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ABSTRACT

We consider various models of parallel computers based on
communication networks of sequential processcrs. The degree of a
parallel machine is the number of cormnmunication lines connected
to each processor; the arify is the number of these lines which a
processor can actively manipulate at any given time. The
emphasis of current research has been placed on constant-arity
machines; however, machines with higher arity have occasionally
made an appearance.

Our aim is to investigate the relative computing power of
these high-arity parallel computers. We present a high-arity model
and show that machines with arity and degree A(n) are more
powerful than those of arity o(A(n)). Despite this, we are able to
show that P(n) processor parallel computers with arity and degree
O(log P(n)) are not much more powerful than those of constant
degree, in the sense that they can be efficiently simulated by a
practical universal parallel machine,
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1. Introduction.

In this paper we investigate the relative computing power of some similar
parallel machine models. Very loosely, a parallel computer consists of an
infinite family of finite graphs, one for each input size. Each vertex represents a
processor, and each edge a communication line between processors.- The degree
of a parallel machine is the degree of its interconnection graph, as a function of
input size. A communication line. between processors A and B is made up of two
bidirectional links, one under the control of A and the other under the control of
B. We call a processor’s links active if they are under its control, and passive
otherwise. The models considered here will differ in the precise details of how'a
processor is to manage its active links. This paper contains a preliminary ver-
sion of results to appear in the author's Ph. D. thesis [23]. The reader requiring

a more detailed account is directed to that reference.

We make the reasonable assumption that the average user would be unable
or unwilling to fabricate a special-purpose parallel machine for each application,
and would instead prefer to pay the cost of a moderate increase in resources in
return for the ability to use standard components. In order to make this a prac-
tical p;‘qposition, it is sufficient to demonstrate the existence of a universal
parallel machine which is particularly easy to build {for examplé, its intercon-

nection graph should have constant degree and be easy to construct), and can
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efficiently simulate any reasonable parallel machine.

A number of universal parallel machines of this nature have already
received some attention in the current literature {for a survey, see [23]). It can
be shown [14, 19] that there exists a P(n) processor universal parallel computer
which can simulate any P(n) processor machine with a cost of O(log®P(n)) steps
for each step of the simulation. It can also be shown [14] that this cost can be
reduced to O(log P(n)) if the machine being simulated has constant degree. This
can be taken as an indication that constant-degree parallel computers are less
powerful than those cof arbitrary degree. It should be noted that the cost can
also be reduced to O(log P(n)) by substituting the sorting algorithm of [2] in the
construction of [14, 19], although the constant multiple in the asymptotic bound

is too large to be of any practical use.

These results assume strict limitations on the way in which the active and
passive links of any individual processor may be used. In [14, 19], during any

given time-step, for any given processor:
(1) Only one active link may be used.
(R) All passive links which are transmitting data must carry the same value.

(3) Only one of the passive links which are attempting to deliver data is allowed

to succeed; all other incoming passive data is lost.

Conditions (2) and (3) are relaxed in the "network machines" of [23], leading to

slightly different resource bounds in the universal machine.

We extend this model to give each processor the use of more than one
active link simultaneously (and the power to make efficient use of the data thus
obtained), whilst maintaining conditions (2) and (3). In addition, these latter
conditi-o-ns may be relaxed using the techniques of [23]. We call the number of

active links which can be used in any time-step the arity of a parallel machine.
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We show that machines of arity and degree A(n) are more powerful than
those of arity o{A(n)). In particular we are interested in parallel machines with
reasonably small arity and degree; more precisely, those with P(n) processors
and arity and degree O(log P(n)). Whilst it is apparent from the above that these
machines are more powerful than those of constant degree, we can show that
they are not too much more powerful, in the following sense. There is a univer-
sal machine (with interconnections based on the cube-connected-cycles [25] or
shuffle-exchange [30]) with O(P(n).log P(n)) processors which can simulate any
P(n) processor, degree and arity O(log P(n)) parallel machine at a cost of only
O(log P(n)) steps for each simulated time-step. This compares favourably with

the corresponding result for the simulation of constant-degree machines.

Although machines with non-constant arity have already appeared in the
literature, there has so far been no systematic investigation inte the extra com-
puting power offered by high-arity instructions. For example, the random-
routing results of [33,34] initially appeared in a high-arity form, although this
has since been redressed in [3,5,26,31]. The oblivious lower-bound of [8] is

presented for high-arity machines,.

