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Abstract

We consider a heterogeneous jury which must decide on a verdict
of A or B (such as guilty or innocent) by a sequential majority vote.
Jurors have private information in the form of integer signals, where
positive signals indicate A is more likely and negative signals that B
is more likely. A juror’s strategy is a threshold (depending on previ-
ous voting, if any), where a juror votes A if his signal is higher than
his threshold. Each juror’s signal distribution is linear, with slope
called his “ability”, so that higher ability jurors are more likely to
guess correctly between A and B. Using integer programming meth-
ods we show that the probability that a three-person jury comes to a
correct verdict is maximized when the middle-ability juror votes first.
In general, optimizing jurors must vote strategically, but when A and
B are equiprobable and the abilities (b, c, a) in the voting order sat-
isfy a < b < c, all jurors can vote naively for the alternative that has
higher probability at time of voting. Our results have implications for
larger juries and for optimizing line calls in sports such as tennis and
badminton.
Keywords: jury — sequential voting — voting order — group decision

1 Introduction

A group of agents (jurors) must decide between two states of Nature, A
and B (such as guilty or innocent). Their verdict is by majority rule in a
sequential open vote, also known as “roll call” voting, and their common
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aim is to maximize the probability that their verdict is correct. As the
jurors have different “abilities” (or expertise, judgement, eyesight, etc.) to
determine the correct state, the voting order might make a difference.

The main interest of this paper is to determine an optimal voting order,
in terms of the set of abilities of the jurors. For reasons of a combinatorial
nature, our techniques (integer programming) are restricted mainly to small
juries. We find that, with three jurors of differing expertise, it is best to
have the one of middle-level expertise vote first, and the order of the last
two does not matter. On the other hand, when the alternatives are equally
likely, and the voting sequence is middle ability followed by highest ability
and finally lowest ability, all the jurors can afford to vote naively for the
alternative which they deem most likely at the time of voting. These results
apply as well to the last three jurors to vote in a larger jury.

In our model the ability of a juror is specified by the nature of his private
information, in terms of the distribution of his signal within a set of ten odd
values from −9 to +9, with higher values indicating A and lower ones B.
We assume a linear distribution where the slope is proportional to a juror’s
ability a. Thus ability a = 0 is a horizontal line where every signal in
the whole range comes equiprobably, and has no information content, while
maximum ability a = 4 is most likely to give signals with high absolute
values, with the most useful information. A strategy profile for the jury
specifies how large a signal (his threshold) each juror requires in order to
vote A. Individual thresholds depend on the prior voting sequence, if any.
Thresholds are jointly optimized using integer programming or dynamic
programming, as a function of the ability sequence of the jurors and the a
priori probability of alternative A.

In our model of heterogeneous juries, jurors cannot optimize their deci-
sions by simply assuming that they are pivotal. They must observe previous
voting because it matters which jurors in the voting sequence have voted for
A, not simply that half the other jurors have so voted.

The literature on using voting to amalgamate private information goes
back at least as far as Condorcet [1], with his analysis of simultaneous voting.
Surveys of various voting methods can be found in [2, 3]. Sequential voting
has received less attention. Sequential voting is considered in [4, 5], but
our problems of voting order and voting for the truth are not considered.
The voting order of heterogenous experts is analyzed in [6, 7], however these
experts care in part about their own reputations, rather than the correctness
of the group decision, so the optimization problem (actually an equilibrium
problem in their model) differs from ours. Unanimity rules are compared
with majority rules in theoretical and experimental settings in [8, 9]. The
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result in [8] on increased wrong conviction rate when unanimous voting is
required (compared to majority), is found in our model only when the jurors
have the highest ability.

A recently published treatise on collective decision making [10] presents
an extensive analysis of juries, discussing juror “quality” (including low qual-
ity due to drunkenness) and voting order. For the latter, several examples
of historical anti-seniority rules are explicitly laid out. The historical impor-
tance of voting order is illustrated as far back as a Roman trial described
by Cicero, where the defendant was given choice of open sequential voting
or secret ballot. With his choice of the former, the order of voting proved
seriously detrimental to his case: he was convicted by a majority of two.

