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Coset enumeration as closure computation 

Introduction 

Procedures for coset enumeration have been the subject of considerable 

attention since the first machine programs were developed in the early 60's. 

Most of these procedures, like the original Todd-Coxeter procedure from which 

they derived, are expressed in terms of operations on integer arrays whose 

entries denote coset representatives. The first formal justification of a 

coset enumeration procedure [T] is also expressed in terms of such a 

representation. 

As the study of computer algorithms has often shown, there are 

disadvantages in formulating algorithmic processes in terms of a particular 

data representation. For instance, it can make a precise description 

unnecessarily complicated, and a formal verification more obscure. An 

abstract description, which makes no assumption about how data is represented, 

usually has conceptual disadvantages, and can be more simply prescribed and 

verified. The purpose of this paper is to describe and justify abstract 

formulations of coset enumeration procedures closely related to the original 

Todd-Coxeter procedure (see [TC] 
	

Or 	D.] 	Ch. 6), and Trotter's 

modified version CT]. 

It may be of interest that the arguments presented here are only 

sufficient to guarantee termination of the original Todd-Coxeter procedure 

when enumerating the cosets of a normal subgroup of finite index under modest 

additional hypotheses on the form of relations used. (For more details, see 

section 4 below.) 



§.1 	Preliminaries  

Let F be the group freely generated by X = fx1,...,x 1, and let Q 

be a finite subset of F. 	Two related problems are considered: 

(1) Determine whether the subgroup H of F generated by Q has finite 

index, and if so determine. El' : H] 

(2) Determine whether the normal closure N of H in F has finite 

index, and if so determine EF : N]. 

Standard coset enumeration techniques (see ETC] and EJ] Ch.6) provide 

a terminating algorithm to solve problem (1), and a procedure which 

partially solves problem (2), insofar as it terminates and determines El.  : N] 

if and only if N has finite index in F. The two problems are related in 

view of the Nielsen-Schreier Theorem ES] which shows that, if N has finite 

index, then it is finitely generated. Thus, a terminating algorithm to 

solve problem (1) can easily be adapted to give a procedure which terminates 

if and only if EP : N] is finite. It is only necessary to determine the 

index of <0i> in F for i = 0,1,2,..., where 
n 

Q
o 

= Q and Q. 	= Q.
1 
 u U x.Q.x.-1 

1+1 	 1 ' 
i=1 

until a finite index is obtained. 

If F and H are as defined above, the equivalence relation defined by 

right cosets of H in F will be denoted by R(H). A prefix-closed class of 

reduced words (i.e. a Schreier system) P together with a reflexive, 

symmetric relation p on P is said to be an enumeration pair for H in F if 

{ab
-1  

I (a,b) E 

is a generating set for H. The relation 0 on a Schreier system P is said 

to be R-closed relative to P if 

(a,b) Er3 and (af,bf) E P x P for some f in F 	(af,b0c0 
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The main purpose of this paper is to prove (see 5.2 Thm.2.3) that if 

(P,p) is an enumeration pair for H in F, then R(H)IP is the smallest 

relation on P which is transitively closed, R-closed relative to P, and 

contains p (hereafter denoted R(p,P)). When P is finite, this provides 

a finite characterisation of R(H) on P which can be used in conjunction 

with a criterion for H to have finite index in F (see 5.3 Thm.3.2) to 

solve Problem (1). An abstract algorithm based on this principle, and 

closely related to the original Todd-Coxeter algorithm for solving 

Problem (1), is described in 5.4 (see Algorithm A). To adapt such an 

algorithm to obtain a procedure for solving Problem (2), it suffices to 

specify how to extend an enumeration pair (P,p) for H in F to an enumeration 

pair (P',p') for < H,q > in F, where q is an arbitrary element of F, and 

how to compute R(p',P') from R(p,P). This is illustrated in 5.4, where 

an abstract procedure closely related to the Todd-Coxeter procedure for 

solving Problem (2) is described (see Procedure B). 
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§.2 	Coset Equivalence and closure  

Throughout Sections 2 and 3, H will denote a subgroup of the group F 

freely generated by X = 	 } and (P,p) an enumeration pair 

for H in F. 	The relation 

{(a,b) I (af,bf) E p for some f in F} c Fes' 

(i.e. the R-closure of the relation p viewed as a relation on F) will be 

denoted by R(p). 

