THE UNIVERSITY OF

WARWICK

Original citation:

Wadge, W. W. (1982) Classified algebras. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-046

Permanent WRAP url:
http://wrap.warwick.ac.uk/60754

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60754
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF COMPUTATION

REPORT NO.46

CLASSIFIED ALGEBRAS

BY
W, W. WADGE
S—
\

" g
(disrs 4

oy ik p

/ y/ 4 U/ i

Department of Computer Scienc
University of Warwick

October 1982
COVENTRY CV4 7AL
ENGLAND.

Abstract

We present a new formal system for the specification and verification
of abstract data types, one which allows subtypes and polymorphism.

The new system is based on a modified notion of algebra, namely that of
classified algebra. A classified algebra (our terminology) is essentially
a single sorted algebra together with a classification (family of subsets)
of its universe. The classification, which is not necessarily a partition,
is labelled by sort (type) symbols; the subset of the universe labelled by
a sort symbol s are the objects of “type” s.

An assertion in the new system is either an equation, which asserts that
two expressions always have the same value, or a declaration, which asserts
that the value of a particular expression is always of a particular type.
Equations and declarations have equal status and the rules of inference
(substitution and replacement) can be applied to both.

We show that any specification (set of assertions) has an initial model,
unique up to isomorphism, which we can take to be the family of data types
and operations specified. The declarations in a specification act as the
“generators” of the types, and this principle forms the basis for an

induction rule of inference for proving assertions about initial models.

1. Why data types are not (Guat) many sorted algebras

The basic vrinciple of the "abstract" approach to data types (see, for
example, [6]) is the following: a data type is determined by the operations
allowed on the data objects in question. Prom the mathematical point of view,

the basic principle is ususlly taken o nmean that the formal study of data

0]

tvpes is not just the study of sets of data objects, but rather the study of
algebras — an algebra being a set together with a collection of operations
over the set.

Wor example, we could study the notion of "list" (in the sense of TI9P)
bv studying an algebra of lists together with the operations CAR, CDR, CONS
etc. One great advantage of this method is the fact that assertions about
data types and operations {in particular, prCWLICHtLOHQ) can be formulated in
the simple equational language of universal algebra. Properties can be
expressed by equations such as

CAR(CONS(E,Y)) == X

i
L

O

-
A3
v

in language very close to thet actually used by programmers, rather than in

some abstruse metsmathematical formalism intelligible only to specialists.

Tn most cases, howaver, 1% ig not possible to define a data type in terms
of operations over the single date type in question. If we are concerned with
stacks of integers, for evemple, we must deal with operations like PUSH and
TNP some of whose armments and/or results are integers, not stacks. For this
reason it is usual to use many-sorted (or "neterogenous"; see f1}) algebras
(MAAS) rather than simple cingle sorted algebras.

Me initinl success of “he MIA formalism made it seem for a time that the

basic foundational problems had heen solved, that data types "are" MSAs.

©

Unfortunately this has not proved to be the case; a mmber of problems which

3,

at first appeared to be minor have emerged to cause enormous di fficulties.
The first objection is really just a matter of terminology. The

htia

objection is that an MIA is not a single data type, but rather a collection

4

(or "cluster") of data types and associated data operations. This objection

may seem trivial, but important issues are involved. In our opinion, the
naive view of what is a data type ("a collection of similar data objects") is
basically correct. The trouble with naive (ie set-theoretical) approaches to
specification is that they ignore the data operations. In other words, data
types are sets, but the study of data types cannot be Just the study of sets.
We must study sets together with operations on their elements, ie algebras.

The second problem, this time a serious one, is that of “error” values
resulting from nonsensical combinations. It arises in all but the gimplest
data types. In specifying stacks, for example, we quickly discover that we
must include an equation which gives us a value for the expression POP(NIL)
(which, according to the type system, must be a stack). In general there are
two ways of dealing with the problem: by assigning healthy “default”™ values to
the problem combinations, or by introducing special error objects. Neither is
very satisfactory. The first tries to ignore the problem of errors and makes
it very difficult even to formulate the idea of a safe program, eg one which
does not attempt to pop empty stacks. The second greatly complicates the
specifications because it is necessary to qualify some equations with
preconditions to the effect that the variables involved denote non-error
values.

