27 .87 .13 

626.74 627.76 633.87 628.75 630.33 637.67 .73 .27 .87 .13 

643.15 644.17 650.29 645.01 646.59 653.93 .72 .28 .86 .14 

575.30 576.33 582.44 575.91 577.49 584.83 .57 .43 .77 .23 

743.21 744.24 750.35 745.21 746.79 754.13 .73 .27 .87 .13 

613.12 614.15 620.26 615.12 616.70 624.04 .73 .27 .87 .13 
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Table H4  

Model comparison of SDbS and SDbS + Range using individual participant data 

from Wood et al. (2011b). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

29.38 39.74 52.10 31.48 45.23 60.69 .74 .26 .99 .01 

26.06 36.41 48.77 28.05 41.80 57.26 .73 .27 .99 .01 

23.15 33.50 45.87 26.67 40.42 55.88 .85 .15 .99 .01 

30.39 40.74 53.10 31.75 45.50 60.96 .66 .34 .98 .02 

27.83 38.18 50.55 29.97 43.72 59.17 .74 .26 .99 .01 

16.75 27.10 39.47 18.84 32.59 48.04 .74 .26 .99 .01 

28.15 38.50 50.86 30.44 44.19 59.65 .76 .24 .99 .01 

23.54 33.90 46.26 25.54 39.29 54.74 .73 .27 .99 .01 

45.42 55.78 68.14 47.46 61.21 76.67 .73 .27 .99 .01 

17.50 27.86 40.22 19.50 33.25 48.71 .73 .27 .99 .01 

34.19 44.54 56.91 36.56 50.31 65.77 .77 .23 .99 .01 

25.16 35.52 47.88 27.31 41.06 56.52 .75 .25 .99 .01 

21.75 32.10 44.46 23.76 37.51 52.96 .73 .27 .99 .01 

35.20 45.55 57.92 37.20 50.95 66.40 .73 .27 .99 .01 

22.42 32.77 45.14 30.76 44.51 59.96 .98 .02 1 0 

22.84 33.20 45.56 24.88 38.63 54.09 .74 .26 .99 .01 

23.31 33.66 46.03 35.85 49.60 65.05 1 0 1 0 

49.76 60.11 72.47 51.99 65.74 81.19 .75 .25 .99 .01 

19.79 30.14 42.51 21.81 35.56 51.02 .73 .27 .99 .01 

13.27 23.63 35.99 15.28 29.03 44.49 .73 .27 .99 .01 

17.42 27.78 40.14 19.43 33.18 48.63 .73 .27 .99 .01 

34.38 44.73 57.09 32.45 46.20 61.65 .28 .72 .91 .09 

40.06 50.41 62.78 42.06 55.81 71.26 .73 .27 .99 .01 

33.57 43.92 56.28 35.15 48.90 64.36 .69 .31 .98 .02 

19.35 29.70 42.06 21.35 35.10 50.55 .73 .27 .99 .01 

26.27 36.62 48.99 28.63 42.38 57.83 .76 .24 .99 .01 

19.24 29.59 41.96 21.24 34.99 50.45 .73 .27 .99 .01 

25.16 35.52 47.88 27.16 40.91 56.36 .73 .27 .99 .01 

23.30 33.65 46.02 25.31 39.06 54.52 .73 .27 .99 .01 

39.34 49.69 62.06 41.34 55.09 70.55 .73 .27 .99 .01 

14.37 24.72 37.08 16.38 30.13 45.59 .73 .27 .99 .01 

10.93 21.28 33.64 12.94 26.69 42.14 .73 .27 .99 .01 

(continued) 
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Table H4 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

52.06 62.42 74.78 54.06 67.81 83.26 .73 .27 .99 .01 

15.25 25.60 37.97 17.19 30.94 46.40 .73 .27 .99 .01 

34.40 44.76 57.12 36.78 50.53 65.98 .77 .23 .99 .01 

29.07 39.42 51.78 31.07 44.82 60.27 .73 .27 .99 .01 

28.33 38.69 51.05 30.31 44.06 59.52 .73 .27 .99 .01 

26.42 36.77 49.14 28.42 42.17 57.62 .73 .27 .99 .01 

32.76 43.11 55.48 34.76 48.51 63.97 .73 .27 .99 .01 

33.08 43.44 55.80 35.08 48.83 64.29 .73 .27 .99 .01 

36.21 46.56 58.93 30.44 44.19 59.65 .05 .95 .59 .41 

23.23 33.58 45.95 42.00 55.75 71.21 1 0 1 0 

24.12 34.48 46.84 26.12 39.87 55.33 .73 .27 .99 .01 

14.33 24.68 37.05 16.86 30.61 46.07 .78 .22 .99 .01 

28.63 38.99 51.35 31.94 45.69 61.14 .84 .16 .99 .01 

47.35 57.70 70.07 49.33 63.08 78.54 .73 .27 .99 .01 

38.98 49.33 61.70 40.98 54.73 70.19 .73 .27 .99 .01 

26.01 36.36 48.73 36.30 50.05 65.50 .99 .01 1 0 

23.26 33.61 45.97 22.19 35.94 51.40 .37 .63 .94 .06 

28.00 38.35 50.72 40.12 53.87 69.32 1 0 1 0 

26.00 36.36 48.72 30.06 43.81 59.27 .88 .12 .99 .01 

16.00 26.35 38.72 18.00 31.75 47.21 .73 .27 .99 .01 

37.95 48.30 60.67 39.99 53.74 69.19 .73 .27 .99 .01 

25.88 36.23 48.60 26.27 40.02 55.47 .55 .45 .97 .03 

19.81 30.17 42.53 24.32 38.07 53.52 .90 .10 1 .00 

25.96 36.32 48.68 27.96 41.71 57.17 .73 .27 .99 .01 

16.67 27.03 39.39 18.38 32.13 47.58 .70 .30 .98 .02 

15.07 25.42 37.78 17.07 30.82 46.27 .73 .27 .99 .01 

27.43 37.78 50.14 34.24 47.99 63.44 .97 .03 1 0 

17.32 27.67 40.03 18.82 32.57 48.02 .68 .32 .98 .02 

23.21 33.57 45.93 31.30 45.05 60.51 .98 .02 1 0 

16.63 26.99 39.35 18.98 32.73 48.18 .76 .24 .99 .01 

23.22 33.58 45.94 25.66 39.41 54.86 .77 .23 .99 .01 

28.39 38.75 51.11 30.39 44.14 59.60 .73 .27 .99 .01 

(continued) 
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Table H4 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Wood et al. (2011b) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

12.58 22.93 35.29 14.58 28.33 43.78 .73 .27 .99 .01 

19.97 30.32 42.69 21.96 35.71 51.17 .73 .27 .99 .01 

39.38 49.73 62.10 41.40 55.15 70.61 .73 .27 .99 .01 

26.77 37.13 49.49 27.97 41.72 57.18 .65 .35 .98 .02 

30.19 40.55 52.91 32.18 45.93 61.39 .73 .27 .99 .01 

30.00 40.36 52.72 30.77 44.52 59.97 .59 .41 .97 .03 

41.43 51.78 64.14 42.84 56.59 72.04 .67 .33 .98 .02 

20.96 31.32 43.68 23.17 36.92 52.38 .75 .25 .99 .01 

23.71 34.06 46.42 25.38 39.13 54.58 .70 .30 .98 .02 

30.52 40.87 53.24 31.95 45.70 61.15 .67 .33 .98 .02 

17.63 27.99 40.35 18.78 32.53 47.99 .64 .36 .98 .02 

39.92 50.27 62.64 40.01 53.76 69.21 .51 .49 .96 .04 

18.56 28.91 41.28 19.89 33.64 49.09 .66 .34 .98 .02 

19.82 30.17 42.54 21.72 35.47 50.92 .72 .28 .99 .01 
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Table H5  

