THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/60752

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/65690

‘Varga
A Functional Query Language
Based onan E@eErayzc Zpt;g'oach

a
Conventional Mathematical NYotation.

%Y

Forouzan Golshant.

A dissertation submitted for the degree

of
Doctor of Phi[bsop@

Department of Computer Science
University of Warwick
Coventry

August 1_989/.

Dedicated to

my mother and the memory of my father

who made this possible ,

TABLE OF CONTENTS

Abstract
Prologue

- The author's first contact with a database system
— Mathematical notation
- Acknowledgements

Chapter I ® 0 2020000000000 00080880000000 000000080000 00008O00O0CTFTS 10

A critical survey of present database systems:
What can be learned from them?

The problem

Record based databases

Problems of the record based databases

Assessment of the relational approach to databases
New trends in Computer Science

Motivation for Varga

HTEHOOW D
|

Chapter II .l.l....l..0.0..-...0........................... 28
An overview of the language

- Objects in the real world and objects in a database
Databases as algebras

On variables

Variable binding operators

The extra object ©

- Queries

Comparison with other work

OmMmoOw >
|

Chapter III'....l.l....l.."....l...l........ 56
Formal Specification of Varga
A - Symbols and symbolic expressions

B -~ Semantics of the language
C - A simple database

ii

Chapter IV P8 0605002200000 PCR0NBRBO0COROOENINIOONORONOCIONINOEONOEOROSTERETS 86

Inductively defined sets

Introduction

Related work

The WHERE notation

Inductive definitions
Evaluation in the presence of 8

moOOw»
|

Chapterv....lll..lQ......I.O.ll.00......l...‘l........... 103
Incomplete information

- Many-valued logic, a survey

Null values in databases

- The principle of growing certainty
Extending Varga to handle null values
- Some remarks

moOw P

ChapterVI G0 00O OT ORI OENOOOOLNOOOEISENEOIOIIIORPOEOEOSOOIUTIOIOONOGEOIEDIOTTDIOS]-40

Varga viewed in terms of relational algebra

A - A simple functional gquery language
B - Relational algebra, an alternative approach
C - Translation of SFQL to RAQL
D - Some remarks
Epilogue
Bibliography

iii

Abstract

We propose a functional query language for databases where both
syntax and semantics are based on conventional mathematics.

We argue that database theory should not be separated from other
fields of Computer Science, and that database languages should have
the same properties as those of other non-procedural languages.

The data are represented in our database as a collection of sets,
and the relationships between the data are represented by functions
mapping these sets to each other. A database is therefore a many-
sorted algebra; i.e. a collection of indexed sets and indexed
operations. As in abstract data type specification, we specify the
consequences of applying operations to the data without reference to
any particular internal structure of the data.

A query is simply an expression which is built up from the
symbols in the signature of the algebra and which complies with the
formation rules given by the language. The meaning of a query 1is the
value which is assigned to it by the algebra.

There are several ways of extending our language. Two ways are
studied here. The first extension is to allow queries in which sets
are defined inductively (i.e. recursively). This mechanism ~is
essential for queries dealing with transitive closures over some
interrelated objects.

Secondly, since incomplete information is common to many
databases, we extend our language to handle partially available data.
One main principle guides our extensions: ‘whenever information is
added to an incomplete database, subsequent answers to queries must
not be less informative than previously’.

Finally, we show the correspondence between Varga and methods
used in current database software. A subset of Varga, including all
features whose implementation is not obvious, is mapped to relational
algebra thus showing that our language, though it has been designed
with no reference to internal structure, is not incompatible with
present database software.

iv

Prologue

The author's first contact with a database system

About six years ago (1976) the author joined a large team whose

task was to computerise a large stock control and storage operation

system. This system held, among others, information on

over twenty thousand line items,

flow of items from supplying sources (through the receiving,
storage and shipment departments) to the consumer,

stock level , and the number of items on order,

delays, denials and other matters of that type.

One of the first tasks of our team was to conduct a survey on the

existing (manual) information handling techniques used in warehouses.

Here is a summary of the accounts noted in one typical warehouse:

The warehouse supervisor (the person in charge of the warehouse) had

spent over twenty years in exactly that warehouse. He knew the place

of almost every single item by heart. (There were over 5,000 items

in his warehouse.) Although there was a card system as the location

reference, the supervisor used it very rarely. There were relatively

few errors and the warehouse staff were capable of correcting them,

For example, misplaced items were usually detected quickly and were

page 1

moved to their correct locations.

However, the tedious part of the operation was for the staff to
keep track of the transactions and input/output of the warehouse.
There were masses of paper to be sorted and filed every day. A
transaction form had to be filed for every movement of an item, There
were more staff busy with sorting and filing than were assigned to
all other tasks in the warehouse. In later investigations it was
discovered that further "paper work, sorting and filing" took place
in two other offices (viz. on the other copies of the transaction

forms) . This seemed extremely wasteful,

Anyway, despite considerable resistance from warehouse staff,
the operation was eventually computerised., The advantages of this
computerised system over the 0ld manual one were numerous. The more
striking ones were a remarkable speeding up of the whole operation,
and relief of the warehouse staff from repetitive and altogether
avoidable paper work: a central control system supervised the

entire operation,

After a short while, however, occurrences of several errors
revealed that we had been naive in thinking that the new system was
perfect. The unhappy fact was that these errors manifested themselves
in a diverse fashion. Some were human errors (e.g. wrong entries
to the system, like punching mistakes) and some were completely
unknown and mysterious to us. Great efforts were made to rectify the

errors; however, unexpected new cases continued to appear.

page 2

Later, we all (both warehouse staff and us) grew to accept
the problems of the new system as a fact of life., Whenever anybody
asked the project manager about the errors he replied :

"Well.... What else do you expect? You know what machines are like."

The project manager was not totally wrong and, anyway, at that
time it was beyond our means to do much better. Years later, however,
the situation has seen very little improvement. Most experienced
computer users are not surprised if they find errors for which no
reason exists. Indeed, many users, like our former project manager,
do not distinguish between the 'software faults' and the machine's

faults,

Perhaps a totally different approach can solve (at least part

of) the problem,

Mathematical Notation

We discuss here the set-theoretical, logical and metalinguistic
notation which will be applied in this thesis. Part of the set-

theoretical concepts derive from ideas presented in [HMT-71].

In set theory, the fundamental relationship between objects is

that of membership; we use x€A to express that object x belongs to

page 3

the set A, x¢A expresses the opposite. A CB and ACB stand for

"A is a subset of B", and "A is a true subset of B" respectively,

The union of two sets A and B is written as A U B , and their inter-
section is written as ANB.

Given a set A and a formula P(x) we use { x | x€A and P(x) }x
and { x€A | P(x) }x to denote the set of all objects from A which
satisfy the predicate P(x) , i.e. those elements of A for which the
predicate P(x) holds. Thus, y €{ x€A | P(x) }x iff y is an element
of A and P(y) is true. Whenever unambiguous we may omit the trailing

subscript x.

For any two sets A and B, the cartesian product of A and B,
denoted by A x B, is the set of all ordered pairs <a,b> such that
a€A and bEB. A relation between A and B is any subset of the cartesian
product of A and B. (We will see a more general definition of relations
in the later chapters.) A function f from A to B , written as
f : A-->B, is a relation between A and B where no two pairs have
equal first and unequal second members. That is, a relation R between
A and B is a function iff

<a,b>€R and <a,b'>€R implies b=b' ,

The set of all first members of the elements of a function f is called
the domain of f and is written as Dom(f). Thus, Dom(f)={ald b: <a,b>ef}.
Similarly, the range of function f is

Rng(f)={ b | 3 a : <a,b>ef }.

Given a function f:A-->B and A'CA , the restriction of f to A’
is the set of all pairs from f whose first member belongs to A'., We

write fl!A' to denote function f restricted to subset A’ of its domain.

page 4

In this thesis each non-negative integer is regarded as the set
of all preceding natural numbers (they are 0,1,2,3,...): number zero
is the empty set @, one is the set {0}, two is {1,0} and so on.
Thus , the number n is the set {0,1,2,....,n-1}. We will see that
this notation is remarkably helpful in later formalisms. Given a
natural number n, i€n will be frequently used to indicate that i is
one of the natural numbers from the set {0,1,2,4...,n-1}.

In this thesis, a sequence is a function whose domain is the set
corresponding to a natural number, For example, a sequence s of length
n (i.e. a sequence whose domain is n) has an ith element for every
ién , and is represented as <s., Syr eees s Sn—1> . Isl 1is the

length of the sequence s.

For any set A , P(A) is the powerset of A which is the set of

all subsets of A , i,e. D € P(p) iff D C A,

For any two formulae Pand Q , weuse P&Q , PvQ , P->0
and - P to denote conjunction of P and Q, disjunction of P and Q,
P implies Q , and the negation of P respectively. ¥ and 3 stand
for the universal and the existential quantifiers respectively.
We sometimes use F and T in place of the truth values false and

true.

Greek letters will be used as metalinguistic variables.

page 5

The structure of this thesis

The chapters in this thesis are designated by Roman numerals I, II,...
Reference to a whole chapter is therefore given as, e.g. chapter IV.
Major divisions of each chapter are called 'sections'. We identify the

sections by Roman capital letters A, B, C,...

The outline of the thesis is as follows. Chapter I contains a
brief survey in the state of the field of database systems. An analysis
of the existing problems which are relevant to query languages is given.
The primary aim of this chapter is to give motivation for the design of

a new query language and to state its perspectives.

An informal introduction to the major concepts and constructs of
the proposed language is given in chapter II. One of the fundamental
concepts is that of algebra: a brief introduction to algebra and the
algebraic approach is therefore included in this chapter.

In chapter III we formally define what a database is and give
precise semantics of a database and of our language. Several gueries
against two different databases are formulated and their evaluation

is discussed in the final sections of chapters II and III.

In chapter IV we extend our language to cater for certain types
of queries which cannot be expressed using the tools provided in

the preceding chapters. We introduce first the "where" notation, and
page 6

then allow queries which define sets inductively. This mechanism

increases the power of our language considerably.

Chapter V is focused on a problem which is common to most data-
base systems, namely coping with incomplete information. After studying
various aspects relating to nonavailability of data we enrich the
language to handle such cases. Obviously when the information in the
database is not complete, the answer to any query is only an approxi-
mation to the true result. The aim is to get the most precise

approximation.

In chapter VI a translation of a subset of Varga into relational
algebra is given. The intention is not to suggest a technique for
implementation, but to give a correspondence between our language

and methods used in current database software.

Finally, the epilogue gives an outlook on areas where further

work can be done. The thesis closes with the list of references.

page 7

Acknowledgements

In the preparation of this thesis I have enjoyed
constant advice and much encouragement from my supervisor
Bill Wadge. This is the place to say a special "thank you"

to him,

I would like to thank Tom Maibaum for his valuable

comments and stimulating suggestions,

Being a member of the Semantics group has provided
the ideal environment in which to write this thesis. Thanks
are due to the whole group: Tony Faustini , Steve Matthews,

Paul Pilgram and Ali Yaghi.

I would also like to thank all other members of the
Computer Science Department for having been of assistance

in various ways.

Mrs. Shirley Salmon did the beautiful calligraphies,
Many thanks are due to her and her family for being so kind

to me during my stay in Britain,

To end the prologue, here are some words about

the name "varga".

It is a Farsi word (with Arabic origin) and means
"(male) nightingale". It was the name of two Baha'is
who were martyred in nineteenth century Iran for
their religious belief . The name Varga has been
chosen to record the fact that the persecution and

execution of the Baha'is is continuing in Iran today.

It is pronounced "varko" in the same rhythm as

"panda" .

Chapter |

Chapter I

A CRITICAL STUDY OF PRESENT DATABASE SYSTEMS

What can be learned from them?

In this thesis we propose a functional guery language based on
the notation of conventional mathematics. In the specification of this
language, we side with the user and direct our attempts towards the
design of a simple language which is also practical from the implementors'

point of view.

This chapter contains a brief survey of some aspects of database
sytems which are relevant to our proposal. The primary purpose of this
chapter is to analyse the existing problems, and justify our attempt

for designing a new language.

page 10

A. The Problem

In many circumstances concerning the management of data, one is
confronted with large amounts of interrelated information. How can it

be handled systematically?

This basic question spurred research into the field of databases.
The usual problem of representation and formulation of a part of the
real world by the computer is of central importance. Only the amount
of stored information distinguishes databases from ordinary computerized

systems.

There are several descriptions of database systems. A widely accepted
one is: "A database is a symbolic representation of knowledge about part
of the real world" [We-76]. Or, as in [Da-78] : "a database is a
collection of stored operational data used by the application system of
some particular enterprise"”, We are not going to point out the subtle
differences between these views (and other views) because, at this level
of detail, it is not important. A more detailed investigation of databases
reveals a number of critical points. The more important issues in designing

a database are:

how can data be organised?

what is the best way of storing data?

how can the stored data be accessed?

is the database a true representation of the real world?
page 11

Further guestions concern security, maintenance, redundancy and several

others.,

Each of the above principal issues is rather complex. In the case
of accessing the data, for example, the problems range from search
strategies within the database files to formulation of various queries.
Storage of the data 1is concerned with the choice of appropriate
computer devices, storage architectures and the filing system organisation.
In this study, we do not aim at giving solutions to all of these issues,
We intend, however, to study and to suggest solutions to some of the

problems related to data access by the user,

To explain our goal, we look briefly at the developments in computer
languages and, in particular, database query languages. In the early days
of computing, the programmer could only be either a computer designer or
engineer, or someone with similar knowledge of the system. Programming
required specialised knowledge of every detail of the system. Later, with
the invention of more suitable hardware and specialised languages, the user
only needed to learn the principles of a programming language. However,
these principles were, more or less, those of the system itself. In other
words, the language designer started from the system designers' view and
simplified it for the user, Therefore, the languages were machine oriented.

Years after, this method is still in use.

Considering the recent improvements in both hardware and software,

we suggest that, in the design of languages, the highest importance should

page 12

now be given to the users' requirements and not to the hardware and
software requirements. This may result in a considerable amount of extra

work for the system engineers, but that is what they have been trained for.

Our suggestion is equally important in the construction of database
query languages, In the design of our gquery language, we will side with
the user, and further, will keep the user's view clearly separated from

the engineer's view of the system.

r____————~—‘“”'_—————_T\“_
oe is 20. g

salary of J -

Mary is married. .

. 1 Dept-
gam is Sales a .. The user
Jim is 32 years © ~.

The user's view

The real
database

page 13

B. Record Based Databases

Most database systems fall into three groups: hierarchical,
network and relational. Approaches which cannot be categorized as above

will be individually studied in the next chapter.

The fundamental concept behind all these models is that of a record.

(A record is basically a finite collection of labeled data.)

The hierarchical model of organising data is based on the notion of

a tree: A hierarchical database model is a tree with records as its nodes.

o

In the network models, the organisation of data is not restricted to

trees : A network model is a directed graph which has records as its
nodes.

page 14

In the relational model the records of the same type are grouped

together and pointers are removed.

page 15

The database in all these models is, therefore, a vast collection
of records, and database management is the art of handling these records.
The unhappy fact is that, traditionally, these structures are made
visible to the user. With the first two models, the user has to navigate
a path through the jungle of records. In a company database, for example,
a simple guery such as "name of the department in which Smith works" in

Codasyl [01-78] notation is:

EMPLOYEE ,NAME="'SMITH' .

FIND EMPLOYEE RECORD BY CALC-KEY .
FIND OWNER OF CURRENT ITEM RECORD SET .
GET DEPT .

PRINT DEPT.DNAME ,

In the relational model the paths are eliminated, but the user still
has to think in terms of records., As an example, we formulate the query
"all employees who earn more than their managers" in Codd's sublanquage

ALPHA [Co-71]:

RANGE Rl X

RANGE R2 Y

GET W (R1.EMPLOYEE): 3X 3Y (R1.DEPT=Y.DEPT) &
(Y .MANAGER=X .EMPLOYEE) &

(R1.SALARY > X,.SALARY)

where Rl is a relation on EMPLOYEE, SALARY and DEPT, and R2

is a relation on DEPT and MANAGER.

page 16

Note that the variables X and Y range over records. Even recent
proposals, such as the entity-relationship model [Ch-76], Aggregate
model [SS-77] and SDM [HM-79], merely build additional structures over

the traditional building blocks (i.e. records).

page 17

C. Problems 9£ the Record Based Databases

Many authors now argue that records are unnecessarily complex and
still inadequate [Ke-78 , Se-79], and that the database user should

view the data in a less technical way.

We note that with the present technology, records are most suited
for internal representation and processing. However, we argue that the
user should not be aware of the internal structure of the database. We
stated before that the user's view and the engineer's view need not
be necessarily the same. Once this distinction has been made, we can
then look for a more appropriate model of the real world for the
user. "The more we are motivated to produce a faithful model of real
information, the more we will have difficulty with record based

constructs." [Ke-79]

One of the main reasons why database query languages merely reflect
the internal model lies in the tendency of some database researchers to
work in isolation and ignorance of new developments in other fields of
Computer Science. We argue that database theory should not be separated
from the other fields of Computer Science. In particular, database
languages should have the same properties as those of other nonprocedural
lanquages, i.e. values should be specified in an abstract mathematical
way, with no reference to any particular implementation method. We

explain this by means of an analogy:
page 18

Suppose that Fred wants to ask Joe to cut a metal disc of a
certain diameter. There are several ways in which Fred can specify what
is needed.

In the tedious way, Fred may (somehow) draw a circle (or something
approximating to a circle) and give it to Joe, so he can use it as a
pattern. Here, Fred anticipates Joe's work in a token way.

This approach, resembles formulating queries in COBOL style query
languages. In such languages, the user finds his answer by directing
a pointer through the collection of records.

Alternatively, Fred may specify the circle by its mathematical

notion. Correspondingly, the user of nonprocedural languages would

give an abstract specification of the objective.

We note, however, that the relational calculus query languages,
although nonprocedural, reveal some of the operational aspects to
the user and involve him (at least partly) in technicalities. In our
analogy, it is as if Fred had to say that he wants a piece of metal in
the shape drawn by a pair of compasses! We would criticize that Fred
is burdened with details of how the work shall be done. It may be the
case that a pair of compasses is the most appropriate tool, but why

should Fred be concerned with that?

Records in the relational calculus languages, resemble the pair of
compasses. Records may be good operational tools, but the user should
not be aware of them.

(The next section of this chapter focuses on other aspects of the

relational approach to databases.)

page 19

In the subsequent chapters we will demonstrate that the
algebraic approach [Zi-75 , Gu-77 , GIW-78) provides what we are
aiming for: independence from any concrete representation and from

any technigue for implementation.

page 20

D. Assessment of the Relational Approach to Databases

The relational theory of databases is based on relational algebra.
Informally speaking, an algebra of relations is basically a collection
of relations together with some operations which can operate on these

relations.