Proposition 2.1  

R(p) is a reflexive symmetric relation whose transitive closure 

R(p)* is R(H). (In particular, (F,R(p)) is an enumeration pair for H in F) 

Proof: It is easy to verify that R(p) is a reflexive symmetric relation, 

and that R(H) contains R(p) and R(p)*. 

To show that R(H) is contained in R(p)* it suffices to show that 

H x {1} c R(p)*, 

since both R(p) and R(H) are R-closed (relative to F). 

If p = {(ai,bi) I i E 	 then any element h in H can be represented 
k 

in the formTrq.,whereeach 
(1 
 . has the form a.b.

-1 
for some i. 

j=1 	 3 	 1 1 

If k = 1, then h = a.b.
-1 

and (h.b. = a., 1.b. = b.) E p, so that 
1 1 	 1 	1 	1 	1 

(h,l) e R(p). If k 	2, then 
k 

h = q. 71. 
 q. = a.b.

-1
h 

1 	j 	1 1 	1 j=2 

where (h1) E R(p) by induction. But then 

(h.h
1 
 -1

b. = a., h
1  h1 

 -1
b. = b.) E p 1 	1 11 

whence (h,hi) is also in R(p). 	 0 

In reasoning about elements of F it is useful to adopt the convention 

of identifying an element of F with the unique reduced word which represents 

it. The notation 

w = eie2 	ek  

willbeusedtomanthate.EX u X 1 
for each i, and w is reduced as 

written. 	Note that if S is a Schreier system,v is in S and w = eie2 	e
k
, 
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then vw is in S only if vele2 	e, is in S for I 	j 	k. This simple 

observation is often used in subsequent arguments. 

Lemma 2.2: 

If (v,w) is in R(p), then 

(i) either v and w have a (non-trivial) common suffix 

or 	v or w is in P. 

and (ii) if v is in P, and w is not, then there is a suffix s of w 

such that vs
-1 

and ws
-1 

are both in P. 

Proof: (i) 	If v and w have no common suffix, neither is in P, and 

z is in F, then either vz or wz is outside P. 

(ii) 	Let z be such that (vz,wz) E p. If z = eie2 	ek, then 

there is a minimal r 	1 such that we
1  e2 • • 

. e
r 
is in P. 	Thus 

s = (ele2 	er)
-1 
 is a suffix of w; moreover, since vz is in P, so 

also is vs
-1
. 	 0 

Theorem 2.3: 

The restriction of R(H) to P is the smallest relation R(p,P) which 

is transitively closed, R-closed relative to P, and contains p. 

Proof: 	It is easy to verify that R(p,P) c R(H) 111. 

For the converse, suppose that v and w are in P, and that (v,w) 	R(H). 

By Proposition 2.1, there is a sequence of elements of F: 

v = uo,u1,...,uk, uk+1  = w 

such that (u1.
,u.1+1 

 ) c R(p) for 0 	i 	k. Since R(p,P) is transitive and 

contains the restriction of R(p) to P, it will suffice to consider the 

case when u1, . 
• • 	

lie outside P. 

The proof is by induction on k; the case k = 0 is trivial. If k 	1, 

then by Lemma 2.2(i) the words u1, 
	uk have a common suffix s which is 

minimal with respect to the condition that for some j with 1 	j k the 

i word u. s-1 is in P. 	Note that s is also the minimal suffix of u. such 

i that u. s
-1 
 is in P. 
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By Lemma 2.2(ii), there is a suffix t of u, such that both u t
-1 

and 

u
1
t
-1 

are in P. Whether or not u
1
s
-1 

is in P, it must he that s is a 

prefix of t. Since u
o 

and not-1 are both in P, so also is u
o
s
-1
. Similarly, 

uk+is
-1 

is in P. 	Thus (uis
-1

, ui+is
-1
) c R(p) for 0 	i 	k, where 

u 
o  s
-1

, u.s
-1 

and uk+ls
-1 

are in P. By the inductive hypothesis, 
J 

os-1,u.s-1
) and (ups-1

, 
uk+1

s
-1
) are in R(p,P), whence (u

o' 
u
k+1

) E R(p,P) 

using transitivity and R-closure relative to P. 
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§.3 	Testing for finite index  

