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AE]STEACT

We consider various models of parallel computers based on
oommunication networks of sequential processors. Tt1e dpgree of a
parallel machine is the number of commrnication lines connected
Lo each processori l}:re arLty is Lhe number of these lines which a
processor can actively manipulate at any given time. The
emphasis of cu-rrent research has been placed on constant-arity
machines; however, machines with higher arity have occasionaLly
made an appearance.

Our aim is to irrvestigate the relative computing power of
these high-arity parallel computers. .We present a high-arity modei
and show lhat machines with arlty and degree A(n) are more
powerful than those of arity o(A(n)). Despite tlris, we are able to
show lhat P(n) processor parallel computers with arity and degree
O(1og P(n)) are not much more powerful than those of constant
degree, in the sense that they can be efficiently simuJated by a
practical rniversal paralleI machine.
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1- Introduction.

In this paper we investigate the relative computing power of some similar

parallel machine models. Very loosely, a paralle1 computer consists of an

infinite family of finite graphs, one for each input size. Each vertex represents a

processor, and each edge a communication line between processors. Ttre degree

of a parallel mactrine is the degree of its interconnection graph, as a function of

lnput size, A cornrnunication line belween processors A and B is made up of two

bidirectionai links, one under the control of A and the other under the control of

B. lTe call a processor's links actzze if they are under its control, and posslue

oLherwise. The models considered here will difier in lhe precise details of how a

processor is to manage its active links. This paper contains a preliminary ver-

sion of resulLs to appear in lhe author's Ph. D. thesis IZS]. ffre reader requirin€

a more detailed account is directed to Lhat reference.

ilTe make lhe reasonable assumption that the average user would be unable

or unwilling to fabricate a special-purpose parallel mactrine for each application,

and would instead prefer lo pay lhe cost of a moderate increase in resources in

return for the ability to use slandard components. In order to make this a prac-

tical proposition, it is su,fiicient to demonstrate the existence of a r.:rriversal

parallel machine which is particularly easy to build (for example, iLs intercon-

neetion graph should have constant degree and be easy Lo construct), and can



efiiciently simuLate any reasonable para.llel machine.

A number of universal parallel machines of this nature have already

received some atlention in the currenl literatr..rre (for a survey, see [23]). It can

be shown [14, 19] that there exists a P(n) processor universa] parallel computef

which can simulate any P(n) processor machine with a cost of O(logzP(n)) steps

for each step of the simulation. It can also be shown [14] thal this cost can be

reduced to O(log P(n)) if the machine being si.mulated has constanl degree. This

can be taken as an indicalion lhat consLanl-degree para11el computers are less

powerfr:l than those of arbitrary degree. It shottld be noted that the cost can

also be reduced to O(log P(n)) by substituting the sorling algorithm of [2] in the

construction of [14, 19], although the constant multiple in the as]-rnptotic bound

is too large to be of any practical use.

These results assume shrict limitations on the way in wtrich the active and

passive links of any individual processor may be used. In 114, 19], during any

given time-step, lor any given processor:

(1) Onfy one acLive link may be used.

(2) All passive links which are transmilting data must carry the same value.

(3) Only one of the passive links which are attempting to deliver data is allowed

to succeed; al} other incoming passive data is lost.

Conditions (2) and (3) are relaxed in the "netwofk maeldnes" of 1231, leading to

slighlly different resource bounds in the universal macbrne.

We extend this model to give each processor the use of more than one

active link simulLaneously (and the power to make efficient use of the data thus

obtained), rirhilsl ma.intaining conditlons (Z) ana (S). In addition, these latter

conditions may be reiaxed using the techniques of [23]. We call the number of

active links which can be used in any lime-step l}:e aritA of a parallel machine.
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We show that machines of arity and degree A(n) are more powerful than

those of arity o(A(n)). In particu.Iar we are interested in parallel machines with

reasonably small arily and degree; more precisely, those wit h P(n) processors

and arity and degree O(log P(n)). l{hilst it is apparent from the above that these