A second serious problem with MSAs is the lack of polymorphism. In real
programming languages it is common practice to use the same symbol for
operations with different argument and result types (the symbol "+" is the
usual example). If we want to remain within the MSA formalism,however, we
must employ a different symbol for each separate use. TFor example, if we are
dealing with lists of different kinds of objects (eg lists of mmbers and
lists of characters) we need distinct versions of the list operations - an
operation NCAR for taking the head of a numeric list, an operation CCAR for
taking the head of character 1list, NCONS for constructing mumeric lists, and
so on. Worst of all, we need a whole family of IF-THEN-ELSE clones, one for
each type of data which might be involved in a choice. Furthermore each of
these operations needs its own copy of the “generic” specifying equations.

-3 -

A third serious problem, related to the previous two, is that of
subtypes. The MSA formalism requires that the various carriers be disioint
sets. In nractice, however, there often arise situations in which one type
(as a set of values) is naturslly considered as a subtyvpe of another. The
classical example is given by the types integer and real. BRefore FORTRAN,
everyone agreed that integers were real numbers of a special kind. Now many
languages force us to distinguish between the integer % and its close cousin,
the real number 3.0. Some of these languages have gone even further and
enlarged the family of three-ish objects to include %.0DO0 (double precision
three), (3.0,0.0) (complex three), (3.0D00,0.0DMN) (double precision complex
three), (%,0) (integer complex three) etc. etc. In the same way, we must
distinguish between an empty list of integers, an empty list of characters,
and an empty list of booleans. We are forbidden from talking about a general
type list and cannot even contemplate "mixed” lists of (say) booleans and
characters alternating.

Another shortcoming of the MSA system is the lack of what we might call
“parametrised” types. Suppose, for example, that we wished to axiomatise the
type “height balanced binary tree”. The problem is that we cannot combine two
arbitrary height bhalanced *rees (by making them the two immediate subtrees of
A new tree) and expzct the result to be height balanced. It is necessary that
the two trees be of almost the same height. What we need is a formalism which
allows sorts with parameters, for example hbt(n). The closest we can come to
this idea in the M3A system is to have an infinite collection hbt0O, hbt1,
hbt2, ... of sorts, one for each possible height. This approach, however,
requires infinite signatures and infinite specifications, and so is far from
satisfactory.

The final complaint against the MSA formalism, perhaps the most serious,
is that its treatment of ftvves is not really algebraic. The basic principle
of the algebraic approach is that it is not the objects which are important,

but rather the operations on them. If we apoly this principle to the study of

datn typon, we nre foreed o conclude that the important things to study are
the operations on data types. It is very easy to imagine useful operations on
data types: for example, the union of two types (all objects of either type),
or the cross pr;duct (all ordered pairs of objects with the first component of
the first type, the second component of the second type). Fven so-called
"types" like stack are really (unary) operations on types; if t is a type,
stack(t) is the collection of stacks whose components are of tvpe t. However,
the MSA formalism simply does not allow operations on types (sorts) in any
form, and no amount of metamathematical manipulations (eg studving families of
MSAs) can compensate for this fundamental deficiency.

The shortcomings of the MSA formalism, in particular the lack of subtypes
and polymorphism are well known. Such problems arise in any language or system
based on a simple-minded “pigeonholing” approach to data types. Anyone who
has tried to implement lists in PASCAL, for example, will understand the need
for polymorphism. Subtypes and polymorphism, as well as parametrised types an
operations on types, were already discussed by the author and A. Shamir in
[5]. In that work, however, we did not take up the problem of formal

specification.
2. Generalizations of the notion of signature

The most natural way to solve these problems is to generalise the notion
of a signature and of the type of an operation. In an MSA the the sorts form
an wnatructured set, and each operation has only one type, consisting of a
sequence of sorts - one for each argument place and one for the result. If we
want polymorphism, for example, we could allow an operation symbol to have
more than one type; and if we want subtypes we allow a partial order on the
sort symbols. Goguen has described an "order-sorted algebra" approach in o]
which incorporates these two generalisations (his system developed out of

earlier efforts to solve the error problem).