The question of optimal ordering of heterogeneous experts or jurors is
implicit in many rules of behavior. In tennis or badminton, the A/B call
of In or Out is first made by a linesman and then can be overcalled by the
umpire. A discussion of the optimal order of experts is given in [9], citing
examples where courts follow either anti-seniority (increasing “ability” in our
terminology) or seniority orders; respectively the ancient Sanhedrin and the
contemporary American Supreme Court. Our model is simpler than other
models in the literature in that our agents care only about the common
good (getting the right verdict), rather than their own reputations, getting
their preferred verdict, or minimizing their costs in obtaining quality signals.
Thus we are concerned with simple optimization, rather than equilibria, and
our analysis is not game theoretic.

We add a final note regarding our restriction to small jury size. Our
methods of discrete optimization use integer programming to determine op-
timal threshold profiles for every fixed voting order. Since thresholds depend
on previous voting, and the number of previous voting profiles potentially
seen by the kth juror alone is 2k−1, the number of threshold types (for just
the last juror) is exponential in the size of the jury. This unfortunate fact
restricts the applicability of our exact approach to small juries. Even for
a jury of n = 3 jurors, since we have 11 potential threshold levels, and
five possible voting histories (−, A,B,AB,BA), there are 115 = 161, 051
threshold profiles to optimize over. However juries, as opposed to general
electorates, are usually small. Three judges often decide a case (as in boxing
and weight-lifting matches, X-Factor competitions) and sometimes only two
(as in tennis or badminton line calls with overrule). Many legal decisions
are determined by a three-judge panel, and appellate courts are often three
tiered. Three-person juries are analyzed experimentally in [9]. Also, we
show how some of our results can be applied to large juries by decomposing
them into smaller ones, and how our results on ability ordering apply more
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generally to the last three jurors in the voting order.
The methodology adopted in this paper is neither experimental nor de-

ductive. Rather we use computer based programming (integer programming
or dynamic programming) to determine the set of optimal threshold profiles
for each a priori probability of state A and each (ordered) sequence of juror
abilities, and then exhaustive search to obtain comparative general results
which hold for all or specified parameters. We use exact calculations (with
fractional probability values) based on Mathematica. Hence these general
results, which we call Propositions, have no proofs. The ones with true
deductive proofs are called Theorems.

2 The model

There are two states of Nature, A and B (such as guilty and innocent), with
the a priori probability θ of A. The symmetric case θ = 1/2 is referred to
as of neutral alternatives. A group of n agents (jurors) attempts to decide
the true state of Nature by amalgamating their private information through
sequential voting towards a verdict V of A or B. Their common aim is to
maximize the probability Q that their collective verdict is the actual state
of Nature.

We model the voting problem Γ = Γm,n in terms of the minimum number
of votes m (out of n) required for a verdict of A. We are primarily concerned
with majority voting, where n is odd and a majority of m = (n + 1)/2 is
sufficient for either alternative. We shall also sometimes relate our problem
to one of unanimous voting Γn,n (for say A), where one of the alternatives
requires a unanimous vote. The agents will make their votes strategically
(depending on θ, previous voting, and their private information). The jurors
differ in their ability to discern the state of Nature, so the voting order may
matter.

2.1 Signals and thresholds

Wemodel the private information of the ith juror to vote as a signal si drawn
from a fixed signal set S = {−9,−7, . . . ,−1,+1, . . . ,+7,+9} consisting of
ten odd numbers. Positive signals will tend to indicate that A is true;
negative signals, B. A higher positive signal gives a higher conditional
probability of A, so is considered stronger. Similarly for negative signals.

When juror k comes up to vote, he votes A if his signal sk is above a
threshold τk = τk(v1, v2, . . . , vk−1), where vj ∈ {A,B} is the vote of the jth
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earlier juror, j = 1, . . . , k − 1. That is

vk = A if and only if sk > τk.