machines are more powerfu) than those of constant degree, we can show that

they are not Loo much more powerful, in the following sense. There is a univer-

sal machine (with interconnections based on lhe cube-connected-cycles [25] or

shuffle-exchange [30]) wth O(P(n).log P(n)) processors which carr simulate any

P(n) processor, degree and arity O(Iog P(n)) para.llel machine at a cost of onJy

O(1og P(n)) steps for each simu-lated time-step. This cornpares favourably with

the corresponding result for the simulation of constant-degree machines,

Although machines with non-constant arity have already appeared in the

Iiteratu-re, there has so tar been no systematic investigation into the extra com-

puting power offered by high-arity instructions. For example, the random-

rouling results of [33,34] initialty appeared in a high-arity form, although this

has since been redressed in [3,5,26,31]. The oblivious lower-bound of [6] is

presenled f or high-arity machines.

The structure of this paper is as follows. The main body is divided into

three sections. In ttre first section we introduce our basic mactrine model. In

the second we extend lt to allow high-arity processors, and prove some asymp-

totic upper and lower bounds on the running-time of some high-degree and

high-axity computations, In the final section we present our universal machine.

2. A Hodel Of Parallel Computation.

Our parallel machine model conslsts of an infinile number of synchronous

random-aecess machines (only flnitely many of which become ini/olved in any

particular computation). By "random-access machine" we refer to a variant of

the RdM (which is already well-known as a sequential machine model, see for
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example, [1]) By "sJmchronous" we mean thal the instruction-cycles of the

RAMs are s)mchronized.

Each RAM has a number of user-accessible registers. These include an

infinite number of general-purpose registers re,r1,.., and a communication regis-

ter COM, The commurrication register is [he on-iy regisLer which is accessible to

other processors. It also possesses a number oI registers which are preset at

Lhe begi::rring of the computation. These correspond to values whieh are "hard-

wired" into the machine during the fabricaLion process. They include the pro-

cessor identiLy register PID (which is preset !o i in the lth RaU, i=0,1,...), the

size and degree regislers S]ZE, DEGREE and an intrnite number of porL registers

po,pr,... . AII registers are capable of holding a single integer.

More formaLly, a parallel machine consists of a program P and an intercon-

nection scheme ,5. The program is a finite lis! of instructions, each of which

bave the following form (where p is a port register). Either:

(1) Read the commu-nication regisLer of processor p.

(2) Write to the communication register of processor p.

(3) Perform an internal computation.

(4) Conditional transfer of control, or ha-lt.

For example, let "-" denote any two-input boolean functlon, addition, subtrac-

tion, multiplication or lnteger division. For convenience, we divide our example

instruction-set into two catesories. Local insLructions have the form;

ri . constant
f; c l-r1
fitsf.' 'l
r.t i rj

ri e PID
halt
goto mif r1)0

(Ioad reglster with constant)
r/l-.i h. -r ^^--^ti^^\
(indirect Ioad)
lihdira.t ci 

^ra\

(store processor identity)
(end execution)
(conditional transfer of control)
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Communication lnstructions are oI lhe form:

CoM(q) < r; (write to Processor Pf
ri - CoM(rJ (read from processor p",)

P represents a program to be run on aII active processors in the infinite

network. Only a firfte number of processors will be active during any computa-

tion. Each processor has the power to become inactive by using lhe "halt"

instruclion at its own discretion. All active processors synchronously execute

P; their behaviour is that of independent RAMs, except where communication

instructions are corrcerned. Each processor inlerprets references to registers

in loca-l instructions as references !o its ovn local registers.

The execution of an instruction rj. COM(rk) by processor i has the effect of

reading the communication regisler of processor pr, and placing Lhe result into

register rj of processor i. Execution of COM(r;)-r1 has the effect of writin€ the

contents of register ry ol processor i into the communication register of proces-

sor pr,. We assurne some reasonable prolocol for dealing with multiple attempts

to read from or write to the same processor, much in lhe manner of the popular

parallel machine models that use a globally-accessible memory for interproces-

sor commurdcation (see, for exampie, [6, B, 12, 13, 14, 16, 18, 28,29,32,33, 35, 36]).