Model comparison of SDbS and SDbS + Range using individual participant data 

from Maltby et al. (2012). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

20.39 29.82 43.81 22.39 34.62 52.10 .73 .27 .98 .02 

40.02 49.45 63.43 42.01 54.24 71.72 .73 .27 .98 .02 

57.88 67.30 81.29 60.37 72.59 90.08 .78 .22 .99 .01 

71.42 80.85 94.83 84.08 96.31 113.79 1 0 1 0 

78.82 88.25 102.24 67.40 79.63 97.11 0 1 .07 .93 

66.32 75.75 89.73 84.14 96.36 113.84 1 0 1 0 

41.15 50.58 64.57 41.08 53.31 70.79 .49 .51 .96 .04 

21.79 31.22 45.21 23.79 36.01 53.50 .73 .27 .98 .02 

61.13 70.56 84.54 63.13 75.35 92.84 .73 .27 .98 .02 

52.71 62.14 76.12 56.12 68.34 85.82 .85 .15 .99 .01 

72.35 81.78 95.77 74.35 86.58 104.06 .73 .27 .98 .02 

62.69 72.12 86.10 65.09 77.32 94.80 .77 .23 .99 .01 

53.26 62.69 76.68 55.26 67.49 84.97 .73 .27 .98 .02 

47.99 57.42 71.41 49.97 62.19 79.67 .73 .27 .98 .02 

47.29 56.72 70.71 49.29 61.51 79.00 .73 .27 .98 .02 

47.87 57.30 71.28 50.14 62.37 79.85 .76 .24 .99 .01 

39.29 48.72 62.71 35.43 47.65 65.13 .13 .87 .77 .23 

70.83 80.26 94.24 72.83 85.05 102.53 .73 .27 .98 .02 

81.15 90.57 104.56 83.15 95.37 112.85 .73 .27 .98 .02 

77.48 86.91 100.89 79.52 91.74 109.22 .73 .27 .98 .02 

79.68 89.11 103.10 81.72 93.94 111.43 .74 .26 .98 .02 

42.61 52.04 66.03 45.20 57.43 74.91 .78 .22 .99 .01 

38.62 48.05 62.04 40.53 52.75 70.24 .72 .28 .98 .02 

67.31 76.74 90.72 69.27 81.49 98.97 .73 .27 .98 .02 

45.47 54.90 68.88 47.46 59.68 77.17 .73 .27 .98 .02 

59.46 68.89 82.88 61.82 74.04 91.52 .76 .24 .99 .01 

44.70 54.13 68.11 46.70 58.92 76.40 .73 .27 .98 .02 

64.94 74.37 88.35 66.94 79.16 96.64 .73 .27 .98 .02 

55.72 65.15 79.13 59.44 71.66 89.14 .87 .13 .99 .01 

61.86 71.29 85.28 63.86 76.08 93.57 .73 .27 .98 .02 

76.69 86.12 100.11 78.73 90.95 108.44 .74 .26 .98 .02 

53.17 62.60 76.59 55.17 67.39 84.88 .73 .27 .98 .02 

(continued) 
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Table H5 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

69.30 78.73 92.71 71.30 83.52 101.00 .73 .27 .98 .02 

31.63 41.06 55.05 33.72 45.94 63.43 .74 .26 .99 .01 

63.94 73.37 87.36 65.94 78.16 95.65 .73 .27 .98 .02 

60.44 69.87 83.86 62.44 74.67 92.15 .73 .27 .98 .02 

51.93 61.36 75.34 53.84 66.07 83.55 .72 .28 .98 .02 

71.88 81.30 95.29 73.88 86.10 103.59 .73 .27 .98 .02 

54.03 63.46 77.44 52.02 64.24 81.72 .27 .73 .89 .11 

70.04 79.47 93.45 74.41 86.63 104.11 .90 .10 1 0 

68.06 77.49 91.47 70.06 82.28 99.76 .73 .27 .98 .02 

67.69 77.11 91.10 71.09 83.31 100.80 .85 .15 .99 .01 

67.81 77.24 91.22 70.53 82.75 100.23 .80 .20 .99 .01 

43.73 53.16 67.14 28.11 40.33 57.82 0 1 .01 .99 

70.10 79.53 93.52 62.24 74.46 91.95 .02 .98 .31 .69 

48.43 57.86 71.85 55.58 67.80 85.28 .97 .03 1 0 

45.11 54.54 68.52 47.11 59.33 76.81 .73 .27 .98 .02 

58.80 68.23 82.22 54.92 67.14 84.63 .13 .87 .77 .23 

72.17 81.60 95.58 72.58 84.80 102.28 .55 .45 .97 .03 

76.26 85.69 99.67 78.27 90.49 107.98 .73 .27 .98 .02 

53.18 62.61 76.60 54.90 67.12 84.60 .70 .30 .98 .02 

49.10 58.53 72.51 51.69 63.91 81.40 .79 .21 .99 .01 

45.54 54.97 68.95 47.54 59.76 77.24 .73 .27 .98 .02 

47.37 56.80 70.79 45.60 57.82 75.31 .29 .71 .91 .09 

42.15 51.58 65.56 39.91 52.13 69.61 .25 .75 .88 .12 

47.20 56.62 70.61 48.52 60.74 78.22 .66 .34 .98 .02 

39.28 48.70 62.69 41.14 53.36 70.84 .72 .28 .98 .02 

63.78 73.21 87.20 60.00 72.22 89.71 .13 .87 .78 .22 

79.56 88.98 102.97 81.57 93.80 111.28 .73 .27 .98 .02 

53.60 63.02 77.01 55.60 67.82 85.30 .73 .27 .98 .02 

48.14 57.57 71.55 48.98 61.20 78.69 .60 .40 .97 .03 

76.18 85.61 99.59 78.18 90.40 107.88 .73 .27 .98 .02 

52.15 61.58 75.57 54.38 66.60 84.09 .75 .25 .99 .01 

53.15 62.58 76.57 55.46 67.68 85.16 .76 .24 .99 .01 

(continued) 
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Table H5 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

43.18 52.61 66.60 45.18 57.40 74.89 .73 .27 .98 .02 

55.11 64.54 78.53 52.23 64.45 81.93 .19 .81 .85 .15 

54.87 64.30 78.29 56.77 69.00 86.48 .72 .28 .98 .02 

59.43 68.85 82.84 61.43 73.65 91.13 .73 .27 .98 .02 

79.76 89.18 103.17 81.76 93.98 111.46 .73 .27 .98 .02 

37.48 46.91 60.89 39.48 51.70 69.18 .73 .27 .98 .02 

68.98 78.41 92.39 70.98 83.20 100.68 .73 .27 .98 .02 

78.63 88.06 102.05 80.58 92.80 110.29 .73 .27 .98 .02 

55.82 65.25 79.24 58.04 70.26 87.74 .75 .25 .99 .01 

63.57 73.00 86.99 65.57 77.79 95.28 .73 .27 .98 .02 

66.01 75.43 89.42 69.01 81.23 98.71 .82 .18 .99 .01 

70.74 80.17 94.16 72.74 84.96 102.45 .73 .27 .98 .02 

54.08 63.51 77.50 56.08 68.31 85.79 .73 .27 .98 .02 

68.28 77.71 91.69 70.28 82.50 99.98 .73 .27 .98 .02 

58.55 67.98 81.96 60.55 72.77 90.25 .73 .27 .98 .02 

81.94 91.37 105.36 85.86 98.08 115.57 .88 .12 .99 .01 

65.28 74.71 88.70 67.28 79.51 96.99 .73 .27 .98 .02 

60.52 69.95 83.93 62.52 74.75 92.23 .73 .27 .98 .02 

77.48 86.91 100.89 79.39 91.62 109.10 .72 .28 .98 .02 

41.32 50.75 64.74 43.32 55.54 73.03 .73 .27 .98 .02 

50.73 60.16 74.14 52.73 64.95 82.43 .73 .27 .98 .02 

58.67 68.10 82.08 60.67 72.89 90.37 .73 .27 .98 .02 

80.68 90.11 104.09 82.68 94.90 112.38 .73 .27 .98 .02 

62.01 71.44 85.43 64.01 76.23 93.72 .73 .27 .98 .02 

62.10 71.53 85.51 63.93 76.15 93.63 .71 .29 .98 .02 

15.35 24.78 38.77 17.35 29.57 47.06 .73 .27 .98 .02 

17.26 26.69 40.67 19.26 31.48 48.96 .73 .27 .98 .02 

41.61 51.04 65.03 43.61 55.84 73.32 .73 .27 .98 .02 

43.76 53.18 67.17 47.07 59.29 76.77 .84 .16 .99 .01 

45.43 54.86 68.84 46.97 59.20 76.68 .68 .32 .98 .02 

61.64 71.07 85.05 63.64 75.86 93.34 .73 .27 .98 .02 

56.03 65.46 79.45 58.03 70.25 87.74 .73 .27 .98 .02 

(continued) 
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Table H5 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