-5 -

Goguen”s suggestion is certainly valuable, and order sorted algebras do
in fact solve some of the problems raised here. However once there nre
subtypes a new problem annesrs, one which 414 not arice with the o074
’pig@on-ho?ing’/MﬁA avprosch. Te 0OSA (Nrder

orted Algehra) formalism is

Timited by the fact that the type of an expression is g4ill determined by the

- SN

types of the subexpreasions. As a resylt, it ia not really noosibls

shout the nyme of the value of an expression, ie sbout special velues an

Find

expreasion may have hecause o7 apecial properties of the algebra.

Suppose, for example, that we have a signature with types integer and
real with the Tormer a aubtvoe of the latter. The equation

)4 - X m= 0
real real

(here X . i:
rest

6

a variable of type real) is well typed (0 is of tvpe integer

and therefore alzo of type resl) but the fyve svstem prevents us from

5

ht hand side by the Teft hand side.

substituting some occurrencas of the rig

We cannot deduce the eguation

RS P T INTN
: LA

and gtack (of PRARNCI Ol o

- P . .
kriow that the awvoreaasion

TR EPTY (T 1 THRN 5 RLEE m0p{T)

. - N J
erdes ol N Y
ata; atack

e

i gafe and vialde an integer value. he tyre syatem, however, is unaware of

thia fact hecapas it ianores the nature of the test and ahstracts only its
type (boalean). The hegt that we could conclude using an 0% {order— sorted
algebra) syatem is thnt the above expression is of a supertype of integer
which inciries arror oblects a3 well.

Go Jien

B . N . By 5 E P 2 - SN -
himael? recopnines this nroblem, an extends his simple OSA by

allowing now syntaciin abiects called declarations. A declaration iz a

-

her with = sort, for examplsz (in Goguen’se notation)

exprassion toget

which is interpreted as asserting that value of the expression in question is
always of the indicated type, for all correctly typed assigmments of values to
variables. Goguen”s declarations have an unusual status, however, and seem to
be considered more as part of the signature than as part of the specification.
They complicate the system even further without decisively resolving the

problem of “special case” types.

3. Classified Algebras

The conventional MSA system and the new OSA system (even the extended
version with declarations) all share a fundemental assumption (with many other
languages and systems as well) which we feel is at the root of some of the
most serious problems in the field of data types. Both the MSA and OSA systems
are based on a concept of type which is primarily syntactic: a type system is
Seen as being above all a classification of syntactic objects, ie of
expressions. The classifications permitted by the OSA system are more
sophisticated than those allowed by the MSA one, but the principle remains the
same. The OSA formalism can (and should) be generalised even further, say to
AASs (Algebra Sorted Algebras) to handle operations on types. Yet the blind
spot (the inability to talk of the type of the value of an expression) will
remain. With more elaborate signatures, the problem will get worse. For
example, it should be quite normal practice to write a program that produces a
height balanced tree, but not using a method so simple that a syntactic type
checker can verify the fact unaided. We propose to solve this problem by
developing a notion of algebra based on a semantic concept of type: we see
type systems as being primarily classifications of semantic objects, ie of
data objects. We call these new kinds of algebras classified algebras. The
CA (classified algebra) system is more general than the OSA system, and is at
the same time (mercifully) notationally much simpler. We do not pretend that
CAs solve all the problems present in the algebraic approach; our intention is
rather to present them as a simple example of a semantically based system.