For defiliteness, we allow multiple reads, and in the case of write-con-flicts, the

lowest-nrfnbered processor wins. Attempts to write to the comm].tnication

reglster of an inactive processor have no efiect; attempls lo read it return zero,

LeL Z denote the set of integers and N the set of non-negative integers. An

'LntercorlrLectinzt scherne ,5 consists of three functions, a processor function

P:N'+N, a degree f unclion D:N-+N, and an interconnection function

' G:Il | 0< i <P(n) ]x Id | 0<d <D(n) ]xN. Ii | 0<i<P(n) ].
In a P(n) processor computation, processor i is connected to processors G(i,d,n),

0<dcD(n). lYe adopt the convention that if i€[C(j,d,n) lO<d<D(n)] then



-o-

je I c(i,d,n) l0<d<D(n) ].

Suppose f:N'-'N-, and x= <xo, Xr,..,,Xn-r) where xi€N for 0<i( n ; we say

that x has srize n, and write lxl = n, Let 17 =(P,S) be a parallel machine, where

5 = (P,D,c). We define the function computed by M as follows. For 0<i <P(n) do

the following, Place xi into register r0 of processor i, set all other general-

purpose and all communication registers to zero, Set SIZE of processor i Lo P(n)

and DEGREE to D(n). For 0<d<D(n) set register pd of processor i to c(i,d,n),

and for d>D(n) set register pd of processor i to P(n), Now simr:Itaneously

activate processors i with 0<icP(n) on prograrn P. Let y1 be the contents of

register ro of processor j upon termination, 0<j< lf(x)1, and

y(x) = <yo,yr,...,ytr(x)t-r>. JYe assume, of course, that P(n)> lxl, lf (x)1, and adopt

the convention that yi=0 for lf(x)l-ycP(n). lTe say that M comqru.tes f if foralt

inpuls x, y(x) = f(x).

Such a parallel machine is said to have P(n) Iraocesso. s arLd degree D(n). It

is also said to compule within tzrne T(n) for T:N+N if for all n> 0, every processor

halts within T(n) steps. We wlll be concerned primariiy with these three

resource bounds. Other possible resources of interest include qpoce, a measure

of the number of registers used (summed over all processors, see for example

[2S]), and uord-si,ze. A parallel machine L'as uord-stze W(n) if all values placed

into a register during a compulation on an input of size n have absolute volue at

most 2T(").

TLre astute reader will have noliced that by choosing the unit-cosl measure

of time, and including multiplication in the instruction-set of our proeessors, we

bave a.ilowed our RAMs to become as powerfu-l as parallel machines [1?]. Whilst

this approach has some theoretical inlerest [29], we prefer to use purely

sequential processors. The problem is apparently not due to the intrinsic power

of multipl-rc ation, but rather the fact that it can be used to generate very long



integers in a small amount of time [26]. For lhe purpose of obtaining upper

bounds, we will concentrate on mactrines with -lT(n) 
= T(1)0(r). If the internal

computatlons are simple enough, this is sufficient to ensri-re that our parallel

machines obey the parallel computation thesis [8, 16]. If (space.wordsize) is

used as a "hardware" measure then this also ensutes [23] that they obey the

exLended parallel computation thesis [10, 11]. The number of processors is also

a valid "hardware" measure, provided T(n)=P(n)o(r), Our universal parallel

machines will increase space and wordsize by at mosl a constant multtple.

Instead of writing algorithms in the low-levei RAM language, we will follow

the comrnon practice of using a high-level language which can easily be

translated into instruetions of thls form. 'We use the usual high-level constructs

for flow-of-control, based on sequencing, selection and iteralion, Variables of

the form (x of processor i) will be taken as a reference to variable x of processor

i. An unmodiffed variable x will be taken to mean (x of processor PID), i.e. a

local variable. For example, the statement

if y < (y of processor lPtD/ 2))

then statementl

else statementz

causes the ith processor, O<i <P(n), to (provided it. is still active) sirnullaneously

compare its variable y with variable y of processor llZJ. t the former is less

than the latter, then statementr is executed, otherwise sLaLements. To aid syn-

chronization, we assume that the code generated for statementl and statement2

has Lhe same nurnber of instructions, by Alhng with NO-OPs (such as ro-ro) as

necessary.

