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Abstract

We

svntax
propose a functional query

and ssnantics are based on
larrguage for databases nftere both

coniEntl6nal mffifrEEcs.

We argue thaL database theory should not be separated frcrn other
fields of Com-outer Science, and that database languages should have
the sane properties as those of other non-procedural J.anguages.

The data are represented in our database as a collection of sets,
and the relationships betroeen the data are represented by functions
mapping these sets to each other. A database is therefore a many-
sorted 1]ge!5r; i.e. a collection of indexed sets and in?Iexft
operations. As in abstract data type specification, we specify the
conseguences of applying operations to the data without reference to
any particular internal structure of the data.

A guery is simply an expression wtrich is built up frcm the
synbols in the signature of the algebra and wtrich ccmplles with the
formation rules given by the language. The nreaning of a guery is the
value which is assigned to it by the algebra.

Ttrere are several ways of extending our language. llpo ways
studied here. the first extension is to arlow queries in wtrich
are defined inductiv4y (i.e. recursively) . Ttris rnechanisn
essential for-@Es -dearing with tranlitive crosures over
interrelated objects.

Secondly, since inccnrplete information is cqnmon to many
databasesr \€ extend our language to handle partially available data.
One main principle guides our extensions: 'whenever information is
added to an inccrnplete database, subsequent answers to queries must
not be less informative than previously,.

Finally, we show the correspondence between Varqa and methods
used in current database software. A subset of Varga, including all
features whose implementation is not obvious, is mapped to relational
algebra thus showing that our language, though il-nas been designed
with no reference to internal structure, is not incornpatible withpresent database software.
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ProLoque

-

The author's first contact with a database system

About six years ago (1976) the author joined a large team whose

task was to ccmputerise a large stock control- and storage operation

system. This systern held, among others, information on

over twenty thousand line items,

flovv of items frcm supptying sources (through the receiving,

storage and shipnent departrnents) to the consrtrner,

stock level , and the nr-rnber of itsns on order,

delays, denials and other matters of that type.

One of the first tasks of our team was to conduct a survey on the

existing (manual) information handling technigues used in warehouses.

Here is a sunnary of the accounts noted in one typical warehouse:

The warehouse supervisor (the person in charge of the warehouse) had

spent over twenty years in exactly that warehouse. He knew the place

of alnrost every single itsn by heart. (There were over 5,ooo itgns
in his warehouse. ) Although there was a card systsn as the location

reference, the su;:ervisor used it very rarely. There were relatively
few errors and the warehouse staff were capable of correcting them.

For example, mispraced items \^rere usuarly detected quickly and were
paqe l-



moved to their correct locations.

However, the tedious part of the operation was for the staff to

keep track of the transactions and input,/output of the warehouse.

There were masses of paper to be sorted and filed every day. A

transaction form had to be filed for every movement of an item. There

were ntore staff busy with sorting and filing than were assigned to

all other tasks in the warehouse. In later investigations it was

discovered that further "paper work, sorting and filing" took place

in two other offices (viz. on the other copies of the transaction

forms). This seemed extremely wasteful.

Anway, despite considerable resistance frcm warehouse staff,

the operation was eventually canputerised. The advantages of this

ccnputerised system over the old manuar one vrere numerous. The more

striking ones hrere a rsnarkable speeding up of the wtrole operation,

and relief of the warehouse staff frcm repetitive and altogether

avoidable paper rrprk: a central control systern supervised the

entire operation.

After a short while, hqpever, occurrences of several errors

revealed that r.ae had been naive in thinking that the new systern was

perfect. The unhappy fact was that these errors manifested thernselves

in a diverse fashion. sqne rryere htrnan errors (e.g. wrong entries

to the systern, rike punching mistakes) and sorne were ccxnpletery

unknoq/n and mysterious to us. Great efforts were made to rectify the

errorsi horpever, unexpected new cases continued co appear.

page 2



Later, we al1 (both warehouse staff and us) grew to accept

the problerns of the new systen as a fact of life. Whenever anybody

asked the project manager about the errors he replied :

"We11.... Whdt else do you expect? You know what machines are like."

fhre project manager was not totally wrong and, anln*ay, at that

time it was beyond our means to do much better. Years later, however,

the situation has seen very little improvement. Most experienced

ccxnputer users are not surprised if they find errors for which no

reason exists. Indeed, many users, like our former project manager,

do not distinguish between the 'software faults' and the machine's

faults.

Perhaps a totally different atrryroach can solve (at least part

of) the problem.

Mathematical Notation

We discuss here

notation which will
theoretical concepts

the set-theoretical, logical

be applied in this thesis.

derive fron ideas presented

and metalinguistic

Part of the set-

in [HMT-71].

In

of

set theory, the fundamental relationship between objects is
membershipi we use x€A to express that object x belongs tothat
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the set A. x/A expresses the opposite. A q B and A CB stand for

"A is a subset of 8", and "A is a true subset of B" respectively.

The union of two sets A and B is written as A u B , and their inter-

section is written as A/lB.

Given a set A and a formula p(x) we use { x I x€a and p(x) }x

and { x€A I p(x) }* to denote the set of all objects frcm A which

satisfy the predicate P(x) , i.e. those erements of A for which the

predicate P(x) holds. Thus, y €{ x€A I p(x) }x iff y is an element

of A and P(y) is true. whenever unanbiguous we may onit the trailing
subscript x.

For any two sets A and B, the cartesian product of A and B,

denoted by A x B, is the set of all ordered pairs (a,b) such that

a€A and beB. A relation between A and B is any subset of the cartesian

product of A and B. (We will see a more qeneral definition of relations

in the later chapters.) a function f frcnr A to B , written as

f : A --> B, is a relation betroeen A and B where no two pairs have

egual first and unegual second members. That is, a relation R between

A and B is a function iff
(arb)€R and (arbr)€R implies Fb' .

The set of all first members of the elements of a function f is called

the dcrnain of f and is written as Dqn(f). Tlrus, Dsn(f)={alf b: (a,b)€f}.

Similarly, the range of function f is

Rng(f)={ b I f a r (a,b)€f }.
Given a function f:A--)B and A'gF , the restriction of f to A'

is the set of ar1 pairs frcm f whose first member belongs to A'. we

write flAr to denote function f restricted to subset A' of its dcrnain.
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In this thesis each non-negative integer is regarded as the set

of all preceding natural nwnbers (they are OrTt2r3r...): nunber zero

is the ernpty set A, one is the set {O}, two is {1,O} and so on.

Thus, the ntmber n is the set {Orlr2r....rn-1}. We will see that

this notation is remarkably helpful in later formalisns. Given a

natural number n, i€n will be freguently used to indicate that i is

one of the natural nunbers frsn the set {Or1r2r..,.rn-1}.

In this thesis, a seguence is a function whose dcrnain is the set

corresponding to a natural" nr.nnber. For example, a seguence s of length

n (i.e. a seguence whose dcrnain is n) has an ith element for every

i€n, and is represented as (=O, 
"l_, .... , sn_L). lsl is the

length of the seguence s.

For any set A , P(A) is the powerset of A wtrich is the set of

all subseLs of A, i.e. D e P(A) iff D C A.

ForanytwoformulaePanderrl€use p&e , pve , p-)
and r P to denote conjunction of p and e, disjunction of p and e,

P implies Q , and the negation of p respectively. V and ] stand

for the universal and the existential quantifiers respectively.

we scrnetimes use F and T in place of the truth val-ues false and

true.

Greek letters will be used as metalinguistic variables.
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the structure of this thesis

the chapters in this thesis are designated by Mnan numerals f, ffr...
Reference to a whole chapter is therefore given as, e.g. chapter fV.

Major divisions of each chapter are called 'sectionsr. hte identify the

sections by bnan capital letters A, B, Cr...

the outline of the thesis is as forlows. chapter r contains a

brief survey in the state of the field of database systems. An analysis

of the existing problens wtrich are relevant to guery languages is given.

Ihe primary airn of this chapter is to give notivation for the design of

a new guery language and to state its perspectives.

An informal introduction to the major concepts and constructs of

the protrnsed language is given in chapter rr. one of the fundanental

concepts is that of algebra: a brief introduction to algebra and the

algebraic atrryroach is therefore included in this chapter.

rn chapter rrr nre formally define r,,trat a database is and give

precise sernantics of a database and of our language. several gueries

against two different databases are formulated and their evaluation

is discussed in the final sections of chapters ff and III.

rn chapter rV roe extend our language to cater for certain types

of gueries wtrich cannot be expressed using the toors provided in
the preceding chapters. I€ introduce first the "where" notation, and
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then allon queries *rich define sets inductively. this mechanism

increases the por+er of our langu4e considerably.

Chapter V is focused on a problan rrrtrich is ccnunon to most data-

base systems, nanely copirg with inccnrplete information. After studying

various aspects relating to nonavailability of data rre enrich the

language to handle such cases. Ocviously rtren the information in the

database is not conplete, the ansrrer to any query is only an approxi-

mation to the true result. The aim is to get the nrost precise

approximation.

In chapter VI a translation of a subset of Varga into relational

algebra is given. rtre intention is not to suggest a technigr:e for

impramentation, but to give a corres[Dndence between our language

and rnethods used in current database software.

Finally, the epilogue gives an outlook on areas where further

work can be done. The thesis closes with the list of references.
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Ib end the prologue, here are sqne ttords about

the nane "Varga".

It is a Farsi nord (with Arabic origin) and npans

" (male) nightingale" . ft was the nane of trto Baha'is

who nere martlrred in nineteenth century Iran for

their religious belief . Ihe nane Varga has been

chosen to record the fact that the persecution and

execution of the Baha'is is continuing in fran today.

It is pronounced "varko" in the sane rhythrn as

ttpandatt.





Chapter I

A CRTTICAL S]IJDY OF PRESEDIT DATABASE SYSIEMS

Itrat can be learned frcm them?

rn this thesis r"e propose a functionar guery language based on

the notation of conventional mathematics. fn the specification of this

language, rre side with the user and direct our attanpts towards the

design of a simple language wtrich is also practical frcm the implenentors'

point of view.

Ihis chapter contains a brief survey of sqne aspects of database

sytans wtrich are relevant to our proposal. rhe primary purpose of this
chapter is to analyse the existing problens, and justify our attempt

for designing a new language.
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Problem

In many circtrnstances concerning the managernent of data, one is

confronted with large anounts of interrelated information. How can it
be handled systematically?

This basic guestion spurred research into the field of databases.

The usual probrem of representation and formulation of a part of the

real world by the conputer is of central imtrnrtance. only the amount

of stored information distinguishes databases frqn ordinary cornputerized

systems.

Ttrere are several descriptions of database systems. A widely accepted

one is: "A database is a sytnbolic representation of knorledge about part

of the real world" [We-76]. Or, as in [Oa-ZAJ : "a database is a

collection of stored operational data used by the aprptication system of

scnne particurar enterprissrr. w€ are not going to point out the subtle

differences betr.reen these vierps (and other vievirs) because, at this level

of detaif it is not important. A more detailed investigation of databases

reveals a nunber of critical points. The more important issues in designing

a database are:

hovy can data be organised?

what is the best way of storing data?

hovr can the stored data be accessed?

is the database a true representation of the real world?

A. The
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Further guestions concern security, maintenance, redundanry and several

others.

Each of the above principal issues is rather conplex. In the case

of accessing the data, for example, the problems range frcm search

strategies within the database files to formulation of various queries.

Storage of the data is concerned with the choice of appropriate

ccrnputer devices, storage architectures and the filirg systen organisation.

In this study, we do not aim at giving solutions to all of these issues.

We intend, ho*ever, to study and to suggest solutions to sone of the

problems related to data access by the user.

To explain our goa1, r+e look briefly at the developnents in ccrnputer

languages and, in particular, database guery languages. In the early days

of corputing, the programmer could only be either a ccnrputer designer or

engineer, or soneone with similar knorrvledge of the system. Progranning

reguired specialised knovrledge of every detail of the system. Later, with

the invention of more suitable hardrpare and specialised languages, the user

only needed to learn the principles of a programming language. However,

these principles v,ere, more or less, those of the system j.tself . fn other

words, the language designer started frcrn the syston designers' view and

simplified it for the user. Therefore, the languages were machine oriented.

Years after, this method is stil1 in use.

Considering the recent improvements in both hardrrvare and software,

we suggest that, in the design of languages, the highest importance should
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norrr be given to the usersr requirenents

software reguirements. this may result

work for the system engineers, but that

and not to the hardware and

in a considerable amount of extra

is what they have been trained for.

Our suggestion is equally important in

query languages. In the oesign of our guery

the user, and further, will keep the user's

the engineerts vievy of the system.

The real
database

the construction of database

language, we will side with

vievr clearly separated frcm

n 1^a is 20.
SalarY or uus r'

ltarY is married '

Sam is s"i"" DePt'

Jirn is J2 Years old

:
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B. Record Based Databases

l'lost database systsns fal1 into three groups: hierarchical,

network and relational. Approaches wtrich cannot be categorized as above

will be individually studied in the next chapter.

the fundanental concept behind all these models is that

(A record is basically a finite collection of labeled data.)

of a record.

the hierarchical nrodel of organisirg data is based on the notion of

a tree: A hierarchical database nrodel is a tree with records as its nodes.

In

trees :

nodes.

the netr,vrork models, the organisation

A network model is a directed graph

of data is not restricted

wtrich has records as its

A B c
I

D

t

M
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In the relational

together and ;ninters

model the records of the sane t14n are grouped

are removed.

ll F
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The database in all these models is, therefore, a vast collection

of records, and database management is the art of handling these records.

The unhappy fact is that, traditionally, these structures are made

visible to the user. With the first two models, the user has to navigate

a path through the jungle of records. In a ccmpany database, for example,

a simple guery such as "name of the department in wtrich Smith works" i.n

Codasyl [01-78] notation is:

EITIPIOYEE. IrIffT{f,=' SMITTI' .

FI}JD EIVIPTOYEE RECORD BY CArc-KEY .

FI}iD O{NER OF CURRMiT ITN4 RECORD SET .

GET DEPI .

PRI}TT DEPI.DI\IAII{E .

In the reLational rnodel the paths are eliminated, but the user stil1
has to think in terms of records. As an example, hre formulate the query

"a11 onployees vtto earn more than their managers" in Codd's sublanguage

ALPIIA [Co-71] :

RA}reE ru X

RA}GE R2 Y

GET W (RI.EMPIOYEE): il ]V INT.DEPT=Y.DEIUr)

(Y. MAI{AGER=X. EMPLO}EE )

(R1.SAIAF[T > X.SAIAFIr)

where Rl is a relation on Er{pLoyEE, SAIART and DEpf, and R2

is a relation on Dpt and MAIIAGER.

&

&
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l.Iote that the variables X and Y range over records. EVen recent

proposals, such as the entity-relationship nrodel tch-76], Aggregate

model [SS-77] and SDM [HM-79], merely build additional structures over

the traditional building blocks (i.e. records).
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Problems of the Record Based Databases

Many authors nolr argue that records are unnecessarily complex and

stil1 inadeguate [Ke-78 , Se-79], dnd that the database user should

view the data in a less technical way.

We note that with the present technology, records are most suited

for internal representation and processirg. Honever, h€ argue that the

user should not be aware of the internal structure of the database. l€

stated before that the user's view and the engineerts view need not

be necessarily the sane. orrce this distinction has been made, we can

then look for a nore atrpropriate nrodel of the real rrorld for the

user. "Ttte more we are nrotivated to produce a faithful model of real

information, the more he will have difficulty with record based

constructs." IKe-79]

One of the main reasons why database guery languages merely reflect

the internal model lies in the tendenqg of scrne database researchers to

work in isolation and ignorance of new develqments in other fields of

Computer Science. I{e argue that database theory should not be separated

frcm the other fields of computer science. rn particular, database

languages should have the sane properties as those of other nonprocedural

larguages, i.e. values should be specified in an abstract mathematical

way, with no reference to any particular implanentation method. l,te

explain this by means of an analogy:
page 18



Sutr4nse that Fred wants to ask Joe to cut a metal disc of a

certain dianeter. There are several ways in wtrich Fred can specify wtrat

is needed.

fn the tedious way, Fred may (somehow) draw a circle (or sonethirg

atrproximating to a circle) and give it to Joe, so he can use it as a

pattern. Here, Fred anticipates Joe's rrork in a token way.

This approach, ressnbres formulating gueries in coBol style query

Ianguages. In such languages, the user finds his ansv€r by directing

a trninter through the collection of records.

Arternatively, Fred may specify the circle by its mathsnatical

notion. brrespondingry, the user of nonprocedural languages rtould

give an abstract specification of the objective.

lve note, hortever, that the relational calculus guery languages,

arthough nonprocedural, revear scnre of the operational aspects to

the user and involve him (at least partly) in technicalities. rn our

anarogy, it is as if Fted had to say that he wants a piece of nretal in

the shape drawn by a pair of conpasses! !{e r,rculd criticize that Fred

is burdened with details of how the rrork shall be done. rt may be the

case that a pair of ccnpasses is the nrost atrpropriate tool, but wtry

should Fred be concerned with that?

Rcords in the relational calculus languages,

compasses. Ecords may be good operational tools,

not be aware of them.

(Ihe next section of this chapter focuses on other

relational approach to databases.)

ressnble the pair of

but the user should

page 19
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fn the subseguent chapters r,re will dsnonstrate that the

algebraic atrproach [Zi-75 , G)-77 , GII^I-78] provides what we are

aiming for: independence frcrn any concrete representation and frcm

any technigue for implenentation.
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D. Assessnent of the Relational Amroach to Databases

Ihe relational theory of databases is based on relational algebra.

Informally speaking, an algebra of relations is basically a collection
of relations together with sotne operations rr'trich can operate on these

relations.

A relation on a sequence of dcmains is any subset of the cartesian

product over that sequence. For example, if the dcmains are DorDrr....
and Dn then any subset of DOxDrx.....xDn is a relation over DOr

D1r..... and Dn. (TLrere is an alternative nrethod of definition for
relations and it will be studied later.) ltembers of relations are

called'tuplesr.