A relation on a sequence of domains is any subset of the cartesian
product over that sequence. For example, if the domains are DO’Dl""'
and Dn then any subset of DoxDlx.....an 1s a relation over DO’
Dl""" and Dn' (There is an alternative method of definition for
relations and it will be studied later.) Members of relations are

called 'tuples'.

As relations are sets, the set theoretical operators, such as union and

intersection can be applied to them. Other operations are:

concatenation ; (wrongly called "cartesian product" in the literature)
Given two relations R and S, their concatenation RXS is
{r"'s | réR and s€S }

where r”s is the concatenation of r and s.
(Concatenation of two finite sequences r and s is a
sequence t, such that:

i) Itl=lci+ls]

ii) tllrl =r and “Aels| tlr|+j=sj'

For any sequence d, |d| is the length of 4.)
page 21

projection ; If R is a relation over a sequence of domains D, then
the projection of R over i, where i is a sequence of
natural numbers less than |ID|, is
M (R) = { (rio,ril,...) | rer }
selection ; Given a relation R over a sequence of domains D, and a
formula F built up from:
~ relation symbols = , > , 2 seese.which operate on
elements of |D| or constants
- the logical operators & , v and - ’
the selection of R over F, denoted by OF(R), is the

set of all elements of R which satisfy F.

Based on these operations several other operations such as join and
quotient are defined. Relations are often represented as tables. Thus,
projection and selection correspond to choosing columns and rows from a

relation respectively.,

All counterpart definitions in the available literature make use of
a notion which, when relations are defined in this manner, cannot be
defined; namely “arity’ of relations. Arity of a relation is defined to
be the length of its sequence of domains. For example, if R is a relation
on Db’ Dl""‘ and Dn' the arity of R is said to be n+l. Some argue
that although when the relation is not empty the above statement is

obvious, however, the arity of the empty relation is undefined., Note

page 22

that we did not make use of the notion of arity in our definition of

relational algebra. This demonstrates the redundancy of the use of arity.

The immediate issue arising from this type of specification is that it
associates a number with each column of the relation, that is, the columns
are identified by a sequence of numbers. Consequently, most relational
algebra expressions involving projection (which are cammonly accepted) are
not mathematically clear. For instance, if R is a relation on domains DO,
Dl' D2 and D3 then the following expression is not meaningful

%3=rabct 1,3 (R
because projection of R over columns O and 3 results in a binary relation
which obviously does not have a column corresponding to 3 (since after the

projection the columns are renumbered).

To eliminate the ordering on columns, among others, [SY-78 , ASU-79]
made alternative definitions for relations. They regarded a relation on a
set of attributes as a set of tuples where each tuple is a mapping from
the set of attributes to the set of values (attributes are considered to
be labels, i.e. names). Tuples are then sets and their elements are not
ordered. (Incidently , a misuse of notation repeatedly appears in the
literature adopting such a definition: the attribute (i.e. a name) is

commonly used also to denote the set of its corresponding values.)
The relational database work has overlooked a number of other

points. We will, however, merely look at two more fundamental weaknesses

of this theory,

page 23

The first problem is in the design of relational databases. The
dependencies which exist on the data cannot be expressed in relational
algebra. There are various types of such dependencies; namely, functional,
multivalued and join dependencies. The database designer should look for
all types because these dependencies play major roles in the maintenance
of consistency (that is, correctness) and in reducing the size of the
database. The study of data dependencies has resulted in production of
a great deal of literature which is perhaps more than the literature on
other aspects of relational database theory. Yet, no suggestion is fully

satisfactory; [BB-79 and among many others Fa-77 , Bi-78 and Fa-81].

Secondly, the traditional theory of relational algebra assumes that
the data has a tabular form, and, therefore, makes no provision for
computable relations. For example, suppose, in a company, the salary of
each employee is determined solely by his age, say: 150 times his age.
Although this relationship is simple and straightforward, it still has to
be viewed as a table. We, therefore, argue that the relational approach
is limited because it enforces a particular method of representation for

relations.

In chapter IV we will discuss the weakness of relational database

query languages for expressing certain types of queries.

page 24

E. New Trends in Computer Science

Since the early 1960's when the first high level programming languages
were invented, the search for more powerful languages has steadily continued.
The number of existing languages is so large that the introduction of a new
language gives no immediate cause for interest. The reason, perhaps, is that
the similarities between these languages are greater than the differences.
[Tu-81] indicates that these differences are usually superficial, whereas
the similarities are fundamental. At a certain level of abstraction all
conventional programming languages are the same:

- they have the inherent defect of having the von Neumann computer as
their common conceptual origin. [Ba-78]
- they are sequential and imperative (due to the nature of the machine),

and assigmment is their primary operation.

they cannot easily relate to conventional mathematics because their

variables are not static within their scopes

above all, reasoning about correctness of programs written in these

lanquages is difficult and often totally impractical.

In an attempt to remedy the crisis, in the past decade, mathematically
conscious Computer Scientists have tried to formalise the art of design and

analysis of programming languages.

It is now widely accepted that mathematics, particularly logic can be

usefully employed for the study of computer languages. Ashcroft and Wadge
page 25

[AW-79], however, distinguish two points of view on the application of
mathematics: one which sees mathematics as a tool to describe, to model
or to analyze programming languages (the descriptive role), and the other,
which sees mathematics as "playing primarily an active role to discover the
principles on which new languages and features should be based" (the

prescriptive role).

Production of a vast amount of highly sophisticated mathematics for the
description of languages such as PL/1 is an example of approach with the
first point of view, while some other languages, such as PROLOG [Ko-79],
Lucid [AW-77] and SASL [Tu-81] are based on mathematics in a prescriptive

role.

In this thesis we take the second point of view and define a query
language based on the notation used in conventional mathematics. This method
has the advantage of making use of the user's mathematical knowledge rather
than introducing new concepts which are inherently complicated and often

counter-intuitive.

page 26

F. Motivation for Vvarga

The perspectives in the development of Varga can be summarised as:

The query language should provide the tools by which the user can get
the best results from the database without having to go through masses
of printout,

A meaningful, easy to understand and rigorous 'error analysis' should
be mandatory with any computer language .

The user should have the simplest view (which is obviously the natural
one) of the data. The user should not be required to know anything
about the internal representation and implementation techniqgues.

The language should be independent from the data structure: the internal
data model should not affect the language.

To avoid dealing with the natural ambiguity of words , the use of
mathematics which has the same meaning in all contexts is preferred.
Correctness can be proved in formal systems.

It is to the benefit of the user if the notation of the language is
simple. Most users are familiar with conventional mathematical notation.
This notation, in addition, has several hundred years of testing and
development behind it.

Finally, implementation of the whole specified language must be possible.
The feasibility of implementing all of the features of the language is

considered in this work.

page 27

Chapterll

Chapter II

AN OVERVIEW OF THE LANGUAGE

This chapter contains an informal introduction to the major

concepts and constructs of Varqa.

A. Objects in the real world and objects in a database

Extensional objects can be loosely defined as follows: conceptual,
static objects, such as integers, which are invariant with time, place or
context etc. Intensional objects, on the other hand, are objects of the real

world which are capable of changing and yet in essence remaining the same .

For example, TEMPERATURE is intensional, but TEMPERATURE AT A SPECIFIC
TIME is extensional assuming that we know where and how this value was

obtained. (Montague's example: "The temperature is 90 and rising".)

In the field of databases, particularly relational databases, objects
are coded up intensionally. Let us consider a simple database consisting of

one relation on information about courses:
page 28

COURSES

COURSE COURSE-LECTURER | EXAMINER | 2ND-MARKER

llMathS" "John" "Jack " "Bill"

"PhyS" "Jack " "Mary" llPa]n"

Note that the column headings, called relation schemes, are
intensional objects and the entries to the columns are extensional objects.
There are 'functional dependencies' which cannot be expressed in the

relational form. They are usually given in the following form:

COURSE-LECTURER

COURSE > EXAMINER

Z2ND-MARKER

Although LECTURER , EXAMINER and 2ND-MARKER differ intensionally,
they range over a common domain, namely the set of all instructors.
The extensional approach is to forget about different intensional
characteristics of the instructors, and to deal with them just as members
of a set (of instructors). The relationship between the extensions would

then be expressed by functions mapping these sets together.

page 29

lecturer-of

examiner-of

courses

2nd-marker-of

It is important to note that 'courses' is now a set, and that it is

different from the intensional object COURSE in the relational approach,

Let us look at another example. In the relational approach, if we want
to include the “prerequisites of the courses' in the database we have to
introduce a new relation R on COURSE and PRE-REQUISITE., (We can extend
the relation COURSES to include PRE-REQUISITE, but it would not satisfy the

normal forms of Codd. See [Co-71].)

R
COURSE PRE-REQUISITE
"Phys-II1" "Phys~I"
"Maths~I1" "Maths-1"
"Phys-I1I1" "Phys-I1"

page 30

The hidden functional dependency contained in R is made explicit in the

following figure

COURSE ——— PRE-REQUISITE

Extensionally, the entries to both columns of relation R belong to one

set; that is 'courses'. An extensional representation is

courses
prerequisites-of
(We have used double lines to indicate that for every course any number
of prerequisites is possible.)

As before, 'courses' is a set, and 'prerequisites-of' is a function

which maps the elements of 'courses' to sets of elements of 'courses’.

page 31

B. Databases as Algebras

During the past decade algebra has emerged as a promising tool
for the specification of a number of concepts, in particular, abstract
data types [2i-75 , Gu-77 , GIW-78]. Algebra also plays a fundamental
role in the design of our language. We, therefore, start this section

by studying algebras and the algebraic approach.

An algebra is defined as follows [HMT-71]:
"By an algebra (or an algebraic structure) we understand a pair U=<A,Q>
where A is a non-empty set and Q is a function which correlates with every
element i of its domain a finitary operation Qi’ of positive rank, on and
to elements of A." For a more detailed definition of algebras see [MB-79 ,

Many sorted algebras have been particularly important in both the
practice and the theory of the specification of abstract data types. The
primary aim in the abstract data type specification is to (precisely)
describe a data type independently of any representation of its data objects
and independently of any implementation of the operations. [TWW-78]

A data type is regarded as a many-sorted algebra and is defined to
be [GIW-78]: an indexed family of sets (called the 'carriers') together
with an indexed family of operations between these carriers. The naming
system (i.e. indexing) is given by a 'signature'. The signature consists

of a set S of names (called 'sorts') for the carriers, and a family
page 32

*
< i hat with
{ Sw,s | weS & s€S } of operation names such tha any ?esh,s
, W
w=so,sl,...sn_1 names an operation from A =1’-\sox....xlxsn_1 to
As, where for any sort s, AS is the carrier of sort s.
Other definitions for many-sorted algebras exist, e.g. [Ma-77]

which are in harmony with the above. Further material on this topic can

be found in, for example, [GIW-78 , Zi-75].

Following the ideas stated in the previous section, we regard
a database as a collection of sets, called the "types" of the database,
together with a collection of functions mapping the elements of these

types together. The database is therefore a many-sorted algebra.

To the user, every function is merely a black box which when given a
value, (possibly) returns a value. In other words, the user does not need
to know about physical organization and representation of data, the
ordering (that is, sorting) of sets, the positions of files or other

technical aspects.

There is a name associated with every function and every type.
These symbols are contained in a signature. In programming terms, the
signature corresponds to type declaration for procedures . The
signature contains the typing rules for the database mappings and also
the types of variables. (The variables are typed by the signature and
not by the user. There is an unlimited supply of variables of each type.
We will later discuss the notion of variables in detail.) Hence, the
signature is the specification for the type checker as well as for the

syntax checker of the language.

page 33

The functions can return either a single data object or a set of data
objects: we refer to them as simple functions and set-valued functions
respectively. In general, these mappings are not everywhere defined. For
example, let 'grade-of' be a function mapping 'students' and 'courses' to
the set of integers (grade-of (X,Y) denotes the mark that the student X has
achieved in the course Y). This function is obviously defined for certain
pairs only, because not every student takes every course. We therefore
introduce a new object © which stands for the value ‘not appropriate!
or “inapplicable'. By adding 6 to our sets, our functions can be extended

to be total functions.

Note that although we extend all our mappings, the extensions are hidden
from the user: i.e. the user does not know anything about © other than as
the result of a particular type of non-terminating query - they are queries
which require applying a function to a value which is not in its domain.

We will discuss the behaviour of 6 later in this chapter, and we will look

at it again in chapter V when studying many-valued logic systems.

Example- Consider the function grade-of again. In extended form, it maps
students” and courses+ to integers+. (For all sets D, D' is DU {8}.)
If the first argument given to this function is not of type 'students'
or the second argument is not of type 'courses' , the type checker detects
the error and evaluation does not take place. However, the value © is
returned if the expression passes the type checker without the pair of

arguments being in the domain of grade-of .

page 34

We treat constants, such as numerals, as nullary function symbols
(functions which have no arguments). There are three types of
nullary functions: numerals, strings of characters enclosed in quotes
(e.g. "aB2K"), and reserved words which refer to distinguished objects
in the database. For instance, in a university, we can regard the
departments as distinguished objects and allocate them reserved words,
e.g. The-Law-Dept for the Department of Law. Similarly a reserved
word can be used to represent the “current' chancellor of the University.
However, we would not allocate reserved words to ordinary objects such
as the students or the courses, for the simple reason that they are
subject to removal. (When a student leaves the university, the database
normally does not keep any active information on him; if he has a
reserved word, its deletion means an update to the language.) On the
other hand, the office of the president of the student union is a
permanent post of the university database and the current president
of the student union can be represented by a reserved word, say

The~-SU-president.

Composition of functions is permitted, but instead of introducing
the function composition operator, we allow functions to be applied
to the results returned by other functions, i.e. f(g(x)) instead of
feg(x). In this way the language is kept first order. Note that feg
returns a function (i.e. a higher type object). For example, if

f:B-->C and g:A-->B then feg is a function from A to C.

Full computational power is provided by including a wide range of

operators in the language. The difference between operators and functions

page 35

is that the operators form an unchangeable part of the language, whereas

the functions are particular to the application database.

In addition to simple operators (such as arithmetic, boolean etc.)
four variable binding operators are also included. They are the existential
quantifier, the universal quantifier, the set constructor (e.g.,

{ £(x) | P(x) }X) and the multi-set constructor (e.q,
[£x) | P(x) 1),
In general, the operators are polymorphic although some, like + , Operate

only on specific types, e.g. integers (and of course ©).

page 36

C. On Variables

What are variables?
There are several answers to this question: in traditional computer
terminology a variable is an identifier attached to a register in the
machine's memory; to logicians a variable is a certain kind of symbol;
and mathematicians and physicists have again their own notion of variables.
With the exception of elementary arithmetic, these disciplines employ
variables very often. Here, we review first some given theories on

variables, and then state our notion of variables.

Having investigated most concepts of this complexity, Russell, at the turn
of the century, stated that there was not a satisfactory theory of variables
in his Principles of Mathematics, Further, he admitted that this theory was
certainly one of the most difficult to understand [Ru-03]. Russell considers
anything which is not constant (i.e. absolutely definite) as variable, For
instance, in the linear expression

AX + By +C =0
x and y are generally considered as variables, and A, B and C as constants;
he argues that, unless we are dealing with an absolutely particular line, A,

B and C are also variables.

Menger [Me-53] examines several theories on variables, such as that of
Weierstrass. Given a class C of numbers, Weiertrass defined a numerical

variable with the range C as a symbol standing for any element in C. For
page 37

example, in

the letter x is a variable whose range is all positive numbers. Menger
sees this as inadequate and defines variable guantities in a complicated

way as follows:

"Let A be any class. By a variable guantity with the domain A we mean

a class of pairs such that: (1) in each pair the first element is an
element of A, and the second is a number (called a value of the Vede) ,
(2) each element of A is the first member of exactly one pair belonging

to the class. The class of all values is called the range of the Vedg."

Curry and Feys [CF-58] see variables "as means of enunciating theorems
about other things", the 'other things' being functions. The following are

examples of theorems:

(x41)2 = x% 2x + 1

x2 is a function of x
-4 x2 = 2x

dx

The above statements, when interpreted, express some of the properties of
the function SQUARE.
(Combinatory logic [CF-58] is concerned with the analysis of formal

variables and their eventual elimination.)

Note that the above views are not contradictory : each one emphasizes
a particular usage of variables, [AW-82] indicate more complicated cases

where the variables can take on a whole family of ranges. Variable x in
page 38

the following is an example:

5 m x+y+1
y=1,100 x=1,y
For the purpose of this work, we take Weierstrass' concept of
variables and generalize it to admit any set (not just numbers) as the
range of a variable. However, we restrict our generalization by excluding
variables which range over functions (in contrast to logicians who
normally allow variables to stand for functions). In this way we can

keep the language first order.

As customary in mathematics and logic, in Varga we restrict our
variables to certain sets : each of our variables has a type associated
with it, For instance, in the statement "x is mortal" we require x to

be a "living object" and not "anything".

An important and subtle point is that, although we regard variables as
dynamic objects (things which change value with, say, time) we cannot talk
about a specific permanent value for it. For example : if x stands for
any integer, then saying 'x is 1' would be wrong. Because, in Russell's
words, "it is not true that 1 is any number, though it is true that
whatever holds of any number holds of 1". We, therefore, reject the
traditional view of Computer Scientists' that variables denote storage
cells, (Note that we can talk about the value of a variable in an
enviromment, However, within an enviromment the value of a variable
cannot change. In traditional Computer Science (imperative languages),
the textual scope of the programs do not agree with the notion of

enviromment.)
page 39

D. Variable Binding Operators

Let us compare two different ways in which variables can be employed.

Often addition is defined in terms of the successor function as follows

X if y=0
X+y =
suc (x) +2z if y=suc(z)
On the other hand, sum of the possible values of an expression, say i2+1,

is expressed as :

In the above examples, although z and i are both variables, they have
different characteristics: z acts as a placeholder, whereas i indeed ranges
over the values 1 to n. The cause of this difference is the operator s
which forces variable i to vary. There are many operators of this kind : we
list a few examples which make use of them

):'sin(x) dx
V& P(x)

x>5 Q(x,y)

(£ 1P(x)},

These operators are called variable binding operators [KMM-80]. Each one

of the symbols “f, %, 3,.....above, denotes a variable binding operator.