If P is finite, Theorem 2.3 provides a finite characterisation of 

coset equivalence restricted to P. Thus R(H)1P can be computed as the 

appropriate closure of a finite relation on a finite set. To solve 

Problem (1), a criterion for CF : H] to be finite (and a method of 

evaluating it if it is) must also be described. 	Such a criterion is 

given by Lemma 3.1 and Theorem 3.2 below. 

A basic theorem of combinatorial group theory asserts that a 

subgroup of a finitely generated group which has finite index is itself 

finitely generated (see e.g. EH] Cor.7.2.1). The result connects 

Problem (1) and the more general problem of determining the index of the 

subgroup generated by a countable set, of which Problem (2) is a special 

case. It is convenient in this context to derive the relevant propositions 

from combinatorial group theory directly, since the arguments required are 

simple and pertinent. 

Leuuna 3.1:  If H has finite index in F, then every right coset of H in F 

intersects P. 

Proof:  Let w be an arbitrary element of F. There is an element e in 

X u X
1 
such that wew is also reduced. Since CF : H] is finite, there 

i is an integer k 	1 such that (we)
k 
 is in H, and 

(w, (we) 
1-k 

e
-1
) e R(H). 

In view of the choice of e, the word 

v = (we)
1-k 

e
-1 

is then reduced, and v and w have no non-trivial common suffix. 

By Proposition 2.1, there is a sequence 

w = u0,111,...,uk=v 

of elements of F, such that (ui,ui4.1) E R(p) for i0, 1,...,k-1. There 

must be an index j for which u. and u
j+1 

have no non-trivial suffix, and 

one or other is in P by Lemma 2.2(i). Thus, by Proposition 2.1, the right 

coset of w in F intersects P. 	 ❑ 
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Theorem 3.2: 

Let E denote X or X
-1
. 

(i) If CF : H1 is finite, then (*) : given e in E and p in P, 

there is an r in P such that (p,r) c R(H) and re ( P. 

(ii) When P is finite, the converse implication also holds. 

Proof: (i) Suppose that CI. : H] is finite, that p E P and e E E. 

If pe is not in P, then by Prop.2.1 and Lemma 3.1, there is a sequence 

pe = uo,u1,...,uk=p' 

of elements of F such that (ui,uill.) E R(p) for 0 < i < k-1, and p' E P. 

Let u. 
1 
 be the first element of P in this sequence. By Lemma 2.2(ii), 

-1 . . 
theelementu.hassuffixe,andu.eis in P. Thus r = u. 	e

-1 
J+1 	 J-1-1 

satisfies the required conditions. 

(ii) Suppose that P is finite, and that (*) holds. It suffices 

to show that if (*) holds when E is either X or X 1, it also holds with 

E = X u X
1
, since an easy induction on length then proves that each element 

f in F is in the same right coset as an element of P. 

Let g 	{C1,C2,...,Ck} be the set of equivalence classes of P under R(H). 

IfeeE(=Xorf1),thenby(*)eachC.contains an element r such that re 

is also in P. It is easy to verify that mapping  Cj  to the class Ck  which 

contains re is a well-defined 1-1 map g 	$1. It is thus bijective, whence 

every class C
k 

contains an element s such that se 1 
is in P. 	0 

It remains to indicate how Theorem 2.3, Lemma 3.1 and Theorem 3.2 can 

be used in enumeration algorithms. 

Suppose that G is a subgroup of F generated by the set Z. The set of 

all prefixes of Z will be denoted by pre(Z). The pair (pre(Z), p(Z)), 

where p(Z) = (Z u {l}) x (Z u {1}), is then an enumeration pair for G in F. 