-7 -

The new system can be thought of as the result of carrying Goguen”s
enrichment of an 0% system to its logical conclusion. We promote his
declarations to the status of full fledged assertions, sharing the same rights
and privileges as equations. Since declarations can be used to formulate all
the type information about operations “coded up” in an OSA signature, we can
rely on declarations alone and drop any a priori syntactic concept of type. A
signature in the new system is simply a collection of sort symbols and
operation symbols (we assume they can be distinguished) which includes the
special sort symbol anything. We even drop anv syntactic notion of rank,
although rankings could be retained for those uncomfortable in their absence.
By an operation over a set X we mean a function from the set of finite
sequences of elements of X to X. Then given any signature B5g, a
Sg-classified algebra A is a function with domain Sg such that

(1) A(anything) 1is a nonempty set, called the
universe of A;

(ii) A applied to any sort symbol in Sg yields

)

subset of the universe of A;
(iii) A applied to any operation symbol in A vields

an overation over the universe of A. A classified algebra
is therefore iust a conventional (apert from being rank- less) single sorted
algebra together with a labelled classification of the elements of its
universe. ™e sets {A(g) : s a sort symbol other than anything} correspond to
the carriers in a conventional MSA. Tn general, there will be elements of the
universe of 2 CA A which do not appear in any of its “carriers’. These are
best thought of as error ohiects or even ~junk” which is the result of
nongensical combinations.

The syntactic side of the CA system is equally simple. ¥xpressions
(terms) are built up from variables by combining operation symbols with with
operand expressions — the choice and number being arbitrary. An equation is
an ordered pair <®,F"> of terms; we will also use the notation

E =%

-8 -

A declaration is an ordered pair <B,s> with F a term and s a sort
symbol; we will also use the notation
RE:s.

Variables are typed (or sorted), as in the MSA system, and so can be thought
of as ordered pairs consisting of a token together with a sort symbol.

A declaration E:s is true in an algebra A iff the value of the
expression B is of type s (ie is in A(s)) for all properly typed
assigmments of values to variables. Thus the declaration

PRODUCT(V

Vector,TRANSPOSE(V

vector)):posreal
asserts that the operation A(PRODUCT) applied to an element of A(vector)
and to A(TRANSPOSE) applied to that element is in A(posreal).

An assertion is either an equation or a declaration. An assertion P is
true in an algebra A iff it is true as an equation or as a declaration, as
above.

Declarations are intended to allow explicit formulation of the type
properties of expressions which in other systems are formulated implicitly by
the signature (which assigns operation types to operation symbols). The
availability of declarations relieves us from the necessity of encoding type
information in this syntactic form (in the signature) and at the same time is
much more general as well.

For example, the fact that the operation symbol PUSH is of type

{stack,int,stack>
can be expressed by the declaration
PUSH(Tstack’Iint):StaCk

We can, of course, write more than one declaration concerning the same

operation; for example,

Xint ¥ Ying

Xreal + Yreal : real

§D8+ng:-ms

so that we can formalise the notion of an operator being "polymorphic". The

: int

ordering between types can also be formulated with declarations: the

-9-

declaration

Xint : real

agserts that type int is a subtype of type real. This declaration is true
in an algebra A iff A(int) is a subset of Alreal).

Finally, declarations can be used to give type information about “special
case” expressions which cannot be deduced just from type information
concerning the operation symbols used in the expression. Here are three

examples:

Xreal - Xreal f int

TR ™ THEN X, FISE Y : int
int

real

m m R
IF X gy > O TN SRT(X) FISE SRT(-X__.)

Here is a specification of the natural numbers with the operations zero

: real

(0), successor (7), addition (+) and multiplication (*).

O : nat
nat nat
Xnat + Ynat nat
X . *Y nat
nat nat
Xnat +0 == nat
nat nat” (Xnat + Ynat)
¥* — e
Xnat 0 ==

X %Y 7 == X
nat ‘nat nat

and here are additional assertions which specify stacks of natural numbers
with POP, TNP and PUSH. The extra sort symbol nstack stands for non-empty
atacks.

NIL : stack

wnstack : stack
PU%H(VStaCk,Xnat) : nstack
Pop(whstack) : stack
Top(wﬁstack) : nat
TOP(PUSH(Vstack’Xnat)> == Xnat
POP(PU%H(Vstack’Xnat)) = Vstack

- 10 -

4. Theories and initial models

Classified algebras were developed primarily to facilitate the
specification of abstract data types. A specification is a collection of
assertions which somehow “axiomatises” the algebra of the intended data types
and operations. In general, a specification has many different models; that
is,there are many different algebras in which all the assertions in the
specification are true. There is, however, one particular collection of
algebras associated with the specification which have an excellent claim to be
the algebras “intended”. These are the initial models of the specification.