When there are n = 3 jurors, the threshold vector τ has five coordinates for
majority voting:

τ = (τ1, τ2 (B) , τ2 (A) , τ3 (AB) , τ3 (BA))

= (v, w, x, y, z) ,

as τ (AA) and τ (BB) can be ignored since a majority has already been
reached. Since signal indices are odd, we index the thresholds T by even
numbers: T = {−10,−8, . . . ,+10}. Note that threshold −10 is a certain
vote for A and +10 is a certain vote for B. For example, given signal
vector s = (s1, s2, s3) = (1,−3, 5) and threshold vector (strategy profile)
τ = (2,−4, 6,−8, 10), the voting sequence is v1 = B (because s1 = 1 <
2 = τ1), v2 = A (because s2 = −3 > τ2 (v1) = τ2 (B) = −4), and v3 = B
(because juror 3 always votes B after BA as that threshold is +10). The
voting sequence BAB determined by s and τ thus gives a majority verdict
V = V (BAB) of B.

2.2 Signal distributions and juror abilities

We now discuss the process by which individual jurors receive their private
information in the form of signals. If Nature is in state A (resp. B), positive
(resp. negative) signals should be more likely than negative (resp. positive)
signals. Moreover, we want to have probabilities of A and B increase with
signal strength, measured by the absolute value of s ∈ S. The simplest such
signal distributions are two linear functions f and g on S respectively for
A and B with absolute values of their slopes proportional to juror’s ability
a ∈ Ω = {0, 1, 2, 3, 4}. Hence a juror with a higher ability is more likely
to guess the correct state of Nature. Specifically, a juror of ability a ∈ Ω
receives signal s ∈ S with probability{

fa(s) =
1
10 + a

(
s

360

)
, if Nature is A;

ga(s) = fa (−s) , if Nature is B.

Note that a juror of ability a = 0 essentially has no private information
as f0(s) = g0(s), so any signal he receives is equally likely to come from
A or B. Also note that the maximum ability is chosen as a = 4 so that
f4(−9) = g4(9) = 0 remain probabilities (i.e., non-negative number).
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The cumulative distribution functions Fa and Ga, corresponding to the
probability densities fa and ga, determine the probabilities that a juror of
ability a will vote B. In particular, noting that thresholds are necessarily
even, we have,

Pr [Event1] = Fa (2j) = (5 + j)
(

1
10 − a(5−j)

360

)
,

Pr [Event2] = Ga (2j) = (5 + j)
(

1
10 + a(5−j)

360

)
;

where Event1 (resp. Event2) denotes the event that, given the state of Na-
ture is A (resp. B), a juror of ability a with threshold τ = 2j votes B. The
significance of the ability parameter is easily demonstrated in the context
of a jury of one. Here, a juror of ability a, faced with neutral alternatives,
maximizes the probability Qa of giving the right verdict by using a neutral
threshold of τ1 = 0 with

Q(a) =
Ga(0)

Fa(0) +Ga(0)
.

Hence

(Q(0), Q(1), Q(2), Q(3), Q(4)) =

(
1

2
,
41

72
,
23

36
,
17

24
,
7

9

)
≈ (0.50, 0.57, 0.64, 0.71, 0.78).

2.3 Probability of correct verdict

Suppose we have three jurors of abilities a, b, c in order of voting. If we
know their thresholds τ = (v, w, x, y, z), then for each state of Nature we
can evaluate the probability of all voting sequences and consequently the
probability Q that the verdict is the actual state of Nature, that is, the
probability it is correct. If Nature is in state A, then the three voting
sequences AA, ABA and BAA lead to a correct verdict; if Nature is in state
B, then this holds for BB, BAB and ABB. For example, the probability
that Nature is in state A and the voting sequence is ABA is given by θ (1−
Fa (v))Fb (x) (1− Fc (y)). More generally, we can write Q as the sum of the
six possible ways of getting a correct verdict as follows:

