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Abstract
We study the complexity of reachability problems on branching
extensions of vector addition systems, which allows us to derive
new non-elementary complexity bounds for fragments and vari-
ants of propositional linear logic. We show that provability in
the multiplicative exponential fragment is TOWER-hard already
in the affine case—and hence non-elementary. We match this lower
bound for the full propositional affine linear logic, proving its
TOWER-completeness. We also show that provability in proposi-
tional contractive linear logic is ACKERMANN-complete.

Categories and Subject Descriptors F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Complexity of proof procedures; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic

General Terms Theory

Keywords Fast-growing complexity, linear logic, substructural
logic, vector addition systems.

1. Introduction
The use of various classes of counter machines to provide compu-
tational counterparts to propositional substructural logics has been
highly fruitful, allowing to prove for instance:

• the undecidability of provability in propositional linear logic
(LL), thanks to a reduction from the halting problem in Minsky
machines proved by Lincoln, Mitchell, Scedrov, and Shankar
[14], who initiated much of this line of work,
• the decidability of the !-Horn fragment of multiplicative expo-

nential linear logic, proved by Kanovich [9] by reduction to
reachability in vector addition systems,
• the decidability of provability in affine linear logic, first shown

by Kopylov using a notion of vector addition games [10],
• the ACKERMANN-completeness of provability in the con-

junctive implicative fragment of relevance logic, proved by
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Urquhart [23], using reductions to and from expansive alter-
nating vector addition systems, and
• the inter-reducibility between provability in multiplicative ex-

ponential linear logic and reachability in a model of branching
vector addition systems, shown by de Groote, Guillaume, and
Salvati [5].

1.1 Alternating Branching VASS
In this paper, we revisit the correspondences between propositional
linear logic and counter systems with a focus on computational
complexity. In Section 3, we define a model of alternating branch-
ing vector addition systems (ABVASS) with full zero tests. While
this model can be seen as an extension and repackaging of Kopy-
lov’s vector games, its reachability problem enjoys very simple re-
ductions to and from provability in LL, which are suitable for com-
plexity statements (see Section 4). We prove that:

• coverability in the top-down, root-to-leaves direction is TOWER-
complete, i.e. complete for the class of problems that can be
solved with time or space resources bounded by a tower of ex-
ponentials whose height depends elementarily in the input size
(see Section 5 for the upper bound and Section 6 for the lower
bound), and
• coverability in the bottom-up, leaves-to-root direction is com-

plete for ACKERMANN, i.e. complete for resources bounded by
the Ackermann function of some primitive-recursive function
of the input.

Due to space constraints, the technical details for this second point
are omitted in this paper but can be found along with other material
in the full paper at the address http://arxiv.org/abs/1401.6785.

1.2 Provability in Substructural Logics
Our complexity bounds for ABVASS translate into the exact same
bounds for provability in fragments and variants of LL:

1.2.1 Affine Linear Logic
Affine Linear Logic (LLW) was proved decidable by Kopylov [10]
in 1995 using vector addition games; a model-theoretic proof was
later presented by Lafont [11].1

The best known complexity bounds for LLW are due to Urquhart
[24]: by a reduction from coverability in vector addition sys-
tems [15], he derives an EXPSPACE lower bound, very far from

1 Variants of LLW are popular in the literature on implicit complexity;
for instance, light affine linear logic [1] is known to type exactly the
class FP of polynomial time computable functions. In this paper we are
however interested in the complexity of the provability problem (for the
propositional fragment), rather than the complexity of normalization. In
terms of typed lambda calculi, our results pertain to the complexity of the
type inhabitation problem.

http://arxiv.org/abs/1401.6785


the ACKERMANN upper bound he obtains from length function
theorems for Dickson’s Lemma [see e.g. 8].

1.2.2 Contractive Linear Logic
Contractive Linear Logic (LLC) was proved decidable by Okada
and Terui [17] by model-theoretic methods.

Urquhart [23] showed the ACKERMANN-completeness of prov-
ability in a fragment of relevance logic, which is also a fragment of
intuitionistic multiplicative additive LLC. To the best of our knowl-
edge, there are no known complexity upper bounds for provability
in LLC.

1.2.3 Multiplicative Exponential Linear Logic
The main open question in this area is whether the multiplicative
exponential fragment (MELL) is decidable. It is related to many
decision problems, for instance in computational linguistics [19,
20], cryptographic protocol verification [25], the verification of
parallel programs [3], and data logics [2, 7].

Thanks to the reductions to and from the reachability problem
in branching vector addition systems with states (BVASS) [5] and
to the bounds of Lazić [13], we know that provability in MELL is
2-EXPSPACE-hard.

1.2.4 Summary of the Complexity Results
LLW We improve both the lower bound and the upper bound of

Urquhart [24], and prove that LLW provability is complete for
TOWER.

LLC We show that LLC provability is ACKERMANN-complete;
the lower bound already holds for the multiplicative additive
fragment MALLC.

MELL Our TOWER-hardness result for LLW already holds for
affine MELL and thus for MELL, which improves over the 2-
EXPSPACE lower bound of Lazić [13].

ILL All of our complexity bounds also hold for provability in
the intuitionistic versions of our calculi. See the full paper for
details.

2. Propositional Linear Logic
2.1 Classical Linear Logic
For convenience, we present here a sequent calculus for classical
propositional linear logic that works with formulæ in negation
normal form and considers one-sided sequents.

2.1.1 Syntax
Propositional linear logic formulæ are defined by the abstract syn-
tax

A,B ::= a | a⊥ (atomic)
| A`B | A⊗B | ⊥ | 1 (multiplicative)
| A&B | A⊕B | > | 0 (additive)
| !A | ?A (exponential)

where a ranges over atomic formulæ. We write “A⊥” for the
negation normal form of A, where negations are pushed to the
atoms using the dualities A⊥⊥ = A, (A ` B)⊥ = A⊥ ⊗ B⊥,
⊥⊥ = 1, (A & B)⊥ = A⊥ ⊕ B⊥, >⊥ = 0, and (?A)⊥ = !A⊥.
We write “A( B” for the linear implication A⊥ `B.

2.1.2 Sequent Calculus
The rules of the sequent calculus manipulate multisets of formulæ,
denoted by Γ, ∆, . . . , so that the exchange rule is implicit; “?Γ”

then denotes a multiset of formulæ all guarded by why-nots: ?Γ is
of the form ?A1, . . . , ?An.

` A,A⊥ init
` Γ, A ` ∆, A⊥

` Γ,∆
cut

` Γ, A,B

` Γ, A`B
` ` Γ, A ` ∆, B

` Γ,∆, A⊗B ⊗
` Γ

` Γ,⊥ ⊥ ` 1
1

` Γ, A ` Γ, B

` Γ, A&B
&

` Γ, A

` Γ, A⊕B
` Γ, B

` Γ, A⊕B ⊕ ` Γ,>>

` Γ, A

` Γ, ?A
?D

` Γ

` Γ, ?A
?W

` Γ, ?A, ?A

` Γ, ?A
?C

` ?Γ, A

` ?Γ, !A
?P

The last four rules for exponential formulæ are called derelic-
tion (?D), logical weakening (?W), logical contraction (?C), and
promotion (?P).