An algebra A which is an element of a class K of algebras is said to
be initial (in K) iff given any other algebra B in K there is a unique
homomorphism from A to B. A model of a set of assertions is an initial
model iff it is initial in the class of all models of the set. It has been
shown that in the MSA and OSA systems a specification always has an initial
model, and that this initial model is unique up to isomorphism. A
specification can therefore be considered as defining a particular isomorphism
class of algebras - this is the justification of the initial algebra approach
to data type specification (see, for example, [3]).

The motivation behind the formal definition is hard to guess; but
fortunately there is also a suggestive informal characterisation. The initial
model is the one which

(i) includes only those data objects which are
required by the specification to exist;
(ii) identifies only those objects which the
specification requires to be identified. The initial algebra
is therefore in a certain sense the "minimal” solution to the specification.

If we want to use the initiality principle in conjunction with CAs, we
must obviously prove that every CA specification has an initial model unique
up to isomorphism. This is not particularly difficult, and we present the

proof here in outline only.

- 11 -

The crucial concept is that of homomorphism. By a homomorphism from a CA
A to a CA B we mean a function h from the universe of A to that of B such that
(i) for any operation symbol f and any elements Bys ByseeeB
in the universe of A, the result of applying B(f) to h(ao),
h(a1),...h(ah_1) is the image (imder h) of the result of
applying A(f) to Byr Ayyeeey 2 43
(ii) for any sort symbol s and any element a of the universe of A,
if a is in A(s) then h(a) is in B(s).

Now suppose that we have a specification (set of assertions) S and a
signature Sg. We will construct a particular algebra A which is an initial
model of 3.

The universe of A consists of equivalence classes of Sg-expressions, two
expressions T and E” being equivalent off the equation E==E~ is a logical
consequence of the assertions in S (ie iff the equation is true in all models
of 8). Given any sort symbol s in Sg, A(s) is the set of all equivalence
classes of expressions E for which E:s is a logical consequence of S.
Finally, if f is an operation symbol in Sg and [EO], [E1],..., [En_1] are in
the universe of A, then the result of applying A(f) to [E.], [E1],..., [En_1]
is ff(EO,E1,...En_1>], ie the equivalence class of the term formed from f with
EO’ E1""En—1 a8 operands.

In order to check that A is well defined we must verify that

(i) if ®:s follows from S, and E” is equivalent to E,
then B :s follows from S;
(i1) if B, is equivalent o E,~ (i<n) then £<B, Byy oo, B>
is equivalent to f<E ',E1',...,En_1'>.
(s a sort symbol and f an operation symbol). This is gtraightforward.

Next, we must show that A itself is a model of S. This follows from the
more general but easily established result (important in its own right) that
an assertion (which may involve variables) is true in A iff each of its
variable - free substitution instances is a logical consequence of S. (The
substitutions allowed are those which involve replacing a variable of type s

- 12 =

by an expression E for which E:s follows from S). The result is hardly
surprising, considering that the elements of the universe of A are
(equivalence classes of) variable - free expresgions. Since all the
substitution instances of assertions in S are obviously consequences of S, it
follows that A is a model of S.

Finally, it is easy to see that A is an initial model. Given any other
model B of 5, we define the function h from the universe of A to that of B by
setting h([E]) to be the value of E in B (recall that E has no variables).
The fact that B is a model of S ensures that h is well defined and is a
homomorphism.

Clearly, the proof of the existence of initial models for CA

specifications differs little from analogous proofs in the other systems.

5. Reasoning about Classified Algebras

One of the great attractions of equational algebra as a logical system is
the extreme simplicity of the rules of inference. The two rules are, of
course, the rule of substitution (of expressions for variables) and the rule
of replacement (of equals for equals). The CA system uses these same rules,
with appropriate modifications. The essential difference is that the CA rules
can be used to derive new declarations as well as new equations.