Although every processor of our parallel machine executes the same pro-

gram, our model does noL fall precisely into the SIMD category of FI)'nn [i2].

Ttris is because the cond.j.tional goto statement takes action depending on the
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value of a loca.l register, the contents of which may vary from processor to pro-

cessor. Ttrus different processors may be at diflerent points in the program at

any given time. However, it is lairly easy to show [25] that our model is equal in

powef to a SIMD one, and to a reasonable subset of MIMD models, including that

ol Galil and Paul [14],

3. A High-Arity Model

In this section we generalize our parallel machine model to give each pro-

cessor the power to communicate wilh asymptotically more than a constant

number of its neighbours in unit time; and sufiicient power to make efficient use

of the information thus obtained, Lel A:N-N. lTe allow our' processors to have

instruclions which can be simulated in time o(A(n)) by the processors of section

2, where n is the input size. A(n) is then called the dritA of the machine. For

example, we replace the instruction-set of secU.on 2 with the following

instruction-set:

(r) r;[r,.' conslant] (block-Ioad constaril)
(2) 4[r1*ry] (duplicate register)
(3) q[ri-ry-q] (element-by-elementoperation)
(a) qlri- -ry1 (prefix *, where - is associative)
(5) q [r, ' r"o] (indirecl loads)

(6) q [r", * rp] (indirect stores)

(7) r; + PlP
(8) halt
(9) goto mif ri)O
(10) ri ICOM(rj) . rr.] (write into COM registers)
(1 1) ri lrj + coM(r)] (read from coM registers)

Instructions (Z-S) are as in section P. lnslructions (1-3,5,6,10,11) have the same

effect (in r:nit lime) as Lhe hlgh-Ievel statement:

for m:=0 to ri-1 do S

where staLement S is respectively



(1) rj+m:=constant,

(2) r;+m:=rr,

(3) r1+g,:=rk+m*4+m,

\v/ rJ+m.-rr&+D,

/a\ -\v/ r rl+d, -r k+m,

(r0) CoM(p"r*-):=ry*'"

(11) r1*-:=CoM(p""*_).

Instruction (4) has the same eflect as

for m:= 1 to ri-1 do

f;+ml=l.i+m-r-fk+m

In this parLicula-r model, a parallel machine has arity A(n) if for all inputs of

size n! 0, the largest value present in register ri during the execution of instruc-

tions of lhe form (r-0.lo,rr) is at most A(n). Whltst high-arity (i.e. ,1,(n;=a.)11;;

parallel machines make an interesting vehicle tor theoretical study, they are

perhaps too powerful for practical purposes. In lhis case one shonld restrict

oneself to paralleJ. machines irhich obey the parallel compulation thesis [8, 16]

and the extended parallel compulaLion thesis [10, 11]. In order lo achieve this,

iL would be reasonable to consider onJy parallel machines for which Lhere exists

a constant-arily equivalent with only a polynomial increase in the other resource

bounds (as is the case when A(n) = f(n)o(t))

Some of the power of high-arity machines comes from the fact that they

have high degree. It is easy to show that a machine with degree D(n) is asyrnp-

toticaliy faster that any machine of degree o(D(n)). Consider lhe problem of

broadcasting a single value amongst n processors. More formally, we wish to

compute, in parallel, the function f:N'-N' defined by
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f (xo, . . . , x,,-r) = (yo, . . . , y,,-r) where y1 =110 for 0<icn. Suppose d>3. Ttre fol-

Iowing is an n processor, degree d allorithm for computing f on inputs of size n

in time O(.lgggJ. Assuming that initially variable x of processor i contains xi,'los d'

the algorithm terminates with variable xof processor i eontainin€ xs,0<i<P(n).

The interconnection pattern used is a (d-1)-ary tree.

l-.-l

rhilebcndo

b:=b.(d-1)

The time-bould attalned by the above algoritbrn is asymptotically optirnal.