Q(θ; a, b, c; v, w, x, y, z) =

θ((1− Fa(v))(1− Fb(x)) + (1− Fa(v))Fb(x)(1− Fc(y))

+ Fa(v)(1− Fb(w))(1− Fc(z))) + (1− θ)(Ga(v)Gb(w)

+Ga(v)(1−Gb(w))Gc(z) + (1−Ga(v))Gb(x)Gc(y)).
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For a fixed order in which jurors of different abilities may vote, we jointly
optimize their thresholds and call the optimal probability of correct verdict
Q̄ = Q̄ (θ; a, b, c). We solve the following integer program:

Q̄ (θ; a, b, c) = max
v,w,z,y,z∈T

Q(θ; a, b, c; v, w, x, y, z).

Denote by τ̄ = τ̄(θ; a, b, c) = (v̄, w̄, x̄, ȳ, z̄) any optimal (strategic) threshold
profile. The evaluation of Q̄ for the case of three jurors may also be carried
out via dynamic programming. For large juries, our discrete approach is not
feasible, but some observations extended from the case n = 3 are mentioned
later. Corresponding to our discrete signals, thresholds and juror abilities,
we consider the a priori probability θ ∈ {0.1, . . . , 0.9}.

In contrast to the optimal (strategic) threshold profile τ̄ , it is useful to
consider what is called naive voting, with naive thresholds τ̃ = (ṽ, w̃, x̃, ỹ, z̃)
and correctness probability Q̃ = Q(θ; a, b, c; τ̃). Naive voting is best defined
recursively. The first juror votes A if his subjective probability of A, given
a priori probability θ and his private information s1, is at least 1/2. For
θ = 1/2, this means that his naive threshold is 0. Suppose that the first
k − 1 jurors have chosen naive thresholds and the voting has gone in some
sequence (v1, v2, . . . , vk−1). Then the kth juror votes naively if he votes for
the more likely state of Nature, given all this information and his signal
sk. His naive threshold τ̃k (v1, v2, . . . , vk−1) is the even number between the
lowest (odd-numbered) signal for which he votes A and the highest for which
he votes B. Thus τ̃ can be computed recursively (for any number of voters
n). An interesting question is when (if ever) is τ̃ = τ̄ and hence Q̃ = Q̄.
That is, when is naive voting optimal? This will be partially addressed in
Proposition 5.

We note that instead of optimizing the probability Q of a correct verdict,
we could specify positive costs C1 and C2 for verdict V = A when Nature
is B or verdict V = B when Nature is A, and then minimize the expected
cost. It turns out that our qualitative results in this case are not different
from the case C1 = C2, which is identical to maximizing Q.

3 Optimal thresholds and need for strategic voting

This explanatory section gives some examples that demonstrate the neces-
sity of strategic voting and motivate our results on optimal voting orders
presented in the following section. For simplicity we assume neutral alter-
natives in this section, θ = 1/2.
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a1\a2 0 1 2 3 4

0 (0,−10,10,0,0) (0,−10,10,0,0) (0,−10,10,0,0) (0,−6, 6, 2,−2) (0,−4, 4, 2,−4)
1 (0,−10,10,−2,2) (0,−10,10,−2,2) (2,−8, 10,−2, 0) (0,−6, 6, 0, 0) (0,−4, 2, 2,−2)
2 (0,−10,10,−2,2) (0,−10,10,−2,2) (0,−8, 8,−2, 2) (0,−4, 4, 0, 0) (0,−2, 2, 2,−2)
3 (0,−10,10,−4,4) (0,−10,10,−4,4) (0,−10,10,−4,4) (0,−4, 4− 2, 2) (0, 0, 2, 0,−2)
4 (0,−10,10,−6,4) (0,−10,10,−6,6) (0,−8, 8,−4, 4) (0,−2, 2− 2, 2) (0, 0, 0, 0, 0)

Table 1: Optimal thresholds after (−, B,A,AB,BA) for voting order (a1, a2, 4) with
θ = 1/2

For illustrative purposes we have listed in Table 1 an optimal threshold
profile for each jury with a final voter of ability 4. Of particular interest (to
be discussed below) are the zero threshold profile for homogeneous abilities
(4, 4, 4), the skewed (asymmetric) profile for (1, 2, 4), and the extreme (±10)
thresholds for the second voter in the bold profiles.