The rule of substitution allows us to infer, given an assertion P and a
declaration E:s, any assertion P~ formed from P by substituting B for all
occurrences in P of any one variable of type s. Thus from the assertion (in

this case, a declaration)

and the declaration
* .
Dint * Zipy * POS
we can infer the declaration

X +(2Z, . *7..) : pos.

POS int int
Substitution can, as indicated, be performed on equations as well.

-1% -

The rule of replacement allows us to infer, given an assertion P and an
equation B==F", any assertion P~ formed from P by replacing any occurrence of
E in P by E°. Thus from the assertion (again, a declaration)

* .
Xeven + (2 Yint) : even
and the equation
2*Y, ==Y, *2
int

we can infer the declaration

+ (Y

X ., *¥2) : even.
even int

Of course replacement can, like substitution, be applied to equations as well.

It can be shown (though we will not do it here) that these rules
(together with the obvious axioms) are complete: an assertion P can be proved
from a set S of assertions iff P is a logical consequence of S, ie iff P is
true in all models of S.

Now suppose that we have a set S of assertions which we want to consider
as a specification, and that we are interested in proving certain properties
of the data types specified. The initial model of a specification is“model;
thus any agssertions which can be derived using the rules of inference just
given are true in the initial model. Assertions derived in this way, however,
are those which are true in all models of the specification. In general there
are assertions true in the initial algebra which are not true in other models
of the specification and so cannot be derived using the ordinary rules of
inferences. The commutative law of addition, for example, is not a consequence
(in the ordinary sense) of the specification of the natural numbers given
enrlier.

Obviously, we require stronger rules of inference which which take into
account the special features of the initial model. We saw earlier that the
universe of the initial model contains only those data objects required to
exist by the specification. In the CA system we can restate these properties
in a more suggestive form : the elements of the initial algebra are exactly
those which are generated by the declarations in the specification. This

formulation points, of course, towards a rule allowing assertions to be proved

- 14 -

by induction on the complexity of the structure of the data objects of a given
type. We have in mind some form of "generator induction" (see, for example,
[5]) which extends the classical rule of mathematical induction over the
natural numbers.

An induction rule of this type is easily found. Suppose that Sg is a
signature, that S is a specification, that s is a sort symbol in S and that
P(w) is an assertion involving the variable w of type s (and possibly others,
possibly of other types as well). Iet Eb:s, E1:s,...,E 1:s be all the

Nn—

declarations for the type s in S. We form a new sequence Eb', E1',...,F of

-1
terms in which each Ei' is the result of replacing all variables of type s in
Ei by new operation symbols (which will be used as nullaries) not already in
Sg. Let Br Bgreees B be the new symbols. Then we are required to prove,
using the ordinary rules of inference, the assertions P(Ei') (i<n). In doing
so we use S, the declarations cyi8 (j<m), and the induction hypotheses P(cj)
(j<m). Having done so, we can conclude that P(w) is true in the initisl model
of 8.

The rule is simple enough, but in attempting to apply it to the example
specifications given earlier we run into an unexpected difficulty. In proving
assertions about the natural mumbers, for example, we would expect only two
“cases” : proving P(0) and proving P(a”) assuming P(a). According to the
rule, however, we must also prove two other cases: P(ao+a1) from P(ao), and
P(ao*aq) from P(ao) and P(a1). The extra steps are unnecessary and often
impossible, so that our induction rule proves to be of limited usefulness.

Of course we all “know™ that the declarations O:int and Xint':int by
themselves are enough to generate the integers. In general, however, it would
be very difficult to say which of a set of declarations are redundant and
should therefore not require separate induction steps.