73.25 82.67 96.66 75.25 87.47 104.95 .73 .27 .98 .02 

54.23 63.66 77.64 56.23 68.45 85.93 .73 .27 .98 .02 

69.00 78.43 92.42 63.27 75.49 92.97 .05 .95 .57 .43 

71.60 81.03 95.01 72.09 84.31 101.79 .56 .44 .97 .03 

73.65 83.07 97.06 75.65 87.87 105.35 .73 .27 .98 .02 

25.81 35.23 49.22 27.81 40.03 57.51 .73 .27 .98 .02 

81.66 91.09 105.07 83.66 95.88 113.36 .73 .27 .98 .02 

60.32 69.74 83.73 62.32 74.54 92.02 .73 .27 .98 .02 

80.78 90.21 104.19 68.06 80.28 97.76 0 1 .04 .96 

41.04 50.47 64.45 43.04 55.26 72.74 .73 .27 .98 .02 

70.60 80.03 94.01 72.60 84.82 102.30 .73 .27 .98 .02 

57.71 67.14 81.12 61.51 73.74 91.22 .87 .13 .99 .01 

69.18 78.61 92.60 71.18 83.41 100.89 .73 .27 .98 .02 

66.31 75.74 89.73 68.31 80.53 98.02 .73 .27 .98 .02 

85.26 94.69 108.68 87.18 99.40 116.89 .72 .28 .98 .02 

56.89 66.32 80.30 58.89 71.11 88.59 .73 .27 .98 .02 

60.07 69.50 83.48 61.87 74.09 91.57 .71 .29 .98 .02 

72.20 81.63 95.62 74.20 86.43 103.91 .73 .27 .98 .02 

66.63 76.06 90.04 69.40 81.62 99.10 .80 .20 .99 .01 

55.36 64.79 78.78 57.36 69.59 87.07 .73 .27 .98 .02 

37.06 46.49 60.48 39.06 51.29 68.77 .73 .27 .98 .02 

66.15 75.57 89.56 68.14 80.36 97.85 .73 .27 .98 .02 

40.81 50.24 64.23 42.81 55.03 72.52 .73 .27 .98 .02 

80.54 89.97 103.95 82.54 94.76 112.24 .73 .27 .98 .02 

53.57 63.00 76.98 52.37 64.59 82.08 .35 .65 .93 .07 

80.61 90.04 104.03 63.19 75.41 92.89 0 1 0 1 

82.49 91.92 105.91 84.49 96.71 114.20 .73 .27 .98 .02 

45.06 54.49 68.47 47.06 59.28 76.76 .73 .27 .98 .02 

82.76 92.19 106.18 84.21 96.43 113.91 .67 .33 .98 .02 

51.01 60.44 74.43 50.84 63.06 80.54 .48 .52 .96 .04 

51.25 60.68 74.66 52.59 64.81 82.29 .66 .34 .98 .02 

63.96 73.39 87.37 57.48 69.70 87.18 .04 .96 .48 .52 

(continued) 
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Table H5 

Model comparison of SDbS and SDbS + Range using individual participant data 

from Maltby et al. (2012) (continued). Note: each row is the data for one participant. 

SDbS SDbS+Range AICw BICw 

AIC AICc BIC AIC AICc BIC SDbS +Range SDbS +Range 

74.59 84.02 98.01 76.59 88.81 106.30 .73 .27 .98 .02 

52.83 62.25 76.24 54.43 66.65 84.14 .69 .31 .98 .02 

83.07 92.50 106.48 85.07 97.29 114.77 .73 .27 .98 .02 

81.66 91.09 105.08 83.66 95.89 113.37 .73 .27 .98 .02 

71.14 80.57 94.56 73.14 85.37 102.85 .73 .27 .98 .02 

60.92 70.34 84.33 59.72 71.95 89.43 .36 .64 .93 .07 

58.07 67.50 81.49 58.64 70.86 88.34 .57 .43 .97 .03 
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Table I1 

Parameter fits and -2lnL for individual participant data from Experiment 4. Note: 

each row is the data for one participant. Experimental conditions are: none (N), 

same (S), increasing (I), decreasing (D), middle high (MH). 