The cut rule can be eliminated in this calculus, which then
enjoys the subformula property: in any rule except cut, the formulæ
appearing in the premises are subformulæ of the formulæ appearing
in the conclusion.

2.2 Fragments and Variants
Lincoln et al. [14] established most of the results on the decidabil-
ity and complexity of provability in propositional linear logic. In
particular, the full propositional linear logic (LL) is undecidable,
while its multiplicative additive fragment (MALL, which excludes
the exponential connectives and rules) is decidable in PSPACE. As
mentioned in the introduction, the main open question in this area
is whether the multiplicative exponential fragment (MELL, which
excludes the additive connectives and rules) is decidable.

Regarding related logics, allowing respectively structural weak-
ening (W) and structural contraction (C)

` Γ

` Γ, A
W

` Γ, A,A

` Γ, A
C

instead of logical weakening and logical contraction gives rise to
two decidable variants, called respectively affine linear logic (LLW)
and contractive linear logic (LLC). The sequent calculi for LLW
and LLC also enjoy cut elimination and the subformula property
for cut-free proofs. We consider the intuitionistic variants of LL,
LLW, and LLC in the full paper.

3. Alternating Branching VASS
We define a “tree” extension of vector addition systems with states
(VASS) that combines two kinds of branching behaviors: those of
alternating VASS (Section 3.3.1) and those of branching VASS
(Section 3.3.2). With this combination, we obtain a reformulation
of Kopylov’s vector addition games [10], for which he showed that

1. the game is inter-reductible with LL provability

2. the “lossy” version of the game is inter-reducible with LLW
provability.

We further add full zero tests to this model, as they make the
reduction from LL provability straightforward (see Section 4) and
can easily be removed (see Section 3.3.3).

3.1 Definitions
3.1.1 Syntax
An alternating branching vector addition system with states and
full zero tests (ABVASS0̄) is a tuple A = 〈Q, d, Tu, Tf , Ts, Tz〉
where Q is a finite set of states, d is a dimension in N, and
Tu ⊆ Q × Zd × Q, Tf ⊆ Q3, Ts ⊆ Q3 and Tz ⊆ Q2 are
respectively finite sets of unary, fork, split and full zero test rules.



q0 q1 q2 + q3

q4

++d

--d; ++d′; ++d′ --d′; ++d
--c; --d; --d

Figure 1. An example BVASS.

We denote unary rules (q, ū, q1) in Tu with ū in Zd by “q ū−→ q1”,
fork rules (q, q1, q2) in Tf by “q → q1 ∧ q2”, split rules (q, q1, q2)
in Ts by “q → q1 + q2”, and full zero test rules (q, q1) in Tz by

“q
?
=0̄−−→ q1”.

3.1.2 Deduction Semantics
Given an ABVASS0̄, its semantics is defined by a deduction system
over configurations (q, v̄) in Q× Nd:

q, v̄

q1, v̄ + ū
unary

where “+” denotes component-wise addition in Nd, if q ū−→ q1 is a
rule (and implicitly v̄+ ū has no negative component, i.e. is in Nd),
and

q, v̄

q1, v̄ q2, v̄
fork

q, v̄1 + v̄2

q1, v̄1 q2, v̄2
split

q, 0̄

q1, 0̄
full-zero

if q → q1 ∧ q2, q → q1 + q2, and q
?
=0̄−−→ q1 are rules of the system,

respectively, and “0̄” denotes the d-vector 〈0, . . . , 0〉with zeroes on
every coordinate. Such a deduction system can be employed either
top-down or bottom-up depending on the decision problem at hand
(as with tree automata); the top-down direction will correspond in
a natural way to proof search in propositional linear logic, i.e. will
correspond to the consequence to premises direction in the sequent
calculus of Section 2.1.2.

3.1.3 Example
Let A be an ABVASS0̄ with five states (q0, q1, q2, q3, q4), of di-
mension 3, with six unary rules:

q0
〈0,1,0〉−−−−→ q1 q1

〈0,−1,2〉−−−−−→ q1 q1
〈0,0,0〉−−−−→ q2

q2
〈0,1,−1〉−−−−−→ q2 q3

〈0,0,0〉−−−−→ q0 q3
〈−1,−2,0〉−−−−−−→ q4,

and with one split rule q2 → q3 +q3. There are no fork rules and no
full zero test rules in A, and so it is a BVASS (see Section 3.3.2).
A depiction of A is in Figure 1, where we write c, d, d′ for vector
indices 1, 2, 3 (respectively), and specify unary rules in terms of
increments and decrements.

From state q0 and with c, d, d′ initialised to 4, 0, 0 (i.e., from
a root node labelled by (q0, 〈4, 0, 0〉)), A can reach q2 with d, d′

having values 2, 0, perform the split rule by dividing c and d equally
(i.e., branch to two nodes labelled by (q3, 〈2, 1, 0〉)), then in both
threads reach q2 again with d, d′ having values 4, 0, perform the
split rule as before, and finally in all four threads reach q4 with
c, d, d′ having values 0, 0, 0 (i.e., have four leaf nodes, which are
all labelled by (q4, 0̄)).

Further reasoning can show that A has a deduction tree whose
root is labelled by (q0, 〈m, 0, 0〉) and with the state label at every
leaf being q4 if and only ifm ≥ 4. In fact,A is a slightly simplified
version of the BVASS B2 in Section 6.

3.2 Decision Problems
3.2.1 Reachability
Given an ABVASS0̄ A and a finite set of states Q`, we denote by a
root judgement “A, Q` . q, v̄” the fact that there exists a deduction
tree D in A with root label (q, v̄) and leaf labels in Q` × {0̄}. We
call D a reachability witness for (q, v̄). Given furthermore a state
qr , the reachability problem asks whether A, Q` . qr, 0̄; we call a
reachability witness for (qr, 0̄) a reachability witness.

We will see in Section 4 that this reachability problem is equiv-
alent to provability in LL; the problem is also related to games
played over vectors of natural numbers, see the full paper. It is how-
ever undecidable:

Fact 1. Reachability in ABVASS0̄ is undecidable.

Proof. Reachability is already undecidable in the more restricted
model of AVASS, see Fact 2 below.

3.2.2 Lossy Reachability
In order to obtain decidability, we must weaken the ABVASS0̄

model or the decision problem. For the former, let us denote by ēi
the unit vector in Nd with one on coordinate i and zero everywhere
else. Then a lossy ABVASS0̄ can be understood as featuring a rule
q
−ēi−−→ q for every q in Q and 0 < i ≤ d. We rather define it by

extending its deduction system with
q, v̄

q, v̄ − ēi
loss

for every q in Q and 0 < i ≤ d. We write ‘.`’ for root judge-
ments where losses can occur. In terms of proof search in linear
logic, losses will correspond to structural weakening, which is the
distinguishing feature of affine linear logic.