If Z is finite, then the restriction of R(G) to pre(Z) can be obtained 

by evaluating  the finite relation RCP(Z), pre(Z)). 	Condition (*) of 

Theorem 3.2 is then satisfied if and only if [F. : G] is finite. Moreover, 
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if (*) holds, then CF : G] can be determined by Lemma 3.1. Thus there is 

a terminating algorithm to compute FT' : C] when G is finitely generated. 

IfZ={z.li?...1}andZic ={z.11 	i 	k}, then 

(P
1
., p.

1
) 	(pre(Z.), p(Z.)) is an enumeration pair for <2.>, and U (P., pi) 

1 	1 	 1  

is the enumeration pair (pre(Z), p(Z)) for G = <Z>. Should CF : C] be finite, 

then condition (*) will be satisfied for P = pre(Z), and hence for Pr  for 

some sufficiently large m. For this m, the index of <Zm
> in F is finite, and 

may be computed as above. (Clearly there is also an index M for which 

CF : <ZN] = CF : H] (i.e. such that H is finitely generated by ZM), but M is 

not in general computable). Thus, given the countable set Z, there is a 

procedure (viz. computing ET' : <Zi>] for i = 0,1,2,... until a finite index 

is encountered) which terminates if and only if IF : G = <Z>] is finite 

(but cannot in general evaluate a finite index). 

If G = N is the normal closure of H as specified in Problem (2), then 

N is generated by the infinite set Z = 	fQf
-1
. If CF:N] is finite, 

fEF 

then the procedure described above will construct a finitely generated 

subgroup R = <Zm> of N such that Er' : R] is finite. In this special case, 

it is then possible to determine [1" : N] precisely. To see this, suppose 

that (P, p) is a finite enumeration pair for R. By Lemma 3.1, if f is an 

element of F, then f is in the same right coset of P. as p in P, and 

< R,f > = < R,p >. 

	

	Thus (P, p'), where p' = p u (p,1) u (1,p) u (p,p), is 

a finite enumeration pair for < R,f >. Now consider the sequence of subsets 

Y1 = Zm' Y2"."Yi"..  

where Y.
+1 	1 

= Y. u pY.p
-1
. 	By an extension of the above principle, 1 	 1 pEP 

Ti  = <Y.> has an enumeration pair of the form (P, p.) for each i. Moreover, 

since FF.  : R 	
1 	- 

] is finite, there is an index j for which T. 	= T. 	pT.p-1. 
pEED  

IfnowfEF,then.feT.pfor some p in P by Lemma 3.1, whence 

, 
fT.I

-1 
 ET.pT.C1 T.-I cT..ThisprovesthatT.is normal, so that T. = N. 

J 	J 	J 
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§.4 Examples of abstract coset enumeration  

Suppose that F, Q and H are as in Problem (1). The following simple 

algorithm accepts Q as input, determines whether IF : HI is finite, and 

evaluates the index when finite. 

Algorithm A: 

1. (P, P) t  (Pre(Q), P(Q)) 

repeat  

2. p' E  p 

3. p t < transitive closure of p > 

4. p 	< R-closure of p relative to P > 

until p = p' 

5. R(p, P) F  p 

6. if < for all pairs (p,X) in P x X, there is a pair (r, Tx) 

in P x P with (p,r) in R(p, P) > 

then [F : 11] f 1P/R(P, 1)1 

else < [F : H] is infinite > 

From a standard implementation of a coset enumeration algorithm, in 

which integers are used to represent equivalence classes of elements of F, 

the abstract algorithm used to evaluate R(p,P) (lines 2-4 in Algorithm A) 

may be difficult to discern. Indeed, in hand computations with the classical 

Todd-Coxeter algorithm for Problem (1), the evaluation of equivalences is 

often carried out in an ad hoc manner. Even so, it is not difficult to 

recognise the classical algorithm as essentially an implementation of 

Algorithm A. The data structures used consist of a 1 x (1q1 x 1) array A 

for each generator q in Q, and a table T whose rows are indexed by integers 

representing equivalence classes of the (dynamically changing) relation p 

on pre(Q), and whose columns are indexed by X. The principle of the 

enumeration is to assign integers to the elements of pre(Q) (which correspond 

to the entries in the tables A ) in such a way that elements found to be 
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equivalent are assigned the same integer. This method of representation 

