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ABSTRACT

We prove that any n-verLex graph of maxlmum degree r (r=3

or 4) can be embedded in a square grid of area.\(n), where:

A,s(n) < n2/++o(ns/2)

&(n) < n2 + o (n3l2)
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1- Introduction

Valiant [5], Leiserson [4] and others have considered the problem of deter-

mining upper bounds on the grid areas required to embed certain classes of n-

verLex graph, e,g trees and planar graphs.

Valiant also examined arbitrary graphs and proved;

4(n) ' I nt

The construction used may be slightly sharpened to reduce lhe constant to 4

In lhrs paper we describe a difierenl method aJrd prove lhat;

Ae(n) < n2l++o(n3/2)

&(n) < n2 + o(ns/z)

In the remainder of this section we give definiLions and the noLation used

and in the next section prove the main result.



'We consider undirected graphs, with vertices Yand edges E, which will be

denoted by G(YD. For the grapbs considered E will include no seif-loops.

Th.re degree of a graph G(YE) is the maximum degree of any vertex in G,

lYe sha-ll consider graphs with degree al most 4.

The vertex seL of a graph G wlll be denoted by Y(G), the edge set by E(G).

Definition 1

An I,,,r grr.d is the graph consisling of IJ verLices, formed by placing vertices

at the Cartesian coordinates;

t (x,y) Lo<x<I, o'Y<Ji

wilh edges between the pairs at unit disLance apart.

Definition 2

An ernbeddLng of a graph G(VE) inlo an I-J grid X is a pair of mappin€s;

P : v(c) -> Y(X)

Q : E(G) -> palhs of edges in X

such Lhat if (v.w) is in E(G) then q((v,w)) is a path in X from P(v) to P(rtr-).

Two paths, Q(vr,wr) and Q(v2,w2) may share grid vertices but not any grid

edges.

Definition 3

A,(n) is defined to be the minimum K such that any degree r n-verlex graph

may be embedded into a grid containing at most Kvertices.

For furLher graph-theoretic dennitions refer Lo Even i3] or Berge lt].
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2- Upper Bounds

Consider the algorithm below which embeds an arbitrary n-vertex graph

G(VE),

A1) Find a spanning tree T of G and embed T in a (k1nt/ 2), (k2n1/ 2) -grid X (e.g

f ollowing the methods of [+])

AP) For each edge (v,w) of G which is not an edge of T, embed (v,w)

In order to perform step (A2) additronal rorrs and columns may have to be

added to X in order to provide a path from P(v) to P(w) rclich is edge disjolnt

from exisling paths rn Q(E).

Let { denote the grid after the L th edge has been emberided. (So ihat X0 = X )

Let $ and Q denoLe the number of rows and columns in{.
The upper bound is obtained by proving;

& . &_r+1 i Ci < q_1+ 1

fori<i< E(G) - E(T) 
I

Thus at most one row and one column need be added to 4 I to roule Lhe i''.h

edge.

We prove this result j.n t$o stages. FirsL we estabiish a sufiicient condition

allowing an edge to be embedded by adding at most one row and one coiurnn to

the grid. We then prove that any graph having degree<-1, may be labelled in

such a way, that when an edge is to be embedded tlris condition will hold.

Def-nition 4

Let v be a graph verlex, and let P(v)=2 An erit?oih of v, is a grid edge (z,y).

such that no graph edge incident Lo v has been embedded using (z,y) as a path

component.
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Initially an embedded vertex, with no incident edges added, has four exit-

paths. We shall label these N, S, E, W in the obvious way.

Lemma 1

Let (v,w) be arr edge of a graph G(YE). Let each edge of G be embedded

into agridX exceptfor (v,rv). If v has aNorSexit-path andwhas aEorW

exil-paLh (or vice-versa) the edge (v,w) may be embedded by adding at most one

row and one column to X

Proof

WIog, suppose v has a N exit-path and w has a E exit-path. Let (x",y") be the

Cartesian coordrnaLes of P(v) in { and lel (x* y*) be the Carle-sian coordinaLes of

P(w). We proceed as follows to embed the edge (v,w).