It is easy to see tha! a degree d machlne must take time n(ffSA, - , ) to compuLe f ,'los d

regardless of how complicated its interconnections are, how many processors

are used, or what the arity of those processors is. Ttus follows from lhe observa-

tion that there must be a path in the interconnection graph of size n from pro-

cessor 0 to processor i, 0<icP(n). From this we can conclude that a degree

D(n), consLant arity parallel machine with n processors is asymptotically faster

than than any machine of degree o(D(n)). Indeed, the latler machine may even

be allowed to have a diflerent non-recursive prograrn tor each processor, which

may vary with inpul size.

Furthermore, high arily parallel machines are even more powerfuJ tban

high degree ones. ]Ye will show that a parallel machlne with arity and degree

D(n) is asymptotically faster than any machine rMith arity o(D(n)). Consider the

problem of computing the sum of n lntegers. More formally define sum:N'-N by

n*l
sum(xs, . . . ,x,,-J = E-*r.

l=u

Suppose d> 2. The followirg is an n processor algorithm with degree d+ 1 and



s,b:=0,1

rhile b <
l"

s:=x+

b:=b.d

(s of processor i)

can compute the sum of n integers in time O( dffii Ths algorittrm is

asymptolically optimal for all machines of a-rity

that an arity D(n) machine must take at leasl

- 11

arity d for computing the sum of n integers in time O(i#Ad) Initially, we

assume that variable x of processor i contains x1,O<i<P(n). On lermination,

variable s of processor 0 contains sum(xs, . . . , xn t). The interconnection pat-

tern is a d-ary tree.

ndo
ID.d+d

s1
lJ

PID.d+ r

if PID> 0 then s:= 0

Thus for D(n)>2, annprocessor, arity D(n), degree D(n)+l parallel machine

tacL, we will show

sLeps to sum n

integers.

Suppose M is a P(n) processor parallel machine of arity D(n) which can sum

n integers in time T(n), and let x = <x0,...,xo-1> be an input string conslstirrg of n

symbols, each of which is a non-negative integer. Let G. be the directed graph

wilh vertices (p,t), 0<pcP(n), 0<tcT(n), and an edge from (p1,t1) to (pz,tp) it

t?=tr+l anil eilher pr=pu or during time-step tr oi the computation of M on

input x, either processor p? reads a value from pr, or pr successfully writes a

value Lo pz. The is symbol of x ls said Lo be reachable if Lhere is a path from ver-

tex (i,0) to vertex (O,f(n)) in G,. The reachable sfnng ls the string derived from

x by deletiog all r.rnreachable symbols. TYte unreo.chabLe string is similarly

derjved by deleLing all reachable s)'rnbols.

Suppose the values to be added together are ail less than N. Y{e claim that

(provided N is su-ffieiently large) there is an input string in r,rhich aII s)'rnbols are



reachable. For a contradicLion, suppose that every input has at least one

r:nreacbable symbol. Fix a graph G, and consider the strings y such that Gr = Gy.

Each reachable symbol of y can take on N possible values, gidng a total of N"

possible reachable strings, where r(n is the number of reachable symbols.

Further, for each reachable string, the corresponding unreachable string must

sum to a fixed va.lue, dependent oniy on the reachabie string in question, This

follows because M must give the sarne resu-lt for two inputs yr, yz such that

G"r= G". and y1, y2 have identical reachable strings. Since m)1 non-negative

integers can surn to a fixed value at most N*-l times, 'we see that there are at

most M-"-1 ulreachable strings which can appe ar lrith any reachable string,

and thus there are at most No-r choices of y. That is, each graph G" can be used

for at most Nn-l different input strings x.

Let G(n)= l[c*lxeN"l I. By the pigeonhole principle, at least one graph

musl be used f or at least No/ G(n) input strings. If N is chosen such that N > G(n)

lhen thls value is greater than Nn-l, which contradicts the result of the previous

paragraph. Thus there must be an input sLring for which all symbols are reach-

able. Since for all x, G, has in-degree D(n)+z, tbrs implies that

'r"r'IiaffL"r..rl
Unfortunately, this prool is based heavily on the use of extremely large

integers as summands. Indeed, it may be neeessary to choose N to be as large as

P(n)(o(n) + t).e(n).r("). Thus 
'

(f) tf we insist that w(n) =T(1)ott) (which, as 'we saw in section 2, ensures that

the parallel computation thesis holds), then the lower-bound is not valid.