As relations are sets, the set theoretical operators, such as union and

intersection can be aprplied to thsn. other operations are:

concatenation ; (wrongly called "cartesian product" in the literature)
Given t*o rerations R and s, their concatenation nxs is

ir^s I r€R and s€s i

nfiere r^s is the concatenation of r and s.

(Concatenation of trro finite sequences r and s is a

sequence t, such that:

i) ltl=lrl+lsl
ii) t!lrl =r and Velsl alrl+j=sj.

For any sequence d, ldl is the length of d.)
page 21



projection ; rf R is a relation over a seguence of dcmains D, then

the projection of R over i, where i is a sequence of

natural nunbers 1ess than lDl, is
11, tn) = { ,rro,rr, ,...) | r€n }

selection ; Given a relation R over a sequence of dqnains D, and a

formula F built up frcnr:

- relation symbols = , ) , ) ,....irrtlich operate on

elsnents of lDl or constants

- the logical operators & , v and -r r

the selection of R over F, denoted by or(R), is the

set of all elsnents of R rrtrich satisfy F.

Based on these operations several other operations such as join and

guotient are defined. Relations are often represented as tables. Thus,

projection and selection correspond to choosing colunns and rovrs frcm a
relation respectively.

A11 counterpart definitions in the available literature make use of
a notion vfiich, when relations are defined in this manner, cannot be

defined; nanely 'arity' of relations. Arity of a relation is defined to
be the lergth of its sequence of dcrnains. For exampre, if R is a relation
on Dor D1r.... E[ld Dn, the arity of R is said to be n+1. sqne argue

that although when the relation is not enrpty the above statsnent is
obvious, howrever, the arity of the snpty relation is undefined. Note
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that tae did not make use of the notion of arity in our definition of

relational algebra. Ttris dsnonstrates the redundanry of the use of arity.

The inunediate issue arising frcrn this type of specification is that it
associates a ntmber with each colunn of the relation, that is, the colunns

are identified by a seguence of numhrs. Conseguently, most relational

algebra expressions involving projection (r*rich are conrnonly accepted) are

not mathsnatically clear. For instance, if R is a relation on dqnains DO,

Dr, D2 and D, then the following expression is not neaningful

o3="u6.,' %r: (*)

because projection of R over colunns O and 3 results in a binary relation

wttich obviously does not have a col-rnn correstrnnding to 3 (since after the

projection the colturms are renunbered) .

To eriminate the ordering on colunns, anong others, tsy-7g , Asu-791

made alternative definitions for relations. They regarded a relation on a

set of attribr'rtes as a set of tuples r+fiere each tuple is a mapping frcm

the set of attributes to the set of values (attributes are considered to
be labels, i.e. nanes). Tr:ples are then sets and their elements are not

ordered. (rncidently , a misuse of notation repeatedly appears in the

literature adopting srrch a definition: the attribute (i.e. a nane) is
ccrmnonry used also to denote the set of its corresSnndirg values.)

The relational database rrork has overlooked a nr-unber of other

points. I{e wi1l, hqrever, merely look at tr+o npre fundanental rreaknesses

of this theory.
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the first probJ.en is in the design of relational databases. Ihe

dependencies wtrich exist on the data cannot be expressed in relational

algebra. There are various tllpes of such detrnndencies; nanely, functional,

multivalued and join dependencies. the database designer should look for
all types because these dependencies play major roles in the maintenance

of consistenry (that is, correctness) ard in reducing the size of the

database. the study of data dependencies has resulted in production of
a great deal of literature wtrich is perhaps more than the literature on

other aspects of relational database theory. Yet, no suggestion is fully
satisfactory; [BB-79 and anong many others Fa-77 , Bi-7g and Fa-81J.

secondly, the traditional theory of relational algebra asstrnes that
the data has a tabular form, and, therefore, makes no provision for
conputable relations. For exanple, sup[Dse, in a ccmpany, the salary of
each enployee is determined solely by his age, say: 15o tfunes his age.

Although this relationship is simple and straightforward, it sti11 has to
be vierrred as a table. [tb, therefore, argue that the relational approach

is limited because it enforces a particular nrethod of representation for
relations.

fn chapter W roe will discuss the weakness

guery languages for e:rpressing certain tlpes of

of relational database

gueries.
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Trends in Ccrnputer Science

Since the early 195o's l*ten the first high level programning languages

were invented, the search for npre pohrerful larguages has steadily continued.

the nunber of existing languages is so large that the introduction of a new

larguage gives no inrnediate cause for interest. rhe reason, perhaps, is that
the sirnilarities between these languages are greater than the differences.

ttu-8! indicates that these differences are usually superficial, whereas

the similarities are fundamental. At a certain leve1 of abstraction all
conventional progranning languages are the saune:

- they have the inherent defect of having the von lbunann ccmputer as

their commcn conceptual origin. tBa-7gl

- they are sequential and imperative (due to the nature of the machine),

and assigrrnent is their primary operation.

- they cannot easily relate to conventional mathematics because their
variables are not static within their scopes

- above a1l, reasoning about correctness of prograns written in these

larguages is difficult and often totally irnpractical.

E. t€w

fn an attempt to remedy the crisis,
conscious Cunputer Scientists have tried
analysis of progranuning languages.

ft is now widely

usefully anployed for

the past decade, mathsnatically

formalise the art of design and

accepted that mathernatics, particularly logic can be

the study of ccrnputer languages. Ashcroft and Wadqe
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[AI+-79], howrever, distinguish tr+o points of view on the application of
mathsnatics: one which sees mathematics as a tool to describe, to nrodel

or to analyze progranming languages (the descriptive role), and the other,
which sees mathsnatics as "playing primarily an active role to discover the
principles on r,rhich new languages and features should be based,, (the

prescriptive role).

Production of a vast anount of highly sophisticated mathsnatics for the
description of languages such as pL/r is an exanple of approach with the
first point of view, vtrile scrne other languages, such as pRotoG [Ko_79],
I*tcid [Aw-77] and sASL tft-811 are based on nathsnatics in a prescriptive
role.

rn this thesis 
're 

take the second point of view and define a guery

larguage based on the notation used in conventional mathematics. this method

has the advantage of making use of the userrs mathematical knowledge rather
than introducing neht concepts wtrich are inherentry ccrnplicated and often
counter-intuitive .
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F. l,lrtivation for Varga

the perslnctives in the develotrment of varga can be suumnarised as:

1 . the query language should provide the tools by wtrich the user can get

the best results frcrn the database without having to go through masses

of printout.

2 . A meaningful, easy to understand and rigorous terror analysis' should

be mandatory with any cornputer language .

3 . the user should have the simplest view (rftich is obviously the natural

one) of the data. the user should not be reguired to know anything

about the internal representation and implernentation technigues.

4 . the language should be independent frcrn the data structure: the internal
data nrodel should not affect the language.

5 rb avoid dealing with the naturar anbiguity of rrcrds , the use of
mathernatics rr'hich has the same meaning in all contexts is preferred.

Correctness can be proved in formal systens.

6 . It is to the benefit of the user if the notation of the language is
simple. !4ost users are faniliar with conventional mathsnatical notation.
Itris notation, in addition, has several hundred years of testing and

develotrment behind it.
7 . Finally, funplementation of the wtrole specified language must be possible.

Ihe feasibitity of implementing aII of the features of the language is
considered in this *ork.
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Chapter II

AN C'\iERVTEh' OF l]IE IAI{GUAGE

This chapter contains an informal introduction to the major

concepts and constructs of Varga.

A. objects in the rear r.,.orrd and objects in u database

D<tensional objects can be loosely defined as follows: conceptual,

static objects, such as integers, which are invariant with time, place or
context etc. rntensional objects, on the other hand, are objects of the real
worrd ufiich are capable of changing and yet in essence rernaining the sane .

For exanple, TEMPERAIURE is intensional, but TEuPEnAIIJRE AT A SPECIFIC

TruE is extensional assuning that rre know nfiere and how this varue was

obtained. (tvbntague's exanple: "!he tanperature is 90 and risirg,,.)

rn the field of databases, particularly relational databases, objects
are coded up intensionally. Let us consider a simple database consistinq of
one relation on information about courses:
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couRsEs

COURSE COT]RSE-LECTURER EXAII'INER zNH{ARKER

ttMathstt

"Phys"

"John"

ttJacktt

ttJack"

ttMarytt

"Bi1 I "

'Pam'

tiote that the colunn headings, called relation schemes, are

intensional objects and the entries to the columns are extensional objects.

Ihere are 'functional dependencies' r*rich cannot be expressed in the

relational form. rhey are usually given in the foltowing form:

Although LECIURER ' EXMfNER and 2IIH{ARKER differ intensionally,
they range over a common donain, nanely the set of all instructors.
the extensional atrproach is to forget about different intensional

characteristics of the instructors, and to deal with thgn just as members

of a set (of instructors). the relationship between the extensions roould

then be expressed by functions mapping these sets together.
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lecturer-of

It is important to note that rcourses' is novr a

different frcm the intensional object COURSE in the

set, and that it is

relational atrproach.

Let us look at another example. rn the relational approach, if r,rc want

to include the 'prerequisites of the courses' in the database we have to
introduce a nehr relation R on couRSE and pRE-REeursrIE. (we can extend

the relation COIIRSES to include PRE-REQUISITE, but it rrcu1d not satisfy the

normal forms of Codd. See [Co-71].)

"Phys-II"

"Maths-rr"

"Phys-IrI"

"Phys-r "

"Maths-r"

"Phys-If"

instructors

2nd-marker-of

PRE-REQUISITE
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Ihe hidden functional dependency contained in R is made explicit in the

following figure

COURSE

D<tensionally, the entries

set; that is rcoursesr. An

PRE-REQUISITE

to both col:mns of relation R belong

extensional representation is

to one

prerequisites-of

([€ have used double lines to indicate that for every course any nunber

of prereguisites is possible.)

As before, 'courses' is a set, and tprereguisites-ofr is a function

which maps the elenrents of rcoursesr to sets of elernents of rcourses'.

page 31



Databases as Algebras

Drring the past decade algebra has ernerged as a prcrnising tool
for the specification of a nunber of concepts, in particular, abstract

data tlpes [zi-75 , Gr-77 , Grw-78]. Algebra also plays a fundamental

role in the design of our language. l€, therefore, start this section

by studyirg algebras and the algebraic approach.

An algebra is defined as follor.rs [HMT-71] :

"B1z an algebra (or an algebraic structure) roe understand a pair IF(Are)

where A is a non-entpty set and Q is a function wtrich correlates with every

elsnent i of its dcrnain a finitary operation ei, of positive rank, on and

to elernents of A." For a more detailed definition of algebras see [MB-79 ,
cH-781.

l4any sorted algebras have been particularly funportant in both the
practice and the theory of the specification of abstract data t1pes. rhe

prirnary aim in the abstract data tlpe specification is to (precisery)

describe a data type independently of any representation of its data objects
and independently of any irnplenentation of the operations. trwt{-7gl

A data tlpe is regarded as a many-sorted algebra and is defined to
be [GTI{-78]: an indexed fanily of sets (called the 'carriers,) together
with an indexed fanily of operations betroeen these carriers. lhe naning

systen (i.e. indexing) is given by a 'signaturer. The signature consists
of a set s of nanes (called rsorts') for the carriers, dnd a fanily

page 32

q.



*
{ &r= | rteS & s€S } of operation names such that any gtr.r," with

*s.rslr...sn_I ne[nes an operation frcm Aw=A= x....xA. to-O "n-l
A", l*tere for any sort s, A" is the carrier of sort s.

other definitions for many-sorted algebras exist, e.g. tMa-77I

wttich are in harmony with the above. Frrrther material on this topic can

be found in, for example, tqIW-78 | Zi-75J.

Following the ideas stated in the previous section, rtre regard

a database as a collection of sets, called the ,,t14>es', of the database,

together with a collection of functions mappirg the elements of these

tlpes together. rhe database is therefore a many-sorted algebra.

tb the user ' every function is merely a black box *rtrich rtren given a

value, (possibly) returns a value. rn other rrords, the user does not need

to know about physical organization and representation of data, the
ordering (that is, sorting) of sets, the positions of files or other
technical aspects.

There is a nane associated with every furction and every t1pe.
ltrese slrnbors are contained in a signature. rn programning terms, the
signature correstrnnds to type declaration for procedures . Ttre

signature contains the tlpirg rules for the database mappings and also
the tlpes of variabres. (rhe variabres are tlped by the signature and

not by the user. rtrere is an unlimited supply of variabres of each t14n.
oob will later discuss the notion of variabres in detail.) Hence, the
signature is the specification for the t14n checker as rrrell as for the
syntax checker of the language.
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Ttre functions can return either a single data object or a sei of data

objects: vre refer to them as simple functions and set-valued functions

respectively. fn general, these mappings are not every*here defined. For

example, let 'grade-of' be a function mapping 'students' and 'courses' to

the set of integers (grade-of(X,Y) denotes the mark that the student X has

achieved in the course Y). this function is obviously defined for certain

pairs only, because not every student takes every course. lrtre therefore

introduce a ne'd object e which stands for the value 'not appropriate'

or 'inapplicabLe' . By adding e to our sets, our functions can be extended

to be total functions.

Note that although we extend all our mappings, the extensions are hidden

frcm the user: i.e. the user does not know anythirg about e other than as

the result of a particular type of non-terminatirg guery - they are gueries

which reguire applying a function to a value wtrich is not in its dcrnain.

Itre will discuss the behaviour of e later in this chapter, and we will look

at it again in chapter v when studyirg many-valued logic systerns.

Example- Consider the function gradercf again. rn extended form, it maps

students* and cours"=* to integers+. (For all sets D, D* is D u {e}.)
If the first argument given to this function is not of type tstudents'

or the second argunent is not of type 'courses' , the tlpe checker detects

the error and evaluation does not take place. Horoever, the value e is
returned if the expression passes the type checker without the pair of
argunents being in the dsnain of qrade-of .
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!{e treat constants, such as nunerals, as nullary function slmbols

(functions drich have no argr:ments). There are three tlpes of

nullary functions: ntrmerals, strings of characters enclosed in guotes

(e.g. "aB2K"), dnd reserved rryords wtrich refer to distinguished objects

in the database. For instance, in a university, we can regard the

departments as distinguished objects and allocate thsn reserved rvords,

e.g. the-Iaw-Dept for the Detrnrtment of taw. similarly a reserved

wrcrd can be used to represent the 'current' chancellor of the university.
However' we rrould not allocate reserved words to ordinary objects such

as the students or the courses, for the simple reason that they are

subject to removal. (ltren a student leaves the university, the database

normally does not keep any active information on him; if he has a

reserved rrord, its deretion means an update to the language. ) o:r the

other hand, the office of the president of the str:dent union is a

permanent post of the university database and the current president

of the student union can be represented by a reserved r.ord, say

Ihe-SU-president.

ccrnpsition of functions is permitted, but instead of introducing

the function contrnsition operator, he a1low functions to be applied

to the results returned by other functions, i.e. f(g(x)) instead of
f"g(x). rn this way the language is kept first order. l,lote that fcq

returns a function (i.e. a higher tlpe object). For exanple, if
f:B--)C and g:A--)B then f.g is a function frcm A to C.

R:11 conputationar poh€r is provided by incruding a wide range of
oPerators in the language. rhe difference between operators and functions
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is that the operators form an unchangeable part of the language, vtrereas

the functions are particular to the application database.

In addition to simple operators (such as arittrnetic, boolean etc.)

four variable binding operators are also included. They are the existential
guantifier, the universal guantifier, the set constructor (e.g.,

i f (x) | p(x) ]" ) and the multi-set constructor (e.9.

I f (x) | P(x) ]" ).

rn general, the operators are polyrnorphic arthough some, like + , operate

only on specific tllpes, e.g. integers (and of course O).
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C. On Variables

What are variables?

Tfrere are several answers to this question: in traditional conputer

terminologty a variable is an identifier attached to a register in the

machine's memory; to logicians a variable is a certain kind of s1mbo1;

and mathsnaticians and physicists have again their oqn notion of variables.

With the exception of elementary aritlrnetic, these disciplines ernploy

variables very often. Here, roe revievir first scrne given theories on

variables, and then state our notion of variables.

Having investigated most concepts of this conplexity, Russell, at the turn

of the century, stated that there was not a satisfactory theory of variables

in his Principles of Mathematics. Further, he adnitted that this theory hras

certainly one of the nrost diff icult to understand tRu{31 . Russell considers

anything which is not constant (i.e. absolutely definite) as variable. For

instance, in the linear expression

Ax+By+C=O
x and y are generally considered as variables, and A, B and C as constants;

he argues that, unless tt€ are dealing with an absolutely particular 1ine, A,

B and C are also variables.

Menger [Me-53] examines several theories on variables, such as that of
weierstrass. Given a class C of nr-unbers, weiertrass defined a nunerical
variable with the range c as a symbol standing for any element in c. For
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exanple, in

d .,- .- _ _!_--- In xCx x

the letter x is a variable whose range is all positive numbers. Menger

sees this as inadeguate and deflnes variable guantities in a ccmplicated

way as follows:

"I€t A be any cLass. By a variable guantity with the dcmain A r.re mean

a class of pairs such that: (1) in each pair the first elernent is an

elgnent of A, and the second is a number (calred a value of the v.e.) r

(2) each element of A is the first member of exactly one pair belonging

to the class. The class of all values is called the range of the V.e. "

Curry and Feys tCF-581 see variables "as rneans of enunci.ating theorsns

about other things", the 'other things' being functions. The following are

examples of theorems:

))(x+1)- = x-+ 2x + I
*2 is a function of x

-9- *2 = 2*
dx

Thre above statsnents, when interpreted, express scxne of the properties of

the function 5pg616;.

(Combinatory logic [CF-58] is concerned with the analysis of formal

variables and their eventual elimination.)

Note that the above views are not contradictory : each one emphasizes

a particular usage of variables. [AI'r82] indicate more ccmplicated cases

where the variables can take on a whole fanily of ranges. variable x in
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the follorrring is an example:

t n x+Y+1
y=lrlOO x=1ry

For the purpose of this roork, we take Weierstrass' concept of

variables and generalize it to a&nit any set (not just nunbers) as the

range of a variable. However, r,ve restrict our generalization by excluding

variables wfrich range over functions (in contrast to logicians wtro

normally allovr variables to stand for functions). fn this e/ay we can

keep the language first order.