Insert a new row R' between rows yu and yv+ 1 . Similarly insert a new column

C' between coiumns xo and x*+ 1. The edge (v,w) can now be embedded by using

a het h 
^6nr,atino ^f

The N exil-patir of v, followed by the edges in row R, (between eolumns xu

and C), foilol'ed by lhe edges in column C', (between rovs R'and y*), com-

pleting the path usrn€ Lhe E exit-path of n'.

Definition 5

A routing scheme RS for a graph G(YE) is a pair of mappings lM",M.] satis-

fying (b i)-(b+) below;
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b1) r["(E(G)) -> [ N,s,E,r{ J

b2) rr.(E(c)) -> I N,s,E,wi

b3) il,(v,w) = lt"(v,v) <=) y=w

b4) M-(v,w) = M.(x,w) <=> x=v

Any routing seheme lM, M,l, for a graph G(YE) defines a set of pairs (e",e,,)

describing lhe exil-paths to be used when embedding lhe edge (v,w).

In order for Lhe condition of Lemma(1) Lo hold w-hen each edge is embed-

ded, a scheme [M,,M-J musL satisfy:

b5) M"(v,w)=N or S if and only rf Mr(v,w)=E or't'Y.

Lemma 2

For any graph G(YE) there exists a rouling scheme RS satisfyrng (b5).

Proof

We drstmguish two cases:

Case 1

Every vertex of G has even degree.

IL is well knov'n that G has an Eulerian circuit (i.e startrng from any vertex of G,

a path may be traced through G which visits each edge exacly once and ends at

the sLarting vertex).

We proceed as follows.
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Make G into a directed graph by tracing out an Eulerian circuiL of G and

marking each edge with the direclion in vrhich it is traversed, e.g if verLex w

is visited trom vertex v then lhe edge (v,w) is directed from v to w.

It is easy to see ttrat in the directed graph which resul.ts, each verlex has

aL most 2 incoming edges and at most 2 outgolng edges incident lo it, Fu-rther-

more every degree 2 vertex is incident to exaclly one incoming edge and exacly

ulrtr uurgur.ug eutse.

We can nols define M" and M, as f ollows:

For each edge (v,w) in E(G)

If (v,w) is directed from v to w

then M"(v'w) = N or S

and M-(v,w) = E or W

else

M"(v,w) - E orYI

and M.(v,w) = N or S

Clearly the resulting routin€ scheme for G satisfles (b5).

Case 2

G contains some odd degree verlices.

The number of odd degree vertices in any graph is even, since the surn of Lhe

verLex degrees is equal Lo ti{ice the number of graph edges. 14e can thus reduce

this case to Case(1) b1"'painng" odd degree verlLces and adding an edge

beL\aeen the vertices in a palr.

The resuJting graph still has degree<=4 and lhe methods of Case(i) may be

applied to flnd a roullng scheme salisfying (b5) The extra edges can then be

removed.



Theorem 1

&(n) < */ + + gl ostz l

An(n) < nz + o( nv? )

Proof

Let c(YE) be a graph. Embed G into a grid as follows;

D1) Construct a routing scheme [M,,M.] satisfying (US), as in the proof of

Lemma(2).

DZ) Find a spanning tree T of G and embed T into a (kr nl/ 2), (k2nrl z)-grld X, with

each edge of T being embedded using the exit-paths specified by lM,,M_]

D3) For each edge (v,w) in E(G)-E(T), embed (v,w) by adding one row and one

column to the grid {-1 to f.ield a new grid {.

The correctness of this algorithm foliorqs from Lemma(p) and the facl that

the Lree embedding algorithns of Valianl and Leiserson may be amended to

reaiise the requirements of Step(DZ) (iZ]).

Let K be the number oi verlices in the final grid )e, (where s=lE(G)-E(f)t)

Then;

A,(n) <K

< (k 1nr/ 
2 + s) (k2n1/ 2+ s)

For r=3

s < 3r/? -(n- t) = rlz+I
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For r=4

s -< 2n - (n-t) = tt* 1

Thus

A3(n) < n2/ + + o( nvz )

A*(n) <.rt + o( nszz ) as claimed.

Ttre above res..:lt has also been independenl"iy derlved by S.Skyun.
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