(2) For, machines i+rth W(n) -notr) (which is a reasonable restriction since it

ensures that lhe input encoding is "concise" in the sense of [15]), the

Iower-bound holds provided P(n) = no(t).
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(3) If the word-size is arbitrary, the lower-bound hoLds regardless of arity or

number of processors. This is despite the fact that machines with

lY(n) = 2o0t")) are (as observea in [6]) exceptionally powerful.

4- Universal l[achines and Smdl Arity.

In tliis section we consider parallel machines with small degree and arity.

By "smait" we mean P(n) processor machines with degree and arity O(log P(n)).

From section 3 we know that mactrines with sma.Il degree and arity are more

powerfr. than machines with constant degree. In this section we propose to

show LhaL they are nol much more powerfi:I.

Suppose 17 =(P,S) is a parallel machine, where S = (P,D,G). A simu,lation of

rI4 on an input of size n by a universal mactrine U is to proceed as follows. Pro-

cessor i of U,O<i<P(n) is presented with a description of P, P(n), D(n) and

G(i,d,n) for 0<d<D(n). The SIZE, DEGREE and port registers of U are initialized

as described in section 2, and the input of Il j.s presented to U in the same

manner. A su-fficient number of processors of U are activated, The deZag of a

simulation is the tlme to simulate a sirlgle step of Il, and the setry tirne lhe

time to irritiailze U bef ore the simulation proper begins.

We present our proof-sketch using a multi-dimensional cube as the inter-

connection pattern. Ttre reader familiar with the work of Preparata and Vuille-

rnin [2?] wiII have little diflieu]ty in implementing our algorithm on either the

cube-connected-cycles 127] or shu-ffIe-exchange [32] interconnection patterns,

If I is a non-negative integer with binary represenlaLion [-1 .I1ls

t'l
(k> llogr(I+ r) l), let 1t') denote the integer which differs from I in bit i;, that is,

t(i)=t+ (-t)t.zi. Tine k-cube, k>0, has vertex-set [1]O<l<zkj and eachvertexlis
., ./i\ -joined Lo verLices lt', for 0< j< k.

lYe will make use of the following sub-algorlthms.



Algorithrn 1- Suppose processor 0 has a value x wtr,ich it wishes to broadcast to

processors 0,1,...,2k-1. This can be achieved by using a simple-ASCEND class

algorlthm (see [2?] for terminology). The following a]gorithm terminates with

variable v of every processor equal to x.

v:= if PID=0 then x else 0

for b:=0 to k-1 do

if v= 0 thenv:=(vof processor PID&))

Algoritlm ?. Suppose processor 0 has 2k iLems of data in arr array. I{e wish to

scatLer these amongs! processors 0,1,...,2k-1 in such a manner that each pro-

cessor receives precisely one va-lue. The algoritbrn consists of k stages. At the

starl of stage i, 0<i<k, the 2i processors p with 0<p<2t are each in possession

of zk-i data items. Stage i consists of processor p, 0.p<2i sending zk-i-l of its

data items to proeessor p(i). In the f ollow'ing algorithm, processor 0 starts off

with zk items of data in array d[0..Zk-l]. Each processor receives its value into

variable d[0].

for i:=0 to k-l do

for j:=0 to Zk-r-i- 1 do

if Piq = 1 then d[j]:=(<iU+zt' t-r, of processor PID(i))

Algorithm 3. Suppose each processor i, 0 < i < 2k holds an integer value in a vari-

able L The Loco,I rar* of processor i is defined to be

l[jl0<j<iand(1 of processor j) = (l of lxocessor p) for j<p<i]1. Ttre foLlowing

simple ASCEND class algorithm sets variabLe R of each processor to its local

rank.
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S,V,R:=1,1,0

for b:=0 to k-1 do

if PID6 = 1

then if (V of processor PIDG)) = I

then R:=R+(S of Processor PID&))

else if (Y of processor PID&)) # V

then S:=0

V;=(V of processor PIDO))