The structure of this paper is as follows. The main body is divided into
three sections. In the first sectiocn we introduce our basic machine model. In
the second we extend it to allow high-arity processors, and prove some asymp-
totic upper and lower bounds on the running-time of some high-degree and

high-arity computations. In the final section we present our universal machine.

2. A Model Of Parallel Computation.

Our parallel machine model consists of an infinite number of synchronous
random-access machines (only finitely many of which become involved in any
particular computation). By "random-access machine" we refer to a variant of

the RAM (which is already well-known as a sequential machine model, see for
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example, [1]). By "synchronous” we mean that the instruction-cycles of the

RAMs are synchronized.

Fach RAM has a number of user-accessible registers. These include an
infinite number of general-purpose registers ro,ry,... and a communication regis-
ter COM. The communication register is the only register which is accessible to
other processors. It also possesses a number of registers which are preset at
the beginning of the computation. These correspond to values which are "hard-
wired" into the machine during the fabrication process. They include the pro-
cessor identity register PID (which is preset to i in the i*! RAM, i=0,1,...), the
size and degree registers SIZE, DEGREE and an infinite number of port registers

Po.P1.-.. . All registers are capable of holding a single integer.

More formally, a parallel machine consists of a program P and an intercon-
nection scheme S. The program is a finite list of instructions, each of which

have the following form (where p is a port register). Either:
(1) Read the communication register of processor p.

(2) Write to the communication register of processor p.
(3) Perform an internal computation.

(4) Conditional transfer of control, or halt.

For example, let "~" denote any two-input boolean function, addition, subtrac-
tion, multiplication or integer division. For convenience, we divide our example

instruction-set into two categories. Local instructions have the form:

ri«<constant  (load register with constant)

Iy < Iy~ (binary operation)

Iy Iy, (indirect load)

P+ By (indirect store)

rj <« PID (store processor identity)

halt (end execution)

goto mif r;>0 (conditional transfer of control)
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Communication instructions are of the form:

COM(ry) « 1y (write to processor p;,)

rj « COM(r;) (read from processor prl)

F represents a program to be run on all active processors in the infinite
network. Only a finite number of processors will be active during any computa-
tion. Fach processor has the power to become inactive by using the "halt"
instruction at its own discretion. All active processors synchronously execute
FP; their behaviour is thal of independent RAMs, except where communication
instructions are concerned. Each processor interprets references to registers

in local instructions as references to its own local registers.

The execution of an instruction r;«COM(ry) by processor i has the effect of

reading the communication register of processor Pr, and placing the result into

register r; of processor i. Execution of COM(r;)«ry has the effect of writing the
contents of register ry of processor i into the communication register of proces-

SOT' Pr,. We assume some reasonable protocol for dealing with multiple attempts

to read from or write to the same processor, much in the manner of the popular
parallel machine models that use a globally-accessible memory for interproces-
sor communication (see, for example, [6, 8, 12, 13,14, 16, 18, 28, 29, 32, 33, 35, 38]).
For definiteness, we allow multiple reads, and in the case of write-conflicts, the
lowest-numbered processor wins. Attempts to write to the communication

register of an inactive processor have no effect; attempts to read it return zero.

Let Z denote the set of integers and N the set of non-negative integers. An
interconnection scheme S consists of three functions, a processor function
P:N-N, a degree function D:N-N, and an interconnection function

G:{i|0=i<P(n)}x§{d|0=d<D(n)}xN-{i|0<i<P(n)i.
In a P(n) processor computation, processor i is connected to processors G(i,d,n),

0=d<D(n). We adopt the convention that if i€{G(j,dn)|0=d<D(n)} then



j€f{G(i,dn) | 0=d <D(n)}.

Suppose [:N'-»N°, and x=<xg, X;,....Xp_1> Where x;€N for 0<i< n; we say
that x has size n, and write |x| = n. Let M =(P,S) be a parallel machine, where
S5 ={P,D,G). We define the function computed by ¥ as follows. For 0<i<P(n) do
the following. Place x; into register rp of processor i, set all other general-
purpose and all communication registers to zero. Set SIZE of processor i to P{n)
and DEGREE to D(n). For 0=d<D{n) set register pqgq of processor i to G(i,d.n),
and for d=D{n) set register pg of processor i to P(n). Now simultaneously
activate processors i with 0<i<P(n) on program P. Let y; be the contents of
register rp; of processor j upon termination, 0<j<|{(x)], and
¥(x) = <yo.¥1.....¥ |1x)| -1>. We assume, of course, that P(n)= |x|, [f(x)|. and adopt
the convention that y;=0 for |f(x}| <y <P(n). We say that ¥ computes f if for all
inputs x, y(x) = f(x).