Top-Down Coverability An alternative way to see the reachability
problem in lossy ABVASS0̄ is to weaken the problem. Let us define
a variant of ABVASS0̄ that feature full resets instead of full zero
tests: we denote in this case rules (q, q1) in Tz by q :=0̄−−→ q1 and
associate a different semantics:

q, v̄

q1, 0̄
full-reset

We call the resulting model ABVASSr. Given an ABVASSr A, a
state qr , and a finite set of states Q`, the top-down coverability or
leaf coverability problem asks whether there exists a deduction tree
D with root label (qr, 0̄) and such that, for each leaf, there exists
some q` in Q` and some v̄ in Nd such that the leaf label is (q`, v̄);
we then call D a coverability witness.

The reachability problem for lossy ABVASS0̄ is then equivalent
to top-down coverability for ABVASSr. Observe indeed that the
unary, fork, and split rules are monotone: if v̄ ≤ w̄ for the product
ordering, i.e. if v̄(i) ≤ w̄(i) for all 0 < i ≤ d, and a configuration
(q, v̄) allows to apply a rule and result in some configurations
(q1, v̄1) and (possibly) (q2, v̄2), then (q, w̄) allows to apply the
same rule and to obtain some (q1, w̄1) and (q2, w̄2) with v̄1 ≤ w̄1

and v̄2 ≤ w̄2. This means that losses in an ABVASS0̄ can be
applied as late as possible, either right before a full zero test or
at the leaves—which corresponds exactly to top-down coverability
for ABVASSr.

3.2.3 Expansive Reachability
In order to model structural contractions during proof search, it is
natural to consider another variant of ABVASS0̄ called expansive
ABVASS0̄ and equipped with the deduction rules

q, v̄ + ēi
q, v̄ + 2ēi

expansion



for every q in Q and 0 < i ≤ d. We write ‘.e’ for root judge-
ments where expansions can occur. This is a restriction over
ABVASS0̄ since expansions can be emulated through two unary
rules q

−ēi−−→ q′
2ēi−−→ q. Expansive reachability is not quite dual to

lossy rechability—we deal with increasing reachability in the full
paper.

3.3 Restrictions
Note that ABVASS0̄ generalize vector addition systems with states
(VASS), which are ABVASS0̄ with only unary rules. They also gen-
eralize two “branching” extensions of VASS, which have been de-
fined in relation with propositional linear logic. Since these restric-
tions do not feature full zero tests, their lossy reachability problem
is equivalent to their top-down coverability problem.

3.3.1 Alternating VASS
Alternating VASS were originally called “and-branching” counter
machines by Lincoln et al. [14], and were introduced to prove the
undecidability of propositional linear logic. Formally, an AVASS is
an ABVASS0̄ which only features unary and fork rules, i.e. with
Ts = Tz = ∅.

Fact 2 (Lincoln et al. [14]). Reachability in AVASS is undecidable.

Proof Idea. By a reduction from the halting problem in Minsky

machines: note that a zero test q c
?
=0−−→ q′ on a counter c can be

emulated through a fork q → q′∧qc, where unary rules qc
−ēc′−−−→ qc

for all c′ 6= c allow to empty the counters different from c, and a
last unary rule qc

0̄−→ q` to the single target state allows to check
that c was indeed equal to zero.

Alternating VASS do not allow to model LL proof search in
full; Kanovich [9] identified the matching LL fragment, called the
(!,⊕)-Horn fragment.

The complexity of the other basic reachability problems on
AVASS is known:

• motivated by the complexity of fragments of relevance logic,
Urquhart [23] proved that expansive reachability is complete
for Ackermannian time, and
• motivated by the complexity of vector addition games (see

the full paper), Courtois and Schmitz [4] showed that lossy
reachability is 2-EXPTIME-complete.

3.3.2 Branching VASS
Inspired by the correspondences between the !-Horn fragment of
linear logic and VASS unearthed by Kanovich [9], de Groote et al.
[5] defined BVASS—which they originally dubbed “vector addi-
tion tree automata”—as a model of counter machines that matches
MELL. Formally, a BVASS is an ABVASS0̄ with only unary and
split rules, i.e. with Tf = Tz = ∅. This model turned out to be
equivalent to independently defined models in linguistics [19] and
protocol verification [25]; see [20] for a survey.

Whether BVASS reachability is decidable is an open problem,
and is interreducible with MELL provability. Lazić [13] proved
the best known lower bound to this day, which is 2-EXPSPACE-
hardness. Two related problems were shown to be 2-EXPTIME-
complete by Demri et al. [6], namely increasing rechability (see
the full paper) and boundedness.

3.3.3 Alternating Branching VASS
Kopylov [10] defined a one-player vector game, which matches
essentially the reachability problem in ABVASS, i.e. in ABVASS0̄

with Tz = ∅. The elementary fragment of ILL defined by Larchey-
Wendling and Galmiche [12] is another counterpart to ABVASS.

While allowing full zero tests is helpful in the reduction from
LL provability, they can be dispensed with at little expense. Let us
first introduce some notation. If node n is an ancestor of a node n′

in a deduction tree D, and the labels of n and n′ are the same, we
write D[n ← n′] for the shortening of D obtained by replacing
the subtree of rule applications rooted at n by the one rooted at
n′. Observe that, if D is a reachability witness (resp. a coverability
witness), then D[n ← n′] is also a reachability witness (resp. a
coverability witness).

Lemma 3. There is a logarithmic-space reduction from (lossy,
resp. expansive) ABVASS0̄ reachability to (lossy, resp. expansive)
ABVASS reachability, and a polynomial time Turing reduction that
preserves the system dimension.

Proof. Suppose A is an ABVASS0̄ with set of states Q and dimen-
sion d.

For a logarithmic-space reduction, the key observation is that,
if there exists a witness for an instance of (lossy, resp. expansive)
reachability forA, then by repeated shortenings, there must be one
in which, along every vertical path, the number of occurences of
full zero tests is at most |Q| − 1.

It therefore suffices to decide the problem for an ABVASS A†
whose set of states is {1, . . . , |Q|}×Q, whose dimension is |Q| ·d,
and which simulates A up to |Q| − 1 full zero tests along any
vertical path. In any state (i, q), A† behaves like A in state q, but
using the ith d-tuple of its vector components. To simulate a full

zero test q
?
=0̄−−→ q′ in A, A† changes state from (i, q) to (i+ 1, q),

postponing the check that the ith d-tuple of vector components are
zero until the leaves.

For a reduction that preserves d, we define the set of root states
relative to a subset X of Q by

RootA(X)
def
= {q ∈ Q | A, X . q, 0̄} (1)

as the set of states q such that there exists a deduction in A with
root label (q, 0̄) and leaf labels in X × {0̄}. The (lossy, resp.
expansive) reachability problem for 〈A, qr, Q`〉 then reduces to
checking whether qr belongs to RootA(Q`).