  Time-based Forgetting Output Interference Both 

Pay c s t -2lnL c s t o -2lnL c s t o w -2lnL 

N 13.44 6.32 .81 57.69 42.31 6.24 .74 .01 60.24 8.24 12.68 .87 1 .82 54.34 

N 0.75 100.00 .11 88.64 84.39 99.98 1 .55 85.39 0.20 43.55 .18 1 .02 68.28 

N 10.38 5.17 .69 58.99 0.14 53.47 .14 .93 56.23 0.62 25.82 .20 .92 .63 56.60 

N 15.61 5.11 .86 56.49 6.99 4.94 .86 .36 58.05 10.08 6.86 .83 1 .90 54.88 

N 8.91 5.36 .75 68.96 0.31 24.85 .25 1 54.51 0.31 24.84 .25 1 0 54.51 

N 1.03 100.00 .11 69.94 100.00 4.15 .87 .34 88.51 3.60 33.63 .91 .97 .03 78.02 

N 13.62 10.18 .61 67.44 3.67 10.44 .61 .66 58.96 15.37 9.98 .68 .75 .85 58.29 

N 0.00 4.18 .71 70.09 3.59 5.95 .70 .86 61.88 47.64 6.19 .82 .64 .03 61.59 

N 14.72 6.81 .74 59.46 4.21 7.20 .79 .70 57.25 18.29 6.70 .77 .83 .96 56.27 

N 19.59 4.19 .76 52.64 1.24 9.92 .35 .70 52.38 15.35 6.63 .48 .74 1 51.84 

N 16.03 4.93 .75 71.79 98.80 89.40 .99 .64 66.10 0.77 18.76 .28 .93 .35 60.51 

N 8.95 7.43 .56 66.36 100.00 6.17 .78 .28 61.51 10.85 6.25 .69 .56 .55 62.02 

N 8.23 5.88 .68 64.01 100.00 3.94 1 .12 65.64 0.63 13.89 .37 .96 .09 54.85 

N 0.71 97.57 .11 72.21 0.26 29.74 .22 1 57.87 1.09 18.51 .26 0 .70 73.41 

N 0.00 4.37 .82 69.27 1.05 8.84 .46 .12 66.25 1.05 8.84 .46 .12 0 66.25 

N 0.79 100.00 .11 87.59 47.32 11.30 .36 .01 89.95 100.00 9.68 .41 .04 1 89.85 

S 15.69 5.89 .75 65.41 62.61 5.65 .92 .46 65.92 0.39 28.27 .22 .89 0 58.55 

S 13.75 5.80 .67 66.03 98.43 91.82 .99 .62 53.02 88.70 43.83 .97 .61 .02 53.07 

S 0.00 5.65 .63 82.54 100.00 11.08 1 .57 80.17 0.00 6.25 .58 .77 .91 82.54 

S 14.00 7.76 .61 69.39 0.53 25.83 .24 .87 67.59 7.27 10.65 .56 .98 .91 65.58 

S 24.71 5.15 .65 65.88 4.39 6.44 .62 .87 58.57 5.27 6.57 .63 .88 .17 58.70 

S 0.82 100.00 .11 75.07 100.00 100.00 1 .55 81.28 0.52 16.84 .36 1 0 61.38 

S 10.76 2.87 1 76.18 0.16 43.94 .15 0 66.26 8.35 5.98 .51 .63 1 75.97 

S 0.99 100.00 .11 68.64 0.35 30.70 .22 .96 58.86 0.88 33.80 .21 1 .74 58.23 

S 1.12 99.97 .11 66.75 0.34 32.58 .19 .97 59.15 1.10 36.70 .18 1 .82 57.88 

S 9.22 6.54 .59 82.17 0.10 100.00 .12 1 56.19 0.27 41.82 .18 1 .17 57.62 

S 26.13 6.23 .72 55.04 64.53 5.07 .73 .45 57.54 20.88 7.09 .72 1 .98 54.63 

S 15.83 5.52 .72 81.56 0.11 99.35 .11 .96 60.99 10.16 79.11 .98 .88 0 70.30 

S 1.17 100.00 .12 66.26 0.29 47.47 .19 .94 56.83 0.32 48.19 .18 .94 .15 56.78 

S 9.13 7.10 .66 81.57 0.23 47.10 .18 1 54.69 0.22 47.21 .18 1 0 54.69 

S 0.83 100.00 .11 79.77 100.00 4.75 1 .22 95.00 0.31 34.37 .22 1 .11 64.83 

I 16.76 7.13 .68 71.54 100.00 5.50 .83 .35 82.10 3.89 24.27 .29 .98 .94 64.07 

I 15.17 7.50 .66 52.11 0.19 79.30 .12 .82 52.26 2.53 53.96 .15 .85 1 50.17 

I 43.30 17.83 .86 68.88 12.35 10.95 .38 .47 74.08 58.94 10.97 .38 .51 .96 73.75 

I 14.04 5.42 .68 76.22 98.05 18.08 .25 .06 76.48 33.61 12.80 .32 .32 1 76.73 

I 28.13 6.02 .72 64.72 100.00 6.32 .74 .54 55.46 99.96 6.63 .74 .63 .66 55.50 

I 24.82 12.91 .79 52.57 18.73 10.95 .70 .51 54.25 55.78 99.98 .98 .89 .95 43.88 

I 1.82 28.98 .21 71.22 100.00 5.79 1 .30 72.52 1.80 29.59 .21 .94 1 70.87 

I 11.06 7.81 .54 67.82 0.15 78.00 .12 .92 60.15 0.13 88.92 .12 .92 .01 60.13 

I 10.72 10.50 .52 67.18 100.00 4.17 1 .11 106.86 7.01 13.65 .52 1 .94 62.31 

I 24.41 8.59 .78 78.76 100.00 6.84 .68 .32 71.36 100.00 6.84 .68 .32 0 71.36 

I 24.13 7.52 .76 69.13 100.00 7.24 .74 .28 68.58 8.67 85.19 .96 .97 .52 60.15 

I 12.97 5.43 .62 59.92 0.22 35.24 .16 .95 56.24 0.23 34.42 .17 .95 .01 56.24 

I 29.15 10.87 .84 66.81 4.97 22.30 .90 .87 71.24 23.12 43.05 .95 .98 .91 64.13 

I 42.93 24.35 .93 85.71 100.00 100.00 .99 .57 114.57 42.94 24.36 .93 1 1 85.71 

I 44.69 6.10 .98 62.45 100.00 6.28 .93 .43 56.74 100.00 6.28 .93 .43 0 56.74 

D 3.43 3.87 1 103.98 7.51 8.98 .61 .68 81.41 100.00 7.98 .62 .36 0 81.38 

D 12.34 5.45 .82 97.75 100.00 10.44 .94 .53 84.90 0.13 97.69 .13 1 0 70.45 

D 0.44 87.87 .11 83.19 11.51 10.57 .47 .13 67.48 3.49 58.09 .93 .97 0 64.71 

D 5.20 6.20 .81 99.12 100.00 6.68 .79 .36 93.60 3.94 9.35 .55 0 1 99.40 

D 0.76 100.00 .10 91.73 0.33 77.37 .11 .77 70.52 2.13 33.09 .17 .72 .63 71.44 

D 4.97 4.70 .91 98.63 9.75 37.63 .23 .41 107.71 0.00 5.42 .77 .54 1 99.15 

D 4.10 4.31 1 74.83 0.23 38.29 .18 .66 61.69 0.27 32.34 .20 .65 .03 61.76 

D 0.98 100.00 .11 65.82 0.17 65.00 .15 .96 53.92 0.21 73.96 .14 .97 .34 53.91 

D 4.54 5.91 .80 100.35 0.45 64.99 .15 .51 92.98 61.89 97.91 .12 0 .18 92.71 

D 2.00 20.29 .32 99.31 100.00 10.28 .68 .40 44.50 100.00 10.28 .68 .40 0 44.50 

D 10.00 5.68 .63 82.15 2.97 12.72 .78 .93 68.80 3.17 14.53 .81 .94 0 68.81 

D 5.00 6.53 .52 88.82 0.00 3.87 .78 .72 89.63 5.39 2.98 1 0 1 89.69 

D 2.94 30.56 .25 107.26 100.00 6.92 .69 .28 98.59 100.00 6.92 .69 .28 0 98.59 

D 1.00 100.00 .11 63.64 100.00 5.32 .68 .01 69.91 0.29 88.32 .12 .96 .68 57.36 

D 14.67 5.67 .71 65.92 0.27 37.68 .17 .87 60.11 0.46 33.20 .18 .87 .37 60.14 

MH 0.39 26.27 .19 76.77 5.76 12.49 1 1.00 77.33 1.34 3.33 1 .50 1 77.09 

MH 0.47 18.61 .24 67.05 0.00 3.99 .86 .60 67.59 0.77 16.44 .26 .79 1 67.02 

MH 0.92 42.10 .15 88.12 10.11 100.00 .25 .46 78.17 99.76 99.58 .98 .51 0 77.05 

(continued) 
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Table I1 

Parameter fits and -2lnL for individual participant data from Experiment 4 

(continued). Note: each row is the data for one participant. Experimental conditions 

are: none (N), same (S), increasing (I), decreasing (D), middle high (MH). 

  Time-based Forgetting Output Interference Both 

Pay c s t -2lnL c s t o -2lnL c s t o w -2lnL 

MH 100.00 2.82 1 46.95 21.48 2.45 1 .09 46.83 1.03 22.76 .17 .83 1 45.87 

MH 13.51 14.66 .47 106.67 5.36 100.00 .99 .96 89.67 100.00 13.53 .34 .11 1 89.23 

MH 0.54 28.98 .16 70.01 4.56 7.40 .76 .86 63.86 8.07 7.74 .77 .85 .45 63.83 

MH 4.83 9.28 .45 74.03 0.00 3.53 1 .74 79.16 0.00 6.28 .59 .82 .94 79.16 

MH 0.87 20.91 .21 82.25 100.00 4.20 .86 .39 81.58 1.83 20.88 .22 .44 .01 81.90 

MH 3.21 17.96 .25 73.07 1.39 11.38 .50 .94 68.78 0.85 12.43 .41 .97 0 67.93 

MH 10.02 17.52 .35 116.64 100.00 100.00 1 .63 85.61 1.19 23.32 .20 .65 1 95.88 

MH 18.40 5.23 .71 59.70 4.54 61.47 .96 .97 57.86 5.61 8.35 .54 .97 .84 57.17 

MH 0.00 4.54 .79 68.34 7.60 6.01 .90 .71 59.47 100.00 5.31 .95 .39 0 59.50 

MH 16.47 3.56 1 56.74 0.68 5.55 .63 .15 57.40 7.58 7.41 .49 0 1 57.25 

MH 9.36 18.76 .37 68.82 0.34 14.65 .29 0 99.63 0.34 14.82 .29 0 0 99.63 
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Table I2 

Parameter fits and -2lnL for individual participant data from Experiment 5. Note: 

each row is the data for one participant.  