Such a parallel machine is said to have P(n) processors and degree D(n). It
is also said to compute within time T(n) for T:N-N if for all n>0, every processor
halts within T(n) steps. We will be concerned primarily with these three
resource bounds. Other possible resources of interest include space, a measure
of the number of registers used (summed over all processors, see for example
[23]), and word-size, A parallel machine has word-size W(n) if all values placed
into a register during a computation on an input of size n have absolute value at

most 2%,

The astute reader will have noticed that by choosing the unit-cost measure
of time, and including multiplication in the instruction-set of our processors, we
have allowed our RAMs to become as powerful as parallel machines [17]. Whilst
this approach has some theoretical interest [29], we prefer to use purely
sequential processors. The problem is apparently not due to the intrinsic power

of multiplication, but rather the fact that it can be used to generate very long
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integers in a small amount of time [26]. For the purpose of obtaining upper
bounds, we will concentrate on machines with W(n)=T(n)*". If the internal
computations are simple enough, this is sufficient to ensure thal our parallel
machines obey the parallel computation thesis [8, 16]. If (space.wordsize) is
used as a "hardware" measure then this also ensures [R3] that they obey the
extended parallel computation thesis [10,11]. The number of processors is also
a valid "hardware" measure, provided T(n)=P(n)°Y). Our universal parallel

machines will increase space and wordsize by at most a constant multiple.

Instead of writing algorithms in the low-level RAM language, we will follow
the common practice of using a high-level language which can easily be
translated into instructions of this form. We use the usual high-level constructs
for flow-of-control, based on sequencing, selection and iteration. Variables of
the form (x of processor i) will be taken as a reference to variable x of processor
i. An unmodified variable x will be taken to mean (x of processor PID), i.e. a

local variable. For example, the statement

if y < (y of processor [PID/ 2|)
then statement,;

else statement;
causes the i*! processor, 0<i<P(n), to (provided it is still active) simultaneously
compare its variable y with variable y of processor li/2]. If the former is less
than the latter, then statement, is executed, otherwise statement,;. To aid syn-
chronization, we assume that the code generated for statement; and statement,
has the same number of instructions, by filling with NO-OPs (such as rg«rg) as

necessary.

Although every processor of our parallel machine executes the same pro-
gram, our model does not fall precisely into the SIMD category of Flynn [12].

This is because the conditional goto statement takes action depending on the
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value of a local register, the contents of which may vary from processor Lo pro-
cessor. Thus different processors may be at different points in the program at
any given time. However, it is fairly easy to show [25] that our model is equal in
power to a SIMD cone, and te a reasonable subset of MIMD models, including that

of Galil and Paul [14].

3. AHigh-Arity Model.

In this section we generalize our parallel machine model to give each pro-
cessor the power to communicate with asymptotically more than a constant
number of its neighbours in unit time; and sufiicient power to make efficient use
of the information thus obtained. Let A:N-N. We allow our processors to have
instructions which can be simulated in time O{A(n)) by the processors of section
2, where n is the input size. A(n) is then called the arity of the machine. For
example, we replace the instructicn-set of section 2 with the following

instruction-set:

(1) ry[rj« constant] (block-load constant)

(R) ri[ry« ry] (duplicate register)

(3) ri[rje«re~n] (element-by-element operation)
(4) ri[rye ~ry] (prefix ~, where ~ is associative)
) rj|rie I, indirect loads

(8) ry[ryery, ] (indirect load

(8) r; [rrj <1y (indirect stores)

(8) halt

(9) goto m if r;>0
(10) r; [COM(ry) « ri] (write into COM registers)
(11) r;[ry« COM(ry)] (read from COM registers)

Instructions (7-9) are as in section 2. Instructions (1-3,5,6,10,11) have the same

effect (in unit time) as the high-level statement:

form:=Otor;—1 do S

where statement S is respectively



(1) rjem'=constant,
(®) Tjem =Tk

(3) Tjem =Tieem™Nam
(8) Tyjemi=rr, .