automatically guarantees that p is transitive (indeed an equivalence relation) 

at all times (c.f. line 2 of Algorithm A). The initialisaton of each table 

Aq  so that '1' appears as first and last entry corresponds to assigning p 

to (Q x fl}) u ({1} x Q) initially, and p(Q) is the transitive closure of 

this relation (c.f. lines 1-3 of Algorithm A). Table T is used to monitor 

instances of pairs (vx., w) in 	as they are identified, so as to ensure 

that w
1 

and w
2 

are equivalenced if either (vx., 
w1 i  
) and (vx

' 
 w2) or 

(w1 xi'  v) 	and (w2
xv) 	are in p. This corresponds to computing the 

R-closure of p (c.f. line 3 of Algorithm A). When all the tables A are 
q 

completed, the relation R(p, P) has been evaluated, and the condition for 

CF : II] to have finite index (c.f. line 6 of Algorithm A) is tested by 

determining whether T is complete. 

Problem (2) differs significantly from Problem (1) in that even if N 

is finitely generated, a set of generators must be dynamically constructed. 

From the abstract perspective adopted in this paper, it may be seen that 

different techniques for solving Problem (2) are obtained, depending on 

(a) the choice of algorithm used to evaluate the equivalence 

relation R(P, p) 

and (b) the strategy used to construct an enumeration pair (P', p') for 

< H, q > in F from the enumeration pair (P, p) for H in F, 

when a new generator q is dynamically introduced. 

Procedure B below is essentially an abstract version of the coset 

enumeration technique described in CJ]. Without additional assumptions 

about Q, there appears to be no guarantee that the procedure terminates 

even when CF : N] is finite. (This point will be discussed more fully 

later). 
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Procedure B  

Input: A finite subset Q of the group F freely generated by 

X = {xl,x2,...,x11}, such that the elements of Q collectively 

involve all elements of X. 

Output if termination: The index El' : N], where N is the normal 

closure of Q in F. Finiteness of CF : 171 is a necessary, 

but possibly not sufficient, condition for termination. 

The procedure: 

1. (P, p) 	({1}, 	1)}) 

2. G 	cf) 

3. while <there is an unmarked class in P/p 	 do 

(i.e. a class containing no marked element)> 

begin  

4. assert "(F, p = R(p, P)) is an enumeration pair for < G 

5. p f < the shortest element in the union of all unmarked classes > 

6. for < each element q in Q > do 

begin  

7. (P, p) -- (P 	pre({pq}), p u{(pq, 	(p, POD 

8. G 	G u pqp-1  

9. < compute R(p, P) (e.g. as in Algorithm A lines 2-4)> 

10. (P, 	(P, P(P, P)) 

end 

11. mark(p) 

end 

12. assert " for all pairs (p,x) in P x X there is a pair 

(r, Tx) in P x P with (p,r) in R(p, P) " 

13. [F : N] f I P/(p = R(P, P)) 
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(The assignments to G (lines 2 and 8) are included for conceptual 

reasons, and permit the formulation of the invariant of the while-loop 

(line 4).) 

Procedure B is justified by the following theorem. 

Theorem 4.1: 

If Procedure B terminates, the index 
	: N] is finite, and is 

correctly determined. 

Proof: 	If (P, p) is an enumeration pair for < C 	then 

(P u pre({pq}), p u {(Pq, 	(P,  PO' (Pq' 13q)' 	PM  

is an enumeration pair for < G, pqp
-1 

)% From this, it follows that the 

assertion at line 4 is an invariant of the while-loop. 

Suppose that the while-loop terminates with <G = K. It is obvious 

that K c N; moreover, by Theorem 3.2(i), the truth of the assertion at 

line 12 will suffice to prove that IF : KJ is finite. Accordingly, let 

(p, x) 6 P X  X. 	By hypothesis, there is a prefix s in pre(Q) such that 

both s and sx are in pre(Q). Since all classes in P/p are marked on 

termination of the while-loop, for each pl  in P there is a marked element 

p
1
" with (p

1, 
p
1
") in p. There is then a well-defined rap P/p 	P/p taking 

the class of pl  to the class of pl"s which is 1-1, whence bijective. 

