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ABSTRACT

We prove that any n-vertex graph of maximum degree r (r=3

or 4) can be embedded in a square grid of area A.(n), where:
Ag(n) = n®/4+ 0 (n¥?)

Asgn) = n® + 0(n¥?)
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1. Introduction

Valiant [5], Leiserson [4] and others have considered the problem of deter-

v

mining upper bounds on the grid areas required to embed certain classes of n-

vertex graph, e.g trees and planar graphs.

Valiant also examined arbitrary graphs and proved,;

The construction used may be slightly sharpened to reduce the constant to 4.

In this paper we describe a different method and prove that;
Ag(n) € n2/4 + 0 (n%?)
Afn) = n® + O( %)

In the remainder of this section we give definitions and the notation used

and in the next section prove the main result.



.
" We consider undirected graphs, with vertices V and edges E, which will be
denoted by G(V.E). For the graphs considered E will include no self-loops.
The degree of a graph G(V.E) is the maximum degree of any vertex in G.
We shall consider graphs with degree at most 4.

The vertex set of a graph G will be denoted by V{G), the edge set by E(G).

Definition 1

An [ J grid is the graph consisting of 1J vertices, formed by placing vertices

at the Cartesian coordinates;
f (xy) | 0=x<] 0=y<Jd}

with edges between the pairs at unit distance apart.

Definition 2

An embedding of a graph G(V.E) into an 1-J grid X is a pair of mappings:
P : V(G) —> V(X)
Q : BE(G) —> paths of edges in X

such that if (v,w) is in B(G) then Q({v,w)) is a path in X from P{v) to P(w).

Two paths, Q(v,,w,) and Q(vz wg) may share grid vertices but not any grid

edges.

Definition 3
A.(n) is defined to be the minimum K such that any degree r n-vertex graph

may be embedded into a grid containing at most Kvertices,

For further graph-theoretic definitions refer to Even [3] or Berge [1].



2. Upper Bounds

Consider the algorithm below which embeds an arbitrary n-vertex graph
G(V.E).
A1) TFind a spanning tree T of G and embed Tin a (k;n?),(k,n'/?)—grid X{e.g

following the methods of [4])

A2) For each edge (v,w) of G which is not an edge of T, embed (v,w)

In order to perform step (AR) additional rows and columns may have to be
added to Xin order to provide a path from P{v) to P(w) which is edge disjoint
from existing paths in Q(E).

Let X; denote the grid after the i'th edge has been embedded. {So that X; = X).
Let R; and C; denote the number of rows and columns in X

The upper bound is obtained by proving;
ESRi*]-*‘l i Cii- Ci*1+1

for 1 =i< | EB(G) — E(T) |
Thus at most one row and one column need be added to X;_, to route the i'th

edge.

We prove this result in two stages. First we establish a sufficient condition
allowing an edge to be embedded by adding at most one row and cne column to
the grid. We then prove that any graph having degree<=4 may be labelled in

such a way, that when an edge is tc be embedded this condition will hold.

Definition 4
Let v be a graph vertex, and let P(v)=z. An ezit-path of v, is a grid edge (z,y),
such that no graph edge incident to v has been embedded using (z,y) as a path

component.
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Initially an embedded vertex, with no incident edges added, has four exit-

paths. We shall label these N, S, E, W in the obvious way.

ILemma 1

Let (v.w) be an edge of a graph G(V,E). Let each edge of G be embedded
into a grid X except for (v,w). If vhas a N or Sexit-pathand whasaEor W
exit-path (or vice-versa) the edge {v.w) may be embedded by adding at most one

row and one column to X

Proof

Wlog, suppose v has a N exit-path and w has a E exit-path. Let (x,y,) be the
Cartesian coordinates of P{(v) in X. and let (x.v,) be the Cartesian coordinates of

P(w). We proceed as follows to embed the edge (v,w).

Insert a new row R between rows y, and y,+!. Similarly insert a new column
C between columns %, and x,+1. The edge (v,w) can now be embedded by using
a path consisting of:

The N exit-path of v, followed by the edges in row R, (between columns x,

and C), followed by the edges in column C, (between rows R and y,), com-

pleting the path using the E exit-path of w.

Definition 5

A Touting scheme RS for a graph G(V.E) is a pair of mappings {M;. My} satis-

fying (b1)-{b4) below;



b1) My(E(G)) —> § NSEW)

b2) M (E(G)) —> { NNSEW]

b3) M, (v,w) = M, (v,y) <=> y=w

b4) Me(v.w) = Me(x,w) <=> x=v

Any routing scheme {M, M.} for a graph G(V.E) defines a set of pairs (e,.e,)
describing the exit-paths to be used when embedding the edge {v,w).

In order for the condition of Lemma({1) to hold when each edge is embed-

ded, a scheme {My, My} must satisfy:

b5) My(v,w)=N or Sif and only if My(v.w)=Eor W.

lLemma 2

For any graph G(V.E) there exists a routing scheme RS satisfying (b5).

Proof

We distinguish two cases:

Case 1

Every vertex of G has even degree.

It is well known that G has an Eulerian circuit (i.e starting from any vertex of G,
a path may be traced through G which visits each edge exacly once and ends at
the starting vertex).

We proceed as follows.
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Make G into a directed graph by tracing out an Eulerian circuit of G and
marking each edge with the direction in which it is traversed, e.g if vertex w

is visited from vertex v then the edge (v,w) is directed from v to w.

It is easy to see that in the directed graph which results, each vertex has
at most 2 incoming edges and at most 2 outgeing edges incident to it. Further-
more every degree 2 vertex is incident Lo exactly one incoming edge and exacly

one cutgoeing edge.

We can now define M, and My as follows:

For each edge (v,w) in E(G)
If (v,w) is directed from v to w
then My(v,.w) =Nor S
and Mg(vw) = Eor W
else
M.(v.w)=EorW

and M (v.w) = Nor 3

Clearly the resulting routing scheme for G satisfies (b5).

Case 2

G contains some odd degree verlices.
The number of odd degree vertices in any graph is even, since the sum of the
vertex degrees is equal Lo twice the number of graph edges. We can thus reduce
this case to Case{1) by "pairing” odd degree vertices and adding an edge
between the vertices in a pair.
The resulting graph still has degree<=4 and the methods of Case{1) may be
applied to find a routing scheme satisfying (b5). The extra edges can then be

removed.



Theorem 1
Asg(n) = n®/4 + O(n%?)

Ay(n) = p® + O(n¥?)

Proof
Let G(V.E) be a graph. Embed G into a grid as follows;

D1) Construct a routing scheme {M,,M,] satisfying (b5), as in the proof of

Lemma(2).

D2) Find a spanning tree T of G and embed T into a (k,n"?),{kyn"?)-grid X, with
each edge of T being embedded using the exit-paths specified by {M, M}
D3) For each edge (v,w) in E(G)-E(T), embed (v,w) by adding one row and one

column to the grid X_; to yield a new grid X;.

The correctness of this algorithm follows from Lernma(2) and the fact that
the tree embedding algorithms of Valiant and Leiserson may be amended to

realise the requirements of Step(D2) {{2]).

Let K be the number of vertices in the final grid X,, (where s=/E(G)-E(T))).

Then;
Ar(n) =K

={k;n'?+s)(ksn' ?+5)

For r=3



For r=4

s < 2n-(n-1) = n+1

Thus
Az(n)=n®*/4 + O(n¥?)

Agnd=n® + O(n%?) as claimed.

The above resalt hes also been independently derived by S.Skyum.
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