(6) Crpm =Thtm:

(10) COM(Per)I:rmm
(11) Tj+m:=COM(pr,, ).

Instruction (4) has the same effect as

Ij =Ty
form:=1tor;—1 do
Fj+m: =Ij+m-1""Tk+m

In this particular model, a parallel machine has arity A(n) if for all inputs of
size n=0, the largest value present in register ry during the execution of instrue-
tions of the form (1-8,10,11) is at most A(n). Whilst high-arity (i.e. A(n)=w(1)})
parallel machines make an interesting vehicle for theoretical study, they are
perhaps too powerful for practical purposes. In this case one should restrict
oneself to parallel machines which obey the parallel computation thesis [8, 16]
and the extended parallel computation thesis [10,11]. In order to achieve this,
it would be reasonable to consider only parallel machines for which there exists
a constant-arity equivalent with only a polynomial increase in the other resource

bounds (as is the case when A(n) = T(n)%W).

Some of the power of high-arity machines comes from the fact that they
have high degree. It is easy to show that a machine with degree D(n) is asymp-
totically faster that any machine of degree o(D(n)). Consider the problem of
broadcasting a single value amongst n processors. More formally, we wish to

complute, in parallel, the function f:N*>N* defined by
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f(xg, ... ¥n-1)=(¥o, . . . ,¥n-1) Where y;=x¢ for 0<i<n. Suppose d=>3. The fol-

lowing is an n processor, degree d aléorithm for computing f on inputs of size n
in time O(i—gg%). Assumning that initially variable x of processor i contains x;,

the algorithm terminates with variable x of processor i containing xp, 0<i <P(n).

The interconnection pattern used is a (d-1)-ary tree.

b:=1
while b<n do

PID—-1

x:=x of processor d—1

b:=b.(d-1)
The time-bound attained by the above algorithm is asymptotically optimal.

It is easy to see that a degree d machine must take time Q(i—zg%) to compute f,

regardless of how complicated its interconnections are, how many processors
are used, or what the arity of those processors is. This follows from the observa-
tion that there must be a path in the interconnection graph of size n from pro-
cessor O to processor i, 0<i<P(n). From this we can conclude that a degree
D(n), constant arity parallel machine with n processors is asymptotically faster
than than any machine of degree o{D(n)). Indeed, the latter machine may even
be allowed to have a different non-recursive program for each processor, which
may vary with input size.

Furthermore, high arity parallel machines are even more powerful than
high degree ones. We will show that a parallel machine with arity and degree
D(n) is asymptotically faster than any machine with arity o(D(n)). Consider the

problem of computing the sum of n integers. More formally define sum:N'->N by

~1
sum(xg. o 'Xn—l) :Exi.
i=0

Suppose d=2. The fellowing is an n processor algorithm with degree d+1 and
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arity d for computing the sum of n integers in time O(i—g—g—%—). Initially, we

assume that variable x of processor i contains x; 0<i<P(n). On termination,
variable s of processor 0 contains sum(Xg, . ..,X,—;). The interconnection pat-

ternis a d-ary tree.

s,b:=0,1

while b<n do

PID.d +d
s:=x+ », (s of processor i)

if PID> 0 then s:=0
Thus for D(n)=2, an n processor, arity D(n), degree D{n)+1 parallel machine

can compute the sum of n integers in time O(IaléngTr;)—). This algorithm is

asymptotically optimal for all machines of arity 0(D(n)). In fact, we will show

log n

that an arity D(n) machine must take at least Tog (D(m)+2)

steps to sum n

integers.

Suppose M is a P(n) processor parallel machine of arity D(n) which can sum
n integers in time T(n), and let x =<Xg,...,X,_;> be an input string consisting of n
symbols, each of which is a non-negative integer. Let G; be the directed graph
with vertices (p,t), 0<p<P(n), 0=t <T(n), and an edge from (p;t;) to (pate) if
tz=t;+1 and either p,=p; or during time-step t, of the computation of M on
input %, either processor p; reads a value from p,;, or p; successfully writes a
value to pz. The i*" symbol of x is said to be reachable if there is a path from ver-
tex (i,0) to vertex (0,T(n)) in G;. The reachable string is the string derived from
x by deleting all unreachable symbols. The wunreachable siring is similarly

derived by deleting all reachable symbols.