In the simplest case, a variable binding operator takes a function as
its araument and returns a value. Let f be a function mapping real numbers
to real numbers. The value returned by

Jf}(x) dx

A
is, in general, a real number. In abstract notation, the type of the
denotation of‘J.can simply be written as

[R-->R -——> R
Similarly, in Y& P(x) where x is of type &, the type of the denotation
of VYV is

[-=> bool] --> bool

where bool is {true , false}.

It must be stressed that, although functions are allowed (implicitly
only) as the arguments of variable binding operators, we permit neither
function-variables, nor function producing operators. It is our intention
to keep the system in first order. (Some may argue that, by allowing
operators which operate on functions, we have already departed from first
order, but note that first order logic also makes use of quantifiers

and 4)

page 41

E. The Extra Object ©

We start this section by justifying the inclusion of the special object
8. We also examine the alternative methods and state the problems involved

in their use.

A naive way of representing the data is to designate particular
types for the domains and ranges of functions. A case similar to this
is observed in the relational model: There is a set associated with
every attribute of the relational model (in relational database jargon:
underlying domain). These sets do not need to be distinct. As a matter
of fact, sometimes they overlap heavily : LECTURER , EXAMINER and
2ND-MARKER in the sample database given in the first section of this
chapter are examples. This method of classification, however, in some
cases becomes cumbersome and unnatural. Suppose the following table

as part of a database:

X sin(X) cos (X) tan(X)
0 O 1 0]
30 0.5 .87 .58
45 .71 .71 1
60 .87 0.5 1.73
90 1 0 9999

Obviously, considering different types for sin(X) , cos(X) and tan(X)
is not appropriate. In fact, we even do not have to consider a different
type for X. Therefore, as suggested in [SS-77], similar objects are

collected into (perhaps distinct) types.

When applying this abstraction to our suggestion (that is, collecting
all objects of the same type into one big set), as discussed earlier, it
is no longer true that the mappings are, in general, everywhere defined.
There are two alternatives to put the situation right:

- we define subtypes within a type and we allow the functions to operate
on subtypes only, or
- we introduce an "extra object" and thus extend the mappings into total

mappings (6 in our proposal is this extra object.) .

We examine these methods by means of examples.
Suppose in a company database the following information should be included
names of all employees
names of the spouses of the married employees

maiden names of all married women employees

The set of 'married women employees' is a subset of 'married employees',
which itself is a subset of the 'employees'. We can represent the above

information by total functions in the following form

name-of : employees ---> strings
Spouse-name-of : married-employees ---> strings

maiden-name—-of : marr ied-women-employees —--> strings
page 43

It seems that the problem is solved and there is no need for the extra
object. However, difficulty will be encountered when dealing with functions
which take more than one argument. Earlier, we studied the function
grade-of which operated on “students' and “courses'. To avoid dealing
with partial functions, we have to consider a suitable subset of the set
“courses' for each individual student (or vice-versa). (If there are two
sets S and T where each one has three subtypes, then there are at least

9 subtypes of SxT.)

The problem is greater for functions of higher arities. In fact, the
problem grows quickly in relation to the cardinalities of the sets and
the arity. (Of course we can transform functions of greater arities to
unary functions, but this does not solve the problem and, in addition,

forces the use of higher order functions.)

We, therefore, find it more convenient to include the special object ©.

© in our system is similar to the third value in three-valued logic
systems, but is different from all of them in the way it behaves. (A
detailed discussion on three-valued logic is included in chapter V.)
© can be interpreted as any of the terms 'misapplied' , 'inapplicable'
or 'not appropriate'. It should, however, be made clear that it does not
mean "inconsistent®, or ‘invalid’. Remember that faulty queries (i.e.
those which encounter typing error) cannot be evaluated because they
cannot pass the type-checker. Thus, we treat © as "does not apply to

this individual", that is, domain error.

page 44

A function can return © either because
- it cannot have a value for the given input (This case is different
from the case where a value should exist but is at present unknown.) or

- at least one of the arguments given to the function is @.

The operators have to be extended to handle 6. An important rule
governs the extensions of operations: the extended form in the absence
of 8 must agree with the non-extended form, within the domain of the non-

extended function. For example, the truth table of the operator 'and' is

T F
T T|F
F FI|F

After the extension by © the table is

page 45

Occurrence of 8 in the evaluation of a query does not imply that 6
is the final result because we make some exceptions., The result of applying
any operation to 8 is © except for operators 'and' and 'or' which may
stop © from propagating. For example, the operator 'or' will result in
true so long as at least one of its operands is true. In addition, in the
evaluation of queries involving variable binding operators, occurrences of
© may be ignored. We will see that, for example, Jx P(x) is true if P(x)

is true for some value of x, it is false if P(x) is false for all values

of x, and it is 6 otherwise,

Finally, variables are not permitted to assume the value 8. For

instance, in W& P(x) the value © is not allowed for x.

page 46

F. Queries

Queries are expressions which are built up out of function names,
operation names and variables, (Data objects are denoted by nullary
function symbols.) Only queries which satisfy the typing rules can be
evaluated. Queries must be closed expressions; i.e. free occurrences
of variables are not allowed in queries. Each variable can be bound
only once in any expression; for example, expressions such as

Ix ((x>5) v (YkEB x=2))
are not considered as valid queries. Note that these rules are all

syntactic requirements,

The value of a query is defined by specifying the values which the
algebra assigns to the parts and subparts of the query, in a fairly

obvious way.

Queries cannot return higher order objects, i.e, functions.
The values returned for queries can be data objects (as found in the
database), sets of data objects, or sets of sets, There are several
operators which operate on multi-sets of objects, such as 'Sum' and
"Average' . Multi-sets of data objects are therefore considered.
(A multi-set is analogous to a set but elements may appear more than

once , e.g. [b,a,b,c,a,al.)

page 47

We now formulate a number of gueries to demonstrate the power of
our language.

Consider a university database, with several types such as students,
courses, instructors, etc., and the functions lecturer-of, dept-of,
courses—of, etc. In the figure below, the types appear in round boxes
and the functions appear with arrows. Double arrows indicate the set-
valued functions. Note that some of these function symbols may refer to
the same operational values. For instance, courses—of, enrollers-of

and is-taking are three functions which represent exactly the same

information.

dept-of
depar tments
students
&
Q)/
tdkyng §$
487
4,
(Lometen) ? 5
\ 5 ; §
3 § b
S 5 o
\ £
w 9
()
©w
5
. o
:

2nd-marker-of

courses

instructors
lecturer-of

prerequisites-of examiner-of

page 48

1. second markers of the courses whose lecturer is also the examiner

{ 2nd-marker-of (C) | lecturer-of (C) is examiner—-of (C) } C

In the evaluation of this query, a set is constructed containing the

second markers of all those courses which satisfy the condition -- lecturer
of the course is the same as examiner of the course —- while the variable C
iterates over the elements of courses. (The appearance of C on the very
right indicates the variable which is being bound by the set construction
operator. Although that is obvious in this query , we abide by the

mathematical rules to preserve uniformity.)

2. name and address of the students who have taken more than six cour ses

{ (name—of(STUDENT),address—of(STUDENT)) | No-of (cour ses—of (STUDENT))

GT 6 }STUDENT

The result of this query is a set which contains pairs of names and
addresses of some students (That is, a binary relation on names and
addresses). The operator gg:gf counts the number of elements in the
set returned by cour ses—of (STUDENT) , and GT is an arithmetic operator

which compares the result of the counting with the number 6.

3. students who are taking a course with their advisors

{ STUDENT | exists COURSE : COURSE 1isin cour ses-of (STUDENT) and

advisor-of (STUDENT) is lecturer-of (COURSE) }STUDENT

page 49

There are two variables in this query: STUDENT which is bound by

the set construction operator, and COURSE which is bound by the
existential quantifier exists. The logical connective and gives
the conjunction of the two boolean values returned by isin and is.

isin is the usual set membership operator.

4. all enrollers of the courses taught by the lecturers of the

Department of Law.

Union { enrollers-of (COURSE) | dept-of (lecturer-of (COURSE)) is
The-Law-Dept }COURSE

The operator Union, when given a set of sets, computes the union of all
included sets. (Another operator,namely union , exists, and it is the
usual set theoretical operator U). enrollers-of is a set-valued function
and hence, the set construction operator in this query builds up a set

of sets. Nested application (or, composition) of functions is carried

out here: dept-of is applied to the result returned by lecturer-of.

The-Law-Dept is a reserved word standing for the Department of Law.

5. Is Jim the name of the head of the Mathematics Department?

"Jim" is name-of (head-of (The-Maths-Dept))

The answer to this query is returned by the operator is , and it is “yes'

or 'no” (true or false respectively).

page 50

Finally, to give a comparison with other guery languages, we formulate
the well known query : "all employees who earn more than the managers of
their departments" of a company database. (In the previous chapter this

query was formulated in ALPHA.)

{ E | salary-of (manager-of (dept-of (E))) LT salary-of (E)} E

page 51

G. Comparison With Other Work

With COBOL style query languages (mainly used with hierarchical and
network data models) the user has to navigate a path through a jungle of
records. The relational approach resolves this by introducing relational
calculus as a base for non-procedural query languages. Relational
calculus, however, still requires the user to think in terms of records.
For example, its variables range over records. (We do not suggest that
records are inherently evil, because in some cases they are extremely
helpful. However, having everything based on records is unrealistic and

far from the user's intuition.)

Varga preserves the advantage of non-procedurality, furthermore, it
provides the user with a simpler view of data. The way that the variables
are used in Varga is exactly that of conventional mathematics to which

most users are accustomed.

Varga is independent of any particular data model and can be used
with an implementation based on any of the existing models, or even a
combination of them. This advantage is more noticeable if we realize
that relational databases make no provision for computable relations

because they are based on a specific method of implementation.

This work is not the first endeavour for the design of a functional
page 52

query language. Schwartz [Sc~71] was the first to mention the abstract
algebraic view of databases, but he never pursued this idea any further.
His general purpose programming language SETL, however, has several

features similar to Varqga.

In [BF-79 , BNF-81] a functional query language, FQL, based on Backus'
FP is suggested. Although FQL provides a powerful formalism for expressing
queries, its notation is very complicated and somewhat unnatural. The
elimination of variables in FQL makes the language very different from
Varga. Four functionals (higher order functions) are provided for combining
the functions which map the data types together.

In the early version of FQL, the user had to declare the types (input and

output types) of each expression and type checking was then done statically.
The new version [BNF-81] relieves the user from the need for specification

of types, since type checking takes place at run time.

In contrast to FQL, Daplex [Sh-81] has been developed with emphasis on
notation. Daplex, however, lacks a formal definition. Many of its expressions
are mathematically meaningless. Furthermore, several obvious things are
missing. For example, Daplex fails to deal properly with functions of
arities greater than one: the grades obtained by the students in their

courses are given by declaring the following function

DECLARE Grade (Student,Course) ---> INTEGER

This function, however, is not defined for all pairs of students and

courses. To avoid the problem, another choice of declaration is given:

page 53

DECLARE Grade (Student,Course (Student)) -—> INTEGER

We find this statement totally ambiguous; 'Course' which was used as a
name for data type in the first statement, appears as a function name in
the second (surprisingly, in some queries 'Course' is used as a variable
ranging over the elements of the type Course, while, when necessary,
being used as a function name!). Furthermore, in the second statement
where Course stands for a function which when given a student returns a
set of courses, the meaning of the function Grade is not clear: does it
return only one value for all of the given set of courses, or does it
operate on each individual course and return a set of values. It seems
that although the notation suggests the former, the latter is the intended
meaning.

Finally, Course, which (when standing for a function) normally

operates on students, is later defined to be the inverse of the function

Title : Course ~--> STRING
which is

Course : STRING -~> Course.

(The statements are exactly copied from [Sh-81].)

Most of other recent work on databases is concerned mainly with

the relational model.

Following the algebraic approach to abstract data types, [CPP-78]

formally describe a database model by its signature (a set of typed

page 54

operations) and its presentation (a set of algebraic eguations). [VM-81]
consider equations as special cases of clauses and present an algorithm
to translate these equations into logic programs automatically. This
work, however, is more related to the study of updates rather than the

construction of a query language.

The aggregate model suggested in [SS-77] has a good degree of
abstraction. There are two kinds of abstraction considered:
- aggregation by which a relationship between objects is regarded as
a higher level object
- generalization which allows a set of similar objects to be regarded
as a generic object.
All objects, namely: individual, aggregate and generic, are then treated

uniformly.

A semantic data model is presented in [HM-79] with a degree of
similarity to the entity-relationship model of [Ch-76]. A positive point
in this model is its provision for multiple ways of viewing the same

information.

There is a trend in current database work towards a more constructive
use of first order predicate logic for both data description [Ko-79] and
construction of query languages [Ko-81 , Pi-78]. See [GM-78 , GMN-81]

for comprehensive discussions.

page 55

Chapterlll

Chapter III

FORMAL SPECIFICATION OF VARQA

In this chapter we define our proposed language in a formal manner.
(In fact, we define not only one query language but a whole family of
languages which essentially have the same structure. In this thesis,

however, we consider only one of them, that is Varga.)

Like other formal languages, the basic components of our language

are "symbols"; with symbols we construct symbolic expressions. A symbol

is a sequence of characters. The characters are contained in an alphabet.
The set of symbols is called the 'vocabulary' of the language and is
divided into four divisions: "type symbols" , "variable symbols" ,
"function symbols" and "operation symbols". We assume that the form

of each symbol determines to which division it belongs.,

page 56

For Varga, we consider an alphabet consisting of:

- Roman letters; upper case and lower case

- numerals O - 9

~ special characters; those available on an ordinary terminal, such

as + | (< {:} ...

On this alphabet, we define four groups of symbols:

- type symbols
These are strings of lower case Roman letters possibly
followed by a numeral. A type symbol, however, cannot

begin with the string "is" or end with the string "of".

- function symbols
These are either:
- non-nullary function symbols
These are strings of lowercase Roman letters and
possibly "-", which either
- start with the string "is" or
- end with the string "of" .
- nullary function symbols
These are either:
- strings of Roman letters beginning with the
string "The" and possibly containing "-",
(we call these 'reserved words') or
- any string enclosed in quotes (eg, "aB2K") or
- strings of Roman letters and numerals possibly

containing " " which are neither type symbols,
page 57

function symbols nor reserved words or

- a string composed only out of the numerals 0-9.

-~ operation symbols
These are either:

- infix operators; They are:
+ - * / isin LT LE GT GE 1is is-not
is-subset-of is-true-subset-of union intersection
without and or implies.

- prefix operators; They are:
Union Intersection Sum Prod No-of Min Max
Average not.

- variable binding operator symbols; They are:

forall exists {} [] .
- variable symbols
These are non-empty strings of uppercase Roman letters

possibly followed by any number of numerals.

When speaking meta-linguistically , we will use Greek letters to

reason about the language.

page 58

A. Symbols and Symbolic Expressions

Definition: A simple type expression (ste) is a string of characters

from our alphabet and the class of ste's is inductively
defined as follows:
- type symbols are ste's
- if Oy, O ,.s.and &, for some n, are ste's
then oUa (OXy X.eeuxa) , P(ap)
and H(ob) are ste's,
g

Remark:
Use of parentheses in (obxol) is necessary, because, in general,

((AxB)xC) is different from (Ax(BxC)).

Definition: A function type expression (fte) of arity n is a string of

characters from our alphabet with the following form
%I (ﬁ.’..noo’ an_l __"—>B
where Yién o is a ste and B is a ste.

0

Definition: A signature is a function which assigns a function type
expression to each non-nullary function symbol, and a
type symbol to each variable symbol,

O
page 59

Remark:

Every signature must include the types 'bool' and 'int'.

Definition:

Definition:

Definition:

Let 5 be a signature.
Let ¢ be a function symbol in the domain of s.

The arity of ¢ iny is the arity of s(p). (That is

the unique n such that 5(¢) is a fte of the form

cb, olyoooco, an_l —"__> B w")ere oo, ol’.ooa

t
0,1 and B are ste's,)

O

A (many sorted) algebra is a function which assigns a set

to each type symbol and a function to each function symbol,
O

Let A be an algebra,
Let o be a simple type expression.

The set of all objects of type @, denoted by ll\lO is

defined as follows:
- 1f o is a type symbol, then II\I0 is the set of all
objects of type a in the algebra A, that is, Ala) .

- if o is oyUoy then lAl0=|AI UIAIol‘

OD

if .
9 is (ooxalx...xon) then

'Ala=|Al x.....XIAIO L]

% n

- if a is P(B) then |AI0=P(IA|).

B

page 60

- if o is M(B) then IAIG=M(IAIB) '

where M(X) denotes multi-sets over the set X.

O

Definition: Let s be a signature.
Let A be an algebra,
A is a s-algebra iff for each function symbol ¢ in the domain
0f AI if z((P) iS %, (ﬁ.'oouoopon_l———_> B then

A(p) returns an element of Il\l'3 when given an element

of |A| ; an element of |A|]_, and an element
of |Al .

0ln—l
O

Example:

Consider a signature s and a function symbol ¢ such that s(9) is
o B —=>Y,

If A is a s-algebra which assigns Z (the set of integers) to o and
B, R (the set of reals) to ¥, then given two integer numbers as the

arguments, the function A(cp) will return a real number,

Definition: An operation type expression (ote) of arity n is a string of

characters on our alphabet with the form

001017 cessee ,Gn__l "—"->B

where vieén o is a ste or a fte, and B is a ste.

O

page 61

Remark:
We assume that every operation symbol and every variable binding
operator has an ote associated with it. The arity of the operation

symbol is the arity of the ote associated with it,

Definition: Let 5~ be a signature,

The set of all well-typed expressions on g, denoted by %Z

is
L)Ea for every type &
where Eo is the set of all well-typed expressions of
type & and is inductively defined as follows:
- variable symbols of type & are in E e

- if ¢ is a function symbol such that (@) is

%, <1l AKX R X W/ cn_l "---> x and eer%,
€,€E_ ,.e0., and e _1€E then
1 % n-1 %
?(eo,el,.....,en_l) GEO.