As custqnary in mathematics and logic, in Varga we restrict our

variables to certain sets : each of our variables has a t)4pe associated

with it. For instance, in the statsnent "x is mortal" we require x to

be a "living object" and not "anything".

An important and subtle point is that, although we regard variables as

dlmamic objects (things which change value with, say, time) rrye cannot talk

about a specific permanent value for it. For example : if x stands for

any integer, then saying 'x is 1'rould be wrong. Because, in Russell's

words, "it is not true that 1 is any nr-unber, though it is true that

whatever holds of any number holds of 1". We, therefore, reject the

traditional vier^r of Conputer Scientists' that variables denote storage

cells. (Note that rrc can talk about the value of a variable in an

envirorrnent. However, within an envirorment the value of a variable

cannot change. rn traditional computer science (imperative languages),

the textual scope of the progrerns do not agree with the notion of

enviromnent. )
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D. Variable Binding Q>erators

Let us cornpare two different ways in drich variables can be ernployed.

Often addition is defined in terms of the successor function as follows

if y=O

or the other hand, sum of the possible varues of an expression, say i2+1,

is expressed as :

.?
t i-+1
i=l ,n

In the above exantples, although z and i are both variables, they have

different characteristics: z acts as a placeholder, rr'hereas i indeed ranges

over the values 1 to n. rhe cause of this difference is the operator ;
wttich forces variable i to vary. there are many operators of this kind : vre

list a few exanples wtrich make use of thsn
(-

Jo sin(x) dx

Vx P(x)

}>s e(x,y)

{f (x) | e {x; 1"

lim -I-t-l-x--)o 2x-+ I
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These operators are called [KMM-8O]. Each one

of the symbols J,Y, f,.....above, denotes a variable binding operator.

In the simplest case, a variable bindirrg operator takes a function as

its argument and returns a value. I€t f be a function mapping real nunbers

to real numbers. The value returned by
1b

I, t 1xl dx

is, in general, a real number. In abstract notation, the tlpe of the
I

denotation of I can simply be written as
tl

lR --> Rl --> R

Similarly, in \* p(x) nftere x is of t14>e c, the tlpe of the denotation

of Vis

la --> booll --> bool

where bool is {true , false}.

It must be stressed that, although functions are alIorrcd (implicitly

only) as the arguments of variable binding operators, rre permit neither

function-variables, nor function producing operators. It is our intention

to keep the systan in first order. (Sone may argue that, by allowing

operators wtrich operate on functions, h,€ have already departed frqn first
order, but note that first order logic also makes use of guantifiers V
and I .1
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Extra Object O

We start this section by justifying the inclusion of the special object

We also examine the alternative methods and state Lhe problerns involved

their use.

A naive way of representing the data is to designate particular

types for the dcnrains and ranges of functions. A case similar to this

is observed in the relational model: There is a set associated with

every attribute of the relational nrodel (in relational database jargon:

underlying dcrnain). These sets do not need to be distinct. As a nntter

of fact, scnretimes they overlap heavily : LECTURER , EXAI{TNER and

ZNFMARKER in the sanple database given in the first section of this

chapter are examples. This method of classification, however, in scme

cases beccrnes ctrnberscme and unnatural. suppose the following table

as part of a database:

X sin (X) cos (X) tan(X)

n

30

45

60

90

o

o.5

.7I

.87

1

1

.87

.7r

o.5

o

o

.59

1

1.73

9999

E. The

e.

in
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Obviously, considering different types for sin(X) , cos(X) and tan(X)

is not atrpropriate. rn fact, r{e even do not have to consider a different
tlpe for X. therefore, as suggested in tss-771, sirnilar objects are

collected into (perhaps distinct) t1pes.

l'fhen applying this abstraction to our suggestion (that is, collecting
all objects of the sane tpe into one big set) , as discussed earlier, it
is no longer true that the map'pings are, in general, every*rere defined.

There are trl.o alternatives to put the situation right:

- ne define subtlpes within a tlpe and we allow the functions to operate

on subtlpes only, or

- r've introduce an "extra object" and thus extend the mappings into total
mappings (e in our proposal is this extra object.)

VF exanine these nrethods by means of exanples.

sutr4nse in a canpany database the followirrg information should be included

nanes of all ernployees

nanes of the spouses of the married employees

maiden narnes of a1l married ttrcrnen employees

the set of 'married hornen ernployees' is a subset of rmarried ernployeesr,

which itserf is a subset of the'employees,. hb can represent the above

information by total functions in the following form

nane-of : ernployees ---> strings

strnuse-nanercf : married-employees _-_> strings
maiden-nane-of : married-r+crnen-employees ___> strirgs
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It sesns that the problan is solved and there is no need for the extra

object. Hortrever, difficulty will be encountered wtren dealing with functions

which take more than one argument. Earlier, r€ studied the function

gradercf wtrich operated on 'students' and 'coursesr. To avoid dealing

with partial functions, we have to consider a suitable subset of the set

'courses' for each individual student (or vice-versa). (If there are two

sets S and T where each one has three subtlpes, then there are at least

9 subtypes of SxT.)

Ihe problern is greater for functions of higher arities. In fact, the

problen grov/s guickly in relation to the cardinalities of the sets and

the arity. (Of course he can transform functions of greater arities to
unary functions, but this does not solve the problsn and, in addition,

forces the use of higher order functions.)

lF, therefore, find it more convenient to include the special object e.

e in our systan is similar to the third value in three-valued logic

systsns, but is different frcrn arl of them in the way it behaves. (A

detailed discussion on three-valued logic is incruded in chapter v.)

e can be interpreted as any of the terms 'misapplied' , rinapplicable,

or Inot appropriater. rt should, however, be made clear that it does not

mean 'inconsistent', or 'invalid'. Rsnember that faulty gueries (i.e.
those wtrich encounter tlping error) cannot be evaluated because they

cannot pass the tlpe-checker. rtrus, rte treat e as ,'does not apply to

this individual", that is, dqnain error.
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A function can return e either because

- it cannot have a value for the given input (This case is different

frqn the case where a value should exist but is at present unknown.) or

- at least one of the arguments given to the function is e.

the operators have to be extended to handle g. An imtrnrtant rule

governs the extensions of operations: the extended form in the absence

of I must agree with the non-extended form, within the dcrnain of the non-

extended function. For exanple, the truth table of the operator 'and' is

After the extension by e the table is

TF

ffiT

F

T

F

e

TFE

T F e

F F F

e F e
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Occurrence of O in the evaluation of a guery does not imply that O

is the final result because r.re make sqne exceptions. The result of applying

any operation to O is e except for operators rand' and 'or' which may

stop O frcrn propagating. For example, the operator 'or' will result in

true so long as at least one of its operands is true. fn addiLion, in the

evaluation of gueries involving variable binding operators, occurrences of

o rnay be ignored. we will see that, for example, ]x p(x) is true if p(x)

is true for scrne value of x, it is false if P(x) is false for all values

of x, and it is O otherwise.

Finally, variables are not permitted to assune the value O. For

instance, in Vx p(x) the value O is not allorrred for x.
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F. Queries

Queries are expressions which are built up out of function names,

operation names and variables. (Data objects are denoted by nullary

function symbols.) Ont_y gueries which satisfy the tlping rules can be

evaluated. eueries must be closed expressions; i.e. free occurrences

of variables are not allorped in gueries. Each variable can be bound

only once in any expression; for example, expressions such as

Jx ((x>5) v |9J1ee x=2 ))

are not considered as valid gueries. Note that these rules are alr
syntactic reguirements.

The value of a guery is defined by specifying the values rttrich the

algebra assigns to the parts and subparts of the guery, in a fairly
obvious way.

Queries cannot return higher order objects, i.e. functions.

The values returned for gueries can be data objects (as found in the

database), sets of data objects, or sets of sets. There are severar

operators wtrich operate on multi-sets of objects, such as rsrln, and

'Average'. Multi-sets of data objects are therefore considered.

(A multi-set is anarogous to a set but elements may appear more than

once , e.g. Ibrarbrcrdrd].)
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lb now formulate a number of gueries to dsnonstrate the power of

our larguage.

consider a university database, with several tlpes such as students,

courses, instructors, etc., and the functions lecturer-of , deptrcf ,

courses{f, etc. rn the figure below, the tlpes appear in round boxes

and the functions appear with arrows. Double arrows indicate the set-

valued functions. l.lote that sqne of these function symbols may refer to
the sane operational values. For instance, coursesrcf, enrollers-of

and is-taking are three functions wtrich represent exactly the sane

information.

students

e-s\9.

q--
o
I
Q
F
ED

r)
FJlo

\F
l|-
\en

2nd-manken-of

o
I

ED

F
a

str inqs

integers

instrucLorsLeeturer-o

pnenequisitee-of
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1' second markers of the courses whose lecturer is also the examiner

{ 2ndqnarker-of (C) | lecturer-of (C) is exaniner-of (C) } C

rn the evaluation of this !tru€ryr a set is constructed containing the

second markers of all those courses wtrich satisfy the condition -- recturer
of the course is the sane as exarniner of the course -- while the variabre C

iterates over the ersnents of courses. (The appearance of c on the very
right indicates the variable which is being bound by the set construction
operator. Although that is obvious in this query , rre abide by the
mathqnatical rules to preserve uniformity.)

2' nane and address of the students who have taken more than six courses

{ (nane-of (SIIJDT\IT) ,addressrcf (STtJDEfrrT) ) | Horcf (courses_of (STUDEI\m) )

cT 6 iSIUDET\I

the result of this guery is a set wtrich contains pairs of nanes and

addresses of scrne str:dents (rhat is, a binary relation on nanes and

addresses). The operator lrtgf counts the number of elsnents in the
set returned by courses-of(STUDENT), and Gr is an arittrnetic operator
which ccrnpares the resurt of the counting with the number 6.

3. students r.'ho are taking a course with their advisors

i srTrDEM I exists couRsE : couR^sE isin coursesrcf (srIDmJ,r) and

advisor-of (STUDEIfI) is lecturerrcf (COURSE) ]STtDEtfI

page 49



There are two variables in this guery: STLIDEIflI drich is bound by

the set construction operator, and COURSE wtrich is bound by the

existential quantifier exists. the logical connective and gives

the conjunction of the tr+ro boolean values returned by isin and is.

isin is the usual set mernbership operator.

4. all enrollers of the courses taught by the lecturers of the

Department of Iaw.

tlnion { enrollers-of (COURSE) | dept-of (lecturerrcf (COURSE) ) is

The-Iaw-Dept ]COURSE

rhe operator urion, when given a set of sets, ccrnputes the union of all
included sets. (Another operatorrnanely union , exists, and it is the

usual set theoretical operator U). enrollersrcf is a set-valued function

and hence, the set construction operator in this guery builds up a set

of sets. l.Iested application (or, ccrnposition) of furctions is carried

out here: dept-of is applied to the result returned by lecturer-of.

the-Iaw-Dept is a reserved word standing for the Departnrent of law.

5. rs Jim the nane of the head of the Mathematics Department?

rrJim'r is nane-of (headrcf (Ihe-Maths-Dept) )

The ansuer to this guery is returned by the operator is , and it is .yes'

or 'no' (true or false respectively).
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Finally' to give a ccrntrnrison with other guery languages, roe formulate

the rtel1 known query : "all enployees n'ho earn npre than the managers of

their departments" of a conpany database. (rn the previous chapter this

query was formulated in ALPHA.)

{ E I salary-of (manager-of (dept-of (E) ) ) LT salaryrcf (E) i E
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G. Comparison+ With Other lilcrk

With COtsOL style guery languages (mainly used with hierarchical and

net*ork data models) the user has to navigate a path through a jungle of

records. The relational approach resolves this by introducing relational

calculus as a base for non-procedural guery languages. hlational
calculus, however' still reguires the user to think in terms of records.

For exanple' its variables range over records. (!^1e do not suggest that

records are inherently evil, because in scrne cases they are extrernely

helpful. However, having everything based on records is unrealistic and

far from the user's intuition.)

Varga preserves the advantage of non-procedurality, furthermore, it
provides the user with a simpler view of data. the way that the variables

are used in Varga is exactly that of conventional mathsnatics to utrich

most users are accustcmed.

Varga is independenL of any particular data model and can be used

with an imptenentation based on any of the existing nrodels, or even a

ccmbination of them. This advantage is more noticeable if r,vre realize

that relational databases make no provision for conputable relations
because they are based on a specific rethod of implenentation.

this rtork is not the first endeavour for the design of a functional
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guery language. Schwartz [Sc-71] was the first to mention the abstract

algebraic view of databases, but he never pursued this idea any further.

His general purpose prograrrnirg language SHIT,, however, has several

features similar to Varqa.

In [BF-79 ' BNF-81] a functional guery language, FQL, based on Backus'

FP is suggested. Althourgh FQL provides a trnr+erful formalign for expressing

gueries, its notation is very ccmplicated and scrnewhat unnatural. Ihe

elimination of variables in FQL makes the language very different frcm

Varqa. Four functionals (higher order functions) are provided for conbining

the functions rrrtrich map the data tlpes together.

In the early version of FOL, the user had to declare the t14pes (input and

output ttpes) of each expression and tlpe checking was then done statically.
The new version [BNr-81] relieves the user frqn the need for specification

of t14:es, since tlpe checking takes place at run time.

fn contrast to FQL' Daplex [Sh-81] has been developed with emphasis on

notation. Daplex, horrrever, lacks a formal definition. l,lany of its expressions

are mathgnatically nreaningless. ftirthermore, several obvious thirgs are

missing. For exanple, Daplex fails to deal properly with functions of

arities greater than one: the grades obtained by the str-rdents in their
courses are given by declaring the following function

DECIARE C,rade (Str:dentrCourse) ---> IMIrcER

this function, however, is not defined

courses. Tb avoid the probl€n, another

for all pairs of str.rdents and

choice of declaration is given:
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DECIARE Grade (Student,Course (Student) ) --> IMIffiER

l€ find this statsnent totally anbiguous; 'course'wtrich was used as a

nane for data tlpe in the first statsnent, appears as a function nane in

the second (surprisirgly, in some gueries 'Course' is used as a variable

rarging over the elements of the tlpe Course, wtrile, when necessary,

being used as a function nane! ) . FUrthermore, in the second statsnent

where Course stands for a function wtrich wtren given a student returns a

set of courses, the meanirg of the function Grade is not clear: does iL

return onry one value for all of the given set of courses, or does it
operate on each individual course and return a set of values. ft seerns

that although the notation suggests the former, the latter is the intended

meaning.

Finalry, course, which (when standing for a function) normally

operates on students, is later defined to be Lhe inverse of the function

Title I Course ---> S1RIIG

which is

Course : STRIIG --) Course.

(Ihe statsnents are exactly copied frcrn tsh-911.)

lbst of other recent work on databases is concerned mainly with

the relational nrodel.

Following the algebraic approach to abstract data

formally describe a database nodel by its signature (a

t14>es, [CPP-78]

set of typed
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operations) and its presentation (a set of algebraic eguations) . tvtv1-811

consider eguations as special cases of clauses and present an algorithn

to transrate these eguations into logic prograns autcmatically. rhis

work, hor.ever, is more related to the str:dy of updates rather than the

construction of a guery language.

the aggregate model suggested in [ss-77] has a good degree of

abstraction. there are tno kinds of abstraction considered:

- aggregation by wtrich a relationship betroeen objects is regarded as

a higher level object

- generalization wtrich allows a set of similar objects to be regarded

as a generic object.

A11 objects, nanely: individual, aggregate and generic, are then treated

uniformly.

A semantic data nrodel is presented in tHM-zgl with a degree of
sinilarity to the entity-relationship model of [ch-761. A positive point

in this model is its provision for multipre ways of viewing the sane

information.

there is a trend in current database r,rprk towards a more constructive

use of first order predicate logic for both data description tKo-791 and

construction of guery languages fKo-gl , pi-7gJ. see t@l-7g , qqN-gl]

for ccmprehensive discussions.
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Chapter III

FORMAL SPECIFICATIOI{ OF VAROA

rn this chapter rre define our proposed language in a formal manner.

(rn fact, rre define not onry one guery language but a wtrole famiry of
languages wtrich essentially have the same structure. rn this thesis,
hoqrcver, hre consider only one of then, that is Varga.)

Like other formal languages, the basic conSronents of our language

are "symbo1s"; with symbols we construct symbolic expressions. A u!o1
is a sequence of characters. The characters are contained in an *g!ub.t.
The set of symbols is called the 'vocabulary' of the ranguage and is
divided into four divisions: "t14:e symbols" , ,,variable s1mbols,, ,

"function slimbors" and "operation symbo1s,,. we assume that the form
of each symbol determines to wtrich division it berongs.
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For Varga, ke consider an al-phabet consisting of:

- Roman letters; upper case and l-ower case

-numeralsO-9

- special characters; those available on an ordinary terminal, such

as + | ( < i : ] ...

On this alphabet, r^ie define four groups of slzmbols:

- type symbols

These are strirrgs of lower case Rcrnan letters possibly

follored by a numeral. A type symbol, however, cannot

begin with the string "is" or end with the string "of".

- function slzmbols

These are either:

non-nullary function symbols

ltrese are strings of loroercase Rsnan letters and

possibly "-", wttich either

- start with the string rrisrr or

- end with the strirg rrof"

nullary function slmbols

Ttrese are either:

- strings of Rcman letters @inning with the

string "Therr and possibly containing "-",
(w'e call these rreserved r.rordst) or

- any string enclosed in guotes (eg, "aB2K") or

- strings of Rsnan letters and nurnerals possibly

containing "_" wtrich are neither type s1mbols,
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function symbols nor reserved words or

- a string ccmposed only out of the numerals O-9.