Suppose the values to be added together are all less than N. We claim that

(provided N is sufficiently large) there is an input string in which all symbols are
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reachable. For a contradiction, suppose that every input has at least one
unreachable symbol. Fix a graph G, and consider the strings y such that G, =G;.
Fach reachable symbol of y can take on N possible values, giving a total of NT
possible reachable strings, where r<n is the number of reachable symbols.
Further, for each reachable string, the corresponding unreachable string must
sum to a fixed value, dependent only on the reachable string in question. This
follows because M must give the same result for two inputs y;, yz such that

Gylszg and y;, y2 have identical reachable strings. Since m>1 non-negative

integers can sum to a fixed value at most N™~! times, we see that there are at
most N® 7! unreachable strings which can appear with any reachable string,
and thus there are at most N*™! choices of y. That is, each graph G, can be used

for at most N1 different input strings x.

Let G(n)=|{Gy|xeN®|. By the pigeonhole principle, at least cne graph
must be used for at least N°/ G(n) input strings. If N is chosen such that N> G(n)
then this value is greater than N®7!, which contradicts the result of the previous
paragraph. Thus there must be an input string for which all symbols are reach-
able. Since for all %X, Gy has in-degree D(n)+2, this implies that

log n

Hay= log (D(n)+R2)

Unfortunately, this proof is based heavily on the use of extremely large
integers as summands. Indeed, it may be necessary to choose N to be as large as

P(n) (D(n)+1).P(n).T(n) . Thus:

(1) If we insist that W(n) = T(n)°(") (which, as we saw in section 2, ensures that

the parallel computation thesis holds), then the lower-bound is not valid.

(2) For machines with W(n) =n®" (which is a reasonable restriction since it

ensures that the input encoding is "concise" in the sense of [15]), the

lower-bound holds provided P(n) = n®"),
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(3) If the word-size is arbitrary, the lower-bound holds regardless of arity or
number of processors. This is despite the fact that machines with

W(n) = 2°("™) are (as observed in [6]) exceptionally powerful.

4. Universal Machines and Small Arity.

In this section we consider parallel machines with small degree and arity.
By "small’" we mean P{n) processor machines with degree and arity O(log P(n)).
From seclion 3 we know that machines with small degree and arity are more
powerful than machines with constant degree. In this section we propose to

show that they are not much more powerful.

Suppose M =(P,S) is a parallel machine, where S = (P,D,G). A simulation of
M on an input of size n by a universal machine U is to proceed as follows. Pro-
cessor i of U, 0=<i<P(n) is presented with a description of P, P(n), D(n) and
G(i,d,n) for 0=d <D(n). The SIZE, DEGREE and port registers of U are initialized
as described in secltion 2, and the inpult of M is presented to U in the same
manner. A sufficient number of processors of UU are activated. The deloy of a
simulation is the time to simulate a single step of M, and the setup time the
time to initialize U before the simulation proper begins.

We-present our proof-sketch using a multi-dimensicnal cube as the inter-
connection pattern. The reader familiar with the work of Preparata and Vuille-
min [27] will have little difficulty in implementing our algorithm on either the
cube-connected-cycles [R7] or shuffle-exchange [32] interconnection patterns.
If 1 is a non-negative integer with binary representation Ix_; -1l

k> F10g2 1+1)]), let 19 denote the integer which differs from 1 in bit L, that is,
f

10 =14+ (f1)1ﬂ.25. The k-cube, k=0, has vertex-set {1jJ0=1<2% and each vertex 1 is

joined to vertices 1% for 0=i<k.

We will make use of the following sub-algorithms.
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Algorithm 1. Suppose processor 0 has a value x which it wishes to broadcast to
processors 0,1,...,2%—1. This can be achieved by using a simple-ASCEND class
algorithm (see [27] for terminology). The following algorithm terminates with

variable v of every processor equal to x.

v:=if PID=0 then x else D
for b:=0tok—1 do
if v=0 then v:=(v of processor PID®)

Algorithm 2. Suppose processor 0 has 2¥ items of data in an array. We wish to
scatter these amongst processors 0,1,...,2¥—1 in such a manner that each pro-
cessor receives precisely one value. The algorithm consists of k stages. At the
start of stage i, 0<i <k, the 2 processors p with 0=p <®2! are each in possession
of 2k data items. Stage i consists of processor p, 0<p <2 sending 27! of its
data items to processor p. In the following algorithm, processor O starts off
with 2¥ items of data in array d[0..2¥~1]. Each processor receives its value into

variable d[0].