3.1 Homogeneous jurors

Apart from sequential voting, our model includes two elements not ordinarily
found in the literature: multiple (rather than binary) signals and heteroge-
neous jurors (of differing abilities). It is the latter assumption that creates
the rich and counterintuitive flavor of our model. This can be easily demon-
strated by simply calculating the five homogeneous thresholds uniquely as
τ̄(1/2, a, a, a) = (0, 0, 0, 0, 0) for all abilities a ∈ Ω (except that the unique-
ness does not hold for ability a = 0 for an obvious reason), as indicated in
Table 1 for the case of a = 4. That is, each juror votes A exactly when he
receives a positive signal. We can rephrase this as the following elementary
observation.

Proposition 1 Facing neutral alternatives, homogeneous jurors can vote
optimally by voting naively without observing previous votes, as if they were
voting in a secret (or simultaneous) ballot.

Thus when jurors are homogeneous, each can indeed vote as if they are
the pivotal voter, and ignore any prior voting that they witness. Further-
more, we have the following simple results concerning conviction rate and
verdict errors when compared with unanimous voting system Γ3,3, which are
further detailed in Table 2.

Proposition 2 For homogeneous jurors with optimal voting strategies, ma-
jority rule leads to a higher conviction rate but lower rate of wrong acquittals
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when compared with unanimous voting rule. On the other hand, majority
rule has a lower rate of wrong conviction for the highest-ability jury (a = 4),
but otherwise a higher rate (for a < 4).

We note that the lower rate of wrong conviction for majority rule was a
major finding of [8].

Ability Pm Pu Em Eu Fm Fu

1 .5 .398 .397 .311 .397 .514
2 .5 .417 .297 .242 .297 .407
3 .5 .449 .206 .184 .206 .285
4 .5 .494 .126 .136 .126 .148

Table 2: Comparison of voting rules for homogeneous jurors: strategic sequential ma-
jority (m) vs. unanimous (u): P conviction rate, E rate of conviction error, F rate of
acquittal error

3.2 Symmetric strategy profiles

Table 1 gives some optimal profiles for the neutral alternative case θ = 1/2,
where there is an obvious symmetry between the two states of Nature, A
and B. To exploit this symmetry, we define the transposition function given
by Â = B and B̂ = A. We can extend this to partial voting histories
v = (v1, v2, . . . , vk−1), where vi ∈ {A,B}, 1 ≤ i ≤ k − 1 and k = 1, . . . , n,
by defining v̂ = (v̂1, v̂2, . . . , v̂k−1) and to thresholds by τ̂ (v) = −τ (v̂). For
example, if profile τ votes A after previous voting B with signal s2 > 4,
then τ̂ votes B after previous voting A with signal s2 < −4. Clearly for
θ = 1/2 the profiles τ and τ̂ yield the same correctness probability Q.
Thus if τ is optimal for some ability parameters, so is τ̂ . Thus optimal
solutions come in pairs (just like conjugate pairs for quadratic equations).
We call a profile τ symmetric if τ = τ̂ , or equivalently if τ (v) = −τ (v̂)
for all voting histories v. In particular, for symmetric thresholds τ we have
τ1 = τ (no history) = −τ1, i.e., τ1 = 0. One question we may naturally
ask is whether for neutral alternatives θ = 1/2 there is always an optimal
threshold τ̄ that is symmetric.

To answer this question, look at the entry in Table 1 for the optimal
threshold for abilities (1, 2, 4): (2,−8, 10,−2, 0). The transposed threshold
is of course also optimal, but these are the only two. So in particular there
is no optimal threshold profile for (1, 2, 4) with first coordinate τ1 = 0, no
symmetric optimal threshold. Thus, despite the symmetric nature of the
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optimization problem, the first juror must skew his vote to either B (by
requiring a signal more than 2 to vote A) or to A (requiring a signal less
than −2 to vote B). Given this example, it is perhaps surprising to note
the following general result, which says that such skewing is not necessary
for particular voting orders.