Thus pi_  can be chosen such that (p, pl  s) E p, and r = pl  s satisfies the 

finiteness condition at line 12. 

Finally, it suffices to show that K = N; that is, that K contains all 

conjugates of elements of Q. Suppose then that f is any element of F. 

By Lemma 3.1, there is an element k in K, and a (marked) element p in P 

such that f = kp, and 

fqf
-1 
 = kpqp

-1
k
-1 

E K. 

It remains to consider sufficient conditions for termination of 

Procedure B. Let C., pi  and 
pi  be the values of the variables C, p and p 

at the end of the ith iteration of the while-loop, so that Go  = 0 and 
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Gi+1 = Gi 	pi Qpi-1' 
	 G1+1 depends upon C. and 

the class of pi  under pi, not upon the element pi. 

If [F:N] is finite, then arguments similar to those at the end of 

§.3 will establish that non-termination of the while-loop is only 

consistent with n<G> 	N. Accordingly, to prove termination it 
1=1 1  

suffices (for instance) to establish that given any integer k, all 

conjugates of elements of Q by elements of F of length at most k are 

guaranteed to be in < G > if the while-loop is repeated sufficiently often. 

Examination of Procedure B shows that the method by which p is chosen 

at line 5 and G is augmented at line 7 will ensure that 6  <Gi> contains 
i=1 

all conjugates of elements of Q by elements of pre(Q) . The following 

lemma will be used to guarantee termination of Procedure B when IF:N] is 

finite under reasonably general assumptions about the form of Q. 

Lemma 4.2: 	Let Q and F be as above. 	Suppose that al,...,ak  in F are 

in the same right coset of < Q > in F as bl,b2,...,bk  respectively. Then 

	

A = 	

• 

a1Qa1
-1 

 , ala2  Q(a1a2)-1 -1> 

	

= B E 	

• 

b1  Qbi
-1 

 , bib2  Q(b1132)
-1 

 ,...,b1...bkQ(bi...bk)
-1 
 > 

Proof: (Induction on k). If k = 0, there is nothing to prove Suppose 

then that k = r > 0. By the inductive hypothes 

< Q1  a2Qa2
-1 	

Q(a2...ar)
-1 
 > 

< Q
1 
b
2
Qb
2
-1 

 ,...,b
2
...b

r 
Q(b

2
...b

r
)-1 > 

Let S = Q u a2Qa2
-1 u ...0 a2...ar  Q(a2...ar)

-1 

Th cn 

A = < Q, a
1
Sa
1 
1 > and B = < Q, b

1
Sb
1
-1  > . 

But if s E S, then 

alsal-1 = aibi 	sb
1
-1 

b
1
a
1
-1 

E < Q,b
1
Sb
1
-1 > 

whence A c B. 	Similarly B c A. 	 0 
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In view of Lemma 4.2, termination of Procedure B is guaranteed if 

FF:Ni is finite and pre(Q) contains representatives for the right cosets 

of Q in F which contain the generators xl,...,xn  and their inverses. This 

is necessarily the case (for example) if Q contains an element with prefix x. 

orsuffix-x.-1 and an element with suffix xi  or prefix x.
-1 

for 1 < i < n. 

Inparticular,ifQcontainsanelementofx.flfor 1 < i < n, then termination 

is guaranteed. For an arbitrary Q, it is possible to ensure that the above 

condition for termination is met without affecting the normal closure of Q 

by introducing appropriate cyclic permutations of the relations in Q. 

The above arguments are not sufficient to guarantee termination of 

Procedure B under the sole assumption that [F:11] is finite. A satisfactory 

proof that finiteness of FF:N] is sufficient for termination (or a 

counterexample!) would be of interest. There are many facile and erroneous 

arguments which depend upon making the implicit assumption that U <Ci> = N. 

(Note particularly that Lemma 4.2 deals with cosets of < Q > and not N, 

so that, for instance, al...ak  and bl...bk  may lie in distinct right cosets.) 

It may be significant that the justification of the Todd-Coxeter procedure 

presented in rLsi p.164-166 omits details over this point. 