fori:=0 tok-1 do
for j:=0 to 2% -1 do
if PID;= 1 then d[j]:=(d[j+2¥ '] of processor PID!)
Algorithm 3. Suppose each processor i, 0=<i<2¥ holds an integer value in a vari-
able L The local 7rank of ©processor 1 is defined to be
§j| 0=j<i and (I of processor j) =(l of processor p) for j<p=<ij|. The following
simple ASCEND class algorithm sets variable R of each processor to its local

rank.
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SV.R=1L1.0
for b:=0 to k-1 do
if PID, = 1
then if (V of processor PID®) =1
then R:=R+(S of processor PID®))
else if (V of processor PID®) #V
then 3:=0
V:=(V of processor PID®)
S:=S+(S of processor PID®))

If 0<i<2X define the b-block (after [19]) of processor i to be the set of &P
processors Eli/ Eb}.2b+j | 0=j<gP}. At the start of the b'™ iteration of the for

loop, 0=<b <k, variable R of processor i, 0<i<2¥ contains that processors rank

within its b-block, whilst variables V and S of processor i contain the value of 1
and local rank of processor li/ 2"].2"+2"—1, (i.e. the last processor in its b-
block) respectively. The correctness of the algorithm follows by induction.

Algorithms 1 and 3 run in time O(k) on a k-cube. Algorithm @ runs in time

k=1
2 clzk*l—b
b=0

(for some constant c), i.e. O(2%).

Theorem 1. There is a P(n).D(n) processor universal parallel machine which can
simulate any P{n) processor machine of arity-and-degree D(n), with delay

O(log P(n) + D(n)) and setup time O(log*P(n) + D(n)).

Proof. (Outline). Suppose m=llog P(n)] and m'=llog D(n)]. We describe our
algorithm on an (m +m')-cube. Let M be a P(n) processor parallel machine with
degree and arity D(n). Processor i, 0=<i<P(n) of the universal machine will
simulate processor i of M. Let i[d] denote the d*™ neighbour of processor i of M,
n orde.f of ascending PID. For 0<i<P(n) let W; be the m'-cube consisting of pro-

cessors 2™k +1, for 0<k <2™, of the universal machine.



« L

As part of the initialization, each processor i 0<i<P(n) will receive D(n)

identities 1jj4) for 0=d <D(n) such that
(1) 0=Iig<D(n) for all 0=<i<P(n), 0=d <D(n), and
(2) For all 0=i,i',j <P(n), if Il and IV are both defined, and I} =1} then i=1i",

Thus processor i is the (llj[d])th neighbour of processor i[d], in ascending order of

PID.

This is achieved as follows. Processor i 0<i<P(n) prepares D(n) packets
(i[d].i). 0=d <D{n), and scatters them around the 2™ >D(n) processors of W;, at
most one packet per processor, using algorithm 2. These packets are then
sorted within the {m+m’')-cube in lexicographic (first-field-first) order. Each
processor j, 0<j<2™"™ thus receives some packet {ij{d].i). It then sets ] to

j;[d]. Running algorithm 3 on the (m + m')-cube computes the local rank of each
processor, which in this case is I,—jjlld]. Armed with this information, for 0<i<P(n)
the processor in charge of packet (i[d],i) transforms it into (ii[d]I}4;). These
packets are sorted back to their respective Wj's, and then gathered back into

processor i by reversing the scattering algorithm 2.

After the initialization phase, each step of the simulation proceeds as fol-
lows. First, requests to read communication registers are fulfilled. Processor i
0<i<P(n) prepares D(n) request packets (i[d].l}4)i), 0=d<D(n). These are
scattered at most one-per-processor around the processors of W;, using algo-
rithm 2. Once this has been carried out, let Il be the permutation which carries
packet (i[d],Jjq).1) to processor 2™.I}4 +i[d], for 0=i<P(n). Once I has been
applied, W; contains the D(n) requests from the neighbours of processor i of
M, 0<i<P(n). Processor i can then fulfil the D(n) requests by broadcasting the
contents of the communication register of processor i of M around the proces-
sors of W; using algorithm 1. The fulfilled requests are routed back to their ori-

ginating processors by reversing the above process. Processor i of the universal
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machine can then simulate the internal computation of processor i of
M,0=<i<P(n). Finally, requests to write to communication registers are handled

in a similar manner.