On the other hand, if the declarations

Xint + Yint : int

»* « 3
Xing ¥ Yipg ® int

really are “redundant” in a certain sense, we ought to ask ourselves why they

-15 -

were included. The answer, of course, is that they represent supposedly vital
type information about the operations + and *, information given by the
gignature in conventional algebraic systems. In an OSA or MSA system, this
information must be included because a signature must assign types to
operation symbols. In the CA system, however, there is no a priori
requirement that we include the corresponding declarations in a specification.
The extra declarations are, in fact, redundant. The following assertions
O:int
Xint':int
Xing * 0 == Xing
X, . +Y, 7 == (Xint+Yint)’
King ¥ 0 ==0

T==X, ¥, +X

*
X Yint “int “int int

int
specify exactly the same initial algebra. The extra declarations are already
true in the initial models of the above specification and can be proved using
the induction rule previously stated. To prove, for example, that the sum of
two integers is an integer, we must prove
Xint + 0 : int

and

Xint + A7 & int

from the specifications, the declaration A:int and the induction hypothesis
Xint + A : int

The proof is very simple. In the same way, we can use the induction rule to

prove the associative, commutative, and distributive laws and other important

aggertions. Several steps are required : assertions proved by one application

of induction are added to the specification and used in subsequent induction

proofs.

One of the great advantages of this induction rule is that it allows
proofs to be formulated entirely within the object language, ie essentially

that used by programmers. It does not require knowledge of, or reference to,

metamathematical notions such as that of homomorphism.

- 16 -

Incidentally, the other gpecification also contains redundant assertions.
The specification of stack really requires only the five assertions
NIL : stack

Tnstack : stack

PUSH(T I. .) : nstack

gtack’
TOP(PUSH(T

int
stack’Iint)> == Tint
POP(PUSH(T oo Tint) == Totack”

Of course we could certainly criticise a specification for msking no provision
at all for errors. But extra error assertions could be added to those above
without forcing the creation of any new objects of type stack. The above
assertions can be thought of as specifying the bare minimum of what everyone
agrees about stacks. In fact the type nstack itself is not really necessary;
we could remove the second assertion and replace "nstack" by "stack" in the

declaration following. The resulting set of four assertions has an even

better claim to represent the “hard core” of axioms about stacks.
6. Signatures and type checking

It might seem that the adoption of a semanticélly based system like the
one presented here necessitates the abandorment of syntactic type checking.
After all, one could reason, in the CA system there are no operation types and
anything can be applied to anything.

Any specification (set of assertions) S already determines a
classification of the set of all expressions. Tor each sort symbol s we have
the corresponding collection of all expressions E for which E:s is true in the
initial model of S. This classification may not, however, be decidable, so
that we cammot in general expect to have an algorithm which will check the
types of expressions in this sense. For some sets of assertions, however, the
corresponding syntactic classification is decidable; in particular, if the
agsertions are all declarations. Of course, it is very unlikely that a
specification would consist only of declarations. But given a specification S

-17 -

we can form another set T of assertions such that
(1) each element of T is true in the initial model
of 8 (ie is true of the types specified);
(ii) the syntactic classification induced by T is
(easily) decidable.
In such a situation the type checking with respect to T is “partially
correct”. If our type checker concludes that a given expression is of a given
type, then this will be the case. The only problem is that there may exist
complicated expressions that fool the type checker, eg whose value is always
an integer even though the best that the type checker can do is classify it as
of type real. In many applications, however, partial type information is
enough.

Those who approve of the discipline enforced in a strongly typed language
may feel very uneasy about the way in which the formal system allows
expressions to be built up in an arbitrary fashion allowing eg stacks to be
added and integers to be POPed. There is no reason, however, to allow the
programmer the full freedom which is available in principle in the formal
system. An implementer could always select some set T (as described above)
and require that expressions in a program be “classifiable” according to T.
The strength of resulting type discipline devends inversely on that of T, but
there seems to be no a priori limit on what should or should not be allowed to
appear in programs. Our formal system therefore takes no stand on the issue
and leaves the decision where it belongs, in the hands of the language
designer.

The approach to type checking presented here is in many respects similar
to (and inspired by) that used by Milner in his ML language (as described in
[4]).