Writing A′ for the corresponding ABVASS, we can compute
RootA′(X) using |Q| calls to an oracle for (lossy, resp. expansive)
ABVASS reachability. Moreover, since RootA′(X) ⊇ X is mono-
tone, we can use a least fixed point computation that discovers root
states according to the number of full zero tests along the branches
of their reachability witnesses:

RootA(Q`) = µX.RootA′(Q`)∪RootA′(X ∪ T−1
z (X)) . (2)

This computation converges after at most |Q| steps, and therefore
works in polynomial time relative to the same oracle.

3.4 Computational Complexity
3.4.1 Non-Elementary Complexity Classes
We will use in this paper two complexity classes [see 21]:

TOWER
def
=

⋃
e∈FELEM

DTIME
(
tower(e(n))

)
(3)

is the class of problems that can be solved with a deterministic
Turing machine in time tower of some elementary function e of
the input, where tower(0)

def
= 1 and tower(n + 1)

def
= 2tower(n)

defines towers of exponentials. Similarly,

ACKERMANN
def
=

⋃
p∈FPR

DTIME
(
Ack(p(n))

)
(4)



is the class of problems solvable in time Ack of some primitive
recursive function p of the input size, where “Ack” denotes the
Ackermann function—any standard definition of Ack yields the
same complexity class [21].

Completeness for TOWER is understood relative to many-one
elementary reductions, and completeness for ACKERMANN relative
to many-one primitive-recursive reductions.

3.4.2 ABVASS0̄ Complexity
For a set Tu of unary rules, we write max−(Tu) (resp. max+(Tu))
for the largest absolute value of any negative (resp. positive) integer
in a vector in Tu, and max(Tu) for their overall maximum. We as-
sume a binary encoding of the vectors in unary rules, thus max(Tu)
might be exponential in the size of the ABVASS0̄. We can how-
ever reduce to ordinary ABVASS0̄, i.e. ABVASS0̄ with ū = ēi or
ū = −ēi for some 0 < i ≤ d whenever q ū−→ q1 is a unary rule:

Lemma 4. There is a logarithmic space reduction from reacha-
bility in (lossy, resp. expansive) ABVASS0̄ to reachability in (lossy,
resp. expansive) ordinary ABVASS0̄.

Proof Idea. The idea is to encode each of the d coordinates of the
original ABVASS0̄ into blog(max(Tu)+1)c coordinates, and each
unary rule to apply a binary encoding of ū to those new coordinates;
see for instance [20] where this construction is detailed for BVASS.
The expansive case requires to first explicitly encode expansions as
unary rules.

Lossy Case One of the main results of this paper is the following:

Theorem 5. Reachability in lossy BVASS and lossy ABVASS0̄ is
TOWER-complete.

Proof. The upper bound is proved in Section 5. We present the
hardness proof in detail in Section 6.

Note that Theorem 5 entails an improvement for BVASS reachabil-
ity over the 2-EXPSPACE lower bound of Lazić [13].

Expansive Case Regarding expansive ABVASS0̄, we can adapt
the proofs of Urquhart [23] for expansive AVASS and the relevance
calculus LR+ to show:

Theorem 6. Reachability in expansive AVASS and expansive
ABVASS0̄ is ACKERMANN-complete.

Proof. The lower bound is due to Urquhart [23], who proved
hardness of expansive AVASS reachability by a direct reduction
from the halting problem of Minsky machines with counter val-
ues bounded by the Ackermann function. The upper bound can be
proved following essentially the same arguments as Urquhart’s for
LR+, using length function theorems for Dickson’s Lemma [see
e.g. 8]. See the full paper for a proof.

Theorem 6 allows to derive the same ACKERMANN bounds for
provability in MALLC and LLC, see the full paper.

4. Relationships Between LL and ABVASS0̄

4.1 From LL to ABVASS0̄

We present here a direct reduction from LL provability to ABVASS0̄

reachability, which relies on the subformula property of the sequent
calculus. Consider for this a formula F of linear logic; we know
that, if ` F is provable, then it has a cut-free proof tree, where
all the nodes are labeled by multisets of subformulæ of F . More
precisely, a sequent ` Γ appearing in such a proof can be written
as ` ?Ψ,∆ where the formulæ in ∆ are not guarded by why-nots;

qinit: q`
−ēA − ēA⊥

q`: q
−ēA`B ēA + ēB

q ] q′⊗: +

q

q′

−ēA⊗B

ēA

ēB

q⊥: q
−ē⊥

q1: q`
−ē1

q&: ∧

q

q

−ēA&B

ēA

ēB

q⊕:

q

q

−ēA⊕B

ēA

ēB

q>:
∀A ∈ S

q`
−ē>

−ēA

0̄

q ∪ {?A}?D: q
ēA

q ∪ {?A}?W: q
0̄

q?P: q
−ē!A

?
= 0̄ ēA

Figure 2. The rules of AF ; q and q′ are subsets of S?.

writing S? for the ?-guarded subformulæ of F and S for its re-
maining subformulæ, it means that ?Ψ is a multiset over S? and ∆
a multiset over S. Let us denote by “`F ” the provability relation
restricted to subformulæ of F ; then ` F if and only if `F F .

We define an ABVASS0̄ AF that maintains an encoding of a
sequent `F ?Ψ,∆ as the configuration (σ(?Ψ),∆) over 2S? ×NS

where, for any multiset m over some set E,

σ(m)
def
= {e ∈ E | m(e) > 0} (5)

denotes the support of the multiset. The ABVASS0̄ AF includes
2S? , a distinguished root state qr , and a distinguished leaf state
q` as part of its state space; it works in dimension |S| and its
rules and intermediate states are depicted in Figure 2. It encodes
the sequent calculus of Section 2.1.2 in a straightforward way; the
rules maintain the following invariant, which can be checked by
induction on the height of deduction trees and proof trees:

AF , {q`} . σ(?Ψ),∆ iff `F ?Ψ,∆ . (6)

Two cases arise at the root of deductions in AF : either F = ?F ′,
and we add a rule qr

0̄−→ {?F ′} to the rules depicted in Figure 2, or
F is not guarded by a why-not, and we add a rule qr

ēF−−→ ∅. Then,
by (6), AF , {q`} . qr, 0̄ if and only if `F F .

It is worth noting that the logical contraction rule (?C) is han-
dled implicitly by the use of supports, and that, for each q]q′ ⊆ S?,
AF features a single split rule, for (⊗), a single fork rule, for (&),
and a single full zero test rule, for (?P). This means in particular
that MELL provability can be reduced to BVASS0̄ reachability—
and thus by the proof of Lemma 3, to BVASS reachability. Also
observe that structural weakening (W) and structural contraction
(C) can be handled respectively by losses and expansions in AF .
We conclude:

Proposition 7. There are polynomial space reductions:

1. from (affine, resp. contractive) LL provability to (lossy, resp.
expansive) ABVASS0̄ reachability,



2. from (affine, resp. contractive) MELL provability to (lossy, resp.
expansive) BVASS0̄ reachability.