  Time-based Forgetting Output Interference Both 

Schedule c s t -2lnL c s t o -2lnL c s t o w -2lnL 

N 15.34 4.70 1 75.91 0.00 3.98 1 .47 81.06 0.29 25.77 .25 1 0 63.63 

N 12.69 4.53 .89 73.55 0.54 15.68 .34 .93 63.40 0.54 15.74 .34 .93 0 63.40 

N 11.47 9.36 .55 62.07 5.09 100.00 .97 .94 69.31 3.62 24.68 .27 .91 .94 56.55 

N 5.05 4.22 1 90.10 3.11 7.00 .74 .61 64.44 3.11 7.00 .74 .61 0 64.44 

N 4.57 3.58 1 67.26 100.00 4.09 1 .18 66.48 0.44 12.22 .37 1. .16 62.72 

N 29.59 4.17 .99 63.61 100.00 5.17 .75 .03 63.36 100.00 4.57 .85 .47 1 63.18 

N 3.64 3.99 1 86.32 1.32 22.14 .61 .99 76.93 21.66 4.06 1 .26 1 85.36 

N 13.37 7.26 .73 54.67 0.96 12.69 .46 .81 68.58 9.35 9.57 .75 1 .92 52.46 

N 29.55 4.08 .94 63.04 5.31 50.71 .98 .97 63.32 0.15 67.14 .12 .89 .03 63.29 

N 0.77 49.13 .14 81.28 100.00 4.89 1 .47 80.59 1.43 21.22 .22 .96 1 81.73 

S 1.51 100.00 .13 67.39 0.13 100.00 .13 .97 51.83 100.00 7.99 .89 .55 1 74.26 

S 11.28 6.63 .65 74.46 0.11 99.95 .11 .93 60.42 0.11 99.99 .11 .93 .01 60.43 

S 11.60 8.17 .62 67.43 0.22 66.34 .15 .89 69.03 11.60 8.16 .62 1 1 67.43 

S 7.72 4.39 1 74.08 1.03 11.24 .53 .85 66.54 1.03 11.23 .53 .85 0 66.54 

S 8.31 6.56 .66 60.18 0.69 12.25 .41 .88 58.66 3.77 8.78 .57 1 .85 57.64 

S 16.77 6.99 .68 56.96 100.00 5.61 .76 .29 58.08 15.65 7.16 .68 .98 .98 56.86 

S 12.80 6.89 .74 67.10 3.28 20.54 .93 .93 80.87 0.96 100.00 .12 .90 .96 60.61 

S 0.35 33.53 .18 59.62 42.95 4.48 1 .04 67.67 5.57 13.33 .37 .46 .98 66.00 

S 9.23 8.09 .55 65.26 100.00 5.03 .95 .45 76.05 0.52 29.07 .23 .95 .33 54.06 

S 0.86 73.64 .13 86.73 97.08 66.16 1 .49 98.86 2.99 9.81 .50 .97 .92 87.18 

I 7.82 10.25 .53 78.91 0.30 40.48 .21 .95 62.46 48.95 29.93 .22 .02 .78 80.05 

I 43.52 14.62 .95 68.45 100.00 7.04 .68 .15 53.84 100.00 7.04 .68 .15 0 53.84 

I 1.41 100.00 .12 60.81 0.15 100.00 .12 .95 56.35 1.61 45.65 .18 .99 .91 55.62 

I 19.95 10.04 .72 65.75 0.77 36.18 .23 .76 81.60 17.76 12.08 .75 1 .98 65.39 

I 10.55 10.71 .54 67.83 0.49 28.97 .25 .88 84.16 6.95 15.59 .62 1 .90 59.40 

I 4.22 20.71 .29 60.54 100.00 11.37 .43 .07 70.16 1.82 42.27 .19 1 .96 60.20 

I 18.82 6.91 .83 57.47 100.00 6.32 .77 .07 60.92 15.71 8.04 .83 1 .97 57.08 

I 11.54 6.48 .63 70.45 0.72 15.31 .35 .93 63.13 0.76 15.17 .35 .93 .05 63.13 

I 23.01 7.36 .90 59.56 100.00 6.18 .93 .21 58.32 39.81 6.28 .89 .73 1 56.63 

I 33.77 14.27 .91 52.89 0.82 28.08 .29 .80 97.14 33.77 14.27 .91 1 1 52.89 

D 3.88 4.22 1 79.86 0.14 92.71 .12 .76 51.73 0.17 72.06 .13 .76 0 51.82 

D 0.76 57.11 .14 59.87 1.30 4.57 .98 .11 59.91 1.09 10.81 .45 .29 .71 59.14 

D 27.28 9.33 1 103.47 0.18 100.00 .13 .90 75.01 0.18 100.00 .13 .90 0 75.01 

D 1.49 26.74 .23 104.01 100.00 8.17 .81 .43 91.23 100.00 8.17 .81 .43 0 91.23 

D 3.47 13.57 .40 106.08 100.00 7.23 .75 .32 100.43 0.35 33.18 .20 0 .03 97.58 

D 0.71 100.00 .11 75.04 100.00 5.08 1 .10 64.82 0.12 99.22 .13 1 .09 51.25 

D 14.07 5.49 .78 82.06 100.00 5.24 .80 .12 88.17 94.02 17.86 .28 .04 1 84.61 

D 0.69 100.00 .12 84.22 100.00 5.81 1 .19 64.89 100.00 5.81 1 .19 0 64.89 

D 0.87 99.84 .10 74.21 0.17 54.51 .14 1 55.36 0.17 57.98 .14 1 .06 55.39 

D 0.00 4.98 .71 84.22 0.46 10.94 .40 1 81.40 9.82 3.72 .94 .18 1 84.20 

MH 0.27 67.77 .12 89.20 0.21 3.90 .97 .04 91.09 0.34 25.43 .21 .16 0 93.31 

MH 10.15 7.61 .59 61.08 0.47 23.36 .25 .86 56.23 1.00 23.50 .25 .88 .62 56.09 

MH 0.30 78.55 .13 92.81 100.00 100.00 1 .42 116.72 1.62 8.82 .59 .74 1 93.80 

MH 0.32 45.08 .14 82.59 0.05 39.73 .15 .87 82.49 0.15 40.59 .15 .91 .81 82.49 

MH 19.17 5.61 .83 69.74 0.29 36.56 .19 .91 65.15 8.18 11.64 .80 1 .83 65.24 

MH 0.86 74.30 .13 73.58 9.16 32.35 .21 .03 49.56 75.49 32.82 .21 0 0 49.52 

MH 0.96 77.25 .12 68.22 100.00 6.56 .63 .01 71.29 2.23 28.04 .20 0 1 69.01 

MH 0.32 98.79 .11 89.67 100.00 7.06 1 .41 70.64 100.00 7.06 1 .41 0 70.64 

MH 0.41 49.07 .14 70.77 39.30 4.09 1 0 81.72 0.10 22.93 .23 1 .38 70.17 

MH 6.26 4.06 1 65.97 1.79 6.43 .72 .57 56.46 2.39 5.67 .78 0 0 56.52 
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Table I3 

Parameter fits and -2lnL for individual participant data from Experiment 6. Note: 

each row is the data for one participant. 