There is, however, cne vital a priori reason for meking at least some
restriction on the form of programs. The problem is the vast amount of

untyped ~junk” floating around even (or especially) in the initial model of a

- 18 -

gpecification. Tt is totally unreasonable to expect that the implementor of a
specification should have to worry about the junk and provide repregentations
for data objects that are essentially mathematical garbage (such as the result
of adding 5 to a truth value, or of using successor as a binary operator).
Ideally, the implementor should have to worry about sensible objects only, ie
those with a type (other than anything). At the same time, the programmer
would be restricted to programs that produce healthy output, ie that produce
values with a type.

Unfortunately, it is possible to produce specifications in which junk can
appear as intermediate results in computations that produce sensible values.
On the other hand, with most “normal” specifications this cannot happen.
Clearly what is required is a formal definition of normality, a simple if not
exhaustive criterion for normality of a given specification, and a proof that
the junk in the initial model of a normal specification can be safely ignored.

This remains to be done.

7. Fxtensions and Conclusions

The basic innovation in our CA approach is to allow explicit reasoning
about the types of expressions by means of declarations. At the same time we ‘
have greatly reduced the explicit, syntactic way in which this information
encoded in conventional systems. It should be apparent then, this process can
be carried even further than we have done already.

For one thing, we could eliminate the syntactic typing of variables by
allowing variable type declarations to be used as preconditions for
agsertions. In this way we would write

X:int, Y:int -> X+Y:int
instead of

Lot + Ying

Of course once we allow preconditions we might as well allow arbitrary

: int

declarations as preconditions or even equations as well. This would allow us

-19 -

to write, for example,
A:posmatrix, A = TRANSPOSE(A) -> A:hermitian

Another direction in which we could extend the system is to allow
parametrised types and type operations, the need for which we have already
described. The simplest type operations are probably union and intersection,
with axioms like

X:A, X:B => X:A-B
We could also have a cross product operation on types associated with a
pairing function and axioms like
X:A, ¥:B -> MKPATR(X,Y): AxB

Extending the concept even further, we could allow type variables and
user-specified operations on types like Stack. The gspecification of Stack
might include assertions like

X:t, H:Stack(t) -> PUSH(H,X):Stack(t)
As for parametrised types, we might specify Vector (with Vector(I) a vector of
length T) with assertions like
Ttnat, X:Vector(I), Y:Vector(I) -> X+¥:Vector(I)
Finally, we could even raise the order of the system by allowing metatypes
which represent classifications of types. An example could be Numeric, with
axioms like
tiNumeric, X:t, Y:t -> X+¥:%

In all of these suggested systems, it is necessary that all (or at least most)
sets of assertions have initial models, and it is desirable that there be
simple induction rules for proving assertions about initial models.

The classified algebra approach outlined in this paper is in a sense, the
simplest of all the systems suggested here. Nevertheless we feel that even the
CA system is rich enough to illustrate the .power and potential of an algebraic

system freed from a built-in commitment to some particular syntactic notion of

type.

- 20 -

8.

(1]

(2]

[3]

[4]

(5]

(6]

References

Birkhoff, G. and Lipson, D., "Heterogenous Algebras," J. Combinatorial
Theory 8,1970, pp. 115-133,

Goguen, J. A., "Order Sorted Algebras: exceptions and error sorts,
coercions and overloaded operators," Semantics and Theory of Computation
report no. 14,Computer Science Department, UCIA, December 1978.

Goguen, J. A., Thatcher, J.W. and Wagner, E. G., "An Initial Algebra
Approach to the Specification, Correctness and Implementation of Abstract
Data Types," in Current Trends in Programming Methodology, Vol. 4, Data
Structuring (ed. by R. Yeh), Prentice-Hall, 1978, pp. 80-144.

Milner, R., "A Theory of Type Polymorphism in Programming," JCSS 17 (1978),
pp. 348-375.

Shamir, A. and Wadge, W., "Data Types as Objects," Springer Lecture Notes
in Computer Science no. 52 (ed. by G. Goos and J. Hartmannis), Springer
Verlag, 1977, pp. 465-479.

Spitzen J. and Wegbreit B., "The Verification and Syntheéis of Data

Structures," Acta Informatica 4 (1975), pp. 127-144.

-2 -