Our reductions incur an exponential blow-up in the number of
states—however, as we will see with our complexity upper bounds,
this is not an issue, because the main source of complexity in
ABVASS0̄ is, by far, the dimension of the system, which is here
linear in |F |. We provide similar reductions for the intuitionistic
cases in the full paper, where the proof for an intuitionistic version
of (6) is also provided in greater detail.

4.2 From ABVASS0̄ to LL
In order to exhibit a reduction from ABVASS0̄ reachability to
LL provability, we extend a similar reduction proved by Lincoln,
Mitchell, Scedrov, and Shankar [14] in the case of AVASS (also em-
ployed by Urquhart [23]). The general idea is to encode ABVASS0̄

configurations as sequents and ABVASS0̄ deductions as proofs in
LL extended with a theory, where encoded ABVASS0̄ rules are pro-
vided as an additional set of non-logical axioms.

4.2.1 Linear Logic with a Theory
In the framework of Lincoln et al., a theory T is a finite set of
axioms C, p⊥1 , . . . , p

⊥
m where C is a MALL formula and each pi is

an atomic proposition. Proofs in LL+T can employ two new rules

` C, p⊥1 , . . . , p⊥m
T
` C, p⊥1 , . . . , p⊥m ` C⊥,∆

` p⊥1 , . . . , p⊥m,∆
directed cut

where C, p⊥1 , . . . , p⊥m belongs to T .
A proof in LL+T is directed if all its cuts are directed cuts. By

adapting the LL cut-elimination proof, Lincoln et al. show:

Fact 8 ([14]). If there is a proof of ` Γ in LL+T , then there is a
directed proof of ` Γ in LL+T .

The axioms of a theory T can be translated in pure LL by

pC, p⊥1 , . . . , p
⊥
mq

def
= C⊥ ⊗ p1 ⊗ · · · ⊗ pm . (7)

Fact 9 ([14]). For any finite set of axioms T , ` Γ is provable in
LL+T if and only if ` ?pTq,Γ is provable in LL.

4.2.2 Encoding ABVASS0̄

Given an ABVASS A = 〈Q, d, Tu, Tf , Ts, ∅〉, a configuration
(q, v̄) in Q× Nd is encoded as the sequent

θ(q, v̄)
def
= ` q⊥, (e⊥1 )v̄(1), . . . , (e⊥d )v̄(d) (8)

where Q ] {ei | i = 1, . . . , d} is included in the set of atomic
propositions and An stands for the formula A repeated n times.

By Lemma 4 we assumeA to be in ordinary form. We construct
from the rules of A a theory T consisting of sequents of form
` q⊥, c⊥1 , . . . , c⊥m, C with q in Q the originating state, cj in {ei |
0 < i ≤ d}, and C a MALL formula containing the destination
state(s) positively. Here are the axioms corresponding to each type
of rule:

q
ēi−→ q1 q⊥, q1 ⊗ ei

q
−ēi−−→ q1 q⊥, e⊥i , q1

q → q1 ∧ q2 q⊥, q1 ⊕ q2
q → q1 + q2 q⊥, q1 ` q2

By Lemma 3, we do not need to consider the case of full zero
tests. Here is nevertheless how they could be encoded, provided we
slightly extended the reduction of LL+T to LL in Fact 9 to allow
exponentials in T :

q
?
=0̄−−→ q1 q⊥, !q1

Claim 10.1. For all (q, v̄) in Q × Nd, A, Q` . q, v̄ if and only if
` θ(q, v̄), ?Q` in LL+T .

Proof. The AVASS case is proved by Lincoln et al. [14, Lem-
mata 3.5 and 3.6] by induction on the height of deduction trees
in A and the number of directed cuts in a directed proof in LL+T
(with minor adaptations for ?Q`). Thus, we only need to prove that
split rules preserve this statement.2

Assume for the direct implication thatA, Q` . q, v̄ as the result
of a split rule q → q1 + q2, thus v̄ = v̄1 + v̄2 and A, Q` . q1, v̄1

andA, Q` . q2, v̄2. By induction hypothesis, ` θ(q1, v̄1), ?Q` and
` θ(q2, v̄2), ?Q`, and we can prove

` q⊥1 ⊗ q⊥2 , (c⊥1 )v̄1(1)+v̄2(1), . . . , (c⊥d )v̄1(d)+v̄2(d), ?Q`, ?Q` (9)

using (⊗), and after |Q`| logical contractions and a directed cut
with ` q⊥, q1 ` q2, we obtain ` θ(q, v̄), ?Q` as desired.

Conversely, assume that the last applied directed cut has

` q⊥1 ⊗ q⊥2 , (c⊥1 )v̄(1), . . . , (c⊥d )v̄(d), ?Q` (10)

and ` q⊥, q1 ` q2 as premises. The only rules that allow to prove
(10) are (?D), (?C) or (?W) applied to some q` in Q`, and (⊗).
Logical contractions are irrelevant to the claim, and wlog. we can
apply derelictions above (⊗), thus we know that (10) is the result
of (⊗) followed by a series of (?W). Hence ` θ(q1, v̄1), ?Q1 and
` θ(q2, v̄2), ?Q2 with v̄ = v̄1+v̄2 andQ` ⊇ Q1∪Q2. By induction
hypothesis, A, Q1 . q1, v̄1 and A, Q2 . q2, v̄2. Because Q1 ⊆ Q`

and Q2 ⊆ Q` this entails A, Q` . q1, v̄1 and A, Q` . q2, v̄2, from
which a split allows to derive A, Q` . q, v̄ as desired.

Proposition 10. There are logarithmic space reductions

1. from ABVASS0̄ reachability to LL provability and
2. from BVASS0̄ reachability to MELL provability.

Proof. By Lemma 3 we can eliminate full zero tests. For 1, by
Claim 10.1 and Fact 9,A, Q` . qr, 0̄ if and only if ` q⊥r , ?Q`, ?pTq.
Regarding 2, simply observe that additive connectives are only used
for the encoding of fork rules.

4.2.3 Affine Case
Adapting the proof of Proposition 10 to the affine case is relatively
straightforward. For starters, Fact 8 also holds for LLW+T us-
ing the cut elimination procedure for LLW, and allowing structural
weakenings does not influence the proof of Fact 9 in [14, Lem-
mata 3.2 and 3.3]. We show:

Proposition 11. There are logarithmic space reductions

1. from ABVASS0̄ lossy reachability to LLW provability and
2. from BVASS0̄ lossy reachability to MELLW provability.

This relies on an extension of Claim 10.1:
Claim 11.1. For all (q, v̄) in Q × Nd, A, Q` .` q, v̄ with lossy
semantics if and only if ` θ(q, v̄), ?Q` in LLW+T .

4.2.4 Contractive Case
Again, Fact 8 is straightforward to adapt to LLC+T using cut
elimination. Fact 9 can be strengthened to avoid exponentials in
the contractive case; see the full paper for a proof:

Lemma 12. For a finite set of axioms T , ` Γ is provable in
LLC+T if and only if ` > ⊕

⊕
t∈T ptq,Γ is provable in LLC.

2 de Groote et al. [5] show how to handle split rules in IMELL, but they do
not rely on the LL+T framework, which motivates considering this case.