Time-based Forgetting Output Interference Both 

c s t -2lnL c s t o -2lnL c s t o w -2lnL 

0.56 99.87 .10 154.12 100.00 4.69 .85 .13 133.45 100.00 5.68 .70 .16 .95 133.71 

0.82 99.54 .11 113.05 100.00 4.01 1 .01 126.15 0.61 85.72 .12 .96 .92 111.32 

0.87 98.10 .11 121.25 4.95 4.76 1 .67 125.43 2.36 35.57 .19 .90 1 118.56 

0.72 100.00 .11 150.72 0.14 65.66 .14 .96 137.83 0.13 78.17 .13 .96 .05 137.80 

8.85 5.00 .76 147.35 0.13 59.52 .14 .96 134.98 0.12 69.80 .13 .96 .00 134.97 

0.70 97.16 .11 140.86 87.22 3.82 1 .11 145.10 1.14 15.08 .32 .91 .70 139.70 

10.83 8.18 .57 120.57 0.58 21.53 .29 .90 113.20 1.98 18.64 .32 .93 .76 112.02 

17.68 4.24 1 106.50 0.12 75.54 .13 .94 99.87 0.00 5.20 .73 .40 1 110.02 

13.37 7.09 .67 119.95 0.99 13.30 .38 .75 127.51 24.36 7.12 .62 .62 1 116.68 

0.76 93.68 .11 89.49 7.21 5.32 1 .61 84.67 39.73 5.09 1 .59 .90 83.81 

0.78 100.00 .11 132.05 0.34 27.79 .24 .87 124.57 0.47 26.64 .25 .87 .30 124.43 

0.42 15.02 .29 132.36 0.00 3.63 .98 .28 132.59 0.00 5.78 .64 .54 .98 132.59 

14.70 4.47 .84 133.32 0.67 11.20 .40 .92 129.96 0.88 10.73 .41 .92 .22 129.95 

0.89 100.00 .11 110.34 0.36 18.78 .26 0 115.63 0.41 84.84 .12 .98 .81 107.04 

19.90 5.02 1 99.53 0.06 17.09 .29 .14 105.34 4.96 10.59 .46 .88 1 98.40 

20.90 4.18 1 130.43 2.66 3.74 .99 .25 132.86 3.82 19.25 .26 .75 1 127.78 

1.00 100.00 .12 114.18 1.03 12.59 .52 .94 106.76 2.14 13.56 .46 .94 .67 105.48 

6.66 4.96 .87 115.98 0.39 17.85 .32 .86 110.14 0.39 17.98 .32 .86 .01 110.14 

7.98 3.87 1 126.71 0.17 37.09 .18 .99 121.07 0.00 5.80 .67 .32 .97 126.68 
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Table J1  

Model comparison of SIMPLE variations using individual participant data from 

Experiment 4 Note: each row is the data for one participant. Experimental 

conditions are: none (N), same (S), increasing (I), decreasing (D), middle high (MH). 

  Time Input interference Both AICw BICw 

Schedule AIC AICc BIC AIC AICc BIC AIC AICc BIC Time OI Both Time OI Both 

N 63.69 65.88 65.82 68.24 72.24 71.07 64.34 71.01 67.88 .55 .06 .40 .70 .05 .25 

N 94.64 96.83 96.77 93.39 97.39 96.22 78.28 84.95 81.82 0 0 1 0 0 1 

N 64.99 67.17 67.11 64.23 68.23 67.07 66.60 73.27 70.14 .34 .50 .15 .45 .46 .10 

N 62.49 64.67 64.61 66.05 70.05 68.88 64.88 71.55 68.42 .68 .11 .21 .79 .09 .12 
N 74.96 77.15 77.09 62.51 66.51 65.34 64.51 71.18 68.05 0 .73 .27 0 .79 .20 

N 75.94 78.13 78.07 96.51 100.51 99.34 88.02 94.68 91.56 1 0 0 1 0 0 

N 73.44 75.62 75.56 66.96 70.96 69.79 68.29 74.96 71.83 .03 .64 .33 .04 .71 .25 

N 76.09 78.28 78.22 69.88 73.88 72.72 71.59 78.26 75.13 .03 .68 .29 .05 .73 .22 

N 65.46 67.64 67.59 65.25 69.25 68.08 66.27 72.94 69.81 .36 .40 .24 .47 .37 .16 

N 58.64 60.82 60.77 60.38 64.38 63.22 61.84 68.51 65.38 .62 .26 .12 .72 .21 .07 

N 77.79 79.97 79.92 74.10 78.10 76.93 70.51 77.17 74.05 .02 .14 .84 .04 .18 .78 

N 72.36 74.54 74.48 69.51 73.51 72.35 72.02 78.69 75.56 .16 .66 .19 .22 .65 .13 
N 70.01 72.20 72.14 73.64 77.64 76.47 64.85 71.52 68.39 .07 .01 .92 .13 .02 .85 

N 78.21 80.39 80.33 65.87 69.87 68.70 83.41 90.08 86.95 .00 1 0 0 1 0 

N 75.27 77.45 77.39 74.25 78.25 77.08 76.25 82.92 79.79 .31 .51 .19 .41 .47 .12 

N 93.59 95.77 95.71 97.95 101.95 100.78 99.85 106.52 103.39 .86 .10 .04 .91 .07 .02 

S 71.41 73.59 73.54 73.92 77.92 76.75 68.55 75.22 72.09 .18 .05 .76 .31 .06 .63 

S 72.03 74.21 74.15 61.02 65.02 63.85 63.07 69.74 66.61 0 .73 .26 0 .80 20 

S 88.54 90.72 90.66 88.17 92.17 91.00 92.54 99.21 96.08 .43 .51 .06 .52 .44 .03 

S 75.39 77.58 77.52 75.59 79.59 78.43 75.58 82.25 79.12 .36 .32 .32 .48 .30 .22 
S 71.88 74.07 74.01 66.57 70.57 69.41 68.70 75.36 72.24 .05 .71 .24 .07 .74 .18 

S 81.07 83.25 83.19 89.28 93.28 92.11 71.38 78.05 74.92 .01 0 .99 .02 0 .98 

S 82.18 84.36 84.30 74.26 78.26 77.09 85.97 92.64 89.52 .02 .98 0 .03 .97 0 

S 74.64 76.82 76.76 66.86 70.86 69.70 68.23 74.90 71.77 .01 .66 .33 .02 .72 .26 

S 72.75 74.93 74.87 67.15 71.15 69.98 67.88 74.55 71.42 .03 .57 .40 .06 .64 .31 

S 88.17 90.35 90.29 64.19 68.19 67.02 67.62 74.29 71.16 0 .85 .15 0 .89 .11 

S 61.04 63.22 63.16 65.54 69.54 68.37 64.63 71.30 68.17 .79 .08 .13 .87 .06 .07 
S 87.56 89.74 89.68 68.99 72.99 71.82 80.30 86.97 83.84 0 1 .00 .00 1 0 

S 72.26 74.45 74.39 64.83 68.83 67.66 66.78 73.45 70.32 .02 .71 .27 .03 .77 .20 

S 87.57 89.75 89.69 62.69 66.69 65.52 64.69 71.36 68.23 0 .73 .27 0 .79 .21 

S 85.77 87.96 87.90 103.00 107.00 105.83 74.83 81.50 78.37 0 0 1 .01 0 .99 

I 77.54 79.72 79.66 90.10 94.10 92.93 74.07 80.74 77.61 .15 0 .85 .26 0 .74 

I 58.11 60.29 60.24 60.26 64.26 63.09 60.17 66.84 63.71 .59 .20 .21 .71 .17 .12 

I 74.88 77.06 77.00 82.08 86.08 84.92 83.75 90.41 87.29 .96 .03 .01 .98 .02 .01 

I 82.22 84.40 84.34 84.48 88.48 87.31 86.73 93.39 90.27 .70 .23 .07 .78 .18 .04 
I 70.72 72.90 72.84 63.46 67.46 66.30 65.50 72.17 69.04 .02 .72 .26 .03 .77 .20 