- operation syrnbols

These are either:

infix operators; They are:

+ * / isin LT LE GT GE is is-not

is-subset-of is-true-subset-of union intersection

without and or implies.

prefix operators; Ttrey are:

Union Intersection Swn Pro<1 No-of Min Max

Average not.

variable binding operator symbols; Ttrey are:

forall exists {} tl

- variable slmbols

These are non-empty strings of uprpercase Rcman letters

possibly followed by any nurnber of nuunerals.

hlhen speaking meta-linguistically , rve wilJ. use Greek letters to

reason about the lanquaqe.
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A. Svmbols and Svmbolic Expressions

Definition: A simple tlpe expression (ste) is a string of characters

frqn our alphabet and the class of ste's is inductively

defined as follovrs:

- tlpe symbols are sters

- if %, !r...and Gnr for scme n, are sters

then %UoI , (%*q.x....xcn) , r(5)
and tf(%) are ste's.

D

Remark:

Use of parentheses in tSxa) is necessary, because, in general,

( (NrB) xC) is different frcm (A:r (BxC) ) .

Definition: A function type expression (fte) of arity n is a string of

characters frcm our alphabet with the following form

%t t , ..... r Gn-l ----> P

where \6.€n o, is a ste and p is a ste.

D

Definition: A signature is a function which assigns a function type

expression to each non-nul1ary function symbol, and a

tlpe symbol to each variable symbol.

D
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Remark:

Every signature must include the types 'bool' and 'int'.

Definition: let > be a signature.

Lt g be a function symbol in the dcrnain of :.
The arity of g in : is the arity of 1(g) . (That is

the unigue n such tnat y(g) is a fte of the form

%, 01 , ....., Gn_l ----> p where %, 1 ,....
or.r_, and p are ste's.)

D

Definition: A (many sorted) algebra is a function r+trich assigns a set

to each type synbol and a function to each function symbol.

E

Definition: Let A be an algebra.

I€t o be a simple tlpe expression.

The set of al1 objects of type o, denoted by lAlo is

defined as follorys:

- if o is a type symbol, then lelo is the set of all
objects of type o in the algebra A, that is, A(o) .

- if o is 5ua then lAlo=lAl%u,o,o].

- if 9 is (oox1x..,xon) then

lal o= | al 
Ox. 

. . . .X, ol on.

- if o is p(B) rhen lAlc=p(lAlB) .
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- if o is x(F) rhen lalo=n( lelp) ,

wLrere f,(X) denotes multi-sets over the set X.

Definition: Let : be a signature.

Let A be an algebra.

A is a;-algebra iff for each function s1mbol g in the domain

of A, if g(g) is $r !r.....ron_1--__> B then

A(g) returns an element of lAlp wtren given an elernent

of lAl^ r dD element of lAl_ , .... €trrd an element
bGt

of lAlc -.n-l.
o

Example:

consider a signature ; and a function symbol 9 such that,(g) is
a, 9 ----) Y.

rf A is a ;-algebra rt'hich assigns r (the set of integers) to o and

F, R (the set of reals) toY, then given two integer nunbers as the

argtrnents, the function A(g) will return a real nunber.

Definition: An operation tlpe expression (ote) of arity n is a string of
characters on our alphabet with the form

%rn r...... rcn-1 ---->B

where \4i.gn o, is a ste or a fte, and p is a ste.

D

E
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Remark:

We assLme that every operation symbol and every variable binding

operator has an ote associated with it. lltre arity of the operation

symbol is the arity of the ote associated with it.

Definition: Let: be a signature.

rfre set of all rrcll-t1ped expressions on gr denoted by E:

is

L) Eo for every tlpe o

n'here Eo is the set of all rraell-typed expressions of

'T"*,:::"':;:::":il":':: ; ;l'-"'
- if g is a function slmbol such that 5(g) is

%r of r...., on-l ----> q and 
"Oat%,

e.r€E^ r..... and, -r "n-reEon_, 
then

g(e'ret ,..... r€n-l) eEo.

- if eO and e, are in Eo then

eo is e]. €Euoot

eO is-not e, €EUoot

- if eO and e, are in Erna then

eo GT et €Euoot

eo LT et €Euoot

eo GE et €Euoot

eo LE et €Euoot

to + "1 €Eint
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uo - tr €Eint

"o 
* 

"1 €Eint

eo / e, €Eint

- if eo€Eo , "leEt1oy 
*d 

"2€Ep(o) 
then

eO isin e, €%*f
e, is-subset-of e, €%*f
e, is-true-subsetrcf e, e%oof

e]. union e, €8"(o)

e, intersection e, €t"(o)

e, without e, €tp(o)

- if eoeEP(P(c), then

Union eO €tp(o)

fntersection eO tt"(o)

- if eO and e, are in %*f , and X is a variable symbol

then

eo and et e%*r
eo or el €Eboot

not e1 €Euoot

exists X:eO

forall X:eO

e%o"r

e%*r

- if eO€Eo r er€E*o, and X is a variable s1mbol then

{eo}x

{eoler}x

tt"(o)
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leolx €Er(o)

leolerlx €tr(o)

- if eeEt(o) then

No-of e €Eint

- if €Ep(i't) rhen

Max e €Eint

Min e eE.lnc

- if eeEf,(int) then

Sun e €Eint

Prod e €Eint

Average e €Eint

- if .Oe\ , "I€tt_ and o is of rhe form

o6un then

"o €Eo

"1 €Eo

- if eoeE% , "ratt '..... and 
"nat%

then

("o'tl7"' r€n) e'ntX*1x...xon)

- if e€Eo then

(e) €Eo

trt
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Definition: Bound occurrences of a variable X in an expression is defined

as follovrs:

- if the expression is of the form

exists X:e

or

forall X:e

where e is an expression

then any occurrence of X in e is a bound occurrence.

- if the expression is of either of the forms

{e}x [e] x

vfiere e is an expression

then any occurrence of X in e is a bound occurrence.

- if the expression is of either of the forms

{eo I e, }x [eol erl x

where eO and el are expressions

then any occurrence of X in eO and any occurrence of X

in e, is a bound occurrence.

- if the expression e is of the form

p(eOret r....ren-1 )

where p is either a function slmbol or an operation

symbol and W€n e, is an expression

then bound occurrenees of X in e are those corresponding

to bound occurrences of X in e, for some i€n.

- if the expression e is of the form

(eOterr.... rgn-l )

vfiere \7tgn e, is an expression

then bound occurrences of X in e are those corresponding

to bound occurrences of X in e, for sqne i€n.
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Remark:

In the above definition, although we should have considered each operation

sytnbol individually, vrc have used p to stand for all of thsn (as well as

the function slmbols) . this is nrerely to avoid repeating the sane thing

over and over.

Definition: A11 occurrences of a variable in an expression q*rich are not

bound are said to be free occurrences.

D

Definition: A closed expression is an expression in wtrich there are no

free occurrences of any variables.

D

Remark:

We put a restriction on expressions that in any expression any variable

can be bound only once.

Definition: A query is a closed expression in wtrich any variable is bound

only once.

I
Definition: An envirorunent is a function wtrich assigns (tenrporary) values

(of the appropriate tlpe) to variables.

E

Definition: A database is an ordered pair (: , A ) , where ; is a

signature and A is a la1gebra.

I
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B. Semantics of the tanguage

rhe nreaning of the expressions of our language is specified by

inductively defining meanings for parts and subparts of the expressions.
I{e first give semantics to function slmbols and operation slmbors, and

then define meaning for the e:<pressions.

Sernantics of the function syrnbols

the algebra associates a function with every function symbol existing
in its signature. the associated functions are in their extended form. t{e
define the naturar extension for functions as forlows:

Definition: Let f be a function fron DOxDlx......xDn_l to Dn.

the natural extension of f, denoted by f+, is a function frcm

DouielxDru{e}x.....*Dn_lu{e} ro DnU{O} such rhar

f+{xorxrr...rXn-l, = 

{

f (xOrxrr... rxn_l) if
(xOrxr, . . . ,Xn_l) eDqn (f )

e otherwise.

n
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Semantics of the operation slmbols

fn the followirg rde will use

a and b as data objects

A and B as sets of objects

W as a set of sets of objects

X as a variable.

rhe ssnantics of each operation symbol is given individually.

ARTTTIITETIC OPERATORS

n+tl

+ associates with the operator
t

* : int Uigl x int U{e} --> inr U{O}

where

(a*b if neither a nor b is I
w)

a*b = \
I( e otherwise

( + is the ordinary arittrnetic operator plus.)

Ttre operations corresponding to ''*' and fr-r' are multiplication and

subtraction respectively, and are similar to the operation corresSnndirg

to ,r+rr.

,t 
/tl

the operator associated with ,z is
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/ : int Uie] x int U{Oi --> inr UiO}

where

a/b if neither a nor b is e, and b is not O
v

a/b =

e otherwise

SET-ITIEORETICAL OPERATORS

"isin"

isin correstrnnds to

d : ql{e} x ou{e} --> bool u{s}

where

a€A if neither a nor A is e

e otherwise

"is-subset-of"

Ihe corresponding operator is

d : p(o) U{ei x p(c) Uie} __> bool U{e}

where

A C B if neither A nor B is e
vACB =

g otherwise

"is-true-subsetrcf,', t, is similar to,,is-suicset-of,,.
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ttuniontt

This slmbol is associated with
v
U : p(c;u{e} x p(o)u{e} --> p(o)uie}

vrhere

( A U B if neither A nor B is e
a[re = /I

I\ g otherwise

"intersection"rfi, unO "without" (i.e. set difference) are similar to
union.

tttJniontt

Ihe operator corresponding to ttrrion is

l) : P(p(a))u{e} --> p(o)uis}

where

" fntersection"

this symbol corresponds to

O: P(p(q))u{e} --> p(o)u{e}

where

f 
{xlxeV and y€Irt} if W is not e

uw = (
I
I e otherwise

/ {x ffioo xey} if w is nor e
Iow = 

1

I e otherwise
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CO{PARTSON OPERAIORS

'GT'
v
) : int U{e} x int U{e} --> bool U{si

rrhere

( ">b 
if neither a nor b is I

uiu ={
I
( e otherwise

Ihe operators i , i and i 
"ott""pond 

to GE, LT and LE resSnctively.

Ttreir extensions can be modelled on that of GT .

u ist

the corresponding operator is
Y

= : q U{e} x c U{e} --> bool U{ei

where

f "=b 
if neither a nor b is e

uru =(
I

t e otherwise

The operator correstrnnding to "is-not" is the negation of that of "is".

IOGICAL CONNECTTVES

'and"

Ihis slrnbol is associated with

i : bool Uie] x boor U{e} --> bool U{e}

where
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f 
true if a and b are both true

u i U = ( false if at least one of a and b is false
I

( e otherwise

tor u

The associated operator is

V : bool U{e} x bool Uie} --> bool U{e}

where

f true if at least one of a and b is true
I

a ri U =( fatse if a and b are both false
I

l..e orherwise

(rt if a is nor o
I

{a =(
I
I I otherwise

The operator associated with "impries" is j> , where aj>b is eguivalent
to {aiu.

ttnottt

{ : bool U{e} --> bool U{e}

where

MISCELLANEOUS OPERATORS

ttSLmtt

The corresponding operator i" i ("r,ich operates on murti-sets):

f : t|(int)u{e} --> int u{o}

where
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(:i* i if D is not o
vl
;D = 

\
( e otherwise

"Prod' is the name for the operator ccrnputing the product of the

elements of a multi-set. "Average" is associated with the operation for

finding the average value of the elements of a multi-set. "No-of" stands

for the "elgnent counter". "Max" and "Min" correspond to the operations

for finding highest value and lorpest value within the elements of a set

(of integers) respectively. A11 these operators behave in a sirnilar way

to the operator f.

Semantics of the expressions

Let>beasignature.

LetAbeay-algebra.

Let e be an Fenvirorrnent.

I€t E be a closed expression on y.

Thre value of E in algebra A and environrnent € is inductively defined as

follovs:

- if E is a variabre synbor then the value of E is the value

assigned to it by the environment e.

- if E is an n-ary function symbor g with n argurnents tort1r...
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,tn_l (i.e. g(tortrr....tn_1). ) then the value of E is

the result of applying the function wtrich A associates with g

to the values of t.rtr r.... and tn_, in algebra A and the

enviromnent g.

- if E is an n-ary operation slmbol pwith n argunents eorelr.....,
en_l (i.e., p(e'rerr...r€n_1). ) then the value of E is the

result of applying the operation r,vtrich is associated with p to the

values of e'rerr... dDd en_l in algebra A and envirorrnent g.

- if E is of the form exist X:e r,'ftere X is a variable symbol and

e is an expression ( of type boolean) then the value of E is :

- true iff e is true in sorne envirorrnent s' differing frcm g

at most in the value assigned to X

- false iff e is false in E and in all envirorrnents S, differing

frcm g at rrost in the value assigned to X

- g otherwise.

- if E is of the form forall X:e qitrere X is a variable symbol anrJ

e is an e4pression (of type boolean) then the value of E is :

- true iff e is true in g and in alr envirorunents g' differing
frcrn S at nrost in the value assigned to X

- false iff e is false in scme envirorrnent gr differing frcrn

€ at most in the value assigned to X

- e otherwise.
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- if E is of the form { e }X qftere X is a variable svmbot and e

is an expression then the value of E is

- e if e is O in scme envirorrnent e, differing frcm g at

most in the value assigned to X

- the set containing the values of e in

al1 envirorrnents g' differing frcm € at nost in the

value assigned to X otherwise.

- if E is of the form { "O 
I e, }X n'trere eO and e,

are expressions and X is a variable slmbor then the varue of E is

- e if eO is g in scme envirorrnent €' differing fron g

at most in the varue assigned to X in wtrich the value of

e1 is true.
I

- the set containirq the values of eO in

all envirorrnents E' differing frcm g at nrost in the value

assigned to X in wtrich the value of e1 is true otherwise.

- if E is of the form I e ]X where X is a variable symbol and e is
an expression then the value of E is

- e if e is o in sqne enviromnent g' differing frcm Q at

most in the value assigned to X

- the multi-set containing the values of e in

all envirorrnents g' differing frcrn e at nrost in the

value assigned to X otherwise.
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9. A simple database

!{e strdy in this section a database which models part of a

warehouse (storage) systen. the itsns stored in the warehouse are parts.

ltre warehouse is divided into locations in nrhich itsns can be stored.

Each kind of part may occupy several locations, but each location may

contain only one kind of itsn. the catrncity of every location is limited.

Sonre parts may be able to substitute others.

Along with the above information, h€ are interested to store in our

database

- name, rrcight, substitute parts, Iocations and the guantity stored

in each location for every part

- the capa.city of every location.

Solution

Ihe tlpes in our database are: parts, locations and strings. Recall

that the tlpes integer and boolean are present in all databases. t€

choose the tlpe symbols 'parts', 'locations', 'strings', 'int' and

'bool' for our t1pes. F\rrther, rrc designate function slnnbols to stand

for the functions giving the relationships betrrcen the data. Here is

a list of the function slrnbols together with their function tlpe

expressions:
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- if E is of the form I eO I e, lX wfrere eO and e,

are expressions and X is a variable symbor then the varue of E is

- e if eO is O in scme environment E' differing frcm g

at most in the value assigned to X in rftich the value of

e, is true.

- the multi-set containing the values of eO in

all environments g' differing frcm g at nost in the value

assigned to X in which the value of e, is true otherwise.
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place<f parts

iternrcf locations

is-containirg locations , parts ----) bool

nanercf parts

substitutesrcf parts

weight-of parts ----) int

qty-of parts , locations ----) int

catrncity-of locations ----) int.

Figure 1 illustrates these relationships.

l{e will also sutrp1y an unlimited number of variable symbols of each

type. Although we have a good degree of freedqn in the choice of variable

symbols, we choose, for the benefit of the user, slmbols which reveal the

type. Here are suiLable variable slmbols of type parts:

P, P0, PI, P2,.. and PART, pARf0, pARfl, pARf2,

Similarly , for the tlpe locations r{re use the following variable syrnbols:

L, Lg, LI, L2,.. , r_K,, lrffg, Iocl, I_ff2, and

IOCATTCN, LOCATIONo, LmATIONI, LOCATION2,.

The algebra associates the set containirg all data of a type with the

appropriate type symbol. Assurme in the followirrg that the set correspondinc

to the type locations is:

{t_1, I 2, 1 3, 2 I, 2_2, 2_3, 2_4, 3J}
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lrtre denote this set by X (i.e. the set

figure 2 for the other sets.

Each function s1mbol corresSnnds to a function. For instance, the

function associated with the function symbol capacityrcf is f, below:

++tl : \' ----> A'

A complete list of functions which correspond to our function slzmbols is

given in figure 3.

lb now formulate sorne gueries and discuss their evaluation.

1 - l,lhat is stored in location 1OO A ?

itsnrcf (1OO A)

Ttris guery does not pass the type checker of the systern, because the

argtrnent given to 'itern-of is not of the tpe 'locations'. (type error)

2 - What is the nane of the part stored in the location 2 1 ?

nanercf ( itqnrcf (2 1))

rn the evaluation of this expression, the result returned by the

function corresponding to 'itsnrcf is given to the function associated

with 'nane-of '. Ihe ans$Jer to the guery is "nut".
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3 - All parts which are heavier than 2@ qrams.

{ P I weightrcf (P) cT 2oo }p

The variable binding operator {}, while forcing variable p to rarge

over the elernents of the set associated with 'parts', constructs a

set consisting of those parts vfiich gualify the condition. The answer

of this guery is {it a , z L3}.

4 - Locations of those parts which can substitute for mk 32Cxj..

I places-of (PART) | pam isin substitutesrcf (mk 32OO) ]pARr

substitutesrcf returns a set of parts. Each one of these parts may have

several Locations. Ihe answer to this guery is therefore a set of sets,

that is : { il_1 ,2_I}, {3_1} }

5 - How many locations are occupied by the substitutes of the part

mk_32@?

(i.e. count the locations appearing in the result of guery 4.)

Norcf ( Union { places-of (p) | p isin substitutesrcf (mk 32OO)}n)

Given a set of sets, 'union' ccmputes the union of ar1

The operator 'Norcf ' counts the nunber of elernents of
result.

included sets.

the ccmputed
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6 - Wtrat is the total weiqht in those locations wtrich contain the

item pt 12 ?