Proof. For the direct implication, we consider a directed proof of
L̀LC+T Γ. By induction on the number of directed cuts, we build

an LLC proof of L̀LC > ⊕
⊕

t∈T ptq,Γ. For the base case, an
LLC+T proof without directed cuts is also an LLC proof, thus

L̀LC+T >,Γ using the (>) rule, and ` > ⊕
⊕

t∈T ptq,Γ by |T |
applications of (⊕). For the induction step, consider a directed cut
of an axiom t = C, p⊥1 , . . . , p

⊥
m in T with L̀LC+T C

⊥,∆. We have
L̀LC C,C

⊥ and L̀LC pi, p
⊥
i for all 0 < i ≤ m by the (init) rule,

and m + 1 applications of (⊗) yield L̀LC t, ptq. By induction hy-
pothesis L̀LC >⊕

⊕
t∈T ptq, C

⊥,∆, thus a (normal) cut yields L̀LC

>⊕
⊕

t∈T ptq, ptq, p
⊥
1 , . . . , p

⊥
m,∆. Using |T | applications of (⊕)

allows to prove L̀LC >⊕
⊕

t∈T ptq,>⊕
⊕

t∈T ptq, p
⊥
1 , . . . , p

⊥
m,∆

and a structural contraction yields the desired LLC proof.
For the converse implication, if L̀LC > ⊕

⊕
t∈T ptq,Γ, then

L̀LC+T > ⊕
⊕

t∈T ptq,Γ. Then L̀LC+T 1, and for each axiom
t = C, p⊥1 , . . . , p

⊥
m in T , we can prove L̀LC+T C ` p⊥1 ` · · ·` p⊥m

by m applications of (`) from L̀LC+T t, i.e. L̀LC+T ptq⊥. Thus |T |
applications of (&) yield L̀LC+T 1 &

˘
t∈T ptq

⊥, and a (normal)
cut shows L̀LC+T Γ.

Without loss of generality, we can assume that Q` = {q`} for
a state q` with no applicable rule in A. We extend Claim 10.1 and
Proposition 10 to the contractive case; see the full paper:
Claim 13.1. For all (q, v̄) in Q × Nd, A, {q`} .e q, v̄ using
expansive semantics if and only if ` θ(q, v̄), qs` in LLC+T for
some s > 0.

Proposition 13. There is a logarithmic space reduction from
ABVASS0̄ expansive reachability to MALLC provability.

5. TOWER Upper Bounds
To show that the reachability problem for lossy ABVASS0̄ is in
TOWER, we establish by induction over the dimension d a bound
on the height of minimal reachability witnesses, following in this
the reasoning used by Rackoff [18] to show that the coverability
problem for VASS is in EXPSPACE. The main new idea here is
that, where there is freedom to choose how values of vector com-
ponents are distributed when performing split rules top-down (see
Section 3.1), splitting them equally (or with the difference of 1) al-
lows sufficient lower bounds to be established along vertical paths
in deduction trees for the inductive argument to go through. Since
the bounds we obtain on the heights of smallest witnessing deduc-
tion trees are exponentiated at every inductive step (rather than mul-
tiplied as in Rackoff’s proof), the resulting complexity upper bound
involves a tower of exponentials, but will be shown broadly optimal
in Section 6.

The following lemma in fact addresses the equivalent top-down
coverability problem (see Section 3.2.2), and considers systems
without full resets thanks to Lemma 3. We first define some ter-
minology. We say that a deduction tree is:

• (qr, v̄0)-rooted iff that is the label of its root;
• Q`-leaf-covering iff, for every leaf label (q, v̄), we have q ∈
Q`;
• of height h iff that is the maximum number of edges, i.e. the

maximum number of rule applications, along any path from the
root to a leaf.

For integers d,m ≥ 0 and s ≥ 1, we define a natural number
H(d, s,m) recursively:

H(0, s,m)
def
= s , (11)

H(d+ 1, s,m)
def
= s(m · 2H(d,s,m))d+1 +H(d, s,m) . (12)

qr, v̄0

≤ B

q1, v̄1

D†1

qk, v̄k

D†k. . .

≤
|Q
|
·
B

d
+

1

≤
H

(
d
,
|Q
|,

m
a
x
−

(
T
u
)
)

≤
H

(
d

+
1
,
|Q
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m
a
x
−

(
T
u
)
)

Figure 3. Induction step in the proof of Lemma 14.

Lemma 14. If an ABVASS A = 〈Q, d, Tu, Tf , Ts, ∅〉 has a
(qr, v̄0)-rooted Q`-leaf-covering deduction tree, then it has such
a deduction tree of height at most H(d, |Q|,max−(Tu)).

Proof. We use induction on the dimension d.
If A is 0-dimensional, then the labels in its deduction trees are

states only. Starting with a deduction tree whose root label is qr and
whose every leaf label is in Q`, we obtain by repeated shortenings
a deduction tree in which labels along every branch are mutually
distinct, with height at most |Q| − 1.

Suppose thatA = 〈Q, d+1, Tu, Tf , Ts, ∅〉, andD is a (qr, v̄0)-
rooted Q`-leaf-covering deduction tree. Let

B
def
= 2H(d,|Q|,max−(Tu)) ·max−(Tu) , (13)

and let {n1, . . . , nk} be the set of all nodes of D such that, for all
i, we have:

• all vector components in labels of ancestors of ni are smaller
than B;
• for some 0 < ji ≤ d+ 1, we have v̄i(ji) ≥ B, where the label

of ni is (qi, v̄i).

By repeated shortenings, we can assume that the length (i.e., the
number of edges) of every path in D, which is from the root either
to some ni or to a leaf with no ni ancestor, is at most |Q| · Bd+1,
the number of possible labels with all vector components smaller
than B.

In the remainder of the argument, we apply the induction hy-
pothesis below each of the nodes ni. More precisely, let Ai denote
the d-dimensional ABVASS obtained from A by projecting onto
vector indices {1, . . . , d + 1} \ {ji}. (The only change is in the
set of unary rules.) From the subtree of D rooted at ni, we know
thatAi has a (qi, v̄i(−ji))-rootedQ`-leaf-covering deduction tree.
(Here w̄(−j) is the projection of w̄ to all indices except j.) Let Di

be such a deduction tree, which we can choose of height at most
H(d, |Q|,max−(Tu)) by induction hypothesis.

Now, to turn Di into a (qi, v̄i)-rooted deduction tree D†i of A,
we have to do two things:

1. For every application of a unary rule q ū−→ q′ in Di, decide

which unary rule q ū′−→ q′ ofA such that ū = ū′(−ji) to apply:
we do that arbitrarily.

2. For every application of a split rule q → q′ + q′′ in Di, decide
how to split the vector component x with index ji: we do that
by balancing, i.e. picking the corresponding components x1 and
x2 of the two child vectors so that |x1 − x2| ≤ 1.