- if eo and e, are in Ea then

eo is el eEbool
eO is-not el eEbool

- if e and e, are in E. then
1 in

0 t
€, GT e eEbool
€ LT 21 EEbool
€ GE e eEbool
o LE e eEbool
ot Eint

page 62

e. ~e €E

0 1 int
*
" € GEint
€0 / el GEint
- if eOGEa ’ eleEP(a) and eZGEP(a) then

eO isin e1 GE] 1
e1 1s-subset—-of e, GE’ 1
el is-true-subset-of e2 GEI 1

el union e2 eEP(a)

el lntersection e2 GEP(a)

e without e, eEP(a)

- if eOeEP(P(a)) then

Union eo GEP (o)

Intersection eo GEP (@)

- if 5 and e, are in E] 1’ and X is a variable symbol

then

eo and el GE] 1

eO or e1 GEbool

not e 1 eEbool

exists X:eo GE] 1
forall X:eo GE1 1

- if eerol ’ eleEbool and X is a variable symbol then

{ eo}X GEP (@)

{eolel}x eEP(o:)

page 63

[eO]X GEH(G)
[eolellx GE"(O)
if eGBH (0 then

No-of e €E.

int
if eeEP(int) then
Max e eEint
Min e eEint
- 1f eeEll(int) then
Sum e eEint
Prod e eEint

Average e eEint

- if eOeEaO ' eleE and a is of the form
OOUol then
eO €E o
e1 eEa

if e eEo , €.€E resses and eneEa

O o] 1 n
then
(en1€1/000,8) E€EE
0""1 Pl
n (X0y X, . . X0)
- if eeEo then
(e) GEQ

page 64

Definition: Bound occurrences of a variable X in an expression is defined

as follows:
- if the expression is of the form
exists X:e
or
forall X:e
where e 1is an expression
then any occurrence of X in e is a bound occurrence.
- if the expression is of either of the forms
{elx lelX
where e is an expression
then any occurrence of X in e is a bound occurrence.
- if the expression is of either of the forms
{egle I leqle,1X
where e, and e, are expressions

0

then any occurrence of X in € and any occurrence of X
in e is a bound occurrence,
- if the expression e is of the form
P(eo’el"""en—l)
where P is either a function symbol or an operation
symbol and WVi€n e; is an expression
then bound occurrences of X in e are those corresponding
to bound occurrences of X in ey for some ien.,
- if the expression e is of the form
(eo'el"""en—l)
where ien e; is an expression

then bound occurrences of X in e are those corresponding

to bound occurrences of X in e; for some i€én.
0 page 65

Remark:

In the above definition, although we should have considered each operation
symbol individually, we have used P to stand for all of them (as well as
the function symbols)., This is merely to avoid repeating the same thing

over and over,

Definition: All occurrences of a variable in an expression which are not

bound are said to be free occurrences.

0

Definition: A closed expression is an expression in which there are no

free occurrences of any variables.,

O

Remark:
We put a restriction on expressions that in any expression any variable

can be bound only once.

Definition: A query is a closed expression in which any variable is bound

only once.

O

Definition: An enviromment is a function which assigns (temporary) values
(of the appropriate type) to variables,
O

Definition: A database is an ordered pair < s +A>, where s is a
signature and A is a s-algebra.

O

page 66

B. Semantics of the Language

The meaning of the expressions of our language is specified by
inductively defining meanings for parts and subparts of the expressions.
We first give semantics to function symbols and operation symbols, and

then define meaning for the expressions.

Semantics of the function symbols

The algebra associates a function with every function symbol existing
in its signature. The associated functions are in their extended form. We

define the natural extension for functions as follows:

Definition: Let f be a function from DOxDlx......an_1 to D, .
The natural extension of £, denoted by f+, is a function from

DOU{G}xDlU{G}x. .o .an_lU{G} to DnU{G} such that

f (xo,xl, . ’Xn-l) if
(xo,xl, cee ,xn_l)GDom(f)
+
f (XO,Xl,...,Xn_l) -

e otherwise.

page 67

Semantics of the operation symbols

In the following we will use
a and b as data objects
A and B as sets of objects
W as a set of sets of objects
X as a variable.

The semantics of each operation symbol is given individually.

ARITHMETIC OPERATORS

e
+ associates with the operator
i;ﬁ int U{6} x int U{6} --> int U{6}
where

a+b if neither a nor b is 6

e otherwise
(+ is the ordinary arithmetic operator plus.)
The operations corresponding to "*" and "-" are multiplication and
subtraction respectively, and are similar to the operation corresponding

to ll+" .

ll/ll

The operator associated with / is

page 68

v

/ + int U{6} x int U{E} --> int U{6}
where

a/b if neither a nor b is 8, and b is not 0
=] otherwise
SET-THEORETICAL OPERATORS

"isin"
isin corresponds to

& : oU{e} x U} —-> bool U6}

where

acA if neither a nor A is e

aéa =

e otherwise

"is-subset-of"
The corresponding operator is

¢ : P(uie) x P(®)U{6} --> bool U{6}
where

ACB if neither A nor B is ©

(2] otherwise

"is—true-subset—of",cf, is similar to "is-subset-of".

page 69

"union"
This symbol is associated with
U : P(qU{6} x P(®U{0} —> P(x)U{O}
where

AUB if neither A nor B is ©

e otherwise

"intersection",{], and "without" (i.e. set difference) are similar to

union.

"Union"
The operator corresponding to Union is

O : P(P(x)U{e} --> P(®U{B}

where
{x|x€y and yew} if W is not ©
Qw =
o otherwise
"Intersection"

This symbol corresponds to
) : P(P()U{6} --> P(x)U{B}

where

{xAEW x€y} if W is not ©

3
=
0

© otherwise

page 70

COMPARISON OPERATORS

" GT"
S : int U{©} x int U{@} -—> bool U{S}

where
a>b if neither a nor b is ©

] otherwise

The operators 'Z ’ < and Sv correspond to GE, LT and LE respectively.

Their extensions can be modelled on that of GT .

" is"

The corresponding operator is
a U{e} x o U{e} --> bool U{6}

v
= .
.

where
a=b if neither a nor b is 6

o otherwise

The operator corresponding to "is-not" is the negation of that of "is"

LOGICAL CONNECTIVES

Ilan 1]
This symbol is associated with
& : bool U{8} x bool U{6} --> bool U{6}

where

page 71

true if a and b are both true
a g b = false if at least one of a and b is false

(2] otherwise

g
The associated operator is
V : bool U{®} x bool U{6} --> bool U{6}
where
true if at least one of a and b is true
avb=(false if a and b are both false

<) otherwise

"nOt"
% : bool U{8} —-> bool U{e}
where

-4 if a is not ©

Je
o
[

<) otherwise
The operator associated with "implies" is AN , where al>b is equivalent

1 4
to Ja v b,

MISCELLANEOUS OPERATORS

"SUITI"
The corresponding operator is §E (which operates on multi-sets):
S : M(int)U{e} --> int U{e}

where

page 72

i if D is not ©

e otherwise

"Prod" is the name for the operator computing the product of the
elements of a multi-set. "Average" is associated with the operation for
finding the average value of the elements of a multi-set. "No-of" stands
for the "element counter". "Max" and "Min" correspond to the operations
for finding highest value and lowest value within the elements of a set
(of integers) respectively, All these operators behave in a similar way

to the operator ¢,

Semantics of the expressions

Let 5 be a signature,

Let A be a s-algebra,

Let € be an A-enviromment,

Let E be a closed expression on s,

The value of E in algebra A and enviromment € is inductively defined as

follows:

- if E is a variable symbol then the value of E is the value
assigned to it by the enviromment g.

- if E is an n-ary function symbol ¢ with n arguments tO’tl""

page 73

by (Leee @lty,ty,eecet 1)) then the value of E is
the result of applying the function which A associates with ¢
to the values of to'tl""' and tn_1 in algebra A and the

enviromment g,

- if E is an n-ary operation symbol P with n arguments €yr€prenseeys
€1 (i€, pley,ey,eeese 1)) then the value of E is the
result of applying the operation which is associated with P to the
values of €qr€yrese and e 1 in algebra A and enviromment g,
- if E is of the form exist X:e where X is a variable symbol and
e is an expression (of type boolean) then the value of E is :
- true iff e is true in some envirorment €' differing from €
at most in the value assigned to X
- false iff e is false in € and in all enviromments g' differing

from € at most in the value assigned to X

- 8 otherwise,

- if E is of the form forall X:e where X is a variable symbol and
e is an expression (of type boolean) then the value of E is :
- true iff e is true in € and in all envirormments g' differing
from € at most in the value assigned to X
- false iff e is false in some enviromment ¢' differing from
€ at most in the value assigned to X

- 6 otherwise,

page 74

- if E is of the form { e }X where X is a variable symbol and e
is an expression then the value of E is
-8 if e is © in some enviromment €' differing from € at
most in the value assigned to X
- the set containing the values of e in
all enviromments €' differing from € at most in the

value assigned to X otherwise,

- if E is of the form { eO l = }X where ey and e
are expressions and X is a variable symbol then the value of E is
-8 if e is ® in some envirorment g' differing from €
at most in the value assigned to X in which the value of
e, is true.
~ the set containing the values of e in

all envirorments g' differing from € at most in the value

assigned to X in which the value of & is true otherwise,

- if E is of the form [e]X where X is a variable symbol and e is
an expression then the value of E is
-0 if e is © in some environment g' differing from € at
most in the value assigned to X
- the multi-set containing the values of e in
all envirorments €' differing from € at most in the

value assigned to X otherwise,

page 75

C. A simple database

We study in this section a database which models part of a
warehouse (storage) system. The items stored in the warehouse are parts.
The warehouse is divided into locations in which items can be stored.
Each kind of part may occupy several locations, but each location may
contain only one kind of item. The capacity of every location is limited.

Some parts may be able to substitute others.

Along with the above information, we are interested to store in our
database
- name, weight, substitute parts, locations and the quantity stored
in each location for every part

- the capacity of every location.

Solution

The types in our database are: parts, locations and strings. Recall
that the types integer and boolean are present in all databases. We
choose the type symbols ‘parts’, ‘locations', ‘strings', ‘int' and
"bool” for our types. Further, we designate function symbols to stand
for the functions giving the relationships between the data. Here is
a list of the function symbols together with their function type

expressions:
page 76

- if E is of the form [€ | e 1X where € and e

are expressions and X is a variable symbol then the value of E is

-8 if eO is © in some enviromment g' differing from €

at most in the value assigned to X in which the value of

e, is true.

1

- the multi-set containing the values of e in

all environments €' differing from € at most in the value

assigned to X in which the value of e is true otherwise,

page 76 (A)

place—of parts -——-> P(locations)

item-of locations --—> parts
is~containing locations , parts ----> bool
name-of parts —--——> strings
substitutes-of parts ----> P(parts)
weight-of parts ----> int

gty-of parts , locations ----> int
capacity-of locations ----> int.

Figure 1 illustrates these relationships.

We will also supply an unlimited number of variable symbols of each
type. Although we have a good degree of freedom in the choice of variable
symbols, we choose, for the benefit of the user, symbols which reveal the

type. Here are suitable variable symbols of type parts:

P, P4, P1, P2,......... and PART, PART@, PARTI, PART2)ceeennennns

Similarly, for the type locations we use the following variable symbols:

L, I8, L1, L2,..ccevuve. , LOC, LOCA, LOCL, LOC2,eeeueenn. . and

LOCATION, LOCATION@, LOCATION], LOCATIONZ2,...e....

The algebra associates the set containing all data of a type with the
appropriate type symbol. Assume in the following that the set corresponding
to the type 1locations is:

{11,12,13,21,22,23,24,31}.

page 77

We denote this set by X (i.e. the set X contains all locations). See

figure 2 for the other sets.

Each function symbol corresponds to a function. For instance, the
function associated with the function symbol capacity-of is f7 below:
+

£ N > I

A complete list of functions which correspond to our function symbols is

given in figure 3.

We now formulate some queries and discuss their evaluation.

1 - What is stored in location lo00 A ?

item-of (100 2)

This query does not pass the type checker of the system, because the

argument given to 'item-of' is not of the type 'locations'. (type error)
2 - What is the name of the part stored in the location 2172

name-of (item-of (2 1))
In the evaluation of this expression, the result returned by the

function corresponding to 'item-of' is given to the function associated

with 'name-of'. The answer to the query is "nut".

page 78

3 - All parts which are heavier than 200 grams.

{ P | weight-of (P) GT 200 }P
The variable binding operator {}, while forcing variable P to range
over the elements of the set associated with 'parts', constructs a

set consisting of those parts which qualify the condition. The answer

of this query is {it_4 , z 13},

4 - Locations of those parts which can substitute for mk_3200.

{ places-of (PART) | PART isin substitutes—of(mk_BZOO) }PART

substitutes-of returns a set of parts. Each one of these parts may have
several locations. The answer to this query is therefore a set of sets,

that is : {{1 1,2 1},{3 1}} .
5 - How many locations are occupied by the substitutes of the part
mk_3200?
(i.e. Count the locations appearing in the result of query 4.)
No-of (Union { places-of (P) | P isin substitutes—of(mk_}ZOO)}P)
Given a set of sets, 'Union' computes the union of all included sets.

The operator 'No-of' counts the number of elements of the computed

result.

page 79

6 - What is the total weight in those locations which contain the

item pt_12 ?

{ gty-of (pt_12,L) * weight-of(pt_12) | L is-containing pt_12 }L

Note that this simple guery cannot be formulated in languages based on
the relational calculus in a straightforward manner. These languages,
in general, require a host language (e.g. COBOL) to provide the tools

for such queries.

7 - All parts which have more than one location with a capacity more than

200.

{ PART | No-of({ LOCATION | (LOCATION is-containing PART) and

(capacity—of (LOCATION) GT 200) }LOCATION) GT 1 }PART

This complex guery can be viewed to be composed of two nested expressions.
{ PART | No-of (L.) GT 1 }PART
where L is
{ LOCATION | (LOCATION is-containing PART) and

(capacity-of (LOCATION) GT 200) }LOCATION

Note that L cannot be evaluated as a query because it has the free

variable PART.

page 80

8 - What is the level of stock on part z_13 ? (i.e. inventory on z 13)

Sum [gty(z_13,LOCATION) | LOCATION is-containing 2z 13]JLOCATION

The answer 30 is returned.

9 ~ All parts which occupy all locations with capacities more than 5O0.

{ P | forall L:(capacity-of (L) GT 50) implies (L is-containing P))}P

The empty set is the answer to this query.

page 81

substitutes-of

item-of

locations

places-of

ie-containing

Figure 1 - Types and functions in a warehouse database

page 82

Figure 2
The type symbols and their associated sets in

the warehouse database

Type symbol Associated set

parts p={ptl12, it 4 , mk 3200, z 13, pt 10,
z 100 }
locations ~={11,12,13,21,22,23,24
31,32}
strings s = { "nut" , "bolt" , "washer" , "pipe" }
int z={ es 000y _2’_1 ,0’1,2,~--co}

bool B = { true , false }

(The types 'int' and ‘'bool' are present in any database.)

page 83

Figure 3

The warehouse database, functions and their values

places-of
fO: p+ - P(>\)+

{<pt 12, {1.1,21}>, <it 4, {2.3}>, <mk_3200 , {1 2}> ,

<z 13, {1.3,2.4}> , <pt_ 10, {3.1}> , <2 100 , {2 2}> }

item—_o_f

+ +
fl' A =-=>p
{ <11, pt 12>, <12, mk_3200> , <1.3, z 13>, <21, pt 12>,

<22, 21005, <23, it4>,<24,213,<31,pt 10>)

is-containing
+ + +
f2: X Xp -->B

This function has the same information as the two above.

name-of

+ +
f3. P -->s
{ <pt_12 , "nut"> , <it 4 , "bolt"> , <mk_3200 , "nut"> ,

<z_13 , "washer"> , <pt 10 , "nut"> , <z_13 , "pipe"> }

substitutes-—g_fi
+ +
f4: p - P(P)
{<pt 12, 98>, <it 4 , 3>, <mk_3200 , {pt 12, pt_10}> ,

<z_13 , @ >, <pt_10 , {pt 12}> , <z 10 , @ > }
page 84

Figure 3 (continued)

we'ght—g_f_
+ +
f5. p —> Z
{ <pt_12 , 100> , <it_4 , 500> , <mk_3200 , 150> , <z_13 , 250> ,

<pt_10 , 100> , <z 100 , 20> }

gty-of
f6: p+ X >~+ - z+
{ «pt 12, 11>, 10>, <<pt 12, 21>, 15 , «it 4, 2 3>, 50>,
<mk_3200 , 1 2>, 40> , <<z 13, 1.3> , 20> , Kz 13, 2.4, 10>

<<pt_10, 31>, 60> , <<z 100 , 2.2> , 30> }

ca@citz-o_f_
+ +
f7. AN -=>Z
{<11, 10, <12, 60>, <13, 20, <2.1, 60>, 22, 40 ,

<23 ,50>,<24,60 ,<31,7>,<32,5 }

page 85

Chapter]V

Chapter IV

INDUCTIVELY DEFINED SETS

A. Introduction

So far, we have demonstrated that our proposed language is a powerful
tool for expressing a wide range of queries. However, there are yet other
types of queries that cannot be expressed in Varga using the facilities
presented so far. Let us study the university database again. Consider the
function 'prerequisites—of'. This function, when given a course, returns
a (possibly empty) set of courses which are the immediate prerequisites
of the given course. Sometimes the query is not as simple as that. One may
wish, for example, to find out all the courses that a student must have
passed before taking a particular course, say ‘Advanced Digital Systems".
This query asks for the prerequisites of Advanced Digital Systems, the
prerequisites of each one of the computed prerequisites, and so on for
any prerequisite computed (transitive closure). Similarly, within a
company database, it is often necessary to determine all employees who

directly or indirectly report to a certain manager. The "least time-

page 86

consuming combination of flights connecting two cities" is a usual query
in airline reservation systems. There are many other examples of gueries

which cannot be formulated by the present notation of Varqga.

One way of solving the problem is to irclude several powerful operators
in the language by which gueries such as above can be expressed. For instance,
an operator may be introduced which computes the transitive closure of any
set-valued function. Such an operator, in the simplest form, takes a set-
valued function and a value (i.e. TC{f,r) where f is a set-valued function
and r is a value from the domain of f) and returns the set of all elements

contained in the transitive closure. If f is of the form
A —-> P(A)
then the operator TC has the form
(A —> P(B)) x & ——> P(2) .

Using the TC operator, we can express the query "number of the
courses which must be taken before taking Advanced Digital Systems" as
follows:

No-of (TC(prerequisites—of , Advanced Digital Systems)) .

Although operators of this type are powerful, they do not give

much versatility to the language. We include, therefore, a more versatile

mechanism instead: we allow the user to define sets inductively.

page 87

By inductively defined sets we mean sets which are defined in terms of
themselves, e.g. S=E(S) where E is some expression over the set S. This is

a restricted form of recursion, because we allow only sets to be recursively

defined. In ordinary functional programming languages, recursive definition
of functions is usually permitted. A well known example is the recursive

definition of the integer function for factorial:

fact(n):= if n=0 then O

else nxfact(n-1) fi

However, as our primary aim is to construct sets, we restrict the recursive
definitions to sets. The phrase "inductive definition" emphasizes this

restriction.