I gty-of (pt 12,L) * weightrcf (pt_12) | L is-containing pt_12 ]L

Note that this simple guery cannot be formulated in languages based on

the relational calcuLus in a straightfcrward manner. These languages,

in general, reguire a host language (e.9. CCOL) to provide the tools

for such queries.

7 - A11 parts which have more than one location with a capacity more than

2@.

i PARI I ttorcf ( { IOCATIO}J | (IOCATION is-containirg pARI) and

(capacity-of (r.ocATrolr) GT 2oo) ][ocATrcD{ ) cT 1 }panr

This ccrnplex guery can be viewed to be ccmtrnsed of two nested expressions.

{ parr I no-of ( r" ) cT 1 }PART

where L is

I IOCATIOD{ | (InCATICt'i is-containirg PART) and

(capacityrcf (IOCATICI\I) cT 2m) ]IOCATIOI.I

Note that L cannot be evaluated as a guery because it has the free

variable PARI.
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8 - !'lhat is the level of stock on part z_r3 ? (i.e. inventory on z 13)

Sun I gty (z_I3,1-NATIOII) | LOCATIoNT is-containirg z 13 ] L,OCATTOIT

The answer 30 is returned.

9 - A11 parts which occu[{f all locations with capacities more than 50.

{ P I forall L:(capacity-of(L) gI 50) implies (L is-containing p))ip

The anpty set is the ansrryrer to this guery.
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Fiqure 2

the type symbols and their associated sets in

the warehouse database

Type svmbol Associated set

parts p= { pt_12, it_4, mk_32OO, z 13, pt_lO,

z1@]

locations y= { 1_1, I_2, 1_3, Z_I, 2_2, 2_3, 2 4

3-1 ' 3-2 |

strings s={ "nuttt,t'bolttt,ttwasher,t r ilpipert}

int

bool g=itruerfalse]

(The types 'int' and 'bool' are present in any database.)
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Fiqure 3

The warehouse database, functions and their values

placesrcf

fo, p* --> p(>)+

{ <pt_12 , {1_1 ,2_I}> , <it_4 , {2_3}> , <mk_32@ , {r_2}> ,

Q_I3 , {1_3,2*41) , <pt_lo , {3J}> , (z_1@ , {2_21> }

item-of

f., : t* --, n*l_

{ <U, pt_12), (I_2, mk_32@>, (t_3 r 7._13.>, ("_1, pt 12) |
(2_2, z_l@) , (2_3, it_4> , (2_4, z_I3), <3 l,ptIO) ]

rggleinig.
f"z t* * p* --> B+z

This function has the sane information as the two above.

namercf

f3, p* --> "*
{ <pt_12 , "nut") , <it_4 , "bolL"> , (mk_32@ , ,,nut,,) 

|

Q_I3 , "washer"> , (pt_lO , "nut") , (z J.3 , ',pipe") ]

substitutes-of

f4, p* --> p(p) +

{ <pt_12, Q >, <it_4, Q ), (mk_32OO, {pt_12, pt_1o}>,
<z_I3, fl ), (pt_lO, {pt_12}), (z_IO, g > }
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Figure 3 (continued)

weightrcf

f5, p* --> z+

{ <pt_12 r 1@), <it_4,5OO>, (mk_32@,15O) , (2 13,25O> r

<pt_lO , lOO) , (z_1@ , 2C) \

slyg
-+++rSrp xx -->z'

{ <<pt_12,1_l),10), <(pt12 ,?,_1) r 15), ((it4 ,2_3) r 50) r

<<mk_32OO , I_2) , 40) , 1<2,_13 , il) , 2e) , <<z_I3 , 2 4) , lO)

14pt-1O, 3 1>, 60), ((z_1oo, Z_2), 30> ]

calncitv-of

f7r t* --> t+

i <1_1, lo) , (I_2 r 60), (1_3 ,2c/),12_L r 50) , (2_2,4c)),
(2_3, 50), (2_4, 50), (3_1, 70), (3_2, 5> l
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Qrapter fV

INU.TTN/ELY DEFINED SHTS

A. fntroduction

So far, rte have dernonstrated that our proposed language is a powerful

tool for expressing a wide range of gueries. Hcr+ever, there are yet other
t14pes of gueries that cannot be expressed in Varga using the facilities
presented so far. I€t us str:dy the university database again. Consider the
function 'prerequisitesrcf '. rtris function, wtren given a course, returns
a (possibly snpty) set of courses wtrich are the funnediate prereguisites

of the given course. Sqnetimes the guery is not as simple as that. 61.re may

wish, for exanple, to find out a1l the courses that a student must have

passed before taking a particular course, say 'Mvanced Digital Systems'.

this guery asks for the prerequisites of Advanced Digital systens, the
prereguisites of each one of the conputed prereguisites, and so on for
any prereguisite ccrnputed (transitive closure). similarly, within a

cornpany database, it is often necessary to determine all empl0yees who

directly or indirectry report to a certain manager. rhe ,,least time_
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conswning ccrnbination of flights connecting two cities" is a usual query

in airlirre reservation systsns. There are many other examples of queries

which cannot be formulaLed by the presenL notation of varqa.

Ore way of sol.ving the problern is to in::1ude several por+erful operators

in the larrguage by vhi.ch queri*s such as above can be expressed. For instance,

an operator may be introduced *ttich cornputes the transitive cl-osure of any

set-valued function" Such an operator, in the simplest form, takes a set-
valued f,unction and a value (i.e. 1t(f,r) where f is a set-valued function
and r is a value frcrn the dcrnain of f) anci returns the set of all elernents

contained in the transitive closure. rf f is of the form

A --> P(A)

then the operator TC has the form

using the TC operator, \de can express the guery "number of the

courses uihich must be taken before Laking Mvanced Digital systerns,, as

folLows:

tlorcf ( rc( prereguisiLes-of , Mvanced Digital Systons))

Although operators of this t14:e are powerful, they do not give
much versatility to the language. I,Je include, therefore, a more versatile
mechanisn insLead: we arlow the user to define sets inductiverv.
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$r inductively defined sets rre mean sets wfrich are defined in terms of

thsnselvesr e.9. S=E(S) wtrere E is scme expression over the set S. This is

a restricted form of recursion, because @o be recursively

defined. In ordinary functional progranning languages, recursive definition

of functions is usually permitted. A rrcll known exanple is the recursive

definition of the integer function for factorial:

fact(n) := if n=O then O

else nrfact(n-I) fi

Itrovrever' as our primary aim is to construct sets, roe restrict the recursive

definitions to sets. the phrase "inductive definition" ernphasizes this
restriction.

For exanple, the transitive closure of the set-valued function f at b

is expressed as

rc(f,b) = f(b) u ( O i f(x) | x€ rC(f,b) ])

or, by using a 'v/ttere' clause:

rc(f,b) = $

where

s=f(b)U(U{f(x) lxes}y

the value of such a definition is simply the least set satisfying the

eguation, that is, the smallest set containing all possible solutions.
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the least sofution is not always obtainable for definitions of the form

S=E(S). For example, there are no least solutions for the definitions:

S = T-S (Assuned T is not the ernpty set.)

K=ixlxFXlxeX

In this chapter r,"e strdy the inductive definitions of sets. A detailed

stttdy of this area touches many other fields, and it is lengthy. tse shall
introduce only terms r.rfiich are relevant in this thesis.
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Related l{ork

Previous attenpts to extend the non-procedural guery larguages

to permit formuration of transitive closure are, again, based on the

relational atrproach.

Qery By D<anple (an informal system specifically designed for use

with VDU's, for expressing gueries by means of exanples) took the first
step by allowing the user to (indirectly) ask for the transitive closure

of binary relations representing trees lzr-7s|. For instance, consider

a binary relation on employees and managers; the managers themselves

are employees and, in turn, have managers. rn euery By D<ample, the user

is enabled to specify a statement for the canputation of : enployees

reporting to a certain manager at Nth leve1 , or indeed arl ernployees

reporting to a particular manager. rhe formulation, hor+ever, is not

direct. As there is no notion of least fixed point in Query By Example,

the user has to specify the ntrmber of iterations reguired. rhis ntrmber

must be large enough to succeed in the conputation of the transitive
closure.

A least fixed point operator has been imposed upon rerational

algebra in [AU-79]. This rtork defines the 'contrnsition' operator for
two binary rerations. (rhis operator has many simirarities to .egui_

join'. 9ile argue against the definitions in this paper, because it

B.
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contains the mistakes rejected in section D of chapter f.) The least

fixed point operator is embedded in relational algebra in a seemingly

ad-hoc manner. Transitive closure of a relation Ro is then proven

to be the least fixed point of the eguation

R = R"% U %
where R, % is the ccrnposition of R and fo.

rt further proves that gueries using the least fixed point

operation cannot be expressed in a language which has the relational

algebra operators on1y.
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C. Ihe WHERE tlotation

'r*'here' is ccnrnon in ordinary mathematical notation. We list a few

examples:

1) x+a

where x=bf2

'))2) x'+yo

where

x=a*b

Y=a-b

3) f (a) +f (brl)

where f1x;=12a1

4) {f(x) lxe(orx€y}
where

y={O,1}

Y={ i2 | i€x }

A phrase of the form

rt httere

definition (s) 'l

(that is 'rt'here' folloqied by the definitions) is called a'utrere-clause-,
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and an expression of the form "expression where-clause" is callr:d a

'where-expression' . (Terms are frcrn ILa-66] .)

Although we introduce the where-notation for formulating gueries which

reguire induction, r+e note that its use is not restricted to inductive

definitions. For example, the guery "a11 parts which have more than one

location with a capacity of more than 2OO" of the warehouse database has

been formulated as:

{plNo-of ({t l(l is-containing P) and (capacity-of (L) GT 2OO) ir,) Cr f }p

The alternative formulation is

{ p I uo-of (s) Gr I }P

wtrere

S={Ll (L is-containing P) and (capacity-of (L) G:t 2OO) }L .

In addition to being elegant, this expression is easier to understand.
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D. Inductive Oefinitions

For the non-recursive part of the language, we only needed variables

which stand for the data objects of a certain ty?e. Variables standing for

sets of data objects are now reguired for inductive definitions of sets.

Recall that each variable symbol has a specific tpe. 'set variable

symbols' are not exceptions: the type of a variable symbol standing for
the set of objects of tlpe o is p(q).

Definition: Let t be a signature.

A 'where-expression' on, has the form:

e where

vo-o

vr*r

Vn-l+n-l

wtren VOr Vlr.... and Vn_l are variables, and €r egr €1r

.... and en_l are expressions on 5r such that

i) V i,j€n ilj -> ui#\
ii) \zl€n the type of e, is the sane as the type of Vr.

E
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Definition: Given a signature g and a ;-algebra A, the value of a

where-expression E of the form:

e where

vo*o

vl=1

vn-l+n-1

in an envirorunent € is the value of e in an envirorment g'

such that

i) e' is the sane as g except for the varues assigned to Vo,

Vl'... and Vn-1,,

ii) the eguations are all true in €',
i.e. \z5.€n g'Ni)= Fg,"i

t Fg" is the value of e in envirorrnent g.)

iii) €' is the least solution,

i.e. if gu satisfies i and ii then €'(Vi)Cg. (Vi)

for all i€n.

n

It is not difficult to determine the conditions under drich the least

solution can be obtained: r,ue will use the least f ixpoint theorem for ccmplete

lattices of [Ta-55] to reason about our expressions. Here is a surrrunary of
the relevant parts of this rrcrk :

A lattice is a systen r;(Arc) where A is a non-ampty set and C is a

binary relation. The relation C should establish a partial ordering on the
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set A. (A set P is partially ordered by the binary relation C if for any

x, y and z Ln P the follovring properties hold:

i) xgx (reflexivity)

ii) x$r and yCx implies x=y (anti-syrmnetric)

iii) xgr and ytz implies xCz (transitivity) .)

It is assuned that for any tvlo elements arb€A there is a leasr upper

bound (that is aub) and a greatest lqrrer bound (that is aflb).

The rattice f;(Arc) is ccnrplete if every subset B of A has a least

u[4)er boundL) B and a greatest lower boundOB. rn particular, a

ccnplete lattice has troo unigue elsnents L) A and O A.

Given a ccnrplete rattice (Arc), a function f frcm a subset B of A to
another subset c of A is cal1ed monotonic if for any tr.ro elements xrFB

xgr implies f (x)Cf (y).

A fixpoint of a function f is, obviously, an element x of the dcmain

of f such that f(x)=x.

Tarski proves that given a conplete lattice (Arc) and a monotonic

function f frqn A to A, the set of fixpoints of f is not e!,npty, further,
there exists a least fixpoint for such a function (Theorem I: lattice_
theoretical fixpoint theorem of [Ta-55] ).

we can easily demonstrate that Tarskirs theorem is ap,plicable to the
expression s=f(b)u( O {f(x) lxes}) specifying the transitive ctosure
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of the set-valued function f :

The donain of the expression (i.e. po*rerset of a set) forms a

ccmplete lattice: the natural subset relation is the ordering, the

operations union and intersection are applicable and we have the ernpty

set as the least elernent.

secondly, we demonstrate monotonicity for the function F, of the

form S=E(S) rrrtrere E(S) is f (b)U( Uf (x) lx€S]).

Having the partial ordering <F(o) ,c) rre consider the chain

so g sl c s2 q......c sp

such that

Q=1,k si eP(c)

Given

so4

we have

tr

Sr=f (b)U(Uf (x) lx€Sol) = f (b)

sr=f (b)u( O[f (x) lx€sr]) = f (b)u( (Jtf (x) lxef (b) ])

=Stu( (-If (x) lxef (b) ])

sr=f (b)u( U[f (x) lx€sr])

=f (b)u( (_){f (x) lxe(f (b)u( L)[f (y) ly€f (a) ])])
=f (b)u( (-If (x) lx€f (b) ])u( otf (x) lxe( o[f (y) l]€f (b) ])])

. 
=tru( uf (x) lxe( L)[f (y) lyef (b) l) ])

Si*l=SiU( Uf (xO) lxO€( Uf (xr) lxr€( L[......])]...) ])
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As r,ve are dealing with inductive definitions of sets only, proof

of monotonicity is relatively simple. Apart frcrn the set-difference

operator' other set theoretical operators such as union and intersection

are monotonic.

Given a variable S, based on the definition of formal monotonicity

fron [Pa-76 , Pa-82], the collection of expressions wtrich are rnonotonic

in S is inductively defined as follords:

any expression not involving S is monotonic and anti-monotonic in S.

S is monotonic in S.

if the expression e is monotonic in s then any expression

involving only e and any operation symbor other than "not',

and "without" is monotonic in S.

if the expression e is anti-rnonotonic in S then not e is monotonic

in S.

if the expression eo is monotonic in s and the expression e, is
anti-monotonic in s then eo without e, is monotonic in s.

(g is anti-monotonic iff Va ys-ffi-;*1ay >g(B) . )

rn othenrords, given any expression of the form s=E(s) , E is
monotonic if every occurrence of S in E is in an even nunber of distinct
negated subparts of E.

Transitive closure of sinrple functions

The transitive closure of a simple function f: o --) o may be specified
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as the least fixpoinL of the eguation:

S={f (b) }u{r(x) lx€s}

when b is a value in the dcrnain of f.

This expression has the general form of S=E(S), where the dcmain of
E is P(o1. since the only occurrence of s in E is not in a negated

subpart of E, r*e conclude that E is rnonotonic. (This fact can be easily
proved by a sirnple induction in the sane way as rde did before.) Therefore,
there is a least set satisfying the above definition.
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E. Evaluation in the presence of O

e does not play any major role in the evaluation of an inductive

definition of the transitive closure of set-valued functions. Ihe reason

lies in the way in wtrich rre have extended our set-valued functions. A set-
valued function f maps a set A to the pob€rset of a set B. The extension of
f is defined to be

f+:A+-->p(B)+ .

f+, when

is 9) or

P(B) + is

given a va1ue, either returns the value

returns a (possibly snpty) subset of B.

different frqn p(e+) .)

e (iff the given value

(t'Iote that, in general,

the value of the expression

s=f (b)u( (_If (x) lx€sl)

is, therefore, e iff b is e.

Similarly,

yields g when b

a correslDnding

for the transitive crosure of simpre functions, the expression

5=if (b) ]u{r(x) lxesi

is e. the conputation will terminate wtren f does not have

value for the last cunputed value. For exarnple, if f is
p4e I00



{(x5rx6), (x7rx5), (xgrx7), (xgrx7), (xlorxg), (x11rx1o>}

then the transitive closure of f frcm xll, I€(frxll), is

ixlOrxSrxT ,x5 rx6]t .

l.Iote that x6 is not in the dcmain of f.
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Examples

We formulate tvlo gueries for the university database discussed in

chapter ff. Both of thsn reguire ccrnputation of the transitive closure

of the set-valued function'pre-reguisite-of'.

- lecturers of all those courses wtrich must be taken before takinq

Adv-dig-sys.

{ (counsn , lecturer-of (couR^sE) | couRsB isin s }cunss

where

S = pre-reguisites-of (Advdig-sys) union

(union{ pre-reguisires-of(C) | c isin S ic )

- A11 lecturers who teach a course and one of its reguirements.

{ f I exists Cl : (I is lecturer-of(C1) and

exists C2 z(C2 isin S and I is 1ecturer-of(C2)) ) ]r
where

S = pre-reguisites-of(C1) union

(Union {pre-reguisites-of(C3) | Ca isin S }C3)
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Chapter V

NTCMPIHTE INFCIFMATICI$

In this chapter rre study the guestion "what are the consequences

of arlowing a database to contain inccnprete data (i.e. the database

has only partial information on sanre objects) ?,.

tlonavailability of part of the data is a probran common to rpst

database systems. rn a university database, for instance , rack of

information about the address of a student should not prevent the

systen frcrn containirg the (available) information on that str:dent.

Hotever, a&nitting such a strdent into the database irnplies that 'no

value' (or a value representirg the missing value) be stored in place

of the address of that student. lrle refer to these missing values as

"unknowrr varues", or "unknown" for short. (rhe term "nu11" has been

used in the literature for any 'special value' , i.e. varues other

than the ordinary data objects.)