We claim thatD†i thus obtained is indeed a (qi, v̄i)-rooted Q`-leaf-
covering deduction tree of A. Since the node labels in D†i differ
from those in Di only by the extra jith components, it suffices



to show that all the latter are non-negative. In fact, at the root
of D†i , we have v̄i(ji) ≥ B, and it follows by a straightforward
induction that, for every node n in D†i whose distance from the
root is h (which is at most H(d, |Q|,max−(Tu))), its vector label
w̄ satisfies

w̄(ji) ≥ 2H(d,|Q|,max−(Tu))−h ·max−(Tu) . (14)

It remains to observe that, by replacing for each 0 < i ≤ k,
the subtree of D rooted at ni by D†i , the height of the resulting
deduction tree (see Figure 3 for a depiction) is at most

|Q| ·Bd+1 +H(d, |Q|,max−(Tu)) = H(d+1, |Q|,max−(Tu)),

thereby establishing the lemma.

The following auxiliary function and proposition will be useful
for deriving the complexity upper bounds. Let

H ′(d, s,m)
def
= 4(d+ 1)(s+m+ 1)H(d, s,m) . (15)

We show in the full paper that:

Proposition 15. For all d,m ≥ 0 and s ≥ 1, we have:

H ′(d+ 1, s,m) ≤ 2H′(d,s,m) .

We are now in a position to establish the membership in
TOWER. More precisely, since the height of the tower of exponen-
tials in the bounds we obtained is equal to the system dimension,
the problem with the dimension d fixed will be in d-EXPTIME.

Theorem 16. Reachability for lossy ABVASS0̄ is in TOWER. For
every fixed dimension d, it is in PTIME if d = 0, and in d-EXPTIME
if d ≥ 1.

Proof. By Lemma 3, it suffices to consider an ABVASS. We argue
in terms of the top-down coverability problem (see Section 3.2.2):
given an ABVASS A = 〈Q, d, Tu, Tf , Ts, ∅〉, a state qr and a set
of states Q`, to decide whether A has a (qr, 0̄)-rooted Q`-leaf-
covering deduction tree.

By Lemma 14, if A has such a deduction tree, then it has one
of height at most H(d, |Q|,max−(Tu)). Observing that, in such a
deduction tree, all vector components are bounded by

(max+(Tu) + 1) ·H(d, |Q|,max−(Tu)) ,

we conclude that it can be guessed and checked in

O((d+ 1) · log((max+(Tu) + 1) ·H ′(d, |Q|,max−(Tu))))

space by an alternating algorithm which manipulates at most three
configurations of A at a time.

The memberships in the statement (for ABVASS) follow from
the fact that H ′(0, |Q|,max−(Tu)) is polynomial, by Propo-
sition 15, and since ALOGSPACE = PTIME, APSPACE =
EXPTIME, and (d− 1)-AEXPSPACE = d-EXPTIME.

By Proposition 7, this shows:

Corollary 17. LLW provability is in TOWER.

6. TOWER Lower Bounds
The rough pattern of our hardness proof resembles those by e.g.
Urquhart [23], where a fast-growing function is computed weakly,
then its result is used to allocate space for simulating a univer-
sal machine, and finally the inverse of the function is computed
weakly for checking purposes. Indeed, we simulate Minsky ma-
chines whose counters are tower-bounded, but the novelty here is
in the inverse computations. Specifically, for each Minsky counter
c, we maintain its dual ĉ and simulate each zero test on c by a split
rule that launches a thread to check that ĉ has the maximum value.

qinit
kBk: q1

k q2
k + qloop

k

Bk−1

qinit
k−1

++dk−1

--dk−1

++d′k−1
++d′k−1

--d′k−1
++dk−1

--dk

qinit
1B1: qleaf

--d1; --d1

Figure 4. Defining Bk for k > 1 (above), and B1 (below).

Recalling that such rules split all values non-deterministically, we
must construct the simulating system carefully so that such non-
determinism cannot result in erroneous behaviours.

The auxiliary threads check that a counter is at least tower(k)
by seeking to apply split rules at least tower(k − 1) times along
every branch. The difficulty here is, similarly, how to count up to
tower(k − 1) or more in a manner which is robust with respect to
the non-determinism of the split rules.

A hierarchy of BVASS for the latter purpose is given in Fig-
ure 4— recall the depicting conventions in Section 3.1.3. Thus, af-
ter the unary rule from qloop

k that decrements dk, we have that Bk

behaves like Bk−1 from state qinit
k−1.

Lemma 18. For every k ≥ 1 and vector of naturals v̄0 such that
v̄0(di) = v̄0(d′i) = 0 for all i < k, we have that Bk has a
(qinit

k , v̄0)-rooted {qleaf}-leaf-covering deduction tree if and only
if v̄0(dk) ≥ tower(k).

Proof. We proceed by induction on k, where the base case k = 1
is immediate, so let us consider k > 1 and v̄0 such that v̄0(di) =
v̄0(d′i) = 0 for all i < k.

If v̄0(dk) ≥ tower(k), we observe that Bk can proceed from
(qinit

k , v̄0) as follows:

• each loop at q1
k empties dk−1, i.e. doubles dk−1 and transfers it

to d′k−1;
• each loop at q2

k empties d′k−1, i.e. transfers d′k−1 to dk−1;
• each split from q2

k divides dk−1 into two equal values, and
divides dk into two values that differ by at most 1.

In any deduction tree thus obtained, at every node which is the hth
node with state label qloop

k from the root, and whose vector label is
w̄, we have:

w̄(dk−1) = h , w̄(d′k−1) = 0 , w̄(dk) ≥ 2tower(k−1)−h .
(16)

Hence, by returning control to qinit
k as long as the value of dk

is at least 2, Bk can reach along every vertical path a node with
state label qloop

k at which the values of dk−1 and dk are equal
to tower(k − 1) and at least 1 (respectively). To complete the
deduction tree to be {qleaf}-leaf-covering, from every such node
we let Bk decrement dk and apply the induction hypothesis.

The interesting direction remains, so suppose D is a (qinit
k , v̄0)-

rooted {qleaf}-leaf-covering deduction tree of Bk. Since at every
qloop
k -labelled node in D, the value of dk must be at least 1,

it suffices to establish the following claim and apply it for the
maximum h:
Claim 18.1. For each 0 < h ≤ tower(k − 1), D contains 2h

incomparable nodes (i.e., none is a descendant of another) whose
state label is qloop

k and at which dk−1 + d′k−1 has value at most h.



In turn, by induction on h, that claim is a straightforward con-
sequence of the next one. (For the base case of that induction, i.e.
h = 1, apply the next claim with h′ = 0.)

Claim 18.2. For each node n in D whose state label is qinit
k and at

which dk−1 +d′k−1 has some value h′ < tower(k−1), there must
be two incomparable descendants n1 and n2 whose state labels are
qloop
k and at which the values of dk−1 + d′k−1 are at most h′ + 1.

Consider a node n as in the latter claim. After the increment of
dk−1 and the loops at q1

k and q2
k, the value of dk−1 + d′k−1 will be

at most 2(h′+ 1). If the first split divides dk−1 +d′k−1 equally, we
are done.