For example, the transitive closure of the set-valued function f at b

is expressed as
TC(f,b) = f(b) U (O { £(x) | x€ TC(£,b) })
or, by using a ‘where' clause:
TC(f,b) =8
where

S=1£Mb) U (O{ f(x) | xes }) .

The value of such a definition is simply the least set satisfying the

equation, that is, the smallest set containing all possible solutions.

page 88

The least solution is not always obtainable for definitions of the form

S=E(S) . For example, there are no least solutions for the definitions:

S = T-8 (Assumed T is not the empty set.)

=
]

{ x | x@K }XGK .
In this chapter we study the inductive definitions of sets. A detailed

study of this area touches many other fields, and it is lengthy. We shall

introduce only terms which are relevant in this thesis.

page 89

B. Related Work

Previous attempts to extend the non-procedural guery languages
to permit formulation of transitive closure are, again, based on the

relational approach.

Query By Example (an informal system specifically designed for use
with VDU's, for expressing queries by means of examples) took the first
step by allowing the user to (indirectly) ask for the transitive closure
of binary relations representing trees [Z1-75]. For instance, consider
a binary relation on employees and managers; the managers themselves
are employees and, in turn, have managers. In Query By Example, the user
is enabled to specify a statement for the computation of : employees
reporting to a certain manager at Nth level , or indeed all employees
reporting to a particular manager. The formulation, however, is not
direct. As there is no notion of least fixed point in Query By Example,
the user has to specify the number of iterations required. This number
must be large enough to succeed in the computation of the transitive

closure.

A least fixed point operator has been imposed upon relational
algebra in [AU-79]. This work defines the “composition® operator for
two binary relations. (This operator has many similarities to ‘equi-

join’. We argue against the definitions in this paper, because it
page 90

contains the mistakes rejected in section D of chapter I.) The least
fixed point operator is embedded in relational algebra in a seemingly
ad-hoc manner. Transitive closure of a relation RO is then proven

to be the least fixed point of the equation

R=R0ROURO

where Ro RO is the composition of R and RO.
It further proves that queries using the least fixed point

operation cannot be expressed in a language which has the relational

algebra operators only.

page 91

C. The WHERE Notation

‘where® is common in ordinary mathematical notation. We list a few

examples:
1) x+a
where x=b+2
2) x2+y2
where
x=a+b
y=a-b
3) f(a)+f (b+])
where f(x)=x2+l
4) { £(x) | x€X or x€Y }
where
X={0,1}

v={ i’ | iex } .

A phrase of the form
" where
definition(s) "

(that is 'where' followed by the definitions) is called a ‘where—clause",

page 92

and an expression of the form "expression where-clause" is called a

“where-expression’ . (Terms are from [La—66].)

Although we introduce the where-notation for formulating queries which
require induction, we note that its use is not restricted to inductive
definitions., For example, the query "all parts which have more than one

location with a capacity of more than 200" of the warehouse database has
been formulated as:
{PINo-of ({L| (I, is—containing P) and (capacity-of (L) GT 200)}L) GT 1}P
The alternative formulation is
{ P | No-of(S) GT 1 }p
where

S={L| (L is-containing P) and (capacity-of (L) GT 200)}L .

In addition to being elegant, this expression is easier to understand.

page 93

D. Inductive Definitions

For the non-recursive part of the la@ume, we only needed variables
which stand for the data objects of a certain type. Variables standing for
sets of data objects are now required for inductive definitions of sets.
Recall that each variable symbol has a specific type. ‘set variable
symbols® are not exceptions: the type of a variable symbol standing for

the set of objects of type a is P(a).

Definition: Let s be a signature.
A “where-expression' on s has the form:
e where
Vo™%0
V1=

Vn—1=en--l

when V_, Vl""' and Vn—l are variables, and e, o eyr
ee.. and en—l are expressions on s, such that

i) VYi,jen i# -> Viaﬁvj

ii) Yien the type of e; is the same as the type of Vi.
0

page 94

Definition: Given a signature 5 and a s—algebra A, the value of a
where-expression E of the form:
e where
Vo~

Vi¥&)

Vn-1"n-1
in an enviromment € is the value of e in an envirorment e
such that
i) €' is the same as € except for the values assigned to Vb,

Vl"" and Vh—l’
ii) the equations are all true in g',

. (]

i.e. Vien E(Vi)— FE'ei

(ﬁee is the value of e in enviromment g.)

iii) €' is the least solution,

i.e. if g" satisfies i and ii then E'(Vi)EE"(Vi)

for all ién.

It is not difficult to determine the conditions under which the least
solution can be obtained: we will use the least fixpoint theorem for complete
lattices of [Ta-55] to reason about our expressions. Here is a summary of

the relevant parts of this work :

A lattice is a system I=<A,C> where A is a non-empty set and C is a

binary relation. The relation C should establish a partial ordering on the

page 95

set A. (A set P is partially ordered by the binary relation C if for any

X, y and z in P the following properties hold:

i) XCx (reflexivity)
ii) XCy and yCx implies x=y (anti-symmetric)
iii) xCy and yCz implies xCz (transitivity) .)

It is assumed that for any two elements a,b€A there is a least upper

bound (that is aUb) and a greatest lower bound (that is anb).

The lattice I~<A,C> is complete if every subset B of A has a least
upper bound () B and a greatest lower bound () B. In particular, a

complete lattice has two unigue elements () A and ()A.

Given a complete lattice <4,C>, a function f from a subset B of A to
another subset C of A is called monotonic if for any two elements x,yeB

xCy implies f£(x)Cf(y).

A fixpoint of a function f is, obviously, an element x of the domain

of £ such that f(x)=x.

Tarski proves that given a complete lattice <A,C> and a monotonic
function f from A to A, the set of fixpoints of f is not empty, further,
there exists a least fixpoint for such a function (Theorem 1: lattice-

theoretical fixpoint theorem of [Ta-55]).

We can easily demonstrate that Tarski's theorem is applicable to the

expression S=£(b)U(() {f(x)|xeS}) specifying the transitive closure

page 96

of the set-valued function f :

The domain of the expression (i.e. powerset of a set) forms a
complete lattice: the natural subset relation is the ordering, the
operations union and intersection are applicable and we have the empty

set as the least element.

Secondly, we demonstrate monotonicity for the function F, of the

form S=E(S) where E(S) is f£(b)U(()Xf(x)|x€S}).

Having the partial ordering <P(a) ,C> we consider the chain
SO [84 €5, C....C Sy
such that

Qe 53 €200

Given
SO=¢

we have

S, =£(b)U(LXf(x)IXGSO}) £ (b)

S,=E(b)UC(AE(x) Ix€S,}) = £(b)U(£ (x) |xef (b)})
=5,U(Q£ (x) |x€f (b) })

83=£ () U((£ (x) |x€S,})
=E(b)U((NE(x) Ix€(£(b)U(W f(y) Iyef(a) D) })
=£(b)U(NE(x) [x€f (b) HU((£ (x) Ix€((XEf(y) IyeE(b) 1) })

=5,U(OUE(x) Ix€(QU E(y) lyef(b) D 1)

55417830 QNE(x) 1% € CLNE (X)) 1%, €(annannh) Faua))

page 97

As we are dealing with inductive definitions of sets only, proof
of monotonicity is relatively simple. Apart from the set-difference
operator, other set theoretical operators such as union and intersection

are monotonic,

Given a variable S, based on the definition of formal monotonicity
from [Pa-76 , Pa-82], the collection of expressions which are monotonic
in S is inductively defined as follows:

- any expression not involving S is monotonic and anti-monotonic in S.
- S is monotonic in S,
- 1if the expression e is monotonic in S then any expression

involving only e and any operation symbol other than "not"

and "without" is monotonic in S.

- 1if the expression e is anti-monotonic in S then not e is monotonic

in S,
- 1if the expression eO is monotonic in S and the expression e is

anti-monotonic in S then eo without e1 is monotonic in S.

(¢ is anti-monotonic iff VA B ACB -> ¢(A)2¢(B).)

In other words, given any expression of the form S=E(S), E is
monotonic if every occurrence of S in E is in an even number of distinct

negated subparts of E,

Transitive closure of simple functions

The transitive closure of a simple function f: & —> o may be specified
page 98

as the least fixpoint of the equation:

S={f(b) }JU{f (x) |x€S}

when b is a value in the domain of f.

This expression has the general form of S=E(S), where the domain of
E is P(o)., Since the only occurrence of S in E is not in a negated
subpart of E, we conclude that E is monotonic. (This fact can be easily
proved by a simple induction in the same way as we did before,) Therefore,

there is a least set satisfying the above definition,

page 99

E. Evaluation in the Presence of 6

© does not play any major role in the evaluation of an inductive
definition of the transitive closure of set-valued functions. The reason
lies in the way in which we have extended our set-valued functions. A set-
valued function f maps a set A to the powerset of a set B. The extension of

f is defined to be

thaat-pm)t .

f+, when given a value, either returns the value © (iff the given value
is ©) or returns a (possibly empty) subset of B. (Note that, in general,

P(B)" is different from P(8") .)

The value of the expression
S=f (b) U((£ (x) |x€S})

is, therefore, © iff b is e.

Similarly, for the transitive closure of simple functions, the expression
S={f (b) }U{f (x) | x€S}
yields © when b is 6. The computation will terminate when f does not have

a corresponding value for the last computed value. For example, if f is
page 109

{<x5,x6> , <x7,x5> , <x8,x7> , <x9,x7> , <x10,x8> , <x11,x10>}

then the transitive closure of f from xll, TC(f,x11), is

{x10,x8,x7,x5,x6}. -

Note that x6 is not in the domain of f.

page 101

Ex les

We formulate two queries for the university database discussed in
chapter II. Both of them require computation of the transitive closure

of the set-valued function pre-requisite-of'.

- lecturers of all those courses which must be taken before taking

Adv-dig-sys.

{ (COURSE , lecturer-of (COURSE) | COURSE isin S }COURSE
where
S = pre-requisites-of (Adv~-dig-sys) union

(Union{ pre-requisites-of(C) | C isin S }C)

- All lecturers who teach a course and one of its requirements.

{ I | exists C1 : (I is lecturer-of(Cl) and
exists C2 :(C2 isin S and I is lecturer-of(C2))) }I
where
S = pre-requisites-of (C1) union

(Union {pre-requisites-of (C3) | C3 isin S }C3)

page 1062

Chaptery

Chapter V

INCOMPLETE INFORMATION

In this chapter we study the question "what are the consequences
of allowing a database to contain incomplete data (i.e. the database

has only partial information on some objects) ?".

Nonavailability of part of the data is a problem common to most
database systems. In a university database, for instance , lack of
information about the address of a student should not prevent the
system from containing the (available) information on that student.
However, admitting such a student into the database implies that 'no
value' (or a value representing the missing value) be stored in place
of the address of that student. We refer to these missing values as
"unknown values", or "unknown" for short. (The term "null” has been
used in the literature for any 'special value' , i.e. values other

than the ordinary data objects.)

When unknowns are permitted in databases, a careful extension of
the functions and the operations of the language is required to ensure

that best results (i.e. answers which are consistent with reality and

page 103

are closest to the true answer) are obtained.

Many-valued logic has been widely used for studying and reasoning
about unknowns in databases. It will also be used in this work.
Therefore, we first review some many-valued logic systems which are
relevant to our work. Then, we study the null values that have been
considered in the literature, and specify those values which are of

interest to us.

Our principles for extensions will be defined in section C.
The language will then be extended to handle incomplete information.
We will see that the many-valued system devised based on our principles

is different from the existing ones.

page 104

A. Many-Valued Logic, a survey

Although a relatively new branch of logic, many-valued logic has
applications in a wide range of fields such as theory of partial recursive
functions, modal logic and the study of semantical paradoxes. The basic
distinction between many-valued logic and the classical two valued logic
is, of course, that the former allows more than two truth values, (The
term "pluri-valued" has been used to include both two-valued and many-

valued systems. [Re-69])

Examples which call for more than the usual two values of truth
and falsity are found when dealing with assertions about the future.
Aristotle's discussions on "the occurrence of a battle tomorrow" are
classic examples of this form. There are numerous other cases in which
the values true (=T) and false (=F) are inadequate. In fact, in the
previous chapters we dealt already with a 3-valued system, the third
value being 6. A number of other systems will be briefly reviewed

here,

The 3-valued logic of Lukasiewicz : L3

Based on the arguments derived from Aristotle, Lukasiewicz simply

page 105

extended the classical two-valued logic, C2, by an ' intermediate’ truth
value I, This three valued system is called L3 [Re-69]. Using L3, he

was able to reason about the matters relating to the future,

He extended the truth tables for the logical operators in the
following manner (in fact, implication and negation were taken as

primitives and the other operators were then defined in terms of them):

Q
P P P T I F
P->Q
T | F T | T 1 F
I I I T T I
F T F T T T
Q Q
P\ T I F P T I F
T | T I F T| T T T
I I I F I T I 1
F | F F F F | T 1 F
P& O Pv O

Lukasiewicz tried to preserve most principles of the C2 system in his L3
system, The guiding principles of L3 are:

- T, I and F have decreasing values of " truthfulness'.

- The truth value of the conjunction of two assertions is the falsest,

and the truth value of their disjunction is the truest of the two

page 146

components,

- Negation of a statement results in a truth value opposite to the
truth value of the statement.

- The truth values of P->Q and -PvQ are not the same, because the
value true is assigned to I->I . (This ensures that P->P remains a
tautology. A tautology is a formula that is always true, regardless
of the values assigned to its components. We will see that there are
formulae which normally are tautologies but which are not tautologies

in L3,)

By assigning values O, 0.5 and 1 to F, I and T respectively, the truth
values for negation, conjunction and disjunction can be summarized as:
([P] denotes the value of P.)
[+P) = 1- [P]

min([P], [Q])

[P&Q]
(PvQ]

max ([P], [Q]).

Bochvar's 3-valued logic : B3

Bochvar [Ch-39] introduced the 3-valued system "B3". The third
value in B3 is different from that in L3: instead of using the inter-
mediate value, Bochvar used the value "undecidable", U,

U in B3 can be interpreted as any of "paradoxical", "inconsistent" or

"meaningless". Truth tables for the connectives in B3 are:

page 147

P->0

T F U
P -P p
T F T T F U
F T F T T U
U U U U U U
PvQ P&Q
N T F U pQ T F U
T T T U T T F U
F T F U F F F U
ul| u U U uip v u v

When the above tables are used, the concept of tautology becomes
impossible, since the occurrence of a propositional variable with the
truth value U, in any expression, implies that the whole expression

takes the value U.

A variant of B3 which has been suggested by Moh Shaw-kwei [Mo~54]
interprets L3 in the Bochvarian approach. He proposed that the truth
value F be given to UvF, instead of U as suggested by Bochvar. This

measure was taken to preserve more of the tautologies of C2.

page 108

Kleene's 3-valued logic : K3

Kleene's motivation for introducing a further 3-valued system, K3,
was to give the third value the meaning "undefined" or "undeterminable”.
We will use K to represent this value. K3 differs from L3 in the truth

table for implication [K1-62]:

P->0Q

Q
P =P P T F K
T F T| T F K
F T F T T T
K K K T K K

PvQ P&Q
pN\2 T F K p T F K
T T T T T| T F K
F T F K F F F F
K T K K K K F K

In Kleene's system P->Q is equivalent to -PvQ . Consequently
P->P is not a tautology, neither is P<-->P, Kleene referred to the above
connectives as "strong" connectives. He then defined another set of truth
tables, which were actually the same as those of B3, and designated them

for "weak" connectives,
page 109

Generalisations of 3-valued logics

There are numerous many-valued systems developed by combining the
3-valued systems. The simplest generalisation was that of Lukasiewicz.
He simply introduced more intermediate truth values. He retained his
evaluation rules and, as before, allowed numerical evaluation for the
logical connectives. For example, in his 4-valued system (L4) with
Il and I2 as the intermediate values, he assigned 1, 2/3, 1/3 and O
to T, I1, I2 and F respectively. The values of expressions are obtained

by the following arithmetic rules:

[-P] = 1-[P]
[PvQ] = max([P], [Q])
[P&Q] = min([P],[Q])
1 if [P] < [Q]
[P->Q] =

1-[P]+[Q] if [P] < [Q]

Tukasiewicz generalised his system to "infinite-valued" by taking
negation and implication as primitives and by using the rules:
PvQ = (P->Q)->0
P&Q = 4 (~PvQ).
However, the more interesting ones among the many-valued systems are
those which yield L3 when reduced to the 3-valued case but are not
generalisations of Lukasiewicz' system. For example, the 4-valued

system with I and U (that is, the combination of B3 and L3) is the

page 110

most popular one. Later, we will review the use of such a system in

the theory of databases.

Other many-valued systems are more complicated but beyond the

scope of this thesis. A detailed study can be found in [Ac-67 , Re-69].

page 111

B. Null Values in Database Systems

There are many cases in which a value in a database can be thought

of as null. In previous chapters, we used © as the result of applying

a function to an argument which is of appropriate type but is not in

the domain of the function. In concrete cases, there may be various

kinds of null values. For example, the function 'husband-of' returns

the name of the husband of the married-women-employees., Whenever this

function is applied to an argument, the following cases can be

distinguished:

ii)

iii)

iv)

type-error : the argument is completely unknown to the function,
(e.g. asking for husband-of (book)). This case corresponds to
Bochvar's third value. We eliminated the evaluation of this

situation by introducing the preliminary type checking.

the type of the argument is correct but the function cannot have
a value for it (for example, husband-of (Mary) when Mary is not

married). © is the result value in our language (domain-error).

the argument is in the domain of the function but the corresponding
value is at present 'not available' (e.g. husband-of (Jane) where Jane

is married but the name of her husband is not known to the system) ,

the function returns a person (e.g. John for husband-of (Sally)).

page 112

There are several situations which would be candidates for case iii,
for example: the value is not known at present (i.e. missing), the value
is not permitted to be stored,or the value is undergoing change. [ANSI-75]

lists ten situations where case iii applies.

Previous work on null values

Most of the work on null values has been carried out within the
study framework of relational databases. Codd explained in [Co-75 ,
Co-79] a simple method for the treatment of missing values. Based on
the 3-valued logic of fukasiewicz, he extended the operators of the

relational algebra to handle missing values.

Grant [Gr-77] found Codd's approach inadequate and demonstrated

cases for which the extensions did not work.

In a more formal manner, Vassiliou [Va-79] uses a four-valued logical
system to reason about nulls. His null values are "missing" and "nothing",
which correspond to the third value in L3 and B3 respectively. (There are
a number of mistakes in this work. For example, the rules for extending

the functions do not cover all possible cases. See page 165 of [Va-79].)