Proposition 3 If θ = 1/2, the jurors’ abilities are labeled a ≤ b ≤ c and
the juror of middle ability b votes first, then there is an optimal threshold τ̄
that is symmetric.

In Table 1 we have listed a symmetric threshold profile whenever one of
these is optimal, and note that for the ability ordering (2, 1, 4) where the
middle ability juror votes first, there is indeed a symmetric threshold. We
will see later that voting orders with middle-ability jurors first are of more
special interest.

3.3 Two yokels and a boffin

Some special combinations of abilities {a, b, c} lead to particularly intuitive
results. Suppose the jurors have abilities a, b < c, where two of the jurors
have low abilities compared with the third. With no offense intended we
call the situation two yokels and a boffin (2Y1B), when an optimal strategy
(threshold profile) has the second yokel always vote opposite to the first
one, thus canceling out his vote. Such situations are highlighted in bold in
Table 1 with the second yokel’s thresholds (−10, 10). This leaves the real
decision up to the boffin. However, in some cases the boffin may obtain
useful information from the vote of the first yokel.

Note that the 2Y1B phenomena demonstrated in Table 1 depend on
voting orders, whose optimality we will address in the next section. To get
some intuition for our main results, let us consider voting order (1, 0, 4) in
the 2Y1B context. We compare naive voting, where each juror votes for the
alternative that he believes is most likely, with strategic (optimal) voting.
In naive voting, the first juror (smart yokel) believes that A is more likely if
and only if he gets a positive signal, so his threshold is 0. The second juror
has a meaningless signal, as his ability is 0. Therefore, whatever the first
yokel votes for will be copied by the second yokel. Thus with naive voting,
juror 1 (with low ability) is the sole determinant of the verdict. The boffin
is never even consulted (assuming voting ceases after a majority is reached)!
This is a miniature example of an information cascade, which is avoided by
strategic voting as seen below.
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With strategic voting, the optimal thresholds for voter 2 (second row
and first column of Table 1) require him to always vote the opposite of voter
1. This leaves the verdict up to the boffin, juror 3, of ability 4. Clearly
it is better for the boffin of ability 4 to make the decision than the yokel
of ability 1, an improvement from 0.57 to at least 0.78 as calculated at the
end of the section on signals distributions and juror abilities. Of course in
some cases (where he gets a weak signal), the boffin may improve further
by taking into account the vote of the first voter.

When we are in the 2Y1B situation, the vote of the second yokel carries
no information; but the vote of the first yokel does (if his ability is not 0). If
the boffin votes after the first yokel, he can go with the first yokel’s vote if
his own signal is very small, say ±1. (This argument would be even cleaner
if we allowed a neutral signal of 0). So in order for the boffin to obtain useful
information from the smart yokel, we need two conditions:

• The smart yokel must vote before the complete yokel, and

• The smart yokel must vote before the boffin.

Hence the only ordering in which the boffin can make use of the infor-
mation contained in the smart yokel’s vote is:

• The smart yokel votes first.

Note that in our example this means that the juror of middle ability
votes first in the optimal ordering. This turns out to be true generally.

3.4 One complete yokel

We conclude this section with the analysis of a special case that will have
applications later. The a priori probability of A is an arbitrary θ. The three
abilities of the jurors, in voting order, are a, 0, b, where a, b > 0. That is,
the middle voter is a complete yokel. Suppose that juror 1 votes A. If juror
2 votes A, the verdict is A and the last juror never gets to vote. Clearly the
jury can do at least as well if juror 2 votes B and leaves the voting up to the
last juror, because the last juror can always vote A and do the same as in
the previous case. (Of course if the subjective probability of A for the last
juror is less than 1/2 he can vote B and do better.) The same reasoning
applies if juror 1 votes B. We can also check this argument by establishing
via integer programming that

Q̄(θ, a, 0, b) = max
v,y,z∈Ω

Q(θ; a, 0, b; v,−10, 10, y, z),
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or equivalently (w̄, x̄) = (−10, 10). Summarizing this last argument, we have
shown the following lemma.