S:=S+(S of processor PiD&))

If 0<i<2k, define the b-btoclc (after [19]) of processor i to be the set of 2b

t-l
processors l[izzol.zu+,; | 0.j<2]i. At the start of the brh iteration of the for

loop, 0<b<k, variable R oi processor i, 0<i<2k contains that processors rank

within ils b-block, whilst variables v and s of processor i contain the value of I

arrd local rank ol processor [iZzolzo*2b-r, (ie the last processor in its b-

block) respectively. Ttre correctness of the a.lgorilhrn follows by induction

AJgorithms 1 and 3 run in lime O(k) on a k-cube. Algorithm 2 runs in time

uXt 

" 
zu-t -o

(for some constant c), i.e. o(2$.

Iheorem 1. There ls a P(n).D(n) processor univers af parallel machine which can

simulate any P(n) processor machine of arity-and-degree D(n), with delay

O(1og P(n) + D(n)) and setup time o(logaP(n) + D(n)).

koot. (Outline). Suppose m = log P(n)1 and m' = ftog D(n)l. we describe our

algorilhm on an (m+ m')-cube. Let ,'11 be a P(n) processor parallel machine with

degree and arity D(n). Processor i, 0<i < P(n) of the r:rriversal machine will

simulate processor i of itl. Let i[d] denote the dt neighbour of processor i of .tI4,

inorder of ascending PID. For 0<icP(n) lel }Y1 be the m'-cube consisting of pro-

cessors zm.k+i, for 0<k(2d, of the universa.l machine
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As part of the iniLialization, each processor i 0<icP(n) will receive D(n)

ldentities Ifal for 0< d < D(n) such that

(1) 0<Iitdl <D(n) for all 0<i<P(n), 0<d<D(n), and

(2) For alL O<i,i',j <P(n), if tj ana {'are both defined, and Ii =Ii'then i=i'.

Thus processor i is the (Ifta1)th neighbour of processor i[d], in ascending order of

PID.

This is achieved as follows. Processor i 0<i<P(n) prepares D(n) packets

(i[d],i), 0<d <D(n), and scatters them around the 2m >D(n) processors of Y{i, at

most one packet per processor, using algorithm 2. These packets are then

sorted within the (m+m')-cube in lefcographic (first-fi.eld-first) order. Each

processor j, 0<j <2*** thus receives some packet (ij[d],ij) It then sets lj to

ij[d]. Running algorithm 3 on the (m+m')-cube computes the loca.l rank of each

processor, which in this case is l;]iat. Armed with this information, for 0<icP(n)

the processor in charge of packet (i[d],i) lransforms it into (i,i[d],ii1at). Tnese

packets are sorted back to their respective Yfi's, and then gathered back into

processor i by reversing the scattering algorlthrn 2.

A.tter the initialization phase, each sLep of the simulation proceeds as fol-

Iows. First, requests to read communication registers are fulfllled. Processor i

0<1<P(n) prepares D(n) request packets (i[a],Iitat,i), 0<d<D(n). These are

scaltered at most one-per-processor around lhe processors of Wi, using algo-

rithm 2. Once this has been carried out, let II be the permutation which carries

packet (i[d],Ifta1,i) to processor 2-.I;la1 +i[d], for 0<i <P(n). Once fl has been

app)ied, Wi contains the D(n) requests from the neighbours of processor i of

iI1, 0<icP(n). Processor i can then fulfll the D(n) requests by broadcasting the

contents of the communicalion register of processor i of ,'fl around the proces-

sors of Yl using algorithm 1. The fulfilled requesls are routed back to their ori-

ginating processors by reversing the above process, Processor i of the universal
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machine can then simulate lhe interna-l computation of processor i of

,{.1, 0< i <P(n). Finally, requests to write to communication registers are handled

in a similar manner.

Repeating this t times enables us to simu-late t steps of ll{. Note that II is

the same for each step. It is well-knovn [2?,30] that a nxed permutation can be

carried out in lime O(log P(n)) by simulatlng one of Waksman's [39] permutation

networks. This requires o(loe4P(n)) setup time, however [18,21,22,30]. The

total setup time is thus comprised of

(1) O(loezP(n) + D(n)) to compute the identities ldal. The log2 term comes from

sortirlg using a straightforward simulation (see, for example, [2?,30]) of one

of Bat.cher's [4] sorting networks. The D(n) term comes from the use of

algorithm 2 to scatter D(n) values.