I 58.57 60.76 60.70 62.25 66.25 65.08 53.88 60.55 57.42 .09 .01 .90 .16 .02 .82 

I 77.22 79.40 79.34 80.52 84.52 83.35 80.87 87.54 84.41 .74 .14 .12 .82 .11 .07 

I 73.82 76.00 75.94 68.15 72.15 70.99 70.13 76.80 73.67 .04 .70 .26 .06 .74 .19 

I 73.18 75.36 75.30 114.86 118.86 117.69 72.31 78.98 75.85 .39 0 .61 .57 0 .43 

I 84.76 86.95 86.89 79.36 83.36 82.19 81.36 88.02 84.90 .05 .70 .26 .07 .74 .19 

I 75.13 77.32 77.26 76.58 80.58 79.41 70.15 76.82 73.69 .07 .04 .89 .14 .05 .82 
I 65.92 68.11 68.05 64.24 68.24 67.07 66.24 72.91 69.79 .24 .56 .20 .33 .53 .14 

I 72.81 74.99 74.93 79.24 83.24 82.07 74.13 80.79 77.67 .64 .03 .33 .78 .02 .20 

I 91.71 93.90 93.84 122.57 126.57 125.40 95.71 102.38 99.25 .88 0 .12 .94 0 .06 

I 68.45 70.63 70.57 64.74 68.74 67.57 66.74 73.41 70.28 .10 .66 .24 .15 .67 .17 

D 109.98 112.16 112.10 89.41 93.41 92.25 91.38 98.04 94.92 0 .73 .27 0 .79 .21 

D 103.75 105.93 105.88 92.90 96.90 95.73 80.45 87.12 83.99 0 0 1 0 0 1 

D 89.19 91.38 91.32 75.48 79.48 78.31 74.71 81.38 78.25 0 .40 .60 0 .49 .51 

D 105.12 107.30 107.25 101.60 105.60 104.44 109.40 116.07 112.94 .14 .84 .02 .19 .79 .01 
D 97.73 99.91 99.85 78.52 82.52 81.35 81.44 88.11 84.98 0 .81 .19 0 .86 .14 

D 104.63 106.81 106.75 115.71 119.71 118.54 109.15 115.82 112.69 .90 0 .09 .95 0 .05 

D 80.83 83.01 82.95 69.69 73.69 72.52 71.76 78.43 75.30 0 .74 .26 0 .80 .20 

D 71.82 74.00 73.94 61.92 65.92 64.76 63.91 70.58 67.45 .01 .73 .27 .01 .79 .20 

D 106.35 108.53 108.47 100.98 104.98 103.81 102.71 109.38 106.25 .05 .67 .28 .07 .72 .21 

D 105.31 107.50 107.44 52.50 56.50 55.33 54.50 61.16 58.04 0 .73 .27 0 .79 .21 

D 88.15 90.33 90.28 76.80 80.80 79.64 78.81 85.48 82.35 0 .73 .27 0 .79 .20 

D 94.82 97.00 96.94 97.63 101.63 100.46 99.69 106.36 103.23 .75 .18 .07 .82 .14 .04 
D 113.26 115.44 115.38 106.59 110.59 109.42 108.59 115.25 112.13 .03 .71 .26 .04 .76 .20 

D 69.64 71.82 71.77 77.91 81.91 80.74 67.36 74.02 70.90 .24 0 .76 .39 0 .60 

D 71.92 74.10 74.04 68.11 72.11 70.94 70.14 76.81 73.68 .10 .66 .24 .14 .68 .17 

MH 82.77 84.95 84.89 85.33 89.33 88.16 87.09 93.76 90.63 .72 .20 .08 .80 .16 .05 

MH 73.05 75.23 75.18 75.59 79.59 78.42 77.02 83.69 80.56 .70 .20 .10 .79 .16 .05 

MH 94.12 96.30 96.24 86.17 90.17 89.00 87.05 93.71 90.59 .01 .60 .39 .02 .68 .31 

(continued)
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Table J1 

Model comparison of SIMPLE variations using individual participant data from 

Experiment 4 (continued). Note: each row is the data for one participant.  

Experimental conditions are: none (N), same (S), increasing (I), decreasing (D), 

middle high (MH). 

 
Time Input interference Both AICw BICw 

Schedule AIC AICc BIC AIC AICc BIC AIC AICc BIC Time OI Both Time OI Both 

MH 52.95 55.13 55.08 54.83 58.83 57.66 55.87 62.54 59.41 .62 .24 .14 .72 .20 .08 

MH 112.67 114.85 114.80 97.67 101.67 100.50 99.23 105.89 102.77 0 .69 .31 0 .76 .24 

MH 76.01 78.19 78.14 71.86 75.86 74.69 73.83 80.50 77.37 .08 .67 .25 .12 .69 .18 

MH 80.03 82.22 82.16 87.16 91.16 89.99 89.16 95.82 92.70 .96 .03 .01 .98 .02 .01 

MH 88.25 90.43 90.37 89.58 93.58 92.41 91.90 98.56 95.44 .60 .31 .10 .69 .25 .06 

MH 79.07 81.26 81.20 76.78 80.78 79.61 77.93 84.59 81.47 .17 .53 .30 .24 .54 .21 

MH 122.64 124.82 124.76 93.61 97.61 96.44 105.88 112.55 109.42 0 1 0 .00 1 0 

MH 65.70 67.88 67.83 65.86 69.86 68.69 67.17 73.83 70.71 .42 .38 .20 .53 .34 .13 

MH 74.34 76.52 76.47 67.47 71.47 70.30 69.50 76.17 73.04 .02 .72 .26 .04 .77 .20 

MH 62.74 64.92 64.86 65.40 69.40 68.23 67.25 73.92 70.79 .73 .19 .08 .81 .15 .04 

MH 74.82 77.00 76.94 107.63 111.63 110.47 109.63 116.30 113.17 1 0 0 1 0 0 
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Table J2 

Model comparison of SIMPLE variations using individual participant data from 

Experiment 5. Note: each row is the data for one participant. Experimental 

conditions are: none (N), same (S), increasing (I), decreasing (D), middle high (MH). 