Repeating this t times enables us to simulate t steps of #. Note that Il is
the same for each step. It is well-known [27, 30] that a fixed permutation can be
carried out in time O(log P(n)) by simulating one of Waksman's [39] permutation
networks. This requires O(log*P(n)) setup time, however [18,21,22,30]. The
total setup time is thus comprised of
(1) O(log®P(n) + D(n)) to compute the identities Ij4;. The log? term comes from

sorting using a straightforward simulation (see, for example, [27, 30]) of one

of Batcher's [4] sorting networks. The D(n) term comes from the use of
algorithm 2 to scatter D(n) values.
() O(log*P(n)) to set up IL
The delay is comprised of
(1) O(D(n)) to prepare and broadcast the request packets,
(2) O(log P(n)) to compute I1,
(8) O(log D(n)) to fulfil the request packets,
which gives us the required result.»
Corollary. There is an O(P(n).log P(n)) processor universal parallel machine
which can simulate, with delay O(log P(n)), any P(n) processor parallel machine
of arity and degree O(log P(n)).

The proof of theorem 1 can be modified slightly to give
Theorem 2. There is a P(n).D(n) processor universal machine which can simu-
late any P(n) processor, degree D(n), arity-1 machine, with delay O(log P(n)) and

setup time O(log*P(n) + D(n)).
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Note that by making D(n) constant in theorem 2, and using the processor-
saving theorems of [24] we obtain a shorter proof of theorem B of [14] (a P(n)
processor universal machine which can simulate any P(n) processor, constant

degree parallel machine with delay O(log P(n)) ).
For high-arity machines of arbitrary degree we have:

Theorem 3. There is an A(n).P(n) processor universal parallel machine which
can simulate, with delay O{A(n)+log®P(n)), any P(n) processor machine of arity
A(n).

Proof. By substituting the sorting algorithm of Batcher [4] (see, for example,

[27, 30, 32]) for the permutation IT of theorem 1. =

Finally, we should note that theorems 1 and 3 can be improved asymptoti-

cally by the use of the sorting algorithm of [2].

Theorem 4. There is an A(n).P(n) processor universal parallel machine which
can simulate, with delay O(A{(n)+log P{n)), any P(n) processor parallel machine
of arity A(n).

Proof. Similar to theorem 3, substituting the sorting algorithm of [2] for that of
Batcher. The processor-bound is achieved by use of the pipelining technique of

Vishkin [37]. =

However, as we cbserved in the introduclion, the constant multiple in the

asymptotic time-bound is too large to be of any practical use.

5. Conclusion.

We have seen that high-arity computers with minimal degree are more
powerful than those with asymptotically smaller arity. Thus P{n) processor
parallel machines with degree and arity O(log P(n)) are potentially much more
powerful than those of constant degree. It takes O(log P(n)) steps to simulate a

single step of an arbitrary constant-degree machine on a practical universal
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machine; yet we can simulate a single step of an arbitrary machine with arity
and degree O{log P(n)) in asymptotically the same amount of time, by using only
O(P(n).log P(n)) processors. Thus we see that, in a practical setting, machines
with reasonably small arity and degree are not much more powerful than their

constant-degree counterparts.

The study of universal parallel machines has become a popular pastime.
Only the most restrictive models (with, for example, constant degree and very
simple interconnection pattern) can be considered practical, yet there are prac-
tical universal machines which can simulate even the most impractical (for
example, completely-connected) models. This is important for both the theore-
tician and the more practically inclined. It provides the theoretician with a
practical motivation for studying the more abstract parallel machine models
(which are often more amenable to formal analysis). In addition, it also gives
the user of a practical parallel machine a flexible high-level programming
language. This programming language affords {at a small cost in resources) a
virtual architecture corresponding to an elegant abstract machine, thus pro-
tecting the user from the strict technological constraints governing practical

architectures.

Thus we have shown that it is practical to consider parallel machines with
non-constant arity (subject to certain reasonable constraints). We have also
given some indication of the computing power to be gained by the use of high-
arity instruction sets. Finally, we have provided the user of a practical parallel

computer with a new, more powerful programming language.
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