!{hen unknowns are permitted in databases, a careful extension of

the functions and the operations of the language is required to ensure

that best results (i.e. anskers lfiich are consistent with reality and
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are closest to the true ansr,ver) are obtained.

l4any-valued logic has been widely used for studying and reasoning

about unknovins in databases. It will also be used in this work.

Iherefore, vre first review some many-valued logic systens rr,trich are

rel-evant to our rrork. then, ne strdy the nu1l values that have been

considered in the literature, and specify those values wtrich are of

interest to us.

Orr principles for extensions will be defined in section C.

the language will then be extended to handle inconplete information.

lile will see that the many-valued system devised based on our principles

is different frcrn the existing ones.
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A. Many-Valued lpgic, a survey

ALthough a relatively nevr branch of logic, many-varued logic has

applications in a wide range of fields such as theory of partial recursive

functions, modal logic and the study of sernantical paradoxes. TLre basic

distinction between many-valued logic and the classical two valued logic

is, of course, that the former allows more than two truth values. (The

term "pluri-valued" has been used to include both trap-valued and manv-

valued systens. [Re-69] )

Examples which call for more than the usual two values of truth
and falsity are found wtren dealing with assertions about the future.

Aristotle's discussions on "the occurrence of a battle tcmorrow" are

classic examples of this form. There are nunerous other cases in wlrlch

the values true (=T) and false (=F) are inadeguate. In fact, in the

previous chapters r+e dealt already with a 3-valued system, the third
value being o. A nunber of other systems will be briefly revierrcd

here.

rhe _1-:a1ueg logic of Lq[qsiewicz :

Based on the argunents derived frcm Aristotre, Lukasiewicz simply
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extended the classical two-valued logic, C2, by an'intermediate' truth

value I. Thris three valued system is called L3 [Re-69]. Using L3' he

was able to reason about the matters relating to the future.

He extended the truth tables for the logical operators in the

folloring manner (in fact, irnplication and negation were taken as

primitives and the other operators roere then defined in terms of them):

PrP

T F

I I

F T

P->Q

N0

P&Q PvQ

Lukasiewicz tried to preserve most principles of the C2 system in his L3

systern. The guiding principles of L3 are:

- T, f and F have decreasing values of 'truthfulness'.

- The truth value of the conjunction of two assertions is the falsest,

and the truth value of their disjunction is the truest of the two

No IT F

T

I

F

T I F

T T I

T T T

T I F

T

I

F

T T F

I I t

F F F

T

T

I

f

T T T

T I I

T I F
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components.

- Negation of a statement results in a truth value opposite to the

truth value of the statement.

- The truth values of P->0 and -Prc are not the sane, because the

value true is assigned to f->I . ( This ensures that p-)p remains a

tautology. A tautology is a formura that is always true, regardless

of the values assigned to its ccmponents. we will see that there are

formulae which normally are tautologies but which are not tautologies

in L3.)

By assigning varues o, o.5 and I to F, r and T respectivery, the truth
values for negation, conjunction and disjunction can be swrunarized as:

( tPl denotes the value of p.)

hPl - 1- tPl

tP&Ql = min( [P] , tel)

tr/Ol = max([p] ,[e]).

Bochvar's _l-yalued loqic : 83

Bochvar tch-391 introduced the 3-valued syston "B3". The third
value in 83 is different frcrn that in L3: instead of using the inter-
mediate value, Bochvar used the value "undecidable", U.

u in 83 can be interpreted as any of "paradoxical", "inconsistent" or

"meaningressrr. Truth tables for the connectives in 83 are:
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T F

F T

rr U

P->Q

PvQ P&0

l,ihen the above tables are used, the concept of tautology becones

funpossible, since the occurrence of a propositional variable with the

truth value u, in any expression, implies that the whore expression

takes the value U.

A variant of 83 wtrich has been suggested by l,,toh Shaw-krei tl,lo-541

interprets L3 in the Bochvarian approach. tb protrnsed that the truth
varue F be given to wF, instead of u as sr:ggested by Bochvar. This

measure was taken to preserve more of the tautol0gies of c2.

-rP

P

T F T]

T

F

U

T F rt

T T U

U U U

o
T F U

T

F

U

T F U

F F U

U U U
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Kleene's 3-valued loqic : K3

Kleeners motivation for introducing a further 3-valued systen, K3,

was to give the third value the meaning "undefined" or "undeterminable".

We will use K to represent this value. K3 differs frcm L3 in the truth

table for implication [K1-62]:

P->0
P PTF

T F K

T T T

T K K

P&Q

9rFK
T

F

K

T T T

T F K

T K K

vQP

P P

In Kleene's system p->e is eguivalent to rH& . Conseguently

P-)P is not a tautology, neither is P<-->P. Kleene referred to the above

connectives as "strong" connectives. He then defined another set of truth
tables, wttich were actually the same as those of 83, and designated them

for "rrrcak" connectives.
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Generalisations of 3-valued logics

there are numerous many-valued systsns developed by conbinirg the

3-valued systerns. Ihe simplest generalisation was that of llkasiewicz.

He stnply introduced more intermediate truth values. Ite retained his

evaluation rules and, as before, allorred nr-unerical evaluation for the

logical connectives. For exanple, in his 4-valued system (L4) with

rl and 12 as the intermediate values, he assigned r, 2/3, r/3 and o

to T, r1, 12 and F respectively. the values of expressions are obtained

by the following arittrnetic rules:

[-rP] = 1-[ P]

lF/Al = max ( tPl , tel )

lP&Ql = min ( tPl , tQl )

(1
I

tP->et = {
[ ,- trt * tot if tPl < tQl

if tPl < tol

Ilkasiewicz generalised his systen to "infinite-valued" by taking
negation and implication as primitives and by usirrg the rules:

RD = (p->e)->e

p&e = r(-Rr-|Q).

Ho*rever, the more interesting ones among the many-valued systems are

those which yield L3 vfien reduced to the 3-valued case but are not

generalisations of rr:kasiewicz' systern. For exanple, the 4-valued

systsn with r and u (that is, the ccmbination of 83 and L3) is the
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rnost popular one. Iater, re w"iIl review the use of such a systan in

the theory of databases.

other many-valued systans are rore ccmplicated but beyond the

scope of this thesis. A detaited strdy can be found in [Ac-67 , re-dg].
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Null Values in Database Systems

Threre are many cases in which a value in a database can be thought

of as nul1. In previous chapters, r,\re used O as the result of applying

a function to an argtment wtrich is of appropriate tlpe but is not in

the danain of the function. rn concrete cases, there may be various

kinds of nu1l vaLues. For example, the function 'husband-of' returns

the nane of the husband of the married-wqnen-employees. Whenever this
function is appried to an arguunent, the fo11or*ing cases can De

distinguished:

i) t14>e-error : the argr-rnent is conrptetely unknown to the function,

(e.9. asking for husband-of(book) ). Ttris case corresponds to

Bochvar's third value. we eliminated the evaruation of this
situation by introducing the preliminary t14n checking.

ii) the tlzpe of the argunent is correct but the function cannot have

a value for it (for exanple, husband-of(Mary) when Mary is not

married). I is the result value in our larrguage (dcmain-error).

iii) the argunent is in the dcrnain of the function but the corresponding

value is at present Inot available' (e.g. husband-of(Jane) where Jane

is married but the name of her husband is not known to the systen).

iv) the function returns a person (e.g. John for husband-of(SaIIy) ).

B.
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ltrere are several situations wtrich nould be candidates for case iii,
for exanple: the value is not knor*n at present (i.e. missing) , the value

is not permitted to be stored,or the value is undergoing change. [ANSI-75]

lists ten situations wtrere case iii applies.

Previous rrork on null values

l'lost of the rrork on null values has been carried out within the

stndy franerrork of relational databases. Codd explained in [Co-75 ,

Co-791 a simple method for the treatment of missing values. Based on

the 3-valued logic of tukasiewicz, he extended the operators of the

relational algebra to handle missing values.

Grant IGr-771 found Codd's approach inadeguate and demonstrated

cases for which the extensions did not hork.

In a more formal manner, Vassiliou [Va-79] uses a four-valued logical

system to reason about nulls. His null values are "missirg" and "nothing",

wttich correstrnnd to the third value in L3 and 83 restrnctively. (Itrere are

a nunber of mistakes in this rork. For exanple, the rules for extending

the functions do not cover alr possibre cases. see page 165 of tva-791.)

there are also several other atrproaches wtrich a[4)ear in the field
of artificiar intelligence. rhe concept of possible rrorlds in modal

logic is the guiding principle for these systens. For exanpre, Lipski
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and Imielinsky [Li-79 , IL-81], in a more rigorous a[proach, describe

the ssnantics of a guery by giving troo different interpretations to it
which they call external and internal interpretation. In the internal

interpretation a guery is evaluated by using only the knowledge

available in the database. rhe external interpretation, on the other

hand, refers directly to the real- r+orld nrodelled by the database rather

than being confined to the inccrnplete information contained in the

database. Ihis rtork is mostly concerned with deduction of information

and with artificial intelligence. V'Ie feel that this area is outside

the scope of this thesis.

Another interesting study is that of Biskup presented in tBi-911.

TVn tlpes of null values are considered. They correstrnnd to "attribute
is appricabre but its value is at present unknohn" and "attribute is
applicabre but its value is arbitrary". rt is then assuuned that the

first tYSn correstrnnds to an existentially quantified variable and the

second t14n corresponds to a universally guantified variable. In Biskup's

notation, if R is a relation on a given range D, then (arfrnMgn

means: there exists an x€D such that for all y€D the tuple (arxrbry)€R.

He extends the relational algebra operators and then, using predicate

logic, proves correctness and ccmpleteness for the extensions.

Null values and Varga

introduce another object, 6, wtrich represents
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the case that "the argunent given to the function is in the dcmain of

the function but the corresponding result is not available at the present

time" (case iii of the exdnple given at the @inning of this chapter) .

we feel that with these tr+o extra objects most forms of nulL can be

captured.

rt r,lould be helpful, of course, if the systan could identify the

reason for the non-availability of information, but this would resuire

different symbols for the various manifestations of "unknorrm".

Further, arthough there should be a different symbol for the

unknorvn information of each tlzpe (say 5o for unknogts of type o)

we use one symbol for all types, namely 5. rn this way, the ccmplexity

of the underlying mathsnatics is considerably reduced.

rt is imtrrcrtant to note that each 5 is a place holder for a

separate value. we enphasize that the 5rs are not, in general, egual

(even those repracing values of the sarne type). For this reason we may

have a set {5r5} rrit'rich may later result in a set consisting of either
one or two objects (as missing information beccmes available).

sernantically, despite being classifieo as nurl values, 5 and o are

different' 5 acts as a place holder for a fact whrich is presently unknown

but which, perhaps, will be known at a later time. e, on the other hand,

stands for sonething which cannot be knonn at any time because it does not

exist. When reasoning about predicates, 6 can be interpreted as "true or

false" (sirnilar to the intermediate value of the L3 system), whereas o
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is independent frcm the other truth values. Hence, these trm objects

behave differently in the course of interpretation of gueries.

Finally, nre amphasize that e in our system disagrees with the third

value of the Bochvarian three valued togic 83. Ihis is due to the strict
t14n checking prior to evaluation of gueries.

Unknonrn sets

Since the functions in Varqa are permitted to return either a single

value (i.e. a data object) or a set of objects , r{e should be able to

reason about partially and totally unknoum sets. Having 5, representation

of partially unknoom sets is possible. Hor+ever, r"e cannot represent

totarly unknown sets. I€ therefore designate[to stand for a set of

unknovrts *hose cardinality is also unkno*n. l{e will shop later that this
designation is considerably helpful in our formalisn.
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C. The Principle of Grorrvinq Certaintv

we give the follovring principle for extending the guery ranguages:

Let us expand on this principle.

Suppose rrle have the sets DO, Dlr.... and Dn_, in our algebra A (in

ADJrs terms, the 'carriers' [GT[,v-78]) . Before allowing ignorance in the

system, the universe of our algebra is

U(A) = w(ilu{e}

wtrere

w(A) =(J {DorDlr....rDn_l} u

{(TorT1,....rTm_l) lViem Ti€r!{(A) for scrne m} u

P(w(O) u x1w1a;1 .

Permitting unknowns in the systen extends the algebra. An extended

algebra is rike an ordinary algebra except the data operated on is in
the extended universe. Our extended universe is slightly richer than a

universe obtained by a straightforward extension. The straiqhtforward

method is to extend the universe to be:

Whenever

database

be less

information is added to an inccrnplete

subseguent answers to gueries must not

informative than previously.
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u(A) = w(f)u{e}

where

w(A) =(J {6o,Df ,.oo.r6n_ri u

| (T -,r - - - - - -T ,) I Vign T.eV,I(A) for some m] U| \rot^1ror..r^m_I I

P(w(il) u r(w(i))

whereVen -n.=o-.u{5} .
JJ

Hovrever, we also wish to includeA in our extended universe. Therefore,

we extend the universe as follors
AA

u(A) = w(iluie)

hrnere

F-
W(A) -L)I^ n r\ ] U,"Or"I, .... r"n_1

i (to,r, t....,Tm-l) | \ztem Tiew(i) for some mi u
AA/\
P(w(A) ) u n1w1a11

where

Vjen -o*=n-,u{5}
J)

itxl = p(x) u {yuA I vep(x) } asstrning 5ex .

^-U(A) al-lows for more unknoqns when ccmpared with U(A) .

An algebra which contains unknown values cannot be considered as an

exact representation of the real r^lorld ; it only ',approxi:nates" the real

world. The algebru" i ana i above are approximations for A. we now

say (on]y informally) what it means for an algebra to approximate another

algebra. rf A" is an algebra like A' except that the universe of A" has

less information (i.e. it has npre 5's andAs) then A,, atrproximates

A' or A"(: A,.
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rnformally speaking, . Eb r.vtren a can evolve into b as more

information is made available. Given objects x and y, and sets A and

B we have

6 e 5

5 E*
x (_:x

{5}E " set containing one object

{616r....r5}Ca set containing one, twor.....of n objects

n 5's

AqA
AEa
A'UA_C a where A'CA

A qA

aEe wtrere Vb€B fa€A aEb and

cardinality of B ( cardinality of A

(aorarr... rdn_l) E (borblr.... rbn_1)

wtrere \z5-en uie bi

[aOrarr... rBn-1J g tn.rU1r... rbn_1]

where \den ljen ai Q bi and \zt€n Jjen a1 tr bi

Thus, for tr,vo ccnrpatible algebras A, and A,' we have

c' E A' iff V yeu(a,) fx€u(A") such that x C y .

our guiding principle for the extensions (the principle of growing

certainty) can nor^r be formalised as :

Given an envirorrnent, for any expression e and algebras A" and A,

c'C I' irnpties ec, C eA,

where €Cr and €6r are thenva}uiirot e in algebras A'' and Al



!. Extending Varga to Handle Null VaLues

Extension of simple functions

lrile have already extended our furctions to totar functions by

incruding e in their dqnains and ranges. !€ now define a further

extension for functions in order to enable thern to operate on missirrg

values. ( ^ will be used to denote the extended form of the functions:

e.g. f is the extended form of the function f.)

I€t f :DOU{O}xDru{e}r.....rDn_tu{e} --> DnU{g} be a function.

i:oou{e}u15lxoru1e}u{5}x. ...xDn_ru{s}u{5} --> Dnu{eiu{6} is
a (further) extension for f ift ftx.r"l,....,xn_l) is

f (xorxr,..... rxn_l) if (xorxr r....rxn-l)eDom(f)

6 if \fen x. is not e and x. is 6 for sone j€n

e otherwise.

Example:

consider a function "spouse-of " maSpirg "tr)ersons" to ,'tr)ersons,,. I€t

tr
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"tr)ersons" correspond to the set iJohn , Mary , Jane , Fred , Mark), and

"spouse-of" correspond to the function {<John , lGry) , (Jane , 6>} .

the following are exanrples of sqne possible cases:

i) strnusercf (John) is l,,lary

ii) strnusercf(Jane) is 5

iii) spouse--of (Fred) is €
iv) spouse-of (k) , rrhere k is evaluated to be 5, is 5

v) spousercf(k) , where k is evaluated to be g, is e.

Ccrnpare cases ii and iii. Jane is married but her slDuse is not knor+n,

thus 5 is returned. Fred, however, is not married; e is returned to

indicate this fact.

(Again, evaluation will not take place if the argr"ment is not of the

atrrpropriate type. That is,

strnuse-of (k)

where kpiJohn , Mary , Jane , Frd , Ir{,ark}

will not proceed to evaluation.)

Extension of set-valued functions

One way of extending a set-valued function of the form

f :DoU{e}xDrU{9}x. .. .xDn_rU{ei --> p(Dn) U{e}

is as follows:

f:Dou{e}ui5}x.....xDn_1uie}ui5} --> p(Dn)uie}uA .

with this extension, hovrcverr aoy evaluation of f will return

either e'Aor a set of values (excluding e and 5). sets wtrich are
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only partially unknown will not be allorted. I^le choose, therefore, the

following extension instead:

f:Dou{o}ui5}x.....xDn_lu{e}u{5} --> p(Dnu{5}lu{e}ua .

Partially unknoqn sets are non trnssib1e. In fact, the following three

types of, set (involving unknown elenents) are trnssible:

- a set wtrich is ccmpletely unknown , i.e. A
- a set wttich has scrne unknovm elsnents , i.e. the ntrnber of unknoqn:

elernents is known

- a set wtrich may have sqne other elsnents , i.e. the number of

unknonm elsnents is not known.

I{e will not distirguish between the second and the third class

because our aim is to make use of all available information rather than

discovering the degree of inccmpleteness. this simplification will reduce

the formalign considerably.

lttus, in general' the extended form of the set-valued furction f
above, r+tren given the argtrments xorxrt.... and xn_, r rndy return either

one of:

i) f (x'rx, r .. .. rxn_l)

ii) a
iii) AUA rr'trere A g f (xgrx1, ,xn_l)

iv) e.
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Extension of the, operators

In this section rrc specify the way in wtrich the operators behave

when there are missing values in the database. Precise rules are qiven

for each operator individually.