  Time Input interference Both AICw BICw 

Schedule AIC AICc BIC AIC AICc BIC AIC AICc BIC Time OI Both Time OI Both 

N 81.91 84.09 84.03 89.06 93.06 91.89 73.63 80.29 77.17 .02 0 .98 .03 0 .97 

N 79.55 81.73 81.67 71.40 75.40 74.23 73.40 80.07 76.94 .01 .72 .27 .02 .78 .20 

N 68.07 70.25 70.19 77.31 81.31 80.14 66.55 73.21 70.09 .32 0 .68 .49 .00 .51 

N 96.10 98.28 98.22 72.44 76.44 75.28 74.44 81.11 77.98 0 .73 .27 0 .79 .21 

N 73.26 75.44 75.39 74.48 78.48 77.32 72.72 79.39 76.26 .35 .19 .46 .49 .19 .32 

N 69.61 71.79 71.73 71.36 75.36 74.19 73.18 79.85 76.72 .63 .26 .11 .73 .21 .06 

N 92.32 94.50 94.44 84.93 88.93 87.77 95.36 102.02 98.90 .02 .97 .01 .03 .96 0 

N 60.67 62.85 62.79 76.58 80.58 79.41 62.46 69.12 66.00 .71 0 .29 .83 0 .17 

N 69.04 71.22 71.16 71.32 75.32 74.15 73.29 79.96 76.83 .69 .22 .08 .78 .18 .05 

N 87.28 89.46 89.41 88.59 92.59 91.42 91.73 98.40 95.27 .61 .32 .07 .70 .26 .04 

S 73.39 75.57 75.51 59.83 63.83 62.66 84.26 90.93 87.80 0 1 0 0 1 0 

S 80.46 82.65 82.59 68.42 72.42 71.26 70.43 77.09 73.97 0 .73 .27 0 .79 .20 

S 73.43 75.62 75.56 77.03 81.03 79.87 77.43 84.10 80.97 .77 .13 .10 .85 .10 .06 

S 80.08 82.26 82.20 74.54 78.54 77.37 76.54 83.20 80.08 .04 .70 .26 .07 .74 .19 

S 66.18 68.36 68.30 66.66 70.66 69.49 67.64 74.31 71.18 .44 .35 .21 .56 .31 .13 

S 62.96 65.15 65.09 66.08 70.08 68.92 66.86 73.53 70.40 .74 .16 .11 .82 .12 .06 

S 73.10 75.29 75.23 88.87 92.87 91.70 70.61 77.28 74.15 .22 0 .78 .37 0 .63 

S 65.62 67.80 67.74 75.67 79.67 78.50 76.00 82.66 79.54 .99 .01 .01 .99 0 0 

S 71.26 73.44 73.39 84.05 88.05 86.88 64.06 70.73 67.60 .03 0 .97 .05 0 .95 

S 92.73 94.91 94.85 106.86 110.86 109.69 97.18 103.85 100.72 .90 0 .10 .95 0 .05 

I 84.91 87.09 87.04 70.46 74.46 73.30 90.05 96.72 93.59 0 1 0 0 0 0 

I 74.45 76.63 76.57 61.84 65.84 64.67 63.84 70.50 67.38 0 .73 .27 0 .79 .20 

I 66.81 68.99 68.93 64.35 68.35 67.19 65.62 72.29 69.16 .16 .55 .29 .23 .56 .21 

I 71.75 73.93 73.88 89.60 93.60 92.44 75.39 82.06 78.93 .86 0 .14 .93 0 .07 

I 73.83 76.02 75.96 92.16 96.16 94.99 69.40 76.07 72.94 .10 0 .90 .18 0 .82 

I 66.54 68.72 68.67 78.16 82.16 80.99 70.20 76.86 73.74 .86 0 .14 .92 0 .07 

I 63.47 65.65 65.59 68.92 72.92 71.75 67.08 73.75 70.62 .81 .05 .13 .89 .04 .07 

I 76.45 78.64 78.58 71.13 75.13 73.97 73.13 79.80 76.68 .05 .70 .26 .07 .74 .19 

I 65.56 67.74 67.68 66.32 70.32 69.15 66.63 73.29 70.17 .44 .30 .26 .57 .27 .16 

I 58.89 61.07 61.02 105.14 109.14 107.97 62.89 69.56 66.43 .88 0 .12 .94 0 .06 

D 85.86 88.04 87.99 59.73 63.73 62.57 61.82 68.49 65.36 .00 .74 .26 0 .80 .20 

D 65.87 68.05 67.99 67.91 71.91 70.74 69.14 75.81 72.68 .64 .23 .13 .74 .19 .07 

D 109.47 111.65 111.59 83.01 87.01 85.84 85.01 91.68 88.55 0 .73 .27 0 .79 .21 

D 110.01 112.19 112.13 99.23 103.23 102.06 101.23 107.90 104.77 0 .73 .27 .01 .79 .20 

D 112.08 114.26 114.20 108.43 112.43 111.26 107.58 114.24 111.12 .06 .37 .57 .10 .43 .47 

D 81.04 83.22 83.17 72.82 76.82 75.66 61.25 67.91 64.79 0 0 1 0 0 1 

D 88.06 90.24 90.18 96.17 100.17 99.00 94.61 101.28 98.15 .95 .02 .04 .97 .01 .02 

D 90.22 92.40 92.34 72.89 76.89 75.72 74.89 81.56 78.43 0 .73 .27 0 .79 .21 

D 80.21 82.39 82.34 63.36 67.36 66.19 65.39 72.06 68.93 0 .73 .27 0 .80 .20 

D 90.22 92.40 92.34 89.40 93.40 92.23 94.20 100.87 97.74 .38 .57 .05 .47 .50 .03 

MH 95.20 97.38 97.32 99.09 103.09 101.92 103.31 109.98 106.85 .86 .12 .01 .90 .09 .01 

MH 67.08 69.26 69.20 64.23 68.23 67.07 66.09 72.75 69.63 .15 .61 .24 .21 .62 .17 

MH 98.81 100.99 100.94 124.72 128.72 127.55 103.80 110.46 107.34 .92 0 .08 .96 0 .04 

MH 88.59 90.77 90.71 90.49 94.49 93.32 92.49 99.16 96.03 .65 .25 .09 .75 .20 .05 

MH 75.74 77.92 77.86 73.15 77.15 75.98 75.24 81.90 78.78 .17 .62 .22 .24 .61 .15 

MH 79.58 81.76 81.70 57.56 61.56 60.39 59.52 66.19 63.06 0 .73 .27 .00 .79 .21 

MH 74.22 76.40 76.34 79.29 83.29 82.12 79.01 85.67 82.55 .85 .07 .08 .91 .05 .04 

MH 95.67 97.85 97.79 78.64 82.64 81.47 80.64 87.30 84.18 0 .73 .27 0 .79 .21 

MH 76.77 78.95 78.89 89.72 93.72 92.55 80.17 86.84 83.71 .84 0 .15 .92 0 .08 

MH 71.97 74.15 74.10 64.46 68.46 67.29 66.52 73.19 70.06 .02 .72 .26 .03 .78 .19 
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Table J3  

Model comparison of SIMPLE variations using individual participant data from 

Experiment 6. Note: each row is the data for one participant. 

Time Input interference Both AICw BICw 

AIC AICc BIC AIC AICc BIC AIC AICc BIC Time OI Both Time OI Both 

160.12 162.30 162.24 141.45 145.45 144.28 143.71 150.38 147.25 0 .76 .24 0 .82 .18 

119.05 121.23 121.17 134.15 138.15 136.98 121.32 127.99 124.86 .76 0 .24 .86 0 .14 

127.25 129.44 129.38 133.43 137.43 136.26 128.56 135.22 132.10 .64 .03 .33 .78 .02 .20 

156.72 158.91 158.85 145.83 149.83 148.66 147.80 154.47 151.34 0 .73 .27 0 .79 .21 

153.35 155.54 155.48 142.98 146.98 145.82 144.97 151.63 148.51 0 .73 .27 .01 .79 .21 

146.86 149.04 148.98 153.10 157.10 155.93 149.70 156.36 153.24 .78 .03 .19 .87 .03 .10 

126.57 128.75 128.69 121.20 125.20 124.04 122.02 128.69 125.56 .04 .58 .38 .06 .64 .30 

112.50 114.69 114.63 107.87 111.87 110.71 120.02 126.69 123.56 .09 .91 .00 .12 .88 0 

125.95 128.13 128.07 135.51 139.51 138.34 126.68 133.35 130.22 .59 0 .41 .74 0 .25 

95.49 97.67 97.61 92.67 96.67 95.50 93.81 100.48 97.35 .13 .55 .31 .20 .57 .23 

138.05 140.23 140.17 132.57 136.57 135.40 134.43 141.10 137.98 .04 .69 .27 .07 .73 .20 

138.36 140.54 140.48 140.59 144.59 143.43 142.59 149.26 146.13 .69 .23 .08 .78 .18 .05 

139.32 141.50 141.44 137.96 141.96 140.79 139.95 146.62 143.49 .27 .53 .20 .36 .50 .13 

116.34 118.52 118.46 123.63 127.63 126.46 117.04 123.70 120.58 .58 .02 .41 .73 .01 .25 

105.53 107.71 107.65 113.34 117.34 116.17 108.40 115.07 111.94 .80 .02 .19 .88 .01 .10 

136.43 138.61 138.55 140.86 144.86 143.70 137.78 144.45 141.32 .62 .07 .31 .75 .06 .19 

120.18 122.36 122.30 114.76 118.76 117.59 115.48 122.14 119.02 .04 .57 .40 .06 .63 .31 

121.98 124.16 124.11 118.14 122.14 120.98 120.14 126.81 123.68 .10 .66 .24 .14 .68 .18 

132.71 134.89 134.83 129.07 133.07 131.90 136.68 143.35 140.22 .14 .84 .02 .19 .80 .01 
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