There are also several other approaches which appear in the field
of artificial intelligence. The concept of possible worlds in modal

logic is the guiding principle for these systems. For example, Lipski

page 113

and Imielinsky [Li-79 , IL-81], in a more rigorous approach, describe
the semantics of a query by giving two different interpretations to it

which they call external and internal interpretation. In the internal

interpretation a query is evaluated by using only the knowledge
available in the database. The external interpretation, on the other
hand, refers directly to the real world modelled by the database rather
than being confined to the incomplete information contained in the
database. This work is mostly concerned with deduction of information
and with artificial intelligence. We feel that this area is outside

the scope of this thesis.

Another interesting study is that of Biskup presented in [Bi-81].
Two types of null values are considered. They correspond to "attribute
is applicable but its value is at present unknown" and "attribute is
applicable but its value is arbitrary". It is then assumed that the
first type corresponds to an existentially quantified variable and the
second type corresponds to a universally quantified variable. In Biskup's
notation, if R is a relation on a given range D, then (a,4,b) €R
means: there exists an x€D such that for all y€D the tuple (a,x,b,y)€R.
He extends the relational algebra operators and then, using predicate

logic, proves correctness and completeness for the extensions.

Null values and Varga

In addition to ©, we introduce another object, 8, which represents

page 114

the case that "the argument given to the function is in the domain of
the function but the corresponding result is not available at the present
time" (case iii of the example given at the beginning of this chapter).
We feel that with these two extra objects most forms of null can be

captured.

It would be helpful, of course, if the system could identify the
reason for the non-availability of information, but this would require

different symbols for the various manifestations of "unknown".

Further, although there should be a different symbol for the
unknown information of each type (say 6o for unknowns of type o)
we use one symbol for all types, namely 8. In this way, the complexity

of the underlying mathematics is considerably reduced.

It is important to note that each 8 is a place holder for a
separate value. We emphasize that the 8's are not, in general, equal
(even those replacing values of the same type). For this reason we may
have a set {§,8} which may later result in a set consisting of either

one or two objects (as missing information becomes available),

Semantically, despite being classified as null values, 8§ and © are
different. & acts as a place holder for a fact which is presently unknown
but which, perhaps, will be known at a later time. 6, on the other hand,
stands for something which cannot be known at any time because it does not
exist. When reasoning about predicates, & can be interpreted as "true or

false" (similar to the intermediate value of the L3 system) , whereas 8

page 115

is independent from the other truth values. Hence, these two objects

behave differently in the course of interpretation of queries.
Finally, we emphasize that © in our system disagrees with the third

value of the Bochvarian three valued logic B3. This is due to the strict

type checking prior to evaluation of queries.

Unknown sets

Since the functions in Varga are permitted to return either a single
value (i.e. a data object) or a set of objects , we should be able to
reason about partially and totally unknown sets. Having &, representation
of partially unknown sets is possible. However, we cannot represent
totally unknown sets. We therefore designate A to stand for a set of
unknowns whose cardinality is also unknown. We will show later that this

designation is considerably helpful in our formalism.

page 116

C. The Principle of Growing Certainty

We give the following principle for extending the guery languages:

Whenever information is added to an incomplete
database subsequent answers to queries must not

be less informative than previously.

Let us expand on this principle.
Suppose we have the sets DO’ Dl""' and Dn—l in our algebra A (in
ADJ's terms, the 'carriers' [GIW-78]) . Before allowing ignorance in the
system, the universe of our algebra is
O(A) = w(nuie}
where
W(RA) =0 {Dy,DyseeeesD 1} U
UTgrTyreeees T) | Viem T,€W(A) for some m} U
P(W(A)) U M(W(A)) .

Permitting unknowns in the system extends the algebra. An extended
algebra is like an ordinary algebra except the data operated on is in
the extended universe. Our extended universe is slightly richer than a
universe obtained by a straightforward extension. The straightforward

method is to extend the universe to be:

page 117

U(A) = WA U{e}
where
WA =() {50,51,....,5n_1} U
{(t,
P(W(A)) U M(W(A))

tTyreees,T 1)1 Vi€m T €W(A) for some m} U
where Vjen Bj=DjU{6} .

However, we also wish to include A in our extended universe. Therefore,
we extend the universe as follows
U = WAU{e}
where
W) =0 {By/D,seeee/D, 1} U
Ty Ty reees T _4) | Vi€ TiGW(a) for some m} U
PW(A) UMW)
where
jen "Dj=DjU{6}
BP(X) = P(X) U {YUA | YEP(X)} assuming 6eX .

U(a) allows for more unknowns when compared with O(A).

An algebra which contains unknown values cannot be considered as an
exact representation of the real world ; it only "approximates" the real
world. The algebras A and S above are approximations for A. We now
say (only informally) what it means for an algebra to approximate another
algebra. If A" is an algebra like A' except that the universe of A" has
less information (i.e. it has more 8's and A's) then A" approximates

A' or A"(CA'.

page 118

Informally speaking, a Cb when a can evolve into b as more
information is made available., Given objects x and y, and sets A and
B we have

65 b

) Cx

X Cx

{8}(- a set containing one object

{5,5,....,6}(‘_' a set containing one, two,.....0r n objects
[S— . -

n 8's
ACA
ACaA
A'UACA where A'CA
ACA
ACB where V' bEB JaeA a (Cb and
cardinality of B < cardinality of A
(@grajreeesa) C (byrbyressesby 1)
where vi€én aig b,
[ao,al,...,an_ll C [bo,bl,...,bn_l]
where ‘wien Jjen aj Cb; and ien Jjén a; C bj

Thus, for two compatible algebras A' and A" we have

A" CA' iff VyeU(A') 3Ix€O(A") such that x Cy.

Our guiding principle for the extensions (the principle of growing

certainty) can now be formalised as :
Given an envirorment, for any expression e and algebras A" and A'
A"C_: A' implies eAn (; eAl

where epn and epr are the values of e in algebras A" and A'
page 119

D. Extending Varga to Handle Null Values

Extension of simple functions

We have already extended our functions to total functions by
including © in their domains and ranges. We now define a further
extension for functions in order to enable them to operate on missing
values. (A will be used to denote the extended form of the functions:

A

e.g. f is the extended form of the function f.)
Let f:DOU{e}xDIU{e}x.....an_lU{e} --> DnU{e} be a function.
E:DOU{G}U{S}xDIU{e}U{é}x....an_lu{e}U{é} --> D_U{6}U{8} is

.] A -
a (further) extension for f iff f(xo,xl,....,xn_l) is

- f(XO,xl'o.oo-,Xn_l) if (XO,Xl,....,Xn_l)emm(f)

- 8 if \Vién x; is not © and X is 8 for some jén
- 8 otherwise.

O

Example:

Consider a function "spouse~of" mapping "persons" to ‘"persons". Let

page 120

"persons" correspond to the set {John , Mary , Jane , Fred , Mark}, and
"spouse-of" correspond to the function {<John , Mary> , <Jane , &>},
The following are examples of some possible cases:

i) spouse—-of (John) is Mary

ii) spouse-of (Jane) is &

iii) spouse-of (Fred) is 6

iv) spouse~of (k) , where k is evaluated to be §, is &

V) spouse-of (k) , where k is evaluated to be 9, is 6.
Compare cases ii and iii. Jane is married but her spouse is not known,
thus 6 is returned. Fred, however, is not married; 6 is returned to
indicate this fact.

(Again, evaluation will not take place if the argument is not of the
appropriate type. That is,

spouse-of (k)

where kg{John , Mary , Jane , Fred , Mark}

will not proceed to evaluation.)

Extension of set-valued functions

One way of extending a set-valued function of the form
f:DOU{e}xDlU{e}x....an_lU{e} --> P(Dn)U{e}
is as follows:

f:DOU{e}U{é}x.....an_lU{e}U{é} —> P(D)U{S}JUA .

With this extension, however, any evaluation of f will return

either 8, Aor a set of values (excluding © and 8). Sets which are

page 121

only partially unknown will not be allowed. We choose, therefore, the

following extension instead:
f:DOU{G}U{S}x.....an__lU{G}U{S} - P(DnU{é})U{G}UA .

Partially unknown sets are now possible. In fact, the following three
types of set (involving unknown elements) are possible:
- a set which is completely unknown , i.e. A
- a set which has some unknown elements , i.e. the number of unknown
elements is known
- a set which may have some other elements , i.e. the number of

unknown elements is not known.

We will not distinguish between the second and the third class
because our aim is to make use of all available information rather than
discovering the degree of incompleteness. This simplification will reduce
the formalism considerably.

Thus, in general, the extended form of the set-valued function f

above, when given the arguments XO'Xl""' and Xn—l , may return either

one of:
i) f(xo,xl,....,xn_l)
ii) A

iii) AU A\ where A C f(xo,xl,.....,xn_l)

iv) o.

page 122

Extension of the operators

In this section we specify the way in which the operators behave

when there are missing values in the database. Precise rules are given

for each operator individually.

SET-THEORETICAL OPERATORS

isin

The corresponding operator is € which is extended to be

€ : a U{B}U(S} x P(x U{E})UIBIU A —> bool U{O}U{S}

~
where x€A

- if x

- if x

- if x

is defined as follows:

is neither ® nor & then

if A
then

if A

if
if
is

if

- S * AN R,

if

if

>

is 6

is neither © nor includes missing values
xéA is xea

is of the form A'U/A then

if x€A' then xEA is true

K3 “ 3

if xgA' then x€A is §

3 A .

is /A then x€a is §

is @ then x€A is 6

then

is the empty set then xEA is false

is neither the empty set nor © then X€A is 8
is © then x@A is e

then xéA is @8.

page 123

This specification can be summarized in the table below:

X isin A
\\\ A
X ¢ Al A'U D A 6
F T
a F or or ¢ g (5]
T

5 F s 8 5 8
S] 2] (S] o e (5]

where a is not © or 8, and A' is a non-empty set.

Whenever appropriate, the specification for operators will be given

in the form of tables.

is-subset-of

This operation symbol now corresponds to
C : P(a U{8})U{O}U A x P(a U8}) U{B}U A —> bool U{E}ue)

Ta
where A C B is determined by the table presented in the next page.

igftrue—subset—gg

The corresponding operator, C, is extended in a similar way.

page 124

ACB
of T T T T

A’ F T or . Tor(s §

AUA| F § 8 g

A 8 6 § §

8 o e e e

(A' and B' are not empty.)
The operator associated with 'union' is
U : P(aU{§})U{O}U A x P(0U{8})UIB}UA ——> P(oU{8}) U{BIU A
where AUB is defined by the following table:

a8 B! B'U A JAN)
A' | A'UB' | A'UB'UA| A'UA)
A'UA| A'UB'UA| A'UB'UA| AU A 8
A B'UA B'U A A e
2 e e e e

page 125

intersection

“intersection’ is associated with
A : P(ou{8})U{eIU A x P(oU{E})UIBIU A —=> P(0U{8})U{B}U A

where ANB is given by

A B' B'UA AN e
(A'AB")

A'l A'NB U A A e

| @a'nBY a'aBY R

A A A A ©

e e) 8 e

(As before, A' and B' are arbitrary sets which do not contain unknowns,)

corresponds to (:) : P(P(a U{6}))U{6}U A —> P(ax u{8}))u{elu A
where(:)w is defined as follows:
- if VKEW X does not include unknowns then
C)W is {x | x€X & Xew }
- if JXeW X may include unknowns then
Ow is (xIxex' & (IXeW : X'CX)}UA
- ifwisA then (Owis A

-ifwise then ()W ise.

page 126

Intersection

corresponds to (% : P(P(ax U{6}))U{6} --> P(a U{S})U{O}
where (Q)W is:
- if \YXewW X does not include any unknown then
YW is {x | VKeW x€X)
- if 3XeW X may include unknown then
OW is {x | \VKeW xex}U A
- if Wis A then ('C)W is A

- ifwise then)W is e.
ARITHMETIC OPERATORS

+ now associates with the operator
+: int U(S}U(E} x int U{B}U{e} —-> int U(S}Ue)
where
a-+b if a and b are integers
a-¢-b =¢ & if at least one of a and b is 6, and neither of them is ©
6 otherwise

The operators corresponding to - , * and / are extended in a similar way.

COMPARISON OPERATORS

is

is now associated with

= : a u{du(e} x a U{Slu{e} --> bool U{&}U{6}
where

page 127

bool if neither a nor b is § or 8,

(or if a and b are sets, they do not contain 6)

>

b is (6 if neither a nor b is 6, and if at least one of them is 8§

(or, if sets, at least one of a and b contains &)

e otherwise
The operation of "is-not" can be extended correspondingly.

GT
corresponds to the operation:
S : int U{6}U{e} x int U{E}ULB} —-> bool U{E}U{e}
where
bool if a and b are integers
a>b={6 if neither a nor b is ©, and at least one of them is §

e otherwise

Operations corresponding to GE , LT and LE are extended in a similar

way to that of.gg.

LOGICAL CONNECTIVES

and
This symbol stands for the function
& : bool U{6}u{6} x bool U{6}U{6} ~-> bool U{S}U{e}

A
where agb is determined by the table given in the next page.

page 128

T T F e 3
F F F F F
6 6 F $ §
e e F 6 e

or
The corresponding operation is extended to be
¥V : bool U{8}U{6} x bool U{§}U{6} --> bool U{6}U{6}

where avb is determined by the table below:

a T F b 6
T T T T T
F T F $ e
) T 5) $
8 T o $ 8

page 129

not
"not” has the following function associated with it:

5 : bool U{8}u{B} --> bool U{8}u{e}

where
bool if a is a boolean value
% a=¢(2©6 if a is &
2] otherwise
implies

corresponds to the function
5> : bool U{8}U(B} x bool U{EIU(B} --> bool U{S}U{6)
and a<>b = javb .

MISCELLANEOUS OPERATORS

The operators corresponding to Sum, Prod, Average, Max and Min can

be extended in two alternative ways. They may be extended to either

- avoid computation and return the value & whenever the given multi-
set contains 8, or

- carry out computation based on the values existing in the given multi-
set, and whenever the multi-set contains 8 indicate that the result

value is not the true result.

However, only the first method maintains our essential principle. Recall
that should the existing 8's be replaced by values other than &, the
value of any query must only be closer to reality and it must not change,

For example, if the answer to the query "youngest employee in the Sales

page 138

Department" when unknown values exist somewhere in the database is 30,
then if the unknowns are replaced by other values, it must not change
to another value, say 28.

The second method of extension does not agree with this principle. We

therefore take the first alternative for the extensions.

Sum
The operator corresponding to
$: M(int U{é})ufe} --> int u{juie}
where
an integer if A is not © and if it does not contain §
§1A)=) if A is not © and if it contains §

e otherwise,

The extension of the operators associated with "Prod", "Average", "Max"

and "Min" is similar to the above.

No-of
The corresponding operator is

¥ : Mou(8))ufe} --> int ufblule)

where
Jfan integer if A is not 6 and if it does not contain &
g(A)=l 6 if A is not © and if it contains §

e otherwise,

page 131

The Values of Queries

Evaluation of queries in the presence of missing values is
carried out in the way specified in section B of chapter III and
according to the extensions defined in this chapter. We do not repeat

the lengthy specification, and only state the necessary modifications.

Evaluation of expressions involving quantifiers "forall" and

"exist" are carried out in accordance with the following extensions:

forall
The value of the expression forall X:e is

- true if e is true for all values of X

false if e is false for some values of X
-8 if e is either true or § for all values of X but & for some
-8 otherwise,

(Recall that the variables may not take the values & or 6.)

exists

An expression of the form exists X:e has the value

- true if e is true for some value of X
- false if e is false for all values of X
-6 if e is either false or § for all values of X but § for some

-0 otherwise,

page 132

Evaluation of expressions of the form { e }X does not change.
However, a minor alteration is needed for the evaluation of the
expressions of the form { € | e }X.

Evaluation of {eo | e }X is carried out as before except that if

ey takes the value § at least for one value of X then the result value
is the union of the set constructed by the normal set constructor
and A . (The alternative method is to add a § to the solution set
whenever e1 evaluates to 8. This method, however, does not hold our
principle of growing certainty because, for example, the set {6}

after adding information to the database may change to the empty set.)

Ex les

Consider the warehouse database from chapter III again. We assume
that only part of the information presented in figure 3 is now available.
For example, let us assume that, among others, the locations of some
of the parts are not known and that we do not know the weight of some

of the parts. The available information is presented in figure 4.

We now evaluate some of the queries formulated in chapter III

again.

1 . What is the name of the part stored in location 2 1 ?

name—of(itan-of(z_l))

The database does not know which item is stored in location 21 (i.e.

item—of(2 1) is 6), The function name-of applied to & results in 6,

page 133

thus the answer to this query is &.

2 . All parts which are heavier than 200 grams.

{ P | weight-of (P) GT 200 }P

The set {z 13}JUA 1is the answer to this query since the weight
of z 13 1is 250 and the weights of pt 12 and it 4 are unknown.
Compare this result with the set {z 13 , it 4} which is the answer

we obtained from the complete database in chapter III.

3 . Locations of those parts which can substitute mk_3200.

{ places—of (PART) | PART isin substitutes-of (mk_3200) }PART

The parts substituting mk_3200 are pt_10 and pt_12. The location of
pt_10 is known and it is 3 1. However, information on the locations
of pt 12 is incomplete . Thus the set { {31}y , {6, 11} } is

returned.

4 . How many locations are occupied by the substitutes of the part
mk_3200? (i.e. Count the locations appearing in the result of

the previous query.)

No-of (Union { places-of (P) | P isin substitutes—of(mk_3200)}P)

Since an unknown value exists in the operand of 'No-of' the answer
to this query is 6.
page 134

Figure 4
An incomplete database

(Warehouse database of chapter III)

places—of
+ +
fo. p —> PN
{<pt 12, {1.1,6})>,<it 4, {&}>, <mk 3200, {12}>,

<z 13, {6 , 2.4}> , <pt_10, {3.1}> , <z 100, {2 2}> }

item—of
+ +
fl’ X ==>p
{<11,pt 12> ,<1 2, mk 32005, <22, 2 100> , <24, z 13>,

<31, pt_10> }

is-containing
+ + +
f2: A XxXp -—>B

This function has the same information as the two above.

name-of

+ +
f3. p -->s

{ <pt_12 , "nut"™> , <it_4 , "bolt"> , <mk_3200 , "nut"> ,

<z_13 , "washer"> , <pt_10 , "nut"> , <z_13 , "pipe"> }

substitutes-of
£,: D -=> P(p)"
{<ptl2,p>,<it s ,08>, amk 3200, {6, pt_10}> ,
<z 13 , 2>, <pt_10 , {pt_12}> , <z 10 , @ > }
page 135

Figure 4 (continued)

weight-of
+ +
f5. p —> 2
{ <pt 12, & , <it 4 , 6>, <mk_3200 , 150> , <z_13 , 250> ,

<pt_10 , 10C> , <z 100 , 20> }

qty-of
f6: p+ X >f - z+
{ <«pt 12, 11>, 10>, <mk 3200, 1.2> , & , <<z 13, 2 4> , 10>

<<pt_10 , 31>, 60> , <<z 100 , 2.2> , 30> }

caEacitx-gﬁ

+
f7. A -=> Z

{<11,10>,<12,60>,<1.3,20,<1,60,<22, 40>,

+

<23, 50>, <24,60>,<31, 75 ,<32,5)

page 136

E. Some Remarks

There are other evaluation rules for queries that have been
suggested in the literature.However, they do not preserve our main
principle stated in section C of this chapter. We pointed out one
example when discussing extension of the "Sum" operator.