The identification of the enumeration procedure in DJ as an 

implementation of Procedure B is very similar to that of Algorithm A, 

and only the principal details are described here. Tables A for q in Q, 
q 

and a monitoring table T are used as before, but here each Aq  (like T) 

has rows indexed by integers representing equivalence classes. If n is 

the encoding of the class of p as in line 4 of Procedure B, the nth row 

of A (which has first and last entry n) has entries corresponding to 

elements of the form pr where r is a prefix of q. Since the first row 

of A faithfully reflects the cyclic nature of the relation q = 1, it is 

not necessary to re-write the relations Q to ensure termination, provided 

that when a new equivalence class is introduced its encoding is guaranteed 

15 



toappearintheleftccaltextofanx.or the right context of an x.
-1 

in 

some table A . (This is achieved in some enumeration algorithms by 

introducing new rows in which the newly defined integer appears in each 

possible column). 

Procedure B has a particularly simple control structure, and the 

subtleties of its justification reflect this. Procedure C below affords 

an alternative solution to Problem (2), closer in spirit to Trotter's 

procedure [TI. 	Its justification is more straightforward, and only the 

principal details are given here. 
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The following subroutine is used at line 6: 

subroutine reduce (g = el  e2...ek, P, p) 

begin  

1. s 	1 

2. for i = 1 to k do 

3. if<sePand3rePsuchthat(r,$)Eparldre.EP> 

then 

begin  

4. < let r
o 
be the lexicographically first r 

satisfying the above condition > 

5. s r e. 
o 1 

end 

6. else s f  se. 
1 

7. return(s) 

end 
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Procedure C 

Input: A finite subset Q of the group F freely generated 

by X = 

Output if termination: The index CF:N], where N is the normal 

closure of Q in F. Finiteness of CF:N] is a necessary 

and sufficient condition for termination. 

The procedure  

1. (P, P) 4-  ({1}, {(1, 1))) 

2. G 

3. < let fo  = 1, fl, f2,... be an enumeration of F > 

4. i 4- 0 

5. while < there is an unmarked class in P/p > 

or < (*) (see below) does not hold for (P, p) > do 

begin  

6. f 4- reduce(f.,P, 

7. if < f is not marked > then 

8. for < each element q in Q > do 

begin  

9. (P,P)4-(P u pre({fq}), Pu {(fq,f),(f,fq))) 

10. G -4- C u fqf-1 

11. < compute R(p, P) > 

12. (P, P) 	(P, R(P, P)) 

end 

13. mark(f) 

14. i 1+1 

end 

15. [F:N] 	'P/(P = R(p, 

(*) is here the finiteness condition used in Procedure B line 12, viz: 

"for all pairs (p,x) in PxX there is a pair (r, Tx) in PxP with 

(p,r) in R(p, P)" 
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The principle of the algorithm is to augment the generating set Q by 

adjoining conjugates of elements of Q by the elements of F in a systematic 

fashion until (if EF:N] is finite) a set of generators for N has been 

folalchIf(asabove)G.
1 
 and P.

1 
 are used to denote the values of the 

variables G and p at the end of the ith iteration of the while-loop, the 

pair of boolean conditions at line 5 together ensure that on termination 

with i = k, the subgroup < Gk  > is normal in F, and has finite index. The 

subroutine "reduce" is used to determine the lexicographically first 

element f of F which is the same right coset of 1 
	 1 
	Since 

< G.,f.cif.--1 >=<"G.,fqf
-1 

>, it is easy to show in this case that 
1 1 1 

termination occurs when N has finite index. 

For conceptual reasons, Procedure C has been described in terms of an 

explicit enumeration of F. In practice, the element fi  introduced at line 6 

would be produced by a procedure call, and the enumeration of F generated 

might depend on the form of Q. Reference to Lemma 4.2 shows that for certain 

sets of relations it is enough to enumerate a subset of F, viz. a set of 

representatives for the right cosets of < Q > in F. Thus an enumeration of 

+ _ 
FrIXissufficientif(forexample)Qcontainsanelementofx. for 1 < i < n. 
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