SHT!-THEORETICAL OPERAIORS

isin

the correspnding operator is € wtrich is extended to be
,\€ : a uielu{5i x p(o u{5})u{e}u^--> boor u{e}ut6}

where *6a i= defined as follows:

- if x is neither g nor 5 then

- if A is neither g nor includes missirg values

then x6a is x€A

- if A is of the form A,UA then

- if x€A' then "& i" tru"

- if xEa' then x& is 6

- if A isA trren x& is 5

-ifAise thenx6aise

-ifxis5then

- if A is the ernpty set then 
"6a 

i" false

- if A is neither the ernpty set nor g tnen x& is 6

-if Aisg thenx&,ise
-ifxise thenx&ise.
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Ihis specification can be suurunarized in the table below:

x isin A

'... A
xJAct

where a is not e or 5, and A' is a non-snpty set.

$lhenever appropriate, the specification for operators will be given

in the form of tables.

_1e-suPse!€

this operation symboJ_ no\d correstrnnds to

ĉ : p(o u{6})u{e}uAx p(c ui5})u{s}uA-_> bool u{6}uie}

where o e e is determined by the table presented in the next page.

_lg-true-supset 9.!

The corresponding operator, c, is extended in a simirar way.

or I orA
m I

Ia''.oio
i
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AgB
Nr

A'U A

Al

A

o

(Ar and Br are not enpty.)

unlon

Ihe operator associated with 'union' is
^,u : p(ou{5}lu{e}uAx p(o{5}lu{e}uA--> p(qri5})u{e}u^

where a6g i" defined by the folloving table:

B' B,U A A e

A

AIUBI AIUBIUA AIU A e

AIIIB IU I AIL'BIU A AIU A e

BIU A BIU A A e

I e e e

A

AIU

A

e

E'UA AB' o

T T T T e

F otFT or6T 6 e

F 5 6 6 e

6 6 5 5 e

e e e e e
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intersection

'intersection' is associated with

fi : r(a.r{5} )u{e }u A x p(qt{5} lu{eiu A --> p(au{5})u{eiu A
where eAs is given by

B

AI

U

A

e

Br

Arrl B'

B"'q g
(A'nB')

UA

A

A e

(A'n B')
UA

(A'ft B')
UA A e

A A A. e

o o o o

(As befor€, At and B' are arbitrary sets which do not contain unknowns.)

Union

corresponds ro L] : p(p(o ui5]))u{e}uA.--> p(o u{5})u{eiu.A

where 0 * i= defined as follows:

- if WglV X does not include unknowns then

t-l * i= {x I x€x & x€-w }

- if lxe!{ X may include unknovyns then

O w ir {x I x€x' r (lxew : X'9X) iu l\
- if w isA then Ow i= 7\
-ifWise then 3Wi=e.

A
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fntersection

correstrnnds to (i: p(p(o u{5}))ute} --) p(o u{5})u{e}

where (i w i"t
- if VC<gd X does not include any unknom then

6 w i= {* | Ver,l xa( }

- if lxgT,l X may include unknown then

O* i" {x I V{<€'w xo<}uA

- if w isA then fl* i=6
-ifwise then (iwise.

ARTT'{METIC OPERATORS

+ nq^r associates with the operator

* : int u{6}u{e} x inr ui5}u{e} --> inr u{5}u{e}

where

1 a* b if a and b are integers
,af

a*b =( 6 if at least one of a and b is 5, and neither of them is o
I
I\ e otherwise

The operators corresponding to - , * and / are extended in a similar way.

CCI{PARTSON OPERATOR.S

1S

is norrir associated with

I r o u{5}u{e} x o u{6}u{e} --> boot u{5iu{e}

where
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a=bis

bool if neither a nor b is 5 or e,

(or if a and b are sets, they do not contain 61

6 if neither a nor b is 9, and if at least one of them is 6

(or, if sets, at least one of a and b contains 61

e otherwise

The operation of "is-not" can be extended corres;nndingly.

GT

correq>onds to the operation:
 .) : int u{6}u{e} x int Ui5}u{ei --> bool U{5}u{e}

where

Q:erations corresponding to GE , LT and LE are extended in a simirar

way to that of GT.

LGICAL CO{NECTNES

and

this slmbol stands for the function
Ad : boot u{5}u{e} x bool ui5}u{e} --> bool u{5}u{e}

A
where a&b is determined by the tabre given in the next page.

(bool if a and b are integers
^lu > u =(5 if neither a nor b is e, and at least one of thgn is 6

I
t g otherwise
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h
6T F o

T

F

6

e

T F 6 o

F F F F

6 F 5 6

o F 5 e

or

the correspnding operation is extended to be

f, : boor u{5}u{ei x bool ui5}u{e} --> bool u{6}uie}

where a0U i" determined by the table below:

a

6

e

T

F

6T F e

T T T T

T F 5 o

T 5 5 5

T o 5 e
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noL

'not' has the following function associated with it:

i : bool u{6}uio} --> boot ui6}u{e}

where

inplies

corresponds to the function

ly : boor u{5iu{ei x bool u{5iu{e} --> bool ui5}uie}

and aj>b = iavu .

MI SCELTANECIJS OPERATIORS

The operators corresponding to sun, prod, *rug., Max and Min can

be extended in two alternative ways. They may be extended to either

- avoid computation and return the value 5 wtrenever the given multi-

set contains 5, or

- carry out cornputation based on the values existing in the given multi-

set, and vrhenever the multi-set contains 5 indicate that the resul,t

value ls not the true result.

Horuever, only the first method maintains our essential principle. Recall

that should the existing 5's be replaced by val-ues other than 5, the

value of any query must only be closer to reality and it must not change.

For example, if the anslrer to the guery "youngest employee in the sales

f bool if a is a boolean value
I

iu=(5 ifais5
t 

" 
otherwise
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Department" when unknovrn values exist sonewhere in the database is 30,

then if the unknoqms are replaced by other values, it must not change

to another value, say 28.

The second rnethod of extension does not agree with this principre. we

therefore take the first alternative for the extensions.

Sun

TLre operator corresponding to

f : n(int u{5})uie} --) inr u{5iu{e}

where

1 
an integer if A is not e and if it does not contain 5

I

itel=( 5 if A is nor e and if it contains 5
I
(. g otherwise.

The extension of the operators associated with "prod", ',Average", "Max"

and "Min" is similar to the above.

No-of

The corresponding operator is

$ : x(c;{5}luie} --) inr u{5}uie}

rrttref e

1 
an integer if A is not € and if it does not contain 5

 f

+te)=( 5 if A is nor e and if it conrains 5
l
lr e otherwise.
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The Values of Queries

Evaluation of gueries in the presence of missing varues is

carried out in the way specified in section B of chapter rrr and

according to the extensions defined in this chapter. we do not repeat

the lengthy specification, and only state the necessary modifications.

Evaluation of expressions involving guantifiers "forall" anrl

"exist" are carried out in accordance with the following extensions:

foraIl

The value of the expression forall X:e is
- true if e is true for all val-ues of X

- false if e is false for scnre values of X

'6 if e is either true or 5 for all values of X but 5 for sorne

- e otherwise.

(Recall that the variabres may not take the values 5 or o.)

exists

An expression of the form exists X:e has the value

- true if e is true for scrne value of X

- false if e is false for a]l values of X

- 6 if e is either false or 5 for all values of X but 5 for some

- e otherwise.
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Evaluation of expressions of the form i e ]X does not chanqe.

However, a minor alteration is needed for the evaluation of the

expressions of the form { eO I e, }X.

Evaluation of ieo I e, )x is carried out as before except that if
e, takes the rzalue 5 at least for one value of X then the result value

is the union of the set constructed by the normal set construccor

and A'. (ltre alternative method is to add a 5 to the solution sec

whenever e, evaluates to 5. ttris method, horrever, does not hold our

principle of growing certainty because, for example, the set t5l

after addirg information to the database may change to the enpty set.)

Examples

Consider the warehouse database frcrn chapter III again. lile assune

that only part of the information presented in figure 3 is now available.

For example, let us assume that, among others, the locations of sqne

of the parts are not known and that rve do not know the roeight of scrne

of the parts. The available information is presented in figure 4.

we now evaluate sqne of the gueries formulated in chapter rrr
again.

1 . lihat is the nane of the part stored in location 2 1 ?

nane-of (iternrcf (2 11 I

The database does

itsn<f (2 7) is 6

not know which item is stored in location 2_1 (i.e.

). The function nanercf applied to 6 sss1-1lts in 6,
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thus the anslser to this guery is 5.

2 . AJI parts which are heavier than 2OO qrans.

i P I weight-of (p) cT 2Oo lp

The set {z_I3iuA is the ans}ier to this guery since the weight

of - 13 is 25o and the weights of pt_12 and it_4 are unknown.

Compare this result with the set iz_j3 , it_4] wtrich is the answer

we obtained frcrn the conplete database in chapter III.

Iocations of those parts which can substitute mk 32oo.

{ places-of (PART) | panr isin substitutes-of (mk 32@) }pant

The parts substituLing mk_32OO are pt_}O and pt_12.

pt_lo is known and it i" 3J. Horoever, information on

of pr,_12 is inconplete . Thus the set i {:_f } , {6 ,

returned.

The

the

1_1]

location of

Iocations

]is

4 . How many j-ocations are occupied by the substitutes of the part

mk_32oo? (i.e. count the locations appearing in the result of
the previous guery.)

Norcf ( Union i places-of (p) | p isin substitutesrcf (mk 32m) ]p)

Since an unknown value exists in the operand of 'No-of' the answerto this guery is 6.
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Figure 4

An incomplete database

(Warehouse database of chapter III)

places-of

fo, p* --> p(>)+

{ <pt_12, {U, 6}>, <ir_4, { 6 }), (mk 32@, {I}}>,
<.2_r3, {5 ,2}}>, (pt_lo, {3_l}> , (z_r@, {2_z}> 1

rlss e!
fr: \+ --> p+

I

{ <f_f , pt 12), (I_2, mk_32OO>, <2}, z lOO>, (2_4, z_I3) |

<3_1 , pt_lO) ]

]s@is
f"z 

^* 
* p* --> B+z

This function has the sane information as the two above.

name-of

f3, p* --> "*
{ <pt_12 , "nut") , <it_4 , "bolt"> , (mk_32@ , "nut") ,

(z_13 , "washer"> , (pt lO , "nut") , (z_I3 , "pipe") ]

substitutesrcf

f 4, p* --> p(p)+

i <pt_12, Q ), <it_4, e ), (mk_32Oo, { 6, pt_lo}),
Q_I3, Q ), (pt_Io, {pt_12}), (z Io, Q > }
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Figure 4 (continued)

weiqht-of

f., p* --> z+
5

{ <pt_12 , 6> , <it_4 , 6>, (mk_32oo , l5o> , (',_13 , 25o> |

<pt ]O , 1@) , (z_lOC , 20> \

slyg
f.: p+ * >* --> z*

o

{ <<pt_12, 1_1), 10), <<mk_32OO, I_2), 5), (z 13, 2 4), lO)

<<pt_IO, 3 1>, 60), <(z 1OO, 2 2), 30) ]

capacity-of
++fjt X' --> U'

{ <r_1, 1o), (I_2, 60), (1_3, 2c), (2_I, 60), (2_2, 40),
(2_3, 50>, 12-4, 60), (3 1, 70), (3 2, 5> ]
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Some Remarks

there are other evaluation rules for gueries that have been

suggested in the literature.Horrever, they do not preserve our main

principle stated in section C of this chapter. lF pointed out one

exanrple rfien discussirrg extension of the "Surn' operator.

A great deal of strdy has been focused on various ways

of exterding the logical connectives, in particular, funplication.

Preserving more of the tautologies of the classical trro-valued logic

(C2) has been the main nrotivation for these studies. Although a1l

formulae which are tautologies in a 3-valued logic system are also

tautologies in c2t it is not the case that c2 tautologies wirt hold

in systems with rpre truth values. A simple exarnple is p -> p

wtrich fails to be a tautology in most many-valued systens (including

ours). those who have maintained this particular case, have failed to
cope with sone other obvious ones, such as 1(o &-r c), because the

relation P-)Q = rtrrQ does not hold in their systsns.

Itrerefore, rtre have not put any enphasis on maintainirq tautologies.

H<haustive testing has been suggested as a method for obtaining

better anshers frcm an inconplete database. For exanple, consider

function f on DOr Drr .... and Dn_, and its extension f+. Given

the argr-rnents dO€DO, dISl, ...., di_t€Di-t, di*I$i+'r....
ild dn_lon-l, if \troi f+{do, ...1 d1..., dn_l) is b ,

g.
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then the value b is also assuft ' - -+ ' - I .]O ror f (dgr...., Or...., dn_1) .

Based on this technique, in [va-T9J an econcmical algorittrn is
presented for the evaluation of gueries. rt assigns, for example,

the value true to p v rp after testing all possible values for p

and ensurirg that the formula cannot Lp false or unknown (e.g. the

value true can be assigned Lo

age-of (Jack)S5O or age-of (Jack) >5O

even if agercf (Jack) is unknown) . This method can be used when the

nunber of tests is not large, but, it beccnres irnpossible rften a

quantifier exists in the expression.

rn a nunber of cases ke can extract nrore information frcm

the system. ltrese cases are, again, within the truth tables for

the logical connectives. For example, with our evaluation rules for

conjunction, pi o takes the varue5wtren pis gand eis 5

(or vice-versa). tve note that e t 5 (or 5 i e) cannot possibly be

true, because if 5 is replaced by the value true then e i r is o,

and if, on the other hand, 5 is changed to false then e i r is r'.

similarly, e ; 5 can only be either T or e (the value false is not

possible for € " 51. l€ avoid adding cases to the truth tables because

the extra information cannot play a major role in the evaluation of
gueries.

There are also alternative methods of defining how g behaves,

but we fino thsn invalid. For instance, v*ren specifying the rules for
evaluation of "isin" wre assigned € to *6a ntren x is e and A is
the enpty set. ssne nnay argue that nothing can belong to the empty set
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and 
"e 

g must result in false. However, rrc find the result ,,fal-se,,

misleadirg and thus inappropriate. Suptrnse that Jack has no sisters and

there are no students registered for the course EE2. rf a guery asks

wtrether Jack's sister is registered for EE2 or not , then "false,, is
not the correct ansher because it is misleading.
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Chapter VI

\ARQA VIHdED IN TERII,IS OF REIATIOML AI.GEBRA

Every application-oriented abstract formalisn must be imprem-

entable. Only in this way can existing software nethods be tested

against rnathematical standards. A system wtrich is defined in an abstract

manner (i.e. its specification given independently frcm representation

and implementation technigues) is eventually confronted with the guestion

of "feasibility of implenentation',.

we shovr informally in this chapter that our proposed language

does not corprise concepts rttrich are unusually porrcrful, and it can

in principle be implemented.

varga is a language based on expressions i every expression

consists of an operator applied to other expressions or to variables

denoting the data objects in the database. trtany of the operators of
varga are connt.cn in prograruning languages ; the possibility of their
implementation, therefore, need not be shorvn. simple operators such

as arittrnetic operators (e.g. *, *) and set-theoretic operators

(e.g- U' fl) fall into this category. Hor+ever, there are other operators
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in our language rndrose implementation is a non-trivial task; among

them are the variable binding operators.

We will therefore consider a simple functional language drich

includes all those features of Varga rtrose implementation is more

dernanding. Wb then shcxp that for any expression in this language

there exists an eguivalent expression in a language based on

relational algebra.

rn the following section, we will define an algebra of relations

which is rrell suited for this correstrnndence. The definition of this

algebra is mainly based on the work presented in [HHT-75] . rhre simpre

functional guery language is then maprped to a language based on this

algebra.

This rrcrk is in a hray an informal extension of the roork on

"rylindric algebras" reported in [HI'fI-71] . C]lindric atgebra is the

extended form of Boolean algebra specifically designed as an algebraic

apparatus for studying first order predicate logic. The motivation

for the introduction of rylindric algebra was to answer, in an

algebraic way, metalogicar guestions of the kind "given a fixed set

of sentences s , is a given sentence s impried by the set s ?".

rt was proved tHMr-7rl that each such problem can be reduced to an

algebraic problem of the form "does a particular formula (associated

with s above) hold in the algebra \?".
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Qrlindrical algebra is concerned with expressions of first order

logic. O:r language is richer than first order predicate logic because

it includes the set construction operator.

o"tr intention in this chapter is not to propose a rethod of

implementation, rather rrre intend nrerely to point out that our language

is not inconpatible with the current software methods.
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4. A Stunple Functional Querv Lanquaqe (SFQL)

rn this section we define a simple functionar guery language

(SFQL) which is based on the principles of Varqa but is considerably

simpler SFQL does not contain all of the operators of varga;

those operators wtrich are ccnfipn in prograrrning ranguages (and the

possibility for their implernentation need not be shown) have been

left out.

the operators allowed in sFeL are the boolean operators ('G'r",

"LT" r. . . . ) , the logical connectives (',and', , "or" and "not") ,
guantifiers ("exists" and "forall") and the set construction operator.

Although r,rc exclude many of the operators existing in Varga, sFeL

is stilr a porrerful guery language. For exampre, using these operators

on1y, r"€ can still formulate the guery "al1 ernployees who earn rnore

than their managers".

We put a restriction on the expressions of SFQL by not permitting

nested use of the set construction operator. (with this restriction r+e

simplify the translation considerably.) The results obtained here can

later be generalised to allorp nested set construction.

with the exception of the restriction on nested set construction,

the formation rules for the expressions of SFQL are the same as those

of Varga.
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9. Relational Algebra, an alternative approach

Relations can be vierped as tables with rows and colunns tu1-8o1.