A great deal of study has been focused on various ways
of extending the logical connectives, in particular, implication.
Preserving more of the tautologies of the classical two-valued logic
(C2) has been the main motivation for these studies. Although all
formulae which are tautologies in a 3-valued logic system are also
tautologies in C2, it is not the case that C2 tautologies will hold
in systems with more truth values. A simple example is P -> P
which fails to be a tautology in most many-valued systems (including
ours). Those who have maintained this particular case, have failed to
cope with some other obvious ones, such as (& &4 o), because the
relation P->Q = -PvQ does not hold in their systems.

Therefore, we have not put any emphasis on maintaining tautologies.

Exhaustive testing has been suggested as a method for obtaining
better answers from an incomplete database. For example, consider
function £ on D., Dl’ .ees and Dn—l and its extension f+. Given

the arguments d GDO, d €Dl,...., d, €D

o 1 i-1%Pj-17 9341y qqreees

and d_ .€D if \vheD, f+(do,...,a,...,d

n-1""n-1' is b,

n—l)

page 137

then the value b is also assumed for f+(do,...., YUY [

n-1
Based on this technique, in [Va-79] an economical algorithm is
presented for the evaluation of queries. It assigns, for example,
the value true to P v 4P after testing all possible values for P
and ensuring that the formula cannot be false or unknown (e.g. the
value true can be assigned to
age—of(Jack)5§O or age-of (Jack)>50
even if age-of (Jack) is unknown). This method can be used when the

number of tests is not large, but, it becomes impossible when a

quantifier exists in the expression.

In a number of cases we can extract more information from
the system. These cases are, again, within the truth tables for
the logical connectives. For example, with our evaluation rules for
conjunction, P 3 Q takes the value § when P is © and Q is &
(or vice-versa). We note that © 3 8 (or & & 8) cannot possibly be
true, because if § is replaced by the value true then © g T is e,
and if, on the other hand, § is changed to false then © & F is F.
Similarly, © v § can only be either T or © (the value false is not
possible for © v 8). We avoid adding cases to the truth tables because
the extra information cannot play a major role in the evaluation of

queries.

There are also alternative methods of defining how 6 behaves,
but we find them invalid. For instance, when specifying the rules for
evaluation of "isin" we assigned 6 to xéA when x is © and A is

the empty set. Some may argue that nothing can belong to the empty set

page 138

and 6 é @ must result in false. However, we find the result "false"
misleading and thus inappropriate. Suppose that Jack has no sisters and
there are no students registered for the course EE2. If a query asks
whether Jack's sister is registered for EE2 or not , fhen "false" is

not the correct answer because it is misleading.

page 139

Chapter V]

Chapter VI

VARQA VIEWED IN TERMS OF RELATIONAL ALGEBRA

Every application-oriented abstract formalism must be implem-
entable. Only in this way can existing software methods be tested
against mathematical standards. A system which is defined in an abstract
manner (i.e. its specification given independently from representation
and implementation techniques) is eventually confronted with the question

of "feasibility of implementation".

We show informally in this chapter that our proposed language
does not comprise concepts which are unusually powerful, and it can

in principle be implemented.

Varga is a language based on expressions ; every expression
consists of an operator applied to other expressions or to variables
denoting the data objects in the database. Many of the operators of
Varqga are common in programming languages ; the possibility of their
implementation, therefore, need not be shown. Simple operators such
as arithmetic operators (e.g. +, *) and set-theoretic operators

(e.g. U, N) fall into this category. However, there are other operators

page 140

in our language whose implementation is a non-trivial task; among

them are the variable binding operators.

We will therefore consider a simple functional language which
includes all those features of Varga whose implementation is more
demanding. We then show that for any expression in this language
there exists an equivalent expression in a language based on

relational algebra.

In the following section, we will define an algebra of relations
which is well suited for this correspondence. The definition of this
algebra is mainly based on the work presented in [HHT-75]. The simple
functional query language is then mapped to a language based on this

algebra.

This work is in a way an informal extension of the work on
"cylindric algebras" reported in [HMT-71]. Cylindric algebra is the
extended form of Boolean algebra specifically designed as an algebraic
apparatus for studying first order predicate logic. The motivation
for the introduction of cylindric algebra was to answer, in an
algebraic way, metalogical questions of the kind "given a fixed set
of sentences S , is a given sentence s implied by the set S ?".

It was proved [HMT-71] that each such problem can be reduced to an
algebraic problem of the form "does a particular formula (associated

with s above) hold in the algebra As?".

page 141

Cylindrical algebra is concerned with expressions of first order
logic. Our language is richer than first order predicate logic because

it includes the set construction operator.

Our intention in this chapter is not to propose a method of

implementation, rather we intend merely to point out that our language

is not incompatible with the current software methods.

page 142

A. A Simple Functional Query Language (SFQL)

In this section we define a simple functional guery language
(SFQL) which is based on the principles of Varga but is considerably
simpler . SFQL does not contain all of the operators of Varga;
those operators which are common in programming languages (and the
possibility for their implementation need not be shown) have been

left out.

The operators allowed in SFQL are the boolean operators ("GT",
"LT",....) , the logical connectives ("and" , "or" and "not"),
quantifiers ("exists" and "forall") and the set construction operator.
Although we exclude many of the operators existing in Varga, SFQL
is still a powerful query language. For example, using these operators

only, we can still formulate the query "all employees who earn more

than their managers”.

We put a restriction on the expressions of SFQL by not permitting
nested use of the set construction operator. (With this restriction we
simplify the translation considerably.) The results obtained here can

later be generalised to allow nested set construction.

With the exception of the restriction on nested set construction,
the formation rules for the expressions of SFQL are the same as those

of Varqga.

rage 143

B. Relational Algebra, an alternative approach

Relations can be viewed as tables with rows and columns [U1-80].
The order of rows is unimportant, but in the definition of some
relational algebra operators reference has been made to the ordering
of columns. Many database researchers, e.g. Codd [Co-79], claim that,
by referring to a column of a relation by a name instead of its
position, the ordering becomes unimportant. However, the transfor-
mation is not straightforward and causes problems. For example,
Codd's definition for the operator projection (which makes reference
to the order of columns) is not adequate when the columns of
relations are identified by names. Consider a relation with two
colums identified by "A" and "B". If we use the projection operator
to construct a two column relation with both columns being
the original A-column, then the names cannot simply be inherited

[HHT-75] .

In the context of our work, it is easier to map the expressions
of SFQL to a language based on an algebra of relations which is
independent of column ordering (because in SFQL we make use of names
and not ordering). Therefore we define relations with "column name"
rather than "column ordering". We refer to the column names as "selec-

tor names" (i.e. selector names are names for the "underlying domains"

page 144

of the relations). We assume a universal set () which contains all

the underlying domains.

Given a set of selector names S, a tuple with selector set S

is a function which assigns a value (from () to each selector name of S.
For each selector name s in S, t(s) is called "the value of s for
the tuple t". For any selector set S, W(S) is the set of all tuples

with selectors S.

Given a set of selector names S, a relation with selector set S

is the set S together with a set of tuples with selector set S. The

arity of a relation with selector set S is the number of elements of S.

[Recall from chapter I (when we defined a relation as a cartesian
product of sets) we argued against the definition of arity for
relations defined in that manner. Defining "arity of relations with
selectors” is not contradicting our objection to "arity of relations".
Note that for each set S of selector names we have a distinct empty

relation @(S).]

Example: Consider a relation R represented in the form of a table:

PART-NO LOCATION oTY
100 90 100
150 23 100
155 75 50
110 95 50

page 145

The set of selectors of R is {PART NO , LOCATION , QTY} and the arity

of R is 3. A tuple t in R can be represented as

PART NO LOCATION QrY

150 23 100

For this tuple the values for the selector names are t(PART-NO)=150 ,
t (LOCATION)=23 and t(QTY)=100.

Note that the order of the columns is in fact unimportant. Therefore,
it is meaningless to talk about Nth column of a relation. We can only

refer to a column by its selector name.

We now define a collection of operators which can operate on

relations with selector sets [HHT-75].

For any relation R with selector set S, if S' is a subset of S then

the projection of RonS', R % S' is
{ '] Jter: t'= ti1s' } .

(Recall that f!A means function f restricted to the subset A of its
domain.) Similar to the projection operator of the ordinary relational
algebra, this operator simply removes some of the columns of R (those
which are not in S', of course). If we want to duplicate some of the
colums then this operator cannot be used because we need different names
for the duplicate columns. Thus we define another operator which is a
generalised form of projection (We simply call it "generalised projec-

tion".).

page 146

A "renaming function" in this context is a function which maps a set of
selector names to another one.
Given a relation R with selector set S, and a renaming function

Y which maps selector set S' to selector set S , the generalised
projection of R over Y, denoted by RTTY is

{ t'"] t'ew(s') & (JteR : t'stey) }
(Recall that feg stands for the composition of functions g and f.)
By defining an appropriate ¥ we can duplicate, rename or indeed remove

some of the columns of R.

In ordinary relational algebra, the "union", "intersection" and
"set difference" operators require their operands to be compatible; i.e.
the relations given to these operators as the arguments must have the
same types. Here we do not enforce this restriction on the operands and

allow the two argument relations to be of any type.

Given two relations Rl and R2 with selector sets S1 and S2

respectively, then the generalised intersection of Rl and R2,

denoted by Rl () R2 is

{ t | tew(Sl1 U S2) & (t!Sl)eRl & (t1s2)€er2 }

There are two extreme cases in the application of generalised
intersection. When the selector sets S1 and S2 are the same (i.e. R1
and R2 are compatible relations) generalised intersection degenerates
to set intersection. The other extreme case is when Sl and S2 are
completely distinct: generalised intersection then returns the

concatenation (in relational database jargon: cartesian product) of

page 147

Rl and R2. In other cases, when S1 and S2 overlap, the equijoin of

Rl and R2 on the intersection of Sl and S2 is the result.

Similarly, generalised union of relations Rl with selector set S1

and R2 with selector set S2, denoted by Rl Y R2 is defined to be

{ t | tew(sl U S2) & ((t!S1)€Rl v (t!S2)€ER2) }

Generalised union will also degenerate to the union operator of

the ordinary relational algebra when S1=S2.

Generalised difference is also similar. For any two relations Rl
and R2 with selector sets S1 and S2 respectively the generalised
difference of Rl and R2 , RI-R2 , is

{ t | teRl & (t!(S1NS2))Z(R2%(S1NS2)) }

Again, when S1=S2, generalised difference acts as the ordinary
operator difference. When S1 and S2 overlap, however, this operator
selects from Rl those tuples for which the values corresponding to the
common selector names cannot be found in the compatible columns of any

tuple in R2.

The notion of selection is covered by generalised intersection.
To select (from a relation R) tuples which satisfy certain criteria
on some selector names, we construct a relation whose selector set
contains only those selector names to which the criteria is applicable
and whose tuples are just those which satisfy the criteria (call it
relation F). The selection of R over the criteria is the result of

generalised intersection between R and F.

page 148

Another useful operator is the "complement" operator. The

complement of the relation R with selector set S is

C(R) = W(S)-R

where as before W(S) is the set of all tuples with selector set S.

Relations (with selectors) together with the above operators form
a powerful algebraic structure. By applying the operators to relations
we can construct expressions. Thus, each expression defines a relation.
We call this language Relational Algebra Query Language, and refer to
it as RAQL for short.
It is assumed that the reader is familiar with the languages based on

relational algebra. Material on this topic is presented in [Me-78].

page 149

C. Translation from SFQL to RAQL

We explore in this section, by illustration rather than by fully

formal treatment, the correspondence between SFQL and RAQL.,

Sets and functions of SFQL are simply regarded as relations.
For any set with the type symbol a in SFQL, the equivalent relation in
RAQL is a unary relation with an appropriate selector set {SO} which

contains all objects of type a,

For any function symbol ¢ associated with the function f and the
type expression O%r Oqreeesr & _y=——=> & in SFQL, there exists an
equivalent relation in RAQL which has the selector set

{Solsl] LN] ’Sn_l ,Sn}
and whose tuples are

{t lteW({Syreeess }) & f(t!{So},t!{sl},...,t!{Sn_l})=t!{Sn}}

We start with the simplest expressions of SFOL and show informally
that for every expression in SFQL there exists an equivalent expression in

RAQL,
If ¢ is a function symbol with the type expression

Oy Krecer O 1=—==> G in SFQL which corresponds to the relation

RCP with selector set {SO,Sl,...,Sn} in RAQL then

page 150

plagrayrecesa ;) (where a; is of type o, for all i€n) in SFQL
is equivalent to

(R, {LF)#{s}

where F is a relation with selector set {So,Sl,...,S } whose

n-1
only tuple is {<So,ao>,<sl,al>,....,<Sn_1,an_l>}

in RAQL.,

In the above relational expression, R?_Q_F can be thought of
as selection; using the filter relation F we select a row from R?. The

selected tuple is then projected on Sn to yield the result.

Example:
Consider function symbol grade-of which corresponds to a relation R

with selector set { STUDENT, COURSE , GRADE } illustrated as a table

below
STUDENT COURSE GRADE
John EE2 23
Fred FG1 25
Pam FG3 19

In SFQL, a query which asks for the grade of John in EE2 is formulated as
grade-of (John,EE2)

The filter relation F for this expression is a relation with selector set

{STUDENT , COURSE} as shown below

STUDENT COURSE

John EE2

page 151

(R() F) returns the tuple {<STUDENT,John> , <COURSE,EE2> , <GRADE,23>}.

The final result 23 is obtained when this relation is projected on GRADE,

Given n expressions €qr ©precees®y 4 corresponding to relations Re ’
O

Re ,....,Re respectively, and an n-ary function symbol P
1 n-1

corresponding to relation R(P with selector set {SO,Sl,...,Sn_l,Sn}

(Sn corresponds to the range of the function associated with 9), then

the RAQL relational expression corresponding to ?(eo,el,...,en_l) is

R R eees () R R) % {S_}
((eO_Q el_()_ 0 en_1)_()_ ‘P) {n

Logical connectives

If the expressions e and e, in SFQL correspond to relations L1
and L2 in RAQL respectively, then

e and e, in SFQL corresponds to Ll_{)_L2 in RAQL

e or e, in SFQL corresponds to L1 Y L2 in RAQL

not e in SFQL corresponds to C(Ll) in RAQL.

1

Example:

If the corresponding relation to e is Re with selector set {S1 ’
1 0
S; s «sesS; } and the corresponding relation to e, is R with
ll 1nl 2)
selector set {S, ,S, ,...,S, } then the expression e, and e
%02 2n2 N —)
of SFQL is equivalent to the relation
{tl LEW({S] seveesS tuis, reeessSy 1) &
0 0 n2
& (t!{S, ,eeesS,)ER_}.
%0 20 &

lnl
(t!{s]ooo'S })GR
1O 1 1 e

n 1

page 152

Example:

to illustrate the correctness of the above translation algorithm we

show the eguivalence of =(<P &Q) =P Vv Q .

Let el and e2 correspond to relation L1 with selector set Sl and relation
L2 with selector set S2 respectively. We start with the left hand side:

not(not el and not e2) ==

c(c(rl)) c(r2))
= C(W(S1)-L1) () (W(S2)-L2))
= C({tItew(sl) & tgLl} () {tItew(s2) & tgL2}
= C({tltew(sl U S2) & ((t!Sl)e{r|rew(Sl) & rgLl})

& ((t!S2)e{r|rew(s2) & rgn2})})

= C({t|tew(Sl U S2) & (t!S1)@Ll & (t!S2)¢L2 })
= W(S1 U S2) - {t|tew(Sl U S2) & (t!SI1)gLl & (t!S2)@L2}
= {tIteW(S1 U S2) & ~((t!S1)@Ll & (t!S2)¢ L2)}
= {t|tew(Sl U S2) & ((t!S1)€Ll v (t!S2)€L2)}
= L1 Y L2

== el or e2 ,

The existential quantifier

If a SFQL expression e corresponds to relation Re with selector
set {SO, Sl""’sn} then the relation corresponding to
exists X: e is
- Re itself , if X does not occur in e.
- Re%{so’sl"'"Si—l’Si+l"“'Sn} if X occurs in e

in the place corresponding to Si for some i€(n+l).

page 153

Expressions with universal quantifiers are transformed into

expressions with existential quantifiers only, Wk P = +3x +P.

The set construction operator

Given two SFQL expressions e and e, corresponding to relation

Re with selector set {S1 ,S1 ,....,Sl } and relation
1 0 71 nl
R, with selector set {82 'S, reeeesS,y } then the
2 0o "1 n2
expression { e l ez}x of SFQL corresponds to

R, R N R)I%S, ,5; ,e0ee,S, }
R TR e 1
where Ry is a unary relation with selector set {Sn}, for

some n, containing all possible values for X.

Some examples

Let us consider part of the university database, with three
functions associated with "name-cf" , "is-taking" and "grade-of" .
Suppose these functions correspond to relations Rl , R2 and R3
respectively. The relations are presented in the form of tables on

the next page.

page 154

relation R1 relation R2

ST-NO ST-NAME ST-NO COURSE
1 Jack 1 EEl
2 Jane 1 Ma
3 Pam 2 EEl
4 Fred 3 Ma

3 EEl1
4 Ma
4 KS

Relation R3

ST-NO COURSE GRADE
1 EE1 12
1 Ma 11
2 EE1 15
3 Ma 10
3 EE1 12
4 Ma 16
4 KS 10

Here we formulate three gueries in SFQL and then translate them into

RAQL using the translation rules given above.

1 . Grades in EEl of all students who take EEL.

{ grade-of (X,EE1l) | X is-taking EEl }X

The equivalent relational expression in RAQL is

page 155

((R3 () F1) () (R2 () F2))%{GRADE}

where the filter relations Fl and F2 are both {{<COURSE , EE1>}}.