(?) o(loe4P(n)) to set up 11.

The delay is comprised of

(t) o(o(n)) to prepare and broadcast the request packets,

(2) O(Iog P(n)) to compute I-1,

(3) o(iog D(n)) to fulfiI the requesl paekets,

whicb gives us the requjred resulL..

Corollary. There is an o(P(n).log P(n)) processor universal paralLel machine

which can simulate, with delay O(log P(n)), any P(n) processor parallel machine

of arity and degree O(log P(n)).

The proof of theorem 1 can be modifled slightly to give

Theorem ?- Ttrere is a P(n).D(n) processof universal machine which can simu-

Iate any-P(n) processor, degree D(n), arity-1 machine, wiLh delay O(log P(n)) and

setup time O(logaP(n) + D(n))
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NoLe that by making D(n) conslanl in theorem 2, and using the processor-

saving ttreorems of [2+] we obtain a shorter proof of theorem B of [1a] (a P(n)

processor urriversaf mactrine whi.ch can simulate any P(n) processor, constant

degree parallel machine with delay O(loe P(n)) ).

For high-arity machines of arbitrary degree we have:

theorem 3. T?rere is an A(n).P(n) processor universal parallel machine which

can simu.Iate, with delay O(A(n)+logzP(n)), any P(n) processor machine of arity

A(n).

hoof. By substituting the sortin€ alg orithm of Batcher [+] (see, for example,

[2?,30,32]) for the permutation fI of theorem 1.'

FinaJIy, we should note that theorems 1 and 3 can be improved asymptoti-

cally by the use of the sorting algorithm of [2].

theorem 4- TLrere is an A(n).P(n) processor universal parallel machine which

can simulate, with delay O(A(n)+Iog P(n)), any P(n) processor parallel machine

of arity A(n),

hoof. Simiiar to theorem 3, substilutir\g the sorting aigorithm of [2] for that of

Batcher. The processor-bound is achieved by use of the pipelinirg lechnique of

vlshkin [3?]. .

However, as we observed in the lntroduction, the constant multlple in the

asymptotic tirne-bound is too la.rge to be of any practical use.

5- Conclusion.

'We have seen thaL high-arity computers with minimal degree are more

powerful than lhose with asymptotically srnaller arity. Thus P(n) processor

parallel rnachines with degree and arity O(log P(n)) are potentially much more

powerful than those ol constant degree. It takes O(log P(n)) steps to simulate a

single step of an arbitrary constant-degree machine on a practical universal



machine; yet we can simu-late a single step of an arbitrary machine with arity

and degree O(1og P(n)) in asymptoticalty the same amount of time, by using only

O(P(n).1og P(n)) processors. Thus we see that, in a practical setting, machines

with reasonably small arity and degree are not much more powerful than their

constant-degree c ounterparts.

The study of universal parallel machines has become a popular pastime,

Only the most restrictive models (with, for example, constant degree and very

simple interconnection pattern) can be considered practical, yet there are prac-

tical urfversal machines which can simulate even the most impractical (tor

example, completely-connected) models. T?ris is important for both the theore-

tician and the more practically inclined. lt provides the Lheoretician with a

practical motivation for stud.ying the more abstract parallel machine models

(which are often more amenable to f ormal analysis). In addition, it also gives

the user of a practical parallel maclfne a flexible high-leve1 programming

language. This programming language afiords (at a small cost in resources) a

virtuai architecture correspondin€ to an elegant abstract machine, thus pro-

tecting the user from the strict tecbnological constraints governing practical

architectures.

Thus we have shown that it is practical to consider parallel mactrines with

non-constant arity (subject to certain reasonable constraints). Ve have a-Iso

given some indication of the computing power to be gained by the use of high-

arity instruction sets. Finally, we have provided the user of a practical. parallel

computer with a new, more powerful prograrnming language.
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