Lemma 4 For any θ and positive abilities a and b, the voting ability order
(a, 0, b) has optimal thresholds for the second juror of (w̄, x̄) = (−10, 10).
That is, he always votes against the fist juror.

4 Main results

In this section we present our main results on the optimal voting orders for
jurors of differing abilities (Proposition 5).

Given a set of abilities {a, b, c} for three jurors, with a ≤ b ≤ c, what
voting order maximizes the probability Q̄ of obtaining the correct verdict,
and how much is this optimal probability? Our approach is to calculate Q̄
for various orderings of the jurors and attempt to spot patterns of optimality.
We then check these patterns by exhaustive search over all voting orders and
values of θ to see where they hold.

To give the reader a small taste of the pattern recognition problem,
Table 3 provides some results about how the verdict correctness probability
Q̄ and the corresponding optimal threshold profile are dependent on the
voting order of the three jurors of different (unordered) abilities {1, 2, 3} and
{1, 2, 4}. As some patterns only appear in the alternative-neutral case of θ =
1/2 we take this and 4/5 for our a prioi probability of A. Some observations
from Table 3 that we have calculated to hold for general parameters are
stated in our main results below:

Proposition 5 For the majority voting problem Γ = Γ2,3 of three jurors
with linear signal distributions, a priori probability θ of A and an arbitrary
set of three juror abilities a, b, c ∈ Ω labeled so that a ≤ b ≤ c, we have

1. The probability Q̄ of a correct verdict is maximized when the middle-
ability juror votes first. The order of the last two jurors does not
affect Q̄. Thus the two optimal orderings are (b, a, c) and (b, c, a).

2. When jurors vote naively, it is always optimal for the weakest to vote
last. Thus the optimal ordering is either (b, c, a) or (c, b, a).

3. With neutral alternatives θ = 1/2 and the voting order (b, c, a), where
a < b < c, voting naively is optimal for maximizing Q. For other
voting orders naive voting is suboptimal.
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θ, Ability Order Q̄ Q̃

4/5, (2, 1, 3) .827 .800
4/5, (2, 3, 1) .827 .815
4/5, (1, 2, 3) .825 .800
4/5, (1, 3, 2) .825 .8169
4/5, (3, 1, 2) .825 .815
4/5, (3, 2, 1) .825 .8172

1/2, (2, 1, 4) .794 .639
1/2, (2, 4, 1) .794 .794
1/2, (1, 2, 4) .781 .718
1/2, (1, 4, 2) .781 .781
1/2, (4, 1, 2) .780 .778
1/2, (4, 2, 1) .780 .778

Table 3: Comparison of ability orders

4.1 Overrules in tennis

As an application of Proposition 5, we consider the problem faced by the
tennis line-calling jury consisting of a linesman and umpire. Here, ability
might be related to eyesight, concentration and blinking rate. Signals might
depend on more immediate phenomena such as sun position, player position
(blocking view) and weather. The linesman votes first (A “In” or B “Out”)
and then the umpire can overrule. In practice, the umpires are instructed
to overrule only when very sure of the call, but we analyze the problem in
terms of the linesman/umpire team maximizing the probability of a correct
verdict, in line with our previous analysis. To conform to our earlier nota-
tion, we always have the umpire vote (A or B), even if he is agreeing with
the linesman. The umpire determines the verdict. If we have two people of
different abilities (e.g., unequal eyesight), what roles should we assign them
to? It turns out that by introducing a third referee, who is blind and votes
after the linesman and before the umpire, and requiring a majority verdict,
we can reduce the tennis problem to our earlier context.