In the evaluation of the RAQL expression, first the relations

(R3{) F1) =K1 and (R2_() F2) =K2 are computed:

K1 K2

ST-NO COURSE GRADE ST-NO COURSE
1 EE1l 12 1 EEl
2 EE1l 15 2 EE1l
3 EEl 12 3 EE1

The result of generalised intersection between K1 and K2 is relation K3
which is the same as K1. The answer to the gquery is obtained by projecting
K3 on GRADE, that is the relation K4.
relation K4
GRADE
12
15

2 . Names of the students who take EEl.

{ name-of (X) | X is~taking EEl1 }X

The equivalent expression in RAQL is
(R1 () (R2 () F))%{ST-NAME}
where F, the filtering relation, is {{<COURSE , EE1>}}.

The above expression can easily be evaluated in a similar way to the

page 156

previous one. The answer to the query is the relation
ST-NAME
Jack
Jane

Pam

3 . Name of the students who have a grade below 12.

{ name-of (X) | exists Y: grade—of (X,Y) LT 12 }X

We apply the translation rules starting from the innermost (i.e.
grade-of (X,Y) LT 12). As before, F is a filter relation; it is a

unary relation on GRADE whose elements are less than 12, i.e. 10 and 11.

RL{ ((R3{)F) % {COURSE})) % {ST-NAME}
\——V—J
grade <12

A

exists a course

The evaluation of this query will result in the unary relation
ST-NAME
Jack
Pam

Fred

page 157

D. Some Remarks

In this chapter we have given an indication of the feasibility of
implementation for a powerful subset of Varga. This work is, of course,
not a formal treatment of the topic. For a systematic study, we need to
define the two languages formally, then give syntactic transformation
rules, and finally prove equivalence for the semantics of corresponding
expressions in these two languages . This process is illustrated in

the figure below.

(:;SFQL expressionsi:>-————-————9 { RAQL expressions)

. < .
Semantics < t;> Semantics

Must be proved equivalent

This is an interesting topic for research, however, we feel that it
is beyond the scope of this thesis. It therefore remains as a suggestion

for further work.

Recall that in the introduction of our relational algebra we assumed

a universal set (the union of all underlying sets). The universe of

page 158

the relational algebra corresponding to our SFQL is determined by

the types existing in SFQL. We ignored the problem of infinity in

the introduction of SFQL. Thus the universe of RAQL can be infinite.

It is noted [HHT-75] that when infinite (or, very large) sets are
involved then there is a possibility to encounter a number of problems.
The most subtle one is that in the computation of some expressions,
although the final result is finite, there can be infinite relations
required in the intermediate steps. In [HHT-75] a solution is
suggested (postulating ordering on sets) to ensure termination for

the infinite (or potentially infinite) intermediate computations.

page 159

Epilogue

In this thesis we have not only designed a new query language
for database systems but have proposed a whole new methodology for
designing such languages. The standard design methodology for query
languages (and also for all-purpose programming languages) is to
start off from operational concepts, then to formulate an appealing
syntax, and finally (even then, only in some cases) to state the
denotational semantics [Wa-78].

However, our methodology puts great emphasis on the denotational
semantics of every aspect of the language. The denotational semantics
of Varga were developed hand in hand with its notation. We extended
ordinary algebra to include variable binding operators, and allowed
the operators in the algebra to work on the union, cartesian product

and the powerset of types.,

Varga lends itself to a number of possible extensions. More
operators can be added to the language. Such operators might be:
"Top N" (to find the N highest elements of an ordered set) ,
"Bottom N" (to find the N lowest elements for an ordered set) and
more variable binding operators such as J! (e.q. 3! X : P, meaning
there exists a unique X such that P)., The formalism of Varga can

accommodate such operators quite naturally.

This work is by no means complete, As the first follow-up for
page 160

this work, "updates" must be studied. One important aspect in the
study of updates is how to maintain correctness of the system (in
database jargon : integrity constraints). Several suggestions have
been made on conceptual modelling of updates in database systems,
In [DMF-81] every database is considered to be a set of assertions,
queries are consequences of these assertions , and updates are
modifications to the set of assertions. An alternative approach
is to view every database as a set of "database instances" (dbi's)
and regard updates as functions mapping one dbi to the next one
[Ma-81].,

A novel approach to updates is through modal logic where the
database instances are viewed as its "possible worlds". (Modal
logic, an extension to predicate logic, is the logic of necessity
and possibility: a proposition is "necessary" if it holds in all
admissible worlds , and it is "possible" if it holds in some wor 1ds
[Ch-80] . Modal logic is particularly suited for reasoning about
dynamic systems in which time plays a role.) "Integrity constraints"
can be naturally viewed as propositions which must be "necessarily"”
satisfied in every world.

Finally, the object-oriented work on abstract data types can
be carried over for studying updates. In fact, a database system can
be completely characterised by an algebraic specification of various

operations [Gu-77].

On the implementation of Varga several suggestions prove useful,

A method for implementing set processors is proposed in [Ha-76]. The

page 161

techniques used in the implementation of the programming language SETL
[SSS-81] may be applicable for the implementation of Varga.

Research is in progress for the formal description of arbitrary
complex information structures, with the aim of developing a new method
for mathematical implementation of database systems [Ma-80].

Lastly, dataflow implementation techniques [Ka-74] may also be
applicable to databases. There is yet no evidence to prove that such
an approach leads to success. However, there is at least one person

who is interested in doing research on it: the author himself!

page 162

%iﬁ[iography

BIBLIOGRAPHY

[ABU-79] Aho AV , Beeri C, Ullman J D

"The theory of joins in relational databases"

ACM TODS , Vol 4 , No 3, Sept 1979 , pp 297-314
[Ac-67] Ackerman R

"Introduction to many-valued logics"

Routledge and Kegan Paul 1967
[ANSI-75] ANSI / X3 / SPARC

Study group on data base management systems

"Interim report" FDT (ACM SIGMOD Records) 7,2 1975
[AU-79] Aho AV , Ullman J D

"Universality of data retrieval language"

6th POPL pp 110 - 120

(ACM / SIGPLAN Conf. on Prin. of Prog. Lang. Jan 1979)
[AW-77] Ashcroft E A , Wadge W W

"Lucid, a nonprocedural language with iteration"

CACM Vol 20 , No 7 , July 1977 , pp 519-526
[AW-79] Ashcroft E A , Wadge W W

"A logical programming language"

Waterloo Univ, CS - 79 - 20 » June 79 (revised March 80)
[AW-82] Ashcroft E A , Wadge W W

"Lucid: the dataflow programming language"

Academic Press (To be published)

page 163

[Ba-78]

[BB-79]

[BF-79]

[Bi-78]

[Bi-81]

[BN-78]

[BNF-81]

Backus J

"Can programming be liberated from the von Neumann style ?
A functional style and its algebra of programs"

CACM , Vol 21 , No 8 , Aug 1978 , pp 613-641

Beeri C , Bernstein P A

"Computational problems related to the design of normal form
relational schemes"

ACM TODS , Vol 4 ,Nol, March 1979 , PP 30-59
Buneman P , Frankel R E

"FOL - a functional guery language"

Int. Conf, on Management of Data » Boston 1979 , pp 52-58
Biskup J

"On the complementation rule for multivalued dependencies in
database relations"

Acta Informatica Vol 10 , Fasc. 3 r 1978 , pp 297-305
Biskup J

"A formal approach to null values in data base relations"

in Advances in Database Theory , Vol 1 , (E4 Gallaire, Minker,
Nicolas) Plenum Press » 1981 , pp 299-341

Biller H, Neuhold E J

"Semantics of databases : the semantics of data models"
Information Systems Vol 3 , Part 1 » 1978 , pp 11-30
Buneman P , Nikhil R , Frankel R E

"A practical functional programming system for databases"
Proceedings ACM Conference on Functional Prog. and Machine

Architecture , 1981

page 164

[CF-58] Curry H B , Feys R
"Combinatory logic"
Vol 1 , North Holland Publishing Company , 1958
[Ch-39] Church A
"On 3-valued logical calculus and its application to the
analysis of contradictions"
Journal of Symbolic Logic Vol 4 » 1939 , pp 98-98
[Ch-40] Church a
"A formulation of the simple theory of types"
Journal of Symbolic Logic Vol 5 + 1940 , pp 56-68
[Ch-76] Chen PP S
"The entity-relationship model : Towards a unified view of data"
ACM TODS Vol 1 , No 1 , March 1976 r Pp 9-36
[Ch-80] Chellas B F
"Modal logic ; an introduction”
Cambr idge University Press , 1980
[Co-70] Codd E F
"A relational model of data for large shared data banks"
CACM Vol 13, No 6 , June 1970 , pp 371-387
[Co-T71] Codd E F
"A database sublanguage founded on the relational Calculus"
ACM SIGFIDET Workshop on Data Description, Access and Control
Proc 1971 rp 35-68
[Co~75] Codd E F
"Understanding relations"

FDT: Bull., ACM/SIGMOD , Vol 7 , Part 3-4 » 1975 , pp 23-28

page 165

[Co~79]

[CPP-78]

[Da-81]

[DMF-81]

[Fa=77]

[Fa-81]

[GG-78]

Codd E F

"Extending the database relational model to capture more
meaning"

ACM TODS Vol 4 , No 4 , Dec. 1979 , pp 397-434
Colombetti M , Paolini P , Pelagatti G

"Nondeterministic languages used for the definition of data
models"

in Logic and Databases (Gallaire, Minker eds.,)

Plenum Press 1978 pp 237-258

Data C J

"An introduction to database systems"

The systems programming series , Third Edition

Addison Wesley 1981

Dos Santos C S , Maibaum T S E , Furtado A L

"Conceptual modelling of database operations"

To appear.

Fagin R

"Multivalued dependencies and a new normal form for
relational databases"

ACM TODS Vol 2 , No 3, Sept, 1977 r PP 262-278
Fagin R

"A normal form for relational databases that is based on
domains and keys"

ACM TODS Vol 6 , No 3, Sept. 1981 , pp 387-415
Gotlieb C C , Gotlieb L R

"Data types and Structures"

Prentice - Hall 1978

page 166

[GH-78]

[GM-78]

[GMN-81]

[Gr-77]

[GTwW-78]

[Gu-77]

[Ha-76]

Guttag J V , Horning J J

"The algebraic specification of abstract data types"

Acta Informatica Vol 10, No 1l , 1978 , pp 27-52
Gallaire H , Minker J

"Logic and Databases"

Plenum Press , New York , 1978

Gallaire H , Minker J , Nicolas J M

"Advances in database theory"

Vol 1 Plenum Press , New York , 1981

Grant J

"Null values in a relational database"

Information Processing letters Vol 6, No 5, Oct 1977 ,

pp 156-157

Goguen J A , Thatcher J W , Wagner E G

"An initial algebra approach to the specification, correctness
and implementation of abstract data types"

in Current Trends in Programming methodology Vol IV ,

Data Structuring (Yeh , ed.,) Prentice Hall , 1978 pp 80-149
Guttag J E

"Abstract data types and the development of data structures”
CACM Vol 20, No 6 , June 1977

Hardgrave W T

"A technique for implementing a set processor"

SIGPLAN notices , Vol 11 , Special Issue r Pp 84-96 1976

(Proc, Conf, on Data: abstraction, definition and structure)

page 167

[HHT-75] Hall P AV , Hitchcock P, Todd S J P
"An algebra of relations for machine computation”
IBM - UK report UKSC 0066 , Jan 1975
[HM-79] Hammer M , McLeod D
"The semantic data model : A modelling mechanism for data base
application"
Proc. Int, Conf. on Management of Data (SIGMOD) Austin , 1979
PP 26-36
[HMT-71] Henkin L , Monk J D , Tarski A
"Cylindric algebras"
Part 1 , North-Holland Publishing Co. , 1971
[I1-81] Imielinski T , Lipski W
"On representing incomplete information in a relational database"
Proc. 7th VLDB , Cannes , France » Sept 1981 , pp 388-397
[Ka-74] Kahn G
"The semantics of a simple language for parallel programming”
Proceedings of IFIP Congress (Rosenfeld editor)
pp 471-475 , 1974
[Ke-78] Kent W
"Data and Reality"
North Holland Publishing Company , 1978
[Ke-79] Kent w
"Limitations of record based information modes"
ACMTODS Vol 4, Nol, March 1979 » PP 107-131
[K1-62] Kleene S C
"Introduction to meta-mathematics"

D.Van Nostrand Company 3rd reprint , 1962

page 168

[KMM-80]

[Ko-79]

[Ko-81]

[La-66]

[Li-79]

[Li-81]

[LP-82]

[LT-77]

Kalish D , Montague R , Mar G

"Logic , Techniques for Formal Reasoning”

Harcourt Brace Jovanovich, inc.

Second Edition 1980

Kowalski R

"Logic for problem solving"

Artificial Intelligence Series » North Holland , 1979
Kowalski R

"Logic as a database language"

Imperial College , London , July 1981

Landin P J

"The next 700 programming languages"

CACM Vol 9 , No 3, March 1966 , pp 157-166

Lipski W

"On semantic issues connected with incomplete information"
ACM TODS Vol 4 , No 3, Sept 1979 , PP 262-296
Lipski W

"On database with incomplete information"

Journal of ACM Vol 28 , No 1, Jan 1981 r PP 41-70
Louis G , Pirotte A

"A denotational definition of the semantics of DRC, a Domain
Relational Calculus”

(To appear) Proc. 8th VLDB Conference » Mexico , Sept. 1982
Legard HF , Taylor RW

"Two views of data abstraction"

CACM Vol 20, No 6 , June 1977 pp 382-384

page 169

[Ma-74]

[Ma-76]

[Ma-77]

{Ma—-80]

[Ma-81]

[MB~79]

[Me-53]

[Me-78]

[Me-79]

Manna 7Z
"Mathematical theory of computation"

McGraw - Hill 1974

Markowsky G

"Chain - complete posets and directed sets with applications"
Algebra Univ. 6 , Birkhauser Verlog Basel , 1976 , pp 53-68
Maibaum T S E

"Mathematical semantics and a model for databases"
Proc. IFIP 1977 (Gilchrist ed.) , pp 133-138
Mandarella R

Private correspondence

Maibaum T S E

Private communication

Mac Lane S , Birkhoff G

"Algebra"

Macmillan Publishing Co. 2nd Edition r 1979

Menger K

"On variables in mathematics and in natural science”
British Jour. of Phil. Sci. 5 + 1954 , pp 134-142
Merrett T H

"The extended relational algebra , a basis for query
languages"

In Databases; Improving usability and responsiveness ’
(Shneiderman ed.) Academic Press 1978

Mendelson E

"Introduction to Mathematical logic"

D.Van Nostrand Co. N.Y. Second Edition 1979

page 170

[Mo~54]

[01-78]

[Pa-76]

[Pa-82]

[Pi-78]

[Re-69]

[Re-76]

[Ru-03]

Moh Show-kwei
"Logical paradoxes for many-valued systems"
Journal of Symbolic Logic Vol 19 1954 pp 37-40
OlleTw

"The Codasyl approach to database management"
A Wiley-Interscience publication,

John Wiley & Sons , 1978

Park D MR

"Finiteness is MU-ineffable"

Theoretical Computer Sci., , Vol 3, 1976 , pp 173-181
Park D MR

Private Communication

Pirotte A

"High level database query language"

in Logic & Databases (Gallaire Minker eds.)
Plenum Press , New York , 1978 r Pp 409-436
Rescher N

"Many-valued logic"

McGraw-Hill Inc. , 1969

Rem M

"Associons and the closure statement"
Mathematical Centrum , Amsterdam ., 1976
Russell B

"The principles of Mathematics"

George Allen & Unwin Ltd , Eighth impression , 1964

page 171

[Sc-71]

[Sc-76]

[Se-75]

[Sh-81]

[85-77]

[SSS-81]

[St-77)

Schwartz J T

"Abstract and concrete problems in the theory of files"

in Data Base Systems : Courant Computer Science Symposium 6
May 24-26 , 1971 , Ed. R. Rustin , Prentice Hall

Scott D

"Data types as lattices"

SIAM Journal on Computing , Vol 5 » 1976 , pp 522-587
Senko M E

"Information systems: records, relations, sets, entities and
things"

Information Systems , Vol 1 , No 1 , 1975 pp 1-13
Shipman D W

"The functional data model and the data language DAPLEX"
ACMTODS , Vol 6, Nol, March 1981,

pp 140-173

Smith J M , SmithDCP

"Database abstractions : aggregation and generalization”
ACMTODS , Vol 2, No 2, June 1977 r Pp 105-135
Schonberg E , Schwartz J T ; Sharir M

"An automatic technique for selection of data representations
in SETL programs"

ACM TOPLS Vol 3 No 2 pp 126-143 April 1981

Stoy J E

"Denotational semantics : the Scott-Strachey approach to
programming language theory"

The MIT Press , 1977

page 172

[St-80]

[SY-78]

[Ta-55]

[TWW-78]

[Tu-811

[U1-80]

[Va-79]

Steyer F

"A uniform description of database management systems"
Information Systems , Vol 5, No 2, 1980, pp 127-135
Sagiv Y , Yannakakis M

"Equivalence among relational expressions with union and
differences operators"

Proc. VLDB , 1978 pp 535-548

Tarski A

"A lattice theoretical fixpoint theorem and its applications"
Pacific Journal of Mathematics , Vol 5, 1955, pp 285-309
Thatcher J W, Wagner E G, Wright J B

"Data type specification : parameterization and the power of
specification technique"

Proc. SIGACT 10th Annual Symp. on Theory of Comp. pp 119-132
Turner D A

"Recursion equations as a programming language"

Presented at Newcastle Functional Prog. Workshop , July 1981
Ullman J D

"Principles of database systems"

Computer Science Press , 1980

Vassiliou Y

"Null values in data base management : a denotational semantics
approach"

ACM / SIGMOD International Symp. on Management of Data , 1979 ,

pp 162-169

page 173

[vM-81]

[Wa-78]

[We-76]

[2i-75]

[21-75]

van Edam M H , Maibaun T S E

"Equations compared with clauses for specification of abstract
data types"

in Advances in database theory, Vol 1 , (Ed Gallaire, Minker,
Nicolas) Plenum Press , 1981 , pp 159-194

Wadge W W

"Away from the operational view of Computer Science"

Theory of Computation Report , University of Warwick

No 26 , November 1978

Weber H

"A semantic model of integrity constraints on a relational
database"

Modelling in Data Base Management Systems , G.M.Nijssen (ed),
North Holland Publishing Co. , 1976

Zilles S N

"An introduction to Data Algebras"

Working draft paper , IBM Research Laboratory , San Jose , Calif.
Zloof M M

"Query-by-Example : operations on transitive closure”

IBM Research RC 5526 , July 1975

page 174

	WRAP_THESIS_Golshani_1982.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