Ttre order of rorps is unimportant, but in the definition of sqne

relational algebra oSrerators reference has been made to the ordering

of colunns. Many database researchers, e.g. Codd [Co-79], claim that,

by referring to a column of a relation by a name instead of its
position, the ordering becornes unimtrnrtant. Hovrever, the transfor-

mation is not straightforward and causes problens. For example,

Coddrs definition for the operator projection (wLrich makes reference

to the order of colunns) is not adeguate when the corunns of

relations are identified by names. consider a relation with two

coh-nns identif ied by "A' a.''d "8". rf rrc use the projection operator

to construct a two colunn reration with both colr.rnns being

the originar A-column, then the names cannot simply be inherited

IHHT-75].

rn the context of our work, it is easier to map the expressions

of sFQL to a language based on an algebra of relations which is
independent of coltrnn ordering (because in sFeL we make use of names

and not ordering) . Therefore tne define relations with "colllnn name"

rather than "colunn ordering". we refer to the col-wnn names as "selec-

tor nanes" (i.e. selector ndnes are nemes for the "underlying dornains',

page 144



of the relations). We assune a universal set 0 wfrich contains all
the underlying dornains.

Given a set of selector nanes s, a tupre with serector set s

is a function rr'trich assigns a value (fron 1^1y to each selector name of S.

For each serector name s in s, t(s) is called "the value of s for

the tuple t". For any selector set s, w(s) is the set of all tuples

with selectors S.

Given

is the set

arity of a

a set of selector narnes S, a relation with selector set S

S together with a set of tuples with selector set S. The

relation with selector set s is the nunber of elements of S.

I Recal] frcm chapter r (wkren r,ve defined a reration as a cartesian

product of sets) we argued against the definition of arity for
relations defined in that nanner. Defining ',arity of rerations with

selectors" is not contradicting our objection to "arity of relations".

Note that for each set S of selector nafiEs rre have a distinct ernptv

relation A(S) . l

Example: consider a relation R represented in the form of a table:

PARI-NO IOCATIChi onr

100

100

50

50

100

150

r55

I10

90

23

75

95
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ltre set of selectors of R is iPART NO , LOCATICN , Qtfy] and the arity

of R is 3. A tuple t in R can be represented as

PARI NO IOCATION O{Y

150 23 100

For this tuple the values for the selector ndnes are t(pARr-No)=r5o ,

t (LCATION)=23 and t (Q41r)=1OO.

Note that the order of the colunns is in fact unimportant. Therefore,

it is neaningless to talk about Nth colunn of a relation. We can onlv

refer to a colunn by its selector ndne.

we nqp define a collection of operators crhich can operate on

relations with selector sets [HHT-75].

For any relation R with selector set s, if s' is a subset of s then

the projection of R on S' , R * Sr is

{ t'l JteR: t'= t!s' }

(Recall that flA means function f restricted to the subset A of its
donain.) Similar to the projection operator of the ordinary relational

algebra, this operator simply removes scrne of the coltmurs of R (those

which are not in S', of course). If we want to duplicate sorne of the

colunns then this operator cannot be used because wre need different names

for the duplicate co}.rnns. Thus rrc define another operator wlrich is a

generalised form of projection (We sinply call it "generalised projec_

tion". ) .
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A "renaming function" in this context is a function nrtrich maps a set of

seLector narnes to another one.

Given a relation R with selector set S, a renaning function

the generalised)z which maps selector set Sr to selector set

ptrojection of R over l, denoted by R fl )z is

i t'l t'€'hi(S,) & (ften : t'=tn/) ]

(Recall that fog stands for the corposition of functions g and f.)
By defining an appropriate )z r"€ can dupricate, rename or indeed remove

sqne of the columns of R.

rn ordinary relational algebra, the "union", "intersection" and

"set difference" operators reguire their operands to be conpatible; i.e.
the relations given to these operators as the argunents must have the

same types. Here we do not enforce this restriction on the operands and

allow the two argunent relations to be of any type.

and

D,

Given two relations RL and R2

respectively, then the generalised

denoted by RllIR2 is

with selector sets

intersection of Rl

51 and 52

and R2,

Itltsv(stus2) & (tlsl)eRl & (r!s2)eR2]

There are two extrsne cases in the application of generalised

intersection. when the selector sets sl and s2 are the sane (i.e. RI

and R2 are compatible relations) generalised intersection degenerates

to set intersection. The other extrsne case is urhen sl and s2 are

ccrnpletely distinct: generalised intersection then returns the

concatenation (in relational database jargon: cartesian product) of
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RL and R2. In

Rl and R2 on

other cases, wfren 51 and 52 overlap, the eguijoin

the intersection of 51 and 52 is the result.

Sirnilarly, generalised

and R2 with selector set 52,

{tlrsv(sl us2) &

union of relations RL with selector set Sl

denoted by RL Y R2 is defined to be

( (t!sl)eRI v (t!s2)eM) ]

Generalised union will also degenerate to the union operator of

the ordinary relational algebra wLren SI=S2.

Generalised difference is also similar. For any two relations Rl

and R2 with seLector sets sl and s2 respectively the generarised

difference of Rl and R2 , Rl-R2 , is

i t lteRl & (t!(sl0sz )l/(rtz*(srns2)) ]

Again, when s1=s2, generalised difference acts as the ordinary

operator difference. !{hen sl and s2 overlap, horrever, this operator

selects frcm Rl those tuples for wtrich the values corresponding to the

comnon selector names cannot be found in the ccnrpatible columns of any

tuple in R2.

The notion of selection is covered by generalised intersection.

To select (frqn a relation R) tuples wtrich satisfy certain criteria
on some selector narnes' we construct a relation whose selector set

contains only those selector names to rr'trich the criteria is applicable

and whose tuples are just those wtrich satisfy the criteria (cal1 it
reration F). Ttre selection of R over the criteria is the result of
generalised intersection between R and F.

page 148



Another useful operator i.s the "ccnq>1ernent" operator. Ttre

conplernent of the relation R with selector set S is

C(R) = W(S)-R

where as before w(s) is the set of a1l tuples with selector set s.

Relations (with selectors) together with the above o6rerators form

a porrerful algebraic structure. By applying the operators to relations

vt'e can construct expressions. Ttrus, each expression defines a relation.
we call this language Relational Algebra euery Language, and refer to
it as RAQL for short.

It is assr-uned that the reader is familiar with the languages based on

relational algebra. Materiar on this topic is presented in tMe-7g1.
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C. Translation from SllL t-o RAQL

we explore in this section, by illustration rather than by fully
formal treatment, the correspondence between SFQL and RAQL.

sets and functions of sFeL are simply regarded as relations.

For any set with the type symbol o in sFeL, the eguivalent relation in
RAQL is a unary relation with an appropriate selector set {SO} wtrich

contains all objects of type o.

For any function symbol 9 associated with the function f and the

tlpe expression %, n,..., on_l----) on in SFeL, there exists an

equivarent relation in RAeL which has the selector set

isorsrr...rSn_1rSn)

and whose tuples are

i t lt€'!{(iso,...,sn}) a r(t!iso},t!{sl}r...rt!{tn_t})=tt{sn}}

We start with the simplest expressions of SFQL and show informally

that for every expression in SFQL there exists an equivalent expression in
RAQL.

If 9 is a function slzmbol with the type expression

%, clf ,..., %-f----> on in SFQL which corresponds to the relation
R* with selector set iSOrSrr...rSn) in RAeL then
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g(uO,"lr...rdn_l) (rnfiere a. is of type o, for all i€n) in SFQL

is eguivalent to

(Rg _fL F) r {sn}

vtrere F is a relation with selector set {sorsr,...,sn_1} wirose

only tuple is {<SOraO>r(Srra,)r... t r(Sn_lran_l)}

in MQL.

rn the above rerationar expression, R*JLF can be thought of

as selection; using the fitter relation F we select a row frcm R*. The

selected tuple is then projected on Sr., to yield the result.

Example:

Consider function symbol grade-of rt'trich corresponds to a relation R

with selector set { Stt-lOmrff, COURSE , GRADE } illustrated as a tabte

belornr

SfiJDMM CCIJRSE GRADE

John EE2 23

Fred Fcl 25

Pam rG3 19

In SFQL' a guery wtrich asks for the grade of John in EE2 is formulated as

grade-of (John,EE2)

The filter relation F for this expression is a relation with selector set

{sniosNT , couRsE} as shown below

STUDEDI"I COURSE

John EE2
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(RJLF) returns the tuple {<SffioffvrrJohn) , <COURSE,EE2> , <GRADE,23>}.

The final result 23 is obtained wtren this relation is projected on GRADE.

Given n expressions e'r e1r....r€n_l corresponding to relations Ro ,

Re- ,.... rR" - respectively, and an n-ary function symbol g 
-O

"1 *n-1
correE)onding to relation R, with selector set {SO'S1r...rSn_1rSn}

(sn correstrnnds to the range of the function associated with g), then

the RAOL relational expression corresponding to g(eorelr...r€n_,) is

( (Ro .JL Ro JL .... il Ro ) JI R^) t {s.}"O -1 'n-1 Y

Logical connectives

rf the expressions el and e, in sFeL correspond to rerations L,

and L, in RAQL respectively, then

e, and e, in SFQL corresponds to L'JLL2 in RAQL

eI or e2 in SFQL corresponds to Ll y L2 in RAeL

not e, in SFQL corresponds to C(Ll) in MeL.

Exanple:

rf the corresponding relation to e, is Re, *ith selector set {sro,

St r ...7S1 ] and the corresponding relation to e" is n^ with
'l tnr 

' "2selector set {S2'r"rrr...rtrn } then the expression e, and e,

of SFQL is eguivalent to the relation

i t I t€'w({sr 7....rs] }u{s, 1....7s1 }) &*o 'nl 'o 'n2
(t!{st-r...7s1 

-})€Ro_ & (t!{s? r...7s2 )eR- }.*o 'nl =f 'o "n2 '2
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Example:

to illustrate the correctness of the above translation algorithm we

show the eguivalence of r (-rP afQ) = P v Q .

Let el and e2 correspond to relation L1 with selector set SI and reLation

L2 with selector set 52 respectively. We start with the left hand side:

not(not el and not e2) ==)

c(c(11) lLc(r,z) )

= c(w(s1)-11) -(L (w(s2) -L2))

= c(irlr€11(s1) & rgl,l)_fL{tlt€1,t(s2) & tlL2l

= C({rlrew(St U 52) & ((t!51)e{rlr€'t{(sl) e rELI})

& ( (tls2)€{r lr€I{(S2) a r4t2})})

= c({rlr€I,r(s1 u s2) & (r!sl)gl,t e (rrs2)/L2 })

= w(sI u s2) - irlre$t(sl u s2) & (t!sl)gl\ & (t!s2)gL2\

= {tlt€'v{(Sl U 52) & -r((t!Sl)Elf a (t!S2)g L2)}

= {rlr€1/'r(sl u s2) & ((rlsl)€L1 v (r!s2)eL2) }

=LIYL2

==) eI or e2 .

The existential quantifier

If a SFQL expression e corresponds to relation Re with selector

set iSo, 51r...rsn] then the relation corresponding to

exists X: e is

- Re itself , if X does not occur in e.

- R"8{sorsrr...rsi_1rsi+lr...rsn} if X occurs in e

in the place corresponding to S, for sonre i€(n+l).
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Expressions with universal guantifiers are transformed into

expressions with existential quantifiers only, \/x p 
= 

-rfx -rp.

The set construction operator

Given trro sFQL expressions ef and e, correstrnndirrg to relation

R", with selector set isrort,rr....rtlnl] and relation

R", with selector set {sror"rr,-..-,trn} then the

expression { "t I eriX of SFQL corresponds to

'""r. 
o *", n \)t{slo'ttr''" "trnr.}

where \ i" a unary relation with selector set {S,.,}, for

some n, containing all possible values for X.

Scrne exarncles

r,et us consider part of the university database, with three

functions associated with "ndne-cf" , "is-taking" and "grade-of', .

suppose these functions correspond to relations RI , R2 and R3

respectively, The relations are presented in the form of tabtes on

the next page.
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relation Rl

ST-Tq

1

2

3

4

sr-I4rE

Jack

Jane

Pam

Fred

relation R2

ST.NO COI]RSE

EE1

Ma

EE1

Ma

EEl

Ma

KS

L2

11

15

10

L2

16

IO

translate them into

Relation R3

ST-Nq

1

I
2

3

3

4

4

EE1

Ma

EE1

Ma

EEl

Ma

KS

Here we formulate three gueries in SFQL and then

RAQL using the translation rules given above.

1 . Grades in EEl of all students wtro take EEl.

{ grade-of(x,EEl) | x is-taking EEl }X

The eguivalent relational expression in RAQL is
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( (R3 JL Fr) JI (R2 lL F2) ) r{GRADE}

where the filter relations Fl and F2 are both {{<Counsn, EEl>}}.

fn the evaluation of the RAQL expression, first the relations

(R3]LF1) =Kl and (R2JLF2) =K2 are ccrnputed:

KT

sT-Nq couRSE GRApE

1 EEl T2

2 EEl 15

3 EEl L2

sT-l{o croLtRsE

K2

1 EEl

2 EEI

3 EEl

TLre result of generalised intersection betrryeen KI and K2 is relation K3

which is the same as Kl. Ttre ansru6r to the query is obtained by projecting

K3 on GMDE, that is the relation K4.

relation K4

GRADE

2 . Names of the students who take EEl.

{ name-of(X) | x is-taking EEI }x

The eguivalent expression in RAQL is

(Rl l)- (nz n F) ) r {sr'-MME}

where F, the filtering relation, is {{<COURSE , EEl>}i.

The above expression can easiry be evaruated in a similar way to the

L2

15
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previous one. The answer to the query is the relation

9T-IA}E

Jack

Jane

Pam

3 , Name of the students l'fro have a grade betow 12.

{ nane-of (X) | exists Y: grade-of (X,Y) LT t2 iX

We apply the translation rules starting frcm the innermost (i.e.

grade-of(X,Y) LT 12 ). As before, F is a filter relation; it is a

unary relation on GMDE wtrose elernents are less than 12, i.e. 10 and 11.

(RIJL( (nrllr') t icouRsE] ) ) I {sH{ArG}
L___J

grade (12

exists a course

The evaluation of this guery will result in the unary relation

sr-I$m

Jack

Pam

Fred
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Some Remarks

In this chapter we have given an indication of the feasibility of

irnplementation for a porrerful subset of Varga. Thris work is, of course,

not a formal treatment of the topic. For a systematic study, we need to

define the troo languages formally, then give slmtactic transformation

rules, and finally prove equivalence for the semantics of corresponding

expressions in these troo languages . TLris process is illustrated in
the figure belovr.

P.

SFQL expressions

Semantics

RAQL expressions

Senantics

Must be proved eguivalent

Itris is an interesting topic for research, horrever, r,'e feel that it
is beyond the scope of this thesis. It therefore remains as a suggestion

for further work.

Recall that in the introduction of our relational algebra we assurned

a universal set (the union of all underlying sets). rLre universe of
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the relational algebra corresponding to our sFeL is determined by

the t14:es existing in sFeL. we ignored the problem of infinity in

the introduction of sFQL. Thus the universe of RAQL can be infinite.
rt is noted [HHT-75] that when infinite (or, very large) sets are

involved then there is a possibility to encounter a ntrnber of problems.

The most subtle one is that in the conputation of sqne expressions,

although the final result is finite, there can be infinite relations

reguired in the intermediate steps. In tHHfTsl a solution is
suggested (postulating ordering on sets) to ensure termination for

the infinite (or potentially infinite) intermediate ccrnputations.
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Epiloque

In this thesis we have not only designed a new query language

for database systems but have protrnsed a wtrole new methodology for

designing such languages. The standard design methodologry for query

languages (and also for alr-purpose programning languages) is to
start off frcrn operational concepts, then to formurate an appeating

syntax, and finally (even then, only in sqne cases) to state the

denotational semantics [Wa-78] .

However' our methodologry puts great emphasis on the denotational

ssnantics of every aspect of the language. Ttre denotational semantics

of Varqa were developed hand in hand with its notation. we extended

ordinary algebra to include variable binding operators, and arloned

the operators in the algebra to work on the union, cartesian product

and the powerset of ty;:es.

Varqa lends itself to a nunber of possible extensions. More

operators can be added to the language. such operators might be:

"Top 11,' (to find the N highest elements of an ordered set) ,

"Bottcm N" (to find the N lorpest elements for an ordered set) and

more variable binding operators such as ]lt (e.g. l-f_I_:_t , meaning

there exists a unigue X such that p). The formalisn of Varqa can

acccnrnodate such operators guite naturally.

This rtork is by no means ccmplete. As the first follovrup for
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this rrcrk, "utrrcates" must be studied. one important aspect in the
study of updates is how to maintain correctness of the systen ( in
database jargon : integrity constraints). Several suggestions have

been made on conceptuar modelling of updates in database systems.

rn [DI.'IF-81] every database is considered to be a set of assertions,
queries are conseguences of these assertions , and upJates are
modifications to the set of assertions. An arternative approach

is to view every database as a set of "database instances,, (dbi,s)
and regard updates as functions mapping one dbi to the next one

lMa-811 .

A novel approach to updates is through modal logic wtrere the
database instances are viewed as its ,'possible worr.ds,,. (Modal

rogic, an extension to predicate rogic, is the logic of necessity
and possibility: a proposition is "necessary,, if it holds in ar'
a&nissible rorlds , and it is "trrcssible" if it holds in scrne r,rcr]ds

[ch-8o] . Modal logic is particularly suited for reasoning about
dynanic systems in which time plays a role.) ,,fntegrity constraints,,
can be naturally viewed as propositions wtrich must be ,,necessari1y,,

satisfied in every raprld.

rinally, the object-oriented w,ork on abstract data types can

be carried over for studying upJates. rn fact, a database system can
be conpretely characterised by an argebraic specification of various
operations [Cu-77J.

On the implementation of

A method for implenenting set

Varga several suggestions prove useful.
processors is proposecj in tHa_761. The
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technigues used in the implenentation of the progranuning language SH1T,

[SSS-8I] may be applicable for the implenentation of Varga.

Research is in progress for the formal description of arbitrary

ccrnplex information structures, with the aim of developing a new methocl

for mathematical implementation of database systems [Ma-gOJ.

Lastry, dataflow implementation technigues [Ka-74] may also be

applicable to databases. There is yet no evidence to prove that such

an approach leads to success. Hovrever, there is at least one person

who is interested in doing research on it: the author himself!
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