Otherwise, we have a qloop
k -labelled descendant n′ of n at which

dk−1 + d′k−1 has value at most h′. In particular, dk−1 is less than
tower(k− 1) at n′, so recalling the induction hypothesis regarding
Bk−1, the child n′′ of n′ cannot be qinit

k−1-labelled. Thus, n′′ must
be qinit

k -labelled, and the value of dk−1 +d′k−1 at n′′ is the same as
at n′, so at most h′. We can therefore repeat the argument with n′′

instead of n, but sinceD is finite, two incomparable descendants as
required eventually exist.

Relying on the properties of the BVASS Bk, we now establish
the hardness of lossy reachability, matching the membership in
TOWER in Theorem 16 already for BVASS. Although we do not
match the upper bounds when the system dimension is fixed, we
remark that our simulation uses a number of counters which is
linear in the height of the tower of exponentials with coefficient 2.

Theorem 19. Reachability for lossy BVASS is TOWER-hard.

Proof. For a notion of Minsky machines that is similar to how
ABVASS0̄ were defined in Section 3.1, let such a machine be given
by a finite set of states Q, a finite set of counters C, and finite sets
of increment rules “q ++c−−→ q1,” decrement rules “q --c−→ q1” and

zero-test rules “q c
?
=0−−→ q1.” By simulating a tape using two stacks,

and simulating a stack using two counters, it is straightforward to
verify that the following problem is TOWER-hard:

Given a Minsky machineM and two states q0, qH , doesM
have a computation that starts in q0 with all counters having
value 0, ends in qH , and is such that all counter values are
at most tower(|M|)?

We establish the theorem by working with the equivalent top-
down coverability problem (see Section 3.2.2). We show that, given
a Minsky machine M of size K and two states q0, qH , then a
BVASS A(M), a state qr and a finite set Q`

def
= {qH , qleaf} are

computable in logarithmic space, such that M has a 0-initialised
tower(K)-bounded computation from q0 to qH if and only if
A(M) has a (qr, 0̄)-rooted Q`-leaf-covering deduction tree.

For each counter c ofM, there are three counters inA(M) de-
noted c, ĉ, c′. The initial part of A(M) employs a “weak Petri net
computer” [16] for the tower function, namely a constant VASS
with a designated start state, input counter, finish state and output
counter, which given a natural number m, can compute tower(m)
but non-deterministically may also compute a smaller value. (It is
standard to construct such a VASS from weak routines for 2m and
2m.) By means of the latter VASS, each counter ĉ in A(M) is ini-
tialised to have value tower(K) (or possibly smaller). Recalling
that the auxiliary VASS is constant, a simple pattern for incorporat-
ing it into A(M) is to use fresh states and counters for each ĉ.

The main part of A(M) consists of simulating M from q0,
using the translations of increments, decrements and zero tests in
Figure 5. For the increments and decrements,A(M) also performs
the opposite operation on the hatted counter, thereby keeping the
sums c+ĉ constant. For the zero tests,A(M) attempts by two loops

c
?
= 0:

BK
qinit
K

--ĉ; ++dK ; ++c′ --c′; ++ĉ

+

++c:
++c; --ĉ

--c:
--c; ++ĉ

Figure 5. Simulating the Minsky operations.

and using the primed counter, to copy the hatted counter to dK and
then employ BK (see Figure 4) to verify that the latter is maximal
(i.e., has value tower(K)). Thus, A(M) also has counters di for
0 < i ≤ K and d′i for 0 < i < K, and more precisely a variant of
BK is employed that has the same dimension as A(M) (and does
not use the extra counters).

For each 0-initialised tower(K)-bounded computation of M
from q0 to qH , it is straightforward to check that A(M) can
simulate it as follows:

• each counter ĉ is initialised to tower(K);
• in every simulation of a zero test c ?

= 0, the values of
c, ĉ, c′, dK are resp. 0, tower(K), 0, 0 before the two loops,
and 0, tower(K), 0, tower(K) before the split;
• at every start of BK , the value of dK is tower(K) and all other

counters have value 0.

By Lemma 18, we obtain a (qr, 0̄)-rooted Q`-leaf-covering deduc-
tion tree of A(M).

The other direction is more involved: we show that, if A(M)
has a (qr, 0̄)-rooted Q`-leaf-covering deduction tree D, then M
has a 0-initialised tower(K)-bounded computation from q0 to qH .
By construction, D consists of a path π from which there are
branchings to deduction trees of BK . The main part of π consists
of the simulations of increments, decrements and zero tests as in
Figure 5. From it, we obtain a 0-initialised tower(K)-bounded
computation of M from q0 to qH , after observing the following
for every counter c ofM:

• After ĉ is initialised in D, the value of c + ĉ + c′ is always at
most tower(K).
• For each simulation of a zero test of c, we have by Lemma 18

that the value of dK is tower(K) before the split and is 0 after
the split on the path π, and consequently that the values of
c, ĉ, c′ are 0, tower(K), 0 (respectively) before the two loops.
• The value of cmay erroneously decrease due to the branchings,

but since that makes the value of c + ĉ + c′ smaller than
tower(K), such losses may occur only after the last simulation
of a zero test of c, and so cannot result in an erroneous such
simulation.
• Similarly, only the last transfer of c′ to ĉ may be incomplete

(i.e., it does not empty c′).

Since lossy reachability reduces to reachability and by Proposi-
tion 10 and Proposition 11, this entails:

Corollary 20. Provability in MELL, MELLW, and LLW is TOWER-
hard.

7. Concluding Remarks
Although connections between propositional linear logic and fam-
ilies of counter machines have long been known, they have rarely
been exploited for complexity-theoretic results. Using a model of



MELL LL

TOWER-hard, Σ0
1-easy Σ0

1-c. [14]
with W TOWER-c. TOWER-c.
with C 2EXP-c. [22] ACK-c.

Table 1. The complexity of provability in fragments and variants
of LL.

AVASS BVASS ABVASS0̄

Reachability Σ0
1-c. [14] TOWER-hard, Σ0

1-easy Σ0
1-c.

Lossy reach. 2EXP-c. [4] TOWER-c. TOWER-c.
Incr. reach. ACK-c. [23] 2EXP-c. [6] ACK-c.

Table 2. The complexity of reachability problems in ABVASS0̄.

alternating branching VASS, we have unified several of these con-
nections, and derived complexity bounds for provability in sub-
structural logics from the (old and new) bounds on ABVASS0̄

reachability, summarized in Table 1 and Table 2 respectively.
Our main results in this regard are the TOWER-completeness of

provability in LLW and the new TOWER lower bound for MELL:
the latter has consequences on numerous problems mentioned in
Section 3, and entails for instance that the satisfiability problem
for FO2 on data trees is non-elementary [2, 7]. The ACKERMANN-
completeness of MALLC and LLC is perhaps less surprising in
the light of Urquhart’s results, but we take it as a testimony of the
versatility of the ABVASS0̄ model.

The main open question remains whether BVASS reachability,
or equivalently MELL provability, is decidable.
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