Theorem 6 Given two referees with distinct abilities a and b we should
assign the line-calling to the one with lower ability and the umpiring to the
one with higher ability.
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Proof. Consider the three-person jury majority game Γ with ability or-
dering (a, 0, b), where a complete yokel votes in the second position. By
Lemma 4, we know that the yokel will optimally vote against the first ju-
ror, leaving the verdict up to the third juror. Thus the tennis jury game is
equivalent to this majority game Γ. From Proposition 5 we know that the
middle ability juror should vote first in Γ, whose ability in the set {a, 0, b}
is the weaker of a and b. Hence the linesman should be the juror of ability
min{a, b} and the umpire should have ability max{a, b}. �

5 Larger juries

We now show how some results for three jurors can be used to analyze larger
juries of n > 3 jurors. Note that with unanimous voting (for say A), each
juror i (of ability ai) has a single threshold strategy τi = τi (A,A, . . . , A)
as for the other voting sequences the verdict is already decided. So the
probability Q of getting the correct verdict (with a priori probability θ of
A) with unanimous voting is given by

Q = θ
∏n

i=1 (1− Fai (τi)) + (1− θ) (1−
∏n

i=1 (1−Gai (τi))) .

Observe that this is the same formula as for the case of simultaneous unan-
imous voting for B, when each juror simply compares their private signal
si to their threshold τi (regardless of other jurors’ votes). Therefore, vot-
ing order does not matter. Consequently, we have the following elementary
result.

Theorem 7 In sequential unanimous voting, the voting order of the jurors
does not affect the correctness probability Q.

Now consider sequential majority voting when n = 3. After the first
vote by juror 1, the subproblem faced by jurors 2 and 3 is either Γ2,2 on
unanimous voting for A (if juror 1 chose B) or Γ1,2 on unanimous voting
for B (if juror 1 chose A). So in either case Theorem 7 demonstrates that
the voting order of the last two jurors does not matter. This “explains”
the similar observation for linear signals demonstrated computationally in
Proposition 5. We will state this result more generally in the last part of
Theorem 8.

Next consider the majority voting problem Γm,n = Γk+1, 2k+1 when num-
ber of jurors n = 2k + 1 is odd and greater than 3 and signals have linear
distribution. Suppose the first n − 3 = 2 (k − 1) jurors have voted, with a
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difference d (necessarily even) between the number of votes for A and B.
Consider the subproblem faced by the last three jurors. If |d| ≥ 4 then
the verdict is already settled. If d = 0, then each alternative has received
k − 1 votes, so the remaining subproblem is Γ2,3, the same as the major-
ity voting problem for three jurors (with some ex ante probability θ′ for A,
which depends on the prior voting sequence), which as we showed in part
1 of Proposition 5 is best handled for linear signals with the middle-ability
juror voting first. Finally, if |d| = 2 then, depending on the sign of d, the
subproblem is a unanimous voting problem for one of the alternatives, and
by Theorem 7, the voting order does not matter. So the ordering is either
irrelevant or should be middle ability first, leading to the following theorem.

Theorem 8 Consider sequential majority voting with an odd number of
jurors having linear signals. In an optimal voting order, the last three to
vote should be ordered with the middle-ability voter first. More generally,
for any signal distributions, the order of the final two jurors does not affect
the optimal probability of a correct verdict.

We observe that actually our argument proves a stronger version of the
above proposition, namely that even after observing the first n − 3 votes,
we would never want to change the order of the last three from an ordering
with the middle ability first.

6 Concluding remarks

Using a simple model of sequential voting, with three heterogeneous jurors
differentiated by their ability to discern the true state of Nature, we show
that the probability of reaching the correct verdict is maximized when the
middle-ability juror is the first to vote. This ordering applies as well to the
relative abilities of the last three jurors in a larger jury. We also show that
the jurors can afford to vote naively between equiprobable alternatives if
and only if the voting order of abilities a < b < c is (b, c, a), which is shown
to be the unique optimal order when restricted to naive voting.

It would be useful to find optimal orderings for larger juries and for
voting schemes Γm,n other than simple majority.
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